
Chapter 2
Edge-Coded Signaling Techniques

When one door closes another door opens; but we so often look
so long and so regretfully upon the closed door, that we do not
see the ones which open for us.

Alexander Graham Bell

The objective of this chapter is to present the analysis of signaling protocols for
data transfer over a single-wire achieving high data rates (in the Mbs range), low
power consumption, and small footprint. The protocols do not require a CDR,
can operate with signals at low amplitude voltage (∼1V), has simple encoding
and decoding schemes, and can tolerate baud rate differences between transmitter
and receiver. We collectively refer to this new family as Edge-Coded Signaling
(ECS) because its core idea is to transfer the indices of only the ON bits as a
series of transition edges rather than bit times. A very compact packet header
gives information about the number of such indices and the encoding operations
to which the raw bits have been subjected. When the pulses are received, the
receiver applies the appropriate decoding to infer the original data bits. The ECS
protocols are dynamic in that they can accommodate several data rates. It exploits
edge detection of incoming pulses to achieve remarkable robustness with respect to
jitters, skews, and clock inaccuracies between the transmitter and the receiver. The
protocols achieve significant improvements in data rate, reliability, packet security,
and power efficiency with respect to state-of-the-art CDR-less techniques. ECS is
also architecturally flexible in that it can be configured according to the signaling
topology (Master–Slave, Ring, Star, etc.).
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2.1 Edge-Coded Signaling (ECS)

2.1.1 Edge-Coding Scheme

The core idea of ECS is to select the ON bits in a data word and transmit their
index numbers as pulse streams instead of transmitting the data bits themselves. An
example is given in Fig. 2.1 where the bit sequence “0101” (a) is transformed into
series of pulses (b) in which the count of pulses in each series is n + 1 with n being
the ordinal number of the ON bit in the binary sequence. In the example of Fig. 2.1b,
there are two series of pulses. The first series has one pulse corresponding to the
leading ON bit at position 0, and the second series has three pulses corresponding to
the ON bit at position 2. One series of pulses is separated from an adjacent one by an
inter-symbol separator α. Please note that α is not a time delay but rather a spacing
or separation symbol that is measured in clock cycles with the clock-cycle count
given by the local transmitter clock at transmission and the local receiver clock at
reception. The clocks at both ends do not have to be synchronized. Also, note that
one is always added to the pulse count corresponding to the index number. This

Fig. 2.1 (a) Standard serial
transfer. (b) Edge-coded
transmitter. (c) Edge-coded
receiver
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operation is necessary to handle the transmission of index 0. Otherwise, no pulse
will be transferred if the bit at index 0 is ON. For each input pulse series, the ECS
receiver counts the number of the incoming rising edges, subtracts one to retrieve the
index number (i.e., n = PulseCount − 1), and sets a data bit at the index number.
This is shown in Fig. 2.1c. The apparent drawback is that more work is seemingly
needed to transmit such pulse series than the raw bits themselves. However, this
is not the case as it is conceivable to achieve high data rates, using an encoding
process that makes the index numbers as small as possible. This is accomplished by
breaking the bit stream into smaller segments, reducing the number of ON bits as
much as possible in each segment and relocating these ON bits to the lowest index
positions. The encoding information and the number of ON bits in the encoded data
are sent as a packet header along with the index numbers. All the information in the
packet header itself is transmitted as pulse streams, exactly as the index numbers.
In short, instead of transmitting bits, ECS codes them as edge counts and transmits
them along with the formatting information, itself edge-coded, so that the receiver
is able to reconstitute the data word. The steps involved in ECS transmission are
explained in the following subsections.

2.1.2 ECS Segmentation

The number of pulses to transmit increases rapidly with the data word size B and
the number of its ON bits. The most significant bits require larger number of pulses
to represent their index numbers. Considering the worst case where all the bits are
ON, the number of pulses required would be B(B + 1)/2. The rapid increase in the
number of pulses reduces the data rate rapidly and, therefore, the count of pulses
must be limited. To do so, ECS breaks the data word into smaller segments of size
l = 4 bits each, thus limiting the index numbers to a maximum of 3 (i.e., 4 + 3 +
2+ 1). With the reduced segment size, the maximum number of pulses per segment
reduces to 10. An ECS segmentation example is given in Fig. 2.2 where a 16-bit
word is partitioned into 4-bit segments Si ,1 < i < 4. The segmentation steps are
also shown in Algorithm 1 on lines 1 and 2. The optimization of the segment size l

is discussed in Sect. 2.2.

2.1.3 ECS Encoding

The increase in data word size also increases the number of inter-symbol separators
needed to separate out the pulse streams, representing the ON bits. Such separators
reduce the data rate significantly. Reducing the number of ON bits helps in
mitigating the effect of separators on data rate. ECS encoding effectively reduces the
number of ON bits in each data segment. The ECS encoding is simply a conditional
bit-wise NOT operation on a target segment, with the condition being that the
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Fig. 2.2 Example: ECS packet formation

Algorithm 1 ECS segmentation and encoding process
Inputs:
- Data: 16-bit data word
Outputs:
- CFlags: Concatenated Encoding Indicators
- CNOI1, CNOI2: Concatenated ON-bit Counts

1: S1 = Data[3 : 0], S2 = Data[7 : 4]
2: S3 = Data[11 : 8], S4 = Data[15 : 12]
3: for i=1 to 4 do
4: NOIi = countONbits(Si)

5: Fi = 0
6: if NOIi > l/2 then
7: Si =∼ Si

8: Fi = 1
9: NOIi = countONbits(Si)

10: end if
11: end for
12: CFlags = {F4, F3, F2, F1}
13: CNOI1 = {NOI2, NOI1}, CNOI2 = {NOI4, NOI3}
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number of ON bits in a segment is longer than half of the segment size. To explain
the encoding scheme further, let us assume B = 16. If a segment satisfies the said
condition, bits of the segment are inverted and a 1-bit flag, Fi , is set to represent
the applied operation. The subscript i represents the segment number. The encoding
steps are presented in Algorithm 1 from lines 3–11 and in the encoding section
of Fig. 2.2. Each segment is processed independently, and four distinct flags are
generated, one for each segment. These four flags are then concatenated to yield a
single 4-bit flag named CFlags. Additionally, the encoding process produces four
2-bit Numbers of Indices, each, denoted NOIi , representing the number of ON bits
in segment i. The NOIs of two consecutive segments are concatenated to yield two
4-bit concatenated NOIs that are denoted CNOIs. The generation of CFlags and
CNOIs is shown in Algorithm 1 on lines 12 and 13 and in the serialization section
of Fig. 2.2. At the end of this process, all the information required for transmission
gets compacted in nibbles of 4 bits each, which is the same as the size of the 4-
bit segment and, hence, helps in maximizing the data rate. The efficient hardware
implementation of an encoder performing segmentation and encoding is discussed
in Sect. 2.4.

2.1.4 ECS Transmitter

Pulse Stream and Separator Generation Scheme

In the ECS transmission process, the ECS scheme for generating the pulse streams
and the inter-symbol separators plays a crucial role. The encoding pulses in the
ECS packet and the α spacings between packets are generated using the ECS clock,
which can be obtained in two ways. One way is for the system clock to be routed
directly to the ECS clock port. Another way is for the system clock to be divided to
generate a slower ECS clock. The pulse generation process is illustrated in Fig. 2.3.
The ECS clock is ANDed with a control signal, Pulse Stream Active (PSA), set
by the control module. The PSA is high during the transmission of a pulse stream,
allowing the ECS clock cycles to go through. During the transmission of the inter-
symbol separator α, PSA is low, thus gating the ECS clock. Please note that α in
ECS is not a time delay, but rather a count of the rising or falling edges of the ESC
clock. In Fig. 2.3, we have used α = 4 clock cycles as it is the optimal count at which
the maximum data rate is achieved. This will be discussed further in Sect. 2.2.

Transmission Flow

The format of the ECS packet is shown in Fig. 2.4 and a numerical example is given
in Fig. 2.2. The CFlags are transmitted to inform the receiver about the encoding
process, while the CNOIs are transmitted to help the receiver account for all the
incoming ON bit indices. The ECS transceiver starts the transmission by sending a
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Fig. 2.3 ECS pulse stream and inter-symbol separator generator (indices from Fig. 2.1)

Fig. 2.4 ECS packet

pulse stream with a pulse count equal to CNOI1 + 1 followed by an inter-symbol
separator α of four clock cycles (line 2 in Algorithm 2). The additional pulse is
needed to inform the receiver not to expect any index number when the count of ON
bits in the first two segments is zero. Next, the transmitter sends a number of pulse
streams equal in count to NOI1+NOI2 followed by an α at the end of each stream.
The pulse count in each pulse stream is equal to the index number of an ON bit in
segments S1 and S2 plus an additional pulse, making a total of index + 1 pulses.
The additional pulse is used to handle the transmission of a zero index number. The
transmission process of indices is presented in Algorithm 2 on lines 3 through 9.
A similar transmission follows for the next two segments, S3 and S4, during which
CNOI2 and the index numbers of the ON bits in these segments are transmitted. At
the end of the transmission of all segments, the CFlags are transmitted, also in the
form of a pulse stream followed by an α (line 10 in Algorithm 2). Their pulse count
is equal to CFlags + 1. An additional pulse is needed to represent zero content of
CFlags as in the case when no segment goes through the encoding inversion. The
graphical transmission process and the generated waveforms are shown in Fig. 2.6.
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Algorithm 2 ECS transmitter algorithm
Inputs:
- CFlags: Concatenated Encoding Indicators
- CNOI1, CNOI2: Concatenated ON-bit Counts Outputs:
- ECS Signal: The pulse streams and inter-symbol separators

1: for j=1,2 do
2: sendPulsesWithSeparator(CNOIj + 1, α)
3: for each ON bit in S2j−1 with index i do
4: sendPulsesWithSeparator(i + 1, α)
5: end for
6: for each ON bit in S2j with index i do
7: sendPulsesWithSeparator(i + 1, α)
8: end for
9: end for
10: sendPulsesWithSeparator(CFlags + 1, α)

2.1.5 ECS Receiver

Pulse Stream and Separator Reception

The ECS receiver is unique in that it does not require any clock and data recovery
(CDR) circuitry either to receive the incoming data over single channel or to
synchronize it with a local clock. The ECS exploits detection and count of edges
of the incoming pulse streams to receive all the information required to rebuild
the transmitted data successfully. Contrary to standard serial transfer, the width
of transmitted pulses is inconsequential to ECS and, hence, does not employ this
information in receiving data. Though there could be different implementations of
the ECS receiver, our implementation is focused on counting the number of clock
cycles between two ECS pulses to detect the inter-symbol spacing and separate out
the incoming pulse streams. The ECS pulse stream reception process is illustrated in
Fig. 2.5. The ECS receiver keeps track of two counts, the pulse count and the clock
count. The reception process starts with the very first rising edge of the input pulse
stream. At each rising edge of the pulse stream, the pulse count is incremented, and

Fig. 2.5 ECS pulse stream and inter-symbol separator receiver (input signal from Fig. 2.3)
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Fig. 2.6 (a) Transmitter. (b) Receiver. (c) Indices

the clock count is cleared. At each rising edge of the receiver’s ECS clock, the clock
count is incremented and compared with a separator threshold αth that is set to half
of α in our implementation of the protocol. If the condition is satisfied, an inter-
symbol separator is declared, and the current pulse count is accordingly stored as a
record of the transmitted packet.

Reception Flow, Decoding, and Reconstruction

The ECS packet reception process starts with the very first rising edge of the first
pulse stream for CNOI1. The pulse stream is received as described in the previous
subsection. Similarly, all the following pulse streams for the indices of S1, S2, and
CNOI2 and the indices of S3, S4, and CFlags are received, and the corresponding
parts of the ECS packet are updated. Bits of each segment are complemented if the
corresponding bit in CFlags is set. At this stage, all the transmitted segments are
assembled to rebuild the data word. The full process of receiving, decoding, and
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assembling is shown in Algorithm 3. An efficient implementation of ECS encoding
and decoding is discussed in Sect. 2.4. The transmission and reception processes
along with their generated waveforms are shown in Fig. 2.6.

Algorithm 3 ECS receiver algorithm
Inputs:
- ECS Signal: The pulse streams and inter-symbol separators
Outputs:
- Data: 16-bit data word

1: for i=1 to 2 do
2: CNOIi =PulseStreamReceiver()*−1
3: NOI = CNOIi [1 : 0]
4: S2i−1 = S2i = 0
5: for j=1 to NOI do
6: index =PulseStreamReceiver()−1
7: S2i−1[index] = 1
8: end for
9: NOI = CNOIi [3 : 2]
10: for j=1 to NOI do
11: index =PulseStreamReceiver()−1
12: S2i [index] = 1
13: end for
14: end for
15: CFlags =PulseStreamReceiver()−1
16: Data = {S4 ⊕ {4{CFlags[3]}}, S3 ⊕ {4{CFlags[2]}}, S2 ⊕ {4{CFlags[1]}}, S1 ⊕

{4{CFlags[0]}}}
17:
* PulseStreamReceiver() is the pulse counter for each input pulse stream (Fig. 2.5)

2.1.6 ECS Transmission System

The ECS communication technique can be used with a variety of channels such
as wired, wireless, infrared, and human body channel. ECS is advantageous to
all these channels as it results in significant simplification of transceiver circuitry,
reduction in power consumption, and decrease in footprint. A simple PHY layer
for single-wire communication is shown in Fig. 2.7a where two tri-state buffers are
used to switch channel access between transmitter and receiver. Moreover, ECS
can be used with any communication medium without any significant change, as
shown in Fig. 2.7b. In case of wireless transmission, the wireless front end can be
easily used to transmit and receive the packet pulses. As ECS does not need power-
hungry circuits such as CDR or duty cycle correction, the complexity of the front
end reduces significantly as compared to standard transceivers. Additionally, ECS
helps in improving the bit rate of wireless transmission. For example, the standard
OOK and ASK modulation techniques need duty cycle accuracy to recover square
pulses. As the transmission data rate increases, the output pulses turn into triangular
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Fig. 2.7 (a) ECS PHY for single-wire. (b) General ECS PHY block diagram

ones at the receiver end of the wireless modules, which limits the bit rate. On the
other hand, ECS does not depend on the duty cycle and can correctly decode the
triangular and demodulated pulses as long as their peaks remain above the detection
threshold of the ECS receiver. This is also the case with infrared channels where
the power consumption and complexity of the optoelectronic system are reduced.
ECS can also help in reducing the transceiver complexity of human body-channel
communication (BCC) [69] by eliminating duty cycle dependency and the need for
CDR while enabling the processing of pulses deformed through the variable-gain
human body channel. ECS has been successfully tested with all these channels, and
the experiments are discussed in Sect. 2.4.

2.1.7 ECS Data Rate

Let bs
i be the i-th bit in the s-th encoded segment and l be the number of bits per

segment. The total number of segments, N , is given by

N = B

l
(2.1)

In the ECS packet, the CNOIs, CFlags, and segments all have the same length
l. Therefore, each CFlag represents l consecutive segments among a total of N

segments. The number of CFlags, ncf , in the ECS packet is given by

ncf = N

l
(2.2)

Similarly, each CNOI concatenates the NOIs of 2 consecutive segments among
a total of N segments. The number of CNOIs, ncn, in the ECS packet is therefore
given by
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ncn = N

2
(2.3)

For a segment s, the required number of pulses is given by

Ps =
l−1∑

i=0

(i + 1)bs
i (2.4)

and the number of ON bit indices is given by

NOIs =
l−1∑

i=0

bs
i (2.5)

Let PIx be the number of pulses required for one CNOI . The PIx is given as

PIx = 1 + NOI2x−1 + 2l/2NOI2x , 1 ≤ x ≤ ncn (2.6)

where one additional pulse is used to represent the absence of ON bits. The x

subscript in (2.6) refers to two consecutive segment numbers, one odd and one even,
for NOIs in (2.5). Now, let PFy be the number of pulses required for one CFlags.
PFy is given as

PFy = 1 +
l−1∑

i=0

2iFs , s = i + l(y − 1) , 1 ≤ y ≤ ncf (2.7)

where Fs is the flag bit for the s-th encoded segment. Again, one additional pulse is
used to represent the no-encoding state.

The number of pulses for CNOIs, Segments, and CFlags and the total number
of NOI pulses are, respectively, given by

npi =
ncn∑

x=1

PIx (2.8)

nps =
N∑

s=1

Ps (2.9)

npf =
ncf∑

y=1

PFy (2.10)

nin =
N∑

s=1

NOIs (2.11)
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The total pulse count is therefore given by

C = (
ncf + ncn + nin

)
α + npi + nps + npf (2.12)

where α is the number of clock cycles for an inter-symbol separator. The data rate
R of the ECS protocol for a bit stream of B bits, clock period of T , and a total pulse
count of C is given as

R = B

T C
(2.13)

The optimum values of the protocol parameters are derived in Sect. 2.2.

2.2 ECS Optimizations

2.2.1 Optimum Inter-symbol Separator α

Since all the transmitted pulse streams are separated by an inter-symbol separator,
an appropriate value of α is indispensable for successful packet reception and for
maximizing data rate. Keeping all the parameters in (2.12) and (2.13) constant
except for α, we obtain the relationship R ∝ a/(b + cα), where a, b, and c are
constants. This relationship clearly shows that an increase in α decreases data rate,
as shown in Fig. 2.8a. Both empirically and theoretically [49], the smallest value
of α for guaranteeing correct decoding is 4 clock cycles [49]. Below this value,
the receiver would fail to decode the packet successfully because of the ambiguity
between pulse spacing and inter-symbol separators. A value of α larger than 4 will
increase the tolerance to clock variations but decrease data rate and reduce reliability
with respect to packet failure.

Fig. 2.8 (a) Data rate vs. α. (b) Data rate vs. segment size. (c) f (l) vs. segment size l (Eq. (2.18))
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2.2.2 Optimum Segment Length l

To find the optimum segment length that maximizes data rate, we minimize the
number of clock cycles needed to transmit the ECS packet. We know from the
previous section that the number of segments is N = B/l. Assuming that bits 0
and 1 are equally likely, the expected value of Ps in (2.4) is

E[Ps] = l(l + 1)

4
(2.14)

Similarly, the expected value of PIx in (2.6) is

E[PIx] = 2 + l(1 + 2l/2)

2
(2.15)

Assuming the flag bit Fs is equally likely to be 0 or 1, the expected value of PFy in
(2.7) is

E[PFy] = 1 + 2l

2
(2.16)

Using N = B/l, the expected value of the total number of clock cycles C as given
in (2.12) becomes

E[C] =
(

B

l2
+ B

2l
+ B

2

)
α + B

2l
+ B(1 + 2l/2)

2
+ B(l + 1)

4
+ B(1 + 2l )

2l2
(2.17)

Taking the derivative with respect to l and equating it with zero (i.e., ∂E[C]/∂l =
0), we get

f (l)
�= ∂E[C]

∂l
= α(8 + 2l) + 2l − l3(2l/2 ln(2) + 1)

−2l (2l ln(2) − 4) + 4 (2.18)

= 0

A graphical method to find the optimal segment length lopt for a given α is to plot
f (l) as function of l and find the l intercept point. Such plot is shown in Fig. 2.8c
for α = 4, which results in

lopt = 2.833 ≈ 3 bits (2.19)

ECS divides the data word into segments of equal size and, therefore for a word size
that is a power of 2, there are two possibilities of optimum segment length, 2 and 4.
We select lopt = 4 because there is a negligible reduction in data rate as compared
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to l = 2 where the degradation is significant. If the segment length is increased or
decreased from the optimum value of 4, the data rate degrades rapidly, as shown
in Fig. 2.8b. Segments smaller than 4 bits reduce the data rate due to the increased
number of inter-symbol separators. In contrast, segment lengths larger than 4 bits
affect the data rate negatively due to the increase in most significant bit (MSB)
index numbers. To achieve maximum data rate, the protocol must be operated with
segments of length 4 bits each.

2.3 Earlier Versions of ECS

ECS1 and ECS2 are earlier versions of the ECS3 protocol described in the previous
sections. With slight differences, these techniques apply an encoding scheme to
a data word B to minimize the number of ON bits and move them to the least
significant bit (LSB) end of the packet with the goal of lowering the number
of pulses required to transmit the data bits. The encoding process includes a
segmentation step where the data is broken into N independent segments of size
l bits each (i.e., N = B/l). To maximize data rate, they use, on each segment, an
encoding combination of bit inversion and/or segment reversion/flipping. For ECS1,
this combination is meant to reduce the number of ON bits and decrease their index
values. For ECS2, the same combination is intended to reduce the number of ON
bits and decrease the decimal number represented by each segment. To facilitate
decoding, flag pulses representing the type of encoding performed are added to each
segment. Unlike ECS1, the ECS2 segment flags of two consecutive segments are
combined in one data word flag and placed in the header. ECS2 further applies a
third segmentation step post-encoding, the level-2 segmentation, whose goal is to
further reduce the number of pulses per segment and, therefore, increase the data
rate.

All the pieces of information including flags, the number of indices, and the
indices themselves in the case of ECS1, or the decimal numbers of each segment
in the case of ECS2, are transmitted in the form of pulse streams. The pulse is
characterized by its width which is the number of clock cycles during which it
remains high. Within a given packet, segment pulse streams are separated by an
inter-symbol separator α. The ECS1 and ECS2 packet formats are presented in
Figs. 2.9 and 2.10. To describe the process of ECS1 and ECS2 data transmission,
examples are given in Figs. 2.11 and 2.12, respectively. A decimal number 65,055 is
considered as a 16-bit data word for transmission. The 16-bit data word is divided
into two independent segments, each of 8 bits, which reduces the index numbers of
MSB bits and, consequently, the number of pulses to represent the ON bits. Because
the number of ON bits in Segment#1 is higher than half of the segment length (5 and
4, respectively), the bits are inverted, and the Flags of Segment#1 are set to 2. This
step further reduces the number of ON bits in Segment#1, but the index numbers of
the ON bits are located in the MSB part of the segment. The bit-wise flip operation
is therefore applied to relocate the ON bits to the LSB part, which results in the
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Fig. 2.9 ECS1 packet format

Fig. 2.10 ECS2 packet format

reduction of the number of pulses. The F lags field of Segment#1 is now updated
to 3, signifying that both of the encoding operations are applied. The same steps
are applied to Segment#2 except that only the inversion operation is needed. The
F lags field of Segment#2 is set to 2, signifying that only the inversion operation
is applied. In the case of ECS1, all the packet information including the encoded
segments, F lags, and the number of ON bit locations (NOIs) is now available to
start the transmission. However, in the case of ECS2, an additional segmentation
step is applied where each encoded segment is divided into two sub-segments. All
the pieces of information are transmitted in the form of pulse streams separated by
inter-symbol separators.

The receiver counts the number of pulses for each pulse stream and applies the
decoding according to the F lags field in the received packet. Like ECS3, ECS1 has
a variable number of symbols per data word, which enables the addition of security
layers, whereas ECS2 presents a fixed number of symbols per data word, which
improves transmission reliability with respect to packet failures. The three protocols
of the ECS family are compared in Table 2.1 for a 16-bit data word transmission.
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Fig. 2.11 ECS1 encoding and packetization example

2.3.1 Data Rates

ECS1 and ECS2 share with ECS3 the same notation and data rate equations as
given in Sect. 2.1.7. However, the mathematical definitions of some of the symbols
may vary as per the differences in their packet structure. All these variations are
presented in Table 2.2. The generalized data rate equations for the ECS family are
shown in Rows 14 and 15. Therein, the symbol npe represents configuration pulses
that include start, stop, and sync pulses.

2.3.2 Optimizations

The segment size is chosen to maximize data rate. For a small segment, the inter-
symbol separators inserted between pulse streams to separate symbols reduce the
data rate. Similarly for large segments, ON bits with high indices require a large
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Fig. 2.12 ECS2 encoding and packetization example

number of pulses to be transmitted, which in turn reduces the data rate. It is therefore
intuitive that there is a segment size for which the data rate is maximum. For ECS1,
the data rate is maximized when the number of bits per segment is 8. For ECS2,
the level-2 sub-segment (SS) size is appropriately chosen to maximize the data rate.
The number of pulses increases exponentially with the size of SS, which in turn
drastically reduces the data rate. For ECS2, the data rate is maximized when the
number of bits per sub-segment is 4. The process of finding the optimum segment
size is the same as the one presented in Sect. 2.2.2.

2.4 Experimental Setups and Results

An ECS communication system is implemented in Verilog HDL over Xilinx
Spartan-6 FPGA board and verified through simulation and real-time communica-
tion between two nodes. For an apple-to-apple comparison with the earlier versions
of the protocol, similar communication systems are developed for ECS1 and ECS2.
However, this section describes only the ECS implementation. The development
of the ECS system includes the efficient hardware implementation of ECS encoder
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Table 2.1 Comparison of ECS family member techniques using 16-bit data word

ECS1 ECS2 ECS3

Packetization

Segment size Level 1 8 8 4

Level 2 – 4 –

No. of segments Level 1 2 2 4

Level 2 – 4 –

CFlags Count 2 1 1

Size (bits) 2 4 4

CNOIs Count 2 – 2

Size (bits) 2 – 4

Encoding steps Invert + Flip Invert + Flip Invert

No. of symbols/packet Dynamic Fixed Dynamic

Performance (25MHz clock, 65nm CMOS technology)

Data Rate (Mb/s) 3.1–8.5 (4.1)a 4.8–12.9 (7.3) 4.2–26.7 (6.4)

(% ↑)d 54.8–51.7 (78)a 35.5–214 (56)

Power (µW) ≈26.6 ≈25 ≈19

(% ↓)d 6 28.5

Eb (pJ/bit) 3.1–8.5 (6.5)a 1.9–5.1 (3.4) 0.7–4.5 (2.9)

(% ↓)d 38.7–40 (47.7)a 47–77.4 (55.4)

Area (Gatecount) ≈2356 ≈2150 ≈2098

(% ↓)d 8.7 10.9

Securityb Yes No Yes

Reliability (NVLs)c 10–18 6 5–12

(% ↑)d up to 66.7 up to 72.2
a
(Avg.)

b
Packet protection

c
No. of vulnerable locations

d
Improvement relative to ECS1

and decoder. Both the encoder and decoder are combinatorial in nature and present
a low power operation without any extra computational overhead. The encoder is
implemented as a single hardware block that works with one 4-bit segment as input
and generates the corresponding NOI , Fs , and the encoded segment. The encoder
truth table is shown in Table 2.3, where S is the input data segment and SE is the
encoded segment at the output. Due to the segmentation and encoding process, there
is a maximum of two ON bits per segment for which the index numbers Ind1 and
Ind2 need to be transmitted. The ECS decoder at the receiver end takes as input all
the received index numbers for a given segment and outputs a 4-bit data segment.
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Table 2.3 ECS encoder S SE F NOI Ind2 Ind1

0000/1111 0000 0/1 00 000 000

0001/1110 0001 0/1 01 000 001

0010/1101 0010 0/1 01 000 010

0011 S 0 10 010 001

0100/1011 0100 0/1 01 000 011

0101/0110 S 0 10 011 001/010

0111/1000 1000 1/0 01 000 100

1001/1010/1100 S 0 10 100 001/010/011

The equations of the ECS decoder logic are

{C,B,A} = Ind1 (2.20)

{F,E,D} = Ind2 (2.21)

DS1 = {C̄, B·A,B· Ā, B̄·A} (2.22)

DS2 = {F̄ , E·D,E· D̄, Ē·D} (2.23)

Ss = (DS2|DS1) ⊕ {Fs, Fs, Fs, Fs} (2.24)

where DS0 and DS1 denote intermediate Verilog wires.
The ECS experimental setup comprises two nodes, each of which employs

the abovementioned encoder and decoder along with the transmitter and receiver
algorithms, respectively, all implemented in Verilog HDL. The ECS Transmission
Algorithm 2 and Reception Algorithm 3 are synthesized as finite state machines. We
have used 16-bit data words at a clock rate of 25MHz. The transmitter at the first
node sends a 16-bit data starting at 0 with an increment of 1 at each transmission.
The second node resends the same data back. The returned and original data words
are compared to verify the complete round-trip chain, and the number of perfect
matches is logged. The ECS technique is verified using a number of single-channel
links such as single-wire, wireless, infrared, and human body channel. In wired
communication, a single-wire is used to connect both nodes using the PHY layer
shown in Fig. 2.7. For wireless communication, a 433MHz transceiver is used
which accepts a raw ECS bit stream and transmits it wirelessly using OOK/ASK
modulation. Similarly, for infrared communication, a simple infrared transceiver
driver circuitry is used. For human body channel communication, new transceivers
have been developed to carry out transmission through the human body. In all four
experiments, ECS achieves flawless transmission. It must be noted that to support
the aforementioned communication channels, ECS remains unchanged and only the
front ends are replaced to transfer pulse streams through the desired channel. As
highlighted in Sect. 2.1, ECS improves the bit rate of wireless transmission, which
is verified with the experimental setup under discussion. Indeed we have observed an
increase in bit rate from 4.8 to 20Kbps (≈300% improvement). Similar observations
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have been recorded while testing the infrared communication channel. For body
channel communication, ECS helps in reducing the transceiver complexity, which
is a significant advantage. In this latter case, a cascade of an amplifier, a discrete
filter, and a level detector is sufficient to recover the ECS pulses traveling through
the human body [54].

Along with the FPGA prototype, we have also synthesized and verified the ECS3
design using a Synopsis logic-synthesis flow and a GLOBALFOUNDRIES 65 nm
process in order to get the most realistic area and power estimates and compare them
with the published literature. We have determined that ECS3 consumes 19µWwith
a gate count of 2098 gates, offering dynamic data rates in the range of 4.2–26.7Mb/s
(averaging 6.4Mb/s) with a 25-MHz clock. As mentioned above, the selection of the
25MHz clock rate is just for illustration purposes. We have verified the functionality
of ECS3 using frequencies in the range from few KHz up to 200MHz, the maximum
frequency supported by our FPGA platform. As is clear from (2.13), the ECS3 data
rate increases linearly with the clock frequency, and higher clock frequencies can
be used to achieve higher data rates. Compared with NRZ serial transfer (NST)
using CDR, ECS3 reduces area and power by more than 87% and 78%, respectively.
Table 2.1 summarizes and compares the performance parameters of ECS1, ECS2,
and ECS3. The data rate of ECS3 is increased significantly as compared to ECS1
and is as good as ECS2. ECS3 consumes less power and is more energy-efficient
than ECS1 and ECS2 while maintaining a small footprint. Additionally, ECS3 helps
in providing packet security, as will be discussed in Chap. 7. The reliability of ECS3
is similar to ECS2. It provides an improvement of up to 72.2% as compared to
ECS1. In a nutshell, the results show that, overall, ECS3 outperforms both ECS1 and
ECS2. Table 2.4 compares ECS3 with NST, which includes CDR, in terms of area
and power. The main reason for the significant ECS3 advantage in area and power is
that NST needs CDR to recover data successfully while ECS3 does not. CDR is the
main source of power consumption, and even if we use the recently published low-
power CDRs proposed in [12, 37, 38, 77], and [73], ECS3 still outperforms NST.

Table 2.4 ECS comparison with simple serial

Power (µW) Area (Gatecount)

SRLa CDR Totald (PI)e SRL CDRc Totald (PI)e

ECS3 19 N/A 19 2098 N/A 2098 65 nm

NSTb 32.1 70 102.1 (81%) 1327 15,600 16,927 (87%) 90 nm [37]

62.5 94.6 (80%) 60,000 61,327 (96%) 90 nm [38]

90 122.1 (84%) N/A N/A 90 nm [12]

57.5 89.6 (79%) 19,800 21,127 (90%) 65 nm [77]

60.6 92.7 (80%) N/A N/A 28 nm [73]
a
Serializer

b
NRZ serial transfer

c
Estimated calculation

d
SRL+CDR

e
%Increase as compared to ECS3



28 2 Edge-Coded Signaling Techniques

Fig. 2.13 Data rate consumption: one-wire protocols ([16, 27, 44]) vs. ECS1, ECS2, and ECS3

Furthermore, in Fig. 2.13, the ECS3 data rate is compared with the data rates of few
existing CDR-less single-wire transmission techniques [16, 27, 44] as well as with
ECS1 and ECS2. The comparison shows that ECS3 achieves significantly higher
performance without any CDR and with tolerance toward jitters, skew, and clock
inaccuracies. For small footprint applications (wireless sensor nodes, wearable
computing, body-area networks, etc.) ECS3 is definitely the more reasonable choice.

2.5 Analysis

In this section, we further discuss the major characteristics of the ECS family based
on the analytical, numerical, and experimental results we have obtained so far. The
detailed timing and robustness analysis is provided in Chap. 3.

2.5.1 Data Rate

ECS is dynamic in that the actual data rate of the protocol is dictated by the pulse
count which is very much data dependent. The statistical distributions of the ECS1,
ECS2, and ECS3 data rates are shown in Fig. 2.14 for which exhaustive sampling
of 16-bit data words is used with a total of 216 − 1 pseudo-random bit stream
(PRBS). Each word is segmented and encoded as per the protocol specifications.
For data rate calculations, we use a 25MHz clock. Please note that the data
rates are determined using both numerical simulations and hardware experiments.
Comparing the histogram of ECS3 with that of ECS1, an increase in data rate is
observed, ranging from 4.2 Mbps (35% ↑) to 26.7 Mbps (214% ↑) with an average
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Fig. 2.14 Data rate histograms at 25MHz clock

of 6.4 Mbps (56% ↑). Additionally, comparing the histogram of ECS3 with that of
ECS2, it is observed that ECS3 outperforms ECS2 by achieving a maximum data
rate of 26.7 Mbps (107% ↑).

2.5.2 Data Word Length and Complexity

As described in detail in Sect. 2.2.2, the optimum segment length for ECS to
maximize data rate is 4 bits. Additionally, in Sect. 2.1, the encoding process
generates one flag bit for each of the 4-bit long segments. The four flag bits are then
concatenated to form another segment of optimum length (4 bits) that is known as
the CFlags. Similarly, the process concatenates the NOIs of two consecutive data
segments to generate two additional segments of optimum lengths (4 bits each) that
are known as the CNOIs. By the end of the encoding process, everything is packed
in segments of optimum length. Because exactly four 4-bit data segments from the
data word are needed to achieve this optimum configuration, the optimum data word
size is 16 bits. We note that changing the length of ECS segments to incorporate data
words of length larger than 16 bits has the potential of significantly decreasing the
data rate while noticeably increasing the complexity, hardware resources, and power
consumption.

In this context, ECS3 has a distinct advantage with respect to ECS1 and ECS2
when multiple words are being transmitted. To explain this advantage, we need to
take a closer look at two hardware implementations: word-based and block-based.
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Word-Based Implementation

The system is strictly designed to handle one word at a time. The transmission starts
with setting the busy signal high, as shown in Fig. 2.6, and ends with clearing it when
the transmission of a 16-bit word is complete. Let us denote the memory required to
store the data word, CFlags, and NOIs by MW , MF , and MN bits, respectively.
A word-based implementation needs a total of 1 × MW + 1 × MF + 1 × MN bits
and only one pass to transmit a word, as shown in Fig. 2.15a. On the other hand,
transmitting nW 16-bit words in a word-based implementation incurs an additional
delay of one clock cycle for each word to set up the input data port before starting
transmission, which results in a total number of nW × (1 + C) clock cycles where
C is given in Eq. (2.12).

Block-Based Implementation

An alternative system design is to transmit the word block by breaking it into nW 16-
bit words and transmitting each word in a separate pass while keeping a busy signal
high unless the transmission of all the words is complete. This is accomplished if
the word-based implementation, described above, is used iteratively nW times with
an additional delay of one clock cycle at each pass to set up the transmission of next
word in the block. The latency remains nW × (1 + C) clock cycles as in the word-
based implementation, and the throughput of ECS is unchanged. However, there is
an increase in the complexity of the hardware as nW × MW bits of memory are
needed to store the full word block. The memories MF and MN to store CFlags

andNOIs remain unchanged. Additionally, control logic is needed to load the input
data port with another 16-bit word from the block and to re-trigger the transmission
process, a BW -to-16 MUX to select a 16-bit word, and an adder to update the
selection port of the MUX using a very simple pass control logic. The block diagram
of such a block-based implementation is shown in Fig. 2.15b. The added memory
and control logic will contribute to a slightly increased consumption of power and
hardware resources with the throughput remaining unchanged.

Fig. 2.15 (a) Word-based implementation. (b) Block-based implementation
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2.5.3 Error Detection and Correction

During ECS transmission, there could be two main sources of transmission errors.
These two sources are due to channel noise and are the following:

1. Packet Failure: Either one of the inter-symbol separators or the CNOIs is
garbled. As shown in Fig. 2.16a-i and a-ii, the receiver fails to receive the packet
successfully because it expects a number of pulse streams that is different from
what is actually transmitted.

Fig. 2.16 (a) Errors in ECS packet reception (marked in red). (b) ECS BER using BPSK as
modulation scheme
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2. Data Corruption: The indices or the CFlags pulse streams get garbled due to
the addition or removal of pulses. In this scenario, as shown in Fig. 2.16a-iii, the
packet is received successfully, but the index numbers are wrong, which results
in data word errors at decoding. A similar scenario occurs if the CFlags pulses
are received with error, as shown in Fig. 2.16a-iv.

In our experimental setup, we have implemented an error injector that randomly
inserts extra pulses into the ECS packets, as shown in Fig. 2.16a. The first type of
error in the above list can be detected by monitoring the inter-symbol separator.
In our implementation of the ECS protocol, if the separator is prolonged for more
than twice α (i.e., separator > 2α), the receiver declares packet failure, resets,
and sends a request to retransmit the packet. As for the second type of error, it is
the same as in a standard serial transfer, where one or more bits are in error. In
our implementation, these bit errors are handled using a 1-bit parity code. However,
there are several state-of-the-art error detection and correction techniques that ECS
can use seamlessly as it does not prevent the preprocessing of data prior to encoding
and transmission. Exploring such techniques and their compatibility with ECS is the
subject of future work.

2.5.4 Bit Error Rate

Like data rate, the bit error rate (BER) of ECS is also dynamic and depends on the
transmitted data. The BER of ECS depends on the BER of the PHY layer which may
be using a standard modulation scheme [66] such as OOK, ASK, FSK, or BPSK, for
transmitting the bit stream. The conceptual block diagram of such a setup is shown
in Fig. 2.7b where ECS amounts to an encoding step prior to modulation. The bit
stream, in the case of PHY with a modulation, is replaced with the pulse stream as
generated by ECS. As a result, the BER of ECS is largely determined by the type
of channel and the modulation used. ECS can help in reducing the complexity of
the PHY front end by allowing them to focus on the amplitude of the recovered
digital signals rather than other factors such as phase or bit width. In case there is
a one-bit error in a unit time due to channel modulation, there would be one pulse
in error for ECS that could affect the ECS packet in four different locations: within
inter-symbol separator, within CNOI , within CFlags, or within an index number.
These four different cases are shown in Fig. 2.16a and will impact the ECS BER
differently according to the following rules:

BERECS =

⎧
⎪⎪⎨

⎪⎪⎩

16 × BERCM if be ∈ α

16 × BERCM if be ∈ CNOI

4 × BERCM if be ∈ CFlags

2 × BERCM if be ∈ index

(2.25)
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where be is the bit in error, BERECS is the ECS BER, and BERCM is BER of
the channel modulation. If the error is within an index number, then an index i is
erroneously decoded as index i − 1 or i + 1. After decoding, two bits may therefore
be wrong within a segment: the bit with index i and a bit with index i − 1 or i + 1.
Given that there is a pulse in error, the probabilities of these four cases to occur are
0.5, 1/(n+3), 1/2(n+3), and n/2(n+3), respectively, where n is the total number
of ON bits in all the four encoded segments. With increasing packet size, the error
probability decreases when the CNOI and CFlags are corrupted, increases when
the indices are corrupted, but remains constant when α is corrupted. Considering
BPSK modulation, we have run simulations for the maximum and minimum BER
of ECS as shown in Fig. 2.16b. Regardless of the incoming data, the ECS BER will
always fall between these two extrema.

2.5.5 Pulse Width and Shape

The pulse width is not a primary ECS parameter because the reception technique
exploits the detection of edges in contrast with standard serial bit transfer, where
the pulse width (inverse of the baud rate) is a primary parameter. ECS is therefore
capable of working with a non-ideal pulse waveform, thus enabling great flexibility
in pulse shaping. All pulse shapes are allowed as long as they satisfy switching and
peak detection constraints and do not overlap with each other. A few examples are
shown in Fig. 2.17.

2.5.6 Reliability

The reliability of ECS is an indication of the likelihood of successful transmission.
ECS reliability is measured in terms of the number of vulnerable locations (NV Ls).
An NV L is a sub-segment within the ECS packet which, if corrupted, can cause a

Fig. 2.17 Examples of valid signals for ECS transmission. VtH : high signal level threshold. VtL:
low signal level threshold
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packet failure. The inter-symbol separators α and the NOIs are examples of NV Ls

in ECS packet. Indeed, the longer α is, the higher the corruption likelihood, and
therefore, the more likely packet failure is. Similarly, a corrupted NOI results in
packet failure, and the failure likelihood increases with the number of transmitted
NOIs. The packet failure due to these NV Ls has already been discussed in
Sect. 2.5.3. In the ECS family of protocols, ECS1 has NV Ls in the range of 10–
18. On the other hand, the NV Ls of ECS2 are reduced to a fixed number of 6, and
as a result, ECS2 improves transmission reliability by about 66.7% with respect to
ECS1. As for ECS, the compactness of its transmission packet restricts the NV Ls

to the range of 5 to 12, which results in a reliability improvement of up to 72.2%
with respect to ECS1 and makes it competitive with ECS2.

2.5.7 Robustness

As highlighted in Sect. 2.5.5, ECS is indifferent to pulse shape and width because
only edges are used for decoding at reception. This important ECS property results
in a remarkable tolerance toward clock discrepancies, jitters, and skews. A detailed
analysis of these clocking and timing aspects are presented in Chap. 3. Therein,
a threshold on clock rate difference between transceivers is derived, below which
the protocol operates with zero decoding error over an ideal channel. It must be
noted that this threshold does not define a boundary beyond which ECS needs a
synchronization mechanism. It is rather an indicator when ECS needs to change its
protocol parameters to enable communication with network nodes that are operating
at significantly different clock rates. Chapter 6 highlights the methodology to
establish a successful communication link automatically when the abovementioned
threshold on clock difference is crossed. In the ideal scenario where there are no
clock skews or jitters, the threshold is determined by α and αth. For the minimum
recommended settings of α = 4 and αth = 2, the upper bound on clock rate
difference for a 25MHz transceiver is 10.3MHz. Beyond this difference, it is
impossible for the receiver counter on the slow transceiver to reach the threshold
value of 3 or higher, as discussed in Sect. 2.5 and illustrated in Fig. 2.6. Clock
jitters and skews result in the decrease of this ideal upper bound on clock rate
difference. The possible ranges for clock skews and jitters are presented in Chap. 3,
where a trade-off between reliability, defined as robustness with respect to clock
rate variations, and data rate is quantified and used for protocol parameter selection.
Using α = 4, an ECS clock equal to the system clock of 25MHz, and worst-
case clock skew and jitter, the upper bound on clock rate difference between ECS
transceivers is 4.6MHz (∼20%). In practice, this means that if one ECS end is
operating at 25MHz, the other ECS end can operate in the range [20.4MHz,
29.6MHz] without impacting the reliability of the transmission. One important area
of future investigation is the impact of non-ideal transmission channels on ECS
robustness.
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2.5.8 Overall Latency

The impact of ECS on the latency of the communication system very much depends
on the ECS hardware implementation. The minimum latency is one clock cycle,
and to achieve it, the four data segments can be encoded together before starting
transmission. The drawback of this approach is that the encoder hardware and the
memory used to store encoding information would be quadrupled. The alternative
that we have adopted is a pipelined datapath where only two segments are encoded
before starting transmission. Indeed, at least two segments need to be encoded to
generate CNOIs and initiate the transmission process, as explained in Sect. 2.1.3.
This pipelined architecture requires only twice the encoding and memory hardware.
The same hardware is reused to encode the two segments, while the indices
of the previous two segments are being transmitted. The encoder hardware is
combinational, which results in a latency of one clock cycle only. On the other
hand, sequential implementation of the encoding process would introduce a latency
of more than one clock cycle.

2.5.9 Networking

ECS is architecturally flexible in that it supports a wide variety of networking
options. It can be configured in various network topologies, including Master–Slave,
Star, Ring, Tree, and Peer-to-Peer. In a single-channel implementation (Chap. 9),
several MSP430 cores have been used to establish a Master–Slave network of low-
end devices, as shown in Fig. 2.18a. The same setup can be used to establish a ring
network, as shown in Fig. 2.18b. In the latter, where communication is restricted to
nearest-neighbor devices, device IDs have been used to enforce the ring topology.

Fig. 2.18 Network topology [50]: (a) Master–Slave, (b) configuring ring
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For example, MSP430 with ID number 2 can only communicate with the devices
having ID numbers 1 and 3. Device IDs can similarly be used to implement a
network of ECS devices without any change in the underlying hardware.

2.6 Conclusions

In conclusion, ECS is a novel, single-channel, communication protocol that simulta-
neously meets the requirements of low power, high data rate, reliability, and secure
transmission for device-to-device communication between constrained edge nodes.
ECS reduces silicon area and power consumption significantly by eliminating the
need of power- and area-hungry circuits for clock and data recovery. This is because
ECS packet reception and decoding are based on counting the rising edges of the
transmitted pulses which makes the pulse width inconsequential. ECS is robust
with respect to skews, jitters, and clock variations and combines the best features
of both ECS1 and ECS2 with respect to data rate, reliability, packet security, and
power efficiency. In summary, ECS is the better choice for constrained devices in a
variety of use cases, including small footprint transceivers, wireless sensor nodes,
implantable devices, and body-area networks. The protocol can be applied to other
communication media such as photonics, infrared, and visible light.
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