
Shahzad Muzaffar
Ibrahim (Abe) M. Elfadel

Secure, 
Low-Power IoT 
Communication 
Using Edge-Coded 
Signaling



Secure, Low-Power IoT Communication Using
Edge-Coded Signaling



Shahzad Muzaffar • Ibrahim (Abe) M. Elfadel

Secure, Low-Power IoT
Communication Using
Edge-Coded Signaling



Shahzad Muzaffar
Khalifa University
Abu Dhabi, United Arab Emirates

Ibrahim (Abe) M. Elfadel
Khalifa University
Abu Dhabi, United Arab Emirates

ISBN 978-3-030-95913-5 ISBN 978-3-030-95914-2 (eBook)
https://doi.org/10.1007/978-3-030-95914-2

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-95914-2


To my parents (Shamshad and Muzaffar),
beloved wife (Umber),
son (Anzar) and sisters (Shumaila, Shaista,
and Sumaira)
Shahzad

To the blessed memory of my brother
Zaher Elfadel
1965–2010
Abe



Prologue

Your assumptions are your windows on the world.
Scrub them off every once in a while, or the light
won’t come in.

Isaac Asimov

The accepted IoT wisdom is that it is much more energy-efficient to compute on
the edge than to communicate with the hub. Yet, this accepted wisdom is based
on the premise that the power hog that lives in the communication subsystem of
the IoT node must be avoided at all costs and that whatever power that is still
available should be used to make the IoT node smart. The TinyML framework for
machine learning on tiny micro-controllers is based on such premise and epitomizes
the current wisdom under the edge-computing paradigm.

The ultimate aim of this research monograph is to revisit this premise by
giving a concrete example of a novel, ultra-low-power, robust, and secure, IoT
communication protocol that is meant to enable innovative IoT architectures that
can bridge the chasm between edge and cloud computing.

The research described herein is a summary of several years of investigation into
a single what-if question with regards to the design of signaling protocols, namely,
what if the IoT communication subsystem can operate reliably and securely without
the circuitry dedicated to clock and data recovery (CDR).

The main motivation of asking this what-if question is the basic observation
that a CDR circuit is a significant contributor to power consumption in the
communication transceiver. Being able to save as much of its power as possible in
an IoT node is bound to impact the debate on computation vs. communication and
on edge vs. cloud intelligence. In terms of real estate, transceivers with CDR circuits
have tens of thousands of gates, and therefore a significant saving of silicon area will
be achieved in case the CDR circuit is simplified or even possibly eliminated.

vii



viii Prologue

Not only do we give an existence proof of such a CDR-less communication link,
but also, we provide a complete ecosystem of hardware and firmware built around
such a communication link. This ecosystem comprises an application-specific
processor, automatic protocol configuration, power and data rate management,
cryptographic primitives, and automatic failure recovery modes. The resulting link
and its associated ecosystem are fully compatible with IoT requirements on power,
footprint, security, robustness, and reliability.

The fundamental idea of the proposed IoT communication protocol is to encode
the ON bit in the data word as a sequence of pulses whose count is based on the
ON-bit index. At the receiver, this index is decoded by simply counting the number
of rising edges in the pulse sequence. This is the main reason we have called this
protocol Edge-Coded Signaling or ECS.

From this basic idea, ECS has evolved through three different generations, ECS1,
ECS2, and ECS3, into a full family of protocols. They are all variations on the
fundamental theme of pulse generation for the ON bits at the transmitter end of the
link and edge counting at the receiver end. They are all described in this monograph
along with hardware prototypes that allow us to thoroughly benchmark and precisely
quantify the IoT advantages of this novel family of signaling protocols. These
advantages can be summarized as follows:

1. ECS results in a major simplification of the IoT device transceiver. This
simplification in turn contributes to major gains in footprint, power savings,
and cost.

2. ECS supports dynamic data rates, and the ECS parameters can be readily
optimized to achieve the maximum average data rate for a given application.

3. ECS is robust in that it tolerates significant device-to-device variations in clock
frequency as may be expected in a heterogeneous, asynchronous IoT network.

4. Along with a low-power design point due to transceiver simplification, ECS
provides additional opportunities for power saving, both at the physical layer
level and at the pulse design level, that are straightforward to implement.

5. ECS supports network protocols for automatic ECS parameter settings across
a set of networked IoT devices. These automatic ECS configuration protocols
are universal in that they can be applied for any network topology.

6. The ECS family of protocols is amenable to compact programming using
a domain-specific, RISC-like, ECS processor. Its instruction set architecture
achieves more than an order of magnitude of reduction in embedded code size
and provides IoT designers with the flexibility to program new ECS protocols
that are adapted to specific IoT communication tasks.

7. ECS supports low-overhead doubling of data rates using double-edge-coded
signaling where both the rising and falling edge of the pulse are used to encode
the ON bits in the bit stream.

8. ECS enables a close synergy between encoding and encryption, and provides
a unique opportunity for significantly strengthening light-weight encryption
algorithms in a way that is not possible with traditional signal encoding
methods.



Prologue ix

9. ECS development is supported with various tools for embedded C program-
ming, debugging, and system integration. These tools greatly facilitate the
deployment of hardware platforms for IoT sensor networks.

10. The robustness and reliability properties of ECS make it the signaling technique
of choice in challenging media such as body-coupled communication.

The above 10 advantages are aligned with the 10 chapters of this monograph.
By and large, each chapter is organized to lead from the IoT communication design
problem to its solution under the ECS paradigm along with supporting hardware
validation using either an FPGA or an embedded design platform. ASIC synthesis
results using GLOBAFOUNDRIES 65 nm technology node have also been used
throughout the chapters to further support the hardware results of the FPGA and
embedded design platforms. Our own design of the ECS protocol targeted the sweet
spot of a single-channel IoT communication link with a data rate in the range from
4.2 to 26.7 Mbps and with a power consumption cap of 20µW.

Although significant work has already been invested in developing, testing, and
validating ECS and its ecosystem, there are still several open research problems that
are important to tackle in the next phase of ECS development. We have alluded
to many of these problems at appropriate sections within the book chapters. In an
epilogue to this book, we have consolidated and summarized all these open research
problems with the hope that they will be of interest to colleagues and graduate
students from the IoT research community.

Many of the results described in this monograph have already appeared in our
prior conference and journal publications between 2015 and 2021. However, we
have made a determined effort to synthesize these results and present them in a
coherent notational and conceptual framework so that the monograph can serve as
an accessible, self-contained reference, not just for IoT professionals but also for
graduate students who are entering the field and interested in pursuing research in
the area of secure, low-power IoT communication.

Abu Dhabi, United Arab Emirates Shahzad Muzaffar
Abu Dhabi, United Arab Emirates Ibrahim (Abe) M. Elfadel
November 2021



Acknowledgements

This research monograph is based on the PhD thesis of the first author conducted
under the supervision of the second author at the Advanced Digital Systems
Laboratory of the Masdar Institute, now part of Khalifa University, Abu Dhabi,
UAE.

Several colleagues have contributed time, effort, and support to this research over
the years. We particularly thank Dr. Jerald Yoo (National University of Singapore)
and Dr. Ayman Shabra (MediaTek, USA) for helpful discussions at the early stages
of this project. We also thank Dr. Zeyar Aung (Khalifa University, UAE) and
Dr. Owais Waheed Talaat (Habib University, Pakistan) for their help with ECS
encryption, and Mr. Numan Saeed (Mohamed Bin Zayed University of Artificial
Intelligence, UAE) for his help with ECS automatic configuration. Special thanks
are due to Prof. Neville Hogan (MIT) and Dr. Mihai Sanduleanu (Khalifa University,
UAE) for serving on the PhD Thesis Committee of the first author and providing
valuable feedback.

The authors gratefully acknowledge the support provided by the Semiconductor
Research Corporation (SRC), USA, under the Abu Dhabi SRC Center of Excellence
on Energy-Efficient Electronic Systems (ACE4S), Contract 2013 HJ2440, with
customized funding from the Mubadala Investment Company, Abu Dhabi, UAE.

They also thank the Office of Technology Management and Innovation at Khalifa
University for their help in prosecuting US Patents 10,263,765 and 11,133,891.

xi



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Edge-Coded Signaling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Edge-Coded Signaling (ECS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Edge-Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 ECS Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 ECS Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 ECS Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 ECS Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 ECS Transmission System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 ECS Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 ECS Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Optimum Inter-symbol Separator α . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Optimum Segment Length l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Earlier Versions of ECS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Data Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Experimental Setups and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Data Word Length and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3 Error Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.5 Pulse Width and Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.6 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.7 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.8 Overall Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.9 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiii



xiv Contents

3 Timing and Robustness Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Timing and Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Sources of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Pulse Width Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Inter-symbol Separation Coefficient . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Clock Discrepancy Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.5 Selection of Inter-symbol Separation Coefficient . . . . . . . . . 43
3.1.6 Summary on Inter-symbol Separation . . . . . . . . . . . . . . . . . . . . . 44

3.2 Protocol Failure Modes and Error Correction . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Doubling the ECS Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Single-Edge Scheme: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Double Data Rate Edge-Coded Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Formulation and Optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Experimental Verification and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 ECS1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Sources of Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Proposed ECS1 PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.3 Delay Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.4 Sizing the Pull-Down Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.5 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 BER Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Automatic Protocol Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Automatic Parameter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2 Inter-symbol Separator Coefficient Calculation . . . . . . . . . . . 71
6.1.3 Low-overhead Hardware for αF Calculation . . . . . . . . . . . . . . 73

6.2 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Secure ECS Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Proposed Multilayer Secure Communication Architecture . . . . . . . . 83

7.2.1 Re-architecting A5/1 for ECS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.2 Secure ECS Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.3 Multiple Layers of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Contents xv

7.3 Example of Secure ECS Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.1 Secure Packetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.2 Secure Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Cryptanalysis of the Multilayer Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 Implementation, Cipher Overhead, and Comparison with

Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.5.1 Microcontroller Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5.2 FPGA Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5.3 ASIC Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5.4 Secure ECS Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.5 Comparison with Lightweight Ciphers . . . . . . . . . . . . . . . . . . . . 99

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Domain-Specific ECS Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 Edge-Coded Signaling Interface Architecture (ECSIA). . . . . . . . . . . . 106

8.2.1 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Instruction Formats and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.4 External I/O and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.5 ISA Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 ECSIA Micro-Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.1 Memory Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.2 Instruction Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.3 Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3.4 Clock Distribution and PC Control . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3.5 Encoder and Select Control (ESC). . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3.6 Encoder and Selector (ES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3.7 Pulse and Delay Generator (PDG) . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.8 Pulse Stream Receiver (PSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.9 Interrupt Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3.10 Micro-Architecture Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Experimental Verification and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9 Application: Hardware Platform for IoT Sensor Networks . . . . . . . . . . . 127
9.1 Platform Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2 Platform Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2.1 Sensor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2.2 Multi-Core Debug Control Unit (MCDCU) . . . . . . . . . . . . . . . 130
9.2.3 Embedded C ECS1 Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2.4 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3 Compiler and Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



xvi Contents

10 Application: Body-Coupled Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.2 ECS Signaling and BCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.3 BCC Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.4 Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Abbreviations

ACK Acknowledgement
APD Automatic Parameter Detector
ASIC Application Specific Integrated Circuit
BAN Boddy Area Network
BCC Boddy Channel Communication
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CDB Clock Distribution Block
CDR Clock and Data Recovery
Cflags Combined Flags
CNOI Combined NOIs
CoM Center of Mass
CPM Communication Processor Module
CPU Central Processing Unit
DMA Direct Memory Access
DS Data Segment
Eb Energy per Bit
ECS Edge-Coded Signaling
ECSIA Edge-Coded Signaling Interface Architecture
EDS Encoded Data Segment
EFlags Encrypted Flags
ENOI Encrypted NOI
EPD Encrypted PIC Data
ESC Encoder and Select Control
ESC Encoder and Selector
FPGA Field Programmable Gate Array
FSK Frequency Shift Keying
HBC Human Body Communication
HDL Hardware Description Language
IC Integrated Circuit
ISA Instruction Set Architecture

xvii



xviii Abbreviations

LSB Least Significant Bit
LTC Logical Topology Control
M2M Machine-to-Machine
MA5/1 Modified A5/1
Mbps Mega Bits Per Second
MCDCU Multi-Core Debug Control Unit
MSB Most Significant Bit
NOI/NOS Number of Indices/Number of Symbols
NRZ Non-Return-to-Zero
NST Normal Serial Transfer
NVL Number of Vulnerable Locations
OFDM Orthogonal Frequency-Division Multiplexing
OOK On-Off Keying
PCCU PC Control Unit
PDG Pulse and Delay Generator
PHY Physical Layer
PIC Pulsed-Index Communication
PIoT Prototyped IoT
PLL Phase-Locked Loop
PSR Pulse Stream Receiver
RISC Reduced Instruction Set Computer
RZ Returns to Zero
SATA Serial AT Attachment
SRL Serializer
SSFC Sandwiched Sensor Force Consolidators
ST Schmitt Trigger
TCP/IP Transmission Control Protocol/Internet Protocol
USB Universal Serial Bus
VLSI Very Large Scale Integration
WDM Wavelength-Division Multiplexing



Chapter 1
Introduction

[The transmitter] could, for example, take a written message
and use some code to encipher this message into, say, a
sequence of numbers; these numbers then being sent over the
channel as the signal.

Warren Weaver

Not only is the Internet of Things (IoT) extending the reach of the Internet of People
(IoP) to the world of inanimate objects, but also it is providing innovators, engineers,
and technologists, with a golden opportunity to revisit some of the fundamental
assumptions that have been at the basis of the IoP physical infrastructure and
evaluate their relevance and compatibility with the IoT physical infrastructure. One
of these fundamental assumptions is that the receiver in a single-channel, serial
communication interface will need a synchronization circuit in order to recover
the data bits from the incoming bitstream. Examples of such single-channel, serial
communication interfaces include the humble USB, the ubiquitous Ethernet, and
the high-performance fiber optics network. The latter has of course been crucial for
the exponential growth of the IoP. The receiver synchronization circuit goes with a
name that perfectly describes its function: clock and data recovery (CDR). Indeed,
each CDR has the double duty to infer the clock signal from the incoming data
bits and use this inferred clock signal to retime (or resample) the data bits at the
most appropriate instant of the bit time. The inference of the clock signal is based
on the transitions experienced by the incoming data bits, while the sampling times
are selected using feedback circuit architectures, the most common of which is the
so-called phase-locked loop (PLL). A generic architecture of a CDR circuit using
PLL is given in Fig. 1.1. For a thorough treatment of CDR architectures, the reader
is referred to Chapter 9 of [67].

One important aspect of CDR performance is that it is very much dependent on
the encoding of the incoming bits. One of the most common bit encodings is the
Non-Return-to-Zero (NRZ) code in which bit 1 is coded HIGH and bit 0 is coded
LOW throughout the bit time. One of the objectives of CDR is to generate a clock
signal whose rate is equal to the bit rate. Such generation depends on the detection
of transition edges between HIGH and LOW bits. When the incoming data has long

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_1


2 1 Introduction

Fig. 1.1 Generic architecture of a clock and data recovery circuit using PLL

stretches of HIGH or LOW bits, the transition information is missing, and the PLL
has no edges to lock onto. One possible remedy to this loss of information is to
use bit encodings in which the 1 bit returns to zero (RZ) during the latter 50% of
the bit time, thus forcing a transition whenever a string of 1 bits is received. The
Manchester encoding forces transitions for both the 1 and 0 bits during bit time,
thus totally addressing the information loss problem in the CDR phase detector. Of
course, the disadvantage of such RZ encodings is that they require larger channel
bandwidth than the NRZ case or require that the transmitter send data bits at reduced
rates to meet channel bandwidth constraints. Another approach to balance the bit
transitions in the data stream is to use block encoding instead of bit encoding,
and one of the most widespread block techniques is the byte-oriented 8b/10b
encoding [79] that has been used in several communication technologies, including
the Gigabit Ethernet, USB 3.0, SATA, and InfiniBand, among many others. The
relevance of 8b/10b to CDR is that it guarantees that the difference between the
numbers of 1 bits and 0 bits in the 10-bit code is at most 2 and that no more than 5
bits can have the same value in a row.

Based on this well-established interplay between CDR performance and data
encoding, one is led to ask the extreme but basic question whether there exist data
encodings that would totally do away with CDR while maintaining reasonable levels
of data rate and reliability. The pertinence of this question to the IoT infrastructure
is that with such encodings the receiver architecture in a sensor or actuator device
can be significantly simplified with the resulting architecture taking much smaller
footprint and consuming less power. Of course, such simplified, low-power, compact
architecture must not compromise another crucial requirement for constrained IoT
nodes, namely, data authentication and security. One potential approach to providing
a layer of data protection is lightweight cryptography, which despite much recent
progress still requires a significant area and power overhead, while its lightweight
nature makes it a relatively easy target for malicious attacks.

The answer to this existence question has turned out to be affirmative with
the recent emergence of a novel family of block-oriented signaling techniques
for single-channel, serial communications. These techniques are based on the
fundamental concept of encoding data bits as pulse trains whose counts are also
transmitted and used by the receiver for decoding. Since the receiver uses the
rising edges of the pulses to decode the transmitted bits, this family of protocols



1 Introduction 3

is called Edge-Coded Signaling (ECS) [56] and hence the title of this book. The
three representative members of this novel family are ECS1 [57], ECS2 [51], and
ECS3[56]. While the three techniques require no CDR, they differ in fundamental
aspects that are related to transmission security and packet reliability. ECS1 and
ECS3 have been proven compatible with symmetric stream ciphers and capable of
providing multilayered protection of data in transmitted packets [59]. ECS2 has
no such compatibility and is not amenable to multilayered encryption for secure
data transmission. On the other hand, ECS2 and ECS3 achieve better data rates
than ECS1 and have been experimentally proven to have less packet transmission
failures than ECS1 [51]. We will explore the three ECS family member techniques
in Chap. 2. The main objective of this chapter is to describe the most recent version
of the family, ECS3, that combines and enhances the best advantages of ECS1 and
ECS2 while avoiding their pitfalls and shortcomings. ECS1 and ECS2 are also
included in the chapter as the earlier variants of the protocol. The newest family
member shares with ECS1 and ECS2 the same underlying idea of encoding bits as
pulse streams with inter-symbol spacings used to separate data words. However,
ECS3 possesses several additional features above and beyond ECS1 and ECS2,
including the following:

1. ECS3 employs an optimized segmentation process and a simplified encoding
scheme that help reduce the number of ON bits and lower their index numbers.
The process ultimately reduces the overall number of packet pulses needed to
transmit a data word.

2. For a given data word length, ECS3 forms the most compact packet and therefore
results in the maximum data rate. This is achieved mainly through a very compact
header describing the encoding operations to which the data bits have been
subjected.

3. Not only does ECS3 exploit the edge detection of received pulses to eliminate the
need for CDR and to achieve remarkable robustness with respect to jitters, skews,
and clock inaccuracies between the transmitter and receiver, but it also provides
the flexibility of architecting transceivers to transmit multiple data words or to
pipeline data transmission.

4. The ECS3 packet has a layered architecture and dynamic features that can be
combined synergistically with the crypto algorithms to enhance communication
security.

5. ECS3 is architecturally flexible in that it can be configured according to any
signaling topology such as Master–Slave, Ring, Star, or Tree.

The data protection approach that ECS3 and ECS1 enable is based on a
tight synergy between the communication protocol and the lightweight encryption
algorithm with the communication protocol providing the encryption algorithm
with additional protocol parameters whose encryption can further protect the
data. In comparison with existing single-wire, CDR-less protocols such as 1-wire
[10, 16, 26, 27, 44, 78], ECS1 has the double advantage of higher data rates (Mbps
vs. Kbps) and stronger security (up to a factor of 220 increase in attack complexity)



4 1 Introduction

while remaining within the IoT device envelop of power and footprint. The ECS
security mechanism is discussed in detail in Chap. 7.

Chapter 3 focuses on the detailed analysis of ECS protocols. In this chapter,
we also present a full quantitative analysis of the timing and robustness properties
of ECS protocols, including the impact of important protocol parameters such as
pulse width and inter-symbol separator on average data rate and protocol robustness
with respect to clock variations. The main result of this chapter is a theoretical
upper bound on clock variability between transmitter and receiver below which the
protocol operates with zero decoding error over an ideal channel.

ECS encodes information using pulse counts with the counting based on one of
the pulse edges. In Chap. 4, we address the problem of improving the ECS data rate
for a given clock frequency and under a given power envelop by using both pulse
edges of the ECS pulse stream. We call the novel protocol double data rate ECS
(DDR-ECS) in analogy with DDR memory systems. While the concept is intuitive
and attractive, its hardware implementation is not. This chapter, therefore, presents
an efficient hardware design of the DDR-ECS transceiver that preserves the ECS
built-in features while essentially doubling the data rate at the same clock frequency
and within the same power budget [55].

Chapter 3 highlights the power savings that ECS can achieve as a result of the
elimination of circuitry devoted to clock and data recovery. In Chap. 5, we show
that further power saving can be achieved using the duty cycle of the pulse as a
power control parameter. This power control policy is applied to a single-wire link
with significant power saving achieved above and beyond the savings due to CDR
elimination. These power savings are obtained without any impact on data rate [48].

Well-known multi-wire protocols, such as I2C, SPI, and UART, need to set
the same baud rate on both ends of the link before the connected devices start
communicating. The baud rates of all these devices are either factory set or require to
be configured manually. Manual configuration is usually performed either by using
the software settings or by hardware control. ECS family member techniques can
also be configured on a per-device basis in a similar fashion, but such an approach
will defeat the very purpose of ECS in providing a scalable, robust, ultra-low-power,
and high data rate communication protocol for IoT devices. The error-free operation
of ECS with maximum data rate requires a careful and judicious setting of ECS
data packet and pulse timing parameters. In Chap. 6, we present a new algorithm
for automatically detecting and setting the ECS protocol parameters at the power-
on phase while removing the restriction on the IoT devices in the ECS network
to communicate at a given baud rate. The hardware realization of the algorithm
is power-efficient and uses closed-form formulas that assign suitable protocol
parameters to both ends of the transmission link based on clock rate differences.
This difference is determined by a preliminary exchange of clock pulse streams
between the transmitter and the receiver. The automatic parameter setting remains
operational even in the presence of variations between the local clock frequencies
of the IoT devices communicating via ECS. The algorithm is illustrated in the case
of several IoT devices with different local clock frequencies that are in need to



1 Introduction 5

synchronize their communication parameters with respect to the clock frequency of
a master gateway node [58].

In Chap. 8, we present a domain-specific processor architecture, named Edge-
Coded Signaling Interface Architecture (ECSIA). Aside from the traditional aspects
of ISA design such as addressing modes, instruction types, instruction formats,
registers, interrupts, and external I/O, the ISA includes domain-specific instruc-
tions that facilitate bit stream encoding and decoding based on the edge-coded
signaling techniques. The domain-specific ECSIA micro-architecture employs a
set of optimized processing blocks that can be used programmatically to encode
and decode the transmitted data in the most economical way. The ECSIA allows
customizations that support both standard edge-coded signaling techniques and
specialized protocols that belong to the same family. The ECSIA design further
allows an amalgamation of software and hardware that significantly reduces the
number of instructions required to implement a given communication interface
without impacting the data rates and reliability of the pulsed-signaling protocols
[52, 53].

The last two chapters, Chaps. 9 and 10, are devoted to describing two recent
applications of ECS communication technique. An FPGA hardware platform for
the prototyping and analysis of ultra-low-power IoT sensor networks is discussed
in Chap. 9. The platform is meant to address the problem of evaluating network
topology design options for IoT sensor communications using single-channel
communication protocols. The network topologies include bus, star, ring, and tree
topologies. This FPGA-based IoT network platform is based on three fundamental
ingredients: a full HDL implementation of the ultra-low-power TI MSP430 micro-
controller, a novel ultra-low-power single-wire communication protocol that does
not require any clock and data recovery, and embedded C implementation of the
transceivers within the TI MSP430 without any need for external hardware circuitry.
The platform is flexible in that it allows the design, analysis, and comparison of
various networking graph topologies among the IoT sensors, including ones that
contain gateways and hubs. The platform is also scalable in that the resources used
for a two-sensor point-to-point communication are minimal [50].

The second application in Chap. 10 is a self-synchronizing, low-power, low-
complexity body-coupled communication (BCC) transceiver using the ECS tech-
niques. The unique features of these techniques are used to simplify the BCC
transceiver hardware and reduce its power consumption by eliminating the need
for circuits dedicated to clock and data recovery (CDR) and duty cycle correction.
The self-synchronizing feature of the transceiver is achieved by exploiting the edge-
coding property of ECS. A working prototype of the proposed BCC transceiver
using off-the-shelf components is developed and used to test, for the first time, a
full, bi-directional BCC link by transmitting arbitrary 16-bit data words through the
human body over a range of 150 cm with zero bit error rate and sub-1nJ/bit energy
efficiency [54].



Chapter 2
Edge-Coded Signaling Techniques

When one door closes another door opens; but we so often look
so long and so regretfully upon the closed door, that we do not
see the ones which open for us.

Alexander Graham Bell

The objective of this chapter is to present the analysis of signaling protocols for
data transfer over a single-wire achieving high data rates (in the Mbs range), low
power consumption, and small footprint. The protocols do not require a CDR,
can operate with signals at low amplitude voltage (∼1 V), has simple encoding
and decoding schemes, and can tolerate baud rate differences between transmitter
and receiver. We collectively refer to this new family as Edge-Coded Signaling
(ECS) because its core idea is to transfer the indices of only the ON bits as a
series of transition edges rather than bit times. A very compact packet header
gives information about the number of such indices and the encoding operations
to which the raw bits have been subjected. When the pulses are received, the
receiver applies the appropriate decoding to infer the original data bits. The ECS
protocols are dynamic in that they can accommodate several data rates. It exploits
edge detection of incoming pulses to achieve remarkable robustness with respect to
jitters, skews, and clock inaccuracies between the transmitter and the receiver. The
protocols achieve significant improvements in data rate, reliability, packet security,
and power efficiency with respect to state-of-the-art CDR-less techniques. ECS is
also architecturally flexible in that it can be configured according to the signaling
topology (Master–Slave, Ring, Star, etc.).

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_2


8 2 Edge-Coded Signaling Techniques

2.1 Edge-Coded Signaling (ECS)

2.1.1 Edge-Coding Scheme

The core idea of ECS is to select the ON bits in a data word and transmit their
index numbers as pulse streams instead of transmitting the data bits themselves. An
example is given in Fig. 2.1 where the bit sequence “0101” (a) is transformed into
series of pulses (b) in which the count of pulses in each series is n + 1 with n being
the ordinal number of the ON bit in the binary sequence. In the example of Fig. 2.1b,
there are two series of pulses. The first series has one pulse corresponding to the
leading ON bit at position 0, and the second series has three pulses corresponding to
the ON bit at position 2. One series of pulses is separated from an adjacent one by an
inter-symbol separator α. Please note that α is not a time delay but rather a spacing
or separation symbol that is measured in clock cycles with the clock-cycle count
given by the local transmitter clock at transmission and the local receiver clock at
reception. The clocks at both ends do not have to be synchronized. Also, note that
one is always added to the pulse count corresponding to the index number. This

Fig. 2.1 (a) Standard serial
transfer. (b) Edge-coded
transmitter. (c) Edge-coded
receiver



2.1 Edge-Coded Signaling (ECS) 9

operation is necessary to handle the transmission of index 0. Otherwise, no pulse
will be transferred if the bit at index 0 is ON. For each input pulse series, the ECS
receiver counts the number of the incoming rising edges, subtracts one to retrieve the
index number (i.e., n = PulseCount − 1), and sets a data bit at the index number.
This is shown in Fig. 2.1c. The apparent drawback is that more work is seemingly
needed to transmit such pulse series than the raw bits themselves. However, this
is not the case as it is conceivable to achieve high data rates, using an encoding
process that makes the index numbers as small as possible. This is accomplished by
breaking the bit stream into smaller segments, reducing the number of ON bits as
much as possible in each segment and relocating these ON bits to the lowest index
positions. The encoding information and the number of ON bits in the encoded data
are sent as a packet header along with the index numbers. All the information in the
packet header itself is transmitted as pulse streams, exactly as the index numbers.
In short, instead of transmitting bits, ECS codes them as edge counts and transmits
them along with the formatting information, itself edge-coded, so that the receiver
is able to reconstitute the data word. The steps involved in ECS transmission are
explained in the following subsections.

2.1.2 ECS Segmentation

The number of pulses to transmit increases rapidly with the data word size B and
the number of its ON bits. The most significant bits require larger number of pulses
to represent their index numbers. Considering the worst case where all the bits are
ON, the number of pulses required would be B(B + 1)/2. The rapid increase in the
number of pulses reduces the data rate rapidly and, therefore, the count of pulses
must be limited. To do so, ECS breaks the data word into smaller segments of size
l = 4 bits each, thus limiting the index numbers to a maximum of 3 (i.e., 4 + 3 +
2 + 1). With the reduced segment size, the maximum number of pulses per segment
reduces to 10. An ECS segmentation example is given in Fig. 2.2 where a 16-bit
word is partitioned into 4-bit segments Si ,1 < i < 4. The segmentation steps are
also shown in Algorithm 1 on lines 1 and 2. The optimization of the segment size l

is discussed in Sect. 2.2.

2.1.3 ECS Encoding

The increase in data word size also increases the number of inter-symbol separators
needed to separate out the pulse streams, representing the ON bits. Such separators
reduce the data rate significantly. Reducing the number of ON bits helps in
mitigating the effect of separators on data rate. ECS encoding effectively reduces the
number of ON bits in each data segment. The ECS encoding is simply a conditional
bit-wise NOT operation on a target segment, with the condition being that the



10 2 Edge-Coded Signaling Techniques

Fig. 2.2 Example: ECS packet formation

Algorithm 1 ECS segmentation and encoding process
Inputs:
- Data: 16-bit data word
Outputs:
- CFlags: Concatenated Encoding Indicators
- CNOI1, CNOI2: Concatenated ON-bit Counts

1: S1 = Data[3 : 0], S2 = Data[7 : 4]
2: S3 = Data[11 : 8], S4 = Data[15 : 12]
3: for i=1 to 4 do
4: NOIi = countONbits(Si)

5: Fi = 0
6: if NOIi > l/2 then
7: Si =∼ Si

8: Fi = 1
9: NOIi = countONbits(Si)

10: end if
11: end for
12: CFlags = {F4, F3, F2, F1}
13: CNOI1 = {NOI2, NOI1}, CNOI2 = {NOI4, NOI3}



2.1 Edge-Coded Signaling (ECS) 11

number of ON bits in a segment is longer than half of the segment size. To explain
the encoding scheme further, let us assume B = 16. If a segment satisfies the said
condition, bits of the segment are inverted and a 1-bit flag, Fi , is set to represent
the applied operation. The subscript i represents the segment number. The encoding
steps are presented in Algorithm 1 from lines 3–11 and in the encoding section
of Fig. 2.2. Each segment is processed independently, and four distinct flags are
generated, one for each segment. These four flags are then concatenated to yield a
single 4-bit flag named CFlags. Additionally, the encoding process produces four
2-bit Numbers of Indices, each, denoted NOIi , representing the number of ON bits
in segment i. The NOIs of two consecutive segments are concatenated to yield two
4-bit concatenated NOIs that are denoted CNOIs. The generation of CFlags and
CNOIs is shown in Algorithm 1 on lines 12 and 13 and in the serialization section
of Fig. 2.2. At the end of this process, all the information required for transmission
gets compacted in nibbles of 4 bits each, which is the same as the size of the 4-
bit segment and, hence, helps in maximizing the data rate. The efficient hardware
implementation of an encoder performing segmentation and encoding is discussed
in Sect. 2.4.

2.1.4 ECS Transmitter

Pulse Stream and Separator Generation Scheme

In the ECS transmission process, the ECS scheme for generating the pulse streams
and the inter-symbol separators plays a crucial role. The encoding pulses in the
ECS packet and the α spacings between packets are generated using the ECS clock,
which can be obtained in two ways. One way is for the system clock to be routed
directly to the ECS clock port. Another way is for the system clock to be divided to
generate a slower ECS clock. The pulse generation process is illustrated in Fig. 2.3.
The ECS clock is ANDed with a control signal, Pulse Stream Active (PSA), set
by the control module. The PSA is high during the transmission of a pulse stream,
allowing the ECS clock cycles to go through. During the transmission of the inter-
symbol separator α, PSA is low, thus gating the ECS clock. Please note that α in
ECS is not a time delay, but rather a count of the rising or falling edges of the ESC
clock. In Fig. 2.3, we have used α = 4 clock cycles as it is the optimal count at which
the maximum data rate is achieved. This will be discussed further in Sect. 2.2.

Transmission Flow

The format of the ECS packet is shown in Fig. 2.4 and a numerical example is given
in Fig. 2.2. The CFlags are transmitted to inform the receiver about the encoding
process, while the CNOIs are transmitted to help the receiver account for all the
incoming ON bit indices. The ECS transceiver starts the transmission by sending a



12 2 Edge-Coded Signaling Techniques

Fig. 2.3 ECS pulse stream and inter-symbol separator generator (indices from Fig. 2.1)

Fig. 2.4 ECS packet

pulse stream with a pulse count equal to CNOI1 + 1 followed by an inter-symbol
separator α of four clock cycles (line 2 in Algorithm 2). The additional pulse is
needed to inform the receiver not to expect any index number when the count of ON
bits in the first two segments is zero. Next, the transmitter sends a number of pulse
streams equal in count to NOI1 +NOI2 followed by an α at the end of each stream.
The pulse count in each pulse stream is equal to the index number of an ON bit in
segments S1 and S2 plus an additional pulse, making a total of index + 1 pulses.
The additional pulse is used to handle the transmission of a zero index number. The
transmission process of indices is presented in Algorithm 2 on lines 3 through 9.
A similar transmission follows for the next two segments, S3 and S4, during which
CNOI2 and the index numbers of the ON bits in these segments are transmitted. At
the end of the transmission of all segments, the CFlags are transmitted, also in the
form of a pulse stream followed by an α (line 10 in Algorithm 2). Their pulse count
is equal to CFlags + 1. An additional pulse is needed to represent zero content of
CFlags as in the case when no segment goes through the encoding inversion. The
graphical transmission process and the generated waveforms are shown in Fig. 2.6.



2.1 Edge-Coded Signaling (ECS) 13

Algorithm 2 ECS transmitter algorithm
Inputs:
- CFlags: Concatenated Encoding Indicators
- CNOI1, CNOI2: Concatenated ON-bit Counts Outputs:
- ECS Signal: The pulse streams and inter-symbol separators

1: for j=1,2 do
2: sendPulsesWithSeparator(CNOIj + 1, α)
3: for each ON bit in S2j−1 with index i do
4: sendPulsesWithSeparator(i + 1, α)
5: end for
6: for each ON bit in S2j with index i do
7: sendPulsesWithSeparator(i + 1, α)
8: end for
9: end for

10: sendPulsesWithSeparator(CFlags + 1, α)

2.1.5 ECS Receiver

Pulse Stream and Separator Reception

The ECS receiver is unique in that it does not require any clock and data recovery
(CDR) circuitry either to receive the incoming data over single channel or to
synchronize it with a local clock. The ECS exploits detection and count of edges
of the incoming pulse streams to receive all the information required to rebuild
the transmitted data successfully. Contrary to standard serial transfer, the width
of transmitted pulses is inconsequential to ECS and, hence, does not employ this
information in receiving data. Though there could be different implementations of
the ECS receiver, our implementation is focused on counting the number of clock
cycles between two ECS pulses to detect the inter-symbol spacing and separate out
the incoming pulse streams. The ECS pulse stream reception process is illustrated in
Fig. 2.5. The ECS receiver keeps track of two counts, the pulse count and the clock
count. The reception process starts with the very first rising edge of the input pulse
stream. At each rising edge of the pulse stream, the pulse count is incremented, and

Fig. 2.5 ECS pulse stream and inter-symbol separator receiver (input signal from Fig. 2.3)



14 2 Edge-Coded Signaling Techniques

Fig. 2.6 (a) Transmitter. (b) Receiver. (c) Indices

the clock count is cleared. At each rising edge of the receiver’s ECS clock, the clock
count is incremented and compared with a separator threshold αth that is set to half
of α in our implementation of the protocol. If the condition is satisfied, an inter-
symbol separator is declared, and the current pulse count is accordingly stored as a
record of the transmitted packet.

Reception Flow, Decoding, and Reconstruction

The ECS packet reception process starts with the very first rising edge of the first
pulse stream for CNOI1. The pulse stream is received as described in the previous
subsection. Similarly, all the following pulse streams for the indices of S1, S2, and
CNOI2 and the indices of S3, S4, and CFlags are received, and the corresponding
parts of the ECS packet are updated. Bits of each segment are complemented if the
corresponding bit in CFlags is set. At this stage, all the transmitted segments are
assembled to rebuild the data word. The full process of receiving, decoding, and



2.1 Edge-Coded Signaling (ECS) 15

assembling is shown in Algorithm 3. An efficient implementation of ECS encoding
and decoding is discussed in Sect. 2.4. The transmission and reception processes
along with their generated waveforms are shown in Fig. 2.6.

Algorithm 3 ECS receiver algorithm
Inputs:
- ECS Signal: The pulse streams and inter-symbol separators
Outputs:
- Data: 16-bit data word

1: for i=1 to 2 do
2: CNOIi =PulseStreamReceiver()*−1
3: NOI = CNOIi [1 : 0]
4: S2i−1 = S2i = 0
5: for j=1 to NOI do
6: index =PulseStreamReceiver()−1
7: S2i−1[index] = 1
8: end for
9: NOI = CNOIi [3 : 2]

10: for j=1 to NOI do
11: index =PulseStreamReceiver()−1
12: S2i [index] = 1
13: end for
14: end for
15: CFlags =PulseStreamReceiver()−1
16: Data = {S4 ⊕ {4{CFlags[3]}}, S3 ⊕ {4{CFlags[2]}}, S2 ⊕ {4{CFlags[1]}}, S1 ⊕

{4{CFlags[0]}}}
17:
* PulseStreamReceiver() is the pulse counter for each input pulse stream (Fig. 2.5)

2.1.6 ECS Transmission System

The ECS communication technique can be used with a variety of channels such
as wired, wireless, infrared, and human body channel. ECS is advantageous to
all these channels as it results in significant simplification of transceiver circuitry,
reduction in power consumption, and decrease in footprint. A simple PHY layer
for single-wire communication is shown in Fig. 2.7a where two tri-state buffers are
used to switch channel access between transmitter and receiver. Moreover, ECS
can be used with any communication medium without any significant change, as
shown in Fig. 2.7b. In case of wireless transmission, the wireless front end can be
easily used to transmit and receive the packet pulses. As ECS does not need power-
hungry circuits such as CDR or duty cycle correction, the complexity of the front
end reduces significantly as compared to standard transceivers. Additionally, ECS
helps in improving the bit rate of wireless transmission. For example, the standard
OOK and ASK modulation techniques need duty cycle accuracy to recover square
pulses. As the transmission data rate increases, the output pulses turn into triangular



16 2 Edge-Coded Signaling Techniques

Fig. 2.7 (a) ECS PHY for single-wire. (b) General ECS PHY block diagram

ones at the receiver end of the wireless modules, which limits the bit rate. On the
other hand, ECS does not depend on the duty cycle and can correctly decode the
triangular and demodulated pulses as long as their peaks remain above the detection
threshold of the ECS receiver. This is also the case with infrared channels where
the power consumption and complexity of the optoelectronic system are reduced.
ECS can also help in reducing the transceiver complexity of human body-channel
communication (BCC) [69] by eliminating duty cycle dependency and the need for
CDR while enabling the processing of pulses deformed through the variable-gain
human body channel. ECS has been successfully tested with all these channels, and
the experiments are discussed in Sect. 2.4.

2.1.7 ECS Data Rate

Let bs
i be the i-th bit in the s-th encoded segment and l be the number of bits per

segment. The total number of segments, N , is given by

N = B

l
(2.1)

In the ECS packet, the CNOIs, CFlags, and segments all have the same length
l. Therefore, each CFlag represents l consecutive segments among a total of N

segments. The number of CFlags, ncf , in the ECS packet is given by

ncf = N

l
(2.2)

Similarly, each CNOI concatenates the NOIs of 2 consecutive segments among
a total of N segments. The number of CNOIs, ncn, in the ECS packet is therefore
given by



2.1 Edge-Coded Signaling (ECS) 17

ncn = N

2
(2.3)

For a segment s, the required number of pulses is given by

Ps =
l−1∑

i=0

(i + 1)bs
i (2.4)

and the number of ON bit indices is given by

NOIs =
l−1∑

i=0

bs
i (2.5)

Let PIx be the number of pulses required for one CNOI . The PIx is given as

PIx = 1 + NOI2x−1 + 2l/2NOI2x , 1 ≤ x ≤ ncn (2.6)

where one additional pulse is used to represent the absence of ON bits. The x

subscript in (2.6) refers to two consecutive segment numbers, one odd and one even,
for NOIs in (2.5). Now, let PFy be the number of pulses required for one CFlags.
PFy is given as

PFy = 1 +
l−1∑

i=0

2iFs , s = i + l(y − 1) , 1 ≤ y ≤ ncf (2.7)

where Fs is the flag bit for the s-th encoded segment. Again, one additional pulse is
used to represent the no-encoding state.

The number of pulses for CNOIs, Segments, and CFlags and the total number
of NOI pulses are, respectively, given by

npi =
ncn∑

x=1

PIx (2.8)

nps =
N∑

s=1

Ps (2.9)

npf =
ncf∑

y=1

PFy (2.10)

nin =
N∑

s=1

NOIs (2.11)



18 2 Edge-Coded Signaling Techniques

The total pulse count is therefore given by

C = (
ncf + ncn + nin

)
α + npi + nps + npf (2.12)

where α is the number of clock cycles for an inter-symbol separator. The data rate
R of the ECS protocol for a bit stream of B bits, clock period of T , and a total pulse
count of C is given as

R = B

T C
(2.13)

The optimum values of the protocol parameters are derived in Sect. 2.2.

2.2 ECS Optimizations

2.2.1 Optimum Inter-symbol Separator α

Since all the transmitted pulse streams are separated by an inter-symbol separator,
an appropriate value of α is indispensable for successful packet reception and for
maximizing data rate. Keeping all the parameters in (2.12) and (2.13) constant
except for α, we obtain the relationship R ∝ a/(b + cα), where a, b, and c are
constants. This relationship clearly shows that an increase in α decreases data rate,
as shown in Fig. 2.8a. Both empirically and theoretically [49], the smallest value
of α for guaranteeing correct decoding is 4 clock cycles [49]. Below this value,
the receiver would fail to decode the packet successfully because of the ambiguity
between pulse spacing and inter-symbol separators. A value of α larger than 4 will
increase the tolerance to clock variations but decrease data rate and reduce reliability
with respect to packet failure.

Fig. 2.8 (a) Data rate vs. α. (b) Data rate vs. segment size. (c) f (l) vs. segment size l (Eq. (2.18))



2.2 ECS Optimizations 19

2.2.2 Optimum Segment Length l

To find the optimum segment length that maximizes data rate, we minimize the
number of clock cycles needed to transmit the ECS packet. We know from the
previous section that the number of segments is N = B/l. Assuming that bits 0
and 1 are equally likely, the expected value of Ps in (2.4) is

E[Ps] = l(l + 1)

4
(2.14)

Similarly, the expected value of PIx in (2.6) is

E[PIx] = 2 + l(1 + 2l/2)

2
(2.15)

Assuming the flag bit Fs is equally likely to be 0 or 1, the expected value of PFy in
(2.7) is

E[PFy] = 1 + 2l

2
(2.16)

Using N = B/l, the expected value of the total number of clock cycles C as given
in (2.12) becomes

E[C] =
(

B

l2
+ B

2l
+ B

2

)
α + B

2l
+ B(1 + 2l/2)

2
+ B(l + 1)

4
+ B(1 + 2l )

2l2
(2.17)

Taking the derivative with respect to l and equating it with zero (i.e., ∂E[C]/∂l =
0), we get

f (l)
�= ∂E[C]

∂l
= α(8 + 2l) + 2l − l3(2l/2 ln(2) + 1)

−2l (2l ln(2) − 4) + 4 (2.18)

= 0

A graphical method to find the optimal segment length lopt for a given α is to plot
f (l) as function of l and find the l intercept point. Such plot is shown in Fig. 2.8c
for α = 4, which results in

lopt = 2.833 ≈ 3 bits (2.19)

ECS divides the data word into segments of equal size and, therefore for a word size
that is a power of 2, there are two possibilities of optimum segment length, 2 and 4.
We select lopt = 4 because there is a negligible reduction in data rate as compared



20 2 Edge-Coded Signaling Techniques

to l = 2 where the degradation is significant. If the segment length is increased or
decreased from the optimum value of 4, the data rate degrades rapidly, as shown
in Fig. 2.8b. Segments smaller than 4 bits reduce the data rate due to the increased
number of inter-symbol separators. In contrast, segment lengths larger than 4 bits
affect the data rate negatively due to the increase in most significant bit (MSB)
index numbers. To achieve maximum data rate, the protocol must be operated with
segments of length 4 bits each.

2.3 Earlier Versions of ECS

ECS1 and ECS2 are earlier versions of the ECS3 protocol described in the previous
sections. With slight differences, these techniques apply an encoding scheme to
a data word B to minimize the number of ON bits and move them to the least
significant bit (LSB) end of the packet with the goal of lowering the number
of pulses required to transmit the data bits. The encoding process includes a
segmentation step where the data is broken into N independent segments of size
l bits each (i.e., N = B/l). To maximize data rate, they use, on each segment, an
encoding combination of bit inversion and/or segment reversion/flipping. For ECS1,
this combination is meant to reduce the number of ON bits and decrease their index
values. For ECS2, the same combination is intended to reduce the number of ON
bits and decrease the decimal number represented by each segment. To facilitate
decoding, flag pulses representing the type of encoding performed are added to each
segment. Unlike ECS1, the ECS2 segment flags of two consecutive segments are
combined in one data word flag and placed in the header. ECS2 further applies a
third segmentation step post-encoding, the level-2 segmentation, whose goal is to
further reduce the number of pulses per segment and, therefore, increase the data
rate.

All the pieces of information including flags, the number of indices, and the
indices themselves in the case of ECS1, or the decimal numbers of each segment
in the case of ECS2, are transmitted in the form of pulse streams. The pulse is
characterized by its width which is the number of clock cycles during which it
remains high. Within a given packet, segment pulse streams are separated by an
inter-symbol separator α. The ECS1 and ECS2 packet formats are presented in
Figs. 2.9 and 2.10. To describe the process of ECS1 and ECS2 data transmission,
examples are given in Figs. 2.11 and 2.12, respectively. A decimal number 65,055 is
considered as a 16-bit data word for transmission. The 16-bit data word is divided
into two independent segments, each of 8 bits, which reduces the index numbers of
MSB bits and, consequently, the number of pulses to represent the ON bits. Because
the number of ON bits in Segment#1 is higher than half of the segment length (5 and
4, respectively), the bits are inverted, and the Flags of Segment#1 are set to 2. This
step further reduces the number of ON bits in Segment#1, but the index numbers of
the ON bits are located in the MSB part of the segment. The bit-wise flip operation
is therefore applied to relocate the ON bits to the LSB part, which results in the



2.3 Earlier Versions of ECS 21

Fig. 2.9 ECS1 packet format

Fig. 2.10 ECS2 packet format

reduction of the number of pulses. The F lags field of Segment#1 is now updated
to 3, signifying that both of the encoding operations are applied. The same steps
are applied to Segment#2 except that only the inversion operation is needed. The
F lags field of Segment#2 is set to 2, signifying that only the inversion operation
is applied. In the case of ECS1, all the packet information including the encoded
segments, F lags, and the number of ON bit locations (NOIs) is now available to
start the transmission. However, in the case of ECS2, an additional segmentation
step is applied where each encoded segment is divided into two sub-segments. All
the pieces of information are transmitted in the form of pulse streams separated by
inter-symbol separators.

The receiver counts the number of pulses for each pulse stream and applies the
decoding according to the F lags field in the received packet. Like ECS3, ECS1 has
a variable number of symbols per data word, which enables the addition of security
layers, whereas ECS2 presents a fixed number of symbols per data word, which
improves transmission reliability with respect to packet failures. The three protocols
of the ECS family are compared in Table 2.1 for a 16-bit data word transmission.



22 2 Edge-Coded Signaling Techniques

Fig. 2.11 ECS1 encoding and packetization example

2.3.1 Data Rates

ECS1 and ECS2 share with ECS3 the same notation and data rate equations as
given in Sect. 2.1.7. However, the mathematical definitions of some of the symbols
may vary as per the differences in their packet structure. All these variations are
presented in Table 2.2. The generalized data rate equations for the ECS family are
shown in Rows 14 and 15. Therein, the symbol npe represents configuration pulses
that include start, stop, and sync pulses.

2.3.2 Optimizations

The segment size is chosen to maximize data rate. For a small segment, the inter-
symbol separators inserted between pulse streams to separate symbols reduce the
data rate. Similarly for large segments, ON bits with high indices require a large



2.4 Experimental Setups and Results 23

Fig. 2.12 ECS2 encoding and packetization example

number of pulses to be transmitted, which in turn reduces the data rate. It is therefore
intuitive that there is a segment size for which the data rate is maximum. For ECS1,
the data rate is maximized when the number of bits per segment is 8. For ECS2,
the level-2 sub-segment (SS) size is appropriately chosen to maximize the data rate.
The number of pulses increases exponentially with the size of SS, which in turn
drastically reduces the data rate. For ECS2, the data rate is maximized when the
number of bits per sub-segment is 4. The process of finding the optimum segment
size is the same as the one presented in Sect. 2.2.2.

2.4 Experimental Setups and Results

An ECS communication system is implemented in Verilog HDL over Xilinx
Spartan-6 FPGA board and verified through simulation and real-time communica-
tion between two nodes. For an apple-to-apple comparison with the earlier versions
of the protocol, similar communication systems are developed for ECS1 and ECS2.
However, this section describes only the ECS implementation. The development
of the ECS system includes the efficient hardware implementation of ECS encoder



24 2 Edge-Coded Signaling Techniques

Table 2.1 Comparison of ECS family member techniques using 16-bit data word

ECS1 ECS2 ECS3

Packetization

Segment size Level 1 8 8 4

Level 2 – 4 –

No. of segments Level 1 2 2 4

Level 2 – 4 –

CFlags Count 2 1 1

Size (bits) 2 4 4

CNOIs Count 2 – 2

Size (bits) 2 – 4

Encoding steps Invert + Flip Invert + Flip Invert

No. of symbols/packet Dynamic Fixed Dynamic

Performance (25 MHz clock, 65nm CMOS technology)

Data Rate (Mb/s) 3.1–8.5 (4.1)a 4.8–12.9 (7.3) 4.2–26.7 (6.4)

(% ↑)d 54.8–51.7 (78)a 35.5–214 (56)

Power (µW) ≈26.6 ≈25 ≈19

(% ↓)d 6 28.5

Eb (pJ/bit) 3.1–8.5 (6.5)a 1.9–5.1 (3.4) 0.7–4.5 (2.9)

(% ↓)d 38.7–40 (47.7)a 47–77.4 (55.4)

Area (Gatecount) ≈2356 ≈2150 ≈2098

(% ↓)d 8.7 10.9

Securityb Yes No Yes

Reliability (NVLs)c 10–18 6 5–12

(% ↑)d up to 66.7 up to 72.2
a
(Avg.)

b
Packet protection

c
No. of vulnerable locations

d
Improvement relative to ECS1

and decoder. Both the encoder and decoder are combinatorial in nature and present
a low power operation without any extra computational overhead. The encoder is
implemented as a single hardware block that works with one 4-bit segment as input
and generates the corresponding NOI , Fs , and the encoded segment. The encoder
truth table is shown in Table 2.3, where S is the input data segment and SE is the
encoded segment at the output. Due to the segmentation and encoding process, there
is a maximum of two ON bits per segment for which the index numbers Ind1 and
Ind2 need to be transmitted. The ECS decoder at the receiver end takes as input all
the received index numbers for a given segment and outputs a 4-bit data segment.



2.4 Experimental Setups and Results 25

Ta
bl
e
2.
2

D
at

a
ra

te
s

of
E

C
S

m
em

be
r

te
ch

ni
qu

es

Pa
ra

m
et

er
N

ot
at

io
n

E
C

S1
E

C
S2

E
C

S3

1
Se

gm
en

ts
iz

e
l

l 1
,
l 2

,
l
=

l 2
l

2
N

o.
of

se
gm

en
ts

N
B

/
l

N
l 1

=
B

/
l 1

B
/
l

N
=

N
l 2

=
N

l 1 l 2
=

B l 1
l 2

3
N

o.
of

C
F

la
g
s

n
cf

N
N

l 1
/
2

N
/
l

4
N

o.
of

C
N

O
I
s

n
c
n

N
0

N
/
2

5
Pu

ls
es

/s
eg

m
en

t
P

s

∑
l−

1
i=

0
(i

+
1)

b
s i

6
O

n
bi

ts
/s

eg
m

en
t

N
O

I s
∑

l−
1

i=
0
b

s i
0

∑
l−

1
i=

0
b

s i

7
Pu

ls
es

/C
N

O
I

P
I

a x
1

+
N

O
I x

0
1

+
N

O
I 2

x
−1

+
2l

/
2
N

O
I 2

x

8
Pu

ls
es

/C
Fl

ag
s

P
F

b y
1

+
f

y 0
+

2f
y 1

1
+

f
y 0

+
2f

y 1
1

+
∑

l−
1

i=
0

2i
F

s

+
4f

y 2
+

8f
y 3

s
=

i
+

l(
y

−
1)

9
To

ta
lC

N
O

Is
pu

ls
es

n
p
i

∑
n

c
n

x
=1

P
I x

10
To

ta
ls

eg
m

en
tp

ul
se

s
n

p
s

∑
N s
=1

P
s

11
To

ta
lC

Fl
ag

s
pu

ls
es

n
p
f

∑
n

cf

y
=1

P
F

y

12
To

ta
lO

N
bi

ts
n

in

∑
N s
=1

N
O

I s
N

∑
N s
=1

N
O

I s

13
To

ta
le

xt
ra

pu
ls

es
n

c p
e

3
+

2α
+

N
(2

+
α
)

3
+

2α
0

14
To

ta
lp

ul
se

co
un

t
C

( n
cf

+
n

c
n

+
n

in

) α
+

n
p
i
+

n
p
s
+

n
p
f

+
n

p
e

15
D

at
a

ra
te

R
B

/
T

C

a
1

≤
x

≤
n

c
n

b
1

≤
y

≤
n

cf
c
St

ar
t/s

to
p

an
d

sy
nc

pu
ls

es



26 2 Edge-Coded Signaling Techniques

Table 2.3 ECS encoder S SE F NOI Ind2 Ind1

0000/1111 0000 0/1 00 000 000

0001/1110 0001 0/1 01 000 001

0010/1101 0010 0/1 01 000 010

0011 S 0 10 010 001

0100/1011 0100 0/1 01 000 011

0101/0110 S 0 10 011 001/010

0111/1000 1000 1/0 01 000 100

1001/1010/1100 S 0 10 100 001/010/011

The equations of the ECS decoder logic are

{C,B,A} = Ind1 (2.20)

{F,E,D} = Ind2 (2.21)

DS1 = {C̄, B·A,B· Ā, B̄·A} (2.22)

DS2 = {F̄ , E·D,E· D̄, Ē·D} (2.23)

Ss = (DS2|DS1) ⊕ {Fs, Fs, Fs, Fs} (2.24)

where DS0 and DS1 denote intermediate Verilog wires.
The ECS experimental setup comprises two nodes, each of which employs

the abovementioned encoder and decoder along with the transmitter and receiver
algorithms, respectively, all implemented in Verilog HDL. The ECS Transmission
Algorithm 2 and Reception Algorithm 3 are synthesized as finite state machines. We
have used 16-bit data words at a clock rate of 25 MHz. The transmitter at the first
node sends a 16-bit data starting at 0 with an increment of 1 at each transmission.
The second node resends the same data back. The returned and original data words
are compared to verify the complete round-trip chain, and the number of perfect
matches is logged. The ECS technique is verified using a number of single-channel
links such as single-wire, wireless, infrared, and human body channel. In wired
communication, a single-wire is used to connect both nodes using the PHY layer
shown in Fig. 2.7. For wireless communication, a 433 MHz transceiver is used
which accepts a raw ECS bit stream and transmits it wirelessly using OOK/ASK
modulation. Similarly, for infrared communication, a simple infrared transceiver
driver circuitry is used. For human body channel communication, new transceivers
have been developed to carry out transmission through the human body. In all four
experiments, ECS achieves flawless transmission. It must be noted that to support
the aforementioned communication channels, ECS remains unchanged and only the
front ends are replaced to transfer pulse streams through the desired channel. As
highlighted in Sect. 2.1, ECS improves the bit rate of wireless transmission, which
is verified with the experimental setup under discussion. Indeed we have observed an
increase in bit rate from 4.8 to 20 Kbps (≈300% improvement). Similar observations



2.4 Experimental Setups and Results 27

have been recorded while testing the infrared communication channel. For body
channel communication, ECS helps in reducing the transceiver complexity, which
is a significant advantage. In this latter case, a cascade of an amplifier, a discrete
filter, and a level detector is sufficient to recover the ECS pulses traveling through
the human body [54].

Along with the FPGA prototype, we have also synthesized and verified the ECS3
design using a Synopsis logic-synthesis flow and a GLOBALFOUNDRIES 65 nm
process in order to get the most realistic area and power estimates and compare them
with the published literature. We have determined that ECS3 consumes 19µW with
a gate count of 2098 gates, offering dynamic data rates in the range of 4.2–26.7 Mb/s
(averaging 6.4 Mb/s) with a 25-MHz clock. As mentioned above, the selection of the
25 MHz clock rate is just for illustration purposes. We have verified the functionality
of ECS3 using frequencies in the range from few KHz up to 200 MHz, the maximum
frequency supported by our FPGA platform. As is clear from (2.13), the ECS3 data
rate increases linearly with the clock frequency, and higher clock frequencies can
be used to achieve higher data rates. Compared with NRZ serial transfer (NST)
using CDR, ECS3 reduces area and power by more than 87% and 78%, respectively.
Table 2.1 summarizes and compares the performance parameters of ECS1, ECS2,
and ECS3. The data rate of ECS3 is increased significantly as compared to ECS1
and is as good as ECS2. ECS3 consumes less power and is more energy-efficient
than ECS1 and ECS2 while maintaining a small footprint. Additionally, ECS3 helps
in providing packet security, as will be discussed in Chap. 7. The reliability of ECS3
is similar to ECS2. It provides an improvement of up to 72.2% as compared to
ECS1. In a nutshell, the results show that, overall, ECS3 outperforms both ECS1 and
ECS2. Table 2.4 compares ECS3 with NST, which includes CDR, in terms of area
and power. The main reason for the significant ECS3 advantage in area and power is
that NST needs CDR to recover data successfully while ECS3 does not. CDR is the
main source of power consumption, and even if we use the recently published low-
power CDRs proposed in [12, 37, 38, 77], and [73], ECS3 still outperforms NST.

Table 2.4 ECS comparison with simple serial

Power (µW) Area (Gatecount)

SRLa CDR Totald (PI)e SRL CDRc Totald (PI)e

ECS3 19 N/A 19 2098 N/A 2098 65 nm

NSTb 32.1 70 102.1 (81%) 1327 15,600 16,927 (87%) 90 nm [37]

62.5 94.6 (80%) 60,000 61,327 (96%) 90 nm [38]

90 122.1 (84%) N/A N/A 90 nm [12]

57.5 89.6 (79%) 19,800 21,127 (90%) 65 nm [77]

60.6 92.7 (80%) N/A N/A 28 nm [73]
a
Serializer

b
NRZ serial transfer

c
Estimated calculation

d
SRL+CDR

e
%Increase as compared to ECS3



28 2 Edge-Coded Signaling Techniques

Fig. 2.13 Data rate consumption: one-wire protocols ([16, 27, 44]) vs. ECS1, ECS2, and ECS3

Furthermore, in Fig. 2.13, the ECS3 data rate is compared with the data rates of few
existing CDR-less single-wire transmission techniques [16, 27, 44] as well as with
ECS1 and ECS2. The comparison shows that ECS3 achieves significantly higher
performance without any CDR and with tolerance toward jitters, skew, and clock
inaccuracies. For small footprint applications (wireless sensor nodes, wearable
computing, body-area networks, etc.) ECS3 is definitely the more reasonable choice.

2.5 Analysis

In this section, we further discuss the major characteristics of the ECS family based
on the analytical, numerical, and experimental results we have obtained so far. The
detailed timing and robustness analysis is provided in Chap. 3.

2.5.1 Data Rate

ECS is dynamic in that the actual data rate of the protocol is dictated by the pulse
count which is very much data dependent. The statistical distributions of the ECS1,
ECS2, and ECS3 data rates are shown in Fig. 2.14 for which exhaustive sampling
of 16-bit data words is used with a total of 216 − 1 pseudo-random bit stream
(PRBS). Each word is segmented and encoded as per the protocol specifications.
For data rate calculations, we use a 25 MHz clock. Please note that the data
rates are determined using both numerical simulations and hardware experiments.
Comparing the histogram of ECS3 with that of ECS1, an increase in data rate is
observed, ranging from 4.2 Mbps (35% ↑) to 26.7 Mbps (214% ↑) with an average



2.5 Analysis 29

Fig. 2.14 Data rate histograms at 25 MHz clock

of 6.4 Mbps (56% ↑). Additionally, comparing the histogram of ECS3 with that of
ECS2, it is observed that ECS3 outperforms ECS2 by achieving a maximum data
rate of 26.7 Mbps (107% ↑).

2.5.2 Data Word Length and Complexity

As described in detail in Sect. 2.2.2, the optimum segment length for ECS to
maximize data rate is 4 bits. Additionally, in Sect. 2.1, the encoding process
generates one flag bit for each of the 4-bit long segments. The four flag bits are then
concatenated to form another segment of optimum length (4 bits) that is known as
the CFlags. Similarly, the process concatenates the NOIs of two consecutive data
segments to generate two additional segments of optimum lengths (4 bits each) that
are known as the CNOIs. By the end of the encoding process, everything is packed
in segments of optimum length. Because exactly four 4-bit data segments from the
data word are needed to achieve this optimum configuration, the optimum data word
size is 16 bits. We note that changing the length of ECS segments to incorporate data
words of length larger than 16 bits has the potential of significantly decreasing the
data rate while noticeably increasing the complexity, hardware resources, and power
consumption.

In this context, ECS3 has a distinct advantage with respect to ECS1 and ECS2
when multiple words are being transmitted. To explain this advantage, we need to
take a closer look at two hardware implementations: word-based and block-based.



30 2 Edge-Coded Signaling Techniques

Word-Based Implementation

The system is strictly designed to handle one word at a time. The transmission starts
with setting the busy signal high, as shown in Fig. 2.6, and ends with clearing it when
the transmission of a 16-bit word is complete. Let us denote the memory required to
store the data word, CFlags, and NOIs by MW , MF , and MN bits, respectively.
A word-based implementation needs a total of 1 × MW + 1 × MF + 1 × MN bits
and only one pass to transmit a word, as shown in Fig. 2.15a. On the other hand,
transmitting nW 16-bit words in a word-based implementation incurs an additional
delay of one clock cycle for each word to set up the input data port before starting
transmission, which results in a total number of nW × (1 + C) clock cycles where
C is given in Eq. (2.12).

Block-Based Implementation

An alternative system design is to transmit the word block by breaking it into nW 16-
bit words and transmitting each word in a separate pass while keeping a busy signal
high unless the transmission of all the words is complete. This is accomplished if
the word-based implementation, described above, is used iteratively nW times with
an additional delay of one clock cycle at each pass to set up the transmission of next
word in the block. The latency remains nW × (1 + C) clock cycles as in the word-
based implementation, and the throughput of ECS is unchanged. However, there is
an increase in the complexity of the hardware as nW × MW bits of memory are
needed to store the full word block. The memories MF and MN to store CFlags

and NOIs remain unchanged. Additionally, control logic is needed to load the input
data port with another 16-bit word from the block and to re-trigger the transmission
process, a BW -to-16 MUX to select a 16-bit word, and an adder to update the
selection port of the MUX using a very simple pass control logic. The block diagram
of such a block-based implementation is shown in Fig. 2.15b. The added memory
and control logic will contribute to a slightly increased consumption of power and
hardware resources with the throughput remaining unchanged.

Fig. 2.15 (a) Word-based implementation. (b) Block-based implementation



2.5 Analysis 31

2.5.3 Error Detection and Correction

During ECS transmission, there could be two main sources of transmission errors.
These two sources are due to channel noise and are the following:

1. Packet Failure: Either one of the inter-symbol separators or the CNOIs is
garbled. As shown in Fig. 2.16a-i and a-ii, the receiver fails to receive the packet
successfully because it expects a number of pulse streams that is different from
what is actually transmitted.

Fig. 2.16 (a) Errors in ECS packet reception (marked in red). (b) ECS BER using BPSK as
modulation scheme



32 2 Edge-Coded Signaling Techniques

2. Data Corruption: The indices or the CFlags pulse streams get garbled due to
the addition or removal of pulses. In this scenario, as shown in Fig. 2.16a-iii, the
packet is received successfully, but the index numbers are wrong, which results
in data word errors at decoding. A similar scenario occurs if the CFlags pulses
are received with error, as shown in Fig. 2.16a-iv.

In our experimental setup, we have implemented an error injector that randomly
inserts extra pulses into the ECS packets, as shown in Fig. 2.16a. The first type of
error in the above list can be detected by monitoring the inter-symbol separator.
In our implementation of the ECS protocol, if the separator is prolonged for more
than twice α (i.e., separator > 2α), the receiver declares packet failure, resets,
and sends a request to retransmit the packet. As for the second type of error, it is
the same as in a standard serial transfer, where one or more bits are in error. In
our implementation, these bit errors are handled using a 1-bit parity code. However,
there are several state-of-the-art error detection and correction techniques that ECS
can use seamlessly as it does not prevent the preprocessing of data prior to encoding
and transmission. Exploring such techniques and their compatibility with ECS is the
subject of future work.

2.5.4 Bit Error Rate

Like data rate, the bit error rate (BER) of ECS is also dynamic and depends on the
transmitted data. The BER of ECS depends on the BER of the PHY layer which may
be using a standard modulation scheme [66] such as OOK, ASK, FSK, or BPSK, for
transmitting the bit stream. The conceptual block diagram of such a setup is shown
in Fig. 2.7b where ECS amounts to an encoding step prior to modulation. The bit
stream, in the case of PHY with a modulation, is replaced with the pulse stream as
generated by ECS. As a result, the BER of ECS is largely determined by the type
of channel and the modulation used. ECS can help in reducing the complexity of
the PHY front end by allowing them to focus on the amplitude of the recovered
digital signals rather than other factors such as phase or bit width. In case there is
a one-bit error in a unit time due to channel modulation, there would be one pulse
in error for ECS that could affect the ECS packet in four different locations: within
inter-symbol separator, within CNOI , within CFlags, or within an index number.
These four different cases are shown in Fig. 2.16a and will impact the ECS BER
differently according to the following rules:

BERECS =

⎧
⎪⎪⎨

⎪⎪⎩

16 × BERCM if be ∈ α

16 × BERCM if be ∈ CNOI

4 × BERCM if be ∈ CFlags

2 × BERCM if be ∈ index

(2.25)



2.5 Analysis 33

where be is the bit in error, BERECS is the ECS BER, and BERCM is BER of
the channel modulation. If the error is within an index number, then an index i is
erroneously decoded as index i − 1 or i + 1. After decoding, two bits may therefore
be wrong within a segment: the bit with index i and a bit with index i − 1 or i + 1.
Given that there is a pulse in error, the probabilities of these four cases to occur are
0.5, 1/(n+3), 1/2(n+3), and n/2(n+3), respectively, where n is the total number
of ON bits in all the four encoded segments. With increasing packet size, the error
probability decreases when the CNOI and CFlags are corrupted, increases when
the indices are corrupted, but remains constant when α is corrupted. Considering
BPSK modulation, we have run simulations for the maximum and minimum BER
of ECS as shown in Fig. 2.16b. Regardless of the incoming data, the ECS BER will
always fall between these two extrema.

2.5.5 Pulse Width and Shape

The pulse width is not a primary ECS parameter because the reception technique
exploits the detection of edges in contrast with standard serial bit transfer, where
the pulse width (inverse of the baud rate) is a primary parameter. ECS is therefore
capable of working with a non-ideal pulse waveform, thus enabling great flexibility
in pulse shaping. All pulse shapes are allowed as long as they satisfy switching and
peak detection constraints and do not overlap with each other. A few examples are
shown in Fig. 2.17.

2.5.6 Reliability

The reliability of ECS is an indication of the likelihood of successful transmission.
ECS reliability is measured in terms of the number of vulnerable locations (NV Ls).
An NV L is a sub-segment within the ECS packet which, if corrupted, can cause a

Fig. 2.17 Examples of valid signals for ECS transmission. VtH : high signal level threshold. VtL:
low signal level threshold



34 2 Edge-Coded Signaling Techniques

packet failure. The inter-symbol separators α and the NOIs are examples of NV Ls

in ECS packet. Indeed, the longer α is, the higher the corruption likelihood, and
therefore, the more likely packet failure is. Similarly, a corrupted NOI results in
packet failure, and the failure likelihood increases with the number of transmitted
NOIs. The packet failure due to these NV Ls has already been discussed in
Sect. 2.5.3. In the ECS family of protocols, ECS1 has NV Ls in the range of 10–
18. On the other hand, the NV Ls of ECS2 are reduced to a fixed number of 6, and
as a result, ECS2 improves transmission reliability by about 66.7% with respect to
ECS1. As for ECS, the compactness of its transmission packet restricts the NV Ls

to the range of 5 to 12, which results in a reliability improvement of up to 72.2%
with respect to ECS1 and makes it competitive with ECS2.

2.5.7 Robustness

As highlighted in Sect. 2.5.5, ECS is indifferent to pulse shape and width because
only edges are used for decoding at reception. This important ECS property results
in a remarkable tolerance toward clock discrepancies, jitters, and skews. A detailed
analysis of these clocking and timing aspects are presented in Chap. 3. Therein,
a threshold on clock rate difference between transceivers is derived, below which
the protocol operates with zero decoding error over an ideal channel. It must be
noted that this threshold does not define a boundary beyond which ECS needs a
synchronization mechanism. It is rather an indicator when ECS needs to change its
protocol parameters to enable communication with network nodes that are operating
at significantly different clock rates. Chapter 6 highlights the methodology to
establish a successful communication link automatically when the abovementioned
threshold on clock difference is crossed. In the ideal scenario where there are no
clock skews or jitters, the threshold is determined by α and αth. For the minimum
recommended settings of α = 4 and αth = 2, the upper bound on clock rate
difference for a 25 MHz transceiver is 10.3 MHz. Beyond this difference, it is
impossible for the receiver counter on the slow transceiver to reach the threshold
value of 3 or higher, as discussed in Sect. 2.5 and illustrated in Fig. 2.6. Clock
jitters and skews result in the decrease of this ideal upper bound on clock rate
difference. The possible ranges for clock skews and jitters are presented in Chap. 3,
where a trade-off between reliability, defined as robustness with respect to clock
rate variations, and data rate is quantified and used for protocol parameter selection.
Using α = 4, an ECS clock equal to the system clock of 25 MHz, and worst-
case clock skew and jitter, the upper bound on clock rate difference between ECS
transceivers is 4.6 MHz (∼20%). In practice, this means that if one ECS end is
operating at 25 MHz, the other ECS end can operate in the range [20.4 MHz,
29.6 MHz] without impacting the reliability of the transmission. One important area
of future investigation is the impact of non-ideal transmission channels on ECS
robustness.



2.5 Analysis 35

2.5.8 Overall Latency

The impact of ECS on the latency of the communication system very much depends
on the ECS hardware implementation. The minimum latency is one clock cycle,
and to achieve it, the four data segments can be encoded together before starting
transmission. The drawback of this approach is that the encoder hardware and the
memory used to store encoding information would be quadrupled. The alternative
that we have adopted is a pipelined datapath where only two segments are encoded
before starting transmission. Indeed, at least two segments need to be encoded to
generate CNOIs and initiate the transmission process, as explained in Sect. 2.1.3.
This pipelined architecture requires only twice the encoding and memory hardware.
The same hardware is reused to encode the two segments, while the indices
of the previous two segments are being transmitted. The encoder hardware is
combinational, which results in a latency of one clock cycle only. On the other
hand, sequential implementation of the encoding process would introduce a latency
of more than one clock cycle.

2.5.9 Networking

ECS is architecturally flexible in that it supports a wide variety of networking
options. It can be configured in various network topologies, including Master–Slave,
Star, Ring, Tree, and Peer-to-Peer. In a single-channel implementation (Chap. 9),
several MSP430 cores have been used to establish a Master–Slave network of low-
end devices, as shown in Fig. 2.18a. The same setup can be used to establish a ring
network, as shown in Fig. 2.18b. In the latter, where communication is restricted to
nearest-neighbor devices, device IDs have been used to enforce the ring topology.

Fig. 2.18 Network topology [50]: (a) Master–Slave, (b) configuring ring



36 2 Edge-Coded Signaling Techniques

For example, MSP430 with ID number 2 can only communicate with the devices
having ID numbers 1 and 3. Device IDs can similarly be used to implement a
network of ECS devices without any change in the underlying hardware.

2.6 Conclusions

In conclusion, ECS is a novel, single-channel, communication protocol that simulta-
neously meets the requirements of low power, high data rate, reliability, and secure
transmission for device-to-device communication between constrained edge nodes.
ECS reduces silicon area and power consumption significantly by eliminating the
need of power- and area-hungry circuits for clock and data recovery. This is because
ECS packet reception and decoding are based on counting the rising edges of the
transmitted pulses which makes the pulse width inconsequential. ECS is robust
with respect to skews, jitters, and clock variations and combines the best features
of both ECS1 and ECS2 with respect to data rate, reliability, packet security, and
power efficiency. In summary, ECS is the better choice for constrained devices in a
variety of use cases, including small footprint transceivers, wireless sensor nodes,
implantable devices, and body-area networks. The protocol can be applied to other
communication media such as photonics, infrared, and visible light.



Chapter 3
Timing and Robustness Analysis

Due to the lack of secured timing sources globally available
today, a reasonable approach to securing time is to ensure
systems can maintain timing within the tolerance of their
application for the duration of a timing compromise.

Cyber-Physical Systems Public Working Group, NIST

The objective of this chapter is to provide a full theoretical framework that underlies
the timing and robustness of ECS protocols. This framework is used to derive
rigorously the performance parameters that we discovered empirically in Chap. 2,
including those related to ECS robustness with respect to clocking uncertainties. The
most important result of the ECS theory presented in this chapter is the crucial role
played by the delay (expressed in transmitter clock cycles) between data segments
in a given packet. For a given encoding scheme, this delay determines both the ECS
average data rate and the maximum clock uncertainty tolerance. Rigorous timing
and robustness analysis is provided to quantify the ECS robustness margin in the
presence of transmitter-to-receiver clock variations as well as clock skew and jitter
within each clock. To conduct the analysis, we have found it convenient to select the
ECS1 packet format of Fig. 2.9.

3.1 Timing and Robustness Analysis

Robustness is directly related to the capability of behaving appropriately in the
presence of different sources of errors. In this section, we first survey the sources
of errors in ECS1 channels. Then we describe the intrinsic timing parameters of the
ECS1 protocols and introduce some of the constraints they must satisfy for error-
free operation. The last subsection is devoted to deriving a closed-form upper bound
on clock discrepancy between transmitter and receiver for error-free operation in the
presence of clock variations.

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_3


38 3 Analysis

3.1.1 Sources of Errors

Clock discrepancy between transmitter and receiver is one of the main sources
of errors and creates significant trouble in digital communication systems. The
problem becomes even more serious when single-channel communication is used.
The clocks of both ends need to be synchronized to limit the errors for which a
variety of techniques such as clock-and-data recovery (CDR) circuits are available.
ECS1 is an ultra-low-power single-channel protocol, without CDR, but with unique
robustness properties with respect to clock variations. Such variations are expected
to be very wide-spread in the IoT environment where IoT devices with different
clocking and performance requirements need to communicate. Each end of the
ECS1 communication link is comprised of a transmitter and a receiver. The
subsequent formulation and calculations are carried out assuming the transmitter
is running at a slow clock rate fS while the receiver is running at fast clock rate fF .
The link setup is shown in Fig. 3.1a and b. In the remainder of this chapter, we adopt

Fig. 3.1 (a) ECS1 communication link. (b) ECS1 link with clock discrepancy between transmitter
and receiver. (c) ECS1 waveforms with clock discrepancy. (d) Receiver clock jitter



3.1 Timing and Robustness Analysis 39

Fig. 3.2 Effect of frequency on jitter tolerance

the convention that all the parameters with S subscript are for the slow end and with
F subscript are for the fast end.

The sources of timing errors in ECS1 are as follows:

1. The data pulse jitter is the main source of time difference between two adjacent
data pulses. If such jitter is high, the pulses start overlapping, which introduces a
missing-pulse error at the receiver. The extent to which ECS1 can tolerate these
jitters is explained using Fig. 3.2, where TT is the transmitter clock time period.
The faster the clock, the closer the data pulses are to each other, and therefore
a small jitter may lead to successive pulse overlap. This explains the plot in
Fig. 3.2, which shows that data pulse jitter tolerance is inversely proportional
to transmitter clock rate. For a given clock rate, the data pulse jitter tolerance
increases with the increase in pulse width coefficient w.

2. The phase shift � is the time difference between the edge of the receiver clock,
fF , and the transmitter clock edge marking the start of the inter-symbol delay,
Tα . The phase shift may affect the detection of inter-symbol delay especially in
the presence of clock discrepancies. Phase shift ranges from 0 to TF , the period
of the receiver clock, as shown in Fig. 3.1c. In terms of shift percentage ϕ, we
have � = ϕTF , 0 ≤ ϕ ≤ 1.

3. Receiver clock jitter, �, may also affect the detection of inter-symbol delay. The
jitter value is related to the receiver clock period TF by � = ψTF , 0 ≤ ψ ≤ 0.5,

where ψ represents jitter percentage. Receiver clock jitter is shown in Fig. 3.1d.
4. Noise associated with the off-chip environment can have an effect on data pulses.

The increase or decrease in pulse levels, due to the external noise, makes it
difficult for the receiver to detect pulses correctly. Depending on the noise level,
an extra pulse may be detected or a pulse may be skipped. In both cases, one
gets a decoding error. To analyze the performance of ECS1 in the presence of
noise, the encoded pulse stream of data is exposed to white Gaussian noise.
The noisy signal is filtered at the receiver end, then decoded according to the
ECS1 algorithm, and the number of errors encountered is counted. The results
are plotted in Fig. 3.3 for different values of Eb/N0 (the ratio of energy-per-bit



40 3 Analysis

Fig. 3.3 BER analysis

to noise power spectral density) for both BPSK and ECS1. ECS1 is less immune
to noise as compared to BPSK, but its BER rapidly reduces to zero at Eb/N0
of ∼10.5 dB. For the lower signal-to-noise ratios, a lightweight error correction
scheme can improve the BER albeit at the expense of a small increase in power
consumption. A full system-level analysis of this trade-off is the subject of on-
going work. In this chapter, we assume that the BER is zero.

3.1.2 Pulse Width Coefficient

The data pulse width coefficient, w, is the number of transmitter clock cycles during
which the pulse remains high. An example is shown in Fig. 3.1c. The inter-symbol
separation increases linearly with the pulse width as will be explained in the next
subsection. On the other hand, the data rate reduces with inter-symbol separation.
For a 50% duty cycle, the total pulse duration � = 2wT , where T is the clock
period of the transmitter, see Fig. 3.1c. A pulse width equal to half-clock cycle (i.e.,
w = 0.5) results in the highest data rate and lowest requirement on the inter-symbol
separation coefficient (see next paragraph). With the same pulse widths, for both the
transmitter and receiver (i.e., wS = wF ), the transmitted pulse time period would
be equal to the time period at receiver (i.e., TS = TF ). However, in the presence of
clock discrepancies, wS �= wF , the transmitted data pulse with time period TS will
not map exactly to the time period TF at the receiver. Instead, we have

TS = wS

wF

TF �⇒ wS = fF

fS

wF . (3.1)



3.1 Timing and Robustness Analysis 41

This relationship expresses the invariance of the number of transmitted pulses. This
number depends solely on the product of the pulse width and the corresponding
clock rate.

3.1.3 Inter-symbol Separation Coefficient

The inter-symbol separation coefficient, α, is the number of transmitter clock cycles
used to separate the pulse streams of two adjacent symbols. This is the most
important parameter in ECS1 design as it affects both its data rate and reliability.
A badly selected α will result in increased decoding errors and possibly complete
failure. As will be seen in the following paragraphs, an efficient ECS1 protocol
requires that α be an even number. The smallest possible α value is 4. TαS

, the inter-
symbol separator in terms of transmitter time period (TS) is shown in Fig. 3.1c and
is calculated as TαS

= αSTS . To generate such time interval, the transmitter pulls
the line low and keeps it in that state for α clock cycles. For a successful reception,
the inter-symbol interval at both ends must satisfy the time invariance principle:

αF TF = αSTS (3.2)

In the presence of clock discrepancies, phase shift, and clock jitter, the time
invariance condition is expressed as

αF TF = αSTS + ϕTS + ψTS �⇒ αS = fS

fF

αF − (ϕ + ψ) (3.3)

The correct ECS1 transmission and reception of data depend on several param-
eters that need to be selected judiciously. These parameters include the delay
threshold and the inter-symbol interval.

Inter-symbol Interval Threshold

A portion of inter-symbol interval, called the interval threshold T hα , shown in
Fig. 3.1c, is used at the receiver to discriminate between data pulses and inter-
symbol separator. The optimal threshold is given by

T hα = Tα

2
= αF TF

2
= αT hTF (3.4)

where αT h = αF /2 is the separation threshold coefficient. T hα ensures that the
receiver clock-cycle count does not decrease during the reception of the inter-
symbol separator to the extent that the receiver stops detecting it as inter-symbol
separation. Also, the cycle count should not increase to the extent that the receiver



42 3 Analysis

starts detecting data pulses as inter-symbol separator. The absence of such optimal
threshold will result in decoding errors due to either pulse undercounting or inter-
symbol interference.

Selection of Inter-symbol Separation Coefficient

To distinguish the data pulses and the inter-symbol separators, the transmitter-
generated delay should be longer than the duration of one data pulse. The inter-
symbol delay coefficient should therefore satisfy

αSTS > TS + ϕTS + ψTF �⇒ αS > 1 + ϕ + ψ
fS

fF

(3.5)

where local clock discrepancies due to receiver phase shift and clock jitter are
accounted for. Using the maximum possible values of 1 and 0.5 for ϕ and ψ ,
respectively, in (3.5) and assuming fF = fS , we get αS > 2.5.

In theory, the integer αS can be chosen equal to 3, but from a hardware
implementation view point we set it equal to 4 as it is easier to implement
multiplication and division of power 2 numbers using left or right shift operations.
In the next subsection, we study the interplay between inter-symbol separator and
robustness with respect to clock variations.

3.1.4 Clock Discrepancy Tolerance

Given the slow-end clock frequency, fS , and the parameters αS, αF ,wS,wF ,ψ,

and ϕ of the ECS1 system, our goal now is to find the highest possible fast-end
clock frequency fFmax above which decoding errors start to occur. To find fFmax ,
the condition for error-free operation should be fulfilled, namely, the pulse duration
should be less than the inter-symbol threshold

2wSTS ≤ αS

2
TS (3.6)

Using wS from (3.1) and αS from (3.3), we get

4wF f 2
F + (ϕ + ψ) fS fF − f 2

S αF ≤ 0 (3.7)

which is satisfied if and only if

β ≡ fF

fS

≤
⎡

⎣

√
(ϕ + ψ)2 + 16 wF αF − (ϕ + ψ)

8 wF

⎤

⎦ ≡ βmax (3.8)



3.1 Timing and Robustness Analysis 43

Fig. 3.4 (a) Discrepancy limit vs. inter-symbol separation α. (b) Regions of operation (fS =
25 MHz)

which is the main theoretical result of this chapter. If β ≤ βmax , ECS1 transmission
will be error free. It is interesting to note that βmax is linear in the receiver clock jitter
and phase shift but varies as the square root of receiver inter-symbol separation.

If we are to keep the inter-symbol delay coefficient α the same for both ends, the
rate of the fast clock should not exceed the limit imposed by fFmax = βmaxfS . In
Fig. 3.4a, we plot fFmax for fS = 25 MHz. Of course, for error-free transmission,
fF ≤ fFmax . Figure 3.4b identifies different regions of operation. The safe region
of operation is marked up to the limit calculated using fFmax . Beyond this, there is
a region of uncertainty in which errors start occurring randomly. At a certain level
of clock discrepancy, total failure occurs due to the failure in detecting even a single
inter-symbol separator. The recommended region of operation is of course the one
delimited by fFmax .

3.1.5 Selection of Inter-symbol Separation Coefficient

Another interpretation of the inequality (3.7) is as a design formula for selecting
an appropriate value of receiver inter-symbol separation in the presence of clock
discrepancies between transmitter and receiver and the presence of local clock non-
idealities at the receiver. Solving for αF in (3.7), we get

αF ≥ � 4 wF β2 + β (ϕ + ψ) � ≡ AF (3.9)

After selecting an inter-symbol separation coefficient for the slow end αS , the inter-
symbol separation coefficient for the fast end αF is set equal to αS if fF ≤ fFmax .
Otherwise, αF is a scaled version of αS given by

αF = mod(AF , 2 ) + AF (3.10)

This formula guarantees that αF is the smallest even integer satisfying (3.7).



44 3 Analysis

Fig. 3.5 Trade-off between robustness and data rate

3.1.6 Summary on Inter-symbol Separation

The larger α, the more resilient ECS1 is to timing variability. This however is
achieved at the expense of significantly reduced data rates and increased power
consumption. This trade-off is illustrated in Fig. 3.5. A careful adjustment of α is
necessary to meet the requirements of a particular application. The α value used
in all our experiments is 4, with w = 0.5. Values of α less than 4 will result in
transmission failure even if the transmitter and receiver are running on ideal clocks
with the same frequency. Therefore, the minimum allowable value of α is 4.

3.2 Protocol Failure Modes and Error Correction

ECS1 transmits all the information in the form of a pulse train. A common case of
erroneous transmission happens when there is a pulse miscount. In this case, ECS1
stops reception immediately and keeps it in a “halt” state until an explicit reset signal
is sent, at which time transmission is resumed. With the use of a simple counter, the
halt state provides a useful error detection mechanism. The counter is activated via
the receiver’s busy signal, which remains active when the error occurs. The counter
gets reset at each falling edge and continues to count until the next falling edge.
If the count reaches a threshold value, T hError , the state is considered an error and



3.3 Experimental Verification 45

thus a reset signal is generated. An appropriate value of the error detection threshold
is

T hError = 2 ( α + 2 w l ) (3.11)

which is twice the number clock cycles needed for the inter-symbol separation.
A variety of available techniques [65] can be employed to handle an error

condition. One simple recommendation is to request the transmitter to resend the
data. Another recommendation is for the configurable layer of the protocol to send
an acknowledgment for each of the successful transfers. The only error that cannot
be detected using the count method is the distortion of middle pulses in the index
pulse train. In such cases, there will be no halt state and the receiver will infer a
wrong index number. This transmission error can be handled using a simple parity
check or other similar methods. However, such pulse distortion error is very unlikely
as it occurs only in the presence of excessive external noise.

3.3 Experimental Verification

An experimental setup comprised of two IoT nodes communicating using ECS1, as
shown in Fig. 3.6, is used to verify the limitations imposed by (3.8) on the maximum
tolerable clock frequency for the fast end. Each node is comprised of an ECS1
protocol module (SED), a Logical Topology Control module (LTC), a PHY layer,
and a Test Runner, as shown in Fig. 3.6a. The SED and PHY are implemented in
Verilog HDL. The LTC and test runner are implemented using the Verilog IP of TI
MSP430 microcontroller. The whole setup is implemented in Verilog on the Xilinx
Virtex-7 FPGA platform. Two clocks, one for each node, are generated with the
help of a Virtex-7 on-chip PLL, as shown in Fig. 3.6b. The slow-node clock is fixed
at 25-MHz, but the rate of the fast-node clock is increased gradually from 25-MHz.
Using α = 4, w = 0.5, ϕ = 1, and ψ = 0.01 at both ends, we have βmax = 1.2. The
LTC of the slow node directs the ECS1 transmitter to send the 16-bit data starting
at 0 with an increment of 1 at each transmission. The fast end receives the data and
replies back the same. The returned and original data words are compared to verify
the complete round-trip chain. The experiment confirmed the results of (3.8) that
the ECS1 transmission works flawlessly until the clock frequency of the fast node
reaches ≈30-MHz (20% discrepancy), which is in agreement with the theoretical
bound of (3.7).



46 3 Analysis

Fig. 3.6 Experimental setup (a) Inside each node (b) Clocks generation

3.4 Conclusions

In this chapter, we have presented a detailed timing analysis for ECS protocols to
meet robustness requirements. In the analysis, the inter-symbol separation parameter
used to delimit the boundary between data segments in a packet plays a significant
role. In addition to the gained insight into ECS1, the analysis helps quantifying the
trade-off between data rate and robustness. Based on our analysis, an inter-symbol
separation coefficient α of 4 clock cycles and a pulse width w of half-clock cycle are
recommended. These recommended design parameters have been experimentally
verified using a Xilinx Virtex7 FPGA platform that illustrates the simplicity,
efficiency, and reliability of using ECS as a single-channel communication protocol
for IoT devices. These additional ECS features augment the already proven ones of
low-power, high data rate, and small footprint.



Chapter 4
Doubling the ECS Data Rate

Better three hours too soon than a minute too late.

William Shakespeare

The data rate of these edge-coded schemes is a function of clock frequency because
at least one clock cycle is needed to generate one pulse. One possible method
to achieve higher data rates is to increase clock frequency, but in the context of
constrained IoT edge nodes, such increase will result in high power consumption
and more complex circuitry to implement frequency scaling. Another limitation
on edge nodes is the limited range of frequency scaling and the upper bound that
the node may impose on the available clock rates. In this chapter, we propose
an alternative method to improve the data rate using edge coding based on both
the rising and falling edges of the transmitted pulses. The contrast between the
original single-edge-coding scheme and the proposed double-edge-coding one is
illustrated in Fig. 4.1. Intuitively, the double-edge scheme should achieve twice the
data rate of the single-edge scheme. However, the hardware implementation of the
latter coding is not trivial and presents several design challenges. In this chapter,
we use the single-edge coding of edge-coded signaling (ECS) as a starting point
and present an efficient hardware implementation of the double data rate (DDR)
signaling transceiver that remains within the power and area envelop of the single-
edge scheme. The proposed hardware design of DDR-ECS is implemented over
an FPGA platform and is further synthesized using GLOBALFOUNDRIES 65nm

CMOS technology. The synthesis results show that the proposed coding scheme
indeed achieves double data rate while remaining well within the power and area
budgets of the standard edge-coded schemes.

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_4


48 4 Doubling the ECS Data Rate

Fig. 4.1 (a) Standard serial transfer. (b) Single-edge-coded signaling. (c) Double-edge-coded
signaling. (d) Double-edge-coded reception

4.1 Single-Edge Scheme: An Example

Let us consider an example of ECS’s single-edge scheme to prepare a stage to
understand the double-edge scheme better. Assume we want to transmit a decimal
number “267” that is “0000 0001 0000 1011′′ in binary representation. First, ECS
breaks the B-bit data word into segments of size l and generates N = B/l segments.
In our example, we have used B = 16 and l = 4, which results in four 4-bit
segments S1 = 1011, S2 = 0000, S3 = 0001, and S4 = 0000. Second, each
segment is encoded. The ECS encoding process inverts the segment bits if the
number of ON bits is greater than half the segment size (i.e., >l/2). A Flag bit
for each segment is used to indicate if the segment is encoded or not. All the
four segments are concatenated to generate a combined 4-bit flag, CFlags =



4.1 Single-Edge Scheme: An Example 49

Fig. 4.2 (a) Standard ECS transmission (Data = 267). (b) DDR-ECS transmission (Data = 267).
(c) DDR-ECS transmission (Data = 132)

{F lag4, F lag3, F lag2, F lag1}. A 2-bit NOI flag is used to specify the number
of ON bits in an encoded segment. The NOIs of two consecutive segments are
concatenated to generate two combined 4-bit NOIs, CNOI1 = {NOI2, NOI1}
and CNOI2 = {NOI4, NOI3}. In our example, only segment S1 satisfies the
encoding condition (3 > l/2) and, therefore, the bits are inverted to yield an updated
segment S1 = 0100 and the respective flag bit, F lag1, is set high to indicate
the inversion. At the end of the encoding process, the combined flags would be
CFlags = 0001. The NOIs would be NOI1 = 1, NOI2 = 0, NOI3 = 1,
and NOI4 = 0; hence, CNOI1 = 0001 and CNOI2 = 0001. Next, the ECS
transmitter selects the ON bits only in each encoded segment. In our example, we
have index number 2 from S1 and index number 0 from S3. At this stage, all the
information pieces are packeted together to construct a packet. Each piece in the
packet is then transmitted in the form of a pulse stream where the number of pulses is
equal in count to the number represented by the piece, as shown in Fig. 4.2a. Please
note that ECS sends an additional pulse for each pulse stream (e.g., CNOI + 1 or
index + 1). For indices, the additional pulse is necessary to handle the encoding
of index 0. Otherwise, no pulse will be transferred if the bit at index 0 is ON.
For CNOIs, the additional pulse is needed to inform the receiver not to expect
any index number when the count of ON bits in the first two segments is zero. For
CFlags, an additional pulse is needed to represent zero content of CFlags as in the
case when no segment goes through the encoding inversion. All the pulse streams
are separated by an optimum inter-symbol separation of α = 4 clock cycles, as
shown in Fig. 4.2a. At the receiver end, the rising or falling edges of all the pulse
streams are counted to infer all the pieces in the packet. The received information
is then used in the decoding process to rebuild the transmitted data. The ECS is
dynamic in that even two consecutive data words may result in a different number
of pulses and, therefore, different data rates.



50 4 Doubling the ECS Data Rate

4.2 Double Data Rate Edge-Coded Signaling

The transmission and reception process of the standard ECS, as described in the
previous section, employs only one pulse edge in counting pulses, while the other
edge remains unused. The double data rate ECS (DDR-ECS) puts these unused
edges to work. Indeed, DDR-ECS uses both the rising and falling edges to transmit
an edge stream instead of transmitting a pulse stream. For example, if we need to
transmit “4,” the ECS needs four pulses identified with their rising edges, whereas
DDR-ECS needs two rising and two falling edges. Let us take a concrete example.
To transmit a number “267” using DDR-ECS, the packet formation process is the
same as for ECS. However, the transmission process will differ as per the following
rules:

1. The transmission always starts with a low signal level.
2. Toggle the signal level at each iteration of the edge-stream counter.
3. The counter should increment at both pulse edges. If the count of edges is odd,

the final increment will use only one pulse edge.
4. Keep the last signal level during the inter-symbol interval.
5. The counter for the inter-symbol interval should also follow Rule 3.
6. At the end of the packet (e.g., CFlags), force the signal low at the end of the

inter-symbol interval.

The two DDR-ECS transmission examples are shown in Fig. 4.2b, c. It is observed
that the transmission time in DDR-ECS is half of the single-edge one, and
therefore, the data rate is doubled. The next section presents a small footprint, high-
performance hardware implementation of DDR-ECS.

4.3 Hardware Implementation

4.3.1 Transmitter

The hardware for the DDR-ECS transmitter comprises three main modules: edge-
stream transmitter, encoder, and a finite state machine, as shown in Fig. 4.3a. The
edge-stream transmitter inputs a count of edges and transmits an edge stream along
with an inter-symbol separator. The module starts sending edges when the Start
Edge Stream signal is set high by the FSM, and sends the End-of-Separator signal
to the FSM when the transmission of an edge stream is complete. If the module is
active, either a positive or a negative edge counter is incremented at each edge of
the clock, and the output is toggled. The process continues unless the total count
of edges reaches the input edge-stream count. The encoder inputs a 4-bit segment,
applies ECS encoding, and outputs the number of ON bits, index numbers, and
the corresponding flag bits. The encoder is combinatorial with its truth table given
in Fig. 4.3e. Because we need to generate two NOIs to form one CNOI , two



4.3 Hardware Implementation 51

Fig. 4.3 Hardware block diagram. (a) Transmitter. (b) Receiver. (c) Receiver decoder 1. (d)
Receiver decoder 2. (e) Transmitter encoder

encoders are integrated in parallel. All the encoder outputs are routed to the edge-
stream transmitter via a MUX that forwards a piece of a packet for transmission with
the selection bits based on inputs from the FSM. The FSM is the main control logic
of the transmitter and maintains the desired flow of the modules. The FSM inputs
a 16-bit data to transmit, asks encoders to encode the segments, iteratively directs



52 4 Doubling the ECS Data Rate

the MUX to forward an edge count to the edge-stream transmitter, and for each
forwarded count, activates the edge-stream transmitter. At the completion of each
edge stream, a Local Reset is generated to make the stream transmitter ready for the
next iteration. The DDR-ECS transmitter FSM state diagram is given in Fig. 4.4a.

4.3.2 Receiver

The main building blocks of a DDR-ECS receiver include an edge-stream receiver,
decoders, and a control FSM, as shown in Fig. 4.3b. The edge-stream receiver is
activated when a rising edge of an input edge stream has arrived. The module counts
both the positive and negative edges of the input stream unless the inter-symbol
separator is detected. The FSM of the inter-symbol separator detector is given in
Fig. 4.4c. At each rising edge of the receiver clock, the current and the previous total
edge counts are compared. If the counts match, it is an expectation of the arrival of
inter-symbol separator since there is no input edge following the last FSM iteration.
The FSM enters the verification mode, and if the edge count equality persists, the
separator is declared and notified to the main FSM module. There are two decoders
in the DDR-ECS receiver. Decoder 1 is responsible for rebuilding the two segments
by looking into the input index numbers. Decoder 2 decodes all the four segments as
per the received CFlags. The decoders are combinatorial in nature and are shown in
Fig. 4.3c, d. The main FSM gets activated at Rx Started signal from the edge-stream
receiver and waits for the Separator Detected signal. At each separator detection,
the FSM collects the edge count, puts the count at the target position in the packet
frame, and asks the decoders to rebuild the data word. The DDR-ECS receiver FSM
state diagram is given in Fig. 4.4b.

4.4 Formulation and Optimizations

This section analyzes the effect of the proposed double-edge-coding scheme on
protocol performance as compared to the standard ECS. Let bs

i be the i-th bit, NOIs

be the number of ON bit indices, and Fs be the flag bit for the s-th encoded segment.
Also, let Cs be the number of clock cycles required to generate the edge streams for
the encoded segment indices, and let CIx and CFy be the concatenated number of
indices CNOI , and the concatenated flag bits CFlags, respectively. Furthermore,
denote by Cα the number of clock cycles per inter-symbol separation, by Ct the total
number of clock cycles needed to transmit an ECS packet, by T the clock period,
and by R the data rate. The mathematical expressions linking these quantities for
DDR-ECS are given in Table 4.1(a). They are similar to those of the standard ECS
[56] except that the number of clock cycles is approximately half. Remember that
both the rising and falling edges are being used in DDR-ECS to transmit the edge



4.4 Formulation and Optimizations 53

Fig. 4.4 FSMs. (a) Transmitter. (b) Receiver. (c) Separator detection



54 4 Doubling the ECS Data Rate

Table 4.1 Comparison and results

ECS (Chap. 2 [56]) DDR-ECS

(a) Formulation

1 R B/(T Ct )

2 Ct Cα + ∑N/2
x=1 CIx + ∑N

s=1 Cs + ∑N/l

y=1 CFy

3 Cα (N/l + N/2 + ∑N
s=1 NOIs)α ECS_Cα/2a

4 CIx 1 + NOI2x−1 + 2l/2NOI2x

⌈
ECS_CIx/2

⌉

5 NOIs

∑l−1
i=0 bs

i ECS_NOIs

6 Cs

∑l−1
i=0(i + 1)bs

i

∑l−1
i=0

⌈
(i + 1)bs

i /2
⌉

7 CFy 1 + ∑l−1
i=0 2iFs

⌈
ECS_CFy/2

⌉

s = i + l(y − 1)

(b) Optimization

8 E[CIx ] (2 + l(1 + 2l/2))/2 ECS_E[CIx ]/2

9 E[CFy ] (1 + 2l )/2 ECS_E[CFy ]/2

10 E[Cs ] l(l + 1)/4 l(l + 2)/8

11 f (l)
�= ∂E[Ct ]/∂l = 0 �

(8 + 2l)α + 2l − l3(2l/2 ln(2) + 1) − 2l (2l ln(2) − 4) + 4 = 0 (ECS)

(32 + 8l)α + 4l − l3(2l/2 ln(2) + 2) − 2l (4l ln(2) − 8) + 8 = 0

(DDR-ECS)

12 lopt 2.83 ≈ 4 bits 3.16 ≈ 4 bits

13 αopt 4 clock cycles 2 clock cycles

(c) Performance (25 MHz clock)

14 Data rateb 4.2–26.7 (6.4 Avg.) 7.8–44.4 (12 Avg.)

15 Powerc ≈19 ≈19

16 Ebd 0.7–4.5 (2.9 Avg.) 0.4–2.4 (1.6 Avg.)

17 Areae ≈2098 ≈1943
aThe notation ECS_ represents the equation from the ECS column
bMb/s
cµW
dpJ/bit
eGate count

streams. We need exactly half the number of clock cycles to transmit an even number
of edges (e.g., 3 cycles for 6 edges), whereas if the number of edges is odd, we need
a full clock cycle for the last edge (e.g., 3 cycles for 5 edges). To incorporate the odd
number of edges in the mathematical expressions, the ceiling operator �� is used in
the DDR-ECS formulas for Cs , CIx , and CFy .

The optimum length αopt of inter-symbol separator is reduced from 4 for ECS
to 2 for DDR-ECS, as shown in Table 4.1(b). The αopt parameter ensures both
successful packet reception and maximum data rate. Below this optimal value, the
receiver would fail to decode the packet successfully because of the ambiguity
between edge spacing and inter-symbol separations. A value of α larger than



4.5 Experimental Verification and Results 55

Fig. 4.5 f (l) vs. l

αopt = 2 will increase the tolerance to clock variations but decrease data rate. To
find the optimum segment length that maximizes data rate, we minimize the number
of clock cycles needed to transmit the DDR-ECS packet. Assuming that the data and
flag bits are equally likely to be 0 or 1, the expected values of CIx , CFy , and Cs

are given in Table 4.1(b). Using these expected values and N = B/l in equation for

Ct , and defining the function f (l)
�= ∂E[Ct ]/∂l, we get the f (l) expression shown

in Table 4.1(b). The optimal value lopt can be determined by finding the roots of
the non-linear equation f (l) = 0. A graphical method to find the optimal segment
length lopt for a given α is to plot f (l) and find the l-axis intercept point. Such a
plot is shown in Fig. 4.5 for α = 2, which results in lopt = 3.16 ≈ 4 bits. The
value of lopt is the same as for ECS, which means that using both edges in edge
coding does not affect the inherent properties of edge-coding signaling techniques.
Segments smaller than 4 bits reduce data rate due to the increased number of inter-
symbol separators. On the other hand, segment lengths larger than 4 bits affect data
rate negatively due to the increase in MSB index numbers. To achieve maximum
data rate, a segment length of 4 bits has been selected.

4.5 Experimental Verification and Results

The DDR-ECS transceiver hardware discussed in Sect. 4.3 is realized using Verilog
HDL. A full experimental setup comprised of two nodes is implemented over a
Xilinx FPGA platform. Each node includes a DDR-ECS transmitter, a receiver, and
control logic. A clock speed of 25 MHz is used at both ends of the communication
link. The selection of 25 MHz is just for illustration purposes, and much higher
clock rates can be used. It is to be noted that the ECS data rate increases linearly
with the clock rate. The control logic at Node1 sends the 16-bit data starting at 0 with
an increment of 1 at each transmission. To verify the complete round-trip chain, the



56 4 Doubling the ECS Data Rate

Fig. 4.6 Data rate histograms at 25 MHz clock

control logic at Node2 sends back the received data to Node1 where the original and
returned data words are compared. The implemented DDR-ECS transceiver is also
synthesized using GLOBALFOUNDRIES 65 nm CMOS technology. The synthesis
results are shown in Table 4.1(c). It is clear from the results that double-edge-coded
signaling has approximately doubled the data rate without impacting the inherent
properties and the performance of the ECS protocol. DDR-ECS offers dynamic data
rates in the range of 7.8–44.4 Mb/s (averaging 12 Mb/s) with a 25 MHz of a clock.
The data rate histogram for a 16-bit DDR-ECS is shown in Fig. 4.6. The power
consumption is unchanged, but the energy-per-bit is improved approximately by a
factor of two. Interestingly, the gate count for the DDR-ECS transceiver is slightly
less than the ECS one. As compared to NRZ serial transfer using the state-of-the-
art low-power CDR, DDR-ECS reduces power consumption by more than 79% and
area by more than 88% as shown in Table 4.2.



4.5 Experimental Verification and Results 57

Ta
bl
e
4.
2

D
D

R
-E

C
S

co
m

pa
ri

so
n

w
ith

si
m

pl
e

se
ri

al

Po
w

er
(µ

W
)

A
re

a
(g

at
e

co
un

t)

SR
L

a
C

D
R

To
ta

ld
(P

I)
e

SR
L

C
D

R
c

To
ta

ld
(P

I)
e

D
D

R
-E

C
S

19
N

/A
19

19
43

N
/A

19
43

65
nm

N
ST

b
32

.1
70

10
2.

1
(8

1%
)

13
27

15
,6

00
16

,9
27

(8
8%

)
90

nm
[3

7]

62
.5

94
.6

(8
0%

)
60

,0
00

61
,3

27
(9

7%
)

90
nm

[3
8]

90
12

2.
1

(8
4%

)
N

/A
N

/A
90

nm
[1

2]

57
.5

89
.6

(7
9%

)
19

,8
00

21
,1

27
(9

1%
)

65
nm

[7
7]

60
.6

92
.7

(8
0%

)
N

/A
N

/A
28

nm
[7

3]
a
Se

ri
al

iz
er

b
N

R
Z

se
ri

al
tr

an
sf

er
c
E

st
im

at
ed

ca
lc

ul
at

io
n

d
SR

L
+

C
D

R
e
%

In
cr

ea
se

as
co

m
pa

re
d

to
D

D
R

-E
C

S



58 4 Doubling the ECS Data Rate

4.6 Conclusions

As compared with the standard single-edge-coded signaling, the proposed double
data rate, edge-coded signaling, DDR-ECS, doubles the data rate without any
noticeable impact on the ECS power and area budgets. The proposed hardware
implementation of the DDR-ECS transceiver was shown to preserve the same power
consumption and a similar form factor as ECS. Additionally, the built-in features of
secure and reliable ECS communication are preserved.



Chapter 5
Power Management

There is no energy crisis, only a crisis of ignorance.

R. Buckminster Fuller

Chapter 2 has reported on the power consumption of the three generations of ECS
based on their functional logic only but ignored the power consumed by the physical
layer (PHY). This layer is comprised of two tri-state buffers and a pull-down resistor
connected to the single wire. Although the ECS family itself is power-efficient, the
resistance can be the source of significant power consumption. The goal of this
chapter is twofold. First, we address the gap in the ECS family power analysis
by including the PHY layer in the overall power consumption. Second, we show
how to reduce the power consumed in the PHY layer by controlling the width
of the transmitted pulses. Furthermore, a mathematical model is developed and
used to derive rigorously the performance parameters related to ECS PHY power
management. The mathematical model is also used to derive a lower bound on the
width of the pulses and therefore a lower bound on the power consumed in ECS
PHY. The new power control policy is applied to a single-wire link with significant
power saving achieved above and beyond the clock and data recovery. These power
savings are obtained without any impact on data rate and bit error rate (BER). The
implementation of power management technique uses ECS1, while the methods and
results are valid to the whole ECS family.

5.1 ECS1 Power Management

5.1.1 Sources of Power Consumption

The ECS1 power consumption reported in Chap. 2 addresses only the ECS1
functional logic but ignores the power consumption in the PHY layer. For instance,
the resistor connected to the single wire may be an important source of power

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_5


60 5 Power Management

Fig. 5.1 ECS1 transceiver power consumption (50% duty cycle)

consumption in a full transceiver system. Taking ECS1 as an example in Fig. 5.1, the
resistor contributes almost ∼7µW to the total ECS1 power dissipation (21% with
50% duty cycle of pulses). This is rather significant, and opportunities for reducing
the resistor power dissipation must be explored. This is the main objective of the
following subsections.

5.1.2 Proposed ECS1 PHY

Approach

ECS1 is based on transmitting pulses on a single wire. The pull-down resistor
attached to the single wire has power dissipation that is linear in the pulse duty
cycle, λ. One approach to reduce PHY power is therefore to reduce the pulse duty
cycle. This can be done within the pulse generation circuit with the constraint that
the overhead in pulse width control should be much less than the projected power
savings resulting from the narrower pulse. One approach to pulse generation is to
AND the input pulse of duty cycle λIn with its delayed version λD , where the
delayed pulses are obtained using buffers as illustrated in Fig. 5.2a. More buffers
result in a smaller λ at the output of the AND gate. The power overhead of
such approach will of course increase with the number of inserted buffers and
will therefore negate any power saving we may expect from a smaller λ. Another
possible approach is to use a delay line [30, 45] instead of the inserted buffers, but
again the power consumption of such delay line outstrips the ∼7µW power budget
and so it is unable to achieve the narrow λ that is needed to reduce PHY power
consumption.

To meet the power consumption requirements, an inverter coupled with a small
capacitor is used to generate narrow pulses of λ duty cycle. This pulse generation
and control circuit is shown in Fig. 5.2b. The single inverter is used to invert and
delay the input pulse λIn with the capacitor providing an additional load to increase
the total delay. When λIn and the delayed inverted pulse λID pass through the



5.1 ECS1 Power Management 61

Fig. 5.2 Duty cycle generation. (a) Buffers approach. (b) Inverter and capacitor approach

Fig. 5.3 Proposed ECS1
PHY layer

AND gate, a narrow λ is generated. As shown in Fig. 5.3, the proposed ECS1 PHY
includes the duty cycle generation circuit at the back of the tri-state buffer.

PHY Circuit Implementation

The proposed ECS1 PHY circuitry is implemented using a 45 nm process. The
circuit diagram is shown in Fig. 5.4. The delay inverter is comprised of the M1 and
M2 transistors loaded with a delay capacitor CD . The AND operation is performed
using transistors M3 − M8, and the output is coupled with the pull-down resistor
RPD through a tri-state buffer. Table 5.1 catalogs the used parameter values. In the
following subsections, we describe how to select the values of capacitor CD and
resistor RPD to achieve a given duty cycle.



62 5 Power Management

Fig. 5.4 (a) Proposed ECS1 PHY circuit (b) Tri-state buffer circuit

Table 5.1 Design
parameters of duty cycle
generator

Parameters Proposed Unit

NMOS (W/L) 120/45 nm/nm

PMOS (W/L) 240/45 nm/nm

CD (min) 4.6 fF

RPD (min) 53.28 K�

λIn 20 ns

5.1.3 Delay Capacitor

The pulse duty cycle λ is the time difference between the rising edge of the input
pulse λIn and the falling edge of the inverted and delayed pulse λID . The time
constant τ for the inverted output signal of the delay block (shown in Fig. 5.2b) is
determined by the delay capacitor CD and the ON resistance Ron of the transistor,
τ = CDRon. The smaller the time constant τ , the faster the discharging of CD , and
the narrower the λ. However, CD cannot be reduced to zero as pulse detectability
imposes both lower and upper bounds on CD . The expressions of these bounds will
be given in the next two paragraphs.

Lower Bound on Delay Capacitance

The lower bound on the selection of CD is imposed by the time constant for the
rising edge of the pulse at the output of inverter block of M1 and M2. During the
rising edge, the M1 PMOS transistor is ON, while the M2 NMOS is OFF. The
time constant is then defined by the ON resistance of the PMOS transistor, τ =
CDRP−on. For a successful pulse detection at the receiver, the pulse voltage level



5.1 ECS1 Power Management 63

should be VC ≥ 2
3Vdd , where VC is the voltage output across CD:

VC = Vdd

(
1 − e− t

τ

)
(5.1)

Using VC = 2
3Vdd , t = tr , Ron = RP−on and solving for CD , one gets

CD ≥ − tr

ln
(

1
3

)
RP−on

�⇒ CD ≥ 0.91
tr

RP−on

(5.2)

where tr is the rise time during which the capacitor is charged up to 2
3Vdd . In 45 nm

CMOS technology, RP−on = 13.32 K�, which leads to the smallest possible value
of CD = 4.6 fF. Violating this condition will result in a pulse detection failure at the
receiver, that is, λ = 0 or 0% duty cycle.

Upper Bound on Delay Capacitance

The upper bound on CD is imposed by the time constant for the pulse falling edge
at the output of the inverter block of M1 and M2. During the falling edge, the M1
PMOS transistor is OFF, while M2 NMOS is ON. The time constant is then defined
by the ON resistance of the NMOS transistor, τ = CDRN−on. The higher τ is, the
larger λ will be. Beyond a certain CD value, λ saturates at 50%. For a duty cycle
less than 50%, the λID voltage level should be ≤ 1

3Vdd and should be achieved,
while the input pulse λIn is high. In other words, tf ≤ λIn, where tf is the output
fall time during which the capacitor is discharged down 1

3Vdd and is determined by
the capacitor discharge equation

1

3
Vdd = Vdd e− tf

τ �⇒ tf = −ln

(
1

3

)
RN−onCD ≤ λIn (5.3)

which leads to the upper bound

CD ≤ 0.91
λIn

RN−on

(5.4)

In 45 nm CMOS technology, RN−on = 17.22 K�, which leads to the largest
possible value of CD = 1 pF in the case of a 20 ns long input pulse. Beyond this
upper bound on capacitance, λ saturates to 50%.



64 5 Power Management

5.1.4 Sizing the Pull-Down Resistor

The pull-down resistor, RPD , attached to the single wire at the output of the tri-state
buffer keeps the line low during the high-impedance state of the buffer. RPD directly
impacts the output voltage at the output rising edge during which the transistors
M11, M12, and M13 are ON, while M14 is OFF. A voltage divider comprised of
two PMOS ON resistances (i.e., 2RP−on) and RPD is formed. For the successful
detection of the pulse at the receiver, the output pulse voltage VPulse should satisfy
VPulse ≥ 2

3Vdd where

VPulse = Vdd

RPD

RPD + 2RP−on

(5.5)

which means RPD ≥ 4RP−on. In 45 nm CMOS technology, the RP−on =
13.32 K�, which leads to the smallest possible value of RPD = 53.28 K�.
Violating this condition will result in small pulse voltages at the output that may
fail detection at the receiver. The larger RPD is, the larger the output pulse swing.

5.1.5 Duty Cycle

The pulse duty cycle λ at the output is given by

λ = tr + tf (5.6)

which yields

λ = 1.0986 CD (RP−on + RN−on) (5.7)

The percentage duty cycle, λ%, is determined as

λ% = λ

2λIn

× 100 (5.8)

The minimum duty cycle λmin is determined using the smallest possible delay
capacitance (i.e., CD = CD−min = 4.6 fF) in (5.7) and is given as

λmin = 1.0986 CD−min (RP−on + RN−on) = 154.34 ps

where RP−on and RN−on are 13.32 K� and 17.22 K�, respectively, for a 45 nm
process. Also,

λmin−% = λmin

2λIn

× 100 = 0.39 %



5.2 Results 65

5.2 Results

5.2.1 Power Analysis

The proposed policy to manage power consumption, through controlling the pulses
duty cycle, is verified rigorously on an ECS1 protocol using Spice-level simulations
for a 45 nm CMOS process in the Cadence design environment. The power analysis
is performed using the minimum duty cycle of 0.39%, which is generated with
CD = 4.6 fF, RPD = 54 K�, and λIn = 20 ns (i.e., clock = 25 MHz). The
resistor, with the proposed PHY, consumes only 0.1% (27.22 nW) of the total PHY
power (265.4 nW). The tri-state buffers’ power consumption is also reduced to 0.9%
(238 nW) only. The total power saving, as compared to the one shown in Fig. 5.1,
is 20%. The improved power consumption ratios are shown in Fig. 5.5. The total
PHY power consumption is linearly related to the duty cycle as shown in Fig. 5.6a.
Clearly, the pulse duty cycle greatly impacts the overall power consumption. For
our experimental prototype, the duty cycle generator should not consume more
than 7µW (λ ≤ 5% for the experiment performed). On the other hand, the
power consumption reduces with the increase in pull-down resistance, as shown in
Fig. 5.6b. If the PHY is intended to connect to downstream loads presenting an input
capacitance in parallel with the pull-down resistance, then increasing the resistance
will increase the rise and fall slews of the pulse. Therefore, the upper bound on the

Fig. 5.5 Proposed ECS1 transceiver power consumption (0.4% duty cycle)

Fig. 5.6 PHY power consumption (a) vs. Duty cycle (RPD = 54 K�) (b) vs. Resistance (CD =
4.6 fF)



66 5 Power Management

resistance is application-dependent and should be determined based on the overall
timing performance of the full link.

5.2.2 BER Analysis

Noise associated with the off-chip environment can have an effect on data pulses.
The increase or decrease in pulse levels, due to the external noise, makes it difficult
for the receiver to detect pulses correctly. Depending on the noise level, an extra
pulse may be detected or a pulse may be skipped. In both cases, one gets a decoding
error. To analyze the performance of ECS1 in the presence of noise, the encoded
pulse stream of data is exposed to white Gaussian noise. The noisy signal is filtered
at the receiver end, then decoded according to the ECS1 protocol, and the number of
errors encountered is counted. The results are plotted in Fig. 5.7 for different values
of Eb/N0 (the ratio of energy-per-bit to noise power spectral density) for both BPSK
and ECS1. For ECS1, the results are plotted with variations in the pulse duty cycle.
ECS1 is less immune to noise as compared to BPSK, but its BER reduces rapidly
to zero at Eb/N0 of ∼10.5 dB. Variations in pulse duty cycle have no significant
impact on ECS1 BER.

Fig. 5.7 BER analysis



5.3 Conclusions 67

5.3 Conclusions

In this chapter, we have presented a detailed power management policy for ECS
protocols to improve further their ultra-low-power characteristics without impacting
their data or bit error rates. In this policy, pulse duty cycle control is used to reduce
the power consumption of the ECS1 PHY layer. In addition, a mathematical model
has been used to select the physical design parameters related to ECS1 PHY power
management. Based on our implementation and analysis, a minimum capacitance
of 4.6 fF and a minimum resistance of 54 K� are recommended to generate the
smallest possible duty cycle of 0.39%. These recommended design parameters have
been experimentally verified using Spice-level simulations of a 45 nm process. On
an ECS1 platform, an additional power saving of 22% has been achieved in the
its PHY layer that further improves on the already significant power savings in the
ECS1 functional logic as reported in Chap. 2.



Chapter 6
Automatic Protocol Configuration

It would not be long ere the whole surface of this country would
be channelled for those nerves which are to diffuse, with the
speed of thought, a knowledge of all that is occurring
throughout the land, making, in fact, one neighborhood of the
whole country.

Samuel Morse

The objective of this chapter is to provide an algorithm for automatically configuring
the ECS protocol parameters at the power-on phase. To achieve this, we introduce
a new algorithm that rigorously specifies the protocol configuration procedure and
uses closed-form formulas to assign suitable protocol parameters to both ends of the
transmission link based on clock-rate differences. Pulse count differences between
the pulse trains at the transmitter and receiver are used to find a suitable inter-
symbol separator coefficient so as to eliminate the need to know the exact clock
rates at both ends of the link. Moreover, a power-efficient realization with very
low hardware complexity of the inter-symbol separator coefficient calculations is
proposed to enable efficient protocol configuration. The hardware realization is
evaluated in both the FPGA and ASIC design flows. This realization of the auto
configuration algorithm is based on ECS1. However, the methods and results are
valid across the entire ECS family.

6.1 Automatic Parameter Detection

6.1.1 Algorithm

Consider a single-channel link between two IoT devices that are configured in a
master–slave topology, as in Fig. 6.1. Each device uses its own clock frequency.
Also each device generates a reference clock of 100 KHz along with the local device
clock. The reference clock frequency is defined as the default clock for the ECS1
transceivers and can be used anytime to establish a communication link between the

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_6


70 6 Automatic Protocol Configuration

Fig. 6.1 An example of automatic parameter detection

master and slave devices. All the devices power up with the default inter-symbol
separator coefficient α = 4. The master device also maintains a table of α settings
for all the slave devices, and by default all the α entries are equal to 4. The master
device selects a corresponding α for a slave device from the table and considers this
as its own α when it needs to communicate with that particular slave. The objective
of the algorithm is to update not only the master table entries but also the local α

settings of all the connected slave devices. These updated values are then used to
carry out a successful communication at the local clock rate considered as a ECS1
clock at each end of the link. The ECS1 α value for the reference clock is α = 4
irrespective of the local settings in the slave device and its table entries in the master
device.

In the power-on phase, the master device transmits system clock pulses for one
second to all the slave devices. At the first rising edge of the transmitted pulse
stream, the slave devices start counting both the received pulses fS and their own
device clock pulses fF . The counting ends on pulses from the master device. Using
the pulse count difference (�f = fF −fS), the high-speed node of the link at fF is
recognized. The slave sets its local αF to a new suitable value if it is the high-speed
node. Otherwise it keeps the default value of 4. In reference to Algorithm 4, these
steps are shown on line 2 for the master device, and lines 1 to 14 for the slave device.
The process to find a suitable inter-symbol separator coefficient value is presented
in the next subsection. Next, the master device starts the second part of parameter
detection by asking each slave device about the status of parameter setting. This
process is carried out using the reference clock of 100 KHz. The master device sends
a slave ID followed by the reception of either 5 or 3 pulses from the target device. If
the target slave was successful in setting a new αF , 5 pulses would be received and
the master will update the table entry for this device with α = 4. If the target slave
has failed in setting a new αF , 3 pulses at 100 KHz would be received followed by



6.1 Automatic Parameter Detection 71

the reception of system clock pulses of the slave device for one second. The 3 or 5
pulses in response to slave ID are followed by a 6 clock cycle separator to distinguish
these pulses correctly from the following system clock pulses. In Algorithm 4, these
steps are shown on lines 4 through 9 for the master device, and lines 15 through 20
for the slave device. On reception of these pulses, the master device follows the same
counting and αF setting process as described for the slave and updates the table entry
for this slave with a new suitable αF . The calculation steps are shown by lines 10 to
17 for master device, and lines 7 to 13 for slave device in Algorithm 4. The process
continues until all the slave devices are covered. The master sets one α entry in its
table for each slave in the network, as shown on lines 7, 12, and 17 of Algorithm 4
for the master device. The power-on automatic detection process allows the master
device to configure all slave devices before they start communication using their
device clocks. An example of such configuration process for a single-channel link
with three slave devices is illustrated in Fig. 6.1.

6.1.2 Inter-symbol Separator Coefficient Calculation

Given the frequency information of the slow node, the inter-symbol separator
coefficient α is always calculated by the fast node. This is because the fast node can
adjust its separator coefficient to reduce its transmission speed, but it is impossible
for the slow node to go beyond its device clock rate. To find a suitable α, first we
need to set the maximum supported clock ratio βmax . The phase shift ϕ and the
clock jitter ψ are the knobs in Eq. (3.8) to adjust the supported percentage of clock
ratio βmax assuming the default values of αF = 4 and wF = 0.5. In the ideal case
where both ϕ and ψ are zero, the ratio reaches to ≈41%. However, this is not the
case in real world applications where there are always a phase shift and clock jitter
that reduce the clock ratio. Empirical results and the information provided in [57]
show that the safer values of ϕ = 1 and ψ = 0.01 lead to a ratio of ≈18%. Once
the frequency information of the slow node is shared with the fast node, the βmax is
calculated using (3.8). Equations (3.9) and (3.10) are then used to find the suitable
αF as per the steps given in Algorithm 4. The plot in Fig. 6.2 shows the variation
in αF due to the increase in fast-node frequency fF when the slower node is at
fS = 25 MHz.

While Algorithm 4 is suitable for finding αF , it does have an important limitation.
Indeed, to share the precise frequency information, a device needs to transmit pulses
at least for one second. This information exchange tends to be time consuming
when there are many devices attached to a single-channel link. Therefore, instead of
transmitting the pulses for one second, the transmission of just 255 pulses is adopted
from one node to another. Hence, at the receiver node, both the received pulses
count, NS , and the device clock pulses count, NF , become known. Algorithm 4
applies without any change in the formulation except replacing the fF , fS , and fFN

with NF , NS , and NFN , respectively. This method of calculating αF by considering
solely the pulse counts is efficient and suitable for all IoT devices including low-end
microcontrollers.



72 6 Automatic Protocol Configuration

Algorithm 4 Automatic parameter detection
Legends:
– fS : Received Pulse Count1

– fF : Device’s Local Clock Pulse Count1

– f100 : 100 KHz reference Clock
—————————————- Master Device Algorithm ——————————————–
Inputs:
– fd,master : Master Device Clock
Outputs:
– αsl[n] : α settings of n Slave Devices in Master Device Table

1: Set n = # of slaves, i = 0
2: Broadcast pulses for one second2 at fd,master

3: while loop(i < n)
4: Send Slave−ID[i] at f100
5: Pulses = Receive Pulses at f100
6: if (Pulses = 5)
7: αsl[i] = 4
8: else
9: fS = Receive Pulses at fd,slave for one second2

10: fF = fd,master

11: if (fF ≤ fSβmax )
12: αsl[i] = 4
13: else
14: fFN = fF − (βmax − 1) fS

15: β = fFN/fS

16: AF = � 4 wF β2 + β (ϕ + ψ) �
17: αsl[i] = mod(AF , 2 ) + AF

18: i++
19: end loop
——————————————- Slave Device Algorithm ——————————————–
Inputs:
– fd,slave : Slave Device Clock
Outputs:
– αF,n : Local α Setting of nth Slave Device

1: fS = Receive pulses for one second2 at fd−master

2: fF = fd,slave

3: if (fF < fS )
4: αF,n = 4
5: Setting Failed
6: else
7: if (fF ≤ fSβmax )
8: αF,n = 4
9: else

10: fFN = fF − (βmax − 1) fS

11: β = fFN/fS

12: AF = � 4 wF β2 + β (ϕ + ψ) �
13: αF,n = mod(AF , 2 ) + AF

(continued)



6.1 Automatic Parameter Detection 73

Algorithm 4 Automatic parameter detection
14: Setting Passed
15: Wait for Slave ID at f100
16: if (Setting Failed)
17: Send 3 Pulses at f100
18: Send pulses for one second2 at fd,slave

19: else
20: Send 5 Pulses at f100
———————————————————————————————————————
1See Sect. 6.1.2 for more specific settings.
2A more efficient alternative is proposed in Sect. 6.1.2.

Fig. 6.2 αF vs. fF when
fS = 25 MHz

6.1.3 Low-overhead Hardware for αF Calculation

The calculations to find a suitable αF can be readily implemented in a micro-
controller using the C language. On the other hand, for a VLSI or an FPGA
implementation, the floating point operations involved in such calculations present a
significant area and power overhead due to the additional hardware resources needed
to handle floating point arithmetic. To mitigate this overhead, we propose a hardware
decoding scheme that maps the pulse count difference (�N = NF − NS) to a
suitable αF .

The HW decoder works as follows. For each αF , there exists a range of �N as
shown in Table 6.1. Lines 3 to 9 in Algorithm 5 illustrate the process of finding these
ranges. Note that in Line 1 of Algorithm 5 NS is set to 255 because αF is always
calculated by the fast node, and it is guaranteed that 255 pulses will be transmitted
by the slow node. Figure 6.3 shows the numerical result, with fS = 25 MHz and
fF ∈ [25 MHz, 125 MHz], generated through looping statements in Algorithm 5,
Lines 2, and 10 to 12. The number of ranges of αF sets an upper bound on the
maximum clock ratio supported by the automatic baud rate feature. The sweep



74 6 Automatic Protocol Configuration

ranges for fF can be increased or decreased as per the application requirement. A
custom HW decoder is designed that accepts a 10-bit �N , finds the corresponding
range as per Table 6.1, and sets an 8-bit αF at the output.

Table 6.1 αF ranges for
decoder implementation

�Nmin �Nmax β Clock ratio (%) αF

1 47 ≤18.4 4

48 74 ≤28.8 6

75 122 ≤47.6 8

123 164 ≤64.0 10

165 202 ≤79.2 12

203 238 ≤93.2 14
.
.
.

.

.

.
.
.
.

.

.

.

997 1009 ≤395.6 96

1010 1020 ≤400.0 98
.
.
.

.

.

.
.
.
.

.

.

.

Algorithm 5 αF ranges for decoder implementation
Inputs:
– βmax : Maximum supported clock ratio
– fS : Slow node frequency
– fFmax : Maximum fast-node frequency
– �f : Frequency step value
Outputs:
– �Nmin : Minimum device clock pulse count
– �Nmax : Maximum device clock pulse count

1: Set NS = 255, TS = (1/fS) × NS , fF=fS , and i = 0
2: while loop (fF ≤ fFmax )
3: NF = TS × fF

4: if (NF ≤ NSβmax )
5: αF [i] = 4
6: else
7: Find NFN , β, AF

8: αF [i] = mod(AF , 2 ) + AF

9: �N [i] = NF − NS

10: i++
11: fF = fF + �f

12: end loop
13: Find �Nmin and �Nmax from {�N} for each of the unique αF values in {αF }



6.2 Experimental Verification 75

Fig. 6.3 αF vs. �N when
fS = 25 MHz and
fF ∈ [25 MHz, 125 MHz]

6.2 Experimental Verification

An experimental setup comprised of two IoT nodes communicating using the
ECS1 protocol is used to verify the operation of the automatic parameter detection
algorithm. Each node is composed of a ECS1 protocol module, an Automatic
Parameter Detector (APD), a ECS1 PHY layer, PHY switch, and a clock generator,
as shown in Fig. 6.4. The clock generator provides two clocks to a node, a device
clock and a reference clock (100 KHz). The PHY switch, controlled by APD, is
used to allow either the ECS1 module or the APD to access the PHY layer for
establishing the physical link. Both the master and slave nodes have a similar
implementation except for the differences present in APD module. The master APD
is composed of three main modules: a controller, a decoder, and an αF table. The
slave APD is composed of the same modules except that there is only one local
αF setting instead of a table. The controller module takes care of all the power-on
configuration process, controls the PHY access, and connects the ECS1 to a suitable
clock during communication. The decoder accepts �N as an input that is generated
by the controller and outputs a suitable αF for table entry at the master node or for
local setting at the slave node. During communication after completing the power-
on configuration process, the master node directs a particular slave device using the
100 KHz reference clock, fetches the corresponding αF from the table, and using
this αF communicates further with the said slave device. This on-the-fly change
in the inter-symbol separator coefficient allows the slave devices to use their device
clock to adjust their data rates and thus, an adaptive baud rate network is established.

The full experimental setup is implemented in Verilog on the Xilinx Virtex-
7 FPGA platform. Two separate clocks with different frequencies and phase
shifts, one for each node, are generated with the help of a Virtex-7 on-chip PLL.
The master clock is fixed at 25 MHz while the clock rate for the slave node is
allowed to deviate from 25 MHz. The master does power-on configuration and
then verifies two-way communication using the automatically detected parameters.



76 6 Automatic Protocol Configuration

Fig. 6.4 Block diagram of the experimental setup

Table 6.2 Synthesis results

Power (µW) Area (gate count)

APD system (excluding ECS1) 4.35 ≈1500

ECS family ECS1 ECS2 ECS3 ECS1 ECS2 ECS3

26.6 25 19 2356 2150 2098

Total 30.95 29.35 23.35 ≈3856 ≈3650 ≈3598

The experiments confirm that the ECS1 transmission works flawlessly. Along with
the FPGA prototype, we have also synthesized the automatic parameter detection
system using a Synopsis logic-synthesis flow and a GLOBALFOUNDRIES 65 nm
process. We found out that the system shown in Fig. 6.4 (excluding ECS1) maintains
the low-power operation of ECS1 consuming only 4.35µW with a gate count of
≈1500 at a clock frequency of 25 MHz. The synthesis results are shown in Table 6.2.

6.3 Conclusions

The power-on algorithm for automatically detecting the ECS1 protocol parameters
allows the master device to configure all the slave devices connected to a single-
channel network prior to the start of any device-to-device communication. The pro-
posed automatic configuration methodology eliminates the need for compile-time
or manual assignment of protocol parameters. Moreover, the methodology removes
the restriction on all the devices in the network to agree on a single communication
speed and allows the devices with different capabilities to communicate reliably.
Toward this end, the master device selects, in real time, the right ECS1 parameter
values that enable it to communicate with a particular slave. This makes the ECS1
single-channel network behave as an adaptive baud rate network. The proposed



6.3 Conclusions 77

architecture is experimentally verified and tested on a point-to-point communication
link using a Xilinx Virtex7 FPGA platform that illustrates the simplicity, efficiency,
and reliability of using automatic ECS1 parameter detection. In particular, we show
that the efficient hardware realization of the algorithm maintains the low-power
operation of ECS1 protocol while consuming only 4.35µW (65 nm process). Our
work has assumed that all slave devices have already been discovered and identified
by the master device. The issue of device discovery in ECS1 networks is still open
and very much worth investigating.



Chapter 7
Secure ECS Communication

Encryption works. Properly implemented strong crypto systems
are one of the few things that you can rely on.

Edward Snowden

This chapter highlights the advantages of a tight integration between the IoT
communication protocol on the one hand and lightweight cryptography on the
other. This is illustrated in the multilayer integration of edge-coded signaling
(ECS) with a novel, parallel, low-latency version of the A5/1 keystream cipher.
This integration has resulted in a secure communication protocol that is very
well adapted to constrained IoT nodes. The secure ECS solution features both
confusion and diffusion defenses while providing both data confidentiality and
packet authentication. The secure ECS system has been prototyped on embedded
microcontroller, FPGA, and ASIC platforms with all the prototypes confirming the
low overhead of the low-latency A5/1 crypto block. The secure ECS prototypes
have achieved data rate, power consumption, small footprint figures that are all in
line with the original ECS attributes.

7.1 Introduction

The Internet of Things (IoT) offers advanced machine-to-machine connectivity
among edge nodes where low-end, low-cost devices are ubiquitous and would
constitute, given their crypto vulnerability, a major challenge for a fully secure
network. There are many protocols for IoT machine-to-machine communication
[2, 64] with the standard practice being to secure the transmission using data block
encryption. The encrypted data is then transmitted through the channel-specific
transceivers and is decrypted at the receiver end. In some cases, nested encryption
is applied to strengthen data security. As shown in Fig. 7.1, regardless of the
communication links the modulation scheme or the encryption technique used in
the transceivers, the physical signals always represent the packet bits, either 0 or

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_7

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_7


80 7 Secure ECS Communication

Fig. 7.1 Block diagram of a standard digital communication link between Alice and Bob under a
cryptographic attack by Trudy

1. Trudy, the intruder, can listen in and receive all the packets and apply attacks
on data directly. In this chapter, we revisit this standard architecture and present a
novel architecture that prevents Trudy from even receiving a valid packet in the first
place. This has been achieved by establishing a synergy between the communication
protocol and the crypto algorithm, where they are enabled to strengthen each other
to achieve higher levels of secure communication for constrained IoT nodes. The
new crypto design is based on three innovations. The first is a new data signaling
technique, called Edge-Coded Signaling (ECS), that is dynamic yet ultra-low power.
The second is an accelerated lightweight crypto algorithm with a one clock cycle
overhead and a tiny hardware footprint. The third innovation is a multilayer security
protocol in which both data and signaling information are secured with the help of
the communication technique’s dynamic features.

Given the dynamic nature of ECS, the transmitted ECS packet contains no raw
bits but enough information about the support of the data block so as to enable its
reconstruction at the receiver. At the physical level, the ECS packet is transmitted
as a sequence of pulse streams where each pulse stream represents an aspect of the
data block support. These aspects include (1) a reception guide which acts as a table
of content that facilitates the reception of the subsequent symbols; (2) an assembly
guide which enables the assembly of received symbols in their proper order, and
(3) a transformation guide which helps reverse any possible transformations the
original data block may have been subject to (e.g., one’s complement). The ECS
packet content is dynamic, and even a single-bit change in the original data block
may drastically modify the ECS packet. When properly used, such property in
the signaling protocol should enhance the diffusion property of the cryptographic
algorithm. This is one illustration of what we meant by the synergy between
signaling and encryption. The reader is referred to Chap. 2 for more information
on the ECS signaling protocols.



7.1 Introduction 81

Now there has been a significant amount of work in the field of lightweight IoT
cryptography [31, 47]. Since the adoption of the Advanced Encryption Standard
(AES) in 2002, many lightweight symmetric key block ciphers have been developed.
They include XTEA, CLEFIA, FeW, HIGHT, LBlock, PRESENT, and Piccolo [8,
24, 34, 71, 72, 74, 80]. The focus of these developments has been on improving the
crypto algorithm itself independent of other considerations as may arise in a full IoT
communication link. The paramount emphasis of the IoT cryptographic research
has of course been for the lightweight crypto to ensure reasonable defense against
malicious attacks on constrained devices. This chapter advocates that such defense
can be significantly improved if the dynamic and diffusivity properties of the ECS
signaling protocol are seamlessly incorporated into the cryptographic algorithm.
Additionally, this chapter highlights that even “weak” lightweight cryptographic
algorithms can become quite competitive in terms of their cryptanalysis when used
in conjunction with ECS. To illustrate such an approach to improving lightweight
crypto security, we have selected the venerable GSM cipher, A5/1 [74], and shown
how its attack complexity can be increased by a 220 factor while reducing its latency
overhead to one clock cycle. We call improved A5/1 cipher HSA5/1 (High-Speed
A5/1).

Another important aspect of IoT cryptography is packet authentication. This is
achieved in our ECS-based implementation using packet identification signatures
that get attached to the data support block with the two encrypted together using
HSA5/1. Finally, as mentioned earlier, the ECS packet contains information on how
to reconstruct the bit stream from its support. Such information is also encrypted
using HSA5/1 and a key different from those used to generate the identification
signatures or encrypt the data support block. This provides an additional obfuscation
layer of ECS transmission security and helps protect the ECS packet at Trudy’s end.
In reference to the block diagram of Fig. 7.2a, the secure ECS protocol comprises
the following steps:

1. Key Generation: The architecture uses a strengthened lightweight key generation
technique to produce one main keystream and several subkeys. The keys are
updated every transaction at both ends of the communication link.

2. Data Identification: The architecture embeds one subkey as an identifier within
the original data to prepare the ECS dataframe.

3. Data Encryption: The architecture encrypts the ECS data using the main
keystream.

4. ECS Encoding: The architecture encodes the encrypted bitstream using the ECS
protocol and, as a byproduct, generates the ECS encoding information pertaining
to packet configuration.

5. Packet Encryption: The ECS encoding information is then encrypted using the
remaining subkeys.

6. Transmission Obfuscation: To transmit the encrypted ECS frame (data and
configuration), the architecture builds the packet using the encrypted ECS
encoding information but runs the transmission process using the non-encrypted
version.



82 7 Secure ECS Communication

Fig. 7.2 (a) Block diagram of secure edge-code-signaling (ECS) protocol showing the six steps
of key generation, identification, data encryption, ECS encoding, ECS packet header encryption,
and transmission obfuscation. (b) The yin and yang of signaling and encryption

Such a lightweight, multilayer cryptographic technique provides a hard-to-break
challenge to an attacker while preserving ECS performance. The major features
of this combination of an IoT signaling protocol with a lightweight cipher are
further summarized in Fig. 7.2b as a yin yang figure. The complementarity between
signaling and encryption is most evident in the fact that for an unauthorized
receiver to decode the ECS packet, she needs to break the encryption, but to break
the encryption, the data-dependent ECS encoding parameters need to be known.
The secure ECS can be further protected by increasing the number of keys and
the number of bits in each key with minimal impact on ECS communication
performance. The latter is because of the novel parallel architecture that has been
introduced for the crypto algorithm. In essence, the interplay between ECS and
the encryption results in making the ECS transmission more secure than if the
encryption were used alone in a single-layer cryptographic system. The novelties
of this technique are summarized as follows:

1. High-speed A5/1: A novel high-speed version of the well-known A5/1 cipher
is designed, implemented, and integrated with ECS. This novel symmetric
keystream cipher is fully evaluated in terms of its performance, power, and
footprint impact on ECS.

2. Multilayer architecture for secure ECS communication: This architecture fully
integrates the high-speed A5/1 cipher within the ECS encoding and transmission



7.2 Proposed Multilayer Secure Communication Architecture 83

process. It provides multiple hard-to-break challenges to a malicious attacker
with several layers of encryption and transmission obfuscation.

3. Hardware implementations of high-speed A5/1 and secure ECS: These imple-
mentations have enabled the realistic evaluation of the multilayer, secure ECS
architecture from the viewpoints of data rate, power, and footprint. They have
amply illustrated the advantageous synergy between the ECS communication
protocol and the HSA5/1 cryptographic algorithm. To the best of our knowledge,
this is the first time such a synergy has been achieved.

4. Versatile networking options: Various network topologies can be supported with
the secure ECS communication system, including master–slave, star, ring, and
peer-to-peer topologies.

7.2 Proposed Multilayer Secure Communication
Architecture

7.2.1 Re-architecting A5/1 for ECS

As mentioned earlier, we have selected A5/1 [74] as an example to illustrate how
dynamic features of ECS can be used to strengthen an otherwise weak encryption
that has been the subject of numerous attacks [5]. Moreover, in later subsections,
we will show that the strengthened crypto not only secures packet reception but also
enjoys an additional layer of protection that makes it even more resistant to attacks.
The textbook version of A5/1 generates one key bit per iteration that is XORed with
1 bit of data. For a 16-bit data block, a straightforward hardware implementation of
A5/1 requires at least 16 iterations to encrypt the data in an ECS packet. Assuming
the keystream generator is clocked at one clock cycle per bit, the crypto latency is
16 clock cycles, which would negatively impact the ECS data rate. We address the
crypto latency issue by proposing a modification of A5/1 that will generate one 16-
bit main key and five 4-bit subkeys in an only clock cycle. The modified A5/1 is
called high-speed A5/1 or HSA5/1.

Conventional A5/1

Denote by s the one keystream bit that the conventional A5/1 cipher generates at
each iteration and uses it to encrypt one plaintext bit, di , to produce one encrypted
bit of ciphertext ci = di ⊕ s. To generate the ciphertext, A5/1 makes use of three
registers, X, Y, and Z, that are 19-bit, 22-bit, and 23-bit wide, respectively. The
registers are initially filled using a 64-bit secret key, K , as shown in Table 7.1. The
specific steps involved in generating one keystream bit s are given in Algorithm 6.
Assuming a straightforward implementation where one clock cycle is consumed



84 7 Secure ECS Communication

Table 7.1 Encryption comparison between conventional A5/1 VS. high-speed A5/1

Conventional A5/1 High-speed A5/1

Properties

Key (K) 64 bits 148 bits

Reg. X x0, x1, . . . x18 x0, x1, . . . x40

Reg. Y y0, y1, . . . y21 y0, y1, . . . y42

Reg. Z z0, z1, . . . z22 z0, z1, . . . z43

5 Additional 4-bit Registers

Keystream generation equations

m maj (x8, y10, z10) maj ( x15 , y20 , z20 )

tx x13 ⊕ x16 ⊕ x17 ⊕ x18 x33 ⊕ x38 ⊕ x39 ⊕ x40

ty y20 ⊕ y21 y41 ⊕ y42

tz z7 ⊕ z20 ⊕ x21 ⊕ x22 z14 ⊕ z41 ⊕ x42 ⊕ x43

s = x18 ⊕ y21 ⊕ z22 siS = xiX ⊕ yiY ⊕ xiZ

Algorithm 6 One iteration of the conventional A5/1
Inputs:
– X, Y, and Z: A5/1 registers
– di : ith Data bit to encrypt
Outputs:
– ci : ith Encrypted data bit

1: Use majority function maj (. . .) to find m

2: if m == x8 then
3: X = X >> 1 // (from LSB to MSB)
4: end if
5: if m == y10 then
6: Y = Y >> 1 // (from LSB to MSB)
7: end if
8: if m == z10 then
9: Z = Z >> 1 // (from LSB to MSB)

10: end if
11: Find tx , ty , and tz
12: x0 = tx , y0 = ty , z0 = tz
13: Find s

14: ci = di ⊕ s

per bit of ciphertext, then n clock cycles are needed to encrypt a full data block
of n bits. This will of course significantly degrades the ECS transmission data rate
and increases the power-on latency. A naive approach to address this issue is to
use hardware parallelism by replicating the A5/1 logic block n times in order to
achieve one clock-cycle operation per bit. However, this approach would require
n different keys as it is not possible to use the same key for all the A5/1 replicas.
Furthermore, the n A5/1 replica blocks and a separate register set for each block
would substantially increase the ASIC silicon area or FPGA resources. In the
following section, we introduce a modification of A5/1 that achieves one clock-
cycle operation for n-bit keystream generation without A5/1 block replication. We



7.2 Proposed Multilayer Secure Communication Architecture 85

shall also show how the interplay of ECS encoding and HSA5/1 encryption results
in making the ECS transmission much more secure than if HSA5/1 were used alone
in a single-layer cryptographic system.

Proposed High-Speed A5/1 (HSA5/1)

In the proposed HSA5/1 cipher, a 36-bit keystream is generated in one clock cycle
and is used to encrypt the full 16-bit data block and other parts of the ECS packet
ahead of packet transmission. To achieve this, HSA5/1 makes use of eight registers,
X, Y , Z, K1, K2, K3, K4, and ID. The registers X, Y , and Z are 41-bit, 43-bit,
and 44-bit wide, respectively, whereas all other registers are 4-bit wide. All the
registers are initially filled using a 148-bit secret key, K . The properties of HSA5/1
are shown in Table 7.1 and contrasted with those of A5/1. The 36-bit keystream
generated at each transaction (transmission or reception) is comprised of three
smaller keystreams, S1, S2, and ID. These keystreams are 16-bit, 16-bit, and 4-bit
wide, respectively. The keystream S2 is further divided into four 4-bit keystreams,
K1, K2, K3, and K4. Please note that we have abused notation and used the same
names for the 4-bit Ki registers and the 4-bit Ki keystreams as we use the register
contents directly as the keystreams. On the other hand, the registers X, Y , and Z are
used to update the S1, S2 and ID keystreams.

The generation of the S1 = {s0, s1, . . . s15} keystream differs from that used in
A5/1 as follows:

1. The majority function and the keystream generation equations are as given in
Table 7.1.

2. The 16 bits of S1 are generated using the equation given in Table 7.1 where
iS, iX, iY , and iZ are the indices given in Table 7.2.

3. Depending on the data sent or received in the previous transaction, the shift
registers are swapped according the 8th bit of the previous data stream. If the
8th bit is ON, the shift registers are swapped as follows:

x1 : x40 = y1 : y40 (7.1)

y1 : y40 = z1 : z40 (7.2)

Table 7.2 Index table for the generation of the 16-bit S keystream of Table 7.1

iS iX iY iZ iS iX iY iZ iS iX iY iZ

0 5 35 3 6 12 3 7 12 19 16 18

1 38 27 13 7 14 23 33 13 13 25 11

2 28 10 23 8 11 37 32 14 30 2 20

3 8 17 12 9 32 20 39 15 10 22 5

4 17 39 29 10 2 11 28

5 25 33 24 11 18 36 34



86 7 Secure ECS Communication

z1 : z40 = x1 : x40 (7.3)

It must be noted that the 0th bit is not swapped. In any LFSR, the keystream of
the original A5/1 will eventually repeat, albeit after a long period. On the other
hand, the swapping introduced in HSA5/1 helps avoid such repetition and adds
more entropy in the keystream generation. Another important consideration is
that beside using a data bot for register swapping, other options are available
for adding dependencies and increasing key generation entropy. For instance, the
dynamic flags of the ECS packet may be used to control the swapping of the shift
registers.

As for the S2 = K1‖K2‖K3‖K4 and ID keystreams,1 they are generated as
follows:

K1 = K1 ⊕ { Dp[5], y1, z19, x37 } (7.4)

K2 = K2 ⊕ { Dp[7], y7, z9, x31 } (7.5)

K3 = K3 ⊕ { y21, z39, x11, Dp[5] } (7.6)

K4 = K4 ⊕ { y13, z13, x21, Dp[7] } (7.7)

ID = ID ⊕ { Dp[3], y29, z21, x9 } (7.8)

where Dp is the data block of the previous transaction. The keystream S1 is used to
encrypt the data block, while S2 and ID are used to encrypt the ECS packet headers.
The secure ECS protocol using the proposed HSA5/1 cipher is presented next.

7.2.2 Secure ECS Communication

The overall secure ECS transmission flow is shown in Fig. 7.3, where two nodes are
communicating using a single-channel link. In reference to Fig. 7.4, the transmission
steps are as follows:

T1: Generate the keystreams S1, S2, and ID using HSA5/1 as described in the
previous subsection.

T2: Integrate the 4-bit keystream ID with the 12-bit data block D, as shown in
Fig. 7.4, to generate 16-bit packet data PD.

T3: Encrypt PD using the S1 keystream to generate the encrypted packet data
EPD = E(PD, S1), where E is the HS5/1 encryption operator.

T4: Encode EPD using the ECS encoder. The ECS encoder will maximize the
data rate and generates an ECS packet CEPD = C(EPD), where C is the
ECS encoding operator. The ECS encoder will generate two 8-bit encoded

1 The notation ‖ is used for the concatenation operator.



7.2 Proposed Multilayer Secure Communication Architecture 87

data segments according to C(EPD1‖EPD2) = CEPD1‖CEPD2, with the
corresponding NOIi and FLAGi for CEPDi, i = 1, 2.

T5: Encrypt NOIi and FLAGi, i = 1, 2, using the S2 = K1‖K2‖K3‖K4
keystream as follows:

ENOI1 = K1 ⊕ NOI1 (7.9)

EFLAG1 = K2 ⊕ FLAG1 (7.10)

ENOI2 = K3 ⊕ NOI2 (7.11)

EFLAG2 = K4 ⊕ FLAG2 (7.12)

T6: Transmit CEPD = CEPD1‖CEPD2 in the ECS packet, as shown in
Fig. 7.6, using the original NOIi and FLAGi, i = 1, 2. It is important to note
that the original NOIi and FLAGi are only used to transmit CEPDi, i =
1, 2, but are not transmitted themselves. Instead, the encrypted versions
ENOIi and EFLAGi, i = 1, 2, are transmitted within the ECS packet.

T7: Finally, update S1, S2, and ID.

At the receiver, the decoding of secure ECS process is the reverse flow of the
encoding, and the steps are as follows (Fig. 7.3):

R1: Receive ENOI1 and EFLAG1 of the first segment, and decrypt them using
the K1 and K2 keys to recover the original NOI1 and FLAG1.

Fig. 7.3 Block diagram of a secure ECS transceiver. Note the symmetric multi-key generation.
Note also the presence of two encryption blocks, one for data, E(PD, S1), and one of signaling
parameters, E(FLAGs,NOIs, S2). Finally, note data authentication using the ID key

Fig. 7.4 ID integration into data



88 7 Secure ECS Communication

R2: Use NOI1 to log each ON bit index pulse series for the first segment and form
CEPD1.

R3: Repeat steps R1 and R2 to receive NOI2, FLAG2, and CEPD2 for the second
segment.

R4: Decode CEPDi to form EPDi, i = 1, 2.
R5: Decrypt EPD = EPD1‖EPD2 using S1 to recover PD.
R6: Split PD into ID and data D.
R7: If the decoded ID matches receiver’s own ID, update keystreams S1, S2, and

ID

Based on the above transmit and receive protocols, we can relate the three major
security features of authentication, confidentiality, and confusion to the steps of
secure ECS communication using HSA5/1 as follows:

Authentication

This ECS security feature corresponds to Step T2, where the ID bitstream bits
are equally distributed over the data segments as shown in Fig. 7.4. The receiver
recovers the ID bits only if the ECS packet is successfully decrypted using E−1

and decoded using C−1. Let IDT be the ID bits extracted by the receiver from the
transmitted ECS packet and let IDR the ID bits generated by the receiver using
the symmetric keystream generator. In case authentication failure, IDT �= IDR , the
ECS packet is discarded, and none of the S1, S2, Ki, i = 1 . . . 4, and ID keystreams
is updated. The number of ID bits can be increased to improve authentication
robustness, albeit at the expense of a reduced number of data bits in each packet.
An alternative approach is to use a 32-bit ECS dataframe in order to increase both
the ID and data block size. Authentication is meant to preempt man-in-the-middle
attacks where the attacker’s main goal is to use any invalid data to interfere with the
control of receiving equipment.

Confidentiality

This ECS security feature corresponds to Step T3, where the encryption of data
block PD is executed to generate EPD.

Confusion

This ECS security feature corresponds to Steps T5 and T6 and contributes to
confidentiality and integrity by making it difficult for an attacker to decrypt and
decode the ECS packet successfully. For each data block segment, the ECS encoder
generates NOI and FLAG headers that are transmitted ahead of the segment
indices. Decrypting NOI and FLAG correctly is an absolute pre-requisite to



7.2 Proposed Multilayer Secure Communication Architecture 89

successfully receive and decode the pulse streams and extract the transmitted data
block. If NOI and FLAG are compromised, the pulse counts will be compromised
as well, and a transmission failure will occur, resulting in the receiver rejecting
the ECS packet. A couple of transmission failure scenarios will be illustrated
in the example of Sect. 7.3. In Steps T5 & T6, the NOI and FLAG headers
are replaced by their encrypted counterparts, which confound the attacker but
provide the intended receiver with the means to recover the transmitted information.
Encrypting NOI and FLAG adds an extra shield of packet data protection that
prevents the attacker from even “opening” the packet.

7.2.3 Multiple Layers of Security

For an attack to succeed, the ECS packet should first be received successfully.
However, since the NOIs of all the segments are encrypted, such reception is
not likely. In the unlikely event that the attacker does receive a valid ECS packet,
(s)he will be presented with the challenge of decrypting FLAGs. If FLAGs are
not decrypted correctly, the data block is unlikely to be decoded correctly. In the
unlikely event that FLAGs are decrypted correctly, (s)he will be presented with the
challenge of data block decryption. Furthermore, the ID of the transmitter needs
to be authenticated. In summary and as shown in Fig. 7.5a, NOIs, FLAGs, data,
and ID present four defense layers that an attacker should overcome to be able to
decrypt the secure ECS packet correctly. A probabilistic analysis of the likelihood
of a successful attack on secure ECS will be given in Sect. 7.4. For the sake of
comparison, consider one of the common single-channel communication protocols,
such as UART or 1-Wire, and assume it is used in conjunction with the A5/1 cipher.
Such arrangement for secure, single-channel communication has only one security
layer against which real-time attacks as described in [5] will be successful. The
secure ECS case has the advantage of multiple security layers, as shown in Fig. 7.5.

Fig. 7.5 Contrasting the security layers of two protocols: (a) ECS + HSA5/1 (this work) and (b)
UART + A5/1



90 7 Secure ECS Communication

Furthermore, the single-clock cycle architecture of HSA5/1 allows us to more than
double the key length without compromising the communication data rate.

7.3 Example of Secure ECS Communication

This section is devoted to a worked-out example to illustrates the inner working
of secure ECS communication. The emphasis will be on highlighting the multiple
security players that result from integrating the dynamic features of ECS with the
high-speed HSA5/1 crypto. A secure ECS packet construction example is given
in Fig. 7.6 where an ECS protocol having B = 16 and l = 8 is considered.
Assume that the secure ECS system needs to transmit the decimal number 1384
(i.e., 010101101000 in binary). Assume further that the HSA5/1 key generator
has already generated the keystreams S1 = 1010100110001110, K1 = 0010,
K2 = 0001, K3 = 0111 and K4 = 0011, and the identification key ID = 0101. In
the following subsections, we will first show how the secure ECS packet is formed
and transmitted. We will then show how it is decrypted and decoded at the receiver.

7.3.1 Secure Packetization

The ID bits are added at both ends of the data block, as in Fig. 7.4, to form ECS
data packet PD=0101010110100001. The PD is then encrypted using the S1 key to
generate the encrypted PD, EPD=1111110000101111. The process of generating
EPD is shown in the “Data Encryption” box of Fig. 7.6.

In the next step, the EPD is used to apply ECS encoding, where EPD is broken
into two independent segments to reduce the index values of the most significant
bits. Both inversion and reversal operations are applied to the first segment to reduce
both the number of ON bits and their index values. This results in the encoded
segment with bits 00001011, FLAG1 = 0011, and NOI1 = 0011. Similarly,
the second segment needs inversion only and results in the encoded segment bits
00000101, FLAG2 = 0010, and NOI2 = 0010. Recall that NOI is the size of the
support subset of the segment, i.e., the number of ON bits, which is identical to the
Hamming weight of the binary segment. Among all the data bits of both segments,
only the index numbers of the ON bits are selected to form the “encoded EPD”,
denoted CEPD. For this example, the generated CEPD consists of index numbers
1, 2, and 4 from the first segment and index numbers 1 and 3 from the second
segment. The generated CEPD, FLAG1,2, and NOI1,2 are then used for both
packet encryption and transmission.

The original FLAG1,2 and NOI1,2 are encrypted to further secure the ECS
packet as they are necessary for the successful decoding of the transmitted data.
Packet encryption uses the keystreams, K1,K2,K3 and K4, to generate the
encrypted FLAG1,2, denoted EFLAG1,2, and the encrypted NOI1,2, denoted



7.3 Example of Secure ECS Communication 91

Fig. 7.6 Secure ECS packet construction: the top green block refers to the data encryption
function E(PD, S1) of Fig. 7.3 the middle gray block refers to the ECS encryption function
E(FLAGs,NOIs, S2) of Fig. 7.3. The bottom pulse stream is a combination of the pulses
generated for the encrypted data and those generated (yellow block) for the encrypted ECS
parameters



92 7 Secure ECS Communication

ENOI1,2. The resulting values of EFLAG1,2 and ENOI1,2 for the current
example are: EFLAG1 = 0010, ENOI1 = 0001, EFLAG2 = 0001 and
ENOI2 = 0101. These EFLAG1,2 and ENOI1,2 are then fed into the ECS
transmitter. The encryption of the ECS packet is shown in the “Packet Encryption”
box of Fig. 7.6.

In reference to the “Packet Transmission” box of Fig. 7.6, the ECS packet is
constructed using the CEPD,EFLAF1,2, and ENOI1,2. Note that encrypted
FLAG and NOI are transmitted rather than original ones. However, all the index
numbers in CEPD are transmitted using the original NOI1,2 of CEPD. For
example, the first segment of the CEPD block includes 4 pulses for FLAG1, 4
pulses for NOI1 (3 and an additional pulse), and the 3 index numbers. On the
other hand, the secure ECS packet includes 2 pulses for EFLAG1, 2 pulses for
ENOI1 (1 and an additional pulse), and the 3 index numbers. Similarly, the second
segment of the CEPD block includes 2 pulses for FLAG2, 3 pulses for NOI2 (2
and an additional pulse), and the 2 index numbers. However, the secure ECS packet
includes 1 pulse for EFLAG2, 6 pulses for ENOI2 (5 and an additional pulse),
and the 2 index numbers.

7.3.2 Secure Reception

At Trudy’s end, ENO1,2 are used as received to decode the rest of the packet,
which will result in transmission failure. This is because ENOI1 leads her receiver
to believe that one index number is being transmitted while, in fact, a total of
3 indices is being transmitted. Trudy’s receiver will decode only the first index
number of the first segment and will consider the rest of the pulse streams as
originating from a second segment. As a result, the decoding error will cascade
to the second ECS segment and from there to the subsequent secure ECS packets.
This failed transmission scenario is illustrated in Fig. 7.7a and is contrasted with
Bob’s successful transmission. In Fig. 7.7b, another example of failed transmission
is presented where Trudy’s receiver expects three index numbers to be transmitted
whereas the total number of transmitted indices is one. As a result, Trudy’s receiver
will consider the sync and EFLAG2 pulses as index numbers, which in turn
cascades the decoding error to the second segment for which Trudy’s receiver
will decode Index2 as the NOI2 and keep waiting for the remainder of the pulse
streams. As shown in Fig. 7.7c, the error will cascade to the subsequent ECS packets
and compromises their decoding as well. It is conceivable that packet-to-packet
decoding error detection schemes can be designed, but decoding error detection
within a packet cannot be avoided in the absence of the correct keystreams.

For a transaction to be successful, both ends of the communication link must
have the same keys. To successfully decrypt a received ECS packet, the keys are first
used in ENOI1,2 decryption so as to know the exact number of indices in the ECS
packet. Then they are used in EFLAG1,2 decryption to find out the ECS decoding
scheme of the data bits. The process is explained graphically in Fig. 7.8 using a set



7.3 Example of Secure ECS Communication 93

Fig. 7.7 Examples of erroneous packet decryption by an intruder: (a) Decryption failure due to
wrong decryption of ECS parameters resulting in early packet termination and the erroneous start
of a new-packet decryption; (b) Decryption failure due to wrong decryption of ECS parameters
resulting in a wait state. In (c), the scenario of (a) is further illustrated as a cascade of decryption
errors (red line) encompassing all the packets that follow the wrong decryption of Packet 1 (gray
boxes)



94 7 Secure ECS Communication

Fig. 7.8 Illustration of the symmetric and dynamic nature of secure ECS with the keys of
Transaction#2 dependent on the data of Transaction#1. This figure further illustrates the layered
architecture of secure ECS with decryption of the ECS parameters being a necessary condition for
the decryption of the data

of three successive transactions, where all the encoding, decoding, encryption, and
decryption steps are illustrated. Figure 7.8 illustrates how the inputs and outputs of
the key generator change at each transaction so that both ends of the communication
link are synchronized with respect to keystream generations.

7.4 Cryptanalysis of the Multilayer Cipher

A considerable amount of literature is available on attacks to break the A5/1 cipher
such as guess and clock [3], time-memory trade-off attack [7], and linear equation
solve [19]. Time-memory trade-off allows an attacker to reconstruct the key in one
second from two minutes of known plaintext at the cost of expensive preprocessing
of 248 steps to compute around 300 GB of data. Time complexity to break A5/1
through solving linear equations is 240.16. These complexities are for the 64-bit
cipher. Not only does our proposed solution provide a stronger cipher using a 128-
bit key, but also it presents the attacker with an even harder challenge through
ECS packet protection and data block authentication. Aside from using the 128-
bit key, our multilayer cipher increases the complexity by a factor of 220. This
factor accounts for the additional keys used to encrypt FLAG1,2 and NOI1,2 of the
ECS protocol. The modifications to A5/1 and its integration with the ECS protocol
make the secure transmission much stronger. Not only does it add confusion to the
cipher system but also diffusion by making the settings of the HSA5/1 registers
dynamically dependent on the plaintext.

To reach the central HSA5/1 cipher system, an attacker has first to challenge
herself to receive the packet successfully. The plaintext-dependent encrypted infor-
mation for the number of support indices (ENOI1,2) needs to be decrypted



7.5 Implementation, Cipher Overhead, and Comparison with Prior Art 95

successfully before their decoding. Otherwise, packet failure will occur. Further-
more, the successful decryption of an encrypted encoding flag, EFLAGi , depends
on ENOIi itself, which provides additional protection to the decoding process. If
an attacker is successful in guessing both of these, then data authentication using
ID would be the next barrier. Recall that these three ECS packet fields are updated
at each packet transmission along with the generated keystream. Moreover, like
the keystream, these keys are plaintext-dependent, which makes it difficult for an
attacker to send any invalid data to destroy synchronization or control the device.
The probability that an attacker could guess a packet that is acceptable to the
receiver is

Patt. = 1

2lD × 2lID × 24lK
= 1

2lPD × 24lK
(7.13)

where lD , lID , lPD , and lK are the lengths of input data block, ID, ECS data block,
and the Ki keystreams, respectively. In our example, where we have used 12-bit D,
4-bit ID, and 4-bit lK , the probability is ≈0.23 × 10−9. This is because an attacker
has to guess two 4-bit NOI , two 4-bit FLAG, one 4-bit ID, and a 12-bit D to form
a valid ECS packet.

Another issue that could arise is when we have constant data, for instance, when
the sensor node is powered off and the digital value is all zeros. In this case, HSA5/1
reduces to A5/1 and can, therefore, be broken as long as the A5/1 key is guessed
correctly. Again, to reach this point, successful packet reception and its decoding are
necessary. To further mitigate this issue, we recommend using the HSA5/1 register
contents after N cycles by discarding the initial 256-bits of s. In case an attacker
wants to store a transmitted packet and then applies exhaustive search to find the
key, (s)he has two main challenges. First, if we suppose that she can recover the
key, she must know the previously transmitted data as the keystream and register
contents are data-dependent. In most cases, previously transmitted data is not known
to her. Second, even in case such data is known to the attacker, (s)he must adopt a
brute-force exhaustive search method with insurmountable complexity given

Wexh = 2lS × 2lID × 24lK

2
(7.14)

where lS is the length of the HSA5/1 key. We have used lS = 128, which is twice
the standard A5/1 key. The brute-force attack complexity on secure ECS is 2147.

7.5 Implementation, Cipher Overhead, and Comparison
with Prior Art

Several hardware platforms have been used to implement secure ECS, including
a low-end microcontroller, a high-end FPGA, and an ASIC platform. Both the
microcontroller and FPGA platforms have been prototyped in hardware, while the
ASIC platform has been evaluated using standard logic-synthesis tools.



96 7 Secure ECS Communication

7.5.1 Microcontroller Prototype

In this implementation, we have used a low-end microcontroller, MKL25Z, mounted
on an FRDMKL25Z board from Freescale. We have implemented the full secure
ECS system in C that includes the ECS communication, a keystream generator,
encryption/decryption, and an authentication flow. There are two nodes in the
experimental setup that establish a secure communication link using the ECS
technique. The setup transmits data securely from one node to the other, and
the other node sends received data back to the first node to complete a full
transmission link. Received and transmitted data are then compared to verify two-
way communication.

7.5.2 FPGA Prototype

In this implementation, we have used the Xilinx Virtex-7 FPGA platform to run
and verify secure ECS using the Verilog Hardware Description Language. We
have also set up a network of devices in a master–slave configuration to mimic
an ECS-based IoT network in support of a smart building use case. Each link of
the network has a unique set of keys that is used for communication between the
nodes of the link. Each node in the network maintains a key table for all its links,
as shown in Fig. 7.9a. The Master device starts communication with a particular
node fetching the corresponding link key from the key table. Both link nodes
update their keys if the transaction is successful (i.e., legitimate response from the
slave). Though we have used a master–slave configuration in our experiments, other
network configurations are readily conceivable, as shown in Fig. 7.9b, where the
yellow box attached to each node represents the key table. Rigorous simulation and
hardware experimentation are performed for functional testing and verification of
the implemented systems. The experiments confirm that secure ECS transmission
works flawlessly. It is important to note that our proposed multilayer cipher system
is not a multiple, nested, or cascade cipher [13]. In the latter cases, the same data
is encrypted multiple times using the same cipher but with different keys or using
different ciphers (e.g., AES and RSA). In our multilayer cipher, the data is encrypted
once in one layer, and the flags used to encode the data as pulses are encrypted,
also once, in a different layer. It is of course conceivable to extend our proposed
multilayer cipher to a multiple, cascaded cipher, but this is outside the scope of this
chapter. Our testing and validation method is unique to secure ECS, and methods
based on cascaded ciphers cannot be used.



7.5 Implementation, Cipher Overhead, and Comparison with Prior Art 97

Fig. 7.9 Secure ECS networking options: (a) Master–slave configuration (b) Other possible
configurations with the blue circles showing the ECS nodes. Each node has a yellow box attached
showing its secure ECS routing links

7.5.3 ASIC Synthesis

Along with the embedded and FPGA prototypes, we have also synthesized the
secure ECS protocol using a Synopsis logic-synthesis flow and a GLOBAL-
FOUNDRIES 65 nm technology node. We have found that the system shown in
Fig. 7.3 (without the ECS codec) maintains the low-power operation of ECS
consuming only 27µW with a gate count of ≈2780 at a clock frequency of 25 MHz.
The synthesis results are shown in Table 7.3. Additionally, even with the security
overhead, the secure ECS system maintains the low-power operation of ECS and
is still of lower power consumption as compared to CDR-based serial transfers.
Such a comparison is given in Table 7.4. Please note that the schemes presented
in the five references in Table 7.4 are for state-of-the-art low-power CDR schemes
without any crypto overhead. They can be used with the NRZ serial transfer for data
transmission over a single channel. Our proposed multilayer security architecture’s
low-power efficiency is showcased in Table 7.4, which compares the state-of-



98 7 Secure ECS Communication

Table 7.3 ASIC synthesis
results in
GLOBALFOUNDRIES
65 nm technology

Power (µW) Area (gate count)

ECS Crypto 27 ≈2780

ECS Codec 26.6 2356

Total 53.6 ≈5136

Table 7.4 Comparisons
with serial communication
based on clock and data
recovery (CDR)

Power (uW)

SRLa CDR Totalb

ECS 26.6 N/A 26.6 Chapter 2

Secure ECSc 53.6 N/A 53.6

Normal serial transfer 32.1 70 102.1 [37]

62.5 94.6 [38]

90 122.1 [12]

57.5 89.6 [77]

60.6 92.7 [73]
aSerializer
bSRL+CDR
cKeystream generation in one clock cycle

the-art NRZ+CDR transceivers (without crypto overhead) with our secure ECS
architecture.

7.5.4 Secure ECS Design Alternatives

The results in Table 7.4 are obtained using the secure ECS architecture under the
assumption that only one clock cycle is available to generate all the keystreams.
However, when more than one clock cycles are available for cryptographic opera-
tions, the architecture can be readily modified to generate keystreams in as many
clock cycles as available. It is anticipated that such change would decrease power
consumption and hardware resources but at the expense of a lower data rate. There
are two design alternatives for adapting the architecture to the number of clock
cycles available for crypto processing.

The first is to reduce the lengths of the registers such that fewer bits of
the keystream (e.g., 4 bits) are generated in each clock cycle and eventually
concatenated to form a 16-bit key. However, this approach is not recommended
because of the need to generate simultaneously one main keystream and five sub-
keystreams. Indeed, decreasing the length of the registers will compromise the
strength of the cipher and make it vulnerable to attacks.

The second design alternative is to completely update the registers during the
first clock cycle and generate a portion of the keystream bits. The hardware can be
re-used to generate the rest of the bits in subsequent clock cycles without changing
the initial state of the registers. This modification would result in a lower data rate
but with fewer gates involved in keystream generation, which would reduce power



7.5 Implementation, Cipher Overhead, and Comparison with Prior Art 99

Fig. 7.10 (a) Trade-off between power consumption and data rate as function of crypto latency
measured in clock cycles. Note that a single-clock-cycle crypto latency results in the highest
power consumption. (b) Impact of crypto latency on data rate. Plots (a) and (b) indicate that for
this implementation, a crypto latency of 3 clock cycles provide the best trade-off between power
reduction and data rate maximization

consumption. The overall impact and the trade-off between power consumption and
data rate as a function of the crypto clock cycles are shown in Fig. 7.10a. The
trade-off is further clarified in Fig. 7.10b, where relative reductions in power and
data rate are plotted vs. the available crypto clock cycles. Note that for the same
number of crypto clock cycles, the relative reduction in data rate is much higher
than the relative reduction in power, with the difference becoming more pronounced
as the number of crypto clock cycles is increased. It is therefore concluded that the
crypto overhead in ECS is essentially driven by the data rate with maximum data
rate achieved using a single-clock-cycle crypto implementation.

Finally, we would like to point out the secure ECS design alternative based on
the domain-specific instruction set architecture, ECSIA, highlighted in Chap. 8.
A crypto ISA extension along with the supporting HSA5/1 crypto block can be
added to ECSIA that combines both the flexibility of a securely programmable IoT
communication interface with the low-power, high data rate features of ECS.

7.5.5 Comparison with Lightweight Ciphers

Finally, HSA5/1 and the secure ECS transceiver are compared with several
lightweight ciphers from the prior art. Table 7.5 summarizes the comparison results
which clearly illustrate the competitive performance of the standalone HSA5/1
cipher with respect to other published lightweight ciphers. The more interesting
comparison is the one involving the full secure transceiver, which calls the following
important remarks:

1. The HS5/1 cipher: Given its single-clock cycle design, the 128-bit HS5/1 cipher
achieves the smallest latency of 1 clock cycle (similar to the 80-bit Trivium



100 7 Secure ECS Communication

Ta
bl
e
7.
5

C
om

pa
ri

so
n

of
se

cu
re

E
C

S
w

ith
ot

he
r

lig
ht

w
ei

gh
tc

ip
he

rs
.C

lo
ck

fr
eq

ue
nc

y
25

M
H

z

M
od

e
K

ey
C

lo
ck

A
re

a
Po

w
er

D
R

b
T

Pc
E

O
/

D
yD

R
/

Te
ch

no
lo

gy

C
ip

he
r

(E
,D

,E
c)

a
(b

its
)

cy
cl

es
(G

E
)

(µ
W

)
(M

b/
s)

(M
b/

s)
PE

d
D

T
Pe

(n
m

)

PR
E

SE
N

T
[6

3]
E

12
8

55
9

13
91

N
/A

N
/A

2.
88

N
O

N
O

18
0

C
L

E
FI

A
[1

]
E
+D

12
8

17
6

29
96

N
/A

N
/A

18
N

O
N

O
13

0

A
E

S
[1

4]
E
+D

12
8

10
32

34
00

N
/A

N
/A

3.
13

N
O

N
O

35
0

D
E

S
[6

3]
E
+D

56
14

4
23

09
N

/A
N

/A
11

.1
N

O
N

O
18

0

SE
A

[4
0]

E
+D

96
93

37
58

N
/A

N
/A

25
.8

N
O

N
O

13
0

IC
E

B
E

R
G

[4
0]

E
+D

12
8

16
77

32
N

/A
N

/A
10

0
N

O
N

O
13

0

H
IG

H
T

[2
4]

E
+D

12
8

34
30

48
N

/A
N

/A
47

N
O

N
O

25
0

T
ri

vi
um

[2
0]

E
+D

80
1

25
99

N
/A

N
/A

25
N

O
N

O
13

0

G
ra

in
[2

0]
E
+D

80
1

12
94

N
/A

N
/A

25
N

O
N

O
13

0

Si
m

on
[4

,6
,3

2]
E
+D

12
8

>
11

6
36

03
20

4
N

/A
45

.5
N

O
N

O
65

M
id

or
i[

4]
E
+D

12
8

>
20

39
59

15
2

N
/A

10
0

N
O

N
O

65

Se
pc

k
[6

,3
2]

E
12

8
>

64
27

27
12

9
N

/A
94

N
O

N
O

13
0

H
SA

5/
1

(t
hi

s
w

or
k)

E
+D

12
8

1
27

80
27

90
0

90
0

N
O

N
O

65

Se
cu

re
E

C
S

(t
hi

s
w

or
k)

E
+D

+E
c

14
8

47
–1

29
51

36
53

.6
3.

1–
8.

5
3.

1–
8.

5
Y

E
S

Y
E

S
65

(T
xR

x+
H

SA
5/

1)
(9

8)
f

(4
.1

)f
(4

.1
)f

a E
:E

nc
od

er
,D

:D
ec

od
er

,E
c:

E
C

S
Si

gn
al

in
g

b
D

at
a

R
at

e
c T

hr
ou

gh
pu

t
d
E

O
:E

nc
od

in
g

O
bf

us
ca

tio
n,

PE
:P

ac
ke

tE
nc

ry
pt

io
n

e D
yD

R
:D

yn
am

ic
D

at
a

R
at

e,
D

T
P:

D
yn

am
ic

T
hr

ou
gh

pu
t

f A
ve

ra
ge



7.6 Conclusions 101

and Grain). Among the 128-bit ciphers with both encoding and decoding
implemented in hardware, it has the smallest footprint and, by far, the largest
throughput.

2. Footprint of the secure ECS transceiver: The full secure transceiver has a
footprint measured in GE that is quite reasonable and is interestingly less than
the ICEBERG cipher alone.

3. Cipher overhead: The HS5/1 cipher has essentially doubled the footprint and
power consumption of the ECS transceiver, yet the total amount of area and
power consumed by the secure ECS transceiver are well within the envelope
of a constrained IoT node.

4. Impact of transceiver design: The last two lines of Table 7.5 are meant to illus-
trate the interplay between cipher and transceiver design. While the standalone
cipher has a data rate and throughput of 900 MB/s at a clock rate of 25 MHz,
such data rate and throughput cannot be sustained by the transceiver due to the
specifications of the signaling protocol. It would be interesting to explore such
interplay between the security component and the communication component for
the prior standalone ciphers.

5. Multilayer cipher: The multilayer nature of the secure ECS cipher is evident in
the number of key lengths used at the transceiver level (148 bits) vs. the key
length used by the cipher itself (128 bits). The additional 20 bits are used for
the encryption of packet parameters and the obfuscation of encoding flags. This
makes the secure ECS transceiver more challenging to attack than HS5/1 itself
or any of the lightweight ciphers referenced in Table 7.5.

7.6 Conclusions

The proposed secure, single-channel communication system exploits the unique
features of the ECS protocol and adds multiple layers of security to the transmission
with low impact on ECS data rate and power performance. It does so while present-
ing a potential attacker with a layered set of hard-to-solve challenges. The core of
the secure ECS system is HSA5/1, a novel, strengthened, low-latency architecture
the A5/1 keystream cipher that uses a total key length of 148-bit, out of which
128-bits are used for the HSA5/1 keystream generation and 20-bits are interleaved
with the ECS protocol to provide additional layers of packet encryption. The secure
ECS solution features both confusion and diffusion defenses while providing both
data confidentiality and packet authentication. The secure ECS system has been
prototyped on embedded microcontroller, FPGA, and ASIC platforms with all the
prototypes confirming the low overhead of the HSA5/1 crypto block. The secure
ECS prototypes have achieved data rate, power consumption, small footprint figures
that are all in line with the original ECS attributes. Conceivably, HSA5/1 may be
used with other single-channel protocols albeit without the additional crypto layers
that are tied up to the ECS packet specification.



102 7 Secure ECS Communication

This chapter highlights the advantages of a tight integration between the IoT
communication protocol on the one hand and the lightweight cryptographic algo-
rithm on the other. As illustrated in the integration of ECS with HSA5/1, this
integration has resulted in a secure communication protocol that is very well adapted
to constrained IoT nodes. This {ECS,HSA5/1} case will serve as a reference point in
our future work which will include more extensive evaluations of, and comparisons
with, other lightweight cipher algorithms, especially in terms of their compatibility
with the multilayer cryptographic architecture presented in this chapter.



Chapter 8
Domain-Specific ECS Processor

In view of these inevitable limitation, architects now widely
believe that the only path left for major improvements in
performance-cost-energy is domain-specific-architectures
(DSAs).

David Patterson

This chapter introduces the domain-specific architecture (DSA) of a novel streaming
processor dedicated to the edge-coded signaling (ECS) communication. The pre-
sentation of this DSA will be self-contained in that it will include the instruction set
architecture (ISA) itself, the minimal micro-architecture needed to implement it, and
an analysis of its performance using the thin software stack needed to run programs
on the implemented processor. In particular, the micro-architectural opportunities
for designing a minimal, area- and power-efficient processor for this important
domain will be highlighted. Metrics such as data rate, energy efficiency, area, and
power will be given and compared with those of various hardwired implementations
of the IoT signaling techniques under consideration.

8.1 Introduction

DSAs are computing platforms that are tailored to the characteristics of a well-
defined domain. They differ from general purpose architectures in that they are
designed to execute a specific set of tasks extremely well. They also differ from
Application-Specific Integrated Circuits (ASIC) in that they are programmable to
efficiently work on several applications in a given domain. A DSA comes with its
domain-specific instruction set, which constitutes the core of its programmability.
One important benefit that a DSA has over a general purpose CPU is that its task-
tailored programs have significantly fewer instructions than those of a CPU and,
therefore, achieve significant performance gains and power savings due to a much
lower instructions-per-program metric.

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_8

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_8


104 8 Domain-Specific ECS Processor

Another important DSA benefit is that it offers micro-architects with many
additional opportunities to improve hardware performance above and beyond
instruction-level parallelism or hardware, e.g., multi-core, parallelism. These oppor-
tunities are due to the domain knowledge that is captured in the domain-specific
instruction set. Because of these new hardware opportunities for micro-architects,
DSAs have been declared as the “only path left” for a hardware-centric future in
computer architecture [22, 62].

The main elements of a successful DSA are the following:

1. Domain-specific instruction set architecture: A new instruction set has to be
designed almost from scratch to embody domain knowledge. Currently, popular
domains include Artificial Intelligence (AI), bio-informatics, the Internet of
Things, and crypto-currencies. Traditional domains include graphics, digital
signal processors, and cryptographic processors.

2. Domain-specific software stack: A new software stack has to be created in
support of the domain-specific ISA. The stack will comprise compilers, debug-
gers, profilers, software development kits (SDKs), and application-programming
interfaces. A very good example of such a stack is NVIDIA’s CUDA environment
for its GPUs.

3. Domain-specific performance metrics: Every knowledge domain will introduce
its own task-specific performance metrics to evaluate various implementations
of a domain-specific ISA. Examples of such new domain-specific metrics
include the vertex-shader duration (VS) in graphics and the number of multiply
accumulates (MACs) in artificial neural networks.

Two recent instances of a successful DSA are Google’s Tensor Processing Unit
(TPU) [28, 29] and IBM’s AI core chip [15] for the acceleration of machine
learning tasks. Each of these accelerators has its own custom instruction set along
with a hardware micro-architecture meant to achieve maximum performance. As
compared to CPUs and GPUs developed in similar semiconductor technologies,
machine learning inference on Google’s TPU is 15 to 30 times faster and is 30 to
80 times better in energy efficiency. The IBM AI core has achieved more than 90%
sustained utilization across a range of neural network topologies. It is important to
stress that these processors are domain-specific in that they can be programmed to
accelerate not just deep convolutional neural networks as in [75] or [35] but also
other machine learning workloads such as multilayer perceptrons (MLPs) or long-
short-term-memory (LSTM) networks.

Incidentally, the TPU and the AI core are meant to accelerate the execution of
workloads arising in the context of artificial neural networks and are therefore to
be distinguished from brain-inspired, neuromorphic platforms such as [18, 70] and
[9], whose computational model is that of the spiking neural activity of the nervous
system.

Recent examples of programmable accelerators in application domains other than
neural networks or neuromorphic computing include the cryptographic processor
reported in [21], the biomedical platform processor [33], and the string matching
accelerator [39]. In the area of network communication, it is worth mentioning



8.1 Introduction 105

Cisco’s routers where the main CPU (e.g., MPC860 PowerQUICC processor from
Motorola/NXP) includes an on-chip Communication Processor Module (CPM)
[17, 36, 43]. The CPM is a RISC microcontroller dedicated to several special
purpose tasks such as signal processing, baud rate generation, and direct memory
access (DMA). CPM may, therefore, be considered a domain-specific processor for
the network-routing domain.

This chapter introduces the DSA of a novel streaming processor for an applica-
tion domain that has not been addressed in the open literature, namely, the domain
of IoT communication. The presentation of this DSA will be self-contained in that
it will include the ISA itself, the minimal micro-architecture needed to implement
it, and an analysis of its performance using the thin software stack needed to
run programs on the implemented processor. In particular, the micro-architectural
opportunities for designing a minimal, area- and power-efficient processor for this
important domain will be highlighted. Metrics such as data rate, energy efficiency,
area, and power will be given and compared with those of various hardwired
implementations of the IoT signaling techniques under consideration.

In the specific domain of communication protocols, there have been two main
approaches for their implementation. In the first approach, the communication
engineer programs the entirety of the protocol on a microprocessor and controls
their selection and parameters through registers. This is a standard practice that is
followed for data transfer protocols such as I2C, I2S, SPI, UART, and CAN [11]. The
second approach is to design an ASIC for the newest generation of the protocol and
make it backward compatible with older versions as in the case of USB 2.0 and 3.0
[76]. The latter approach increases silicon area and power consumption and does
not provide any customization features. Clearly, a pure software implementation,
e.g., assembly language, on a general purpose processor often leads to an inordinate
number of instructions to execute, which results in a drastic reduction in achievable
data rates. It is one of the major benefits of a DSA to reduce the number of
instructions needed to run a specific task, while its programmability enables the
economic implementation of several variants of a given task.

The novel DSA introduced in this chapter is dedicated to ECS family of
communication protocols. In line with the original protocol, the DSA architecture
is called “Edge-Coded Signaling Interface Architecture” (ECSIA). The ECSIA
processor, whose main components are shown in Fig. 8.1, possesses the following
important properties:

1. Its ISA is a compact RISC-like architecture with 22 instructions, only one of
which has a branching condition.

2. It is implemented as a full processor with its own instruction memory, and
instruction fetching and decoding.

3. It is a streaming processor with no data memory. Incoming data is streamed
directly into the register file.

4. It is a secure processor in that a cryptographic block can be added to the micro-
architecture and enabled using an additional instruction in the ISA.



106 8 Domain-Specific ECS Processor

Fig. 8.1 Main components
of the ECSIA
micro-architecture

5. It has a thin software stack that enables the coding and compiling of ultra-
compact C programs for implementing the various ECS protocols.

6. It brings power consumption closer to a dedicated ASIC design by enabling the
sharing of optimally designed common and dedicated hardware modules and
by providing the flexibility to reconfigure information flow between the various
modules.

7. It enables the customized implementation not only of the standard ECS protocols
but also of any communication protocol that uses the same underlying idea of
transmitting information in the form of pulses.

8.2 Edge-Coded Signaling Interface Architecture (ECSIA)

As is clear from Chap. 2, ECS family members share the same functional and struc-
tural features. The functional features include segmentation and encoding, while the
structural features include using F lags, NOS, and inter-symbol separators in the
ECS packet. The ECS family members further share the same receiver mechanism,
which consists of simply detecting and counting the edges of the incoming pulses.
Their packet formats are also quite similar. While similar in structure and functions,
they also leave a significant room for variations on the common themes of seg-
mentation, encoding, representation, packetization, and pulse transmission. Possible
variations may include the transmission of both the index numbers and decimal
values, which is a form of redundancy to improve transmission reliability. Another
form of redundancy is to repeat the transmission automatically with only a single



8.2 Edge-Coded Signaling Interface Architecture (ECSIA) 107

start signal. To support the existing protocols and any possible variations within the
ECS family, this chapter introduces a domain-specific instruction set, the ECSIA, to
bring the various edge-coded signaling techniques under one umbrella. ECSIA can
be used to generate not only the standard protocols with tunable communication
parameters (i.e., segment size, inter-symbol separations, pulse width) but also it
can be used to develop other customized communication techniques that use the
same underlying idea of transmitting information in the form of pulses. The ECSIA
micro-architecture uses a set of fundamental, optimized, hardware building blocks
that can be programmed to implement various versions of ECS. These building
blocks include pulse generators, ON bit counters, adders, segmenters, encoders,
register files, and memories. In this chapter, the ECSIA processor is considered a
self-contained, stand-alone streaming processor. However, it can also be embedded
as a co-processor in a system-on-chip (SoC) along with other CPUs, GPUs and
accelerators. The logic circuit details of the micro-architectural building blocks are
given in Sect. 8.3. The rest of this section will be devoted to highlight the ISA itself.

8.2.1 Register Set

To enable protocol customization, registers are needed to enable the configuration
of hardware modules, the control of data flow, the buffering of input and output data,
and the tracking of execution status. To accommodate these needs, the ECSIA uses
three types of registers:

1. General purpose registers: They form a set of eight 8-bit registers, R0 through
R7, which are programmer-accessible.

2. Control registers: There are two 8-bit registers, Ctrl0 and Ctrl1, which are
used to store protocol configuration parameters such as mode of transaction
(transmitter or receiver), segment number, segment size, and pulse width in
terms of a number of clock cycles. These control registers are initially set by the
programmer through specific instructions, but once set, they become accessible
only to the system.

3. IO register: This is the LoadReg register, which is a 16-bit, I/O-dedicated register
used to read the I/O port, set the I/O port, and store the updated results after an
instruction is executed. Like the control registers, LoadReg is a privileged register
and is accessible only to the system.

These register types are summarized in Table 8.1. In the remainder of this chapter,
the word register will solely refer to a general purpose register.

8.2.2 Instruction Formats and Types

The ECSIA instruction formats are shown in Fig. 8.2, and the assembly language
instructions are given in Tables 8.2 and 8.3. The ECSIA instructions are all 16 bit



108 8 Domain-Specific ECS Processor

Table 8.1 ECSIA register set

Register Type Organization

1 R0–R7 8-bit GPa 8-bit value

2 Ctrl0 8-bit SPb [0, Mode, 3-bit SegNum, 3-bit SegSize]

3 Ctrl1 8-bit SP 8-bit pulse width

4 LoadReg 16-bit SP 16-bit value
a General purpose
b Special purpose

Fig. 8.2 ECSIA instruction formats

long in line with a RISC architecture. The 16-bit length is chosen to accommodate
ECS protocols based on 16-bit data segments. Each instruction is divided into three
main parts: Opcode, Rd/CB, and C/{Rd,Rx, Ry}. The 5-bit Opcode represents the
type of operation. Rd,Rx, and Ry represent 3-bit register numbers. Rz represents
a 2-bit register number. C is the constant operand value. The CB field contains the
control bits and, depending on the instruction, can be either T H/WEEP or ICo.
The T H/WEEP is the combination of three bits representing the type of operand
(T), Halt-PC (H) or Write enable (WE), and extra pulse enable (EP). The ICo is
the combination of I and Co bits that are used to specify the condition for copying
the register contents. In view of these two CB combinations, the instructions can
be grouped into three types: one that uses T H/WEEP bits (highlighted in gray in
Table 8.2), a second that replaces T H/WEEP with ICo bits, and a third that does
not care about the CB field (highlighted in dark gray).

Type I

The first type of instructions, highlighted in gray, handles one operand at a time and
is used in operations such as to read/write the I/O port, set/clear the LoadReg,
set various communication protocol parameters, and send/receive pulse streams.
These instructions use CB in the second part of the instruction format where CB

represents T H/WEEP . T is used to set the type of operand (register or a constant)
in an instruction. H/WE is used either to halt the PC during the transmission of
pulse streams or to enable the store operation of received pulse count to a specified
register. The bit EP is used if an extra pulse should be added to the transmitted pulse



8.2 Edge-Coded Signaling Interface Architecture (ECSIA) 109

Table 8.2 ECSIA instruction set

Instruction CB Description Example

1 RP – Load data from input pins to data
register.

RP

2 WP – Output the received data from data
register to the pins.

WP

3 SSS C TH/WEEP Set segment size (C = 0,1,2 for 4 bits, 8
bits, 16 bits).

SSS 1

4 SSN C TH/WEEP Select segment number (C = 0,1,2,3). SSN 2

5 SM C TH/WEEP Set mode (C = 0,1 for transmitter,
receiver). Setting RX mode clears
LoadReg, and setting TX loads input
into LoadReg.

SM 0

6 SW C TH/WEEP Set the width of pulse (C = integer
specifying cycle count).

SW 2

7 IV Rx,Ry ICo Inverse the selected segment. Rx=NOI
& Ry=Flags (Rx/Ry= R0,R1,. . . R7).

IV R0,R1

8 IVC Rx,Ry ICo Inverse conditionally the selected
segment if encoding condition satisfies
(ON bits >Seg. Size/2). Rx=NOI &
Ry=Flags (Rx/Ry= R0,R1,. . . R7).

IVC R0,R1

9 FL Rx,Ry ICo Flip selected segment bits. Rx=NOI &
Ry=Flags (Rx/Ry= R0,R1,. . . R7).

FL R0,R1

10 FLC Rx,Ry ICo Flip conditionally the selected segment
bits if encoding condition satisfies (Seg.
>Flip(Seg.)). Rx=NOI & Ry=Flags
(Rx/Ry= R0,R1,. . . R7).

FLC R0,R1

11 IVFL Rx,Ry ICo Invert and flip selected segment bits.
Rx=NOI & Ry=Flags (Rx/Ry=
R0,R1,. . . R7).

IVFL R0,R1

12 SP H, EP, C/Ry TH/WEEP Send C or Ry number of pulses (Ry =
R0,R1,. . . R7, C = constant). Halt PC if
H=1 (H=0,1). Send one extra pulse if
EP=1 (EP=0,1).

SP 1,1,4

13 SD H, C/Ry TH/WEEP Inter-symbol separation of C or Ry
number of clock cycles (Ry =
R0,R1,. . . R7, C = constant). Halt PC if
H=1 (H=0,1).

SD 1,4

14 WR Rd, C – Write constant value to a register Rd
(Rd= R0,R1,. . . R7).

WR R0,8

15 SRD C/Ry TH/WEEP Set receiver inter-symbol separation
equal to C or Ry number of clock cycles
(Ry = R0,R1,. . . R7, C = constant).

SRD R0 or SRD 4

16 WRI WE, EP, Ry TH/WEEP Wait for receiver pulse stream interrupt.
PC halts till the interrupt arrives.
Remove one extra pulse count if EP=1
(EP=0,1). Enable received pulse count
write to register Ry (Ry= R0,R1,. . . R7)
if WE=1 (WE=0,1).

WRI 1,1,R0

(continued)



110 8 Domain-Specific ECS Processor

Table 8.2 (continued)

Instruction CB Description Example

17 SDB C TH/WEEP Sets the index bits or the data bits in the
LoadReg as per the received pulse
stream. (C=0,1 for indexing and data,
respectively)

SDB 1

18 BNZD Rd, label – Branch to label and decrement Rd by 1 if
the specified register Rd contains
non-zero number. (Rd= R0,R1,. . . R7)

BNZD R0,loop

19 CRC Rx,Ry,I,Co ICo Copy register conditionally. Rx= Ry if
I=0. Rx= Ry, if I=1 and LoadReg [Ry]=1
and Co=0. Rx=0 otherwise. Rx=Selected
Segment, if Co=1. Ry is ignored
(Rx/Ry= R0,R1,. . . R7). Can be used to
clear the register.

CRC R1,R2,1,1

20 CF Rz,Rx,Ry ICo Combine Flags. Rz={Rx[1:0], Ry[1:0]}.
Rz=R0,. . . R3. Rx/Ry=R0,. . . R7.

CF R0,R1,R2

21 SF Rz,Rx,Ry ICo Split Flags. Rx=Rz[3:2], Ry=Rz[1:0].
Rz=R0,. . . R3. Rx,Ry=R0,. . . R7.

SF R1,R2,R0

22 NOP – No operation. NOP

Table 8.3 ECSIA
interpretations

Instruction interpretation

Control bit Value: effect

T (Type R/C) 0: register, 1: constant

H (Halt-PC) 0: no halt, 1: halt

WE (write enable) 0: register write disabled, 1: enabled

EP (extra pulse) 0: extra pulse disabled, 1: enabled

I 0: no indexing, 1: indexing

Co 0: copy segment disabled, 1: enabled

stream and/or an extra pulse should be removed from the received pulse stream. The
last 8-bit-long fragment of instruction is used to indicate a register number or an
immediate constant value.

Type II

The second type of instructions handles two or three operands simultaneously and
is used in operations such as encoding (inversion and reversion with or without
condition), combining and splitting encoding flags, and copying register contents
or some other information to a specified register conditionally. These instructions
use CB in the second part of the instruction format where CB represents ICo. The
combinations of I and Co bits are used to select the source of information to be
copied. The 3-bit Rx and Ry , and 2-bit Rz Register fields are used to indicate one of
the general purpose registers.



8.2 Edge-Coded Signaling Interface Architecture (ECSIA) 111

Type III

The third group of instructions, highlighted in dark gray, handles two operands at a
time and is used in operations such as updating a register with a given constant value
and jumping to a specified label in the code depending on the validity of a condition
specified by a register. Instead of CB, these instructions use Rd in the second part of
the instruction format. The 3-bit Register field is used to indicate one of the general
purpose registers, and the 8-bit Constant field is used to provide either a constant
value or a label in the code to jump to.

8.2.3 Addressing Modes

ECSIA does not need any data memory. Therefore, the operands of all the
instructions in Table 8.2 are either included in the instruction itself or accessed
directly through the registers. As a result, ECSIA employs only three addressing
modes: immediate, register, and auto-decrement. In the immediate mode, the source
is either a constant or a label, while the destination is one of the general purpose,
special purpose, or program counter registers. In the register mode, the register
contains the value of the operand. The auto-decrement mode is used only for a jump
operation where the branch to a label is taken and a specified register decrements by
one if the register contains a non-zero number.

8.2.4 External I/O and Interrupts

As highlighted earlier, the ECSIA processor can be used as a stand-alone, streaming,
core processor or as a co-processor in an SoC. The ECSIA I/O ports and the inter-
rupts are designed to accommodate both the stand-alone and SoC configurations,
using a simplified interface with three external I/O ports. One of these ports is
the 16-bit data I/O port that is used to read from and write back to the external
environment. To transmit and receive the packets in the form of pulse streams, a
1-bit signal I/O port is used. Another 1-bit data-ready port is used to source the
generation of I/O interrupts and start the execution of instructions.

To interact with the I/O interface and achieve low-power operation, the ECSIA
processor supports a workload-based interrupt mechanism consisting of three
interrupt signals. The first is the I/O interrupt, which is generated when the data at
the I/O port is available. The processor remains in a halt state until the I/O interrupt
is received and starts instruction execution from the very start. The second is the
transmitter interrupt, which is used to indicate the completion of the transmission
of one pulse stream. If halt is enabled, the ECSIA processor remains in a halt state
until the transmitter interrupt is received, at which time the execution is continued
from the point it was halted. The third interrupt is the receiver interrupt, which



112 8 Domain-Specific ECS Processor

is generated when the reception of one pulse stream is completed. The ECSIA
processor remains in a halt state until the receiver interrupt is received, at which
time the execution is continued.

8.2.5 ISA Discussion

ECSIA has a very compact RISC-like instruction set of only 22 instructions that
can be functionally put in 4 different categories: (1) configuration: 8 instructions,
(2) encoding/decoding: 8 instructions, (3) transmission control: 4 instructions, (4)
register/branching: 2 instructions.

It is important to note that this DSA does not contain arithmetic/logic or rotation
instructions. Nor does it have a call stack. Its branching instructions are limited to
just one. This compact, minimalist approach to the ISA is a hallmark of the current
DSA trend. Indeed, the TPU instruction set itself has less than 15 instructions [28]
with the interesting twist that they are CISC rather than RISC instructions. The
main reason for using CISC-style instructions in the TPU is to enable efficient
instruction dispatching from the host memory to the TPU using a PICe bus. In our
implementation, the ECSIA processor has its own instruction memory and program
control.

In terms of execution latency, most of the ECSIA instructions execute in 1 clock
cycle, which obviates the need for pipelining to improve data rate. In contrast, and
as expected, the average number of execution clock cycles of the TPU CISC-style
instructions is between 10 and 20 clock cycles. The TPU has a four-stage execution
pipeline [29].

8.3 ECSIA Micro-Architecture

The reader is referred to Fig. 8.1 for the main blocks of the ECSIA processor.
Figure 8.3 gives a more detailed breakdown of these blocks along with their
connectivity, their access to signal and data ports, and their synchronous behavior.
This micro-architecture further shows the clock distribution and program counter
(PC) control units, the instruction decoder, the encoding/selection unit, the encod-
ing/selection control, and the interrupt handler. The proposed micro-architecture
executes all the instructions listed in Table 8.2. A few of these instructions use only
one processing block at a time, while others use multiple blocks simultaneously to
generate their outputs. As mentioned in the previous section, most of the instructions
are executed in one clock cycle only. Instructions such as SP and SD take more than
one clock cycle to execute as they need to send or receive a number of pulses. All
the micro-architecture blocks of Fig. 8.3 are explained in the next subsections.



8.3 ECSIA Micro-Architecture 113

Fig. 8.3 ECSIA micro-architecture block diagram

8.3.1 Memory Interface

ECSIA supports up to 128 KB of instruction memory in a configuration of
64Kb × 16 with 16-bit address bus. ECSIA is a data-streaming processor. Only the
instruction memory is needed, and there is no need for data memory. The program
counter and the relevant controls are used to update the instruction memory address
at each clock cycle.

8.3.2 Instruction Decoder

The instruction decoder accepts instructions from the instruction memory and
decodes them to generate the appropriate control signals. The control signals are
then used by several system blocks to take decisions and perform the required
tasks. The ECSIA decoder, shown in Fig. 8.4a, processes the 5-bit opcode field in
the 16-bit instruction and generates 27 control signals. The decoder logic works
as per Table 8.4 where the opcode for each of the instructions is also listed. In
Table 8.4, RR is reverse the roles, WB is write back, WE is write enable, RE is
read enable, SE is store enable, LE is load enable, and SGE is stage enable. The
remaining control signals represent a specific instruction. RE and WE enable the
read and write operations of a register in the register file. WB enables the write-back
operation to update the load register with the results after finishing a particular task.
RR is used to reverse the roles of the registers in Type I and Type III instructions. In
the CF , SF , and CRC instructions, the register locations can either be used to read
from, or write to, a register. For example in CF , the second operand is used to read



114 8 Domain-Specific ECS Processor

Fig. 8.4 ECSIA
micro-architecture hardware
blocks: (a) Instruction
decoder, (b) Register file, (c)
Clock distribution and PC
control, (d) Encoder and
selector control, (e) Pulses
and delay generator, (f) Pulse
stream receiver



8.3 ECSIA Micro-Architecture 115

Table 8.4 ECSIA
instructions decoder

Instr. Opcode Control signalsa

NOP 00000 000000000000000000000000000

RP 00001 000000000000000000000000010

WP 00010 000000000000000000000000100

SSS 00011 000000000000000000010000000

SSN 00100 000000000000000000100000000

SM 00101 000000000000000001000000000

SW 00110 000000000000000010000000000

IV 00111 000000001001000100001010011

IVC 01000 000000001001001000001010011

FL 01001 000000001001010000001010011

FLC 01010 000000001001100000001010011

IVFL 01011 000000001001010100001010011

SP 01100 000000000010000000000001000

SD 01101 000000000100000000000001000

WR 01110 000000001000000000000010000

SRD 01111 000000010000000000000000000

WRI 10000 000000100000000000000000000

SDB 10001 000001000001000000000000011

BNZD 10010 000110001000000000000011000

CRC 10011 001100001000000000000011000

CF 10100 010100001000000000000111000

SF 10101 100100001000000000001011000
a [SF,CF,CRC,RR,BNZD,SDB,WRI,SRD,WR,SD,SP,WB,FLC,

FL,IVC,IV,SW,SM,SSN,SSS,WE2,RE2,WE,RE,SE,LE,SGE]

a register, but in SF the second operand is used to store a part of the result. SE and
LE are used to read and write the LoadReg in the register file. The SGE control
signal is a power management signal that is used to shut-off unused modules of the
architecture to save power during the execution of an instruction.

8.3.3 Register File

The ECSIA register file is shown in Fig. 8.4b and consists of all the registers
listed in Table 8.1. The ECSIA register file supports read and write operations of
two registers simultaneously and, therefore, has separate module ports for these.
However, the LoadReg does not use any of these ports and has separate control
signals. The output of the register file is divided into two parts. In the first part, the
contents of the registers such as LoadReg and the general purpose registers are set to
the output when requested through suitable control signals. In the second part, the
contents of the special purpose registers are continuously reflected at the output of
the register file so as to guarantee the availability of the communication parameters



116 8 Domain-Specific ECS Processor

for system use without the need of issuing an extra request. These parameters
include segment size, selected segment number, mode of transmission, and pulse
width. We will later show how these parameters help in selecting and updating a
specific portion of the data word without additional read/write cycles and delays.

8.3.4 Clock Distribution and PC Control

This module can be divided into two parts: a clock distribution block (CDB) and a
PC control unit (PCCU), as shown in Fig. 8.4c. The clock distribution block, CDB,
takes care of all the clocks inside the ECSIA system. CDB generates two types of
sub-clocks using the main System Clock that is represented by "1" in the figure.
The Process Clock is the gated system clock, and all the blocks execute using this.
The process clock is denoted by "2" in the figure, and the gating is enabled if the
“Stage Enable” signal is inactive. The second sub-clock is the Pulse Clock and is
denoted by "3" in the figure. The pulse clock is used to generate pulse streams and
inter-symbol separators. The pulse clock is the output of a pulse clock generator that
takes a pulse width parameter as an input from the register file and generates a clock
signal accordingly. Besides clock distribution, the CDB block is also responsible for
controlling the halt state activation and deactivation as may be requested. Recall that
the halt state is kept active in the reception mode but is activated in the transmission
mode only if requested via either the SP or SD instruction.

The PC control unit, PCCU, takes care of updating the PC register. In an
upcoming clock cycle, PC can either be incremented or updated by a jump address
if the jump instruction BNZD is executed. In case of reset or end of instructions
(e.g., the transaction is completed), the control keeps the system in halt state unless
an interrupt for a new transmission is received at which time the execution restarts
from the very first instruction in memory.

8.3.5 Encoder and Select Control (ESC)

The encoder and select control (ESC) block is another specialized decoder that helps
in generating the control signals for the most complex unit in the ECSIA processor,
namely, the Encoder and Selector (ES). The ES block itself is described in the next
subsection. As for the ESC block, its I/O is shown in Fig. 8.4d, with the outputs
being control signals for the ES block as per Table 8.5. The ESC inputs come
from two sources. The segment size and segment number parameters come from the
register file, while the encoding-specific control signals come from the instruction
decoder. The generated control signals enable the ES block to identify the requested
operation as well as the segment and segment size to which the requested operation
should be applied.



8.3 ECSIA Micro-Architecture 117

Table 8.5 Decoder: encoder and select control

Inputs Outputs

Seg. size Seg. num FLP SS0 SS1 SS2 SS3 SM WB0 WB1 WB2 WB3

3-bit 3-bit 1-bit 2-bit 2-bit 1-bit 1-bit 4-bit 2-bit 2-bit 2-bit 2-bit

0 0 X 0 2 1 1 1 0 3 3 3

1 X 1 2 1 1 1 3 0 3 3

2 X 2 2 1 1 1 3 3 0 3

3 X 3 2 1 1 1 3 3 3 0

1 0 0 0 0 1 1 3 0 1 3 3

1 0 0 1 1 3 1 0 3 3

1 0 2 1 1 1 3 3 3 0 1

1 2 1 1 1 3 3 3 2 0

2 X 0 0 0 0 0 F 0 1 1 2

1 0 0 0 0 F 2 2 2 0

INV = SM & (IV | IVC), FLP = FL | FLV

8.3.6 Encoder and Selector (ES)

The encoder and selector (ES), shown in Fig. 8.5, is the core block of ECSIA. The
ES module selects and processes a particular segment in a given data word as per
the size and number specified by the user. It is used for the whole spectrum range of
operations of bit processing and packet encapsulation, including:

1. Conditional and unconditional encodings
2. Generation of packet flags and the number of ON bit locations
3. Extraction of the index numbers of ON bits
4. Extraction of the decimal number of a segment
5. Conditional and unconditional decodings
6. Retrieval of packet flags and the number of ON bit locations
7. Bit setting according to the index number
8. Segment setting according to the decimal number
9. Conditional register copying

Operations (1) through (4) are typically executed at transmission, while operations
(5) through (8) are executed at reception. As such, the ES block is the heart of the
ECSIA core in the same way the ALU is the heart of a CPU core. Given that the
ECSIA is a communication core, one of the important design decisions we have
to make is whether the ES block should be duplicated for the transmitter and the
receiver. To reduce HW resources and power consumption, the ES block is opti-
mized such that it is used for both transmission and reception without any change
whatsoever. ECS transmission and reception are designed so that they use the very
same modules, including encoding/decoding and segmentation/combination. The
main difference between the transmission and reception paths lies in the sources
and destinations of the data. Accordingly, the ECS communication process has been



118 8 Domain-Specific ECS Processor

Fig. 8.5 ECSIA
micro-architecture hardware
blocks: encoder and selector



8.3 ECSIA Micro-Architecture 119

divided into three main phases, each with an implementation that is common to
transmitter and receiver. The three phases are:

1. Data composition: The source is the I/O port during transmission and the pulse
stream receiver (PSR) during the reception. The destination in both cases is
LoadReg where data is composed for further encoding or decoding process.

2. Encoding/Decoding: During the encoding (transmitter) or decoding (receiver),
both the source and destination are the same, namely, LoadReg. Segments are
picked up from LoadReg and are replaced with the updated segments at the end
of each encoding/decoding step.

3. Output: The source of data for both the transmission and reception is LoadReg.
The destination is the pulse stream generator for transmission and the I/O port
for the reception.

The block selects a segment from the LoadReg as per the set segment number
and the segment size, relocates it to the LSB end, processes it as per the issued
instruction, moves the updated segment back to its original position, and replaces
the segment in the LoadReg with the processed one. Such a selection and place-
back operation is shown in Fig. 8.5 (right), where in the first example, “Selection
Example 1,” where the segment size is 4 bits, the second segment is selected and
moved to the LSB end with all other bits set to zero. A similar case is shown in
the second example, “Selection Example 2,” where the segment size of 8 bits and
the first segment is selected for transfer to the LSB part. The bottom part of Fig. 8.5
(right), “Selection & Process,” shows the process flow when applied to the first
example.

ES Segment Processing

The selection and relocation of a segment to the LSB end at the start of the process
and the place-back operation to the original location at the end are performed using
a set of multiplexers shown in Fig. 8.5 (left). To perform this task, the control signals
SSx from ESC are used for segment selection, and WBx are used for segment place-
back. The second layer of AND gates uses the SM control signals to zero out all
other bits except the selected segment so as to prevent any corruption of the results.
The gray-shaded gates form a set of four identical logic functions that are used
to AND/XOR all 4 bits of a data segment with the 1-bit control signal. The third
layer of AND and XOR gates is used for bit inversion if requested and is controlled
by the control signals INV and INVD. The role of INVD is to identify whether the
requested inversion is conditional or unconditional. The fourth layer is comprised of
“Flip” and MUX blocks and is used to perform the segment-wise flipping operation
if requested and is controlled by the control signal FLPD. The same FLPD is used
to decide if the flipping is conditional or unconditional. The FLPD and INVD are
generated using circuitry that is shown at the top right corner of Fig. 8.5 (left). If
the operation is to flip, the selected segment and its flipped version are compared
to generate FLPD accordingly. If the operation is to invert, the number of ON bits



120 8 Domain-Specific ECS Processor

in the segment is compared with half of the segment size and INVD is generated
accordingly. As its name indicates, the Count-ON-Bits block counts the ON bits in
the selected segment, and the shift-right block divides the segment size by two. The
flags are generated by very simple AND and concatenate operations as shown at the
left bottom side in Fig. 8.5. The inversion and flip operations are used in segment
encoding and decoding.

ES in Receiver Mode

The process of reception is executed in two steps. In the first step, the received
data is stored appropriately in LoadReg. To perform this step, the fifth layer in the
ES block, which is comprised of a decoder, AND gates, OR gates, and a MUX,
is used to either set a segment bit at index number specified by the received RX
Pulse Count, or to translate this count into a decimal number and set the segment
bits accordingly. For decimal number extraction, SDBD is used to pass the count
through MUX, which is ORed with the selected segment bits. For setting a bit at an
index, both SDBI and SDBD are used to pass, through MUX, only the ON bit that
is generated by the decoder, which is then ORed with the selected segment. Recall
that LoadReg gets cleared when the reception mode is selected and, therefore, the
decimal number or the decoded bit at the output of MUX is ORed with zeros of
the selected segment. This guarantees that the received data is not garbled and is
stored successfully. During the first step of the reception mode, the middle layers of
encoding go transparent and do not affect the selected segments. All the segments
and their bits are updated iteratively in LoadReg. In the second step of the reception
mode, the updated LoadReg is used to decode as was mentioned in the previous
paragraph.

ES in Transmitter Mode

In this mode, the extraction of the index numbers of ON bits or the segment decimal
numbers from the data loaded in LoadReg is performed using the instruction
CRC whose functionality is described in Table 8.2. In executing CRC, the middle
encoding layers and the received data-extraction layer go transparent. The selected
segment is directly copied as a decimal number to a specified register that could
be used later to transmit the pulses. To extract the index numbers of the ON bits, a
program loop is used in which for each iteration, a bit in the selected segment at the
index specified by the loop index number is checked. If the bit is ON, the iteration
number is copied to the specified register. Otherwise, 0 is copied. This register could
be used later to transmit the pulses. It must be noted that the place-back operation
of LoadReg gets disabled during the extraction operations in the transmitter mode
so as to protect the data. With such transmission mode, the ECSIA processor can
transmit decimal numbers, ON bit index numbers, or a combination of both to form
a legal packet according to the specification of the pulsing-index protocol.



8.3 ECSIA Micro-Architecture 121

8.3.7 Pulse and Delay Generator (PDG)

The pulse and delay generator (PDG) block transmits a pulse stream or an inter-
symbol separator. The module interface diagram is shown in Fig. 8.4e. When SP or
SD control signal at the input is set active by the instruction decoder, the module
collects the count information from its input port and generates a pulse stream that
is comprised of a number of pulses equal to the count. This count at the input is set
by the instruction SP either through a provided immediate constant or by reading
a specified register content, as described in the instruction set section. The pulse
clock generated by the clock distribution block is used to transmit the pulse stream
and hence is routed to the PDG block through CDB. The width of the pulses is
the same as the pulse clock and, hence, is already set by the clock distribution
block. Toward this end, the output signal Pulses Sent of PDG helps CDB to route
the pulse clock when the SP instruction is issued and re-routes to system clock
when the transmission ends. If specified in SP instruction, the signal Halt PC is
used to halt the system until the transmission is complete. At the completion of
transmission, instruction fetch is normally continued. The execution mechanism to
send inter-symbol separator using SD is the same as that of SP except that the signal
Pulse Enable is inactive. Pulse Enable gates the pulse clock for a number of pulses
specified by the count, and as a result, a delay is generated at the I/O port. The I/O
port of the block is directly connected to the output port of the ECSIA processor.

8.3.8 Pulse Stream Receiver (PSR)

The pulse stream receiver (PSR) block receives one pulse stream at a time. The
block interface diagram is shown in Fig. 8.4f. The ECSIA input is connected to
the I/O port of PSR. To receive a pulse stream, the edges of the incoming pulses
are counted that end with the detection of an inter-symbol separator as described
in the review section. To detect such a delay, an inter-symbol separator duration
in terms of a number of pulses is necessary to know. This separator duration
information is set by the execution of SRD instruction that updates the internal
delay comparison register RxDelay of PSR. The WRI instruction, wait for receiver
interrupt, activates this block and puts the system in halt state through CDB using
the block’s output signal WRI Halt. PSR keeps counting the stream pulses until the
separator is detected. The separator is detected by counting the edges of local pulse
clock when the input signal is low and comparing the count continuously with the
RxDelay register. At the detection of a separator, PSR brings the system back to the
normal state by generating WRI interrupt and updates the output port Count of the
PSR block with the count of stream pulses. This count is then stored in the specified
register if the option to write enable (WE) is set in the instruction. Otherwise, the
count is discarded. The WE helps in receiving all the pulse streams in a particular



122 8 Domain-Specific ECS Processor

communication packet but storing the count of desired streams only. The examples
of such pulse streams include the start, stop, and synchronization patterns.

8.3.9 Interrupt Handler

The three types of interrupts (I/O, transmitter, and receiver) and their operations
are described earlier in the ISA section. These three interrupts are taken care of
using a small finite state machine that in collaboration with CDB, PSR, and PGD
blocks helps to halt and resume the system operation. The ECSIA interrupt handler
is very simple and does not use any interrupt vector or priority queue since only one
interrupt can occur at a time, and such an interrupt can be handled using elementary
logic.

8.3.10 Micro-Architecture Discussion

As pointed out in the introduction, the major benefit of a domain-specific instruction
set is that it provides hardware designers with additional opportunities for optimiz-
ing the micro-architecture to maximize performance. In the case of ECSIA, this
optimization is clear in the specialized blocks for encoding and selection (ES),
pulse generation (PDR), and pulse reception (PSR). The ES block is the core of
the ECSIA micro-architecture as it is the one responsible for all processing needed
to either encode or decode packets. All the instructions from the encoding/decoding
category are handled through the ES block. Similarly, the PDR and PSR blocks
are specialized hardware modules that attend to the fundamental nature of the
communication protocols under consideration, namely, the sending and receiving
of pulse streams. They can be considered hardware shortcuts for the execution of
instructions belonging to the transmission control and configuration categories.

In a similar vein, the Matrix Multiply Unit is the heart of Google’s TPU
accelerator and is the main execution block of the MatrixMultiply domain-specific
CISC instruction [29]. As mentioned earlier, the TPU acts as a co-processor and has
no instruction memory of its own. Rather the TPU CISC instructions are dispatched
by the host processor to the TPU through the PCIe bus. On the other hand, ECSIA
is implemented as a full, single-cycle, streaming processor with its own instruction
storage, fetching, and decoding. Although larger word lengths can conceivably
be chosen for the ECSIA data bus, the 16-bit word embodies domain knowledge
related to the maximization of the transmission data rate of the edge-coded signaling
protocols. The reader is referred to Chap. 2 for the algorithmic and experimental
details on ECS data rate maximization.

The I/O ports of the ECSIA micro-architecture that are explained in Sect. 8.2.4
and illustrated in Fig. 8.3 represent the minimal number required for a functional
processor. There are a data port, a signaling port, and a received data-ready interrupt



8.4 Experimental Verification and Results 123

port. This interface is sufficient for both stand-alone operation, embedded operation,
or SoC integration. However, other interface designs are conceivable, including the
following:

1. Support for an external interrupt to start data transmission.
2. Support for data re-transmission without re-coding or re-segmentation.
3. Support for internal interrupt mechanisms for data transmission and reception.
4. Support of serial and/or parallel data port options along with a SerDes module

implementation.
5. Support of re-segmentation and re-encoding of LoadReg.

Finally, note that the ECSIA opcode leaves room for ten more instructions, and
of course, its ISA can be extended to cover other functionalities such as information
security. A ECS cryptographic block [59] may be added to the micro-architecture.
Such a block would be enabled and initialized with its own special instructions.
A similar ISA extension approach has been recently used to secure the RISC-V
processor [46].

8.4 Experimental Verification and Results

Verilog HDL is used to code a fully functional processor based on the proposed DSA
and ECSIA micro-architecture. A full testbed is set up using the Xilinx Spartan-
6 FPGA platform. The prototype platform is used to verify ECSIA functionality
and performance. Extensive simulations and real-time hardware verification are
performed to confirm the results. A clock rate of 25 MHz is used for the ECSIA
testbed. The verification methodology requires that the ECSIA transmitter sends
16-bit data words starting at 0 with an increment of 1 at each transmission. The
ECSIA receiver resends the same data back. The returned and original 16-bit data
words are compared to check for any bit errors during the round-trip.

In another experiment, the software aspects of the two implementations are
compared. In one implementation, the ECS protocols are programmed on a low-
power RISC processor, namely, TI’s MSP432X. In another implementation, the
same ECS protocols are programmed using the ECSIA assembly language and
run on the ECSIA processor. Both implementations use a 25 MHz clock. The
number of instructions required to implement these techniques using MSP432X
is approximately 1100 to 1400 on average, whereas ECSIA needs only 50 to
100 instructions. The reduction is by a factor of 13 to 28. The data rates of the
MSP432X implementation have suffered as a result of clock cycles being “wasted”
on computation rather than used for communication. The data rate reduction was by
a factor of 100. On the other hand, the ECSIA data rates are maintained close to a
hardwired implementation of the ECS protocols. This is a direct result of the ECSIA
optimized hardware and in line with the DSA philosophy of having the processor to
do one task extremely well. The software implementation comparison is shown in
Table 8.6 and Fig. 8.6.



124 8 Domain-Specific ECS Processor

Table 8.6 Results

Software implementation comparison

ECSIA MSP432X % Change

No. of instructionsa 50–100 1100–1400 92.8–95.4b

Data rate (Mbps)a ≈4.1–7.1 ≈0.041–0.071 99c

Hardware synthesis comparison

ECSIA Stand-alone % Change

Power (μW ) ≈31.14 ≈19–26.6 14.6–38.9c

Avg. Eb (pJ/bit) ≈4.3–7.6 ≈2.7–6.5 14.5–37.2c

Area (gate count) ≈4700 ≈2100–2400 48.9–55.3c

ECSIA Combined

Power (μW ) ≈31.14 ≈30d 3.6c

Avg. Eb (pJ/bit) ≈4.3–7.6 ≈4.2–7.3 2.3–3.9c

Area (gate count) ≈4700 ≈6600 28.8b

a Average
b Increase
c Decrease
d Control logic + One active ECS protocol

Fig. 8.6 ECS family
implementation: ECSIA vs.
MSP432X

Further, the ECSIA processor has been synthesized using GLOBAL-
FOUNDRIES 65 nm technology and estimated to consume around 31.14µW
with a gate count of about 4700 gates. The power estimate has been obtained
from the Synopsys design compiler power report. This estimate includes both
dynamic power and leakage power. Furthermore, the dynamic power includes
both standard-cell switching power and interconnect switching power. A hardware
solution combining the three edge-coded family members (ECS1, ECS2, and ECS3)
has approximately 6600, which exceeds the ECSIA core gate count by more than
40%. Given that two of the three hardwired protocols are gated on the combined
chip to save power, the ECSIA core will be comparable in terms of power and ahead



8.4 Experimental Verification and Results 125

in terms of area. The hardware synthesis comparisons are shown in Table 8.6. Note
that the core logic voltage of the ECS DSA is 1.1V, which is the default VDD of
GLOBALFOUNDARIES 65 nm CMOS technology. The I/O voltage of the ECSIA
processor is 3.3 V, which, in our experiments, is the I/O voltage value provided on
the Xilinx Spartan-6 FPGA board.

The ECSIA power consumption remains well within the power budget of a fully
hardwired implementation of a stand-alone edge-coded signaling protocol. Other
advantages of the DSA are reduced gate count, preserved data rate, and reduced
programming effort. Shorter programs are less likely to have bugs than long pro-
grams, and as a result, the ECS development cycle using ECSIA is likely to be much
shorter. The ECSIA solution offers a fully programmable communication interface
that is specifically geared to the realization of pulsed-transmission techniques. Such
capability can of course be used to implement not only ECS1, ECS2, and ECS3 but
also any custom nonstandard protocol without the need for any change in hardware.
Table 8.6 shows a comparison between the ECSIA codes of the ECS protocols and
their full hardware counterparts.

The maximum clock frequency of the ECSIA processor depends on the clock
frequency limits of the hardware implementing ECS. In our experiments, we have
used the Spartan-6 FPGA kit that allows a maximum clock frequency of 100 MHz.
However, migrating to a high-end FPGA such as Virtex-7, the maximum speed
would increase to more than 500 MHz. Similarly, for an ASIC implementation,
the underlying hardware technology defines the maximum clock frequency. In our
experiments, we have synthesized the ECSIA processor for a maximum clock
frequency of 100 MHz.

Processor performance is usually analyzed using the CPU performance equation
for a given workload [23]

t = IC × CPI × T (8.1)

where t is the workload run time on the processor, IC is the workload’s instruction
count, CPI is the average number of clock cycles per instruction, and T is the clock
time period. Any of the three parameters can be tuned to improve CPU performance.
In an IoT network, the majority of the devices use low-end processors with few tens
of MHz of the clock frequency and, therefore, the parameter T cannot be decreased
beyond a certain limit. On the other hand, the reduction in the total number of
instructions IC can bring a remarkable increase in performance. This is one of the
major benefits of a DSA. Under the assumption that the MSP432X processor has
CPI = 1 and uses the same 25 MHz clock as ECSIA, then MSP432X would need
52–56µs to execute the 1100–1400 program instructions, while the ECSIA needs
only 2–4µs to execute the same task using its 50–100 instructions. Since ECSIA
is a communication core and the ECS data rate is dynamic, the more appropriate
performance comparison is to use the following equation:

tWL = C × WorkLoad × TP (8.2)



126 8 Domain-Specific ECS Processor

Table 8.7 Time to finish
workload

General purpose ECSIA DSA Speedup

ECS1 ≈164 s 0.5243 s 312.8

ECS2 ≈ 90 s 0.2862 s 314.5

ECS3 ≈103 s 0.3277 s 314.3

where tWL is the run time of the workload, C is the average number of clock cycles
needed to transmit 16-bit data words, TP is the time period of these pulses, and
WorkLoad is 2 × 216 = 131072 16-bit data words sent on a round-trip along
the ECS communication link. The C for ECS1, ECS2, and ECS3 are 100, 55,
and 63, respectively. The TP for MSP432X and ECSIA are 12.5µs and 40 ns,
respectively. This is because MSP432X needs more instructions than ECSIA to
generate ECS pulses, while the ECSIA micro-architecture has a specialized block
dedicated to pulse generation that is activated with a single instruction. The tWL

results are shown in Table 8.7. It is clear that the proposed DSA for edge-coded
signaling outperforms the general purpose CPU while remaining within the low-
power budget of a hardwired protocol. As the testing workload is made of all
possible combinations of 16-bit words, all other workloads will be a subset of the
one we have used. Therefore, we estimate that the speedup numbers of Table 8.7
will remain qualitatively the same under any testing workload.

8.5 Conclusions

The Edge-Coded Signaling Interface Architecture (ECSIA) is a domain-specific
architecture for single-channel, low-power, high data rate, dynamic, and robust
communication based on edge-coded signaling protocols. Its RISC-style ISA is
designed to facilitate the efficient coding of user-defined programs that are specific
to such communication interfaces. The ECSIA micro-architecture is comprised
of optimized processing blocks in support of the economical execution of such
programs. The ECSIA supports both standard and customized edge-coded signaling
protocols and enables the amalgamation of software and hardware to significantly
reduce the number of instructions required to execute a given task while preserving
the data rate and reliability of a bare-silicon design. The ECSIA processor has
been synthesized in GLOBALFUONDRIES 65 nm technology and has been found
to consume only 31.14µW that translates into less than 10 pJ per transmitted bit.
The ECSIA micro-architecture has been evaluated and compared with bare-silicon
designs using a domain-specific metric based on the communication workload. The
ISA can be extended to include support for a cryptographic block [59] that can
be readily added to the ECSIA micro-architecture. One important direction for
future research is to explore the usage of ECSIA as a lightweight, communication
core either in an IoT communication hub or in a heterogeneous computing and
communication environment.



Chapter 9
Application: Hardware Platform for IoT
Sensor Networks

Pervasive is persuasive.

David Rose

The goal of this chapter is to present an FPGA hardware platform for the prototyping
and analysis of ultra-low-power IoT sensor networks [50]. The platform, named
Prototyped IoT (PIoT), is composed of ultra-low-power MSP430 microcontroller
cores, acting as sensor nodes, and a single-wire communication protocol from the
ECS family. The proposed platform is scalable in that the resources needed to
implement the protocol for each node are minimal. Furthermore, with sufficient
resources, it enables the analysis of the performance, timing, and power of IoT
sensor networks that can have up to hundreds of nodes. The platform is equipped
with a Multi-Core Debug Control Unit (MCDCU) to support the parallel debug
of multiple sensor nodes. The hardware realization of PIoT is based on ECS1.
However, the methods and results are valid across the entire ECS family.

9.1 Platform Architecture

The proposed platform (PIoT) is composed of eight FPGA based cores of MSP430,
a low-power microcontroller family by Texas Instruments, connected to each
other using an ECS link [57]. The platform is shown in Fig. 9.1. Each of the
microcontroller cores represents a sensor node. An arbitrary number of these cores
can, in principle, be instantiated without the need of any additional hardware
circuitry. The number of instantiated sensor nodes is limited by the application
requirements and the hardware resources available on the selected FPGA device.

Interestingly, the network of MSP430 cores does not require a separate con-
nectivity configuration for each of the available topologies (i.e., master–slave, tree,
point to point, etc.), and the configuration shown in the Fig. 9.1 can be used without
any change. However, to support a particular topology, the embedded software may
need to have some special checks and balances. Each of the nodes in the network is

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_9

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_9


128 9 Application: Hardware Platform for IoT Sensor Networks

Fig. 9.1 Platform architecture

assigned a unique ID that is used for its identification across all communication and
control tasks.

The UART (RS-232) protocol is used to program and debug the embedded
software executed on the MSP430 cores. The FPGA boards, Xilinx Virtex-7 VC707
for example, are usually equipped with only one UART port for serial port com-
munication. This limits the number of connections that can be established with the
computer software tools. A debug module, known as the Multi-Core Debug Control
Unit (MCDCU), is responsible for properly assigning the UART connections to the
cores to resolve the debug connectivity issues. The MCDCU, shown in Fig. 9.1,
uses an on-board USB-to-UART bridge to connect to the computer via a USB
cable. Two different methodologies for MCDCU are adopted, which are discussed
in Sect. 9.2.2.

A PIoT Initiator is used to put all the nodes in a wait state until all the nodes are
programmed using the aforementioned program and debug interface. The module
is shown in Fig. 9.1. Nodes are programmed step by step and executed immediately.
Therefore, the embedded software of each node should wait for an All Chips Ready
signal from the initiator, announcing that all the chips are ready to run. The All
Chips Ready signal is generated based on an Init. Done initialization ready signal
from each of the sensor node cores.



9.2 Platform Implementation and Testing 129

9.2 Platform Implementation and Testing

The PIoT is implemented using the Xilinx Virtex-7 VC707 evaluation board. Verilog
implemented core of MSP430, OpenMSP430 [60], is used as a sensor node. The
MCDCU, which provides the debug connectivity to all the instantiated cores, is
implemented in two different ways: first, through an on chip connectivity manager,
and second, through an external debug daughter card. Both techniques are discussed
in the next subsections.

9.2.1 Sensor Nodes

Microcontroller Configuration

OpenMSP430 provides a Verilog HDL core and can be configured to any member
of the MSP430 microcontroller series. The configuration is usually performed by
changing the settings of the parameters available in the define files provided with
the HDL core package. For the PIoT system, the MSP430F2330 microcontroller is
configured. However, the core’s peripheral wrapper is customized according to the
needs of the system to support the MCDCU connectivity. OpenMSP430 supports
I2C or UART as a program and debug interface. UART is selected as the default
debug interface since I2C requires a special external I2C debug probe.

I/O Ports Selection

MSP430F2330 has only four 8-bit general purpose I/O ports some of which will
be required for the external logic needed to control the nodes. The I/O ports can be
reconfigured as per application requirements. P1[0] (Single Wire) is the only port
dedicated to the communication between all the sensor nodes and an embedded C
implementation of ECS1. To let the PIoT Initiator know that the node is ready to
run, port P3[0] (Proc. Init. Done signal) is set to 1 when initialization is complete.
Depending on the status pf Init. Done signals of the other nodes, the PIoT Initiator
sets the P2[0] (All Chips Ready signal) to instruct all the cores to start operation.
All Chips Ready can also be configured with on-board switches to bypass the PIoT
initiator and control the operation manually.

Microcontroller Memories

Each MSP430 core needs two kinds of memory: program memory and data memory.
Both are created using the Xilinx IP Core generator and connected internally
with the MSP430. The program and data memories are of size 8 and 1 KB,
respectively. Memory sizes are determined by the specifications, provided by the



130 9 Application: Hardware Platform for IoT Sensor Networks

Texas Instruments, for the MSP430F2330. Memory sizes are configured using the
same define files used to configure the microcontroller architecture.

9.2.2 Multi-Core Debug Control Unit (MCDCU)

Sensor node cores can be programmed and debugged through the available on-board
UART port, which is composed of a USB-UART bridge that can connect to and
program only one core at a time. To enable the PIoT platform, multiple USB-UART
connectors are needed, which can be achieved according to one of the following two
methodologies.

On-Chip MCDCU

A UART port multiplexer for all the TX signals and a de-multiplexer for all the
RX signals are implemented to support the programming of all the available sensor
nodes. The multiplexer and de-multiplexer selection pins are connected to the on-
board switches for the selection of a particular sensor node. Depending on the
configuration of switches, the UART port is connected to the selected node, and the
node can be programmed or debugged. The limitation associated with this method
is that only one core can be debugged at a time. Also to program all the cores, one
needs to change the configuration of switches for each of the cores. To remove this
limitation, an external debug daughter card is developed, and this is described in the
next subsection.

External MCDCU Daughter Card

The external MCDCU daughter card allows to connect, program, and debug
multiple cores simultaneously, as shown in Fig. 9.2. The MCDCU daughter card
is composed of eight USB-to-UART bridge ICs (CP2102 from Silicon Labs), Mini-
USB type B connectors, and I/O headers. The I/O headers on the daughter card
connect to the general purpose I/O headers on the FPGA board to provide UART
(RX and TX) connections. On the other end, the daughter card USB ports connect
to the computer via USB cables with each of the USB ports detected as an UART
COM port and assigned with a unique COM port ID. Using these COM ports,
the software tools can connect and communicate to the cores independently. The
number of established debug connections is not limited to eight as more than one
daughter cards can be used to provide more debug connections.



9.2 Platform Implementation and Testing 131

Fig. 9.2 System integration

9.2.3 Embedded C ECS1 Transceivers

The PIoT inter-nodes communication is carried out using the ECS1 transceivers,
which are composed of a transmitter and a receiver and implemented in the
embedded C language for this experiment. The software implementation of ECS1
transceivers allows to instantiate multiple sensor nodes without any external ECS1
physical layer. The transceiver provides two very simple function calls to engage
the ECS1 transmission, SingleWire_TX(tx_data) and SingleWire_RX(). Reception
is the default transceiver mode. An interrupt service routine is used to count the
number of pulses of each input pulse stream, which are later decoded to infer the
data word. The transmitter follows the same steps, as described in Chap. 2. Before
the transmission is started, the Single Wire port is configured as output, and the
interrupts are disabled to bring the ECS1 in transmitter mode.

9.2.4 System Integration

The complete PIoT is composed of an FPGA-based sensor network and an external
MCDCU daughter card, as shown in Fig. 9.2. The UART signals of each of the
nodes are connected to the FPGA board I/O headers, which further connect to
the I/O headers on the MCDCU daughter card. For the proposed platform, eight
sensor nodes are instantiated. To make these inserted cores work successfully, the
UART, Single Wire, Init. Done, and All Chips Ready signals are necessary to connect



132 9 Application: Hardware Platform for IoT Sensor Networks

Fig. 9.3 Network topology : (a) PIoT master–slave (b) Configuring ring

with the appropriate modules. The MCDCU daughter card does not require any
additional power supply and operates using the computer provided USB VBUS
power source. To debug more than eight cores simultaneously, more daughter cards
can be connected to the FPGA board using the I/O headers.

A master–slave network topology is configured using embedded C programs
for the sensor nodes to test and analyze the platform. As shown in Fig. 9.3a, one
sensor node acts as a master and sends the request on the ECS1 bus followed by
a reply from the slave sensor node. To engage a particular sensor node, the master
node includes its unique ID in the request packet. On the other hand, all the slave
nodes receive, match their IDs, analyze the request, and send back the required
information.

PIoT is not limited by the network topology used as any other topology can
be configured without any change in the hardware architecture. As mentioned
previously, this topology configuration is performed in the embedded C programs
for the sensor nodes. Ring topology, for example, can be used by limiting each of the
sensor nodes to use only two other node IDs for communication. Such configuration
is shown in Fig. 9.3b, where each node is capable of contacting only two other nodes,
using the same single-wire line. It must be mentioned here that message collision
is prevented using the built-in properties of ECS1. Additionally, other collision
prevention techniques can also be applied easily by updating the ECS1 embedded
transceivers and the logical topology control (LTC) unit accordingly.

9.3 Compiler and Debugging Tools

The Eclipse IDE development environment is used to code, verify, and compile the
MSP430 program. The MSPGCC compiler version 20120502 is configured with the
eclipse IDE. Additionally, the MSP430 plug-in for the eclipse IDE [61] is required



9.4 Conclusions 133

to generate the proper settings and paths for the eclipse IDE to recognize the
compiler and the target microcontroller architecture. Once the software is compiled,
an executable (.elf) file is generated and loaded into the program memory of the
microcontroller with the help of the OpenMSP430 debugging tools [61].

Ubuntu Linux is used to run the TCL debugging scripts. The scripts are
provided with the core package. The debugging tool, openmsp430-minidebug, is
a minimalistic debugger with a simple GUI, used to select and load the eclipse
generated executable (.elf) files. Minidebug loads the program into program memory
and waits for the run command to start execution. The tool also provides a debug
environment that is restricted to debugging the assembly code only.

9.4 Conclusions

PIoT is an FPGA platform to prototype, characterize, and evaluate the network
design options for ultra-low-power IoT sensor networks using single-channel
communication protocols. HDL cores of TI’s MSP430 act as sensor nodes and
communicate with each other using the Pulsed-Index Communication protocol.
Embedded C implementation of ECS1 eliminates the need of any external physical
layer and offers easy-to-use communication calls. A Multi-Core Debug Control Unit
(MCDCU) provides the interface to connect, program, and debug multiple sensor
nodes simultaneously. The platform is also scalable in that the resources used for
a two-sensor, point-to-point communication link is less than 1% of the Virtex-7
available hardware, and therefore, a large number of sensor nodes can be added
conveniently. PIoT facilitates network reconfiguration, which enables the analysis
and design of a variety of network topologies, including buses, stars, rings, and trees.
We are currently using the platform to analyze IoT networking options from the
viewpoints of their data rates, power consumption, synchronization, and robustness
to node failures.



Chapter 10
Application: Body-Coupled
Communication

The medium is the message.

Marshall McLuhan

In this chapter, we show how edge-coded signaling can help in addressing the
challenges of designing reliable, low-power transceivers for body-couple communi-
cation (BCC). Specifically,

1. We report on the very first BCC transceiver design based on the Edge-Coded
Signaling (ECS) protocol.

2. We report on the very first experiments in round-trip, BCC transceiver testing
using arbitrary bit patterns.

3. We report on a full BCC working prototype capable of transmitting over a range
of 150 cm with zero bit-error rate.

Our simplified, low-power, and low-complexity BCC transceiver is self-
synchronizing and does not require any circuitry for clock and data recovery or
for duty cycle correction.

10.1 Introduction

Wearable devices have always been the focus of active research, and technology
advances have made it possible to develop sophisticated wearable electronic devices
such as smart watches, smart eyeglasses, and fitness/lifestyle monitors. The emer-
gence of IoT has significantly enlarged the scope of research on wearable electronics
to include a new range of smart wearables such as caps, clothes, shoes, headphones,
ornaments, and healthcare sensors. Reliable real-time communication among these
body-worn devices plays a key role in the synchronous collection of information
about the human body and its environmental conditions, and therefore, in the enable-
ment of a new era of portable diagnosis and personalized care. The ability to transmit
and receive data at a very low energy-per-bit rating is an essential characteristic

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2_10

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95914-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-95914-2_10


136 10 Body-Coupled Communication

of such wearable devices as they need to remain operational during days, perhaps
weeks, of continuous usage. To date, the state-of-the-art healthcare platforms use
either a network of wires or wireless protocols to establish communication links
between wearable devices. Existing wireless standards are power-hungry [41] and
are known to drain the batteries quickly while wired communication is in conflict
with the stringent wearability requirement. An alternative to wired or wireless
communication is body-coupled communication (BCC), which uses the human skin
as a communication medium.

Several techniques enabling BCC have already been proposed in the literature
[25, 42]. The focus of these single-channel BCC techniques is on recovering the data
bits once the bit stream is synchronized with the local receiver clock. A full BCC
link has therefore to engage the use of complex and power-hungry circuitries for
clock and data recovery (CDR) and duty cycle correction. Sophisticated modulation
schemes such as OFDM [68, 69] and WDM [42] have been proposed for BCC
to address issues such as multipath fading, variable-ground effect, and variable
skin-electrode impedance, but the resulting transceivers are rather complex and
very challenging to design as they require finely tuned, mixed-signal design
methodologies and tools. Additionally, in the majority of the proposed BCC
transceivers, the testing is performed either using a periodic clock waveform through
the body or by performing spectral analysis. To the best of our knowledge, a full
demonstration of a successful bi-directional transmission of data bits, involving an
arbitrary, or pseudo random, number of ON and OFF bits has not been entirely
achieved so far. We believe the main reason to be that the transceiver behavior
varies with the variable intervals of ON and OFF signals. Moreover, while spectral
analysis of BCC transceivers is important for verifying transceiver compatibility
with the frequency-domain characterization of the body channel, it does not in
itself guarantee successful time-domain operation. Therefore, there is a need for
a simplified BCC transceiver, which can be used to establish an error-free, real-
time, bi-directional communication link between body-worn devices while meeting
stringent ultra-low power and energy efficiency requirements.

In this chapter, we address the above challenges and make the following novel
contributions:

1. We report on the very first BCC transceiver based on the Edge-Coded Signaling
(ECS) protocol.

2. We report on the very first experiments in round-trip, BCC transceiver testing
using arbitrary bit patterns.

3. We report on a full BCC working prototype capable of transmitting over a range
of 150cm with zero bit-error rate.

Our simplified, low-power, and low-complexity BCC transceiver is self-
synchronizing and does not require any circuitry for clock and data recovery or
for duty cycle correction, thus fully exploiting the salient features of ECS.



10.2 ECS Signaling and BCC 137

10.2 ECS Signaling and BCC

The characteristics of the human body channel is that of a band-pass filter with
cut-off frequencies at 10 KHz and 120 MHz. Therefore, a digital bit stream passing
through a human body channel is distorted, and the output signal is a train of positive
and negative spikes aligned with the rising and falling edges of the digital input
signal. The voltage magnitude of these spikes is typically in the neighborhood of
±50 mV with a settling time of about 8 ns. This limits the maximum achievable
date rate to about 125 Mbps. Received spikes that are within 8 ns of each other are
indistinguishable. BCC is complicated by the fact that there is no common electrical
ground between transmitter and receiver, and so the body acts as an antenna picking
up 50 Hz and other AC noise signals, thus contaminating the BCC output.

The basic circuit to transmit and detect BCC signals is shown in Fig. 10.1 and is
comprised of a front-end filter, an amplifier, and a Schmitt trigger for edge detection.
It is important to note that such circuit needs no data conversion at the input or output
as the data pulse stream is directly injected through the transmitter electrode at the
input and recovered after edge detection through the receiver electrode at the output.
The main complication in such a circuit is that the duty cycle of the recovered output
is variable, and as a result, there are higher chances of bit errors when traditional
modulation techniques are used. To mitigate such a negative impact of duty-cycle
variabilities and reduce bit-error rate (BER), duty-cycle correction circuitries have
been typically used with BCC transceivers. Moreover, the BCC receiver needs to
synchronize the recovered signal with its local clock to successfully infer the data
bits. This synchronization is typically accomplished using clock and data recovery
(CDR) circuitries. Communication standards that do not use any CDR, such as
UART and Dallas 1-Wire, depend on accurate duty cycles to time and infer the
data bits. This dependence and the presence of a hard lower bound on the duty
cycle itself significantly limit the data rates of the common single-channel standards.
Complex modulation schemes such as OFDM and WDM that are meant to address

Fig. 10.1 Base architecture for recovering BCC signals



138 10 Body-Coupled Communication

such issues as multipath fading and variable-ground electrode cannot do away with
the CDR and duty-cycle correction circuitries, with the net result being a further
increase in transceiver power consumption. Furthermore, the time-domain testing of
existing BCC transceivers as reported in the literature has typically been done with
periodic clock signals and rarely with pseudo-random data bit streams. In particular,
the variation in the duration of the ON or OFF signal intervals has not been captured
in testing signals. To our knowledge, none of the existing BCC systems has been
tested for bi-directional signaling. Our proposed transceiver using the ECS signaling
technique is tested under both requirements of a pseudo-random bit stream and
a round-trip signaling through the human body. The hardware realization of the
transceiver is based on the ECS1 protocol. However, the methods and results are
valid for the entire ECS family.

10.3 BCC Transceiver

The most important point of this chapter is that a judicious selection of the bit
encoding protocol results in a significant simplification of the BCC transceiver. In
particular, the selection of the edge-based encoding protocol as implemented in the
ECS family results in a streamlined analog transceiver architecture that does not
require the data conversion, data synchronization, or duty cycle correction blocks.
These blocks are typically found in the published BCC transceivers that use the well-
known digital modulation/demodulation schemes. In the rest of this section, we will
show how the optimization of the basic transceiver of Fig. 10.1, in combination with
ECS1, results in a successful bi-directional BCC having single-digit mW of power
consumption and sub-1nJ/bit of energy efficiency.

The circuit diagram of the proposed BCC transceiver is shown in Fig. 10.2. A
passive 10 KHz–100 MHz band-pass filter is used to filter out the 50 Hz and other
AC noise signals from the received signal through the skin channel. Next, the

Fig. 10.2 BCC receiver circuit



10.4 Testing and Verification 139

filtered signal is amplified to achieve voltage levels within the hysteresis range of the
Schmitt trigger, which is used to recover the pulses from the positive and negative
spikes of the distorted signal. Typically, the amplifier is operated in saturation mode,
but the feedback resistor of the amplifier stage is tunable and helps in adjusting the
voltage levels as per the requirements. The voltage levels are adjusted such that
the peaks of the positive spikes are above a maximum threshold, the valleys of the
negative spikes are below minimum threshold, and the zero voltage remains in the
middle of the Schmitt trigger’s hysteresis range. This adjustment is facilitated using
a voltage-level shifter that comprises two resistors, one of which is variable and
is used to fine-tune the shift level. A low-pass filter is used between the output of
the OpAmp and the input of the level shifter to mitigate the impact of amplifier-
generated noise, which in our case is in the spectral range of 300–400 KHz but
can vary from one amplifier to another. In some cases, the amplifier-generated
noise is itself significantly amplified due to the saturation mode of operation and,
therefore, needs cancellation. Otherwise, an intermediate filter after the amplifier
is not required. The last stage is the Schmitt trigger that converts the spikes into
digital bits of variable duty cycle. The variability of the duty cycle of each bit
depends on the location of input spikes and the hysteresis range of Schmitt trigger.
Note that the Schmitt trigger operates at a lower voltage supply than the Op Amp
in order to shrink the hysteresis range and successfully accommodate the voltage
levels of the input spikes. The main reason of this differential in supply voltages is
that the amplitude of the input spikes decreases as they pass through the low-pass
filter. This decrease cannot be compensated in the amplifier stage due to the cap in
the amplifier gain. The HW prototype of the proposed BCC transceiver uses off-
the-shelf components and has been designed to enable various parametric sweeps
without changing the fundamental architecture of the transceiver.

The configurable BCC transceiver board comprises two Op Amps, eight Schmitt
triggers, variable resistors, voltage biasing circuits, customizable filter circuits, Op
Amp reference biasing circuits, I/O headers, and many test points. Using jumpers,
all these components can be connected to, and disconnected from, each other to
configure a customized transceiver. The on-board filters can be configured as low-
pass, high-pass, band-pass, or band-stop filters. Additionally, the external circuits
can be interfaced at any point or stage on the board through I/O headers. The
configurable board is used to test a range of circuit configurations during the
testing and debugging process in order to achieve a working BCC transceiver. The
configurable board can also be used as an experimental kit or a breakout board for
various other applications.

10.4 Testing and Verification

The experimental setup uses a set of BCC transceivers to test and verify the bi-
directional body channel communication link, as shown in Fig. 10.3. There are
two ends of the communication link, Node1 and Node2. At each end, the ECS1



140 10 Body-Coupled Communication

Fig. 10.3 BCC testing setup: (a) Node1 (b) Node2 (c) Body channel : (1) Processing unit (2) BCC
transceiver

protocol (with an embedded C implementation) runs over an Arduino-101 board
that is connected to the BCC transceiver. The BCC transceivers are then connected
to the human body. Node1 starts communication by sending an initialization signal
followed by the transmission of a 16-bit data. The data is encoded to generate a
ECS1 packet, and the resulting pulses are transmitted through the human body
via the BCC transceiver. The BCC transceiver at Node2 recovers the transmitted
ECS1 pulses, and the ECS1 decoder on the Arduino-101 board decodes the received
packet to infer the transmitted data. Similarly, Node2 transmits back the received
data and Node1 receives and compares it with its own copy. In every subsequent
iteration, the data is incremented, transmitted to Node2, and is compared with the
received data from Node2 to validate the full bi-directional communication link.
BCC communication is further verified by tapping the transmitted and received
signals of the BCC link at various test points. The ECS1 signals at different stages
during the reception process are shown in Fig. 10.4. Power consumption for the
BCC transceiver is shown in Table 10.1 where we also compare the off-the-shelf
prototype running at supply voltages of 5.5 V (Op Amp) and 3.3 V (Schmitt trigger)
with a projected ASIC design running at VDD = 1.1 V. The table clearly shows that
even using off-the-shelf components that are known to consume much more power,
the designed BCC transceiver is at par with the power performance of the state-of-
the-art ASIC BCC transceivers such as given in [25] through [42]. For each of these



10.4 Testing and Verification 141

Fig. 10.4 BCC testing—oscilloscope screen-shots

Table 10.1 BCC transceiver power consumption

5 V and 3.3 V Scaled for 1.1 V

HSa OAb+ STc LSd OA + ST HS OA+ ST LS OA+ ST

Power(mW ) ≈6–20 ≈1–4 ≈1.3–4.4 ≈0.2–0.8

Eb(pJ/bit) ≈3000– ≈10000– ≈660– ≈2200–

31000e 40000e 6820e 8800e

≈300–3100f ≈100–400f ≈70–680f ≈20–90f

a High speed
b OpAmp
c Schmitt trigger
d Low speed
e 50% ECS1 duty cycle
f 5% ECS1 duty cycle

scenarios, Table 10.1 further compares power consumption and energy efficiency
for two possible Op Amp designs: high-speed and low-speed.

As per the most recent published work, the power consumption of an Op Amp
ranges from 22 nW to 350µW while that of a Schmitt trigger can be less than 2µW.
Using the ECS1 protocol implemented in embedded C, the power consumption of
the BCC transceiver would be dominated by the combined power consumption
of the Op Amp and the Schmitt trigger, which ranges from 2 to 360µW. The
custom-designed Op Amp depends on the BCC application, but its design would
be according to a competitive power budget of 100–200µW. In the off-the-shelf
BCC transceiver, the Op Amp is low-speed with a maximum supported clock rate
of 300 KHz, resulting in a data rate in the range of 50.4–320.4 KHz with an average



142 10 Body-Coupled Communication

of 76.8 KHz. The maximum achievable data rate of the BCC transceiver is driven by
that of ECS1 itself [57]. In the BCC context, the highest clock rate supported by the
body channel is 125 MHz. Therefore, the maximum data rate of the BCC transceiver
will be in the range of 21–133.5 Mbps with an average of 32 Mbps. The dynamic
nature of the data rate is due to the ECS1 encoding scheme [57]. In summary, the
data rate of the proposed ECS1-based BCC transceiver will be competitive with
respect to the state-of-the-art as given in [25] through [42]. The bit-error-rate (BER)
of the proposed BCC transceiver is very much dependent on the quality of the noise
filters used in the front end of the transceiver. Under the assumption that the filters
can remove all the environmental noise within the BCC bandwidth, the BER of the
ECS1-based transceiver would be zero if the separation between the falling edge
of a ECS1 pulse and the rising edge of the next PC pulse is larger than 8 ns. This
8 ns threshold is determined by measuring the settling time of the output spikes, as
described in Sect. 10.2.

10.5 Conclusions

The use of edge-coded signaling techniques such as ECS1 for BCC communication
significantly reduces the complexity of the transceiver architecture and, therefore, its
power consumption. This reduction is achieved by eliminating the need for various
complex and power-hungry circuitries, which have been the core components
of state-of-the-art BCC transceivers. The ECS1-based BCC transceivers that we
have built show successful bi-directional communication through the human body
channel by transmitting arbitrary 16-bit data words over a distance of 150cm

and receiving them flawlessly in a round-trip configuration. To the best of our
knowledge, this is the very first time such a BCC transmission is achieved. Future
work will tackle an integrated VLSI implementation of the ECS1-based BCC
transceiver along with the validation of such transceiver in the presence of link
non-idealities such as multipath fading, variable-ground effect, and variable skin-
electrode impedance.



Epilogue

The previous chapters have introduced the reader to the many facets of edge-
coded signaling, including its fundamental ideas, its design principles, its hardware
implementation, and its performance. The major advantages of ECS were listed in
the prologue of this monograph and described in detail throughout its ten chapters.
In this epilogue, we would like to summarize the research problems that are still
open under the ECS paradigm. These problems include the following:

1. ECS reliability and channel noise: In Chap. 5, a preliminary analysis of the ECS
bit error rate as a function of the signal-to-noise ratio Eb/N0 was given and
summarized in Fig. 3.3 in comparison with the BPSK digital modulation scheme.
However, a more complete analysis is still needed, especially with regard to other
digital modulation schemes as well as to the integration of error-correcting codes
(ECC) with ECS.

2. ECS design and non-ideal transmission channels: It has been pointed out that
the inter-symbol separation is an important ECS design parameter. The proper
operation of such parameter assumes that the transmission channel remains quiet
throughout the separation interval. One important ECS research direction is
to investigate the impact of transmission channel models on ECS design and
performance. Both channel bandwidth and channel noise models are important
to ECS design and performance. A preliminary insight into the behavior of ECS
in the presence of channel non-idealities was given in Chap. 10 where ECS was
used to establish a flawless, round-trip body-coupled communication link.

3. ECS security and lightweight cryptography: In Chap. 7, the synergy between
ECS and multilayer ciphers has been highlighted. A low-overhead, highly secure,
ECS implementation has been presented based on an accelerated version of the

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2

143

https://doi.org/10.1007/978-3-030-95914-2


144 Epilogue

A5/1 lightweight stream cipher. More research is needed along these directions,
especially in relation to the adaptation of the many other IoT lightweight ciphers
to ECS. It is possible that several of these lightweight ciphers are not amenable
to the single-clock-cycle latency of the accelerated A5/1. However, we believe
they are readily amenable to the multilayer crypto strengthening that is enabled
by ECS.

4. ECS hardware accelerator as a communication core: In order to insure imple-
mentation flexibility of the ECS family of signaling protocols, we have intro-
duced, in Chap. 8, the domain-specific, ECS RISC processor. This processor
was shown to reduce embedded code complexity for ECS implementations by
more than an order of magnitude. The ECS processor could serve as a dedicated
communication core in the IoT sensor node. Both logical and physical IP of the
ECS processor can be provided to facilitate the design of IoT nodes incorporating
the ECS protocol in their communication port options along with other protocols
such as UART, SPI, and I2C.

5. ECS in the photonic domain: Throughout this monograph, ECS hardware
prototypes have been used to validate the fundamental ECS design principles.
All these hardware prototypes have been electronic. Yet the basic ECS idea
of coding ON bits with a pulse count can be applied to other communication
domains such as the acoustic and photonic domains. In particular, the photonic
domain is a promising opportunity to illustrate one of the major advantages of
ECS, namely, the fact that the ECS transceiver does not need CDR circuits. For
ECS to be competitive in the photonic domain, the operating frequency of the
ECS transceivers must be pushed into the GHz frequency range rather than the
MHz range of this monograph. Scaling up the ECS operating frequency is an
important design and research challenge.

6. Edge computing vs. communication: As mentioned in the Prologue, our ultimate
aim is to contribute to the continuing debate on edge computing vs. communi-
cation by revisiting the communication subsystem to explore the power saving
opportunities that result from transceiver simplification. The power savings
achieved by ECS can be exploited either to compute more or to communicate
more. Either way, an ECS-based methodology to define the energy efficiency
trade-off between computing and communication in an IoT node is required.
The methodology should be flexible enough to determine the said trade-off on a
case-by-case basis while maintaining all other ECS advantages of security, small
footprint, and timing robustness.

The above ECS research directions are by no means exhaustive. Yet, we believe they
represent the most promising venues under this novel IoT communication paradigm.
Our hope is that this book will serve as an adequate starting point for both the
experienced and budding IoT engineers who are interested in exploring these ECS
research venues.



References

1. T. Akishita, H. Hiwatari, Compact Hardware Implementations of the 128-bit Blockcipher
CLEFIA, in Proceedings of Symposium on Cryptography and Information Security (SCIS
2011), Aug 2011, pp. 278–292

2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376, Fourth quarter (2015)

3. R. Anderso, A5 (was: Hacking digital phones), in Newsgroup: uk.telecom
4. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, F. Regazzoni, Midori: a

block cipher for low energy (extended version). Cryptology ePrint Archive, Report 2015/1142
(2015). https://eprint.iacr.org/2015/1142

5. E. Barkan, E. Biham, N. Keller, Instant ciphertext-only cryptanalysis of GSM encrypted
communication. Technion, Technical Report CS-2006-07 (2006)

6. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, The SIMON and
SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404
(2013). https://eprint.iacr.org/2013/404

7. A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a PC, in Fast Software
Encryption Workshop 2000, April 2000

8. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J. Robshaw, Y. Seurin,
C. Vikkelsoe, PRESENT: an ultra-lightweight block cipher, in International Workshop on
Cryptographic Hardware and Embedded Systems (2007), pp. 450–466

9. M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam,
S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, H. Wang, Loihi: a neuromorphic manycore
processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

10. E. Diaconescu, C. Spirleanu, An identifying and authorizing application using 1-wire tech-
nology, in International Symposium for Design and Technology in Electronic Packaging, Sept
2010, pp. 243–248

11. C. dos Reis Filho, E. da Silva, E. de L. Azevedo, J. Seminario, L. Dibb, Monolithic data circuit-
terminating unit (DCU) for a one-wire vehicle network, in Proceedings of the 24th European
Solid-State Circuits Conference (ESSCIRC ’98), Hague, Sept 1998, pp. 228–231

12. Q. Du, J. Zhuang, T. Kwasniewski, A 2.5 Gb/s, low power clock and data recovery circuit,
in 20th Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver,
BC, April 2007, pp. 526–529

13. S. Even, O. Goldreich, On the power of cascade ciphers, in ACM Transactions on Computer
Systems (TOCS), May 1985, pp. 108–116

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2

145

https://eprint.iacr.org/2015/1142
https://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-030-95914-2


146 References

14. M. Feldhofer, J. Wolkerstorfer, V. Rijmen, AES implementation on a grain of sand. IEE Proc.
Inf. Secur. 152(1), 13–20 (2005)

15. B. Fleischer et al., A scalable multi-TeraOPS deep learning processor core for AI training and
inference, in Symposium on VLSI Circuits, Honolulu, June 2018

16. Freescale Semiconductors, (2008–2009) UICC - Contactless Front-
end (CLF) Interface, Technical Specification, Version 7.3.0.
https://www.etsi.org/deliver/etsi_TS/102600_102699/102613/07.03.00_60/ts_102613v07030
0p.pdf

17. Freescale semiconductors, MPC860 PowerQUICC Family User’s Manual (2004).
https://www.nxp.com/docs/en/reference-manual/MPC860UM.pdf

18. S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102(5),
652–665 (2014)

19. J.Dj. Golic, Cryptanalysis of alleged A5 stream cipher, in International Conference on the
Theory and Application of Cryptographic Techniques, May 1997, pp. 239–255

20. T. Good, M. Benaiss, Hardware results for selected stream cipher candidates, in State of the
Art of Stream Ciphers 2007 (SASC 2007), Feb 2007

21. L. Han, J. Han, X. Zeng, R. Lu, J. Zhao, A programmable security processor for cryptography
algorithms, in 9th International Conference on Solid-State and Integrated-Circuit Technology,
Beijing, Oct 2008, pp. 2144–2147

22. J. Hennessy, D. Paterson, A new golden age for computer architecture: domain-specific
hardware/software co-design, enhanced security, open instruction sets, agile chip development.
Turing Lecture at ISCA 2018 (2018). https://www.youtube.com/watch?v=3LVeEjsn8Ts

23. J.L. Hennessy, D.A. Patterson, Computer Architecture, Fifth Edition: A Quantitative Approach,
5th edn. (Morgan Kaufmann, San Francisco, CA, 2011)

24. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong,
H. Kim, HIGHT: a new block cipher suitable for low-resource device, in International
Workshop on Cryptographic Hardware and Embedded Systems (2006), pp. 46–59

25. J. Huang, L. Wang, D. Zhang, Y. Zhang, A low-frequency low-noise transceiver for human
body channel communication, in IEEE Biomedical Circuits and Systems Conference (BioCAS),
Beijing, Nov 2009, pp. 37–40

26. B. Huang, J. Lei, Y. Bo, The reading data error analysis of 1- wire bus digital temperature
sensor DS18B20, in International Conference on Modelling, Identification and Control, June
2012, pp. 433–436

27. C. Jia, D. Wu, I. Hawkins, A. Forsyth, One-wire communication system for cryogenic converter
control, in 6th IET International Conference on Power Electronics, Machines and Drives
(PEMD 2012), Penang, March 2012, pp. 1–5

28. N.P. Jouppi et al., In-datacenter performance analysis of a tensor processing unit, in 44th
ACM/IEEE Annual International Symposium on Computer Architecture (ISCA 2017), Toronto,
ON, June 2017, pp. 1–12

29. N.P. Jouppi, C. Young, N. Patil, D. Patterson, A domain-specific architecture for deep neural
networks. Commun. ACM 61(9), 50–59 (2018)

30. S. Jun-Ren, L. Te-Wen, H. Chung-Chih, Delay-line based fast-locking all-digital pulsewidth-
control circuit with programmable duty cycle, in IEEE Asian Solid State Circuits Conference
(A-SSCC), Nov 2012, pp. 305–308

31. M. Katagi, S. Moria, Lightweight cryptography for the internet of things, in Sony Corporation
(2012)

32. B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, D. Kwon, CHAM: A Family of Lightweight Block
Ciphers for Resource-Constrained Devices (Springer, Berlin, 2018), pp. 3–25

33. A. Kulkarni, A. Page, N. Attaran, A. Jafari, M. Malik, H. Homayoun, T. Mohsenin, An energy-
efficient programmable manycore accelerator for personalized biomedical applications. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 26(1), 96–109 (2018)

34. M. Kumar, S.K. Pal, A. Panigrahi, FeW: a lightweight block cipher, in IACR Cryptology ePrint
Archive (2014), pp. 326

https://www.etsi.org/deliver/etsi_TS/102600_102699/102613/07.03.00_60/ts_102613v070300p.pdf
https://www.nxp.com/docs/en/reference-manual/MPC860UM.pdf
https://www.youtube.com/watch?v=3LVeEjsn8Ts


References 147

35. S. Li, X. Liu, M. Mao, H.H. Li, Y. Chen, B. Li, Y. Wang, Heterogeneous systems with
reconfigurable neuromorphic computing accelerators, in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2016, pp. 125–128

36. linux-mips.org, Cisco Systems Routers (2012). https://www.linux-mips.org/wiki/Cisco
37. M. Loh, A. Emami-Neyestanak, All-digital CDR for high-density, high-speed I/O, in 12th

IEEE Symposium on VLSI Circuits (VLSIC’10), Honolulu, HI, June 2010, pp. 147–148
38. M. Loh, A. Emami-Neyestanak, A 3x9 Gb/s shared, all-digital CDR for high-speed, high-

density I/O. IEEE J. Solid State Circuits 47(3), 641–651 (2012)
39. J.V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, K. Atasu, Designing a pro-

grammable wire-speed regular-expression matching accelerator, in 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-45), Vancouver, BC, Dec 2012, pp.
461–472

40. F. Mace, F.-X. Standaert, J.-J. Quisquater, ASIC implementations of the block cipher SEA for
constrained applications, in RFID Security - RFIDsec 2007, Malaga, July 2007, pp. 103–114

41. M. Mahmoud, A. Mohamad, A study of efficient power consumption wireless communication
techniques/modules for internet of things (IoT) applications. Adv. Internet Things 6(2), 19–29
(2016)

42. S. Maity, B. Chatterjee, G. Chang, S. Sen, A 6.3pJ/b 30Mbps-30dB SIR-tolerant broad-
band interference-robust human body communication transceiver using time domain signal-
interference separation, in IEEE Custom Integrated Circuits Conference (CICC), San Diego,
CA, April 2018, pp. 1–4

43. J.L. Mauri, J.P.C. Rodrigues, Router power consumption analysis: towards green communica-
tions, in Green Communication and Networking (Springer, Berlin, 2013)

44. MAXIM, OneWireViewer User’s Guide, Version 1.4 (2009)
45. T. Mehrabi, K. Raahemifar, V. Geurkov, Design of a 4-bit programmable delay with TDC-

based BIST for use in serial data links, in International Symposium on Integrated Circuits
(ISIC), Dec 2014, pp. 580–583

46. A. Menon, S. Murugan, C. Rebeiro, N. Gala, K. Veezhinathan, Shakti-T: a RISC-V processor
with light weight security extensions, in Proceedings of the Hardware and Architectural
Support for Security and Privacy, ser. HASP ’17 (ACM, New York, 2017), pp. 2:1–2:8

47. B.J. Mohd, T. Hayajneh, Lightweight block ciphers for IoT: energy optimization and surviv-
ability techniques. IEEE Access 6, 35966–35978 (2018)

48. S. Muzaffar, I.M. Elfadel, Power management of pulsed-index communication protocols, in
33rd IEEE International Conference on Computer Design (ICCD), New York, NY, Oct 2015,
pp. 375–378

49. S. Muzaffar, I.M. Elfadel, Timing and robustness analysis of pulsed-index protocols for single-
channel IoT communications, in 23rd IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC 2015), Daejeon, Oct 2015, pp. 225–230

50. S. Muzaffar, I.M. Elfadel, A versatile hardware platform for the development and characteriza-
tion of IoT sensor networks, in 59th IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS’16), Abu Dhabi, Oct 2016, pp. 1–4

51. S. Muzaffar, I.M. Elfadel, A pulsed decimal technique for single-channel, dynamic signaling
for IoT applications, in 25th IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC 2017), Abu Dhabi, Oct 2017, pp. 1–6

52. S. Muzaffar, I.M. Elfadel, An instruction set architecture for low-power, dynamic IoT
communication, in 26th IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC 2018), Verona, Oct 2018 (Accepted)

53. S. Muzaffar, I.M. Elfadel, A domain-specific processor microarchitecture for energy-efficient,
dynamic IoT communication. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(9), 2074–
2087 (2019)

54. S. Muzaffar, I.M. Elfadel, A self-synchronizing, low-power, low-complexity transceiver for
body-coupled communication, in 41st Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC 2019), Berlin (2019)

https://www.linux-mips.org/wiki/Cisco


148 References

55. S. Muzaffar, I.M. Elfadel, Double data rate dynamic edge-coded signaling for low-power IoT
communication, in 27th IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC 2019), Cuzco, Oct 2019, pp. 317–322

56. S. Muzaffar, I.M. Elfadel, IoT communication using dynamic edge-coded serial signaling.
ACM Trans. Sen. Netw. 17(1), Article 8, 24 pp. (2021)

57. S. Muzaffar, A. Shabra, J. Yoo, I. M. Elfadel, A pulsed-index technique for single-channel, low
power, dynamic signaling, in Design, Automation and Test in Europe (DATE’15), Grenoble,
March 2015, pp. 1485–1490

58. S. Muzaffar, N. Saeed, I.M. Elfadel, Automatic protocol configuration in single-channel low-
power dynamic signaling for IoT devices, in 24th IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC 2016), Tallinn, Sept 2016, pp. 1–6

59. S. Muzaffar, O.T. Waheed, Z. Aung, I.M. Elfadel, Single-clock-cycle, multilayer encryption
algorithm for single-channel IoT communications, in IEEE Conference on Dependable and
Secure Computing (DSC 2017), Taipei, Aug 2017, pp. 153–158

60. OpenCores.org, openMSP430 (2018). http://opencores.org/project,openmsp430
61. OpenCores.org, openMSP430 :: Software development tools (2018). https://opencores.org/

project/openmsp430/software%20development%20tools
62. D. Patterson, 50 years of computer architecture: from the mainframe CPU to the domain-

specific TPU and the open RISC-V instruction set, in IEEE International Solid - State Circuits
Conference (ISSCC 2018), San Francisco, CA, Feb 2018, pp. 27–31

63. A. Poschmann, Lightweight cryptography - cryptographic engineering for a pervasive world,
in IACR ePrint archive 2009/516 (2009)

64. Postscapes, IoT Standards and Protocols. https://www.postscapes.com/internet-of-things- pro-
tocols/

65. K.V.K.K. Prasad, Principles of Digital Communication System and Computer Network
(Dreamtech Press, New Delhi, 2003)

66. J. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw-Hill Education, New York,
2008)

67. B. Razavi, Design of Integrated Circuits for Optical Communications, 2nd edn. (Wiley, New
York, 2012)

68. W. Saadeh, Y. Yonatan, J. Yoo, A hybrid OFDM body coupled communication transceiver
for binaural hearing aids in 65nm CMOS, in IEEE International Symposium on Circuits and
Systems (ISCAS), Lisbon, May 2015, pp. 2620–2623

69. W. Saadeh, M.A.B. Altaf, H. Alsuradi, J. Yoo, A 1.1-mW ground effect-resilient body-coupled
communication transceiver with pseudo OFDM for head and body area network. IEEE J. Solid
State Circuits 52(10), 2690–2702 (2017)

70. J. Sawada, F. Akopyan, A.S. Cassidy, B. Taba, et. al., TrueNorth ecosystem for brain-
inspired computing: scalable systems, software, and applications, in SC ’16: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2016, pp. 130–141

71. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-
lightweight blockcipher, in International Workshop on Cryptographic Hardware and Embed-
ded Systems (2011), pp. 342–357

72. T. Shirai et al., The 128-bit blockcipher CLEFIA, in International Workshop on Fast Software
Encryption (2007)

73. L.-K. Soh, W.-T. Wong, A 2.5-12.5 Gbps interpolator-based clock and data recovery circuit for
FPGA, in 4th Asia Symposium on Quality Electronic Design (ASQED), Penang, July 2012, pp.
373–379

74. M. Stamp, Information Security: Principles and Practices, 2nd edn. (Wiley, New York, 2011)
75. V. Sze, Y. Chen, T. Yang, J.S. Emer, Efficient processing of deep neural networks: a tutorial

and survey. Proc. IEEE 105(12), 2295–2329 (2017)
76. R. Teja, B.R. Jammu, M. Adimulam, M. Ayi, VLSI implementation of LTSSM, in Interna-

tional Conference of Electronics, Communication and Aerospace Technology (ICECA 2017),
Coimbatore, April 2017, pp. 129–134

http://opencores.org/project,openmsp430
https://opencores.org/project/openmsp430/software%20development%20tools
https://opencores.org/project/openmsp430/software%20development%20tools
https://www.postscapes.com/internet-of-things-protocols/


References 149

77. Y. Urano, W.-J. Yun, T. Kuroda, H. Ishikuro, A 1.26mW/Gbps 8 locking cycles versatile all-
digital CDR with TDC combined DLL, in 45th IEEE International Symposium on Circuits and
Systems (ISCAS’13), Beijing, May 2013, pp. 1576–1579

78. S. Wang, K.W.E. Cheng, K. Ding, Design of the temperature and humidity instrument based
on 1-wire sensor for electric vehicle motors, in International Conference on Power Electronics
Systems and Applications, May 2009, pp. 1–5

79. A.X. Widmer, P.A. Franaszek, A DC-balanced, partitioned-block, 8B/10B transmission code.
IBM J. Res. Dev. 27(5), 440–451 (1983)

80. W. Wu, L. Zhang, LBlock: a lightweight block cipher, in International Conference on Applied
Cryptography and Network Security (2011), pp. 327–344



Index

A
Acknowledgement (ACK), xiii
Application Specific Integrated Circuit (ASIC),

69, 79, 84, 95–98, 101, 103, 105, 106,
125, 140

Automatic Parameter Detector (APD), 75, 76

B
Binary phase shift keying (BPSK), 31–33, 40,

66, 143
Bit error rate (BER), 5, 31–33, 40, 59, 66, 67,

135–137, 142, 143
Body-area network (BAN), 28, 36
Body channel communication (BCC), 16, 26,

27, 139, 140

C
Center of Mass (CoM), 130
Central processing unit (CPU), 103–105, 107,

117, 125, 126
Clock and data recovery (CDR), ix, 1–5, 7, 13,

15, 16, 27, 28, 36, 38, 56, 57, 59, 97,
98, 135–138, 144

Clock distribution block (CDB), 116, 121, 122
Combined flags (CFlags), 10–17, 24, 25, 29,

30, 32, 33, 48–50, 52
Combined NOIs (CNOI), 10–17, 24, 25, 29,

31–33, 35, 49, 50, 52
Communication processor module (CPM), 105

D
Data segment (DS), 24, 29, 35, 37, 46, 87, 88,

108
Direct memory access (DMA),

105

E
Edge-coded signaling (ECS), x–xi, 3–5, 7–57,

59–67, 69, 70, 75–77, 79–127, 129,
131–133, 135–144

Edge-Coded Signaling Interface Architecture
(ECSIA), 5, 99, 105–126

Encoded data segment (EDS), 16, 17, 21, 24,
33, 48, 49, 52, 90

Encoder and select control (ESC), 11,
116–117, 119

Encoder and selector (ES), 116–120, 122
Encrypted Flags (EFlags), 87, 88, 92, 95
Encrypted NOI (ENOI), 87, 88, 92, 95
Encrypted PIC data (EPD), 86–88, 90
Energy per bit (Eb), 5, 24, 39, 40, 56, 66, 124,

135, 141, 143

F
Field programmable gate array (FPGA), xi, 5,

23, 27, 45–47, 55, 69, 73, 76, 77, 79,
84, 95–97, 101, 123, 125, 127, 128,
130–133

Frequency shift keying (FSK), 32

© Springer Nature Switzerland AG 2022
S. Muzaffar, I. M. Elfadel, Secure, Low-Power IoT Communication Using
Edge-Coded Signaling, https://doi.org/10.1007/978-3-030-95914-2

151

https://doi.org/10.1007/978-3-030-95914-2


152 Index

H
Hardware description language (HDL), 5, 23,

26, 45, 55, 129, 133
Human body communication (HBC), 26

I
Instruction set architecture (ISA), 5, 99,

103–105, 107, 112, 122, 123, 126
Integrated circuit (IC), 125

L
Least significant bit (LSB), 20, 84, 119
Logical topology control (LTC), 45, 132

M
Machine-to-machine (M2M), 79
Mega bits per second (Mbps), xi, 3, 28, 29,

124, 137, 142
Modified A5/1 (MA5/1), 83, 84, 94
Most significant bit (MSB), 9, 20, 55, 84, 90
Multi-Core Debug Control Unit (MCDCU),

127–133

N
Non-Return-to-Zero (NRZ), 1, 2, 27, 56, 57,

97, 98
Normal serial transfer (NST), 27, 56, 98
Number of indices/number of symbols

(NOI/NOS), 15, 17, 24, 26, 34, 48, 89,
90, 92, 106

Number of vulnerable locations (NVL), 24, 33,
34

O
On-Off Keying (OOK), 15, 26, 32
Orthogonal Frequency-Division Multiplexing

(OFDM), 136, 137

P
PC control unit (PCCU), 112, 116
Phase-locked loop (PLL), 1, 2, 45, 75
Physical layer (PHY), x, 15, 16, 26, 32, 45,

59–62, 65, 67, 75, 76, 131, 133
Prototyped IoT (PIoT), 127–133
Pulse and delay generator (PDG), 114, 121
Pulsed-Index Communication (PIC),

133
Pulse stream receiver (PSR), 114, 119,

121–122

R
Reduced Instruction Set Computer (RISC), x,

105, 108, 112, 123, 126, 144
Returns to zero (RZ), 2

S
Schmitt trigger (ST), 137, 139–141
Serial AT Attachment (SATA), 2
Serializer (SRL), 27, 57, 98

T
Transmission Control Protocol/Internet

Protocol (TCP/IP), 45, 129, 144

U
Universal Serial Bus (USB), 1, 2, 105, 128,

130, 132

V
Very Large Scale Integration (VLSI), 73, 142

W
Wavelength-Division Multiplexing (WDM),

136, 137


	Prologue
	Acknowledgements
	Contents
	Abbreviations
	1 Introduction
	2 Edge-Coded Signaling Techniques
	2.1 Edge-Coded Signaling (ECS)
	2.1.1 Edge-Coding Scheme
	2.1.2 ECS Segmentation
	2.1.3 ECS Encoding
	2.1.4 ECS Transmitter
	Pulse Stream and Separator Generation Scheme
	Transmission Flow

	2.1.5 ECS Receiver
	Pulse Stream and Separator Reception
	Reception Flow, Decoding, and Reconstruction

	2.1.6 ECS Transmission System
	2.1.7 ECS Data Rate

	2.2 ECS Optimizations
	2.2.1 Optimum Inter-symbol Separator α
	2.2.2 Optimum Segment Length l

	2.3 Earlier Versions of ECS
	2.3.1 Data Rates
	2.3.2 Optimizations

	2.4 Experimental Setups and Results
	2.5 Analysis
	2.5.1 Data Rate
	2.5.2 Data Word Length and Complexity
	Word-Based Implementation
	Block-Based Implementation

	2.5.3 Error Detection and Correction
	2.5.4 Bit Error Rate
	2.5.5 Pulse Width and Shape
	2.5.6 Reliability
	2.5.7 Robustness
	2.5.8 Overall Latency
	2.5.9 Networking

	2.6 Conclusions

	3 Timing and Robustness Analysis
	3.1 Timing and Robustness Analysis
	3.1.1 Sources of Errors
	3.1.2 Pulse Width Coefficient
	3.1.3 Inter-symbol Separation Coefficient
	Inter-symbol Interval Threshold
	Selection of Inter-symbol Separation Coefficient

	3.1.4 Clock Discrepancy Tolerance
	3.1.5 Selection of Inter-symbol Separation Coefficient
	3.1.6 Summary on Inter-symbol Separation

	3.2 Protocol Failure Modes and Error Correction
	3.3 Experimental Verification
	3.4 Conclusions

	4 Doubling the ECS Data Rate
	4.1 Single-Edge Scheme: An Example
	4.2 Double Data Rate Edge-Coded Signaling
	4.3 Hardware Implementation
	4.3.1 Transmitter
	4.3.2 Receiver

	4.4 Formulation and Optimizations
	4.5 Experimental Verification and Results
	4.6 Conclusions

	5 Power Management
	5.1 ECS1 Power Management
	5.1.1 Sources of Power Consumption
	5.1.2 Proposed ECS1 PHY
	Approach
	PHY Circuit Implementation

	5.1.3 Delay Capacitor
	Lower Bound on Delay Capacitance
	Upper Bound on Delay Capacitance

	5.1.4 Sizing the Pull-Down Resistor
	5.1.5 Duty Cycle

	5.2 Results
	5.2.1 Power Analysis
	5.2.2 BER Analysis

	5.3 Conclusions

	6 Automatic Protocol Configuration
	6.1 Automatic Parameter Detection
	6.1.1 Algorithm
	6.1.2 Inter-symbol Separator Coefficient Calculation
	6.1.3 Low-overhead Hardware for αF Calculation

	6.2 Experimental Verification
	6.3 Conclusions

	7 Secure ECS Communication
	7.1 Introduction
	7.2 Proposed Multilayer Secure Communication Architecture
	7.2.1 Re-architecting A5/1 for ECS
	Conventional A5/1
	Proposed High-Speed A5/1 (HSA5/1)

	7.2.2 Secure ECS Communication
	Authentication
	Confidentiality
	Confusion

	7.2.3 Multiple Layers of Security

	7.3 Example of Secure ECS Communication
	7.3.1 Secure Packetization
	7.3.2 Secure Reception

	7.4 Cryptanalysis of the Multilayer Cipher
	7.5 Implementation, Cipher Overhead, and Comparison with Prior Art
	7.5.1 Microcontroller Prototype
	7.5.2 FPGA Prototype
	7.5.3 ASIC Synthesis
	7.5.4 Secure ECS Design Alternatives
	7.5.5 Comparison with Lightweight Ciphers

	7.6 Conclusions

	8 Domain-Specific ECS Processor
	8.1 Introduction
	8.2 Edge-Coded Signaling Interface Architecture (ECSIA)
	8.2.1 Register Set
	8.2.2 Instruction Formats and Types
	Type I
	Type II
	Type III

	8.2.3 Addressing Modes
	8.2.4 External I/O and Interrupts
	8.2.5 ISA Discussion

	8.3 ECSIA Micro-Architecture
	8.3.1 Memory Interface
	8.3.2 Instruction Decoder
	8.3.3 Register File
	8.3.4 Clock Distribution and PC Control
	8.3.5 Encoder and Select Control (ESC)
	8.3.6 Encoder and Selector (ES)
	ES Segment Processing
	ES in Receiver Mode
	ES in Transmitter Mode

	8.3.7 Pulse and Delay Generator (PDG)
	8.3.8 Pulse Stream Receiver (PSR)
	8.3.9 Interrupt Handler
	8.3.10 Micro-Architecture Discussion

	8.4 Experimental Verification and Results
	8.5 Conclusions

	9 Application: Hardware Platform for IoT Sensor Networks
	9.1 Platform Architecture
	9.2 Platform Implementation and Testing
	9.2.1 Sensor Nodes
	Microcontroller Configuration
	I/O Ports Selection
	Microcontroller Memories

	9.2.2 Multi-Core Debug Control Unit (MCDCU)
	On-Chip MCDCU
	External MCDCU Daughter Card

	9.2.3 Embedded C ECS1 Transceivers
	9.2.4 System Integration

	9.3 Compiler and Debugging Tools
	9.4 Conclusions

	10 Application: Body-Coupled Communication
	10.1 Introduction
	10.2 ECS Signaling and BCC
	10.3 BCC Transceiver
	10.4 Testing and Verification
	10.5 Conclusions

	Epilogue
	References
	Index

