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Abstract. Recent network intrusion detection systems have employed machine
learning and deep learning algorithms to defend against dynamically evolving
network attacks. While most previous studies have focused on detecting attacks
which can be determined based on a single time instant, few studies have paid
attention to subsequence outliers, which require inspecting consecutive points in
time for detection. To address this issue, this paper applies a time-series anomaly
detection method in an unsupervised learning manner. To this end, we converted
the UNSW-NB15 dataset into the time-series data. We carried out a preliminary
evaluation to test the performance of the anomaly detection on the created time-
series network dataset as well as on a time-series dataset obtained from sensors.
We analyze and discuss the results.
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1 Introduction

Due to the rapid development and popularization of networks, security issues are also
becoming an important issue. In order to solve these security issues, a network intrusion
detection system (NIDS) has been widely used. A NIDS is a system that reads network
packets and detects attack traffic and is known as an effective defense method against
network security issues. During the last decade, network security systems have been
developed by employing various time-series intrusion detection techniques. Pankaj et al.
[21] propose a Long Short TermMemory Networks based Encoder-Decoder scheme for
AnomalyDetection (EncDec-AD) that learns to reconstruct normal time-series behavior.
Kyle et al. [22] demonstrate the effectiveness of LSTM and propose dynamic thresh-
olding approach using LSTMs. Ding et al. [23] propose a real-time anomaly detection
algorithm (RADM) based on Hierarchical Temporal Memory (HTM) and Bayesian
Network (BN). Park et al. [24] introduced a long short-term memory-based variational
autoencoder (LSTM-VAE) that fuses signals and reconstructs expected distribution.

Furthermore, unsupervised learning algorithms have been getting more attention
owing to their advantage of training the models without labels during the training phase
[11, 12]. In the unsupervised methods, attacks are generally detected by regarding them
as outliers or anomalies. More details about outlier detection can be found in [1, 2, 10].
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Time-series data mean the data annotated with time stamps, collected at regular time
intervals. Depending on what is considered an outlier, time-series outliers are largely
divided into two types: point outliers and subsequence outliers [2]. A point outlier means
an outlier of which value is significantly different from the values of the surrounding
data in the overall flow of data in time order as shown in Fig. 1. In the figure, a point
between 10 and 11 can be regarded as normal with a global perspective where similar
data values exist between 21 and 22, but it is determined as an outlier considering the
values of its neighbors with a local perspective [3]. These outliers can be determined
relying on their characteristics at a specific time instant.

Fig. 1. An illustration of a point outlier where samples between 10 and 11 are spiking,
distinguished from their neighboring data.

Fig. 2. An illustration of a subsequence outlier which is represented in the red box. The data
values are within the minimum and the maximum of normal data, and yet the overall pattern is
different from the rest. (Color figure online)

On the contrary, a subsequence outlier can be found only by inspecting consecutive
instants in time. A subsequence outlier shows a pattern that deviates from the normal
repetitive patents as shown in Fig. 2. The points between 9 and 10 can be regarded as
normal when simply looking at the numerical values, but it is determined as an outlier
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Fig. 3. The model structure uses stacked RNN(GRU) models. For the sliding window, which is
the time interval the model trains the specific pattern, set to 90. Using the output of previous 89
data, the model predicts 90th data in the window. The numbers 79 denote the number of features
excluding the time feature, 100 denotes the number of hidden cells of GRU, and 200 denotes the
number of nodes of the FC (Fully Connected) layer.

since its pattern deviated from the repeating patterns between 1 and 2, 5 and 6, 13 and
14, and 17 and 18 [3]. Therefore, it is necessary to detect both outliers for building an
intrusion detection system for practical domains. However, most previous studies have
focused on detecting point outliers [6, 20].

To address this issue, this paper attempts to detect attacks using multivariate time-
series network data. Since time-series network datasets are rarely available, we created
a time-series network dataset using the UNSW-NB15 network dataset [7, 13–16]. As
an experimental model, we employ an unsupervised approach which contains a stacked
RNN model, as was provided by the DACON’s HAICon2021 competition [17]. The
approach showed a good performance, achieving F1 of 0.926 when the provided code
was run on the HAI 2.0 dataset [4]. We carried out preliminary evaluations to test if this
approach can be applied to the time-series network data.

2 Model

We use a stacked RNN (GRU)model [5] for learning time-series data in an unsupervised
learning manner to detect attacks, which was provided as the baseline model for the
HAICon2021 competition. This model uses a three-layer bidirectional GRU with 100
hidden cells as illustrated in Fig. 3. We use the experiment configuration that was set
for the baseline model for comparison in the future research. We train the model for 32
epochs keeping the best model parameters, and the parameters that result in the best loss
were chosen for evaluation. The window size was set as 90.
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3 Time-Series Anomaly Detection Datasets

To evaluate the time-series anomaly detection system we selected two datasets, UNSW-
NB15 dataset [7] and HAI 2.0 dataset [4]. The UNSW-NB15 dataset is converted into a
time-series format.

3.1 The UNSW-NB15 Dataset

The UNSW-NB15 dataset is widely used for benchmarking network intrusion detection
systems. The dataset contains 9 network attack behaviors which are Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. The data
are provided in two formats, raw traffic packet file and CSV file containing features
extracted from captured network flows. We follow Ge et al. [8] to convert the packet
data into a time-series format.

Feature Extraction: The raw traffic packets from the UNSW-NB15 dataset were cap-
tured using the IXIA PerfectStorm tool and are provided in the PCAP file format [7].
We first select and extract packet fields from the PCAP file using the TShark analyzer
tool. Details of the selected fields are shown in Table 1.

Table 1. Detailed information of extracted fields from network packets.

Feature Field detail

frame frame.time_epoch, frame.len

ip ip.src, ip.dst, ip.ttl

tcp tcp.srcport, tcp.dstport, tcp.stream, tcp.len, tcp.checksum

udp udp.srcport, udp.dstport, udp.stream, udp.checksum, udp.length

The UNSW-NB15 CSV file contains the flow-based features of labeled flow data.
The description of 49 features in the file are listed in Table 2. Each flow is labelled as 0
for normal records and 1 for attacks.

Packet Labelling: After extracting the features from each packet, we sort them in the
chronological order using the frame.time_epoch feature, which indicates the time infor-
mation of the packet. The packets in the PCAP file are labelled using the labels in the
CSV file. It has information about packets transmitted and a label denoting normal or
attack. A label can be created by using the label feature value of the flow which contains
the packet.

The process of determiningwhether a particular packet belongs to aflow is as follows.
First, frame.time_epoch of the PCAP file is matched with the Stime value (the 29th field)
and the Ltime value (the 30th field) of the CSV file. Among the data matched with the
packet, we extracted the data that matches the ip.src and ip.dst of the PCAP with the
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Table 2. Description of features.

Number Description Number Description Number Description

1 srcip 18 Dpkts 35 ackdat

2 sport 19 swin 36 is_sm_ips_ports

3 dstip 20 dwin 37 ct_state_ttl

4 dsport 21 stcpb 38 ct_flw_http_mthd

5 proto 22 dtcpb 39 is_ftp_login

6 state 23 smeansz 40 ct_ftp_cmd

7 dur 24 dmeansz 41 ct_srv_src

8 sbytes 25 trans_depth 42 ct_srv_dst

9 dbytes 26 res_bdy_len 43 ct_dst_ltm

10 sttl 27 Sjit 44 ct_src_ ltm

11 dttl 28 Djit 45 ct_src_dport_ltm

12 sloss 29 Stime 46 ct_dst_sport_ltm

13 dloss 30 Ltime 47 ct_dst_src_ltm

14 service 31 Sintpkt 48 attack_cat

15 Sload 32 Dintpkt 49 Label

16 Dload 33 tcprtt

17 Spkts 34 synack

first field srcip and the third field dstip of the CSV file. Finally, for TCP, we matched
tcp.srcport and tcp.dstport in the PCAP file, and in the case of UDP, udp.srcport and
udp.dstport in the PCAP file with the 2nd field sport, and 4th field dsport of the CSV
file, and the label of the matched file becomes the label of the corresponding PCAP file.
If there is nomatching data, it is infeasible to determine whether it is normal or an attack,
hence, we removed the corresponding packet. Tcp information and udp information are
integrated into one common information, and then in the case of ip.src and ip.dst, they
are used up to map the PCAP file and the CSV information and then removed. Finally, in
the created time-series network data, there are 9 features: frame.time_epoch, frame.len,
ip.ttl, srcport, dstport, stream, checksum, len, and label. We removed the label from the
data for train, validation and test, since we apply unsupervised learning to dataset, we
only used the label for evaluation for validation and test. In total, there are 295,342
time-series data with 277,828 normal data and 17,514 attack data.

Preprocessing: For the source port and destination port features, the port numbers
greater than 49,152 are labelled as 2, the numbers greater than 1,024 are labelled to 1,
and the numbers lower than 1,024 are labelled to 0 since they are divided to dynamic
port, registered port and well-known port. Then numerical features were scaled to fit 0
to 1 using a min-max scaler.
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3.2 The HAI 2.0 Dataset

TheHAI 2.0 dataset is a time-series dataset created for attack detection in cyber-physical
systems such as railways, water-treatment, and power plants [4]. The data were collected
from the four processes: the boiler process, the turbine process, the water-treatment
process, and the HIL simulation. Data samples were collected every second and consist
of 80 features. Normal data were collected for 7 continuous days, and the attack data
include 38 different attack types. The data are sorted in the increasing order of time
feature in the format of “yyyy-MM-dd hh:mm:ss.”. Other features contain information
associated with the processes such as temperature setpoint, water level setpoint and
motor speed.

Preprocessing: To preprocess the data, the timestamp features were dropped, and the
numerical features were scaled with a min-max scaler similar to UNSW-NB15 [17]. For
some features, of which maximum value and minimum value are the same, we set these
features as 0. After scaling features, we applied an exponential weighted function in
python function “ewm” with 0.9 for alpha for noise smoothing.

4 Experiments

We compare and analyze the anomaly detection system performance using the UNSW-
NB15 and the HAI 2.0 dataset. We convert attack detection into an anomaly detection
problem by assuming the attack to be anomalous.

4.1 Data Preparation

For both datasets, an unsupervised learning was conducted to train the model using only
normal data. We divided the time-series network dataset into training, validation, and
test datasets in a ratio of 8:1:1. Then, since the attack data is also included in the training
datasets for the time-series network data, we removed attack data in the training datasets.
The number of instances for each dataset is presented in Table 3.

Table 3. Simple statistics of processed UNSW-NB15 dataset.

Training Validation Test

Normal 226,240 25,706 25,882

Attack 0 3,828 3,652

Total 226,240 29,534 29,534

However, there are no labels in the test dataset of HAI 2.0 dataset. For the evaluation,
we divided the validation dataset, which has labels, into the validation dataset (first 50%)
and the test dataset (last 50%). Table 4 shows the simple statistics of the processed dataset.
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Table 4. Simple statistics of the processed HAI 2.0 dataset.

Training Validation Test

Normal 965,603 21,060 21,512

Attack 0 540 89

Total 965,603 21,600 21,601

4.2 Training

As described in Fig. 3, the model is trained to predict the last sample in the given
time window when the preceding samples are given. In order to predict whether the last
sample is an anomaly themodel is only trainedwithwindows containing normal samples.
Theoretically the model will predict the last sample as close as possible to the normal
sample given the preceding sample. Therefore, if the difference between the prediction
and true last sample is significant, we consider the last sample to be an anomaly. We
predict the last sample of the window as an anomaly if the difference is greater than a
predetermined threshold. The parameters for training the model are provided in Table
5. The stride means how much data to skip during training.

Table 5. Model parameters and configurations.

Parameter Value/Name Parameter Value/Name

n_hidden 100 n_layers 3

batch_size 512 num_epochs 32

window_size 90 stride 10

loss MSE optimizer AdamW

scheduler X dropout X

4.3 The Evaluation Metrics

There are various evaluation metrics such as precision, recall, and F1 that are frequently
used. However, the evaluationmetric of time-series data needs to consider various factors
such as the diversity of detected attacks and the accuracy of detection as illustrated in
Fig. 4.

For example, as shown in Fig. 4, Model 2 detects 3 anomaly instances between 0
and 3, and Model 1 detects 2 instances, one between 1 and 2 and the other between 6
and 7. In terms of accuracy, Model 2 outperforms Model 1. However, considering that
Model 2 does not detect anomalies between 6 and 8 time slots, it is hard to determine
which model performs better. TaPR [19] is an evaluation metric that considers these
factors. TaP, which corresponds to precision, is an evaluation metric indicating whether
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Fig. 4. Illustration of time-series anomaly detection where the two different models Model 1 and
Model 2 are used, modified from [18]. The X-axis indicates time, and A indicates the time slots
where an anomaly exists. M1 indicates the anomalies that Model 1 detects, and M2 indicates the
anomalies that Model 2 detects.

the prediction finds outliers with less false positives. TaR, which corresponds to recall,
is an evaluation metric indicating the diversity of the anomalies. Using the detection
score TaPd (resp. TaRd) and the portion score TaPp (resp. TaRp), TaP and TaR can be
calculated as follows:

TaP = α × TaPd + (1− α) × TaPp (1)

TaR = α × TaRd + (1− α) × TaRp (2)

where α controls the ratio of TaPd (resp. TaRd) and TaPp (resp. TaRp), and its value is
between 0 and 1 [9].

5 The Experiment Results

This section reports the evaluation results. The figures below show the error and attack
distribution of the time-series network data created in this paper and the HAI 2.0 data,
respectively (Figs. 5 and 6).

Using the experimental results of validation data, the threshold was set to 0.04 for
the HAI 2.0 data, and the threshold was set to 0.2 for time-series network data. The two
dataset show different properties. In the HAI 2.0 data, the attack data tends to be greater
than the normal data, while in the time-series network data values are relatively evenly
distributed. In addition, in the case of the HAI 2.0 dataset, the number of normal data is
overwhelmingly larger than that of attack data, unlike the time-series network data. As
the evaluation metric, we use TaPR described in Sect. 4.3. The analyses of the results
are shown in the following Tables 6 and 7.
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Fig. 5. Distribution of error and attack in validation dataset of the time-series network dataset. The
x-axis indicates the order of the data, and the y-axis indicates the absolute difference of (answer
- guess). The orange line indicates the attack position, and the blue line indicates the size of the
error. The red line is the threshold value that separates the boundary between normal and attack.
(Color figure online)

Fig. 6. Distribution of error and attack in validation dataset of the HAI 2.0 dataset. The x-axis
indicates the order of the data, and the y-axis indicates the absolute difference of (answer - guess).
The orange line indicates the attack position, and the blue line indicates the size of the error. The
red line is the threshold value that separates the boundary between normal and attack. (Color figure
online)

Table 6. Detection performance results of UNSW-NB15 data.

Evaluation metric UNSW-NB15 data

F1 0.737

TaP 0.731

TaR 0.743
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Table 7. Detection performance results of HAI 2.0 data.

Evaluation metric HAI 2.0 data

F1 0.926

TaP 0.861

TaR 1.000

The F1 scores are 0.926 for HAI 2.0 data and 0.737 for time-series network data.
The TaP and TaR scores are 0.861 and 1.000 for HAI 2.0 data, and 0.731 and 0.743 for
the time-series network data, respectively. This indicates that the model performs better
with the HAI 2.0 dataset which contains sensor data.

There are two main factors that account for the poor performance of the time-series
network dataset. First, the number of features in the time-series network dataset may be
insufficient. In the case of the HAI 2.0 dataset, there are about 80 features, in the case
of the time-series network data, only about 10 features were used, making it difficult to
determine its anomaly. The other reason is that time-series network data are not complete
time-series. In the case of HAI 2.0 dataset, data is generated every second, but in the
case of the time-series network dataset, since packets are not transmitted at a specific
period, it is difficult to generate data at regular intervals. Moreover, since the attack data
is removed from the training data of the time-series network data to learn the normal
data only, the time information becomes more irregular.

6 Conclusion

While unsupervised deep learning models have shown great performances in detect-
ing attacks that are point outliers, little has been researched on detecting subsequence
outliers. For building a NIDS which can detect subsequence outliers, we first created
the time-series network data by processing the UNSW-NB15 dataset. We carried out
preliminary experiments using both the HAI 2.0 dataset and the time-series network
dataset we created, using a stacked RNN model in an unsupervised manner. The results
show that the model performs better with run on the HAI 2.0 dataset than tested on the
time-series network dataset. The model achieved F1 scores of 0.926 for the HAI 2.0 data
and 0.737 for the time-series network data. The TaP and TaR scores are 0.861 and 1.000
for the HAI 2.0 data, and 0.731 and 0.743 for the time-series network data. The lack of
data and insufficient features of the time-series network data can account for its poor
performance. We expect that more studies on time-series network data attack detection
in the future will help solve these shortcomings.
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