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Abstract. Knowledge gained by meta-learning processes is valuable
when it can be successfully used in solving algorithm selection problems.
There is still strong need for automated tools for learning from data,
performing model construction and selection with little or no effort from
human operator. This article provides evidence for efficacy of a gen-
eral meta-learning algorithm performing validations of candidate learn-
ing methods and driving the search for most attractive models on the
basis of an analysis of learning results profiles. The profiles help in finding
similar processes performed for other datasets and pointing to promising
learning machines configurations. Further research on profile manage-
ment is expected to bring very attractive automated tools for learning
from data. Here, several components of the framework have been exam-
ined and an extended test performed to confirm the possibilities of the
method. The discussion also touches on the subject of testing and com-
paring the results of meta-learning algorithms.

Keywords: Meta-learning · Meta-search · Algorithm selection ·
Algorithm ranking · Result profiles

1 Introduction

Many learning algorithms have been proposed by scientific community to solve
problems like classification, approximation, clustering, time series prediction and
so on. Large amount of algorithms and their different performance in particular
applications have risen questions about ways to select the most adequate and the
most successful learning methods for particular tasks. Such algorithm selection
problems, also solved with machine learning, are tasks of meta-level learning (or
just meta-learning, ML) and by analogy to the vocabulary used in logic, the
former group of learning approaches, can be referred to as object-level learning
(though more often called base-level learning).

In fact, the term meta-learning has been used in many different contexts,
so that it encompasses the whole spectrum of techniques aiming at gathering
meta-knowledge and exploiting it in learning processes. Although many differ-
ent particular goals of meta-learning have been defined, the ultimate goal is to
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use meta-knowledge for finding more accurate models at object-level and/or to
find them with as little resources as possible. This article presents a general
algorithm for meta-learning based on results profiles, and examines the gains
of its particular implementation. The method facilitates arbitrary profile man-
agement for discovering datasets in available knowledge base characterized by
similar results, to draw conclusions about which learning machines are likely to
provide good results.

Some selected, interesting approaches to meta-learning, more related to the
approach proposed here, are superficially reviewed in Sect. 2. Section 3 presents
the motivation and general idea of the proposed algorithm, which is presented
in detail in Sect. 4. Its several incarnations are tested on 77 datasets and 212
object-level learning machines. The test is described in Sect. 5 and its results
analyzed in Sect. 6.

2 Meta-learning for Ranking Learning Machines

Many different approaches have been proposed as tools for meta-learning. Here,
we focus on meta-learning techniques capable of reliable prediction which meth-
ods would provide best results for a given learning task. In other words, we
need tools to generate accurate rankings of learning algorithms for particular
problems. The task of ranking algorithms can be regarded as equivalent to the
algorithm selection problem (ASP) discussed already in 1970s by Rice [16]. He
presented an abstract model of the problem as in Fig. 1. The goal is to find
a mapping S : D → A, such that for given data D ∈ D, A = S(D) is an
algorithm maximizing some norm of performance ||p(A,D)||. The problem has
been addressed by many researchers and undertaken from different points of
view [9,17]. Often, the task gets reduced to the problem of assigning optimal
algorithm to a vector of features describing data. Such approaches are certainly
easier to handle, but the conclusions they may bring are also limited. Separating
meta-learning (ranking) and object-level learning processes simplifies the task,
but implies resignation from on-line exploitation of meta-knowledge resulting
from object-learners validation.

D ∈ D A ∈ A m ∈ Rn ||m|| ∈ RS(D) p(A,D) || · ||D ∈ D A ∈ A m ∈ Rn ||m|| ∈ RS(D) p(A,D) || · ||

Fig. 1. Rice’s model of algorithm selection problem

Building successful tools for automated selection of learning methods, most
suitable for particular tasks, requires integration of meta-level and object-level
learning in a single search process with built-in validation of object-level learning
machines and meta-knowledge acquisition and exploitation. A general algorithm
for such kind of meta-learning based on learning machine complexity estimation
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has been proposed [11], but it can not be successful in cases, where the complexity
estimation can not successfully drive the meta-search.

The most popular approach to meta-learning was initiated by the meta-
learning project MetaL. It was focused on learning rankings of algorithms from
simple descriptions of data (collections of meta-attributes). In first approaches,
meta-attributes were basic data characteristics like the number of instances in
the dataset, the number of features, the types of features (continuous or discrete,
how many of which), data statistics, some numbers obtained with some more
advanced statistical analysis and information theory [5] and so on. Provided a
description of a dataset, rankings were generated by meta-learners in such a
way that for each pair of algorithms to be ranked, a classification algorithm was
trained on two-class datasets describing wins and losses of the algorithms on
some collection of datasets and after that, decisions of the meta-classifiers were
combined to build final rankings.

An interesting step forward was landmarking [15]. The idea was to use meta-
features measuring the performance of some simple and efficient learning algo-
rithms (landmarkers) like linear discriminant learners, naive Bayesian learner or
C5.0 decision tree inducer. The results provided by the landmarkers were used
as features describing data for further meta-learning.

Interesting further improvements were: relative landmarking that introduced
meta-attributes describing relations between results [7], typed higher-order induc-
tive learning [2], deriving data characteristics from the structures of C5.0 decision
trees [14], and many others [1].

Many other interesting algorithms of similar goal are also worth mentioning
here. Some of them merge model selection and hyperparameter optimization,
often relying on Bayesian optimization with different internal solutions. Random
forests are successfully applied in Auto-WEKA [10,19] and Auto-sklearn [6].
Gaussian processes find application in a meta-search for appropriate kernels in
model space, treating model evidence as a function to be maximized [12]. An
evolutionary algorithm was used within Tree-based Pipeline Optimization Tool
(TPOT) to automatically design and optimize machine learning pipelines [13].

Algorithm Ranking Criteria. To generate rankings of learning algorithms, the
results of meta-learners have usually been combined with such criteria as aver-
age ranks (AR), success rate ratios (SRR), significant wins (SW, counting sta-
tistically significant differences between pairs of algorithms) or adjusted ratio of
ratios (ARR, combining ratios of accuracy and time) and relative landmark (RL,
proposed for cases involving n > 2 algorithms) [18]:
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X is a parameter interpreted as “the amount of accuracy we are willing to trade
for 10-times speed-up”.
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A serious disadvantage of methods like SRR, ARR and SW is their quadratic
complexity, so when the number of candidate algorithms is large, they are not
applicable. Moreover, they are strongly dependent on the collection of methods
included in the comparison – when we need to test one more algorithm, all the
indices must be recalculated.

The quality of rankings generated by meta-learning algorithms has usually
been measured by means of its similarity to the ideal ranking calculated for
the data. The similarity has been measured with some statistical methods like
Spearman’s rank correlation coefficient, Friedman’s significance test and Dunn’s
multiple comparison technique. Such measures pay the same attention to rank
differences at the beginning and at the end of the ranking, which is not what
we really expect from meta-learning algorithms. We need the best methods at
the top of the ranking while it is not so important whether the configuration is
ranked 50000th or 100000th.

3 Motivation – From Passive to Active Ranking

A possibility of ranking algorithms ideally, without running them on the data
at hand, would be found with great enthusiasm by many data analysts. But the
task is very hard, even if significantly restricted to particular kind of data or/and
small set of algorithms to be ranked. Very naive approaches basing on simple
data characteristics are doomed to failure, because the information about the
methods’ eligibility is usually hidden deeply in complex properties of the data
like the shapes of decision borders, not in simple characteristics of the current
form of the data.

Landmarking is definitely an interesting direction, because it tries to take
advantage of the knowledge extracted by landmarkers in their learning processes.
But it is still passive in the sense that the selection of landmarkers and of meta-
features is done once at the beginning of the process. The result is also static,
because the ranking is not verified—no feedback is expected and no adaptation
is performed.

To provide a trustworthy decision support system the rankings should be
validated. No human expert would blindly believe in raw rankings. Instead they
repeatedly construct and test complex models that encompass data preprocess-
ing and final target learners. Meta-learning tools should proceed in a similar
way. Therefore it seems reasonable to organize meta-learning approaches as
search processes, exploring the space of complex learning machine configura-
tions [4] augmented with heuristics created and adjusted according to proper
meta-knowledge coming from human experts and artificial processes, protect-
ing against spending time on learning processes of poor promise and against
combinatorial explosion [11].

The Idea of Profiles. Profile analysis proposed here follows the idea that the rela-
tive differences between the results obtained by different machines may point the
directions to more attractive machine configurations. Such informative results
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are gathered into collections called profiles and are used to predict the areas
in the machine space worth further investigation. The idea is similar to relative
landmarking, but in contrast to it, profiles are handled in an active way—there is
no a priori definition of landmarkers, but a dynamic profile of results is created—
its contents may change in time, when the feedback shows that the current profile
predictions are not satisfactory. The profiles can contain the results of arbitrary
selection of learning machines (any machine can be a landmarker), and on the
basis of profile similarity between learning tasks, the machines most successful
in solving similar problems are selected as candidates for best results providers.
The details on the possibilities of profile definitions, ranking generation and the
whole active search process are described in the following section.

4 Result Profile Driven Meta-learning

Result profiles are collections of results obtained in validation processes for
selected machine configurations. The configurations are not fixed a priori as
in classical landmarking methods, but are updated on-line during the search
process. Thus, the profiles can be called active. Within the search, subsequent
candidates are validated to verify which machines are really efficient in learn-
ing from the data at hand. Using profiles for ranking other methods may take
advantage of relations between results to point promising directions of machine
parameter changes. Because of the similarity to relative landmarking, the tech-
nique can also be called an adaptive (or active) relative landmarking.

The Algorithm. Result profile driven meta-learning (RPDML) searches for suc-
cessful learning algorithms within a given set of candidate machine configura-
tions C. It runs a procedure called validation scenario (VS) for selected machine
configurations to get some measure of the quality of the machine, in the form
of an element of an ordered set R. An important part of RPDML is a pro-
file manager (PM) responsible for the profile contents and for using the profile
for selection of subsequent candidate machine configurations for validation. The
list of parameters includes also the time deadline for the whole process. The
procedure of RPDML is written formally as Algorithm 1. It operates on four
collections of machine configurations:

– CR – a collection of pairs 〈c, r〉 ∈ C ×R of machine configurations c validated
with results r,

– CP ⊆ CR – the profile – a collection of selected results,
– CQ – a sequence of candidate configurations (the queue) ordered with respect

to estimated qualities and step numbers at which they were added,
– CB – used temporarily in the algorithm to represent current ranking of can-

didate machine configurations.

To avoid long but fully formal statements, some shortcuts will be taken below, for
example, the expression “a configuration in the profile” should be understood as
an appropriate pair and so on. Although slightly informal, they will not introduce
ambiguities and will significantly simplify descriptions.
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Algorithm 1 (Result profile driven ML)

Input: set C of machine configurations, validation scenario (VS), profile manager
(PM), time deadline.

Output: Machine configuration ranking.

The algorithm:

1. CR ← ∅, CQ ← ∅
2. step ← 0
3. Initialize PM
4. While the time deadline is not exceeded:

(a) If step == 0 or PM changed the profile CP since last time:
i. CB ← new ranking for current profile CP

ii. For each c ∈ CB,
if c does not occur in CR then add 〈c, step + rank of c in CB

length(CB)
〉 to CQ

(b) If CQ is empty then break the loop
(c) Pop an item c with maximum rank from CQ

(d) r ← VS(c) (perform VS for c and get the result r)
(e) Add 〈c, r〉 to CR

(f) Adjust the profile CP within PM with 〈c, r〉
(g) step ← step + 1

5. Return the configurations from CR in the order of decreasing results

New ranking is generated each time the profile is changed. Machine configu-
rations are added to the queue with a rank in which the step number also plays
an important role—first the most recent ranking is considered, and only if the
ranking is fully served, the next configuration is taken from the newest of the
older rankings.

Validation Scenario. The validation scenario defines what needs to be done to
estimate the quality of a given machine configuration. It contains a test scenario,
specifying the details of the test to perform for a candidate machine configuration
(for example a cross-validation test) and a result query extracting the quality of
machine configuration from the test (for example mean accuracy or a collection
of accuracy results).

Time Limit. Usually, new algorithms are analyzed with respect to computational
complexity – the question is how much time and/or memory it takes to reach
the goal. In case of meta-learning, we deal with an inverse problem – how good
model can be found in a given time, as it is natural that all possible models can
not be tested and estimated, because that would take many orders of magnitude
larger time than we can supply. Because of that, the main loop of the algorithm
is limited by time deadline and the analysis of its efficiency has the form of
empirical examination of the accuracy of models returned within that time.
Different approaches are given the same amount of time for their work and their
gains are compared.
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Profile Management. Two important aspects of profile management are: care
about the contents of the profile and the method of using it to determine advan-
tageous directions of further search for machine configurations. It is not obvious
what results should be kept in the profile and even what size of the profile can be
most successful. There is much space for in-depth analysis of such dependencies.
Given a profile, ranking configurations can also be done in a number of ways.
The most natural one is to collect the results obtained for the profile configura-
tions on other data files, determine the most similar profile, or more precisely,
the data for which the profile is the most similar, and generate a ranking corre-
sponding to the most successful configurations for that data. The similarity can
also be used to combine results for several similar datasets into the final scores.
So, the behaviour of PM may be determined by:

– profile similarity measure,
– configuration selection strategy (deciding how many and which configurations

are included in the ranking),
– knowledge base used for calculations (the collection of datasets D1, . . . , Dk

and results obtained for these datasets with the methods of interest, that is
a set of functions fDi

: C → R.

From practical, object-oriented point of view, it may be advantageous to design
the methods of profile adjustment and ranking generation together, to let them
interact better in their tasks. Therefore, they are enclosed in a single PM object.
It can also be very profitable to use the feedback sent to PM not only for profile
adjustment, but also for learning how to generate rankings on the basis of the
profiles (to exploit the information about how successful the previous rankings
were). Investigations on these subjects are very interesting direction of further
research, but significant advantages will be possible only when we have gathered
a huge database of results obtained with large number of learning methods on
large number of datasets in experiments performed in systematic, unified man-
ner. Therefore, the experiments presented here, though not small, are just the
beginning. Nevertheless, they show that meta-learning driven by result profiles
really works.

5 The Experiment Settings

To analyze the RPDML framework in action, its configuration described in Sub-
sect. 5 was tested on 77 datasets from the UCI repository [3], also available
from OpenML [20], representing classification problems and 212 configurations
of object-level learning machines. A list of names identifying the datasets is given
in Table 1. The sets represent various domains and pose different requirements
to the learning methods. The feature spaces consist of from 2 to 10000 features.
The instance counts range from 42 to almost 5 millions. The numbers of classes
of objects to recognize are between 2 and 23. Such collection of datasets seems
to provide a sufficient field for reliable meta-learning experiments.
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Table 1. Summary of 77 UCI datasets, used in the experiment.

Some of the UCI datasets are originally split into parts (usually training and
test sample). Here, all such datasets were joined into a single set to be analyzed
with cross-validation. In Table 1, suffix “-all” informs about such joins.

RPDML Configuration. Each parameter of the Algorithm 1 (set C of candidate
machine configurations, validation scenario, profile manager and time deadline)
may significantly influence the gains of the method in particular application.
Their values used for the experiment are specified below.

Object-Level Learning Machine Configurations. 212 learning methods of four
types were applied: 102 decision tree (DT) induction algorithms, 40 k-nearest
neighbor (kNN) methods, 5 naive Bayesian (NB) classifiers, 65 support vector
machines (SVM). Decision tree algorithms were constructed with different split
criteria, pruning methods and/or the way of validation. The 40 kNN methods
were obtained with 10 different values of k (from 1 to 51) and 4 “metrics” used
for distance calculations (Square Euclidean, Manhattan, Chebychev, Canberra).
Bayesian classification used 5 settings of Naive Bayesian Classifier: one using
no corrections, one applied with Laplace correction and 3 instances equipped
with m-estimate corrections (m ∈ {1, 2, 5}). The 65 Support Vector Machines
contained 5 configurations with linear kernel (with C ∈ {.5, 2, 8, 32, 128}) and
60 with Gaussian kernels: all combinations of σ ∈ {.001, .01, .1, .5, 1, 10}, square
Euclidean or Canberra “metric” and C ∈ {.5, 2, 8, 32, 128}.

Application of all the classifiers but DTs was preceded by data standardiza-
tion. For kNN and SVM methods, because of their computational complexity,
each dataset containing more than 4000 vectors was filtered randomly to leave
more or less 1000 vectors (each vector was kept with probability equal to 1000
divided by the original vectors count). The largest datasets (census-income-all
and the two KDD cup datasets) were also filtered in a similar way for DTs, to
keep around 10000 vectors.

More details on the methods configuration, experiment design and results
can be found at http://www.is.umk.pl/∼kg/papers/EMCIS21-RPDML.

Validation Scenario. Algorithm selection in the approach of RPDML is based on
validation of learning machines, as shown in Sect. 4. In the experiment, this role

http://www.is.umk.pl/~kg/papers/EMCIS21-RPDML
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was entrusted to 10-fold cross-validation. Since we are interested in not only high
mean accuracy, but also in its small variance (i.e. stable results), the criterion
used here was the mean accuracy reduced by its standard deviation.

Time Limit. In more sophisticated applications, it may be very important to
comply with the time limit, to check some faster methods first and then, engage
more complex ones [8]. Here, we have just 212 machine configurations, so instead
of the time limit it was chosen to allow for validation of 12 configurations, before
the final decision had to be taken.

Profile Management. Proper profile handling is a crucial idea of the RPDML.
The rationale behind it is that similar relations between selected results for
two datasets may be precious pointers of meta-search directions. We expect
that the winners of the most similar tasks will perform well also on the new
dataset being analyzed. A thorough analysis of profile solutions should take
into consideration such aspects as profile construction and maintenance, profiles
similarity measures, ranking candidates on the basis of profile similarity.

The experiment, presented here, is based on a knowledge base consisting
of results of 212 learning machines obtained for 77 datasets, so possibilities of
profile maintenance analysis are limited. To draw reliable conclusions, one needs
to collect thousands or even millions of results. Such analysis has not been done
yet. Since the task was to check just 12 of 212 configurations (the “time” limit)
and point the most promising one, the profiles were composed of all the results
obtained by the validation procedures.

Profile similarity was measured in one of two ways: with (the square of) the
Euclidean metric and with the Pearson’s correlation coefficient. Current rankings
used to nominate the most promising configurations were calculated with respect
to four indices:

– average accuracy reduced by its standard deviation,
– the same but expressed in the units of standard deviations in relation to the

best of 212 results,
– average p-value of paired t-test comparing the method with the best one,
– average rank of the method.

All the averages were calculated over 5 or 10 most similar datasets from the
knowledge base and were weighted with the similarity measures. These create
16 instances of RPDML configurations: all combinations of 2 similarity measures,
4 ranking indices and 2 sizes of the set of similar datasets.

State-of-the-Art Ranking Methods for Comparison. State-of-the-art methods
for ranking algorithms usually prepare data descriptions to measure similarity
between datasets and construct rankings on the basis of ranked methods accu-
racies obtained for the most similar data. They do not perform any validation
of the methods on the data for which the ranking is being created, hence they
can be called passive.
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Since pairwise comparisons are possible only when the number of candidate
machine configurations is extremely small, we can not base ranking on measures
like ARR with RL, SRR or SW. Instead, the passive rankings, used for reference
here, are based on less computationally complex formulae (3, 4, 5, 6).

AA(c) =
1
n

n∑
i=1

Ac(i) (3)

AD(c) =
1
n

n∑
i=1

Ac(i) − AB(i)(i)
σB(i)(i)

(4)

AR(c) =
1
n

n∑
i=1

Rank(c, i) (5)

AP (c) =
1
n

n∑
i=1

p(c, i), (6)

where c denotes the candidate configuration, n the number of datasets, Ac(i)
is the accuracy of the machine c tested on i’th dataset, σc(i) – the standard
deviation of this accuracy estimated in the test, B(i) stands for a configuration
that has reached the highest accuracy for i’th dataset, Rank(c, i) is the rank of
configuration c in the ordered results for i’th dataset and p(c, i) is the p-value
of the paired t-test comparing results obtained for c and B(i). Each formula
has its advantages and drawbacks. Some of them are pointed out further, in the
discussion on the results.

To reliably compare active ranking methods and passive approaches, the
latter are also validated. It means that the passive rankings are subject to step-
by-step validation of top machine configurations to return the configurations in
new order, corresponding to the validation results (the same validation scenario
as in Algorithm 1).

Goals of the Experiment. The main goal of the test was to examine whether
the profile approach of RPDML is capable of finding more attractive learning
machines than other approaches devoid of profile analysis. Therefore, the first
reference method for the comparison is a meta-search based on random ranking of
methods. It is important to realize that it is not the same as random selection of a
model. Here, a number of randomly selected machines go through the validation
process which prevents from selecting a method that fails.

Another goal of the experiment was to examine the advantages of the profiles
themselves. To achieve this, a comparison of the profile-based methods to static
rankings based on the same criteria has been conducted.

Since the goal here is to check advantages of profiles, they are compared to
similar algorithms with no profile based decisions. We do not compare to other
complete solutions like Auto-WEKA or Auto-Sklearn, because that would
not provide desired information on profiles and would require significant modifi-
cations of the systems to compensate the differences in goals and architectures.

Testing algorithm selection should not be performed with the use of a knowl-
edge base containing information about the test data. That would be a sort of
cheating. Thus, a leave-one-out style tests were executed (each RPDML instance
was trained on the results obtained for 76 datasets and tested on the 77th).
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Table 2. Summary of RPDML results for
77 UCI datasets.

Table 3. Top ranked results of object-
level classifiers for 77 UCI datasets.

6 Results and Analysis

Some of the most reasonable indicators of algorithm quality that can serve as
comparison criteria, and have been calculated in the experiment, are:

– average test accuracy or the accuracy reduced by its standard deviation,
– average loss with respect to the best available result, represented in the unit

of (the winner’s) standard deviation,
– average rank obtained among other algorithms,
– average p-value of paired t-test comparisons with the winner methods,
– the count of wins defined as obtaining results not statistically significantly

worse than those of the winners (examined with paired t-test with α = 0.05).

There is no single best criterion and each of those listed above has some draw-
backs. Average test accuracy (also reduced by standard deviation) may favor
datasets with results of relatively larger variance. Calculating accuracy differ-
ences (loss) with respect to the winner and rephrasing them in the units of
winner’s standard deviations is not adequate in case of zero variance (happens
e.g. when 100% accuracy is feasible). Ranks may be misleading when families
of similar methods are contained in the knowledge base – a small difference in
the accuracy may make big difference in rank. Average p-values are not perfect
either – it is possible that a better model gets lower p-value when compared
to the winner then a worse model (e.g. when large variance of the latter dis-
turbs statistical significance). Naturally, the count of wins suffers from the same
drawbacks as p-values.

To facilitate multicriteria comparison, all these scores are presented in
Table 2. For reference, also the top-ranked results of the 212 object-level algo-
rithms are shown in Table 3. Full tables of results (overall and particular for each
dataset) are available online at http://www.is.umk.pl/∼kg/papers/EMCIS21-
RPDML.

http://www.is.umk.pl/~kg/papers/EMCIS21-RPDML
http://www.is.umk.pl/~kg/papers/EMCIS21-RPDML
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First Glance Analysis. Even a short glance at the result tables makes clear
impression that most of the values in Table 2 are more attractive the ones in
Table 3. The mean accuracies of the best RPDML scores are higher by more
than 2% and average ranks get reduced by almost half in relation to the best
object-level algorithms.

It may seem surprising that the best average ranks are so large (46.77 for the
object-level winner and 28.21 for RPDML). Their nominal values may be a bit
misleading because of the strategy of assigning the ranks following the methods
of rank-based statistical tests, where in case of a draw, all the methods with
the same result obtain the average rank corresponding to their positions. As a
result, in the most extreme case, for the “accute1” dataset, the best classifiers
performing with 100% accuracy get the rank 59, because 117 of the 212 classifiers
classify the data perfectly. Other examples are “accute2” with the top rank of
49.5, “steel-plates-faults” with 35 or two “wall-following” datasets, where 49
perfect classifiers share the rank of 25.

Average accuracies, average loss and mean rank show similar properties, so
they are quite correlated. More different rankings are obtained with the criteria
of p-values and numbers of wins (naturally, the two are also correlated). It can
be observed in the tables by means of the bold-printed numbers which show the
best scores according to the criteria.

Detailed analysis of the results confirms that none of the comparison criteria
is perfect. Even the statistical methods like p-values and counts of wins (or
more precisely the count of datasets for which the results can not be confirmed
with a statistical test to be significantly less accurate then the best results)
sometimes show peculiar effects. For example, the results for the “vertebral-
columns-3c” data show that a method ranked 126th, according to the mean
reduced by standard deviation, is not significantly worse than the winner while 70
methods ranked higher, including the one ranked at position 20, lose significantly
to the winner. The winner’s accuracy is 0.8323 ± 0.05832, while the algorithms
ranked at positions 126 and 20 reach 0.8032 ± 0.08185 and 0.8086 ± 0.05148
respectively. The one ranked 20th seems better, because it is more stable (less
variance), but paradoxically, the stability makes it lose to the winner, while
larger variance of the 126th one grants it with a win. Another example is “wall-
following-24”, where the meta-learning based on random ranking gets accuracy
of 0.9937 ± 0.01059 (hypothesis about losing to the winner is not rejected with
paired t-test with α = 0.05) while the others provide slightly higher accuracy
and 4 times smaller deviation (e.g. 0.9964 ± 0.00248) and are confirmed with
the t-test to lose.

Similar facts cause that the largest average p-value (among the object-level
learning methods) was obtained by a method building full greedy DTs, which
means maximum possible accuracy for the training data and large variance for
the test data. As a result of the larger variance, the number of wins is the highest,
but at the same time its mean accuracy is about 1% lower on average than that
of other methods with lower win counts.
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Meta-learning vs Single Object-Level Classifiers. Comparison of meta-learning
approaches with single learners should be done with special care. The meta-
learning algorithms are allowed to perform multiple validation tests and select
one of many (here 12) models. Thus, it is natural that they can be more accurate.
The difference can be clearly seen with the naked eye from the results. For
example:

– average ranks for the RPDML methods range from 28.21 to 39.1 (most less
than 34) while the top-ranked object-level method reaches the value of 46.77,

– average mean accuracy minus standard deviation ranges from 0.81433 to
0.82590 for RPDML while the best object-level result is 0.8048.

An interesting observation is that for some datasets, the accuracies of some
RPDML machines are higher than the best object-level classifier’s. Although
RPDML just selects a machine from the 212 object-level algorithms, it sometimes
happens, that in some folds of cross-validation, it recognizes that a machine, less
accurate in general, can be more successful in application to this particular data
sample. Obviously, it can not be treated as a regular feature, as it happened 8
times for 4 datasets (ctg-2, ml-prove-h1, nursery and sat-all), but it is interesting
that such improvement is at all possible. In such cases, the lower p-value of the
t-test, the better, so the index has been modified to 2 − p-value, to be a greater
reward instead of a penalty.

Profile-Based vs Static Ranking Methods. The most important analysis of this
experiment concerns the advantages of the function of profiles. To facilitate
the discussion, the methods based on static rankings have been introduced and
tested. Table 2 presents the results of the static methods among those of RPDML
and the random ranking. According to all the criteria, two of the static rank-
ings (based on accuracy) perform slightly worse or slightly better than random
ranking. The other two (based on ranks and p-values) do better, but they are
outperformed by most of the RPDML configurations in most comparisons. Only
the static ranking based on p-values is located higher than some of its RPDML
counterparts in comparison with respect to p-values and wins, but keeping in
mind the disadvantages of these criteria mentioned above, we can reliably claim
that the profiles are precious tools in meta-learning.

7 Conclusions and Future Perspectives

RPDML is an open framework, that facilitates easy implementation of
many meta-learning algorithms integrating meta-knowledge extraction and its
exploitation with object-level learning. Different kinds of problems may be solved
with appropriate implementation of the framework modules like validation sce-
nario and profile manager. The implementations presented here have proven
their value in the experiments. The framework facilitates active management
of learning results profiles, leading to more adequately adapted meta-learning
algorithms.
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Since the framework is open, a lot of research can be done with it, hopefully
leading to many successful incarnations of RPDML. First of all, there is a lot of
space for development of intelligent methods for profile management. The way
profile is maintained with the feedback coming from experiments, can be crucial
for final efficiency of profile-based meta-learning machines. Some experiments
with simple methods of profile size reduction have shown that it is very easy to
spoil the results by inaccurate profile maintenance. For example, the idea of han-
dling the profile by keeping the results with as high accuracy as possible can lead
to profile degeneration. Experiments, not described here in detail, have shown
that such technique may at some point generate poor ranking, which would be
kept and followed to the end of learning time, because once machines of poor
accuracy appear at the top, subsequent validations end up with weak results,
not eligible for the profile, so the profile does not change and the poor ranking
is followed on and on. The lack of changes in the profile implies no changes in
ranking and inversely. A sort of dead lock appears. Hence, profile management
must be equipped with techniques aimed at avoiding such situations. The profiles
should be diverse, and continuously controlled, whether they result in rankings
providing accurate models at the top. Otherwise, it can be more successful to
return to some old but more suitable profile, instead of losing time for validation
of many machines from a degenerate ranking.

Profile management includes adaptive methods of dataset similarity mea-
surement for more suitable ranking generation. In parallel to profile analysis,
knowledge base properties may also be examined in order to prepare knowledge
bases most eligible for meta-learning. The knowledge bases may be equipped
with additional information providing specialized ontologies useful not only in
meta-learning but also in testing object-level learners.
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