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ICU Management: Disseminated 
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33.1	 �Introduction

Disseminated intravascular coagulation (DIC) is 
an acquired syndrome characterized by systemic 
activation of coagulation not restricted to the site 
of insults and can be caused by non-infectious 
and infectious insults [1]. The two major insults 
that evoke DIC are trauma and sepsis, which 
induce systemic inflammatory response syn-
drome (SIRS) [1, 2]. In the early 1990s, SIRS 
was considered the main cause of organ dysfunc-
tion affecting a patient’s outcome [2]. Based on 
this concept, many randomized controlled trials 
targeting the control of SIRS were performed; 
however, none of these trials managed to achieve 
their aims, thereby suggesting that a change in 
the treatment strategies for controlling only 
SIRS [3]. Concurrently with this paradigm shift, 
tight molecular links between inflammation and 
coagulation were detected, in which thrombin 
plays a central role, resulting in multiple organ 
dysfunction syndrome (MODS) and eventually 
death [4]. DIC represents dysregulated inflam-
matory and coagulofibrinolytic responses to the 
insults such as trauma and sepsis; therefore, DIC 
can induce the development of MODS via the 
bidirectional interplay between inflammation 
and coagulation [1].

Penner summarized the trauma studies, includ-
ing head trauma, published during the 1990s [5]. 
In those studies, DIC patients showed high inflam-
matory cytokines levels and increased systemic 
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thrombin generation as measured by thrombin 
antithrombin complex (TAT) or prothrombin frag-
ment 1 + 2 (PF1 + 2) immediately after trauma. 
These changes were associated with MODS and 
higher mortality rates than in non-DIC patients. In 
2001, the International Society on Thrombosis 
and Haemostasis (ISTH) published a definition 
and diagnostic criteria for DIC [6]. This official 
communication positioned trauma (polytrauma, 
neurotrauma, fat embolism, etc.) as the main 
cause of DIC and stated that generalized inflam-
matory responses to insults with the release of 
cytokines from multiple inflammatory cells lead 
to extensive damage of the microvascular endo-
thelium, which can result in organ dysfunction. 
Following this announcement, close relationships 
among trauma, inflammatory responses, micro-
vascular disturbances, DIC, and MODS have 
been identified by the mid 2000s [7–9].

The ISTH again confirmed that tissue damage, 
including major trauma, is a cause of DIC with a 
high level of evidence about two decades after 
the first announcement [10]. DIC is an old dis-
ease with a history of over half a century; how-
ever, it is still a key disease to be recognized and 
diagnosed in the critical care setting [11]. In this 
chapter, the management of DIC in the intensive 
care unit (ICU) will be reviewed and discussed 
with the goal of improving the prognosis of criti-
cally ill trauma patients.

33.2	 �Trauma-Induced 
Coagulopathy and DIC

Trauma-induced coagulopathy is defined as the 
pre-stage of full-blown DIC, such as sepsis-
induced coagulopathy. Three subcommittees of 
the ISTH published an official announcement, 
noting that dysregulated inflammatory and coag-
ulofibrinolytic responses to trauma converge the 
trauma-induced coagulopathy in the final path-
way of DIC [12] (Fig. 33.1). If trauma is suffi-
ciently severe, however, DIC develops 
immediately after trauma without first proceed-
ing through the stage of trauma-induced coagu-
lopathy [13]. Expanding our understanding of 
these relationships between trauma-induced 

coagulopathy and DIC will likely provide thera-
peutic benefit to severely injured trauma patients.

Another point of note is that trauma-induced 
coagulopathy comprises primary and secondary 
coagulopathies [12, 14] (Table 33.1). Trauma-itself-
induced primary coagulopathy, namely DIC, is 
modified by the anemia-, dilution-, hypothermia-, 
and acidosis-induced secondary coagulopathies.

33.3	 �The Definition and Diagnosis

33.3.1	 �The Definition

The ISTH defined DIC as “DIC is an acquired 
syndrome characterized by the intravascular acti-
vation of coagulation with loss of localization 
arising from different causes. It can originate 
from and cause damage to the microvasculature, 
which if sufficiently severe, can produce organ 
dysfunction” [6]. The key points of this definition 
are systemic thrombin generation not restricted 
to the insult’s site and endothelial cell activation 
followed by subsequent injury.

TIC DIC

• Anemia
• Hypothermia

• Acidosis
• Dilution

Fig. 33.1  Relationship between trauma-induced coagu-
lopathy (TIC) and disseminated intravascular coagulation 
(DIC). TIC is defined as the pre-stage of full-blown DIC. If 
trauma is sufficiently severe, dysregulated inflammatory 
and coagulofibrinolytic responses to trauma converge in the 
final pathway of DIC.  Exogenously induced secondary 
coagulopathies such as anemia-, hypothermia-, acidosis-, 
and dilution-induced coagulopathies, modify DIC
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The ISTH further states that DIC is accompa-
nied by the loss of tight junctions between endothe-
lial cells which gives rise to capillary leak syndrome 
[6]. Excessive thrombin generation and endothelial 
injury with microvascular thrombus formation 
leads to decreased oxygen delivery to the cells and 
tissues and subsequent exhaustion of platelets and 
consumption of coagulation factors, causing 
MODS and oozing-type bleeding [6]. Therefore, 
DIC has long been recognized as “thrombohemor-
rhagic disorder” [15–17]. The definition of DIC 
established by the ISTH has provided a logical base 
concerning the pathophysiology of DIC.

33.3.2	 �The Diagnosis

The ISTH proposed overt DIC diagnostic criteria 
involving two steps; assessing underlying clinical 
conditions that may be associated with DIC and 
applying an algorithm for the diagnosis of DIC 
[6]. Before using the algorithm, a risk assessment 
to check whether or not a patient has an underly-
ing disorder is mandatory. If a patient has such a 
disorder, algorithm may be applied. The ISTH 
overt DIC scoring system was prospectively vali-
dated in diverse patients including trauma admit-
ted to the ICU [18]. The results confirmed a 
sufficient diagnostic accuracy of the ISTH scor-

ing system for diagnosing DIC in ICU patient 
clinically suspected of having this syndrome.

To diagnose DIC during its latent period 
before progression to full-blown overt DIC, the 
ISTH proposed non-overt DIC diagnostic criteria 
as well [6]. However, the prospective validation 
of non-overt DIC diagnostic criteria failed to 
prove the progression of non-overt DIC to overt 
DIC [19, 20]. To overcome this drawback associ-
ated with non-overt DIC diagnostic criteria and 
the low sensitivity for diagnosing DIC using the 
overt DIC diagnostic algorithm, the Japanese 
Association for Acute Medicine (JAAM) estab-
lished the JAAM DIC diagnostic criteria. The 
JAAM diagnostic criteria have been prospec-
tively validated in a critical care setting several 
times [20–22]. These studies showed that the 
JAAM DIC diagnostic criteria were able to iden-
tify DIC patients with high sensitivity and mod-
erate specificity, and that the DIC diagnosed 
according to the JAAM criteria progresses to the 
ISTH overt DIC. Of note, the JAAM DIC diag-
nostic criteria can be applied at an early stage of 
trauma as well as a late stage with acceptable 
validity for the DIC diagnosis [23–25]. The ISTH 
and JAAM DIC diagnostic criteria can be found 
elsewhere [6, 21].

33.4	 �Phenotypes and Time 
Courses

33.4.1	 �Phenotypes

DIC comprises fibrinolytic and thrombotic pheno-
types [1, 26–28]. DIC essentially is a thrombotic 
phenotype, and that DIC with a fibrinolytic pheno-
type is defined as the coexistence of DIC and path-
ological systemic fibrin(ogen)olysis [26, 28]. A 
condition wherein one insult simultaneously 
evokes DIC (with a thrombotic phenotype) and 
pathological systemic fibrin(ogen)olysis is called 
DIC with a fibrinolytic phenotype (Fig. 33.2).

Typical conditions that induce DIC with a 
fibrinolytic phenotype are acute promyelocytic 
leukemia [29], a long hypoxic state (e.g., asphyxia 
and drowning) [30], cardiac arrest and resuscita-
tion [31], postpartum hemorrhagic shock [32], 

Table 33.1  Summary of trauma-induced coagulopathy

1. Physiological changes
 �� (a) Hemostasis and wound healing
2. Pathological changes
 �� (a) Trauma-itself induced primary coagulopathy
 ��   •  DIC
 ��     –  Activation of coagulation
 ��     –  Insufficient anticoagulant mechanisms
 ��     –  Increased fibrin(ogen)olysis (early phase)
 ��     –  Suppression of fibrinolysis (late phase)
 ��     –  Consumption coagulopathy
 �� (b) Exogenously induced secondary coagulopathies 

that modify DIC
 ��   •  Anemia-induced coagulopathy
 ��   •  Hypothermia-induced coagulopathy
 ��   •  Acidosis-induced coagulopathy
 ��   •  Dilutional coagulopathy
 ��   •  Others

Modified with permission [14]
DIC disseminated intravascular coagulation
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isolated traumatic brain injury (iTBI) [33, 34], 
and severe trauma [35, 36]. The assembly of plas-
minogen and tissue-type plasminogen activator 
(t-PA) on promyelocytic leukemia cell surface-
expressed annexin II promotes the conversion of 
plasminogen to plasmin [1, 29]. Common 
pathomechanisms increasing fibrin(ogen)olysis 
in asphyxia, drowning, cardiac arrest and resusci-
tation, postpartum hemorrhagic shock, and severe 
trauma are prolonged hypoxia- and ischemia-
induced massive thrombin generation as well as 
marked t-PA release from endothelial Waibel-
Palade bodies [1, 36–38]. Neurons and other cell 
types within the central nervous system synthe-
tize and store t-PA in the granules and are rich in 
tissue factor, both of which are immediately 
released into the circulation in iTBI, causing DIC 
and systemic fibrin(ogen)olysis [39, 40]. All con-

ditions, except for acute promyelocytic leukemia, 
aggravate fibrin(ogen)olysis due to the time delay 
between the immediate release of t-PA and the 
delayed expression of plasminogen activator 
inhibitor-1 (PAI-1) mRNA [1, 7, 13, 35, 36].

33.4.2	 �Time Courses

The time courses in coagulofibrinolytic changes 
after trauma are shown in Fig. 33.3 [7, 35, 36]. The 
left side shows the physiologic state of hemostasis 
and wound healing, while the right side shows the 
pathological changes observed in DIC.  These 
physiological and pathological states should be and 
can be distinguished using DIC diagnostic criteria. 
It is important to recognize, as the ISTH warned, 
that many published studies have discussed these 

Severe insults

Systemic inflammation

Inhibition of
fibrinolysis

PAI-1

Microvascular
fibrin thrombosis

Consumption
coagulopathy

Oozing-type bleedingOrgan dysfunction

DIC with the thrombotic phenotype DIC with the fibrinolytic phenotype

Activation of
coagulation

Tissue factor

Insufficient
anticoagulation

TFPI
Antithrombin
Protein C
Thrombomodulin

Systemic fibrin(ogen)olysis

t-PA
2 palsmin inhibitor

Endothelial injury

Hypoperfusion
Hypoxia/Ischemia
Brain injury
Annexin II

Fig. 33.2  Two phenotypes of disseminated intravascular 
coagulation (DIC). DIC essentially is a thrombotic pheno-
type; DIC with a fibrinolytic phenotype is defined as the 
coexistence of DIC and pathological systemic fibrin(ogen)
olysis due to tissue hypoperfusion, systemic hypoxia/isch-
emia, etc. A condition wherein one insult simultaneously 
evokes DIC (with thrombotic phenotype) and pathologi-
cal systemic fibrin(ogen)olysis is called DIC with a fibri-

nolytic phenotype. Importantly, massive thrombin 
generation due to the activation of the tissue factor-
dependent coagulation pathway and insufficient antico-
agulation controls always underlie both types of DIC. 
PAI-1 plasminogen activator ingibitor-1, TFPI tissue fac-
tor pathway inhibitor, t-PA tissue-type plasminogen acti-
vator. (Modified with permission (Creative Commons 
Attribution International License) [28])
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Fig. 33.3  Schematic diagrams of the variations in thrombin 
activity (A, measured by fibrinopeptide A, FPA), plasmin 
activity (B, fibrinopeptide B β15–42, FPBβ15–42), fibrin 
formation and secondary fibrinolysis (C, D-dimer) from day 
0 (in the emergency department) to day 4. Left, normal 
changes in hemostasis and wound healing. There are three 
phases of fibrinolysis: early activation, impairment (D, PAI-
1: fibrinolytic shutdown), and reactivation. Normally, both 
the thrombin activity and PAI-1 are completely shut off by 
days 3–5 after trauma, followed by the reactivation of fibri-
nolysis. Right, pathological changes in DIC. There is a time 

delay between immediate t-PA-induced massive plasmin 
generation and the induction of PAI-1mRNA, which causes 
systemic hyperfibrin(ogen)olysis (asterisk, DIC with a fibri-
nolytic phenotype), followed by the impairment of fibrino-
lysis due to persistent elevation of PAI-1 released from 
endothelial cells via transcription (double asterisk, DIC with 
a thrombotic phenotype). Persistent and systemic thrombin 
generation always underlies these changes in fibrinolysis. 
DIC disseminated intravascular coagulation, PAI-1 plasmin-
ogen activator inhibitor-1, t-PA tissue-type plasminogen 
activator. (Modified with permission [7])
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two conditions without clear separation, confusing 
our understanding of trauma-induced coagulopa-
thy and DIC [36, 41]. The main differences between 
these two time courses concerning the dynamics of 
thrombin generation and inhibition of fibrinolysis 
by PAI-1. Thrombin generation and inhibition of 
fibrinolysis transiently continues for several days 
under conditions of the normal hemostasis and 
wound healing but persist until DIC is improved 
under DIC conditions.

Figure 33.3 (right) further depicts the two phe-
notypes of DIC.  The time delay between the 
immediate increases in plasmin generation due to 
t-PA release and delayed elevation of PAI-1 (sin-
gle asterisk) indicates DIC with a fibrinolytic 
phenotype, and persistent increases in both 
thrombin generation and PAI-1 (double asterisk) 
indicate DIC with a thrombotic phenotype. 
Furthermore, DIC with a fibrinolytic phenotype 
exists only for a couple of hours after presenta-
tion to the emergency department [13, 31]; how-
ever, in cases of severe trauma, the fibrinolytic 
phenotype progresses to the thrombotic pheno-
type without complication of sepsis [42].

33.5	 �Pathophysiology

Although DIC develops in diverse underlying 
conditions, once initiated, the pathomechanisms 
that give rise to DIC are similar, regardless of the 
setting [1]. The modern pathophysiology of DIC 
and its characteristics in trauma were established 
around the 1990s [1, 5, 6, 35]. Recent advances 

have been described in studies which highlighted 
bidirectional interplay among innate immunity, 
inflammation, and coagulofibrinolytic responses, 
in which histones and neutrophil extracellular 
traps (NETs) play central roles, constituting the 
main pathophysiology of DIC [43, 44].

Trauma induces innate immune responses via 
the altered-self, danger-associated molecular pat-
terns (DAMPs), which are recognized by pattern 
recognition receptors (PRRs), such as Toll-like 
receptors (TLRs), NOD-like receptors (NLRs), 
and RIG-I-like receptors (RLRs). Signal transduc-
tions of PRRs leads to the expressions of pro-
inflammatory cytokines (TNF-α, IL-1, IL-6) and 
chemokines (IL-8) as well as anti-inflammatory 
cytokines (IL-10) [28, 45, 46]. Innate immune 
responses activate inflammation, coagulation, 
endothelium, and complement pathways to main-
tain body homeostasis with the balance of inflam-
mation and anti-inflammation called SIRS and 
compensatory anti-inflammatory syndrome 
(CARS), respectively [2, 47]. At the site of insults 
such as trauma and sepsis, hemostatic thrombosis 
and immunothrombosis formed by the activation 
of coagulation cascades and activated neutrophil-
released NETs control the insults (hemorrhage and 
infection), delimits and fixes the insult-induced 
injuries, and protects the dissemination of DAMPs, 
pathogen-associated molecular patterns (PAMPs), 
and microorganisms into the circulation [28, 45, 
46, 48]. However, if the insult is sufficiently severe, 
local physiological thrombosis spreads throughout 
the whole body and then pathological DIC associ-
ated with SIRS ensues [28, 48] (Fig. 33.4).

Fig. 33.4  Trauma elicits nonspecific innate immune 
inflammatory responses that limit and repair tissue dam-
age. The figure depicts a simplified schematic representa-
tion of the activation of pattern recognition receptors by 
DAMPs and their signaling through the adaptor proteins. 
This cascade promotes the transcription of several pro-
inflammatory cytokines and chemokines, leading to local 
and systemic inflammatory responses. Local inflamma-
tion begins as an adaptive host response, serving to pro-
mote the host defense and physiologic hemostasis and 
fibrin-mediated host defense called immunothrombosis. 
Spillover of the DAMPs and inflammatory cytokines into 
the circulation induces SIRS, which activates systemic 
coagulation, suppresses fibrinolysis, and overwhelms the 
anticoagulant control mechanisms that restrict hemostasis 

locally, giving rise to DIC.  Importantly, DAMPs them-
selves can activate coagulation and impair anticoagulation 
pathways through endothelial damage. ACS apoptosis-
associated speck-like protein containing caspase recruit 
domain, DAMPs damage-associated molecular patterns, 
DIC disseminated intravascular coagulation, MAVS mito-
chondrial antiviral signaling, MODS multiple organ dys-
function syndrome, MyD88 myeloid differentiation factor 
88, NLRs nucleotide-binding oligomerization domain-
containing receptors, RLRs retinoic acid inducible gene-I-
like receptors, SIRS systemic inflammatory response 
syndrome, STING stimulator of interferon gene, TRIF 
toll/IL-1 receptor homology domain-containing adaptor 
inducing interferon β, TLRs toll-like receptors. (Modified 
with permission [45])
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33.5.1	 �Cytokines

Important pro-inflammatory cytokines that 
induce SIRS following trauma are TNF-α, IL-1, 
and IL-6. Immediately after trauma, significant 
increases in these cytokines have been confirmed 
in DIC and severely injured patients [49, 50]. 
TNF-α and IL-1 induce tissue factor expression 
on monocytes and endothelial cells and down-
regulate endothelial protein C receptor (EPCR) 
leading to the suppression of the protein C anti-
coagulant pathway [51, 52]. IL-6 is also able to 
induce the activation of coagulation [53]. These 
inflammatory cytokines further activate neutro-
phils and endothelial cells [51], which upregulate 
or express adhesion molecules such as selectins, 
integrins, and immunoglobulin superfamily 
which elicit platelets, neutrophils, and endothe-
lial cells interactions, leading to the release of 
neutrophil-mediated reactive oxygen species and 
neutrophil elastase [54–56]. Activated platelets- 
and endothelial cells-upregulated P-selectin 
induces the expression of tissue factor on mono-
cytes [1, 57]. Neutrophil-released reactive oxy-
gen species and elastase injure endothelial cells, 
bringing about the dysfunction of anticoagulation 
systems comprising tissue factor pathway inhibi-
tor (TFPI), antithrombin/glycosaminoglycan, 
and protein C/thrombomodulin on the endothe-
lial cells and the glycocalyx [58, 59]. Furthermore, 
TNF-α induces immediate t-PA release followed 
by persistent expression of PAI-1, which impairs 
fibrinolysis [60–62].

Taken together, these findings indicate that 
inflammatory cytokines are capable of causing 
all pathomechanisms of DIC.  The following 
pathomechanisms have been confirmed in DIC 
after trauma: SIRS [49, 63, 64], activation of 
platelets and systemic thrombin generation [64, 
65], insufficient anticoagulant systems such as 
TFPI [66], antithrombin [36, 63, 65], protein C 
[36], activation followed by the impairment of 
fibrinolysis [31, 49, 67, 68] and endothelial cells 
activation and injury [35, 69, 70].

33.5.2	 �Protease-Activated Receptors 
(PARs)

Signals of coagulation proteases are transmitted 
to inflammatory cells via protease-activated 
receptors (PARs) [71, 72]. The PARs are 
G-protein coupled receptors with seven trans-
membrane domains that can sense signals from 
coagulation proteases with auto-activation mech-
anisms by the proteases-cleaved and exposed 
active sequence functioning as tethered ligand. 
The four known PARs are PAR1, PAR2, PAR3, 
and PAR4. Tissue factor/FVIIa complex activates 
PAR2, tissue factor/FVIIa/FXa ternary complex 
activates PAR1 and PAR2, and FIIa (thrombin) 
activates PAR1, PAR3, and PAR4, resulting in 
the inductions of varied effects on platelets, leu-
cocytes, and endothelial cells [73, 74] 
(Table  33.2). Therefore, the PARs play pivotal 
roles in bidirectional interplays between inflam-
mation and coagulation [43], which forms vicious 
cycles in DIC, leading to the development of 
MODS [1, 74].

33.5.3	 �DAMPs and NETs

Two epoch-making studies were published in the 
2000s [75, 76]. One showed that NETs kill bacte-
ria and another reported that extracellular his-
tones are major mediators of death through 
endothelial injury and microvascular thrombosis 
in sepsis. Following these studies, DAMPs 
including histones and NETs containing neutro-
phil DAMPs such as DNA and histones became 
major mediators of many pathologic disorders 
including DIC [1, 48, 77, 78].

33.5.3.1	 �Cytokines and SIRS
Circulating mitochondrial DAMPs, mitochon-
drial DNA and formyl peptides, showed immedi-
ate and thousands-fold higher increases in 
severely injured trauma patients than control sub-
jects, which were followed by the TNF-α and 
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IL-6 expression associated with SIRS and organ 
dysfunction [79, 80]. Circulating histones rising 
to toxic levels immediately after trauma led to 
IL-6 release, systemic thrombin generation, 
endothelial injury, and NETs formation, which 
induced microvascular thrombosis and organ 
dysfunction [50]. These studies demonstrate 

close relationships among innate immunity, 
SIRS, DIC, and MODS in trauma.

The bidirectional interplays between cell 
injury-induced histones triggering NETs forma-
tion and NETs as a source for localized and sys-
temic histones are important in the 
pathomechanisms of DIC [48, 78]. The above-
mentioned DAMPs-induced expression of cyto-
kines and chemokines via PRRs is well 
recognized [28, 45, 48]. Histones and NETs also 
induce expression of TNF-α, IL-1, and L-6 via 
the signal transductions of PRRs, leading to 
development of SIRS [50, 81–83]. Rapid 
increases in these cytokines may be due in part to 
their release from presynthesized storage in addi-
tion to the induction of their expressions [50, 81].

33.5.3.2	 �Platelets and Coagulation
Histones directly or via interactions with TLR2 
and TLR4 induce platelet activation and subse-
quent aggregation associated with P-selectin 
release and phosphatidylserine exposure, leading 
to thrombocytopenia in vivo and in critical illness 
[84–88]. Activated platelets and NETs collabo-
rate to promote thrombin generation and intra-
vascular coagulation [89].

Tissue factor expression on monocytes and its 
exposure on the endothelium due to endothelial 
injury is the most important trigger of DIC [1, 
90]. Indeed, DIC patients after trauma shows 
high tissue factor levels associated with persis-
tent thrombin generation [64, 91]. Extracellular 
histones induce tissue factor antigen, activity, and 
mRNA in endothelial cells via TLR2 and TLR4 
[92, 93]. Histones are able to promote prothrom-
bin auto-activation, which is an important finding 
indicating that thrombin is independently gener-
ated without the activation of coagulation cas-
cades [94]. Furthermore, histone-induced 
phosphatidylserine exposures on red blood cells 
(RBCs) and endothelial cells enhance coagula-
tion activation [93, 95]. Other DAMPs, including 
DNA contained in NETs and RNA released from 
injured cells, promote thrombosis dependent on 
the FXII/FXI-induced activation of contact path-
ways of coagulation [96–98], which is related to 
a poor prognosis of DIC [99].

Table 33.2  Protease-activated receptors (PARs) and 
their actions on platelets, leukocytes, and endothelium

Induction of 
expression, 
release, etc. Actions

Platelets 5-HT, ADP, 
TXA2, 
P-selectin 
GPαIIb/β3

Platelet activation, 
adhesion, aggregation

Leukocytes TNF-α, IL-6, 
IL-8, CD11b

Proinflammatory

Tissue factor Activation of 
coagulation

Oxygen 
radicals

Endothelial cells injury

Endothelial cells
VWF, PAF Platelet activation and 

consumption
IL-1, IL-6, IL-1 Proinflammatory
P-selectin, 
E-selectin, 
ICAM-1, 
VCAM-1, 
MCP-1

Endothelial cells 
activation

MMP7, 
MMP9, 
Apoptosis

Apoptosis

Tissue factor, 
PAI-1, TM 
down 
regulation

Activation of 
coagulation, suppression 
of fibrinolysis, and 
impairment of 
anticoagulation

Nitric oxide, 
EDHF, 
histamine, gap 
formation

Vessels dilatation, 
increased permeability

Endothelin Vessels constriction

Reprinted with permission [74]
5-HT 5-hydroxytriptamine, ADP adenine di-phosphate, 
TXA2 thromboxane A2, GP glycoprotein, TNF tumor necro-
sis factor, IL interleukin, VWF von Willebrand factor, PAF 
platelet-activating factor, ICAM-1 intracellular adhesion 
molecule-1, VCAM-1 vascular cell adhesion molecule-1, 
MCP-1 monocytes chemotactic protein-1, MMP metallo-
protease, PAI-1 plasminogen activator inhibitor-1, TM 
thrombomodulin, EDHF endothelial hyperpolarizing factor
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33.5.3.3	 �Anticoagulant Systems 
and Endothelial Cells

The impairment of thrombomodulin-dependent 
protein C activation by histones increases throm-
bin generation, which is a main pathomecha-
nisms of DIC [100]. DIC induces capillary leak 
syndrome [1, 6]. Histone-induced endothelial 
injury contributes to increases in endothelial per-
meability [50, 75] and mitochondrial DAMPs 
also increase endothelial permeability [101], 
which gives rise to loss of antithrombin into the 
extravascular spaces [102]. Neutrophil elastase, a 
constituent of NETs, cleaves or degrades TFPI, 
protein C, and antithrombin [1]. High levels of 
neutrophil elastase associated with endothelial 
injury in DIC after trauma have been repeatedly 
confirmed [67, 69, 70]. Furthermore, in  vitro, 
in vivo, and clinical studies of trauma and sepsis 
confirmed histone-induced endothelial injury by 
elevated levels of soluble thrombomodulin and 
its association with thrombin generation and 
microvascular thrombosis [50, 84]. These find-
ings indicate that histones and NETs are deeply 
involved in the three major pathomechanisms of 
DIC; thrombin generation due to insufficient 
anticoagulant systems, endothelial injury, and 
capillary leak syndrome.

33.5.3.4	 �Activation and Impairment 
of Fibrinolysis

Extracellular DNA acts as a template for the acti-
vation of fibrinolysis under the conditions of neu-
tralization by endogenous serpins such as PAI-1; 
however, under conditions of the over expres-
sions of PAI-1, extracellular DNA has antifibri-
nolytic effects, which suggests the role of DNA 
in DIC [103]. Cell-free DNA binds to both plas-
min and fibrin, forming ternary complex and con-
sequently inhibiting fibrinolysis [104]. DNA, 
histones, and NETs were shown to delay t-PA-
mediated fibrin clot lysis, and the former two fur-
ther increased the fibrin clot fiber diameter, 
resulting in the thrombus stability [105, 106]. 
Although these results seem to be physiological 
effects of histones and DNA supporting the 
strength of immunothrombosis at the insult site, 
under the pathologic condition of DIC with 
increased levels of PAI-1, these DAMPs may 

play pathological roles through the inhibition of 
fibrinolysis.

33.5.3.5	 �Brief Summary
In vivo experiments clearly showed that histones 
were able to decrease platelet counts and fibrino-
gen levels, and prolong the prothrombin time and 
activated partial thromboplastin time (APTT), 
which resulted in platelet and fibrin thrombosis 
associated with organ dysfunction and low sur-
vival probability [84]. Similar results were 
obtained in an experimental trauma model and in 
trauma patients [50]. As such, DAMPs, especially 
histones and NETs constitute the main patho-
physiology of DIC [78].

33.5.4	 �Multiple Actions of Thrombin

The most important key factor in DIC is thrombin, 
which controls and influences all other factors 
associated with DIC [1] (Fig. 33.5). In addition to 
the fundamental role of thrombin in the formation 
of fibrin clots, thrombin enhances inflammation 
and activates platelets through PARs [71, 74]. On 
the surface of activated platelets, FIXa/FVIIIa 
(tenase) and FXa/FVa (prothrombinase) complexes 
induce thrombin burst, which accelerate thrombin 
generation about hundreds of thousands-folds 
[107]. The conversion of prothrombotic and inflam-
matory properties of thrombin into anti-thrombotic 
and anti-inflammatory actions can be done via 
complex formation with endothelial thrombomod-
ulin [1, 43]. The thrombin thrombomodulin 
complex-formed activated protein C suppresses 
thrombin generation by the proteolytic degradation 
of FVa and FVIIIa. This complex also enhances the 
activation of TAFI by thrombin about 1250-fold 
[108]. The anti-inflammatory properties of throm-
bin complexed with thrombomodulin are exerted 
through several pathways, such as the binding of 
activated protein C and EPCR-induced changes in 
PAR1 inflammatory properties [1, 43, 109] and 
cleaving of carboxy-terminal arginine residues of 
bradykinin, C3a and C5a as well as osteopontin by 
TAFIa [110–112]. Thrombin-mediated fibrinolysis 
control also should be acknowledged. Thrombin 
stimulates fibrinolysis via immediate t-PA release 
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from endothelial Waibel-Palade bodies [37, 113]. 
In addition to the induction of PAI-1 expression in 
endothelial cells [114], thrombin inhibits fibrinoly-
sis through TAFIa [108, 115, 116]. The thrombin 
thrombomodulin complex activate TAFI [108], and 
then TAFIa removes the carboxyl-terminal lysine 
from fibrin, leading to downregulation of fibrinoly-
sis [115, 116].

Massive thrombin generation from immedi-
ately to several days after trauma has been repeat-
edly confirmed in DIC patients since the early 
1990s [7, 9, 64, 65] and recent publications have 
successfully reproduced these results [13, 117]. 
Dumber and Chandler elegantly showed that 
immediate and excessive thrombin generation 
not restricted to injury sites is due to tissue factor 
activity in systemic circulation and that reduced 
antithrombin levels allow systemic thrombin 
generation to continue once started [118, 119]. 

Tissue factors in systemic circulation likely cause 
significant thrombin generation in DIC patients 
[120]. Substantial evidence of massive thrombin 
generation in DIC after trauma suggest that the 
manifestation of bleeding and thrombosis in DIC 
may be dependent on the fine balance of multiple 
actions of thrombin [1].

33.6	 �MODS and the Prognosis

Esmon et al. [4] announced that the molecular links 
between inflammation and coagulation are unques-
tioned and stated that the inflammation-coagulation 
autoamplification loop progresses to vascular 
injury and MODS, leading to death. The ISTH 
fully accept this concept and published statement 
that inflammation-induced systemic thrombin gen-
eration and endothelial injury give rise to MODS 

Proinflammatory
• PARs

Procoagulant
• Fibrinogen

Anticoagulant
• Thrombomodulin

• APC

Platelet activation
• PARS

• Tenase/prothrombinase

Antiinflammatory
• APC/EPCR

• TAFIa

Profibrinolytic
• t-PA

Antifibrinolytic
• Thrombomodulin
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Fig. 33.5  Multiple actions of thrombin. Multiple actions 
of thrombin protect the fine balances in the physiological 
status to maintain homeostasis. Excessive thrombin gen-
eration in DIC upsets this balance and induces multifac-
eted consequences, leading to inflammation, thrombosis, 
and bleeding. For this reason, DIC has been described as 
thrombohemorrhagic disorder. Refer to the text for details. 

APC activated protein C, DIC disseminated intravascular 
coagulation, EPCR endothelial protein C receptor, PAI-1 
plasminogen activator inhibitor-1, PARs protease-
activated receptors, TAFIa activated thrombin activatable 
fibrinolysis inhibitor, t-PA tissue-type plasminogen 
activator
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[6]. DIC is a frequent complication of SIRS [63] 
and its prevalence increases in parallel with the 
severity of inflammation associated with stepwise 
increases in organ dysfunction [121].

DIC patients after trauma consistently showed 
significantly higher prevalence of MODS and 
rates of mortality than in non-DIC patients [49, 
65, 66, 68–70, 117]. DIC and sustained SIRS for 
more than 3 days after trauma have shown sig-
nificant increases in tissue factor levels and 
thrombin generation for 5 days after trauma asso-
ciated with high rates of MODS and death [64]. A 
clinical decision analysis confirmed these results 
while showing that likelihood ratios of SIRS for 
more than 3 days and DIC on day 1 for predicting 
MODS after trauma were 6.25 and 11.6, respec-
tively, and that DIC and sustained SIRS were also 
significantly associated with high mortality 
[122]. Stepwise logistic regression analyses and 
multiple regression analyses with the stepwise 
method showed that the DIC scores immediately 
after trauma were independent predictor of mas-
sive transfusion and death of trauma patients [24, 
25]. A multicenter prospective study confirmed 
that the area under the receiver operating charac-
teristic curve showed significant performance of 
DIC score immediately after trauma for predict-
ing MODS, massive transfusion, and patient 
death [123]. Therefore, irrespective of pheno-
types, DIC is a leading cause of MODS and 
death, and the DIC score has a good performance 
for predicting poor prognosis in trauma patients. 
Furthermore, DIC has been recognized as an 
independent predictor of MODS and death 
regardless of underlying disorders [1].

33.6.1	 �Microvascular Thrombosis

Microthrombosis after trauma, including iTBI, 
has been well established [28, 124]. In 1969, 
McKay reviewed DIC in trauma and reported 
that a tissue examination of the disease revealed 
either or both platelet or fibrin thrombi in the 
arterioles, venules, and capillaries of a variety of 
organs such as the brain, pituitary gland, lungs, 
liver, kidneys, adrenal glands, and gastrointesti-
nal tracts [16]. Sevitt et al. [125] showed thrombi 

formation in the lungs of one patient who died 
within a few hours after trauma, a stage they 
called acceleration of fibrinolysis, which equals a 
period of DIC with a fibrinolytic phenotype [13]. 
They further confirmed frequent capillary micro-
thrombosis within 3  h (24.4%) and during the 
next 9 h (37.9%) after injury in trauma patients. 
Within 48 h of injury, a total of 66.7% autopsied 
patients revealed thrombi formation [126]. In 
addition, many studies have produced the evi-
dence supporting microvascular thrombosis in 
severe trauma [127, 128], in iTBI [129] and in 
DIC associated with such trauma [40, 130]. A 
study of iTBI comprising 88% of patients diag-
nosed as DIC demonstrated that large micro-
thrombi were more commonly observed in 
autopsy in patients who died immediately after 
iTBI and that in addition to the brain/spinal cord, 
remote organ microthrombi formation such as in 
the liver, lungs, kidneys, pancreas, pituitary 
gland, thymus, and intestine was frequently 
observed [130]. The results clearly support the 
notion that coagulofibrinolytic changes in iTBI 
are not markedly different from those in trauma 
patients without head injury [131].

Microvascular thrombosis reduces oxygen 
delivery to cells and tissues, leading to 
MODS. Many clinical, experimental, and autopsy 
studies showing close correlations between 
microvascular thrombosis and tissue injury in 
many vital organs, including the brain, lungs, 
liver, and kidneys, support this theory [74]. 
However, microvascular thrombosis alone does 
not explain the pathomechanisms of MODS in 
DIC [132]; the bidirectional interplay between 
coagulation and inflammation should also be 
acknowledged. Pro-inflammatory cytokine-
induced neutrophils and endothelial interactions 
and PAR-mediated amplification of coagulation 
and inflammation are important for MODS in 
DIC. TNF-α- and IL-1-induced thrombin forma-
tion upregulates P-selectin and induces the 
expression of E-selectin on the endothelium and 
L-selectin on the neutrophils, initiating neutro-
phils and endothelial interactions, and further pro-
moting the expressions of intercellular adhesion 
molecule-1 (ICAM-1) and vascular cell adhesion 
molecule-1 (VCAM-1) on the endothelial cells 
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[54–56, 133]. As a result, activated neutrophils 
adhering to endothelial cells secrete elastase, 
myeloperoxidase, and reactive oxygen species, 
leading to endothelial injury, which promotes 
thrombin generation and fibrin thrombosis, thus 
causing MODS [54, 58, 74, 134]. The activation 
of neutrophils and endothelial injury associated 
with MODS and the higher mortality rate in post-
trauma DIC than in non-DIC patients has been 
confirmed [69, 70]. Although trauma-related stud-
ies are lacking, PARs, especially PAR1, PAR2, 
and PAR4, contribute to the development of 
MODS in sepsis through a vicious cycle of inflam-
mation and fibrin thrombosis [73, 74]. Taken 
together, these findings suggest that microvascu-
lar thrombosis associated with endothelial injury 
is a primary cause of MODS in DIC.

33.6.2	 �Histones and NETs

In addition to microvascular thrombosis associ-
ated with neutrophil activation-induced endothe-
lial injury, DAMPs, especially histones, and 
NETs are now considered a major pathogenesis 
of MODS both in trauma and sepsis, especially in 
patients complicated with DIC [76–79, 84, 135]. 
In clinical settings, histones and NETs are 
involved in the development of DIC [136–138], 
MODS [139–141], and high mortality [138, 142] 
both in trauma and sepsis. Furthermore, experi-

mental studies have shown that histones can 
cause brain, cardiac, lung, liver, and renal injuries 
[50, 78, 84].

The pathomechanisms of MODS in DIC 
caused by histones and NETs can be attributed to 
their pro-inflammatory, procoagulant, antifibrino-
lytic effects as well as endothelial injury associ-
ated with insufficient anticoagulant systems [78]. 
In addition to these indirect mechanisms, histone-
mediated direct cellular injuries are deeply 
involved in the development of MODS. Sera from 
patients with high levels of histones showed a 
reduced viability of cells derived from the heart, 
lung, liver, and kidney as well as cultured endo-
thelial cells [141]. A previous study showed the 
histone-induced promotion of Ca2+ influx without 
intracellular Ca2+ mobilization [143]. However, 
histones bind to endothelial cells and cardiomyo-
cytes, and then induce Ca2+ influx and overload 
with consequent pore formation, leading to endo-
thelial injury and cardiac dysfunction [50, 140]. 
In cecal ligation and puncture models of sepsis, 
the accumulations of histones and neutrophils 
was observed in lungs, liver, kidneys, and spleen 
suggesting NETs formation [144]. Taken together, 
these findings indicate that histones and NETs as 
a source of histones synergistically cause MODS 
and DIC both in indirect and direct ways and 
affect the outcomes of the trauma and sepsis 
patients. These pathomechanisms in DIC are 
shown in Fig. 33.6 [78].
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Fig. 33.6  Bidirectional interplays between histones and 
NETs in DIC. Histones and NETs as a source of histones 
synergistically induce inflammation, platelet and coagulation 
activation, insufficient anticoagulation control, inhibition of 
fibrinolysis, and cytotoxic effects on cells. Thrombin genera-

tion as a result of these processes plays a central role in the 
cross talk between inflammation and coagulofibrinolytic 
changes. DIC disseminated intravascular coagulation, NETs 
neutrophil extracellular traps. (Modified with permission 
(Creative Commons Attribution International License) [78])
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33.7	 �Management

In the ICU, trauma patients suffer from DIC due 
to two conditions; trauma itself-induced DIC and 
complicated sepsis-induced DIC.  Because DIC 
with a fibrinolytic phenotype continues only for a 
few hours after injury and then progresses to a 
thrombotic phenotype [13, 42], a majority of DIC 
diagnosed in the ICU are considered to be the 
thrombotic phenotype. Whether the etiology 
involves trauma or sepsis, the same managements 
approach is applied to thrombotic phenotype DIC 
[1]. The following descriptions are based on the 
findings of studies on sepsis; however, findings 
can also be applied to the management of DIC in 
severely injured trauma patients in the ICU.

33.7.1	 �Rationale

33.7.1.1	 �Why
Innate immune, inflammatory, and coagulofibri-
nolytic responses maintain the body’s homeosta-
sis against the insults, such as trauma and sepsis. 
However, if an insult is sufficiently severe, these 
physiological responses transform into patholog-
ical dysregulated inflammatory and coagulofibri-
nolytic responses (namely DIC), which affects 
the patient’s outcome due to the disturbance of 
homeostasis by the development of MODS 
(Fig. 33.7). The failures of all randomized con-
trolled trials targeting SIRS [3] led to the under-
standing that bidirectional interplay between 
innate immunity, inflammation, and coagulation 
is key to the improvement of the outcome of criti-
cal illnesses [4, 43, 44]. In addition, the need to 
target not only pathological responses but also all 
components (including the insult itself and 
MODS) affecting the outcome as a whole is now 
recognized worldwide. For these reasons, DIC as 
pathological responses, as well as the insult itself, 
such as trauma, and MODS need to be treated 
simultaneously in order to improve a patient’s 
outcome [1].

33.7.1.2	 �To Whom
Megatrials of anticoagulants, activated protein C 
and antithrombin, for all populations of sepsis 

have failed [145, 146]. Following these failures, 
substantial evidences has been accumulated 
regarding the actual target patient population. 
Subgroup analyses of these megatrials have 
shown that anticoagulants are effective only 
against sepsis-induced DIC [147–149]. Following 
these publications, knowledge concerning immu-
nothrombosis progressing to DIC has spread 
worldwide, promoting the understanding that 
ambiguous treatment with anticoagulants at the 
stage of immunothrombosis may deteriorate the 
body’s physiologic responses [48]. Furthermore, 
a meta-analysis and systematic reviews of ran-
domized controlled trials for anticoagulant ther-
apy in sepsis clearly have shown that the specific 
target populations are neither whole sepsis 
patients nor patients diagnosed as “coagulopa-
thy” but patients with a definite diagnosis of DIC 
[150, 151]. Therefore, the treatment target of 
anticoagulants therapy is definitively diagnosed 
DIC [1].

Post hoc analyses of the megatrials showed 
that anticoagulants have high degree of effective-
ness in patients with high risk of death as evalu-
ated by the Acute Physiology and Chronic Health 
Evaluation II (APACHE II) score, Sequential 
Organ Failure Assessment (SOFA) score, and 
Simplified Acute Physiology Score II (SAPS II) 
[152, 153]. In systematic reviews and meta-
analyses for anticoagulants, meta-regression 
analyses confirmed significant negative correla-
tions between the effect size of anticoagulant 
therapies and baseline mortality rates in individ-
ual studies, suggesting that the beneficial effects 
of anticoagulants increase with increasing base-
line risk [154, 155]. A multicenter cohort study 
further proved that anticoagulant therapy was 
associated with a better outcome according to the 
deterioration of both DIC scores and APACHE II 
scores [156] (Fig.  33.8). The second key point 
concerning the target population in addition to a 
diagnosis of DIC, therefore, is disease severity, 
and a SOFA score of 13–17 or APACHE II score 
of 24–29 may be the therapeutic ranges [157].

The third key point concerns heparin adminis-
tration. Concomitant heparin use with anticoagu-
lants consistently induced the deterioration of the 
drug effects and was associated with bleeding 
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complications [158, 159]. The concomitant use 
of anticoagulants for DIC and a prophylactic 
dose of heparin for venous thromboembolism 
should therefore probably be avoided.

Taken together, these findings indicate that the 
treatment targets are critically ill patients with 
DIC and a high trauma severity without concomi-
tant heparin use.

33.7.1.3	 �When
Both the ISTH and JAAM recommend conduct-
ing repeated evaluation of DIC scores for the 
diagnosis and subsequent treatments [6, 22]. 
Nobody object to the treatment of patients with 
definitively diagnosed DIC with high DIC scores 
and high prognostic scores, such as SOFA and 
APACHE II.  However, for patients only sus-
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Fig. 33.7  Innate immune inflammation, and coagulation 
and fibrinolysis maintain body homeostasis via immu-
nothrombosis and hemostatic thrombosis against the 
insults. However, if the insult is sufficiently severe, physi-
ological body responses become dysregulated and patho-
logical SIRS and DIC develop, giving rise to MODS, 
which affects the patient’s outcome. To improve the out-

come, both the insult and dysregulated inflammatory and 
coagulofibrinolytic responses, namely SIRS and DIC 
need to be treated simultaneously. In addition, artificial 
organ supports, such as a ventilator, renal replacement 
therapy, etc., are also needed. DIC disseminated intravas-
cular coagulation, MODS multiple organ dysfunction syn-
drome, SIRS systemic inflammatory response syndrome
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Fig. 33.8  A three-dimensional chart showing the log-
transformed relative hazard ratios with 95% confidence 
intervals (gray plate) for hospital mortality of the ISTH DIC 
scores and APACHE II scores with (blue plate) and without 
(pink plate) anticoagulant therapies. The red arrow indi-
cates the reduction in hazard ratios at the most severe subset 

in both scores. The result suggests that anticoagulant ther-
apy may be beneficial in patients with DIC and a high dis-
ease severity. APACHE II Acute Physiology and Chronic 
Health Evaluation II, DIC disseminated intravascular coag-
ulation, ISTH International Society on Thrombosis and 
Haemostasis. (Reprinted with permission [156])
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pected of having DIC or with low DIC scores, the 
repeated calculation of the DIC score is neces-
sary. Continuous or worsening of the coagulation 
score on the first day of sepsis was associated 
with an increased risk of MODS and mortality 
rate [160]. A significantly lower survival proba-
bility in patients with newly developed DIC and 
persistent DIC than in those without DIC or those 
whose DIC improved from days 0 to 3 after the 
diagnosis of sepsis was repeatedly confirmed 
[161, 162]. Odds ratios after adjusting for poten-
tial confounders of DIC for the association of 
DIC with the development of MODS and death 
were consistently higher on day 3 after the diag-
nosis of DIC than on day 0 [162]. The results of 
these studies support the importance of the 
repeated evaluation of DIC scores for making 
treatment decisions and predicting the outcome 
of the patients. Taken together, these findings 
suggest persistent or worsening DIC score is con-
firmed, then it is time to start DIC treatment.

33.8	 �Underlying Disorders

The ISTH proposed the concept of controlled and 
uncontrolled DIC [6]. The endothelial regulatory 
network is temporarily activated and overridden 
under condition of controlled DIC, and this event 
is quickly reversed once the underlying condi-
tions are removed or treated, i.e., transfusion 
reaction or abruptio placenta. Uncontrolled DIC 
occurs when the regulatory network becomes 
insufficient (TFPI, antithrombin, protein C, 
thrombomodulin) or injured (endothelial cells), 
i.e., trauma and sepsis. As defined, controlled 
DIC can be resolved by the resolution of the 
underlying disorder; however, in uncontrolled 
DIC, simultaneous treatments of both DIC and 
the underlying disorders, such as trauma, is 
always required [1, 6, 163].

33.9	 �Substitution Therapy

Consumption coagulopathy recognized as throm-
bocytopenia, low fibrinogen levels, and a pro-
longed prothrombin time and APTT, is more 

prominent in trauma-induced DIC than in septic 
DIC due to the synergistic effects of consumption, 
loss by critical bleeding, and effects of dilution. 
Hayakawa et  al. [164] showed that the platelet 
counts, prothrombin time, APTT, and fibrinogen 
reached the critical thresholds for massive bleed-
ing faster in DIC patients than in non-DIC patients 
during the first 24  h after trauma. Many studies 
focusing on trauma found that in addition to RBC, 
DIC patients more frequently needed the transfu-
sion of platelet concentrates, fresh-frozen plasma 
(FFP), and fibrinogen concentrate than in non-DIC 
patients [13, 25, 117, 123, 164]. To stop both 
trauma-induced critical bleeding and DIC-evoked 
oozing-type bleeding, substitution therapy using 
platelet concentrate, FFP, or fibrinogen concen-
trate is required in DIC after trauma. The critical 
thresholds for initiating each type of substitution 
therapy are mentioned in the ISTH guidance [163].

Caution should be practiced when the pro-
thrombin complex concentrate (PCC) is applied 
as substitution therapy [1, 163]. In addition to a 
lack of essential coagulation factors, such as FV, 
VIII, and FXIII, PCC does not contain any or 
contains a very small amount of anticoagulation 
factors, such as antithrombin, protein C, and pro-
tein S [1, 163]. As a result, PCC increases throm-
bin generation accompanied by thrombocytopenia 
and a prolonged prothrombin time, potentially 
inducing or aggravating thromboembolic compli-
cations and DIC [165–168]. A careful check of 
the constituents of PCC at each ICU is required.

33.9.1	 �Anticoagulants

33.9.1.1	 �Heparin
A recent trend in anticoagulant use for DIC is 
that anticoagulant factor concentrates is preferred 
to unfractionated heparin (UFH) and low-
molecular-weight heparin (LMWH). Thus far, no 
robust clinical study on heparin use for DIC 
showing an improvement of patient’s outcome 
has been published. The ISTH guidance recom-
mends a therapeutic dose of heparin be adminis-
tered to DIC patients, preferring LMWH to UFH 
based on the results of a small randomized con-
trolled trial [163, 169].
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33.9.1.2	 �Anticoagulant Factor 
Concentrates

The ideal anticoagulant factor concentrates to use 
for the treatment of DIC has been controversial. 
After the withdrawal of activated protein C from 
the global market, we now have two anticoagula-
tion factor concentrates available for use; anti-
thrombin and recombinant human soluble 
thrombomodulin (rhsThrombomodulin) [170]. 
After the publication of the ISTH guidance recom-
mending the administration of antithrombin or 
rhsThrombomodulin for DIC (potentially recom-
mended, needs further evidence) [163], many valu-
able studies on these drugs have been published.

Antithrombin  A systematic review and meta-
analysis concluding that there was no evidence 
antithrombin improves the mortality of patients 
with sepsis or DIC included serious flaws in their 
analysis of the largest population of the KyberSept 
trial, due to the fact that in that analysis, they did 
not select DIC patients [146, 171, 172]. Post hoc 
analyses of the KyberSept trial showed that anti-
thrombin improved the outcome without increas-
ing bleeding side effects in patients with DIC at 
high risk of death and without concomitant use of 
heparin [149, 153, 159]. Although the KyberSept 
trial used an extremely high dose of antithrombin, 
evidences supporting a supplementary dose of 
antithrombin administration for septic DIC has 
been published. A supplementary dose of anti-
thrombin improved the DIC score and doubled 
the DIC recovery rate without any risk of bleeding 
[173]. Using a nationwide database, Tagami et al. 
showed that antithrombin was associated with a 
significant reduction in mortality rates among 
DIC patients [174, 175]. In addition, a meta-anal-
ysis concerning antithrombin for sepsis-induced 
DIC repeatedly confirmed a significant reduction 
in the mortality rate [176]. Using antithrombin for 
DIC is promising, so a multinational prospective 
randomized trial concerning the efficacy of a sup-
plementary dose of antithrombin for DIC needs to 
be conducted [176, 177].

rhsThrombomodulin  A phase III randomized 
double-blind controlled trial showed the superi-
ority of rhsThrombomodulin to heparin for 

improving DIC and alleviating bleeding symp-
toms in patients with infection or hematological 
malignancies [178]. Following this trial, a phase 
IIb study restricting participants to those with 
sepsis and suspected DIC was conducted, which 
encourage us to conduct further trials on the 
rhsThrombomodulin in sepsis-associated coagu-
lopathy including DIC [179]. This phase IIb 
study identified three factors that were associated 
with a reduced mortality among septic patient; 
the prothrombin time international normalized 
ratio (PTINR) >1.4, thrombocytopenia, and dys-
function in at least one organ. However, a phase 
III trial of rhsThrombomodulin failed to reduce 
the mortality in patients with sepsis-associated 
coagulopathy diagnosed with using above-
mentioned three factors [180]. Post hoc analyses 
showed three issues likely associated with the 
negative results; concomitant heparin use, 
patients no longer meeting the inclusion criteria 
for platelet counts and PTINR at the starting 
point of the drug, and no stratification of the 
patients by thrombin generation levels [180, 
181]. Subgroup analyses of the phase III trial 
after adjusting for these three factors showed a 
significant reduction in the mortality rates in 
rhsThrombomodulin group compared with the 
control group [180, 182–184]. The new terms 
“sepsis-associated coagulopathy” and “sepsis-
induced coagulopathy” cooperating three items 
identified in phase IIb trial were established and 
rhsThrombomodulin therapy for patients who 
met these criteria showed a reduction in mortality 
[185]. Further study will need to be performed in 
order to confirm the positive effect of rhsThrom-
bomodulin on these two coagulopathies and DIC.

33.9.2	 �Antifibrinolytics

Antifibrinolytic agents are contraindicated in 
DIC with the thrombotic phenotype [1, 163]. 
However, antifibrinolytics are considered for use 
in DIC with the fibrinolytic phenotype diagnosed 
at a very early stage of trauma and in cases with 
acute promyelocytic leukemia [1, 163]. The 
CRASH-2 trial showed a reduction in the risk of 
death in bleeding trauma patients who used 
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tranexamic acid within 3  h after injury [186, 
187]. The coagulofibrinolytic changes in iTBI 
patients are the same as those in patients without 
brain injury, so, DIC immediately after iTBI also 
belongs to fibrinolytic phenotype [33, 131]. The 
CRASH-3 trial demonstrated significant reduc-
tions in head-injury-related death due to the 
administration of tranexamic acid, especially in 
patients with mild-to-moderate head injury and 
those who received early tranexamic acid treat-
ment [188].

The CRASH-2 and CRASH-3 were not 
intended to include DIC patients; however, the 
mechanisms underlying the effects of tranexamic 
acid on the fibrinolytic systems and restricted 
effective timeframe within a few hours after 
injury support the notion that tranexamic acid 
may improve excessive bleeding in DIC patients 
with a fibrinolytic phenotype at very early stage 
of trauma and in those with iTBI.

33.9.3	 �Histones and NETs

Histones and NETs are promising targets for 
improving DIC, organ dysfunction, and the out-
come. Some experimental studies have shown 
that anti-histone antibody ameliorated histone-
induced IL-6 release, thrombin generation, endo-
thelial injury, organ dysfunction, and survival 
probability [50, 76, 140]. rhsThrombomodulin 
binds to histones and was shown to improve 
histone-induced platelet aggregation and throm-
bocytopenia, microvascular thrombosis, organ 
dysfunction, and the survival probability [84]. 
Nonanticoagulant heparin prevented the cyto-
toxic effects of histones and improved the mor-
tality rates in mouse model of sepsis and sterile 
infection [189]. It further attenuated the histone-
induced pro-inflammatory cytokines (IL-6, IL-8) 
production, tissue factor generation, and C3a for-
mation in a whole blood model [190]. 
Peptidylarginine deiminase 4 (PAD-4) is a key 
protein for NETs formation (NETosis) as a citrul-
linating enzyme of arginine residues of histones 

that results in chromatin decondensation and the 
release of neutrophil DNA (NETs) [191]. In addi-
tion, PAD4 is now known to regulate pathologi-
cal thrombosis [191]. Therefore, PAD4 inhibitors 
prevent the formation of NETs and thrombosis. 
Already formed NETs DNA could be degraded 
using DNase. Aside from rhsThrombomodulin, 
these drugs are still in the experimental phase; 
however, their potential efficacy is promising for 
DIC treatment [78, 191].

33.10	 �Conclusions

DIC is defined as dysregulated inflammatory and 
coagulofibrinolytic responses to the insults and is 
deeply involved in the outcome of critically ill 
patients due to the development of bleeding and 
MODS. DIC involves systemic thrombin genera-
tion, insufficient anticoagulation pathways, and 
increased fibrinolysis (followed by its impair-
ment) in association with endothelial injury. 
DAMPs, especially histones released from injured 
cells and activated neutrophil-formed NETs con-
taining neutrophil DNA, histones, and elastase are 
considered the main pathomechanisms involved 
in DIC. Histones and NETs synergistically induce 
systemic inflammation, platelet and coagulation 
activation, dysfunction of anticoagulant systems, 
and inhibition of fibrinolysis, leading to microvas-
cular thrombosis. Histone-induced direct cellular 
injury, including that of endothelial cells, as well 
as the reduction in oxygen delivery due to micro-
vascular thrombosis give rise to MODS. Platelet 
dysfunction, consumption coagulopathy, and 
hyperfibrin(ogen)olysis induce oozing-type of 
bleeding. DIC can be diagnosed using a diagnos-
tic scoring system. Definitively diagnosed DIC 
with a high disease severity and persistent or 
worsening DIC is the true target of the treatment 
with anticoagulant factor concentrates in trauma 
patients admitted to the ICU.

Even today, it is important to keep in mind the 
fact that DIC equals a sign that “Death Is 
Coming” [192].
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