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Abstract Duchenne muscular dystrophy (DMD) is a severe, progressive, genetic
muscle wasting disorder arising from the absence of the membrane stabilizing
protein, dystrophin, that renders muscle fibers susceptible to damage and degener-
ation. Since the discovery of the dystrophin gene, research efforts have focused on
the development of regenerative gene- and cell-based therapies for DMD, although
many obstacles need to be overcome before they can be considered for clinical
application. The development of adjunct therapies that can slow the pathologic
progression, preserve muscle mass, enhance muscle regeneration, and promote
muscle growth, is therefore essential. Rehabilitation through physical exercise or
muscle contraction protocols may help attenuate muscle weakness and dysfunction
in DMD, with evidence supporting rehabilitation as an adjunct treatment to gene-
and cell-mediated therapies. This chapter summarizes the current state of research
for DMD therapy and explores the potential for combined regenerative and rehabil-
itation therapies to improve outcomes for DMD patients.
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4.1 Introduction

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting
disorder caused by mutations in the dystrophin gene resulting in the absence of the
membrane stabilizing protein, dystrophin. Loss of dystrophin renders muscle fibers
fragile and susceptible to membrane tears that facilitate an influx of Ca2+ that can
activate inflammatory and muscle degenerative pathways. Although considerable
efforts are being directed to the development of gene- and cell-based therapies for
DMD, these techniques are far from perfect, and many obstacles need to be over-
come in order for them to advance to clinical application. In the interim, it is essential
that alternative therapies also be developed, including research directed to slowing
the pathologic progression, preserving muscle mass, enhancing muscle regeneration,
and promoting muscle growth. This chapter will highlight the current state of
research for regenerative medicine (e.g., gene-, cell-, and pharmacologic therapies),
the current state of research for rehabilitation (e.g., exercise modalities), and explore
the potential for combined regenerative and rehabilitation therapies to improve
outcomes for DMD patients.

4.2 Duchenne Muscular Dystrophy: A Difficult Disease
to Treat

DMD is a debilitating X-linked genetic disorder affecting 1:3500–6000 males
worldwide, caused by mutations in the dystrophin (DMD) gene that result in an
absence of the dystrophin protein. In striated muscle, the dystrophin protein is a
component of the dystrophin-glycoprotein complex (DGC), a multimeric protein
complex located at the sarcolemma of striated muscle fibers which links the intra-
cellular actin cytoskeleton to the extracellular matrix (ECM) to transmit the forces
generated by muscle contraction (Ervasti and Campbell 1993). The loss of dystro-
phin destabilizes this link, causing failure of the DGC to assemble at the sarcolemma
(Ohlendieck and Campbell 1991). The loss of integrity leads to a progressive loss of
muscle mass and function and early lethality in DMD patients. The current gold-
standard treatment for most DMD patients is administration of corticosteroids that
can slow the pathologic progression and prolong ambulation (Manzur et al. 2004),
but does not cure the disease.

DMD is not an easy disease to treat or cure. Within affected patients, all muscle
fibers and stem cells within the body contain a defective DMD gene. Therefore, a
vast volume of tissue requires restorative, lifelong treatment. This is further compli-
cated by the fact that the dystrophin protein is expressed locally (i.e., it does not
circulate) and must therefore be delivered into every muscle cell, or at least a
significant proportion of muscle fibers. Furthermore, although DMD is a monogenic
disorder, over 1800 different mutations have been reported within the DMD gene
that result in DMD, including nonsense and missense mutations, duplications, and
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deletions. It is therefore unlikely that a single therapy will be effective for all
patients. Clinical trials have also demonstrated that the therapeutic dystrophin
protein may be identified as “foreign” by the immune system of some patients,
resulting in immune-mediated destruction of the therapeutic protein. Dystrophin is a
large, complex protein, originating from the largest known gene in the human
genome, and it is therefore a difficult gene to reintroduce into the body. Therapeutic
approaches must therefore consider factors such as: the route of delivery; the
carrying capacity of vector systems; the ideal timing for administration; the require-
ment for patient-specific versus generic therapies; and the potential for an immune
response to both the delivery vehicle and the therapeutic protein. Efforts to identify a
cure, via gene, cell, pharmacologic, and/or physical therapies remain ongoing and
are discussed in detail.

4.3 Gene Therapies for DMD

The development of dystrophin restoration therapies for DMD has received much
attention since the discovery of the causative mutation in dystrophin over 30 years
ago (Hoffman et al. 1987a). This discovery was a key milestone in the development
of a potential cure for DMD, with patient advocates and research communities
working on the assumption that once the underlying genetic defect was identified,
a cure would soon follow. This proved not to be the case, with the development of
gene replacement therapies for DMD facing many hurdles. However, over in the
most recent 10–15 years, significant progress has been made toward developing both
viral and non-viral gene correction/replacement strategies, with a small number
being approved for conditional use in DMD patients.

4.3.1 Gene Correction Strategies

4.3.1.1 Stop Codon Readthrough

Stop codon readthrough refers to the process by which various drugs facilitate the
continuation of mRNA translation to restore protein expression. The process, orig-
inally referred to as “phenotypic suppression” was first observed for the
aminoglycoside antibiotics in bacteria and yeast (Palmer et al. 1979; Singh et al.
1979). Within the population, it is estimated that approximately 10–15% of all DMD
cases arise from nonsense mutations, in which mutations result in the introduction of
a premature stop codon (Aartsma-Rus et al. 2006). Therefore, a significant propor-
tion of DMD patients would benefit from stop codon readthrough-based therapy.
Gentamicin, an aminoglycoside antibiotic, was the first such drug tested for treating
DMD, and was shown to restore dystrophin expression in DMD myoblasts in vitro
and restore sarcolemmal dystrophin expression with some functional benefit in mdx
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dystrophic mice (Barton-Davis et al. 1999). Several clinical trials have assessed the
potential for gentamicin to increase dystrophin protein expression and improve
pathology in DMD patients (Dunant et al. 2003; Malik et al. 2010; Wagner et al.
2001; Politano et al. 2003). Of these, the most comprehensive showed increases in
dystrophin protein expression up to 15% of normal levels, with reduced serum
creatine kinase (CK) levels and stabilization of muscle strength after 6 months of
intravenous administration (Malik et al. 2010). Based on the success of these studies,
more potent drugs were developed with the potential to drive stop codon
readthrough, the most successful being ataluren (PTC142, Translarna®). Ataluren
received approval from the European Medicines Agency (EMA) in 2014 for the
treatment of ambulant patients aged 5 years and older with DMD resulting from a
nonsense mutation in the DMD gene. Compared with gentamicin which requires
intravenous administration, ataluren is orally bioavailable and therefore repeat
administration is more feasible. The therapeutic potential of ataluren remains
under investigation in clinical trials, particularly to determine efficacy in
non-ambulatory patients. Early studies suggest that earlier intervention with ataluren
leads to the best outcomes (Ruggiero et al. 2018).

4.3.1.2 Exon Skipping

The concept of exon skipping was first proposed in the mid-to-late 1990s, as a
method to reduce the severity of some genetic mutations. A large majority of
DMD-causative mutations arise from missense mutations, in which a mutation
induces a shift in the mRNA reading frame of the DMD gene, resulting in a lack
of dystrophin protein production. Exon skipping aims to correct the reading frame by
inducing the “skipping” of mutation-containing exons during pre-mRNA splicing
using antisense oligonucleotides (AONs) that interfere with the splicing of targeted
exons. Therefore, skipping over exons containing these frame-shift mutations facil-
itates the restoration of a smaller, but functional, dystrophin protein that can reduce
disease severity. While mutations have been identified throughout the DMD gene,
70% of DMD patients have a mutation in a “hot-spot” in the central genomic region,
between exons 45 and 53 (Den Dunnen et al. 1989; Koenig et al. 1989; Nobile et al.
1997). Therefore, the majority of exon skipping strategies have to date focused on
this region of the gene, with the aim of treating as large a percentage of the DMD
patient population as possible with a small number of drugs.

The most studied tools for exon skipping include the AONs, the
phosphorodiamidate morpholino oligomers (PMOs), and the peptide conjugated
PMOs (PPMOs). Exon skipping with AONs was first shown in the early 2000s to
restore dystrophin protein expression in human myotubes in vitro and reduce disease
severity in mdx mice in vivo (van Deutekom et al. 2001; Lu et al. 2003), but initial
clinical trials demonstrated variable benefit and FDA approval was subsequently
denied in 2016 (Flanigan et al. 2014; Goemans et al. 2011, 2016, 2018; Voit et al.
2014). Subsequent testing of a morpholino-based drug showed levels of dystrophin
protein restoration between 10 and 50% and improved skeletal muscle function in
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the mdxmouse (Alter et al. 2006). This was followed by significant improvements in
DMD patient ambulation and respiration in clinical trials (Mendell et al. 2013),
leading to FDA approval in 2016 of the first exon skipping therapy for DMD patients
amenable to exon 51 skipping, eteplirsen. Since then, a further three drugs have been
approved by the FDA for treatment of DMD patients amenable to exon
53 (golodirsen, Vyondys 53®, approved in 2019; viltolarsen, Viltepso®, approved
in 2020) and exon 45 skipping (casimersen, Amondys 45®, approved in 2021). Exon
skipping is at the forefront of DMD therapeutics, with significant promise to improve
the lives of many DMD patients.

4.3.1.3 Gene Editing

The most recent strategy for gene correction in DMD utilizes clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology.
CRISPR/Cas9-mediated genomic editing was first demonstrated to correct the
dystrophin mutation in the mdx mouse in 2014 (Long et al. 2014). Injection of
guide RNAs (sgRNA) and the Cas9 enzyme into mdx mouse zygotes, to correct the
mutation in the germ line, restored dystrophin protein expression 17–83% in skeletal
muscles and the hearts of treated mice (Long et al. 2014). Studies are currently
focussed on optimizing the therapeutic potential for CRISPR/Cas9 gene editing to
correct dystrophin mutations in postnatal mice (Xu et al. 2016; Long et al. 2016).
Investigations are currently focussed on combining gene editing technology with
adeno-associated viral (AAV) vector delivery.

4.3.2 Gene Replacement Strategies

4.3.2.1 Delivery of Plasmid DNA

Early methods attempted to reintroduce the DMD gene by direct injection of a
plasmid containing the DMD gene into the skeletal muscles of mdx mice. While
this restored dystrophin expression in injected muscles, efficiency was only around
one percent due to the limited ability of skeletal muscle fibers to take up the large
DMD gene (Acsadi et al. 1991; Danko et al. 1993). Subsequent attempts utilized
adjunct methods to improve uptake of the plasmid DNA, including electroporation,
chemical induction of injury, liposome encapsulation, copolymer administration,
and co-administration of hyaluronidase (Wells 1993; Yanagihara et al. 1996;
Baranov et al. 1999; Vilquin et al. 2001; Danialou et al. 2002; Gollins et al. 2003;
Murakami et al. 2003; Ferrer et al. 2004; Molnar et al. 2004; Richard et al. 2005;
Wong et al. 2005). While these methods enabled delivery of the full-length dystro-
phin cDNA to the muscle, the process was highly inefficient and not amenable to
systemic gene restoration. More recently, groups have demonstrated the potential for
systemic delivery of plasmid DNA to reach multiple muscles, including the
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diaphragm (Liu et al. 2001; Zhang et al. 2004, 2010). While exciting, these methods
are invasive and therefore currently limited in their potential for clinical translation.

4.3.2.2 Viral-Mediated Gene Therapy

Viral-mediated gene delivery strategies utilizing vectors and viruses carrying genetic
material into cells, are at the forefront of DMD gene therapies. While some viral
vectors contain large genetic constructs, the carrying capacity of most vectors is a
limiting factor. The DMD gene, at 14 kb, is the largest gene in the human genome
and therefore presents significant challenges for gene delivery systems, with most
viral vectors being too small to carry such a large gene. However, in 1990, a patient
with very mild Becker muscular dystrophy (BMD, a dystrophinopathy like DMD,
but with a milder phenotype) was identified with a mutation that resulted in deletion
of 46% of the DMD gene, demonstrating that large portions of the gene could be
removed yet continue to make a reasonably functional protein (England et al. 1990).
Subsequent mutagenesis studies revealed a series of dystrophin mini- and micro-
genes that were small enough to be packaged into even the smallest of viral vectors
(Harper et al. 2002).

4.3.2.2.1 Adenoviral Vectors

The first viral vectors to deliver dystrophin to mdx mice were based on the adeno-
viruses. The adenoviruses have a double stranded (ds)DNA genome with a 35 kb
capacity, and therefore the capacity to carry the entire DMD gene. First-generation
adenoviral vectors were generated by removal of the E1 and/or E3 viral genes,
resulting in a carrying capacity of approximately 8 kb. These vectors successfully
delivered a miniaturized DMD gene to mdx mice via intramuscular injection (Ragot
et al. 1993; Vincent et al. 1993). However, the presence of the remaining viral genes
limited the potential for these vectors to be delivered systemically due to risk of an
immune response. The newer generation vectors, termed “gutted” adenoviral vec-
tors, lack all viral genes and therefore have the capacity to deliver the full-length
DMD gene (Hartigan-O’Connor et al. 2002). Gutted adenoviral vectors have effec-
tively delivered the full-length dystrophin protein to skeletal muscle after direct
intramuscular injection into both adult and newborn mice, resulting in stable protein
expression and functional improvements up to a year after injection (Dudley et al.
2004; Gilbert et al. 2001, 2003). Unfortunately, the use of these vectors is limited by
the ongoing risk of an immune response, and therefore not suitable for systemic
administration and potential clinical application.
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4.3.2.2.2 Lentiviral Vectors

Vectors based on lentiviruses, which have an RNA genome with an 8 kb capacity,
have also been utilized for delivery of dystrophin mini-genes. Early studies demon-
strated that injection of lentiviral vectors containing a dystrophin mini-gene could
confer almost lifelong restoration of dystrophin protein expression and functional
improvement when subcutaneously injected into a newborn mouse; proposed to be a
result of in vivo targeting of the muscle stem cells (Kobinger et al. 2003; Kimura
et al. 2010). This benefit was reduced when injected intramuscularly into an adult
mouse (Kobinger et al. 2003). As lentiviral vectors have the capacity to integrate into
the genome, they possess the ability to confer lifelong protection by integrating into
the DNA of muscle stem cells, enabling restoration of dystrophin protein into muscle
fibers as a consequence of injury-repair. However, this comes with a significant risk
of insertional mutagenesis, and so in vivo systemic delivery of lentiviral vectors to
treat skeletal muscle is not therapeutically viable. Instead, the use of lentiviral
vectors is widespread in the treatment of muscle stem cells, facilitating autologous
muscle stem cell transplantation.

4.3.2.2.3 Adeno-Associated Viral Vectors

The adeno-associated viruses (AAVs) are small, DNA parvoviruses with a single
stranded (ss)DNA genome with a 5 kb capacity. Although vectors based on AAV are
limited to the delivery of only small dystrophin micro-genes, these vectors have
shown the most promise for viral-mediated DMD gene therapy. There are many
different AAV capsid serotypes, with AAV1, 6, 7, 8, 9, and 10 having a high tropism
for striated muscle, effectively transducing both skeletal and cardiac muscle after
systemic administration (Muraine et al. 2020; Zincarelli et al. 2008). Delivery of
different mini- and micro-dystrophin genes with various AAV serotypes, restored
dystrophin protein expression and ameliorated disease in skeletal and cardiac muscle
(of mice) after systemic administration (Fabb et al. 2002; Lai et al. 2005; Liu et al.
2005; Wang et al. 2000; Watchko et al. 2002; Yoshimura et al. 2004; Yue et al.
2003). Systemic delivery of a micro-dystrophin gene with an AAV6 vector rescued
the pathology and improve lifespan in the severely dystrophic dystrophin/utrophin
double knockout mouse (Gregorevic et al. 2006). This was the first evidence that
AAV-mediated micro-dystrophin gene therapy might be a viable treatment for
DMD. Early clinical trials with an optimized AAV vector and
micro-dystrophin gene failed to restore dystrophin protein expression and improve
pathology, which was attributed to patients developing an immune response to the
therapeutic dystrophin protein (Mendell et al. 2010). Both the AAV vectors and
dystrophin micro-genes underwent significant optimization and three different clin-
ical trials were underway as of 2021, with Sarepta, Pfizer, and Solid Biosciences,
demonstrating therapeutic potential of AAV-micro-dystrophin gene therapy
for DMD.
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While AAV-mediated micro-dystrophin gene therapy is progressing through
clinical trials, researchers are investigating the therapeutic potential of combining
the AAV-mediated delivery system with exon skipping and CRISPR technologies,
to enable systemic in vivo gene editing. In vivo gene editing was first reported by
two groups in 2016 and 2017, using AAV9 and AAV6 to systemically deliver the
CRISPR/Cas9 machinery to muscles of dystrophic mice (Bengtsson et al. 2017;
Tabebordbar et al. 2016). These studies showed improved functional outcomes
(Bengtsson et al. 2017) and correction in both muscle stem cells and differentiated
muscle fibers of dystrophic mice (Tabebordbar et al. 2016). Subsequent studies have
aimed to improve the efficacy of this methodology using self-complementary
(sc)AAV vectors (Zhang et al. 2020), testing the smaller Streptococcus aureus
Cas9 to enable packaging into a single AAV vector (Zhang et al. 2021), and utilizing
a Pax7nGFP;Ai9 dual reporter to specifically correct mutations within muscle stem
cells via CRISPR/Cas9 delivery using AAV9 in vivo, thus conferring lifelong
disease correction (Kwon et al. 2020). Together, this combination of viral delivery
of gene editing tools provides a powerful and exciting toolkit for DMD gene therapy.

4.4 Cell-Mediated Therapies for DMD

While gene therapies should eventually provide a cure for DMD, not all patients may
benefit, depending on the progression of the disease. For example, older DMD
patients will likely present with significant replacement of their skeletal muscle
fibers with fat and fibrotic tissue, which not only limit the amount of muscle able
to be corrected but serve as physical barriers for some treatments. Cell-mediated
therapies with potential to replace skeletal muscle fibers will be similarly important
in the treatment of DMD, especially for older patients. Although cell therapies for
DMD have not advanced as far as gene therapies, several advances have been made
over the past 10–15 years.

4.4.1 Myoblast/Muscle Stem Cell Transplantation

Myoblasts were the initial choice for muscle cell transplantation to restore muscle
due to their ease of isolation, and demonstrated potential when injected into the
muscles of mdxmice (Partridge et al. 1989). Unfortunately, subsequent clinical trials
identified only 10% dystrophin-positive fibers in muscles of immunosuppressed
DMD patients despite multiple cell injections. These disappointing results were
attributed to the poor survival of the injected cells in vivo, limited migration from
the injection sites, and an inability to participate in long-term regeneration as the
muscle stem cell population was not restored (Mendell et al. 1995). Myoblasts
therefore have limited therapeutic potential as a cell population for treating DMD.
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The ability to successfully isolate muscle stem cells from skeletal muscle, first
characterized in a Pax3-GFP knock-in mouse (Montarras et al. 2005), was a signif-
icant advance in the mid-2000s. Injection of freshly isolated cells into muscles of
mdx mice resulted in significant engraftment and improvements in muscle function
(Cerletti et al. 2008), as well as successful engraftment into the muscle stem cell
niche (Montarras et al. 2005; Sacco et al. 2008), demonstrating potential for long-
term therapeutic benefit. While these early studies were encouraging, it became
apparent that the myogenic potential and survival/migration of these cells were
severely reduced if the cells were cultured prior to injection (Montarras et al.
2005). Studies have since focused on developing strategies to improve the survival
and engraftment of these cells, most of which have attempted to mimic the condi-
tions within the muscle stem cell niche to promote a more quiescent, self-renewal
state. Both culture substrate rigidity and oxygen levels have been demonstrated to be
important in the maintenance of “stemness” in cultured muscle stem cells to enhance
the efficacy of myoblast transplantation in vivo (Duguez et al. 2012; Gilbert et al.
2010; Liu et al. 2012). Investigations are ongoing to identify the “ideal” culture
conditions to expand muscle stem cells for transplantation.

While allogenic transplants have been successful in immunocompetent mice
(Vilquin et al. 1995), autologous transplantations are preferred because they limit
the possibility of immune responses to the transplanted cells. Advances in the
development of induced pluripotent stem cells (iPSCs) and their differentiation
into myogenic cells have led to further developments. Isolation and differentiation
of patient-derived iPS cells into myogenic progenitors have been successful in vitro
and genetic correction of both these and patient-derived myoblasts has been shown
feasible using lentiviral, transposon, and CRISPR-based technologies (Filareto et al.
2013; Ifuku et al. 2018; Kazuki et al. 2010; Li et al. 2015; Quenneville et al. 2007;
Young et al. 2016). Myoblast transplants remain a viable option for targeted
replacement of lost muscle tissue in DMD patients.

4.4.2 Mesoangioblasts and Pericytes

While myoblast transplantation continues to be optimized in preclinical and clinical
studies, one major drawback is that myoblasts are not suitable for systemic delivery,
meaning their use is limited to local, intramuscular delivery. As DMD patients will
require dystrophin restoration in the entire musculature, including the diaphragm,
this reduces their potential as a standalone therapy. Mesoangioblasts, and a related
cell population, termed “pericytes,” are alternative cell populations which became
attractive candidates for muscle cell transplantation due to their myogenic potential
and suitability for systemic delivery (Dellavalle et al. 2007; Minasi et al. 2002).
Mesoangioblasts engraft efficiently into skeletal muscle, restore dystrophin expres-
sion, and improve functional and histological parameters in dystrophic mice and
dogs when delivered either intramuscularly or systemically (Berry et al. 2007;
Sampaolesi et al. 2006). Based on these encouraging studies, an initial clinical trial

4 Regenerative Rehabilitation for Duchenne Muscular Dystrophy 93



tested the efficacy of intraarterial delivery of human leukocyte antigen (HLA)-
matched donor mesoangioblasts in five DMD patients, demonstrating delivery of
the cells to be reasonably safe and well-tolerated, but with little or no restoration of
dystrophin expression. This was attributed to the advanced disease progression in the
patients, the impact of steroid therapy on the cells (reduced extravasation), and an
insufficient number of injected cells (Cossu et al. 2015). The therapeutic potential of
these cells to treat DMD remains under investigation. The potential for autologous
transplantation has been demonstrated using PiggyBac transposons to correct the
genetic defect in mesoangioblasts from dystrophic SCID-mdx mice. This resulted in
11–44% restoration of dystrophin expression after transplantation back into the mice
which was stable for up to 5 months (Iyer et al. 2018). Other studies turned to
differentiating iPS cells into mesoangioblasts for transplantation, with and without
lentiviral transduction to restore genetic insufficiencies, in mouse models of other
muscular dystrophies (Tedesco et al. 2012; Gerli et al. 2014). These blood-vessel
associated progenitors hold promise for DMD, and their therapeutic potential con-
tinues to be investigated.

4.5 Pharmacological Therapies for DMD

Although gene- and/or cell-mediated therapies have significant potential to eventu-
ally cure DMD, the success of these approaches will likely be reduced in patients
with a more advanced pathology. Therefore, pharmacologic interventions that can
delay the disease progression by tackling different aspects of the dystrophic pathol-
ogy, remain crucial treatments for DMD patients.

4.5.1 Targeting Myostatin

Myostatin signaling is a potent negative regulator of skeletal muscle mass. Inhibition
of the myostatin signaling pathway has proved promising in preclinical studies in
dystrophic mice, with antibody treatments increasing muscle mass and force pro-
duction, and decreasing fibrosis (Morine et al. 2010; Murphy et al. 2010b; Pistilli
et al. 2011; Nakatani et al. 2008; Parsons et al. 2006; Bogdanovich et al. 2002).
Various strategies to inhibit myostatin signaling have since moved into clinical trials.
AAV-mediated overexpression of the myostatin inhibitor, follistatin, using AAV1-
FS344 increased muscle mass and strength in dystrophic mice and non-human
primates (Haidet et al. 2008; Kota et al. 2009), and was subsequently proven safe
and efficacious in BMD patients, with improved outcomes in the six-minute walk
test (Mendell et al. 2015). AAV1-FS344 has subsequently progressed to Phase I/II
trials with intramuscular injections in DMD patients, although the results have yet to
be reported.
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Antibody-directed myostatin inhibition also attenuated muscle atrophy in mouse
models of muscle atrophy, including cachexia, disuse, sarcopenia, and muscular
dystrophy (Murphy et al. 2010a, b, 2011a, b), leading to the development of anti-
myostatin antibodies (MYO-029, PF-06252616) which had variable success in
clinical trials (Krivickas et al. 2009; Singh et al. 2016; Wagner et al. 2008). Fusion
of a soluble activin receptor inhibitor to IgG (ActRIIB-IgG), which reduces signaling
through the TGF-β pathway, increased muscle mass in injected muscles of dystro-
phic mice with reduced off-target effects (Pearsall et al. 2019), and was shown safe
in healthy volunteers in clinical trials (Glasser et al. 2018). Disappointingly, despite
myostatin inhibition showing great promise in preclinical models, clinical trials have
not progressed due to a lack of demonstrated efficacy (reviewed in Wagner 2020).
The reasons for the lack of efficacy in patients are unclear but are thought to be
attributed to differences in myostatin expression in mice relative to humans, a lack of
improvement in muscle function despite increases in mass, and potential interference
between corticosteroid therapy and myostatin inhibition (Rybalka et al. 2020).

4.5.2 Reducing Inflammation and Fibrosis

4.5.2.1 HDAC Inhibition

Compounds that inhibit class I and/or II histone deacetylases (HDACs) have been
shown to ameliorate dystrophic pathology in the mdx mouse (Colussi et al. 2008;
Johnson et al. 2013; Minetti et al. 2006; Vianello et al. 2014). In preclinical studies
using two murine models of DMD, the HDAC inhibitor, givinostat, increased
muscle mass and muscle fiber size, reduced fat and collagen deposition, and
improved fatigue resistance after oral administration (Consalvi et al. 2013; Licandro
et al. 2021). High dose administration of givinostat improved muscle function and
pathology to a greater extent than conventional steroid (glucocorticoid) therapy in
severely dystrophic mice (Licandro et al. 2021). Givinostat is in clinical trials to test
efficacy in DMD patients. Oral administration of givinostat to ambulant DMD boys
aged 7–11, who were already receiving corticosteroid treatment, for greater than
1 year, reduced fibrosis, necrosis, and fatty tissue deposition in muscle biopsies,
showing the drug to be safe for long-term administration and effective in delaying
aspects of the pathology (Bettica et al. 2016). Givinostat is a promising intervention
for DMD patients and Phase III trials are ongoing with results expected in 2022.

4.5.2.2 NF-κB Inhibition

Signaling via the nuclear factor kappa B (NF-κB) pathway is tightly linked to
changes in skeletal muscle mass. Transgenic mice with chronically elevated
NF-κB signaling have severe wasting of limb and trunk muscles and conversely,
NF-κB inhibition protects against wasting (Cai et al. 2004; Mourkioti et al. 2006).
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Increased NF-κB signaling is linked to disease progression in DMD patients and in
mouse models of DMD, and targeted inhibition of NF-κB is an attractive therapeutic
option for skeletal muscle atrophy. Preclinical studies in dystrophic mice showed
inhibition of NF-κB improved skeletal muscle structure and function (Hammers
et al. 2016). Edasalonexent (CAT-1004) is an oral NF-κB inhibitor under investiga-
tion for treatment of DMD patients, shown to effectively inhibit NF-κB signaling
and to be well-tolerated in Phase I safety studies in healthy adults and pediatric DMD
patients (Donovan et al. 2017; Finanger et al. 2019).

Another promising NF-κB inhibitor, VBP15, is in development by ReveraGen
BioPharma as an alternative to current glucocorticoids for DMD. In mdx mice,
VBP15 produced consistent improvements in muscle inflammation and function,
with increased fore- and hind-limb grip strength and improved ex vivo contractile
properties in the extensor digitorum longus (EDL) muscle (Heier et al. 2013).
Importantly, VBP15 has been proposed to inhibit NF-κB signaling to a greater
extent than traditional steroid therapy, with reduced off-target effects (Conklin
et al. 2018; Hoffman et al. 2018). Phase I and Phase IIa studies demonstrate
VBP15 to be well-tolerated with benefits to motor function in young DMD patients
(Smith et al. 2020; Mavroudis et al. 2019). Phase III trials are currently underway.

4.5.2.3 Inhibition of Collagen

Halofuginone (HT-100) had potent anti-fibrotic properties in multiple mouse models
of disease with fibrosis and was tested in dystrophic mice to determine its efficacy for
attenuating fibrosis in skeletal muscle. In mdx mice, halofuginone administration
inhibited muscle fibrosis and improved muscle histopathology and strength
(Turgeman et al. 2008). In addition, halofuginone has been shown to have direct
effects on muscle cells, enhancing cell survival and myoblast fusion in both primary
and C2C12 myoblasts (Bodanovsky et al. 2014; Roffe et al. 2010). HT-100 was in
clinical trials to test safety and efficacy in DMD patients, but extended Phase II
studies to study long-term impacts of HT-100 administration were terminated in
2016 after the unexpected death of a patient. No further updates have been provided.

4.5.2.4 Sodium/Proton Exchanger Type 1 (NHE-1) Inhibition

In the skeletal muscles and hearts of patients and mouse models of DMD, membrane
tears caused by mechanical stress during contraction can lead to Ca2+ influx and
consequent increase in [Na+]. Rimeporide, an NHE-1 inhibitor, has potent anti-
inflammatory and anti-fibrotic effects in both skeletal and cardiac muscles in mdx
mice (Porte-Thome et al. 2015), and demonstrated improved cardiac function in
dystrophic dogs (Ghaleh et al. 2020). Phase 1b studies found Rimeporide to be well-
tolerated and positive indications as a cardioprotective treatment in DMD patients
(Previtali et al. 2020). Further clinical development is underway.
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4.5.3 Upregulation of Utrophin

Since dystrophin gene replacement therapies may induce immune responses in some
DMD patients, a possible safer alternative could be the therapeutic upregulation of
the related protein, utrophin. In the mdx mouse, upregulation of utrophin can
compensate for the loss of dystrophin (Tinsley et al. 1996, 1998). This was the
basis of the development of the first orally bioavailable small molecule upregulator
of utrophin, SMT-C1100, which was shown to reduce inflammation and fibrosis and
improve force production in muscles of sedentary and exercised mdx mice (Tinsley
et al. 2011). Phase Ia and Phase Ib trials confirmed SMT-C1100 to be safe and well-
tolerated in healthy adults and in DMD patients (Ricotti et al. 2016; Tinsley et al.
2015). However, drug blood plasma concentrations were found to be lower in DMD
patients than in healthy adults when administered at the same dose; an effect
attributed to differences in diet and other disease-related factors. Absorption was
subsequently improved in patients on a controlled diet (Muntoni et al. 2019).
Unfortunately, development of SMT-C1100 was discontinued in 2018 due to it
not meeting primary and secondary endpoints at the conclusion of the Phase II
trial (Babbs et al. 2020). Preclinical development is continuing on a second-
generation compound, SMT022357, which improved the dystrophic phenotype in
mdx mice along with improved absorption, distribution, metabolism, and excretion
profiles compared to SMT-C1100 (Babbs et al. 2020; Guiraud et al. 2015).

4.5.4 Improving Membrane Stability

As calcium ion (Ca2+) influx is thought to be a primary initiator of skeletal and
cardiac muscle cell degeneration in DMD, compounds able to seal damaged mem-
branes have therapeutic potential. Poloxamer-188 (P-188) is a non-ionic tri-block
copolymer that can act as a membrane sealant after different types of injury. P-188
was cardioprotective after systemic administration in both mouse and dog models of
muscular dystrophy. One- or 2-week treatments improved left ventricle function and
promoted survival in mice after challenge with cardiac stimulants and reduced
myocardial fibrosis and left ventricle remodeling in dystrophic dogs after chronic
infusion for 8 weeks (Spurney et al. 2011; Townsend et al. 2010; Yasuda et al.
2005). In addition, in vitro studies showed improvements in dystrophic skeletal
muscle after P-188 treatment (Spurney et al. 2011; Ng et al. 2008). P-188
(Carmeseal-MD™) improved respiratory and cardiac function in dystrophic mice
(Markham et al. 2015), although some studies have reported less success with
respect to ameliorating contraction-induced injury in muscles of mdx mice (Terry
et al. 2014). Although most studies in animal models report positive benefits, studies
examining the safety and efficacy of P-188 for DMD, are warranted.
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4.6 Physical Therapies

Skeletal muscle is comprised of functionally diverse fibers that can differ in their
size, metabolism, and contractility; with extremes being classically referred to as
“slow oxidative” or “fast glycolytic” (Egan and Zierath 2013). Based on myosin
heavy chain (MyHC) protein isoforms, which largely dictate the rate of force
development, shortening velocity and the rate of cross-bridge cycling, slow oxida-
tive (type I) fibers are typically small with a high oxidative capacity and fatigue
resistance compared with fast glycolytic (type II) fibers that are typically larger,
reliant on glycolysis and highly fatigable (Egan and Zierath 2013). Subtypes of the
fast fibers (type IIa, type IIx) vary in their reliance on oxidative and glycolytic
metabolism. Most mammalian muscles are usually comprised of different propor-
tions of these four main fiber types (type I, type IIa, type IIb, and type IIx), although
muscle fibers can exist along a continuum, with subtypes exhibiting different
variations of the main attributes, especially metabolic features, as revealed by single
fiber proteomics (Schiaffino et al. 2020).

Muscle fibers can exhibit remarkable plasticity, capable of altering their intrinsic
structural, functional, metabolic, and molecular properties in response to changes in
loading, contractile activity, and circulating hormones (Pette and Vrbova 1999;
Blaauw et al. 2013; Lynch 2017; Schiaffino and Reggiani 2011). This plasticity
was first demonstrated through pioneering nerve cross-reinnervation studies in cats,
which revealed when fast muscles were innervated by a slow nerve, the muscle
transformed from a fast (glycolytic) to a slower, more oxidative phenotype and
contracted more slowly. When slow muscles were innervated by a fast nerve, the
muscle transformed from an oxidative to a more glycolytic phenotype and contracted
more quickly. Such phenotypic changes were attributed to the specific impulse
patterns delivered to the muscle via the motor neuron (Buller et al. 1960). Muscular
contractions through physical activity (exercise) can be an effective stimulus to
induce adaptations in muscle if exercise duration and intensity are sufficient. Endur-
ance exercise (e.g., running, cycling) can increase muscle oxidative capacity and
fatigue resistance, while resistance exercise (e.g., lifting weights) increases fiber size
(hypertrophy) and strength (Egan and Zierath 2013).

In DMD and well-characterized murine models of the disease linked to the
genetic loss of the protein dystrophin, fast muscle fibers are more susceptible to
contraction-mediated damage and pathological progression than slow muscle fibers,
which are resistant to injury and relatively spared (Webster et al. 1988). Although a
cure for DMD will eventually come from the corrective gene therapies described
earlier, limitations of delivery systems, gene carrying capacity, dissemination effi-
ciency, expression persistence, and immunological tolerance, all pose significant
obstacles for clinical application. There remains an urgent and unmet clinical need
for therapies that can ameliorate the pathology, preserve and protect dystrophic
muscles from damage. Physical modalities such as exercise have many localized
and systemic health benefits, and therefore may ultimately serve as adjuvant thera-
pies for any gene- or cell-based approaches.
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Much of our understanding as to whether physical activity and exercise training
interventions can improve quality of life in DMD patients has come from exercise
studies conducted in appropriate mouse models, particularly mdx dystrophic mice.
These studies have examined: (1) whether exercise exacerbates the dystrophic
pathology, typically from high-intensity, involuntary exercise protocols; or (2) the
therapeutic potential of low-intensity, exercise protocols (voluntary and involuntary)
to attenuate the dystrophic pathology (Grange and Call 2007). Several exercise
protocols in mdx mice have demonstrated beneficial adaptations, with some of
these low-intensity exercises having translational relevance for DMD.

4.6.1 Involuntary Exercise

It is generally accepted that low-intensity, low-weight bearing exercise promote
beneficial adaptations for the dystrophic pathology, whereas exercises involving
potentially injurious lengthening (i.e., eccentric) contractions may aggravate the
pathology (Markert et al. 2012). Several models of exercise training have been
developed and utilized in preclinical studies that have improved our understanding
of the therapeutic potential of exercise for muscular dystrophy (reviewed in
Hyzewicz et al. 2015; Markert et al. 2011).

4.6.1.1 Treadmill Running

Treadmill exercise training in healthy mice promotes adaptations similar to endur-
ance exercise in humans. One main advantage of treadmill exercise is that it allows
researchers to precisely control the training workload (e.g., frequency, intensity,
duration) to interrogate specific muscle adaptations to submaximal or maximal
workloads. Most studies have demonstrated detrimental effects of treadmill exercise
training in mdx mice (reviewed in Hyzewicz et al. 2015), especially since, in most
cases, exercise intensity was matched to levels achieved by otherwise healthy wild-
type mice. When performed at lower intensities, treadmill running has been shown to
promote beneficial adaptations to the dystrophic pathology, including decreasing
intramuscular collagen deposition (Fernandes et al. 2019; Gaiad et al. 2017), reduc-
ing serum creatine kinase levels (Hall et al. 2007), and increasing activity of
antioxidant enzymes (Fernandes et al. 2019).

4.6.1.2 Swimming

Swimming exercise training has been widely used in mdx mice to examine acute
responses and training adaptations to endurance exercise. Swimming activity
recruits muscle groups throughout body and can be used to monitor adaptations in
the heart, diaphragm, and limb skeletal muscles. Endurance swimming (2 h/day,
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5 days/week, for 10–20 weeks) improved the functional capacity of hindlimb
muscles (in mdx mice) through adaptations arising from an increased proportion of
oxidative fibers and reducing muscle fatigue (Lynch et al. 1993; Hayes et al. 1993).
Favorable adaptations to low-intensity, swim exercise could also be achieved in
older mdx mice (Hayes and Williams 1998), at a time when the progressive pathol-
ogy more closely mimics that of DMD. Swim training was shown to improve the
dystrophic pathology when combined with pharmacologic (Hayes and Williams
1997) and cell-based interventions (Bouchentouf et al. 2006). These and many
other confirmative studies support the contention that low-intensity exercise, when
performed alone or in combination with other interventions, may have therapeutic
potential for muscle wasting conditions, including the muscular dystrophies.

4.6.1.3 Electrical Stimulation

Despite physical activity and muscular contraction, especially endurance exercise
training, having many beneficial effects on muscle health, the sad reality is that many
patients with neuromuscular diseases are simply unable to exercise, especially boys
with DMD who are often confined to a wheelchair before their teens. Therefore,
protocols of muscle contractions that can mimic the benefits of exercise are under
investigation to determine whether such interventions can attenuate the loss of
muscle health and function and potentially improve quality of life for patients.

Electrical stimulation to induce muscular contractions can provide an exercise-
like stimulus that has been shown to induce beneficial muscle adaptations and
clinical outcomes in adults with advanced progressive disease (Jones et al. 2016).
Electrical stimulation at varying frequencies can be used to induce concentric,
isometric, and/or eccentric muscle contractions, and several variations have been
examined in preclinical mouse models and in DMD patients. Isometric contractions
generate force or torque without a change in muscle length or joint angle. Repeated
bouts of isometric contractions induced by percutaneous stimulation of the peroneal
nerve in mdx mice improved aspects of the dystrophic pathology, including
increased force production, satellite cell number, and myofiber hypertrophy, while
reducing fibrosis and injury susceptibility (Lindsay et al. 2019).

Chronic low-frequency stimulation (LFS) mimics the electrical discharge pattern
of slow motor neurons innervating slow muscles and induces downstream molecular
signaling pathways that promote transcription of slow, more oxidative fiber-specific
genes (Pette and Vrbova 1999). The resultant fast-to-slow adaptations include
increased oxidative metabolism and mitochondrial biogenesis concurrent with
fiber transitions in the type IIb > type IId/x > type IIa > type I direction (Leeuw
and Pette 1993; Termin et al. 1989). While LFS can challenge a muscle to its full
adaptive potential, it can do so efficiently and typically in the absence of injury and
regeneration (Pette and Vrbova 1999). Therefore, LFS is an ideal model for inves-
tigating the therapeutic potential of promoting a slower, more oxidative muscle
phenotype to ameliorate the dystrophic pathology. Initial studies of LFS in dystro-
phic mice were not conducted on mouse models of DMD (Dangain and Vrbova
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1989; Luthert et al. 1980; Reichmann et al. 1981, 1983). Nonetheless, these studies
showed that LFS exerted beneficial effects on laminin-deficient muscles in C57BL/
6J-dy2j (dy/dy) mice, including improved strength (Dangain and Vrbova 1989;
Luthert et al. 1980), and normalized enzyme activities (Reichmann et al. 1981,
1983).

More recently, we and others have evaluated the therapeutic merit of LFS in well-
characterized mouse models of DMD. In dystrophin-deficient mdx mice, LFS
(10 Hz, 12 h/day, 7 days/week, 28 days) was sufficient to induce remodeling of
mitochondrial respiratory chain complexes, enhanced fiber respiration, and con-
ferred protection from eccentric contraction-mediated damage (Hardee et al.
2021). However, this adaptive remodeling was attenuated or abrogated in dystrophic
muscles lacking both dystrophin and utrophin (i.e., dkomice), highlighting a role for
utrophin in the adaptations of dystrophic skeletal muscles. Using an alternate
approach via transcutaneous surface stimulation, others have found that neuromus-
cular electrical stimulation (NMES) to mdx mice improved muscle-derived stem cell
(MDSC) engraftment sufficient to enhance muscle strength, and, in combination
with MDSC transplantation, improve recovery from fatigue (Distefano et al. 2013).
Collectively, these findings highlight the therapeutic potential of LFS to ameliorate
the dystrophic pathology and protect from contraction-induced injury with important
implications for DMD and related muscle disorders.

4.6.1.4 LFS in DMD Patients

From a clinical perspective, there was considerable interest in LFS as a therapy for
DMD during the 1970s through to the early 1990s, but after the discovery of
dystrophin in 1987, unsurprisingly the field focused on addressing the dystrophic
pathophysiology through molecular biochemical approaches (Hoffman et al. 1987a–
c). These early studies found that electrical stimulation reduced the rate of deterio-
ration of ankle dorsiflexors and quadriceps muscles in boys with DMD (Scott et al.
1990; Zupan 1992; Zupan et al. 1993, 1995), provided that the stimulation was
performed before the patients were not severely disabled (Scott et al. 1986). Similar
findings related to safety, practicality, and improved muscular strength and endur-
ance have been reported in facioscapulohumeral muscular dystrophy (FSHD) and
myotonic dystrophy type 1 patients (Colson et al. 2010; Cudia et al. 2016). While the
initial studies on DMD patients were encouraging (e.g., some showing preserved
strength), they were largely preliminary in nature (with few patients and studies of
limited duration) with a lack of rigorous scientific and statistical clarity (Lynch
2017). Nonetheless, there remains a dearth of information on the application of
such a well-described and utilized intervention like LFS (with existing applications
in rehabilitation medicine and physical therapy) to ameliorate aspects of the dystro-
phic pathology.
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4.6.2 Voluntary Exercise

4.6.2.1 Wheel Running

Providing access to running wheels in cages is one approach to elicit low-intensity
endurance training adaptations in rodents. While this model permits normal physi-
ological patterns of motor unit recruitment, it is dependent on intrinsic, voluntary
physical activity and therefore total work performed can vary dependent on the
animal’s volition based on age and disease severity (Wineinger et al. 1998). Volun-
tary wheel running in mdx mice has been shown to promote favorable adaptations in
plasma CK levels (Carter et al. 1995), improve force production (Baltgalvis et al.
2012; Call et al. 2010; Carter et al. 1995; Dupont-Versteegden et al. 1994; Hayes and
Williams 1996; Hourde et al. 2013), decrease injury susceptibility (Hourde et al.
2013; Delacroix et al. 2018), improve fatigue resistance (Baltgalvis et al. 2012;
Hayes and Williams 1996; Wineinger et al. 1998), and alter myofiber size and type
(Delacroix et al. 2018; Hayes and Williams 1996; Landisch et al. 2008). Mecha-
nisms mediating these functional outcomes were identified, such as increased
utrophin protein expression (Gordon et al. 2014) and muscle oxidative capacity
(Baltgalvis et al. 2012). A recent study combining voluntary wheel running and
micro-dystrophin gene therapy reported improved running capacity, increased mus-
cle contractile properties, protection from eccentric contraction-induced injury, and
enhanced mitochondrial respiration (Hamm et al. 2021). Thus, exercise may be a
complementary intervention for enhancing the efficacy of micro-dystrophin gene
therapies. Further studies are warranted to examine the efficacy of combined inter-
ventions, including investigations of different aged mice and disease severities
before this might be considered for potential clinical application.

While it is generally accepted that low-intensity exercise may be more beneficial
for attenuating the dystrophic process, resisted wheel running exercise may also
induce favorable adaptations such as enhanced muscle growth through myofiber
hypertrophy, improved regeneration, and force production. Indeed, voluntary wheel
running with progressive resistance inmdxmice was shown to improve grip strength
and increase specific force of the soleus muscle (Call et al. 2010). Overall, these
studies support the contentions that: (1) voluntary exercise is not detrimental to
dystrophic pathology in mice; and (2) dystrophic skeletal muscles retain the adaptive
potential to respond to muscular contractions, with favorable, clinically relevant
outcomes.

4.6.2.2 Exercise in DMD Patients

4.6.2.2.1 Resistance Exercise

Initial studies examining physical training interventions in DMD patients utilized
resistance-type exercise. At the medical conference for Muscular Dystrophy
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Associations of America in 1952, Abramson and Rogoff (Abramson and Rogoff
1952) first reported in 27 patients with muscular dystrophy that active, assisted
active, and resistive exercises (3 days/week, 7 months) led to improvements (n¼ 13)
and/or no changes (n ¼ 13) in the manual muscle chart. Based on these encouraging
findings, Hoberman (Hoberman 1955) studied ten children with progressive mus-
cular dystrophy. The patients performed 4 months of physical medicine and reha-
bilitation tests, instruction and training. While no changes in muscle strength were
observed, there were improvements in performance of activities of daily living, vital
capacity, and endurance (Hoberman 1955). Vignos and Watkins (1966) studied
24 patients with muscular dystrophy (14 DMD, 6 limb-girdle, and
4 facioscapulohumeral), who performed home-based resistance exercise program
for 12 months. In the year leading up to the study, DMD patients exhibited declines
in muscle strength. Unexercised controls continued to exhibit a decline in muscle
strength, while the exercised group maintained or improved slightly from their initial
muscle strength (Vignos and Watkins 1966). Most of the improvements in muscle
strength occurred within the first 4 months of the exercise program and the degree of
improvement was related to the initial strength of the exercised muscle; i.e., a
stronger muscle improved more, while weaker muscles improved less. Unfortu-
nately, functional improvements were not permanent and only occurred in 7/52
patients at 4 months and 1/52 patients at 12 months (Vignos and Watkins 1966).
To determine if submaximal exercise could improve strength, four DMD patients
performed unilateral isokinetic exercise of the quadriceps (4–5 days/week,
6 months). The authors reported a modest, though not statistically significant,
increase in strength during the 6-month period, which was maintained for 3 months
after the cessation of training (de Lateur and Giaconi 1979). More recently, Lott et al.
(2021) reported that a 12-week in-home, remotely-supervised, mild-moderate inten-
sity resistance isometric leg exercise program was safe, feasible, and increased
strength (knee extension, knee flexion) and function (descending step) in ambulatory
boys with DMD. Overall, these studies indicate that resistance-type exercise pro-
grams can improve aspects of activities of daily living and functional performance. It
is noted and that the exercise program should be started earlier in the disease
trajectory when muscles are most functional. Importantly, it also highlighted that
type of regimen was feasible (e.g., no ill events reported) and did not cause
deleterious effects on muscle strength in the patients. Regardless, exercise should
be prescribed cautiously and the therapeutic merit of any resistance training for
patients with neuromuscular diseases must be assessed against the risk for overwork
and potential for exacerbating the pathology.

4.6.2.2.2 Endurance Exercise

More recently, the “No Use is Disuse” study was the first randomized control trial in
ambulant and wheelchair-dependent DMD boys that examined whether
low-intensity physical training through assisted cycling training using the arms
and legs (5 days/week, 24 weeks) could improve muscle endurance and functional
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capacity (Jansen et al. 2010). The authors found all participants could complete the
training protocol (except one) with no serious adverse events reported. Importantly,
the primary outcome of total Motor Function Measure remained stable with physical
training, whereas it decreased in the control group (Jansen et al. 2013). However, no
improvements in the Assisted 6-Min Cycling Test were observed. These findings
suggest that assisted bicycle training of the legs and arms was feasible and safe for
both ambulant and wheelchair-dependent DMD patients and that physical training
helped maintain functional capacity.

Others have demonstrated improvements in clinically relevant outcomes with
different types of endurance exercise modalities. Compared to range of motion
exercises alone, upper extremity training with an arm ergometer (40 min/session,
3 days/week, 8 weeks) was more effective in preserving and improving the func-
tional level of early-stage DMD patients (Alemdaroglu et al. 2015). Overall, the
studies performed to date demonstrate that dystrophic skeletal muscles retain the
capacity to adapt favorably to exercise training and this can attenuate the functional
decline with disease progression. However, as highlighted in a recent Cochrane
Review of exercise in muscle diseases (Voet et al. 2019), the evidence regarding
endurance and resistance exercise training interventions in muscle diseases remains
uncertain, and more research with robust methodology and greater numbers of
participants are still required.

4.7 Conclusions

Improving quality of life for DMD patients through exercise requires activities that
can improve function in all muscles of the body, ideally including the heart and
respiratory muscles. Exercise has the capacity to improve or maintain physical
function, body composition, and overall quality of life for patients. While endurance
and resistance exercise training can individually promote health benefits, the muscle
adaptive responses are unique to the stimulus/intervention provided. Exercise inter-
ventions could attenuate muscle weakness and dysfunction in DMD, and current
international guidelines recommend regular submaximal exercise activities for boys
with DMD (Bushby et al. 2010). Although studies support rehabilitation as an
adjunct treatment to gene- and cell-mediated therapies for DMD patients (see
Fig. 4.1), current recommendations are based on theories, practical experience of
the practitioners, and knowledge gained from animal studies. Randomized, con-
trolled trials are warranted to investigate the therapeutic merit of adjunct rehabilita-
tion in conjunction with other interventions based on the benefits observed in
preclinical models and DMD patients.
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