
Barbara Chapman
José Moreira (Eds.)

LN
CS

 1
31

49

Languages and Compilers
for Parallel Computing
33rd International Workshop, LCPC 2020
Virtual Event, October 14–16, 2020
Revised Selected Papers

Lecture Notes in Computer Science 13149

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Barbara Chapman • José Moreira (Eds.)

Languages and Compilers
for Parallel Computing
33rd International Workshop, LCPC 2020
Virtual Event, October 14–16, 2020
Revised Selected Papers

123

Editors
Barbara Chapman
Stony Brook University
Stony Brook, NY, USA

José Moreira
IBM TJ Watson Research Center
Yorktown Heights, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-95952-4 ISBN 978-3-030-95953-1 (eBook)
https://doi.org/10.1007/978-3-030-95953-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8449-8579
https://orcid.org/0000-0001-7029-6327
https://doi.org/10.1007/978-3-030-95953-1

Preface

The 33rd Workshop on Languages and Compilers for Parallel Computing (LCPC 2020)
was hosted by Stony Brook University, NY, USA during October 14–16, 2020. As
with so many events in the times of the COVID-19 pandemic, it was a fully virtual
event, with live presentations using video conferenceing services. We were happy to
have been able to organize this event, despite all the challenges involved in its orga-
nization. We were also delighted to have witnessed good participation and interactions
from our speakers and attendees.

Since its inception in 1988, the Workshop on Languages and Compilers for Parallel
Computing (LCPC) has been a leading venue for cutting-edge research on all aspects of
parallel programming systems, from parallel programming models, languages, com-
pilers, runtimes, and tools to results related to new parallel applications or systems. The
scope of the workshop is particularly broad: it encompasses foundational results as well
as practical experience reports and bold new ideas for future systems. LCPC is a venue
that brings together researchers from academia, national labs, and industry. It
encourages personal interactions and in-depth technical discussions.

We had a diverse and comprehensive technical program for LCPC 2020, including
two invited keynotes, 15 contributed technical papers, two invited short talks, one
invited regular talk, and one panel. These were complemented by a special presenta-
tion, by Robert Harrison, of the computational facilities at the Stony Brook University
Institute for Advanced Computational Science, two live networking sessions, a session
on career opportunities, and, after the closing of the workshop, a virtual happy hour.

The 15 contributed technical papers were selected for presentation by the Program
Committee from a pool of 19 submissions. Each submissions received three written
reviews by members of the Program Committee. The submissions were discussed
during a virtual meeting, and the selelcted papers are included in these proceedings.

The two invited keynotes, by J Nelson Amaral and Jeffrey S Vetter, provided an
exciting view of the future challenges and opportunities that face the parallel pro-
gramming systems community. The invited talks covered new developments in com-
puter architecture from Arm and IBM that impact modern compilers, as well as the
topic of expressiveness and performance of parallel programming models.

Our unusual and very successful panel deviated from the usual format of having a
theme for discussions. Instead, our panel organizer, Rudolf Eigenmann, invited four
distinguished members of our community, Mary Hall, Michelle Strout, David Padua,
and Vivek Sarkar, to an Ask me anything session. This gave the audience, from
aspiring Ph.D. candidates to experienced researchers, the opportunity to cover a broad
set of topics, from career development to challenges for the future.

A conference or workshop must be much more than just a venue to present technical
work. It must also be an opportunity for the community members to interact and
network. With that in mind, we organized two live networking sessions, one to discuss
the next technical challenges in the field of parallel languages and compilers, and the

other on how to find collaboration opportunities for graduate students and young
researchers. We were happy that the networking sessions were well attended and with a
vibrant participation. The career opportunities session, moderated by Martin Kong,
Riyadh Baghdadi, and Doru Popovici, gave attendees the chance to discuss and ask
career related questions to young researchers.

We are in great debt to many people that helped make LCPC 2020 a reality. First, to
all the authors and speakers that contributed to our technical program. To the members
of the Program Committee and additional reviewers for their hard work in reviewing
and selecting the contributed papers to the workshop. To the members of the Steering
Committee for their guidance and assistance throughout the entire process. To our
Panel Chair, Rudolf Eigenmann, who also happens to chair the Steering Committee. To
our Networking Sessions Chair, Martin Kong. We want to give a special thanks to the
incredible team of volunteers from Stony Brook University that took care of so many
elements of logistics, including our Local Chair, Tony Curtis, and our Publicity/Web
Chair, Alok Mishra. Last but not least, we want express our gratitude to the editorial
staff at Springer, who patiently worked with us to produce these proceedings.

It was a pleasure to organize this fantastic event. We are looking forward to a future
opportunity to host it again in the beautiful setting of Stony Brook University,
New York.

October 2020 Barbara Chapman
José Moreira

vi Preface

Organization

Workshop Chairs

Barbara Chapman Stony Brook University, USA
José Moreira IBM Research, USA

Steering Committee

Rudolf Eigenmann University of Delaware, USA
Alex Nicolau University of California, Irvine, USA
David Padua University of Ilinois at Urbana-Champaign, USA
Lawrence Rauchwerger Texas A&M University and University of Illinois at

Urbana-Champaign, USA
Vivek Sarkar Georgia Institute of Technology, USA

Program Committee

Abid Malik Brookhaven National Laboratory, USA
Alexandre Eichenberger IBM Research, USA
Ana Varbanescu University of Amsterdam, The Netherlands
Benjamin Brock University of California, Berkeley, USA
Dimitrios Nikolopoulos Virginia Polytechnic Institute and State University,

USA
Hari Sundar University of Utah, USA
Maria Garzaran Intel, USA
Martin Kong University of Oklahoma, USA
Mary Hall University of Utah, USA
Peng Wu Futurewei, USA
Sam Midkiff Purdue University, USA
Santosh Pande Georgia Institute of Technology, USA
Vivek Sarkar Georgia Institute of Technology, USA
Yonghong Yan University of North Carolina, USA
Zehra Sura Bloomberg, USA

Panel Chair

Rudolf Eigenmann University of Delaware, USA

Local Chair

Tony Curtis Stony Brook University, USA

Networking Sessions Chair

Martin Kong University of Oklahoma, USA

Publicity/Web Chair

Alok Mishra Stony Brook University, USA

Additional Reviewer

Richard Veras University of Oklahoma, USA

viii Organization

Contents

Code and Data Transformations

An Affine Scheduling Framework for Integrating Data Layout and Loop
Transformations . 3

Jun Shirako and Vivek Sarkar

Guiding Code Optimizations with Deep Learning-Based Code Matching 20
Kewen Meng and Boyana Norris

Expanding Opportunities for Array Privatization in Sparse Computations 29
Mahdi Soltan Mohammadi, Mary Hall, and Michelle Mills Strout

OpenMP and Fortran

Concurrent Execution of Deferred OpenMP Target Tasks with Hidden
Helper Threads . 41

Shilei Tian, Johannes Doerfert, and Barbara Chapman

Using Hardware Transactional Memory to Implement Speculative
Privatization in OpenMP . 57

Juan Salamanca and Alexandro Baldassin

Improving Fortran Performance Portability . 74
Jacob Marks, Eric Medwedeff, Ondřej Čertík, Robert Bird,
and Robert W. Robey

Domain Specific Compilation

COMET: A Domain-Specific Compilation of High-Performance
Computational Chemistry . 87

Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy,
Roberto Gioiosa, Jacques Pienaar, and Gokcen Kestor

G-Code Re-compilation and Optimization for Faster 3D Printing 104
Xiaoming Li

Machine Language and Quantum Computing

Optimized Code Generation for Deep Neural Networks 119
Janaan Lake, Tharindu R. Patabandi, and Mary Hall

Thermal-Aware Compilation of Spiking Neural Networks
to Neuromorphic Hardware . 134

Twisha Titirsha and Anup Das

A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation. 151
Henry Dietz, Aury Shafran, and Gregory Austin Murphy

Performance Analysis

Enhancing the Top-Down Microarchitectural Analysis Method Using
Purchasing Power Parity Theory . 163

Yectli A. Huerta, Brent Swartz, and David J. Lilja

Code Generation

Cain: Automatic Code Generation for Simultaneous Convolutional Kernels
on Focal-plane Sensor-processors . 181

Edward Stow, Riku Murai, Sajad Saeedi, and Paul H. J. Kelly

Reordering Under the ECMAScript Memory Consistency Model 198
Akshay Gopalakrishnan and Clark Verbrugge

Verification of Vectorization of Signal Transforms 215
Patrick Brinich and Jeremy Johnson

Author Index . 233

x Contents

Code and Data Transformations

An Affine Scheduling Framework for
Integrating Data Layout and Loop

Transformations

Jun Shirako(B) and Vivek Sarkar

School of Computer Science, Georgia Institute of Technology, Atlanta, USA
{shirako,vsarkar}@gatech.edu

Abstract. Code transformations in optimizing compilers can often be
classified as loop transformations that change the execution order of
statement instances and data layout transformations that change the
memory layouts of variables. There is a mutually dependent relationship
between the two, i.e., the best statement execution order can depend on
the underlying data layout and vice versa. Existing approaches have typ-
ically addressed this inter-dependency by picking a specific phase order,
and can thereby miss opportunities to co-optimize loop transformations
and data layout transformations. In this paper, we propose a cost-based
integration of loop and data layout transformations, aiming to cover a
broader optimization space than phase-ordered strategies and thereby
to find better solutions. Our approach builds on the polyhedral model,
and shows how both loop and data layout transformations can be rep-
resented as affine scheduling in a unified manner. To efficiently explore
the broader optimization space, we build analytical memory and com-
putational cost models that are parameterized with a range of machine
features including hardware parallelism, cache and TLB locality, and
vectorization. Experimental results obtained on 12-core Intel Xeon and
24-core IBM POWER8 platforms demonstrate that, for a set of 22 Poly-
bench benchmarks, our proposed cost-based integration approach can
respectively deliver 1.3× and 1.6× geometric mean improvements over
a state-of-the-art polyhedral optimizer, PLuTo, and a 1.2× geometric
mean improvement on both platforms over a phase-ordered approach in
which loop transformations are followed by the best data layout trans-
formations.

1 Introduction

In recent years, the major focus of optimizing compilers has moved from scalar
optimizations to transforming the input program so as to extract the ideal gran-
ularity of parallelism and data locality that best fits the target architecture.
Loop transformations represent a major class of program transformations that
have been used to address these objectives. The primary goal of loop transforma-
tions is to reorder dynamic statement/instruction execution sequences to opti-
mize parallelism and locality, while satisfying dependence constraint for legality.

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-030-95953-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_1

4 J. Shirako and V. Sarkar

More recently, data layout transformations have also been receiving attention
because of their potential for delivering significant performance improvements
due to enhanced cache and SIMD efficiencies [3,6,15,23]. The primary goal of
data layout transformations is to rearrange program variables and data struc-
tures to optimize spatial data locality, while keeping dependences unchanged.
The majority of past work on loop transformations assumes a fixed data layout.
Likewise, the majority of past work on data layout transformations assumes a
fixed loop ordering. The focus of our paper is on the problem of cost-based inte-
gration of both classes of transformations, which has received relatively little
attention in past work.

There is a large body of past work on loop transformations since the
1980’s, e.g., [2,12,16,32,33]. Syntactic/AST-based loop transformation frame-
works automatically select a sequence of individual loop transformations, driven
by analytical cost models, to achieve a desired optimization goal [18,22,31]. More
recently, the polyhedral compilation model has provided significant advances in
the unification of affine loop transformations combined with powerful code gen-
eration techniques [1,4,5,10,13,24]. The benefits of this unified formulation can
be seen (for example) in the PLuTo algorithm [4,5], which has been successfully
extended and specialized to integrate SIMD constraints [17].

Data layout transformations represent another class of program transforma-
tions that is increasingly being used in compiler optimizations. A number of data
layout transformation techniques have been proposed, including permutation of
multidimensional array [15,30], conversion between array-of-structs (AoS) and
struct-of-arrays (SoA) [6,23], data skewing, and data tiling [21]. However, they
are often performed as a pre- or post- pass to loop transformations in past
work that tries to incorporate both sets of transformations [11,14,15,21]. On a
related note, [23] and [6] addressed the best AoS/SoA selection problem for a
given input program, for both CPUs and GPUs, but without considering any
loop transformations. Further details are discussed in Sect. 7.

In this paper, we address the problem of integrating loop and data layout
transformations, with the goal of exploring the full optimization space so as to
select globally optimal combinations of loop and data layout transformations
that may be overlooked by phase-ordered approaches. To efficiently explore the
optimization space and find the best combination of data layout transformations
Φ and loop transformations Θ, our framework employs a cost-based iterative
compilation approach. Given a set of candidate pairs of (Φ, Θ), it statically
estimates the overall memory and computational cost; and the candidate with
minimum cost is selected as the final output. This is in contrast with a phase
ordering approach which either first selects the best Φ and then selects the best
Θ, or first selects the best Θ and then selects the best Φ. We extend the DL
model [9] for memory cost estimation, and build a simple computational cost
model based on microbenchmarking and machine parameters. Given a program
region applicable to the polyhedral model (i.e., a SCoP region), our compilation
framework transforms loop and data layout structures, and the data redistri-
butions between original and new layouts, while preserving the original data
layouts outside the SCoP region. In summary, the major contributions of this
paper are:

An Affine Scheduling Framework for Integrating Data Layout 5

#pragma omp for ...
for (i=0; i<ni; i++) {
for (j=0; j<nj; j++) {

S: C[i][j] *= beta;
for (k=0; k<nk; k++)

T: C[i][j] += alpha
* A[i][k] * B[j][k];

}}

Fig. 1. gemm using PLuTo
(minimum reuse distance
schedule) + manual best
layout search (which
resulted in transposing the
dimensions of array B)

#pragma omp for ...
for (i=0; i<ni; i++) {
for (j=0; j<nj; j++)

S: C[i][j] *= beta;
for (k=0; k<nk; k++)
for (j=0; j<nj; j++)

T: C[i][j] += alpha
* A[i][k] * B[k][j];

}

Fig. 2. gemm using
PolyAST + manual best
layout search (which
resulted in no change to
the original data layout)

#pragma omp for ...
for (i=0; i<ni; i++)
for (j=0; j<nj; j++)

S: C[i][j] *= beta;
#pragma omp for ... \
reduction (+:C[0:ni][0:nj])
for (k=0; k<nk; k++)
for (i=0; i<ni; i++)
for (j=0; j<nj; j++)

T: C[i][j] += alpha
* A[k][i] * B[k][j];

Fig. 3. gemm using our
framework (which resulted in
transposing the dimensions of
array A, and also a different
loop transformation)

– Analytical memory and computational cost models that can be used to eval-
uate the quality of pairs of data layout and loop transformations.

– A compile-time algorithm that can explore the broader optimization space
and select the best combination of data layout and loop transformations based
on the proposed cost models.

– Experimental results using 22 benchmarks from PolyBench 4.2 [20] on 12-
core Intel Xeon and 24-core IBM POWER8 platforms, demonstrating that
our proposed cost-based integration approach can respectively deliver 1.3×
and 1.6× geometric mean improvements relative to PLuTo, a state-of-the-art
loop optimizer, and a 1.2× geometric mean improvement for both platforms
over a phase-ordered approach, i.e., loop optimizations followed by the best
layout selection.

The rest of the paper is organized as follows. Section 2 motivates the problem,
and Sect. 3 contains background information on the polyhedral model. Section 3.3
introduces our extensions to model data layout transformations in an affine
scheduling framework. Section 4 presents our affine scheduling framework for
integrating data layout and loop transformations. Section 5 discusses the ana-
lytical cost models used to guide the loop and layout transformations. Section 6
presents experimental results to evaluate our approach on the three multicore
systems. Finally, Sects. 7 and 8 summarize related work and our conclusions.

2 Motivating Example

We use the generalized matrix-multiply (gemm) from PolyBench 4.2 [20] as a
motivating example. Figure 1 shows the output of the PLuTo [4,5] polyhedral
compiler; its objective function is to minimize the temporal distance between two
accesses to the same memory location, i.e., minimum reuse distance. This is also a

6 J. Shirako and V. Sarkar

core objective of many polyhedral optimizers to achieve maximal temporal data
locality and outermost forall parallelism. As an example of the phase-ordered
approach, after loop transformations we manually tried all possible (23 = 8)
array dimensional permutation candidates on both platforms, and found the
best layout: permuting 2-D array B so that the original B[k][j] was changed
into B[j][k] with better spatial locality. As discussed later, the original B[k][j]
layout was used when enabling intra-tile permutation by PLuTo, since PLuTo
does not do any data layout transformations. We also applied PolyAST [24],
a hybrid framework to integrate polyhedral and AST-based loop transforma-
tions, and obtained the output shown in Fig. 2. Due to PolyAST’s cache-aware
loop transformations, the original data layout was the best performant in the
manually tested candidates.

Figure 3 is the output of our integrated data layout and loop transforma-
tions. Our framework selected very different loop transformations from past
approaches, e.g., statements S and T are completely distributed and the k-loop
is parallelized as an array reduction for statement T . Integrated with these loop
transformations, the data layout selected by our framework includes permut-
ing 2-D array A so that the original A[i][k] reference is changed to A[k][i].
Although the reduction parallelism incurs some overhead to compute the final
values, our cost analysis detected that the overhead is sufficiently small and
more than overcome by the benefits of reduced memory cost. The selected data
layout minimizes the array read costs on A and B, while the partial sum of array
reduction on C is accumulated into thread-local storage, thereby incurring no
inter-thread communications except the final sum.

Table 1 clearly shows the effectiveness of the proposed approach over the
phase-ordered strategies using the state-of-the-art polyhedral loop optimizers,
on all three experimental platforms. Note that we omit loop tiling in Figs. 1, 2
and 3 for readability while tiling was performed when obtaining the results in
Table 1. The ‘PLuTo’ and ‘Min dist + layout’ variants have the same inter-tile
loop structures as shown in Fig. 1, while PLuTo additionally permutes intra-tile
loops to enhance vectorization. To summarize, proper integration of data layout
and loop transformations can find the optimal solution which may lie in a space
not covered by phase-ordered approaches.

Table 1. Speedup over the original sequential code

12-core westmere 12-core broadwell POWER8 24-core

PLuTo 4.96× 4.44× 9.62×
Min dist + layout 5.09× 4.01× 8.62×
PolyAST + layout 5.72× 4.48× 11.58×
Our framework 7.50× 4.97× 14.96×

An Affine Scheduling Framework for Integrating Data Layout 7

3 Background

The polyhedral model is a linear algebraic representation for collections of
(imperfectly) nested loops in which loop bounds and branch conditions are affine
functions of outer loop iterators and runtime constants, which are handled as
global parameters [8]. Code regions amenable to this algebraic representation
are called Static Control Parts and represented in the SCoP format [19]. In this
model, a statement consists of three elements: iteration domain, access relation,
and schedule. A dynamic instance of a statement is identified by its statement
name S and loop iteration vector �i, as S(�i).

3.1 Basic Components

Iteration Domain, DS: The iteration domain of a statement S enclosed by m
loops is represented by an m-dimensional polytope, where an element S(�i) ∈ DS

is an instance of statement S. As an example in Fig. 1, the iteration domain of
statement S is:

DS = {S(i, j) | 0 ≤ i < ni ∧ 0 ≤ j < nj}

Access Relation, AS→A: The array reference(s) to A by statement S is
abstracted as an access relation, which maps a statement instance S(�i) to one or
more array elements A(�e) to be read/written1, typically as affine functions [34].
In Fig. 1, the write access relation for statement S to array C is:

Awrite
S→C = {S(i, j) → C(e1, e2) | i = e1 ∧ j = e2}

Schedule, ΘS: The sequential execution order of a program is captured by
the schedule, which maps a statement instance S(�i) to a logical time-stamp
vector, expressed as a multidimensional (quasi-)affine function of �i. Statement
instances are executed according to an increasing lexicographic order of their
time-stamps. Dimensions of schedule may contain loop iterators. A dimension
is called a loop dimension if it contains one or more iterators; otherwise it is
called scalar dimension. Schedules to represent the sequential execution order of
statements S and T in Fig. 1 are:

ΘS = {S(i, j) → (i, j, 0)}, ΘT = {T (i, j, k) → (i, j, 1, k)}

3.2 Legality and Loop Transformations

As with traditional compiler optimizations, the polyhedral compilation computes
dependences based on the original schedule and memory accesses, summarized as
dependence polyhedra [5]. Polyhedral loop transformations amount to computing
new schedules under the legality constraints of dependence polyhedra. In general,

1 A scalar variable is considered as a degenerate case of an array.

8 J. Shirako and V. Sarkar

any composition of iteration- and statement- reordering loop transformations
(e.g., permutation, skewing, distribution, fusion, and tiling) can be specified by
schedules. To compute new schedules, polyhedral optimizers rely on integer linear
programming where dependence polyhedra are used as legality constraints and
their optimization goals are formulated as objectives and/or constraints.

3.3 Affine Scheduling for Data Layout Transformations

In our previous work2 [25], we presented two type of affine representations for
data layout transformations, array-based and value-based representations that
respectively map array element and statement instance into the transformed data
layout. In this section, we summarize the array-based data layout representation
that is main focus in this paper. Full details including value-based representation
and code generation for the transformed data layouts are shown in [25].

Array Domain, DA: As with statements, let A(�e) denote an element of array
A and DA as the array domain of array A. Given SCoP region, the upper/lower
bound of each dimension of A is an affine function of global parameters, and
hence invariant. Therefore, array domain DA of m-dimensional array A is a m-
dimensional rectangular solid whose dimension sizes are fixed at the beginning
of the SCoP region at runtime. In Figs. 1, 2 and 3, the array domain of array C
is:

DC = {C(e1, e2) | 0 ≤ e1 < ni ∧ 0 ≤ e2 < nj}

Layout Mapping, ΦA: Just as schedule Θ specifies the relative order of state-
ment instances in time, let layout mapping Φ denote the relative order of array
elements in the transformed memory space. ΦA is the data layout of array A
and maps each element A(�e) to a logical address vector, expressed as a multidi-
mensional (quasi-)affine function [27] of �e. In this paper, we assume that layout
Φ is a one-to-one mapping, i.e., each array element A(�e) has a unique location
in the memory space and thereby no impact on legality constraints. The layout
mapping in Fig. 3 are as follow, where array A’s dimensions are interchanged.
More layout transformations including SoA/AoS conversion, data skewing, and
data tiling are discussed in [25].

{C(e1, e2) → (0, e1, e2)}, {A(e1, e2) → (1, e2, e1)}, {B(e1, e2) → (2, e1, e2)}

4 Transformation Algorithms

4.1 Overall Framework

Algorithm 1 shows the overview of our end-to-end optimization framework,
developed as an extension to the PolyAST hybrid compilation framework for
combining polyhedral and AST-based transformations [24]. The input to our
2 Note that [25] was presented in the IMPACT workshop, which does not have a formal

published proceedings.

An Affine Scheduling Framework for Integrating Data Layout 9

Algorithm 1: End-to-end data layout and loop transformations
Input : Program P := (scop, dependence polyhedra)

1 begin
2 Φbest, Θbest, costmin := ∅, ∅, ∞
3 for each Φ ∈ { set of candidate layouts } do
4 DL := DL model creation(P , Φ)
5 Θ := PolyAST(P , DL) # compute a new schedule guided by DL
6 cost := memory and computational cost estimation(Φ, Θ)
7 if cost < costmin then
8 Φbest, Θbest, costmin := Φ, Θ, cost

9 codegen(P , Φbest, Θbest)

Output: Parallelized and optimized program

framework is the polyhedral representations of a source program and depen-
dence information, in addition to the program features and runtime/architectural
information (e.g., original layout, statement-level and synchronization costs).

Algorithm 1 is based on an iterative optimization process: 1) given candidate
layout Φ, it builds the Distinct Lines (DL) model [9,22] for memory cost anal-
ysis; 2) guided by the DL model, the PolyAST algorithm computes schedule Θ
to capture a composition of loop transformations and parallelization for given
layout Φ; 3) based on program parameters, architectural features, and the DL
model, the memory and computation costs for the current layout and schedule
pair (Φ,Θ) is estimated; and 4) the best pair of (Φ,Θ) that minimizes the overall
cost is selected as the output layout and schedule.

4.2 Candidate Layout Selection for Iterative Search

The iterative approach in Algorithm 1 computes schedule Θ for each candidate
layout Φ and explores the best pair of Φ and Θ with minimum cost. While both
Φ and Θ are affine functions, the legal space of Φ can be much larger than that
of Θ due to the relaxed legality constraints – i.e., no ordering constraints posed
on Φ while Θ must satisfy dependences described in Sect. 3. In this paper, we
focus on array dimensional permutation. Although other layout transformations
including AoS/SoA selection, data skewing, and data tiling can have a positive
impact on performance (especially on GPUs), array dimensional permutation
is a primary transformation to largely affect the best loop structures, i.e., the
schedule. Let cA denote a unique number among arrays and π denote an arbitrary
permutation, this amounts to the following restricted form of candidate layout
ΦA for array A:

ΦA = {A(e1, e2, ..., en) → (cA, eπ(1), eπ(2), ..., eπ(n))}

10 J. Shirako and V. Sarkar

5 Analytical Cost Model for Optimization Space
Explorations

Cost estimation plays a key role in the proposed framework, which selects the
best layout and schedule pair from the given candidate pairs. In this paper, we
employ the static cost analyses discussed below. Given a candidate pair (Φ,Θ),
per-iteration memory and computational costs of the innermost loop bodies (i.e.,
loop-free regions) are computed by the approaches in Sects. 5.1 and 5.2, respec-
tively. Finally, the overall cost is computed as the weighted sum of parallelized
iteration counts with synchronization costs. For instance, the overall cost of
statements S and T in Fig. 3 are computed as follows:

costS = syncforall(P) + ni/P × nj × (memS + compS)

costT = syncreduce(P) + nk/P × ni × nj × (memT + compT)

Here, P is the # hardware threads, syncforall and syncreduce are respectively
the forall and reduction synchronization overheads as functions of P , and memS

& compS are the per-iteration memory & computational cost for statement S.

5.1 Memory Cost

The per-iteration memory cost of each loop body is computed by two analytical
models, DL and ML, as shown below.

DL (Distinct Lines) Model. The DL model was designed to estimate the number
of distinct cache lines, or TLB entries, accessed in a loop nest [9,22]. Based on
machine parameters, e.g., cache line size and TLB page size, and program param-
eters, e.g., array dimension size and access function, the DL model expresses the
number of distinct lines on a given cache/TLB as a function of enclosing loop
sizes [9,22]. In the following discussion, we assume loop tiling to be applied and
DL is a function of tile sizes, DL(t1, t2, · · · , td).

The per-iteration memory cost of a given loop nest on a specific cache/TLB
is defined as follow.

DL(t1, · · · , td) = DLread(t1, · · · , td) + DLwrite(t1, · · · , td)

mem cost(t1, t2, · · · , td) =
Cost × DL(t1, · · · , td)

t1 × t2 × · · · × td

Cost represents the memory cost (miss penalty) per line on cache/TLB of inter-
est. Assuming that the tile sizes are selected so that the cache/TLB keeps any
data until the last reuse, Cost × DL represents the per-tile memory access cost.
The DL model is conservative in that it provides a memory cost upper bound
that does not depend on ordering of statement instances within a tile.

While DL and mem cost are functions of tile sizes, we use the per-iteration
memory cost for the overall cost estimation, which is mostly independent of tile
sizes. The next section shows how this at compile-time.

An Affine Scheduling Framework for Integrating Data Layout 11

ML (Minimum Working-Set Lines) Model. The ML model was designed to esti-
mate the minimum number of cache lines, or TLB entries, needed to execute
a tile without incurring any capacity misses [26]. This model is mainly used to
compute theoretical upper bounds in the loop tile size selection problem, based
on cache or TLB capacity. Given inter-tile loop order and array references within
the tile, ML is computed by: 1) constructing a special sub-tile based on analysis
of reuse characteristics; and 2) computing the DL value for that sub-tile [26]. As
with the DL model, the ML value of a given tile is defined as the function of tile
sizes. Given cache/TLB capacity C, ML defines the tile size upper bounds as:

ML(t1, · · · , td) ≤ C

To compute a constant per-iteration memory cost, the cost estimation phase
contains the best compile-time tile size search that employs the ML tile size
upper bounds and returns the minimum per-iteration memory cost, mem cost,
within the bounds. The ML model is optimistic in that it provides a memory cost
lower bound that depends on a specific ordering of statement instances within a
tile.

5.2 Computation Cost

The synchronization costs, i.e., syncforall, syncreduce, and syncdoacross, and per-
iteration computational costs of each loop body are obtained by the following
microbenchmarking on each target platform.

Synchronizations. We employed the EPCC OpenMP micro-benchmarks [7] to
collect the synchronization costs for forall, reduction and doacross constructs3.

Statements. To compute per-iteration computational costs, we also used the
mechanism of EPCC benchmarking. Because the innermost loop has dominant
effects on vectorization, we microbenchmarked each statement with different
innermost loops and summarized the results in a per-statement cost table. Since
the computational cost should be computed independently from memory cost
(i.e., cache/TLB misses), all arrays are replaced by small 1-dimensional arrays
such that the innermost loop always exploits either temporal or spatial locality
according to the original array access. Although the microbenchmarking code
was generated manually for each tested benchmarks, the automation of this
process should be straightforward and addressed in future work.

Data Redistribution for Layout Transformations. We also collected the cost for
data assignments and used it for cost estimation of data copy-in and copy-out
statements between the original and new layouts. The estimated data redistri-
bution cost is included in the computation cost.

3 We extended the existing ordered micro-benchmark to doacross.

12 J. Shirako and V. Sarkar

6 Experimental Results

6.1 Experimental Setup

Machines: We used two Linux-based SMP systems to obtain experimental
results for this paper: a 12-core (dual 6-core) 2.8 GHz Intel Xeon Westmere
and a 24-core (dual 12-core) 3.0 GHz IBM POWER8. On Xeon, all experi-
mental variants were compiled using the Intel C/C++ compiler v15.0 with the
“-O3 -xHOST” options for sequential runs and the “-O3 -xHOST -openmp”
options for the output from automatic parallelization by PLuTo, PolyAST, and
our framework. On POWER8, all variants were compiled using the IBM XL
C/C++ compiler 13.1 with the “xlc -O5” command for sequential runs and the
“xlc r -O5 -qsmp=omp” command for the output from automatic parallelization
by PLuTo, PolyAST, and our framework.

Benchmarks: We used the PolyBench/C v4.2 benchmark suite [20] along with
the default benchmark datasets. PolyBench is a collection of benchmarks from
a wide range of applications, including BLAS kernels, linear algebraic solvers,
data mining, and stencil algorithms. The complete PolyBench suite consists of 30
benchmarks. Of these, we first collected results for 22 benchmarks with higher
computational intensity, i.e., benchmarks in which n-dimensional arrays were
accessed in m-dimensional loop nests such that n < m. These results for the 22
high computational intensity benchmarks are reported in Sect. 6.3; these results
include the cost of data redistribution which is negligible due to the high com-
putational intensity. We also report results for the eight benchmarks with low
computational intensity in Sect. 6.4. Since the relative overhead of data redis-
tribution is more significant in these cases, we present timing results for these
eight benchmarks that exclude data redistribution overhead. These results are
therefore applicable to cases when the desired data distribution is applied to the
entire program without any redistribution.

Experimental Variants: Each benchmark was evaluated with the following
five variants. We ran each variant 10 times in exclusive use of the machines and
reported the fastest run.

1. PLuTo: Automatically parallelized and optimized OpenMP C code gener-
ated by the PLuTo [4,5] loop parallelizer/optimizer.

2. PolyAST: Automatically parallelized and optimized OpenMP C code gen-
erated by using the PolyAST [24] loop parallelizer/optimizer. As described
in [24], the code generated by PolyAST assumes the availability of doacross
support (as in OpenMP 4.5) and array reductions in the target system. Since
our experimental systems do not as yet have support for OpenMP 4.5, we
used the runtime support for doacross parallelism and array reductions that
accompany the PolyAST framework.

3. Loop-first (PolyAST + manual layout search): After the PolyAST
loop optimizations, possible array dimensional permutations are manually
explored, and results are reported for the best layout for each data point.

An Affine Scheduling Framework for Integrating Data Layout 13

Table 2. Speedup only by loop transformations on 12-core Intel Xeon Westmere (geo-
metric mean speedup: 6.29× by PLuTo; and 7.05× by PolyAST)

2 mm 3 mm adi cholesky correlation covariance doitgen fdtd-2d floyd-warshall gemm gramschmidt

PLuTo 3.98 4.65 5.14 8.23 14.4 14.3 4.79 5.94 9.76 4.96 13.7

PolyAST 4.48 4.82 0.534 9.01 36.9 36.6 5.75 6.11 13.7 5.72 10.5

heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm

PLuTo 0.476 2.40 4.99 1.62 13.9 9.52 7.86 13.3 12.5 8.94 8.63

PolyAST 0.811 2.88 5.63 33.6 19.2 0.973 8.37 21.5 12.5 9.02 6.83

S
pe

ed
up

 o
ve

r
P

ol
yA

S
T

0

0.5

1

1.5

2

2.5

2mm 3mm adi cholesky correlation covariance doitgen fdtd-2d gemm gramschmidt

Cost-based integration (our approach)

S
pe

ed
up

 o
ve

r
P

ol
yA

S
T

0

0.5

1

1.5

2

2.5

heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm GEOMEAN

Fig. 4. Performance improvements by integrating loop and data layout transformations
over PolyAST on 12-core Intel Xeon Westmere for the 22 computationally intensive
benchmarks.

4. Layout-first (manual layout search + PolyAST): We manually explored
the best array permutation for the original code, and then apply the PolyAST
loop optimizations to the explored layout.

5. Cost-based integration of data layout and loop transformations: Our
approach proposed in this paper.

6.2 Performance for Original Layout + Loop Transformations

We start with performance experiments for the PLuTo and PolyAST loop opti-
mizers, where the original data layouts are used. Tables 2 and 3 show the
speedups over sequential execution by PLuTo and PolyAST, on 12-core Intel
Westmere and 24-core IBM POWER8, respectively. As shown in these results,
PLuTo and PolyAST have different performance trends across benchmarks on all
machines, which can be summarized by the following geometric mean speedups
due to PLuTo and PolyAST: 6.29× and 7.05× on Westmere; and 7.61× and
9.71× on POWER8. Recall that PLuTo is a pure polyhedral optimizer that sup-
ports forall and wavefront parallelization, while PolyAST integrates the polyhe-
dral and AST-based loop optimizations including forall, reduction, and doacross
parallelization [24]. In the following section, we use PolyAST as the baseline to
evaluate the effectiveness of integrating loop and data layout transformations,

14 J. Shirako and V. Sarkar

Table 3. Speedup only by loop transformations on 24-core IBM POWER8 (geometric
mean speedup: 7.61× by PLuTo; and 9.71× by PolyAST)

2 mm 3 mm adi cholesky correlation covariance doitgen fdtd-2d floyd-warshall gemm gramschmidt

PLuTo 17.7 18.1 11.8 13.6 33.1 32.9 7.70 5.40 0.513 9.62 19.1

PolyAST 19.9 22.7 0.917 13.3 59.5 59.2 7.60 6.93 8.74 11.6 13.0

heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm

PLuTo 1.08 0.194 5.57 1.03 60.9 2.08 5.33 16.5 12.1 9.49 74.1

PolyAST 0.932 1.83 6.40 19.6 64.1 0.994 5.53 17.4 12.1 9.57 27.1

S
pe

ed
up

 o
ve

r
P

ol
yA

S
T

0

0.5

1

1.5

2

2.5

3

2mm 3mm adi cholesky correlation covariance doitgen fdtd-2d gemm gramschmidt

Cost-based integration (our approach)
8.378.40

S
pe

ed
up

 o
ve

r
P

ol
yA

S
T

0

0.5

1

1.5

2

2.5

3

heat-3d jacobi-1d jacobi-2d ludcmp lu nussinov seidel-2d symm syr2k syrk trmm GEOMEAN

Fig. 5. Performance improvements by integrating loop and data layout transforma-
tions over PolyAST on 24-core IBM POWER8 for the 22 computationally intensive
benchmarks.

since it has showed better overall performance than PLuTo for the benchmarks
and platforms considered in this paper.

6.3 Performance for Loop and Data Layout Transformations

Figures 4 and 5 show improvement factors of the loop-first, layout-first, and cost-
based integration approaches, relative to PolyAST respectively on the Westmere
and POWER8 systems. Our proposed approach outperformed PolyAST by the
geometric mean factors of 1.19× on Westmere and 1.24× on POWER8. Also,
it achieved geometric mean improvements of 1.16× on Westmere and 1.21× on
POWER8 over the loop-first approach; and 1.24× on Westmere and 1.24× on
POWER8 over the layout-first approach. These results demonstrate the effective-
ness of the proposed cost-based integration over both loop-first and layout-first
approaches on all systems that we experimented with.

For the benchmarks where our proposed approach outperformed other vari-
ants, it generated output code with significantly different data layouts, loop
structures, and/or parallelism from those generated by other experimental vari-
ants. On the other hand, the loop-first approach using PolyAST as the underly-
ing loop optimizer showed nearly identical performance to PolyAST. The same
trend was observed when using PLuTo instead of PolyAST. Since these loop
optimizers compute the schedule based on the input data layout (e.g., cache-

An Affine Scheduling Framework for Integrating Data Layout 15

Table 4. Speedup only by loop transformations on 12-core Intel Xeon Westmere
(excluding data redistribution overhead)

atax bicg deriche durbin gemver gesummv mvt trisolv

PLuTo 2.58 5.39 5.63 0.87 7.52 2.41 4.36 1.03

PolyAST 3.46 6.69 4.42 0.90 9.04 4.71 4.71 2.33

S
pe

ed
up

 o
ve

r
P

ol
yA

S
T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

atax bicg deriche durbin gemver gesummv mvt trisolv

Cost-based integration (our approach)

Fig. 6. Performance improvements by integrating loop and data layout transforma-
tions over PolyAST on 12-core Intel Xeon Westmere for the 8 benchmarks with low
computational intensity (excluding data redistribution overhead)

aware affine scheduling by PolyAST and intra-tile loop permutation for vector-
ization enhancements by PLuTo), the manual best layout search selected the
original layout for most benchmarks. The layout-first approach, i.e., manually
select the best layout per the original code and apply PolyAST to the selected
layout, showed different trends from the loop-first approach. It outperformed
PolyAST for some benchmarks and underperformed for others, resulting in lim-
ited geometric mean improvements. In contrast, our proposed cost-based inte-
gration approach always showed the same or better performance than PolyAST,
with certain geometric mean improvements. These results indicate that our pro-
posed approach can guide integrated layout and loop transformations towards
optimized combinations that are never considered in phase-ordered approaches,
while never degrading performance.

6.4 Study of Low Computational Intensity Benchmarks

The 22 benchmarks studied in Sect. 6.3 contain kernel computations of m-
dimensional loop nests accessing n-dimensional arrays such that m > n, and
thereby the n-dimensional data redistribution cost is easily justified by the
benefit of data layout transformations for m-dimensional loops. However, it’s
still worth studying the potential impact of data layout transformations on the
remaining eight benchmarks for which the computational (i.e., loop nest level)
and data (i.e., array rank) dimensionalities are the same. In this section, we
report experimental results for the eight benchmarks, where the data redistri-
bution overhead of layout transformations is excluded from the overall timing
measurements. Thus, our results will be applicable to cases when the data dis-
tribution proposed by our optimization is implemented as the default data dis-
tribution for the entire program, without requiring any data redistribution.

16 J. Shirako and V. Sarkar

Table 4 shows the speedups over sequential execution by PLuTo and
PolyAST; and Fig. 6 shows the improvement factors over PolyAST by the loop-
first, layout-first, and cost-based integration approaches on the Westmere sys-
tem. As shown in the figure, our integration approach and the layout-first app-
roach improved the performance of gemver by factor of 1.14× when ignoring the
data distribution overhead. However, our approach selected the original data lay-
out as the best candidate layout in all cases except for gemver. When manually
selecting the best data layout, we observed that the eight benchmarks studied
in this section can be classified into four categories:

1) the original data layout is suboptimal (gemver);
2) the original data layout is optimal (gesummv, trisolv, deriche);
3) the data layout is symmetric (atax, bicg, mvt); and
4) multi-dimensional arrays are not used (durbin).

Here, symmetric means that the data layout transformations result in the equiv-
alent program to the original in terms of computational behavior, for instance:
“x1[i] += A[i][j] * y 1[j]; x2[i] += A[j][i] * y 2[j]” as observed in mvt.

In summary, the proposed cost-based approach properly selected the best
data layout combined with loop transformations for all of the eight benchmarks,
and showed a certain performance improvement for gemver benchmark when
assuming the data redistribution (i.e., matrix transpose) is performed at the data
initialization step preceding the kernel computation. Perhaps the most important
conclusion of this subsection is that our approach does not select a suboptimal
data layout when the original layout performs the best.

7 Related Work

There is an extensive body of literature on loop and data layout transformations.
We focus on past contributions that are most closely related to this paper.

[15] proposed a combined loop and data layout transformation framework
for improving the cache performance of sequential codes. They first apply loop
transformations to optimize the locality of a given loop nest, and then apply
data transformations for arrays for which the array references do not exhibit
good spatial locality after the loop transformations, i.e., loop-first approach.
[28,29] was the first to address the unification of affine scheduling and storage
optimization with consideration for the optimal tradeoff between parallelism
and storage space. They proposed a mathematical framework that unifies the
techniques of one-dimensional affine scheduling and occupancy vector analysis,
which determines a good storage mapping for a given schedule, a good schedule
for a given storage mapping, and a good storage mapping that is valid across a
range of schedules. [30] extended the optimization algorithms of the R-Stream
polyhedral compiler to enable array dimension permutations, thereby improv-
ing spatial locality for better vectorization efficiency. This extension introduces
additional flexibility of permuting arrays per statement, on top of the existing
optimization algorithm. As in [15], this raises the questions of how data layouts

An Affine Scheduling Framework for Integrating Data Layout 17

should be managed across statements. [23] proposed an automatic data lay-
out selection algorithm built on a source-to-source layout transformation tool.
Given an input program and target machine specification, this approach rec-
ommend a good SoA/AoS data layout. [6] introduced selection of optimized
SoA/AoS generation for CPU+GPU hybrid architectures. Neither [23] nor [6]
included loop transformations in the scope of their work. [14] presented the
design and evaluation of Brainy, a program analysis tool for optimized data
structure selection based on dynamic profiling. Given program, inputs, and tar-
get architecture, it generates machine-learning based models to predict the best
data structure implementation. Loop transformations were not included in the
scope of this work. [21] addressed the minimization of inter-node communications
on distributed-memory clusters by combining data tiling transformations with
loop tiling. On top of polyhedral loop transformations to enable locality opti-
mizations (including tiling), they successfully introduced additional constraints
for data tiling to minimize communications.

These past contributions can fall into two categories: 1) the input programs
are assumed to have good loop structures; or 2) loop transformations played
the dominant role in the optimization problem. Further, in cases when both
loop and data layout transformations were applied in a single framework, there
wasn’t the use of a cost function to select the best pair of loop and data layout
transformations. To the best of our knowledge, our approach explores a broader
space of combined loop and data layout transformations than in past work with a
cost-based focus on multicore parallelism and cache locality, and thereby results
in considerable performance gains over existing approaches.

8 Conclusions

In this paper, we introduced an affine scheduling framework for integrating data
layout and loop transformations, using the polyhedral model as a foundation
for our approach. With our extensions, data layout transformations are seam-
lessly integrated with polyhedral loop transformations. Our approach is based
on an iterative algorithm across candidate data layouts, and an exploration of
loop transformations for each such layout. A key part of our contribution is the
use of analytical DL/ML memory cost models, as well as computational cost
models derived from micro-benchmarks, to select the best combinations of data
layouts and loop transformations. Our experimental results on two SMP sys-
tems demonstrated the effectiveness of our proposed integration framework over
phase-ordered approaches using state-of-the-art loop optimizers.

Our future work includes: evaluations of layout manipulation phase to cover
SoA/AoS conversion, data tiling, and data skewing, extension to GPU platforms,
automation of cost-related microbenchmarking on target platforms, and search
space pruning when high-dimensional arrays and array dimension fusion lead to
large numbers of candidate data layouts.

18 J. Shirako and V. Sarkar

References

1. The Polyhedral Compiler Collection. http://www.cs.ucla.edu/∼pouchet/software/
pocc/

2. Allen, J.R., Kennedy, K.: Automatic loop interchange. In: Proceedings of the 1984
SIGPLAN Symposium on Compiler Construction, SIGPLAN 1984, pp. 233–246.
ACM, New York (1984)

3. Bacon, D.F., Chow, J.-H., Ju, D.-C.R., Muthukumar, K., Sarkar, V.: A compiler
framework for restructuring data declarations to enhance cache and TLB effective-
ness. In: CASCON First Decade High Impact Papers, CASCON 2010, pp. 146–158.
IBM Corp, USA (1994)

4. Bondhugula, U., Acharya, A., Cohen, A.: The pluto+ algorithm: a practical app-
roach for parallelization and locality optimization of affine loop nests. ACM Trans.
Program. Lang. Syst. 38(3), 12:1–12:32 (2016)

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of PLDI 2008.
ACM, New York (2008)

6. Barik, R., Majeti, D., Meel, K.S., Sarkar, V.: Automatic data layout generation and
kernel mapping for CPU+GPU architectures. In: 25th International Conference on
Compiler Construction, March 2016

7. EPCC OpenMP micro-benchmarks. https://www.epcc.ed.ac.uk/research/
computing/performance-characterisation-and-benchmarking/epcc-openmp-
micro-benchmark-suite

8. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592. Springer, US (2011)

9. Ferrante, J., Sarkar, V., Thrash, W.: On estimating and enhancing cache effective-
ness. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC 1991.
LNCS, vol. 589, pp. 328–343. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0038674

10. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(4),
1250010 (2012)

11. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., Sadayap-
pan, P.: Data layout transformation for stencil computations on short-vector SIMD
architectures. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 225–245. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19861-8 13

12. Irigoin, F., Triolet, R.: Supernode Partitioning. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1988, pp. 319–329. ACM, New York (1988)

13. Integer set library. http://isl.gforge.inria.fr
14. Jung, C., Rus, S., Railing, B.P., Clark, N., Pande, S.: Brainy: effective selection

of data structures. In: Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, pp. 86–97. ACM,
New York (2011)

15. Kandemir, M., Choudhary, A., Ramanujam, J., Banerjee, P.: Improving locality
using loop and data transformations in an integrated framework. In: Proceedings
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 31, pp. 285–297. IEEE Computer Society Press, Los Alamitos (1998)

16. Kennedy, K., McKinley, K.S.: Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In: Banerjee, U., Gelernter, D., Nicolau,

http://www.cs.ucla.edu/~pouchet/software/pocc/
http://www.cs.ucla.edu/~pouchet/software/pocc/
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://doi.org/10.1007/BFb0038674
https://doi.org/10.1007/BFb0038674
https://doi.org/10.1007/978-3-642-19861-8_13
http://isl.gforge.inria.fr

An Affine Scheduling Framework for Integrating Data Layout 19

A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp. 301–320. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57659-2 18

17. Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.-N., Sadayappan, P.:
When polyhedral transformations meet SIMD code generation, vol. 48, pp. 127–
138. ACM, New York, June 2013

18. McKinley, K.S., Carr, S., Tseng, C.-W.: Improving data locality with loop trans-
formations. ACM Trans. Program. Lang. Syst. (TOPLAS) 18(4), 424–453 (1996)

19. Openscop specification and library. http://icps.u-strasbg.fr/bastoul/development/
openscop/

20. PolyBench. The polyhedral benchmark suite. http://www.cse.ohio-state.edu/
∼pouchet/software/polybench/

21. Reddy, C., Bondhugula, U.: Effective automatic computation placement and data
allocation for parallelization of regular programs. In: Proceedings of the 28th ACM
International Conference on Supercomputing, ICS 2014, pp. 13–22. ACM, New
York (2014)

22. Sarkar, V.: Automatic Selection of high order transformations in the IBM XL
Fortran compilers. IBM J. Res. Dev. 41(3), 233–264 (1997)

23. Sharma, K., Karlin, I., Keasler, J., McGraw, J.R., Sarkar, V.: Data layout opti-
mization for portable performance. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 250–262. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48096-0 20

24. Shirako, J., Pouchet, L.-N., Sarkar, V.: Oil and water can mix: an integration
of polyhedral and ast-based transformations. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2014, pp. 287–298. IEEE Press, Piscataway (2014)

25. Shirako, J., Sarkar, V.: Integrating data layout transformations with the polyhedral
model. In: Proceedings of IMPACT 2019, Valencia, Spain, January 2019

26. Shirako, J., et al.: Expressing DOACROSS loop dependencies in OpenMP. In:
Proceedings of the 2012 SIGPLAN Symposium on Compiler Construction (2012)

27. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Proceedings of
IMPACT 2012, Paris, France, January 2012

28. Thies, W., Vivien, F., Amarasinghe, S.P.: A step towards unifying schedule and
storage optimization. ACM Trans. Program. Lang. Syst. 29(6), 34 (2007)

29. Thies, W., Vivien, F., Sheldon, J., Amarasinghe, S.P.: A unified framework for
schedule and storage optimization. In: Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Snow-
bird, Utah, USA, 20–22 June 2001, pp. 232–242 (2001)

30. Vasilache, N., Meister, B., Baskaran, M., Lethin, R.: Joint scheduling and layout
optimization to enable multi-level vectorization. In: IMPACT-2: 2nd International
Workshop on Polyhedral Compilation Techniques, Paris, France, January, Paris,
France, January 2012

31. Wolf, M., Maydan, D., Chen, D.-K.: Combining loop transformations considering
caches and scheduling. In: MICRO 29: Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 274–286 (1996)

32. Wolfe, M.: Loop skewing: the wavefront method revisited. Int. J. Parallel Program.
15(4), 279–293 (1986)

33. Wolfe, M.: Iteration space tiling for memory hierarchies. In: Proceedings of the
Third SIAM Conference on Parallel Processing for Scientific Computing, pp. 357–
361. Society for Industrial and Applied Mathematics, Philadelphia (1989)

34. Wonnacott, D.G.: Constraint-based array dependence analysis. Ph.D. thesis. UMI
Order No. GAX96-22167, College Park, MD, USA (1995)

https://doi.org/10.1007/3-540-57659-2_18
http://icps.u-strasbg.fr/bastoul/development/openscop/
http://icps.u-strasbg.fr/bastoul/development/openscop/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
https://doi.org/10.1007/978-3-662-48096-0_20
https://doi.org/10.1007/978-3-662-48096-0_20

Guiding Code Optimizations with Deep
Learning-Based Code Matching

Kewen Meng(B) and Boyana Norris

Department of Computer and Information Science, University of Oregon,
Eugene, OR 97405, USA

{kewen,norris}@cs.uoregon.edu

Abstract. Performance models can be very useful for understanding
the behavior of applications and guide design and optimization deci-
sions. Unfortunately, performance modeling of nontrivial computations
typically requires significant expertise and human effort. Moreover, even
when performed by experts, it is necessarily limited in scope, accuracy, or
both. In this paper, we are building the Meliora framework for machine
learning-based performance model generation of arbitrary codes based
on static analysis of intermediate language representations. We demon-
strate good accuracy in matching known codes and show how Meliora can
be used to optimize new codes though reusing optimization knowledge,
either manually or in conjunction with an autotuner. When autotuning,
Meliora eliminates or dramatically reduces the empirical search space,
while generally achieving competitive performance.

1 Introduction

Performance models can be used to describe and possibly predict application
performance on one or more architectures. Such models provide software devel-
opers with useful information about potential bottlenecks and help guide them
in identifying optimization opportunities. Models can also improve the quality
of compiler optimizations or accelerate the process of empirical autotuning.

Our primary objective is to accelerate the code optimization process by using
a deep learning technique to match a target code to similar computations that
have been optimized previously. To accomplish this, we define a new graph-
based code representation and combine it with a code generation framework to
enable the automated creation of a deep learning model for matching loop-based
computations. The approach is based on learning accurate graph embeddings
of a set of computational kernels K0,K1, ...,KN that have been autotuned or
manually optimized on the target architecture. When a new code Cnew must
be considered, we apply the model to identify which optimized kernel, Ki, is
the closest match. Based on that information and the autotuning results, we
can select the best-performing version of Ki, Kiopt , from our training set. This
information can then be used by a human developer to manually optimize their
implementation (which may involve significant refactoring), or it can be used by

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 20–28, 2022.
https://doi.org/10.1007/978-3-030-95953-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_2

Guiding Code Optimizations with Deep Learning-Based Code Matching 21

a compiler or an autotuner to automatically apply a small set of optimizations.
The Meliora framework can thus greatly reduce or eliminate the exponential
search space of potential optimizations.

 Application
LLVM-based

Code Analyzer

 1. Extract kernel
characterics

2. Trained
graph model

3. Graph
embedding

4. Prediction
results

Guided
code tuning

5. Select
tuning parameters

Knowledge
database

(optional) Opt to
update

Optimized
executable

(optional) Re-train

6. Compile

Fig. 1. Meliora workflow for model generation and use.

The two principal components of the Meliora approach are an LLVM-based
frontend for extracting code features and an ML-based graph embedding compo-
nent for learning code representations. The overall workflow of feature extraction,
model generation, and subsequent code optimization is illustrated in Fig. 1.

2 Methodology

Meliora is a novel framework for characterizing computation, whose goal is to
dramatically reduce the time and effort required for optimizing performance.
The primary objective is to accelerate the process of searching the space of
optimizations by using a CNN-based technique to identify previously optimized
similar codes. When used in conjunction with an autotuner, Meliora can greatly
reduce or eliminate the exponential search space of parameterized code versions.
Here we refer to a kernel as any small to medium-sized computation consist-
ing primarily of loops. The performance of many HPC applications is heavily
dependent on the performance of a few key kernels, which would be the target
for our analysis and optimization efforts. Unlike a library, Meliora does not aim
to create a repository of ready-to-use functions optimized for particular archi-
tectures; rather, it provides a mechanism to discover successful optimization of
similar (but rarely identical) computations.

The Meliora framework consists of two major components: front end for data
collection and back end for data analysis. Figure 1 shows the overall process of
performing the front-end analysis to extract the code representation and the
data analysis in the backend.

2.1 The Hybrid Control Flow Graph Code Representation

The first step in extracting a code representation in Meliora is based on the
traditional control-flow graph analysis. A control flow graph (CFG) consists
of nodes and edges describing all the possible execution paths of a program.

22 K. Meng and B. Norris

The traditional CFG only contains nodes and edges that can provide limited
information, such as the number of basic blocks and their connectivity. We can
easily envision two codes with identical CFGs, but vastly different computations
within basic blocks. For the purpose of precisely describing the structure and
potential runtime behavior of a kernel, we require more information; hence, we
introduce the hybrid CFG.

Definition 1 (hybrid Control Flow Graph (hCFG)). A directed graph
denoted as G = 〈V,E, δ, ε〉 where vertex V and edge set E ⊆ V × V stand
for basic blocks and directed edges which connect them. In feature sets δ and ε,
δi(vn) represents the information attached to node vn and εj(emn) indicates the
features attached to the edge from node vm to node vn. The i and j represent the
id of the feature set.

The graph structure of the hCFG is the same as that of the regular CFG, in
which each vertex represents a basic block including a sequence of operations,
and each edge indicates the direction of execution flow. To describe each node, we
employ an instruction mix that consists of aggregated instruction counts of four
major groups: floating-point, integer, memory access, and control operations. In
addition to the instruction mix, Meliora also generates reuse distance histograms
to abstract the pattern of memory access within a basic block [3,4]. Next, we
compute the transition probabilities of each node by using the method described
in [8], and attach the probability as an edge attribute.

2.2 Static Analysis for Metric Extraction

In the design of the analyzer, we focus on efficiency and usability. Users are able
to obtain all the hCFG features during compile time, while dynamic profiling
is optionally available if more precise data is needed for specific codes. In the
pure static mode, the analyzer collects both the hCFG node and edge features,
which are described in detail below. We have implemented the static analyzer on
top of the LLVM intermediate representation (IR), which is the bridge between
lexer, parser (frontend), and code generation (backend). This enables support
for multiple language front-ends.

Independent of the types of the target metrics, we must inevitably traverse
the abstract syntax tree (AST) or similar wrapped structure in LLVM IR one
or more times, while keeping track of several values in order to summarize the
corresponding metrics correctly. However, we can minimize the repeated process
by adjusting the entry point of the analysis and also by aligning with the analysis
granularity. Specifically, we consider loops, especially nested loops, as a whole
graph so that we can flatten them from the outermost loop. After locating the
top-level loop, we treat each basic block the same, independent of its type (e.g.,
loop SCoP) and traverse once to collect necessary data from basic blocks. Each
basic block is examined to retrieve and categorize the parsed instructions. For
coarser-grained results, we want to collect kernel-level information which might
comprise several loops at the same level. To address this problem, we first identify

Guiding Code Optimizations with Deep Learning-Based Code Matching 23

and locate the first and last loops then generate a fake loop body to enclose them.
After that, we can reuse the same method to process the fake loop and generate
a kernel graph. This approach also allows finer control over granularity within
each kernel that falls between kernel-level and single-loop.

The edge features can be extracted either statically or dynamically. The
dynamic method requires source code instrumentation followed by execution to
generate the hCFG transition probability edge attributes. By contrast, in the
pure static approach, we provide an LLVM component for obtaining the edge
data by using heuristics to compute the edge probability based on the weights
produced by the DAG analysis. Both the static and dynamic approaches occur
before the loop traversal pass, and the edge data are collected at the same
time as node attributes. However, due to the extra steps of instrumentation and
execution, the runtime of the dynamic approach is substantially higher than that
of the static method.

Representing the memory access pattern without profiling data is a nontrivial
task. Moreover, the enforcement of the static single assignment (SSA) form in
LLVM IR complicates the implementation at the symbolic level. To address
the challenges, Meliora uses the symbols extracted from the IR to estimate the
bounds of the reuse distance in bytes. This is to say that we might not be able
to obtain the precise memory references of an array, yet we can deduce the
maximum and the minimum number of access of the same array by appropriate
assumptions to compute reuse distance bounds.

2.3 Graph Representation Learning

Graph representation learning is at the heart of the Meliora workflow. The frame-
work relies on machine learning techniques to train the model for unseen graph
prediction in order to assist the selection of the tuning parameters for code opti-
mization. In addition to the model, it converts the raw hCFGs generated in
the front end into a vector while preserving significant graph properties. The
embedded form reduces the costs of storage and computation on the original
graphs, which is crucial for scaling up this approach to a large number of com-
putational patterns. We build the component for graph representation learning
on top of PSCN [10] proposed by Niepert et al. This approach is based on the
convolutional neural network (CNNs) [6,7] aiming to learn the arbitrary graph
with node and edge attributes for prediction.

2.4 Using the Model

Given a previously created model, users can apply Meliora to key loops in their
code to locate the best match for an arbitrary graph with the kernels in the
model. To achieve that, first Meliora compiles the source code in any language
supported by LLVM into bitcode and then performs the static analysis described
in Sect. 2.2 on the bitcode to collect the hCFGs representing the loops of the
target kernel. Meliora supports two levels of granularity: full kernel and loop-
level. One graph is created for each loop in the loop-level mode, otherwise a

24 K. Meng and B. Norris

single graph for the entire kernel is generated. Subsequently, Meliora applies
the model to the input graph data for prediction. As a result of prediction, it
generates a coefficient vector with the same size as the number of neurons in
the output layers of the neural network. Since we use Sigmoid function as the
activation function for the output layer, so each value in the generated vector
ranges between 0 and 1 representing the activation (probability) for each of the
output class. We then choose from this vector the loop or kernel with the largest
coefficient, i.e., the best match. At present, this is where Meliora stops, but in the
future, we plan to integrate it more closely into the autotuning process. We note
that this approach can be used for manual optimization, not just autotuning.

3 Evaluation

In this section, we evaluate the accuracy of the model, the performance of model
generation, and the performance of model-based optimizations.

3.1 Dataset Generation

Manually creating a large-enough training dataset is a formidable task. Hence,
we employed the Orio autotuning framework [5,11] to assist with this task.
When Orio is applied to code, Meliora serves as a post-processor invoked by the
autotuner to perform the static analysis on the various versions of the tuned
code generated by Orio. No modifications to Orio were necessary; we believe
integration with other autotuners is possible, too.

The dataset we used for training is a portion of the SPAPT benchmark
suite [1,13], which contains four types of selected kernels. We chose SPAPT
because it has a variety of computations (linear algebra, stencil, statistical) and it
is already integrated with an autotuner, unlike most other available benchmarks.
Each SPAPT kernel has several versions, which are first split into two groups for
training (5201 graphs) and self-validation (1498 graphs), both in loop-level. In
addition, a set of SPAPT kernels never used in training are used for validation
(Sect. 3.3).

3.2 Model Validation

Fig. 2. Model self-validation at
kernel-level granularity.

Figure 2 shows the self-validation results on
the five-kernel dataset used for training. By
self-validation, we mean selecting a trans-
formed (by Orio) kernel version that was not
used in training, and computing its match;
for example, we expect that most versions of
GEMVER would be matched with other ver-
sions of GEMVER. This is not a completely
trivial validation since many of the transfor-
mations impact the hCFG and to a lesser

Guiding Code Optimizations with Deep Learning-Based Code Matching 25

extent, the instruction mix. The labels on the X-axis and Y-axis are the same as
the kernel names where the X-axis represents all the available classes in the train-
ing set corresponding to each of the selected kernels, and the Y-axis indicates the
percentage of the graphs in the validation set predicted as the training kernels.
The color of the tiles reflects the degree of similarity, from not similar at all in
red (coefficient close to 0) to very similar in dark green (coefficient close to 1).
The dark green diagonal indicates that self-similarity was successfully detected.

3.3 Evaluation on New Kernels

Most real-world use cases of Meliora would utilize the model to find the best
match between unknown, arbitrary kernels and those in the model so that we
can apply existing optimization knowledge to avoid the time-consuming search
on the large variant spaces of performance optimizations. To demonstrate the
application of Meliora to new codes, we present results of using it on a subset of
the SPAPT benchmarks that were not used at all for building the model.

The evaluation procedure consists of the following steps. First, we apply
Meliora to the subset of SPAPT codes that were not used for training. The
accuracy of the match is shown in Table 1. These C codes typically contain several
loops with various nesting depths and range in size from a tens to hundreds of
lines.

Table 1. Meliora’s matches for a set of new codes’ loops.

New code and loop line
number

Matched kernel and match coeff. (≤1)

adi: @132, @137 gemver (0.99), gemver(0.99)

correlation: @166, @177,
@180, @185

covariance (0.99), mvt (0.99), mvt (0.85), covariance (1.00)

fdtd: @152, @154, @157,
@160

bicgkernel (0.99), mvt (0.88), mvt (0.88), mvt (0.83)

jacobi: @76 gemver (0.99)

tensor: @130 stencil3d (1.00)

trmm: @124, @130 covariance (0.99), stencil3d (1.00)

dgemv: @255, @258, @260,
@263, @265, @268, @270,
@276, @278, @280

bicgkernel (0.83), gemver (1.00), bicgkernel (0.83), gemver
(1.00), bicgkernel (0.91), gemver (1.00), bicgkernel (0.99),
gemver (1.00), gemver (1.00), gemver (1.00)

Once the model returns a match, we compute the cosine similarity between
the loops in the new kernel and those in the matched kernel to further refine the
mapping. For example, the first loop in adi (adi@132) is matched with the gemver
kernel, which has four loops. The cosine similarity between the embeddings of
the adi@132 and the gemver@134 loops is the highest, hence we finalize the
match to be adi@132-gemver@134.

The next step is to copy (manually) the tuning spec from the autotuned ver-
sion of the matched kernel into the new code, adjusting variable names as needed.

26 K. Meng and B. Norris

For example, the correlation code has four loops, two of which were matched
with covariance, and two with mvt. In the future, we will automate this step,
while still allowing the user to customize the inserted tuning annotations.

Performance Improvement. The speedups obtained by modifying the new
codes as described above are shown in Fig. 3a. The baseline is the original, unop-
timized version, compiled with a recent GCC compiler using the -O3 optimiza-
tion level. All optimization options in the matched kernels can be seen in the
SPAPT benchmark repository [1,13] and include loop unrolling, cache tiling, reg-
ister tiling, SIMD pragma insertion, OpenMP parallelization, and scalar replace-
ment. While we used an autotuner to enable rapid application of these optimiza-
tions, one could also apply them manually, albeit at a dramatically increased
effort (the size of the tuned code is typically much larger than the original,
especially when combining multiple transformations).

Fig. 3. Evaluation on new kernels: (a) Speedup over the unoptimized (base) ver-
sions: bars for Meliora-matched optimizations, black triangles for empirical autotun-
ing results, and a red line for the baseline performance; and (b) Comparison with
empirically tuned performance. Values greater than one indicate that Meliora-based
optimizations outperformed the empirical autotuner.

We completely eliminated the empirical search and produced a better-perfor-
ming version for some of the new codes (adi (1.78x1), correlation (4.2x), and
trmm (1.12x)). In addition, we were able to improve performance further by
applying limited autotuning for adi (3.7x), dgemv (1.1x), fdtd (1.8x), jacobi
(1.6x) and correlation (4.8x); this required minimal extra effort to modify the
parameter space to include the default options. In summary, we reduced the
autotuning search time by 2x to 1,126x for the test kernels.

Figure 3b shows a comparison between Meliora-based optimized codes and
empirically autotuned versions using a machine-learning-based search strategy
capped at 1000 runs (the same as was used to generate the model, although
in most cases, fewer than 100 runs were performed per kernel by the search
method). Such capping is necessary because the size of the parameter search
spaces (ranging from 104 to 1024 for these codes) is too large to allow the exhaus-
tive search. The only code for which the autotuner significantly outperformed
1 Speedup with respect to the original code version.

Guiding Code Optimizations with Deep Learning-Based Code Matching 27

the Meliora-based version is trmm. For correlation, using the tuning spec-
ification from the matched kernels significantly outperformed the result from
autotuning the original by providing a better starting point for the search, as
well as a slightly different set of optimizations.

Autotuning Search Performance. We evaluated the autotuning performance
both on a single set of parameters and with limited autotuning on a small param-
eter space based on the matched loops. The post-match autotuning also benefits
from the use of local optimization methods because we know that the starting
point is likely to close to the optimum.

For the correlation benchmark, the Meliora-based optimization through a
match with loops from the autotuned covariance and mvt kernels), we were
able to actually outperform previous empirical tuning without any empirical
testing. The results for tensor indicate that this specific benchmark is not opti-
mizable via the kinds of optimizations we attempted (as indicated by the fact
that both the Meliora and autotune results are close to the original perfor-
mance). In part this is due to the fact that it contains a five-level loop; there
is nothing similar among the other kernels in SPAPT. To use Meliora for such
cases, a model should be trained with a greater number of representative kernels,
including tensor contractions.

4 Related Work

Wen et al. [15] and Luk [9] use regression to predict application speedup and
running time. Others use classification [2,14,16] or clustering [12] to obtain opti-
mal parameters. Unlike most existing works, our approach focuses on defining
an effective graph-based code representation and uses its embedding to estimate
the similarity of loop-based computations to previously optimized codes. We also
leverage an autotuner for training set generation in a manner that reduces the
chance of overtraining.

5 Conclusions and Future Work

In this paper, we introduced Meliora, a framework for extracting code repre-
sentations that can be used to find potential optimizations for new codes more
easily, enabling reuse of optimization knowledge and reducing the human and
autotuner search times. Our future work includes identifying more low-cost fea-
tures on which to base metrics that represent other relevant code characteristics
that affect performance in different settings, e.g., shared-memory parallel regions.
We also plan to extend Meliora with inter-procedural analysis to enable correct
handling of code containing function calls. In addition, we plan to complete the
integration of Meliora into the autotuning process for speeding up autotuning of
new codes by reducing the search space.

28 K. Meng and B. Norris

References

1. Balaprakash, P., Wild, S.M., Norris, B.: SPAPT: search problems in automatic
performance tuning. Proc. Comput. Sci. 9, 1959–1968 (2012)

2. Beckingsale, D., Pearce, O., Laguna, I., Gamblin, T.: Apollo: reusable models for
fast, dynamic tuning of input-dependent code. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 307–316. IEEE (2017)

3. Beyls, K., D’Hollander, E.: Reuse distance as a metric for cache behavior. In:
Proceedings of the IASTED Conference on Parallel and Distributed Computing
and systems, vol. 14, pp. 350–360. Citeseer (2001)

4. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance
analysis. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 245–257 (2003)

5. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using Orio. In: 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing, pp. 1–11. IEEE (2009)

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

8. Lim, R., Norris, B., Malony, A.: A similarity measure for GPU kernel subgraph
matching. In: 31st International Workshop on Languages and Compilers for Parallel
Computing (LCPC), October 2018

9. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 45–55. IEEE (2009)

10. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

11. Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and perfor-
mance portability. In: Petascale Computing: Algorithms and Applications, pp.
443–462. Computational Science, Chapman & Hall / CRC Press, Taylor and Fran-
cis Group (2007). http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf. Also
available as Preprint ANL/MCS-P1392-0107

12. Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T., Calder, B.: Using
simpoint for accurate and efficient simulation. ACM SIGMETRICS Perform. Eval.
Rev. 31(1), 318–319 (2003)

13. SPAPT benchmark codes. https://github.com/brnorris03/Orio/tree/master/
testsuite/SPAPT. Accessed 22 Apr 2020

14. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classi-
fication. In: International Symposium on Code Generation and Optimization, pp.
123–134. IEEE (2005)

15. Wen, Y., Wang, Z., O’boyle, M.F.: Smart multi-task scheduling for OpenCL pro-
grams on CPU/GPU heterogeneous platforms. In: 2014 21st International Confer-
ence on High Performance Computing (HiPC), pp. 1–10. IEEE (2014)

16. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A.E.,
O’Brien, K.: Automatic creation of tile size selection models. In: Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pp. 190–199 (2010)

http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf
https://github.com/brnorris03/Orio/tree/master/testsuite/SPAPT
https://github.com/brnorris03/Orio/tree/master/testsuite/SPAPT

Expanding Opportunities for Array
Privatization in Sparse Computations

Mahdi Soltan Mohammadi1, Mary Hall2, and Michelle Mills Strout3(B)

1 NVIDIA, Beaverton, USA
mahdisoltanm@nvidia.com

2 University of Utah, Salt Lake City, USA
mhall@cs.utah.edu

3 University of Arizona, Tucson, USA
mstrout@cs.arizona.edu

Abstract. Sparse computation, where sparse formats are used to com-
press nonzero values of big data, are commonly used in real world
applications. However, the compiler-based data dependence analysis of
sparse computations needed for automatic parallelization is difficult due
to usage of indirect memory accesses through index arrays, e.g. col in
val[col[j]], in these computations. One use of such data dependence anal-
ysis is to find opportunities for array privatization, which is an app-
roach to increase available parallelism in a loop by providing each par-
allel thread its own copy of arrays where in each iteration the array
reads are dominated by array writes in the same iteration. In this paper,
we expand opportunities for compile-time array privatization in sparse
computations by using newly formulated index array properties and a
novel concept we call content-based privatization. Furthermore, we dis-
cuss existing opportunities to use our approach for detecting private
arrays in existing library implementations of sparse computations.

Keywords: Privatization · First private arrays · Dependence
analysis · Sparse computation

1 Introduction

Sparse structures are commonly used to compress nonzero values of big data
manipulated in applications such as big graph data analytics [7] and numerical
methods [4]. Sparse computations such as sparse triangular solve, cholesky, and
LU exhibit partial parallelism in their outer loop due to indirect memory access
through index arrays, e.g. col in val[col[j]]. However, storage-reuse-related, loop-
carried data dependencies can obfuscate such partial parallelism from program
analysis. When storage-related dependences are such that each element in an
array is written in a particular iteration before it is read in the same iteration,
the storage-related write-after-read (WAR) dependence between iterations can

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 29–37, 2022.
https://doi.org/10.1007/978-3-030-95953-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_3

30 M. S. Mohammadi et al.

1 for (i=1; i < n ; i++){

2 for(j=idx1[i]; j < idx1[i+1]; j++){

3 B[idx2[j]] = ...

4 }

5 A [i] = A [i-1] + B[i] ...

6 }

Fig. 1. A sample sparse code where the outermost loop is sequential due to flow depen-
dence that cannot be removed.

be eliminated by providing each thread a private copy of the array [22]. Paral-
lelization of sparse computations including finding arrays that can be privatized
is often done by hand since the content of index arrays is only available at run-
time making compile-time dependence analysis nontrivial [1,2,13,14,19,23]. In
this paper, we present compile-time analysis methods for automatically finding
privatizable arrays that previous analysis approaches are unable to identify.

Although, flow dependences like the one in Fig. 1 prevent us from extract-
ing any parallelism, storage-related dependences in sparse computations can be
removed using privatization. For instance, consider the pseudocode in Fig. 2.
The reads and writes to array A are storage related since each iteration of the
i-loop writes the entire range of this array in the k-loop before reading some of
its values in the j-loop. Therefore, we can extract wavefront parallelism for the
i-loop while privatizing the array A. We can privatize an array like A for a loop
like L, if the following two conditions described by Peng and Padua [22] hold:

1. “Every fetch to an element of A in L must be preceded by a store to the
element in the same iteration of L”.

2. “Different iterations of L may access the same location of A”.

1 for (i=1; i < n ; i++){

2 for(k=0; k < n ; k++){

3 A [k] = ...

4 }

5 for(j=idx1[i]; j < idx1[i+1]; j++){

6 B[idx2[j]] = A [idx2[j]] ...

7 }

8 ... = B[i] ...

9 }

Fig. 2. Example sparse code pattern with simple private array that can be analyzed
by previous works.

Several previous works have presented compile time and runtime methods to
detect private arrays [5,10,12,15–18,20–22]. These previous works can only han-

Expanding Opportunities for Array Privatization in Sparse Computations 31

dle detecting private arrays in restricted code patterns involving indirect mem-
ory accesses through index arrays. Nevertheless, a number of them do use index
array properties in limited capicity for detecting privatization. Lin and Padua
presented a method that could analyze code with irregular memory accesses and
recognize whether an array has been used like a stack data structure, and hence
can be privatized [5]. They also used the range of index arrays to approximate
range of read and write accesses to an array to see whether range of reads are sub-
set of range of writes. Hybrid Analysis (HA) works used a special data structure
called USR to efficiently record what section of an array has been accessed while
collecting flow information for detecting private arrays [10,20,21]. Constraint-
based dependence analysis using uninterpreted functions by Pugh and Wonna-
cott [16] used functional consistency to detect some privatization possibilities in
sparse codes.

Most previous work cannot do the analysis for detecting private arrays at
compile time when there is more than one index arrays involved in indirect
memory accesses through index arrays. For instance consider the code pattern
in Fig. 3, where we have two different index arrays indexing into the A-array.
This code pattern can be found in typical library implementation of some of the
commonly used sparse computations such as sparse Left Cholesky, sparse Left
LU, and sparse QR solver from CSparse library [4]. However, Mohammadi et
al. [8] presented an approach that enables representing index-array properties
involving more than one index array. In this paper, we use that approach to find
first-private and other privatizable arrays.

This paper contributes the following: (1) shows how index-array properties
can enable content-based privatization opportunities (akin to first private pri-
vatization where each thread’s private array instances get initialized to content
of the array before the parallel loop), (2) introduces new index-array properties
relevant for computations with fill-in, (3) shows how those properties can lead
to more privatization opportunities, and (4) describes the key barrier to such
approaches being the use of dynamic index arrays.

1 for (i = 0 ; i < n ; i++){

2 for (j = idx1[i]; j < idx1[i+1]; j++){

3 // ...
4 A[idx2[j]] = ...

5 }

6 for (k = idx4[i]; k < idx4[i+1]; k++){

7 ... = A[idx5[k]];

8 }

9 }

Fig. 3. General irregular code pattern with private arrays that previous works cannot
analyze at compile time.

32 M. S. Mohammadi et al.

2 Constraint-Based Dependence Analysis

The constraints for memory access function to an array inside a loop nest are
defined as follow:

{�It → d : ∃�Ir :

Array Access Expression
︷ ︸︸ ︷

F (�I) = d ∧
Loop Bounds and Conditional Constraints (if,...)

︷ ︸︸ ︷

Constraints(�I) ∧ Constraints(�I ′)}

where �It refers to iterators of the loop nest up to the target loop t, and �Ir
are remaining iterators in the loop nest. For instance, the write memory access
function to x-array, x[idx2[j]] in line 4 of Fig. 3 with respect to outer most loop
is as follows:

{[i] → [d] : ∃j :

Array Access Expression
︷ ︸︸ ︷

idx2(j) = d ∧
Loop Bounds

︷ ︸︸ ︷

0 ≤ i < n ∧ idx1(i) ≤ j < idx1(i + 1)}

Mohammadi et al. [8] show that general index array properties can be rep-
resented using universially quantified assertions. And, we can use original con-
straints from loop-carried data dependences to instantiate such assertions, and
produce new constraints that can be used alongside original constraints. Fol-
lowing same scheme, we can use constraints from memory access functions to
instantiate index array properties. For instance, following formulates functional
consistency about idx1 index array from example access function in previous
paragraph:

(∀x1, x2)(x1 = x2 =⇒ idx1(x1) < idx1(x2))

Now, we can instanciate this property with idx2(j) = d from the original
access function constraints, and obtain: idx1(idx2(j)) = idx1(d). Since, the con-
straint fits to the left handside of the property, we can surmise the right hand-
side of the property must also hold true about the original set of constraints.
Therefore, original set of constraints can be extended with newly instantiated
constraint:

{[i] → [d] : ∃j :

Array Access Expression
︷ ︸︸ ︷

idx2(j) = d ∧
Loop Bounds

︷ ︸︸ ︷

0 ≤ i < n . . . ∧
Instantiated

︷ ︸︸ ︷

idx1(idx2(j)) = idx1(d)}

3 First-Private Analysis

In this section, we introduce a new scheme for detecting private arrays, called
content-private that expands the opportunities for detecting private arrays in
sparse computations. Consider the code pattern in Fig. 4a. Based on the tra-
ditional definition of privatizable arrays, the array A in this code cannot be
privatized, since there could be loop-carried flow dependences from write in line
13 to reads in lines 8 and 12. However, we claim array A is private in this pattern
not based on whether we have cross iteration flow of data based on reads/writes

Expanding Opportunities for Array Privatization in Sparse Computations 33

1 for(k=0; k < m ; k++){

2 A [k] = 0

3 }

4 for (i=0; i < n ; i++){

5 for(j=0; j < m ; j++){

6 A [idx1[j]] = XX;

7

8 ... = A[idx2[j]] ...

9 }

10 ... = A[i] ...

11 for(k=0; k < m ; k++){

12 ... = A [idx3[k]] ...

13 A [idx3[k]] = 0;

14 }

15 }

(a) Array A is a content-private array.

1 for (i = 0 ; i < n ; i++){

2 x[i] = P;

3 }

4 for (i = 0 ; i < n ; i++){

5 for(j = idx1[i]; j < idx1[i+1]; j

++){

6 x[idx2[j]] = ...

7 }

8 for(l = idx3[i]; l < idx3[i+1]; l

++){

9 x[idx4[l]] = ...

10 }

11 x[i] = P;

12 for(k = idx5[i]; k < idx5[i+1]; k

++){

13 x[idx6[k]] = P;

14 }

15 }

(b) General pattern for content private.

Fig. 4. Patterns for demonstrating content-private arrays. The private arrays in these
patterns can be privatized using first private, however, they cannot be detected through
an approach for detecting first private.

accesses to this array, rather because all content of array A start every iteration
of the i-loop being 0.

There are similarities between such a private case and copy-in privatization
introduced by Peng and Padua [22]. An array is copy-in private, also called first
private, if one or more iterations of the parallel loop read from parts of the
private array that never get written in the loop. In first private, compiler needs
to copy initial values of the original array to all of its thread private copies. To
privatize array A in Fig. 4a, we need to copy its initial values to its thread private
copies similar to scheme for first private. However, it cannot be detected using
an automated approach for detecting traditionally defined first private arrays
due to loop-carried flow data dependences.

We define a new scheme for detecting private arrays, called content private,
in general irregular code pattern in Fig. 4b. A content-private array is temporary
storage that can be privatized similar to first private. However, there could be
loop-carried dependencies based on resetting writes and reads to content-private
arrays. The resetting writes are those that reset values of the array to their initial
values in the same iteration of the parallel loop that they have been modified.

For an intuitive reason why we can privatize arrays like x-array in Fig. 4b,
it is important to note how its content get modified during the parallelization
target loop. First, its entire range get initialized to a specific value (P) before
the i-loop targeted for parallelization. Next, parts of x’s content change from
the initial value to other values at some lines like 6 and 9 in the i-loop. Finally,

34 M. S. Mohammadi et al.

towards the end of the parallelization target loop, those content of x that have
been changed from the initial value get reseted back to initial value, line 11
and 13 in Fig. 4b. This pattern guarantees that all the values of content-private
x-array start all iterations of the i-loop being initialized to P.

4 Privatization and Preliminary Evaluation

In this section, we introduce our privatization analysis method when there are
index arrays. We also introduce formulation of an index-array properties that
have not been used in previous works, and is particularly useful for privatization
analysis. Next, we have a discussion on sparse codes that have opportunities
for applying our analysis, and detect more private arrays than previous works.
Lastly, we discuss dynamic index-array issue, a problematic code pattern that
complicates dependence analysis in sparse codes.

Our privatization analysis approach that integrates using index arrays prop-
erties is as follow:

1. First, we extract the memory access functions for all the read and write
accesses to an array.

2. Then, we use an extended version of the instantiation procedure from Moham-
madi et al. [9] to instantiate index array properties. Out of instantiated con-
straints, we collect the constraints that satisfy following conditions: first, they
do not exist in at least one of the sets, and second, they are relevant to both
sets by including at least one index array from both of the sets. Then, we add
those collected constraints to both sets.

3. Next, we use the subsetting algorithm introduced by Mohammadi et al.
Section [9] to check to see if range memory accessed by read accesses are
(the read access functions) subset of range of write accesses (the write access
functions).

Note that: this approach can only be applied to code patterns where statement
ordering determines whether read accesses are happening before write accesses.

Sub-set-of Index Array Property Definition: We are also introducing a new
index array property in this section called sub-set-of that is not introduced in
the related papers [6,8–10,16,21]. The sub-set-of property is defines between two
index arrays like f1 and f2, where content of f1 is subset of f2. This property
usually happens in sparse computations where nonzeros of output data includes
nonzeros in the same locations as the input data plus some added nonzeros.
In this way content of the index array recording row (or column) locations of
nonzeros for the input data will be sub-set-of the index array recording row (or
column) locations of nonzeros for the output. The sub-set-of property is defined
as follow:

Sub-set-of property = {∀x1 : ∃x2 : lb1 ≤ x1 < ub1 ∧ lb2 ≤ x2 < ub2 → lb2 ≤
x2 < ub2 ∧ f1(x1) = f2(x2)}

Several popular implementation of sparse computations include private
arrays that cannot be detected at compile time using previous methods. Table 1

Expanding Opportunities for Array Privatization in Sparse Computations 35

Table 1. Some library implementations of commonly used sparse computations with
private arrays that cannot be detected at compile time by previous methods. Note
all these computations have similar implementations in the CSparse Library [4] and
Eigen citeEigenLib.

Kernel Source General
private
arrays

First
private
arrays

Dynamic
index array

Sparse Matrix-Matrix
Multiply

CSparse [4] Yes Yes Yes

Left Cholesky CSparse [4] Yes Yes Yes

Left LU CSparse [4] Yes Yes Yes

Left QR CSparse [4] Yes Yes Yes

Static Left Cholesky Sympiler [3] No Yes No

1 for (j = 0 ; j < n ; j++){

2 Cp [j] = nz;

3 for (p1 = Bp [j]; p1 < Bp [j+1]; p1++){

4 for (p2 = Ap [Bi[p1]]; p2 < Ap [Bi[p1]+1]; p2++){

5 if (w [Ai [p2]] == 0){

6 w [Ai [p2]] = 1;

7 Ci [nz] = Ai [p2];

8 nz++;

9 x [Ai [p2]] = Bx [p1] * Ax [p2];

10 }

11 else {

12 x [Ai [p2]] += Bx [p1] * Ax [p2];

13 }

14 }

15 }

16 for (p = Cp [j]; p < nz; p++){

17 Cx [p] = x [Ci [p]];

18 w[Ci[p]] = 0;

19 }

20 }

Fig. 5. Sparse matrix-matrix multiply from CSparse [4].

list number of such computations. Index array properties can be used to detect
private arrays in the computations in the table. However, the constraint-based
dependence analysis approach that we describe so far cannot be directly used
to analyze the kernels in the Table 1 except for Static left Cholesky. The reason
is these kernels include a problematic code pattern that we call dynamic index
array problem.

A fundamental assumption for doing constraint-based loop-carried data
dependence analysis that we are using is that the loop bounds and array index

36 M. S. Mohammadi et al.

expressions must be constants or function of enclosing loop iterators [11]. Addi-
tionally, the inspector/executor strategy that we are using assumes we will have
the content of index arrays before the main computation. The reason is runtime
inspectors of sparse dependences get executed before the main computation.
Consequently, the index arrays and variables that get manipulated during the
computation in a way that we cannot define them as a closed-from expression of
the loop iterators create a barrier for applying the dependence analysis approach
we have been using. We call such index arrays and variables (zero-dimensional
arrays), dynamic index arrays. Figure 5 shows the Sparse Matrix-Matrix Mul-
tiply kernel. In this code, Ci, Cp, nz are all dynamic index arrays. Notice for
instance how Cp’s content get assigned to a value that cannot be defined as
closed form expression of loop iterators in line 2. Handling such dynamic index
arrays is a possible direction for future research.

5 Conclusions

In this paper, we show how index-array properties involving more than one
index array can be used to discover more first-private and privatizable arrays at
compile time in sparse computations.

References

1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC 2009: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, pp. 1–11. ACM,
New York (2009)

2. Byun, J.H., Lin, R., Yelick, K.A., Demmel, J.: Autotuning sparse matrix-vector
multiplication for multicore. Technical report, UCB/EECS-2012-215, November
2012

3. Cheshmi, K., Kamil, S., Strout, M.M., Dehnavi, M.M.: Sympiler: Transforming
sparse matrix codes by decoupling symbolic analysis. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2017, pp. 13:1–13:13. ACM, New York (2017). https://doi.org/10.
1145/3126908.3126936, http://doi.acm.org/10.1145/3126908.3126936

4. Davis, T., Hager, W., Duff, I.: Suitesparse (2014). http://faculty.cse.tamu.edu/
davis/suitesparse.html

5. Lin, Y., Padua, D.: Compiler analysis of irregular memory accesses. In: Proceedings
of the 21st Conference on Programming Language Design and Implementation,
PLDI 2000, pp. 157–168 (2000). https://doi.org/10.1145/349299.349322

6. Lin, Y., Padua, D.: Compiler analysis of irregular memory accesses. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, vol. 35, pp. 157–168. ACM, New York, May 2000

7. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating
dimensions with review text. In: Proceedings of the 7th ACM Conference on Rec-
ommender Systems, RecSys 2013, pp. 165–172. ACM, New York (2013). https://
doi.org/10.1145/2507157.2507163, http://doi.acm.org/10.1145/2507157.2507163

https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/3126908.3126936
http://doi.acm.org/10.1145/3126908.3126936
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://doi.org/10.1145/349299.349322
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
http://doi.acm.org/10.1145/2507157.2507163

Expanding Opportunities for Array Privatization in Sparse Computations 37

8. Mohammadi, M.S., Cheshmi, K., Dehnavi, M.M., Venkat, A., Yuki, T., Strout,
M.M.: Extending Index-array properties for data dependence analysis. In: Hall,
M., Sundar, H. (eds.) LCPC 2018. LNCS, vol. 11882, pp. 78–93. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34627-0 7

9. Mohammadi, M.S., et al.: Sparse computation data dependence simplification for
efficient compiler-generated inspectors. In: Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2019, pp. 594–609. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3314221.3314646

10. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, pp. 509–520. ACM, New York
(2012)

11. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for supercomputers.
Commun. ACM 29(12), 1184–1201 (1986)

12. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis.
ACM Trans. Program. Lang. Syst. 24(1), 65–109 (2002)

13. Park, J., Smelyanskiy, M., Sundaram, N., Dubey, P.: Sparsifying synchronization
for high-performance shared-memory sparse triangular solver. In: Kunkel, J.M.,
Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 124–140. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07518-1 8

14. Park, J., et al.: Efficient shared-memory implementation of high-performance con-
jugate gradient benchmark and its application to unstructured matrices. In: Pro-
ceedings of International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2014, pp. 945–955. IEEE Press, Piscataway (2014)

15. Pugh, B., Wonnacott, D.: Nonlinear array dependence analysis. Technical report
CS-TR-3372, Department of Computer Science, University of Maryland, November
1994

16. Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. ACM
Trans. Program. Lang. Syst. 20(3), 635–678 (1998)

17. Rauchwerger, L., Padua, D.: The privatizing DOALL test: a run-time technique
for DOALL loop identification and array privatization. In: Proceedings of the 8th
International Conference on Supercomputing. ICS 1994, pp. 33–43. Association for
Computing Machinery, New York (1994). https://doi.org/10.1145/181181.181254

18. Rauchwerger, L., Padua, D.A.: The LRPD test: speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. IEEE Trans. Parallel
Distrib. Syst. 10(2), 160–180 (1999). https://doi.org/10.1109/71.752782

19. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization
on GPUs. Parallel Comput. 59, 140–150 (2016)

20. Rus, S., Hoeflinger, J., Rauchwerger, L.: Hybrid analysis: static & dynamic memory
reference analysis. Int. J. Parallel Program. 31(4), 251–283 (2003)

21. Rus, S.V.: Hybrid analysis of memory references and its application to automatic
parallelization. Ph.D. thesis, Texas A&M (2006)

22. Tu, P., Padua, D.: Automatic array privatization. In: Banerjee, U., Gelernter, D.,
Nicolau, A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp. 500–521. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-57659-2 29

23. Wang, E., et al.: Intel math kernel library. In: Wang, E., et al. (eds.) High-
Performance Computing on the Intel R© Xeon PhiTM, pp. 167–188. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06486-4 7

https://doi.org/10.1007/978-3-030-34627-0_7
https://doi.org/10.1145/3314221.3314646
https://doi.org/10.1007/978-3-319-07518-1_8
https://doi.org/10.1145/181181.181254
https://doi.org/10.1109/71.752782
https://doi.org/10.1007/3-540-57659-2_29
https://doi.org/10.1007/978-3-319-06486-4_7

OpenMP and Fortran

Concurrent Execution of Deferred
OpenMP Target Tasks with Hidden

Helper Threads

Shilei Tian1(B) , Johannes Doerfert2 , and Barbara Chapman1

1 Department of Computer Science, Stony Brook University, Stony Brook, USA
{shilei.tian,barbara.chapman}@stonybrook.edu

2 Argonne Leadership Computing Facility, Argonne National Laboratory,
Lemont, USA

jdoerfert@anl.gov

Abstract. In this paper, we introduce a novel approach to support con-
current offloading for OpenMP tasks based on hidden helper threads.
We contrast our design to alternative implementations and explain why
the approach we have chosen provides the most consistent performance
across a wide range of use cases. In addition to a theoretical discussion
of the trade-offs, we detail our implementation in the LLVM compiler
infrastructure. Finally, we provide evaluation results of four extreme
offloading situations on the Summit supercomputer, showing that we
achieve speedup of up to 6.7× over synchronous offloading, and provide
comparable speedup to the commercial IBM XL C/C++ compiler.

1 Introduction

Parallel programming is here to stay. In fact, the number of compute cores con-
figured per platform continues to grow, and many of them are in the form of
accelerators. GPUs are the most common type of accelerator in modern super-
computers; on some recent systems, multiple GPUs are present on a single node.
As most of the computational power is within them, it is imperative for perfor-
mance (per watt) to keep the GPUs occupied with productive work at all times.
A meaningful approach is to perform as many computations as possible simul-
taneously [10,12]. Even NVIDIA Fermi GPUs, which have been on the market
for ten years, allow for concurrent execution of up to 16 GPU kernels on a single
device. Asynchronous offloading is a promising technique to achieve such con-
currency as it allows a single CPU thread to overlap memory movement, GPU
computation, and the preparation of new GPU tasks on the CPU. Costly stalls
between GPU computations, aka. kernels, are avoided and the hardware can
start the execution of an already prepared kernel as soon as the ones currently
executed stop utilizing the entire device.

The OpenMP standard supports asynchronous offloading since version 4.5,
though compiler support still varies. In OpenMP, computations are mapped to

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 41–56, 2022.
https://doi.org/10.1007/978-3-030-95953-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_4&domain=pdf
http://orcid.org/0000-0001-6468-6839
http://orcid.org/0000-0001-7870-8963
http://orcid.org/0000-0001-8449-8579
https://doi.org/10.1007/978-3-030-95953-1_4

42 S. Tian et al.

Fig. 1. Generic target directive with task parts, e.g., the depend and nowait clause,
offloading parts, e.g., the map clause, and other clauses such as shared.

accelerators via target directives such as the one sketched in Fig. 1. The state-
ment following the directive is called the target region and the task created by
the directive is called a deferred target task . Similar to other tasks, dependences
can be specified with the depend clause and asynchronous execution can be per-
mitted with the nowait clause. The map clause can be used to ensure memory
regions are mapped between the host and the device. Depending on the situation
and the clause arguments this can result in memory allocation, copies, deallo-
cation, or none of these. While we describe the necessary semantics, we refer to
the OpenMP standard for details and additional information.

In this paper we propose, compare, and evaluate a new scheme to implement
the nowait clause on target directives to achieve concurrent offloading. It is
designed to provide good performance regardless of the context. Our approach
utilizes otherwise “hidden” helper threads to provide consistent results across
various use cases. In Sect. 2.2 we introduce several possible implementations and
compare them from a theoretical perspective. We discuss the implementation
of our hidden-helper-thread design as part of the LLVM compiler in Sect. 3,
before providing an evaluation of its behavior for four extreme offloading cases
in Sect. 4. Our results show the hidden-helper-thread design gains up to 6.7×
improvement on Summit supercomputer, and also provides comparable speedup
to the commercial IBM XL C/C++ compiler. We discuss related work in Sect. 5
and conclude with ideas for improvement in Sect. 6.

2 Design Discussion

In order to discuss different implementation designs for deferred target tasks, we
first dissect one and identify its semantic steps. As part of the overall strategy
it is important to determine which thread will execute each step, as that is a
fundamental property of the design. Based upon this mapping of responsibilities,
it is possible to reason about the performance potential of a given scheme in
various scenarios without implementing all schemes and evaluating all scenarios.

1. wait for outstanding dependences
2. copy requested memory to the device
3. execute the target region on the device
4. copy requested memory from the device
5. resolve outgoing dependences

Fig. 2. Breakdown of the semantic parts, or
sub-tasks, of a deferred target task .

The steps taken to execute a
deferred target task are shown in
Fig. 2. The first step is to resolve
outstanding dependences, that is,
wait for completion of previously
generated sibling tasks that the
target task depends on. Next, the
memory regions are copied from
the current, or issuing, device to

Concurrent Execution of Deferred OpenMP Target Tasks 43

the target device as specified by the map clauses. In step three, the associated
target region is executed on the target device1. Afterwards, memory is copied
back from the target device to the issuing device, again as specified by the map

clauses. Finally, dependences are marked as resolved such that dependent tasks
are now allowed to proceed. While these semantic steps could potentially be
overlapped, they have to appear as-if they are performed in this order.

2.1 Considered Designs

We considered three designs that we describe here and compare in Sect. 2.2.

Regular Task. In the regular-task design, the “task part” of the target direc-
tive is executed as if it was a regular, undeferred OpenMP task. A potential
lowering of the generic deferred target task from Fig. 1 is shown in Fig. 3. As
with other regular OpenMP tasks there is a binding to the encountering team,
so that a thread from the encountering team will eventually execute the task.
That thread will execute all five of the steps listed in Fig. 2, thus allowing the
encountering thread to continue execution immediately after creating the reg-
ular OpenMP task. The regular task design is the easiest to implement and
understand. However, it may not yield the desired result, namely asynchronous
offloading, if there is no surrounding parallel region, or if the threads in the
surrounding parallel region are busy and not able to pick up additional tasks.

Fig. 3. The target directive from Fig. 1 implemented in the regular-task design. The
“task part” of the deferred target task becomes a regular, undeferred task.

Detachable/Callback-Task. The detachable-task design exploits semantics
similar to the detach clause in combination with asynchronous calls to the native
device runtime. Figure 4 visualizes this approach using a custom native async
clause. The idea is that the native device runtime, e.g., the CUDA driver, allows
the queuing of events, memory copies, and launch kernels. The encountering
thread can therefore set the first four steps shown in Fig. 2 in motion without
waiting for any of them to complete. In practice, the fifth step can also be
scheduled by providing a callback function for the native runtime to invoke once
all prior steps have completed. The callback will fulfill the event associated with
the detach clause and thereby, most likely, also perform the work associated
with resolving dependences. That means that the encountering thread issues the
work, and a thread of the native runtime will handle everything else, especially

1 The fallback case, execution on the issuing device, is sufficiently similar.

44 S. Tian et al.

the last step. Consequently, if the native runtime is rich enough and has sufficient
threads to perform the (last) step, concurrent offloading is possible regardless of
the context.

Fig. 4. The target directive from Fig. 1 implemented in the detachable-task design.
Asynchronous calls to the native device runtime are used to issue the sub-tasks (see
Fig. 2) including a host callback that will fulfill the allow-completion-event associated
with the detach clause.

Hidden Helper Task. In the hidden-helper-task design, a deferred target task is
executed in its entirety by a thread that is not started by nor (in any language-
defined way) visible to the user. These hidden-helper-threads form a team of
threads that is implicitly created at program start and is only responsible for
the execution of the special hidden-helper-tasks. We denote them in our code as
hht_task. Such tasks are not too different from other deferred OpenMP tasks
except that they are always executed by an implicit hidden-helper-thread . It
is especially important that they participate in the dependence resolution like
any other tasks generated by the encountering thread. Thus they are siblings to
tasks generated by threads in the same team as the encountering thread. The
hht_task concept is not tied to deferred target tasks but could help the definition
or extention of the OpenMP specification (see Sect. 6). Figure 5 shows how the
generic deferred target task from Fig. 1 is executed in this design.

Fig. 5. Conceptual lowering of the target directive from Fig. 1 in the hidden-helper-
thread design. A special hht_task is used and executed by an hidden-helper-thread
while the offload part is made synchronous.

2.2 Design Comparison

While all three schemes can result in concurrent execution of asynchronous
offloading regions, they differ in complexity, extensibility, requirements, and
probably performance. The regular task design is easy to implement, potentially
even without compiler support, but it will fail to achieve the goal if there are
no threads available to perform the offloading concurrently. Under ideal circum-
stances it can be expected that this scheme is similar to the design of hidden-
helper-thread , though the required setup, e.g., an explicit parallel region with

Concurrent Execution of Deferred OpenMP Target Tasks 45

idle threads, is unrealistic and restrictive. The detachable task design can be
expected to provide consistently good results under most circumstances. It could
potentially be worse than the hidden-helper task design if the time taken by the
encountering thread to issue asynchronous calls becomes the bottleneck or if
the native runtime thread is otherwise needed while it resolves the dependences.
However, those situations would only occur if the tasks are very small or the num-
ber of native runtime threads is too low. Moreover, the setup of the hht_task

is not free either and the use of additional threads and task incurs overhead as
well. There are more likely problems with the detachable task design though. For
one, the scheme can become complex when dependences between host and tar-
get tasks are present. While one could resolve host task dependences as part of
the setup, thus stalling the encountering thread until they are resolved, it would
defeat the purpose. Using artificial host tasks to do the setup introduces the
same problems as the regular task design; using extra threads is not much differ-
ent from our proposed third design, but more complex for yet-to-be-determined
gains. Finally, only the hidden-helper task design is generic and reusable. It puts
no requirements on the native runtime, nor is the scheme tied to target offload-
ing. That said, it is very likely that our scheme would benefit from resolving
dependences directly on the device.

3 Implementation

To ensure concurrent execution of target tasks in every situation we need to
augment the LLVM OpenMP runtime in two places: (1) we added hidden-helper-
threads to which the execution of target tasks can be deferred, and (2) we utilize
native device runtime features to offload multiple target tasks at the same time.
In this section, we first introduce the key implementation details for hidden
helper tasks and the hidden helper task team, before we discuss the support for
concurrent task execution using multiple streams. Finally, we present the new
dependence process mechanism.

3.1 Hidden Helper Task

In our design, a target nowait directive will be wrapped into a hidden-helper-
task, which is a special OpenMP task that can only be executed by a hidden-
helper-thread . In this section, we will introduce the allocation and synchroniza-
tion of a hidden-helper-task. The execution will be discussed in Sect. 3.2.

Allocation. When the encountering thread TE reaches a hidden helper task
th, it registers th as a child by incrementing the child task counter and it also
increments the number of unfinished hidden helper tasks of its team. Then TE

enqueues th in the task queue of a hidden helper thread chosen based on TE ’s
global thread id. This selection ensures that hidden helper tasks are distributed
evenly if they are encountered by multiple threads at the same time. Finally, TE

increases a semaphore SH which we will discuss in Sect. 3.2. Once the task is
finished, the children and unfinished task counters will be decreased by one.

46 S. Tian et al.

Synchronization. The synchronization of hidden helper tasks follows the rules
of regular OpenMP tasks. They can be synchronized explicitly via a taskwait

directive or implicitly at the end of a parallel region. For the explicit synchro-
nization, the encountering thread TE waits until the number of unfinished child
tasks is zero. The implicit synchronization happens before the master thread of
the team spawned by the parallel directive leaves the parallel region and con-
tinues execution of the succeeding statement. The master thread will first wait
for all unfinished hidden helper tasks created by its team to complete.

3.2 Hidden Helper Thread Team

The hidden helper thread team is a special OpenMP team that, similar to the
implicit initial team, exists at program start. It is not connected to the implicit
initial team. The size of the hidden helper thread team, denoted by NH , defaults
to 8 in our implementation. It can be configured via an environment variable.
This might be necessary based on the kernel sizes and hardware capabilities, e.g.,
if NH = 8 threads fail to offload sufficient work while there is more available,
the size should be increased. Just as with a regular team, the hidden helper
thread team is implemented using a fork-join model. To avoid overheads when
the feature is not used, the team is only initialized when the first hidden helper
task is encountered.

The encountering thread TE first creates a new thread TH using the native
host threading API. Note that TH is not related to any other regular OpenMP

threads but is similar to the initial thread that exists at the start of program
execution. We call thread TH the master thread of the hidden helper thread
team. This new thread creates NH − 1 hidden helper threads using the same
facilities that other newly created OpenMP teams would use. That means, the
TH is not connected to the existing team structure but the hidden helper thread
team is itself a regular OpenMP team. TE is allowed to proceed only after the
new team has been initialized and is ready to accept tasks.

While the team behaves like a regular one, the hidden helper threads are set
up slightly differently from regular OpenMP threads. A regular OpenMP worker
thread (in the LLVM OpenMP runtime) keeps looping with the expectation that
one hardware thread is allocated to it. It is optimized for fast reaction time, so
once a regular OpenMP task is encountered by its team the worker thread can
pick it up and execute it right away. In contrast, it is crucial that hidden helper
threads do not occupy host resources if they are not used. Assuming the host is
fully utilized by regular OpenMP threads, there are no CPU cycles left for the
hidden helper threads to use. In order to avoid contention, the hidden helper
threads immediately block on the semaphore SH after their setup is complete.
Whenever a new hidden helper task is enqueued, SH is incremented and at least
one hidden helper thread is woken up to execute the task. After the execution
is finished, the thread will block itself on SH and wait to be woken again.

Like regular OpenMP threads, hidden helper threads use a work-stealing
strategy to find suitable tasks. A hidden helper thread first checks whether there
are tasks in its own queue. If so, it will take one and execute it; otherwise, the

Concurrent Execution of Deferred OpenMP Target Tasks 47

thread will try to steal from other thread queues by sweeping over all others in
its hidden helper thread team.

3.3 Stream Manager

Steps 2–4 in Fig. 2 show how the host interacts with a target device via the native
device runtime. These runtimes usually accept a queue-like data structure that
we call a stream2 in this paper, as a parameter to which the corresponding
operations are pushed. Operations in the same stream are executed in the issued
order; operations in different streams can be executed concurrently if there are no
synchronizing events. As a result, if we want to run multiple tasks concurrently,
we must use multiple streams.

We implemented a stream manager which can efficiently arbitrate concurrent
requests for streams. Initially, a stream pool containing K streams is created.
The size K is configurable via an environment variable and defaults to 32. For
each target device operation, e.g., a host to device memory copy or a kernel
offload, a new stream is requested from the stream manager. On request, the
last used available streams in the pool can be “borrowed”. If all streams in the
pool have been borrowed, the stream manager will double the pool size to create
fresh streams that can be handed out. Once a user is finished with a stream, it
returns it to the stream manager such that it can be reused.

Since the target region can be only executed after the required data is copied
to the device, and outgoing dependence resolution can only be started after data
is copied back to the issuing device, Steps 2–4 in Fig. 2 are in fact implicitly
dependent. Given this fact, we optimize the target operations in the following
way: all operations for the same target task use the same stream. In addition, all
synchronous operations are replaced by their asynchronous counterparts, with a
single synchronization performed at the end of Step 4. In this way, the OpenMP

runtime library does not need to wait for an operation to finish before issu-
ing the next one. But it will register them all directly with the native runtime,
allowing for potential concurrency during memory transfers in the future. Even
for non-detachable target tasks, this synchronization scheme can reduce over-
heads compared with the use of multiple synchronous operations. Finally, it is
worth noting that the stream manager alone already allows multiple threads to
concurrently offload independent operations.

3.4 Processing Dependences

The dependences of a regular OpenMP task are resolved and processed on
the host side. If the dependences of a task are not fulfilled, the task will not be
enqueued, which implies that a target task will also not be enqueued, dispatched
and executed if the tasks it depends on are not finished, no matter whether they
are regular tasks or target tasks. However, almost all device runtime libraries

2 This is CUDA terminology, but almost all heterogeneous programming models have
a similar concept, such as the command queue in OpenCL.

48 S. Tian et al.

support a more efficient way to process dependences via device-dependent events.
The host side no longer is involved, and all a target task’s successors whose
dependences have been resolved can be enqueued for dispatch and execution.

The native device dependence resolution works as follows. A fulfill operation
is put into the stream S such that it is executed after all operations enqueued
to S before. A wait operation is added to stream S′, which can be S, to ensure
operations enqueued into S′ afterward are stalled until the matching fulfill oper-
ation in S was executed. It is worth noting that the fulfill and wait operations
are put into the stream without blocking the issuing thread.

In our approach, we perform dependence processing on the target device.
Assume a target task t depending on m tasks {td1 , · · · , tdm

}. For each task tdi
:

– If tdi
is a regular task: add t to tdi

’s successor list, and increment t’s counter
of predecessors npredecessors. This is same as the existing mechanism.

– If tdi
is a target task: add tdi

to t’s predecessor list.

In this way, if the npredecessors of a task is not zero, the task depends on
unfinished regular tasks. All tasks in the predecessor list are target tasks and
will be processed on the device side.

When t is started, it first checks whether its npredecessors is zero. If yes,
the current task yields because target device events can not tackle dependences
on regular tasks. After that, for each task t′ in t’s predecessor list, if t and t′

are on the same type of devices, insert a wait for t′’s event to t’s stream. This
approach does not work if t and t′ are not on the same type of devices. Two
target tasks are not on the same type of devices if they are not using the same
set of device runtime interfaces. In that case, t will take a check-and-yield: check
the status of t′’s event; if the event is not fulfilled, t will yield its execution. After
all dependences are processed, t proceeds to its remaining offloading work, such
as data mapping and kernel launch.

The hidden-helper-thread executing hidden-helper-tasks will wait for the tar-
get parts (Step 2–4 in Fig. 2) before proceeding to Step 5 to make sure that this
dependence process can also work when a host task depends on a target task.

4 Evaluation

We performed experiments with four synthetic benchmarks described in the
following to show performance gained by asynchronous offloading with Hidden
Helper Threads (HHT) over vanilla LLVM. We additionally compare the proto-
type to the implementation in the commercial IBM XL C/C++ compiler (XLC)
by measuring the speedup of asynchronous offloading (with nowait) over syn-
chronous offloading (without nowait).

4.1 Benchmarks

The benchmark functions B1, B2, B3, and B4 contain the timed code parts. B1,
B2, and B3 each consists of a target nowait directive, and B4 consists of four

Concurrent Execution of Deferred OpenMP Target Tasks 49

target nowait directives with depend clauses. In the target region a daxpy-like
computation is performed on vectors of length N, as shown below. Outer data
mapping, which is not shown in the paper, is used such that data is trans-
ferred only once in each benchmark. The benchmarks are designed to be extreme
instances of potential real world situations.

#define C(a, X, Y, N) \
for (int i = 0; i < N; ++i) \

for (int j = 0; j <= i; ++j) \
y[i] = y[i] + a * x[j];

inline void K(double a, double *X, double *Y, int N) {
#pragma omp target teams distribute parallel for simd nowait

C(a, X, Y, N);
}

B1: Single-Threaded Asynchronous Offloading, No Parallel Region

In benchmark B1, a single thread issues the T asynchronous offloading requests
before it waits for all of them to finish. A situation like this can arise if an
application with independent parallel loops is ported to an accelerator. Exist-
ing omp parellel for simd are replaced with the omp target teams distribute

parallel for simd nowait pragma.

void B1(double a, double *X, double *Y, int T, int N) {
for (int t = 0; t < T; ++t)

K(a, X, Y, N);
#pragma omp taskwait
}

B2: Multi-threaded Asynchronous Offloading Inside a Parallel
Region

In benchmark B2, all threads created by an outer parallel region issue the T

asynchronous offloading requests. Note that the encountering thread can only
finish the parallel region once all offloading requests have completed. One can
imagine an implicit omp taskwait at the end of the parallel region. A situation
like this can arise if an application utilizes multiple host threads for offloading
onto the same (set of) devices.

void B2(double a, double *X, double *Y, int T, int N) {
#pragma omp parallel for

for (int t = 0; t < T; ++t)
K(a, X, Y, N);

}

50 S. Tian et al.

B3: Single-Threaded Asynchronous Offloading Inside a Parallel
Region

In benchmark B3, the master thread of an outer parallel region issues the T asyn-
chronous offloading requests. Note that the other threads created by the parallel
region do not participate in the offloading and will be busy (waiting) until all
offloading requests have finished. A situation like this can arise if an application
utilizes some host threads for offloading while others perform unrelated tasks,
e.g., work on the host or offloading to other devices.
void B3(double a, double *X, double *Y, int T, int N) {

std:: atomic_bool done(false);
#pragma omp parallel

{
if (omp_get_thread_num () == 0) {

B1(a, X, Y, T, N);
done.store(true);

} else {
while (!done.load ())

;
}

}
}

B4: Single-Threaded Asynchronous Offloading with Dependences

In benchmark B4, a single thread issues four asynchronous offloading tasks in
each loop iteration. Task 2 and 3 depend on task 1, and task 4 depends on task
2 and 3. Task 2 and 3 are mutually independent, therefore they can be running
concurrently. A situation like this can arise if an application with parallel loops
is ported to an accelerator and multiple such loops are offloaded concurrently to
improve the overall performance.
#define TARGET_NOWAIT \
#pragma omp target teams distribute parallel for simd nowait

void B4(double a, double *X, double *Y, int T, int N) {
for (int t = 0; t < T; ++t) {

// Hidden helper task 1
TARGET_NOWAIT depend(in: x[0:N]) depend(inout: y[0:N])

C(a, X, Y, N);
// Hidden helper task 2, depending on task 1
TARGET_NOWAIT depend(inout: x[0:N])

C(a, X, X, N);
// Hidden helper task 3, depending on task 1
TARGET_NOWAIT depend(inout: y[0:N])

C(a, Y, Y, N);
// Hidden helper task 4, depending on task 2 and 3
TARGET_NOWAIT depend(in: x[0:N]) depend(inout: y[0:N])

C(a, X, Y, N);
}

#pragma omp taskwait
}

Concurrent Execution of Deferred OpenMP Target Tasks 51

4.2 Configurations

We run our experiments with 13 different vector sizes, and four different number
of offloading jobs. The vector size, determined by N, is one of 24, 25 − 1, 26,
27−1, 28, 29−1, 210, 211−1, 212, 213−1, 214, 215−1, and 216. We choose seven
powers of two as well as six values between them. The number of offloading jobs,
determined by T, is one of 24, 26, 28, and 210.

4.3 Systems and Versions

All experiments were executed on the Summit supercomputer at Oak Ridge
National Laboratory [2]. Each Summit node contains two IBM POWER9 pro-
cessors and six NVIDIA Volta V100 GPUs.

We implemented out prototype on top of LLVM d8c35031. Since parts of our
work have already been merged into the trunk of LLVM, in order to demonstrate
our complete approach, the vanilla LLVM was obtained by removing the related
changes from d8c35031. All variants of LLVM were built with GCC 7.4.0. For
comparison, we use IBM XL C/C++ V16.1.1 (5725-C73, 5765-J13) loaded by
default on Summit. CUDA 10.1.243 was used by all configurations.

All benchmarks were compiled with flags -std=c++14 -O2. We used one
resource set, which has 42 CPU cores and one GPU, per execution. Each config-
uration was executed 30 times and the execution times were averaged. We ran
the experiments using the following command:

jsrun --smpiargs="-disable_gpu_hooks" --nrs=1 \
--tasks_per_rs =1 --cpu_per_rs =42 --gpu_per_rs =1 \
--rs_per_host =1 --bind=rs PROGRAM

4.4 Results

Comparison with Vanilla LLVM. Figure 6 shows the speedup of concurrent
execution with our implementation. We can see in all cases that speedup first
increases with vector length N (kernel size), starts to decrease after a certain
point, and finally levels off. This is to be expected, because at the beginning
when N is small, multiple concurrent target tasks cannot fully utilize the GPU.
The extra overhead of the target tasks cancels out the small improvement in
execution time. As N grows, we start to observe the improvement in execution
time resulting from overlapping execution. At the point when a single target
tasks saturates the GPU alone, the speedup decreases with the ratio of the
target task execution time that is executed concurrently with other target tasks.
Given large enough target tasks a speedup of 1 is expected.

We also note that the maximum speedup increases with T (number of target
tasks). With increasing values of T the amount of time spent in the less concur-
rent warm-up and tear-down stages of the pipeline decreases relatively to the
overall execution time, thus allowing for larger speedups.

Both B1 and B3 show significant performance improvement (up to 6.7×) in
all configurations, while B2 and B4 exhibit degradation for small tasks and minor

52 S. Tian et al.

0.5

1

2

4
Sp

ee
du

p
T = 16

0.5

1

2

4

Sp
ee
du

p

T = 64

24 26 28 210 212 214 216
0.5

2
4
8

N

Sp
ee
du

p

T = 256

24 26 28 210 212 214 216
0.5
1
2
4
8

N

Sp
ee
du

p

T = 1024

Fig. 6. Speedup of concurrent execution with hidden-helper-threads compared to vanilla
LLVM for the benchmarks B1 (), B2 (), B3 () and B4 () described in Sect. 4.1

gains for larger values of N . This is to be expected, because B2 contains multi-
threaded offloading inside a parallel region. Even without the nowait clause,
there are 168 threads (on Summit, each physical core supports four hardware
threads) issuing offload requests almost at the same time. The implementation
of the nowait clause introduces indirection through the hidden-helper-thread ,
which increases host-side overheads (for task allocation, scheduling, and task
yield) that are not incurred when issuing multiple tasks directly from different
native OpenMP threads. Here, the performance gain from introducing multiple
streams is offset by the extra overheads of using a deferred target task when
the kernel size is very small. In this case, the modest amount of time spent in
kernel execution does not allow us to benefit from dispatching them into multiple
streams. For B4, there are at most two concurrent tasks (2 and 3), and they can
finish before they get a chance to run at the same time when N is very small.
As a result, similar to B2, the extra overheads degrade performance.

Comparison with IBM XL C/C++ Compiler. IBM XLC can generate
very efficient kernels compared with LLVM (up to 50x performance gap with
benchmarks in this paper), a lightweight configuration (smaller N) for XL can
be heavy for LLVM. We are still exploring the reasons for this, but LLVM’s
register file usage on GPUs appears to be highly inefficient and could be a
leading contributor. Since a direct comparison does not make sense given the
above performance difference, we instead compare the speedup of pairs of kernels
that have approximately the same average execution time.

Figure 7 shows the speedup of asynchronous offloading over synchronous
offloading using our prototype (HHT) and IBM XLC in different benchmarks
(B1-4) and for different T (number of offloading jobs). We see that our HHT out-
performs XL in B2, although there is performance degradation from both HHT

Concurrent Execution of Deferred OpenMP Target Tasks 53

Fig. 7. Comparison between the speedup using our prototype () and IBM XLC () in
different benchmarks (B1-4) and T (number of offloading jobs). The average execution
time is the total time of T target tasks executing serially divided by T .

54 S. Tian et al.

and XL when the kernel execution time is short, as discussed above. However,
when the kernel size is large enough, HHT improves performance considerably
while XL cannot provide any improvement. We think this can be attributed to
the use of hidden helper threads. For XL, we observe from the NVIDIA Visual
Profiler (NVVP) [8], that when executing B1 and B3, only one host thread is
interacting with the CUDA runtime, which indicates that the offloading may be
performed by the encountering threads. As a result, aside from the extra over-
head introduced to support nowait, XL can at most get same performance as
synchronous offloading in B2. In our approach, only eight hidden-helper-threads
were issuing offloading requests, which has less resource contention and better
cache locality compared with synchronous version.

For B1, B3, and B4, HHT can get speedup comparable with XL, even though
generally it is slightly below that of XL. We expect this is due to weaknesses
in LLVM’s current kernel generation process. From the log shown from ptxas,
which is the PTX assembler provided by NVIDIA [7], the kernel generated by
IBM XL uses 32 registers, while the LLVM code uses 40 registers. The number of
registers a thread block uses determines how many thread blocks can be resident
on a multiprocessor [6]. In the LLVM version, fewer thread blocks will run on a
multiprocessor at the same time, reducing the maximal concurrency.

Most important, our design provides more functionalities and it can be used
even if the native runtime has no asynchronous offloading capabilities.

5 Related Work

OpenMP 4.0 provides mechanisms to offload regions of code to accelerators,
and adds support for asynchronous offloading since version 4.5. Antao et al. [1]
introduces an OpenMP offloading implementation to LLVM. For now it supports
offloading to X86 64, AArch64, PPC64[LE], and has basic support for CUDA
devices [3]. As regards support for the asynchronous offloading (nowait clause),
Clang currently emits a corresponding function call but the function just calls the
synchronous version, so that this feature is not supported. One key contribution
of this paper is to propose a scheme to implement the nowait clause in LLVM.

GCC introduced support for offloading to the Intel R© Xeon PhiTM from ver-
sion 5, and support for the first GPU target, NVIDIA NVPTX, is introduced
in GCC 7 [9]. Asynchronous offloading is not yet provided in GCC. It does not
fall back to the synchronous version and therefore a program with nowait clause
currently cannot run at all. Hence we were unable to provide a comparison. In
the commercial space, the IBM R© XL C/C++ V16.1.1 compiler fully supports
OpenMP 4.5 [4], including asynchronous offloading.

Several papers investigate performance improvements by introducing concur-
rent offloading task/kernel execution with different programming models. Jiao
et al. [5] validated the benefits of concurrent kernels for energy-efficient execu-
tion with CUDA. Wen et al. [11] proposed a graph-based algorithm to optimize
OpenCL concurrent kernel execution. To the best our knowledge, this is the first
paper investigating the concurrent execution of OpenMP target tasks.

Concurrent Execution of Deferred OpenMP Target Tasks 55

6 Conclusions and Future Work

In this work we introduced support for concurrent execution of OpenMP target
task, and discussed different designs for asynchronous offloading and evaluated
our implementation on four extreme offloading situations against vanilla LLVM
and IBM XL C/C++ compiler on the Summit supercomputer. Our results
show that the hidden-helper-thread design can provide low-overhead, concur-
rent offloading of OpenMP target regions without support from the underlying
native runtime. In addition, the proposed design can be a stepping stone towards
other “free”, “unshackled”, or “non-team-bound” tasks, both in terms of imple-
mentation as well as design. Our next step is to improve the execution efficiency
of kernels. A promising candidate approach is to reduce register usage in LLVM
(see Sect. 4.4) by optimizing the device runtime library such that it can drop
some parts if the kernel does not require those features.

Acknowledgments. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering, and early testbed platforms, in support
of the nation’s exascale computing imperative.

References

1. Antao, S.F., et al.: Offloading support for OpenMP in clang and LLVM. In: The
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), Salt Lake
City, UT, USA, pp. 1–11 (2016)

2. Oak Ridge Leadership Computing Facility: Summit - oak ridge leadership comput-
ing facility. https://www.olcf.ornl.gov/summit/

3. Group, L.D.: OpenMP support – clang 11 documentation - LLVM. https://clang.
llvm.org/docs/OpenMPSupport.html

4. IBM: OpenMP support in XL C/C++. https://www.ibm.com/support/
knowledgecenter/SSXVZZ 16.1.1/com.ibm.xlcpp1611.lelinux.doc/getstart/omp
v1611.html

5. Jiao, Q., Lu, M., Huynh, H.P., Mitra, T.: Improving GPGPU energy-efficiency
through concurrent kernel execution and DVFS. In: IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pp. 1–11. IEEE, San
Francisco (2015)

6. NVIDIA: CUDA C best practices guide. https://docs.nvidia.com/cuda/cuda-c-
best-practices-guide/index.html

7. NVIDIA: Nvidia PTX optimizing assembler. https://docs.nvidia.com/cuda/cuda-
compiler-driver-nvcc/index.html

8. NVIDIA: Nvidia visual profiler. https://developer.nvidia.com/nvidia-visual-
profiler

9. Project, G.: Offloading support in GCC. https://gcc.gnu.org/wiki/Offloading
10. Wang, L., Huang, M., El-Ghazawi, T.: Exploiting concurrent kernel execution on

graphic processing units. In: International Conference on High Performance Com-
puting & Simulation, pp. 24–32. IEEE, Istanbul, July 2011

https://www.olcf.ornl.gov/summit/
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/getstart/omp_v1611.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/getstart/omp_v1611.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/getstart/omp_v1611.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://gcc.gnu.org/wiki/Offloading

56 S. Tian et al.

11. Wen, Y., O’Boyle, M.F., Fensch, C.: MaxPair: enhance OpenCL concurrent kernel
execution by weighted maximum matching. In: Workshop on General Purpose
GPUs, pp. 40–49. ACM, Vienna (2018)

12. Wende, F., Cordes, F., Steinke, T.: On improving the performance of multi-
threaded CUDA applications with concurrent kernel execution by kernel reorder-
ing. In: Symposium on Application Accelerators in High Performance Computing,
pp. 74–83. IEEE, Chicago (2012)

Using Hardware Transactional Memory
to Implement Speculative Privatization

in OpenMP

Juan Salamanca(B) and Alexandro Baldassin

São Paulo State University, Rio Claro, SP, Brazil
{juan,alex}@rc.unesp.br

Abstract. Loop Thread-Level Speculation on Hardware Transactional
Memories is a promising strategy to improve application performance
in the multicore era. However, the reuse of shared scalar or array vari-
ables introduces constraints (false dependences or false sharing) that
obstruct efficient speculative parallelization. Speculative privatization
relieves these constraints by creating speculatively private data copies
for each transaction thus enabling scalable parallelization. To support
it, this paper proposes two new OpenMP clauses to parallel for that
enable speculative privatization of scalar or arrays in may DOACROSS
loops: spec private and spec reduction. We also present an evaluation
that reveals that, for certain loops, speed-ups of up to 3.24× can be
obtained by applying speculative privatization in TLS.

Keywords: Privatization · Reduction · Thread-level speculation

1 Introduction

Using Hardware Transactional Memory to implement Thread-Level Speculation
(TLS) is a promising strategy to accelerate hard-to-parallelize loops [12]. Pro-
grammers can use powerful OpenMP constructs to write parallel code such as
parallel for tls when parallelizing loops with a low Loop-carried Dependence
Probability (LCP) [11]. However, prior work showed that well-known performance
issues to loop parallelization (false dependences and false sharing) are exacer-
bated in the presence of HTM [10]. To overcome these issues, this paper proposes
two new clauses to for tls, spec private and spec reduction, that enable
speculative privatizations of scalar or arrays in may DOACROSS loops—loops
that may have loop-carried dependences. Thus, programmers can mark variables
as: (i) speculative private, when he/she suspects that: (a) a scalar variable is pri-
vate in all or some iterations (partial private) of the loop but it cannot be showed
statically—failure to take advantage of this property in some loops leads to false
dependences (WAR or WAW) at runtime and, even worse, in conflict aborts in
TLS-HTM; (b) an array has false sharing thus degrading the performance in any

Supported by FAPESP, grants 18/07446-8 and 18/15519-5.

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 57–73, 2022.
https://doi.org/10.1007/978-3-030-95953-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_5&domain=pdf
http://orcid.org/0000-0002-0569-2806
http://orcid.org/0000-0001-8824-3055
https://doi.org/10.1007/978-3-030-95953-1_5

58 J. Salamanca and A. Baldassin

1 #pragma omp parallel for tls(SS)
shared(n)...

2 for (j=0; j<iterations; j++){
3 ...
4 n += pBitCntFunc...;
5 }

Fig. 1. Fragment of bitcount’s loop
using for tls

1 #pragma omp parallel for tls(SS)
spec_reduction(+:n)...

2 for (j=0; j<iterations; j++){
3 ...
4 n += pBitCntFunc...;
5 }

Fig. 2. The same loop using tls clause
and spec reduction

1 #pragma omp parallel for schedule(static,1)
shared(n)...

2 for (j=0; j<iterations; j+=SS){
3 ...
4 long nL=0;
5 BEGIN(...);
6 for(jj=j; jj<iterations && jj-j<SS; jj++){
7 nL += pBitCntFunc...;
8 }
9 END(...)

10 n+=nL;
11 next+=SS;
12 }

Fig. 3. spec reduction in the code of
Fig. 2 converted to standard OpenMP

Fig. 4. Performance of loopA using: (a)
for-tls; and (b) for-tls plus specula-
tive privatizations

parallelization—particularly in TLS, it results in a excessive number of conflict
aborts. Or (ii) speculative reduction, when the loop has a reduction pattern,
but it is hard to prove that the reduction variable is free of another loop-carried
dependence.

A reduction is a computation that repeatedly applies the same reduction
operator (e.g., addition) to a sequence of operands (e.g., the results of the func-
tion calls pBitCntFunc[...]() of Fig. 1) to get a single result stored in the
reduction shared variable (e.g., n). To use the clause reduction in a loop paral-
lelized through the parallel for construct, the loop has to be conforming, that
is, it has to be DOALL except in the reduction pattern. Then, OpenMP creates
a private variable of the reduction variable for each thread, and the runtime
system stores each thread’s result in this private variable. The reduction of the
values produced by each thread can be done in linear time (using critical) or
logarithmic time (using a tree-based approach).

For instance, the listing of Fig. 1 shows the code of loopA from bitcount
benchmark where n accumulates the results of function calls using an array
of pointers to functions pBitCntFunc. If it is possible to prove statically that
in those functions n is not read, we could use the clause reduction(+:n) to
parallelize this loop. However, one has to be conservative and assume that the
loop has loop-carried dependences inside the function called, even though none
of these dependences materialize at runtime. An attempt to parallelize this loop
using TLS is shown in Fig. 1, but it yields slowdowns with respect to serial
execution.

Using HTM to Implement Speculative Privatization in OpenMP 59

Similar to reductions, speculative reductions create local copies but for each
transaction. A successful technique to parallelize this loop using TLS-HTM is to
privatize the shared variable n within the transaction for each worker thread and
to accumulate partially the results in the shared variable after each transaction
commits thus respecting the order of execution of iterations (if a function reads
n in a next iteration, the value will be correct). We propose spec reduction
clause as an extension to OpenMP parallel for tls, which can be used as
shown in Fig. 2. Figure 3 shows the result of the code transformation behind
spec reduction.

Figure 4 shows the speed-ups (with respect to sequential execution) of loopA
(compiled with Clang and linked against the Intel OpenMP runtime) for the
following cases: (a) when using parallel for tls (left); and (b) when using
parallel for tls and the proposed spec reduction clause (right). Speed-up
measurements were performed in a quad-core Intel Skylake machine with TSX-
NI support. As shown, parallel for tls parallelization of loopA results in
performance degradation with respect to serial execution because many trans-
actions abort due to data conflicts when try read or write n in Line 4 of Fig. 1.
Then, transactions have to retry thus serializing the execution of the iterations.
In the case of for tls spec reduction, TLS-HTM is used to parallelize the
loop and the spec reduction clause privatizes the shared variable within the
transaction thus reducing the number of conflict aborts and showing an improve-
ment of almost 80% with respect to serial.

In this paper we make the following contributions:

– We propose a novel implementation of speculative privatization using HTM
through two OpenMP clauses (Sect. 3) that extend the parallel for tls
and enable the programmer to effectively parallelize (may) DOACROSS
loops.

– A thorough experimental analysis (Sect. 6) shows the effectiveness of the code
transformations, achieving speed-ups of up to 3.24× using a 4-core machine.

This paper is organized as follows. Section 2 describes the main concepts
and related work to introduce our proposal. Section 3 presents our proposal
and the design of the new clauses. Section 4 details the implementation of tls
spec private. Benchmarks, methodology and settings are described in Sect. 5.
Section 6 evaluates the performance of the clause. Finally, Sect. 7 concludes the
work.

2 Background

This section presents related works and the main concepts used in this paper:
privatization and reductions, speculative parallelization of loops, and speculative
privatizations.

2.1 Privatization and Reductions

False dependences (anti and output) can be removed through privatization. This
technique creates, for each thread, private copies of variables that can produce

60 J. Salamanca and A. Baldassin

anti or output dependences. This transformation can be applied to a loop variable
if it can be proven that every read access to it is preceded by a write access to
the same variable within the same iteration [3]. Reductions are operations of the
form x = x ⊗ exp, where ⊗ is an associative and commutative operator, and no
operation (in exp or anywhere else in the loop) reads an intermediate value from
x. The values of variable x can be accumulated in private storage for each thread
followed by a global reduction operation. The difficulty encountered by compilers
in parallelizing loops with reductions arises not from the transformation of the
loop but from correctly identifying and validating reduction patterns [15].

2.2 Speculative Parallelization of Loops

If a loop is executed in parallel before data dependences are uncovered, it can
produce out of order memory references, which may cause incorrect results. Such
execution model is called speculative execution, or optimistic execution, because
its performance is based on the optimistic assumption that the dependences do
not materialize at runtime or are infrequent. If dependences do occur, the final
computation must produce equivalent results of the sequential execution. To
ensure this, the speculative execution model includes checkpointing (save safe
state), commit, and rollback mechanisms [8,9]. When loop-carried dependences
are expected (pessimistic case) the speculation should be verified frequently,
so that iterations where a violation occurred can be restarted, thus reducing
wasted computation. This approach is known as Speculative DOACROSS and
can be quite expensive because it requires global synchronization. In addition,
the commit phase is done in iteration order, which constitutes a serial bottleneck.
Implementations of this approach are diverse, some of them include advanced
features as forwarding, multiversioning, and ordered transactions [4].

2.3 Speculative Privatization

Speculative privatization is a technique that eliminates some false dependences
at the cost of increased memory footprint and runtime checks that validate the
safety of data accesses [1,6–8]. It involves costly instrumentation of all memory
accesses of privatized objects for logging or communication. At commit, the
private copies of each worker are merged according to a resolution policy.

2.4 TLS on Hardware Transactional Memories

Thread-Level Speculation (TLS) or Speculative DOACROSS has been widely
studied [13,14]. For performance, TLS requires hardware mechanisms that sup-
port four primary features: conflict detection, speculative storage, in-order com-
mit of transactions, and transaction roll-back. However, to this day, there is no
off-the-shelf processor that provides direct support for TLS. Speculative exe-
cution is supported, however, in the form of Hardware Transactional Memory
(HTM) available in processors such as the Intel Core and the IBM POWER [12].
HTM implements three out of the four key features required by TLS: conflict

Using HTM to Implement Speculative Privatization in OpenMP 61

detection, speculative storage, and transaction roll-back. And thus these archi-
tectures have the potential to be used to implement TLS [10,12]. Our proposal
is based on this approach.

3 Our Proposal

This section presents the proposed extension to OpenMP that enables program-
mers to easily annotate scalar or array variables to be speculatively privatized.
This extension allows programmers to successfully parallelize may DOACROSS
loops using TLS and speculative privatization.

3.1 spec private Clause

The use of the spec private clause is possible in parallel for constructs when
the clause tls is present. It is syntactically similar to the standard private
clause. The syntax of parallel for is as follows:

#pragma omp parallel for tls(size) spec_private(list) [clause[[,]clause]...]
for-loop

where:

– size is the number of iterations assigned to each speculative implicit task
generated by the worksharing-loop construct. In compiler parlance, it is said
that the loop is partitioned into strips, and thus this size is often called the
strip size of the loop;

– list consists of a collection of one or more list items separated by commas;
– list item is a scalar variable or an array; clause can be any clause allowed for

parallel for except schedule, ordered, and collapse.

3.2 tls Construct

tls construct is a stand-alone directive that specifies if a variable is written or
first read in all or some iterations of the loop. Thus, it can be used to specify
transient may-RAW-dependence or false-sharing patterns in loops. The use of
this directive is possible only when spec private is present. The syntax of the
directive is as follows:

#pragma omp tls [clause[[,]clause]...]

where:

– clause is one of the following: (a) read(scalar), which specifies that scalar
is read before any write to scalar for each loop iteration; (b) write(item):
item is written for each loop iteration; (c) if read(scalar): scalar can be read
before any write to scalar for some loop iterations depending on the if control

62 J. Salamanca and A. Baldassin

1 #pragma omp parallel num_threads(N_CORES)
2 #pragma omp for tls(S_SIZE) shared(A)

firstprivate(n) spec_private(glob)
3 for (i = INI; i < n; i++){
4 ...
5 #pragma omp tls write(glob)
6 glob = f(&ptr,..);
7 A[i] = glob*i;
8 ...
9 }

Fig. 5. Code using using the tls and
spec private clauses, and the tls

directive

Fig. 6. Possible execution flow of Fig. 5
with S SIZE=1 and N CORES=4

flow; and (d) if write(item): item can be written for some loop iterations
depending on the if control flow. item is a scalar variable or an array; scalar
is a scalar variable.

3.3 spec private in Scalar Variables

This clause can be used when the loop has may loop-carried dependences in
shared variables that are not privatizable at compile time because of the com-
plexity of the analysis (e.g. pointers) or the nondeterminism of the control flow of
the program. For example, in the loop of Fig. 5, glob could have been declared as
shared because function f manipulates pointers and it is not possible to deter-
mine if glob is privatizable. However, glob is marked as spec private, thus
a copy (globL) is created for each implicit task such that it can replace glob
within the transaction. Moreover, the tls write(glob) directive indicates that
the variable glob is actually written in all iterations of the loop (Line 6) and
could generate a loop-carried dependence. Thereby, the globL has to be non-
speculatively copied back to glob after committing.

At runtime, if a read memory reference to glob is performed in function
f within a transaction T executing iteration i and, at the same time, another
thread executing iteration i − 1 within a transaction T ′ writes globL, after T ′

commits and the corresponding thread non-speculatively modifies glob, a con-
flict is detected between the read of transaction T and the non-speculative write,
causing the abortion of T . As explained in [10], the speculative privatization of
scalar variables enables:

a) A conflict resolution policy: As explained earlier for the example of Fig. 5,
the non-speculative write of glob after committing T ′ forces the abortion of
transaction T when it reads glob (e.g., in Fig. 6, Iteration 4 would be T ′,
and Iteration 5, T). Without speculative privatization, T ′, which executes
iteration i − 1, could abort many times due to memory conflicts (with T)

Using HTM to Implement Speculative Privatization in OpenMP 63

1 #pragma omp parallel num_threads(N_CORES)
2 #pragma omp for tls(S_SIZE) shared(A,B)

firstprivate(n) spec_private(glob)
3 for (i = INI; i < n; i++) {
4 #pragma omp tls write(glob)
5 if (/*cond*/){
6 #pragma omp tls if_read(glob)
7 glob++;
8 }else
9 glob=i;

10 A[i]= glob*i;
11 if (/*cond2*/){
12 B[i]=glob*glob;
13 }
14 }

Fig. 7. Code using speculative priva-
tization for scalar variable glob (tls
if read). cond and cond2 depend on the
input.

1 #pragma omp parallel num_threads(N_CORES)
2 #pragma omp for tls(S_SIZE)

firstprivate(n) spec_private(glob,A,B)
3 for (i = INI; i < n; i++) {
4 #pragma omp tls write(glob)
5 if (/*cond*/){
6 #pragma omp tls if_read(glob)
7 glob++;
8 }else
9 glob=i;

10 #pragma omp tls write(A)
11 A[i]= glob*i;
12 if (/*cond2*/){
13 #pragma omp tls if_write(B)
14 B[i]=glob*glob;
15 }
16 }

Fig. 8. Another version of Fig. 7’s code
using speculative privatization for array
variables A and B (tls if write).

before committing, since HTMs available in commodity hardware do not
have a conflict resolution policy between transactions;

b) Elimination of memory conflicts caused by WAR and WAW loop-carried
dependences: Without speculative privatization, T and T ′ write shared vari-
able glob, and hence a conflict is always detected even though glob could
be actually private at runtime. In the example of Fig. 6, Iterations 0–3 write
their private copy globL without aborts due to conflict. Similarly, without
privatization, if T ′ (executing iteration i− 1) reads glob in f and T (execut-
ing iteration i) writes glob, a conflict due to a WAR dependence is detected
and one of the two transactions has to abort. With speculative privatization,
both transactions can commit since false dependences are removed and no
RAW dependence is present (i.e. f does not read glob in T). For instance,
in Fig. 6, Iteration 5 would be T ′ and Iteration 6, T .

On the other hand, static analysis fails when the loop has may loop-carried
dependences that arise only when a certain flow of a program is taken at runtime.
For instance, the code of Fig. 7 shows the parallelization of a loop using parallel
for tls; glob could have been declared as shared because, in a conservative
way, it is necessary to assume that the RAW loop-carried dependence in glob
exists. However, if the condition cond evaluates to false in all iterations, glob
will be loop private.

When the may loop-carried dependence is within conditional statements (e.g.,
Fig. 7’s loop) and the programmer knows the possible sinks of this dependence
(Line 7), he/she can annotate the scalar variable to be speculatively privatized
(using spec private) and to be speculatively read when the conditional state-
ments are true at runtime (using tls if read). If the conditions are false, the
variable is not speculatively read within the transaction and does not cause con-
flict aborts. Otherwise, in the example of Fig. 7, if spec private is not used and
glob is shared, transactions will abort every time that they are concurrently

64 J. Salamanca and A. Baldassin

executed; even a transaction, which is about to commit, can abort because of the
lack of a conflict resolution policy that can give preference to lower iterations.

However, it is still possible to use spec private for glob without the direc-
tive tls if read and to have a correct execution through the directive tls
read(glob), which means that variable glob is actually first read in all itera-
tions of the loop. In this case, concurrent transactions will also abort every time
due to conflicts, but the speculative privatization emulates a conflict resolution
policy that will give preference to lower iterations. Moreover, tls read can also
be used instead of firstprivate when it is not possible to show that a variable
is just read and not written in the loop. At runtime, this variable will be spec-
ulatively read for each implicit task within a transaction, however, if a write to
the variable occurs, the transaction will abort.

3.4 spec private in Arrays

Previous work showed that false sharing issues are exacerbated in TLS paral-
lelization on top of HTM [10]. False sharing can be overcome with strip mining
in some cases. For instance, in the loop of Fig. 7 (Line 10), consecutive iterations
write to consecutive memory positions of array A leading to false sharing when
the loop is parallelized in a round-robin fashion. Since A is an array of int and
assuming a cache-line size of 64 bytes, setting S SIZE to sixteen and aligning
the accesses to the start of a cache line eliminates false sharing. However, previ-
ous studies [10] about false sharing in TLS showed that: (a) there is a trade-off
between the size of strip and the capacity of transactions, thus to eliminate
false sharing increasing the strip size can originate capacity aborts; (b) when
false sharing is originated by non-consecutive writes to arrays, strip mining can-
not remove it (e.g. lbm hottest loop case explained in [10]). (c) Intel prefetcher
can cause false sharing in transactions because adjacent memory locations are
fetched and tracked as reads. To overcome these limitations, we propose to cre-
ate thread-local arrays which work as a buffer within the transactions, and then
after committing, their content is copied back to the original shared arrays.
This technique is known as speculative array privatization and yields perfor-
mance improvement in TLS on HTM even with the additional copies.

Because of these issues and previous results [12], in general, speculative array
privatization is a more performant solution than only using strip mining, and
thereby we propose the clause spec private to enable programmers to mark
arrays to be speculatively privatized. For example, Fig. 8 shows the use of the
clause spec private and the directive tls write(A). spec private(A) trans-
forms the loop in Fig. 8, creating thread-local arrays (e.g., AL) to perform writes
within the transaction and then non-speculatively copying back to the original
array A after committing. The write clause means that every loop iteration
writes array A, thereby the non-speculative writes from AL to A are also per-
formed for every iteration.

On the other hand, if write(B), shown in Line 13 of Fig. 8, analogously
to the case of scalars, indicates that the writes to the array are conditioned
to the control flow of the program (in the example, the result of cond2 in each

Using HTM to Implement Speculative Privatization in OpenMP 65

iteration). Therefore, array B is speculatively privatized (spec private(b)) and,
only when the conditional statement is true at runtime, non-speculatively written
after committing.

3.5 spec reduction Clause

The use of the spec reduction clause is possible in parallel for constructs
when the clause tls is present. It is syntactically similar to the standard
reduction clause. The syntax of parallel for is as follows:

#pragma omp parallel for tls(size) spec_reduction(op:list) [clause[[,]clause]...]
for-loop

where:

– op is one of the following operators: +, -, *, &, |,^ , && and ||;
– list consists of a collection of one or more scalar separated by commas;
– clause can be any clause allowed for parallel for except schedule,
ordered, and collapse.

This clause can be used when the loop has may loop-carried dependences in
shared variables that have a pattern of reduction in the loop; however, it is not
conservative to use standard OpenMP reduction clause because of uncertainty
of having cross-iteration dependences at runtime. In the previous example, the
loop of Fig. 1, n is declared as shared because it is not possible to prove that
n is not read in functions being pointed by pBitCntFunc[...]. Nevertheless,
the reduction pattern of n can be speculated using spec reduction clause. As
shown in Fig. 3, the code transformation involves creating a private copy of n for
each implicit task and replacing n with the private copy (nL). Hence, each thread
accumulates its result and, after committing, updates the shared variable n.

At runtime, in the case that, within transaction T executing iteration i, n
is actually read in some function pointed by an element of pBitCntFunc before
transaction T ′ (executing iteration i − 1) commits, T will abort and retry to
read the correct value of n. Otherwise, if n is read in all iterations, transactions
will always abort and the execution will be serialized (the same effect with n as
shared in TLS but still the results will be correct). On the other hand, the use
of the OpenMP reduction clause results in wrong results for any of the two
previous cases.

4 Implementation of the Clauses

Clang 4.0 was adapted to generate the AST (Abstract Syntax Tree) to support
the new clauses. For the following discussion, consider Fig. 9, which shows the
OpenMP translated code from Fig. 8. The translation mechanism for the clause
tls(strip size) is listed in Algorithm 1.

66 J. Salamanca and A. Baldassin

1 int next_strip_to_commit=INI ;
2 #pragma omp parallel num_threads(N_CORES)
3 #pragma omp for schedule(static,1)

firstprivate(n) shared(glob,A,B)
4 for (i = INI; i < n; i+=S_SIZE) {
5 int globL,flag_r_glob=0,count_1=-1;
6 int AL_1_1[S_SIZE],BL_1_2[S_SIZE];
7 char pred_B_2[S_SIZE]={0};
8 int speculative=

BEGIN(&next_strip_to_commit,i);
9 for (int ii=i; ii < n && ii - i <

S_SIZE; ii++){
10 count_1++;
11 if (/*cond*/){
12 if (!flag_r_glob){
13 flag_r_glob=1;
14 globL=glob;
15 }
16 globL++;
17 }else
18 globL=ii;
19

20 AL_1_1[count_1]= globL*ii;
21 if (/*cond2*/){
22 pred_B_2[count_1]=1;
23 BL_1_2[count_1]=globL*globL;
24 }
25 }
26 END(speculative,&next_strip_to_commit,i);
27 glob=globL;
28 count_1=-1;
29 for (int ii=i; ii < n && ii - i <

S_SIZE; ii++){
30 count_1++;
31 A[ii]=AL_1_1[count_1];
32 if (pred_B[cont1]);
33 B[ii]=BL_1_2[count_1];
34 }
35 next_strip_to_commit+=S_SIZE;
36 }

Fig. 9. Code converted to standard
OpenMP

Algorithm 1: Mechanism for tls
(strip size)

Data: parallel for construct (directive D
and for-loop L) and strip size

Result: Transformed code to be
parallelized with TLS on HTM

1 Create BEGIN and END functions;
2 Outside of the construct, create a new

variable next whose identifier is
next strip to commit of the same type of
the induction variable;

3 Initialize next to the initial value of the
induction variable;

4 Set schedule to (static,1) in D;
5 Apply strip mining transformation to the

loop L using loop-local variable ii and a
size of strips equal to strip size (induction
variable is replaced by ii in he inner loop
L’);

6 Insert a call to the BEGIN function before
L’;

7 Insert a call to the END function after L’;
8 if D.list spec private �= NULL then
9 flag array nspec w ← 0;

10 foreach var ∈ D.list spec private do
11 if var is scalar then Run

Algorithm 2
12 else if var is array then
13 Run Algorithm 3;
14 if flag array nspec w = 0

then
15 flag array nspec w ← 1

16 if flag array nspec w= 1 then Run
copy back arrays algorithm

17 if D.list spec reductions �= NULL then
18 foreach scalar var ∈

D.list spec reduction do Run
spec reduction algorithm

19 At the end of L, insert a statement to
increment the value of next by strip size;

BEGIN function creates a transaction T that encapsulates S SIZE speculative
iterations. The size of the strip is specified as a parameter of the clause. At
runtime, each implicit task created by parallel for will execute the BEGIN
function. On the other hand, END function will try to commit the transaction T if
all previous strips have already committed and no conflict is detected; otherwise,
the implicit task will abort and re-start T .

When spec private(list) clause is present in the directive and depending on
the type of each variable in the list, Algorithm 2 or Algorithm 3 can be executed.
All variables in spec private are set as shared. Algorithm 2 creates a private
copy for glob called globL in the example of Fig. 9, which replaces glob in the
inner loop after applying strip mining. Then, it creates the mechanism specified
by the directive if read(glob) to read glob within the transaction only when
it is actually read in the if statement (Lines 12–15 in Fig. 9). Because of the
variable glob is written in every iteration, which is specified by write(glob),
globL is copied to glob after committing (Line 27).

Using HTM to Implement Speculative Privatization in OpenMP 67

Algorithm 2: Mechanism for spec private(var) when var is scalar
Data: parallel for construct, var, list ir of if read, list r of read, list iw of if write, and

list w of write
Result: Transformed code with variable var speculatively privatized

1 Set var as shared;
2 Create a variable varL of the same type of var (with identifier “<var.id>” plus “L”);
3 Replace var with varL in the inner loop L’;
4 if list ir[var.id] �= NULL then
5 Create a variable flag r (with identifier “flag r” plus “ <var.id>”) and initialize it to 0;
6 foreach loc var ∈ list ir[var.id] do
7 Create a statement s1 to assign 1 to flag r;
8 Create a statement s2 to assign the value of var to varL;
9 Create an if statement if st r with condition (!<flag r.id>), and set s1 and s2 as

the then-part;
10 At loc var, insert if st r;

11 else if list r[var.id] �= NULL then
12 After the BEGIN function call and before L’, insert a statement to assign the value of

var to varL;

13 if list iw[var.id] �= NULL then
14 Create a variable flag w (identifier “flag w” plus “ <var.id>”) and initialize it to 0;
15 foreach loc var ∈ list iw[var.id] do
16 Create a statement s3 to assign 1 to flag w;
17 At loc var, insert s3;
18 Create a statement s4 to assign the value of varL to var;
19 Create an if statement if st w with condition (<flag w.id>), and set s4 as the

then-part;
20 After the END function call, insert if st w;

21 else if list w[var.id] �= NULL then
22 After the END function call, insert a statement to assign the value of varL to var;

Overall, Algorithm 3 goes through the structure that groups array writes by
indexes, to these indexes by array variables, and finally these variables by fors.
For each for where var writes, it creates a counter if this does not exist and a
statement to update the counter in each iteration of that for. In each write using
index, the algorithm creates a mechanism to replace var with the private copy
of this. In the case of if write, it creates predicates to know if the copy back
for a determined position of array var must be performed. In the example of
Fig. 9, the algorithm creates a private copy for A of size S SIZE (AL 1 1), then it
replaces A with its copy in the inner loop (Line 20), and it finally copies back the
private array to the shared array A after committing. Analogously, the algorithm
proceeds for B (Lines 22–23), but because it is within an if statement, it creates
an array of predicates to determine if a position of the array is written or not.
Then, these predicates are used to copy back the private array to B.

spec reduction algorithm takes as input the construct, the scalar var,
op red, and statement red. The algorithm sets var to shared. Then, it creates a
local copy of var and initialize its value to the identity value of operator op red.
This local copy replaces var in the reduction pattern (statement red). Finally,
after committing, it accumulates the partial results in the shared var using
op red.

68 J. Salamanca and A. Baldassin

Algorithm 3: Mechanism for spec private(var) when var is array
Data: parallel for construct, var, and list for
Result: Transformed code with variable var speculatively privatized

1 Set var as shared;
2 foreach for ∈ list for do
3 if for.list aw[var.id] �= NULL then
4 if for.count = NULL then
5 Create a variable count ot type int (with identifier “count” plus “ <for.id>”)

and initialize it to -1;
6 Create a statement s inc to increment the value of count by 1;
7 Create a statement s init to assign -1 to count;
8 After the for.entry, insert s inc;
9 After the END function call, insert s init;

10 for.count ← count;

11 else count ← for.count
12 foreach index ∈ for.list aw[var.id] do
13 Create an array varL of the same type of var and size for.size (with identifier

“<var.id>” plus “L” plus “ <for.id>” plus “ <index.id>”);
14 foreach write ∈ index.list write do
15 write.var ← var;
16 write.varL ← varL;
17 write.index ← index;
18 Create a statement s1 to assign the right expression of write.st to array

varL at the position count.value;
19 if write.type = IF WRITE then
20 Create an array pred of type char (with identifier “pred” plus

“ <var.id>” plus “ <write.id>”) and initialize it to {0};
21 Create a statement s pred to assign 1 to array pred at the position

count.value;
22 Replace write.st with two statements: s pred and s1;

23 else if write.type = WRITE then
24 Replace write.st with s1;

5 Benchmarks, Methodology and Experimental Setup

The performance assessment in this work reports speed-ups and abort/com-
mit ratios (transaction outcome) for the for-tls, for-tls+spec private,
and for-tls-all-spec private parallelizations of may DOACROSS loops from
the Collective Benchmark [5] (cBench) and SPEC benchmark suites run-
ning on Intel Core. The for-tls-all-spec private parallelization is the
same for-tls+s priv one, but with all private variables converted to
spec private, it is used to measure the overhead of actually using spec private
instead of private or shared clauses.

For all experiments, the default input is used for the cBench benchmarks and
the reference input for mcf. The baseline for speed-up comparisons is the serial
execution of the same benchmark program compiled at the same optimization
level. Loop times are compared to calculate speed-ups. Each software thread is
bounded to one hardware thread (core). Each benchmark was run twenty times
and the average time is used. Runtime variations were negligible and are not
presented.

Loops were annotated with the proposed clauses spec private and spec re-
duction as also with the tls directive, following the syntax described in Sect. 3.

Using HTM to Implement Speculative Privatization in OpenMP 69

Table 1. Characterization and TLS execution of loops.

Loop Loop Information Loop Characterization TLS Execution
ID Benchmark Location %Cov Invocations N %lc Average Iteration for-tls for-tls + s priv for-tls all s priv

Size S SIZE Speed-up Spec Priv S SIZE Speed-up # to Spec Priv S SIZE Speed-up
A automotive bitcount bitcnts.c,65 100% 560 1125000 100% 12 B 5020 0.37 spec reduction 5020 1.79 1 5020 1.70
B automotive susan c susan.c,1458 83% 344080 590 0% 48 B 67 1.34 No 67 1.34 10 67 1.17
C automotive susan e susan.c,1118 18% 165308 592 0% 14 B 72 1.03 if write 72 1.60 12 72 1.35
D automotive susan e susan.c,1057 56% 166056 594 0% 76 B 88 1.04 if write 88 1.13 3 88 1.09
E automotive susan s susan.c,725 100% 22050 600 0% 14 B 45 0.89 if write 150 1.66 10 150 1.50
H automotive susan e susan.c,1117 18% 374 442 0% 3 KB 1 2.20 if write 1 3.24 13 1 2.97
I automotive susan e susan.c,1056 56% 374 444 0% 4 KB 2 1.52 if write 2 2.05 4 2 1.87
J automotive susan s susan.c,723 100% 49 450 0% 3 KB 1 0.51 if write 1 1.86 11 1 1.67
V automotive susan c susan.c,1614 7% 782 440 34% 1 KB 9 1.01 if read, if write 9 1.15 2 9 1.10
mcf 429.mcf pbeampp.c,165 40% 21854886 300 3.1% 300 B 40 1.26 if read, if write 40 1.31 1 40 1.29

They were then executed using an Intel Core i7-6700HQ machine, and their
speed-ups measured with respect to sequential execution. Table 1 lists the loops
used in the study.

This study uses an Intel Core i7-6700HQ processor with 4 cores with 2-
way SMT, running at 2.6 GHz, with 16 GB of memory on Ubuntu 18.04.4 LTS
(GNU/Linux 4.15.0-112-generic x86 64). The cache-line prefetcher is enabled
by default. Each core has a 32 KB L1 data cache and a 256 KB L2 unified
cache. The four cores share an 6144KB L3 cache. The benchmarks are compiled
with customized Clang 4.01 at optimization level -O3 and with the set of flags
specified in each benchmark program. Code compiled by clang -fopenmp was
linked against the Intel OpenMP Runtime Library. To guarantee that each soft-
ware thread is bound to one hardware thread (core), the environment variable
KMP AFFINITY is set to granularity=fine,scatter.

6 Experimental Results

This section presents results and analysis. The first part of the Table 1 shows
the information of loops: (1) the ID of the loop in this study; (2) the benchmark
of the loop; (3) the file/line of the target loop in the source code; (4) %Cov, the
fraction of the total execution time spent in the loop; and (5) the number of
invocations of the loop in the whole program. The features used to characterize
the loops are shown in the second part of Table 1: (1) N , the average number of
loop iterations; (2) %lc, the percentage of iterations that have actual RAW loop-
carried dependences for the default input of cBench loops and the reference input
of mcf; and (3) the average size in bytes read/written by an iteration. The param-
eters in the third part of Table 1 describe: (1) S SIZE, the strip size used for the
experimental evaluation of for tls, for-tls+s priv, and for-tls-all-s priv;
(2) the average speed-ups with four threads for for-tls, for-tls+s priv, and
for-tls-all-s priv; (3) the kind of speculative privatizations (and the clause of
tls directive) used in the for-tls+s priv implementation of the loops; and
(4) the number of variables that were converted from private to spec private
in the for-tls-all-s priv implementation.

1 Clang 4.0 was adapted to generate AST to support the new clauses as explained in
Sect. 4.

70 J. Salamanca and A. Baldassin

Fig. 10. Speed-ups and Abort ratios for taskloop-tls and parallel-for-tls execu-
tion on Intel Core (TSX-NI)

6.1 Loops with if-Writes Pattern in Arrays

As shown in Fig. 10, there is a class of loops, which write to arrays inside one or
several if statements, being performant with speculative privatization (loops C,
D, E, H, I and J). These often write to non-consecutive positions in consecutive
iterations, thus they may have a variable pattern that makes difficult to remove
false sharing. The evaluation shows that the use of the proposed directive tls
if write can be very effective to overcome this issue and to result in speed-ups
from 1.13× in loopD up to 3.24× in loopH using four threads on TLS-HTM. As
shown in Fig. 10, the abort ratios due to conflicts are almost completely removed
in these loops by using the code transformations behind spec private.

6.2 Scalar Variables with Transient Loop-Carried Dependences

There are some loops with transient dependencies generated by the nondeter-
minism of the control flow, that is, scalar variables within if statements that
are only updated in some iterations. For instance, loops V and mcf have an if
statement whose condition depends on the benchmark input and generates a
may loop-carried dependence when the then path is taken. In the case of loopV,
the variable n is updated inside of the if and then used as the index of an
array. A par-for-tls parallelization of this loop results in a modest speed-
up of 1%; however, when spec private(n) clause joint the tls if read(n)

Using HTM to Implement Speculative Privatization in OpenMP 71

if write(n) directive are used to identify the pattern, the conflict-abort ratio
in TLS decreases and thus the loop performance improves up to 15%. As the
dependencies in these loops, despite being transient, are actual (RAW), the
code transformations cannot remove them; nevertheless, it removes data con-
flicts caused by false dependencies and the lack of resolution policy. This kind of
loops is difficult to parallelize using DOACROSS techniques because the com-
ponents with dependences are serialized.

6.3 Loops with Speculative Reductions in Scalars

The case of loopA, shown in Fig. 2 and explained in Sect. 1, exemplifies this type
of loops. Using spec reduction(n) in this loop yields performance improve-
ments of 79%, as shown in Fig. 10. In the case where the reduction pattern is
not correct, that is, n is read in the loop, the transformation behind does not
alter the behaviour of the program, of course, paying an overhead. The standard
reduction would lead to incorrect results.

6.4 The Increase of Capacity and Interrupt Aborts Results in
Non-significant Overhead in par-for-all-s priv Parallelization

Depending on the number of variables converted to spec private, the strip size,
and the speculative size of the loop, the presence of a higher number of aborts
due to capacity overflow can be noticed in par-for-all-s priv parallelization.
Specifically, in cases that already had this issue in TLS (loops E, H, I, and
J), it worsened. Although there is, in all cases, an overhead of tracking addi-
tional memory addresses of the local copies in addition to the shared ones, using
spec private instead of private as data-sharing attribute clause for the vari-
ables in the studied loops does not significantly hurt the performance. As shown
in Fig. 10, there is a performance degradation for all loops parallelized using
par-for-tls-all-s priv with respect to par-for-tls+s priv parallelization;
however, this is not so serious to yield slowdowns. Similar to capacity aborts,
the abort ratio due to other reasons (OS interrupts) increases in the par-for-
all-s priv parallelization of some loops that already had this problem due to
the long loop-iteration time and the strip size used.

6.5 Difficulty to Find Patterns and the Effectiveness of spec private

If it is very difficult to detect patterns in a loop, it is possible to use the tls
clause only and have correct results, and even some speed-ups as in loopB.
On the other hand, notice the effectiveness of spec private in removing false
dependences and false sharing, in the drastic reduction of the abort ratio due to
conflicts of all loops (except B), even those with actual loop-carried dependences
that will still have a high ratio.

72 J. Salamanca and A. Baldassin

6.6 Order-Inversion Aborts

In almost all loops, there is a considerable abort ratio due to order inversion
caused by the lack of ordered transactions. A system with support for suspending
and resuming transactions would solve the problem. This ratio decreases as the
number of software threads decrease; for that reason loops, such as D and E, have
speed-ups with 2 threads even better than with 3 or 4 threads. For these two
loops, this ratio decreases to almost 0% with 2 threads (in loop E falls from 34%
with 4 threads to 0.69% with 2 threads), thus overweighting the parallelization
work with 3 or 4 threads (each abort can cost 150 cycles).

7 Conclusions

This paper shows that spec private is a simple yet powerful code transfor-
mation that allows programmers to get rid of cumbersome profilers and static
analysis to find out if a variable is private in a possible TLS-HTM loop par-
allelization, and simply to mark it as speculative as well as a write or read
depending on how much information one has of the variable, all of this using off-
the-shelf hardware available anywhere today. Besides, the patterns in the loops
studied are very common, proof of this is that of the 22 cBench loops studied,
in only two it was not possible to identify any of the patterns. Finally, until
today TLS is still studied in hardware simulations with results, when tested on
real machines (such as Blue Gene/Q), often times did not give the expected
results [2]. This work is a clear contribution to implement the ideas behind TLS
on commodity hardware at once and can be truly used.

References

1. Apostolakis, S., Xu, Z., Chan, G., Campanoni, S., August, D.I.: Perspective: a sen-
sible approach to speculative automatic parallelization. In: International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Lausanne, Switzerland, pp. 351–367 (2020)

2. Bhattacharyya, A., Amaral, J.N., Finkel, H.: Data-dependence profiling to enable
safe thread level speculation. In: International Conference on Computer Science
and Software Engineering, Markham, Canada, pp. 91–100 (2015)

3. Burke, M.G., Cytron, R., Ferrante, J., Hsieh, W.C.: Automatic generation of
nested, fork-join parallelism. J. Supercomput. 3(2), 71–88 (1989)

4. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), San Diego, USA, pp. 13–24 (2003)

5. cTuning Foundation: cbench: Collective benchmarks (2016). http://ctuning.org/
cbench

6. Gupta, M., Nim, R.: Techniques for speculative run-time parallelization of loops.
In: International Conference on High Performance Computing, Networking, Stor-
age and Analysis (SC), Orlando, USA, p. 12 (1998)

http://ctuning.org/cbench
http://ctuning.org/cbench

Using HTM to Implement Speculative Privatization in OpenMP 73

7. Johnson, N.P., Kim, H., Prabhu, P., Zaks, A., August, D.I.: Speculative separation
for privatization and reductions. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Beijing, China, pp. 359–370 (2012)

8. Rauchwerger, L., Padua, D.A.: The LRPD test: speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. IEEE Trans. Parallel
Distrib. Syst. (TPDS) 10(2), 160–180 (1999)

9. Rauchwerger, L.: Speculative Parallelization of Loops, pp. 1901–1912. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-09766-4 35

10. Salamanca, J., Amaral, J.N., Araujo, G.: Evaluating and improving thread-level
speculation in hardware transactional memories. In: IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), Chicago, USA, pp. 586–595
(2016)

11. Salamanca, J., Amaral, J.N., Araujo, G.: Using hardware-transactional-memory
support to implement thread-level speculation. IEEE Trans. Parallel Distrib. Syst.
(TPDS) 29(2), 466–480 (2018)

12. Salamanca, J., Amaral, J.N., Araujo, G.: Performance evaluation of thread-level
speculation in off-the-shelf hardware transactional memories. In: Rivera, F.F.,
Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 607–621.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 44

13. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Interna-
tional Symposium on Computer Architecture (ISCA), S. Margherita Ligure, Italy,
pp. 414–425 (1995)

14. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-
level speculation. In: International Conference on Computer Architecture (ISCA),
Vancouver, Canada, pp. 1–12 (2000)

15. Zima, H., Chapman, B.: Supercompilers for Parallel and Vector Computers. Asso-
ciation for Computing Machinery, New York (1990)

https://doi.org/10.1007/978-0-387-09766-4_35
https://doi.org/10.1007/978-3-319-64203-1_44

Improving Fortran Performance
Portability

Jacob Marks1,2 , Eric Medwedeff1,3,4, Ondřej Čert́ık1 , Robert Bird1 ,
and Robert W. Robey1(B)

1 Los Alamos National Laboratory, Los Alamos, NM, USA
brobey@lanl.gov

2 New Mexico Tech, Socorro, NM, USA
3 San Diego State University, San Diego, CA, USA

4 University California Irvine, Irvine, CA, USA

Abstract. We present a new Fortran source-to-source tool that helps
to bridge the gap in the current Fortran tooling ecosystem. The goal of
this tool is to translate standard Fortran code to various parallel pro-
gramming languages in Fortran and C/C++ to enable running on a
wide variety of GPUs and CPUs. The translation is performed using
the full syntax parsing capabilities of the LFortran compiler, a research
compiler currently in development. Using the Abstract Semantic Rep-
resentation intermediate output of the compiler in this new work has
made the translation simpler to accomplish. We also develop a map of
the needed parallel constructs for a complete parallel language and begin
to identify possible extensions to the existing Fortran language.

Keywords: Parallel Fortran · Performance portability · GPU
programming

1 Introduction

We demonstrate a tool to improve the Fortran ecosystem for parallel code gen-
eration for various hardware devices, including all types of CPUs and GPUs.
According to a survey by Willard and Segervall [14], Fortran is being used in
seven out of the top ten high-performance computing applications. Good per-
formance and support for multi-dimensional arrays and complex numbers has
led Fortran to its widespread use in large-scale High Performance Computing
applications.

But to deliver on the full power of the Fortran language, the toolchain should
be improved to deliver the full advantage of the Fortran language potential and
the existing code-base, both in Fortran-only and mixed-language implementa-
tions. Due to a variety of circumstances, the development of tooling for Fortran

Work was performed under U.S. Government contract 89233218CNA000001, managed
by Triad National Security, LLC.; LA-UR-20-26284.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 74–83, 2022.
https://doi.org/10.1007/978-3-030-95953-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_6&domain=pdf
http://orcid.org/0000-0001-7798-6689
http://orcid.org/0000-0003-3968-3614
http://orcid.org/0000-0003-1228-498X
http://orcid.org/0000-0001-5018-5793
https://doi.org/10.1007/978-3-030-95953-1_6

Improving Fortran Performance Portability 75

has been neglected in comparison to some other languages. The Fortran language
itself must be extended to encompass all the requirements of a complete parallel
definition. As we identify needed language constructs, we plan on submitting
them as formal proposals to the Fortran Standards Committee.

2 Background

Fortran is one of a few languages suitable for high-performance computing. Per-
formance has always been a key design factor for the language. Many parallel
language concepts were first prototyped in Fortran and as a result it has many
of the necessary features for a complete parallel language. This innovation con-
tinues to occur.

The do concurrent syntax was added in Fortran 2008 [7]. It enables fine-
grained parallelism using threads or vector lanes to parallelize loops. For dis-
tributed memory parallelism, co-arrays provide a more natural way within the
language to handle inter-process communication [4,9,10]. Co-arrays are sup-
ported in recent Intel, GNU, Cray and NAG Fortran compilers [3].

Despite the targeting of Fortran for high-performance computing it is still
lacking some tooling and a few language features that would complete the nec-
essary ecosystem to generate parallel code for the increasingly wide variety of
computer hardware ranging from CPUs to GPUs. Fortran compilers do not take
full advantage of a lot of parallel features of the Fortran language. The do concur-
rent syntax has only been exploited in limited circumstances by a few compilers
such as Cray and PGI.

A recent survey of the available parallel Fortran compilers by Hsu et al.
[6] examined the support for generating code from each language to hardware
platforms. We have updated the survey and at first glance, it looks like there is
a lot of support for Fortran applications. Taking a closer look at the available
parallel languages for Fortran, we see that some of them are incomplete or are
not being actively developed. If we remove these from the picture, we get the
map to hardware platforms shown in Fig. 1.

Fig. 1. Map for operational parallel Fortran languages to hardware platforms.

76 J. Marks et al.

A deeper examination of the mapping to hardware platform reveals that even
these parallel language implementations are limited to one or two compilers and
generate code for only a single type of GPU. For some GPUs, there is no existing
pathway for Fortran applications to generate code for emerging vendor GPUs.
We must conclude that at present there is no easy way to write performance
portable code that runs on both multi-core CPUs and GPUs.

3 Methodology

Source-to-source translation of Fortran to a few key parallel languages with
good portability can quickly fix the gaps in the current language map. In order
to do robust source-to-source translations, we need a compiler that understands
the language. We have implemented our translation tool with the LFortran [15]
compiler and have implemented a prototype Fortran to C++ backend.

Our prototype source-to-source translator will translate a simple set of par-
allel constructs, including a parallel for, a parallel reduction, and have recently
started working on a parallel scan. The eventual goal is to translate representa-
tive kernels from production codes at LANL and elsewhere and publish research
results so that other Fortran compilers can provide similar extensions.

In order to provide semantically equivalent features as Kokkos [2] in the
Fortran language, we concentrate on translating the do concurrent loops for both
CPUs and GPUs by targeting our chosen GPU languages. Using the proposed
reduce keyword with do concurrent loops, we are also able to translate reductions
to Kokkos and OpenMP.

We have just begun looking at the memory layout of arrays (with the same
kernel) and possibly a few other extensions to the language, and we are exploring
the most natural syntax (such as adding a keyword at an array declaration [13]).

Fig. 2. Our map from Fortran to OpenMP, Kokkos, and HIP shows that we can map
to any parallel hardware.

The choice of the target languages covers the three types of GPU languages
available (Fig. 2). These are:

Improving Fortran Performance Portability 77

1. OpenMP using a Fortran-to-Fortran translation
2. Kokkos using a Fortran-to-C++ translation
3. HIP using a Fortran-to-C++ translation.

By translating to these three GPU languages the same Fortran code can be
run on all current GPUs and Intel CPUs. If we can generate OpenMP code, we
can generate other directive-based languages. Similarly for the native language
representative, HIP, which is similar to CUDA and OpenCL. Our Kokkos target
was chosen for the group of C++ GPU languages that use the lambda construct.

3.1 LFortran Architecture (AST, ASR)

Fig. 3. LFortran architecture.

We are using the LFor-
tran [15] compiler to explore
how to do the transla-
tion. Figure 3 describes the
architecture of the compiler.
The process starts with For-
tran source code. See List-
ing 1.1 for the example
source code being used. The
parser parses it into an
Abstract Syntax Tree (AST)
as shown in Listing 1.2. The AST has a node for each syntactic element of the
Fortran language, but the semantic information is not readily available in the
AST representation. The AST then gets transformed into an Abstract Semantic
Representation (ASR), which is a standalone non-redundant representation that
contains all the semantics such as types and a symbol table. The ASR represen-
tation is shown in Listing 1.3. ASR can then be used by backends to transform it
to various other representations, such as an LLVM Intermediate Representation
(IR) or C++. In this work we are mostly leveraging the C++ backend to build
our source-to-source translator.

Listing 1.1. Fortran source for add subroutine.

1 subrout ine add (a , b , c)
2 r ea l , i n t en t (in) : : a , b
3 r ea l , i n t en t (out) : : c
4 c = a + b
5 end subrout ine

Listing 1.2. LFortran (0.4.0) AST for add subroutine.

1 (Trans lat ionUnit [
2 (Subrout ine add [(a) (b) (c)] [] [
3 (Dec la ra t i on [
4 (a ” r e a l ” [] [(Att r ibute i n t en t [(in)] [])] ())
5 (b ” r e a l ” [] [(Att r ibute i n t en t [(in)] [])] ())
6])
7 (Dec la ra t i on [
8 (c ” r e a l ” [] [(Att r ibute i n t en t [(out)] [])] ())

78 J. Marks et al.

9])
10] [(= c (+ a b))] [])
11])

Listing 1.3. LFortran (0.4.0) ASR for add subroutine.

1 (Trans lat ionUnit (SymbolTable a8aa5374 {
2 add : (Subrout ine (SymbolTable 0038 e214 {
3 a : (Var iab le 0038 e214 a 1 (Real 4 [])) ,
4 b : (Var iab le 0038 e214 b 1 (Real 4 [])) ,
5 c : (Var iab le 0038 e214 c 2 (Real 4 []))
6 }) add [
7 (Var 0038 e214 a)
8 (Var 0038 e214 b)
9 (Var 0038 e214 c)

10] [
11 (= (Var 0038 e214 c)
12 (+ (Var 0038 e214 a)
13 (Var 0038 e214 b)
14 (Real 4 [])))
15] ())
16 }) [])

4 Results

We have demonstrated the source-to-source translation of a Fortran stream triad
kernel, and a reduction kernel, into OpenMP, Kokkos, and HIP. Both kernels are
written in standard Fortran code. Listing 1.4 shows the source for the stream
triad kernel, while Listing 1.5 shows the source for the reduction kernel. Cur-
rently these translations only function on simple kernels and have some aspects
that cannot be translated automatically yet.

Listing 1.4. Fortran Stream Triad Kernel

1 subrout ine t r i a d (a , b , s ca l a r , c)
2 r ea l , i n t en t (in) : : a (:) , b (:) , s c a l a r
3 r ea l , i n t en t (out) : : c (:)
4 i n t e g e r : : N, i
5 N = s i z e (a)
6 do concurrent (i = 1 :N)
7 c (i) = a (i) + s c a l a r ∗ b(i)
8 end do
9 end subrout ine

Listing 1.5. Fortran Reduction Kernel

1 subrout ine sum reduce (a , s)
2 r ea l , i n t en t (in) : : a (:)
3 r ea l , i n t en t (out) : : s
4 i n t e g e r : : N, i
5 N = s i z e (a)
6 s = 0
7 do concurrent (i = 1 :N) reduce (+: s)
8 s = s + a (i)
9 end do

10 end subrout ine

Improving Fortran Performance Portability 79

We started with simple kernels so that the accuracy of translation is easier
to check. Our first step is to test a simple do concurrent loop to establish the
translating process for parallel for constructs before moving on to other parallel
constructs. Translating serial Fortran to Fortran with OpenMP is straightfor-
ward. This currently involves converting a do concurrent loop to a do loop and
adding the necessary !$OMP PARALLEL DO directive. When the reduce key-
word in Listing 1.5 we instead add the !$OMP PARALLEL DO REDUCTION
directive while specifying the reduction operation and the variable being reduced.
The OpenMP translation with the reduction kernel can be seen in Listing 1.6.

Listing 1.6. Translated Fortran Reduction Kernel using OpenMP

1 subrout ine sum reduce (a , s)
2 r ea l , i n t en t (in) : : a (:)
3 r ea l , i n t en t (out) : : s
4 i n t e g e r : : N
5 i n t e g e r : : i
6 N = s i z e (a)
7 s = 0
8 !$OMP PARALLEL DO REDUCTION(+: s)
9 do i = 1 :N

10 s = (s) + (a (i))
11 end do
12 !$OMP END PARALLEL DO
13 end subrout ine sum reduce

While the translation to OpenMP is relatively simple, requiring only added
pragmas, both Kokkos and HIP are more complicated translation targets because
of the conversion to C++. Using the ASR we have enough syntactic and semantic
information to translate simple kernels to Kokkos. The stream triad kernel is
translated in Listing 1.7 and the reduction kernel is translated in Listing 1.8.
Currently we make some assumptions about types. For example Fortran arrays
are always translated to a Kokkos::View type even if that array is not used in
a parallel segment. Do concurrent loops are translated to a Kokkos::parallel for.
If the do concurrent loop has a reduce keyword, it is instead translated to a
Kokkos::parallel reduce. Currently the reduction kernel is translated using only
the AST so it lacks the semantic information. This results in some unnecessary
code generated. For example line 4 in Listing 1.8.

Listing 1.7. Translated C++ Stream Triad using Kokkos

1 void t r i ad (const Kokkos : : View<const f l o a t∗> &a ,
2 const Kokkos : : View<const f l o a t∗> &b ,
3 f l o a t s ca l a r ,
4 const Kokkos : : View<f l o a t∗> &c)
5 {
6 i n t N;
7 N = a . extent (0) ;
8 Kokkos : : p a r a l l e l f o r (N, KOKKOSLAMBDA(const long i) {
9 c [i] = a [i] + s c a l a r ∗b [i] ;

10 }) ;
11 }

80 J. Marks et al.

Listing 1.8. Translated C++ Reduction Kernel using Kokkos

1 void sum reduce (const Kokkos : : View<const f l o a t∗> & a , f l o a t ∗ s)
2 {
3 s i z e t N;
4 s i z e t i ;
5 N = a . extent (0) ;
6 ∗ s = 0 ;
7 Kokkos : : p a r a l l e l r e d u c e (N, KOKKOSLAMBDA(const long i , f l o a t &

updatevar 0) {
8 updatevar 0 = (updatevar 0) + (a [i]) ;
9 } , ∗ s) ;

10 }

When using HIP as a translation target the kernel must be implemented
separately and called using hipLaunchKernelGGL. The two parts of the gener-
ated HIP implementation are shown in Listing 1.9. HIP also requires additional
copies of arrays for placing into device memory. The additional variables and
kernels all need to be implemented so they do not conflict with names in scope.
Currently the HIP translation uses only the AST and not the ASR. Using the
symbol table that is part of the ASR, we will be able to more efficiently create
readable variables that do not conflict.

Listing 1.9. Translated C++ Stream Triad using HIP

1 #de f i n e b l o c k s i z e 128
2
3 g l o b a l void Tempkernelname (i n t N, f l o a t s ca l a r , f l o a t ∗b , f l o a t

∗a , f l o a t ∗c){
4 i n t i = blockIDx . x∗blockDim . x+threadIdx . x ;
5 i f (i >= N) return ;
6 c [i] = (a [i]) + ((s c a l a r) ∗(b [i])) ;
7 }
8
9 void t r i ad (f l o a t ∗a , s i z e t a s i z e , f l o a t ∗b , s i z e t b s i z e , f l o a t

s ca l a r , f l o a t ∗c , s i z e t c s i z e)
10 {
11 s i z e t N;
12 s i z e t i ;
13 N = a s i z e ;
14 i n t g r i d s i z e = (N + b l o c k s i z e − 1) / b l o c k s i z e ;
15 f l o a t ∗b d ;
16 hipMal loc (&b d , N∗ s i z e o f (f l o a t)) ;
17 hipMemcpy(b d , b , N∗ s i z e o f (f l o a t) , hipMemcpyHostToDevice) ;
18 f l o a t ∗a d ;
19 hipMal loc (&a d , N∗ s i z e o f (f l o a t)) ;
20 hipMemcpy(a d , a , N∗ s i z e o f (f l o a t) , hipMemcpyHostToDevice) ;
21 f l o a t ∗ c d ;
22 hipMal loc (&c d , N∗ s i z e o f (f l o a t)) ;
23 hipMemcpy(c d , c , N∗ s i z e o f (f l o a t) , hipMemcpyHostToDevice) ;
24 hipLaunchKernelGGL (Tempkernelname , dim3 (g r i d s i z e) , dim3 (

b l o c k s i z e) , 0 , 0 , N, s ca l a r , b d , a d , c d) ;
25 }

In this demonstration, we have focused on the code generation to run on
the GPU. To be complete, we still need a way to call the generated code. This
could be accomplished by either translating the full source code instead of just
kernels, or this could be done with a Fortran-to-C wrapper using ISO C Bindings
that were added to the 2003 Fortran standard [11]. Some tools already exist to
automatically generate the interface code [12].

Improving Fortran Performance Portability 81

5 Parallel Constructs

A fully featured parallel machine model needs to not only cover how the code
executed and in what order, but also needs to include a specification for where
both the data and code are executed. To uncover a mapping of common parallel
language constructs, we look to the Kokkos programming model and VPIC [1],
[5] to capture these ideas of how, where, and order.

We have mapped the how to Execution Patterns and the where to Execution
Spaces and Memory Spaces. Order can be mapped to Concurrency or lack there
of - represented by synchronous and asynchronous, accordingly. Test functions
written in Kokkos were extracted from VPIC and studied to uncover the map-
ping. The aforementioned mapping is presented in more detail in another work
[8], and thus is not fully discussed here. We present a summary of candidate lan-
guage features that could be represented in an extension to Fortran in Table 1.
We also list their current support in Kokkos, OpenMP, HIP and Fortran.

Table 1. Parallel constructs found in Kokkos and Fortran

Parallel constructs Currently supported

Kokkos OpenMP HIP Fortran

Execution patterns parallel for yes yes yes yes

parallel reduce yes yes no no

parallel scan yes no no no

Memory/Execution spaces CPU yes yes yes yes

GPU yes yes yes no

Concurrency Asynchronous yes∗ yes yes∗ no

Synchronous yes yes∗ yes no
∗default

6 Conclusion

The original mission of Fortran should still be the mission today: enable sci-
entists, engineers, and other domain experts to write programs that naturally
express the mathematics and algorithms employed, are portable across HPC
systems, remain viable over decades of use, and extract a high percentage of
performance from the underlying hardware. To fulfill the Fortran promise, the
Fortran toolchain needs some additions to fill the current gaps.

Our current status is that we have a source-to-source translator that can
handle most Fortran syntax. We have an intermediate representation that has
the necessary information to generate source code for GPU languages. We have
prototyped the generation of common computational loop constructs for differ-
ent GPU languages. There is no reason to expect large performance differences

82 J. Marks et al.

between our generated loops and those from a manual process. The next step is
to develop a design for the handling of the data movement between CPU and
GPU. Having the semantic representation in the intermediate language should
allow the kind of analysis and code generation that will minimize the costs of
data transfer and lead to well-performing applications. But much remains to be
done before we can show the actual performance and claim success.

This demonstration project has shown the viability of translating Fortran
source code to the major classes of parallel languages for CPUs and GPUs. Using
a Abstract Syntax Tree (AST) and Abstract Semantic Representation (ASR)
generated from the Fortran source code we have enough information to create
accurate translations. Though the ASR is currently only used for translating
to Kokkos, we will be able to use it to improve all of our translations. In the
process, we have identified some helpful extensions to the Fortran standard that
would give a more complete language to map to the full set of required parallel
constructs outlined in Sect. 5.

References

1. Bowers, K., Albright, B., Bergen, B., Yin, L., Barker, K., Kerbyson, D.: 0.374
Pflop/s trillion-particle kinetic modeling of laser plasma interaction on Roadrun-
ner. In: 2008 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2008, pp. 1–11, November 2008. https://
doi.org/10.1109/SC.2008.5222734. Paper 63

2. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

3. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.:
OpenCoarrays: open-source transport layers supporting coarray Fortran compilers.
In: Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, 6 October 2014, pp. 1–11 (2014). https://doi.org/10.
1145/2676870.2676876

4. Garain, S., Balsara, D.S., Reid, J.: Comparing Coarray Fortran (CAF) with MPI
for several structured mesh PDE applications. J. Comput. Phys. 297, 237–253
(2015). https://doi.org/10.1016/j.jcp.2015.05.020

5. Harrell, S.L., et al.: Effective performance portability. In: 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 24–36. IEEE (2018). https://doi.org/10.1109/P3HPC.2018.00006

6. Hsu, A., Asanza, D.N., Schoonover, J.A., Jibben, Z., Carlson, N.N., Robey, R.:
Performance portability challenges for Fortran applications. In: 2018 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), pp. 47–58. IEEE (2018). https://doi.org/10.1109/P3HPC.2018.00008

7. IEC/ISO JTC1/SC22/WG5: ISO/IEC 1539 Fortran 2018 Standard (2018)
8. Marks, J., Medwedeff, E., Čert́ık, O., Bird, R., Robey, R.: Making Fortran perfor-

mance portable. Technical report LA-UR-20-25755, Los Alamos National Labora-
tory (2020)

9. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. In: ACM
SIGPLAN Fortran Forum, vol. 17, pp. 1–31. ACM New York (1998). https://doi.
org/10.1145/289918.289920

https://doi.org/10.1109/SC.2008.5222734
https://doi.org/10.1109/SC.2008.5222734
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1016/j.jcp.2015.05.020
https://doi.org/10.1109/P3HPC.2018.00006
https://doi.org/10.1109/P3HPC.2018.00008
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920

Improving Fortran Performance Portability 83

10. Numrich, R.W., Reid, J.: Co-arrays in the next Fortran standard. In: ACM SIG-
PLAN Fortran Forum, vol. 24, pp. 4–17. ACM New York (2005). https://doi.org/
10.1145/1080399.1080400

11. Rasmussen, C.E., Squyres, J.M.: A case for new MPI Fortran bindings. In: Di
Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS,
vol. 3666, pp. 183–190. Springer, Heidelberg (2005). https://doi.org/10.1007/
11557265 26

12. Rasmussen, C.E., Sottile, M.J., Shende, S.S., Malony, A.D.: Bridging the language
gap in scientific computing: the Chasm approach. Concurr. Comput.: Pract. Exp.
18(2), 151–162 (2006). https://doi.org/10.1002/cpe.909

13. Rouson, D.: Hybrid coarrays: a PGAS feature for many-core architectures. Paral-
lel Comput.: Road Exascale 27, 175 (2016). https://doi.org/10.3233/978-1-61499-
621-7-175

14. Willard, C.G., Snell, A., Segervall, L.: HPC user site census: systems. Intersect360
Reports, 9 March 2015

15. Čert́ık, O., et al.: LFortran: modern Fortran compiler and interpreter. Los Alamos
National Laboratory (2020). https://lfortran.org

https://doi.org/10.1145/1080399.1080400
https://doi.org/10.1145/1080399.1080400
https://doi.org/10.1007/11557265_26
https://doi.org/10.1007/11557265_26
https://doi.org/10.1002/cpe.909
https://doi.org/10.3233/978-1-61499-621-7-175
https://doi.org/10.3233/978-1-61499-621-7-175
https://lfortran.org

Domain Specific Compilation

COMET: A Domain-Specific Compilation
of High-Performance Computational

Chemistry

Erdal Mutlu1, Ruiqin Tian1,2, Bin Ren2, Sriram Krishnamoorthy1,
Roberto Gioiosa1, Jacques Pienaar3, and Gokcen Kestor1(B)

1 Pacific Northwest National Laboratory, Richland, USA
gokcen.kestor@pnnl.gov

2 The College of William & Mary, Williamsburg, USA
3 Google, Boulder, USA

Abstract. The computational power increases over the past decades
have greatly enhanced the ability to simulate chemical reactions and
understand ever more complex transformations. Tensor contractions
are the fundamental computational building block of these simulations.
These simulations have often been tied to one platform and restricted in
generality by the interface provided to the user. The expanding preva-
lence of accelerators and researcher demands necessitate a more gen-
eral approach which is not tied to specific hardware or requires con-
tortion of algorithms to specific hardware platforms. In this paper we
present COMET, a domain-specific programming language and compiler
infrastructure for tensor contractions targeting heterogeneous accelera-
tors. We present a system of progressive lowering through multiple layers
of abstraction and optimization that achieves up to 1.98× speedup for
30 tensor contractions commonly used in computational chemistry and
beyond.

1 Introduction

The recent slowdown of growth in realized multi-core performance of commodity
microprocessors has pushed vendors and users to consider more specialized archi-
tectures, including GPGPUs, FPGAs, and system-on-chip. Several domains,
such as artificial intelligence, have experienced an explosion of highly-specialized
heterogeneous architectures, including Google TPUs [10], NVIDIA DLA, and
Intel Nirvana. With such a large variety of architectures, performance portability
and productivity have become as important as peak performance, if not more.
On one side, scientists and engineers have moved towards high-level, domain-
specific (DSL) languages that facilitate implementing complex algorithms and
allow them to focus on the algorithm’s details rather than the specific idiosyn-
crasies of the underlying architectures. On the other side, to achieve optimal
performance on modern architectures, it is imperative to exploit hardware fea-
tures by writing highly-specialized, low-level, architecture-dependent kernels.
c© Battelle Memorial Institute 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 87–103, 2022.
https://doi.org/10.1007/978-3-030-95953-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_7

88 E. Mutlu et al.

This struggle for balance is not a simple one to solve. A one-to-one mapping
between each DSL and each architecture is impractical and expensive to main-
tain. Instead, researchers have looked into ways to abstract the domain-specific
aspects of an implementation from the architecture-specific ones and identify
intermediate representations (IRs) to realize such abstractions. For example,
LLVM [11] maps multiple front-end programming languages (e.g., C, C++, and
Fortran) to LLVM IR, and then maps this IR to various target architectures. On
the other hand, a generalized IR also means that domain-specific information
and semantics are lost while lowering the code. For example, there is no simple
way to express in LLVM IR common operations such as generic matrix-matrix
multiplication (GEMM) or 2D convolution. It follows that domain-specific opti-
mizations are impractical to be performed at such low-level IR, which could
introduce performance loss. To overcome this limitation, modern systems (e.g.,
TensorFlow [1], Rust, and Halide [14]) propose high-level IRs where domain-
specific optimizations are performed before lowering the code to the lower IRs.

In this work, we introduce COMET, a novel compiler infrastructure and
programming language for tensor algebra targeting high-performance compu-
tational chemistry. COMET increases productivity by providing very high-level
programming abstractions that resemble Einstein notations [3], performs sophis-
ticated domain-specific code optimizations and rewriting, and generates code
amenable to be executed on heterogeneous architectures. COMET is based on
the Multi-Level Intermediate Representation (MLIR) recently introduced by
Google to simplify writing new compiler infrastructures. In the COMET multi-
level IR, domain-specific, application-dependent optimizations are performed at
higher levels of the IR stack where operations resemble programming languages’
abstractions and can be optimized based on the operations semantics. Generic,
architecture-specific optimizations are, instead, performed at lower-levels, where
simpler operations are mapped to the memory hierarchy and to processor’s reg-
isters. A distinct advantage of a compiler-based approach compared to library-
based solutions [9,21,22] is that COMET can handle arbitrary multi-operand
tensor expressions and perform state-of-the-art algorithmic and code optimiza-
tions. Our performance results indicate that the code automatically generated
by COMET is on par or better than manually-optimized tensor contractions
from TCCG [20] that leverage state-of-the-art computational libraries, such as
BLIS [22] and HPTT [21], and achieves up to 1.98× speedup over a set of 30 con-
tractions. COMET provides enough expressiveness and completeness to imple-
ment two complex methods (coupled-cluster singles and doubles excitation
equations) from the NorthWest Chemistry (NWChem) [2] computational chem-
istry package, which consists of 154 expressions and a total of 417 tensor con-
tractions, and achieves up to 23.9× speedup over executing tensor contraction
in the natural order of the expression. Additionally, by pairing our compiler
to hardware accelerator simulators, COMET can be used to study novel data-
parallel hardware designs and their impact on the entire chemistry methods. To
the best of our knowledge, COMET is the first modular compiler framework
that allows researchers to express complex tensor expressions, perform domain-

COMET: A Domain-Specific Compilation for Computational Chemistry 89

and architecture-specific code optimizations and transformations outperform-
ing hand-tuned solutions, and can be used for hardware-software co-design. In
summary, we make the following contributions:

– COMET, a novel compiler and DSL for tensor algebra that specifically targets
chemistry applications with support for multi-operand expressions;

– a multi-level IR, a set of progressive lowering steps, and a series of domain-
and architecture-specific optimizations to generate efficient code;

– a new co-design methodology to study custom accelerators;
– a comparison with state-of-the-art, manually-implemented tensor contraction

benchmarks that leverage highly-optimized computational libraries.

2 Tensor Contractions

Tensor contractions are high-dimension analogs of matrix multiplications widely
used in many scientific and engineering domains, including deep learning, quan-
tum chemistry, and finite-element methods. For example, the perturbative triples
correction in couple cluster CCSD(T) [15] methods used in the NWChem com-
putational chemistry framework [2] originates a 6D output tensor from two 4D
inputs tensors. Tensor contractions are computationally intensive and dominate
the execution time of many computational applications.

Because of their wide applications in many fields, tensor contractions have
been widely studied and optimized. Consider the following tensor contraction,
expressed using Einstein notation [3], where two 4D tensors, A and B, are con-
tracted to produce a 4D tensor C:

C[a, b, c, d] = A[a, e, b, f] ∗ B[d, f, c, e] (1)

In this contraction, the indices e, f appear in both right-hand tensors but not in
the left-hand tensor C (summation or contraction indices). The indices a, b, c, d
appear in exactly one of the two input tensors and the output tensor (external
or free indices). A tensor contraction is, thus, the contraction of the two input
tensors A and B over the contraction indices e, f :

C[a, b, c, d] =
∑

e,f

A[a, e, b, f] ∗ B[d, f, c, e] (2)

A näıve way to perform the above computation is to directly lower to a nested-
loop implementation of the problem. Such implementations have been shown to
be inefficient due to poor data locality. A more efficient approach, commonly used
in modern high-performance tensor libraries, leverages highly optimized GEMM
engines. This approach, often referred as transpose-transpose-GEMM-transpose
(TTGT), performs the permutations of the input tensors followed by a high-
performance matrix-matrix multiplication and a final permutation to reconstruct
the output tensor. The first two transposes “flatten” a multi-dimensional tensor
into a 2D matrix by first permutating the indices so that they are contiguous

90 E. Mutlu et al.

Fig. 1. COMET execution flow and compilation pipeline

in memory (A → TA) and then merging pairs of consecutive indices to form
lower-dimensional tensors ((a, b) → i, (e, f) → j, (d, c) → k):

A[a, e, b, f] → TA[a, b, e, f] = Ap[i, j]; B[d, f, c, e] → TB[e, f, d, c] = Bp[j, k]

The tensor contraction expressed in Eq. 1 can then be expressed as

Cp[i, k] = Ap[i, j] ∗ Bp[j, k] (3)

where Cp[i, k] = TC[a, b, d, c] → C[a, b, c, d]. The TTGT method is effective to
perform high-efficient tensor contractions despite the overhead of potentially per-
forming three additional permutations. In fact, highly-optimized GEMM opera-
tions perform considerably better than nested loop implementations on modern
architectures and exploit high data locality (see Sect. 6). In this work, we consider
employing custom accelerators to perform even more efficient GEMM operations,
thus our compiler produces target code that is optimized and amenable to such
accelerators (Sects. 6 and 7).

3 The COMET Compiler Infrastructure

Our proposed compiler infrastructure consists of a DSL language for tensor alge-
bra computations, a progressive lowering process to map high-level operations
to low-level architectural resources, a series of optimizations performed at each
step in the lowering process, and various IR dialects to represent key concepts,
operations, and types at each level of the multi-level IR. COMET is based on the
MLIR framework [12], a compiler infrastructure to build reusable and extensible
compilers. MLIR supports the compilation high-level abstraction and domain-
specific constructs and provides a disciplined, extensible compiler pipeline with
gradual and partial lowering. Users can build domain-specific compilers and cus-
tomized IRs, as well as combining existing IRs, opting in to optimizations and
analysis.

COMET: A Domain-Specific Compilation for Computational Chemistry 91

Fig. 2. Tensor label and operation grammar.

Figure 1 shows the compilation pipeline of COMET. Users express their com-
putation using a high-level tensor algebra language (Sect. 4). The language oper-
ators, types, and structures are first mapped to an abstract syntax tree and then
to the tensor algebra (TA) dialect, the first dialect in the COMET IR stack.
The TA dialect contains domain-specific concepts, such as multi-dimensional
tensors, contractions, and tensor expressions. Here, several domain-specific opti-
mizations are performed, such as reformulating tensor contractions using the
TTGT method. Next, COMET lowers the TA dialect representation of the com-
putation to a mixed dialect based on the linear algebra (LinAlg) and Affine
loop dialects. High-level concepts, such as tensor contractions, are replaced with
more general operations (transpose, matrix multiplication, affine maps, etc.). At
this stage, there is a departure from domain-specific concepts but the operations
are still architecture-independent. The next step consists of further lowering of
LinAlg operations to the (Affine) Loop dialect: at this stage, COMET performs
architecture-specific optimizations and requires information for the specific tar-
get. GEMMs are tiled to fit matrix slices in the processor’s data caches as well as
to map computation to the processor’s registers. The innermost GEMM compu-
tation is performed using an architecture-specific, highly-optimized micro-kernel
(Sect. 6) or (simulated) custom accelerators (Sect. 7). Finally, COMET lowers
the program to standard dialect and then to the LLVM dialect, which is then
mapped to LLVM IR and lowered to machine instructions for execution.

4 Tensor Algebra Language

We developed a high-level Tensor Algebra (TA) DSL for tensor algebra compu-
tation. As for any DSL, the goal of the COMET language is to allow scientists
1) to express concepts and operations in a form that closely resembles familiar
notations and 2) to convey domain-specific information to the compiler for better
program optimization. Our language represents Einstein mathematical notation
and provides users with an interface to express tensor algebra semantics.

Figure 2a describes the tensor structures and how they are represented and
constructed in our DSL. A tensor object refers to a multi-dimensional array

92 E. Mutlu et al.

Fig. 3. Example tensor contraction in COMET DSL and its relative TA dialect.

of arithmetic values that can be accessed by using indexing values. Range-
based index label constructs (〈ilabel〉) represent the range of indices expressed
through a scalar, a range, or a range with increment. Index labels can be used
both for constructing a tensor (〈tensor〉) or for representing a tensor operation
(〈label-tensor〉). In a tensor construction, index labels are used to represent each
dimension size. In the context of a tensor operation, they represent slicing infor-
mation of the tensor object where the operation will be applied. Figure 2b shows
the grammar for supported tensor operations. Similar to the tensor construction,
index labels are used as the main construct for representing the operations on
the tensors. Each tensor operation production rule (〈tensor-op〉) is composed of
a left-hand side (lhs) and a right-hand side (rhs) operation. While lhs can only
be a labeled tensor construct, rhs can be of different types:

– alpha value (A[i,j] = <const>), which corresponds to a tensor fill operation
where all the elements in the tensor are set to a scalar value.

– labeled tensors (A[i,j] = alpha * D[j,i]) correspond to a tensor copy
operation (with respect to the label permutation). If the index label used
in the rhs tensor is different from the one using during the tensor construc-
tion, the lhs tensor will represent a view. Following tensor operations that
employ this lhs tensor will operate on a slice of the original tensor.

– multiplication of two labeled tensors (C[i,k,l] = alpha * A[i,j] *
B[j,k,l]) updates the lhs with the tensor contraction results.

– multi-operand expressions (D[i,l] = alpha * A[i,j] * B[j,k] * C[k,l]) com-
putes the whole pipeline of tensor contractions and updates the lhs.

The COMET TA language simplifies writing tensor algebra program by sup-
porting common programming paradigms and enables users to express high-level
concepts with familiar notations. Figure 3a shows a general tensor contraction

COMET: A Domain-Specific Compilation for Computational Chemistry 93

implementation using COMET TA language. Line 3 describes an index label rep-
resenting the size of each tensor dimension and the operation labels for describing
the tensor fill and tensor contraction. Our TA language supports defining multi-
ple IndexLabel variables (similar to structured bindings in C++-17) in a single
statement. Tensors are then constructed using the IndexLabels and the element
type (lines 6–8). and contracted over indices [e,f] (line 16).

5 The Tensor Algebra Dialect

The Tensor Algebra dialect is the first dialect in the COMET compiler stack
(Fig. 1). The main goal of this dialect is to represent basic building blocks of
the tensor algebra computation, describe tensor algebra specific types and oper-
ations, and represent semantics information expressed through the TA DSL.

Figure 3b shows the TA dialect representation of the tensor contraction exam-
ple shown in Fig. 3a. We define new operations in TA dialect that correspond to
each tensor algebra DSL operation semantic. A ta.index label corresponds to
an IndexLabel construct in the TA language while a ta.labeled tensor is for
the LabeledTensor constructs. Figure 3b shows how an index label operation
is constructed using a range (!ta.range) type. New tensors are declared with
the ta.tensor decl operation, which takes as input the index labels for each
dimension and the data type. The ta.labeled tensor operation represents a
slice of a tensor that is being used in any operation that references it. This oper-
ation takes a tensor declaration and a set of index label references as inputs to
construct a sliced version of the tensor.

Three classes of tensor operations are currently supported: unary (fill, copy,
set), binary (contraction), and multi-operand expressions (contraction chains).
ta.fill initializes a tensor object with a single value provided as an attribute
to the operation. ta.copy performs an element-wise copy operation between two
tensors scaling the output tensor by factor alpha. ta.set operates similarly to
ta.copy but takes as input the result of a binary operation instead of a tensor.
This operation is used to support multi-operand tensor contractions. Tensor
contractions ta.tc take as input the input and output tensors, the scaling value
alpha, and the indexing maps for the labels used in the contraction. For multi-
operand expressions that involve several contractions, we introduce a utility
operation (ta.mult) that represents a binary operation. The actual computation
for a multi-operand expression includes calculation of intermediates and then the
actual tensor contractions. We represent the order of binary operations with a
binary tree and assign results to the output tensor using ta.set.

6 Optimizations and Transformations

The main advantage of a multi-level IR is that different kinds of optimizations
can be applied at each level of the IR stack and optimizations can be shared and
reused across different stacks. In the COMET compiler, we apply domain-specific
optimizations at the TA dialect level, general optimizations at the LinAlg dialect

94 E. Mutlu et al.

Fig. 4. TA dialect after reformulation with a TTGT method (left panel). Lowering and
optimization of transpose (right-top) and GEMM (right-bottom).

level, and architecture-specific optimizations at the lower levels. In the following,
we explain our optimizations from the top IR level while lowering the code.

TTGT. As discussed in Sect. 2, tensor contractions can be reformulated by
transposing multi-dimensional input tensors into 2D matrices, performing a
GEMM operation, and unflatting the output tensor back to its original form.
Although, this approach incurs the additional overhead of transpose operations,
employing highly-optimized GEMM kernels outweighs this overhead. The left
panel in Fig. 4 shows the TTGT reformulation of the ta.tc operation: trans-
pose of input tensors (linalg.copy) and a GEMM operation (linalg.matmul).

Optimal Permutation for TTGT. The permutation chosen to reformulate
a tensor contraction using the TTGT method has a considerable impact on
performance. The cost of transposing a high-dimension tensor into a 2D tensor
depends on which indices are transposed and the storage format. For row-major
format, transposing the first indices is more expensive than transposing the latest
ones, especially for the output tensor. In order to select the best permutation, we
use a cost model based on a heuristic that assigns higher costs to permutations
that move the outermost dimensions. Additionally, some permutation naturally
results in a reduction of the number of transpose operations. We compute the cost
of each valid transposition of input and output tensors, including the position
swap for the input tensors, and select the permutation with the lowest cost.

Multi-Operand Expression. Given the associative property of tensor contrac-
tions, the order in which contractions are computed in a multi-operand expres-
sion produces the same results. However, the number of operations performed
may vary depending on the grouping order of the contractions. Performance
variation may be significant, especially if some of the tensors involved have low

COMET: A Domain-Specific Compilation for Computational Chemistry 95

cardinality in some dimensions (e.g., “skinny matrices”). We explore all possible
ordering of a multi-operand expression and identify the one that minimizes the
overall number of operations. We then organize the sequence of operations in a
binary tree and lower the multi-operand expression to a sequence of tensor con-
tractions. Note that because the shape of the intermediate tensors is different
from the original one, some tensor contractions may degenerate to simpler lower-
dimension operations, such as GEMM or tensor-vector multiplications, which are
further optimized (e.g., removing additional transpose).

Transpose Optimization. Our transpose optimization consists of two steps:
loop permutation and tiling. The main rational of the cost model is that the
loops corresponding to the innermost indices should be at the innermost level.
We assign a weight to each loop index according to its position in the input
and output tensor (the weight is higher if an inner index does not correspond
to an inner loop) and compute the overall cost of the permutation by summing
these weights. The right-top panel in Fig. 4 shows the IR after the selected loop
permutation (i, j, k, l → i, k, j, l). Next, we employ tiling to improve locality.

GEMM Optimizations. GEMM plays a paramount role in a broad range
of domains such as deep learning, scientific computing, and image processing.
Tiling and blocking are effective methods to improve data locality and overlap
computation and memory access. We employ the same tiling strategy used [9,22]:
given C[M,N] = A[M,K] ∗ B[K,N], the C matrix is partitioned into multiple
tiles with size Mc × Nc. Each tile of C needs to access to A matrix with size
Mc×K and a whole column of B matrix with size of K×Nc. Since the whole row
band of A and column of B are still large to be accommodated in the processor’s
cache, the K-dimension has to be partitioned into smaller tiles of A (Mc × Kc)
and B (Kc × Nc). Mc, Kc and Nc are carefully selected so that the sub-matrix
of B (Kc × Nc) fits into the L3 cache and the A sub-matrix (Mc × Kc) fits
into the L2 cache. The Nc and Mc dimensions are further tiled by Nr and Mr,
respectively, so that the sub-matrix of A (Mr × Kc) and B (Kc × Nr) fit into
the L1 cache. The Mr × Nr elements from the matrix C fit into registers and
the innermost computation of size Mr × Nr is executed as a micro-kernel. The
right-bottom panel in Fig. 4 shows the various levels of tiling.

GEMM Micro-Kernel. Modern architectures are very complex and require
sophisticated and highly-optimized code to fully achieve high performance. Com-
piler frameworks do their best to generate such code but also remain general.
COMET leverages the LLVM back-end for code and binary generation which,
when combined with tiling optimizations, provide good performance. However,
a highly-optimized code for the specific architecture can fully leverage vector
instructions, instruction-level parallelism, speculation, and other architectural
features, achieving even higher performance. Also, COMET has been designed
to support custom hardware accelerators that implement specific functionalities
in hardware. Thus, the innermost computation in the GEMM kernel is performed
using a micro-kernel, either a highly-specialized code for the target architecture
(“soft-accelerator”) or a custom hardware accelerator (“hard accelerator”).

96 E. Mutlu et al.

7 Modeling Custom Accelerators

Custom hardware accelerators may significantly increase performance, area, and
energy efficiency of high-end compute systems. It comes as no surprise that hard-
ware acceleration is widely employed in many domains, including mobile, auto-
motive, high-performance computing, and machine learning. However, designing
custom accelerators requires computationally-intensive simulations using soft-
ware or FPGA-based tools, which may limit the scope to very small kernels.

COMET provides an opportunity to perform co-design and design space
exploration (DSE) efficiently and to assess the performance of the entire appli-
cation, instead of only the innermost kernel. As we explained in the previ-
ous section, the lower level dialects represent architecture-specific operations
and the innermost computation in the GEMM operation is implemented as
an architecture-specific, highly-optimized micro-kernel. In order to perform co-
design for a target accelerator and measure the impact of realistic tensor con-
tractions, we replace the micro-kernel with a timing model of the hardware
accelerator and execute the entire contraction at native speed. To this extend,
we pair COMET with Aladdin [18], a pre-register-transfer level (RTL), power-
performance simulation framework that targets rapid prototyping of data paral-
lel accelerators. Aladdin specifications are essentially C representations of the
functionalities that need to be implemented in hardware. From these repre-
sentations, an LLVM-based tracer extracts a dynamic data dependence graph
(DDDG) that describes the accelerator. Next, Aladdin applies various optimiza-
tions and resource constraints, therefore generating a realistic design. Finally,
Aladdin estimates power and performance from dynamic traces obtained from a
driver program.

Performing DSE for the hardware accelerator design with Aladdin takes order
of minutes (instead of hours as in traditional FPGA-based DSE) while execut-
ing tensor contraction with COMET is performed at native speed. The entire
process, thus, can be completely automated and executed within minutes.

8 Evaluation

This section presents the performance code generated by the COMET compiler
from the TA language. First, we show the performance impact of progressively
applying the various optimizations described in Sect. 6. Next, we compare our
automatically-generated code against the code that leverages hand-optimized
libraries. Finally, we show a co-design case for the GEMM accelerator. We per-
form our experiments on a compute node featuring Intel Xeon 6126 CPU at 2.60
GHz and 192 GB of memory. We compare our results to 30 tensor contractions
from the TCCG benchmark suite [20], using the reference problem sizes. The
first eight contractions include tensor-matrix multiplication from machine learn-
ing domain (1st to 8th). The next three contractions are used to transform a
set of two-electron integrals from an atomic orbital basis to a molecular orbital
basis (9th to 11th). Finally, the following 19 contractions are from the CCSD

COMET: A Domain-Specific Compilation for Computational Chemistry 97

Fig. 5. Performance breakdown. The plot shows the impact of code optimizations
applied incrementally to multiple tensor contractions (higher is better).

method of quantum chemistry. TCCG benchmarks are implemented in C++
and leverage highly-optimized computational libraries for tensor transpositions
(HPTT) and GEMM kernels (BLIS). The results reported are the average of ten
runs.

Overall Performance Evaluation. Figure 5 shows the performance impact
of applying the optimizations described in Sect. 6 to the TCCG tensor contrac-
tions written with COMET DSL. The x-axis represents each tensor contraction,
and the y-axis denotes the performance in terms of GFLOPS. We start from
TTGT reformulations with a nested-loop GEMMs and transposes (blue bars)
and progressively apply architecture-independent and architecture-specific opti-
mizations, thus each bar in the graph shows the incremental benefits. The plot
shows that each optimization brings varied performance gains on the different
tensor contractions. The architecture-independent optimizations may (or may
not) bring immediate benefit. This is the case of the arbitrary permutation
for TTGT being already the optimal one. However, in some cases, optimizing
transpose operations almost double performance (6th and 8th contractions). It
is important to note that some architecture-independent optimization, such as
selecting the optimal permutation, might bring performance gains after all other
optimizations are applied (Fig. 6). Architecture-specific optimizations, such as
GEMM tiling, bring considerable performance improvements in most of the
cases, achieving 23× speedup on average and up to 56× speedup compared to
the equivalent loop nest. For high-dimensional tensor contractions (e.g., the ones
from CCSD), for which data movement dominates the execution time, exploiting
data locality provides significant performance improvements. Finally, employing

98 E. Mutlu et al.

Fig. 6. COMET’s performance comparison against the hand-optimized TCCG bench-
marks on x86 (solid lines) and emulated platforms (dashed lines).

an architecture-specific micro-kernels that leverages AVX512 vector instructions,
memory pre-fetching, and speculation, greatly improves performance, especially
for the compute-bound contractions, achieving up to 51 GFLOPS. We remark
that the micro-kernel is only effective once all other optimizations are performed,
otherwise vector instructions cannot leverage data locality.

Figure 6 compares COMET against state-of-the-art implementation of TCCG
tensor contractions. While both COMET and the C++ implementations use
the TTGT method, TCCG implementations (solid blue line) leverage highly-
optimized computational libraries. COMET implementations, instead, employ
the optimizations described in the previous sections. In order to perform a fair
comparison, we use the same micro-kernel implemented by the BLIS library,
hence both hand-tuned and COMET-generated code use the same architecture-
specific code. The plot shows that COMET results (solid yellow line) are compa-
rable and, in some cases, better than the TCCG C++ implementations: COMET
achieves an average of 1.22× and up to 1.98× speedup compared to the TCCG
benchmarks. However, we believe that COMET has the distinct advantages of
being more general (optimizations can be selectively applied), portable (dif-
ferent targets architectures may be chosen without re-implementing high-level
optimizations), user-friendly (the TA language allows expressing equations in
mathematical forms), and does not force programmers to bend algorithms to
specific libraries APIs and formats. The graph also shows COMET performance
when employing an arbitrary permutation instead of the best one (solid green
line). Using the best permutation performs up to 4.36x better (1.38x on aver-
age) than using an arbitrary permutation. These results show that, although it

COMET: A Domain-Specific Compilation for Computational Chemistry 99

Table 1. Performance speedup of re-
ordering multi-operand expressions.

Multi-operand tensor expressions Perf.

A[c,d,m,n] * B[i,n,a,d] * C[m,c] 23.9

A[d,c,m,n] * B[i,n,a,d] * C[m,c] 21.1

A[c,d,m,n] * B[i,d] * C[n,a] * D[m,c] 4.9

A[d,c,m,n] * B[i,d] * C[n,a] * D[m,c] 4.5

A[m,n,e,j] * B[e,i] * C[a,m] * D[b,n] 1.4

A[m,n,f,e] * B[e,i] * C[f,n] * D[a,b,m,j] 1.4

A[m,n,e,f] * B[a,m] * C[f,n] * D[e,b,i,j] 2.2

A[m,n,e,f] * B[b,m] * C[f,n] * D[e,a,j,i] 1.8

A[n,m,e,f] * B[a,m] * C[f,n] * D[e,b,i,j] 2.2

A[n,m,e,f] * B[b,m] * C[f,n] * D[e,a,j,i] 1.8

A[m,n,e,f] * B[e,i] * C[f,n] * D[a,b,m,j] 1.5

A[m,n,e,f] * B[e,j] * C[f,n] * D[b,a,m,i] 1.7

A[m,n,f,e] * B[e,j] * C[f,n] * D[b,a,m,i] 1.5

Table 2. Characteristics of the emu-
lated GEMM hardware designs.

16× 16 64× 64 256× 256

Perf. (cyc) 131 1026 32770

Avg. Power (mW) 5.077 13.639 73.7972

Avg. Area (uM2) 55827 224068 4.097e+06

is not evident at first (Fig. 5), choosing an optimal permutation does increase
the overall performance once architecture-specific optimizations are applied.

Overall, the results in Figs. 5 and 6 show that to achieve high performance it is
imperative to employ sophisticated, architecture-specific optimizations that nat-
urally make code much less portable. However, a compiler framework based on a
multi-level IR can seamlessly apply both architecture-specific and architecture-
independent optimizations, achieve optimal performance, and still maintain the
high-level language specifications and semantics.

Multi-Operand Expression. Differently from a library-based approach, where
programmers need to match the library-defined (binary) APIs, COMET can ana-
lyze tensor expressions and optimize the order in which each operation is exe-
cuted. As stated in Sect. 6, although the final results of a multi-operand tensor
contraction do not change despite of the execution order of the contractions, the
number of operations does change, hence some ordering provides higher perfor-
mance than others. In particular, when using a library (which normally provides
an interface for contracting two tensors), programmers either have to figure out
the optimal ordering manually a priori or may incur in performance loss if they
follow the natural order of the tensor contractions. COMET, instead, automati-
cally analyzes the entire expression and breaks it into binary operations properly
ordered to achieve the highest performance by minimizing the number of overall
operations. We evaluated 118 tensor contraction expressions from two NWChem
methods that involve 3 and 4 operands. Table 1 shows that the multi-operand
optimization reduces the total number of operations and provides performance
speedup, up to 23.9×. We do not report the other expressions, as the natural
order coincides with the optimal ordering. Note that in these experiments, we
have employed the same optimizations introduced in Sect. 6, only difference is
that the baseline executes contractions in the natural order of the expression

100 E. Mutlu et al.

whereas the multi-operand expression optimization identifies an ordering that
reduces the overall number of operations.

Case Study: Designing Custom GEMM Accelerators. Our final exper-
iments use COMET to perform co-design for a custom GEMM data-parallel
accelerator. The main idea is to identify the best accelerator to perform GEMM
operation in the TTGT method to solve tensor contractions. In this case, the
GEMM accelerator is considered a “hard accelerator”, as opposed to the “soft
accelerator” for x86 employed in the previous section. We leverage COMET mod-
eling capabilities and combine the code generated by our compiler framework
with the timing estimates produced by Aladdin models of the GEMM designs.
In particular, we replace the x86 micro-kernel with a delay that represents the
execution time of the innermost GEMM computation on the hardware acceler-
ator. We analyze three possible scenarios: small (16 × 16), medium (64 × 64),
and large (256 × 256). Table 2 reports the hardware characteristics of the three
designs in terms of performance, area, and average power. For comparison, con-
sider that an Intel Ivy Bridge measures 160 mm2 while an NVIDIA Volta GPU
die measures 815 mm2, which are 2,867× and 14,606× bigger than the 16× 16
accelerator.

Figure 6 also reports the performance of a system that features custom
GEMM hardware accelerators (dashed lines). The plot shows that hardware
accelerators may substantially increase performance for compute-bound tensor
contractions, such as the last 11 contractions, and achieve up to 156 GFLOPS,
3.1× speedup over the same code employing a “soft” AVX512 accelerator. By
comparing the results in Fig. 5 and 6, it is evident that the contractions that
most benefit from tiling (and thus become compute-bound) also greatly benefit
from hardware acceleration. The plot also shows an important point: while it
seems intuitive that larger accelerators provide higher performance, this is not
always the case in our experiments. There may be several reasons for this behav-
ior, including large carry-over loops, computing GEMM for non-square matrices,
caches that are not large enough to contain all the data, etc. Figure 6 does show
that tensor contractions that are compute-bound with smaller hardware accel-
erators become memory-bound with the largest GEMM design. We infer that
the lowest-level cache does not have sufficient storage to feed such large acceler-
ators or to support data reuse. The actual point of co-design is, indeed, to figure
out those trade-offs and select the best accelerator for the particular workload
(64 × 64) instead of the best accelerator from the single operation (256 × 256).

9 Related Work

Among the compiler-based approaches for tensor algebra, the Tensor Contraction
Engine (TCE) [8] is an early effort as a compiler framework that automatically
optimizes dense tensor contractions in the quantum chemistry. TACO compiler
is a C++ library that employs compiler-based techniques for dense and sparse
tensors. TACO enables automatic code generation for a wide variety of linear
and tensor algebra operations while supporting different storage formats. TACO

COMET: A Domain-Specific Compilation for Computational Chemistry 101

provides similar notation to COMET TA language to express tensor expres-
sion, although programmers need to invoke object methods to pack/unpack data
structures. Unlike TACO, COMET leverages core compiler optimizations, such
as tiling or loop ordering, and supports multiple back-ends via LLVM.

There has been a lot of work on library-based approaches. The FLAME [7]
focuses on formal description of linear algebra methods on matrices and the
derivation of optimized implementations for distributed-memory systems. Later
works [13,16,17] extend the framework for multi-dimensional tensor operations.
The Cyclops Tensor Framework (CTF) [19] focuses on distributed computation
of tensor operations. libtensor [4] focuses on describing block tensor operations
using C++ templates. Recent work, such as ITensor [5] and TensorNetwork [6],
employs tensor networks to represent contractions of several tensors. Libraries-
based approaches are easy to use but force scientists to re-arrange algorithms
and implementations around the library APIs. This implies that, among oth-
ers, library-approaches rarely support arbitrary tensor expressions. Moreover,
libraries are typically implemented for specific architectures and may require
heavy modifications to run on different heterogeneous systems. COMET, on
the other hand, provides a programming interface close to the Einstein mathe-
matical notation, supports arbitrary and mixed tensor expressions, and support
execution on different architecture via LLVM backends.

To the best of our knowledge, none of the tools and libraries available provide
an easy path to perform co-design of hardware accelerators for tensor algebra
computations. COMET has been designed to support hardware accelerators and
allows swapping optimizations in and out according to the target architecture.

10 Conclusions

The recent explosion of high-efficient and specialized architectures has dramat-
ically decreased program portability and productivity. On one side, scientists
prefer high-level, domain-specific languages that provide high-expressiveness and
portability; on the other side, achieving high performance on modern architec-
tures requires highly-tuned, architecture-specific implementations and support
for custom hardware accelerators. This work presents COMET, a novel compiler
framework that supports tensor algebra operations, specifically those related to
chemistry. COMET consists of a high-level DSL, a multi-level IR, and a series
of progressive lowering steps and program optimizations. COMET’s multi-level
IR approach allows us to change some of the dialects without the need to re-
implement the entire IR stack and optimizations. We show that the code auto-
matically generated by COMET outperforms hand-tuned tensor contractions
that leverage state-of-the-art computational libraries across 30 tensor contrac-
tions from various domains. Our approach provides the distinct advantage of
analyzing multi-operand expressions and identify the optimal ordering of ten-
sor operations, achieving up to 23.9× speedup over equivalent code that follows
the natural order. Finally, we show that COMET can also be used to perform
co-design and identify the best GEMM accelerator for the tensor contractions

102 E. Mutlu et al.

under study. We plan to extend COMET in various directions, including addi-
tional support for tensor algebra operations, support for sparse operations, and
support for additional architectures. We also plan to open source COMET.

Acknowledgement. This research is supported by PNNL Laboratory Directed
Research and Development Program (LDRD), Data-Model Convergence Initiative,
project DuoMO: A Compiler Infrastructure for Data-Model Convergence, and project
Hybrid Advanced Workflows.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. software available from tensorflow.org

2. Aprá, E., et al.: NWChem: past, present, and future. J. Chem. Phys. 152(18),
184102 (2020). https://doi.org/10.1063/5.0004997

3. Einstein, A.: Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354(7),
769–822 (1916). https://doi.org/10.1002/andp.19163540702

4. Epifanovsky, E., et al.: New implementation of high-level correlated methods using
a general block tensor library for high-performance electronic structure calcula-
tions. J. Comput. Chem. 34(26), 2293–2309 (2013)

5. Fishman, M., White, S.R., Stoudenmire, E.M.: The itensor software library for
tensor network calculations (2020)

6. Google: TensorNetwork (2020). https://github.com/google/TensorNetwork
7. Gunnels, J.A., et al.: FLAME: formal linear algebra methods environment. ACM

Trans. Math. Softw. 27(4), 422–455 (2001)
8. Hirata, S.: Tensor contraction engine: abstraction and automated parallel imple-

mentation of configuration-interaction, coupled-cluster, and many-body perturba-
tion theories. J. Phys. Chem. A 107(46), 9887–9897 (2003)

9. Intel: Math kernel library (2012). http://developer.intel.com/software/products/
mkl/

10. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 1–12 (2017)

11. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: CGO ’04, San Jose, CA, USA, pp. 75–88 (2004)

12. Lattner, C., et al.: MLIR: a compiler infrastructure for the end of Moore’s law.
arXiv preprint arXiv:2002.11054 (2020)

13. Poulson, J., et al.: Elemental: a new framework for distributed memory dense
matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

14. Ragan-Kelley, J., et al.: Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In: PLDI’13, pp. 519–530
(2013)

15. Raghavachari, K., et al.: A fifth-order perturbation comparison of electron corre-
lation theories. Chem. Phys. Lett. 157, 479–483 (1989)

16. Schatz, M., van de Geijn, R., Poulson, J.: Parallel matrix multiplication: a system-
atic journey. SIAM J. Sci. Comput. 38(6), C748–C781 (2016)

17. Schatz, M.D., Low, T.M., van de Geijn, R.A., Kolda, T.G.: Exploiting symmetry
in tensors for high performance: multiplication with symmetric tensors. SIAM J.
Sci. Comput. 36(5), C453–C479 (2014)

https://www.tensorflow.org/
https://doi.org/10.1063/5.0004997
https://doi.org/10.1002/andp.19163540702
https://github.com/google/TensorNetwork
http://developer.intel.com/software/products/mkl/
http://developer.intel.com/software/products/mkl/
http://arxiv.org/abs/2002.11054

COMET: A Domain-Specific Compilation for Computational Chemistry 103

18. Shao, Y.S., et al.: Aladdin: a pre-RTL, power-performance accelerator simulator
enabling large design space exploration of customized architectures. In: ISCA, pp.
97–108. IEEE Press (2014)

19. Solomonik, E., Matthews, D., Hammond, J.R., Stanton, J.F., Demmel, J.: A mas-
sively parallel tensor contraction framework for coupled-cluster computations. J.
Parallel Distrib. Comput. 74(12), 3176–3190 (2014)

20. Springer, P., Bientinesi, P.: Design of a high-performance Gemm-like tensor-tensor
multiplication. ACM Trans. Math. Softw. 44(3), 1–29 (2018)

21. Springer, P., Su, T., Bientinesi, P.: HPTT: a high-performance tensor transposition
C++ library, pp. 56–62 (2017)

22. Van Zee, F.G., Van De Geijn, R.A.: BLIS: a framework for rapidly instantiating
BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1–14:33 (2015)

G-Code Re-compilation and Optimization
for Faster 3D Printing

Xiaoming Li(B)

University of Delaware, Newark, DE 19716, USA
xli@udel.edu

Abstract. The 3D printing technology has seen increasingly wider
application in industrial manufacturing and the general public domain.
The normal working flow of 3D printing, i.e., from Computer Aided
Design (CAD), to 3D model description, and last to 3D printers, essen-
tially uses languages such as STL (Standard Tessellation Language or
STereoLithography) and G-code to pass information between the work
phases from designing to manufacturing. However, the languages are pro-
duced and used literally (like using XML for only data representation),
and there has not been much discussion on how these de-facto program-
ming languages can be compiled or optimized. In this paper, we present
our preliminary work that tries to improve 3D printing’s efficiency at the
backend of the working flow. We re-compile the G-code into a higher-
level IR, design a number of physics and graphics driven optimizations,
and re-generate G-code from optimized IR representation. We test our
G-code compiler on several popular 3D models and show upto 10.4%
speedup or save more than 16 h on printing complex models.

1 Introduction

The 3D printing is an emerging technology for product development and manu-
facturing. It is young, but it has passed the stage of being only a hobby activity,
and has seen rapidly growing applications in industry. Some of the high-profile
products that are 3D printed include Space-X’s SuperDraco engine [2], Airbus
aircraft parts [3] and many.

A standing-out issue for 3D printing is its speed [5]. Compared to the tra-
ditional manufacturing technologies such as casting or forging, which handle
volume of material in batches, 3D printing builds up shapes with elementary
forms of material such as powders or filaments. Its speed depends on both the
volume of product and also the shape’s complexity. It is quite common to take
days to print even a seemingly simple 3D shape. For example, NASA is develop-
ing 3D printing technology for the first manned lunar base. In its latest demo,
a simple chair took about 2 weeks to print [7].

This paper presents an initial and exploratory effort to improve 3D printing’s
speed using compiler-derived techniques. To understand the speed issue of 3D
printing, we need to examine its complete workflow. 3D printing usually starts

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 104–116, 2022.
https://doi.org/10.1007/978-3-030-95953-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_8

G-Code Re-compilation and Optimization for Faster 3D Printing 105

with a Computer Aided Design (CAD) software such as AutoCAD. The outcome
of CAD is usually the 3D geometrical representation of a product. Thereafter, the
3D geometrical representation is processed by a type of software called “slicers”
to be transformed into solid models and further been translated into commands
that can be understood by 3D printers. 3D printers will load the commands,
which are movements of servos and settings for printing such as temperatures
or speeds. The embedded controller on 3D printers will execute the commands
and directly control servos to move the printing nozzles and extruders.

Clearly, we can attempt to improve 3D printing’s performance at any phases
of the workflow. In this paper, we particularly look into the interface to the
embedded 3D printer controller. The commands are usually represented in an
industry standard format called G-Code. Our key observation is that while being
sufficient to control the movement of servos, G-code is primitive and loses high-
level information about the product being printed. The current technique that
translates the 3D geometrical model to the elementary movements in G-code is
direct and does have printing speed in mind. There has been a lack of proper
intermediate representation for any optimization work to became possible.

The main contributions of this paper are a higher-level printing IR for G-
Code, new optimization techniques that respect the physical contraints of 3D
printing but reduce the total printing time, and a G-code generator that re-
generates improved G-code from this IR. We evaluate our G-code compiler
on a number of popular 3D printing models and achieve up to 10.4% speed
improvement.

2 Background and Overview

The 3D printing technology is a new manufacturing technology to build 3D
shapes. Generally speaking, traditional manufacturing methods such as forging,
casting or injection molding manipulate volume of material into desired shapes.
In contrast, 3D printing builds up a shape by gradually adding minuscule amount
of material into place piece by piece and layer by layer. That is why 3D printing
is also referred as “additive manufacturing” in many contexts.

The 3D printing workflow typical involves three phases: CAD, slicer, and 3D
printer. CAD software such as AutoCAD, Fusion 360 or OpenSCAD can be used
to design 3D models. CAD interfaces with slicer programs with the mesh descrip-
tion of 3D model. One of the industry’s defacto standard format for such mesh
description is STL (Standard Tessellation Language or STereoLithography).

STL files cannot be directly printed because they only describe the surface
geometry of a three-dimensional object without any model attributes. Slicer pro-
grams such as slic3r or Simplify3D translate STL files into printable description
of 3D model. The translation involves two main tasks: figuring out the move-
ments of extruder to implement the 3D object, and conforming to a 3D printer’s
specific physical capability. Slicers also need to make sure the movements are
legitimate for a specific printer, and at the same time try to maintain the print
quality of the final product. Therefore, slicers will specify the physical attributes

106 X. Li

of the movements such as the extruder temperature, the building bed tempera-
ture, and the speeds of servo involved in movements.

The output of slicers is the description of all the movements, together with
the specification of the printer’s setup and the physical attributes of movement.
All of these are written in the G-code file to be send to the printer.

2.1 System Overview

The proposed G-code compiler has three main components: (1) the geometric
IR, which contains the same semantic information as the G-code, but stores it
in a graph-like data-structure to facilitate the analysis and transformation; (2)
front-end and backend, which convert between the G-code and the geometric
IR; and (3) compiler transformations that currently include only a few essential
passes including the preprocessing passes and the speed optimization passes.

Fig. 1. Working flow of the G-code compiler.

Figure 1 shows the overall working flow of the compiler. The geometric IR and
the front/back ends are described in Sect. 3 and the compiler passes in Sect. 4.

3 Intermediate Representation for G-Code

3.1 Design Consideration

What Is G-Code? G-code is a numerical control language for programming
Computer Numerical Control (CNC) devices. It was born out of the MIT Ser-
vomechanisms Lab in 1950s, and has since been extended by numerous standard
institutions and companies. Originally the language is designed to describe the
control and movement of cutting tools, i.e., essentially telling the servos where
to move and when. Since its beginning, the 3D printing technology also adopt

G-Code Re-compilation and Optimization for Faster 3D Printing 107

this concept. Today G-code also becomes the de-facto programming language
for 3D printers.

Just like the CNC domain, the 3D printing community has also developed
numerous variants of G-code such as the Marlin, RepRap or MakerBot dialects.
While the variants are largely semantically compatible, they differ in the rep-
resentation of numbers and the settings of printer. Here we briefly describe the
stem of the G-code that is more-or-less common among all variants.

From the programming language perspective, G-code is extremely simple.
Most G-code variants don’t contain any control structures such as conditional
branch or loop. The language has two basic command sets—G commands that
start with the letter “G”, and M commands that start with the letter “M”. G
commands basically describe movements. For example G1 (also represented as
G01) specifies a linear interpolated movement. G3 represents a counterclock-
wise, circular interpolated movement. M commands basically specifies settings
including both movement settings and machine settings. For example, M205 sets
the jerk rate (max acceleration) on the XY axis. Most M commands are modal
commands, which means that the effect of the commands stays in effect until
being replaced.

Geometrical Movements. The requirement for the IR to store the movements
is easy to implement. The majority of a G-code file is the commands describing
the servos’ movements. The number of dimension in movement, or the degree
of freedom in servo motion, is essentially the number of servos in a printer. The
basic printers have 4 motors, and more advanced varieties have more. Usually the
3D geometrical space is consisting of the X, Y and Z dimensions and is controlled
by three servos. There are two types of mapping from the three servos to the
X/Y/Z dimensions. In the Cartesian style of 3D printers, each servo controls
the motion along one dimension. The mapping is direct and linear. For the
Delta 3D printers [4], all three servos participate in the motion control along all
three dimensions. The motor movements are translated into 3D space movements
through trigonometric remapping.

In addition to the three servos that control the spatial movements, 3D
printers also have extruders that additively accumulate material. Normally one
extruder is directly controlled by a servo. So the number of material handling
servos equals, in most cases, the number of extruder equipped in a printer. An
extruder servo mostly moves in one direction, that is, extruding/adding mate-
rial. On the other hand, printing an object involves move the extruder motor
backward, i.e., for retracting, from time to timer. For example, to avoid the
leakage of material when the extruder moves from one section to another dis-
connected one, the corresponding extruder servo will retract and when arriving
at the destination location, extruding again.

Movement Setting and System Setting. Up to this point, the IR for G-
code is an abstract geometric space. Hypothetically speaking, transformations
using it won’t guarantee the correct printing of the transformed G-code. The

108 X. Li

reason is that a movement needs to be accomplished with proper settings such
as temperatures and speeds for it to be printed correctly and with good quality.
The setting is also highly contextualized, i.e., the properness depending on what
happens before the movement. Therefore, a practical IR must incorporate infor-
mation the printer setting, and equally importantly maintain the dependency of
the settings.

The main settings relevant to movement are temperature and speed. Move-
ments are printed with different temperatures. The reasons for doing that include
to guarantee good bed adhesion, reduce material warping or improve surface
quality of object. Therefore, when our compiler parses the G-code, it needs to
deduce the temperatures for all the movements, and attaches the information to
the edges in the Cartesian space.

A 3D printer also constantly changes printing speed in the process of print-
ing an object. For example, when printing a small section, the speed might be
reduced to give material sufficient cooling time. As another example, when the
movement is across a large unsupported section, the speed might be increased
to avoid sagging of the material (a.k.a “bridging” mode). Clearly the speed set-
ting of a movement is context-sensitive, i.e., that the appropriate speed setting
depends on what happens before it.

In addition to the settings related to movement, G-code also contains com-
mands pertaining to features that are specific to slicer or printer. Those com-
mands usually appear at the prolog or the epilog parts of G-code. The commands
are usually not tied to specific movements. The compiler’s frontend will recog-
nize the start and the end of those sections, and re-emit them when transforming
back into G-code.

Encoding Printer’s Physical Constraints. By this point, the IR design has
become capable of representing the geometrical space that a printer’s motor can
reach, arbitrary movements in the space, and the settings of the printer’s auxil-
iary equipment such as heat bed or fans. One thing that needs attention is the
resolution of number in the IR. The space and movements are not continuously
reachable by the printer. The servos are mostly step-driven. That means, they
can only rotate as multiples of the minimum amount of rotation, and can’t go
below the rotation resolution. In other words, the numbers should be discretized
according to the printer’s capability.

For example, a key specification parameter of 3D printer is the minimum layer
height. The parameter is usually linked to the rotation resolution of the Z-axis
servo. If the minimum height is 0.1 mm, any representation of the Z-axis position
in the IR should be a multiple of 0.1 mm. Imaging that if a transformation
introduces a new vertex in the space with Z = 3.55 mm, the newly created vertex,
however, is meaningless because it simply won’t be able to be reached precisely
by the printer. Practically the printer’s controller might still accept such a value
in the G-code, but where it actually goes is unpredictable, and may likely create
printing quality problems such as the separation of layer.

G-Code Re-compilation and Optimization for Faster 3D Printing 109

Therefore, we make the resolution of number in the IR explicitly visible in the
IR. The resolution constraints are not only maintained when G-code is parsed
or re-generated, but also are mandated when transformations are applied on the
IR.

3.2 Definition of the Geometric IR

We have so far discussed the main points for consideration when designing the IR
for G-code. Taking all these into account, we can put together a formal definition
of the G-code IR. The IR has two parts, a graph representation that describes
the geometric information in the G-code, and the decorating properties that
store the settings for the geometric movements and the printer.

The geometric basis of the IR is a N-dimensional graph, N being the number
of servos in the 3D printer that the IR is representing. The graph is undirectional,
because material printing can be done on either one of the two directions of the
movement. So this geometric information can be encoded as G = (V,E), V is
the vertex set and E is the edge set. For v ∈ V , v is a n-dimensional vector,
where each element vi represents the rotational position of the ith servo. For
E = ei|ei = vi0 − vi1 , each edge in the set represents the linear interpolated
movements of servos between vi0 and vi1 . The edges are undirectional.

The graph is decorated with three categories of property: vertex property,
edge property and environmental property. The vertex property in the current
IR contains the position vector vN of the vertex, and several flags that can be set
by analysis or transformation passes to facilitate future processing of the graph.
The flags include whether the vertex is introduced new in the segmentation pass,
and the strongly connected component index that the vertex belongs to.

The edge property contains the settings for correctly printing the edge.
The settings include temperature, line speed of movement, and starting/ending
actions. The temperature and the speed settings are self explanatory. The start-
ing/ending actions of an edges are those M instructions in the G-code that do
not directly affect movements but still need to be done before or after the print-
ing of the edge. Examples of such actions include M207—setting jerk rate, or
M212—setting bed offset for the auto-leveling feature, etc.

The environmental property describes the printer system constraints such as
the minimum resolution for servos or the sensors’ precision. Even though part
of such information can be reasoned from G-code, our current implementation
manually provide the environmental property as an external configuration for
the compiler.

3.3 Example of IR

Here we illustrate the proposed geometric IR with an example segment of G-
code. The example is simplified for this illustration because in real G-code, the
dimensionality is at least 4—one servo each for the X, Y, and Z dimensions and
one servo for extruding. It is hard to visualize a 4 dimensional graph. So in this
example, we only use the X and Y axis and one extruder dimension in the G-code
program.

110 X. Li

Fig. 2. G-code example and its corresponding IR visualized.

Figure 2a shows the example G-code segment, and Fig. 2b shows the visual-
ization of the corresponding IR. As we can see, each G-instruction is translated
into one edge, and the M-instructions preceding an edge will be attached to the
starting action property of the edge.

4 G-Code Optimization

The G-code IR provides a holistic representation of information contained in the
G-code output of slicer. The distinctive characteristic of the IR, compared with
the raw G-code format, is its high-level semantic. The IR is naturally geometrical
and the raw G-code is sequential. For example, movements in a G-code file
might be totally independent to each other. However, it is hard to tell that in
the original form, as the G-code mandates an unnecessary order between the
movements. On the other hand, the IR representation of the same movements
can be easily analyzed for their dependency or even spatial locality, and further
be reordered for faster printing.

The higher-level semantic of the G-code IR opens the door for 3D printing
transformations. That is, transforming a G-code IR representation of an object
into other equivalent IR representation, and when feeding the transformed IR
to a 3D printer, still produces the same object. The concepts involved in this G-
code compilation and optimization are similar to those for the typical computer
programming languages. However, as we can imagine, computers compute, but
3D printers perform a very different kind of job in a very different way. We need
to redefine what kind of transformation is legal, what are the optimization goals,
and how to model performance (i.e., speed, quality, etc.) for the specific problem
of compiling for 3D printer.

G-Code Re-compilation and Optimization for Faster 3D Printing 111

4.1 Compilation Constraints

A transformation of the G-code IR changes both the geometric description and
also the order of movements or extrusion. First we need to find an operable
definition of what is a valid transformation. Eventually, any valid G-code trans-
formations should be able to print the same object that the original G-code
program intends to make. The question is how this correctness requirement can
be translated into a series of legality tests, like the dependency test for our
computer compilers?

The correctness requirement for 3D printing basically means two things: (1)
a valid transformation must extrude material exactly as the original extrusion
movements do in the IR. The transformation cannot extrude more, and cannot
extrude less. (2) The order of extrusion must be feasible for the 3D printer. We
can use a simple example to demonstrate what is the “feasibility” here. When
moving from the position (x, y, z) = (100, 100, 2) to (100, 200, 2), for example,
there should not be any place along the moving path where the height of the
printed part is higher than 2. Otherwise, the movement will damage the printed
portion.

Beyond that a valid transformation must print out the same shape, like
a compiler transformation should produce the same results, 3D printing has
requirement on the quality of printout. Still using compiler transformations as
example, in a computer program, transforming “1+1” into “1*2” will be legal
but may carry different speed characteristics. The term “performance” in 3D
printing not only means printing speed, but also printing quality. When the
movements in a printing job are reordered, in many cases, the outcome can
have drastically changed quality. It is because materials that 3D printer handle,
such as PLA, ABS or Nylon, exhibit different physical properties such as layer
adhesion when they are printed with different speeds, or with printing direction
from the layer below, etc. Therefore, when we transform G-code, we need to
respect this additional quality constraint.

4.2 Optimization for Printing Speed

Just like that our computer compiler transformations can be tuned for different
goals such as speed or code size, G-code can also be transformed to improve on
different 3D printing metrics such as printing speed or product quality. In this
paper, we describe our exploratory study of printing speed optimization using
the G-code IR.

Pre-processing with IR. Given an IR representation of a 3D printing task,
the basic job is to traverse all the edges exactly once. As we will discuss later,
this job sounds like an Euler Tour problem. But before we start looking into
how to walk through the graph, we want to point out that the raw IR represen-
tation hides potential optimization opportunities. And these opportunities can
be made available for later transformation by adding a preprocessing pass after
the compiler front-end.

112 X. Li

Fig. 3. IR pre-processing: graph segmentation

In this study we implement two preprocessing passes: graph segmentation
and connected component identification.

The purpose of graph segmentation is to facilitate the route searching in
the Euler Touring based optimization. Here is an example of how graph seg-
mentation can help. As Fig. 3 shows, in the original G-code representation, two
movements A−C and B−D intersect in space. However, because they are orig-
inally represented as two separate edges, the Euler Touring algorithm might not
be able to take advantage of the intersection to find more efficient tours. If we
segment the graph, i.e., introduce a dummy vertex for the intersection point, the
touring algorithm would be able to move only parts of the original movements
and find more efficient touring path. Thanks to this added flexibility of touring,
after graph segmentation, the Euler Touring algorithm will find the shortest tour
that uses the additional connectivity of the dummy vertex “S”.

Graph segmentation itself is a conceptually very simple processing. A naive
algorithm will try to intersect an edge with all other edges. If any two edges
intersect, introduce the intersection point as a new vertex and break up the
original two edges into four based on the intersection point. In this case, the
complexity of the naive segmentation will be O(E2), where E being the number
of edges. Because the newly created edges might also intersect with other edges,
the iteration will continue until no further changes are made.

The naive graph segmentation algorithm won’t work in practice. A typical
3D object will involve millions of edges. The complexity of O(E2) simply make
the naive algorithm not viable. We use two pruning techniques to accelerate the
algorithm. The first is to further preprocess the graph IR to identify connected
components. So that we only need to test intercepting with a component. We
use a DFS-based approach to find all connected components. Since connected
components can still be huge, we further re-organize a component into layers
and only try interception test with in the layer that the edge belongs to and

G-Code Re-compilation and Optimization for Faster 3D Printing 113

the layer below and the layer above, where are the only place that any potential
intercepting edges can reside.

4.3 Printing Speed Optimization

As previously discussed, the proposed G-code IR supports a variety of opti-
mization goals such as speed, printing quality or physical strength. This paper
describes our preliminary result of optimizing speed. Under this set up, the goal
function is simply to cover all edges in the original graph exactly once, and
minimize the overall time.

The goal sounds very much like an Euler Tour problem, i.e., finding a path in
a finite graph that visits every edge exactly once. The main challenges to adapt
the Euler Tour problem in the solving of the G-code printing speed problem
lie in the subtle but fundamental problem setup differences. The differences are
derived from how 3D printers work and perform.

The starting point of our preliminary optimization is based on the Hier-
holzer’s algorithm [6,8] with solutions to address the specifics of the G-code opti-
mization setup. Our main effort is spent on addressing the differences between
the Euler Tour problem and our optimization problem. Next we describe the
differences and our solution thereof.

– Goal: The Hierholzer algorithm finds an Euler tour in a graph, and that’s
it. There is not any optimization criteria built-in. The only guarantee is that
every edge is visited exactly once. But no effort is made to find the tour
that minimize the total distance or other graph metrics. Note that the total
distance in an Euler tour is not fixed for a graph, as accessory edges need to
be introduced in order to guarantee the existence of an Euler tour.
Our solution is to include heuristics at several places in the algorithm to
optimize the total tour time. The places include the construction of accessory
edges, the choice of next edge and the choice of next vertex to visit. The final
heuristics also consider the next couple of challenges, and will be detailed in
Sect. 4.4.

– Complexity: The computation complexity of the Hierholzer’s Algorithm is
O(V +E), V being the number of vertices and E being the number of edges.
Real-world G-code, when transformed into the proposed IR, can contain mil-
lions of vertices and/or edges. It is impractical to blindly apply the Hier-
holzer’s Algorithm. Our solution is motivated by a type of compiler pass, i.e.,
the Strongly Connected Components (SCC) passes. That is, we apply the
optimization algorithm on every connected component that has been found.
Also when the work on one component is finish, we use the same heuristic
that finds the next vertex to identify the next component to process.

– Performance of edge visit: In the setup of the Euler Tour problem, the weights
of edges are constant. In our G-code optimization problem, the weights are
the distance of movement, and they are indeed constant, too. However, the
time to travel through the edge is not. This is because for a 3D printing to
move, the setting of the movement must be ready, which introduce overhead.

114 X. Li

Also the change of moving direction lead to acceleration, and the involved
servos need to do extra work to handle the G-force. Overall, the time to travel
through an edge is contextually dependent on the previous edge. Our solution
is to build a physical performance model, quite rough at this stage, for the
edge traversal, and incorporate the model into the optimization heuristics.

4.4 Optimization Heuristics

Accessory Edges: In order to find an eulerian tour, accessory edges need to
be introduced in a graph to connect pairs of vertices with odd degrees. We need
to minimize the total distance of the introduced accessory edges to optimize the
total time for traveling the eulerian tour. That is, if a graph has n odd-degree
vertices, we need to find the division scheme that minimize

∑
∀v dist(vi, vj),

This is another well-known algorithmic problem called the Pairwise Optimization
problem. We use a simple heuristic to solve the problem. We build a matrix
of all the pairwise distances any two of odd-degree vertices, and use Dynamic
programming to iteratively remove the next shortest pair, until all odd-degree
vertices are covered. We want to point out that our heuristic is not globally
optimal.

Next Edge to Visit: In the Hierholzer’s Algorithm, if a just-visited vertex
has multiple un-visited outbound edges, a random choice is made. In the case
of G-code IR, the choice of the next edge carries significance with regard to the
edge traversal time. There are two reasons. First, if the next edge has different
setting, e.g., speed or temperature, the printer need to change setting first before
it can drive the servos to make the movement. That introduces overhead. Second,
change of moving direction introduces G-force in servos. This is call “jerk rate”
in the 3D printing terminology. Without going into too much physic details, the
short conclusion is that the lower the G-force, the faster the printing. Using the
example in Fig. 3b, if the current vertex is S, and the previous edge is B − S,
the best next edge is S −D but not S −A or S −C, as S −D is mostly aligned
with the previous edge and will incur the least G-force.

We develop a simple heuristic here. We first check the printing setting of the
edge candidates, and if possible, only choosing from the ones that have the same
setting as the current edge, or if not possible, involving the least setting changes.
If there are still multiple candidates, which are the majority of the cases, choose
the one the involves the minimum G-force to travel.

5 Experiment and Evaluation

The G-code compiler and the printing speed optimization are evaluated with
3D models. There have been no public available compiler/optimization work on
G-code, and as the result there is no “standard” benchmark for the kind of
evaluation we want to do. Fortunately, due to the increasing populaty of 3D
printing technology, there are multiple websites for people to share 3D printing

G-Code Re-compilation and Optimization for Faster 3D Printing 115

models—sort of like github for 3D models. We use http://www.thingiverse.com
(Thingiverse), one of the most widely used 3D model sharing site, and use sev-
eral of the most popular models on that site as the benchmarks. The models
are “Baby Groot”, “Benchy”, “Printer Test”, and “Mid Castle”. Table 1 shows
the benchmark models, download links and the total number of downloads as
reported by Thingiverse.

Table 1. 3D model benchmarks

Benchmarks URL # of Downloads

Baby Groot https://www.thingiverse.com/thing:2014307 32402

Benchy https://www.thingiverse.com/thing:763622 42329

3D Printer Test https://www.thingiverse.com/thing:2656594 32235

Medieval Castle https://www.thingiverse.com/thing:862724 18701

All the models are downloaded as STL files. We use Simplify3D [1], a widely
used commercial Slicer to generate G-code for the STL. The 3D printer we use
is JGAurora A8, and its controller firmware is Marlin, a Linux-based software
that is widely used as the operating system in 3D printers.

The G-code output from Simplify3D is the input to our compiler and opti-
mizer, and our output is also G-code. We measure the printing time of the
before/after versions of the G-code. Actually Simplify3D also reports estimated
printing time based on its own G-code output, and in almost all cases, its esti-
mation is spot on. In this paper, we report the actual printing time.

Table 2 shows the before and the after printing time of the benchmark modes.
We also collect statistics of the model before vs. after, including the number
of vertices, number of edges, total distance traveled. As the result shows, our
optimization achieves upto 10.4% speed or about 973 minutes for the model
“Medieval Castle” that has the highest number of edges (9.08 million). On sim-
pler models, our speed-ups are around 5%.

Table 2. Before/After comparison and speedups.

Benchmarks Edges Vertices Total Distance (mm) Time (minutes) Speedup

Baby Groot 3.39M/3.42M 3.58M/3.65M 183.536K / 174.227K 632.945/605.71 4.7%

Benchy 2.05M/2.43M 2.43M/2.67M 5.34M/5.22M 1866.1/1766.75 5.3%

3D Printer Test 190.9K/194.2K 211.37K/213.3K 872.1K / 829.3K 380.301 362.723 4.6%

Medieval Castle 9.08M/9.76M 16.81M/17.33M 29.1M/27.51M 9358.84/8385.93 10.4%

6 Conclusion

In this paper we present the preliminary design of a G-code compiler. Particularly
we introduce an appropriate IR that captures all information in G-code and in

http://www.thingiverse.com
https://www.thingiverse.com/thing:2014307
https://www.thingiverse.com/thing:763622
https://www.thingiverse.com/thing:2656594
https://www.thingiverse.com/thing:862724

116 X. Li

addition makes it easily to retract higher-level graphic and physical information.
Furthermore, we discuss the legal test for G-code transformation on the IR
and several heuristics for improving the printing performance. The evaluation
using several popular 3D models shows up to 10% speedup on complex and long
printing jobs.

References

1. Simplify3d. https://www.simplify3d.com/
2. SpaceX uses DMLs to 3D print Inconel SuperDraco engine chamber.

https://additivemanufacturingtoday.com/spacex-uses-dmls-to-3d-print-inconel-
superdraco-engine-chamber

3. Bridging the gap with 3d printing (2018). https://www.airbus.com/newsroom/
news/en/2018/04/bridging-the-gap-with-3d-printing.html

4. Bell, C.: 3D Printing with Delta Printers, 1st edn. Apress, New York (2015)
5. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid

Prototyping to Direct Digital Manufacturing, 1st edn. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-1-4419-1120-9

6. Hierholzer, C., Wiener, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederhol-
ung und ohne Unterbrechung zu umfahren (1873)

7. Staedter, T.: AI SpaceFactory wins Nasa’s 3D-printed extraterrestrial habitats chal-
lenge. In: IEEE Spectrum. IEEE (2019)

8. Torrubia, G.S., Blanc, C.T., Navascués-Galante, L.: EulerPathSolver: a new appli-
cation for Fleury’s algorithm simulation (2009)

https://www.simplify3d.com/
https://additivemanufacturingtoday.com/spacex-uses-dmls-to-3d-print-inconel-superdraco-engine-chamber
https://additivemanufacturingtoday.com/spacex-uses-dmls-to-3d-print-inconel-superdraco-engine-chamber
https://www.airbus.com/newsroom/news/en/2018/04/bridging-the-gap-with-3d-printing.html
https://www.airbus.com/newsroom/news/en/2018/04/bridging-the-gap-with-3d-printing.html
https://doi.org/10.1007/978-1-4419-1120-9

Machine Language and Quantum
Computing

Optimized Code Generation for Deep
Neural Networks

Janaan Lake(B) , Tharindu R. Patabandi , and Mary Hall

School of Computing, University of Utah, Salt Lake City, UT, USA
u0987016@utah.edu, {tharindu,mhall}@cs.utah.edu

Abstract. As Deep Neural Networks (DNNs) become more widely used
in a variety of applications, the need for performance and portability
on many different architectures, including CPUs, becomes increasingly
important. Compiler-based methods offer opportunities for performance
gains over statically-tuned libraries by exploiting data reuse and paral-
lelism, efficient memory access, and vectorization for specific backends
with the use of abstraction. The Batch Normalization (BN) operator
can accelerate the training and increase the robustness of DNNs, making
it a widely-used operator in many DNNs. LATTE is a domain-specific
language for DNNs, and SWIRL is a compiler that can be used with
LATTE. We extend the applicability of LATTE/SWIRL by incorpo-
rating the BN operator into the LATTE framework and by expand-
ing the optimizations of SWIRL to this operator. The optimized BN
operator in LATTE/SWIRL is compared to existing frameworks such as
TensorFlow, TensorFlow with Intel MKL-DNN, TensorFlow with XLA,
PyTorch with MKL-DNN and MXNet with MKL-DNN. The results show
that a compiler-based approach for the BN operator can increase perfor-
mance on CPU architectures.

Keywords: Optimizing compilers · Batch normalization · Deep neural
networks · Code generation

1 Introduction

Deep Neural Networks (DNNs) are currently one of the fastest growing areas
in computer science, with wide-ranging applications from speech recognition to
genomics. Typical DNNs require billions of operations for training and inference,
making them compute intensive. Graphics Processing Units (GPUs) have been
the hardware of choice for many DNNs. Due to a variety of factors, including
cost and programming complexity, GPUs are not always incorporated into many
computing clusters. Hence, there is a demand for performance and portability
of DNNs across a variety of architectures and platforms.

Because of the large interest in DNNs, there are many frameworks that can
train and run them. These high-level frameworks, such as TensorFlow [4], Torch
[8], Theano [19], Caffe [11], CNTK [16] and MXNet [6], use abstraction to rep-
resent neural networks and employ one of three approaches: computation graph
c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 119–133, 2022.
https://doi.org/10.1007/978-3-030-95953-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_9&domain=pdf
http://orcid.org/0000-0002-9751-7844
http://orcid.org/0000-0002-5052-8183
http://orcid.org/0000-0002-3058-7573
https://doi.org/10.1007/978-3-030-95953-1_9

120 J. Lake et al.

engines, layer-specific libraries, and domain-specific languages. Most of these
implementations use statically-tuned libraries such as cuDNN [3] for GPUs and
Eigen [1] or Intel MKL-DNN [2] for CPUs to achieve performance. These libraries
lack optimization across operators, and the execution of each operation varies
dramatically for different data sizes, data layouts, configurations for operators,
memory hierarchies and specific hardware features. When a new operator is
developed for use in DNNs that does not fit into these preoptimized library
functions, the computation efficiency decreases dramatically [22]. Because of
these challenges, compiler-based approaches have recently garnered more inter-
est for achieving performance in neural networks. Compiler-based methods can
separate algorithms from schedules, which allows users to experiment with dif-
ferent options for parallelism and data locality on a wide range of platforms.
This approach was demonstrated by Halide [13].

LATTE is a domain-specific language for DNNs with a graph-like imple-
mentation that uses a compiler-based approach for optimization. SWIRL is a
domain-specific compiler for neural networks that can be used with LATTE.
SWIRL takes LATTE as input and uses high-level transformation recipes to
generate efficient C++ code. These transformation commands span both data
and computation planes. SWIRL has demonstrated comparable performance
with TensorFlow integrated with MKL-DNN on both training and inference for
a variety of neural networks, including AlexNet, Overfeat and VGG [21].

Batch Normalization is a novel operator used in many DNNs that standard-
izes the inputs to other layers. Currently LATTE does not have a Batch Nor-
malization operator. Extending LATTE to include this operator and SWIRL
to generate optimizations for the BN operator will broaden the efficacy and
applicability of the LATTE language and the SWIRL compiler for DNNs.

The key contributions of this paper are:

– An extension of LATTE and SWIRL to include the BN operator and compiler
optimizations that can be applied to this operator.

– An application of scalar replacement for reduced memory access and loop
interchange and fusion for increased parallelism in the BN LATTE code
implementation.

– A transformation recipe for SWIRL to create a SIMD vectorization and par-
allelization strategy for optimizing BN in LATTE.

– A performance evaluation of the BN operator and of the combined
Convolution-BN-ReLU layer on the Intel SkyLake platform, comparing
LATTE and SWIRL to TensorFlow, PyTorch and MXNet all integrated with
the MKL-DNN library, TensowFlow XLA and native TensorFlow.

2 Background

This section provides a brief description of Batch Normalization and its ben-
efits for training DNNs. The compilation workflow of LATTE and SWIRL is
described along with details of how the Batch Normalization layer is expressed
in LATTE.

Optimized Code Generation for DNNs 121

2.1 Batch Normalization

Batch Normalization is a technique introduced in [10] that decreases the training
time and increases the robustness of neural networks. Deep neural networks are
challenging to train, in part because the input from prior layers can change after
weight updates during each training pass. The inputs to each layer are affected
by the parameters of all preceding layers, which creates an amplifying effect as
the network depth increases. This variance in the input distribution, referred to
as internal covariate shift, slows down the training by requiring lower learning
rates and careful parameter initialization. Because Batch Normalization reduces
the variance in the inputs and activations in a network, it can allow for higher
learning rates during training. The BN transform has been shown to decrease
training time and to match performance for inference on many popular DNN
models [15], and its use has become rather ubiquitous in many neural networks.

Batch Normalization is achieved through a normalization step that fixes the
means and variances of the inputs. Each dimension of the input data is normal-
ized to a mean of zero and a standard deviation of one. The BN transform is
performed on mini-batches (B) since these are used during stochastic gradient
training. Therefore, the mean (μ) and variance (σ2) of each input dimension
are calculated over a mini batch. Because normalizing each input of a layer may
change what the layer can represent, the BN transform includes a pair of param-
eters, γ and β, which scale and shift the normalized values. These parameters
are learned during training. The Batch Normalization transform algorithm is
shown in Fig. 1.

An important piece of the Batch Normalization technique is allowing the
gradient of the loss with respect to the model parameters to account for the
normalization. The BN transform is differentiable, and the gradient of the loss
with respect to the different parameters can be computed directly with the chain
rule. See [10] or [12] for the back propagation equation of the BN operator.

2.2 LATTE and SWIRL

LATTE is a DNN domain-specific language that provides abstraction for the user
to create a neural network, and SWIRL uses high-level transformation recipes
to generate efficient CPU code. The transformation recipe abstraction allows
an expert programmer to explicitly enumerate the transformations that can be
applied to each individual layer within LATTE. The main SWIRL transforma-
tions used for the BN operator include tiling, loop unrolling, vectorization and
parallelization. Tiling can improve cache locality. Unrolling certain loop itera-
tions by a factor reduces branch penalties and improves register reuse. Vector-
ization creates intrinsics to be used on SIMD architectures, and parallelization
uses OpenMP to parallelize one or more loops for increased performance. These
optimizations can be tailored for performance on a variety of CPU backends [21].

122 J. Lake et al.

Fig. 1. Algorithm for Batch Normalization Transform. Ioffe, S., Szegedy, C.: Batch
Normalization: Accelerating deep network training by reducing internal covariate shift.
CoRR abs/1502.03167 (2015).

A DNN is created in LATTE by stacking layers on top of each other, start-
ing with an input layer, adding various hidden layers and ending with a fully-
connected layer that applies an activation function. These layers are represented
as ensembles of neurons that are connected using mapping functions [20]. LATTE
uses an implicit data-flow graph model of the DNN. The nodes represent com-
putations in layers, and the edges are data dependencies between layer inputs
and outputs. This data-flow graph is represented by a dictionary of mapping
functions, which connects the inputs and outputs of layers. This allows LATTE
to store complex graphs without incurring extra memory costs. For training and
inference, SWIRL generates kernels for computations as a set of nested for-loops
for each forward, backward and weight update pass of each layer.

Figure 2 shows a Python code sequence for expressing Batch Normalization
in LATTE. The BatchNormLayer function takes three arguments: the network
object (net), the input ensemble (input ensemble) and epsilon. The neurons
are created in Line 8 and added to the BN ensemble in Line 10. A mapping
function is defined on Lines 13–14, which connects the input ensemble to the
bn ensemble.

Once the user has defined a neural network in LATTE, the description is
then lowered to a standard Python AST. Next, the SWIRL compiler uses trans-
formation recipes on the Python AST. Lastly, the transformed Python AST
is translated to C++ code using the ctree package, which is then lowered to
optimized x86 machine code using the Intel C++ Compiler. High-quality vector
code is also generated via intrinsics rather than relying on compiler directives.
See Fig. 3 for a visual representation of this workflow.

Optimized Code Generation for DNNs 123

Fig. 2. Python code for batch normalization layer in LATTE

Fig. 3. LATTE/SWIRL workflow

3 Methods

The code for the Batch Normalization transform, backpropagation and param-
eter updates can be optimized in a number of ways. Some general optimization
techniques, such as scalar replacement combined with loop interchange and loop
fusion, were performed on the loop nests directly within LATTE. SWIRL trans-
formation recipes were used for the rest of the optimizations.

3.1 Batch Normalization Pseudo Code

The Batch Normalization transform, represented by the equations in Fig. 1, is
expressed by the loop nests in Fig. 4. Since the transform is applied to mini-
batches, the batch dimension N is used. The mean and variance are calculated
per feature map or channel dimension C, as shown in Lines 6 and 16 of Fig. 4.
The heights and widths of the inputs are H and W respectively. The normalized
inputs are referenced as x hat on Line 26 and are scaled by gamma and shifted
by beta on Line 27. The inputs and outputs are x and y respectively.

124 J. Lake et al.

Fig. 4. Batch normalization forward pass

3.2 Scalar Replacement, Loop Interchange and Loop Fusion

The goal of scalar replacement is to identify repeated accesses made to the same
memory address, either within an iteration or across iterations, and to remove
the redundant accesses by keeping the data in registers. Compilers are effective in
allocating scalar variables to registers but often fail to do so with array references.
Data dependences provide opportunities for reuse of array variables in registers
through scalar replacement [5, Chapter 8].

The loop nests that represent the forward, backward and parameter update
passes of the BN operator during training exhibit data dependences that can be
exploited through scalar replacement. For example, in Fig. 4 the array reference
on Line 6 for mean has both an output and a true dependence carried by all but
the C loop. Line 16 has similar dependences for the array reference to var and
also an input dependence for the array reference to mean carried by all of the
loops except C. In the last loop nest structure, there are input dependences for
mean and var on line 26 and gamma and beta on line 27 carried by all of the

Optimized Code Generation for DNNs 125

loops except C. Lastly, there is a loop-independent true dependence for x hat
on line 27.

Figure 5 reflects the changes made for scalar replacement in the Batch Nor-
malization forward pass. To fully exploit the benefits of the scalar replacement,
loop interchange of the C and N loops is performed. Because the C loop does not
carry any dependences, moving the N loop inside of the C loop allows for more
reuse of the values by keeping them in registers during the iterations of the N ,
H and W loops. Since the C loop is now the outermost loop and does not carry
any dependences, all of the C loops can be fused. This fusion can increase the
level of parallelism and data locality that can be exploited in the compiler trans-
formations applied to this code by SWIRL. It also decreases the loop control
overhead. Lastly, a final optimization technique is used for the expensive square
root and division operations shown on Line 26 of Fig. 4. This operation is an
input dependence carried in the C loop, which means that this time-consuming
calculation needs only to be performed once per C loop iteration rather than
for each iteration of every loop. A multiplication operator replaces the more
expensive division operator. On Line 21 of Fig. 4 these calculations are stored in
a register and reused on Line 26.

The backward pass exhibits even more opportunities for register reuse. As
was done in the forward pass, the two outer loops are interchanged, after which
loop fusion is performed on the outermost C loop. Expensive operations involving
division operators are performed once per outer loop and replaced with scalars.
The parameter update loop nest is optimized in a similar manner. For more
details on these optimizations, the reader is directed to [12].

3.3 Transformation Recipes

SWIRL uses the concept of transformation recipes to generate high-quality code
and to customize optimizations to the target hardware. A recipe consists of a set
of commands that include both data and code transformations. A more detailed
explanation of these commands can be found at [21]. The transformation recipe
used for the BatchNormLayer forward pass implementation is shown in Fig. 6.
The feature map dimensions of the input and output are tiled by the SIMD
vector length for the given platform to aid vectorization (Lines 4–5). The loops
corresponding to the batch dimension are specified for concurrent execution via
the parallelize command in Lines 6 and 8. During code generation these loops
are annotated with OpenMP pragmas. The inner-most loop of the 4-D loop nest
is vectorized and unrolled by a factor that allows for the data locality to be fully
exploited by the SIMD instructions and to reduce loop overhead (Lines 10–11).

A sample transformation recipe for the backward and weight update passes
used in the BatchNormLayer is illustrated in [12]. The transformations are similar
to those used in the forward pass. Applying the transformation recipe in Fig. 6
to the Batch Normalization layer in LATTE generates optimized code for the
Intel SkyLake platform. The final C++ code generated by the SWIRL compiler
for the forward pass is shown in Fig. 7.

126 J. Lake et al.

Fig. 5. Batch normalization forward pass with scalar replacement, loop interchange
and loop fusion optimizations

4 Results

The performance results of using LATTE and SWIRL for the Batch Normal-
ization operator compared to other state-of-the-art frameworks were generated
on an Intel Skylake platform with AVX-512 support. The frameworks used for
comparison include TensorFlow release version 1.11.0, TensorFlow release ver-
sion 2.0.0 configured with Intel Math Kernel Library for Deep Neural Networks
(MKL-DNN), TensorFlow release version 2.0.0 using XLA, MXNet version 1.5.1
with MKL-DNN, and Pytorch version 1.4.0+cpu with MKL-DNN.

Optimized Code Generation for DNNs 127

Fig. 6. An example transformation recipe for the forward pass of the batch normaliza-
tion layer created in Fig. 2.

4.1 Hardware Platform and Environment

The hardware platform used is a high-performance server class dual socket Intel
Xeon Gold 6130 SkyLake processor with 2 × 16 2.1 Ghz (max 3.7 Ghz) turbo-
enabled cores. This is an AVX-512 platform with 512-bit vector support. The
processor has 98 GB of DDR4-2666 memory, with 32KB of L1 cache, 1MB of
L2 cache and 22 MB of L3 Cache. The code is generated via the Intel C++
Compiler (ICC) v18.0.1.163 with "-O3 -qopenmp -xCORE-AVX512" flags and
NUM OMP THREADS=32.

4.2 Performance Comparison of Batch Normalization

The performance of the LATTE/SWIRL implementation of the BN operator
used for training is compared with the five frameworks described above. The
training step involves a forward, backward and weight update pass. The testing
was carried out on ten different input sizes. The dimensions of these input layers
are representative of the sizes found in GoogleNet [18], VGGNet [17] and ResNet
[9] architectures. The results of six of these tests are displayed in Fig. 8. The
graphs show the number of images per second each implementation can process
with a batch size of 64 and the image size listed as C, H/W where C represents
the number of channels and H/W represent the height and width dimensions
respectively. LATTE/SWIRL outperforms all of the other frameworks. On aver-
age, LATTE/SWIRL has 2x greater throughput than MXNet with MKL-DNN,
4x more throughput than PyTorch with MKL-DNN, 5x greater throughput than
TensorFlow using XLA, 6x more throughput than TensorFlow with MKL-DNN
and 100x greater throughput than TensowFlow.

All of the implementations used SIMD vectorization and parallelization for
compute performance. All of them except TensorFlow used cache blocking to
decrease memory latency. The dimensions of the cache blocking were varied.

128 J. Lake et al.

Fig. 7. Generated C++ code from the SWIRL transformation recipe shown in Fig. 6

For example the frameworks using MKL-DNN blocked the inner dimension by a
factor of 16 while SWIRL used a factor of 64. Because the batch normalization

Optimized Code Generation for DNNs 129

operation is limited by memory bandwidth, scalar replacement, loop interchange
and fusion allowed the vectorization and parallelization to exploit even more
performance gains in the LATTE/SWIRL implementation.

Fig. 8. Performance results and breakdown for the batch normalization training step.
Demonstrates the effects of different optimizations towards overall performance for the
LATTE/SWIRL implementation.

The code optimizations and the transformation recipes discussed earlier
incorporate several compiler optimizations, including scalar replacement, loop
unrolling, SIMD vectorization and parallelization. The individual effects of each
optimization on the LATTE/SWIRL implementation are included in the per-
formance results of the Batch Normalization operator in Fig. 8. The breakdown
is shown only for LATTE/SWIRL results, with the blue area representing the
baseline performance, the orange area displaying the performance with scalar
replacement included, the grey area showing the performance with the loop
unrolling and SIMD vectorization in addition to scalar replacement, and the gold
area exhibiting the performance with all of the optimizations, including paral-
lelization. Of the total performance improvement, scalar replacement accounts

130 J. Lake et al.

Fig. 9. Performance results in images per second for the Convolution-Batch
Normalization-ReLU layer training step.

for between 4% to 18%, with an average of 15%. The loop unrolling and SIMD
vectorization performance boost is between 2% and 11% of the total perfor-
mance gains, with an average of 9%. Parallelization provides the greatest benefit.
Between 69% to 93% of the total performance gain, with an average of 77%, is
attributable to parallelization.

4.3 Performance Comparison for Conv-BN-ReLU Layer

A comparison is presented for a training layer composed of Convolution, Batch
Normalization and ReLU activation operators. This layer configuration is com-
monly found in many deep learning architectures and is suggested in [10].
The layer dimensions are representative of layers found in the GoogleNet [18],
VGGNet [17] and ResNet [9] architectures. Some of the results can be seen in
Figs. 9 and 10. Figure 9 shows the images per second that each implementation
can process with batch sizes of either 64 or 128 with varying image sizes. C
represents the number of in-channels for the convolution layer, K represents the
out-channels for the Convolution operator and hence the number of channels for

Optimized Code Generation for DNNs 131

Fig. 10. Performance results in time (ms) for the Convolution-Batch Normalization-
ReLU layer training step. Displays the time spent on each operator.

the BN and ReLU operators, and H/W are the height and width respectively of
the image for all of the operators. Figure 10 displays a time comparison for com-
puting the Conv-BN-ReLU layer. This comparison is presented so a breakout of
the performance of each operator can be observed. Note that the results from
the native TensorFlow implementation are not included so the graph would not
be distorted and the information from the other frameworks could be seen more
easily. A larger sample of results can be found in [12].

LATTE/SWIRL outperforms the other implementations on most of the tests.
For those dimensions where H/W is small (i.e. ≤14), the Convolution operator
in LATTE/SWIRL is not as efficient as the Convolution operator in TensorFlow
with MKL-DNN and MXNet with MKL-DNN. The largest performance gains
by LATTE/SWIRL are observed for the test dimensions where H/W is large
(i.e. 112). This demonstrates that the loop unrolling and SIMD vectorization in
LATTE/SWIRL on the inner dimensions can be more fully exploited when the
inner dimensions are large. For all of the test sizes, LATTE/SWIRL was more
efficient than the other frameworks for the memory-bound operations of BN and
ReLU.

132 J. Lake et al.

5 Conclusion

Compiler-based approaches have proven to be an effective way to increase porta-
bility of DNNs through abstraction while also achieving performance on a variety
of architectures. This research project involved extending the LATTE language
and the SWIRL compiler to implement the Batch Normalization operator. Per-
formance evaluations of this extension were tested at both the operator level and
layer level. These tests were run on an Intel SkyLake platform using a variety of
input sizes that are found in common network architectures. Performance gains
were observed for all of the comparisons at the operator level and most of the
tests at the layer level. This work increases the applicability of LATTE/SWIRL
for modern DNNs and demonstrates the effectiveness of using compiler-based
approaches as compared to other methods, such as statically-tuned libraries.

6 Future Work

The limited number of operators and layers in LATTE/SWIRL has demon-
strated the effectiveness of a compiler-based approach to code generation for
DNNs. The scope of LATTE/SWIRL can be expanded to keep up with the
evolving nature of neural networks, such as recurrent neural networks (RNNs)
and other novel architectures. The comparison of LATTE/SWIRL with more
compiler-based approaches, such as TVM [7] and Glow [14], can be done in the
future. Both of these frameworks do not currently have support for training
operations, which precluded a comparison in this paper to the batch normal-
ization operator. However, testing of inference operators in TVM and Glow to
LATTE/SWIRL would be appropriate. SWIRL requires an expert programmer
to create the optimized transformation recipes. Therefore, the use of autotuning
and machine learning tools to prune the optimization search space and to reduce
the time involved in creating transformation recipes can provide future research
opportunities as well.

References

1. Eigen (2019). http://eigen.tuxfamily.org/
2. Intel math Kernal library for deep learning networks (2019). https://software.intel.

com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
3. NVIDIA cuDNN (2019). https://developer.nvidia.com/cudnn
4. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous dis-

tributed systems. arXiv e-prints 1603.04467 (March 2016)
5. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Academic

Press, London (2002)
6. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het-

erogeneous distributed systems. arXiv e-prints arXiv:1512.01274 (2015)
7. Chen, T., et al.: TVM: an automated end-to-end optimizing compiler for deep

learning. arXiv e-prints arXiv:1802.04799 (2018)

http://eigen.tuxfamily.org/
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://developer.nvidia.com/cudnn
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1802.04799

Optimized Code Generation for DNNs 133

8. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a Matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop (2011)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015)

11. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14,
pp. 675–678. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2647868.2654889

12. Lake, J.: Optimized code generation for deep learning networks using LATTE and
SWIRL (2020). Unpublished bachelor’s thesis

13. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pp.
519–530. Association for Computing Machinery, New York (2013). https://doi.org/
10.1145/2491956.2462176

14. Rotem, N., et al.: Glow: graph lowering compiler techniques for neural networks.
arXiv e-prints arXiv:1805.00907 (2018)

15. Schilling, F.: The effect of Batch Normalization on deep convolutional neu-
ral networks (Dissertation) (2016). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-191222

16. Seide, F., Agarwal, A.: CNTK: Microsoft’s open-source deep-learning toolkit. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, p. 2135. Association for Computing Machin-
ery, New York (2016). https://doi.org/10.1145/2939672.2945397

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2015)

18. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

19. Theano Development Team: Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints abs/1605.02688 (2016)

20. Truong, L., et al.: Latte: a language, compiler, and runtime for elegant and efficient
deep neural networks. SIGPLAN Not. 51(6), 209–223 (2016)

21. Venkat, A., Rusira, T., Barik, R., Hall, M.W., Truong, L.: SWIRL: high-
performance many-core CPU code generation for deep neural networks. Int. J.
High Perform. Comput. Appl. 33, 1275–1289 (2019)

22. Xing, Y., Weng, J., Wang, Y., Sui, L., Shan, Y., Wang, Y.: An in-depth comparison
of compilers for deep neural networks on hardware. In: 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), pp. 1–8 (2019). https://
doi.org/10.1109/ICESS.2019.8782480

https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
http://arxiv.org/abs/1805.00907
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222
https://doi.org/10.1145/2939672.2945397
http://arxiv.org/abs/1605.02688
https://doi.org/10.1109/ICESS.2019.8782480
https://doi.org/10.1109/ICESS.2019.8782480

Thermal-Aware Compilation of Spiking
Neural Networks to Neuromorphic

Hardware

Twisha Titirsha and Anup Das(B)

Drexel University, Philadelphia, PA 19104, USA
{tt624,anup.das}@drexel.edu

Abstract. Hardware implementation of neuromorphic computing can
significantly improve performance and energy efficiency of machine learn-
ing tasks implemented with spiking neural networks (SNNs), making
these hardware platforms particularly suitable for embedded systems and
other energy-constrained environments. We observe that the long bit-
lines and wordlines in a crossbar of the hardware create significant cur-
rent variations when propagating spikes through its synaptic elements,
which are typically designed with non-volatile memory (NVM). Such
current variations create a thermal gradient within each crossbar of the
hardware, depending on the machine learning workload and the map-
ping of neurons and synapses of the workload to these crossbars. This
thermal gradient becomes significant at scaled technology nodes and it
increases the leakage power in the hardware leading to an increase in
the energy consumption. We propose a novel technique to map neurons
and synapses of SNN-based machine learning workloads to neuromor-
phic hardware. We make two novel contributions. First, we formulate a
detailed thermal model for a crossbar in a neuromorphic hardware incor-
porating workload dependency, where the temperature of each NVM-
based synaptic cell is computed considering the thermal contributions
from its neighboring cells. Second, we incorporate this thermal model in
the mapping of neurons and synapses of SNN-based workloads using a
hill-climbing heuristic. The objective is to reduce the thermal gradient
in crossbars. We evaluate our neuron and synapse mapping technique
using 10 machine learning workloads for a state-of-the-art neuromorphic
hardware. We demonstrate an average 11.4K reduction in the average
temperature of each crossbar in the hardware, leading to a 52% reduction
in the leakage power consumption (11% lower total energy consumption)
compared to a performance-oriented SNN mapping technique.

Keywords: Neuromorphic computing · Spiking Neural Network ·
Non-Volatile Memory (NVM) · Phase-Change Memory (PCM) ·
Temperature · Leakage power consumption · Crossbar

1 Introduction

Spiking Neural Networks (SNNs) are machine learning models designed with
spike-based computations and bio-inspired learning algorithms [36]. Neurons
c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 134–150, 2022.
https://doi.org/10.1007/978-3-030-95953-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_10&domain=pdf
http://orcid.org/0000-0002-2142-2283
http://orcid.org/0000-0002-5673-2636
https://doi.org/10.1007/978-3-030-95953-1_10

Thermal-Aware SNN Compilation 135

communicate information using spikes via synapses. SNNs are used to imple-
ment both supervised and unsupervised machine learning approaches. Our focus
is on supervised approaches, where a machine learning model is first trained
using training data, and then deployed for inference with in-field data.

Neuromorphic hardware such as TrueNorth [23], Loihi [22], and DYNAP-
SE [38] can significantly improve the energy efficiency of SNNs, thanks to
their event-driven computations, efficient implementations of biological neurons
using CMOS and FinFET technologies, and the use of Non-Volatile Memory
(NVM) such as Phase-Change Memory (PCM) [9,45,47–49], Oxide-base Resis-
tive RAM (OxRRAM) [37], and Spin-Transfer Torque Magnetic or Spin-Orbit-
Torque RAM (STT- and SoT-MRAM) [40] for high density synaptic storage.
Therefore, neuromorphic hardware can be used to implement machine learning
tasks on power-constrained environments such as embedded systems, and sensor
and edge devices of the Internet-of-Things (IoT) [26].

A neuromorphic hardware is implemented as a tile-based architecture [10]
with a shared interconnect in the form of Networks-on-Chip (NoC) or Segmented
Bus [8] (see Fig. 1a). A tile in a neuromorphic hardware is designed as a cross-
bar, which is an organization of top electrodes (wordlines) and bottom electrodes
(bitlines), with NVM-based synaptic elements at their intersections (Fig. 1b). A
synaptic element is connected to a bitline and a wordline using an access tran-
sistor (Fig. 1c). Within a crossbar, the pre-synaptic neurons are mapped on the
wordlines, while the post-synpatic neurons are mapped along the bitlines. An
n×n crossbar has n pre-synaptic neurons, n post-synaptic neurons, and n2 NVM
cells. A pre-synaptic neuron’s spike voltage from a wordline is multiplied with
the conductance of the NVM to generate a current. Currents from multiple word-
lines are integrated on a bitline, implementing forward propagation of neuron
excitation. This is illustrated in Fig. 1b.

Fig. 1. (a) Tile-based neuromorphic hardware. (b) A crossbar of a neuromorphic tile.
(c) An NVM-based synaptic cell consisting of an access transistor and an NVM.

We investigate the internal architecture of a crossbar and observe that the
bitlines and wordlines of a crossbar consist of parasitic elements, which consist
of capacitance and resistance of the metal interconnect as shown in Fig. 2. These
parasitic elements create variation in current propagating along different paths
in the crossbar. The figure illustrates the shortest and the longest current paths

136 T. Titirsha and A. Das

Fig. 2. Parasitc components on the bitlines and wordlines in a crossbar.

in a crossbar, where the length of a path is measured in terms of the number
of parasitic components that are present on the path. Current differences create
variation in access speed of the different synaptic elements in the crossbar [25,
50,54]. A conservative design practice is to use a common spike voltage to obtain
the required access speed of the synaptic element on the longest current path.

We argue that this conservative approach creates current differences in a
crossbar, leading to a wide thermal gradient. Figure 3 illustrates the current
and thermal variations in a 128 × 128 PCM crossbar at 65nm technology node.
Accessing the synaptic cells on shorter current paths (bottom left corner of
Fig. 3b) generate higher temperatures than those on longer current paths (top
right corner). Due to the exponential dependency of leakage current on temper-
ature [35], the leakage current through cells with higher temperature is much
higher than the current through cells with lower temperature. So, frequently
accessing the cells on shorter current paths when executing a workload can lead
to higher leakage power consumption in the crossbar.

Fig. 3. Current variation and temperature gradient in a 128 × 128 crossbar at 65 nm

process node with Tamb = 298K. The PCM crystallization point is 360K.

Thermal-Aware SNN Compilation 137

Existing techniques to map neurons and synapses of SNNs to neuromorphic
hardware have mostly focused on improving performance and circuit aging [1,4–
7,16,21,43,44,46]. These techniques do not consider the thermal gradient in a
crossbar and therefore, they can increase the leakage power significantly. We
build the case for one such mapping technique – SpiNeMap [5]. The leakage
energy using this technique constitute between 20% to 30% of the total energy
consumption for the typical machine learning workloads (see Sect. 4), where the
total energy of a neuromorphic hardware includes the energy to generate spikes,
the energy to communicate spikes, and the leakage energy. Therefore, reducing
the leakage power (which we demonstrate in this work) will lead to a significant
reduction of the total energy consumption.

Our goal is to minimize the leakage power consumption. We achieve this
goal by lowering the average temperature of each crossbar using the proposed
mapping technique. To this end, we make the following two key contributions.

– Contribution 1: We propose a new comprehensive thermal model of a cross-
bar designed with phase-change memory (PCM). Our model incorporates 1)
workload dependency, i.e., the temperature obtained in processing spike trains
from a given SNN-based machine learning workload, and 2) spatial thermal
dependencies, i.e., the temperature contributions from the neighboring cells
based on their synaptic excitation in the workload.

– Contribution 2: We propose a novel neuron and synapse mapping approach
incorporating the thermal model using a hill climbing heuristic. The objective
of the heuristic is to allocate the neurons and synapses of an SNN to the
crossbars of the hardware such that the maximum average temperature of all
crossbars is minimized, which lowers its leakage power consumption.

We evaluate the proposed technique with 10 machine learning applications
from three most commonly-used neural network topology – convolution neural
network (CNN), multilayer perceptron (MLP), and recurrent neural network
(RNN). Evaluation for DYNAP-SE [38], a state-of-the-art neuromorphic hard-
ware demonstrates the reduction of temperature, leading to a significant reduc-
tion in the leakage current.

2 Workload-Dependant Thermal Model of Crossbars

In this section, we develop a workload-dependent thermal model of crossbars in
a neuromorphic hardware, considering PCM-based synaptic elements. We start
by reviewing the internals of a PCM device. The proposed thermal model can be
generalized to other NVMs such as OxRRAM and SOT-/STT-MRAM exploiting
their specific structures.

Figure 4(a) illustrates how a chalcogenide semiconductor alloy is used to
build a PCM cell. The amorphous phase (logic ‘0’) in this alloy has higher
resistance than the crystalline phase (logic ‘1’). Ge2Sb2Te5 (GST) is the most
commonly used alloy for PCM [53] due to its high amorphous-to-crystalline resis-
tance ratio, fast switching between phases, and high endurance. However, other

138 T. Titirsha and A. Das

Fig. 4. (a) A PCM cell and (b) Current needed to operate a PCM cell.

chalcogenide alloys are also explored due to their better data retention proper-
ties [39]. Phase changes in a PCM cell are induced by injecting current into the
resistor-chalcogenide junction and heating the chalcogenide alloy.

Figure 4(b) shows the different current profiles needed to program and read
in a PCM device. To RESET a PCM cell, a high power pulse of short duration is
applied and quickly terminated. This first raises the temperature of the chalco-
genide alloy to 650◦C, above its melting point. The melted alloy subsequently
cools extremely quickly, locking into an amorphous phase. To SET a PCM cell,
the chalcogenide alloy is heated above its crystallization temperature, but below
its melting point for a sufficient amount of time. Finally, to read the content
(i.e., know the phase) of a PCM cell, a small electrical pulse is applied that is
sufficiently low so as not to induce phase change in the PCM cell. We focus on
PCM read for the inference of supervised machine learning approaches.

Fig. 5. Building thermal model of a PCM-based crossbar.

Many prior works have developed thermal models for PCM devices [11,31,
51]. However, these models are developed for individual PCM cell considering

Thermal-Aware SNN Compilation 139

the effect of crystallization and amorphization (synaptic weight updates in the
context of machine learning). In other words, these models have the following two
key limitations for their use in the context of neuromorphic computing. First,
they do not consider spatial dependencies, i.e., the thermal contributions from
neighboring PCM cells considering their utilization in a machine learning work-
load. Second, the thermal impact due to PCM reads (as required for machine
learning inference) is not modeled. Figure 5a shows the thermal interactions in a
crossbar. When a cell is accessed repeatedly within a short time window, there
remains very little scope for heat inside the cell to be dissipated. As a result tem-
perature keeps rising on every access, building on the undissipated components,
and dissipating the heat to its neighboring cells, raising their temperature.

Figure 5b shows the proposed iterative approach of computing the tempera-
ture of a crossbar. The model computes the temperature of a single PCM cell
incorporating 1) thermal contributions from its neighbors and 2) its activation
within a workload.

The temperature of a single PCM cell is computed using Joule heating, Wj

and heat dissipation, Wd which is given by the following equation [34],

TPCM =
∫

Wj − Wd

C × V
dt (1)

where C and V are heat capacity of GST and volume of the active region of the
cell respectively. The heat generation in the PCM cell is given by,

Wj = I2PCM × RPCM (2)

where IPCM is the current through the PCM cell and RPCM is the effective
resistance of the cell. We use RPCM = 10 KΩ in the low resistance (SET) state
and 200 KΩ in the high resistance (RESET) state. A part of this generated
heat is dissipated to the surrounding and this heat dissipation is given by the
Equation [33],

Wd = −k
∑

ΔT (3)

where ΔT represents the temperature dispersion around the active region and
expressed as,

ΔT =
∂TPCM

∂x
+

∂TPCM

∂y
+

∂TPCM

∂z
(4)

For simplicity we assume that the heat is mainly dispersed along the thickness
of the cell and the temperature outside the dispersion region is close to the
temperature surrounding the cell. Therefore, Eq. 3 can be written as [30,52],

Wd =
kV

l2
(TPCM − Tsurrounding) (5)

where l is the thickness of the GST material and k is the thermal conductivity.
Substitution of Eqs. 2 and 5 in Eq. 1 yields,

dTPCM

dt
=

Wj − Wd

C × V
(6)

140 T. Titirsha and A. Das

Solving this ODE gives,

TPCM =
I2PCMRPCM l2

kV
− C1exp

(
− kt

l2C

)
+ Tsurrounding (7)

Initially the PCM cell’s temperature is assumed to be the same as its surrounding
temperature. This boundary condition is used to determine the constant C1.
Finally the cell temperature is modeled as,

TPCM =
I2PCMRPCM l2

kV
−

[
1 − exp

(
− kt

l2C

)]
+ Tsurrounding (8)

The surrounding temperature Tsurrounding is computed as

Tsurrounding = Tamb +
∑

j

k · TPCMj
/Dj (9)

where Dj is the thermal distance of the PCM cell from its neighboring cell
j, TPCMj

is the temperature of the neighboring cell, and Tamb is the ambient
temperature of the neuromorphic hardware.

Equations 8 and 9 combine the following effects—1) temporal thermal effect
of accessing a PCM cell in a machine learning workload, 2) the spatial thermal
contributions from the neighboring cell based on their activation.

Finally, we use the PCM temperature TPCM to compute the leakage current
through the access transistor of the PCM cell using Eq. 10, where the fitting
parameters A and η, and the nominal parameters Inominal and Tnominal are
obtained using [3,14,17,18,20,35,41].

Ileakage ≈ A · Inominal (TPCM − Tnominal) η (10)

3 Proposed Neuron and Synapse Mapping Technique

Figure 6 shows an overview of the proposed neuron and synapse mapping app-
roach. A machine learning application is first simulated using PyCARL [2], a
framework for simulating SNN-based applications. PyCARL internally uses the
CARLsim [12] simulator to extract the precise spike times on every synaptic
element in the SNN for representative training data. These spike times, together

Fig. 6. Overview of the proposed technique.

Thermal-Aware SNN Compilation 141

with the neuron and synapse information constitute the SNN workload for the
machine learning application.

Next, the SNN workload is clustered using a greedy clustering approach,
roughly based on the Kernighan-Lin Graph Partitioning algorithm of SpiNe-
Map [28]. Each cluster is a collection of pre- and post-synaptic neurons, synapses
connecting these neurons, and the spike times on these synapses. From the map-
ping perspective, each cluster maps to a crossbar in the hardware, while the
inter-cluster communication channels are mapped on the shared interconnect of
the hardware. Therefore, the clustering technique ensures that the neurons and
synapses of a cluster can fit onto the resources of the crossbar. PyCARL clusters
an SNN to minimize the inter-cluster communication. This reduces the spike
congestion on the shared interconnect which improves application latency.

The final step in our approach is the cluster mapping to the hardware. To
describe this step, let G(C, S) be the machine learning workload with set C of
clusters and a set S of connections between the clusters. The workload is to
be executed on the hardware H(T , L) with a set T of tiles (each tile has one
crossbar) and a set L of links between the tiles. The mapping of the application
G to the hardware H, M = {mx,y} is defined as

mx,y =

{
1 if cluster cx ∈ C is mapped to tile ty ∈ T

0 otherwise
(11)

Algorithm 1: Generate neuron and synapse mapping M to minimize the
average temperature of crossbars.

Input: G, H
Output: M

1 for i in MaxIter do
2 Minit = allocate clusters to crossbars randomly;
3 Tinit = CalculateAvgTemperature(Minit);
4 do
5 for cx ∈ C do
6 for ty ∈ T do

7 My = Minit
∣
∣mx,z =

{

1 if z = y

0 otherwise
/* Move cx to tile ty and

generate the new mapping My. */
8 Ty = CalculateAvgTemperature(My);

9 end

10 xidx = argmin {Ty

∣
∣y ∈ 1, 2, · · · , |T |}/* Find the index of the

mapping with the minimum temperature. */
11 if Ty < Tmin then

12 Tmin = Ty and Mmin = My/* Update the mapping if the

average temperature reduces. */
13 end

14 end

15 while Tmin < Tinit;

16 end
17 Return Minit

142 T. Titirsha and A. Das

Algorithm 1 provides the pseudo-code of the hill-climbing based average tem-
perature minimization algorithm. The algorithm takes the clustered application
G and the neuromorphic hardware H as input. The algorithm returns the map-
ping of G to H, which minimizes the average temperature of the crossbars. The
algorithm is iterated for MaxIter iterations (outer loop lines 1–16). For each
iteration of the outer loop, the algorithm generates a random allocation of the
clusters to the tiles (line 2) and calculate the average temperature (line 3). The
routine CalculateAvgTemperature calculates the temperature of each crossbar
for a mapping M using the iterative approach of Fig. 5b, specifically utilizing
Eqs. 8 & 9, and return the maximum average temperature of all crossbars in the
neuromorphic hardware.

At each iteration of the Algorithm 1, a cluster is moved to one of the tiles
(line 7), computing the average temperature of this new mapping (line 8). The
one mapping that leads to reduction of the average temperature is retained as
the new mapping (lines 10–13) and the process is repeated for the next cluster
(5–14). Once every cluster is analyzed, the iteration is repeated (lines 4–15) to
check if the clusters can be remapped again to reduce the average temperature.
The user-defined parameter MaxIter governs the convergence of the algorithm.

Algorithm Complexity: The complexity of Algorithm 1 is calculated as fol-
lows. Let the inner loop (lines 4–15) be executed ζ times on average. At each
of these iterations, the algorithm performs |C| × |T | operations. Therefore, the
complexity of Algorithm 1 is O(MaxIter × ζ × |C| × |T |).

4 Evaluation

4.1 Evaluated Applications

We evaluated 10 machine learning applications that are representative of three
most commonly used neural network classes—convolutional neural network
(CNN), multi-layer perceptron (MLP), and recurrent neural network (RNN).
Table 1 summarizes the topology, the number of neurons and synapses of these
applications, and their baseline accuracy.

Table 1. Applications used to evaluate the proposed technique.

Class Applications Synapses Neurons Topology Accuracy

CNN LeNet [32] 282,936 20,602 CNN 85.1%

AlexNet [29] 38,730,222 230,443 CNN 90.7%

VGG16 [42] 99,080,704 554,059 CNN 69.8 %

HeartClass [3,15] 1,049,249 153,730 CNN 63.7%

MLP DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%

EdgeDet [12] 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%

ImgSmooth [12] 9,025 4,096 FeedForward (4096, 1024) 100%

RNN HeartEstm [13] 66,406 166 Recurrent reservoir 100%

VisualPursuit [27] 163,880 205 Recurrent reservoir 47.3%

R-DigitRecog [24] 11,442 567 Recurrent reservoir 83.6%

Thermal-Aware SNN Compilation 143

4.2 Hardware Models

We model the DYNAP-SE neuromorphic hardware [38] with the following con-
figurations.

– A tiled array of 4 tiles, each with a 128 × 128 crossbar. There are 65,536
memristors per crossbar.

– Spikes are digitized and communicated between cores through a mesh routing
network using the Address Event Representation (AER) protocol.

– Each synaptic element is a PCM-based memristor.

Table 2 reports the hardware parameters of DYNAP-SE.

Table 2. Major simulation parameters extracted from [38].

Neuron technology 32 nm FD-SOI

Synapse technology PCM

Supply voltage 1.0 V

Energy per spike 50 pJ at 30Hz spike frequency

Energy per routing 147 pJ

Switch bandwidth 1.8 G. Events/s

4.3 Evaluated Techniques

We evaluate the following two approaches.

– SpiNeMap [5]: This is a performance-oriented approach to map SNN-based
applications to neuromorphic hardware. This approach first generates clusters
of neurons and synapses, where each cluster can fit on to the resources of a
tile in the hardware. Then, it uses an optimization algorithm to place these
clusters to the hardware, maximizing performance of the machine learning
application on the hardware. Temperature gradients are not incorporated in
the mapping process.

– Proposed: In this technique the neurons and synapses of an SNN are mapped
to the hardware considering the thermal gradient. It uses the clustering tech-
nique of SpiNeMap to generate clusters of neurons and synapses, where each
cluster can fit on to the resources of a tile. The clusters are mapped to the
crossbar using a hill-climbing approach to minimize the average temperature.
This reduces the leakage power consumption.

144 T. Titirsha and A. Das

4.4 Evaluated Metrics

We evaluate the following metrics.

– Average Temperature: This is the average temperature of each crossbar
in the hardware. We report the highest average temperatures of all crossbars.

– Leakage Power: This is the total leakage power consumed in the hardware.
– Performance: This is the latency, i.e., the time it takes to execute each

model on hardware.
– Compilation Time: This is the time it takes to generate the minimum

temperature mapping of an application for the hardware.

5 Results and Discussion

5.1 Average Temperature

Figure 7 compares the maximum average temperature of the crossbars for each
evaluated application on DYNAP-SE using SpiNeMap and the proposed tech-
nique. We make the following two key observations.

Le
Ne
t

Al
ex
Ne
t

VG
G1
6

He
ar
tC
la
ss

M
LP
-M

NI
ST

Ed
ge
D
et

Im
gS
m
oo
th

He
ar
tE
st
m

Vi
su
al
Pu
rs
ui
t

R-
D
ig
itR

ec
og

AV
ER

AG
E

300

320

340

360

M
ax
im

um
av
er
ag
e

te
m
pe
ra
tu
re

(K
)

SpiNeMap Proposed

Fig. 7. Maximum average temperature of the crossbars on DYNAP-SE.

First, the maximum average temperature increases with model size. VGG16,
which has more neurons and synapses than AlexNet (see Table 1), results in
higher average temperature than AlexNet for both SpiNeMap and the proposed
technique. MLP-MNIST, on the other hand, have lower temperature than both
these models due to its lower model complexity. Although R-DigitRecog has
comparatively fewer neurons and synapses, the average temperature is much
higher. This is because R-DigitRecog has higher activation, i.e., spikes in its
workload, which increases the temperature. These results clearly demonstrate the
workload-dependent nature of the temperature obtained on the hardware. Sec-
ond, the temperature obtained using the proposed mapping technique is lower
than SpiNeMap by an average 11.4 K (between 6.4 K and 17 K) for these 10
applications. This reduction is because of the proposed hill climbing algorithm
(Algorithm 1), which incorporates the thermal gradient in optimizing the map-
ping of neurons and synapses to the crossbars of the hardware.

Thermal-Aware SNN Compilation 145

5.2 Leakage Power

Figure 8 compares the leakage power on DYNAP-SE for each evaluated applica-
tion using SpiNeMap and the proposed technique. The leakage power constitute
between 20%–30% (average 22.8%) of the total energy consumption in the hard-
ware. Results are normalized with respect to the leakage power obtained on the
hardware using SpiNeMap. We observe that the leakage power obtained using
the proposed technique is lower than SpiNeMap by an average 52%. This signif-
icant improvement in the leakage power is due to the reduction of the average
temperature of the crossbars, which we analyzed in Sect. 5.1. This reduction in
leakage power results in a reduction of the total energy consumption by 11%.

Le
Ne
t

Al
ex
Ne
t

VG
G1
6

He
ar
tC
la
ss

M
LP
-M

NI
ST

Ed
ge
D
et

Im
gS
m
oo
th

He
ar
tE
st
m

Vi
su
al
Pu
rs
ui
t

R-
D
ig
itR

ec
og

AV
ER

AG
E

0

1

N
or
m
al
iz
ed

le
ak
ag
e
po
w
er

SpiNeMap Proposed

Fig. 8. Normalized leakage power on DYNAP-SE.

5.3 Performance

Figure 9 compares the latency of SpiNeMap and the proposed technique on
DYNAP-SE for the evaluated applications. We observe that the latency of the
proposed technique is only 5% higher (average) than SpiNeMap. Although the
optimization objective of SpiNeMap (which is performance) is different from the
optimization objective of the proposed technique (which is temperature), the
proposed technique uses the clustering technique of SpiNeMap to first generate
clusters, minimizing the spike communication on the shared interconnect of the
hardware. This results in lower spike latency. Therefore, in the next step when
the proposed technique optimizes for temperature during placement of the clus-
ters to crossbars of the hardware, the latency is not significantly higher than
SpiNeMap.

5.4 Thermal Model Validation

We validate our thermal model against 1) the thermal model of [55], which mod-
els the temperature of a single PCM cell and 2) the detailed model of [19], which
performs a detailed layout-based thermal simulations. The individual PCM cell
model is fast. However, it does not incorporate the thermal contributions from
neighboring PCM cells in a crossbar. Therefore, this model is not accurate. On

146 T. Titirsha and A. Das

Le
Ne
t

Al
ex
Ne
t

VG
G1
6

He
ar
tC
la
ss

M
LP
-M

NI
ST

Ed
ge
D
et

Im
gS
m
oo
th

He
ar
tE
st
m

Vi
su
al
Pu
rs
ui
t

R-
D
ig
itR

ec
og

AV
ER

AG
E

0.9

1.0

1.1

1.2
N
or
m
al
iz
ed

la
te
nc
y SpiNeMap Proposed

Fig. 9. Normalized latency on DYNAP-SE.

the other hand, the model in [19] is accurate because it incorporates the spatial
thermal contributions. However, it takes 30 min of wall clock time to perform
each thermal simulation for a 128 × 128 crossbar. Therefore, incorporating this
model in Algorithm 1 to evaluate the temperature of a mapping makes the explo-
ration time infeasible. Instead, we validated our spatial formulation (Eq. 9) by
incorporating this equation into the framework of [19].

Figure 10 plots the peak temperature obtained using the model of [55] and
the proposed model (Eq. 8 and 9) for each evaluated application on DYNAP-SE.
We observe that existing models such as [55] lead to underestimation of the peak
temperature by an average 1.6K for these applications. This is because they do
not incorporate the spatial dependency. Underestimation of temperature leads
to an underestimation of the leakage power consumption of the hardware.

Le
Ne
t

Al
ex
Ne
t

VG
G1
6

He
ar
tC
la
ss

M
LP
-M

NI
ST

Ed
ge
D
et

Im
gS
m
oo
th

He
ar
tE
st
m

Vi
su
al
Pu
rs
ui
t

R-
D
ig
itR

ec
og

AV
ER

AG
E

300

320

340

360

Pe
ak

te
m
pe
ra
tu
re

(K
)

Single-Cell Thermal Model [46] Proposed

Fig. 10. Comparison of Peak temperature.

Figure 11 plots the spatial contribution obtained using the model of [19] and
the proposed model (Eq. 9) for 10 synthetic applications. We observe that the
accuracy of the proposed spatial model is close to that of the detailed model [19].
The spatial contribution obtained using Eq. 9 is on average 8.2% lower than [19]
(0.3K in absolute terms).

These results validate the thermal model proposed in this work.

Thermal-Aware SNN Compilation 147

sy
nt
h
0

sy
nt
h
1

sy
nt
h
2

sy
nt
h
3

sy
nt
h
4

sy
nt
h
5

sy
nt
h
6

sy
nt
h
7

sy
nt
h
8

sy
nt
h
9

AV
ER

AG
E

0.0

0.5

1.0

1.5
Sp

at
ia
lc
on
tr
ib
ut
io
n
(K

)
Proposed Time-Consuming Detailed Thermal Model [16]

Fig. 11. Comparison of spatial contribution.

5.5 Compilation Time and Solution Tradeoff

Table 3 reports the compilation time and the average temperature obtained for
three different settings of the variable MaxIter. We observe that as MaxIter is
increased, the average temperature reduces for all applications. This is because
with increase in the number of iterations, Algorithm 1 is able to find a better
solution. However, the compilation time also increases. Finally, we observe that
increasing MaxIter from 100 to 1000 results in a significant increase in compila-
tion time with a minimal improvement of the average temperature. We conclude
that setting MaxIter = 100 gives the best trade-off in terms of compilation time
and the solution quality. User can use this MaxIter parameter to set a limit
on the compilation time of their algorithm by analyzing the complexity of their
model against the ones we evaluate (see Table 1).

Table 3. Compilation time and solution tradeoff.

Application MaxIter = 10 MaxIter = 100 MaxIter = 1000

Compilation

time (sec)

Avg.

temperature

(K)

Compilation

time (sec)

Avg.

temperature

(K)

Compilation

time (sec)

Avg.

temperature

(K)

LeNet 26 326.3 259 323.2 2641 322.2

AlexNet 114 330.1 1144 327.6 11480 326.0

VGG16 241 344.6 2413 335.8 24180 335.3

HeartClass 96 315.1 965 311.3 9699 309.9

MLP-MNIST 14 319.7 149 313.2 1520 311.6

EdgeDet 12 323.5 132 321.5 1337 320.8

ImgSmooth 26 327.11 268 324.7 2740 322.8

HeartEstm 12 328.2 125 321.8 1255 320.4

VisualPursuit 27 329.1 284 319.2 2883 318.7

R-DigitRecog 15 336.3 159 328.5 1615 327.9

6 Conclusions

We propose a technique to map the neurons and synapses of SNN-based machine
learning applications to neuromorphic hardware. Prior work in this space have

148 T. Titirsha and A. Das

focused extensively on performance, with no consideration of the thermal aspects
and the associated leakage power problem in the hardware. Our technique is
based on two key contributions. First, we propose a new thermal model of a
crossbar incorporating contributions from the adjacent cells. Second, we incor-
porate this thermal model in a hill-climbing approach to minimize the average
temperature across the crossbars of the hardware. We evaluate our approach
using 10 machine learning applications and show the significant reduction of the
average temperature of the hardware. By lowering the average temperature, we
also show a reduction of leakage power consumption.

Acknowledgment. This work is supported by the National Science Foundation Fac-
ulty Early Career Development Award CCF-1942697 (CAREER: Facilitating Depend-
able Neuromorphic Computing: Vision, Architecture, and Impact on Programmability).

References

1. Balaji, A., et al.: A framework to explore workload-specific performance and life-
time trade-offs in neuromorphic computing. CAL 18, 149–152 (2019)

2. Balaji, A., Adiraju, P., Kashyap, H.J., Das, A., Krichmar, J.L., Dutt, N.D.,
Catthoor, F.: PyCARL: a PyNN interface for hardware-software co-simulation of
spiking neural network. In: IJCNN (2020)

3. Balaji, A., Corradi, F., Das, A., Pande, S., Schaafsma, S., Catthoor, F.: Power-
accuracy trade-offs for heartbeat classification on neural networks hardware.
JOLPE 14, 508–519 (2018)

4. Balaji, A., Das, A.: A framework for the analysis of throughput-constraints of snns
on neuromorphic hardware. In: ISVLSI (2019)

5. Balaji, A., et al.: Mapping spiking neural networks to neuromorphic hardware.
TVLSI 28, 76–86 (2020)

6. Balaji, A., Marty, T., Das, A., Catthoor, F.: Run-time mapping of spiking neural
networks to neuromorphic hardware. JSPS 92, 1293–1302 (2020)

7. Balaji, A., et al.: Enabling resource-aware mapping of spiking neural networks via
spatial decomposition. ESL 13, 142–145 (2021)

8. Balaji, A., Wu, Y., Das, A., Catthoor, F., et al.: Exploration of segmented bus as
scalable global interconnect for neuromorphic computing. In: GLSVLSI (2019)

9. Burr, G.W., Shelby, R.M., et al.: Neuromorphic computing using non-volatile mem-
ory. Adv. Phys.: X 2, 89–124 (2017)

10. Catthoor, F., Mitra, S., Das, A., Schaafsma, S.: Very large-scale neuromorphic
systems for biological signal processing. In: Mitra, S., Cumming, D.R.S. (eds.)
CMOS Circuits for Biological Sensing and Processing, pp. 315–340. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-67723-1 13

11. Chen, I.R., Pop, E.: Compact thermal model for vertical nanowire phase-change
memory cells. TED 56, 1523–1528 (2009)

12. Chou, T.S., et al.: CARLsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters. In: IJCNN
(2018)

13. Das, A., et al.: Unsupervised heart-rate estimation in wearables with Liquid states
and a probabilistic readout. Neural Netw. 99, 134–147 (2018)

14. Das, A., Catthoor, F., Bourdoux, A., Gyselinckx, B.: Energy-efficient mapping of
LTE-A PHY signal processing tasks on microservers. TGCN 2, 397–407 (2018)

https://doi.org/10.1007/978-3-319-67723-1_13

Thermal-Aware SNN Compilation 149

15. Das, A., Catthoor, F., et al.: Heartbeat classification in wearables using multi-layer
perceptron and time-frequency joint distribution of ECG. In: CHASE (2018)

16. Das, A., Kumar, A.: Dataflow-based mapping of spiking neural networks on neu-
romorphic hardware. In: GLSVLSI (2018)

17. Das, A., Kumar, A., Veeravalli, B.: Communication and migration energy aware
design space exploration for multicore systems with intermittent faults. In: DATE
(2013)

18. Das, A., Kumar, A., Veeravalli, B.: Communication and migration energy aware
task mapping for reliable multiprocessor systems. FGCS 30, 216–228 (2014)

19. Das, A., Kumar, A., Veeravalli, B.: Reliability and energy-aware mapping and
scheduling of multimedia applications on multiprocessor systems. TPDS 27, 869–
884 (2015)

20. Das, A., Walker, M.J., Hansson, A., Al-Hashimi, B.M., Merrett, G.V.: Hardware-
software interaction for run-time power optimization: a case study of embedded
Linux on multicore smartphones. In: ISLPED (2015)

21. Das, A., Wu, Y., Huynh, K., Dell’Anna, F., Catthoor, F., Schaafsma, S.: Mapping
of local and global synapses on spiking neuromorphic hardware. In: DATE (2018)

22. Davies, M., Srinivasa, N., et al.: Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38, 82–99 (2018)

23. Debole, M.V., Taba, B., et al.: TrueNorth: accelerating from zero to 64 million
neurons in 10 years. Computer 52, 20–29 (2019)

24. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

25. Fouda, M.E., Eltawil, A.M., Kurdahi, F.: Modeling and analysis of passive switch-
ing crossbar arrays. TCAS I: Regular Pap. 65, 270–282 (2017)

26. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. FGCS 29, 1645–1660 (2013)

27. Kashyap, H.J., et al.: A recurrent neural network based model of predictive smooth
pursuit eye movement in primates. In: IJCNN (2018)

28. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Techn. J. 49, 291–307 (1970)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

30. Kwong, K.C., Li, L., He, J., Chan, M.: Verilog-a model for phase change memory
simulation. In: ICSICT (2008)

31. Le Gallo, M., Athmanathan, A., Krebs, D., Sebastian, A.: Evidence for thermally
assisted threshold switching behavior in nanoscale phase-change memory cells. J.
Appl. Phys. 119, 025704 (2016)

32. LeCun, Y., et al.: LeNet-5, convolutional neural networks (2015)
33. Liao, Y.B., Chen, Y.K., Chiang, M.H.: An analytical compact PCM model account-

ing for partial crystallization. In: EDSSC (2007)
34. Liao, Y.B., Lin, J.T., Chiang, M.H.: Temperature-based phase change memory

model for pulsing scheme assessment. In: ICICDT (2008)
35. Liu, Y., Dick, R.P., Shang, L., Yang, H.: Accurate temperature-dependent inte-

grated circuit leakage power estimation is easy. In: DATE (2007)
36. Maass, W.: Networks of spiking neurons: the third generation of neural network

models. Neural Netw. 10, 1659–1671 (1997)
37. Mallik, A., Garbin, D., Fantini, A., Rodopoulos, et al.: Design-technology co-

optimization for OxRRAM-based synaptic processing unit. In: VLSIT (2017)

150 T. Titirsha and A. Das

38. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs). TBCAS 12, 106–122 (2017)

39. Morikawa, T., Kurotsuchi, K., Kinoshita, M., et al.: Doped in-Ge-Te phase change
memory featuring stable operation and good data retention. In: IEDM (2007)

40. Ramasubramanian, S.G., Venkatesan, R., Sharad, M., et al.: SPINDLE: spintronic
deep learning engine for large-scale neuromorphic computing. In: ISLPED (2014)

41. Shafik, R.A., Das, A., Yang, S., Merrett, G., Al-Hashimi, B.M.: Adaptive energy
minimization of OpenMP parallel applications on many-core systems. In: PARMA-
DITAM (2015)

42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv (2014)

43. Song, S., Balaji, A., Das, A., Kandasamy, N., Shackleford, J.: Compiling spiking
neural networks to neuromorphic hardware. In: LCTES (2020)

44. Song, S., Das, A.: A case for lifetime reliability-aware neuromorphic computing.
In: MWSCAS (2020)

45. Song, S., Das, A., Kandasamy, N.: Exploiting inter- and intra-memory asymmetries
for data mapping in hybrid tiered-memories. In: ISMM (2020)

46. Song, S., Das, A., Kandasamy, N.: Improving dependability of neuromorphic com-
puting with non-volatile memory. In: EDCC (2020)

47. Song, S., Das, A., Mutlu, O., Kandasamy, N.: Enabling and exploiting partition-
level parallelism (PALP) in phase change memories. TECS 18, 1–25 (2019)

48. Song, S., Das, A., Mutlu, O., Kandasamy, N.: Improving phase change memory
performance with data content aware access. In: ISMM (2020)

49. Song, S., Das, A., Mutlu, O., Kandasamy, N.: Aging aware request scheduling for
non-volatile main memory. In: ASP-DAC (2021)

50. Titirsha, T., Das, A.: Reliability-performance trade-offs in neuromorphic comput-
ing. In: CUT (2020)

51. Warren, R., Reifenberg, J., Goodson, K.: Compact thermal model for phase change
memory nanodevices. In: ICTTPES (2008)

52. Wei, Y., Lin, X., Jia, Y., Cui, X., He, J., Zhang, X.: A SPICE model for a phase-
change memory cell based on the analytical conductivity model. JOS 33, 114004
(2012)

53. Wong, H.S.P., et al.: Phase change memory. In: Proceedings of the IEEE (2010)
54. Woo, J., Yu, S.: Resistive memory-based analog synapse: the pursuit for linear and

symmetric weight update. IEEE Nanotechnol. Mag. 12, 36–44 (2018)
55. Xi, L., Zhitang, S., Daolin, C., Xiaogang, C., Houpeng, C.: An spice model for

phase-change memory simulations. JOS 32, 094011 (2011)

A Quantum-Inspired Model for Bit-Serial
SIMD-Parallel Computation

Henry Dietz(B), Aury Shafran, and Gregory Austin Murphy

University of Kentucky, Lexington, KY 40506, USA
hankd@engr.uky.edu

http://aggregate.org/hankd

Abstract. Bit-serial SIMD-parallel execution was once commonly
used in supercomputers, but fell out of favor as it became prac-
tical to implement word-level operations directly in MIMD hard-
ware. Word-level primitive operations simplify programming and
significantly speed-up sequential code. However, aggressive gate-
level compiler optimization can dramatically reduce power con-
sumed in massively-parallel bit-serial execution without a perfor-
mance penalty. The model described here, Parallel Bit Pattern
Computing, not only leverages gate-level just-in-time optimization
of bit-serial code, but also uses a quantum-inspired type of symbolic
execution based on regular expressions to obtain a potentially expo-
nential reduction in computational complexity while using entirely
conventional computer hardware.

Keywords: Bit-serial SIMD · Quantum computing · Qubit · Logic
optimization · Regular expressions · Just in time compilation · C++

1 Introduction

Bit-serial SIMD supercomputing is not a new topic for the Languages and Com-
pilers for Parallel Computing (LCPC) community; much of the work presented
in the first two decades of this workshop series targeted such machines. However,
the current work is largely focused on applying compiler technology at the level
of individual gate operations, and such techniques are far less well studied. The
2017 “How Low Can You Go?” paper [1] was an attempt to inspire more work
in that direction, and much of what it suggested is implemented in the system
described in this paper.

The parallel bit pattern model of computation [2] shares two important prop-
erties with quantum computing:

– Both quantum computing and parallel bit pattern computing provide execu-
tion mechanisms that have the potential for a single unit of computational
work to produce results for exponentially many data values using the concepts
of superposition and entanglement. Quantum computers seek these benefits

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 151–159, 2022.
https://doi.org/10.1007/978-3-030-95953-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_11

152 H. Dietz et al.

by implementing qubits using quantum phenomena. In contrast, pattern bits,
or pbits, use symbolic computation on a compressed bit vector rep-
resentation – a bit pattern, which can be manipulated efficiently using
conventional computer hardware.

– Both focus on optimizing computations at the gate level. Quantum computers
are directly programmed at that low level, expecting programmers to manu-
ally optimize the gate-level code. In contrast, parallel bit pattern computing
leverages gate-level compiler optimization technology at runtime to
allow not only programming at the gate level, but also at a higher level, using
relatively conventional operators and data types including variable-precision
integers: pints.

Parallel bit pattern computing is neither a simulation of quantum computing nor
a compatible replacement for quantum hardware. It offers a new high-level pro-
gramming model, and bit-serial parallel execution model, that together enable
conventionally-constructed computers to efficiently use superposition and entan-
glement to implement a large class of quantum-inspired algorithms. The model is
fundamentally stronger than quantum models because it allows non-destructive
measurement and values may be maintained for arbitrarily long without deco-
herence. Of course, all this is accomplished while aggressively using compiler
optimization to dramatically reduce the total number of gate-level operations
that must be executed to perform each computation, thus potentially reducing
the power consumed.

Fig. 1. Representations: Bloch Sphere qubit ; AoV and AoB 2-way entangled pbit

1.1 Representation of Entangled Superposition

Figure 1 shows three different ways in which superposed values can be rep-
resented. The value of a qubit is commonly modeled as a real-valued, two-
dimensional, probability density function: the Bloch Sphere [3]. Instead of using
that model, an e-way entangled pbit value can be represented as an array of 2e

values (AoV), in which each possible multi-bit value is an element: an entangled
pair of pbit initialized to equiprobable {0, 1, 2, 3} is shown. However, the AoV

A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation 153

layout does not provide the benefits sought by bit-serial execution. Thus, con-
sider turning that representation – a trick used to integrate word-based floating
point units with massively-parallel bit-serial execution in the Thinking Machines
CM2 [4]. Thus, the value of each pbit is an array of 2e bits (AoB), entangled
values are bits with the same array index (i.e., using the same entanglement
channels), and value probabilities are not real numbers, but always integer parts
per 2e.

The AoB representation offers one more huge benefit: low entropy. The bit
values often have relatively simple repeating patterns, which we can compress
by representation as a regular expression (RE). In the AoB example above,
{0,1,0,1} can reduce to (01)2 and {0,0,1,1} is 0212 by simple run-length encod-
ing. By storing and operating directly on REs, parallel bit pattern computing
reduces both storage requirements and computational complexity by as much
as an exponential factor... essentially the same goal sought by quantum com-
puting, but achieved using partially symbolic parallel execution on conventional
hardware.

1.2 A pbit-Level Example

Even at the pbit level, storage space for values is automatically managed. Also
unlike quantum computers, programs are not restricted to using reversible gates
like NOT (Pauli X), CNOT, SWAP, CCNOT (Toffoli), and CSWAP (Fredkin). They can
be used, but so can conventional gates and fanout. For example, a 1-bit full
adder computing a+b+cin to produce sum and cout could be:

pbit sum = pbit_xor(pbit_xor(a,b),cin);
pbit cout = pbit_or(pbit_and(a,b),pbit_and(pbit_xor(a,b),cin));

Of course, pbit xor(a,b) will be evaluated only once, but the really interesting
thing is that values for a, b, and cin can be 3-way entangled superpositions of all
8 possible input values. To do this, each input must be given a Hadamard value
on it’s own entanglement channel (a concept unique to parallel bit patterns):

pbit a = PBIT_H(0); // a is (01)+
pbit b = PBIT_H(1); // b is (0011)+
pbit cin = PBIT_H(2); // cin is (00001111)+

The result of performing the add is thus that sum gets the value (01101001)+
and cout gets (00010111)+. Unlike quantum computers, this entangled super-
position does not collapse into a single value when measured; any or all of the
values can be read. In fact, the entire probability distribution can be read with-
out need to repeat the computation: in this case, the 2-bit {cout,sum} results
would be 1/8 {0,0}, 3/8 {0,1}, 3/8 {1,0}, and 1/8 {1,1}.

These REs can be simplified using run-length encoding: cout is (03110113)+.
Execution walks these RE patterns without expanding them to AoB form. Over-
head of this symbolic manipulation is reduced by using larger symbols in the

154 H. Dietz et al.

RE; rather than patterns of individual bits, the current prototype treats each
4096-bit chunk as a symbol. This also allows massively-parallel execution of gate
operations over the bits within each chunk, and applicative caching can avoid
recomputation when a chunk result is available from a prior computation.

1.3 Two pint-Level Examples

Moving up to the pint level, consider the problem of computing the square
root of the 16-bit value 29929, which is 173. Rather than using a conventional
algorithm, this can be computed by squaring all 8-bit values and selecting only
the values that produced 29929. The complete code is simply:

int main(int argc, char **argv) {
pint_init();
pint a = pint_mk(16, 29929); // 16-pbit value 29929
pint b = pint_h(8, 0xff); // H(0) .. H(7)
pint c = pint_mul(b, b); // square them
pint d = pint_eq(c, a); // where square equals 29929
pint e = pint_mul(d, b); // make non-sqrts all 0
pint_measure(e); // prints 0, 173

}

Notice that multiplying two 8-bit values naturally produces a 16-bit result (which
here is 8-way entangled). This pint computation is implemented by just 310 gate-
level pbit operations. The obvious algorithm to find all factors of 221 is similar,
but creates a 16-way entangled space from two 8-way entangled values:

int main(int argc, char **argv) {
pint_init();
pint a = pint_mk(8, 221); // 8-pbit value 221=13*17
pint b = pint_h(8, 0x00ff); // H(0) .. H(7)
pint c = pint_h(8, 0xff00); // H(8) .. H(15)
pint d = pint_mul(b, c); // multiply them
pint e = pint_eq(d, a); // where product equals 221
pint f = pint_mul(e, b); // make non-factors all 0
pint_measure(f); // prints 0, 1, 13, 17, 221

}

The number of values found in this measurement trivially determines primality.
Any value thus factored will list at least 0, 1, and itself; if that is all, the number
is prime. If there are four listed, then the number is the square of a prime. If
there are five, the number is the product of two primes – the prime factors.
Of course, much more efficient algorithms are possible, but the elegance of this
example is a compelling argument for investigating this model further.

The remainder of this paper discusses some of the more interesting aspects
of the current implementation of the parallel bit pattern computing model.

A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation 155

2 The Prototype Implementation

The latest prototype implementation consists of 2,713 lines (59KB) of C source
code, originally written by Dietz and significantly improved by Shafran in Spring
2020. There are expected to be five major layers in the implementation of this
model, four of which are operational at this writing. The lowest level is the chunk
management. Above that layer is the factored bit parallel (FBP) or pattern layer,
which manages regular expression values of pbits. The pbit layer is next, con-
structing optimized DAGs (directed acyclic graphs) for pbit-level computations.
The pint layer handles arithmetic and other operations on variable-precision
multi-pbit signed and unsigned integer values. The top layer, which is not yet
complete, essentially wraps the pint layer in C++ constructs that allow pints
to be directly manipulated in a C++ program as though they were a built-in
data type. These layers are described in the following subsections.

2.1 The Chunk Management Layer

As mentioned in Sect. 1.2, the REs are currently expressed as patterns of 4096-bit
chunk values within a potential 4294967296-bit AoB representation for 32-way
entanglement. The chunk management layer implements a pool for allocation
of chunk data blocks in an aligned, contiguous, region of memory. The data is
kept separate from the management structures to ensure optimal alignment with
cache lines, page table entries, and parallel execution structures. In Spring 2020,
Murphy began work on parallel evaluation within a CUDA GPU, but parallel
execution is currently within the host processor.

Chunks are indexed by a hash table containing many buckets (to keep loading
light), each of which heads a dual-linked list of hash entries. Each hash entry
not only points at the corresponding chunk data, but also contains a reference
count tracking how many higher-level structures still have live pointers to this
chunk entry. Duplicate chunks are recognized and only unique live chunks are
stored. Reusing chunk memory as soon as possible is intended to improve cache
and translation lookaside buffer performance.

2.2 The Factored Bit Parallel (FBP) Pattern Layer

The representation of a pbit value as a regular expression in which chunks are
the basic symbols is managed by the factored bit parallel (FBP) layer.

As Table 1 shows, many FBP operations still have worst-case complexity that
is exponential. Note that, using a more conventional (e.g., AoV) model of com-
putation, all of the pbit operations would have at least 232 work complexity,
and there would be more total work to perform because bit-serial optimiza-
tions [1] would not have been applied. In contrast, RE-based FBP makes 232 an
unlikely worst case. The 220 limits come from operations acting only on the sym-
bols within a regular expression, rather than operating (in parallel) on the 4096
bits in each chunk. Lower-entropy regular expressions and applicative caching of
chunk operations make the expected complexities far lower; any operation with

156 H. Dietz et al.

no more than 12-way entanglement takes unit time, and a symbol repeated N
times in an FBP regular expression typically would be evaluated only once.

Contrast these complexities with a true quantum computer supporting 32-
way entanglement (which none yet support). Complexity would be constants for
SWAP, CSWAP, CCNOT, and NOT. However, the other operations are not directly
implementable. In fact, the no cloning theorem implies implementing operations
like POP or even non-destructive measurement is impossible. Many complex quan-
tum algorithms, such as Shor’s algorithm [5], owe their complexity to statistically
approximating such operations (typically using phase interference).

Table 1. Complexities of 32-way entangled FBP operations with 4096-bit chunks

Time Work Operations

1 1 SWAP gate; ALL, ANY reduction; non-destructive measurement

1..220 1..220 DUP; POPulation count; simplify regular expression

1..220 1..232 CSWAP, CCNOT, NOT, AND, OR, XOR gates

2.3 The pbit Layer

Quantum computing compilation and/or simulation environments generally
define, and expose to users, some simple syntax for expressing operations on
qubits: a “quantum assembly language.” For example, Quil [6], OpenQASM [7],
and cQASM [8] all implement similar syntax for specifying operations on qubits.
However, that approach is not well suited to specification of FBP operations.
One problem is the mismatch between basic operations provided: the various
quantum assembly languages all provide direct operations on quantum wave
functions and only adiabatic logic gates, whereas FBP does not model wave
functions at all and provides a variety of both adiabatic and conventional types
of logic gates. However, there is a larger incompatibility: pbit layer operations
are normally not textually represented in a program, nor are they static; aggres-
sive optimization and pbit (register) allocation are done at runtime.

As is discussed in Sect. 2.4, the pbit layer is really intended to serve as
an internal framework for just-in-time compilation and optimization of work
specified at the pint level. When specifying a computation using sequences of
operations on multi-bit integers, as was observed by Dietz [1], it is common
that a very large fraction of the intermediate bit-level operations will end-up
being unnecessary. Logic optimization can symbolically recognize and remove
many of these operations at compile time without ever incurring the overhead
of constructing and evaluating FBP data structures. Thus, the pbit layer is
literally an optimizing compiler used to cheaply remove as many unnecessary
operations as possible before causing any FBP-layer evaluation.

Although pbit operations should look a lot like the FBP operations that are
used to implement whatever computation remains, there is no need to use every

A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation 157

type of instruction that the underlying machine supports. The current pbit layer
simplifies optimizations by decomposing all operations into ANY, NOT, OR, AND,
and XOR. The only constants available are 0, 1, and Hadamard superpositions
for up to 32-way entangled pbits (i.e., H(0) .. H(31)).

Various algebraic simplifications are performed on-the-fly as pbit expression
DAGs are created. For example, AND of anything with the constant 1 does not
create an AND gate, but returns the other operand. A few multi-level simplifi-
cations also are performed, such as removal of NOT NOT and recursive searches
to see if an item being ORed or ANDed into a sequence of that operation has
already been included – e.g., (a AND (b AND (a AND c))) becomes just (b AND (a
AND c)). Every potential operation also has its operand order normalized and
a new operation will only be generated if that normalized computation is not
already an available expression.

Originally, to maximize the probability of finding available expressions, no
pbit DAG operation created during the expression compilation process was ever
deleted. However, the latest version greedily reclaims no-longer-referenced pbit
data structures to reduce memory usage. When the pbit layer is initialized, only
0, 1, and the Hadamard superpositions are available, but the set of available
expressions grows as calls are made to compile additional operations. When
the value of a pbit is demanded, the DAG producing that value is evaluated by
executing a simple bottom-up tree walk that decorates the DAG with the results
from executing each operation using the FBP layer. Values shared between DAGs
are evaluated only once because the first walk to visit a node decorates it with
a pointer to the FBP result, thus making it the bottom node in that walk. The
nodes that correspond to dead code are not reachable via any walk, hence they
are never evaluated using FBPs.

2.4 The pint Layer

In most quantum computer programming systems, the next level up from the
quantum assembly languages described in the previous section is one in which
quantum computations are still specified at the level of individual operations
on qubits, but the quantum manipulations are embedded in a full-featured
conventional programming language. For example, both IBM’s Qiskit [9] and
Microsoft’s Q# [10] essentially add a variety of functions to existing languages to
allow qubit-level specification of computations. Higher-level (e.g., integer) oper-
ations must be built using the primitive operations. The system described in the
current work also augments a conventional language (C/C++), but the pint
layer directly understands integer operations.

A pint is represented as a data structure which contains an array of pbit
references, a current precision, and a flag specifying if the value is signed (as
opposed to unsigned). All the usual integer operations are supported for pint
containing from 1 to 32 pbits.

Lowering operations on pint to operate on pbits is a lot like lowering opera-
tions on integers to gate-level code operating on individual bits. Some multi-bit
integer operations are trivially lowered to operations on individual bits. For

158 H. Dietz et al.

example, bitwise AND of two pint values trivially produces a result using ANDs
of corresponding component pbit values from the two operands. Other opera-
tions are significantly less straightforward. For example, addition of two pint
values performs a sequence of pbit operations that is equivalent to implement-
ing a ripple carry adder circuit. Multiply builds upon that to implement a purely
combinatorial shift-and-add circuit.

The primary complication in implementing these pint operations at the pbit
level lies in the fact that precision and signedness can dynamically vary. It does
not make sense to bitwise OR values of different precision; the less precise one
should be promoted to have the same number of pbits as the more precise
one. If two k-pbit pint values are added, the result generally has k + 1 pbits.
On the other hand, if the two unsigned integers being added are 0 and 1, only
a single bit is needed to express that the result is 1. Implementation of pint
operations involves a variety of automatic promotion and precision-minimization
operations.

When the pint layer is initialized, all the layers below also are initialized.
Operations on pint simply compile DAGs for the component pbit operations. At
the end of a sequence of pint operations, a call to evaluate each pint will cause
the component pbit DAGs to be evaluated and decorated with references to their
FBP results. Arbitrarily complex intermediate steps combining pint values do
not cause any computation until it is demanded by calling for evaluation of
a particular pint, e.g., by measuring the value. Measurement results can be
printed, but normally would be storing a single value into an ordinary int or all
superposed values into an int array.

3 Conclusion

The current work begins by describing, and giving a few motivating examples
for, the quantum-inspired parallel bit pattern model for energy-efficient execu-
tion using conventional computer hardware. The efficiency comes partly from
extensive gate-level optimization implemented using just-in-time compilation,
but also from use of symbolic computation on regular grammars to obtain the
quantum-like property of a single operation on an entangled, superposed, value
producing up to exponentially many results. The structure of a prototype imple-
mentation is also detailed.

Although the prototype system is operational, it is not yet complete: we
are improving/debugging the system and implementing a C++ wrapper, and
plan an open source release. We are working on offloading the massively-parallel
evaluation of chunks to a GPU. Dietz also has created a greatly simplified parallel
bit pattern computer architecture called Tangled, which provides coprocessor
support for parallel AoB chunk operations and is being implemented in Verilog
by the students taking his undergraduate CPE480 Computer Architecture course
at the University of Kentucky in Fall 2020. In the more distant future, we envision
compiler technology for automatic parallelization targeting this new model.

A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation 159

References

1. Dietz, H.G.: How low can you go? In: 30th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2017), College Station, Texas, p. 8,
11 October 2017

2. Dietz, H.: Parallel bit pattern computing. In: IEEE 2019 Tenth International Green
and Sustainable Computing Conference (IGSC) (2019). https://doi.org/10.1109/
IGSC48788.2019.8957188

3. Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists.
ACM Comput. Surv. (CSUR) 32(3), 300–335 (2000). https://doi.org/10.1145/
367701.367709

4. Tucker, L.W., Robertson, G.G.: Architecture and applications of the connection
machine. IEEE Comput. 21(8), 26–38 (1988)

5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE Comput. Soc. Press (1994). https://doi.org/10.1109/sfcs.1994.
365700

6. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set archi-
tecture. arXiv preprint arXiv:1608.03355 (2016)

7. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language. arXiv preprint arXiv:1707.03429 (13 July 2017)

8. Khammassi, N., Guerreschi, G.G., Ashraf, I., Hogaboam, J.W., Almudever, C.G.,
Bertels, K.: cqasm v1. 0: Towards a common quantum assembly language. arXiv
preprint arXiv:1805.09607 (2018)

9. Wille, R., Van Meter, R., Naveh, Y.: IBM’s Qiskit tool chain: working with and
developing for real quantum computers. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1234–1240. Florence, Italy (2019)

10. Svore, K.M., et al.: Q#: Enabling scalable quantum computing and development
with a high-level domain-specific language. arXiv preprint arXiv:1803.00652 (2018)

https://doi.org/10.1109/IGSC48788.2019.8957188
https://doi.org/10.1109/IGSC48788.2019.8957188
https://doi.org/10.1145/367701.367709
https://doi.org/10.1145/367701.367709
https://doi.org/10.1109/sfcs.1994.365700
https://doi.org/10.1109/sfcs.1994.365700
http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1805.09607
http://arxiv.org/abs/1803.00652

Performance Analysis

Enhancing the Top-Down
Microarchitectural Analysis Method

Using Purchasing Power Parity Theory

Yectli A. Huerta1,2(B), Brent Swartz3, and David J. Lilja2

1 Scientific Computation, Minnesota Supercomputing Institute, Minneapolis, USA
2 Department of Electrical and Computer Engineering, University of Minnesota,

Minneapolis, USA
yhuerta@umn.edu

3 Minneapolis, USA

Abstract. The Top-Down method makes it possible to identify bot-
tlenecks as instructions traverse the CPU’s pipeline. Once bottlenecks
are identified, incremental changes to the code can be made to mitigate
the negative effects bottlenecks might have in performance. This is an
iterative process that could potentially result in a more optimal use of
CPU resources. It can be difficult to compare bottleneck metrics of the
same program generated by different compilers running on the same sys-
tem. Different compilers could potentially generate different instructions,
arrange the instructions in different order, and require different number
of cycles to execute the program. Ratios with relatively similar values
could hide valuable information that could be used to identify differ-
ences in magnitude and influence of bottlenecks. To amplify magnitude
differences of bottleneck metrics, we use the cycles required to complete
the program as a reference point. We can then quantify the relative
difference the effect a bottleneck has when compared with the bottle-
neck of the reference compiler. This study’s proposed approach is based
on the Purchasing Power Parity theory, which is used by economists
to compare the purchasing power of different currencies by comparing
similar products. We show that this approach can give us more informa-
tion on how effective each compiler is in using the CPU’s architectural
features by comparing their respective bottlenecks. For example, using
conventional methods, our measurements show that for the 363.swim
benchmark, BackEnd Bound rates for GCC4 was 0.949, and 0.956 for
GCC6 and GCC7 respectively. However, using the PPP normalization
approach, we showed that there were differences of 55.3% for GCC6 and
54.9% for GCC7 over GCC4.

1 Introduction

Parallel programming frameworks, such as OpenMP, have made it possible to
use highly complex computational resources efficiently. But compilers and pro-
gramming frameworks have a wide variety of features and options that can make

B. Swartz—Independent Researcher.

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 163–177, 2022.
https://doi.org/10.1007/978-3-030-95953-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_12

164 Y. A. Huerta et al.

it challenging to obtain optimal performance without some significant effort. It
is essential to have analysis tools and techniques that can provide users with pre-
cise and detailed information on the compiler’s performance to assess whether
or not the generated code uses all of the architectural features of the CPU effi-
ciently, as measured in overall runtime. The user could select different compiler
flags, modify the code, or select a different compiler version that might further
enhance performance. When designing compilers, developers are interested in
in-depth profiling to quantify the impact of new features on performance.

Performance analysis can be a challenging and time-consuming endeavor.
Modern CPUs have complex microarchitectures that improve overall code per-
formance. The use of deep pipelines, buffers and prefetchers makes it possible
to hide and mitigate stalls – delays in the processing of an operation. Stalls can
occur when an operation has to wait for needed resources to become available
before it can be completed. This microarchitectural complexity makes it diffi-
cult to analyze bottlenecks – portions of the code where stalls occur, and that
should be examined for a possible change to improve performance, once they are
properly identified, and their effects quantified. Features that minimize stalls
and improve overall performance will tend to make it difficult to pinpoint such
bottlenecks by hiding latencies. For example, a CPU will reduce its data retrieval
time by guessing which data value an instruction will need next, or by storing
frequently used instructions or memory contents in its caches.

To better understand the behavior of the CPU, computer chip manufacturers
include performance counter units in their CPUs to track hardware and software
events. Performance counters will keep track of the number of times a particular
event occurs for a user-defined sampling interval. These events include cache-
misses, cycles, page-faults, and branches. Kernel tools like perf [7] will interact
with the performance counters and report the results. These reports can provide
useful information on how the program behave on the CPU as it was executed,
e.g., how a component is being efficiently utilized.

Performance analysis is an iterative process. Users will profile the code to
get baseline bottleneck metric values. Based on those values, the user will then
make appropriate changes to the code, environment, or compiler flag to reduce
the effect of the bottleneck. Then the code will be recompiled, executed, and
profiled again. The goal is to understand the effects the change had on per-
formance and how it is reflected in CPU bottlenecks. Further, the goal is to
identify and mitigate bottlenecks to improve performance. Bottleneck identifica-
tion and quantification of their effects are crucial in this optimization process. In
this paper, we extend current analysis techniques to compare and quantify how
different compilers use CPU features. Our goal is to improve the performance
analysis process by making it easier to compare different compilers.

This study shows the following:

– For many programs, newer versions of GNU compilers [2] will not always
entail better performance.

– Current analysis techniques show and quantify the difference in reported bot-
tlenecks between programs generated by the same compiler. Our study shows

Enhancing the Top-Down Microarchitectural Analysis 165

that these bottleneck comparisons, across programs generated by different
compilers, can differ greatly, and this variation is not captured using the
regular technique.

– The PPP normalization technique can be used to better compare bottlenecks
across multiple compiler versions using a specific compiler as a reference. In
our study, we use GCC4 compiled programs to compare the magnitude of
bottleneck changes across different compiler versions.

– PPP normalized rates make it easy to make bottleneck comparisons show
trends and highlight differences.

2 Background

2.1 The Top-Down Method

When optimizing a program, a developer will make changes to the program
or compiler options until the desired performance gains are made, or there are
no longer resources to continue the process. This technique, called differential
analysis [16], can be combined with a systematic approach to bottleneck iden-
tification, called the Top-Down method [19]. The Top-Down method focuses
on accounting for the use of pipeline resources, making it possible to highlight
micro-architectural components that generate stalls, and narrow down the list
of possible components, accounting for the most stalls. This iterative Top-Down
method is used by the Intel VTune profiler suite [4] and has been used to analyze
different systems [11,20,21].

The Top-Down method divides the instruction pipeline into two parts: the
Front End and the Back End. The Front End is the portion of the pipeline where
instructions are fetched, decoded into uops – low-level instructions – and then
queued to wait their turn to be executed by the Back End. The Back End will
schedule uops for execution, for example, integer store/load or floating-point
operations. The results will then be committed or retired.

Fig. 1. Top-Down hierarchy breakdown used in this study. Retiring, Bad Speculation,
FrontEnd Bound and BackEnd Bound are the main categories used to classify pipeline
slots. Subsequent subcategories give more granular information on specific architectural
components.

166 Y. A. Huerta et al.

Fig. 2. Top-Down uop classification tree.

The Top-Down method has four categories to track the progress of uops as
they traverse the pipeline. The categories are FrontEnd Bound, BackEnd Bound,
Bad Speculation, and Retiring. Figure 1 shows the Top-Down classification hier-
archy used in this study. The category assignment occurs as follows – if a uop is
allocated, then it will be either retired or not retired. If it is retired, it will be
assigned to the Retiring classification. If it is not retired, it will be classified as
Bad Speculation. Retiring and Bad Speculation account for non-stalled slots. If
the uop is not allocated, then there are two choices, if there is a Back End stall,
then it will be classified as BackEnd Bound. If it is not a Back End stall, then
it will be classified as FrontEnd Bound. Figure 2 shows the decision tree used in
uop classifications.

The BackEnd Bound stalls occur when uops are not delivered to the execu-
tion pipeline due to lack of resources at the Back End. This could be due to a
data-cache miss or a stall due to lack of execution resources. BackEnd Bound
stalls are divided into Memory Bound stalls – stalls related to the memory sub-
system and Core Bound stalls – all other BackEnd Bound stalls. L1 Bound, L2
Bound, L3 Bound, and External Memory are stalls when accessing data already
present in the specific memory subsystem.

The Retiring category focuses on the last stage of the pipeline in which the
uops are completed and retired. Ideally, this should be the largest category of
all Top-Down classifications. Retiring can be further divided into Retiring Base
– retired uops that do not involve using the microcode sequencer (Microcode
Sequencer) when complex operations are broken up into multiple uop operations
such as sine and cosine. Heavy use of the Microcode Sequencer could imply
that some of the extra uops could have been avoided, and the use of additional
compiler options, such as the flushing to zero of certain subnormal results -ftz,
could prove beneficial [5].

FrontEnd Bound stalls occur when the Front End portion of the pipeline
does not supply enough uops to the Back End portion of the pipeline to process
when the Back End is ready to receive them. FrontEnd Bound stalls are further
divided into two subcategories, FrontEnd Bandwidth – the number of cycles
when the number of uops is less than the maximum allowable of 4 and FrontEnd
Latency – the number of cycles when no uops were issued to the available Back
End.

Enhancing the Top-Down Microarchitectural Analysis 167

The Bad Speculation category involves wasted pipeline resources with opera-
tions that are not useful. There might be uops that were issued speculatively and
will never be retired, thus wasting pipeline slots, or stalls that occur when the
pipeline recovers from an earlier misspeculation. The subcategories that make
up Bad Speculation are Branch Mispredicts and Machine Clears. The Branch
Mispredictions category is used when a bad speculated branch takes place, while
uops are classified as Machine Clears when the pipeline is flushed to recover from
a misspeculation.

Table 1. Results of tuning matrix-multiply case [19].

Metric multiply1 multiply2 multiply3

Speedup 1.0x 11.8x 16.5x

IPC 0.17 1.19 0.80

Frontend Bound 0.00 0.07 0.02

Retiring 0.05 0.41 0.28

Bad Speculation 0.00 0.00 0.00

Backend Bound 0.95 0.52 0.70

Memory Bound 0.84 0.12 0.31

L1 Bound 0.05 0.07 0.03

L2 Bound 0.03 – 0.05

L3 Bound 0.05 – 0.01

Stores Bound – – –

Core Bound 0.15 0.64 0.55

Divider – – –

Ports Utiliz 0.15 0.64 0.55

Table 1 shows the analysis of a matrix multiplication example. The formulas
needed to compute the different Top-Down metrics are given in [8,19]. The first
step, multiply1, is a simple matrix multiplication that is Memory Bound. The
use of loop interchange optimization in the second step, multiply2, achieves a
significant performance gain by shifting the bottleneck from Memory Bound to
Compute Bound. Loop interchange takes advantage of locality through better
use of memory access patterns. In the last step, multiply3 uses vectorization to
further improve performance by reducing the use of port utilization [19]. These
optimization examples show that different bottlenecks can be identified, and
their effects mitigated in order to obtain performance enhancements. The incre-
mental changes between versions of the program generated by the same com-
piler is manageable. Code changes will potentially affect the specific bottleneck
in question and their effects potentially mitigated with each change.

Comparisons between programs generated by different compilers or compiler
versions are more difficult. Each compiler could generate different instructions,

168 Y. A. Huerta et al.

and the number of cycles required to complete those instructions could vary
widely for the same program, resulting in widely different bottlenecks. To make
it easier to compare and analyze programs generated by different compilers, we
propose the use of the Purchasing Power Parity (PPP) economic theory. PPP
will be used to normalize Top-Down metrics with respect to a single compiler,
GCC4, to be able to better compare metrics generated by different compilers.
We describe this approach in the next subsection.

2.2 Purchasing Power Parity

PPP states that the exchange rate is proportional to the ratio of price levels in
two countries. [13]. Essentially, it allows for the comparison of the same good in
different countries to see if a country’s currency is overvalued (when the good is
more expensive), or undervalued (when the good is cheaper) relative to another
currency [6]. The Big Mac Index [1] is the most famous application of the PPP
theory, and it compares the value of Big Mac burgers across many countries.
Equations 1 and 2 show an example of how to compute the Big Mac Index.
Assume that the cost of a Big Mac in the US is $3.57. The same burger costs
7.50 reales in Brazil. The PPP exchange rate is shown in Eq. 1, which is 2.10.
The currency exchange rate at that time was of 1.58 reales for $1. In Eq. 2, we
compute the Big Mac Index by subtracting 1.58 from the PPP exchange rate
and then dividing by 1.58. According to the index, the real is overvalued almost
33% as compared to the US dollar [13].

7.50/3.57 = 2.10 (1)

(2.10 − 1.58) ∗ 100/1.58 = 32.91% (2)

In our study, the products we compare are benchmarks, and the currency
that we are comparing are the cycles that it took to complete those benchmarks.
PPP theory allows us to compare different compiler generated Top-Down met-
rics to determine if the metrics are undervalued or overvalued relative to the
same metrics generated by the GCC4 compiler. An undervalued metric signifies
that a bottleneck has a relatively lesser effect when compared with the baseline
GCC4 metric. Overvalued metrics translate into bottlenecks that have a rela-
tively greater effect than the baseline. We compute the PPP exchange rate, Eq. 3,
by dividing the cpu clk unhalted.thread event value of a given compiler by the
same performance event value that was collected when the same benchmark ran
with a binary generated with the GCC4 compiler. We use cpu clk unhalted.thread
for all computed metrics, except for the FrontEnd Bandwidth metric. This
metric uses the cpu clk unhalted.thread any performance event, which is also
used to calculate its corresponding metric PPP exchange rate. Our choice of
cpu clk unhalted.thread and cpu clk unhalted.thread any as normalization met-
rics is because they account for cycles when the thread is not in a halt state [3],
as oppose to using execution time, which is a less granular metric.

PPP Exchange Rate = CPU clk/CPU clkgcc4 (3)

Enhancing the Top-Down Microarchitectural Analysis 169

The Metric variable represents all of the Top-Down Method categories
described earlier. As Eq. 2 shows, we divide a Metric by its GCC4 generated
counterpart before using the PPP Exchange Rate variable to compute the PPP
normalized percentage.

PPP = 100 ∗ ((Metric/Metricgcc4) − PPP Exchange Rate)/PPP Exchange Rate
(4)

For a metric to be overvalued, the metric rate, Metric/Metricgcc4, needs
to be positive and bigger than PPP Exchange Rate. This occurs when the
GCC4 baseline metric is smaller than the number of events of the other compiler.
Undervalued metrics occur when the metric rate has a smaller magnitude than
the PPP Exchange Rate. We have parity when the PPP normalized rate is
zero or very close to zero.

Equations 5 and 6 show an example of the PPP normalization index for the
350.md benchmark for GCC6 using GCC4 as the baseline. The PPP exchange
rate is 0.92. The Bad Speculation metric values are 0.0204 for GCC6, and 0.0206
for GCC4. In this, case we see that there is a 7.64% relative increase of Bad
Speculation for GCC6 over GCC4. The metric is overvalued.

270956056194992/294654034404202 = 0.92 (5)

((0.0204/0.0206) − 0.92) ∗ 100/0.92 = 7.64% (6)

3 Experimental Setup

In this study, we use the Top-Down method in combination with the SPEC
OMP2012 benchmarks [9,17] to evaluate versions 4.8.5, 6.3.1, and 7.3.1 of the
C, C++, and Fortran GCC compiler suite. It is a freely available and widely
used suite of compilers that can run in multiple platforms and operating sys-
tems. All benchmarks were compiled using the following flags: -fopenmp -O3
-march=native. The only exception was 371.applu331, which used these flags:
-fopenmp -O2 -march=native. Additionally, -ffree-form -fno-range-check were
used for 350.md and -std=c99 for 367.imagick. The SPEC OMP2012 bench-
marks include a wide variety of commonly used computational kernels written
in Fortran, C, and C++. These kernels make it possible to stress different sys-
tem components, including CPU, memory, and parallel support libraries, mak-
ing possible to highlight how each compiler handles bottlenecks. The OMP2012
benchmark suite is widely used to compare HPC systems using OpenMP appli-
cations. Benchmarks results that meet the SPEC group reporting guidelines are
published for comparison in a public repository where different systems with a
variety of designs and compilers can be compared [10].

A two socket Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz with 8 cores per
socket, 2 threads per core was used running the CentOS 7.6.1810 Linux operat-
ing system installed. Figure 3 was generated using the walltime reported by the

170 Y. A. Huerta et al.

bt331 bwaves fma3d imagick kdtree mgrid331 smithwa

350.md 352.nab 360.ilbdc 363.swim applu331 botsalgn botsspar

2200

2400

2600

2800

3000

1190

1195

1200

1205

1210

1250

1300

1350

1400

1600

2000

2400

1900

2000

2100

2200

520

540

560

580

600

1370

1380

1390

2250

2500

2750

3000

3250

10000

15000

20000

25000

30000

1100

1200

1300

1400

1100

1150

1200

1250

2700

2800

2900

3000

4900

5000

5100

5200

900

950

1000

1050

1100

R
un

tim
e

(S
ec

on
ds

)

CompilerVersion gcc4 gcc6 gcc7

Fig. 3. Runtimes for SPEC OMP2012 benchmarks using 32 threads with SMT enabled.
Lower is better.

SPEC framework and includes the results for the 14 SPEC OMP2012 bench-
marks. Figures 4, 5, and 6 were generated using perf and include 6 additional
programs to the original total of 14. These programs were included because the
367.imagick benchmark is made up of a process that involves 6 different steps,
convert11, convert2, convert9, vall11, val2, and val9. 372.smithwa has a two step
process, refset1 and refset2.

4 Results and Analysis

Table 2 gives the description of the 14 benchmarks that make up the SPEC
OMP2012 suite. Figure 3 shows that for many of the benchmarks, runtimes can
vary significantly depending on the choice of compiler. On average, eight of
the benchmarks, 350.md, 352.nab, botsalgn, 360.ilbdc, bt331, bwaves, fma3d,
and imagick, perform better when using the GCC4 compiler. While benchmark
runtimes might differ, their respective Top-Down metrics might be relatively
similar for 360.ilbdc, 350.md, and bt331, Figs. 4(a), 5(a) and 6(a). Our goal is to
show that Top-Down metrics, even when they have similar values, can diverge

Enhancing the Top-Down Microarchitectural Analysis 171

Table 2. SPEC OMP2012 benchmark description [9]

Benchmark Name Programming
Language

Description

350.md Fortran Physics: Molecular Dynamics

351.bwaves Fortran Physics: Computational Fluid
Dynamics (CFD)

352.nab C Molecular Modeling

357.bt331 Fortran Physics: Computational Fluid
Dynamics (CFD)

358.botsalgn C Protein Alignment

359.botsspar C Sparse LU

360.ilbdc Fortran Lattic Boltzmann

362.fma3d Fortran Mechanical Response Simulation

363.swim Fortran Weather Prediction

367.imagick C Image Processing

370.mgrid331 Fortran Physics: Computational Fluid
Dynamics (CFD)

371.applu331 Fortran Physics: Computational Fluid
Dynamics (CFD)

372.smithwa C Optimal Pattern Matching

376.kdtree C++ Sorting and Searching

in magnitude when normalized with a reference compiler. Using Eqs. 3 and 4,
we computed the PPP normalized metrics using the benchmark results from
the three different compilers using the performance metrics results collected via
perf. The results are shown in Figs. 4(b), 5(b) and 6(b). These plots can give us
better information of how stalls, BackEnd and FrontEnd Bound categories, and
non-stalls, Retiring and Bad Speculation categories, are overvalued, undervalued
or have bottleneck parity for each compiler. In the following subsections, we
show how these results allow us to extract important insights about the relative
magnitude difference of bottlenecks between compilers.

– Overvalued bottlenecks: The refset1 and refset2 programs are an example
of how PPP normalized values can give us a better picture of the magnitude
of bottleneck differences when different versions of compilers are used. refset1
has a Bad Speculation rate of 0.000474 for GCC4, 0.000624 for GCC6 and
0.0307 for GCC7. If we take the ratio of GCC7 and GCC4, we get 64.77 and
the ratio of GCC6 and GCC4 is 1.316. To compute the PPP normalized rate,
we need to use the PPP exchange rates of 0.994 for GCC6 and 0.884 for
GCC7, which yield a PPP normalized rate of 32.5% for GCC6 and 7222%
for GCC7. The normalization value, by taking into account the cycles it took
to complete the program, shows the effectiveness of the cycles used by the

172 Y. A. Huerta et al.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

A B C A B C A B C A B C A B C

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

(a)

Ra
te

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

B C B C B C B C B C

0

2000

4000

6000

0

100

200

300

0

100

200

300

0

10

20

30

40

0

2000

4000

6000

0

10

20

0

20

40

60

0

10

20

30

40

−80

−40

0

−50

0

50

100

150

0

10

20

30

0

5

10

15

−50

0

50

−50

0

50

100

150

0

100

200

300

0

30

60

90

0

100

200

300

400

−100

0

100

0

50

100

150

−40

−30

−20

−10

0

(b)

%

Metric BackEndBound BadSpeculation FrontEndBound Retiring

Fig. 4. Top-Down method categories for SPEC OMP2012 benchmarks: 1. val9, 2. val2,
3. val11, 4. refset2, 5. refset1, 6. convert9, 7. convert2, 8. convert11, 9. 376.kdtree,
10. 371.applu331, 11. 370.mgrid331, 12. 363.swim, 13. 362.fma3d, 14. 360.ilbdc, 15.
359.botsspar, 16. 358.botsalgn, 17. 357.bt331, 18. 352.nab, 19. 351.bwaves, 20. 350.md
using compilers: A. GCC4, B. GCC6, C. GCC7. (a) is the regular metric. (b) is the
PPP normalized metric.

GCC6 and GCC7 generated binaries. In the context of Bad Speculation,
GCC7 is massively overvalued – the bottleneck cost in terms of cycles is
higher relative to the cycle cost when using GCC4 binaries, and GCC6 is
relatively overvalued when compared to the GCC4.

– Undervalued bottlenecks: Undervalued rates occur when the reference
compiler underperforms the other compilers in a given bottleneck metric.
As a result, a bottleneck will take more GCC4 cycles than the number of
cycles it takes when using a different compiler. In the case of the 358.botsalgn
benchmark, we have FrontEnd Bound rates of 0.0206 for GCC4, 0.0133 for
GCC6 and 0.0183 for GCC7, Fig. 4(a). The PPP exchange rates are 1.01 for
both GCC6 and GCC7. The resulting PPP normalized FrontEnd Bound rates
are −35.5% for GCC6 and −11.7% for GCC7, Fig. 4(b). For the given number
of cycles, the GCC6 FrontEnd Bound bottlenecks are not as significant as
compared to GCC4 and GCC7.

– Similar bottleneck rates: There are instances when compilers have sim-
ilar Top-Down rates and their PPP normalized rates will be similar due to
the PPP exchange rate. The 371.applu331 benchmark has GCC4 FrontEnd

Enhancing the Top-Down Microarchitectural Analysis 173

17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

A C
B

A C
B

A C
B

A C
B

0.0

0.2

0.4

0.0
0.1
0.2
0.3

0.0
0

0.2
5

0.5
0

0.7
5

0.0
0

0.0
4

0.0
8

0.1
2

−0
.2
0.0
0.2
0.4

0.0
000.0
250.0
500.0
750.1
00

0.0
0.1
0.2
0.3

0.0
0.2
0.4
0.6
0.8

0.0

0.2

0.4

0.0
0.1
0.2
0.3
0.4
0.5

0.0
00

0.0
25

0.0
50

0.0
75

0.0
0.1
0.2
0.3

0.0
0.2
0.4

0.0
0

0.2
5

0.5
0

0.7
5

0.0
0.1
0.2
0.3

0.0
0

0.0
2

0.0
4

0.0
6

0.0

0.2

0.4

−0
.2

−0
.1
0.0
0.1
0.2

0.0

0.2

0.4

−0
.1
0.0
0.1
0.2
0.3
0.4
0.5

(a)

R
at
e

17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

B
C

B
C

B
C

B
C

0
20
0

40
0

−1
00
−5
0
0
50
10
0

0
20
0

40
0

60
0

80
0

0

20

40

−2
0

−1
0

0

0
20
40
60

−1
00
−5
0
0
50
10
0

010
020
030
040
0

0
20
0

40
0

60
0

−4
0

−2
0

0

0
20
40
60

−1
50−1
00
−5
0
0
50

0
40
80
12
0

−5
0

0
50
10
0

−4
0−2
0
0
20
40

−1
00
−5
0

0
50

0
20
0

40
0

60
0

01
02
03
04
05
0

0
20
40
60
80

0
10
0

20
0

(b)

%

Metric CoreBound ExtMemBound L1Bound L2Bound L3Bound

Fig. 5. BackEnd Bound subcategories, Core Bound and Memory Bound (ExtMem-
Bound, L1Bound, L2Bound and L3Bound) for SPEC OMP2012 benchmarks: 1. val9, 2.
val2, 3. val11, 4. refset2, 5. refset1, 6. convert9, 7. convert2, 8. convert11, 9. 376.kdtree,
10. 371.applu331, 11. 370.mgrid331, 12. 363.swim, 13. 362.fma3d, 14. 360.ilbdc, 15.
359.botsspar, 16. 358.botsalgn, 17. 357.bt331, 18. 352.nab, 19. 351.bwaves, 20. 350.md
using compilers: A. GCC4, B. GCC6, C. GCC7. (a) is the regular metric. (b) is the
PPP normalized metric.

Bound rate of 0.0188, a GCC6 FrontEnd Bound rate of 0.0211 and a GCC7
FrontEnd Rate of 0.0210, Fig. 4(a). The PPP exchange rate for GCC6 is
0.697 and 0.685 for GCC7. The resulting normalized PPP FrontEnd Bound
rates for GCC6 and GCC7 are 61.5 and 63.6, Fig. 4(b). GCC6 and GCC7 are
overvalued for the FrontEnd Bound category as compared to GCC4 for the
371.applu331 benchmark.

– Similar PPP rates: Figure 5(a) shows that for 359.botsspar, GCC6 and
GCC7 have similar BackEnd Bound rates. Figure 5(b) shows that the PPP
rates are nearly identical. The CoreBound subcategory is over 400% greater
than GCC4, while the External Memory and L3 Bound subcategories add up
close to an additional 200% difference. We can conclude that for 359.botsspar,
GCC6 and GCC7 are both significantly more BackEnd Bound than GCC4
at a relatively identical rate.

174 Y. A. Huerta et al.

17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

A B C A B C A B C A B C

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00
1.25

(a)

R
at

e

17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

B C B C B C B C

0

1000

2000

3000

−100
0

100
200
300

0

200

400

−50

0

50

−50

0

50

−20
0

20
40

−100
0

100
200
300

0
200
400
600
800

0

250

500

750

0

20

40

60

−20

0

20

−100
0

100
200
300

0
100
200
300
400

0

100

200

−20
0

20
40

−20
0

20
40
60

0

1000

2000

3000

0

100

200

−20
0

20
40
60

0

100

200

(b)

%

Metric
BrMisPred

front_end_latency

frontend_bandwidth

MachineClear

Microcode_Sequencer

retiring_base

Fig. 6. FrontEnd Bound (front end latency, frontend bandwidth), Retiring (retir-
ing base, Microcode Sequencer) and Bad Speculation (BrMisPred, MachineClear) sub-
categories for SPEC OMP2012 benchmarks: 1. val9, 2. val2, 3. val11, 4. refset2, 5.
refset1, 6. convert9, 7. convert2, 8. convert11, 9. 376.kdtree, 10. 371.applu331, 11.
370.mgrid331, 12. 363.swim, 13. 362.fma3d, 14. 360.ilbdc, 15. 359.botsspar, 16. 358.bot-
salgn, 17. 357.bt331, 18. 352.nab, 19. 351.bwaves, 20. 350.md using compilers: A. GCC4,
B. GCC6, C. GCC7. (a) is the regular metric. (b) is the PPP normalized metric.

– PPP parity (PPP rates that equal zero): We have seen that there
have been instances where the non-normalized Top-Down rates are equal,
but the PPP normalized metrics showed that there was a relative difference
between bottlenecks. There are cases when the metrics are equal and the PPP
normalized values are zero, or close to it. In those cases, we can conclude that
there is relatively little to no difference between the GCC4 baseline metric
and the other compiler generated metric. The magnitude of the bottleneck
effect is similar for both compilers. For example, in Fig. 5(a), there is little
difference between GCC4 and GCC7 for val11. Figure 5(b) shows that the
resulting PPP column for GCC7 is empty. We can conclude that the BackEnd
Bound subcategories are relatively equal for GCC4 and GCC7 while there is a
difference between GCC4 and GCC6 in the Core and L1 Bound subcategories
of over 60%.

Enhancing the Top-Down Microarchitectural Analysis 175

5 Related Works

The Top-Down method introduced a hierarchical classification that uses a num-
ber of performance counters to identify bottlenecks as instructions traverse the
instructional pipeline. VTune is a tool that uses the Top-Down to identify por-
tions of the code that generate bottlenecks with the biggest negative effect.
Table 1 shows an example of the iterative process to identify and mitigate bot-
tlenecks.

The Metric-Guided Method (MGM) [15] extends the Top-Down method.
In addition to the regular Top-Down bottleneck metrics, it employs additional
performance metrics such as IPC and IPFLOPs to identify, via multiple itera-
tions, changes in metrics. Once a set of metrics is identified, a specially designed
microbenchmark kernel is created to further examine the drift in the metrics
with the goal of identifying the causes for the changes. The process ends when
enough data is collected that explains the performance drifts captured by the
metrics.

Top-Down based analysis techniques can identify bottlenecks and provide
information on the magnitude of the bottleneck. In combination with differen-
tial analysis, bottlenecks could potentially be mitigated with each iteration. The
limitation is, Top-Down methodology does not give information on the magni-
tude of the change with each iteration. Knowing the relative differences between
iterations can shed important information. For instance, whether or not a change
made the program more core bound or more memory bound and by how much.
As Figs. 4, 5 and 6 showed, there are instances in which bottleneck metrics had
similar magnitudes but PPP normalized rates showed high relative differences
in rate magnitude. This translates in bottlenecks having larger or smaller effects
in the system.

There are other approaches to bottleneck identification. An analysis of a 64-
bit ARMv8 system [15] involved the use of Partial Least Squares (PLS) Path
Modeling [14] to identify and compare bottlenecks with other x86 and x86 64
based systems. Computational resources and subsystems were identified. All
available performance counters were collected and a subset was selected based
on their correlation with others, in order to minimize the number of counters
to be analyzed. The selected counters were associated with corresponding archi-
tectural resources of interest. PLS Path Model analysis, in combination with
Bootstrapping, assigned coefficients to each of the architectural features, mak-
ing it possible to identify the significance of these features. The approach taken
in this study will make it difficult to quantify relative differences among bottle-
necks. This approach creates a statistical model with regression coefficients. The
path coefficient is not a value of the magnitude of the bottleneck effect on the
system, as it is the case in Top-Down metrics.

The roofline model [18] is used to visually identify performance bottlenecks.
The model was extended to include non-throughput resource related bottlenecks
such as cache capacity [12]. The extended model uses Directed Acyclic Graphs
(DAG) to abstract microarchitectural features. Nodes represent operations and
edges represent data dependencies. Work is defined by the number of nodes in

176 Y. A. Huerta et al.

the DAG. LLVM intermediate representation (IR), a representation of compu-
tation or memory operations, will generate instructions that will become DAG
nodes. The LLVM interpreter will use the IR to generate the schedule of the
DAG nodes. The resulting scheduled DAG is used to compute bottleneck and
performance estimates. The issue with high level abstractions is that they reduce
the accuracy. They are focused on high level code simulations that are common
to many computer platforms. Bottleneck analysis based on Top-Down methods
is accurate because bottleneck metrics are computed using CPU specific perfor-
mance counters. This makes it possible to compute relative magnitude changes
in bottleneck metrics when changes are made to the code or a different compiler
is used.

6 Conclusion

In this study, we proposed the use of normalized Top-Down bottleneck metrics
using the purchasing power parity theory to quantify the relative difference in
bottleneck metrics for different compilers, GCC4, GCC6 and GCC7. PPP based
indexes have been used to track the purchasing power of many currencies by
comparing specific goods. The widely known Big Mac Index is an example of a
PPP metric where local prices of Big Macs from different countries are compared
against US priced Big Macs. The aim is to use the US dollar as the baseline
for currency comparisons. The Big Mac Index makes it possible to determine
if currencies are undervalued or overvalued when compared to the purchasing
power of the US dollar.

We take a similar approach by determining if bottlenecks have a relatively
greater or lesser effect on performance when comparing different compilers ver-
sions using cycles as the common currency. Our method uses Top-Down bottle-
neck metrics of benchmark programs as the good that is to be compared across
different versions of compilers. We use cycles as the currency for the compari-
son. Each compiler version has the potential of generating bottlenecks of varying
magnitude for the same program. Each of these versions could potentially require
a different number of cycles to run the program to completion. Our goal is to
use bottleneck metrics obtained from GCC4 compiler binaries as a baseline to
normalize other bottleneck metrics generated by other compilers. This normal-
ization makes it possible to quantify relative increases or decreases in magnitude
of bottlenecks when compared to the baseline compiler.

Our goal was to provide a simple technique to compare complex systems,
and we found PPP normalization is a suitable technique that can accomplish
this task. Our approach makes it possible for computer architects and compiler
developers to track the drift of bottlenecks by easily identifying trends, and
magnify differences that otherwise would go unnoticed. Quantification of the
bottleneck drift makes it possible to assess the effects changes to programs or
compilers have in the effective use of CPU architectural features.

Enhancing the Top-Down Microarchitectural Analysis 177

References

1. The big mac index. https://www.economist.com/news/2020/01/15/the-big-mac-
index

2. The gnu compiler collection website. http://gcc.gnu.org
3. Intel microarchitecture code named skylake events. https://download.01.org/

perfmon/index/skylake.html
4. Intel vtune profiler. https://software.intel.com/content/www/us/en/develop/

tools/vtune-profiler.html
5. Intel vtune profiler performance analysis cookbook. https://software.intel.com/

content/www/us/en/develop/documentation/vtune-cookbook/top.html
6. The latte index: Using the impartial bean to value currencies. https://www.

visualcapitalist.com/latte-index-currencies/
7. perf: Linux profiling with performance counters. http://perf.wiki.kernel.org
8. pmu-tools: Intel pmu profiling tools. https://github.com/andikleen/pmu-tools
9. Spec omp2012 documentation. https://spec.org/omp2012/Docs/index.html

10. Spec omp2012 results. https://www.spec.org/omp2012/results/
11. Ayers, G., Ahn, J.H., Kozyrakis, C., Ranganathan, P.: Memory hierarchy for web

search. In: 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 643–656 (2018)

12. Cabezas, V.C., Püschel, M.: Extending the roofline model: bottleneck analysis
with microarchitectural constraints. In: 2014 IEEE International Symposium on
Workload Characterization (IISWC). pp. 222–231 (2014)

13. Clements, K.: Currencies, Commodities and Consumption. Cambridge University
Press, Cambridge (2013)

14. Jöreskog, K., Wold, H.: Systems under indirect observation: causality, structure,
prediction. No. no. 139, pt. 2 in Contributions to Economic Analysis, North-
Holland (1982)

15. Laurenzano, M.A., Tiwari, A., Cauble-Chantrenne, A., Jundt, A., Ward, W.A.,
Campbell, R., Carrington, L.: Characterization and bottleneck analysis of a 64-bit
armv8 platform. In: 2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 36–45 (2016)

16. McKenney, P.E.: Differential profiling. In: MASCOTS 1995. Proceedings of the
Third International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pp. 237–241 (1995)

17. Müller, M.S., et al.: SPEC OMP2012 — an application benchmark suite for parallel
systems using OpenMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 223–236. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30961-8 17

18. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

19. Yasin, A.: A top-down method for performance analysis and counters architecture.
In: 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 35–44 (2014)

20. Yasin, A., Ben-Asher, Y., Mendelson, A.: Deep-dive analysis of the data analyt-
ics workload in cloudsuite. In: 2014 IEEE International Symposium on Workload
Characterization (IISWC), pp. 202–211 (2014)

21. Yasin, A., Haj-Yahya, J., Ben-Asher, Y., Mendelson, A.: A metric-guided method
for discovering impactful features and architectural insights for skylake-based pro-
cessors. ACM Trans. Archit. Code Optim. 16(4) (2019). https://doi.org/10.1145/
3369383

https://www.economist.com/news/2020/01/15/the-big-mac-index
https://www.economist.com/news/2020/01/15/the-big-mac-index
http://gcc.gnu.org
https://download.01.org/perfmon/index/skylake.html
https://download.01.org/perfmon/index/skylake.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://www.visualcapitalist.com/latte-index-currencies/
https://www.visualcapitalist.com/latte-index-currencies/
http://perf.wiki.kernel.org
https://github.com/andikleen/pmu-tools
https://spec.org/omp2012/Docs/index.html
https://www.spec.org/omp2012/results/
https://doi.org/10.1007/978-3-642-30961-8_17
https://doi.org/10.1145/3369383
https://doi.org/10.1145/3369383

Code Generation

Cain: Automatic Code Generation
for Simultaneous Convolutional Kernels

on Focal-plane Sensor-processors

Edward Stow1(B), Riku Murai1, Sajad Saeedi2, and Paul H. J. Kelly1

1 Department of Computing, Imperial College London, 180 Queens Gate,
London SW7 2AZ, UK

{edward.stow16,riku.murai15,p.kelly}@imperial.ac.uk
2 Department of Mechanical and Industrial Engineering, Ryerson University,

350 Victoria Street, Toronto, ON M5B 2K3, Canada
s.saeedi@ryerson.ca

Abstract. Focal-plane Sensor-processors (FPSPs) are a camera tech-
nology that enable low power, high frame rate computation, making
them suitable for edge computation. Unfortunately, these devices’ lim-
ited instruction sets and registers make developing complex algorithms
difficult. In this work, we present Cain, an open-source compiler that
targets SCAMP-5, a general-purpose FPSP – which generates code from
multiple convolutional kernels. As an example, given the convolutional
kernels for an MNIST digit recognition neural network, Cain produces
code that is half as long, when compared to the other available compilers
for SCAMP-5.

Keywords: Convolution · SIMD · Image sensor · Analogue
computing · Edge inference

1 Introduction

Real-time computer vision applications are currently bound to traditional cam-
era sensors that transfer each pixel at each frame to a host where it is processed.
This requires high-performance buses between the sensors and hosts, especially
where high frame-rates are required. A self-driving car may need to receive new
information for every 1 cm travelled to be vigilant of unexpected scenarios, so at
80 km/hr a frame rate 2222 Hz would be required. A 2 mega-pixel camera, with
10-bit pixel depth, running at such a frame rate, requires a bus capable of 45.6
Gbit/s—which is currently only possible with devices such as a PCI-e x8 Gen3
interface [21]. For many applications, however, streaming data at such volumes
is too demanding – both in power and computation time – hence requiring an
alternative solution.

Codesign of hardware and software for computer vision applications is an
emerging research field to address the limitations of conventional systems [17].

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 181–197, 2022.
https://doi.org/10.1007/978-3-030-95953-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_13

182 E. Stow et al.

Focal-plane Sensor-processors (FPSPs) are a promising avenue for reducing the
data transfer between the camera and the processing unit. FPSPs, often syn-
onymous with Cellular Processor Arrays (CPAs) and Pixel Processor Arrays
(PPAs), perform processing on the sensor chip itself and are often designed for
tasks which require high frame rates or low latency [22]. The principle behind
them is that a small processor is embedded directly with each pixel of the sensor.
While FPSPs come in various forms for specific applications, we in this paper
we explore a general-purpose fine-grain architecture SCAMP-5 [5], but one can
imagine alternatives that could be designed for various use cases.

One of the most widely used methods for image analysis is convolution ker-
nels. From edge detection using Sobel filters to document recognition using Con-
volutional Neural Networks [13], convolutional kernels are the foundation for
many complex computer vision applications. Traditionally, application of the
convolutional kernels to the image data occurs on a CPU, but more recently
GPUs and FPGAs are used to accelerate the computations in parallel [1,9].
Several systems have been designed to optimise the processing of convolutional
kernels on GPUs and FPGAs, leading to a vast array of techniques to reduce the
number of operational cycles needed to apply kernels to input data. While this
significantly increased throughput, these methods are still bounded in latency as
the image must make its way from the camera through to the host system. As
for FPSPs, the ability to process the data on the focal plane enables the kernels
to be applied to the image data at very low latency. Furthermore, the unique
ability to select the data which is transferred from the device to the host reduces
the data volume, which allows for high frame rates. However, the technology is
comparatively new. By design, they offer novel ways to interact with the data,
and while work has been done to provide a Domain-Specific-Language and asso-
ciated tools to program such hardware [14], there has been less work done so far
to produce code generation systems to make efficient use of their architectural
features when applying convolutional kernels in particular.

One such system that does exist, however, is AUKE [11]. Given an N×N con-
volutional kernel, AUKE’s reverse-split algorithm generates code for SCAMP-5
which applies the kernel efficiently to the captured image on the focal-plane
using analogue computation. AUKE is, however, limited to compiling just a sin-
gle convolutional kernel at a time using a reduced instruction set that omits the
more powerful instructions available in SCAMP-5.

In this work, we present an improved alternative to AUKE, with the ability to
produce code for applying multiple convolutional kernels at a time. The problem
is presented as a dynamic graph search problem in which we must efficiently
generate and traverse possible processor states to find a path that describes the
relevant convolutional computation. By incorporating instruction selection and
instruction scheduling into the core of search process, we enable the use of more
novel features of CPA architectures than AUKE is able to use. By optimising
the code for multiple kernels simultaneously, common sub-expressions between
kernels can be exploited and produced only once rather than for each kernel. This
reduces the computational expense of applying the kernels, enabling applications
to run at a faster frame rate.

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 183

Input Kernels

Goal Approximation

Configurable
Traversal System

Explore
Node

Generate Next
Goal Pair

Apply Instruction
In Reverse

Register Allocation Code Generation

Matrices of Coefficients

Final-Goals (root node)

Parent
Node

Specific
Instructions Initial-Goal Found

Otherwise

Node Culled

Parent Node and Child Node

Fig. 1. Cain system overview.

The primary objective of this work is to push the boundary of code gener-
ation for FPSP devices through simultaneous kernel optimisation. We offer the
following contributions:

– Cain: A code generation algorithm which effectively makes use of common
sub-expressions across filters consisting of multiple convolutional kernels. Our
graph search strategy – which enables Cain to efficiently search large graphs –
combines instruction scheduling, instruction selection and register-allocation
constraints into the core of the search to make better use of specific hardware
capabilities in SIMD processors.

– We show how this search can be tractable for problems of interest through
a problem formulation based on AUKE’s multi-set–of–Atoms problem repre-
sentation, combined with a ranking heuristic and a hybrid graph-generator–
graph-search exploration strategy.

– We show how this approach allows flexible exploitation of hardware capabil-
ities (such as three-operand adds and multi-step shifts), and generates very
efficient use of additions to avoid multiplies.

– Evaluation of the effectiveness of Cain on the SCAMP-5 Focal-plane Sensor-
processor. We compare against AUKE and test the effectiveness of simulta-
neous kernel optimisation. We conclude by exploring how our simultaneous
kernel optimisation extends to future devices with more registers per pixel.

The remainder of the paper is organised as follows. Section 2 describes the
SCAMP-5 and its instruction sets, Sect. 3 explains our proposed code generation
algorithm Cain, and in Sect. 4 detailed comparison is made between Cain and
AUKE, together with an evaluation of the effectiveness of simultaneous kernel
optimisation. Section 5 reviews the related work AUKE in detail. Finally, Sect. 6
concludes our work, with a discussion about potential future research.

2 Background: SCAMP-5 Focal-Plane Sensor-Processor

In this section, we discuss the capabilities of the next generation camera tech-
nology SCAMP-5, and give an overview of the functionality used by Cain.

SCAMP-5 has been demonstrated in many different computer vision appli-
cations, ranging from Visual Odometry systems [3,10,16], an end-to-end neural

184 E. Stow et al.

{〈 1
2
1

〉}

{〈 1
2
0

〉
,
〈 0

0
1

〉}

{〈 1
2
0

〉
,
〈 0

1
0

〉}

{〈 1
2
0

〉
,
〈 0

0
1

〉}
mov()

. . .

mov()

. . .

add()

{〈 0
1
1

〉
,
〈 1

1
0

〉}

{〈 0
1
1

〉}

{〈 0
1
0

〉
,
〈 0

0
1

〉}

{〈 0
1
0

〉}
mov()

. . .

add()

. . .

mov()

. . .

add()

. . .
Step: Instruction:

1 7 mov(B,A,south)
2 6 add(A,A,B)
3 5 mov(B,A,north)
4 4 add(A,A,B)

1

2

3

4

5

6

7

Fig. 2. Graph showing how Cain might search a simplified 1-dimensional problem using
CGDS. Numbered steps show the order that the paths are explored with child nodes
generated the first time a search step starts at a parent node. Nodes are checked for
being the Initial-Goal when pointed too. The red node, and edge, correspond to a
dead-end where a duplicate node has been found at a higher cost than previously seen
and so the node is not traversed further. We see a path to the Initial-Goal is found
after 7 steps, and the code produced by this path is presented on the right. The mov()

instruction in step 5 exploits a common sub-expression such that the two Goals in its
output Goal-Bag are produced together, thus shortening the code.

sensor which performs learnt pixel exposures [15], to Convolutional Neural Net-
works [4,20]. Its distinctive ability to perform computation on the focal-plane
reduces power consumption and data transfers, making the device promising for
edge computation.

The SCAMP-5 architecture is a general-purpose fine-grain SIMD FPSP [6].
It has a 256 × 256 pixel array, and along with each pixel is a small Processing
Element (PE). All 65,536 processors execute the same instruction at one time.
In addition to 14 binary registers, each PE has analogue registers A through to F
as well as a NEWS register. Each PE can also address an XN, XE, XS, and XW
register that is actually that PE’s respective neighbours’ NEWS registers. Each
PE uses an analogue bus to link its available analogue registers, and because
values are stored as charge; analogue arithmetic is done directly on the bus that
connects the registers rather than on a separate arithmetic unit.

Instructions in the architecture control how register values are let into and
out of the bus with the caveat that values are inverted due to the nature of
the analogue electronics. Each macro instruction like add, sub, and mov are
made of multiple bus instructions that create the desired behaviour, where the
busn(w1, ..wn, r0..rk) instruction has the general rule that the values of registers
r0..rk are summed up, negated, and divided equally between the n receiving-
registers w1..wn. Since a bus operation directly controls which registers are
opened to the PE’s common analogue bus, a register may only appear once
in each bus instruction. Each bus instruction also incurs significant noise and
error factors, especially for bus2 and bus3 [8].

Macro instruction arguments are written as if they are assignment state-
ments. For example; the macro instruction add(A, B, C) means A := B + C

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 185

and is made up of two bus instructions: bus(NEWS, B, C) meaning the NEWS
register now contains the value of −(B+C); and then bus(A, NEWS) so that reg-
ister A contains B+C. We can see here that the add instruction has additional
constraints, such that the two operands cannot be the same register, and that
the NEWS register is overwritten, and left containing −(B+C) as a side effect.
When using macro instructions, we restrict the registers to A to F, and allow the
macros themselves to make use of the NEWS and neighbouring NEWS registers
for us by means of a direction value. We use subscripts to denote the registers
of neighbouring PEs. For example: mov2x(A, B, north, east) computes A :=
Bnorth,east in two bus instructions: bus(XS, B); bus(A,XE). The first means
that XSnorth,east := Bnorth,east which is equivalent to NEWSeast := Bnorth,east and
then the second instruction means A := XE = NEWSeast =⇒ A = Bnorth,east.

While interesting uses of the bus instructions exist, allowing adding and sub-
tracting from neighbouring PEs, individual macro instructions are still highly
restricted in comparison to most modern instruction sets. Only primitive ana-
logue operations are available to each PE such as: Move, Add, Subtract, Divide
by two, and to acquire the value from the sensor [8]. The lack of a multiplica-
tion instruction means the problem of generating convolutional filter code for
SCAMP-5 builds on the theory of multiplier-free FIR filters [7].

The chip has been shown to be capable of operating at 100,000 FPS, largely
because it is not limited by the speed of an output bus to transfer all the pixel
data [5]. Instead of only offering an analogue or digitally encoded output of
all pixels at a time, like traditional camera sensors, the SCAMP-5 architecture
allows binary outputs per pixel, and even event driven outputs. This allows
each PE to come to a judgement on its input pixel data and fire its own event
that sends the coordinates of the PE to the host; allowing information transfer
without divulging the actual image.

The architecture uses an off-chip controller to manage the fetch-decode-
execute cycle, with every pixel’s processor receiving the same instruction, making
it a single-instruction-multiple-data (SIMD) design. This has benefits in terms
of simplicity and efficiency as none of the Processing Elements need to be able
to fetch instructions for themselves. There is also provision for masking pixels
such that only selected PEs execute instructions.

One important consideration to be made when using and designing algo-
rithms related to the SCAMP-5 chip is noise introduced by the nature of the
analogue computation. Every use of the 7 analogue registers introduces noise to
the values stored. This makes finding optimal code to perform the convolutions
ever more vital for accurate results.

3 Cain

Cain is a framework for compiling convolutional filters, designed to search
through a configurable Cellular Processor Array (CPA) instruction set to find
efficient code. A fundamental concept Cain uses is to only consider a single arbi-
trary PE in the CPA, and perform everything relative to it. This works for SIMD

186 E. Stow et al.

architecture like SCAMP-5 because every PE will be executing the same steps
synchronously in parallel. The assumption we make when producing code is that
the neighbours of our arbitrary PE will exist and so will have done the same
work but at a relative offset in the input image. The aim is to search through
the graph of possible Processing Element states in such a way that common
sub-expressions in the given kernels are exploited and used to reduce the cost
of any path from initial to final PE states. To do this Cain searches backwards,
starting with a set of final kernels, these are the convolutional filter, and apply-
ing instructions in reverse to simplify the kernels until only the identity kernel1

is left. Figure 1 shows a high level overview of this process. Searching backwards
is a design choice that makes the search more effective because it means the aim
at each step is to make what needs to be solved simpler than before. This means
heuristics can be produced to always direct the search towards the identity kernel
rather than a system of heuristics trying to accurately predict the path towards
an arbitrary set of final Goals. We present this as a dynamic graph search prob-
lem because the size of the graph is intractable. Given the AnalogNet2 filter in
Eq. 1, Cain identifies 37163 potential children nodes in the first step alone. This
can be reduced to 239 if we are willing to accept a less than exhaustive search
of the solution space. This restriction is applied when the computational cost of
computing the full set of children nodes is too high.

3.1 Definitions

This section provides an overview of notation and definition used in this paper.
Cain is designed such that different definitions could be used without changing
the fundamental search algorithm but the definitions we use here for SCAMP-5
are based largely on AUKE’s, which provides an elegant way to conceptualise
the convolutional kernels without multiplication.

Example 1. We will look at a simple example of how a convolutional kernel is
represented in Cain. Here we use AnalogNet2 [12,20] which is a CNN designed
for SCAMP-5.

AnalogNet2 =
{

1
4

[0 0 0−3 1 0
−3 0 2

]
, 1

4

[−4 −1 −1
−1 2 0
1 1 0

]
, 1

4

[−1 2 0
−1 1 −3
0 −3 0

] }
(1)

Since SCAMP-5 does not have multiplication we must approximate the kernel
and because it does have division-by-two instructions the natural approximation
to make is to find the nearest integer multiple of 1

2d
for each coefficient in the ker-

nel, given some number of divisions d. In our example we have already extracted
the common denominator such that d = 2 and this perfectly represents the ker-
nel. The larger d is, the larger the search space and complexity of the problem,
so d can be limited to allow an acceptable amount of approximation error such
that the resulting program is shorter and computational expense of compiling it
is reduced.

1 Single-entry matrix. Not to be confused with identity matrix.

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 187

Definition 1. Let an Atom, denoted as (x, y, z, sign), be a representation of 1
2d

of a pixel value at coordinate x, y, on the zth channel. x, y are coordinates relative
to the arbitrary PE and so also the centre of the kernel, and z refers to an image
input channel. The sign is used to negate the value if necessary.

Definition 2. Let a Goal, denoted as {atom1, atom2, ...}, be a multi-set of
Atoms. The Goal represents an arbitrary kernel, however, scaled by 2d. The
aggregate of the values represented by each of the Atoms yields the same result
as applying the scaled kernel.

Representing a convolutional kernel as a Goal is a convenient way to support
multiply-free instruction set, such as SCAMP-5. One can simply view this as
unrolling the multiply instruction into additions. Using Goals simply re-frames
the problem by scaling everything by 2d, and approximating coefficients to the
nearest number of Atoms.

Definition 3. Let a Goal-Bag, denoted as {goal1, goal2, ...}, be a multi-set of
Goals. The Goal-Bag is used to capture the state of our arbitrary PE. This
includes defining the Final-Goals, the set of convolution kernels we wish to com-
pute; and the Initial-Goals, the set of Goals which the computation will start
from.

Using these definitions of Goals and Atoms we see that the first kernel from
Example 1 can be represented by G

K =
1
4

[
0 0 0−3 1 0

−3 0 2

]
, G =

{
(−1,0,0,−), (−1,0,0,−), (−1,0,0,−),
(0,0,0,+), (−1,−1,0,−), (−1,−1,0,−),

(−1,−1,0,−), (1,−1,0,+), (1,−1,0,+)

}

As our Goal notation is verbose, we provide a compact version that disam-
biguates Goals from kernels

G =
〈

0 0 0−3 1 0
−3 0 2

〉
=⇒ 1

22
[

0 0 0−3 1 0
−3 0 2

]
� Image Input

where the � operator applies the left-hand convolutional kernel to the right-hand array

(2)

By repeating this for process the rest of the convolutional kernels in the
AnalogNet2 filter, the Final-Goals Goal-Bag FG is produced:

FG =
{〈

0 0 0−3 1 0
−3 0 2

〉
,
〈 −4 −1 −1

−1 2 0
1 1 0

〉
,
〈 −1 2 0

−1 1 −3
0 −3 0

〉}
(3)

Since, in our example, d = 2; the Goal representation of the identity kernel
(GID) that makes up the Initial-Goals, is based on the approximation of the
Final-Goals:

KID =
1
4

[
0 0 0
0 4 0
0 0 0

]
=⇒ GID =

〈
0 0 0
0 4 0
0 0 0

〉
(4)

Moving a value around the processor array is expressed by translating every
Atom of a Goal. Addition and subtraction can be expressed by combining two

188 E. Stow et al.

Goals into one, making sure to cancel out positive and negative Atoms with the
same coordinates. Since Cain searches backwards, we apply these operations in
reverse. For 2-operand addition this means we take a Goal, G, that we wish to
generate code for, then produce 2 new Goals that when added together produce
G. Defining Goals as multi-sets of Atoms makes this process intuitive as we
can simply split the Atoms between two Goals in every possible permutation
(or fewer if we are willing to assume some are non-optimal, or willing to miss
potentially better code for the sake of more efficient code generation). This
definition also restricts the reverse search process since when splitting a Goal we
cannot split an Atom. To compute the red Atoms in G naively, PEs must sum
them and read this value from the west thus translating the Atoms eastward.

3.2 Search Strategy

Cain’s reverse search algorithm works iteratively taking the state of an arbitrary
PE, defined as a Goal-Bag:

F := {G1, G2, G2, G3...} (5)

This is a node in our search graph and represents the state we aim to achieve
by executing the instructions that form a path from the initial-Goals to this node.
In the search graph, nodes are generated dynamically as the graph is explored.
Figure 2 shows a simplified view of how a graph might look as it is generated and
searched. We simplify the exploration such that in each iteration of the search
algorithm we produce a Goal-Bag Pair of an Uppers Goal-Bag and a Lowers
Goal-Bag as well as an instruction, with the following constraints:

(U ,L), inst = nextPair(F) where U ⊆ F , U = inst(L) (6)

This is in contrast to AUKE’s method, shown later in Eq. 16. The new child
node, C , is then produced by applying the instruction in reverse using the
following rule, with the instruction becoming an edge in the graph:

C = (F \ U) ∪ L (7)

Following our AnalogNet2 example from Eq. 3, the first iteration of the search
algorithm will start with FG and the Pair of Goal-Bags Cain produces is as
follows:

U =
{ 〈 −1 2 0

−1 1 −3
0 −3 0

〉 }
, L =

{ 〈 −1 2 0
−1 1 0
0 0 0

〉
,

〈
0 0 0
0 0 −3
0 0 0

〉
,

〈
0 0 0
0 0 0
0 −3 0

〉 }
(8)

inst = U ← add(L1, L2, L3) (9)

C =
{〈

0 0 0−3 1 0
−3 0 2

〉
,
〈 −4 −1 −1

−1 2 0
1 1 0

〉
,
〈 −1 2 0

−1 1 0
0 0 0

〉
,
〈

0 0 0
0 0 −3
0 0 0

〉
,
〈

0 0 0
0 0 0
0 −3 0

〉}
(10)

The multi-set semantics here mean that if the Goals in L are all already part
of F then the number of Goals to solve is reduced, and so by applying more

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 189

pairs (U ,L) we traverse the graph of Goal-Bags, until we reach the initial-
state, where the only Goal in the Goal-Bag is the identity Goal. In our example
(Eq. 10) we see that the sub-expression of 3 negative Atoms is reused in C4 and
C5 since applying a mov2x next could eliminate C5 from C . There is also further
potential to reuse this by how we split C1. Once the initial Goal-Bag is found
the path from the initial Goal-Bag back to the Final-Goals becomes the list of
instructions that form our generated program.

After this point Cain continues searching for shorter paths, and can cull
any nodes with longer paths. During the search the same Goal-Bags may be
reproduced in different ways, we cull the current node any time a Goal-Bag is
produced that has already been seen at a lower or equal cost, or if the Goal-Bag
has more Goals than available registers.

The second part of the search strategy defines the search order. Each invoca-
tion of the reverse search algorithm produces one new node, C , and the input
node is incremented to know how many of its children have been produced so
far. Cain uses this simple definition to allow several graph traversal algorithms
to be implemented. Using Depth-First-Search (DFS), Cain can simply maintain
a stack of the nodes. On each cycle the top node is popped off the stack and
given to the reverse search algorithm. Then the incremented parent node is put
back on the stack, followed by the new child node.

Algorithm 1: CGDS Graph
Search
Input: s

1 deque ← [(s,null)]
2 while deque �= [] do
3 n, g ← deque[0]
4 deque ← deque[1..]
5 if g = null then
6 do node computation on n
7 g ← childGenerator(n)
8 end
9 c ← g.yield()

10 if c �= null then
11 deque ←

[(c,null)] + deque + [(n, g)]
12 end
13 end

While DFS performs well in AUKE,
it struggles in Cain because the num-
ber of child nodes at every level is
far greater, since each edge is only
one instruction and there are multi-
ple kernels to consider. This means
the size of the graph we would like
to search is much larger and we are
unable to search even a small fraction
of it. To overcome this we use a graph-
traversal algorithm that, for our pur-
poses, we call Child-Generator-Deque-
Search (CGDS). The aim of this algo-
rithm is to ensure that the search does
not end up ‘trapped’ in one small part
of the graph, but can effectively search
traverse many children of many of the
nodes that are found where DFS will
search all of the children of nodes at
the extent of the paths it searches before searching the second children of nodes
earlier in the graph. Algorithm 1 shows a pseudo-code implementation of CGDS.
In each cycle the front of the queue is polled, if the node has not been seen before,
Cain checks to see if it can be directly transformed from the initial-state Goal-
Bag, this is the ‘node computation’. The node is then passed to the reverse
search algorithm to attempt to produce the next new child node and to incre-

190 E. Stow et al.

ment parent node – this is implicit in calling ‘yield()’ on g. The child node, if it
exists, is put on the front of the queue and the incremented parent node is put
on the back. We do not claim that CGDS is novel, but we have found it superior
to obvious alternatives, and the strategy used in [2]; for details see [18].

3.3 Cost Function

In the reverse search algorithm we see that the pairs of Uppers and Lowers
are produced one at a time. While this simplification allows us to produce more
generic graph traversal implementations; what allows Cain to efficiently find
solutions, are the heuristics that allow us to order the pairs that are produced
for a node from the most promising to the least. This type of heuristic provides
the order of siblings to search so we call it a ‘local heuristic’. It doesn’t compare
nodes in different parts of the graph, which we would call a ‘global heuristic’.
We found that we were unable to find effective global heuristics because traver-
sal algorithms that take advantage of such heuristics end up producing huge
frontier sets of nodes making the memory requirements too large. The use of
local heuristics drives the SCAMP-5 code generation in Cain instead, though
support for best-first-search with global heuristics is available in Cain. The local
heuristics used for SCAMP-5 are based on generating every child node of the
parent and then ordering them based on a cost function. There are 3 main com-
ponents considered for the cost: Atom distance, repeated Goals, and divisions.
A simplified formula is shown in Eq. 11.

cost(C) = dists(C) + reps(C) + divs(C) (11)

dists(C) =
∑

G∈C

(
|G| +

∑
a∈G

(|a.x| + |a.y|) ×
{

1
2 if � ∃B ∈ C .G ⊂ B
1 otherwise.

})
(12)

reps(C) =
∑

{G∈C :G is unique wrt any translations}

{|G|2 ∃a, b ∈ G.a �= b
0 otherwise.

}
(13)

divs(C) =
2d

min(multiplicity(a)∀a ∈ G.∀G ∈ C)
(14)

The Atom distance part counts up how many Atoms every Goal in C has,
and how far from the centre they are, with some relief if the Goal is a sub-Goal
of another Goal in C . The repeated Goals portion of the cost penalises C by
the square of number of Atoms in each Goal, unless that Goal is equal to a
translation of another Goal in C . The divisions component penalises C for the
number of division operations that would be required to produce the Goals from
the identity-kernel Goal, GID.

4 Evaluation

All performance evaluation is conducted on an Intel Core i7-7700HQ CPU (4
cores, 8 threads) with a base frequency of 2.80GHz. The computer has 16GB

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 191

of RAM, runs Ubuntu 18; as well as Java 1.8 (Oracle) and Python 3.6 to run
Cain and AUKE respectively. The implementation of AUKE used, as developed
by Debrunner, can be found on Github2. Cain source code can be found at
github.com/ed741/cain, and the specific version and sources for experimental
setups presented in this evaluation can be found at [19].

4.1 Performance Evaluation Against AUKE

Comparison of our work Cain against AUKE is performed by comparing resulting
code generated from the respective compilers, given the same input filters. Both
compilers are given 60 s to find a solution using all 6 registers. Note as Cain
supports multi-threading, it spawns 4 worker threads to perform the search.

As shown in Table 1, Cain significantly outperforms AUKE. Cain supports
a wider set of instructions in contrast of AUKE, enabling generation of more
efficient code. Not only this, the search strategy used by Cain is better than
AUKE’s, as shown in 5× 5 Gaussian Kernel, were using the same set of instruc-
tions (Basic), code generated by Cain is half in length when compared to output
of AUKE’s. Although, in further testing, AUKE is able to produce less inefficient
code for this kernel given fewer registers. When given multiple kernels, Cain is
able to perform simultaneous kernel optimisation. For example when combin-
ing 3 × 3 and 5 × 5 Gaussian, unlike AUKE, Cain is implemented to utilise the
common sub-expressions between the kernels, thus, generating shorter code than
naively concatenating the code for each of the Gaussian kernels. Neither Cain
or AUKE perform a compete exhaustive search.

The AnalogNet2 filter is the kernels used in AnalogNet2 [20][12], which is a
CNN for SCAMP-5, capable of MNIST digit recognition. Cain requires only 21
instructions whereas AUKE produces kernel code which has in total 49 instruc-
tions. Reduced code not only improves the execution time, but also reduces the
noise build up, which is significant problem as discussed in [20]. If the aim of
finding sub-expressions is to eliminate redoing work, then the number of add
and subtract operands is a proxy for how effective the search for sub-expressions
is, regardless of how translations are handled. Table 2 shows that AUKE’s code
has 40 add or subtract operands whereas Cain’s code has only 27. We have com-
pared the runtime of AnalogNet2’s convolution kernels, generated by AUKE and
Cain on the physical SCAMP-5. Note, as AUKE produces code which performs
invalid register manipulation, the fixed code as used in [12], which executes on
the device is 81 instructions long. The execution time of the code produced by
AUKE and Cain for the convolution kernels were 35μs and 9μs respectively,
showing almost 4 times speedup.

2 github.com/najiji/auto code cpa/tree/75c017e5ad28c0f3f040fb9f84d7f8727d035baa.

https://github.com/ed741/cain
https://github.com/najiji/auto_code_cpa/tree/75c017e5ad28c0f3f040fb9f84d7f8727d035baa

192 E. Stow et al.

Table 1. Kernels tested in AUKE and Cain. Values on the righthand side of the table
refer to the number of SCAMP-5 macro instructions in the programs generated by
AUKE and Cain for each filter. AUKE can only use the ‘basic’ macro instructions, so
Cain is run twice; to compare its effectiveness under the same restrictions as AUKE.
Since AUKE does not offer a way to compile multiple kernels at once, values for each
kernel are given separately.

Name Approximated Filter AUKE Cain

Basic All Basic

3×3 Gauss
{

1
16

[
1 2 1
2 4 2
1 2 1

]}
12 10 12

5×5 Gauss

{
1
64

[0 1 2 1 0
1 4 6 4 1
2 6 10 6 2
1 4 6 4 1
0 1 2 1 0

]}
50 19 25

5×5 and 3×3 Gauss

{
1
64

[0 1 2 1 0
1 4 6 4 1
2 6 10 6 2
1 4 6 4 1
0 1 2 1 0

]
, 1
64

[0 0 0 0 0
0 4 8 4 0
0 8 16 8 0
0 4 8 4 0
0 0 0 0 0

]}
(50 + 12) 26 39

AnalogNet2

{
1
4

[
0 0 0
−3 1 0
−3 0 2

]
, 1
4

[−4 −1 1
−1 2 0
1 1 0

]
, 1
4

[−1 2 0
−1 1 −3
0 −3 0

] }
(13 + 21

+15)
21 30

Table 2. Comparison of Code for the AnalogNet2 filter generated by AUKE and Cain.
The Input Register is ‘A’ and the output registers for the 3 kernels are ‘A’,‘B’,‘C’
respectively. For AUKE, kernel 2 is run first since testing showed it was longest so this
gives AUKE more registers to use.

niaCEKUA
Kernel 2
1 mov(B,A);
2 divq(B,B);
3 divq(B,B);
4 movx(C,B,north);
5 neg(C,C);
6 neg(D,C);
7 movx(E,D,west);
8 neg(E,E);
9 add(F,B,E);

10 movx(B,D,east);
11 add(B,B,E);
12 movx(D,E,south);
13 movx(D,D,south);
14 sub(B,B,D);
15 add(B,B,F);
16 add(B,C,B);
17 movx(C,C,west);
18 add(B,B,C);
19 movx(C,F,south);
20 add(B,C,B);
21 add(B,B,F);

Kernel 3
22 mov(C,A);
23 divq(C,C);
24 divq(C,C);
25 movx(D,C,south);
26 neg(D,D);
27 movx(E,C,east);
28 sub(D,D,E);
29 movx(E,C,north);
30 add(E,E,D);
31 add(D,D,D);
32 add(D,E,D);
33 movx(E,C,west);
34 sub(C,C,E);
35 add(D,D,C);
36 movx(C,C,north);
37 add(C,D,C);

Kernel 1
38 divq(A,A);
39 divq(A,A);
40 movx(D,A,west);
41 neg(D,D);
42 movx(E,D,south);
43 add(D,D,E);
44 add(E,A,D);
45 movx(A,A,south);
46 movx(A,A,east);
47 add(A,D,A);
48 add(A,A,A);
49 add(A,E,A);

1 diva(A,D,E);
2 div(D,E,C,A);
3 movx(E,D,west);
4 movx(C,E,north);
5 neg(F,E);
6 subx(B,F,east ,A);
7 addx(E,E,D,south);
8 add2x(D,F,D,north ,north);
9 sub2x(F,D,south ,south ,C);

10 add2x(D,C,D,east ,south);
11 add(E,E,D);
12 movx(D,A,north);
13 add2x(A,C,A,east ,east);
14 movx(C,B,east);
15 add(D,F,D);
16 add2x(F,F,E,east ,south);
17 movx(E,B,south);
18 addx(A,B,A,south);
19 addx(A,B,A,west);
20 add2x(B,F,B,north ,west);
21 add(C,D,C,E);

4.2 Effectiveness of the Search Strategy

If Cain has an effective heuristic we will quickly see a point of diminishing returns
in code length, as Cain continues to search new nodes and takes more time. We
can track the number of nodes that are explored before finding any plan in
Cain, and so use this as a measure of the search strategy and heuristics that
is more independent of physical compute performance. With this in mind we
test the effectiveness of our heuristic by constructing 100 samples of randomly
generated single kernel filters as in Eq. 15. Running Cain as per the following

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 193

Fig. 3. Left: Graph showing the median number of instructions in the best plans found
before n nodes have been explored by Cain. With 100 samples of randomly generated
singular 3 × 3 kernel filters. Right: Graph showing the number of instructions in the
shortest programs found by Cain for filters with 1, 2, 3, and 4 random 3 × 3 kernels.
25 samples were produced for each kernel count.

configuration – Maximum Nodes to Explore: 20000, Maximum Search Time:
60 s, Worker Threads: 1 – allows us to collect as many plans as can be found
in the given time limit. We then ran Cain again, but with Cain’s SCAMP-5
heuristic disabled and replaced with a random sort. This allows us to compare
Cains heuristics against an unaided benchmark.

1
8

[
u1 u2 u3
u4 u5 u6
u7 u8 u9

]

Given u1..u9 are integers sampled uniformly from the range [0..8]
(15)

We found that Cain was unable to find any plan for any of the 100 sample
filters without its heuristics, principally demonstrating that effective heuristics
are required in Cain for any tangible progress to be made. We plot the lengths
of the best plans found against the number of nodes expanded before the plan
is found in Fig. 3. We can see that improvements are fewer and further between
after the first 2500 nodes are explored. After this we see that we can expect at
most a reduction equal to the reduction seen at 2500 for the rest of the nodes
explored. This clearly demonstrates a point of diminishing returns for these
filters. If the heuristic is effective we expect it to direct the search towards short
plans first, and try instructions less likely to be optimal later. This model fits
the data well as we see short plans are found quickly, and while improvements
can be made, it is clear that they are found less often as the search continues.

4.3 Effectiveness of the Simultaneous Kernel Optimisation

One of the significant features of Cain is to efficiently generate code for filters
with multiple kernels, and do this simultaneously such that shared common
sub-expressions can be reused. As it is possible for Cain to perform exhaustive

194 E. Stow et al.

Fig. 4. Graph comparing the sum of the shortest SCAMP-5 code lengths found for
kernels compiled individually, against the same kernels compiled simultaneously as one
filter. For each filter a total of 18 registers were made available (more than in SCAMP-
5) to reduce register availability as a limiting factor. In total 100 filters are produced,
10 for each number of kernels per filter. Each kernel is a randomly generated 3 × 3
kernel with coefficients uniformly selected in eighths from 0 to 1 (inclusive).

searches for plans, given sufficient time, it will find a solution that simply com-
putes the individual kernels independently, or find a solution with lower cost –
utilising the common sub-expressions.

First, we wish to test whether the length of generated code is sub-linear to the
number of input kernels. To test this, we again generate kernels using the using
the method in Eq. 15. For kernel counts from 1 to 4 we generated 25 filters each
and test them all using the same configuration as before except that we remove
the maximum nodes explored constraint, and allow 4 worker threads. We plot
the results in Fig. 3 and see that the results appear worse than linear, suggesting
that common sub-expressions are not effectively being taken advantage of.

We hypothesise that the limited number of registers in the SCAMP-5 archi-
tecture is the major limiting factor in producing efficient code. To test this we
increase the number of available registers to 18. For filters with 1 kernel up to
10 kernels we generate 10 samples each. Every kernel in the 100 filters is pro-
duced as in Eq. 15. For each sample, Cain compiles the kernels individually, given
the appropriate number of registers such that other kernels in the filter would
not be overwritten. Then we compile the kernels simultaneously using Cain. All
compilations are given 60s to run, with 4 worker threads.

Figure 4 shows the results of this test. We see clearly that when register
limitations are not a restricting factor Cain is able to consistently improve the
performance of filter implementations by compiling them simultaneously. We see
that improvements grow with more kernels, and it appears that the length of

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 195

code generated for simultaneously compiled kernels increases sub-linearly. This
supports the idea that with more kernels, ever more common-sub expressions
can be exploited.

5 Related Work: AUKE

In this section we look at how AUKE operates to provide extra context and con-
trast for Cain. Automatic Kernel Code Generation for Analogue SIMD (AUKE)
is an algorithm for generating code given a single convolutional kernel created
by T. Debrunner [11]. It can be characterised by 4 main steps: kernel approxima-
tion; the reverse split algorithm; graph relaxation; and finally register allocation.
First, AUKE approximates the input kernel into the Goal representation. In this
process Cain is similar to AUKE and the reasoning and mechanics have been
discussed in Sect. 3.1.

Unlike in Cain, multiple instructions are represented by a single elemental
transformation of Goals. These elemental transformations form edges of a graph
that describe the translation, addition, subtraction and division of Goals to
produce the desired convolutions filter. This abstraction allows AUKE to reduce
the effective size of the search space at the cost of granularity in instruction
selection and being extensible to hardware features such as 3-operand addition.
Debrunner called this the ‘Reverse-Split Algorithm’.

The graph of elemental transformations is dynamically generated via a recur-
sive depth-first search that tries to split a Goal G, that needs to be produced,
into 3 sub-Goals:

G = U ∪ L ∪ R where U = elementalTransformation(L) (16)

This recursive algorithm then means that if the search can find solutions
for L and R (two smaller problems) it can trivially create U and therefore the
desired Goal.

In the ideal case R = ∅ and so only L needs to be produced and we save
one addition. In the worst case L = U = ∅ and R is a transformation of G and
so less useful work is done in that step. If two Goals are equal they are merged
such that they aren’t calculated twice, to exploit common sub-expressions in the
Goals. This process is repeated until a single Goal, the initial-Goal, is left. This
algorithm is able to entirely search the relevant problem space, given a couple
of assumptions. Most notably, the assumption that every sub-Goal generated is
a subset of the Final-Goal. This reduces the search space significantly to the
most promising but not necessarily the best solutions, allowing AUKE to find
generally effective solutions.

The algorithm is made efficient and useful by intelligently selecting the order
with which Us, Ls, and Rs are generated at every recursive step. By selecting
pairs of U and L that are likely to lead to efficient code, the algorithm can
quickly find some path to the initial-Goal. From then on the recursive search
can stop early if a lower cost solution has already be found.

196 E. Stow et al.

The Graph Relaxation step aims to mitigate missing optimal solutions
because of the assumption that sub-Goals are always subsets of the Final-Goal by
using a ‘retiming’ algorithm used in integrated circuit design. This is not needed
in Cain since Cain searches instruction by instruction, and so any optimisations
found via graph relaxation are already a part of the search space.

The final step is to perform register allocation on the graph to be able to
generate usable code. A maximum bound of registers is already accounted for
in the search algorithm, since spilling is not an option for the SCAMP-5 archi-
tecture. For this task; variable liveness is considered for each node of the graph
representation, and a graph colouring algorithm is used to find a solution.

6 Conclusion

We have presented Cain, a compiler which produces SCAMP-5 instructions from
a set of convolutional kernels. Although the effectiveness of simultaneous kernel
optimisation is limited on the current iteration of the SCAMP-5, we demon-
strate, that with the increased number of registers, the length of the output of
Cain is sub-linear to the number of kernels given. We have conducted extensive
comparison against AUKE, and we demonstrate that the code generated by Cain
is more efficient, and exhibits almost 4x speed up when the generated kernel is
executed on the SCAMP-5 device. We believe that SCAMP-5 is a strong can-
didate for edge computation, and by providing easy to use, yet efficient code
generation toolkit, we hope to accelerate the relevant research in this field.

Acknowledgements. We would like to thank Piotr Dudek, Stephen J. Carey, and
Jianing Chen at the University of Manchester for kindly providing access to SCAMP-
5, and their support in our work. This work was partially supported by the EPSRC,
grant reference EP/P010040/1.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation OSDI 16,
pp. 265–283 (2016)

2. Barthels, H., Psarras, C., Bientinesi, P.: Linnea: Automatic generation of efficient
linear algebra programs (2019). https://arxiv.org/pdf/1912.12924.pdf

3. Bose, L., Chen, J., Carey, S.J., Dudek, P., Mayol-Cuevas, W.: Visual odometry
for pixel processor arrays. In: 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 4614–4622 (October 2017)

4. Bose, L., Chen, J., Carey, S.J., Dudek, P., Mayol-Cuevas, W.: A camera that CNNs:
towards embedded neural networks on pixel processor arrays. In: Proceedings of
the IEEE International Conference on Computer Vision (ICCV), pp. 1335–1344
(2019)

5. Carey, S.J., Barr, D.R.W., Wang, B., Lopich, A., Dudek, P.: Locating high speed
multiple objects using a SCAMP-5 vision-chip. In: 2012 13th International Work-
shop on Cellular Nanoscale Networks and their Applications, pp. 1–2 (August
2012)

https://arxiv.org/pdf/1912.12924.pdf

Cain: Convolutional Filter Compiler for Focal-plane Sensor-processors 197

6. Carey, S.J., Lopich, A., Barr, D.R.W., Wang, B., Dudek, P.: A 100,000 fps vision
sensor with embedded 535GOPS/W 256 × 256 SIMD processor array. In: 2013
Symposium on VLSI Circuits, pp. C182–C183 (2013)

7. Chandra, A., Chattopadhyay, S.: Design of hardware efficient FIR filter: a review
of the state-of-the-art approaches. Eng. Sci. Technol. Int. J. 19(1), 212–226 (2016)

8. Chen, J.: scamp5 kernel api macro analog.hpp file reference (January
2020). https://scamp.gitlab.io/scamp5d doc/scamp5 kernel api macro analog
8hpp.html

9. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2016)

10. Debrunner, T., Saeedi, S., Bose, L., Davison, A.J., Kelly, P.H.J.: Camera tracking
on focal-plane sensor-processor arrays (2019)

11. Debrunner, T., Saeedi, S., Kelly, P.H.J.: AUKE: automatic kernel code generation
for an analogue SIMD focal-plane sensor-processor array. ACM Trans. Archit. Code
Optim. 15(4), 59:1–59:26 (2019)

12. Guillard, B.: CNNs-on-FPSPs (May 2019). https://github.com/brouwa/CNNs-on-
FPSPs/tree/c6b5c51839e9e3c453681e5b0a3e3ef541ba3cce

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Martel, J.: Unconventional Processing with Unconventional Visual Sensing. Ph.D.
thesis, Institut National des Sciences Appliquées de Lyon (2019)

15. Martel, J.N.P., Müller, L.K., Carey, S.J., Dudek, P., Wetzstein, G.: Neural sensors:
learning pixel exposures for HDR imaging and video compressive sensing with
programmable sensors. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1642–1653
(2020)

16. Murai, R., Saeedi, S., Kelly, P.H.J.: BIT-VO: visual odometry at 300 FPS using
Binary features from the focal plane. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2020)

17. Saeedi, S., Bodin, B., Wagstaff, H., et al.: Navigating the landscape for real-time
localization and mapping for robotics and virtual and augmented reality. Proc.
IEEE 106(11), 2020–2039 (2018)

18. Stow, E.: Automatic Code Generation for Simultaneous Convolutional Kernels on
Cellular Processor Arrays. Master’s thesis, Imperial College London (2020). http://
edstow.co.uk/pub/2020/MEngThesis.pdf

19. Stow, E., Murai, R.: ed741/cain: 3.0-experiments.1 (August 2020). https://doi.
org/10.5281/zenodo.3975615

20. Wong, M.Z., Guillard, B., Murai, R., Saeedi, S., Kelly, P.H.J.: AnalogNet: Convo-
lutional Neural Network Inference on Analog Focal Plane Sensor Processors. arXiv
preprint arXiv:2006.01765 (2020)

21. XIMEA: xiB - PCI Express Cameras with high speed and resolution. https://www.
ximea.com/pci-express-camera/pci-express-camera

22. Zarándy, Á.: Focal-Plane Sensor-Processor Chips. SpringerLink : Bücher, Springer,
New York (2011). https://doi.org/10.1007/978-1-4419-6475-5

https://scamp.gitlab.io/scamp5d_doc/scamp5__kernel__api__macro__analog_8hpp.html
https://scamp.gitlab.io/scamp5d_doc/scamp5__kernel__api__macro__analog_8hpp.html
https://github.com/brouwa/CNNs-on-FPSPs/tree/c6b5c51839e9e3c453681e5b0a3e3ef541ba3cce
https://github.com/brouwa/CNNs-on-FPSPs/tree/c6b5c51839e9e3c453681e5b0a3e3ef541ba3cce
http://edstow.co.uk/pub/2020/MEngThesis.pdf
http://edstow.co.uk/pub/2020/MEngThesis.pdf
https://doi.org/10.5281/zenodo.3975615
https://doi.org/10.5281/zenodo.3975615
http://arxiv.org/abs/2006.01765
https://www.ximea.com/pci-express-camera/pci-express-camera
https://www.ximea.com/pci-express-camera/pci-express-camera
https://doi.org/10.1007/978-1-4419-6475-5

Reordering Under the ECMAScript
Memory Consistency Model

Akshay Gopalakrishnan(B) and Clark Verbrugge

McGill University, Montréal, Québec, Canada
akshay.akshay@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract. Relaxed memory accesses are used to gain substantial
improvement in the performance of concurrent programs. A relaxed
memory consistency model specifically describes the semantics of such
memory accesses for a particular programming language. Historically,
such semantics are often ill-defined or misunderstood and have been
shown to conflict with common compiler optimizations essential for the
performance of programs overall. In this paper, we give a formal descrip-
tion of the ECMAScript relaxed memory consistency model. We then
analyze the impact of this model on one of the most common compiler
optimizations, viz. instruction reordering. We give a conservative proof
under which such optimization is allowed for relaxed memory accesses.
Finally, we discuss the advantage of our conservative approach and the
gaps needed to be filled in order to incorporate our results while doing
such optimizations at the program level.

Keywords: Relaxed memory consistency · Optimization ·
ECMAScript

1 Introduction

Concurrent programs take advantage of out-of-order execution. Intuitively, this
means more than one unrelated computations can be done “simultaneously”
without having any fixed order in which they should happen. This results in
concurrent programs having multiple different outcomes, the possible outcomes
of which are described by a memory consistency model. The most intuitive and
commonly relied upon model is that of Sequential Consistency (SC), which guar-
antees that every outcome of a program must be equivalent to a sequential inter-
leaving of each thread’s actions. For example, consider the program in Fig. 1 with
two threads, which share memory denoted by x, y initialized to 0, where a, b
are local variables. The right-hand-side are the possible values that a and b can
read under sequential consistency.

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 198–214, 2022.
https://doi.org/10.1007/978-3-030-95953-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-95953-1_14

Reordering Under the ECMAScript Memory Consistency Model 199

T1

a = x;
b = y;

T2

y = 2;
x = 1;

a = 0 ^ b = 0
a = 0 ^ b = 2
a = 1 ^ b = 2

Fig. 1. Example program with its possible outcomes under sequential consistency.

However, the above program under SC cannot have the outcome a = 2 ∧ b =
0. From a program transformation standpoint, such an outcome should be pos-
sible: we can simply reorder either both the reads or both writes to x and y, as
they are computations on disjoint memory. But from a consistency rule stand-
point, since the outcome is not valid, it also brings with it the conclusion that
such simple program transformations may not be safe or even invalid. Figure 2
shows how after doing either one of these reorderings, an outcome invalid under
SC is possible.

T1

b = y;
a = x;

T2

y = 2;
x = 1;

T1

a = x;
b = y

T2

x = 1;
y = 2;

Fig. 2. Left program is when the two reads in T1 are reordered, whereas the right
program is when the two writes of T2 are reordered.

Weaker consistency models have been introduced to concurrent, shared-
memory languages to leverage more of the out-of-order notion. For instance,
under the ECMAScript consistency model semantics, if all the accesses are of
type unordered, the above invalid outcome is allowed, which implies a reordering
of such events is valid in the above case. The problem though is that semantics of
such weak consistency can be easily misunderstood, and are sometimes defined in
informal prose format, thus leading to misinterpretation of intended semantics,
which leads to implementation issues. The lack of clear semantics also makes it
difficult to assert when a particular program transformation is valid/safe (in our
case, instruction reordering).

Our focus in this work is to offer a clarified, more concise rendition of the
core ECMAScript memory model that allows for better abstract reasoning over
allowed and disallowed behaviours (outcomes). We use our model to provide a
straightforward, conservative proof of when reordering of independent instruc-
tions is permitted, addressing optimization in terms of its impact on observable
program behaviours. Our approach can be extended to address additional opti-
mization effects, such as redundancy removal. Specific contributions of our work
include the following:

200 A. Gopalakrishnan and C. Verbrugge

1. We provide a concise declarative style model of the core ECMAScript memory
consistency semantics. This clarifies the existing draft presentation [4] in a
manner useful for validating optimizations.

2. Using our model we show when basic reordering of independent instructions
is allowed. Although conservative, this represents a formal proof that this
fundamental optimization is permitted. Similar proof designs can be used
to validate other basic optimization behaviours,such as removing redundant
reads or writes.

2 Related Work

Sequential Consistency, which was first formulated by Lamport et al. [5], gives
programmers a very intuitive way to reason about their programs running in
a multiprocessor environment. However, in the practical sense, Sequential Con-
sistency is too “strict,” in the sense that it may impede possible performance
benefits of using low-level optimization features, such as instruction reordering,
or read/write buffers provided by the hardware. A tutorial by Adve et al. [1],
summarizes the most common hardware features for relaxed memory that are
now available in most hardware. What this tutorial also exposed is the difficulty
in formalizing such features in a way that we can reason about our programs
sanely without getting caught up in the complexity of multiple executions of
our programs. Unsurprisingly, relaxed memory model specifications for differ-
ent hardware/high-level programming languages are still sometimes written in
informal prose format, which leads to several of problems in implementation [12].

Sarkar et al. [9] showed that the original x86-CC memory model was fairly
informal, which they then formalized in their work. This also exposed incon-
sistencies between the specification and the implementation in hardware. This
was shown in their subsequent work done by Owens et al. [8], wherein they pro-
posed a new memory model x86-TSO as a remedy. Manson et al. [6], showed
that the initial specifications of the Java memory model were quite informal
and ill-defined, and offered a more precise formalization. Recent works such as
that done by Bender et al. [3], also show us that the recent updates to the java
Memory model are still relatively unclear, which they again formalize. Similarly,
Batty et al. [2], clarified the specification of the C11 memory model.

Apart from the problems of ill-defined/informal specifications, these models
also have an impact on the safety of program transformations which were consid-
ered safe to do in a sequential program. S̆evc̆́ık et al. [11] showed that standard
compiler optimizations were rendered invalid under the respective memory model
of Java. Vafeiadis et al. [13] showed that common compiler optimizations under
C11 memory model are also invalid, followed by proposing some changes to allow
them.

With respect to instruction reordering in shared memory programs, S̆evc̆́ık et
al. [10] recently gave a proof design on how to show such optimizations are valid.
However, this approach relies on the idea of reconstructing the original execution
of a program given the optimized one, while also showing the well known SC-
DRF guarantee holds—programs that are data race free (DRF) must exhibit

Reordering Under the ECMAScript Memory Consistency Model 201

SC semantics. Our approach is, in fact, the other way round; we show that the
optimized program does not introduce new behaviours, by explicitly using the
consistency rules to show that relevant ordering relations are preserved.

ECMAScript has also had some attention in this respect. Watt et al. [14]
uncovered and fixed a deficiency in the previous version of the model, repair-
ing the model to guarantee SC-DRF. Our analysis is based on this corrected
model which is incorporated in the ECMAScript draft specification. As far as
our knowledge goes, no analysis has been done on this model to identify its
implications on standard compiler optimizations.

3 The ECMAScript Memory Consistency Model

We give a relatively more formal and concise axiomatic description of Section 28
of the ECMAScript standard. The version we are referring to is the current
working draft [4]. It is important to note that this working draft has not changed
the memory model specifics since the time we started our work on this.

3.1 Agents and Agent Clusters

Agents for our context could be thought analogous to different threads/processes
running concurrently. Every agent is mapped to a list of events. (defined below)
Collection of agents using a common shared memory for communication form
an agent cluster. There can be multiple agent clusters, however, an agent can
only belong to one agent cluster.

3.2 Events

Agent execution is modelled in terms of events. An event, in our context, is either
an operation that involves (shared) Read/Write memory access or Synchronize
events that constrains the order of execution of multiple events. We define E
as the set of events involved in an agent cluster. We refer to SM , R, W , S as
sets of Shared Memory, Read, Write and Synchronize events respectively. Shared
Memory events are composed of Read and Write event sets. Read-Modify-Write
events belong to both R and W.

Range (�). Each of the shared memory events are associated with a contiguous
range of memory on which it operates. � is a function that maps a shared
memory event to the range of memory indices it operates on which we represent
as a starting index i and a size s. As an example, the range of event e would be
like:

�(w) = (i, s)

We define two binary operators ∩� and ∪� to give the intersection and
union respectively of the set of the byte indices, in order to describe disjoint,
overlapping and equal ranges.

202 A. Gopalakrishnan and C. Verbrugge

Types of Events Based on Order. There are 3 types (or access modes) which
play a role in the sequence in which event actions are visible to different agents

1. Sequentially Consistent (sc) - Events of this type are atomic in nature.
There is a strict global total ordering of such events which is agreed upon by
all agents in an execution.

2. Unordered (uo) - Events of this type are considered non-atomic and can
occur in different orders for each agent.

3. Initialize (init) - Events of this type are used to initialize the values in
memory ordered before events in an agent cluster.

All events of type init are writes and all read modify write events are of
type sc. We represent the type of events in the memory consistency rules in the
format “event : type”. When representing events in a figure, the type would be
represented as a subscript: eventtype.

Tearing (or not). Additionally, each shared-memory event is also associated
with a tearing factor. Events that tear are non-aligned accesses requiring more
than one memory access. Events that are tear-free are aligned and should appear
to be serviced in one memory access. The implication of tearing is better under-
stood with the consistency rule that will later be shown.

3.3 Relation Among Events

We now describe a set of relations between events. These relations help us
describe the consistency rules.

Read-Write Event Relations. There are two basic relations that assist us in
reasoning about read and write events.

Read-Bytes-From (−→
rbf). This relation maps every read event to a list of tuples

each of which consist a write event and the corresponding byte index that is
read. For instance, consider a read event e and corresponding write events d1,
d2 all of whose ranges have byte index i and size 3. One possible −→

rbf relation
could be represented as

e
−→
rbf {(d1, i), (d2, i+1), (d2, i+2)}

or having individual binary relation with each write-index pair as

e
−→
rbf (d1, i), e

−→
rbf (d2, i+1) and e

−→
rbf (d2, i+2).

Reads-From (−→
rf). This relation, is similar to the above relation, except that the

byte index details are not involved in the composed list. So for the above example,
the rf relation would be represented either as e

−→
rf (d1, d2) or individual binary

read-write relation as e
−→
rf d1 and e

−→
rf d2.

Reordering Under the ECMAScript Memory Consistency Model 203

Agent-Synchronizes With (ASW). A list for each agent that consist of
ordered tuples of synchronize events. These tuples specify ordering constraints
among agents at different points of execution. We represent such a list for an
agent k as

ASW k = {〈s1, s2〉, 〈s3, s4〉...}

3.4 Ordering Relations Among Events

Agent Order (−→
ao). A total order among events belonging to the same agent

event list. It is analogous to intra-thread ordering. For example, if two events e
and d belong to the same agent event list , then either e −→

ao d or d −→
ao e.

Synchronize-With Order (−→
sw). Represents the synchronizations among dif-

ferent agents through relations between their events. It is a composition of two
sets as below:

∀i, j > 0, 〈si, sj〉 ∈ ASW ⇒ si
−→
sw sj

(e −→
rf d) ∧ e :sc ∧ d :sc ∧ (�(e)=�(d)) ⇒ (d −→

sw e)

Happens Before Order (−→
hb). A transitive order on events, composed of the

following:

e −→
ao d ⇒ e

−→
hb d

e −→
sw d ⇒ e

−→
hb d

∀e, d ∈ SM, e : init ∧ (�(e) ∩� �(d) �= φ) ⇒ e
−→
hb d

Memory Order (−→
mo). This is a total order on all events which respects

happens-before

e
−→
hb d ⇒ e −→

mo d

3.5 Some Preliminary Definitions

Before we go into the consistency rules. we define certain preliminary definitions
that create a separation based on a program, the axiomatic events and the
various ordering relations defined above. This will help us understand where the
consistency rules actually apply.

Definition 1. Program. A program is the source code without abstraction to a
set of events and ordering relations. In our context, it is the original ECMAScript
program.

Definition 2. Candidate. This is a collection of abstracted set of shared mem-
ory events of a program involved in one possible execution, with the added −→

ao

relations. We can think of this as each thread having a set of shared memory
events to run in a given intra-thread ordering.

204 A. Gopalakrishnan and C. Verbrugge

Definition 3. Candidate Execution. A Candidate with the addition of −→
sw , −→

hb

and −→
mo relations. This can be viewed as the witness/justification of an actual

execution of a Program. Note that there can be many Candidate Executions for
a given Candidate.

Definition 4. Observable Behavior. The set of pairwise −→
rf and −→

rbf relations
that result in one execution of the program. Think of this as our outcome of a
program execution.

3.6 Valid Execution Rules (the Axioms)

We now state the memory consistency rules. The rules are on Candidate Exe-
cutions which will place constraints on the possible Observable behaviors that
may result from it.

Coherent Reads. There are certain restrictions of what a read event cannot
see in an execution based on −→

hb relation with write events.
Consider a read event e and a write event d having at least overlapping

ranges:

e∈R ∧ d∈W ∧ (�(e) ∩� �(d) �= φ).

A read (e) value cannot come from a write (d) that has happened after it or
if there is a write (g) that happens between them, writing to the same memory:

e
−→
hb d ⇒ ¬ e

−→
rf d.

d
−→
hb e ∧ d

−→
hb g ∧ g

−→
hb e ⇒ ∀x ∈ (�(d) ∩� �(g) ∩� �(e)), ¬ e

−→
rbf (d, x).

Tear-Free Reads. If two tear-free writes (d and g) and a tear-free read (e) all
with equal ranges exist, then e can read only from one of them
d : tf ∧ g : tf ∧ e : tf ∧ (�(d)=�(g)=�(e)) ⇒ ((e

−→
rf d) ∧ (¬ e

−→
rf g)) ∨ ((e

−→
rf g) ∧ (¬ e

−→
rf d)).

Sequentially Consistent Atomics. To specifically define how events that are
sequentially consistent affects what values a read cannot see, we assume the
following memory order among writes d and g and a read e to be the premise
for all the rules:

d −→
mo g −→

mo e.

There are three separate cases that restrict e to read from d, which are as below:

– If all events are sequentially consistent with equal ranges.
– If both g and d are sequentially consistent with equal ranges and they happen

before e.
– If both e and g are sequentially consistent with equal ranges and d happens

before them.

Reordering Under the ECMAScript Memory Consistency Model 205

The above cases can be summarized concisely by the rules below:

d :sc ∧ g :sc ∧ e :sc ∧ (�(d)=�(g)=�(e)) ⇒ ¬ e
−→
rf d.

d :sc ∧ g :sc ∧ (�(d)=�(g)) ∧ d
−→
hb e ∧ g

−→
hb e ⇒ ¬ e

−→
rf d.

g :sc ∧ e :sc ∧ (�(g)=�(e)) ∧ d
−→
hb g ∧ d

−→
hb e ⇒ ¬ e

−→
rf d.

3.7 Race

Race Condition (RC). We define RC as the set of all pairs of events that
are in a race. Two events e and d are in a race condition when they are shared
memory events (e, d ∈ SM), having overlapping ranges, not having a −→

hb relation
with each other, and which are either two writes or the two events are involved
in a −→

rf relation with each other. This can be stated concisely as,

¬ (e
−→
hb d) ∧ ¬ (d

−→
hb e) ∧ ((e, d∈W ∧ (�(d) ∩� �(e) �= φ)) ∨ (d

−→
rf e) ∨ (e

−→
rf d)).

Data Race (DR). We define DR as the set of all pairs of events that are in a
data-race. Two events are in a data race when they are already in a race condition
and when the two events are not both of type sc, or they have overlapping ranges.
This is concisely stated as:

e, d∈RC ∧ ((¬e :sc ∨ ¬d :sc) ∨ (�(e) ∩� �(d) �= �(e) ∪� �(d)))

Data-Race-Free (DRF) Programs. An execution is considered data-race
free if none of the above conditions for data-races occur among events. A pro-
gram is data-race free if all its executions are data race free. The memory model
guarantees Sequential Consistency for all data-race free programs (SC-DRF).

3.8 Consistent Executions (Valid Observables)

A valid observable behaviour is when:

1. No −→
rf relation violates the above memory consistency rules.

2. −→
hb is a strict partial order.

The memory model guarantees that every program must have at least one
valid observable behaviour.

4 Instruction Reordering

Instruction reordering is a common operation in compiler optimization, essential
to instruction scheduling of course, but also implicit in loop invariant removal,
partial redundancy elimination, and other optimizations that may move instruc-
tions. However, we saw previously how concurrent programs, under sequential
consistency, may not be allowed to reorder certain events. Understanding pre-
cisely when we can safely reorder requires information on what instructions
threads may be executing concurrently, which requires impractically expensive
whole program analysis.

206 A. Gopalakrishnan and C. Verbrugge

4.1 Our Approach

Our solution to this is to construct a proof that would expose/specify the con-
ditions under which reordering is possible given the relaxed memory semantics,
while using information restricted to only the thread whose events are reordered.
We construct the proof on candidate executions of a program. To keep things
simple, assume that:

1. All events are tear-free
2. No synchronize events exist
3. No Read-Modify-Write events exist
4. All executions of the candidate before reordering have happens-before as a

strict partial order

We first consider when consecutive events in the same agent can be reordered,
followed by non-consecutive cases. The crux of the proof is to guarantee that
reordering does not bring any new observable behaviors.

4.2 Preliminaries

Before we go about proving when reordering is valid, we would like to have two
additional definitions which would prove useful.

Definition 5. Consecutive pair of events (cons)
We define cons as a function, which takes two events as input, and gives

us a boolean indicating if they are consecutive pairs. Two events e and d are
consecutive if they have an −→

ao relation among them and are ‘next to each other’
in the same agent (thread), which can be defined formally as

(e −→
ao d ∧ �k s.t. e −→

ao k ∧ k −→
ao d) ∨ (d −→

ao e ∧ �k s.t. d −→
ao k ∧ k −→

ao e)

Definition 6. Direct happens-before relation (dir)
We define dir to take an ordered pair of events (e, d) such that e

−→
hb d and

gives a boolean value to indicate whether this relation is direct which can be
defined formally as

� g. e
−→
hb g ∧ g

−→
hb d

We can infer certain relations/conditions that must hold using this function
based on some information on events e and d.

– If e :uo, then dir(e, d) ⇒ cons(e, d)
– If d :uo, then dir(e, d) ⇒ cons(e, d)
– If e :sc ∧ e∈R, then dir(e, d) ⇒ cons(e, d)
– If e :sc ∧ e∈W , then dir(e, d) ⇒ cons(e, d) ∨ e −→

sw d
– If d :sc ∧ d∈W , then dir(e, d) ⇒ cons(e, d)
– If d :sc ∧ e∈R, then dir(e, d) ⇒ cons(e, d) ∨ e −→

sw d

Reordering Under the ECMAScript Memory Consistency Model 207

4.3 Lemmas to Assist Our Proof

In order to assist our proof, we define two lemmas based on the ordering relations.

Lemma 1. Consider three events e, d, and k.

If
cons(e, d) ∧ e −→

ao d ∧ ((d :uo) ∨ (d :sc ∧ d∈W))

then,
k

−→
hb d ⇒ k

−→
hb e.

Proof. We have the following to be true :

cons(e, d) ∧ e −→
ao d.

In both cases where d is unordered or a sequentially consistent write, for any
event k

dir(k, d) ⇒ cons(k, d).

An event that satisfies the above with d is e. Because −→
ao is a total order, e

will be the only event. This would mean that for any other k �= e,

k
−→
hb d ⇒ k

−→
hb e.

Note that although there could be a direct happens-before relation with some
event k from another agent, they are only relations satisfying dir(d, k).

Lemma 2. Consider three events e, d and k.

If
cons(e, d) ∧ e −→

ao d ∧ ((e :uo) ∨ (e :sc ∧ e∈R))

then,
e

−→
hb k ⇒ d

−→
hb k.

Proof. The proof is symmetric to that of Lemma 1.

Note that the above lemmas are only for events k which are not of type init

4.4 Valid Reordering

We view reordering as manipulating the agent-order relation among two events.
In that sense, reordering two events e and d with e −→

ao d effectively flips the rela-
tion around to d −→

ao e. What implications this change has on the other ordering
relations depends what events e and d are and would require an analysis of each
Candidate Execution. We begin by first defining a reorderable pair of events.
We then formulate a theorem (with proof) on the set of observable behaviors
of a Candidate before and after reordering a pair of consecutive events that are
reorderable. We consider reordering valid if the set of observable behaviours after
reordering are a subset of the original.

208 A. Gopalakrishnan and C. Verbrugge

Definition 7. Reorderable Pair (Reord) We define a boolean function Reord
that takes two ordered pair of events e and d such that e −→

ao d and gives a boolean
value indicating if they are a reorderable pair:

Reord(e, d) =
(((e :uo ∧ d :uo) ∧ ((e∈R ∧ d∈R) ∨ (�(e) ∩� �(d) = φ)))
∨
((e :sc ∧ d :uo) ∧ ((e∈W ∧ (�(e) ∩� �(d) = φ))))
∨
((e :uo ∧ d :sc) ∧ ((d∈R ∧ (�(e) ∩� �(d) = φ)))))

Theorem 1. Consider a candidate C of a program and its possible Candidate
Executions where −→

hb is strictly partial order. Consider two events e and d such
that cons(e, d) is true in C and e −→

ao d. Consider another candidate C ′ resulting
after reordering e and d. Then if Reord(e,d) is true in C, the set observable
behaviors possible due to Candidate Executions of C ′ is a subset of that of C.

Proof. We look at this in terms of performing an instruction reordering on a
candidate execution of C. We would want the resulting candidate execution
to preserve all the other −→

hb relations (except e
−→
hb d) and that any new −→

hb

relations strictly reduce possible observable behaviors. This can be summarized
as addressing four main questions for any CandidateExecution of C ′:

1. Apart from e
−→
hb d, do other happens-before relations remain intact?

2. Apart from d
−→
hb e, are any new happens-before relations established?

3. Are any happens-before cycles introduced?
4. Do the new relations bring new observable behaviors?

1. Preserving happens-before Relations. If some −→
hb relations among events

are missing in Candidate Executions of C ′ as compared to that of C, we may
introduce new observable behaviors.

The relations that could be lost can be addressed by considering two disjoint
sets of events in any Candidate Execution of C defined as below.

Ke = {k | k
−→
hb e}.

Kd = {k | d
−→
hb k}.

Consider two events p1 ∈ Ke and p2 ∈ Kd (When e is the first event or d is
the last event, assume dummy events that can act as p1 or p2.) belonging to the
same agent as that of e and d such that in C:

dir(p1, e) ∧ dir(d, p2).

We consider <p1, p2> as a pivot pair. This pair is valid if

∀k ∈ Ke − {p1}, k
−→
hb p1, and

∀k ∈ Kd − {p2}, p2 −→
hb k.

Reordering Under the ECMAScript Memory Consistency Model 209

The intuition is to pivot the −→
hb relations to p1 and p2, such that after

reordering e and d, we can “flow” the relations back to retain all of them (due
to transitivity of happens-before).

By Lemma 1, we have for C, the following condition on e where p1 is a valid
pivot

e :uo ∨ (e :sc ∧ e∈W).

Similarly, by Lemma 2, we have for C, the following condition on d where p2
is a valid pivot

d :uo ∨ (d :sc ∧ d∈R).

Table 1 summarizes the cases where we have a valid pair of pivots <p1, p2>

Table 1. Table summarizing whether we have valid pair of pivots based on e and d.

Note that the relations preserved are those other than e
−→
hb d. Note also that

relevant happens-before relations with initialize events are always preserved.

2. Additional happens-before Relations. Among cases that have valid pair
of pivots, some may introduce new −→

hb relations in Candidate Executions of C ′.
As an example, for the case when d is a sequentially consistent read, by Lemma 1,
in any Candidate Execution of C,

k
−→
hb d �⇒ k

−→
hb e.

But in those of candidate C ′, by transitivity, we have

k
−→
hb d ⇒ k

−→
hb e.

This is because there are sets of relations that come through −→
sw relations. Table 2

summarizes the cases where new relations could be introduced, assuming valid
pivot pairs.

Table 2. Table summarizing when new happens-before relations could be introduced
based on having valid pair of pivots.

210 A. Gopalakrishnan and C. Verbrugge

3. Presence of Cycles? Before we go into analyzing whether new relations
introduce observable behaviours, we first ensure there are no −→

hb cycles intro-
duced in the process. Note that if a cycle exists in Candidate Executions of C ′,
then

1. The relations preserved do not themselves create a cycle
2. Additional new relations may introduce cycles

The first part is straightforward as we assume Candidate Executions of C
have −→

hb as a strict partial order. For the second part, we first address the case
where d

−→
hb e may be part of the cycle. The other event k, may be either from

the set Ke, Kd or a new relation that is formed.

1. Event k cannot belong to Ke or Kd, as by transitive property of −→
hb , a cycle

would not exist.
2. For cases where k

−→
hb e is in the set of new relations, note that, k

−→
hb d already

existed in the original Candidate Execution. On similar lines, for cases where
d

−→
hb k is the set of new relations, e

−→
hb k exists. Thus, for both these cases

also, a cycle with d
−→
hb e cannot exist.

3. For the last case where we have two new sets of relations formed, i.e. d
−→
hb k

and k
−→
hb e, we could have a case where k is a common event for both sets.

By Lemma 1, we also have k
−→
hb d and by Lemma 2, e

−→
hb k. Thus, we have

a cycle.

For the case when d
−→
hb e may not be part of the cycle, consider the first

scenario where the new set of relations are of the form k
−→
hb e. Suppose a cycle

exists with another event k′, then

k
−→
hb e ∧ e

−→
hb k′ ∧ k′ −→

hb k.

By Lemma 1, we also have k
−→
hb d and by transitivity we also have d

−→
hb k′. So,

the following is also a cycle

k
−→
hb d ∧ d

−→
hb k′ ∧ k′ −→

hb k.

But these relations already existed in the original Candidate Execution, which
implies a cycle existed in Candidate Execution of C. Thus, by contradiction, a
cycle cannot exist. In similar lines we can show for the set d

−→
hb k that there

cannot be any cycles.

4. Do New Relations Introduce New Observable Behaviours. In any
candidate execution, reordering events e and d eliminates the relation e

−→
hb d

and introduces the new relation d
−→
hb e. New behaviours created by the latter

directly, if any, are of course intentional (and should normally be avoided by
ensuring e and d are independent), but we need to ensure that this does not also
result in new behaviours indirectly.

On observing the role of the axioms on this relation, notice that if both e and
d are read events then the range does not matter. For all other cases, if events e

Reordering Under the ECMAScript Memory Consistency Model 211

and d have overlapping ranges, one could introduce a new observable behavior
after reordering them (a simple use of Coherent Reads/Sequentially Consistent
Atomics). Any other new relations that are introduced can be divided into 4
cases, in terms of our events e and d and the new relation with some event k:

a) e : uo ∧ e∈R ∧ k
−→
hb e. b) e : uo ∧ e∈W ∧ k

−→
hb e.

c) d : uo ∧ d∈R ∧ d
−→
hb k. d) d : uo ∧ d∈W ∧ d

−→
hb k.

In each of the above cases, note that we need to only consider cases where their
ranges are overlapping/equal.

Figure 3 shows a breakdown of sub-cases for the first case (a), varying based
on the nature of event k.

k Ruo

hb

R Ruo

hb

W Ruo

hb

W Ruo

hb

W'

hb

Wsc Ruo

hb

W'sc

hb

mo mo

i ii

ii(a)

ii(b)

Fig. 3. The role of the axioms on introducing a new relation between an unordered
read (purple box) and a preceding (by hb) event k (red box), varying based on whether
k is a read, write, or sequentially consistent write. (Color figure online)

1. For (i), when k is a read, none of the rules have any implications on observable
behaviors.

2. For (ii), when k is a write, the rule of coherent reads (ii(a)) or sequentially
consistent atomics (ii(b)) could restrict the read (e) from reading overlapping
ranges of W ′ with W .

The above case analysis shows us that the new relation could ‘trigger’ the
consistency rules, only to restrict possible reads-from relations, thus restricting
possible observable behaviors.

Similarly, for other cases, the new relations could also ‘trigger’ the consistency
rules, but again, only restricting −→

rf relations.
Table 3 summarizes the valid cases where, we have a pair of valid pivots, where

new relations do not introduce any −→
hb cycles and may only restrict possible

observable behaviors.

212 A. Gopalakrishnan and C. Verbrugge

Table 3. The final table summarizing the valid cases where observable behaviors will
only be a subset after reordering.

The table above, precisely is the definition of a reorderable pair (Definition 7).
�

Note that in the above we did not consider the −→
mo relation, as preserving −→

hb

relations naturally preserves all the −→
mo relations that must hold.

The following corollary helps us define when instruction reordering among
non-consecutive events is possible.

Corollary 1. Consider a Candidate C of a program and its Candidate Execu-
tions which are valid. Consider two events e and d where e −→

ao d, but ¬cons(e, d).
Consider another Candidate C’ resulting after reordering e and d in C. Then,
the set of Observable behaviors possible in C’ is a subset of C only if Reord(e, d)
and the following holds true.

∀k s.t. e −→
ao k ∧ k −→

ao d . Reord(e, k) ∧ Reord(k, d)

Proof. The proof is a straightforward induction on number of events k. �

5 Discussion

Theorem 1 and its corollary together give us a set of conditions that just need
to be checked in addition while performing reordering of relaxed memory events.
Having these set of conditions helps us avoid addressing the data-flow complexity
due to different executions of the program using such accesses.

It is important to note that our approach is conservative, and one might
be able to do reordering without causing new observable behaviors to occur
even in cases that do not satisfy our conditions. This is possible because certain
happens-before relations may not be essential and hence discarding them will not
result in any invalid observable behavior. Getting such information would require
an analysis that takes into account relations that we cannot obtain using just
intra-thread information, which in practice might be infeasible as the number of
threads and events increase. (One such well studied analysis is May-Happen-In-
Parallel, whose origins come from the work done by Naumovich et al. [7]).

It is also important to note that we focus on Candidates rather than the
Program. We do not in this work consider the specifics of identifying all possible
candidates of a given program, and we assume that whatever candidate consid-
ered is a possible one for the original program. This translation from program

Reordering Under the ECMAScript Memory Consistency Model 213

to a set of candidates is something that would be needed in order to practically
incorporate our set of conditions in practice while doing transformations.

6 Conclusion and Future Work

Our more declarative approach to the ECMAScript memory consistency model
results in a relatively compact and concise description of the semantics. This
better facilitates mathematical reasoning, which we have used to investigate the
conditions on basic optimization operations such as instruction reordering.

Future work is aimed at extending our analysis to validate the conditions for
redundancy elimination.

We are also interested in further exploring the constraints implied by the
potential for multi-byte (non-atomic) accesses. The current standard imposes
only very weak conditions on overlapping accesses, but stronger conditions are
likely necessary to reflect actual programming practice.

Acknowledgements. We acknowledge the funding in part by the NSERC-COHESA
project, under Strategic Networks grant number NETGP485577-15. We would like to
thank ConradWatt for his keen insights and suggestions throughout and Aarti Kashyap
for many useful comments and questions that helped more clearly shape the ideas in
this paper.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comput. 29, 66–76 (1996)

2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL, Austin, TX, USA (2011)

3. Bender, J., Palsberg, J.: A formalization of Java’s concurrent access modes. OOP-
SLA 3 (2019). Article No. 142

4. Draft: ECMAScript language specification (2020). https://tc39.es/ecma262/#sec-
memory-model

5. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C-28, 690–691 (1979)

6. Manson, J.: The design and verification of Java’s memory model. In: OOPSLA
(2002)

7. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statement that may happen in parallel. In: FSE, Lake Buena Vista, FL,
USA (1998)

8. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

9. Sarkar, S., et al.: The semantics of x86-cc multiprocessor machine code. In: POPL,
Savannah, GA, USA (2009)

10. S̆evc̆́ık, J.: Safe optimisations for shared-memory concurrent programs. In: PLDI,
San Jose, USA (2011)

https://tc39.es/ecma262/#sec-memory-model
https://tc39.es/ecma262/#sec-memory-model
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27

214 A. Gopalakrishnan and C. Verbrugge

11. S̆evc̆́ık, J., Aspinall, D.: On validity of program transformations in the Java memory
model. In: ECOOP, Paphos, Cyprus (2008)

12. Sewell, P.: Memory, an elusive abstraction. In: ISMM, Toronto, Ontario, Canada
(2010)

13. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Com-
mon compiler optimisations are invalid in the C11 memory model and what we
can do about it. In: POPL, Mumbai, India (2015)

14. Watt, C., et al.: Repairing and mechanising the JavaScript relaxed memory model.
In: PLDI, London, UK (2020)

Verification of Vectorization of Signal
Transforms

Patrick Brinich(B) and Jeremy Johnson

Drexel University, Philadelphia, PA 19104, USA
{pjb338,johnsojr}@drexel.edu

Abstract. This paper proves properties of the vectorized code gener-
ated by the SPIRAL system for implementing, optimizing, and tuning
fast signal transforms. In particular, it is shown that the generated code is
correct and fully vectorized. The SPIRAL system uses multiple rewrite
systems with varying levels of abstraction to generate, optimize, par-
allelize and implement code. The proofs proceed by showing that the
rules preserve semantics and lead to code with guaranteed performance
and correctness properties. Unlike more general approaches, much of the
work is done at a higher level incorporating the underlying mathematics.
This shifts much of the verification from proving equivalence of programs
to proving equivalence of mathematical expressions. Furthermore, the
proofs incorporate domain specific knowledge leading to stronger guar-
antees than could be obtained for a more general vectorizing compiler.

1 Introduction and Related Work

Traditional compiler techniques for automatic vectorization and parallelization
[1,20] analyze code to determine whether certain general-purpose transforma-
tions are applicable. While there is a diverse effort directed at verifying both
traditional and novel techniques in vectorization and parallelization, significant
automatic vectorization or parallelization is mostly absent in large, verified opti-
mizing compilers such as CompCert [17].

Current work in verifying correctness of vectorizing transformations as well
as vectorized implementations of scalar programs focuses on showing program
equivalence. Barthe et al. [3] leverage relational verification to automatically
vectorize loops while simultaneously producing a proof of program equivalence.
Taking a different approach, [9], Dutta validates parallelizing and vectorizing
transformations using dependence graphs. A third approach by Collingbourne
et al. [8] employs symbolic execution using an extension of KLEE [7] to show
bounded equivalence between scalar and vector programs. Different still, Almeida
et al. [2] use EasyCrypt [4] to verify both correctness and security properties of
various cryptographic algorithms including their vectorized implementations.

The approach in this paper contrasts with all of the above approaches due
to nature of the SPIRAL system [12]. The SPIRAL system generates and opti-
mizes code for a variety of signal and image processing, linear algebra, and

c© Springer Nature Switzerland AG 2022
B. Chapman and J. Moreira (Eds.): LCPC 2020, LNCS 13149, pp. 215–231, 2022.
https://doi.org/10.1007/978-3-030-95953-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95953-1_15&domain=pdf
http://orcid.org/0000-0002-7067-1462
https://doi.org/10.1007/978-3-030-95953-1_15

216 P. Brinich and J. Johnson

scientific computing kernels on a variety of computer architectures. The original
version of SPIRAL [18] focused on linear signal transforms. SPIRAL represents
algorithms in a high-level mathematical language originally called SPL (Signal
Processing Language) [21] and later extended to OL (Operator Language) [13].
High-Performance code is generated and optimized through multiple levels of
rewrite systems. At the highest level, the rewrite rules work on mathematical
formulas and their correctness comes from mathematical identities. At lower
levels, the rewrite rules convert formulas to code, preserving the mathematical
semantics, and perform code level optimizations, preserving program semantics.
Work on formal proofs of correctness is outlined in [11] and described in detail
in [6] and implemented in Coq [19].

When performing high-level optimizations, such as vectorization and paral-
lelization, SPIRAL starts at the highest level, exploiting domain specific infor-
mation that would be lost by starting at lower levels. As a result, this information
cascades to these lower levels. For instance, many code level transformations are
guaranteed to be applicable. For linear signal transforms, such as the DFT and
Wavelet transform, vectorization [14] and parallelization [15] are obtained nat-
urally from the mathematical representation that encode algorithms for their
computation.

The mathematical formulas used to represent fast signal transform algorithms
are transformed through a series of rewrite rules to naturally expose parallel and
vector operations. As a result, much of the verification effort shifts from showing
program equivalence to mathematical equivalence. Moreover, it is possible to
prove properties of the resulting vector and parallel code, such as full vectoriza-
tion, load balance and no false sharing, at the mathematical level.

This paper presents a formal setting for the paper [14] by Franchetti et al.
on a rewriting system for vectorization of signal transforms. The mathematical
rules for generating vectorized code for fast signal transforms are formally verified
and the rewrite system that produces a vectorized variant is proven to terminate.
Moreover, a fully vectorized program is proven to exist. Finally, the generation
of code from the mathematical description is proven to preserve semantics and
produce a code whose operation count is decreased by the vector size of the
target architecture. The proofs and examples use the discrete Fourier transform,
though the proofs carry over to similar transforms and algorithm generation
rules.

2 Vectorization of Signal Transforms Through Rewriting

SPIRAL uses SPL [18] to represent algorithms for computing signal transforms
as sparse matrix factorizations. For example, let DFTn be the n-point discrete
Fourier transform, [ω]0≤k,l<n, where ω is a primitive n-th root of unity. The
following factorization of a DFT of size 4⎡

⎢⎢⎣
1 1 1 1
1 ω −1 −ω
1 −1 1 −1
1 −ω −1 ω

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

Verification of Vectorization of Signal Transforms 217

corresponds to the Cooley-Tukey FFT algorithm. This factorization can be suc-
cinctly represented by the formula

(DFT2 ⊗ I2)T4
2(I2 ⊗ DFT2)L4

2.

More generally

DFTrs = (DFTr ⊗ Is)Trs
s (I2 ⊗ DFTs)Lrs

r , (1)

where Trs
s is a diagonal matrix of “twiddle” factors, Lrs

r is a stride permutation,
and ⊗ denotes the Kronecker product

A ⊗ B = [aijB] when A = [aij].

Equation (1) can be thought of as a rewrite rule which replaces DFTrs by
smaller DFTs and as such can be used to generate algorithms, represented by a
matrix factorization, for computing the DFT.

Certain factorizations naturally represent algorithms that can be imple-
mented using v-way vector operations. The key idea is that the SPL construct

A ⊗ Iv

can be implemented using v-way vector operations for an arbitrary matrix A.
This implementation is a straightforward transformation of the scalar code gen-
erated for A: each scalar operation is replaced by its corresponding v-way vector
operation. For example, when v is 2, the scalar operation

a [0] := x [0] + x [1]

is replaced by

a [0 : 1 : 2] : = vadd (x [0 : 1 : 2] , x [2 : 1 : 2]) ,

where x[b : s : n] denotes a size n subvector of x at stride s starting at base
address b. Furthermore, constructs of the form

Im ⊗ A and AB

can be recursively implemented using v-way vector operations by looping over
the vectorized code for A and concatenating the vectorized code for A and B
respectively.

Formulas that cannot be immediately used to generate vectorized code can be
transformed, using mathematical identities, into a vectorized form. For example,
the Cooley-Tukey breakdown for DFT4 can be transformed into the vectorized
form,

(DFT2 ⊗ I2)T4
2(L

4
2(DFT2 ⊗ I2)).

The following code fragment implements this form for input vector x using 2-way
vector operations.

218 P. Brinich and J. Johnson

//(DFT2 ⊗ I2)
t0 [0:1:2] := vadd(x[0:1:2] , x[2:1:2]);
t0 [2:1:2] := vsub(x[0:1:2] , x[2:1:2]);
//L4

2

t1 [0:1:2] := t0 [0:2:2];
t1 [2:1:2] := t0 [1:2:2];
//T4

2

t2 [0:1:2] := t1 [0:1:2];
t2 [2:1:2] := vmul(t1[2:1:2] , [1, ω]);
//(DFT2 ⊗ I2)
y[0:1:2] := vadd(t2[0:1:2] , t2 [2:1:2]);
y[2:1:2] := vsub(t2[0:1:2] , t2 [2:1:2]);

In [14], a set of rewriting rules based on the matrix identities in Table 1 are
introduced to manipulate formulas into a vectorizable form. For example, the
following factorization,

DFT8 = (DFT2 ⊗ I4)T8
4((I2 ⊗ DFT4)L8

2),

can be vectorized using 2-way vector operations. Each of these factors can be
vectorized separately. The first factor needs only a minor adjustment. The iden-
tity matrix I4 can be rewritten as I2 ⊗ I2 and the resulting product can be
reassociated such that

DFT2 ⊗ I4 = (DFT2 ⊗ I2) ⊗ I2.

The twiddle factor matrix is a diagonal matrix, so the corresponding vectorized
code can be precomputed. The third factor ((I2 ⊗ DFT4)L8

2), can be rewritten
using the identity (4). Using (3), the stride permutation is pushed to the left
obtaining

((I2 ⊗ DFT4)L8
2) = (L8

2(DFT4 ⊗ I2)).

Next, identity (5) decomposes the stride permutation:

L8
2 = (L4

2 ⊗ I2)(I2 ⊗ L4
2).

Recombining the factors, the original formula is transformed into the equiv-
alent fully vectorized formula

((DFT2 ⊗ I2) ⊗ I2)T8
4((L

4
2 ⊗ I2)(I2 ⊗ L4

2)(DFT4 ⊗ I2)).

A formula (see definition 1 of [14]) is fully vectorized if it is of the form
A ⊗ Iv, is a product or tensor product of fully vectorized formulas, or consists
of special forms like L2v

v ,L2v
2 , and Lv2

v which are efficiently implemented on the
target vector architecture.

Automatically transforming formulas to vectorized form using these mathe-
matical identities can lead to difficulties as there are too many degrees of freedom,
and it can not be guaranteed that the process will terminate in the desired form.
The paper [14] introduced tags to guide the rewriting to the desired form.

Verification of Vectorization of Signal Transforms 219

Table 1. Matrix identities

Inm = In ⊗ Im

Lmn
n Lmn

m = Imn

(Im ⊗ An×n) = Lmn
m (An×n ⊗ Im)Lmn

n

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗ Lmn
n)

Lkmn
km = (Ik ⊗ Lmn

m)(Lkn
k ⊗ Im)

A2 ⊗ (BC) = (A ⊗ B)(A ⊗ C)

(An×n ⊗ Bm×m) = (An×n ⊗ Im)(In ⊗ Bm×m)

(An×n ⊗ Bm×m) = (In ⊗ Bm×m)(An×n ⊗ Im)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Table 2. Vectorization rules for stride permutations

Lnv
n

︸︷︷︸

vec(v)

−→ (In/v ⊗ Lv2

v)(Ln
n/v ⊗̄ Iv) (10)

Lnv
v

︸︷︷︸

vec(v)

−→ (Ln
v ⊗̄ Iv)(In/v ⊗ Lv2

v) (11)

Lmn
m

︸︷︷︸

vec(v)

−→ (Lmn/v
m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v)((In/v ⊗ Lm
m/v) ⊗̄ Iv) (12)

The rewrite rules—shown in Tables 2 and 3—operate on tagged subexpres-
sions. Each rule implicitly requires that the division of two numbers produces a
whole number when necessary.

Rewriting may only occur at tags, so rule (13) allows factors to be considered
separately by distributing a tag to each of the enclosed factors. Base case rules
remove tags. For example, rule (15) produces a tensor product with a vectorized
implementation—made explicit using ⊗̄–when m is divisible by v.

Other rules, such as (19), bring an expression closer to a vectorized form by
moving tags to smaller subexpressions. These rules apply the matrix identities
in Table 1 in a organized manner, guaranteeing the rewrite process terminates.
The previous DFT example illustrates rewriting with tags.

DFT8 = (DFT2 ⊗ I4)T8
4((I2 ⊗ DFT4)L8

2)︸ ︷︷ ︸
vec(v)

−→ (DFT2 ⊗ I4)︸ ︷︷ ︸
vec(v)

T8
4︸︷︷︸

vec(v)

((I2 ⊗ DFT4)L8
2)︸ ︷︷ ︸

vec(v)

using rule (13)

−→((DFT2 ⊗ I2) ⊗̄ I2) T8
4︸︷︷︸

vec(v)

((I2 ⊗ DFT4)L8
2)︸ ︷︷ ︸

vec(v)

using rule (15)

−→((DFT2 ⊗ I2) ⊗̄ I2)T8
4 ((I2 ⊗ DFT4)L8

2)︸ ︷︷ ︸
vec(v)

using rule (14)

−→((DFT2 ⊗ I2) ⊗̄ I2)T8
4(L8

2︸︷︷︸
vec(v)

(DFT4 ⊗ I2)︸ ︷︷ ︸
vec(v)

) using rule (19)

220 P. Brinich and J. Johnson

−→((DFT2 ⊗ I2) ⊗̄ I2)T8
4((L

4
2 ⊗̄ I2)(I2 ⊗ L4

2) (DFT4 ⊗ I2)︸ ︷︷ ︸
vec(v)

) using rule (11)

−→((DFT2 ⊗ I2) ⊗̄ I2)T8
4((L

4
2 ⊗̄ I2)(I2 ⊗ L4

2)(DFT4 ⊗̄ I2)) using rule (15)

Table 3. Vectorization rules for composition, tensor products, and other constructs.
The dimensions of the matrix A are n × n and D is a diagonal matrix of size kv.

AB
︸︷︷︸

vec(v)

−→ A
︸︷︷︸

vec(v)

B
︸︷︷︸

vec(v)

(13)

D
︸︷︷︸

vec(v)

−→ D (14)

A ⊗ Im
︸ ︷︷ ︸

vec(v)

−→ (A ⊗ Im/v) ⊗̄ Iv (15)

(Im ⊗ A)
︸ ︷︷ ︸

vec(v)

−→ Im/v ⊗ (Iv ⊗ A)
︸ ︷︷ ︸

vec(v)

(16)

(Im ⊗ A)
︸ ︷︷ ︸

vec(v)

−→ Lmn
m

︸︷︷︸

vec(v)

(A ⊗ Im)
︸ ︷︷ ︸

vec(v)

Lmn
n

︸︷︷︸

vec(v)

(17)

(Im ⊗ A)
︸ ︷︷ ︸

vec(v)

−→ (Im ⊗ A
︸︷︷︸

vec(v)

) (18)

(Im ⊗ A)Lnm
m

︸ ︷︷ ︸

vec(v)

−→ Lmn
m

︸︷︷︸

vec(v)

(A ⊗ Im)
︸ ︷︷ ︸

vec(v)

(19)

(Im ⊗ A)Lnm
m

︸ ︷︷ ︸

vec(v)

−→ (Im/v ⊗ Lnv
v

︸︷︷︸

vec(v)

(A ⊗̄ Iv))(L
mn/v

m/v ⊗̄ Iv) (20)

(Ik ⊗ (Im ⊗ A)Lmn
m)Lkmn

k
︸ ︷︷ ︸

vec(v)

−→ (Lkm
k ⊗ In)

︸ ︷︷ ︸

vec(v)

(Im ⊗ (Ik ⊗ A)Lkn
k

︸ ︷︷ ︸

vec(v)

) (Lmn
m ⊗ Ik)

︸ ︷︷ ︸

vec(v)

(21)

3 Verification of Rewrite Rules

The tagged rewriting system terminates with mathematically correct formulas. If
the starting formula is vectorizable, the resulting formula has been vectorized. To
facilitate the verification of these properties, the rewrite system is first presented
formally. Table 4 gives a (subset) of the grammar of tagged and untagged SPL
constructs. Since SPL constructs are a subset of tagged SPL constructs, this
paper will refer to (necessarily) tag-free SPL constructs using the metavariable
S and SPL expressions with zero or more tagged SPL expressions using the
metavariable T where the distinction is not obvious.

In addition, the rewriting rules in Tables 2 and 3 describe a single rewrite of
constructs entirely enclosed within a tag. An adaptation of contextual reduction
semantics—originally used by Felleisen and Hieb to develop an equational theory
for an imperative extension of the call-by-value lambda calculus [10]—is used to
model multiple rewrites within subexpressions with minimal additions.

A context is an SPL construct with a hole, indicated by the symbol ␣, which
can be filled in by some tagged SPL construct. A context is defined inductively
as

C ::= ␣ | C · T | S · C | C ⊗ T | S ⊗ C

Verification of Vectorization of Signal Transforms 221

where S is any (tag-free) SPL construct and T is any tagged SPL construct. For
a tagged SPL expression T and some context C, the hole in C can be filled by
T in the following manner,

C[T] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T C = ␣
S · C ′[T] C = S · C ′

C ′[T] · T2 C = C ′ · T2

S ⊗ C ′[T] C = S ⊗ C ′

C ′[T] ⊗ T2 C = C ′ ⊗ T2

. (22)

For example, Eq. (22) describes how to perform

((Im ⊗ ␣) · Lmn
m︸︷︷︸

vec(v)

)[A︸︷︷︸
vec(v)

]

step-by-step. Since the context is of the form C ′ · T , filling starts by descending
into the subcontext on the left. The left subcontext itself is of the form S ⊗ C ′′,
so the subcontext appearing on the right of the tensor product is filled. This
subcontext happens to be the hole, which is replaced by the redex.

((Im ⊗ ␣) · Lmn
m︸︷︷︸

vec(v)

)[A︸︷︷︸
vec(v)

] = (Im ⊗ ␣)[A︸︷︷︸
vec(v)

] · Lmn
m︸︷︷︸

vec(v)

= (Im ⊗ ␣[A︸︷︷︸
vec(v)

]) · Lmn
m︸︷︷︸

vec(v)

= (Im ⊗ A︸︷︷︸
vec(v)

) · Lmn
m︸︷︷︸

vec(v)

Decomposing large expressions into contexts and redexes provides a way to
formalize rewriting subexpressions. The relation −→C is defined for all contexts
C by the inference rule

T −→ T ′

C[T] −→C C[T ′]
. (23)

Finally, zero or more rewrites are modeled using the reflexive, transitive clo-
sure of (23), denoted by −→∗

C . Note that this definition of a context is somewhat
arbitrary: it merely forces rewriting to proceed from left to right. If rewriting
can eliminate all tags from an expression, the rewriting subexpressions can be
done in any order assuming the rule choices are fixed.

Verification of the rewrite system proceeds by showing that the rewriting
produces mathematically equivalent formulas, terminates, and produces a vec-
torized formula whenever possible.

Matrix Equivalence of Rewrite Rules. Each SPL construct denotes a
matrix, which can be computed exactly [18]. Parametrized symbols such as In
and transforms such as the DFT represent their respective matrix forms. Compo-
sition is computed as matrix multiplication and tensor products as the Kronecker

222 P. Brinich and J. Johnson

Table 4. Abstract syntax of tagged SPL expressions

s ∈ symbol ::= t ∈ transform ::=
In DFTn

F2 WHT2k

Ln
s . . .

Tn
s

. . .

S ∈ spl ::= T ∈ tagged_spl ::=
s S

t S
︸︷︷︸

vec(v)

S1 · S2 T1 · T2

S1 ⊗ S2 T1 ⊗ T2

S1 ⊗̄ S2

. . .

product of their recursively computed operands. Tags do not change the math-
ematical meaning of the formula and are thus ignored. Two SPL constructs are
said to be matrix equivalent when both constructs denote the same matrix, and
a rule is correct with respect to matrix equivalence when the left hand and right
hand sides of the rule are matrix equivalent. Moreover, matrix equivalence is an
equivalence relation compatible with composition and the tensor product. This
implies that the contextual rewrite relation and its reflexive, transitive closure
relate two matrix equivalent SPL constructs if each of the rewrite rules do.

The matrix equivalence of the rules in Tables 2 and 3 follow from the appli-
cation of the matrix identities shown in Table 1. Each of the identities in Table 1
follows by evaluation on a standard basis vector. The denotes the kth standard
basis vector of size n is denoted by enk and can be defined by the property

(enk)i =

{
1 k = i

0 k �= i
for all 0 ≤ i < n.

For example, the matrix equivalence of rule (11) follows after a single application
of identity (5). The following evaluation of the identity requires the property
Lrs
s (eri ⊗ esj) = (esj ⊗ eri).

Lkmn
n ekmn

hmn+in+j = (Lkn
n ⊗ Im)(Ik ⊗ Lmn

n)ekmn
hmn+in+j

⇐⇒ Lkmn
n (ekh ⊗ emi ⊗ enj) = (Lkn

n ⊗ Im)(Ik ⊗ Lmn
n)(ekh ⊗ emi ⊗ enj)

⇐⇒ enj ⊗ ekh ⊗ emi = (Lkn
n ⊗ Im)(ekh ⊗ Lmn

n (emi ⊗ enj))

⇐⇒ enj ⊗ ekh ⊗ emi = (Lkn
n ⊗ Im)(ekh ⊗ enj ⊗ emi)

Verification of Vectorization of Signal Transforms 223

⇐⇒ enj ⊗ ekh ⊗ emi = (Lkn
n (ekh ⊗ enj) ⊗ Imemi)

⇐⇒ enj ⊗ ekh ⊗ emi = enj ⊗ ekh ⊗ emi

Termination. Since a subexpression within an SPL construct may only be
rewritten when enclosed within a tag, the rewrite process must terminate when
either the entire construct is tag-free or no rules apply to any tagged subexpres-
sion. While rewriting is nondeterministic due to the presence of multiple rewrite
rules for a single tagged construct, the contextual relation makes selecting the
next subexpression to rewrite deterministic and unique.

Lemma 1 (Context Decomposition). For all tagged SPL constructs T , if T
is not a tag-free SPL construct, there exists a unique context C and an untagged
SPL expression S such that

T = C[S︸︷︷︸
vec(v)

].

This lemma can be shown by induction on T . As a consequence, rewriting must
proceed from left to right until no tags are left or no rules apply to the left-most
tagged subexpression. Focus can now be shifted to ensuring that rewriting an
expression entirely enclosed within a tag will terminate.

Lemma 2. For all SPL expressions S, there exists a tagged SPL expression T ′

such that,
S︸︷︷︸

vec(v)

−→∗
C T ′

and for all tagged SPL expressions T ′′,

T ′ �−→ CT ′′.

This can be shown by induction on S. In most cases where a rule applies, a small
number of subsequent rewrites will produce a tag-free expression. For example,
if rule (19) or (20) is used to rewrite (Im ⊗ A)Lnm

m , the process will produce a
tag-free expression when v divides both m and n in at most three rewrites and
will stop after zero or more rewrites otherwise.

(Im ⊗ A)Lnm
m︸ ︷︷ ︸

vec(v)

−→C Lmn
m︸︷︷︸

vec(v)

(A ⊗ Im)︸ ︷︷ ︸
vec(v)

−→C (Lmn/v
m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v)((In/v ⊗ Lm
m/v) ⊗̄ Iv) (A ⊗ Im)︸ ︷︷ ︸

vec(v)

−→C (Lmn/v
m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v)((In/v ⊗ Lm
m/v) ⊗̄ Iv)

((A ⊗ Im/v) ⊗̄ Iv)

(Im ⊗ A)Lnm
m︸ ︷︷ ︸

vec(v)

−→C (Im/v ⊗ Lnv
v︸︷︷︸

vec(v)

(A ⊗̄ Iv))(L
mn/v
m/v ⊗̄ Iv)

−→C (Im/v ⊗ (Ln
v ⊗̄ Iv)(In/v ⊗ Lv2

v)(A ⊗̄ Iv))(L
mn/v
m/v ⊗̄ Iv)

224 P. Brinich and J. Johnson

Alternatively, when rule (13) is used, an inductive case may be reached

(Im ⊗ A)Lnm
m︸ ︷︷ ︸

vec(v)

−→C (Im ⊗ A)︸ ︷︷ ︸
vec(v)

Lnm
m︸︷︷︸

vec(v)

−→C (Im ⊗ A︸︷︷︸
vec(v)

) Lnm
m︸︷︷︸

vec(v)

where rewriting stops in at most one additional rewrite after A is completely
rewritten.

Once each individual rule is shown to produce a terminating chain of rewrites,
proving overall termination is straightforward.

Theorem 1 (Termination). For all tagged SPL constructs T , there exists
some final tagged SPL construct T ′ such that

T −→∗
C T ′

and for all tagged SPL expressions T ′′,

T ′ �−→ CT ′′.

This can be shown by induction on T . If T is tag-free, it cannot be rewritten, and
if T is a construct entirely enclosed in a tag, it must terminate by the previous
lemma. If T is a composition or a product, rewriting T terminates when the first
or both operands are completely rewritten.

Fully Vectorized Forms. Not all SPL constructs can be implemented using
v-way vector operations. For example, (A⊗ Im) cannot be implemented entirely
using v-way vector operations when m is not divisible by v. The final step of
verifying the rewrite rules is to determine when rewriting produces a tag free SPL
construct, ensuring that said SPL construct has a vectorized implementation.

Table 5 defines an inductive predicate describing when an SPL construct can
be implemented using v-way vector operations. A tagged SPL expression T is
fully vectorizable if for all tag-free S such that

T −→∗
C S,

the predicate V F (S) holds and there exists at least one such S.

Table 5. The inductively defined predicate V F (S) holds when S can be implemented
using v-way vector operations.

V F (L2v
2)

Perm1
V F (L2v

v)
Perm2

V F (Lv2
v)

Perm3
V F (S ⊗̄ Iv)

AtensorI

diagonal Dn×n v|n
V F (Dn×n)

Diag V F (A)
V F (Im⊗S)

ItensorA V F (S1) V F (S2)
V F (S1S2)

Compose

The left hand side of each rewrite rule is fully vectorizable under certain
assumptions. This can be shown by completely rewriting as far as possible under

Verification of Vectorization of Signal Transforms 225

assumptions that would allow rewriting to produce a tag-free construct, keeping
track of multiple cases when multiple rules may apply. For each of these cases,
constructing a proof tree shows that the resulting constructs are in a vectorized
form. For example, if v divides both m and n, the stride permutation, Lmn

m is
fully vectorizable in at most one rewrite:

Lmn
m︸︷︷︸

vec(v)

−→∗
C Lv2

v m = n = v

Lmn
m︸︷︷︸

vec(v)

−→∗
C (Im/v ⊗ Lv2

v)(Lm
m/v ⊗̄ Iv) v|m,n = v, d > 0

Lmn
m︸︷︷︸

vec(v)

−→∗
C (Ln

v ⊗̄ Iv)(In/v ⊗ Lv2

v) m = v, v|n

Lmn
m︸︷︷︸

vec(v)

−→∗
C (Lmn/v

m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v)((In/v ⊗ Lm
m/v) ⊗̄ Iv) v|m, v|n

Each of the resulting rewrites produces a vectorized form. As an example, the
proof that the final case has a completely vectorized result can be seen in the
following proof tree.

AtensorI
V F (Lmn/v

m ⊗̄ Iv)

Perm3
V F (Lv2

v)
ItensorA

V F (Imn/v2 ⊗ Lv2

v)
Compose

V F ((Lmn/v
m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v))
AtensorI

V F ((In/v ⊗ Lm
m/v) ⊗̄ Iv)

Compose
V F ((Lmn/v

m ⊗̄ Iv)(Imn/v2 ⊗ Lv2

v)((In/v ⊗ Lm
m/v) ⊗̄ Iv))

For the remaining rules, Table 6 summarizes when each construct is fully vector-
izable.

Table 6. Table of fully vectorizable factors with their constraints.

Tagged Factor Size Constraints Fully Vectorizable Subexpressions

Dn×n v divides n

AB A, B

Lmn
m v divides m and n

(Im ⊗ An×n) v divides m and n

(Im ⊗ An×n) A
(Im ⊗ An×n)Lmn

m v divides m and n

(An×n ⊗ Im) v divides m and n

As a result, checking that any tagged SPL expression can be fully vectorized
reduces to checking when each of its factors can be fully vectorized. This method
provides an easy proof that a vectorized form of the Cooley-Tukey factorization
exists.

226 P. Brinich and J. Johnson

Theorem 2. For all natural numbers n and m, if v divides m and n, the Cooley-
Tukey DFT factorization, (DFTm⊗In)Tnm

m (Im⊗DFTn)Lmn
m is fully vectorizable.

It is assumed that smaller transforms, DFTm and DFTn, stand in for fully
factorized constructs.

Proof. Each of the factors may be considered separately if the union of their
constraints is satisfied. The first factor is (DFTm⊗In), which is fully vectorizable
if v divides m. The second factor, Tnm

m , is fully vectorizable when v divides either
m or n.

The third and forth factors, (Im ⊗DFTn)Lmn
m , may be considered separately

or together. When considered together, they are fully vectorizable when v divides
both m and n. Considered separately, (Im ⊗ DFTn) is fully vectorizable if v
divides both m and n or if the resulting DFTn breakdown is fully vectorizable.
The forth factor, Lmn

m , is fully vectorizable if v divides both m and n.
The least constraining assumptions necessary to vectorize the Cooley-Tukey

factorization requires that v divides m both n. If DFTn is fully vectorizable,
then additional vectorized forms may be produced by rewriting; however, this is
not required to produce at least one fully vectorized form.

4 Vectorizing Compiler

Verification of the vectorizing compiler builds upon the formally verified scalar
compiler presented in [6], which compiles to a simple imperative language
extended with arrays of elements drawn from an arbitrary commutative ring
called IMP+V. Extending the compiler to produce v-way vectorized implemen-
tations for completely vectorized formulas is straightforward. Vectorized code
for (A ⊗̄ Iv) can be produced by transforming the scalar code for A to operate
on v-sized blocks of its input vector. Certain SPL constructs are implemented
by computing elements of the output vector as a linear combination of the input
vector. Vectorizing replaces scalar operations in the linear combination with the
corresponding v-way vector operations. Constructs such as (Im ⊗ B) produces
looping code using code generated for B. Generating vectorized code for looping
constructs, e.g. ((Im ⊗ B) ⊗̄ Iv) can be done recursively by descending into the
loop, taking subvectors in v-sized blocks, and recursively replacing the scalar
implementation of B with the vectorized code for (B ⊗̄ Iv). Tables 7 and 8 show
the transformation from scalar code to vectorized code. Additionally, for SPL
constructs representing diagonal matrices, vectorized code can be generated by
replacing v scaling operations by a single vector multiplication as seen in Table 9.

Efficient Implementation. Vectorized implementations of fully vectorized for-
mulas produces efficient code. If S is a tag free SPL formula in vectorized form,
the number of vector operation in the vectorized implementation of S should
be a constant factor less than the number of scalar operations in the scalar
implementation. This is indeed the case.

Verification of Vectorization of Signal Transforms 227

Table 7. Transformation of scalar code to vectorized code for non-looping constructs.

Scalar Code for A Vectorized Code for A ⊗̄ Iv

y[i] := c*x[j] + x[k] y[iv:1:v] := vadd(
vscale(c,x[jv:1:v]),
x[kv:v])

//n-length subvector at i
t := x[i:1:n]

//n-block subvector at i
t := x[iv:1:nv]

//n-length subvector at i
//by stride s
t := x[i:s:n]

//n-block subvector
//at block i by stride s
t := x[i:s:v:n]

Theorem 3. Let S tag-free SPL construct such that V F (S) holds, and let k
be the number of vector operations in the vectorized implementation of S. The
number of scalar operations in the scalar implementation of S is vk.

This can be shown by induction on the structure of V F (S). The structure of
the proof is as follows. The base-case stride permutations are assumed to be effi-
cient: the input vector is merely rearranged. For diagonal SPL constructs of size
n = kv, n scalar multiplications are reduced to k vector multiplications. In the
case of composed SPL constructs AB such that V F (A) and V F (B), assume for
the sake of induction there are kA vector operations and vkA scalar operations
respectively in the vector and scalar implementations for A. Assume similarly a
kB vector operations and vkB scalar operations for B’s implementations. Com-
position runs A’s code on the output of B, so the total vector operations are
kA + kB and the total scalar operations are v(kA + kB).

In the case of (Im ⊗ A), where V F (A) assume for the sake of induction
that there are kA vector operations and vkA scalar operations respectively in
the vector and scalar implementations for A. The looping code generated for
(Im ⊗ A) runs A’s code for m iterations. If scalar code is generated for A, this
results in mvkA scalar operations. If vectorized code is generated for A, there
are mkA vector operations.

In the case of An×n ⊗̄ Iv, the proof proceeds further by induction on A.
If A is not a looping construct, the n linear combinations in A are replaced
by n/v linear combinations with the same number vector operations. If A is
a looping construct, e.g. (Im ⊗ Bk×k) with n = km, assume for the sake of
induction that the number of scalar operations for B’s scalar implementation
is vb and the number of vector operations in B’s vector implementation is b.
All looping constructs run m iterations of B’s implementation, resulting in mvb
scalar operations and mb vector operations.

228 P. Brinich and J. Johnson

Table 8. Transformation of scalar code to vectorized code for looping constructs,
where “scalar(A, t)” represent the scalar code generated for A run on input vector t,
and “vector(A, t)” represents the vectorized code generated for A ⊗̄ Iv run on input
vector t.

Scalar Code Vectorized Code

//(Im ⊗ A)
FOR (i:= 0; i < m; i++) DO

t0 := x[in:1:n];
t1 := scalar(A, t0);
y[in:1:n] := t1;

END

//(Im ⊗ A) ⊗̄ Iv
FOR (i:= 0; i < m; i++) DO

t0 := x[inv :1:nv];
t1 := vector(A, t0);
y[inv :1:nv] := t1;

END

//(Im ⊗ A)Lmn
m

FOR (i:= 0; i < m; i++) DO
t0 := x[i:m:n];
t1 := scalar(A, t0);
y[in:1:n] := t1;

END

//((Im ⊗ A)Lmn
m) ⊗̄ Iv

FOR (i:= 0; i < m; i++) DO
t0 := x[i:m:v:n];
t1 := vector(A, t0);
y[inv:nv] := t1;

END

//(A ⊗ Im)
FOR (i:= 0; i < m; i++) DO

t0 := x[i:m:n];
t1 := scalar(A, t0);
y[i:m:n] := t1;

END

// (A ⊗ Im) ⊗̄ Iv
FOR (i:= 0; i < m; i++) DO

t0 := x[i:m:v:n];
t1 := vector(A, t0);
y[i:m:v:n] := t1;

END

Correctness of Compilation. As a final task, it is important to verify that
the code produced for an SPL formula S—vector or scalar implementation—
is correct. That is, for a fixed input vector x, the output vector y obtained
by running S’s compiled code on x, should be exactly Sx. The full details of
verifying the SPL compiler are beyond the scope of this paper, so the process is
presented in brief.

First, the syntax of IMP+V is defined formally, and its semantics are defined
using big-step operational semantics. In addition, a Hoare Logic [16] for IMP+V
is created, and each of its rules are proven sound with respect to the operational
semantics.

Formulas are compiled to scalar code by traversing the construct’s AST from
the top down to produce code fragments from parametrized templates. Subex-
pressions in the construct are recursively compiled using code fragment tem-
plates, and the resulting code fragments are inserted from the bottom up. The
correctness of each fragment template is verified using Hoare logic. Templates
that require recursively compiled subexpressions are verified under the assump-
tion that the recursively compiled code is correct, and an inductive proof is used
to show that the compilation process produces correct code overall.

Finally, the vectorization of code fragments is shown correct. That is, if a
code fragment for A correctly computes Ax on input x, then the vectorized
code generated for (A ⊗̄ Iv) is verified to compute (A ⊗̄ Iv)x on input x. Hoare

Verification of Vectorization of Signal Transforms 229

Table 9. Comparison of scalar and vector code generated for an SPL construct repre-
senting a diagonal matrix.

Scalar code Vector code

y[0] := c0*x[0];
. . .
y[i] := ci*x[i];
. . .
y[i+v-1] := ci+v−1*x[i+v-1];
. . .
y[n] := cn*x[n]

y[0:v] := vmul(
[c0, . . . , cv−1], x[0:1:v]);

. . .
y[iv:v] := vmul(
[ci, . . . , ci+v−1], x[iv:1:v]);

. . .
y[(n-1)v:v] := vmul(
[cn−v, . . . , cn−1],
x[(n-1)v:1:v])

Logic is also used here to show that vectorized fragment templates are correct.
The Hoare proof of the scalar template guides construction of Hoare proofs for
the vectorized templates. Preconditions, postconditions, invariants, and other
assertions are updated to match the vectorizing transformations.

5 Conclusion and Future Work

The rewriting system for vectorization presented in [14] by Franchetti et al. lever-
ages higher-level abstractions using rules based matrix identities to produce vec-
torized implementations of signal transform algorithms. These matrix identities
and rules have been formally verified. Furthermore, a formal presentation of the
rewriting system using a contextual small-step relation was used to show that
the process of rewriting terminates and produces vectorized algorithms. Vector-
ized code generation for these vectorized algorithms has been shown to preserve
the matrix semantics of these algorithms while reducing the operation count by
a factor of the vector size compared to scalar code.

Work on implementing these formal proofs of correctness in Coq is ongoing,
extending a previous development for formalizing algorithm and code generation
for scalar implementations [6]. The techniques used in the example proof for the
discrete Fourier transform can be applied similarly to other transforms. More-
over, these types of proofs may be ripe for automation via proof search in Coq.
Additionally, formal verification of the rewriting system optimizing for shared
[15] and distributed memory systems [5] using similar techniques is planned.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers, San Francisco (2002)

2. Almeida, J.B., et al.: The last mile: high-assurance and high-speed cryptographic
implementations. In: 2020 IEEE Symposium on Security and Privacy (SP), pp.
965–982 (2020)

230 P. Brinich and J. Johnson

3. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational ver-
ification to simd loop synthesis. In: Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 123–134. PPoPP
2013, Association for Computing Machinery, New York, NY, USA (2013). https://
doi.org/10.1145/2442516.2442529

4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

5. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic
performance optimization of the discrete fourier transform on distributed memory
computers. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J.,
Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 818–832. Springer, Heidelberg
(2006). https://doi.org/10.1007/11946441_74

6. Brinich, P.: Formal Verification of SPIRAL Generated Code. Master’s thesis,
Drexel University (2020)

7. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, pp. 209–
224. OSDI 2008, USENIX Association, USA (2008)

8. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-point
and simd code. In: Proceedings of the Sixth Conference on Computer Systems, pp.
315–328. EuroSys 2011, Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/1966445.1966475

9. Dutta, S.: Validation of parallelizing transformations of sequential programs. Con-
curr. Comput. Pract. Exp. 29(8), e3958 (2017). https://doi.org/10.1002/cpe.3958,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3958, e3958 cpe.3958

10. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992). https://doi.org/
10.1016/0304-3975(92)90014-7

11. Franchetti, F., et al.: High-assurance SPIRAL: end-to-end guarantees for robot and
car control. IEEE Control Syst. Mag. 37(2), 82–103 (2017)

12. Franchetti, F., et al.: SPIRAL: extreme performance portability. Proc. IEEE
106(11), 1935–1968 (2018)

13. Franchetti, F., de Mesmay, F., McFarlin, D., Püschel, M.: Operator language: a
program generation framework for fast kernels. In: Taha, W.M. (ed.) DSL 2009.
LNCS, vol. 5658, pp. 385–409. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03034-5_18

14. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization
of signal transforms. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti,
E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 363–377. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71351-7_28

15. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared
memory: SMP and multicore (January 2006). https://doi.org/10.1145/1188455.
1188575

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

17. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

18. Püschel, M., et al.: SPIRAL: code generation for dsp transforms. Proc. IEEE 93(2),
232–275 (2005)

https://doi.org/10.1145/2442516.2442529
https://doi.org/10.1145/2442516.2442529
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/11946441_74
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1002/cpe.3958
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3958
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/978-3-642-03034-5_18
https://doi.org/10.1007/978-3-642-03034-5_18
https://doi.org/10.1007/978-3-540-71351-7_28
https://doi.org/10.1145/1188455.1188575
https://doi.org/10.1145/1188455.1188575
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1538788.1538814

Verification of Vectorization of Signal Transforms 231

19. The Coq Development Team: The Coq Reference Manual, version 8.9.1 (2019).
available electronically at https://coq.inria.fr/distrib/V8.9.1/refman/

20. Wolfe, M., Wolfe, M.: High Performance Compilers for Parallel Computing.
Addison-Wesley, Boston (1996)

21. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: a language and compiler
for DSP algorithms. In: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation (PLDI 2001), pp. 298–308.
Snowbird, Utah (June 2001). https://doi.org/10.1145/378795.378860

https://coq.inria.fr/distrib/V8.9.1/refman/
https://doi.org/10.1145/378795.378860

Author Index

Baldassin, Alexandro 57
Bird, Robert 74
Brinich, Patrick 215

Čertík, Ondřej 74
Chapman, Barbara 41

Das, Anup 134
Dietz, Henry 151
Doerfert, Johannes 41

Gioiosa, Roberto 87
Gopalakrishnan, Akshay 198

Hall, Mary 29, 119
Huerta, Yectli A. 163

Johnson, Jeremy 215

Kelly, Paul H. J. 181
Kestor, Gokcen 87
Krishnamoorthy, Sriram 87

Lake, Janaan 119
Li, Xiaoming 104
Lilja, David J. 163

Marks, Jacob 74
Medwedeff, Eric 74

Meng, Kewen 20
Mohammadi, Mahdi Soltan 29
Murai, Riku 181
Murphy, Gregory Austin 151
Mutlu, Erdal 87

Norris, Boyana 20

Patabandi, Tharindu R. 119
Pienaar, Jacques 87

Ren, Bin 87
Robey, Robert W. 74

Saeedi, Sajad 181
Salamanca, Juan 57
Sarkar, Vivek 3
Shafran, Aury 151
Shirako, Jun 3
Stow, Edward 181
Strout, Michelle Mills 29
Swartz, Brent 163

Tian, Ruiqin 87
Tian, Shilei 41
Titirsha, Twisha 134

Verbrugge, Clark 198

	Preface
	Organization
	Contents
	Code and Data Transformations
	An Affine Scheduling Framework for Integrating Data Layout and Loop Transformations
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Basic Components
	3.2 Legality and Loop Transformations
	3.3 Affine Scheduling for Data Layout Transformations

	4 Transformation Algorithms
	4.1 Overall Framework
	4.2 Candidate Layout Selection for Iterative Search

	5 Analytical Cost Model for Optimization Space Explorations
	5.1 Memory Cost
	5.2 Computation Cost

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Performance for Original Layout + Loop Transformations
	6.3 Performance for Loop and Data Layout Transformations
	6.4 Study of Low Computational Intensity Benchmarks

	7 Related Work
	8 Conclusions
	References

	Guiding Code Optimizations with Deep Learning-Based Code Matching
	1 Introduction
	2 Methodology
	2.1 The Hybrid Control Flow Graph Code Representation
	2.2 Static Analysis for Metric Extraction
	2.3 Graph Representation Learning
	2.4 Using the Model

	3 Evaluation
	3.1 Dataset Generation
	3.2 Model Validation
	3.3 Evaluation on New Kernels

	4 Related Work
	5 Conclusions and Future Work
	References

	Expanding Opportunities for Array Privatization in Sparse Computations
	1 Introduction
	2 Constraint-Based Dependence Analysis
	3 First-Private Analysis
	4 Privatization and Preliminary Evaluation
	5 Conclusions
	References

	OpenMP and Fortran
	Concurrent Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads
	1 Introduction
	2 Design Discussion
	2.1 Considered Designs
	2.2 Design Comparison

	3 Implementation
	3.1 Hidden Helper Task
	3.2 Hidden Helper Thread Team
	3.3 Stream Manager
	3.4 Processing Dependences

	4 Evaluation
	4.1 Benchmarks
	4.2 Configurations
	4.3 Systems and Versions
	4.4 Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Using Hardware Transactional Memory to Implement Speculative Privatization in OpenMP
	1 Introduction
	2 Background
	2.1 Privatization and Reductions
	2.2 Speculative Parallelization of Loops
	2.3 Speculative Privatization
	2.4 TLS on Hardware Transactional Memories

	3 Our Proposal
	3.1 spec_private Clause
	3.2 tls Construct
	3.3 spec_private in Scalar Variables
	3.4 spec_private in Arrays
	3.5 spec_reduction Clause

	4 Implementation of the Clauses
	5 Benchmarks, Methodology and Experimental Setup
	6 Experimental Results
	6.1 Loops with if-Writes Pattern in Arrays
	6.2 Scalar Variables with Transient Loop-Carried Dependences
	6.3 Loops with Speculative Reductions in Scalars
	6.4 The Increase of Capacity and Interrupt Aborts Results in Non-significant Overhead in par-for-all-s_priv Parallelization
	6.5 Difficulty to Find Patterns and the Effectiveness of spec_private
	6.6 Order-Inversion Aborts

	7 Conclusions
	References

	Improving Fortran Performance Portability
	1 Introduction
	2 Background
	3 Methodology
	3.1 LFortran Architecture (AST, ASR)

	4 Results
	5 Parallel Constructs
	6 Conclusion
	References

	Domain Specific Compilation
	COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry
	1 Introduction
	2 Tensor Contractions
	3 The COMET Compiler Infrastructure
	4 Tensor Algebra Language
	5 The Tensor Algebra Dialect
	6 Optimizations and Transformations
	7 Modeling Custom Accelerators
	8 Evaluation
	9 Related Work
	10 Conclusions
	References

	G-Code Re-compilation and Optimization for Faster 3D Printing
	1 Introduction
	2 Background and Overview
	2.1 System Overview

	3 Intermediate Representation for G-Code
	3.1 Design Consideration
	3.2 Definition of the Geometric IR
	3.3 Example of IR

	4 G-Code Optimization
	4.1 Compilation Constraints
	4.2 Optimization for Printing Speed
	4.3 Printing Speed Optimization
	4.4 Optimization Heuristics

	5 Experiment and Evaluation
	6 Conclusion
	References

	Machine Language and Quantum Computing
	Optimized Code Generation for Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Batch Normalization
	2.2 LATTE and SWIRL

	3 Methods
	3.1 Batch Normalization Pseudo Code
	3.2 Scalar Replacement, Loop Interchange and Loop Fusion
	3.3 Transformation Recipes

	4 Results
	4.1 Hardware Platform and Environment
	4.2 Performance Comparison of Batch Normalization
	4.3 Performance Comparison for Conv-BN-ReLU Layer

	5 Conclusion
	6 Future Work
	References

	Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware
	1 Introduction
	2 Workload-Dependant Thermal Model of Crossbars
	3 Proposed Neuron and Synapse Mapping Technique
	4 Evaluation
	4.1 Evaluated Applications
	4.2 Hardware Models
	4.3 Evaluated Techniques
	4.4 Evaluated Metrics

	5 Results and Discussion
	5.1 Average Temperature
	5.2 Leakage Power
	5.3 Performance
	5.4 Thermal Model Validation
	5.5 Compilation Time and Solution Tradeoff

	6 Conclusions
	References

	A Quantum-Inspired Model for Bit-Serial SIMD-Parallel Computation
	1 Introduction
	1.1 Representation of Entangled Superposition
	1.2 A pbit-Level Example
	1.3 Two pint-Level Examples

	2 The Prototype Implementation
	2.1 The Chunk Management Layer
	2.2 The Factored Bit Parallel (FBP) Pattern Layer
	2.3 The pbit Layer
	2.4 The pint Layer

	3 Conclusion
	References

	Performance Analysis
	Enhancing the Top-Down Microarchitectural Analysis Method Using Purchasing Power Parity Theory
	1 Introduction
	2 Background
	2.1 The Top-Down Method
	2.2 Purchasing Power Parity

	3 Experimental Setup
	4 Results and Analysis
	5 Related Works
	6 Conclusion
	References

	Code Generation
	Cain: Automatic Code Generation for Simultaneous Convolutional Kernels on Focal-plane Sensor-processors
	1 Introduction
	2 Background: SCAMP-5 Focal-Plane Sensor-Processor
	3 Cain
	3.1 Definitions
	3.2 Search Strategy
	3.3 Cost Function

	4 Evaluation
	4.1 Performance Evaluation Against AUKE
	4.2 Effectiveness of the Search Strategy
	4.3 Effectiveness of the Simultaneous Kernel Optimisation

	5 Related Work: AUKE
	6 Conclusion
	References

	Reordering Under the ECMAScript Memory Consistency Model
	1 Introduction
	2 Related Work
	3 The ECMAScript Memory Consistency Model
	3.1 Agents and Agent Clusters
	3.2 Events
	3.3 Relation Among Events
	3.4 Ordering Relations Among Events
	3.5 Some Preliminary Definitions
	3.6 Valid Execution Rules (the Axioms)
	3.7 Race
	3.8 Consistent Executions (Valid Observables)

	4 Instruction Reordering
	4.1 Our Approach
	4.2 Preliminaries
	4.3 Lemmas to Assist Our Proof
	4.4 Valid Reordering

	5 Discussion
	6 Conclusion and Future Work
	References

	Verification of Vectorization of Signal Transforms
	1 Introduction and Related Work
	2 Vectorization of Signal Transforms Through Rewriting
	3 Verification of Rewrite Rules
	4 Vectorizing Compiler
	5 Conclusion and Future Work
	References

	Author Index

