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Abstract Physical deconditioning commonly occurs following spinal cord injury
(SCI) due to loss of voluntary functional movement and resultant increased seden-
tary behavior. This lesser energy expenditure leads to increased fat mass, decreased
lean tissue mass, increased body mass index, declines in cardiac structure and
function, reduced insulin sensitivity, and lower cardiorespiratory fitness. Collec-
tively these physiological changes increase the risk of morbidity and mortality from
cardiovascular diseases. Exercise as a therapy after an SCI may mitigate these
negative health effects and improve quality and longevity of life. However, current
exercise interventions for individuals with SCI may not be sufficient to prevent the
elevations in risk factors for cardiovascular disease. Therefore, interventions to
enhance the effectiveness of exercise therapy may be needed in this population in
order to experience the same benefits seen by the uninjured population. Further,
adjunctive therapies that mimic exercise may induce health benefits to combat
cardiovascular disease. This chapter highlights novel interventions that may enhance
function, increase exercise capacity, and decrease disease risk in individuals follow-
ing an SCI. An effort was made to concentrate this chapter on human investigations
of SCI but, where appropriate, investigations using animal models of SCI are
referenced and specifically stated. Although this chapter highlights novel interven-
tions to enhance the positive health benefits of exercise, combinations of these
interventions may be necessary to improve the health of these individuals and
warrants future investigation.
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12.1 Introduction

Spinal cord injuries (SCI) occur in approximately 18,000 individuals in the United
States each year, in 250,000–500,000 individuals globally, and are among the most
catastrophic injuries that a person can experience (Jain et al. 2015; McDonald and
Sadowsky 2002; Roberts et al. 2017; WHO 2013). An SCI results in lifelong
disability in those who are typically young adults, predominantly men aged
16–44 years, and are primarily caused by vehicular accidents (DeVivo et al. 1999;
Jain et al. 2015). An SCI disrupts neural connections below the level of injury that
affect almost every major organ system, resulting in muscle paralysis, loss of
sensation, and autonomic dysfunction. An SCI can occur anywhere along the
24 vertebrae and vary in severity from complete (American Spinal Injury Associa-
tion Impairment Scale; AIS A) to incomplete impairment (AIS B, C, D). Complete
impairments occur when there is an absence of all motor and sensory functions,
including the sacral roots, distal to the site of the injury. Incomplete impairments
occur when some voluntary movement or sensation is preserved. Additionally, SCIs
may occur where normal motor and sensory function is retained but there may be
abnormalities in reflex control (AIS E) (Roberts et al. 2017). Beyond neural disrup-
tion, SCI results in damage to vertebral bones, intervertebral disks, spinal ligaments,
and blood vessels (McDonald and Sadowsky 2002).

Regardless of the neurological level of injury, there is rapid physical
deconditioning secondary to the loss of voluntary motor control and increased
sedentary activity following the injury (Pelletier and Hicks 2013). The reduced
physical activity leads to a myriad of health issues associated with increased fat
mass, decreased lean tissue mass, lipid disorders, blood pressure irregularities,
abnormal glycemic control, and chronic inflammation (Bigford et al. 2017; Cragg
et al. 2012; LaVela et al. 2006; Myers et al. 2007; Pelletier and Hicks 2013;
Warburton et al. 2007; Weaver et al. 2007; Whiteneck et al. 1992). In addition,
lesser activity induces structural and functional cardiovascular maladaptations (Ely
et al. 2021; Williams et al. 2019). Together, these broad systemic physiological and
structural changes increase the risk for cardiovascular diseases (Mercier and Taylor
2016; Myers et al. 2007). In fact, there is an increased prevalence and earlier onset of
cardiovascular diseases, including heart failure, atrial fibrillation, atherosclerosis,
and ischemic heart disease which are the leading causes of morbidity and mortality
in individuals with chronic SCI (Cragg et al. 2012; Myers et al. 2007; Roger et al.
2012; Whiteneck et al. 1992).

12.2 Exercise Rehabilitation

Regular physical exercise is preventative for a broad range of diseases in uninjured
individuals. Similarly, aerobic exercise in individuals with SCI is important to slow
the progression or reverse negative health risks and minimize the incidence of
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cardiovascular disease (Mercier and Taylor 2016; Myers et al. 2007; Qiu and Taylor
2016). However, exercise must meet certain intensity and volume criteria to create
cardiovascular and metabolic demands sufficient to induce significant benefits across
multiple physiological systems (Kikkinos et al. 2014; Qiu and Taylor 2016). These
demands include increased oxygen consumption to elevate cardiac output and
respiration, skeletal muscle blood flow demands to redistribute blood flow and
increase vascular shear stress, and metabolic heat production sufficient to increase
core temperature, all of which are implicated in the cardiometabolic benefits of
exercise and are reduced in individuals with SCI (Green 2009; Joyner and Green
2009; Laughlin 1999; Laughlin et al. 2008). Muscle paralysis, as a consequence of
SCI, reduces the amount of skeletal muscle that can voluntarily contribute to
exercise, and therefore lessens the exercise intensity and duration that can be
attained, and therefore the associated health benefits. Additionally, with an increased
duration of time since injury, there are parallel declines in whole-body cardiorespi-
ratory fitness and non-paralyzed muscle strength such that these individuals rank
near the bottom of the physical fitness spectrum (Dearwater et al. 1986; Qiu and
Taylor 2016). To maintain or increase cardiorespiratory fitness, it is currently
recommended that individuals with SCI complete at least 30 min of moderate
aerobic exercise 3 or more days per week or 20 min of vigorous aerobic exercise
more than 3 days per week (Martin Ginis et al. 2018; Tweedy et al. 2017). Although
these exercise guidelines are based on improvements in cardiorespiratory fitness, an
increase in fitness occurs in parallel with reductions of many factors related to risk
for cardiovascular disease (Franklin and McCullough 2009). However, the ability
simply to participate in exercise, much less meet exercise intensity and duration
guidelines is a challenge. Therefore, interventions to enhance exercise capacity or
supplemental therapy to mimic exercise may be beneficial for those with SCI to
confer the protective benefits of exercise.

12.3 Restoration of Function

Many types and modes of therapy are available for SCI rehabilitation but most do not
fully restore the motor function of paralyzed limbs (Harvey et al. 2016). The lack of
recovery is due to limited plasticity and regenerative capacity of the nervous system
(Ashammakhi et al. 2019). In the past 10 years, there have been substantial advances
in cell-based therapies, biomaterials, and biomolecules that aid in neuroregeneration
but these techniques have not advanced to a point to restore functional recovery in
humans (Ashammakhi et al. 2019). In general, treatment for SCI is focused on
stabilization of the injury site, prevention of complications, and physical rehabilita-
tion. Physical therapies are pragmatic and intended to improve quality of life
(McDonald and Sadowsky 2002). Therefore, therapies for SCI are not “regenera-
tive” but focus on maintaining or enhancing remaining function. In this context,
exercise has become an important and quantifiable means for functional recovery
(Fu et al. 2016; Sandrow-Feinberg et al. 2009; Warburton et al. 2007). Exercise not
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only strengthens non-paralyzed and potentially paralyzed muscle but may also
increase functional recovery through promoting brain remodeling, improving spinal
microenvironments, and maintaining distal motor neuron function (Fu et al. 2016).

12.3.1 Spinal Stimulation

Motor deficits are considered the most significant barrier to functional recovery.
Currently, some rehabilitative strategies attempt to activate and enhance remaining
functional neurons in individuals with partially preserved motor function. Spinal
stimulation (epidural or transcutaneous) requires a neural computer interfaced with
an electrode to apply electrical impulses onto dorsal root spinal neurons (Ozpinar
et al. 2016; Wagner et al. 2018). The impulses are synchronized with voluntary
repetitive muscle contractions or joint movements (i.e., exercise) (Ievins and Moritz
2017; McPherson et al. 2015). Following the cessation of stimulation, there can be
improvements in muscle activation and limb movement/mobility. While used pri-
marily in rodents, this technique has resulted in large improvements of joint move-
ments that aid walking, reaching, and grasping (Mushahwar et al. 2002; Sunshine
et al. 2013; Zimmermann et al. 2011). In humans, smaller improvements in joint
movement have occurred with spinal stimulation. Importantly, spinal stimulation in
combination with physical therapy has shown greater recovery of movement com-
pared to physical training alone and has improved lower limb flexion/extension, leg
strength, sit-to-stand tasks, ankle mobility during walking, as well as hand control
and grip strength (Al’joboori et al. 2020; Donovan et al. 2021; Jilge et al. 2004; Lu
et al. 2016; Meyer et al. 2020; Minassian et al. 2016; Sayenko et al. 2019; Wagner
et al. 2018). Although the precise mechanisms leading to the improved function are
unknown, it is believed that the stimulation drives neural plasticity by increasing
neural output, increasing neural activation, recruiting peripheral undamaged neu-
rons, or increasing the sensitivity of proprioceptive pathways (Ievins and Moritz
2017; Wagner et al. 2018). The improved mobility and muscle activation may
enhance exercise options for those with SCI. Unfortunately, continuous stimulation
appears to lose its effect after an extended period of time, and the improvements in
motor control gained from stimulation are often lost or significantly reduced in the
hours to days following the cessation of stimulation.

12.3.2 Functional Electrical Stimulation (FES)

Most aerobic exercise options for those with SCI are limited to the volitional
movement of the upper body given the loss of motor function in the legs. Unfortu-
nately, the small muscle mass of the upper body is insufficient to produce sustainable
high levels of aerobic work (Jacobs et al. 2001; Qiu and Taylor 2016). For example,
peak oxygen consumption during arms-only exercise can reach 25 ml/kg/min at
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workloads (~34 Watts) that can only be maintained for a few minutes (Glaser et al.
1980; Sawka et al. 1980). Hence, arms-only exercise is limited as a therapy to fulfill
exercise intensity and duration requirements for cardiovascular health. This is likely
the reason for the modest cardiovascular and respiratory improvements with arms-
only training (Taylor et al. 1986). To overcome the limitations of arm-only exercise,
external stimulation of paralyzed muscle, specifically the lower body, has been
promoted as a practical and effective intervention to increase active muscle mass
and whole-body oxygen consumption (Mutton et al. 1997).

Contraction of paralyzed skeletal muscle is accomplished by using an electrical
stimulus applied through muscle/nerve implantable probes or skin electrodes. The
electrical stimuli initiate action potentials within motor neurons resulting in muscle
contraction (Peckham and Knutson 2005). When the electrically elicited muscle
contractions are coordinated in a manner that provides functional movement, the
technique is termed functional electrical stimulation (FES) (Peckham and Knutson
2005). The purpose of FES is to generate muscular contractions and produce useful
movements such as leg flexion/extension for cycling or rowing exercises, and in
some cases walking.

For example, FES-evoked cycling uses bilateral stimulation of the quadriceps,
hamstrings, and gluteal muscles to perform cyclical pedaling movements of the legs
(Deley et al. 2014; Qiu and Taylor 2016). This commonly used FES modality
activates a relatively small amount of muscle mass and causes modest increases in
oxygen consumption, heart rate, and cardiac output (Fornusek and Davis 2008; Hunt
et al. 2007). FES activation of lower limb muscles has been shown to be important to
the exercise response as it engages the skeletal muscle pump during rhythmic
contractions to aid in venous return to the heart. Repeat sessions of FES have been
shown to increase quadriceps torque, glucose transport, citrate synthase activity,
capillary number, fatigue resistance, and muscle fiber cross sectional area (Chilibeck
et al. 1999a, 1999b; Rodgers et al. 1991; Sabatier et al. 2006). This technique has
been promoted as an effective way to increased exercise tolerance and improves
overall cardiovascular health by mimicking moderate-to-vigorous intensity exercise
training (Warburton et al. 2007). However, FES should not be considered synony-
mous with voluntary exercise. Externally activating skeletal muscle bypasses
feedforward input to the cardiorespiratory system from the central nervous system
(i.e., central command) and the paralyzed muscle provides minimal or no feedback
from the periphery (i.e., group III/IV muscle afferents) to the cardiovascular and
pulmonary centers in the brain stem Ely and Taylor 2021. Additionally, due to the
nature of electrical stimulation, muscle fibers are activated in reverse physiological
order. This reverse recruitment induces a high rate of muscle fatigue and a poten-
tially altered metabolism (Binder-Macleod and Snyder-Mackler 1993; Gregory and
Bickel 2005; Peckham and Knutson 2005). FES also results in low levels of systemic
vascular shear stress and small elevations of body core temperature. These factors
are not trivial and have causative connections to improving cardiovascular health.
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12.3.3 Hybrid Functional Electrical Stimulation

To induce greater exercise benefits and better mimic exercise in uninjured individ-
uals, a combination of FES of paralyzed leg muscle with voluntary arm exercise has
been implemented for cycling and rowing (Laskin et al. 1993). This hybrid mode of
exercise increases the mass of active musculature and produces simultaneous train-
ing of the upper and lower extremities (Qiu and Taylor 2016). Hybrid FES-exercise
results in greater cardiovascular responses and higher oxygen consumption than
either upper or lower body exercise alone (Brurok et al. 2011; Mutton et al. 1997).
Importantly, exercise training using hybrid methods produce between 10 and 60%
larger increases in cardiorespiratory fitness and cardiac function compared to arms-
only or FES lower body exercise training (Brurok et al. 2011; Gibbons et al. 2016;
Hettinga and Andrews 2008; Taylor et al. 2011). Importantly, studies have shown
that hybrid exercise is well-tolerated by individuals with SCI and can be maintained
at sufficient submaximal exercise intensities for long durations to meet exercise
guidelines for cardiovascular health (Hettinga and Andrews 2008; Qiu and Taylor
2016; Taylor et al. 2011). In fact, hybrid FES-exercise has been shown to decrease
blood pressure, insulin resistance, blood glucose, systemic inflammation, and
improve overall cardiovascular health (Bakkum et al. 2015; Griffin et al. 2009;
Warburton et al. 2007).

12.4 Ventilatory Limitations to Exercise in SCI

To meet the higher oxidative needs of muscle as exercise workload increases,
pulmonary ventilation is normally increased in parallel by increases in tidal volume
and breathing frequency. In most uninjured individuals ventilatory capacity is more
than adequate to meet metabolic demands for all exercise intensities, even following
large increases in muscle oxygen demand after strenuous training programs
(Casaburi et al. 1992; McParland et al. 1992). Individuals with SCI can have
impaired respiratory muscle control proportional to the level of injury. For example,
individuals with SCI above the third thoracic vertebra (<T3) have profound motor
loss/spasticity to accessory muscles of respiration, atrophy of respiratory muscles,
and reduced compliance of the lungs and chest wall. These factors not only reduce
the total amount of air an individual can move in and out of their lungs with each
breath but also contribute to an increased oxygen cost of breathing (Shields 2002). A
larger recruited skeletal muscle mass during exercise via FES creates a mismatch
between the oxygen demand of the muscle and the ventilatory capacity of the lungs,
especially in those with high-level injuries (Taylor et al. 2014). Therefore, when
large amounts of muscle mass are active (i.e., hybrid FES-exercise), exercise
intensity can be limited by pulmonary capacity (Qiu et al. 2016).
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12.4.1 Non-Invasive Ventilation (NIV)

A novel approach to potentially improve exercise capacity would be a support of
ventilation during exercise. Non-invasive ventilation (NIV) does not require intuba-
tion and provides external ventilatory support via positive air pressure through a
facemask during inhalation. Current NIV machines use bi-level positive pressure to
assist with lung expansion during inhalation and a reduced positive pressure upon
exhalation to limit airflow back to the machine. This technique has been demon-
strated to reduce the work of breathing, enhance exercise tolerance, and improve
exercise capacity in individuals with obstructive and resistive pulmonary diseases
(Borel et al. 2008; Dreher et al. 2010; van’t Hul et al. 2006; Vila et al. 2007).
Additionally, in individuals with chronic obstructive pulmonary disease (COPD),
NIV during a single bout of exercise reduced dyspnea, improved breathing patterns,
and enhanced oxygen and carbon dioxide exchange (Dreher et al. 2007; Maltais et al.
1995; van’t Hul et al. 2004). One study examining maximal exercise capacity in
individuals with SCI noted that NIV increased oxygen consumption only in indi-
viduals with high-level injuries and shorter time since injury. The improvement in
this population likely reflects the greater amount of respiratory motor control loss
due to the high injury and remaining muscle strength due to lesser atrophy from the
shorter time since injury (Vivodtzev et al. 2020). Therefore, targeted use of NIV to
support exercise could be an effective approach to overcome ventilatory limits.

12.4.2 Buspirone (Serotonergic Receptor Agonist)

Although paralyzed pulmonary musculature is partly responsible for the reduced
function, spinal and supraspinal neural control of respiration are reduced after SCI
and may also contribute to the reduced ventilation (De Troyer et al. 1986; De Troyer
and Heilporn 1980; Schilero et al. 2014; Zimmer and Goshgarian 2007). In addition
to damaged descending neurons, impaired ascending neuronal feedback contributes
to dysregulation during inspiratory and expiratory phases of breathing (Bezdudnaya
et al. 2017). One important neurotransmitter in both descending and ascending
pathways is serotonin. As a result, the serotonin 5HT1A receptor agonist buspirone
may increase the excitability of pulmonary neurons that survived the injury (Choi
et al. 2005; Kheck et al. 1995). Although buspirone is commonly prescribed as an
anxiolytic, it has been shown to increase respiratory responses to carbon dioxide in
an animal model of SCI (Choi et al. 2005; Teng et al. 2003), and in human case
studies, it has been found to improve chemosensitivity and respiratory rhythms in
individuals with apneustic syndromes/injuries (El-Khatib et al. 2003; Saito et al.
1999). In patients with COPD, 14 days of buspirone treatment reduced symptoms of
dyspnea and increased exercise tolerance (Argyropoulou et al. 1993). Interestingly, a
retrospective analysis of individuals with SCI taking buspirone displayed greater
increases in peak oxygen consumption and ventilation following 6 months of
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FES-rowing compared to a matched group of individuals in the same training
program not taking buspirone (Vivodtzev et al. 2021). Hence, this anxiolytic may
have the potential to improve exercise respiration, exercise capacity, and health
outcomes in those with SCI.

12.4.3 Drug Therapy that May Improve Locomotor Function

There are a number of medications that have displayed the potential to be
neurorestorative or improve motor function following a SCI. Some of these medi-
cations include metformin (Afshari et al. 2018; Zhang et al. 2017), riluzole (Srinivas
et al. 2019), dalfampridine (Hansebout et al. 1993), and antiNOGO (Zörner and
Schwab 2010). These medications have various targets on motor neurons including
modulating glutamine, potassium channels, and the myelin sheath. Individually,
these medications have varying levels of efficacy at improving function in animal
models of SCI. A medication that is showing some promise is spinalon. Spinalon,
currently in Phase I/II trials, is an investigational drug that is a combination of
monoamine receptor agonists, noradrenaline/dopamine precursors, and decarboxyl-
ase inhibitors (buspirone, levodopa, and carbodopa). This drug combination has
enhanced walking coordination in mice, turtles, and humans with SCI. These drugs
appear to stimulate the spinal walking reflex, allowing for up to 60 minutes of
walking motions to occur after administration (Guertin and Guertin 2012; Guertin
et al. 2010; Ung et al. 2012). Interestingly, this drug combination has initiated
walking motions in individuals with motor incomplete (AIS B) and complete (AIS
A) injuries. This combinational therapy may greatly improve exercise options,
including bipedal exercise therapy, and improve the health of individuals with
SCI. Unfortunately, early outcomes from transected mice models show that the
long duration sessions of walking may not reach an exercise intensity to improve
health outcomes in all body systems. In these mice, the walking attenuated loss of
muscle mass but did not slow the rate of reduction in bone density (Guertin et al.
2011). These investigations suggest that there is promise in improving motor
function through medications, and that combinational medications may be most
efficacious. Additionally, combinational drug therapies may be an important avenue
of enhancing exercise capabilities in those with SCI.

12.4.4 Intermittent Hypoxia

Intermittent hypoxia is a non-pharmacological intervention that may also increase
respiratory responses to exercise. This technique exposes individuals to short (60 s to
5 min) bouts of air with reduced oxygen content (~5% O2) which results in increased
ventilation. This practice appears to strengthen synaptic pathways to respiratory
motor neurons by a mechanism known as phrenic long-term facilitation (Ling et al.
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2001). Long-term facilitation is a serotonin-dependent change in spinal plasticity
that is characterized as a progressive increase in phrenic motor output during
hypoxia which remains elevated upon return to normal arterial oxygen levels (Fuller
et al. 2001, 2003). Only a small number of hypoxic events are required for a lasting
increase in respiratory motor output. In rats, the increased motor output lasts
approximately 90 min after three 90 sec hypoxic exposures, and it is reported that
10 exposures over 7 days could produce an effect that lasts 24 hours. In humans,
there is elevated ventilation immediately after hypoxic exposure and the effect is
larger in those with higher level injuries (Sankari et al. 2015). A case report in an
individual with a chronic C4 injury showed that 10 days of intermittent hypoxia
improved inspiratory capacity (Jaiswal et al. 2016). Therefore, longer duration
hypoxic exposure may enhance the magnitude of ventilatory long-term facilitation
in those with SCI (Jaiswal et al. 2016; Tester et al. 2014).

Intermittent hypoxia may also have positive effects on motor output, as hypoxia
increased the size of the motor action potentials of finger muscles by 20%
(Christiansen et al. 2021). In individuals with incomplete SCI, 15 90 s sessions of
intermittent hypoxia in combination with overground walking improved speed of
walking during 10-meter walk tests after 1 day and walking distance in a 6 min walk
test after 2 weeks of exposure (Hayes et al. 2014). Hence, intermittent hypoxia may
have therapeutic potential to enhance respiratory and motor function and may
improve exercise tolerance and capacity in individuals with SCI (Fuller et al.
2003). However, it should be noted that, potentially counterproductive to decreasing
risk factors for cardiovascular disease, intermittent hypoxia has been shown to
increase serum levels of cholesterol, phospholipids, and triglycerides in lean mice
(Li et al. 2005) and increase pro-inflammatory pathways in individuals with sleep
apnea (Ryan et al. 2005).

12.5 Heat Stress

Individuals with SCI are unlikely to experience large increases in body core tem-
perature during regular exercise therapies. Lesser whole-body metabolism from
relatively low exercise intensities, short duration, and smaller total skeletal mass
recruited to perform the exercise result in small elevations in core temperature. Some
of the cardiovascular benefits of exercise training are related to repeated intermittent
increases in body core temperature (Locke et al. 1990; Rhind et al. 2004) and
resultant alterations in vascular shear stress (Laughlin et al. 2008). The reduced
influence of this potentially important signaling pathway could limit cardiovascular
and metabolic adaptations. Therefore, heat therapy, or repeated exposure to passive
heat stress, has been proposed as a means to improve cardiovascular and metabolic
health in individuals with SCI (Ely et al. 2018; Hooper and Hooper 2009; Neff et al.
2016). Exercise and heat stress elicit many common physiological responses, in
addition to increasing core temperature, there are increases in cardiac chronotropy
and inotropy, redistribution of blood flow, and increased endothelial shear stress, all
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of which impact cardiovascular health (Johnson and Proppe 2011). Passive heat
therapy, using either sauna or hot water immersion, has been shown to improve
cardiovascular health in healthy, uninjured humans and in patients with elevated
cardiovascular disease risk. Passive heating increases cardiac function (Tei et al.
1995), decreases systemic vascular resistance (Tei et al. 1995), improves autonomic
profile (Ely et al., 2019b), augments brachial artery flow-mediated vasodilation
(Brunt et al. 2016b; Ely et al. 2019b; Imamura et al. 2001; Kihara et al. 2002),
elicits protection from ischemia-reperfusion injury (Brunt et al. 2016c; Ely et al.
2019b; Engelland et al. 2020), and improves microvascular function (Brunt et al.
2016a; Romero et al. 2017). Improvements have also been observed in
cardiometabolic variables including fasting blood glucose (Ely et al. 2019a; Hooper
1992), blood lipid profile (Ely et al. 2019b), and markers of inflammation (Ely et al.
2019a). Additionally, repeated heat exposure leads to the induction of cytoprotective
pathways which are associated with protection from cardiovascular and metabolic
disease (Horowitz and Assadi 2010; Krause et al. 2015; Kurucz et al. 2002; Maloyan
et al. 2005). Heat therapy research in individuals with SCI is currently limited to
single sessions studies, but importantly, these studies indicate heat therapy is safe
and well-tolerated. The single session studies indicate that passive heating interven-
tions such as lower limb or whole-body hot water immersion lead to altered
inflammatory profiles (Leicht et al. 2015) and endothelial cell activation (Coombs
et al. 2019), similar to what is observed following acute exercise. These initial first
studies indicate that heat therapy may be a novel and important approach to restore
cardiometabolic function in individuals with SCI.

12.6 Exoskeleton/Body Weight Supported Treadmill
Exercise

Robotic exoskeletons, limb orthoses, or bionic suits can allow individuals with
varying levels of SCI to safely and functionally walk for mobility or exercise
(Kandilakis and Sasso-Lance 2019). These orthoses increase walking/exercise time
by increasing the number of steps individuals can take (Gorgey et al. 2017). A
limitation often associated with exoskeletons is that they slow the movements of the
individual and often require greater oxygen consumption than normal walking
(Asselin et al. 2015; Evans et al. 2015; Massucci et al. 1998; Waters and Mulroy
1999). The greater oxygen consumption or metabolic load of movement may
actually be a benefit, as this indicates a greater exercise intensity (Kandilakis and
Sasso-Lance 2019). Previous individual sessions of exercise using exoskeletons in
conjunction with bodyweight supported treadmill training have shown a prolonged
exercise time, decreased ratings of fatigue, and improved muscle strength and
endurance (Wu et al. 2012). Using exoskeletons for up to 6 months of exercise
training has resulted in global changes in body composition such as an increased
bone density and decreased intramuscular and subcutaneous adipose tissue (Gorgey
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et al. 2017; Karelis et al. 2017). Six months of exoskeleton training also resulted in
improved blood glucose regulation (Phillips et al. 2004). Cardiac improvements with
exoskeleton exercise training include increased ejection fraction, increased heart
mass, decreased end-systolic and increased end-diastolic volumes, and reduced
isovolumetric relaxation times (Turiel et al. 2011). The positive changes in body
composition, cardiac structure and function, and glucose regulation ultimately
reduce the cardiovascular disease risk in those with SCI.

12.7 Combined Therapies

Exercise training in combination with other treatments that enhance or mimic
exercise may be important to realize the benefits of exercise. Combination therapies
may better mimic the stress of exercise upon the body than singular therapies and
may be more effective at improving the cardiovascular health of individuals with
SCI. For example, the combination of intermittent hypoxia with transcranial mag-
netic stimulation of the motor cortex produced larger motor evoked potentials of
finger muscles than repeated stimulation alone (Christiansen et al. 2021). Similarly,
the pairing of serotonin agonists drugs with electrical stimulation produced enhanced
motor function and greater muscle movements in mice than stimulation alone
(Gerasimenko et al. 2007, 2015; Van Den Brand et al. 2012). Recently, one study
on individuals with incomplete SCI paired peripheral nerve stimulation and mag-
netic transcortical stimulation with exercise. The combination of exercise and
stimulation contributed to a lasting retention of muscle strength and a decreased
time in a 10-minute walk test (Jo and Perez 2020). Incredibly, this combination
produced improvements in motor function that remained 6 months after the therapy.
These combinational therapies are showing great promise at increasing mobility and
exercise capacity. Therefore, combinational therapies with exercise may further
decrease cardiovascular health risk in those with SCI. Moreover, SCI can be
heterogenous; individuals with the same injury level and AIS scale may have a
very different loss of respiratory or autonomic function (Draghici and Taylor 2018).
Hence, some patients may respond better to some adjunctive therapies than others,
and so it may be wise to apply combination therapies to ensure the greatest response
across the spectrum of SCI.

12.8 Limitations

Many of the therapies to increase exercise tolerance may not be practical options for
all individuals. For example, to complete FES-exercise, electrical stimulation units
must be integrated with modified exercise equipment (e.g., bicycle or rowing
ergometer). In general, a basic electrical stimulation unit is not cost prohibitive
(<$200) but units that coordinate antagonistic muscle firing may be a few thousand
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dollars and are not commonly covered by insurance. Additionally, exoskeletons for
exercise rehabilitation are cost prohibitive for personal use (>$80,000) and require
additional trained personnel to set up and operate. Therefore, these therapies are
generally limited to clinical outpatient settings at hospitals or rehabilitation clinics
where equipment and trained staff are available for guidance. Similarly, heat therapy
using lower leg hot water immersion is a feasible home-based option using a bathtub
or heated leg bath (<$200), but supervision may be recommended for individuals
with higher level injuries (T6 and above) due to challenges with thermoregulation
and blood pressure regulation during heat stress, in addition to potential burning of
insensate skin (Schmidt and Chan 1992). Additionally, there are home-based units
that are able to produce hypoxic environments (e.g., HYPO2XICO) which can be
used in conjunction with exercise equipment, but these are often cost prohibitive at a
few thousand dollars per unit. Finally, animal models do not approximate the effects
of SCI in humans across all systems (Akhtar et al. 2008; Seok et al. 2013). Therefore,
many animal studies should be interpreted with caution as they were conducted in
murine species. Murine species are often used as surrogates for understanding
human physiology, but genomic differences often result in divergent findings
between the species (Seok et al. 2013).

12.9 Concluding Remarks and Future Directions

Individuals with SCIs are 2–6 times more likely to experience cardiovascular disease
than uninjured individuals (Cragg et al. 2012, 2013). The increased incidence of
CVD is due to amplified risk including increased physical inactivity, dyslipidemia,
uncontrolled blood pressure, and uncontrolled blood glucose (Cragg et al. 2013).
Currently, the best therapy to improve these cardiovascular disease risk factors is
exercise. However, benefits to health and wellness may not be available to those with
SCI since they may not be able to attain necessary exercise intensity or duration
thresholds. Therefore, a combination of approaches including drug and adjunctive
therapy in addition to exercise may be needed for this population to obtain reduc-
tions in cardiovascular disease risk. Future research focusing on combining exercise
with other treatments to maximize benefits will further elucidate the potential for
these adjunctive treatments to improve health and reduce morbidity and mortality
from metabolic and cardiovascular diseases in individuals with SCI.
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