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Ultrasound Stimulation of Tendon Healing:
Current Strategies and Opportunities
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Abstract Tendons are mechanosensitive tissues that are critical to musculoskeletal
mobility. An in-depth understanding of the mechanisms of tendon injury and healing
is crucial to the development of new therapeutic strategies for tendon healing.
Tendons do not possess a robust, intrinsic healing response, and conservative and
surgical treatments have shown limited efficacy. For chronic tendon injuries
(tendinopathies), the principal treatment of choice is exercise-based rehabilitation,
which confers improvements in clinical symptoms and function. Therapeutic Ultra-
sound (TUS) is commonly incorporated within physiotherapy applications and pro-
vides pain relief, likely via a thermal modality, to soft skeletal tissues. While
numerous animal studies have examined the efficacy of TUS in treating acute tendon
injuries, few clinical studies have examined this treatment for chronic
tendinopathies. Recently, focused ultrasound (FUS) methods have shown great
promise for noninvasive tissue ablation and stimulation of tissue healing but have
been minimally explored for musculoskeletal ailments. Precise and customizable
therapeutic FUS methods offer the potential to achieve effective, functional tissue
healing via thermal and/or mechanical stimulation pathways. This chapter explores
the potential of FUS therapies as customizable, noninvasive treatment options for
tendon injuries and offers insights into the current state and potential advancements
of ultrasound stimulation for tendon healing.
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10.1 Tendon: Anatomy, Injury, and Healing

10.1.1 Function and Anatomy

Tendons are dense, fibrous connective tissues that link muscle to bone and are
critical to the overall function of the musculoskeletal system. While the primary
function of tendons is to efficiently transmit tensile forces from muscle to bone, they
are also subjected to compression and shear forces. Mature tendon is characterized
by its hierarchical structure, and its mechanical function is dependent upon the
biochemical composition and organization of its extracellular matrix (ECM) (Voleti
et al. 2012; Screen et al. 2015; Snedeker and Foolen 2017). Tendon ECM is
primarily composed of fibrillar collagens, proteoglycans, glycosaminoglycans, gly-
coproteins, and elastin (Sharma and Maffulli 2006) (Fig. 10.1). Collagen is the
primary constituent of the tendon ECM, accounting for 60 to 85% of the dry weight
of the tissue (Screen et al. 2015). Type I collagen is the dominant structural
component, constituting nearly 95% of the total collagen content (Screen et al.
2015), while collagen types III, V, XI, XII, and XIV are present in much smaller
proportions (Benjamin et al. 2008; Screen et al. 2015). The typical, highly organized
collagen matrix can become disrupted in chronic injuries such as tendinopathy,

Fig. 10.1 Tendon hierarchical structure (reproduced with permission from Marqueti et al. (2019))
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while the presence of collagen III, which typically amounts to 3–5% of the total
collagen in a healthy tendon, may be elevated in tendinopathic tissue (Snedeker and
Foolen 2017). Non-collagenous ECM components include: proteoglycans (whose
hydrophilic nature allows for rapid diffusion of water-soluble molecules and cell
migration), glycoproteins such as fibronectin (which contributes to tendon repair and
regeneration processes), and elastic proteins such as Tenascin-C (which is associated
with collagen fiber alignment and orientation, and is upregulated by mechanical
strain) (Mackie and Ramsey 1996; Mehr et al. 2000) (Fig. 10.2).

Tendon cell populations are heterogeneous and contribute to ECM dynamics and
homeostasis (Costa-Almeida et al. 2019; Zhang et al. 2019). Tenoytes, also referred
to as resident cells, are fibroblast-like cells that are mainly responsible for ECM
turnover, collagen production and assembly. They are arranged in longitudinal rows
proximal to the collagen fibrils (Benjamin et al. 2008). Additionally, tendon stem/
progenitor cells (TPSCs) replenish tendon cells by undergoing self-renewal and
differentiation (Bi et al. 2007; Zhang and Wang 2010). Other cell populations
include endothelial and synovial cells of the tendon sheaths as well as chondrocytes
which are present within tendon-bone insertion sites and in tendon regions subjected
to compressive forces during physiologic loading (Benjamin and Ralphs 1998;
Kannus 2000; Zelzer et al. 2014). Tenocytes are mechanosensitive, and upon
experiencing mechanical load, they stretch along the collagen fibrils longitudinally,

Fig. 10.2 Interactions of proteoglycans and other matrix macromolecules within the extracellular
matrix of the tendon proper (reproduced with permission from Parkinson et al. (2011))
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signaling collagen production. By modulating their alignment and signaling in
accordance with their mechanical environment they alter ECM composition and
structure (Humphrey et al. 2014; Muller et al. 2015; Popov et al. 2015). While little
is known regarding the optimal loading conditions that may positively influence
tendon healing, understanding how biophysical stimulation influences healing is
critical to developing therapeutic treatments to restore pre-injury function.

10.1.2 Tendon Injuries and Healing

As tendons are frequently subjected to continuous or intermittent high magnitude
forces, these tissues are prone to both acute and chronic injuries. Such injuries are
debilitating, and are associated with ineffective healing, long-term pain, and loss of
function (Nourissat et al. 2015). The type, severity, and prevalence of tendon injuries
are dependent on multiple factors such as age, sex, activity levels, and genetic
disposition (Sharma and Maffulli 2006; Thomopoulos et al. 2015). While tendon
injuries are predominant in the elderly and athletic populations, they are becoming
increasingly prevalent in the general population, due to increasing life expectancy,
manual labor, and the popularity of strenuous loading activities such as exercise.
Worldwide, more than half of the sport-related injuries involve tendons, and tendon
damage is the most common orthopedic soft tissue injury (Walden et al. 2017). Apart
from being highly prone to injury, tendons generally have a poor intrinsic capacity
for healing, although the latter is dependent on the anatomic location and local
environment (Thomopoulos et al. 2015). Intrasynovial tendon injuries do not exhibit
spontaneous healing, while extrasynovial tendon injuries often result in fibrous
tissue formation owing to a robust, scar-mediated healing response post-injury
(Shen et al. 2021). Following its intrinsic repair response, tendon exhibits material
properties which are inferior to those of native, uninjured tissue (Muller et al. 2015;
Nourissat et al. 2015). Surgical and conservative medical interventions have limited,
short-term efficacy and thus, there is significant motivation for the development of
alternative approaches to improve tendon healing. Tendon injuries can be broadly
categorized as acute or chronic, the former being the result of a “macro-trauma” such
as a sudden mechanical overload, leading to a partial or complete rupture of the
tendon. Chronic injuries typically present with an absence of inflammatory cells due
to multiple stressors, including metabolic, biomechanical, genetic, and hypoxic
factors; the latter may induce cellular responses that lead to disruption of matrix
organization, loss of tissue material properties, and disrupted cell-matrix
mechanotransduction (Nourissat et al. 2015; Sayegh et al. 2015). The etiology of
chronic tendon disorders is multifaceted, and the subsequent degenerative pathway
is triggered by dysregulated cell-cell and cell-matrix communication.

A primary etiologic factor in tendinopathies is repeated mechanical loading
which exceeds the tendon’s ability to heal (Steinmann et al. 2020; Millar et al.
2021). Although a biomechanical loading event individually may be of a magnitude
within physiological limits, cumulative microtrauma from repetitive loading often
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leads to localized collagen fiber damage (Herod and Veres 2018; Leek et al. 2020;
Steinmann et al. 2020). When subjected to these stresses, a tendon may experience
either inflammation of its sheath or degeneration of its body, or a combination of
both (Sharma and Maffulli 2006). Recent evidence suggests the role of an inflam-
matory response in mediating tendon pathophysiology (Millar et al. 2017; Sunwoo
et al. 2020; Millar et al. 2021). Specifically, various immune cell types (mast cells,
macrophages, T cells) and inflammatory cytokines (interleukin (IL)-6, IL-5, IL-17,
IL-18, IL-33, tumor necrosis factor alpha (TNF-α)) have been identified to play a
critical role in the initiation and progression (early stages) of chronic tendon injuries
(Millar et al. 2010; Garcia-Melchor et al. 2021). Interactions between resident and
infiltrating immune cells and resident tenocytes are important in directing the
inflammatory response phase of tendon healing, via secretion of cytokines and
chemokines that regulate extracellular matrix remodeling. Pro-inflammatory cyto-
kines (including members of the IL- and TNF-families) have been implicated in
tendinopathy and are associated with immune cell recruitment, increased collagen
type III and reduced collagen type I production, and reduced tendon biomechanical
strength (Lin et al. 2006; Legerlotz et al. 2012; Dakin et al. 2014; Millar et al. 2017).
Very recently, Garcia-Melchor et al. (2021) reported that tenocytes upregulate the
genes involved in inflammation and T cell recruitment in vitro. T cell–tenocyte
interactions, in turn, resulted in the upregulation of inflammatory cytokine expres-
sion and an increased expression of collagen III. It has been proposed that this
autoregulated feedback loop plays a key role in chronicity and long-term complica-
tions of tendinopathy.

Largely due to the challenges presented in studying human tendinopathy, includ-
ing the difficulty in identifying the onset of the disease as well as in procuring injured
tissues at different stages of the post-injury response (Dirks and Warden 2011; Hast
et al. 2014), our understanding of the precise mechanisms of tendon injury and
healing remains incomplete. Tendon healing has primarily been studied using animal
models of acute tendon injury (e.g., transection) or other experimentally induced
tendon damage/injury models (Sharma and Maffulli 2005; Docheva et al. 2015).
Tendon healing consists of sequential and overlapping phases (Docheva et al. 2015;
Nourissat et al. 2015) including inflammation, cell proliferation, migration, and
remodeling (Voleti et al. 2012; Docheva et al. 2015); however, it is common for
incomplete healing to result in fibrovascular scar tissue which does not recapitulate
native composition and material properties (Nourissat et al. 2015).

In order to study mechanisms of mechanical “overload” on the development of
tendinopathy, researchers have developed a variety of preclinical approaches
(Thomopoulos et al. 2015; Theodossiou and Schiele 2019). Some of these methods
include uphill and downhill treadmill running in rats or mice (Heinemeier et al.
2012; Pingel et al. 2013; Zhang et al. 2020) and application of controlled, in vivo
fatigue loading to rat or mouse tendons (Fung et al. 2010; Andarawis-Puri et al.
2012; Sereysky et al. 2012). Furthermore, biochemical induction of tendon injury
has been studied using collagenase injections in various models including rabbits,
sheep, and rats (Chen et al. 2014; Lacitignola et al. 2014; Solchaga et al. 2014;
Urdzikova et al. 2014). Surgical repair following tendon transection has been
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particularly useful in studying acute injury healing mechanisms (Yoshida et al. 2016;
Moser et al. 2018). In vitro cell culture and tendon explant models (Goodman et al.
2004; Wunderli et al. 2020), as well as ex vivo rodent and equine tendon models,
have been used to examine the effects of repetitive mechanical loading (e.g., cyclic
strain or fatigue) on tendons (Arnoczky et al. 2007; Fung et al. 2009; Spiesz et al.
2015). Alteration of the tendon mechanical loading environment (e.g., by transec-
tion) can be effectively used to study biochemical responses (Maeda et al. 2011). An
in vivo tendinopathy model was developed (Bell et al. 2013a) by injecting TGFβ-1
into adult mouse Achilles tendons. This injury model induces tendinopathic changes
consistent with human histopathology (Bell et al. 2013a, b) and is amenable to
therapeutic mechanical interventions (Bell et al. 2013a; Rezvani et al. 2021) simu-
lating human treatments (Heinemeier et al. 2012; Dirks et al. 2013; Pingel et al.
2013; Reuther et al. 2013).

10.1.3 Mechanotherapy for Treatment of Chronic Tendon
Disease

There exist several common, conservative, and surgical approaches for the treatment
of chronic tendinopathies, such as rest and immobilization, anti-inflammatory drugs,
growth factor injections (i.e., platelet-rich plasma), and surgical repair (Lim et al.
2019; Tsai et al. 2021) (Table 10.1). However, there is limited evidence of their long-
term efficacy (Maffulli et al. 2010; Cardoso et al. 2019). The molecular mechanisms
of disease initiation and progression, as well as the reasons for a failed healing
response in lieu of restoration of tissue, are not well understood (Tsai et al. 2021).
However, it is hypothesized that dysregulated and/or missing cues underlie the
deficient healing response of a tendon; hence, a detailed understanding of such
cues and mechanisms will greatly assist in the identification and design of novel
therapeutic strategies to augment existing strategies to heal tendons. Rehabilitation
protocols aim to robustly repair injured tissues in a manner that reduces their risk for
reinjury (Gray and Brolinson 2001). This strategy involves the design of therapeutic
modalities and rehabilitative exercises that address the type of injury
(acute vs. chronic), symptoms, and tissue performance, via an in-depth understand-
ing of tissue biomechanics and pathophysiology of injury (Gray and Brolinson
2001). Rehabilitation protocols generally utilize “mechanotherapy” to induce adap-
tation of the musculoskeletal tissues to mechanical forces and/or strain by directing
cellular and molecular responses to achieve healing and/or regeneration. Identifying
optimal mechanical loading regimes defined by transcriptional, molecular, and
cellular responses is crucial in designing strategies for tendon repair and healing.
For example, eccentric exercise (lengthening of the muscle and tendon while under
load) is commonly used as a therapeutic modality to manage tendinopathy. These
exercises have been shown to improve tendon structure and mechanical properties
with corresponding improvements in clinical outcomes (Mafi et al. 2001; Fahlstrom
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et al. 2003; Yu et al. 2013) and have emerged as the most efficacious therapy across
numerous tendinopathies (Kingma et al. 2007; Murphy et al. 2018; Irby et al. 2020;
Vander Doelen and Jelley 2020). Given that the goal of tendinopathy treatments is to
restore normal tendon function, controlling the mechanical cues directed to the
injured tendon can potentially promote healing via mechanotransduction mecha-
nisms (Özer Kaya 2020). Regenerative rehabilitation approaches are, thus, central to
translational tendon healing research (Gottardi and Stoddart 2018; Rando and
Ambrosio 2018; Willett et al. 2020).

Table 10.1 Advantages and limitations of existing treatments for chronic tendon injuries

Method Advantages Limitations

1 Topical/systemic
anti-inflammatory
drugs for pain relief

Effectively relieve pain and
inflammation short-term; accessi-
ble and inexpensive

Insufficient evidence to support
use in chronic injuries; may neg-
atively alter natural tendon
healing process; long-term use
may cause adverse renal and
gastrointestinal effects

2 Exercise-based
rehabilitation

Principal treatment of choice
across all tendinopathies; may
tendon structural and biomechan-
ical properties with corresponding
improvements in clinical
outcomes

Precise mechanisms of action are
unknown; often require long
periods of rehabilitation; custom-
izing loading protocols to specific
degrees of pathology is challeng-
ing; chronic pain may deter par-
ticipation; requires patient
compliance with protocols

3 Growth factor, i.e.,
platelet-rich plasma
(PRP) treatment

Inexpensive; ease of administra-
tion (injections); low risk with
autologous treatment; potentially
beneficial in combination with
therapeutic exercise

Variable and conflicting out-
comes, potentially due to vari-
ability among PRP components

4 Therapeutic Ultra-
sound (TUS)

Widely accessible, noninvasive,
painless

Few existing clinical trial data;
conflicting data from preclinical
studies of efficacy for treatment
of acute injuries; no data on effi-
cacy for chronic injuries

5 Low energy laser
therapy (LLLT)

Evidence of reduction in inflam-
matory markers; provides pain
relief when used in conjunction
with exercise

Unclear mechanism of action;
lack of standardized/reliable pro-
tocols (parameters) for adminis-
tration; lack of homogeneous
efficacy data

6 Extracorporeal
Shockwave Ther-
apy (ESWT)

Ease of administration; proven
efficacy for treatment of specific
types of tendinopathy

Unclear mechanism of action,
lack of optimized treatment
parameters for different types of
tendon injuries
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10.2 Therapeutic Ultrasound and Tendon Healing

10.2.1 Physical Principles, Characteristics, and Modalities

Therapeutic Ultrasound (TUS) utilizes acoustic pressures and/or intensities higher
than those of diagnostic ultrasound to elicit biological responses in tissues. The
ultrasound beam is directed into a specific area or a region within the tissue of
interest to avoid damage to surrounding tissues. Existing TUS methods (e.g., in
physiotherapy to provide deep heating to tissues such as tendons, ligaments, and
skeletal muscles (Watson 2008) deliver low-intensity energy through the targeted
tissue via the propagation of sound waves applied by an external source. The most
common musculoskeletal application for TUS to date remains for pain and physio-
therapy in conditions such as osteoarthritis-related knee pain, chronic back pain,
lateral epicondylitis, and myofascial pain (Dedes et al. 2020; Gulati and Ottestad
2020; Petterson et al. 2020). Within the categorization of TUS, multiple ultrasound
modalities have been developed and examined with various delivery modes, acous-
tic pressures, and duty cycles, to elicit different biological mechanisms in tissues
(Fig. 10.3). Several examples include low-intensity pulsed ultrasound (LIPUS)
(Warden et al. 2008; Hsu and Holmes 2016; Tanaka et al. 2020), low-intensity
continuous ultrasound (cLIUS) (Lucchetti et al. 2020; Mittelstein et al. 2020), and
pulsed focused ultrasound (pFUS) for soft tissue healing (Burks et al. 2011;
Poliachik et al. 2014), nanoparticle delivery (O’Neill et al. 2009; Tharkar et al.
2019), physiotherapy for pain relief by providing deep heating to soft tissues
(typically combined with physical therapy) (Brown et al. 2015; Papadopoulos and
Mani 2020) and high-intensity focused ultrasound (HIFU) for thermal (tHIFU)
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Fig. 10.3 Schematic of waveforms (different amplitudes) illustrating different modalities of TUS
(Modified with permission from Liu et al. (2020))
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ablation (Dubinsky et al. 2008; Vidal-Jove et al. 2015; Mauri et al. 2018) and
non-thermal (histotripsy) tissue ablation (Vlaisavljevich et al. 2013; Bader et al.
2019; Xu et al. 2021).

A variety of labels have been utilized in published literature to describe different
types of therapeutic ultrasound, with some overlap between commonly used terms.
In general, these groups are broadly categorized based on the ultrasound intensity
(high vs. low) and exposure mode (continuous vs. pulsed) (Liu et al. 2020). For
clarity, in this chapter, we use the acronym HIFU to describe High Intensity Focused
Ultrasound exposures that induce thermal and/or non-thermal irreversible changes
within a short time frame (typically, it requires microseconds for direct effects during
the pulse or histotripsy cavitation, milliseconds to elicit physiological responses such
as in neuromodulation, to seconds or minutes for thermal changes). FUS refers to
focused ultrasound methods (see Sect. 10.3 below), while TUS is used to describe
low-intensity ultrasound exposures used currently for musculoskeletal physiother-
apy and pain relief applications, as noted above. Different forms of TUS can be
further categorized by understanding its basic physical parameters. A brief descrip-
tion of ultrasound parameters critical to the generated bioeffects and safety is given
in Table 10.2.

Thermal bioeffects of ultrasound result from absorption of the applied ultrasonic
energy. The amount of absorption and the accompanying heat generated depend
upon ultrasound acoustic parameters as well as tissue properties. The primary
determinants of thermal effects in tissues include tissue absorption coefficients and
ultrasound exposure conditions, such as duration, intensity, beam width, and fre-
quency. Importantly, there exists a direct relationship between the absorption capac-
ity of a tissue and its protein content. Highly collagenous tissues such as tendon and
ligament are known to absorb ultrasound energy more efficiently (Watson 2008).
Other determinants of tissue temperature changes include ultrasound pulse repetition
frequency and pulse duration, along with tissue characteristics such as density,
acoustic impedance, and thermal conductivity (Dalecki 2004; Shankar and Pagel
2011).

Research suggests that an increase of temperature between 1 �C and 4 �C from
baseline can provide therapeutic effects in tendons; however, higher elevations could
potentially result in harmful effects such as thermal denaturation of collagen
(Vlaisavljevich et al. 2015). An in vivo study investigated the ability of ultrasound
to heat human patellar tendon and found that ultrasound frequency, intensity,
duration of treatment, and size of the treatment area influenced heat production in
tendon (Chan et al. 1998). The rate of temperature rise was found to be higher in the
tendon compared to the adjoining muscle. Using a 3-MHz continuous ultrasound
treatment lasting 4 minutes, temperature rises in the range of 8 �C to 10 �C were
achieved using templates measuring two times the effective irradiation area of the
transducer head. Such controlled thermal effects via TUS application are desirable to
achieve pain relief, increased blood flow, decreased joint stiffness, and
hyperdynamic tissue metabolism (Watson 2008; Papadopoulos and Mani 2020).
Typically, physiotherapists utilize thermal effects of TUS to treat injuries such as
tendonitis, joint pain, low back and neck pain, muscle strains, plantar fasciitis,
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ligament sprains, and arthritis pain (Brown et al. 2015; Papadopoulos and Mani
2020).

A combination of non-thermal effects such as acoustic streaming, acoustic cav-
itation, and radiation force displacement (Dalecki 2004; Izadifar et al. 2017) can also
be produced by TUS or FUS application. Acoustic cavitation is the stable oscillation
(inertial cavitation) or collapse (non-inertial cavitation) of a gas bubble in the
presence of an acoustic field (Holland and Apfel 1990; Bader et al. 2019). Acoustic
radiation force is that which results from momentum transfer from the sound field to
the tissue of interest (Nightingale 2011; Urban 2018; Wang 2018). This effect itself
is a consequence of radiation torque and acoustic streaming. The acoustic streaming
phenomenon occurs when acoustic field propagation induces an increased rate of
fluid flow (Dalecki 2004).

Table 10.2 Ultrasound parameters

Parameter Definition

1 Frequency (Hertz, Hz) Number of US waves per second, or, number of times per second a
particle experiences a complete compression and rarefaction cycle.

2 Duty Cycle (%) The ratio of the time the transducer is “on” to the total exposure time
(time “on” plus time “off”)

3 Pulse Repetition Fre-
quency (Hz)

Number of pulses transmitted per second

4 Intensity (W/cm2) A measure of ultrasound exposure that can be calculated based on
maximum pressure measured in the field (Spatial Peak) or based on
pressure averaged over a specific area (Spatial Average). When
describing pulsed exposures, intensity may be applicable only while
the pulse is “ON” (Pulse Average) or may be averaged over total
time (Temporal Average).
The most commonly reported intensity is Spatial Average Temporal
Average (ISATA); other reported indices include Spatial Average
Pulse Average (ISAPA), Spatial Average Temporal Peak (ISATP),
Spatial Peak Temporal Average (ISPTA), and Spatial Peak Pulse
Average (ISPPA) (ter Haar 2007)

5 Acoustic power
(Watts)

Total energy passing through a surface per unit time (measure of
strength of ultrasound wave)

6 Mechanical index Peak negative pressure of US waves divided by peak frequency;
measures the likelihood of occurrence of a mechanical bioeffect due
to cavitation.

7 Acoustic pressure
(Pascal)

Changes in the local pressure of the medium, recorded as acoustic
compression and rarefaction, typically measured as peak to peak
pressure, peak negative pressure, or peak positive pressure. Defined
as the difference between maximum or minimum pressure of the
wave and average pressure of the medium in the absence of the
wave

8 Attenuation (dB/cm/
MHz)

Decrease in acoustic wave intensity per unit distance due to inter-
actions between the wave and medium. It is usually expressed as a
ratio of wave amplitudes in decibel notation, commonly per centi-
meter depth of tissue, per unit frequency, or at a specified frequency
(e.g., dB/cm/MHz or dB/cm at 1 MHz)
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TUS is an appealing method to safely transfer mechanical energy to tendon tissue
and elicit thermal and mechanical stimulation pathways in a prescribed manner.
Although the therapeutic efficacy of TUS has been demonstrated in multiple studies,
there is a substantial knowledge gap in understanding relationships between ultra-
sound dose (acoustic parameters) and the bioeffects elicited in these tissues. Optimal
identification of TUS parameters and their correlation with molecular and tissue-
level responses will largely benefit future research in ultrasound-induced tissue
regeneration and rehabilitation.

10.2.2 TUS in Tendon Healing

The most widely studied form of TUS for musculoskeletal tissue repair and regen-
eration is low-intensity pulsed ultrasound (LIPUS), with applications in osteoporo-
sis, fracture healing, mesenchymal stem cell recruitment and homing, and tendon–
bone junction healing (Warden et al. 2008; Khanna et al. 2009; Zhang et al. 2017;
Tanaka et al. 2020). Targeted application of TUS during different phases of tissue
repair can produce a synergistic effect on healing (Saber and Saber 2017). During the
inflammatory phase, TUS can stimulate mast cells, platelets, and macrophages,
activating inflammatory mediators (Maxwell 1992; Leung et al. 2004). Efficiency
of the proliferation phase of healing is also enhanced by TUS, by increasing collagen
production and scar tissue formation (Zhou et al. 2004; Watson 2008). Lastly, TUS
has also been shown to enhance the remodeling of scar tissue by improving collagen
fiber orientation and increasing tensile strength (Nussbaum 1998; Maan et al. 2014).

The therapeutic potential of TUS, specifically low-intensity ultrasound (LIUS), in
stimulating healing of acute tendon injuries has been investigated predominantly in
animal studies, which enable the concurrent evaluation of tissue biomechanics and
physiological responses to LIUS application (Table 10.3). Biomechanical metrics
such as ultimate load, tensile strength and energy absorption, and structural metrics
such as collagen organization and aggregation have been commonly characterized
after applying treatments to assess the efficacy of TUS on healing (Ng et al. 2003;
Yeung et al. 2006; Jeremias Junior et al. 2011). A 2016 review by Best et al.
summarized the effects of LIUS on tendon, tendon–bone junction, muscle and
ligament injuries (Best et al. 2016). The authors concluded that LIUS improves
tendon strength and accelerates collagen formation after acute injury in preclinical
models. Tensile strength and collagen expression (types I and III) were found to be
greater in LIUS treated tendons compared to untreated controls (Jackson et al. 1991;
da Cunha et al. 2001; Fu et al. 2008, 2010; Jeremias Junior et al. 2011; Kosaka et al.
2011). Regarding treatment time and duration (Fu et al. 2008, 2010), ultrasound
treatment in the earlier (relative to later) stages of healing appears to improve tensile
strength and matrix synthesis. While the available literature generally indicates that
LIUS enhances biomechanical and structural properties of injured tendons, ultra-
sound parameters (e.g., intensity, stimulation frequency, and mode) and animal
models (species, tendon of interest, and injury type) have varied across studies
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Table 10.3 Results of studies investigating therapeutic ultrasound (TUS) treatment of tendon
injuries

Author,
Year Species

Injury
(or Injury
Model) Treatment paradigm Key takeaways

da
Cunha
et al.
(2001)

Rat Achilles
tenotomy

1 MHz, 0.5 W/cm2, 5 min/
day for 14 days

Improved collagen orga-
nization and aggregation
when applied during early
stages of healing in pulsed
mode

Ng et al.
(2003)

Rat Achilles
hemitransection

1 MHz, 1.0 or 2 W/cm2,
4 min/session, for
22 sessions

Both treatment groups
showed improved ulti-
mate tensile strength
compared to controls

Demir
et al.
(2004)

Rat Achilles
tenotomy

1 MHz, 0.5 W/cm2, 5 min/
day, 9 days

Increased tendon break-
ing strength following
either TUS or laser ther-
apy; treatment using
combined modalities did
not show additional posi-
tive effects.

Yeung
et al.
(2006)

Rat Achilles
tenotomy

1 MHz, 0.5 W/cm2, 5 min/
day, 3 times/week, for 2 or
4 weeks

Increased ultimate tensile
strength and improved
collagen bundle
alignment.

Larsen
et al.
(2005)

Rabbit Achilles
tenotomy

3 MHz, varying intensities
from 50 to 2000 mW/cm2,
5 min/session, 10 sessions

No improvement in
mechanical properties of
healing tendons; mild
decline in stiffness with
increasing treatment
intensity

Ng and
Fung
(2007)

Rat Achilles
tenotomy

1 MHz, varying intensities
from 0.5 W/cm2 to 2 W/
cm2 daily starting from day
5 after injury for 4 min/
session for 22 sessions

Collagen fibril size
increased with treatment,
independent of intensity
level.

Fu et al.
(2008)

Rat Patellar tendon
mid-portion
window defect

1.0 MHz, 30 mW/cm2,
20 min/day, 5 days/week,
for 2, 4, or 6 weeks

Beneficial effects of
LIPUS (2-week treatment
group) included improved
ultimate tensile strength
and collagen fiber align-
ment. 4 or 6 weeks of
treatment was found to be
detrimental to collagen
remodeling.

Fu et al.
(2010)

Rat Central third
patellar tendon
removal

1.5 MHz, 150 mW/cm2,
20 min/day for 14 or
28 days

Enhanced collagen syn-
thesis during the granula-
tion phase of healing.

(continued)
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Table 10.3 (continued)

Author,
Year Species

Injury
(or Injury
Model) Treatment paradigm Key takeaways

Wood
et al.
(2010)

Rat Achilles tendon
partial rupture
by direct
trauma

3 MHz, 0.2 W/cm2, 5 min/
day, 5 days

Improved collagen orga-
nization; increased colla-
gen type 1 in laser- and
US-treated groups.

Jeremias
Junior
et al.
(2011)

Rat Achilles
tenotomy

1 MHz, 0.1 W/cm2, 5 min/
day for 28 days

Increased ultimate load
and tensile strength com-
pared to controls.

Kosaka
et al.
(2011)

Rat Achilles
tenotomy

1.5 MHz, 45 mW/cm2,
20 min/day

During the inflammatory
phase, COX-2 and EP4
were overexpressed with
LIPUS treatment, hence
exaggerating inflamma-
tion. TGF-β1, Col I, and
Col III expression levels
were elevated in treated
groups, encouraging tis-
sue remodeling.

Farcic
et al.
(2013)

Rat Achilles
tenotomy

1 MHz, 0.5 W/cm2, pulsed
application for 1, 2, or
3 minutes per transducer
area for 10 sessions

Collagen fibers showed
better aggregation and
organization in 3-minute
treatment group

Farcic
et al.
(2018)

Rat Achilles
tenotomy

1 MHz, 0.5 W/cm2, for
6 min/8 min/10 min for
10 days with 2 days of
interval after fifth treat-
ment day

10-minute treatment
group showed the best
collagen fiber aggregation
and organization.

D’Vaz
et al.
(2006)

Human Lateral
epicondylitis

1.5 MHz, 30 mW/cm2,
20 min/day for 12 weeks

Low-intensity ultrasound
was not very effective
compared to placebo.

Warden
et al.
(2008)

Human Patellar
tendinopathy

1.0 MHz, 100 mW/cm2,
20 min/day for 12 weeks

Visual Analog Scale
scores improved in both
placebo and LIPUS
treated groups; LIPUS
provided no additional
benefits over placebo.

Hsu and
Holmes
(2016)

Human Achilles
tendinopathy

Exogen® LIPUS device
used for 20 min/day for
8 weeks over an area of
maximum tenderness

Of 14 participants, 7 had
excellent clinical out-
comes with complete res-
olution of pain and other
symptoms. 2 patients had
good outcomes with mild
tendon irritation and stiff-
ness and 5 patients had
minimal benefit with con-
tinued pain, swelling, and
tenderness.

(continued)
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(Tsai et al. 2011). In consideration of these inconsistencies, direct comparison of
results is likely not warranted and researchers should exercise caution in deducing
the cellular and molecular mechanisms attributable to treatments. Hence, there is not
only an urgent need for standardization of TUS parameters and experimental
conditions (treatment time, injury models) in future investigations, but also clinically
relevant animal models whose tendon injury characteristics mirror those observed in
human injuries.

Clinical studies have examined the influence of TUS on lateral epicondylitis
(D’Vaz et al. 2006; Dedes et al. 2020), patellar tendinopathy (Warden et al. 2008;
de Jesus et al. 2019) and Achilles tendinopathy (Hsu and Holmes 2016). A 2015
study on the short-term effectiveness of LIPUS on human Achilles tendinopathy
revealed that all participants who had undergone traditional, nonsurgical treatment
modalities prior to using LIPUS, showed good to excellent improvements in pain
relief and function post-treatment (Hsu and Holmes 2016). In three studies that
examined the influence of TUS on epicondylitis and patellar tendinopathy, a signif-
icant decrease in tendon pain was observed after daily treatments with continuous or
pulsed LIUS treatment for 6 weeks (Best et al. 2016). However, two randomized
controlled trials were used to assess the utility of LIPUS to treat chronic
tendinopathies and reported that LIPUS provided no additional benefit to physical
therapy for chronic tendinopathies (D’Vaz et al. 2006; Warden et al. 2008). Thus,
while acute injury animal models demonstrate moderate effectiveness of LIUS in
tendon healing, human studies specifically investigating chronic tendon injuries do
not demonstrate promise as a noninvasive treatment option. Human studies investi-
gating TUS effects on acute tendon injuries would provide further evidence to guide
clinical practice, particularly if treatment paradigms across such studies were stan-
dardized, as noted above.

Extracorporeal Shockwave Therapy (ESWT) utilizes rapid, short-duration pres-
sure waves (“shockwaves”) intended to elicit physicochemical and cellular repara-
tive responses and has shown promise in treating a variety of musculoskeletal
conditions (Simplicio et al. 2020). ESWT can be regarded as high-intensity thera-
peutic ultrasound, since shockwaves can be generated under both continuous and
pulsed modes via transducers that induce nonlinear propagation effects resulting in
shock formation. Alternatively, shockwaves can also be generated by non-ultrasonic

Table 10.3 (continued)

Author,
Year Species

Injury
(or Injury
Model) Treatment paradigm Key takeaways

de Jesus
et al.
(2019)

Human Patellar
tendinopathy

1.0 MHz, 1.2 W/cm2,
8 min/day, 2�/week for
8 weeks in combination
with regimented exercise
program

TUS enhanced the results
obtained with rehabilita-
tive exercise including
pain and lower limb
motor function.

COX-2 cyclooxygenase-2 enzyme, EP4 Prostaglandin E2 receptor 4, TGF-β1 Transforming growth
factor beta 1, Col I Collagen type I, Col III Collagen type III
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sources such as electrohydraulic and electromagnetic systems (Simplicio et al.
2020). To date, the US FDA has only approved the use of ESWT for plantar fasciitis
and lateral epicondylitis (Wang 2012). Studies have shown that ESWT acts as a
mechanical stimulus and promotes healing via mechanotransduction (Moya et al.
2018; Simplicio et al. 2020) and may also alleviate pain (Hausdorf 2008). In
humans, ESWT may aid tendon healing by providing mechanical stimulation to
aid inflammatory and catabolic processes that are associated with damaged matrix
constituents (Waugh et al. 2015). A recent study compared the effectiveness of
ESWT and LIUS on pain, return to functionality, and quality of life in patients with
Achilles tendinopathy (Dedes et al. 2020). Although both interventions resulted in
significant improvements in pain and functionality immediately and 4 weeks post-
treatment, the effects of ESWT were more pronounced compared to LIUS. Another
recent, randomized controlled trial evaluated the effectiveness of point-focused
(small treatment volume focused on the point of maximum pain) and line-focused
(larger treatment volume with equally distributed energy density but smaller maxi-
mum pressure compared to point-focused) ESWT on patients with confirmed Achil-
les tendinopathy and concluded that both modalities showed superior outcomes in
terms of pain relief compared to placebo treatment (Gatz et al. 2021). Previous
in vitro studies have shown the positive effects of ESWT on tenocyte viability and
proliferation, collagen fiber synthesis and organization, expression of TGF-β1 and
IGF-1, and decreased expression of MMPs and pro-inflammatory interleukins (ILs)
(Banes et al. 1999; Chen et al. 2004; Notarnicola and Moretti 2012). While ESWT is
currently deemed as a safe and effective “mechanotherapy” to treat many musculo-
skeletal pathologies including chronic tendon injuries, unfortunately, there exists
very little guidance with regard to parameter selection to ensure repeatability and
effectiveness for degenerative tendinopathy (d’Agostino et al. 2017; Fan et al. 2020).

10.3 Focused Ultrasound: A Novel Therapeutic for Tendon
Healing?

Recently, Focused Ultrasound (FUS) methods have shown great promise for non-
invasive tissue ablation, neuromodulation, and drug delivery (Daoudi et al. 2017;
Miller and O’Callaghan 2017; Chua and Faigel 2019). FUS treatments are currently
approved for numerous applications including treatment of painful bone metastases,
essential tremor, uterine fibroids, and prostate cancer (Duc and Keserci 2019). FUS
is also gaining considerable interest as a musculoskeletal treatment option, with
clinical research in applications such as osteoarthritis, bone and desmoid tumors,
epicondylitis, rotator cuff injury, and plantar fasciitis (Liberman et al. 2009; Weeks
et al. 2012; Masashi Izumi et al. 2013; Chan et al. 2017). Another emerging
application of FUS is pain relief. Although the precise mechanisms of
FUS-induced analgesia are not clear, localized denervation of tissue targets and
neuromodulatory effects have been presumed (Brown et al. 2015).
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The multitude of diverse applications of FUS are largely dependent on the
exposure conditions and the manner in which they are delivered (Fishman and
Frenkel 2017). In contrast to HIFU (which is primarily used for tissue ablation),
therapeutic FUS can be leveraged to achieve effective, functional tissue healing via
thermal and/or mechanical stimulation pathways, without inducing irreversible
tissue damage. Furthermore, FUS can achieve higher precision with a wide range
of acoustic exposures that can encapsulate those utilized in LIUS and ESWT
(Fig. 10.4). Additionally, the pulsing parameters can be modulated in real-time
during treatment across a wide parameter space. With the advent of state-of-the-
art, customizable, reliable, and safe FUS systems, researchers and clinicians are
beginning to leverage the potential of image-guided, therapeutic FUS for the treat-
ment of many debilitating conditions.

Focusing on the ultrasound beams prevents them from being applied to other
regions, and minimizes the potential for thermal or mechanical damage to tissues
located outside the focal zone, allowing for precise treatments of targeted tissues or
tissue regions. To achieve localized biological effects, FUS transducers are designed
such that focused ultrasound beams converge at a single focal point, using tech-
niques such as geometric focusing (concave transducers that cause waves to arrive at
a single focal point), electronic focusing (using phased array transducers composed
of multiple piezoelectric elements), or by using acoustic lenses (mimicking a
concave transducer surface) (Elhelf et al. 2018).

Ultrasound waves interact with tissues to produce thermal and non-thermal
bioeffects (Sect. 10.2.1). Acoustic cavitation, which is one of the most widely
studied non-thermal mechanisms, is not significant at lower intensities and is often
associated with “high” acoustic pressures (Bader et al. 2019). Typically, at high-
pressure amplitudes, microscopic gas bubbles form and oscillate (non-inertial cav-
itation) or steadily grow in size and collapse above certain pressure thresholds
(inertial cavitation). Stable or non-inertial cavitation may induce reversible tissue
effects such as sonoporation, whereas inertial cavitation induces large stresses and
strains on the tissue, ultimately leading to irreversible tissue damage, i.e., histotripsy
ablation. Cavitation can also enhance thermal effects by increasing energy absorp-
tion at the focal point. Thus, acoustic amplitudes can directly alter the threshold for
inertial cavitation as they can change bubble response from non-inertial to inertial
cavitation. Mechanical Index (MI) is another parameter that is commonly used to

PEAK ACOUSTIC PRESSURE (MPa)

ESWT

FUS

TUS

0.01 0.5 1 10 100 150

Fig. 10.4 Comparison of an approximate range of peak acoustic pressures delivered by FUS,
ESWT, and Low-Intensity TUS
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determine the likelihood of cavitation. It is defined as the maximum value of
negative peak pressure divided by the root square of the acoustic center frequency.
The MI is frequently used to determine the exposures below which cavitation and
related bioeffects would not be observed.

In the absence of cavitation, tissue displacement due to FUS application typically
occurs as a result of radiation forces. Acoustic Radiation Force (ARF) is defined as
the time-averaged force exerted by acoustic waves on the tissue (Urban 2018). As a
result of these forces, localized tissue displacement and deformation can be
observed, due to transfer of momentum from the sound field to the tissue. Depending
on variables such as probe orientation, ultrasound can induce mechanical loading of
the extracellular matrix, which in turn provides a biophysical stimulus to the resident
cells. ARFs are known to influence cellular proliferation and protein synthesis as
evidenced by augmented wound healing and bone remodeling and healing (Curra
and Crum 2003; Zhang et al. 2012; Tang et al. 2015). Figure 10.5 depicts the
application of radial forces, which deform the tendon transversely while, simulta-
neously, shear loading of the tendon occurs longitudinally (i.e., along the tendon’s
long axis). Irrespective of the mode of mechanical loading, tissue deformation can be
spatially and temporally quantified using speckle-tracking methods in conjunction
with high-frequency imaging (Bercoff et al. 2004; Liu and Ebbini 2010; Ebbini and
ter Haar 2015). Perhaps the most prominent biomedical application utilizing ARFs is
in conjunction with imaging, to determine the mechanical properties of tissue by
utilizing radiation forces (Wells and Liang 2011; Doherty et al. 2013; Urban 2018).
Acoustic Radiation Force Impulse (ARFI) imaging utilizes short-duration acoustic
radiation forces to generate localized, quantifiable tissue deformation, thereby pro-
viding a noninvasive method to quantify tissue biomechanical properties. Recently,
the utility of ARFI imaging has been recognized for multiple tissue types including
tendon, thyroid, breast, kidney, and pancreas (Bojunga et al. 2012; Wang 2016;
Kaya et al. 2018).

Fig. 10.5 An FUS transducer producing Acoustic Radiation Force to generate tissue displacements
and/or deformation
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Currently, FUS methods are being explored to achieve effective tendon healing.
One approach is to utilize “low intensity” FUS methods to promote tendon healing
via radiation forces (predominantly mechanical stimulation) without producing
thermal damage and cavitation-like bioeffects (Meduri et al. 2020). Higher ampli-
tude pulses (compared to traditional physiotherapy applications) are expected to
induce larger tendon matrix strains, and this mechanical effect, similar to existing
mechanical loading (exercise) therapies typically used for the treatment of chronic
tendon injuries (Mafi et al. 2001; Kingma et al. 2007; Irby et al. 2020), in turn, can
effectively stimulate tendon repair. Researchers are also exploring histotripsy, a
cavitation-based therapy that utilizes short, high-intensity pulses to mechanically
homogenize tissue with negligible heating in the tissue (Smallcomb and Simon
2019). Such cavitation effects can induce targeted microdamage within the tendon
and promote a healing response, thus serving as an improved, noninvasive alterna-
tive to traditional dry needling approaches (Khandare et al. 2021). Initial studies
have shown that this approach preserves the mechanical properties of tendons better
than dry needling, without damaging the surrounding tissue.

The wide range of FUS applications utilizing both thermal and non-thermal
bioeffects indicate the need for robust, real-time image guidance systems with
high sensitivity and specificity, for target visualization, beam focusing, and accuracy
verification. An ideal, innovative FUS system for tendon healing applications can
precisely target tendons, accurately measure the resulting thermal and mechanical
bioeffects and facilitate the investigation of cell/tissue responses. Given the paucity
of published data on acoustic parameters and mechanisms of action associated with
focused ultrasound therapies for tendon injuries, a thorough investigation of such
methods in suitable preclinical models is necessary. Controlled studies in relevant
animal models will provide a rigorous basis for optimizing acoustic pulsing param-
eters for FUS tendon treatments, strengthen the rationale for using FUS as a
noninvasive treatment method of stimulating tendon healing and will establish a

Fig. 10.6 Schematic of a custom-built small animal FUS system allowing interchangeable trans-
ducers and driving systems (for different FUS exposures) and a high-frequency imaging system for
real-time treatment monitoring and guidance

348 C. Meduri et al.



modular, scalable experimental platform upon which further studies of different
species (e.g., rabbit, equine, and human) can readily be undertaken. Figure 10.6
depicts a modular, custom designed system that can apply controlled mechanical,
thermal, and mechanical-thermal (dual) stimulation to murine Achilles tendons,
under image guidance (Meduri et al. 2020). To establish the feasibility and efficacy
of applying different pulsing schemes to injured tendons, investigators may utilize
reliable preclinical tendon injury models such as tenotomy for acute injuries or a
previously established murine Achilles model (Bell et al. 2013a; Rezvani et al. 2021)
of degenerative tendinopathy. The concurrent utilization of real-time, high-fre-
quency ultrasound imaging (as depicted in Fig. 10.6), high field magnetic resonance
imaging (MRI) methods, or laser vibrometry enables the quantification of mechan-
ical effects.

Noninvasive (MRI thermometry) or invasive (thermocouple) assessment of
dynamic temperature changes accompanying FUS treatment of tendons is a crucial
component in analyzing thermal effects of pulsing. Experimental, regional measure-
ments of temperature may further be used to validate computational simulations of
predicted heating effects from FUS fields. The effect of predominantly thermal and
predominantly mechanical stimulation on the healing profiles of injured tendons can
then be established using biomechanical, geometric, cellular, and histologic
analyses.

10.4 Future Advancements in Ultrasound-Based
Stimulation of Tendon Healing

Although therapeutic ultrasound approaches are widely used for physiotherapy
applications, the mechanism of action and optimal acoustic parameters are poorly
understood and have not been systematically investigated in comparative studies
utilizing in vivo tendon injury models. Novel in vivo data from small animal FUS
studies will serve as a foundation upon which the methodology can be readily
adapted to larger species in order to explore a wider range of FUS treatments in
more clinically relevant animal models. Future studies aimed at identifying optimal
TUS modalities (e.g., FUS and ESWT) and the corresponding acoustic parameter
sets for the treatment of specific tendon injuries (acute and chronic) will strengthen
the rationale for using ultrasound modalities for noninvasive stimulation of tendon
healing and regeneration.

Specifically, for the treatment of chronic tendon injuries, it is widely known that
mechanical loading-based treatments such as exercise-based rehabilitation can effec-
tively treat symptomatic tendinopathy; however, the mechanism of this healing
response is not well understood. Furthermore, physiotherapy requires patient com-
pliance, frequently causes discomfort, and may require lengthy treatment periods
(e.g., up to 5 years) for symptomatic relief and restored functionality. Successful
development of US-based treatments for chronic tendon injuries may provide further
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insights into the aforementioned healing pathways in response to mechanical load-
ing. Finally, FUS approaches for treatment of tendon injuries alone or in combina-
tion with other therapies could represent an attractive alternative for individuals who
are unable or unwilling (e.g., due to pain or injury severity) to pursue physical
therapy. In turn, prompt and effective treatment of injured tendons is expected to halt
the progression of long-term, degenerative changes that may lead to chronic mobility
issues.
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