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Abstract. Differential privacy (DP) has become the de facto standard
of privacy preservation due to its strong protection and sound mathemat-
ical foundation, which is widely adopted in different applications such as
big data analysis, graph data process, machine learning, deep learning,
and federated learning. Although DP has become an active and influen-
tial area, it is not the best remedy for all privacy problems in different
scenarios. Moreover, there are also some misunderstanding, misuse, and
great challenges of DP in specific applications. In this paper, we point
out a series of limits and open challenges of corresponding research areas.
Besides, we offer potentially new insights and avenues on combining dif-
ferential privacy with other effective dimension reduction techniques and
secure multiparty computing to clearly define various privacy models.
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1 Introduction

Organizations, companies and governments collect data from a variety of sources,
including social networking, transactions, smart Internet of Things devices,
industrial equipment, electronics commercial activities, and more, which can
be used to dig out valuable information hidden behind the massive data for
modern life. The extensive collection and further processing of personal infor-
mation in the context of big data analytics and machine learning-based artifi-
cial intelligence results in serious privacy concerns. For example, in March 2018,
Facebook-Cambridge Analytica was reported to use the personal data of millions
of people’s Facebook profiles harvested without their consents for political adver-
tising purposes in the 2016 US presidential election, which was a great political
scandal and caused an uproar in the world. Despite the benefits of analytics,
it cannot be accepted that big data comes at a cost for privacy. Therefore, the
present study shifts the discussion from “big data versus privacy” to “big data
with privacy”, adopting the privacy and data protection principles as an essen-
tial value [5]. Privacy-preserving data publishing (PPDP) and various artificial
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intelligence-empowered learning/computing have gained significant attentions in
both academia and industry. It is, thus, of utmost importance to craft the right
balance between making use of big data technologies and protecting individuals’
privacy and personal data [5].

Intuitively, one can make use of the simple naive identity removal to pro-
tect data privacy, but in practice, it does not always work. For instances, AOL
released an anonymized partial three-month search history to the public in 2006.
Although personally identifiable information was carefully processed, some iden-
tities were accurately reidentified. For example, The New York Times immedi-
ately located the following individual: the person with number 4417749 was a
62-year-old widowed woman who suffered from some diseases and has three dogs.
Such real-world privacy leakage problems and attack instances clearly demon-
strate the importance of data privacy preservation.

The problem of data privacy protection was first put forward by Dalenius
in the late 1970s [6]—Dalenius pointed out that the purpose of protecting pri-
vate information in a database is to prevent any user (including legitimate users
and potential attackers) from obtaining accurate information about arbitrary
individuals. Following that, many privacy preservation models with strong oper-
ability including k-anonymity, I-diversity [20], ¢-closeness [18] were proposed.
However, each model generally provides protection against only a specific type of
attacks and cannot defend against newly developed ones. A fundamental cause
of this deficiency lies in that the security of a privacy preservation model is
highly related to the background knowledge of an attacker. Nevertheless, it is
almost impossible to define the complete set of possible background knowledge
an attacker may have.

Dwork originally proposed the concept of differential privacy (DP) to protect
against the privacy disclosure of statistical databases in 2006 [4]. Under differ-
ential privacy, query results of a dataset are insensitive to the change of a single
record. That is, whether a single record exists in the dataset has little effect on
the output distribution of the analytical results. As a result, an attacker cannot
obtain accurate individual information by observing the results since the risk of
privacy disclosure generated by adding or deleting a single record is kept within
an acceptable range. Unlike anonymization model, DP makes the assumption
that an attacker has the maximum background knowledge, which rests on a
sound mathematical foundation with a formal definition and rigorous proof.

It is worth noting that differential privacy is a definition or standard for quan-
tifying privacy risks rather than a single tool, which is widely used in statistical
estimations, data publishing, data mining, and machine learning. It is a new and
promising privacy framework and has become a popular research topic in both
academia and industry, which can be potentially implemented in various applica-
tion scenarios. However, DP is a strict privacy standard, the data utility is likely
to be poor while providing a meaningful privacy guarantee. The goal of this paper
is to summarize and analyze the state-of-the-art research and investigations in the
field of differential privacy and its applications in privacy-preserving data pub-
lishing, machine learning, deep learning, and federated learning, to point out a
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series of limits and open challenges of corresponding research areas, so as to pro-
vide some approachable strategies for researchers and engineers to implement DP
in real world applications. In our paper, we place more focus on practical appli-
cations of differential privacy rather than detailed theoretical analysis of differen-
tially private algorithms.

The rest of this paper is organized as follows. We present the background
knowledge of differential privacy in Sect.2. Section3 introduces differentially
private data publishing problem and presents some challenges on this problem. In
Sect. 4, we summarize existing research on the application of differential privacy
to deep learning and federated learning. Section 5 concludes the paper with some
future research discussion and open problems on differential privacy applications.

2 Preliminary of Differential Privacy

Differential privacy can be achieved by injecting a controlled level of statistical
noise into a query result to hide the consequence of adding or removing an
arbitrary individual from a dataset. That is, when querying two almost identical
datasets (differing by only one record), the results are differentially privatized
in that an attacker cannot glean any new knowledge about an individual with
a high degree of probability, i.e., whether or not a given individual is present in
the dataset cannot be guessed.

2.1 Definition of Differential Privacy

Let f be a query function to be evaluated on a dataset D. Algorithm A runs
on the dataset D and sends back A(D). A(D) could be f(D) with a controlled
amount of random noise added. The goal of differential privacy is to make A(D)
as much close to f(D) as possible, thus ensuring data utility (enabling the user
to learn the target value as accurately as possible), while preserving the privacy
of the individuals with the added random noise. The main procedure can be seen
in Fig. 1.

Definition 1 (Neighboring Datasets). Two datasets D and D' are considered
to be neighboring ones if d(D,D') = 1, where d(D, D") is the number of records
D and D’ differ.

Definition 2 (Differential Privacy [8]). A randomized algorithm A is (e, 0)-
differentially private if for any two datasets D and D' with d(D,D’) = 1, and
for all sets S of possible outputs, we have

PrlA(D) € S] < ¢*PrlA(D') € S] + 56,

where € and § are non-negative real numbers.
When § = 0, the algorithm becomes e-differentially private. We say a mecha-
nism gives d-approximate differential privacy when & # 0. The € is often a small
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Fig. 1. The framework of differential privacy

positive real number called privacy budget, which is used to control the proba-
bility of the algorithm A getting almost the same outputs from two neighboring
datasets. It reflects the level of privacy preservation that algorithm A can pro-
vide. For example, if we set ¢ = In 2, the result S is at most twice as likely to be
generated by dataset D as by any of D’s neighbor D’.

The smaller the ¢, the higher the level of privacy preservation. A smaller e
provides greater privacy preservation at the cost of lower data accuracy with
more additional noise. When € = 0, the level of privacy preservation reaches
the maximum, i.e., “perfect” protection. In this case, the algorithm outputs
two results with indistinguishable distributions but the corresponding results do
not reflect any useful information about the dataset. Therefore, the setting of €
should consider the trade-off between privacy requirements and data utility. In
practical applications, € usually takes very small values such as 0.01, 0.1, or In 2,
In 3.

2.2 Noise Mechanism of Differential Privacy

Sensitivity is the key parameter to determine the magnitude of the added noise,
that is, the largest change to the query result caused by adding/deleting any
record in the dataset. Accordingly, global sensitivity, local sensitivity, smoothing
upper bound, and smoothing sensitivity are defined under the differential privacy
model. Because of the limitation of space, we will specifically introduce them
here.

(1) Laplace Mechanism
The Laplace distribution (centered at p) with scale b is the distribution with
probability density function
_ 1 |z —u
h(z) = oy exp(~ 24
Let Lap(b) denote the Laplace distribution (centered at 0) with scale b.
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Definition 3 (Laplace Mechanism [8]). For dataset D and function f : D — R
with global sensitivity GSy, the Laplace mechanism A(D) = f(D) + Z is e-
differentially private, where Z ~ Lap(GSy/e).

The Laplace mechanism is suitable for the protection of numerical results.
Taking an example Laplace mechanism for the counting function, since the global
sensitivity of counting is 1, that is GSy = 1, if we choose ¢ = 0.1, the Laplace
mechanism outputs 3 + Lap(10).

(2) Exponential Mechanism

The Laplace mechanism is appropriate only for preserving the privacy of numer-
ical results. Nevertheless, in many practical implementations, query results are
entity objects. McSherry et al. put forward the exponential mechanism [21] for
the situations where the “best” needs to be selected. Let the output domain of a
query function be Range, and each value r € Range be an entity object. In the
exponential mechanism, the function ¢(D,r), which is called the wtility function
of the output value r, is employed to evaluate the quality of r.

Definition 4 (Ezponential Mechanism [21]). Given a random algorithm A with
the input dataset D and the output entity object v € Range, let q(D,r) be the
utility function and Aq be the global sensitivity of function q(D,r). If algorithm
A selects and outputs r from Range at a probability proportional to exp(“’z(%(’;)),
then A is e-differentially private.

2.3 Local Differential Privacy

Traditional centralized differential privacy provides privacy protection based on
a premise that there is a trusted third-party data collector who does not steal
or disclose user’s sensitive information, while local differential privacy [7] does
not assume the existence of any trusted third-party data collector. Instead, it
transfers the process of data privacy protection to each user, making each user
independently deal with and protect personal sensitive information.

Definition 5 (Local Differential Privacy [7]). Given n users, with each corre-
sponding to a record. A privacy algorithm M with definition domains Dom(M)
and Ran(M) satisfies the e-local differential privacy if M obtains the same out-
put result t* (t* C Ran(M)) on any two records t and t' (t,t' € Dom(M)):

Pr[M(t) =t"] < e x Pr[M(t") = t*]

One can see from this definition that local differential privacy provides pri-
vacy by controlling the similarity between the output results of any two records,
while each user processes its individual data independently, that is, the privacy
preserving process is transferred to a single user from the data collector, such
that a trusted third party is no longer needed and privacy attacks brought from
the data collection of untrusted third-party is thus avoided. The framework of
local differential privacy can be seen in Fig. 2.
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Fig. 2. The framework of local differential privacy

3 Differentially Private Data Publishing

3.1 Differential Privacy in Tabular Data Publishing

The goal of differentially private data publishing is to output aggregate/synthetic
information to public without disclosing any individual’s information. Gener-
ally, there are two settings in the data publishing scenario, interactive and non-
interactive. In the first setting, users make queries request to the data curator,
who answers the query with a noisy result. The fixed privacy budget will be
exhausted as the number of queries increases. In the non-interactive setting, the
data curator publishes statistical information related to the dataset that satisfies
differential privacy. When the queries are submitted, the corresponding query
result is directly returned from the published synthetic dataset.

The challenge of interactive setting is that the number of queries is limited while
the privacy budget € is easily exhausted. That is, a higher accuracy result for one
query with less noise results and a larger € usually results in a smaller number of
queries.

High sensitivity presents a big challenge on the data publishing in the non-
interactive setting, while high sensitivity means large magnitude of noise and
low data utility especially for big data and complex data, which we will detailed
introduce in Sect. 3.3. Another problem is that the published synthetic dataset
can only be used for particular purposes or targeted a fixed query function.

3.2 Differential Privacy in Graph Data Publishing

With the widespread application of social networks, the increasing volumes of user-
generated data have become a rich source which can be published to third parties
for data analysis and recommendation system. Generally, social networking data
can be modeled as graph G(V, E), where V is a set of nodes and F is a set of rela-
tional activities between nodes. Analyzing graph data such as analysis of social
network data has great potential social benefits and help generate insights into
the laws of data change and trend characteristics. Most popular tasks of social net-
work analysis include degree distribution, subgraph counting (triangle counting,
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Fig. 3. Differential privacy definitions in graph data

k-star counting, k-triangle counting,etc.) and edge weight analysis. In reality, var-
ious types of privacy attacks such as de-anonymization attacks [11,12,14,15,23],
inference attacks [10,16] on social networks have raised the stakes for privacy pro-
tection while a large amount of personal user data have been exposed.

However, the privacy issue of graph is more complicated starting from how to
model and formalize the notion of “privacy” in graph network. Differential pri-
vacy originates from tabular data, while the key to extending differential privacy
to social networks is to determine the neighboring input entries, that is, how to
define “adjacent graphs”. Figure 3 shows existing definitions of DP in graph data,
namely, node differential privacy, edge differential privacy, outlink differential pri-
vacy, partition differential privacy; detailed information can be referred to [13].

3.3 Challenges on Differentially Private Data Publishing

In this subsection, we present a few challenges and open problems on differen-
tially private data publishing especially for big data, complex network, dynamic
and continuous data publishing.

As what it reads, big data deal with massive amounts of data at a great speed
passing, which exhibit various characteristics that cover challenges like gathering,
analysis, storage and privacy preservation. Of the many characteristics of big data,
5V characterizes big data’s nature the best, namely Volume, Velocity, Variety,
Veracity and Value.

Differential Privacy on Complex and High Volume Network Struc-
ture. Network structures such as social networks and traffic networks are often
complex. Since query sensitivities are usually high, much noise has to be added
to query results to achieve differential privacy. Nevertheless, the noise may sig-
nificantly affect the output data utility, resulting in useless data. Moreover, it
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may be hard to effectively compute sensitivities, either global or smooth, pre-
cise or approximate, as the computational complexity may be too high (or even
NP-hard) to be practical for many complex graph network analysis queries.

Differential Privacy on High Dimensional Data. Most differentially private
data publishing techniques cannot work effectively for high dimensional data. On
one hand, since the sensitivities and entropy of different dimensions vary, evenly
distributing the total privacy budget to each dimension degrades the performance.
Moreover, “Curse of Dimensionality” is the common challenge in big data pertur-
bation which means a dataset contains high dimensions and large domains result-
ing in a pretty low “Signal-to-Noise” and extremely low data utility even useless.

Differential Privacy on Correlated Data. Differential privacy offers a neat
privacy guarantee while it is a strict privacy standard, while assumes all the data
are independent, while the correlation or dependence may undermine the privacy
guarantees of differential privacy mechanisms. Unfortunately, the real-world gath-
ered data can not be strictly independent, which is not only tuple (record) corre-
lated but also attribute information correlated. For example, the salary informa-
tion in strongly correlated with education level and occupation in a dataset.

Differential Privacy on High-Velocity Data. Velocity in big data refers to
the crucial characteristic of capturing data dynamically. In practical applications,
the data are dynamically updated such as recommendation system, trajectory
data to capture the evolutionary behaviors of various users. Differential privacy
on continuous flow of data faces critical challenges of great noise accumulation
and privacy budget allocation for each time sequence.

4 Differentially Private Machine Learning

4.1 Differential Privacy in Deep Learning

The privacy protection provided by DP also could benefit the existing deep
learning model. Generally, the noise can be added into the gradient, input, and
embedding. Adadi et al. [1] introduce the first DP preserved optimization algo-
rithm named DPSGD. The DP is achieved by adding Gaussian noise in every
SGD optimization step. Arachchige et al. [2] introduce a model named LATENT.
The framework achieves the protection by transferring the real-vale low dimen-
sional representation into a discrete vector. Lecuyer et al. [17] proposed a model
named PixelDP. The framework achieves the goal by adding Gaussian noise in
the hidden layers of a CNN model. Different from these works, Phan et al. [22]
proposed a method that directly manipulates the inputs. The model induces
different levels of noise for each pixel of an image based on a relevant score [3].

4.2 Differential Privacy in Federated Learning

The research field of Federated Learning focuses on learning a model where data
is stored in a distributed system. As pointed out by Wei et al. [25], attackers can
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retrieval the data information through the gradient, a DP preserved learning model
could protect such information leakage in the Federated Learning setting. Wei
et al. [24] integrated DP algorithm into the Secure Multiparty Computation(SMC)
framework. DP is used to encrypt the response for each query in the SMC. Geyer
et al. [9] introduce a DP algorithm focusing on removing the data source info. In
addition to using the same SGD algorithm framework as DPSGD, the algorithm
also will randomly ignore a portion of the data to protect data privacy.

4.3 Challenges on Differentially Private Machine Learning

Model Dependency. Other than the gradient-based approach, most deep-
learning based DP algorithms introduced in this paper are highly related to
the deep learning model. For example, LATENT and PixelDP are designed only
for CNN. A DP approach that does not rely on the data and model could be
promising research in the DP research field.

Accuracy Loss of Federated Learning Due to Added Noise. In federated
learning model, differential privacy-based approaches add noise to the uploaded
parameters which will degrade the model accuracy inevitably and further affect
the convergence of the global aggregation. Moreover, there are few results about
practical frameworks integrating differential privacy and other cryptography-
based methods, which hinders the industrial development of federated learning.

5 Future Directions and Conclusions

Differential privacy is a strong standard of privacy protection with a solid mathe-
matical definition which can be applied in various application scenarios, however
differential privacy is not a panacea for all privacy problems and the research
on differential privacy is still in its infancy stage. There are still some misunder-
standings, inappropriate applications and flawed implementations in differential
privacy. In this section, we propose a few future research problems and open
problems that worthy of more attention.

5.1 Combination of Differential Privacy and Other Technologies

As we mentioned about the privacy preservation of high dimensional data, it
is feasible and promising to combine effective dimensionality reduction tech-
niques with differential privacy to address this issue. Specifically, it is possible to
try both linear and non-linear transformation such as compressive sensing and
manifold learning which maps a high-dimensional space to a low-dimensional
representation.

With the great high privacy concern on Federated learning, IoT network
and other distributed environment, the combination of local differential privacy,
multiparty computations and sampling and anonymization will be a future topic
which needs open-ended exploration. Secure multiparty computation is a type of
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cryptography-based which could be concerning and infeasible on computation-
ally constrained devices, while anonymization model has its own shortcomings
about the assumption on background knowledge. However, the combination of
these techniques can boost the performance of differential privacy. Specifically,
differential privacy with a sampling processing can greatly amplify the privacy
preservation level [19], based on which we can adapt the idea of anonymization
to participants of DP processing. For example, in the scenario of federated learn-
ing, we can randomly pick up the clients and parts of differentially private local
updates to form a shuffle model. Moreover, inter-discipline techniques between
local differential privacy and secure multiparty computation involve the secure
computation, privacy preservation and dataset partition, which need to tackle
with the high communication cost and low data utility.

5.2 Variation of Differential Privacy and Personalized Privacy

Differential privacy provides strong and strict privacy guarantee at the cost of
low data utility while it may be too strong and not necessary in some practical
applications. To achieve a better tradeoff between privacy and preservation, var-
ious relax and extensions of differential privacy need to be proposed and in fact
many of these definition have been proposed such as crowd-blending privacy, indi-
vidual differential privacy, and probabilistic indistinguishability. However, most
of these are still in the stage of theoretical definition or be specific scenarios.
The great challenge is that how to widely apply to these extensions to practical
applications.

On the other hand, conventional private data privacy preservation mecha-
nisms aim to retain as much data utility as possible while ensuring sufficient
privacy protection on sensitive data while such schemes implicitly assume that
all data users have the same data access privilege levels. Actually, data users
often have different levels of access to the same data, personalized requirements
of privacy preservation level or data utility. It is a big challenge to achieve per-
sonalized privacy and multi-level data utility while the uniform framework itself
is a hard problem.

5.3 Misunderstandings of Differential Privacy vs More Than
Privacy

As we mentioned in differentially private data publishing, the data utility of
outputs are likely to be very poor or with large privacy budget, that is lower pri-
vacy preservation level, which we cannot sure how much privacy it can provides.
Moreover, when differential privacy is applied to federated learning, it is used on
local updates of parameters while traditional differential privacy is designed for
record data contributed by different individuals on the basis of assumption that
the data are independent. However, in federated/distributed learning, all local
data are from the same client which have little possibility to be independent.
In contrast, differential privacy can do more while there exists misconceptions
and misuse of differential privacy. Besides providing privacy preservation through
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hiding individual information in the aggregate information, from the opposite
perspective of its definition, differential privacy can ensure that the probability of
outcomes unchanged when modifying any individual record in the training data,
and the application of this property needs to be explored. Secondly, differential
privacy can also protect against the malicious attacks in learning techniques such
as poisonous attacks in federated learning which can help improve the accuracy of
training model. Thirdly, specific differentially private methods can be combined
with reward mechanisms in distributed learning to provide privacy preservation
and incentivize more clients to participate in the learning process at the same
time.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308-318 (2016)

2. Arachchige, P.C.M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquzzaman, M.:
Local differential privacy for deep learning. IEEE Internet Things J. 7(7), 5827—
5842 (2019)

3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE 10(7), e0130140 (2015)

4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006_1

5. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.A.,
Bourka, A.: Privacy by design in big data: an overview of privacy enhancing tech-
nologies in the era of big data analytics. arXiv preprint arXiv:1512.06000 (2015)

6. Dalenius, T.: Towards a methodology for statistical disclosure control. statistik
Tidskrift 15(429-444), 2-1 (1977)

7. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pp. 429-438. IEEE (2013)

8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

9. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

10. Gong, N.Z., et al.: Joint link prediction and attribute inference using a social-
attribute network. ACM Trans. Intell. Syst. Technol. (TIST) 5(2), 1-20 (2014)

11. Ji, S., Li, W., Gong, N.Z., Mittal, P., Beyah, R.A.: On your social network de-
anonymizablity: quantification and large scale evaluation with seed knowledge. In:
NDSS (2015)

12. Ji, S., Wang, T., Chen, J., Li, W., Mittal, P., Beyah, R.: De-SAG: on the de-
anonymization of structure-attribute graph data. IEEE Trans. Dependable Secure
Comput. 16, 594-607 (2017)

13. Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X.: Applications of differential
privacy in social network analysis: a survey. IEEE Trans. Knowl. Data Eng. (2021)


https://doi.org/10.1007/11787006_1
http://arxiv.org/abs/1512.06000
https://doi.org/10.1007/11681878_14
http://arxiv.org/abs/1712.07557

44

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

H. Jiang et al.

Jiang, H., Yu, J., Cheng, X., Zhang, C., Gong, B., Yu, H.: Structure-attribute-based
social network deanonymization with spectral graph partitioning. IEEE Trans.
Comput. Soc. Syst. (2021)

Jiang, H., Yu, J., Hu, C., Zhang, C., Cheng, X.: Sa framework based de-
anonymization of social networks. Procedia Comput. Sci. 129, 358-363 (2018)
Labitzke, S., Werling, F., Mittag, J., Hartenstein, H.: Do online social network
friends still threaten my privacy? In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 13-24 (2013)

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 656-672. IEEE (2019)

Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 106-115. IEEE (2007)

Li, N., Qardaji, W., Su, D.: On sampling, anonymization, and differential privacy
or, k-anonymization meets differential privacy. In: Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security, pp. 32-33
(2012)

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data (TKDD) 1(1),
3-es (2007)

McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
94-103. IEEE (2007)

Phan, N., Wu, X., Hu, H., Dou, D.: Adaptive Laplace mechanism: differential
privacy preservation in deep learning. In: 2017 IEEE International Conference on
Data Mining (ICDM), pp. 385-394. IEEE (2017)

Shirani, F., Garg, S., Erkip, E.: Optimal active social network de-anonymization
using information thresholds. In: 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 1445-1449. IEEE (2018)

Wei, K., et al.: Federated learning with differential privacy: algorithms and perfor-
mance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454-3469 (2020)

Wei, W., Liu, L., Loper, M., Chow, K.H., Gursoy, M.E., Truex, S., Wu, Y.: A frame-
work for evaluating gradient leakage attacks in federated learning. arXiv preprint
arXiv:2004.10397 (2020)


http://arxiv.org/abs/2004.10397

	Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity
	1 Introduction
	2 Preliminary of Differential Privacy
	2.1 Definition of Differential Privacy
	2.2 Noise Mechanism of Differential Privacy
	2.3 Local Differential Privacy

	3 Differentially Private Data Publishing
	3.1 Differential Privacy in Tabular Data Publishing
	3.2 Differential Privacy in Graph Data Publishing
	3.3 Challenges on Differentially Private Data Publishing

	4 Differentially Private Machine Learning
	4.1 Differential Privacy in Deep Learning
	4.2 Differential Privacy in Federated Learning
	4.3 Challenges on Differentially Private Machine Learning

	5 Future Directions and Conclusions
	5.1 Combination of Differential Privacy and Other Technologies
	5.2 Variation of Differential Privacy and Personalized Privacy
	5.3 Misunderstandings of Differential Privacy vs More Than Privacy

	References




