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Abstract. Resources provisioning on the cloud is problematic due to het-
erogeneous resources and diverse applications. The complexity of such
tasks can be reduced with the aid of Machine Learning. Researchers have
found, however, that machine learning poses new threats such as adver-
sarial attacks. Based on our investigation, we found that adversarial ML
can target resource provisioning systems (RPS) to perform distributed
attacks. Our work proposes a fake trace generator (FTG), which can be
wrapped around an adversary kernel to avoid detection by the RPS and to
enable the adversary to get co-located with the victim’s virtual machine.
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1 Introduction

Due to the rise of social media, Internet-of-Things (IoT), and multimedia, the
volume of data has increased continuously, resulting in an overwhelming amount
of data known as big data. In order to efficiently process such massive data, scale-
out architecture has gained interest as a promising solution that is designed to
provide a massively scalable computer architecture. Recent improvements in
the networking, storage, energy-efficiency and infrastructure management have
made cloud (the best example of scale-out architecture) a preferable approach
to respond to the new computing challenges.

A resource provisioning system provides various services including resource
efficiency [11], security, fault tolerance, and monitoring to achieve the performance
goals while maximizing the utilization of available resources [10] in the cloud. The
latest recourse provisioning systems, which they were successful to significantly
improve the utilization, used machine learning techniques to overcome the chal-
lenge of diversity of applications and heterogeneity of resources in the cloud.

RPSs routinely schedule multiple applications from multiple users on the
same physical hosts to increase efficiency, in a way that applications have min-
imum impact on each other’s performance. Moreover, a recent work proposed
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to exploit information used by resource provisioning systems for scheduling pur-
poses, for detecting an adversary VM by its micro-architectural trace and behav-
ior. In this way, they are actually adding another line of defense, this time in the
scheduling phase, against attackers.

On the other hand, the interference on shared resources from multi-tenancy
can lead to security and privacy vulnerabilities. Interference may leak important
information ranging from a service’s placement to confidential data, like private
keys [3]. This has prompted significant work on distributed side-channel [9] and
distributed denial of service attacks (DDoS) [6], data leakage exploitations [22],
and attacks that pinpoint target VMs in a cloud system [19]. However, none
of the above attacks targeted the resource provisioning system by itself to use
it as a new point of vulnerability and a platform for their attacks. Most of
those attacks leverage the lack of strictly enforced resource isolation between
co-scheduled instances and the naming conventions cloud frameworks use for
machines to extract confidential information from victim applications, such as
encryption keys.

In this work, we show how utilizing machine learning in resource provisioning
systems can become a blind spot and weakness to be exploited by adversaries
for planning an attack. Despite the machine learning systems being deployed
in numerous applications and shown robustness against random noises [18], the
exposed vulnerabilities have shown that the outcome of ML models can be mod-
ified or controlled by adding specially crafted perturbations to the input data,
often referred to as Adversarial samples. A plethora of works on adversarial
attacks exists, focusing specifically on computer vision applications, where the
number of features is often large. Recently, a few works on crafting adversarial
traces are as well proposed [12].

We argue that the adversarial samples in ML can be leveraged to impose
security risk and manipulate today’s ML-based RPSs by reverse engineering the
ML models from the performance and utilization data these systems generate.
We show an example (DDoS attack) to how an adversary can bypass the instance
initialization phase of RPS and get co-located by victims with high probability.
We also will show how it is possible to disguise the malicious behavior of the
adversary’s VM and still remain on the same host with the victim and avoid the
migration. To create such a fake trace generator, we use the concept presented
in [12] for the adversarial sample generation in machine learning. By reverse
engineer the resource provisioning system, we can create an adversarial sample
for the adversary’s application trace. We run FTG as a separate thread inside
the adversarial VM and by expecting the transferability of such an attack, we
improve the effectiveness of distributed attacks.

2 Security Threats

We show that ML solutions hides security vulnerabilities, since it enables an
adversary to extract information about an application’s type and characteristics.
An adversarial VM has the goal of disguising as Friendly VM to determine the
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nature and characteristics of any applications co-scheduled on the same physical
host, and negatively impact their behavior.

2.1 Threat Model

Our work focuses on TaaS providers that offer public clouds to mutually untrust-
ing customers where multiple VMs can be co-located on the same server. VMs
do not have any control over where they are placed, nor do they have any infor-
mation about other VMs on the same physical host. As a result, at this point,
we assume that the resource provisioning system will be neutral with respect to
detection of adversarial virtual machines, which means that it won’t assist such
attacks or employ additional resource isolation techniques to prevent them.

Adversarial VM: Adversary virtual machines are designed to steal infor-
mation or negatively impact the performance of the victims by getting co-located
with them and evading detection mechanisms embedded in resource provisioning
systems.

Friendly VM: One or more applications are run on this virtual machine,
which is scheduled on a physical host. No techniques for preventing detection,
such as obfuscation of memory patterns, are used.

2.2 Distributed Attack

A distributed attack [1] goal is to retrieve secret information, or decrease the per-
formance of computing nodes on a distributed system, where each computing
node processes a part of the overall data. The examples of retrieved information
may be a set of encryption keys that can be used to compromise the function-
ality of the whole distributed system. A distributed attack may also be used to
retrieve information about the cloud infrastructure such as FPGA cartography
and fingerprinting. In the following, we present some characteristics and provide
more details of such attacks.

Definition 1. We can define the distributed attack over a set M,;. of virtualized
instances running in a distributed system S, as a tuple DSCA = (S, My, D,
Mpai, A, CP, EP) where: S is a distributed system; M,;. are the VMs that are
targeted by the attack; D is the distributed dataset to be compromised (partially
or totally); M,,q; are malicious VMs, co-located with the victim VMs; A is a set
of local attack techniques (such as side channel [16], denial of service, or resource
freeing attack); C'P is a protocol to coordinate the attacker VMs in M,,qi; EP
is a protocol to exfiltrate data.

We consider D = dy,...,d, a dataset to be processed by the distributed
system S = sq,..., s, implemented on a set of VMs My;c = Muyicls .-, Myicen ON
a virtualized platform. Each component s; of S processes data d; locally and
runs in its own VM my,;.;. To perform the distributed attack, the adversary sets
up a number of malicious VMs(at least equal to the number of M,;.) Mya =
Mmally -, Mmaln, co-located with the victim instance M,;.. The adversary also
masters a set A = agy, ..., a,, of local attack techniques, i.e., Flush+Reload.
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The objective of a distributed attack is to first attack each component of the
system s; running on my;e; through mg,q;; running local attack technique a; to
retrieve d;. The synchronization between attack instances and a central server
may be performed using a coordination protocol CP. A protocol EP may be
used to control attacking instances remotely, and to send collected information
to a remote server to exfiltrate sensitive data. In the following, we briefly explain
three well-known local attack on a distributed system:

Side Channel Attack. By sharing physical resources like processor caches,
or by using virtualization mechanisms, side-channels may occur due to lack of
enforced isolation. The side channel is a hidden information channel that is
different from the main channel (e.g., network), in that the protection mech-
anisms around the data might not be adequate to prevent security violations.
The purpose of a side channel attack is to exploit a side channel for obtaining
critical information. Side channel attacks can be classified according to the type
of exploited channel. The two most popular types of SCA are timing attacks and
cache-based attacks, where the cache memory of the processor is often exploited
by adversaries.

Denial of Service Attack. The overloading of server resources caused by a
denial of service attack degrades the performance of the victim service. These
attacks can be classified as external or internal (or host-based) in cloud set-
tings specifically. TaaS cloud multi-tenancy allows internal DoS attacks to launch
adversarial programs on the same host as the victim and impact its performance.

Resource Freeing Attack. In addition, resource-freeing attacks (RFAs) hurt
the victim’s performance as well as forcing them to surrender resources to the
adversary [17]. Despite their effectiveness, RFAs require significant compute and
network resources, and are subject to defenses, like live VM migration.

2.3 Attack’s Setting: VM Co-location

An adversarial VM is rarely interested in a random service running on a public
cloud. They need to pinpoint where the target resides in a practical manner to
be able perform DoS, RFA, or SC attacks. This requires a launch strategy and
a mechanism for co-residency detection. The attack is practical if the target is
located with high accuracy, in reasonable time and with modest resource costs.
We show that by black box attack to the RPS’s model and eventually generating
adversarial sample, we can force the RPS to put the Adversarial VM on the
desired host. Once a target VM is located, the adversary can launch RFA, or
DoS attack.

2.4 Locating Physical Hosts Running Victim Instances

In order to accomplish co-residency with the victim instance, an attacker needs
to launch several VMs. This is impractical and not feasible. As side-channel and
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RFA attacks are local attacks, it is essential that the malicious VMs reside on the
same physical host as the victim VMs. Finding the physical hosts running virtual
machines on which the victims are running is therefore the first and most impor-
tant step. It is important to consider factors such as datacenter region, instance
type, and time interval when aiming for co-residency. Among IaaS clouds, these
variables may vary. The application type is, however, considered an important
factor in placement [21]. Let P(mnqsi) be the probability of instance mqi; to be
co-resident with instance victim m,;.;. The value of P will be raised by increas-
ing the number of launched attack instances. To make sure that both attacker
and victim VMs achieve coresident placement, the adversary can perform co-
residency detection techniques such as network probing [7]. The attacker can
also use data mining techniques to detect the type and characteristics of a run-
ning application in the victim VM by analyzing interferences introduced in the
different resources to increase the accuracy of co-residency detection.

2.5 Avoidance of Detection and Migration

In virtualized environments, there are several techniques for detecting attacks.
A side-channel attack, for example, would require very fine-grained informa-
tion in order to be detected [15]; this information can primarily be provided by
Hardware Performance Counters (HPCs) [13]. Modern microprocessors contain
a set, of special-purpose registers called HPCs that capture hardware events such
as last-level cache (LLC) load misses, branch instructions, branch misses, and
executed instructions while executing an application. Events of this type are
primarily used for analyzing program behavior and are accessible to everyone in
the user space. Detection of abnormalities in computer systems is also based on
these events. We distinguish two different methods of detection: (1) signature
based [14] and (2) threshold-based [2]. The signature-based approach generates a
signature of the attack based on information received from HPCs and compares
the behavior of the system with the generated signature to identify if any mali-
cious activity has been detected. On the other hand, threshold-based approaches
utilize the HPCs trace to flag anomaly resource utilization that goes beyond a
pre-specified threshold.

3 ML Based Resource Provisioning System

Figure 1 shows how a normal ML based RPS works. First, they monitor the
application and extracts its micro architectural information. Then based on the
current behavior and server configuration, they generate a performance model
for the application. By leveraging an optimization techniques and available cost
model, they determine the suitable configuration and host for the application.
In this study we use PARIS [20], a ML based performance model proposed at
Berkeley as a cost aware resource provisioning system.

PARIS uses Random Forest for predicting performance from the application
fingerprint to find the best VM type configuration. To generate the fingerprint
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of application, PARIS extracts 20 resource utilization counters spanning the
following broad categories and calls it fingerprint: CPU utilization, Network
utilization, Disk utilization, Memory utilization, and System-level features. On
the other hand, CPU count, core count, core frequency, cache size, RAM per
core, memory bandwidth, storage space, disk speed, and network bandwidth of
the server are the representation of the configuration provisioned by PARIS.

We denote the micro architectural fingerprint and system level information of
an application as Finger_print vector. In Eq. (1), f; denotes each architectural
feature.

Finger_print = {f1, f2, .-, f20} (1)

configuration parameters of the server platform referred to configuration inputs
is as follow:
Configuration = {¢1,ca, ..., o} (2)

where Con figuration is the configuration vector and c¢; is the value of the ith
configuration parameter (number of sockets, number of cores, core frequency,
cache size, memory capacity, memory frequency, number of memory channel,
storage capacity, storage speed, network bandwidth).

The RPS is responsible to provision Con figuration based on Finger_print:

Configuration = f(Finger_print) (3)

Note that f(Finger_print) is just a data model, which means there is no direct
analytical equation to formulate it.

3.1 Reverse Engineering the Model

As mentioned, RPS can be considered as a blackbox (worst-case scenario). In
such cases, we perform a reverse engineering to mimic the functionality of the
RPS. Thus, as a first step to craft adversarial malware, we perform reverse
engineering similar to that proposed in [§].

In order to reverse engineer, we first create a training dataset that comprises
of all types of applications. Nearly 11,000 applications are used in the reverse
engineering process. The Original RPS is fed with all the applications and the
responses are recorded. These responses are utilized to train different ML clas-
sifiers in order to mimic the functionality of the original RPS. Further, it is
tested by comparing the outputs from original RPS response and the reverse
engineered RPS’s response. Reverse engineering is non-trivial as the adversaries
generated on a closely functional model will be highly effective compared to a
weakly generated adversary. To ensure the reverse engineering is performed in
an efficient way, we train multiple ML classifiers and choose the classifier that
yields high accuracy.
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Table 1. Detailed information of local cluster

Server (Xeon) | Freq. Socket | Core | Cache | Mem. | Storage Server type Count
(GHz) (MB) | (GB)
E5-4669 V4 2.2 4 22 55 96 SSD PCle | HPC 2
E5-4667 V4 2.2 4 18 45 64 SSD SATA | HPC 2
E5-4650 V4 2.2 4 14 35 32 SSD SATA | HPC 2
E5-2690 V4 2.6 2 14 35 512 SSD/HDD | Memory opt. |4
E5-2650 V4 2.2 2 12 30 256 SSD/HDD | Memory opt. |4
E5-2667 V4 3.2 2 25 32 SSD PCIe |I/0O opt. 4
E5-2643 V4 3.4 1 6 20 32 SSD PCIe |I/O opt. 4
E5-2660 V2 2.2 2 10 25 16 HDD General purp. | 6
E5-2650 V2 2.6 2 8 20 16 HDD General purp. | 6
E5-1630 V4 3.7 1 4 10 8 HDD Power opt. 2
E5-1680 V4 3.4 1 8 20 12 HDD Power opt. 2
E3-1270 V6 3.8 1 4 8 8 HDD Power opt. 2

Resource allocation

1- Core type

2- Number of
cores

3- Cache size
4- Memory
type

5- Memory Size
6- Storage type

models

Machine learning model

performance
models

signature

"> Optimization and final configuration

Fig. 1. ML based resource provisioning system

We perform the data collection in a controlled environment, where all appli-
cations are known. We use a 40-machine cluster (presented in Tablel), and
schedule a total of 120 workloads, including batch analytics in Hadoop and Spark
and latency-critical services, such as webservers, Memcached and Cassandra. For
each application type, there are several different workloads with respect to algo-
rithms, framework versions, datasets, and input load patterns. The training set
is selected to provide sufficient coverage of the space of resource characteristics.
The selected workloads cover the majority of the resource usage space.

We submit all of these applications to RPS. In the beginning, the RPS profiles
the application and extracts the fingerprint. Then, the RPS uses the Random
Forest model to determine an appropriate server configuration. We collect all
the fingerprints and their correspondent configurations generated by the RPS to
shape our dataset.
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3.2 Adversarial Sample Generator

Once the reverse engineered RPS is built, it is non-trivial to determine the level
of perturbations that need to be injected into application’s micro architectural
patterns in order to get the desired host configuration. The micro architectural
patterns are perturbed by applying a gradient loss based approach, similar to the
Fast-Gradient Sign Method (FGSM), which is widely used in image processing.
The low complexity and low computation overheads are the benefits of such an
approach. To train our neural network, we use reverse engineered ML RPS i.e.,
neural network with 6 as the hyper parameters, x being the input to the model,
and y is the output for a given input x, and L(6, z,y) be the cost function used
to craft adversarial perturbations. Using the gradient of the cost function of the
neural network, the perturbation required to change the output to the target
configuration is calculated. The adversarial perturbation generated based on the
gradient loss, similar to the FGSM [5] is given by:

2% =z + esign(V, L(0,z,y)

where € is a scaling constant ranging between 0.0 to 1.0 is set to be very small
such that the variation in z(dz) is undetectable. In case of FGSM the input z is
perturbed along each dimension in the direction of gradient by a perturbation
magnitude of e. Considering a small € leads to well-disguised adversarial samples
that successfully fool the ML model. In contrast to the images where the number
of features are large, the number of features i.e., micro architectural metrics are
limited, thus the perturbations need to be crafted carefully and also be made sure
it can be generated during runtime by the applications. For instance, a negative
value cannot be generated by an application. Hence, we provided lower bound
on the adversary values. [4] presented how to craft the adversarial application
so as to generate the perturbations during runtime.

3.3 Case Study

To evaluate our proposed approach, we implemented 8 distributed attacks as
follow: SC1: Prime+Probe, SC2: Flush+Reload, SC3: Flush+Flush, SC4: Evict
+ Time, DoS1: increasing latency by saturating the network, DoS2: decreasing
throughput by saturating storage, RFA1: freeing memory resource, and RFA2:
freeing CPU resource. We perform these attacks on 20 unseen victim appli-
cations from different domains (SPEC, Hadoop, Spark, Memcache, and Cas-
sandra). Based on our evaluation, the success rate of being co-located with vic-
tims, evading the detection and migration, and getting the desired outcome from
attack depends on many factors such as victim’s type, the period of monitoring
phase, and amount of perturbation.

We now perform the DoS attack on utilization. If it causes the resource satu-
ration, DoS will be detected and the victim will be migrated to a new machine.
Our cluster supports live migration. Figure 2 compares the tail latency and CPU
utilization with adversarial VM to that of a naive DoS that saturates the CPU
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through a CPU-intensive task. It shows the adversarial attack does not saturate
the resource and does not cause the migration while still can put pressure on
the victim.

Table 2. Effectiveness of distributed attacks based on application type

SPEC | Hadoop | Spark | Memchahced | Cassandra
SC1 | *x* * *% * *ok
SC2 sokk * * * ok
SC4 *okk *k *ok * *ok
D081 % * kkk kKK )k
DOSz * ksksk * * kkk
RFA1  * Kok $okok $okok ok
100
12000 ! y i y
g - Adv [ S ES 5 - Adv | =
10000 8 -=- Naive | 3 § 80 '8 -= Naive | o
§ 8000 % 8 2 60 i3 s
2 6000 : ; 5 0 ! '
S : : 4 -
— 4000 . - 2 . :
! ! (®] ' '
2000 ! 20 ; :
0 ' i : :
0 37 ] 90 % 37 90
Time (s) Time (s)

Fig. 2. Latency and utilization with adversarial sample and a naive DoS attack that
saturates memory resources

Table 2 shows the impact of victims’ type on the success rate of each type
of attack. The interesting observation is that there is a meaningful relationship
between the application’s type and the nature of the attack by itself. For instance,
we observe that side-channel attacks are more successful when the cache hit rate
of the victim is low. Similarly, we observed that RFA is more successful when the
resource utilization of the victim is high. One reason is that in such case FTG
can generate a better fake trace to convince the RPS to stay at the current host.
In a case that the difference between the behavior of the adversary kernel and
the victim is high, the FTG has to generate more perturbation and this may
lead to a migration decision by RPS.

4 Conclusions

The proposed adversarial attack on RPS comprises of three phases. Firstly, we
perform reverse engineering to build a ML RPS that mimics the functionality
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of the original RPS. Further, with the aid of adversarial sample generator, the
micro architectural pattern required to obtain the target server configuration is
determined. Lastly, this crafted adversarial micro architectural pattern generator
is spawned as separate thread, leading to overall pattern close to the victim VM’s
pattern, and eventually causes to be co-located with it. This means without
saturating the resources or act as an abnormal application, by generating only
small noise in applications behavior, we can force RPS to co-locate the adversary
VM with victim and also fool the RPS to change the resources required for the
targeted VM and impacts on its behavior. The goal of this study is to encourage
public cloud providers to implement more stringent isolation solutions for their
platforms and system engineers develop robust RPSs to deliver predictability
and security at high utilization levels.
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