
Fake Malware Generation Using HMM
and GAN

Harshit Trehan and Fabio Di Troia(B)

San Jose State University, San Jose, CA 95192, USA
fabio.ditroia@sjsu.edu

Abstract. In the past decade, the number of malware attacks have
grown considerably and, more importantly, evolved. Many researchers
have successfully integrated state-of-the-art machine learning techniques
to combat this ever present and rising threat to information security.
However, the lack of enough data to appropriately train these machine
learning models is one big challenge that is still present. Generative mod-
elling has proven to be very efficient at generating image-like synthesized
data that can match the actual data distribution. In this paper, we aim
to generate malware samples as opcode sequences and attempt to dif-
ferentiate them from the real ones with the goal to build fake malware
data that can be used to effectively train the machine learning models.
We use and compare different Generative Adversarial Networks (GAN)
algorithms and Hidden Markov Models (HMM) to generate such fake
samples obtaining promising results.

Keywords: Malware · Fake malware generation · GAN · HMM ·
Word embedding · Machine learning

1 Introduction

Malicious software, or malware in short, is a program that is specifically designed
to harm computer systems by affecting devices, stealing or tampering with data,
and even harming people. According to data collected by SonicWall, there were
a total of 9.9 billion malware attacks worldwide in 2019 alone [29]. Thus, protec-
tion of computer systems from malware is an integral component of information
security, and malware research plays an important role in securing computer
systems.

To overcome these threats, machine learning techniques have been researched
and applied in the malware detection domain. Their models are trained by
extracting features such as opcode sequences, API calls, bytes vectors, and many
other [1,26,32]. Although machine learning techniques have shown promising
results, there are still some challenges to be taken in consideration, such as
malware code obfuscation [22], the availability, or lack thereof, of large pub-
lic datasets for the training phase [8], and adversarial machine learning [12] to
deceive the machine learning models.
c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-96057-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_1&domain=pdf
http://orcid.org/0000-0003-2355-7146
https://doi.org/10.1007/978-3-030-96057-5_1


4 H. Trehan and F. Di Troia

In this paper, we use mnemonic opcodes extracted from malware executable
files belonging to five different malware families to generate realistic fake mal-
ware samples by implementing Generative Adversarial Networks (GAN) [9] and
Hidden Markov Model (HMM). We use multiple machine learning classifica-
tion techniques, namely, Support Vector Machines, k -Nearest Neighbor, Ran-
dom Forest, and Näıve Bayes Classifier to differentiate between fake and real
samples and compare the two techniques (HMM and GAN) based on their per-
formance. The main goal of this project is to develop practical use cases for fake
malware opcode sequences and serve as a proof-of-concept for using generative
modelling to synthesize mnemonic opcode sequences. An embedding step is also
introduced to convert the sequence of opcodes before being used to train the
classifiers. While the majority of research in this field leaned towards creating
fake malware images, this work introduces the creation of fake opcode sequences
comparing HMM and different GAN variants.

The remainder of this paper is organized as follows. In Sect. 2, we go over
previous and related work. Also, we give a brief summary of the techniques and
concepts that we used in this paper. In Sect. 3, we explain our workflow and
give a description of our malware generation pipeline. In Sect. 4, we go over
the actual implementation and our experimental setup. In Sect. 5, we provide
the results of our experiments. Finally, in Sect. 6 we discuss the results and the
future directions for our project.

2 Background

In this Section, we discuss the background of malware classification and the
use of generative modelling. We highlight the gap in the literature with respect
to generated/synthetic malware opcode samples. We also give a brief introduc-
tion to Hidden Markov Models (HHMs) and Generative Adversarial Networks
(GANs). Further reading about the machine learning techniques used to evaluate
our results can be found at [5,7,27,28].

2.1 Background and Related Work

A recent trend in malware research is creating images from malware executable
files and using them to perform malware detection and classification. This gives
the opportunity to use image-analysis techniques, and allows for the use of pow-
erful deep neural networks which perform exceptionally well with images [16,34].

In terms of generative modelling, many researchers used malware images to
generate malware samples as that gives the advantage of boosting the dataset,
and even performing data augmentation to real samples. For example, in [6] the
authors adopted malware as images applying Variational Auto Encoder (VAE)
and GANs to boost the malware dataset. They obtained a 2% and 6% increase in
accuracy in case of, respectively, VAE and GAN. In another similar research [18],
the authors used GAN and observed a 6% increase in accuracy using the bench-
mark ResNet-18 model trained on malware data.



Fake Malware Generation Using HMM and GAN 5

Data augmentation or boosting using malware as images and generative mod-
elling techniques is becoming increasingly popular. The drawback of this tech-
nique, though, is that converting malware files to images is computationally
expensive. Moreover, training deep convolutional networks is also computation-
ally expensive taking long time to train and test the models. Using GANs with
images has similar overheads. An alternative solution is described in [11], where
the authors propose a GAN based model, called “MalGAN”, that is capable to
bypass black-box malware detection systems whit almost 0% of detection rate.
They used API features extracted from the malware samples as they are executed
in a virtual environment. Despite of the impressive results, executing malware
in a sandbox environment to extract the API features is again a not negligible
overhead.

It is clear that there is a gap in the literature when it comes to generating
malware samples using non-image features or representations of malware. Hence,
we explore this gap by utilizing mnemonic opcodes extracted from malware files
and generating mnemonic opcode sequences obtained by applying HMM and
three different GAN architectures (see Sect. 2.3, 2.4, 2.5).

2.2 Hidden Markov Models

Hidden Markov Model (HMM) is a machine learning technique which is widely
and effectively used for statistical analysis of time-series or sequential data. They
have been successfully used in speech analysis and recognition [23], malware
classification [2], and genes sequence analysis [17]. A Markov model is defined as
a statistical model which has states and where the transition probabilities from
one state to another are known. On the other hand, in an HMM the underlying
states are not known to the observer. HMM, in fact, relies on the probability
distribution of observing a set of observation symbols for each state [30].

We can use HMM to solve three Problems:

1. Problem 1: Given an observation sequence, O, and a model λ, we can find
P (O|λ). This means that we can compute a score for the sequence O w.r.t.
λ [30].

2. Problem 2: Given a model λ and an observation sequence O, we can deter-
mine the hidden states of the Hidden Markov Model. That is, we can uncover
the Markov process underneath [30].

3. Problem 3: Given an observation sequence O and dimensions N and M , we
can find the model λ of the given dimensions that best represents O. This
basically means that we are training the model to match the observation
sequence [30].

The solution to these problems is implemented through the Baum-Welch algo-
rithm [31]. In this paper, we solved all three of these problems, and more details
are given in Sect. 4.2.



6 H. Trehan and F. Di Troia

2.3 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [9] model consists of two neural net-
works, the discriminator and the generator, which participate in a zero-sum
game to achieve Nash equilibrium. The objective of the two networks is different
from each other but the overall goal of the algorithm is to generate data samples
that conform to a probability distribution pg which is similar to the true data
probability distribution ptrue. The generator tries to fool the discriminator by
forcing it to classify the generated samples as real, while the discriminator tries
to correctly classify such samples. More information about the GAN working
and architecture can be found in [3,9].

GAN Training. When actually training the model, the loss function used
is Binary Crossentropy [20] which calculates the difference in the probability
distribution of true samples, labelled 1, and false samples labelled 0. The weights
of both models are updated independently of each other using two loss functions
on the models parameterized by their weights.

More details about the GAN training algorithm can be found in [13].

GAN Limitations. Although GANs excel in learning complex data distribu-
tions, there exist major challenges in training GANs, such as mode collapse,
vanishing gradient, internal covariate shift, failure mode, and more. To over-
come these problems, several novel variants and architectures of GANs have
been researched and implemented. The work in [15] and [19] provide a com-
prehensive analysis of the challenges in GAN training and the advantages and
disadvantages of various GAN architectures.

2.4 Wasserstein GAN

Wasserstein GAN (WGAN) [4] was first proposed in 2017 by M. Arjovsky et
al. as an improvement over the vanilla GAN. They first published a paper [3]
highlighting the important theoretical implications of GAN training as proposed
by Ian J. Goodfellow et al. [9], and outlined the mathematical reasoning and
proofs for some of the issues surrounding GAN training.

WGAN Working. The main idea of the WGAN is that instead of optimizing
the JS Divergence between two probability distributions, the use of a different
distance metric as the loss function is proposed, that is, the Wasserstein distance
or Earth-Mover distance. The Wasserstein distance is referred to as the Earth-
Mover distance because it can be thought of as the minimum amount of energy
cost required to transform the shape of a pile of dirt representing a probability
distribution into the shape of another. The dirt is “transported” from one pile to
another, and the cost is calculated as the mass moved times the distance. More
details about this approach can be found in [4].

More details about the WGAN training algorithm can be found in [4].



Fake Malware Generation Using HMM and GAN 7

WGAN Limitations. The main drawback of the WGAN algorithm is the way
K-Lipschitz continuity is enforced [4]. Clipping the weights into a compact space
[−c, c] is not a very good way to enforce this constraint. It can lead to the model
failing to learn more complex distributions and even saturating before reaching
optimality. In fact, if the clipping parameter is large, it takes too much time
for the weights to reach their limit and, thus, jeopardizing the training. On the
other hand, if the clipping is small, we need to take in consideration the vanishing
gradients problem.

2.5 WGAN with Gradient Penalty

Wasserstein GAN with Gradient Penalty (WGAN-GP) was first introduced in
2017 by Ishaan Gulrajani et al. [10]. The main objective of this architecture is
to overcome the drawback of WGAN which is the way Lipschitz continuity is
enforced.

To solve this, the authors in [10] propose an improved WGAN training
method. They present Corollary 1 in [10] which claims that the optimal critic in
WGAN has gradient norm equal to the value 1 and it is 1-Lipschitz continuous.
Using this fact, a “penalty” is imposed on the critic if its gradient’s norm devi-
ates from the value 1. The training algorithm used in WGAN-GP is very similar
to WGAN’s algorithm minus the weight clipping part and the addition of the
gradient penalty [10].

More details about the WGAN-GP training algorithm can be found in [10].

3 Methodology

In this Section, we detail our fake malware generation pipeline, feature extrac-
tion for fake sample evaluation, and the machine learning pipeline for our exper-
iments.

3.1 Fake Malware Using HMM

The methodology adopted for generating fake malware samples using HMM is
explained here:

1. Create observation sequence O of length T = 30, 000 for each family.
2. Train 21 HMM models for each malware family with T = 30, 000, N = 2 and

M ∈ {20, 21, ..., 40}, where M is taken as top M − 1 most frequent opcodes
and every opcode not present in top M − 1 was marked as “other” or M .
Section 4 explains why we chose these values for M .

3. Score these 21 HMM models for each family by testing them against samples
from the other four families and benign dataset.

4. Select the best value of M , say M ′, from these models for each family and
train 10 HMM models by setting N = M = M ′.

5. Score the 10 models for each family.



8 H. Trehan and F. Di Troia

6. Select the two highest scoring models from Step 4 and use their γ matrix to
find out the most likely state sequence of the HMM model. The most likely
state sequence represents the fake samples.

7. Score and evaluate these fake samples as explained in Sect. 3.4.

3.2 Fake Malware Using GAN

We use three different GAN architectures to generate fake samples, that is,
GAN, Wasserstein GAN (WGAN), and Wasserstein GAN with Gradient Penalty
(WGAN-GP). The methodology adopted for generating fake malware samples
using GANs is explained here:

1. Train GAN models for each family, and save generator models at an interval
of 200 epochs for GAN and 500 for both WGAN and WGAN-GP.

2. Generate fake samples in batches of 32 using the saved generative models.
3. Evaluate them against real data samples by simply testing the integer vectors

(Sect. 3.3) representing real samples and fake samples.
4. Repeat Step 4 five times and then average the results.
5. Select the best scoring model as the final generative model for each family,

giving a total of five generator models per architecture.
6. The models selected in Step 6 are used to generate fake samples for each

family and the samples are evaluated as explained in Sect. 3.4.
7. Repeat Steps 2–6 for WGAN and WGAN-GP architectures.

3.3 Feature Extraction

In this Section we explain our feature extraction process and the types of features
used for evaluation. We extract three different features from the real and fake
samples to train our machine learning models.

– Normal integer vector conversion of opcodes: We simply map the
mnemonic opcodes to integers.

– Word2Vec: We treat the real samples as our corpus and create Word2Vec
embedding of length 100 for each opcode. We use this embedding to create
a vector for each data sample by simply summing up the embedding vector
of each opcode in a given sample. Then, we normalize it by the length of the
sample.

– n-grams: We create bigrams (n = 2) from the real dataset and find the top
20 bigrams based on the frequency. Then, a vector of length 20 is created for
each data sample which contains the frequency count of these 20 bigrams. We
treat these vectors as our bigram features.

3.4 Evaluation

We evaluated all the HMM models by creating the Receiver Operating Charac-
teristic (ROC) curve for each model and calculating the Area Under the Curve



Fake Malware Generation Using HMM and GAN 9

(AUC). For GAN, instead, we used a different approach because the most com-
mon application for GANs is in the image domain. However, we generate opcode
sequences which can not be inspected visually. Hence, to evaluate our GAN mod-
els, we saved the generative model at every 200 epochs for GAN and 500 epochs
for WGAN and WGAN-GP. From all the saved generative models we gener-
ated fake samples and classified them against real samples using Random Forest
classifier. The model, identified by the epoch number, that gave the lowest clas-
sification results was chosen as the best generative model from that architecture,
and then used for evaluation as explained in Sect. 4.

Accuracy, Precision and Recall. To score and evaluate the quality of the
fake samples (HMM and GANs), we trained four machine learning models with
each of the three features (Word2Vec, Bigram, integer vectors) and calculated
the Accuracy, Precision, and Recall for each model. The process is explained
here:

1. Randomly sample 100 real data samples and take 100 fake samples.
2. Extract features from real and fake samples as mentioned in Sect. 3.3.
3. Fit four different models, namely SVM, Random Forest, Naive Bayes classi-

fier, and k -Nearest Neighbor on the training data using 5-fold cross validation.
4. Calculate the accuracy, precision and recall for each split done by 5-fold cross

validation and use the average as the final result.

4 Implementation

In this Section, we give a detailed explanation of our dataset and the config-
uration of our HMM models, the different GAN approaches, and the machine
learning techniques implemented for evaluation of our fake samples.

4.1 Dataset

Our dataset consists of five malware families and a benign dataset. Each malware
family has over 1000 samples and the benign dataset has over 700 samples,
both containing mnemonic opcode sequences. To build such dataset, we began
with the Malicia dataset [21] which has over 50 malware families, and selected
WinWebSec and Zbot families since these two has more than 1000 samples each.
The rest of the three families were collected from VirusShare [24]. This dataset
has over 120,000 malware executables and it is around 100 Gigabytes in size,
from which we selected Renos, VBInject, and OnLineGames families.

We used objdump which is a command line program part of the GNU Binary
Utilities library for Unix-like operating systems. This program is used to dis-
assemble executables into Assembly code and, hence, to extract the mnemonic
opcodes. Specifically, such code is processed via a Python script to remove all
the unnecessary information such as registers, labels, and addresses, to obtain
sequences containing only the opcodes found in the code. A summary of our
dataset along with each malware family’s type is given in Table 1.



10 H. Trehan and F. Di Troia

4.2 HMM Implementation

The HMM algorithm was implemented following the algorithm given in [30].
We wrote the code in C++, with the addition of an external Python script to
preprocess our data and create the observation sequence O of length T = 30, 000.
We concatenated the mnemonic opcodes from different samples of a family until
we reached a length of 30, 000. This was done for all five families in our dataset.

Table 1. Dataset summary

Malware family Type Samples

Benign Benign samples 706

OnLineGames Password stealer 1513

Renos Trojan Downloader 1568

VBInject Worm 2694

WinWebSec Rogue 4360

Zbot Password stealer 2136

The number of unique opcodes for each family was very high and setting M
to such large values makes training of HMM models computationally infeasible.
Thus, we experimented with selecting the top n most frequent opcodes from the
observation sequence, where n ∈ {20, 21, ..., 40}. The value n is represented as
the parameter M in HMM, and its optimal value for each family served as the
dimensions of our HMM model in the next set of experiments (N = M = M ′).

Afterwards, we solved Problem 2 of HMM to find the most likely state
sequence which will act as our fake malware samples generated using HMM.
For each family, our model dimensions were N × M , where N = M = M ′ and
M ′ was the best value of M for each individual family.

We trained ten different HMM models, each with 5000 random restarts for
each malware family. All ten of these models were scored the same way as
explained above, using 500 true samples and 500 false samples. Out of these
ten models, we selected the two best ones with the highest AUC value. The
γ matrix from these two models was used to find the most likely hidden state
sequence. Each model gives us a sequence of 30,000 length. Finally, we divided
this sequence into 50 “fake” samples of length 600 each. This gives us a total of
100 fake samples per family.

4.3 GAN Implementation

We implemented all three GAN architectures in Python using TensorFlow and
Keras with TensorFlow backend. For GAN, we used Adam optimizer with the
following parameters:

Adam(lr = 0.0003, β1 = 0.5, β2 = 0.99)



Fake Malware Generation Using HMM and GAN 11

These parameters gave the best results and, thus, they were chosen. The loss
function used was Binary Crossentropy as it is equivalent to the loss function
for GAN. The models were trained for 10000 epochs.

For GANs, the use of Batch Normalization [14] layer is recommended as
the training is done using minibatches of data. The variance in the input data
implicitly caused by minibatches slows down training and requires the use of
very small learning rates, otherwise the gradients and weights of layers may
change drastically from minibatch to minibatch. For the discriminator we have
one input layer, two fully connected hidden layers, and an output layer with
just one neuron. The activation function for the output layer is Sigmoid since
we are using Binary Crossentropy loss, and Sigmoid gives a value between [0, 1]
which is interpreted as the score for a sample or the probability. The activation
function for the hidden layers is LeakyReLU. LeakyReLU is recommended over
ReLU because ReLU outputs 0 for all negative inputs which causes vanishing
gradients problem. LeakyReLU has the hyperparameter α which is used to scale
negative outputs. We used α = 0.2 for our experiments. LeakyReLU activation
function is:

f(x) =

{
αx x ≤ 0
x x > 0

(1)

The generator has one input layer, three fully connected hidden layers with
a batch normalization layer after every hidden layer, and finally an output layer
with 600 neurons, which is the length of the opcode sequence we want to gen-
erate. The activation function for hidden layers is, again, LeakyReLU, and for
the output layer we used TanH. We scale all of our inputs between [−1, 1], and
TanH also gives an output between that range, which is what we expect from the
generator. We experimented with different layers for both networks, including
Convolutional 1D layers, and fully connected Dense layers had the best perfor-
mance.

GAN Stabilizing Techniques. We further utilized stabilizing techniques to
improve GAN training. All the techniques are discussed in [25] which was pub-
lished in 2016 by some of the co-authors of the original 2014 paper on GANs [9].
The techniques were Minibatch Discrimination, Label Smoothing, and Label
Switching.

4.4 WGAN Implementation

For WGAN, we used RMSProp optimizer. RMSProp is recommended by the
paper authors in [4] because the training was more stable for RMSProp as com-
pared to Adam which is momentum based. The learning rate chosen is also a
small value:

RMSProp(lr = 0.00001)



12 H. Trehan and F. Di Troia

The architecture of our WGAN is the same for the critic and the generator,
except the input and output layers. We trained each WGAN model for 100, 000
epochs using minibatches of data.

The actual models are compiled and trained separately for the critic and
generator. For the generator, we have the same activation function for hidden
layers (LeakyReLU) and output layer (TanH). For the critic, however, we used no
activation function or used linear activation in the output layer. This approach
allows the loss function to be computed easily when implementing the WGAN
algorithm given in [4]. These layers and networks gave the best result, hence, we
chose these as our final networks.

4.5 Wasserstein Distance

The loss function or the Wasserstein distance between real and fake samples can
be written as follows:

Critic loss = critic’s avg. real samples score - critic’s avg. fake samples score
Generator loss = - critic’s avg. fake samples score

This interpretation is correct because we want the critic network to learn the
K-Lipschitz function that will calculate the Wasserstein distance. We are only
concerned with the output of the function and not actually knowing the func-
tion. Assuming the network has learnt the correct function, we can interpret the
Wasserstein distance as the loss given above.

Since neural networks use stochastic gradient descent they seek to minimize
the loss values. For the generator, minimizing the loss value will mean that the
critic will be encouraged to score the fake samples higher. For example, a score
of 5 on fake samples will mean −5 loss for the generator and a score of 10 will
mean −10 loss. For the critic, in order to minimize the loss, the score for real
samples will be encouraged to be small. This will maximize the distance between
the generated and fake samples and at the same time minimize both losses. This
is implemented simply by using no activation function in the output layer for
the critic and using −1 label for fake samples and +1 for real samples.

4.6 WGAN with Gradient Penalty Implementation

For WGAN with Gradient Penalty, we used Adam optimizer. Unlike WGAN,
momentum based optimizers seem to work well for WGAN-GP. The parameters
for the optimizer were:

Adam(lr = 0.0001, β1 = 0.5, β2 = 0.9)

We trained each WGAN-GP model using minibatches for 100, 000 epochs.
We decided to use Convolutional 1D layers for the models because using fully
connected Dense layers had worse performance as compared to Conv1D layers.
In the critic network, we used three hidden Conv1D layers with 64, 128, and
256 filters and filter size 3. In the generator network, we also used three Conv1D



Fake Malware Generation Using HMM and GAN 13

layers with 64, 32, and 16 filters, and filter size 3. The activation functions for
the hidden Conv1D layers is again LeakyReLU.

The output layer of the generator is a fully connected Dense layer with 600
neurons, and the activation function is again TanH. Similar to WGAN, the
output layer of the critic network has no activation function because we still
need to calculate the Wasserstein loss/distance. The authors in [10] advised
against the use of Batch Normalization in the critic network. They suggested
that, if required, Layer Normalization could be used. We experimented with
Layer Normalization but the performance degraded, hence, we decided not to
implement it. For the generator, we still used Batch Normalization layer.

We used λ = 10, that is, the penalty coefficient, and the parameter n critic =
7, that is, the number of critic iterations per generator iteration. Additionally,
after every 500 epochs, we trained the critic for 100 iterations and, then, updated
the generator. This allows for exact Wasserstein distance calculation instead of
an approximation and, therefore, the generator receives the correct gradient
updates to converge properly.

5 Results and Discussion

In this Section, we discuss and present the results of our experiments.

5.1 HMM Results

The first set of experiments were conducted to determine the optimal value of M
for each family. Then next set of experiments were conducted to train the best
HMM models which were used to generate fake malware samples. The summary
of the results and the best value of M chosen for each family can be found in [33].

For HMM models to generate fake samples by solving Problem 2, we fixed
the dimensions as N = M , where M is the best value for each family.

Our next experiments consisted of training ten different HMM models with
dimensions as mentioned above and choose the two best models out of ten. We
chose the two highest scoring models and calculated their most likely hidden
state sequence using the γ matrix from the models. After breaking the two γ
matrices of 30,000 length each into 100 samples of length 600 each, we tested
these fake samples against real samples as explained in Sects. 3.3, 3.4. Due to
low accuracy, precision, and recall scores, the model was not able to differentiate
between real and fake samples. Results from each of the four algorithms are
given in the following Section.

HMM Classification Results. We first performed hyperparameter tuning for
the four machine learning algorithms and fixed the best parameters for the rest
of the experiments.

1. SVM: Grid search on the values of C, kernel, and degree with ranges:
C ∈ {1, 2, . . . , 10}, kernel ∈ {rbf, poly, linear}, and degree ∈ {2, 3, 4, 5}.



14 H. Trehan and F. Di Troia

We found that polynomial kernels were overfitting the data, hence, the final
parameters for SVM were C = 5 and kernel = rbf .

2. Näıve Bayes: No hyperparameter tuning required for Näıve Bayes classifier.
3. Random Forest: Grid search on the number of decision trees to use, and

maximum depth of trees, with ranges: number of trees ∈ {10, 20, . . . , 80}, max
depth of trees ∈ {2, 3, . . . , 10}. We found that using 50 decision trees with
max depth of 5 performed best without overfitting the real malware samples.

4. k-NN: Grid search on the number of neighbors to consider (k) with range:
k ∈ {4, 5, . . . , 20}. The value k = 8 worked well, and the distance metric
chosen was Euclidean.

We used 5-fold cross validation and the scores given are the average scores from
5-fold cross validation. By using Word2Vec features, SVM, Random Forest, and
k -NN classifiers, we were able to differentiate between real and fake samples
efficiently. Especially SVM with accuracy, precision, and recall equal to 1.00 for
all the families, except Zbot with 0.97, 0.99, and 0.95, respectively. However,
Näıve Bayes classifier had low recall rates for Zbot (0.73) and OnLineGames
(0.76). We attribute this result to the ineffectiveness of the classifier rather than
the quality of fake samples.

When Bigram features were applied, all four classifiers were able to differen-
tiate between real and fake samples very effectively with accuracy, precision, and
recall in between 0.97 and 1.00, with the only exception of OnLineGame with
accuracy and precision rates equal to 0.96 and 0.93 when Näıve Bayes classifier
and k -NN were used.

Finally, by using integer vectors, the metrics rates were less consistent, vary-
ing between 0.59 and 1.00, with particularly poor results when Näıve Bayes and
k -NN classifiers were used. We attribute these low scores to integer vectors being
a weaker feature representation for the data.

5.2 GAN Results

We experimented with the stabilizing techniques mentioned in Sect. 4.3.
Although the training stabilized across all five families using these techniques,
the results improved for Zbot, Renos, and VBInject but got worse for WinWeb-
Sec and OnLineGames. This is a common phenomenon when training GANs.
The loss values for the discriminator and generator do not necessarily indicate
or correspond to the model’s performance or quality of the generated samples.
Fake samples were generated using the best chosen models in batches of 32 since
that was the batch size during training. Generating samples in same batch sizes
as the training size, generally, gives better results.

We used the same hyperparameters as discussed in Sect. 5.1, and tested the
fake samples using all three features mentioned above.

Using Word2Vec and Bigram features, the scores for all four families dipped
a little as compared to the HMM results. SVM and Random Forest reached
accuracy, precision, and recall above 0.90 for these two features, except for
OnLineGames with 0.88 precision with Random Forest. Low precision rate means



Fake Malware Generation Using HMM and GAN 15

high false positive rate which was the most desirable result for us. Näıve Bayes
had low overall scores for Word2Vec and Bigram features on account of it being a
weaker classifier. Interestingly, k -NN obtained the lowest overall scores for these
two features. This can be attributed to the way k -NN algorithm works and that
the generated data distribution is slightly closer to the real data distribution as
compared to HMM fake samples.

For integer vectors, we found that all four classifiers were not able to effec-
tively differentiate between real and fake samples. As seen with the previous
experiments, integer vectors are a weaker feature representation but the dif-
ference in results between HMM integer vector classification and GAN integer
vector classification does suggest that the GAN models were able to perform
better than HMM. For k -NN and Renos, the precision and recall are 0%, which
means that the model was not able to distinguish between fake and real at all
based on just the integer vectors.

5.3 WGAN Results

Unlike GAN, the loss values when training WGAN gave reliable information
about the model’s progress and convergence. Hence, for WGAN and WGAN-GP,
we first discussed the loss curves and convergence and, then, gave the classifica-
tion results for the four machine learning techniques.

Convergence and Loss Values. The loss value for the critic and the gen-
erator converged very fast in the first few epochs and, then, stayed the same
for the remaining epochs. We tried a lot of different hyperparameters, such as
changing the value of “n critic”, different clipping value, and different learning
rates. Even changing the networks entirely and using Convolutional 1D instead
of fully connected Dense layers did not help. The value of loss did not change
after the first few epochs. This shows that clipping the weights is a major draw-
back in WGAN (Sect. 2.4) as it saturates the model, and the weights do not
update after a point. Any change in weight is nullified by the clipping step.
Interestingly, all four families converged to the same loss value for the critic and
generator. The clipping step stops the training since the weights can not change
beyond the clipping range and do not respond to the gradient updates that are
back propagated through the network.

WGAN Classification Results. The best generative model from WGANs
was chosen independently for each family. We used the same hyperparameters
as discussed in Sect. 5.1, and tested the fake samples using all three features in
batches of 32.

Using Word2Vec and Bigram features, SVM and Random Forest were able to
effectively differentiate between real and fake samples generated by WGAN, with
accuracy, precision, and recall ratios between 0.96 and 1.00 for all the families.
Interestingly, even Näıve Bayes and k -NN performed well, even though we found
from the previous results that they were the two weaker classifiers. This means



16 H. Trehan and F. Di Troia

that the WGAN fake samples were of inferior quality compared to HMM and
GAN.

Using integer vectors, the results for SVM and Random Forest were high (in
between 0.85 and 1.00), but not as effective as the ones obtained with Word2Vec
and Bigram features. Again, integer vectors proved to be a weak feature repre-
sentation that makes classification hard. For k -NN and Naïıve Bayes with integer
vectors, we obtained extremely low recall rates for some families, such as 0.25
for VBInject, 0.37 for OnLineGames, and 0.53 for Renos. However, these low
recall rates were accompanied by high precision rates of almost 1.00 across all
the families.

5.4 Wasserstein GAN with Gradient Penalty

As with WGAN, the critic’s loss value helps monitor the model’s performance
for WGAN-GP. The WGAN-GP paper [10] mentions that the the critic’s loss
should start at a large number and then converge towards zero. The generator’s
loss is not very insightful and can fluctuate. Thus, first we discuss the loss curves
and then give the classification results.

Convergence and Loss Curves. The loss curves for all five families showed a
similar shape, with the start value for the critic that started at around −28 and
then slowly converged to around −4. This is the expected behavior and means
that our model was training properly.

The critic loss curves for the other four families also showed similar shapes
but with slightly different values of convergence. Training the models for more
epochs, around 200,000–300,000, would be ideal for full convergence.

The loss curve for the generator was not very informative about the model’s
performance and training, as the loss values kept oscillating.

WGAN-GP Classification Results. The best generative model from
WGAN-GPs was chosen independently for each family. We used the same hyper-
parameters as discussed in Sect. 5.1, and tested the fake samples using all three
features in batches of 32.

Using Word2Vec and Bigram features, all four machine learning techniques
were not able to give very good classification results. Compared to WGAN and
GAN, the metrics rates were much lower (in between 0.77 and 1.00). This means
that the quality of the fake samples generated by WGAN-GP generative models
is better as compared to WGAN and GAN. The most surprising result is the
dip in Random Forest’s classification. Random Forest is one of the better clas-
sifiers out of the four classifiers that we used. For Zbot, Renos, and VBInject
the overall accuracy for Random Forest was around 0.70. For WinWebSec and
OnLineGames, the accuracy was also low at 0.82 and 0.81 for Word2Vec, respec-
tively, and even lower for Bigram features at 0.81 and 0.74. This is a promising
result since we saw that classifying real and fake samples using these two features
was very effective, getting high accuracy and precision scores previously.



Fake Malware Generation Using HMM and GAN 17

Using integer vector features the scores for SVM, Näıve Bayes, and k -NN
classifiers were very low (in between 0.00 and 0.90). These three models were
not able to distinguish between real and fake samples just based on the integer
representation. This was confirmed by accuracy scores in range of 0.50 and 0.60,
and even lower for Näıve Bayes at less than 0.50 for WinWebSec, Zbot, Renos,
and VBInject families. Random Forest did a better job as compared to the other
three techniques but the accuracy was still around 0.70 for WinWebSec, Zbot,
Renos, and around 0.60 for OnLineGames and VBInject. This again showed that
the quality of fake samples generated by WGAN-GP generative model was much
better than the other GAN architectures and HMM.

5.5 Comparison of the Results

The complete results for the WGAN-GP experiments can be found in [33]. In
Fig. 1, we compare the four different approaches by computing the average accu-
racy per malware family over the three different embeddings. We can see that
the sequences generated by HMM and WGAN techniques are the ones more eas-
ily detected, that is, their generated fake malware is not confused with the real
malware data. GAN obtains better results but they are not far from the previ-
ous ones. WGAN-GP, on the other hand, is the approach that clearly shows its
potential in confusing the classifiers. In fact, the average accuracy obtained with
the four classifiers is consistently poor. This shows the difficulty in detecting the
fake WGAN-GP data from the real one.

Fig. 1. Comparison of the results



18 H. Trehan and F. Di Troia

6 Conclusion and Future Work

In this paper, we aimed at utilizing different generative modelling techniques to
generate fake malware mnemonic opcode sequences. We utilized four different
techniques, that is, Hidden Markov Models (HMMs), Generative Adversarial
Networks (GANs), Wasserstein Generative Adversarial Networks (WGANs), and
Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-
GP).

We used three different feature extraction techniques to generate the malware
opcode sequences, namely, Word2Vec, Bigram, and integer vectors. Classification
results showed that Word2Vec and Bigram features gave a better representation
of the malware data since for all four generative models the classification results
were superior. Integer vectors, on the other hand, do not capture the true dis-
tribution of the real malware samples.

Fake samples generated by HMM were quite effectively distinguishable by
SVM, Random Forest, and k -NN classifiers. Especially by using Word2Vec and
Bigram features, these three classifiers obtained accuracy above 0.90 for all five
of the tested families. Näıve Bayes classifier, instead, had much lower scores with
any of the three feature extraction techniques.

Using generative models from GAN, we saw a slight improvement in the
results with the fake malware being confused in larger number with the legitimate
ones. For WGAN, the results were instead not promising. In fact, the classifiers
were able to identify the fake malware samples with scores close to the ones
obtained in the HMM experiments. This was attributed to the weight clipping
step in the WGAN algorithm, that inhibits the critic network’s ability to properly
learn the real data’s representation. However, for WGAN-GP we got the best
results. We saw that the classification outcome was now relatively poor, even
when the more informative Word2Vec and Bigram features were applied. In fact,
for all four classifiers, we obtained accuracy in between 0.70 and 0.82. For integer
vectors the results were even more promising, as the accuracy score dipped to
around 0.50 and 0.60.

We concluded that using WGAN-GP algorithm is the best approach to suc-
cessfully generate fake malware opcode sequences such that they appear closer
to the real data distribution. This serves as a proof of concept that GAN algo-
rithms, in particular WGAN-GP, can be successfully applied to generate malware
opcode sequences, and not only in generating image data.

6.1 Future Work

There are a lot of different directions that this paper can be expanded in. For
example, the dataset can be enlarged and the experiments can consider a larger
number of malware families. Furthermore, instead of training individual GAN
models for each family, a multi-class generative model can be considered. Another
possible application is to use trained generative models to boost or augment the
datasets for families that have a limited number of data samples. Other GAN
variants could also be considered and compared, such as EBGAN and LSGAN.



Fake Malware Generation Using HMM and GAN 19

Finally, experiments with LSTM-GAN can be conducted since stateful networks
can provide interesting results.

References

1. Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G.: Novel fea-
ture extraction, selection and fusion for effective malware family classification. In:
Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, pp. 183–194 (2016)

2. Annachhatre, C., Austin, T.H., Stamp, M.: Hidden Markov models for malware
classification. J. Comput. Virol. Hacking Tech. 11(2), 59–73 (2014). https://doi.
org/10.1007/s11416-014-0215-x

3. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks (2017)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein Gan (2017)
5. Biau, G., Scornet, E.: A random forest guided tour. TEST Official J. Spanish Soc.

Stat. Oper. Res., 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7
6. Burks, R., Islam, K.A., Lu, Y., Li, J.: Data augmentation with generative mod-

els for improved malware detection: a comparative study*. In: 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), pp. 0660–0665 (2019). https://doi.org/10.1109/UEMCON47517.
2019.8993085

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
8. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and

classification of malware: research developments, trends and challenges. J. Network
Comput. Appl. 153, 102526 (2020)

9. Goodfellow, I.J., et al.: Generative adversarial networks (2014)
10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved

training of wasserstein GANs (2017)
11. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks

based on Gan (2017)
12. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial

machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58 (2011)

13. Hui, J.: Gan - what is generative adversarial networks GAN? Decem-
ber 2019. https://jonathan-hui.medium.com/gan-whats-generative-adversarial-
networks-and-its-application-f39ed278ef09

14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015)

15. Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: Variants,
applications, and training. ArXiv abs/2006.05132 (2020)

16. Jain, M.: Image-based malware classification with convolutional neural networks
and extreme learning machines, December 2019. https://scholarworks.sjsu.edu/
etd projects/900/

17. Krogh, A.: An introduction to hidden Markov models for biological sequences.
In: Salzberg, S., Searls, D., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 45–63. Elsevier, London (1998)

18. Lu, Y., Li, J.: Generative adversarial network for improving deep learning based
malware classification. In: 2019 Winter Simulation Conference (WSC), pp. 584–593
(2019). https://doi.org/10.1109/WSC40007.2019.9004932

https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://scholarworks.sjsu.edu/etd_projects/900/
https://scholarworks.sjsu.edu/etd_projects/900/
https://doi.org/10.1109/WSC40007.2019.9004932


20 H. Trehan and F. Di Troia

19. Pavan Kumar, M.R., Jayagopal, P.: Generative adversarial networks: a survey on
applications and challenges. Int. J. Multimedia Inf. Retrieval 10(1), 1–24 (2020).
https://doi.org/10.1007/s13735-020-00196-w

20. Mannor, S., Peleg, D., Rubinstein, R.: The cross entropy method for classification.
In: Proceedings of the 22nd International Conference on Machine Learning, ICML
2005, pp. 561–568. Association for Computing Machinery (2005). https://doi.org/
10.1145/1102351.1102422

21. Nappa, A., Rafique, M.Z., Caballero, J.: The MALICIA dataset: identification and
analysis of drive-by download operations. Int. J. Inf. Secur. 14(1), 15–33 (2015)

22. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE
Secur. Priv. 9(5), 41–47 (2011). https://doi.org/10.1109/MSP.2011.98

23. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.
18626

24. Roberts, J.M.: VirusShare.com - Because Sharing is Caring (2011). http://www.
virusshare.com

25. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs (2016)

26. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures
for malware detection. ICEIS 2(9), 317–320 (2009)

27. Sawla, S.: Introduction to Naïıve Bayes for classification (2018). https://medium.
com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d

28. Scikit-learn: K Neighbors Classifier. https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KNeighborsClassifier.html. Accessed 09 May 2021

29. SonicWall: Sonicwall 2020 Cyber Threat Report (2020). https://www.sonicwall.
com/news/2020-sonicwall-cyber-threat-report

30. Stamp, M.: A revealing introduction to hidden Markov models. Science, 1–20
(2004)

31. Stamp, M.: Introduction to Machine Learning with Applications in Information
Security, 1st edn. Chapman & Hall/CRC (2017)

32. Sun, Z., et al.: An opcode sequences analysis method for unknown malware detec-
tion. In: ICGDA 2019, pp. 15–19. Association for Computing Machinery (2019)

33. Trehan, H.: Fake malware opcodes generation using HMM and different GAN algo-
rithms. Master’s thesis, San Jose State University (2021). https://scholarworks.
sjsu.edu/etd projects/1001/

34. Yajamanam, S., Selvin, V.R.S., Di Troia, F., Stamp, M.: Deep learning versus gist
descriptors for image-based malware classification. In: ICISSP, pp. 553–561 (2018)

https://doi.org/10.1007/s13735-020-00196-w
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
http://www.virusshare.com
http://www.virusshare.com
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://scholarworks.sjsu.edu/etd_projects/1001/
https://scholarworks.sjsu.edu/etd_projects/1001/


Fake Malware Generation Using HMM and GAN 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Fake Malware Generation Using HMM and GAN
	1 Introduction
	2 Background
	2.1 Background and Related Work
	2.2 Hidden Markov Models
	2.3 Generative Adversarial Networks
	2.4 Wasserstein GAN
	2.5 WGAN with Gradient Penalty

	3 Methodology
	3.1 Fake Malware Using HMM
	3.2 Fake Malware Using GAN
	3.3 Feature Extraction
	3.4 Evaluation

	4 Implementation
	4.1 Dataset
	4.2 HMM Implementation
	4.3 GAN Implementation
	4.4 WGAN Implementation
	4.5 Wasserstein Distance
	4.6 WGAN with Gradient Penalty Implementation

	5 Results and Discussion
	5.1 HMM Results
	5.2 GAN Results
	5.3 WGAN Results
	5.4 Wasserstein GAN with Gradient Penalty
	5.5 Comparison of the Results

	6 Conclusion and Future Work
	6.1 Future Work

	References




