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Abstract Overall lifespan and health span are dependent on maintaining neuro-
muscular function. Degeneration in neural and muscular etiological factors with
advancing age can result in sarcopenia, dynapenia, and physical frailty. The relative
contribution of these neuromuscular mechanisms to clinically meaningful skeletal
muscle function with aging is poorly understood. Here, we posit that optimal
neuromuscular function, which is critical for healthy aging, includes domains of
motor function, contractile quality, muscle mass, and muscle metabolism. Thus, it is
essential that research efforts identify mechanisms to attenuate neuromuscular dys-
function and skeletal muscle weakness so effective therapeutics can be provided in
the clinical setting. This chapter highlights five major components of neuromuscular
function that are potential targets for regenerative rehabilitation in relation to
sarcopenia, dynapenia, and physical frailty. These are (1) neuromuscular excitation,
(2) excitation–contraction (EC) coupling, (3) mitochondrial function, (4) protein
homeostasis and (5) glucose metabolism.
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5.1 Introduction

5.1.1 The Aging Neuromuscular System

The neuromuscular system, consisting of the nervous and skeletal muscle tissues,
experiences many deficits with advancing age. These deficits contribute to skeletal
muscle weakness that manifests in pervasive chronic conditions and disability
observed in many older adults (defined as 65 years and older by the National
Institutes of Health) (Guidelines for the Review of Inclusion on the Basis of
Sex/Gender, Race, Ethnicity, and Age in Clinical Research 2019). For instance,
around 30% of women and 15% of men in the USA over 60 years self-report that
they are unable to lift or carry 10 pounds (Louie and Ward 2010). Furthermore, over
40% of seniors have limitations in performing one or more daily tasks (e.g., walking
two to three blocks, transferring from sitting to standing) that are essential for
maintaining physical independence (Seeman et al. 2010). Scientific and medical
communities agree that weakness (frequently referred to as dynapenia) is a major
determinant of physical limitations and general poor health in older adults (Rantanen
2003; Rantanen et al. 1998, 1999, 2002; Visser et al. 2005; Newman et al. 2006;
Manini et al. 2007; McGrath et al. 2018, 2019a, b). The neuromuscular mechanisms
of dynapenia are known to be multi-factorial. One well-known contributor to
dynapenia is the age-related loss of muscle mass (collectively referred to as
sarcopenia1) (Clark and Manini 2008). Muscle wasting is not, however, the sole
determinant of age-related weakness. In fact, when changes in quadriceps muscle
size and leg extensor strength were assessed over a 5-year period (n ¼ 1678, 70–79
years at baseline), it was observed that decreases in strength were two–five times
greater than loss of muscle size in those who lost or maintained weight (Delmonico
et al. 2009). Further, individuals that gained weight (n ¼ 333) actually exhibited a
small increase in muscle size, yet were not spared from dynapenia. These findings
indicate that age-related loss of strength is not only attributed to muscle atrophy, but
also complex neurologic and other skeletal muscle factors (Enoka et al. 2003;
Tieland et al. 2018; Russ et al. 2012; Clark and Manini 2008; Narici and Maffulli
2010).

With continued and progressive loss of neuromuscular function, the risk of
developing physical frailty increases, with physical frailty defined as “a medical
syndrome with multiple causes and contributors that is characterized by diminished
strength, endurance, and reduced physiologic function that increases an individual’s
vulnerability for developing increased dependency and/or death” (Morley et al.
2013). Physical frailty is often considered to be on a continuum, in that frailty status

1In this article we use terms that have been more commonly used over the past decade and longer to
specifically refer to age-related muscle weakness (i.e., dynapenia) and wasting (i.e., sarcopenia).
We should note, however, that the operational definition of “sarcopenia” is still fluid and that recent
consensus statements now emphasizing low muscle strength as the primary characteristic of
sarcopenia (Cruz-Jentoft et al. 2019).

122 C. W. Baumann et al.



can transition between non-frail, pre-frail (or intermediate) and frail, with status
corresponding to mortality risk (Fried et al. 2001; Baumann et al. 2020). In a recent
systematic review and meta-analysis, these transition states predicted mortality, with
hazard ratios of 1.335 (95% CI: 1.260–1.414) and 2.000 (95% CI: 1.727–2.316) for
pre-frail and frail individuals when compared to those that were non-frail, respec-
tively (Chang and Lin 2015). Similar findings have also been observed in the
C57BL/6 mouse (Baumann et al. 2018; Kwak et al. 2020; Baumann et al. 2020), a
common strain used by laboratories to study aging (Mitchell et al. 2015). In both
humans (Fried et al. 2001) and rodents (Liu et al. 2014; Baumann et al. 2020),
skeletal muscle weakness and loss of function are salient components in the devel-
opment of physical frailty. Therefore, if sarcopenia and dynapenia are left untreated,
a vicious cycle of weakness and neuromuscular dysfunction will continue, leading to
physical frailty, loss of dependence and ultimately, an early death.

5.1.2 Regenerative Rehabilitation in the Aging
Neuromuscular System

Maintaining neuromuscular function is an important component to overall lifespan
and health span. Sarcopenia, dynapenia and resultant physical frailty may result from
primary neural or muscular etiological factors or a combination thereof (Fig. 5.1).
The relative contribution of these neuromuscular mechanisms to clinically mean-
ingful skeletal muscle deficits in advancing age is poorly understood. Moreover,

Fig. 5.1 Domains that contribute to neuromuscular deficits with age. Loss of neuromuscular
excitation, EC coupling failure, sarcopenia (via loss of protein homeostasis) and metabolic dys-
function (via mitochondrial dysfunction and impaired glucose metabolism) contribute to physical
frailty, as measured by dynapenia and muscle dysfunction
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muscle mass has broad health benefits that extend beyond just force generation
capacity and locomotion, such as the critical role it plays in metabolism, specifically
glucose regulation. Optimal neuromuscular function in the domains of motor func-
tion, contractile quality, muscle mass, and muscle metabolism are therefore critical
to healthy aging. Thus, identifying and validating therapeutic approaches that focus
on attenuating or delaying neuromuscular dysfunction and subsequently dynapenia
are essential goals in laboratory and clinical settings. This chapter highlights five
major components of neuromuscular function that are potential targets for regener-
ative rehabilitation in sarcopenia, dynapenia, and physical frailty. These are (1) neu-
romuscular excitation, (2) excitation-contraction (EC) coupling, (3) mitochondrial
function, (4) protein homeostasis, and (5) glucose metabolism. Each component or
section within this chapter is further divided into the following subsections: Intro-
duction, Age-induced Pathophysiology, and Regenerative Rehabilitation.

5.2 Neuromuscular Excitation

5.2.1 Introduction to Neuromuscular Excitation

There are two important constructs to muscular strength, the ability to generate
sufficient force and the ability to generate force rapidly. The capacity of the central
nervous system to excite motor units (i.e., muscle fibers innervated by a motor
neuron) is critical to both. It is also important to recognize that the ability to
selectively engage muscles in a coordinated, context sensitive manner is critical to
motor control of skeletal muscle. For instance, if a perturbation occurs during gait,
the adaptive response that is observed extends across the whole body, involving
coordinated lower limb muscle activity, but also goal-directed engagement of torso
and upper limb muscles (Marigold and Misiaszek 2009). The pattern of muscle
activation under such circumstances is often described with the term “synergy.”
Synergy is defined as mechanisms used by the central nervous system to coordinate
groups of motor units into functional assemblies (Windhort et al. 1991). While it is
perhaps obvious that measures of muscle strength depend upon the ability to recruit
motor units, it is less widely appreciated that all voluntary contractions and move-
ments reflect the organization of muscle synergies. Thus, strength is the accumula-
tion of both skeletal muscle and the motor system (Enoka 1988). Voluntary
engagement occurs through activity in brain networks (e.g., in the primary motor
cortex), which results in elevated firing of (descending) corticospinal neurons and
the consequential recruitment of spinal motor neurons and muscle fibers. As
descending neural drive increases, a greater number of spinal motor neurons are
recruited, discharge more rapidly, and increase contractile force (Ashe 1997). When
a motor neuron fires sufficiently fast, the muscle fibers it innervates produce a fused
contraction. In this context, the state of the spinal motor neurons (in addition to
descending drive from the motor cortex and other supraspinal centers) are influenced
by many factors, such as those mediated by excitatory and inhibitory afferent
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projections and alterations in motor neuron properties that may make them more or
less responsive to synaptic input (Berardelli et al. 2001).

5.2.2 Age-Induced Pathophysiology of Neuromuscular
Excitation

5.2.2.1 Age-Induced Loss of Voluntary (Central) Muscle Activation

Numerous studies have compared electrically-stimulated force
production vs. voluntary force production to examine whether aging results in an
impaired ability of the nervous system to fully activate skeletal muscle volitionally
(Clark and Taylor 2011). These reports have yielded discrepant findings, likely due
to variations in the muscle groups investigated, as well as the inherent heterogeneity
of aging (Lowsky et al. 2014). In a recent report, older adults with clinically
meaningful leg extensor weakness, exhibited deficits in the ability of their nervous
system to fully activate their leg extensor muscles, while stronger older adults did not
(Clark et al. 2019). Data such as this support the notion that the nervous system is a
key culprit in older adults with clinically meaningful age-related weakness.

In addition to the leg extensor musculature, there is also evidence that grip
strength measures are largely reflective of the integrity of the nervous system
(Carson 2018). For instance, there is a well-described decline in the flexion force
that can be generated by an individual finger, as the number of other fingers that
contribute to the grip is increased (Ohtsuki 1981). The observation that the magni-
tude of this deficit is greater in older adults than in the young (Shinohara et al. 2003b)
is consistent with evidence that deficiencies in muscle synergy formation contribute
to the difficulties experienced by older adults in many movement tasks (Shinohara
et al. 2003a; Barry et al. 2005). This finding is particularly intriguing when one
considers that low hand grip strength is associated with a wide range of negative
health outcomes in older adults, including cardiovascular disease (Celis-Morales
et al. 2018), diabetes (McGrath et al. 2017), dementia (Buchman et al. 2007; Carson
2018), functional disability (McGrath et al. 2018; Al Snih et al. 2004), depression
(Fukumori et al. 2015), mobility limitations (Hicks et al. 2012; Bhasin et al. 2020),
and early all-cause mortality (Duchowny 2019; McGrath et al. 2019b).

5.2.2.2 Age-Induced Loss of Neural Excitability

Neural excitability can broadly be defined as the readiness of a nerve cell or a neural
circuit to respond to a stimulus (Konstantinovic and Fliipovic 2019; Kandel et al.
2013; Schulz et al. 2006). The response is typically in the form of an action potential,
a transient change of electrical charge (polarization) of the neuronal membrane. The
action potential can be measured either individually, at the level of an individual
nerve cell, or as the sum of action potentials in the form of a compound action
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potential or an evoked potential, at the level of groups of neurons or neural circuits
(Kandel et al. 2013). There is a strong theoretical basis for the contention that neural
hypoexcitability serves as a key contributor to weakness. That is, a neuron with low
excitability will, conceptually, have a lower maximal steady-state firing frequency
(Schulz et al. 2006).

Dynapenia, as well as a myriad of other disorders and conditions (e.g., disuse,
injury, and sepsis), may be due, in part, to neural hypoexcitability (Clark et al. 2020;
Clark et al. 2014; Nardelli et al. 2013; Stefanelli et al. 2019). In the context of aging,
older adults with clinically meaningful leg extensor weakness exhibit indexes
indicative of corticospinal hypoexcitability (e.g., magnetic brain stimulation derived
motor evoked potentials about half that of the strong older adults) (Clark et al. 2020).
Moreover, these indexes could explain ~33% of the between-subject variability in
older adult’s leg extensor strength, which was slightly more than that explained by
thigh lean mass (Clark et al. 2020). These findings suggest that weakness is
mechanistically, partially mediated by neural hypoexcitability. Whether dysfunction
is at the level of the cortical or spinal motor neurons has yet to be determined; though
it has been hypothesized that age-induced hypoexcitability occurs in both upper and
lower motor neurons. For instance, paired-pulse brain stimulation paradigms that
permit inferences in relation to intracortical excitability demonstrate that older adults
have greater indices of cortical hypoexcitability in comparison to young adults
(McGinley et al. 2010; Clark et al. 2015). Human and animal studies also suggest
that aging results in a reduction in α-motor neuron excitability (e.g., greater and
longer hyperpolarization potentials and lower minimal and maximal steady-state
firing frequencies) (Kalmar et al. 2009; Christie and Kamen 2006, 2010; Kamen
et al. 1995).

5.2.2.3 Age-Induced Loss of Dopaminergic Function

Within the central nervous system, the basal ganglia may theoretically be linked to
age-related reductions in mobility capacity via its associated dopaminergic function.
Progressive degeneration of mid-brain dopaminergic neurons has been associated
with deficits in the initiation, speed, and fluidity of voluntary movement (Berardelli
et al. 2001; Buhusi and Meck 2005; Turner and Desmurget 2010). With regards to
aging, slower rates of voluntary force development have been linked to risk of falls
(Kamo et al. 2019), and ability of the nervous system to rapidly drive muscle force
production is associated with overall mobility (Moskowitz et al. 2020). Moreover,
peak horizontal saccade velocity, which theoretically should not be impacted by
musculoskeletal mechanisms and processes, has been reported to decrease with age
(Irving et al. 2006). In fact, older adults have a saccade velocity about half that of
young adults (Irving et al. 2006). Studies of the aging human brain have also shown
that regulation of dopamine action is significantly reduced in older age via structural
degradation, including neuronal loss, fewer neuroreceptor sites, and loss of trans-
porter molecules (Kaasinen and Rinne 2002). For instance, age-dependent declines
of brain dopamine agonist (DA) levels have been reported in the basal ganglia,
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specifically the dorsal striatum post-mortem (Carlsson and Winblad 1976). In vivo
imaging studies have since confirmed these findings (Kaasinen and Rinne 2002).

After the age of 20, the availability of dopamine D1-like receptors also declines in
the human striatum at a rate of ~7% per decade (Suhara et al. 1991; Wang et al.
1998). The D2-like family demonstrates a similar decrease in receptor density
(~5–10% per decade) (Rinne et al. 1993; Wong et al. 1997) and receptor binding
potential (~6–8% per decade) (Rinne et al. 1993; Antonini and Leenders 1993;
Volkow et al. 1996). There are several studies that have directly examined the
relationship between striatal DA and age-related changes in gait and other parame-
ters of motor function. Volkow et al. (1998) reported that age-related decreases in
brain dopamine activity in non-Parkinsonian older adults, coincided with reductions
in finger tapping speed. Similar studies have reported that lower striatal dopamine
transporter activity explained ~23% and 35% of the between-subject variance in
“comfortable pace” gait speed and cadence, respectively (Cham et al. 2008). More-
over, several investigations have reported a relationship between dopaminergic
genotype (catechol-O-methyltransferase (COMT) genotype) and mobility
(Moskowitz et al. 2020; Metti et al. 2017; Holtzer et al. 2010). These studies suggest
that the genotype resulting in intermediate levels of tonic DA (i.e., the Val158Met
polymorphism) is associated with faster gait and movement speeds, which is likely
due to it balancing the roles of tonic and phasic DA (i.e., tonic–phasic regulation of
DA transmission) (Bilder et al. 2004; Grace 1991; Schacht 2016).

5.2.3 Regenerative Rehabilitation and Neuromuscular
Excitation

Physical exercise is known to enhance motor control and function via neural
adaptations in older adults, and therefore cannot be overemphasized (Watson
2017). However, general physical exercise is beyond the scope of this chapter.
Here, we discuss goal-directed motor training as well as other novel
neurotherapeutic approaches that may be leveraged to improve neural excitation of
muscle. We should note at the outset that, to our knowledge, there are no
FDA-approved neuro-based therapies that have been approved for use in situations
of muscle weakness or mobility limitations. All approaches that we will discuss
should be considered experimental and only used in the context of research studies
(as opposed to clinical practice per se). There are several potential approaches for
enhancing neural excitability; herein, we discuss; goal-based motor training,
non-invasive brain stimulation and pharmacological compounds.

5 Regenerative Rehabilitation in Sarcopenia, Dynapenia, and Frailty 127



5.2.3.1 Goal-Based Motor Training

The attachments between neurons are incredibly dynamic; they change and grow
(or shrink) constantly. Working together in a network, neurons organize themselves
into specialized groups to form different kinds of information processing. When one
neuron sends a signal to another, the synapse between the two strengthens (hence the
adage “neurons that fire together, wire together”). The more often a particular signal
is sent between them, the stronger the connection grows. Novel experiences and
learning cause new dendrites to form, whereas repeated behavior and learning cause
existing dendrites to become more entrenched. These basic principles are funda-
mental to the development and rationale of exercise training strategies for enhancing
motor function.

Motor representations (i.e., movement memories) are formed and stored in the
brain, just like our memories of people and events. Motor representations are created
by a series of remarkably complex coordinated processes dispersed throughout the
brain that involve multiple neural networks that interact to help individuals perform
learned movements. Thus, memory is the cornerstone of all learning. Motor adap-
tation refers to learning a new movement skill. When someone practices a movement
over and over again, they perform better, partly because they develop new motor
memories.

Progressive resistance exercise is largely considered to be the first-line therapy to
manage sarcopenia (Dent et al. 2018). We believe this is rational in that it has been
shown to have innumerable benefits (Churchward-Venne et al. 2015; Law et al.
2016). However, advancing age has been suggested to result in increased cortical
processing for mobility tasks (i.e., less automaticity) (Sorond et al. 2015). Thus, we
encourage increased attention to be given to interventional strategies that incorporate
goal-based motor skill training (note: “goal-based” refers to the practice of certain
activities that lead to improved performance). There are many exercise modalities
that can incorporate aspects of goal-based motor skill training, but the more classic
approaches are exercise modalities such as Tai Chi, dancing, boxing, and mixed
martial arts. The central premise of goal-based motor skill training is that it facilitates
learning through feedback (reinforcement learning), involves engagement of the
prefrontal cognitive circuits that are involved in early phases of motor learning,
and incorporates parameters important for experience-dependent neuroplasticity
(e.g., intensity, repetition, difficulty, specificity, complexity of practice, etc.). Feed-
back (verbal cueing, proprioceptive, etc.) has numerous purposes, such as challeng-
ing individuals beyond their self-selected levels of perceived capability, maintaining
motivation, and increasing cognitive awareness of movements that were previously
automatic and unconscious. Figure 5.2 provides an illustration of the neural struc-
tures and connections involved in the cognitive and automatic aspects of motor
control in relation to goal-directed learning. Goal-based exercise strategies have
become a mainstay in neurorehabilitation for the improvement or recovery of
impaired or lost motor function in overt neurological disease (e.g., Petzinger et al.
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2013), and for the reasons stated in this chapter, we believe these strategies hold
promise for dynapenia.

5.2.3.2 Non-invasive Brain Stimulation

Non-invasive brain stimulation consists of techniques including transcranial mag-
netic stimulation and transcranial direct current stimulation (tDCS). High-frequency
(e.g., 10–20 Hz) magnetic brain stimulation and anodal transcranial direct current
stimulation both have been demonstrated to transiently increase excitability of the
motor cortex (Reis et al. 2008; Kobayashi and Pascual-Leone 2003; Lefebvre and
Liew 2017). Whether they have the potential to modify strength and physical
function, for use during rehabilitation or as a stand-alone therapy is not clear. In
relatively small studies (based on sample size) consecutive sessions of anodal
transcranial direct current stimulation enhanced hand dexterity (i.e., ~20–25%
improvement on the Purdue Pegboard Test performance) (Rostami et al. 2020) and
improved elbow flexor fatigue-resistance (i.e., ~15% increase the time to task failure
of a sustained, submaximal contraction) (Oki et al. 2016) (Fig 5.3a). Thus, while this
is far from conclusive data, it does suggest that non-invasive brain stimulation has
the ability to modify indexes of motoric and muscle function in older adults.

Fig. 5.2 Goal directed and habitual control circuits of behavior. Motor control incorporates
numerous cortical and subcortical structures with the most critical connections being those between
the basal ganglia and cortex as these deeply involved in the cognitive (a) and automatic (b) aspects
of motor control. In a, arrows represent the cognitive (or volitional) circuits. In b, the arrows
represent the automatic (or the unconscious/habitual) circuits. Aging has been suggested to result in
impaired automaticity. As such, we advocate for increased investigations on whether goal-based
motor training programs can be used to mitigate and treat dynapenia. Figure recreated based on that
of Petzinger et al. (2013). This image was created using BioRender (https://BioRender.com)
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5.2.3.3 Pharmacological Compounds

Compounds that increase neural excitability can also enhance motor function. One
such potential compound is caffeine. Caffeine is a well-established performance
enhancing nutritional compound in young, healthy humans. There are limited data
on the effects of caffeine on measures of human performance in older adults. The
few studies that do exist are small-scale trials (e.g., 10–30 subjects) and have
reported mixed effects. Specifically, some studies suggest that caffeine supplemen-
tation (typically around 3 mg/kg, or the equivalence of two–three cups of coffee)
does not alter leg extensor muscle strength, static balance, as well as various
measures of physical performance (Tallis et al. 2020). Conversely, some studies
have reported that caffeine, when compared to a placebo, modestly enhances
(~6–8%) manual dexterity, timed up and go time, and six-minute walk gait speed
(Duncan et al. 2014), and more robustly increases the rate of force development
during a sit to stand task around 13% (Tallis et al. 2020) (Fig. 5.3b). It should be
noted that all of the prior work has been conducted in relatively young older adults
(e.g., mean age of late 60s to early 70s) who were extremely high functioning. Thus,

Fig. 5.3 Mean effects of various approaches that increase neural excitability on enhancing
measures of physical function in older adults. (a) Single session of anodal transcranial direct current
stimulation (tDCS), which increases cortical excitability, increased the time to task failure of a
sustained, submaximal elbow flexion contraction (Oki et al. 2016), and five consecutive days of
anodal tDCS improved the Purdue Pegboard Task performance (a measure of hand dexterity)
(Rostami et al. 2020). (b) Acute ingestion of caffeine (3 mg/kg, which is the equivalence of 2–3
cups of coffee) increased manual dexterity, timed up and go time, six-minute walk gait speed
(Duncan et al. 2014), as well as the rate of force development during a sit to stand task (Tallis et al.
2020). (c) A single dose of methylphenidate improved timed up and go performance (Ben-Itzhak
et al. 2008). (d) Three weeks of L-DOPA improves single (blue) and dual task (violet) usual gait
speed in older adults with depression (Rutherford et al. 2020). Graphs recreated based on data
published in the respective articles
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it is possible that a ceiling effect may exist as it relates to any enhancement in
function amongst older adults with such high levels of physical function and
mobility. Thus, more work is needed, and the existing results must be interpreted
cautiously and critically.

Another potential compound of interest is the serotonin 5-HT2c receptor agonist,
although the effects of serotonin 5-HT2c receptor agonist on motor function in aged
rodents or humans have yet to be tested. However, motor neuron hypoexcitability
has been reported to contribute to sepsis-induced weakness in rat muscle (Nardelli
et al. 2013, 2016), and subthreshold voltage-activated currents are a key mechanism
underlying defective repetitive firing observed in this model (Nardelli et al. 2017).
More recently, it was demonstrated that treatment of septic rats with injection of a
selective serotonin 5-HT2c agonist (lorcaserin; 3 mg/kg) significantly improved
repetitive motor neuronal firing and dramatically increased motor unit force produc-
tion. To our knowledge, only one prior study has examined the effects of lorcaserin
on any behavioral measure related to motor function. In that study, young rats
(n ¼ 8) received single, varying 5-HT2c agonist doses, and a 21% increase in
Rotarod performance (i.e., walking speed, motor performance) was observed at a
dose of 0.6 mg/kg (Higgins et al. 2012). However, worsened performance was
observed at higher doses, consistent with reports that high doses result in malaise
(Higgins et al. 2020). Thus, additional research is needed.

With regards to the dopaminergic system, there are several studies that support
the potential modulation of this system to enhance physical function and mobility
outcomes in older adults. The earliest of these evaluated the potential of a single dose
of methylphenidate (20 mg) on measures of physical function (Ben-Itzhak et al.
2008). Methylphenidate has multiple mechanisms of action, yielding its stimulant
effect, with one of the mechanisms of action being inhibition of dopamine uptake
(PubChem 2021a). This study reported that methylphenidate improved timed up and
go performance and gait (stride time variability) in 26 community dwelling older
adults when compared to placebo (Ben-Itzhak et al. 2008) (Fig. 5.3c). The second of
these studies also examined the effects of a single dose of methylphenidate (short-
acting 10 mg) on gait in thirty healthy older adults (Shorer et al. 2013). Here, it was
also observed that methylphenidate improved mobility by reducing step errors
during a standard gait task as well as when the gait task was overlayed with a
cognitive load component. The findings that the effect was most robust in a dual task
requiring higher executive control suggests the effects could be due to improvements
in sustained attention as well as potential direct effects on the motor system. While
beyond the scope of this chapter, it should be noted that there is growing scientific
interest in the role of cognitive and motor system interactions and their interrela-
tionship with age-related declines in both systems (Cohen and Verghese 2019).
Lastly, there is one study that has examined the potential utility of levodopa
(L-DOPA), an amino acid precursor of dopamine (PubChem 2021b), for enhancing
physical function in older adult. This recent pilot study treated sixteen older adults
who suffered from depression with L-DOPA for 3-weeks, and reported a 16% and
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28% significant increase in single task and dual task usual gait speed, respectively
(Rutherford et al. 2020) (Fig. 5.3d). These above-mentioned findings clearly indicate
the need for further work examining the role of dopaminergic function in age-related
mobility capacity.

With the above-mentioned said, a pharmaceutical approach to enhancing physical
function in older adults could, in and of itself, be problematic as polypharmacy,
defined as being prescribed five or more medications, has been shown to be
associated with a decline in mental and physical functioning in elderly patients
(Williams et al. 2019). In particular, anticholinergics, benzodiazepines, antipsy-
chotics, and opioids were all found to have significant adverse effects in the elderly
population (Williams et al. 2019). It should be noted that, in general, these classes of
medications have sedative properties that reducing neural excitability. Thus, it is
very possible that a “less is more” pharmaceutical approach may be the most
beneficial approach to enhancing physical function in older adults.

5.3 Excitation–Contraction (EC) Coupling

5.3.1 Introduction to EC Coupling

In addition to the loss of neuromuscular excitation, sites and structures within the EC
coupling pathway have also been linked to age-induced weakness (Delbono et al.
1995; Renganathan et al. 1997a; Ryan and Ohlendieck 2004; Delbono 2011;
Baumann et al. 2016). EC coupling can broadly be defined as the sequence of events
linking plasmalemma depolarization to the release of Ca2+ from the sarcoplasmic
reticulum (SR) (Sandow 1952; Hernández-Ochoa and Schneider 2018; Calderón
et al. 2014). Briefly, after a threshold potential is initiated at the motor endplate, a
membrane action potential propagates along the plasmalemma down the transverse
(T)-tubules. Action potential conduction is dependent on a coordinated response of
various plasmalemmal ion channels and pumps. Depolarization of the plasma
membrane stimulates the voltage-sensitive dihydropyridine receptors (DHPRs)
located in the T-tubules, which in turn, activate the ryanodine receptors (RyRs). In
skeletal muscle, the DHPRs and RyRs are in close proximity as to permit physical
contact, thereby allowing direct interaction and communication (Fill and Copello
2002; Grabner and Dayal 2010; Calderón et al. 2014). The RyR is a Ca2+ release
channel composed of four monomers embedded in the SR membrane. Each RyR
monomer interacts with numerous ancillary proteins (e.g., calstabin, calmodulin)
and enzymes (e.g., phosphatase; PP1, phosphodiesterase; PDE4D3) known to alter
its gating (Bellinger et al. 2008a; Santulli et al. 2018). Upon RyR activation, Ca2+ is
released into the cytosol and cross-bridge formation subsequently occurs. Theoret-
ically, if any step in the EC coupling pathway is disrupted (termed EC coupling
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failure), voltage-induced SR Ca2+ release will be impaired, and less cytosolic Ca2+

will be available for cross-bridge formation and force generation (Baumann et al.
2016). With increasing age, peak intracellular Ca2+ transients evoked by
plasmalemmal depolarization have been shown to decrease (Wang et al. 2000;
Gonzalez et al. 2003; Delbono et al. 1995; Russ et al. 2011; Umanskaya et al.
2014), indicative of impaired SR Ca2+ release. Age-induced EC coupling failure can
be observed as dynapenia without a concomitant change in muscle mass, as mea-
sured by reductions in skeletal muscle-specific force (i.e., force normalized to
muscle mass or cross-sectional area; CSA) (Lynch et al. 1999; Moran et al. 2005;
Hill et al. 2020; Goodpaster et al. 2006; Russ et al. 2011). Potential mechanisms for
EC coupling failure in aged muscle include reduced content of EC coupling proteins,
loss of EC coupling protein-protein interactions and/or modifications to EC coupling
proteins (Fig. 5.4).

Fig. 5.4 Possible sites and structures within the excitation-contraction (EC) coupling pathway
implicated in age-induced skeletal muscle weakness (i.e., dynapenia). EC coupling failure with
advanced age this thought to stem from DHPR-RyR uncoupling via the loss of DHPR, RyR and/or
the triad structure. (A) Loss of triad structure with (B) corresponding reductions in triadic proteins,
such as JP45 and MG29. (C) Loss of the DHPR and/or RyR causing a decrease in the DHPR/RyR
ratio (in figure, DHPR content is reduced). (D) Loss or depletion of calstabin from RyR causing SR
Ca2+ leak and (E) increased intracellular Ca2+ concentrations. This image was created using
BioRender (https://BioRender.com)
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5.3.2 Age-Induced Pathophysiology of EC Coupling Failure

5.3.2.1 Age-Induced Loss of EC Coupling Proteins and Protein-Protein
Interactions

Any reduction in EC coupling proteins or the ability of these proteins to interact
could result in EC coupling failure. Although many sites of age-induced EC cou-
pling failure have yet to be established, several research groups have reported
reduced expression, lowered content, and altered protein-protein interactions
among the DHPR and RyR proteins (Fig. 5.4). Reductions in either DHPR
(O’Connell et al. 2008; Renganathan et al. 1997a; Ryan et al. 2000), specifically
the CaV1.1 subunit of DHPR (DHPRα1s) (Catterall et al. 2005), or RyR (Fodor et al.
2020) expression or protein content have been reported by many, but not by all
(Lamboley et al. 2016; Ryan et al. 2003, 2011). With loss of DHPR and/or RyR, the
DHPR-RyR interaction is uncoupled, as measured by decreases in the DHPR/RyR
ratio (Renganathan et al. 1997a; Ryan et al. 2000). Delbono and colleagues
(Renganathan et al. 1997a) reported that reduced DHPR expression in rat skeletal
muscle is the molecular basis for age-induced EC coupling failure. Decreased
expression of DHPR was suggested to cause significant impairment in action
potential transduction into a DHPR signal, consequently reducing RyR activation,
SR Ca2+ release and cross-bridge formation.

Besides loss of DHPR and/or RyR, age-induced uncoupling between DHPR and
RyR may stem from diminished communication between these two proteins
(Fig. 5.4). This is supported by fragmented SR (Weisleder et al. 2006) and
disarranged triads (Boncompagni et al. 2006; Zampieri et al. 2015) observed using
electron microscopy. Essentially, with triad disarrangement, the proximity of the
DHPRs to the RyRs will be lost, reducing the number of proteins that can physically
interact. Disorganized alignment of SR and T-tubule membranes coincide with
reductions in the triadic proteins JP-45 (Anderson et al. 2003) and MG29 (Weisleder
et al. 2006), proteins thought to interact with DHPR and RyR or maintain the
structure of triad junction. Loss of these triadic proteins would inevitably increase
the distance between the T-tubule and SR, and subsequently the DHPR-RyR
interaction. Aligning with these aforementioned changes, Ca2+ handling proteins
(e.g., sarcalumenin) (O’Connell et al. 2008), plasmalemmal ion channels (e.g.,
chloride channels) (Pierno et al. 1999) and plasmalemmal pumps (Ca2+ ATPase
and the Na+-Ca2+ exchanger) (O’Connell et al. 2008) have also been reported to
exhibit age-related reductions in content. Further research will be needed to elucidate
whether all these age-related changes occur in synchronization or if there is an
initiating event. Taken together, many EC coupling structures and proteins appear
to be influenced by age, but most data suggest EC coupling failure stems from
DHPR-RyR uncoupling via the loss of DHPR, RyR and/or the triad structure.
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5.3.2.2 Age-Induced Modifications to EC Coupling Proteins

Modifications that occur to EC coupling proteins will also result in EC coupling
failure. The most documented proteins are at the triad junction, specifically the
RyRs. The RyR is a macromolecule complex that interacts with numerous proteins
and is prone to various modifications (Bellinger et al. 2008a; Santulli et al. 2018).
With advancing age, the RyR becomes increasingly oxidized and nitrosylated,
promoting RyR dysfunction (Andersson et al. 2011; Umanskaya et al. 2014;
Lamboley et al. 2016). Interestingly, these redox modifications do not appear to
directly alter RyR function per se, but rather through their effects on the ancillary
proteins associated with the channel’s activity. One in particular is calstabin (FK506
binding protein, FKBP12) (Andersson et al. 2011), a 12-kDa protein that normally
binds to each RyR monomer (Fig. 5.4). Calstabin is thought to stabilize the channel,
preventing it from opening to subconductance states (Ahern et al. 1997; Brillantes
et al. 1994). Age-associated oxidation and nitrosylation of RyR depletes the channel
of calstabin, diminishing the calstabin-RyR interaction (Andersson et al. 2011;
Umanskaya et al. 2014). These changes are thought to result in “leaky” RyRs that
manifest in increased single-channel open probability, increased Ca2+ spark fre-
quency (Andersson et al. 2011; Umanskaya et al. 2014) and reduced SR Ca2+

content (Lamboley et al. 2015, 2016). Under these conditions, voltage-mediated
SR Ca2+ release appears to be impaired through loss of RyR function rather than
RyR content (Andersson et al. 2011; Lamboley et al. 2016; Russ et al. 2011). In
support of the loss in the calstabin-RyR interaction causing SR Ca2+ leak, others
have reported resting Ca2+ concentrations are elevated in aged muscle (Mijares et al.
2020). Importantly, RyR dysfunction mediated by depletion of calstabin is not only
observed with age (Russ et al. 2011; Andersson et al. 2011; Umanskaya et al. 2014),
but also heart failure (Shan et al. 2010), muscular dystrophy (Bellinger et al. 2009),
chronic muscle fatigue (Bellinger et al. 2008b), and contraction-induced injury
(Baumann et al. 2014). These results suggest that age-related EC coupling failure
predominantly stems from redox-induced RyR dysfunction.

5.3.3 Regenerative Rehabilitation and EC Coupling

Data suggests age-induced weakness due to EC coupling failure stems from (1) a
reduction in the DHPR-RyR interaction via the loss of the DHPR, RyR and/or triad
structure and (2) redox-induced RyR dysfunction. Although the initiating events that
induce EC coupling failure are likely many, loss of mitochondria homeostasis and
oxidative stress appear to be central catalysts (Andersson et al. 2011; Qaisar et al.
2018; Umanskaya et al. 2014). With advancing age, oxidative stress is thought to
occur due to an overproduction of reactive oxygen and nitrogen species (ROS/RNS)
and an impaired ability to neutralize them (Mijares et al. 2020; Vasilaki et al. 2006).
ROS/RNS can increase with age due to mitochondrial dysfunction caused by
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age-related mitochondrial DNA mutations, deletions and/or damage (Boengler et al.
2017) (see Sect. 5.4.2.1). With the accumulation of ROS/RNS, the RyRs are subject
to oxidative stress, which leads to SR Ca2+ leak and elevated cytosolic Ca2+

concentrations (see Sect. 5.3.2.2) (Andersson et al. 2011; Umanskaya et al. 2014).
These events can lead to a vicious cycle that exacerbates mitochondrial dysfunction
by causing mitochondrial Ca2+ overload, stimulation of additional ROS/RNS and
greater SR Ca2+ leak (i.e., further depleting RyR of its stabilizing subunit calstabin).
These data indicate that overproduction of ROS/RNS occurring in aged skeletal
muscle may alter the expression and function of key EC coupling proteins, thereby
causing dynapenia.

When considering regenerative rehabilitation to combat age-associated EC cou-
pling failure, it is essential to reduce oxidative stress via lowering ROS/RNS
production, increasing ROS/RNS clearance or by attenuating the negative effects
of ROS/RNS. Likely one of the most robust and potent strategies is modifying
lifestyle with physical exercise (Distefano and Goodpaster 2018; Lanza et al. 2008).
For instance, muscle from older adults who exercised regularly had lower expression
of genes related to oxygen species detoxification, better preserved fiber morphology,
better preserved ultrastructure of intracellular organelles involved in Ca2+ handling
and produced greater maximal isometric knee extensor force when compared to
age-matched sedentary participants (Zampieri et al. 2015). Moreover, long-term
training (i.e., access to a voluntary running wheel) promoted maintenance of the
triad junction (Boncompagni et al. 2020), prevented age-induced elevations in
resting intracellular Ca2+, loss of RyR content and reductions in ex vivo specific
force in C57BL/6 mouse muscle (Fodor et al. 2020). Although physical exercise is a
robust lifestyle modifier that improves function, it is difficult to pinpoint its precise
mechanisms of action, especially if it is lifelong. Moreover, physical exercise may
not be practical or feasible for all older adults. Methods to mimic physical activity
have therefore become attractive therapies to attenuate age-induced oxidative stress
and its downstream effects. Here, we highlight the use of antioxidants and the
pharmaceutical S107 as potential therapeutic approaches, and briefly discuss the
role of insulin-like growth factor-1 (IGF-1) in EC coupling maintenance with age.

5.3.3.1 Antioxidants

Preventing or restoring the redox environment of skeletal muscle has been reported
to improve EC coupling and muscular strength in aged muscle. Recently, in vivo
supplementation of selenium for 2 months, a trace element with antioxidant proper-
ties, was found to increase the maximal rate of Ca2+ efflux and specific force in aged
C57BL/6 mouse muscle (Fodor et al. 2020). Furthermore, antioxidant treatment of
dithiothreitol (DTT; a strong reducing agent) reduced RyR channel oxidation, SR
Ca2+ leak and RyR Ca2+ sparks in aged C57BL/6 mouse fibers (Umanskaya et al.
2014) and increased maximal SR Ca2+ accumulation in human fibers of old subjects
(Lamboley et al. 2016). To determine if increasing lifelong mitochondrial antioxi-
dant activity would prevent age-related EC coupling failure and dynapenia,
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Umanskaya et al. (Umanskaya et al. 2014) overexpressed the human catalase gene in
mitochondria. Catalase is an antioxidant enzyme that catalyzes the decomposition of
hydrogen peroxide into water and oxygen. When compared to aged-matched con-
trols, mice overexpressing catalase had less mitochondrial ROS (Lee et al. 2010),
increased SR Ca2+ load, increased Ca2+ transients and reduced SR Ca2+ leak, all of
which translated into greater skeletal muscle-specific force (Umanskaya et al. 2014).
Taken together, these studies indicate mitochondrial ROS production is a molecular
mechanism for age-related EC coupling failure and that reducing ROS through
antioxidants (particularly those that target the mitochondrial or RyRs) may improve
Ca2+ homeostasis and attenuate or delay the onset of dynapenia.

5.3.3.2 S107

Pharmacological agents can also be used to improve age-induced EC coupling
failure caused by excessive oxidative stress. Marks and colleagues (Andersson
et al. 2011) eloquently accomplished this by treating aged mice with S107, a drug
that preserves the calstabin-RyR interaction. Impressively, 4 weeks of S107 treat-
ment in old C57BL/6 mice was able to stabilize calstabin to RyR, prevent SR Ca2+

leak, restore tetanic Ca2+ release and increase muscle-specific force when compared
to muscle of age-matched, untreated mice. These beneficial effects were observed
despite persistent RyR oxidation and nitrosylation, indicating treatment was not able
to reduce RyR modifications, but was able to ameliorate the detrimental effects of
oxidative stress. These reports align with data demonstrating that when catalase is
overexpressed in aged C57BL/6 mice, less RyR is oxidized and depleted of calstabin
(Umanskaya et al. 2014). Reports such as these indicate EC coupling failure due to
RyR dysfunction mediated by depletion of calstabin can be improved through
preventing the loss of calstabin (via the increased capacity to neutralize oxidative
stress) or by restoring calstabin to RyR (via S107). From a practical perspective,
pharmacological agents like S107 yield significant promise for individuals that may
have already experienced dynapenia or passed the timepoint when age-related RyR
oxidation or nitrosylation is reversible.

5.3.3.3 Insulin-Like Growth Factor-1 (IGF-1)

An alternative strategy, not directly associated with the mitochondria or oxidative
stress, is the use of IGF-1. Insulin-like growth factor (IGF-1) is a peptide primarily
known for its canonical role in promoting skeletal muscle differentiation and growth
(Florini et al. 1996). Another, less recognized function of IGF-1 is expression of
DHPR. Data from S1S2 mice overexpressing human IGF-1 (20–30-fold increase in
concentration) in skeletal muscle resulted in a significant increase (over 50%) in the
number of DHPRs, specifically the CaV1.1 subunit (Renganathan et al. 1997b).
Moreover, with advancing age, muscle of these IGF-1 overexpressing mice
maintained a high DHPR number, DHPR/RyR ratio and muscle specific force
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when compared to the reductions observed in muscle of control mice (i.e., wildtype)
(Renganathan et al. 1998). However, more recent reports in human skeletal muscle
did not observe age-related reductions in DHPR expression (Ryan et al. 2003) or
content (Lamboley et al. 2016), contrary to what has been measured in rodent
(O’Connell et al. 2008; Renganathan et al. 1997a) and rabbit muscle (Ryan et al.
2000). These equivocal findings question the utility of IGF-1 as a beneficial therapy
for improving EC coupling in aging skeletal muscle, however, additional research is
needed before definitive conclusions can be drawn.

The use of antioxidants, the pharmaceutical S107 and IGF-1 all appear, to some
extent, to improve EC coupling and strength in aged skeletal muscle. However, some
caution should be considered when looking at the breadth of literature as several
caveats will be noted. Some include the model used (human vs. animal models) and
muscle/fibers analyzed (fast twitch vs., slow twitch)—as differences are likely to be
observed. Despite these, there remains great potential for regenerative rehabilitation
to improve EC coupling failure, loss of Ca2+ homeostasis and strength (i.e., attenuate
dynapenia) in aging skeletal muscle.

5.4 Mitochondrial Function

5.4.1 Introduction to Mitochondrial Function

Skeletal muscles require energy to carry out their functions. Amongst other things,
energy is required for the myofilament contractions that enable movement, for the
interconversion and storage of nutrients that contribute to maintaining whole-body
homeostasis, and for the continual maintenance of muscle itself (for example, repair
and replacement of old and damaged contractile proteins). As with most cells, the
main source of energy employed by muscle is adenosine triphosphate (ATP) which
is produced by oxidative phosphorylation in the mitochondria and glycolysis in the
cytosol (Baker et al. 2010). The number of mitochondria varies from muscle to
muscle in accordance with its function. For example, cells with constant high energy
demand such as oxidative, slow twitch, type I fibers are rich in mitochondria,
whereas cells with low, sporadic energy demand such as glycolytic, fast twitch,
type II fibers contain fewer mitochondria (Carter et al. 2015).

Unlike other cells, skeletal muscle contains two pools of mitochondria, one in the
cytoplasm and one in the sarcomeric contractile fibers (Carter et al. 2015). The
cytoplasmic mitochondria, or subplasmalemmal, are believed to be more responsive
to the energy needs of the cell for growth and metabolism (Crescenzo et al. 2006;
Koves et al. 2005; Ritov et al. 2005), whereas the intrasarcomeric or
intermyofibrillar mitochondria are believed to provide energy specifically to the
contractile fibers (Ferreira et al. 2010). Interestingly, in addition to producing
ATP, mitochondria also provide cells with an ability to buffer Ca2+ gradients and
are often found localized in areas of Ca2+ influx (Parekh 2003a). Thus, another
possible function of having both cytoplasmic and intrasarcomeric mitochondria is to
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provide an additional level of regulation of Ca2+ levels during EC coupling (see
example in Sect. 5.3.3) via the interplay of the plasmalemma, SR and mitochondria
(Parekh 2003b).

Mitochondrial content is established and increased via mitochondrial biogenesis
(Gureev et al. 2019) and is decreased by degradation via a specialized form of
autophagy termed mitophagy (Chen et al. 2020b) (Fig. 5.5). Mitochondrial biogen-
esis is controlled by the activity of several transcription factors, including PGC-1α,
PGC-1β, NRF1, and NRF2 (Gureev et al. 2019). These, and other, transcription
factors regulate the transcription of roughly 1500 nuclear encoded genes
(Hendrickson et al. 2010; Hill 2014) that are translated and translocated into the
mitochondria, largely through the mitochondrial TOM20/TOM40 import complex
(Boengler et al. 2011). Slightly more than a dozen mitochondrial encoded proteins
also contribute to maintaining mitochondrial structure and function, which are
regulated by TFAM (Ngo et al. 2014). Removal of mitochondrial via autophagy
requires regulation/induction of autophagy and the ability of autophagic vesicles to

Fig. 5.5 Conceptual diagram of control of mitochondrial structure and function. Cellular energy
demand (A) drives rates of mitochondrial biogenesis with increased demand increasing the mito-
chondrial pool and decreased demand leading to the mitochondrial pool to tend towards mitophagy
(B). Increases in energy demand can lead to mitochondrial fusion (C) which increases the mito-
chondrial surface area to enable increased proton motive force and derived functions (D). Mito-
chondrial function can also be affected by post-translational modifications. Impaired mitochondria
function or needs to remodel mitochondrial location can lead to mitochondrial fission (E) enabling
mitochondria to renter the pool where they can undergo further fusion, mitophagy, or rupture with
smaller consequences that rupture of fussed mitochondria
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recognize mitochondrial via surface proteins such as the PINK1-PARKIN complex,
NIX, and BNIP3 and thus target them for degradation (Chen et al. 2020b).

Mitochondrial structure is dynamic with mitochondria undergoing fission to
separate into smaller structures and fusion to establish larger ones (Hood et al.
2019). Fission is controlled by DRP1 and associated binding proteins. Fusion is
controlled by OPA1, MFN1 and MFN2 and associated regulator proteins. Fission
produces smaller structures that can be more easily targeted for degradation by
mitophagy and/or act independently (Fig. 5.5). Fusion produces larger structures
with increased surface area which allows for more coordinated action and more
efficient establishment, maintenance, and utilization of membrane gradients for ATP
production, heat production, and Ca2+ buffering. Mitochondria function then is a
function of cellular environment/demands (e.g., fiber type, recruitment pattern, etc.),
content (regulated by biogenesis and mitophagy), structure (regulated by fission and
fusion), and also post-translational modifications (Stram and Payne 2016); for
example, oxidation, persulfidation, and Ca2+ binding.

5.4.2 Age-Induced Alterations in Mitochondria

Loss of physiologic functions and increased risk of death are observed with age.
Molecularly, these losses of molecular physiologic function have been characterized
into nine hallmarks of aging (Lopez-Otin et al. 2013); reductions in mitochondria
being one of the hallmarks. These reductions in mitochondria appear to take place
across species and tissues. Below we discuss alterations in human skeletal muscle
mitochondria with advancing age that have been shown to contribute to reduced
physical function, increased fatigability, sarcopenia, dynapenia, and cardiorespira-
tory fitness (Coen et al. 2018).

5.4.2.1 Age-Associated Loss in Mitochondrial Number and Volume

With age there is a reduction of mitochondria in human muscle as assessed by
mitochondrial DNA content, mitochondrial enzyme activity assays, and the gold
standard method of counting mitochondria in electron micrographs (Seo et al. 2016).
However, more research is needed to understand when, chronologically, mitochon-
dria may be lost and at what rate. Human muscle appears to retain the ability to
invoke mitochondrial biogenesis with age (Konopka et al. 2014), however, this
response may be blunted when compared to younger human muscle (Deane et al.
2019). Thus, it may be the case that muscle loses the ability to rejuvenate/maintain
mitochondria with age and that this also impacts the ability to rejuvenate/maintain
muscle as a whole (Chen et al. 2020c); some speculate that this may be related to
reductions in stem cell function with age (Lopez-Otin et al. 2013). While more
research remains to be done to understand why mitochondrial response to exercise
may be blunted with age, it is clear that mitochondria reman responsive to exercise
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interventions. Therefore, there is reason to suspect that reductions in mitochondrial
number and volume can be overcome by further understanding how exercise
influences mitochondrial structure in old human muscle.

5.4.2.2 Age-Associated Loss in Mitochondrial Function

Loss of mitochondrial function with age can be observed as reductions in ATP
production, ability to buffer intramuscular Ca2+, ability to process energetic sub-
strates, and in efficiency of oxygen use (Short et al. 2005; Seo et al. 2016; Hood et al.
2019). These declines in function are seen in both humans and animal models and
occur prior to age-associated functional decline and the onset of frailty (Andreux
et al. 2018). Mitochondrial dysfunction has been tied to cellular senescence
(Chapman et al. 2019), another hallmark of aging (Lopez-Otin et al. 2013). While
alterations in mitochondrial structure and function are both observed in human
muscle with age, it is not clear if one causes the other and/or if individual specific
(genetic and/or epigenetic) differences occur. For example, single nucleotide poly-
morphisms in nuclear encoded mitochondrial genes have been linked with disease
progression (Hendrickson et al. 2010). As structural defects can cause functional
defects and vice versa, it is entirely possible that one causing the other may differ
between individuals. Similarly, as different individuals may have different causes of
mitochondrial dysfunctions, they may show similar changes in mitochondrial struc-
ture but as the result of different dysfunctions. As discussed above, the ability of
exercise to invoke similar improvements in mitochondrial function, in addition to
structure, suggests that mitochondrial function can be restored in aged human
muscle.

5.4.3 Regenerative Rehabilitation and Mitochondrial
Function

5.4.3.1 Exercise Mimetics

It is clear that exercise promotes mitochondrial biogenesis and mitochondrial func-
tion, and that some of these improvements via the action of the transcription factor
PGC-1α (Konopka et al. 2014; Seo et al. 2016; Gureev et al. 2019; Hood et al. 2019).
Thus, pharmaceutical or nutraceutical activation of PGC-1α could be a potential
mimetic for exercise. PGC-1α stimulation has also been suggested as a potential
therapeutic for mitochondrial disease and diabetes (Wenz 2009; Yuan et al. 2019).
To date, drugs in preclinical trials have targeted PPAR (bezafibrate, rosiglitazone),
AMPK (AICAR, metformin), and Sirt1 (resveratrol) (Hofer et al. 2014). See Sect.
5.6.3 for more details on some of these treatments. Additionally, there are novel
small molecular activators for PGC-1α under development (for example, Zhang
et al. 2013). Another interesting mimetic is carbon monoxide (CO). As a
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gasotransmitter, CO has recently been shown to have mitochondrial biogenesis
effects and enhance the effects of exercise alone (Rhodes et al. 2009).

5.4.3.2 Hormone and Diet Supplementation

A number of hormones regulate mitochondrial content and/or function (Ritz et al.
2005). Some of these, like the androgens change with age and are present at different
levels in across biological sex and gender. Correction of clinical deficiencies in
hormones has clear benefits in promoting mitochondrial health. For instance, a
recent study supplementing testosterone found improved efficacy of the response
to the exercise training when the supplement was provided as an adjunct
(Gharahdaghi et al. 2019). Similarly, clinical deficiencies in most nutrients (protein,
fatty acids, vitamins) lead to impaired metabolism and correction of these had
benefits in promoting mitochondrial health (Du et al. 2016). For example, in relation
to Vitamin D, intramuscular Vitamin D receptor concentration correlates with the
extent of muscle improvement in response to exercise training (Bass et al. 2020). As
another example, supplementation of NAD, a pyridine-nucleoside similar to vitamin
B3, has been found to have beneficial effects across species (Romani et al. 2021).
The reason for this beneficial effect has been suggested to be due to an
age-associated decline in NAD levels (Schultz and Sinclair 2016), which may or
may not be associated with mitochondrial deficits.

5.5 Protein Homeostasis

5.5.1 Introduction to Protein Homeostasis

Muscle is the largest store of nitrogen, in the form of protein, in the human body. In a
young, healthy individual muscle comprises roughly 40% of all the protein in the
body (Brook et al. 2016b). Accordingly, protein turnover accounts for roughly 35%
of daily whole-body resting energy expenditure (Carbone et al. 2019). Within
muscle, more than 40% of protein can be found in the contractile apparatus (i.e.,
sarcomeres) (Ojima 2019). Thus, there is a strong link between muscle protein
content and sarcomere content (Sweeney and Hammers 2018). This means that the
human body needs to balance regulation of protein content for maintenance of
whole-body energy homeostasis. Muscle lengths tend to be dictated by the skeletal
attachment points, whereas muscle volume can change based upon hydration/inflam-
matory status and growth, termed hypertrophy (Haun et al. 2019). When muscle
does grow in length, sarcomeres are added in series, and this results in alterations in
the strength and contraction velocity of the muscles (Wisdom et al. 2015). Thus,
muscle growth for increased strength requires energy at the whole-body level to
maintain whole-body energy balance. Conversely, when muscle atrophies (Atherton
et al. 2016), strength will generally be lost as the result of breakdown of sarcomeres
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in parallel. As muscle size is largely dictated by balancing energy and physical
performance needs, muscle hypertrophy and atrophy are largely dictated by alter-
ations in muscle protein synthesis, with or without increased protein degradation
(Brook et al. 2016b). Rates of muscle protein synthesis and/or degradation are
controlled by a wide variety of anabolic (growth promoting) and catabolic (atrophy
promoting) stimuli (McCarthy and Esser 2010).

A number of signaling pathways acting downstream of growth factor receptors
have been demonstrated to regulate protein synthesis in animal models and cell
culture. In human adult muscle, it is clear that the mechanistic target of rapamycin
(mTOR) is a central regulator of muscle protein synthesis, serving to integrate
anabolic signals such as amino acid content and energy status, as signaled by 50

AMP-activated protein kinase (AMPK) and likely other growth and mechanical
signals (Brook et al. 2016b). mTOR regulates protein synthesis via 4EBP1, S6K and
downstream signals.

The control of protein degradation in human muscle is less well defined, in part
due to greater technical challenges in studying degradation in human muscle. While
the signals regulating the enzymes that carry out protein degradation, termed pro-
teases, may not be well defined, the proteases themselves are (Szewczyk and
Jacobson 2005). Lysosomes and proteasomes are the major proteases within muscle.
Both lysosomes and proteasomes are normally “on” but only degrade proteins that
are sent to them. Thus, regulation of lysosomal and proteasomal degradation is
largely at the level of trafficking proteins to the proteases rather that at the level of
turning these proteases “on” or “off” (Szewczyk and Jacobson 2005). In the case of
lysosomes, this occurs largely via autophagy and increased autophagy appears to be
a basal state in the absence of positive growth factors in yeast, C. elegans, and
rodents, so it may similarly be the case for humans (Klionsky et al. 2021). For
proteasomes, proteins destined for degradation are typically targeted to the
proteasome by tagging the protein with ubiquitin via ubiquitin conjugating enzymes
(Lecker et al. 2006). Importantly, at least 30% of all newly synthesized proteins do
not properly mature and are degraded by the proteasome, meaning that the
proteasome plays a significant role in the degradation of newly synthesized improp-
erly folded proteins (Schubert et al. 2000). Calpains and caspases are the other two
main proteolytic systems in muscle and both are constitutively inactive, or “off”
(Szewczyk and Jacobson 2005), meaning that their activation results in the degra-
dation of proteins in the immediate vicinity of the proteases once activated. The
majority of proteins degraded by calpains (Goll et al. 2003) and caspases are
cytoskeletal proteins, implying that a major role of each protease is in the structural
remodeling of muscle (Crawford and Wells 2011). In the case of calpains, these tend
to be membrane associated and activated by Ca2+, suggesting they may have a role in
maintaining the structures necessary for proper EC coupling (Verburg et al. 2009)
(see Sect. 5.3.1 for EC coupling) and other Ca2+ signaling. For caspases, these are
associated with mitochondria and appear to be activated in response to mitochondrial
Ca2+ overload and/or other toxic stressors to mitochondria (Vringer and Tait 2019),
suggesting that caspases may have a role in appropriately localizing mitochondria
within muscle.
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5.5.2 Age-Induced Loss of Protein Homeostasis

Declines in maintaining protein homeostasis, termed proteostasis, is one of nine
hallmarks of aging (Lopez-Otin et al. 2013). Like other hallmarks of aging, declines
in proteostasis appear to take place across species and tissues. Loss of proteostasis
results in accumulation of protein aggregates, disruption of cellular structures, and
leads to general declines in the ability to maintain cellular homeostasis (Santra et al.
2019). Below we discuss two aspects of altered protein homeostasis in muscle with
advancing age: (1) loss of muscle size and (2) increased anabolic resistance. As
previously mentioned, sarcopenia (Evans et al. 2019) and dynapenia are associated
with increased physical frailty, increased risk of morbidity, and increased risk of
mortality (Wilkinson et al. 2018).

5.5.2.1 Age-Loss of Muscle Size (Sarcopenia)

Human muscle grows in size from birth and reaches a peak in the mid-20s to early-
30s depending on the individual. After this point muscle size declines for reasons not
still fully understood (Nair 2005). It has been suggested that this may be due to lack
of evolutionary pressure for prolonged muscle function with age based upon shorter
human life expectancy as little as 2000 years ago (Goldspink 2012). Some of the loss
of muscle mass with age may be due to biological effects of aging such as alterations
in hormonal signaling and/or loss of mitochondrial or protein homeostasis, and some
of this may be determined by lifestyle changes such as nutritional excesses or deficits
and/or level of activity (Andreux et al. 2018; Brook et al. 2016b; Carter et al. 2015;
Coen et al. 2018; Gharahdaghi et al. 2019; Wilkinson et al. 2018). Once individuals
reach the age of 60, there is an exponential decline in muscle size which when
associated with declines in muscle function is termed sarcopenia (Nair 2005;
Wilkinson et al. 2018). For reasons currently unknown (Papadopoulou 2020), this
decline differs between males and females. Males usually display changes earlier
than females, yet females usually displaying greater rates of decline than males.
Recent studies examining the effect of exercise on human muscle growth have found
that older human muscle does not respond the same as younger muscle in terms of
signaling growth of the extracellular matrix that surrounds muscle, possibly signi-
fying that alterations in the extramuscular scaffold underlie decreased growth with
age (Deane et al. 2019; Wessner et al. 2019). This suggestion is yet to be tested with
an intervention to restore growth.

5.5.2.2 Age-Associated Anabolic Resistance

Despite proteostasis being altered with age and across species (Lopez-Otin et al.
2013), it is not immediately clear that the causes and consequences are identical
across species. For example, wide spread protein aggregation is not reported for
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human muscle with age (Wilkinson et al. 2018), unlike in some human neurode-
generative diseases (Currais et al. 2017). Further, baseline rates of muscle protein
synthesis and degradation are not widely reported to be altered in older versus
younger human muscle (Wilkinson et al. 2018). Rather, the responsiveness of
muscle to anabolic stimuli such as feeding (Mitchell et al. 2016) and exercise
(Durham et al. 2010) seems to be blunted (Wilkinson et al. 2018). That is, the
increase in protein synthesis in response to anabolic stimuli is less in old muscle than
in young. Thus, with similar rates of basal protein synthesis and degradation in
young vs. old muscle but smaller post-meal increases in synthesis, muscle protein
content gradually declines over time (Fig. 5.6). Accordingly, this gradual decline is

Fig. 5.6 Conceptual diagram of how changes in human muscle protein homeostasis drive changes
in muscle size. Rates of Muscle Protein Synthesis (MPS) and Muscle Protein Breakdown (MPB)
fluctuate during the day with rates of MPS increasing and rates of MPB decreasing immediately
after a meal or ingestion of Essential Amino Acids (EAA). Decreases (a) or increases (b) in physical
activity can decrease or increase the rate at which MPS is increased in response to eating a meal or
ingesting EAA. Net losses (a, red curve) in the responsiveness of MPS (termed anabolic blunting)
lead to muscle atrophy, whereas net increases (b, green curve) in the responsiveness of MPS lead to
muscle hypertrophy. Note that in all cases, there is a net loss of muscle protein between meals
(bottom, red) and a net increase in muscle protein post-meal (bottom, green). The anabolic blunting
displayed in response to inactivity is also observed with age and disease, raising the issue of how
much anabolic blunting with age or disease is due to decreased physical activity
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sufficient to account for loss of muscle size which contributes to decreased function.
It remains to be determined what causes the blunted anabolic responses in older
muscle, presumably this is at the level of translation or later as anabolic signaling
pathways via mTOR seem normally activated in older human muscle (Brook et al.
2016b). A recent study has suggested that impaired ribosomal biogenesis with
advancing age may underly anabolic resistance (Brook et al. 2016a), which could
lead to novel therapies for combating age-associated anabolic resistance.

5.5.3 Regenerative Rehabilitation and Protein Homeostasis

5.5.3.1 Hormone and Dietary Strategies

As discussed in Sect. 5.4.3.2, correction of clinical deficiencies in hormone levels or
dietary intake have clear implications for muscle health, including size and protein
content. It is possible that in the absence of clinical deficiencies supplementation
combined with exercise may have positive effects, with both testosterone
(Gharahdaghi et al. 2019) and vitamin D (McKendry et al. 2020) supplementation
enhancing skeletal muscle responses to exercise. In addition, protein intake or
absorption is often deficient in older individuals (Mitchell et al. 2016), especially
in frail individuals. The amino acid leucine and its metabolite HMB have both been
shown to be sufficient to produce the same anabolic muscle protein synthesis
response as eating a protein-rich meal (Mitchell et al. 2016). Thus, targeted strategies
using these nutrients and others, particularly as adjuncts to activity level, have been
proposed and are under study, with a focus on particular factors such as concentra-
tion and timing (McKendry et al. 2020).

5.5.3.2 Ribosomal Biogenesis

The full cause of anabolic blunting currently remains unknown, but is associated
with decreased levels of ribosomes that cause further declines in ribosome biogen-
esis (Brook et al. 2016a). As rRNA comprises the bulk of cellular RNA, which is a
major component of ribosomes (Figueiredo and McCarthy 2019), it is possible that
age-related declines in nucleic acids and/or RNA (Tahoe et al. 2004) manifest most
notably as declines in rRNA. This would be entirely in keeping with the recent
findings of cross-species NAD declines with advancing age (Schultz and Sinclair
2016). The idea that declines in ribosomal biogenesis underly age-related muscular
deficits has been proposed as a general feature of aging (Steffen and Dillin 2016). If
this proves true, then supplementation of nucleic acids rather than proteins, lipids,
carbohydrates, or vitamins may be a viable strategy for increasing anabolic
responses to exercise with age.
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5.6 Glucose Metabolism

5.6.1 Introduction to Glucose Metabolism

Glucose homeostasis is critical to human health and survival due to the important
role that glucose has in providing cellular energy. Any disturbances in glucose
homeostasis can result in disease, most notably type 2 diabetes, but can also
contribute to other life-altering conditions, including sarcopenia (Sugimoto et al.
2019) and dynapenia (Nebuloni et al. 2020; Kalyani et al. 2015). In healthy
individuals, systemic glucose homeostasis is intricately regulated between tissue
(i.e., muscle, liver, adipose, pancreas). Liver plays a primary role in regulating
glucose homeostasis (glycogenolysis and gluconeogenesis) in the fasted state,
while peripheral tissue plays a critical role in promoting glucose uptake and restoring
normoglycemia after eating. As the largest organ in the body, skeletal muscle is
considered a major regulator of whole-body glucose homeostasis, with 70–80% of
insulin-stimulated glucose uptake occurring in this tissue (DeFronzo et al. 1981).
Therefore, it is not surprising that the muscle atrophy that occurs with aging, plays a
contributing role in the disruption of glucose homeostasis and pathogenesis of
insulin resistance in these individuals (Sugimoto et al. 2019; Nebuloni et al. 2020;
Kalyani et al. 2015).

In healthy adults, insulin-mediated glucose uptake occurs when insulin binds to
the insulin receptor, initiating a signaling cascade including phosphorylation of the
insulin receptor, insulin receptor substrate-1 (IRS-1) association with p85 subunit of
phosphoinositide 3-kinase (PI3K), Akt2 phosphorylation on threonine 308 and
serine 473 sites, and phosphorylation of the TBC1 domain family member
4 (TBC1D4) on multiple sites, subsequently allowing the translocation of glucose
transporter type 4 (GLUT4) to the plasma membrane (Thorell et al. 1999; Kramer
et al. 2006) (Fig. 5.7). In resting muscle, the majority of insulin-stimulated glucose
undergoes nonoxidative metabolism (primarily converted to glycogen), while the
remaining is oxidized (DeFronzo and Tripathy 2009). Impairments in any of these
signaling pathways can cause skeletal muscle insulin resistance, which is believed to
be the primary defect leading to the development of type 2 diabetes (DeFronzo and
Tripathy 2009).

It is well known that the aging process is associated with whole-body insulin
resistance (Consitt et al. 2013; Petersen et al. 2003; Fink et al. 1983, 1986; Rowe
et al. 1983; Petersen et al. 2015). The factors contributing to age-related insulin
resistance are likely multifaceted and include chronological age (Consitt et al. 2013),
reduced physical activity (Amati et al. 2009), inflammation (Greiwe et al. 2001),
and/or increased body fat (Kohrt et al. 1993; Amati et al. 2009). The obesity
epidemic combined with the growing prevalence of sarcopenia in older adults has
resulted in the concept of “sarcopenic obesity” (i.e., coexistence of obesity and
sarcopenia conditions) (Stenholm et al. 2008; Cauley 2015). These individuals
experience the negative metabolic effects of obesity, plus they have reduced skeletal
muscle mass available for insulin-stimulated glucose uptake (Reaven 1988), putting
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them at even greater risk for developing insulin resistance and type 2 diabetes. While
the prevalence of sarcopenic obesity varies depending on the operational definition,
the National Health and Nutrition Examination Survey (NHANES) III study
reported that 19% of women and 28% of men over the age of 60 suffered from
this condition (Batsis et al. 2015), further highlighting the need to understand the
interaction between metabolic dysfunction and sarcopenia.

A discussion on the effects of glucose metabolism and age-related muscle
dysfunction would be remiss without mentioning that over 70% of Americans
over the age of 65 are classified as either type 2 diabetic or prediabetic (Cowie

Fig. 5.7 Potential cellular mechanisms for therapeutic enhancement of glucose metabolism and
prevention of age-induced skeletal muscle dysfunction. (A) Decreased myostatin protein expression
(i.e., via Ex-4), inhibition of myostatin (i.e., via anti-myostatin antibody landogrozumab), or
inhibition of the myostatin receptor (i.e., via anti-ActRII antibody bimagrumab) results in
(B) reductions in SMAD2/SMAD3 phosphorylation leading to (C) inhibition of the SMAD2/
SMAD3/SMAD4 complex entering the nucleus, preventing the upregulation of atrophy genes
involved in sarcopenia. SMAD2/SMAD3 dephosphorylation also (D) suppresses myostatin’s
inhibition of insulin-stimulated Akt phosphorylation leading to (E) TBC1D4 phosphorylation,
GLUT4 translocation to the plasma membrane, and increased glucose uptake, as well as,
(F) increased protein synthesis (via mTOR signaling) and suppression of protein degradation
(phosphorylation of FoxO inhibits its translocation to the nucleus where it would upregulate
genes involved in autophagy and protein degradation). (G) Metformin increases the phosphoryla-
tion of AMPK, which increases glucose uptake (via TBC1D4) and protein synthesis (via mTOR
signaling). (H) DPP-4 inhibitors increase GLUT4 content and insulin-stimulated glucose uptake.
This image was created using BioRender (https://BioRender.com)
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et al. 2009). While the detrimental effects of insulin resistance and type 2 diabetes
have been well documented for the general population, the consequences are even
more dire for the elderly. Poor glycemic control and insulin resistance are well-
known risk factors for sarcopenia (Sugimoto et al. 2019) and dynapenia (Nebuloni
et al. 2020; Kalyani et al. 2015) and have been shown to accelerate age-related losses
in both skeletal muscle mass (Park et al. 2009) and strength (Park et al. 2007).
Therefore, the aging adult is often caught in a vicious cycle of glucose dysregulation
and muscle dysfunction, which may be further exacerbated by conditions of obesity.
The mechanism(s) responsible for age-related related impairments in glucose metab-
olism and muscle function remain unclear and are likely complex. Here, age-related
impairments in insulin-stimulated glucose metabolism, accumulation of advanced
glycation end-products (AGEs) and increases in myostatin are discussed.

5.6.2 Age-Induced Pathophysiology of Impaired Glucose
Metabolism

5.6.2.1 Age-Related Impairments in Insulin-Stimulated Glucose
Metabolism

Age-related impairments in the skeletal muscle insulin signaling cascade have been
reported in both human (Consitt et al. 2013; Petersen et al. 2015) and animal models
(Gupte et al. 2008; Sharma et al. 2010; Consitt et al. 2018). In aging humans, several
impairments in distal insulin signaling have been reported. Peterson et al. (Petersen
et al. 2015) reported diminished Akt phosphorylation after 20 min of
hyperinsulinemia in aged individuals compared to their younger counterparts when
body mass index (BMI), fat mass, and habitual physical activity were matched
(Petersen et al. 2015). Additionally, in a cross-sectional study including individuals
across a wide range of the adult life span (18–84 years of age), insulin-stimulated
phosphorylation of AS160 on multiple sites (serine-588, threonine-642, and serine-
666) were impaired in conjunction with age-related whole-body insulin resistance
(Consitt et al. 2013). Skeletal muscle GLUT4 has also been reported to decrease with
age in some (Consitt et al. 2013; Gaster et al. 2000; Houmard et al. 1995; Xu et al.
2017) but not all (Houmard et al. 1995; Cox et al. 1999; Dela et al. 1994) studies, and
at least one study has suggested that age-related changes may be fiber-type specific
with older adults having reduced GLUT4 in type II, but not type I fibers (Gaster et al.
2000).

Age-related impairments have been reported in both the insulin-stimulated oxi-
dative and nonoxidative pathways (Bryhni et al. 2005; Poulsen et al. 2005; Franssila-
Kallunki et al. 1992; Petersen et al. 2015; Consitt et al. 2016). Early findings that
older adults had ~60% less skeletal muscle glycogen stores compared to their
younger counterparts (Meredith et al. 1989), led to subsequent findings of dimin-
ished insulin-stimulated glycogen synthase activity in aged (Poulsen et al. 2005;
Bienso et al. 2015) compared to younger adults (Poulsen et al. 2005; Pehleman et al.
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2005). Reduced skeletal muscle pyruvate dehydrogenase (PDH) flux during insulin
stimulation has also been reported in the elderly compared to young individuals
(Petersen et al. 2015; Consitt et al. 2016), suggesting that under hyperinsulinemic
conditions, PDH regulation may be compromised in older adults putting them at
increased risk for metabolic inflexibility and the development of insulin resistance
(Constantin-Teodosiu et al. 2015; Hansen et al. 2019).

Deletion of the insulin receptor in the skeletal muscle of mice has been reported to
reduce skeletal muscle mass and grip strength by approximately 20% (O’Neill et al.
2016), supporting a direct role for insulin signaling on muscle mass and function.
Besides stimulating glucose uptake, insulin-mediated Akt phosphorylation can
promote protein synthesis through the Akt/mTOR/p70S6K signaling pathway
(Wang and Proud 2006) and inhibit protein atrophy through the Akt/FoxO pathway
(O’Neill et al. 2016). Given the crosstalk between these pathways, it is conceivable
that age-related impairments in insulin signaling are responsible for both reduced
glucose uptake and sarcopenia. Animal research suggests insulin acts to maintain
muscle mass by suppressing Akt/FoxO1/3/4-mediated autophagy and protein deg-
radation pathways (O’Neill et al. 2016). In humans, there remains considerable
debate regarding which insulin-stimulated pathway is responsible for age-related
sarcopenia and may be related additionally to insulin’s effect on blood flow, as well
as amino acid availability and uptake (Rasmussen et al. 2006; Fujita et al. 2009;
Wilkes et al. 2009).

5.6.2.2 Age-Related Accumulation of Advanced Glycation
End-Products (AGEs)

With age-related insulin resistance, postprandial blood glucose levels become ele-
vated for pronged periods of time. Poor glycemic control and chronic hyperglycemia
(often measured as hemoglobin A1c, HbA1c) lead to the accumulation of advanced
glycation end-products (AGEs). Elevated serum AGEs have been associated with
decreased muscular performance, including reduced grip strength (Dalal et al. 2009),
and slower walking speed (Semba et al. 2010) in adults aged 65 or older. Incubation
of C2C12 myotubes (muscle cells) with AGE has been reported to reduce cell
diameter (muscle atrophy) and increase atrogin-1 (protein involved in muscle atro-
phy) (Chiu et al. 2016), suggesting AGEs have a direct role in skeletal muscle
wasting. While the mechanism remains to be fully elucidated, Chiu et al. (2016)
proposed AGEs act through their receptor to activate AMPK and downregulate Akt
signaling, resulting in atrophy and impairments in myogenesis. Recently, it was
suggested that AGEs may promote mitochondrial dysfunction in skeletal muscle
(Daussin et al. 2021), which theoretically would contribute further to loss of muscle
mass and function. It should also be noted that chronic hyperglycemia and AGEs are
believed to play an essential role in the development of diabetic peripheral neurop-
athy, a condition reported to be an independent risk factor for sarcopenia (Yang et al.
2020; Erbas et al. 2011; Addison et al. 2018; Sugimoto et al. 2008).
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5.6.2.3 Age-Related Increases in Myostatin

The myokine myostatin, also referred to as growth and differentiation factor-
8 (GDF-8), is a member of the transforming growth factor β (TGF-β) superfamily
and is well-known negative regulator of skeletal muscle growth (McPherron et al.
1997). A number of studies have reported a link between increased myostatin levels,
age (Yarasheski et al. 2002; Leger et al. 2008), declining muscle mass (Yarasheski
et al. 2002; Leger et al. 2008), decreased muscular strength (Han et al. 2011; Patel
et al. 2014), as well as, obesity (Hittel et al. 2009) and insulin resistance (Hjorth et al.
2016; Hittel et al. 2009; Ryan et al. 2013; Guo et al. 2009), suggesting this protein
contributes to both muscle atrophy and insulin resistance in the elderly, especially
those suffering from sarcopenic obesity.

At the cellular level, muscle growth is dependent on myogenesis which includes
the differentiation and fusion of single-nucleated muscle cells (myoblasts) into
multi-nucleated, mature myotubes. Myostatin is believed to promote muscle atrophy
by suppressing the expression of genes involved in myogenesis through its canonical
signaling pathway. Myostatin binds to the activin type IIB receptor (ActRIIB),
leading to phosphorylation of Small Mothers Against Decapentaplegic (Smad)
2 and Smad3, which form a complex with Smad4 and translocate to the nucleus to
inhibit the transcription of myogenic genes, including myogenic differentiation
factor (MyoD) and myogenin (Langley et al. 2002; Trendelenburg et al. 2009)
(Fig. 5.7). Myostatin-induced SMAD3 phosphorylation can also interact and inhibit
the IGF-1/Akt/mTOR pathway, via inhibition of Akt phosphorylation
(Trendelenburg et al. 2009; Goodman et al. 2013; Morissette et al. 2009). Since
signaling pathways for protein synthesis and glucose uptake converge on Akt, it is
not surprising that several studies have also provided convincing evidence that
myostatin can inhibit insulin signaling by reducing Akt phosphorylation (Hittel
et al. 2010; Zhang et al. 2011; Guo et al. 2009). Taken together, these findings
support myostatin-induced inhibition of Akt as a mechanism for age-related muscle
wasting and insulin resistance, especially in conditions of sarcopenic obesity.

5.6.3 Regenerative Medicine and Age-Impaired Glucose
Metabolism

Therapeutic interventions to combat muscle wasting and insulin resistance have been
historically studied independent of each other. For example, the discovery of
myostatin as a negative regulator of skeletal muscle growth (McPherron et al.
1997) led to therapeutic strategies to target the myostatin signaling pathway,
which focused on muscle mass/strength outcomes but neglected potential metabolic
effects. The lack of translation of promising preclinical data to muscular dystrophy
models (Wagner et al. 2008; St Andre et al. 2017; Wagner et al. 2020) combined
with more recent findings that myostatin acts as a negative regulator of insulin
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signaling (Guo et al. 2009; Zhang et al. 2011) led to speculation that these thera-
peutics could be more beneficial in older adults, especially those suffering from
sarcopenic obesity. In contrast to the lack of FDA-approved drugs to treat
sarcopenia, several pharmacological treatments are available for older adults with
impaired glucose metabolism. Whereas the metabolic outcomes from these treat-
ments have been well documented (Musi et al. 2002; Kim et al. 2002; Kulkarni et al.
2018; Hirst et al. 2012; Sasaki et al. 2019; Huthmacher et al. 2020; Gedulin et al.
2005; Henry et al. 2018), research continues to examine if these therapeutics could
also prevent sarcopenia in older adults. The following provides examples of each of
these types of therapeutics with special attention towards how each can regulate
glucose metabolism, as well as skeletal muscle mass and function.

5.6.3.1 Myostatin/ActIIB Inhibitors

There has been considerable interest in developing therapeutics to block myostatin’s
inhibitory action on glucose uptake and muscle growth. Promising preclinical data
demonstrated that mice treated with an anti-myostatin polyclonal antibody had a
reversal of diet-induced whole-body insulin resistance, in conjunction with skeletal
muscle changes including increased muscle mass, enhanced PI3K activity, Akt
phosphorylation, GLUT4 protein expression, and increased phosphorylation of
mTOR (Tang et al. 2014). Unfortunately, no known clinical studies have examined
the effectiveness of these therapeutics in older sarcopenic patients with accompany-
ing insulin resistance; however, early studies examining each condition separately
have provided beneficial insight.

Phase II clinical studies blocking myostatin or its receptor (ActRIIB) suggest that
despite increases in muscle mass, improvements in muscular function in non-obese,
older adults, may be dependent on mobility/activity levels preceding or during
treatment. For example, old (75 years or older), frail adults that had experienced at
least one fall in the previous year, treated with the human monoclonal anti-myostatin
antibody landogrozumab (LY2495655, Eli Lilly) demonstrated increased appendic-
ular lean mass (~2.5%) and improvements in muscular performance on 12-step stair
climb time (~ –1.3 s) (Becker et al. 2015). In contrast, when older non-obese,
sarcopenic patients added bimagrumab (BYM338; Novartis), a human monoclonal
anti-ActRII antibody, to nutritional counseling and a home-based exercise program,
no additional improvements in muscular strength or mobility were observed, despite
increases in lean mass (Rooks et al. 2020). This latter finding is of interest given an
earlier proof-of-concept study that reported bimagrumab treatment improved muscle
function in older sarcopenic patients when combined with nutritional counselling
alone (Rooks et al. 2017). The effectiveness of myostatin inhibition on specific
muscle contractile properties has been less clear with preclinical data producing
concern that myostatin deletion could reduce specific force (Mendias et al. 2006;
Mendias et al. 2011). Reduced SR Ca2+ release, possibly due to a decreased ability to
refill the SR, has been suggested as a mechanism to explain the reduced specific
force observed in hypermuscular (“compact”) mice with a mutation in the myostatin
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gene (Sztretye et al. 2017; Bodnar et al. 2014). It is possible that postnatal thera-
peutic blockade may be less detrimental on specific force, at least in mice
(Bogdanovich et al. 2002, 2005; Mendias et al. 2015).

Early clinical studies suggest that therapeutics that block myostatin’s receptor can
improve insulin sensitivity and glycemic control in individuals with impaired glu-
cose metabolism. For example, a single intravenous dose of bimagrubmab increased
insulin sensitivity by ~20% (measured by hyperinsulinemic-euglycemic clamp) and
reduced HbA1C in middle-aged (mean age: ~45 years), insulin-resistant individuals
(Garito et al. 2018). These metabolic improvements were recently extended to
overweight and obese type 2 diabetics when bimagrubmab treatment was added to
a nutritional and exercise counseling (Heymsfield et al. 2021). Given recent findings
that increased intramuscular lipids play an inhibitory role (Choi et al. 2016) in the
age-related reductions in specific force (Ochala et al. 2007; Larsson et al. 1997; Choi
et al. 2016) and that myostatin inhibition consistently demonstrates reductions in fat
mass (Garito et al. 2018; Heymsfield et al. 2021), future research in obese,
sarcopenic adults is warranted.

While purely speculative, these clinical findings suggest that older adults without
co-existing conditions of obesity or uncontrolled glycemia can achieve increases in
muscle mass with therapeutics that block myostatin or its receptor; however,
improvements in muscle performance appear to be specific to frail or inactive
older adults where these therapeutics could compensate for the lack of metabolic
adaptations that regular muscle contractions induce. In contrast, it is possible that
these therapeutics can improve insulin sensitivity and glycemic control above the
benefits achieved by lifestyle modifications in insulin-resistant individuals; however,
the potential effects on muscle mass, contractile properties, and muscle function in
these individuals remain to be elucidated.

5.6.3.2 Pharmacological Agents

Metformin, an AMPK agonist, is often the first-line of treatment for insulin resis-
tance, including those of advancing age due to its ability to enhance insulin sensi-
tivity (Musi et al. 2002; Kim et al. 2002), improve glucose tolerance (Kulkarni et al.
2018), lower HbA1c levels (Hirst et al. 2012) and reduce type 2 diabetes incidence
rates (Diabetes Prevention Program Research Group 2015). The mechanism
(s) through which metformin improves glucose homeostasis are still under debate
but likely involves the drug’s ability to target numerous tissues, including the liver,
skeletal muscle, and adipose tissue (Konopka and Miller 2019). Metformin is
commonly cross-referenced as a calorie restrictive or exercise mimetic since it
increases AMPK activity and has been shown to extend lifespan (Novelle et al.
2016; Martin-Montalvo et al. 2013; Sharoff et al. 2010). Additionally, metformin
treatment has improved glucose intolerance in older adults (Kulkarni et al. 2018) and
whole-body insulin sensitivity in type 2 diabetics (Musi et al. 2002; Kim et al. 2002).
Of interest, these improvements in glucose metabolism do not appear to be related to
changes in proximal insulin signaling (Kim et al. 2002). Instead, metformin
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incubation of muscle cells has demonstrated increases in AS160 phosphorylation
(Lee et al. 2011b), suggesting improvements may occur distally in the insulin
signaling cascade where older adults appear to be most susceptible (Consitt et al.
2013). The effects of metformin on sarcopenia and dynapenia are less clear with
reports that it may prevent sarcopenia in elderly adults with diabetes (Chen et al.
2020a; Lee et al. 2011a), but may also prevent gains in muscle mass (Walton et al.
2019; Long et al. 2021) and strength (Long et al. 2021) when prescribed in
combination with resistance training, potentially due to the lack of increase in type
II fiber frequency in older adults (Long et al. 2021) and/or hyperphosphorylation of
AMPK and dampening of mTOR signaling (Walton et al. 2019).

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are effective in lowering
blood glucose and HbA1c levels (Sasaki et al. 2019) by preventing glucose absorp-
tion in the kidneys, but their impact on sarcopenia and dynapenia remains unclear.
Despite studies in middle to older aged type 2 diabetics reporting increased grip
strength (Sano et al. 2016) and no loss in muscle mass (Sugiyama et al. 2018) with
SGLT2 treatment, others have reported these drugs may accelerate diabetes-
associated sarcopenia, especially in the elderly (Yabe et al. 2015; Sasaki et al.
2019). While the mechanisms responsible for reductions in muscle mass remain
unknown, Yabe et al. (2015) speculated it may be related hypoglycemia events
causing low circulating insulin levels to reduce glucose and amino acid entry into the
skeletal muscle.

Treatment with GLP-1 receptor (GLP-1R) agonists has proven to be useful in
managing hyperglycemia and decreasing HbA1c levels (Huthmacher et al. 2020;
Gedulin et al. 2005; Henry et al. 2018). Recent in vitro research suggests these
agonists may have a direct role on muscle. Treatment of C2C12 myotubes with the
GLP1R agonist, exendin-4 (Ex-4), resulted in the suppression of myostatin and
muscle atrophic genes (atrogin-1 and Murf-1) along with increasing protein synthe-
sis (Hong et al. 2019). In addition, it has also been suggested Ex-4 may have
neuroprotective properties based on findings that treatment of a mouse model of
Parkinson’s disease protected dopaminergic neurons against degeneration and
improved motor function (Li et al. 2009). DPP-4 inhibitors block the DPP-4
degradation of circulating incretins, including GLP-1 (Herman et al. 2005; Berg
et al. 2011) and have proven effective in reducing HbA1c levels (Dicker 2011),
increasing skeletal muscle insulin-stimulated glucose uptake (Sato et al. 2016) and
increasing GLUT4 expression (Giannocco et al. 2013). In addition, DPP-4 inhibitors
have been reported to reduce the progression of sarcopenia in elderly type 2 diabetics
(Rizzo et al. 2016). Although it remains unclear if DPP-4 inhibitors act directly on
the muscle to provide this protective effect on muscle mass, these findings are
encouraging and warrant future research.

Taken together, there is promising data suggesting inhibitors that target the
myostatin pathway and some pharmacologic agents traditionally used to regulate
glycemic control could provide improvements in both glucose metabolism, as well
as muscle mass and strength in older adults. However, it is evident that despite a
clear link between glucose dysregulation, sarcopenia and dynapenia, the cellular
mechanisms contributing to this relationship and the type of therapeutics required
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may differ among individuals. Factors including, but not limited to, obesity, degree
of glucose dysregulation, previous and current physical activity can all impact
responses depending on the therapeutic used and should be considered.

5.7 Conclusions of the Chapter

Deficits in neuromuscular physiological factors contribute to skeletal muscle dys-
function that manifests in pervasive chronic conditions and disability are observed in
many older adults. Moreover, scientific and medical communities agree that
dynapenia is a major determinant of physical limitations and general poor health
in older adults. The neuromuscular mechanisms of dynapenia and more broadly,
muscle dysfunction, are multi-factorial and likely include several domains that are
affected by the aging process. We propose some of these domains are loss of
neuromuscular excitation, EC coupling failure, sarcopenia (via loss of protein
homeostasis) and metabolic dysfunction (via mitochondrial dysfunction and
impaired glucose metabolism) (Fig. 5.1). However, we acknowledge these domains
are likely a few of many, and are all interconnected. It appears that if dynapenia and
sarcopenia continue to worsen with age that a vicious cycle of continued neuromus-
cular deficits ensues, which can ultimately lead to physical frailty. Thus, mainte-
nance of neuromuscular function is a critical component to healthy aging. Within
this chapter, we have listed several approaches that yield promise in delaying or
preventing many domains of age-related neuromuscular deficits. However, we urge
caution in that many of our discussed approaches are speculative and in the early
stages of investigations. With that stated, regenerative rehabilitation in sarcopenia,
dynapenia, and frailty in both basic laboratory and clinical settings that utilizes a
team science approach is essential to advancing the aging field forward.
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