
Chapter 9
Principal Component Analysis

9.1. Introduction

We will adopt the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. The determinant of
a square matrix A will be denoted by |A| or det(A) and, in the complex case, the abso-
lute value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix
X. Letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

The requisite theory for the study of Principal Component Analysis has already been
introduced in Chap. 1, namely, the problem of optimizing a real quadratic form that is sub-
ject to a constraint. We shall formulate the problem with respect to a practical situation
consisting of selecting the most “relevant” variables in a study. Suppose that a scientist
would like to devise a “good health” index in terms of certain indicators. After select-
ing a random sample of individuals belonging to a population that is homogeneous with
respect to a variety of factors, such as age group, racial background and environmental
conditions, she managed to secure measurements on p = 15 variables, including for in-
stance, x1: weight, x2: systolic pressure, x3: blood sugar level, and x4: height. She now
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faces a quandary as there is an excessive number of variables and some of them may not
be relevant to her investigation. A methodology is thus required for discarding the unim-
portant ones. As a result, the number of variables will be reduced and the interpretation
of the results, possibly facilitated. So, what might be the most pertinent variables in any
such study? If all the observations of a particular variable xj are concentrated around a
certain value, μj , then that variable is more or less predetermined. As an example, sup-
pose that the height of the individuals comprising a study group is neighboring 1.8 meters
and that, on the other hand, it is observed that the weight measurements are comparatively
spread out. On account of this, while height is not a particularly consequential variable
in connection with this study, weight is. Accordingly, we can utilize the criterion: the
larger the variance of a variable, the more relevant this variable is. Let the p × 1 vector
X, X′ = (x1, . . . , xp), encompass all the variables on which measurements are avail-
able. Let the covariance matrix associated with X be Σ , that is, Cov(X) = Σ . Since
linear functions also contain individual variables, we may consider linear functions such
as u = a1x1 + · · · + apxp = A′X = X′A, a prime designating a transpose, where

X =

⎡
⎢⎢⎢⎣

x1
x2
...

xp

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

a1
a2
...

ap

⎤
⎥⎥⎥⎦ and Σ = (σij ) =

⎡
⎢⎢⎢⎣

σ11 σ12 . . . σ1p
σ21 σ22 . . . σ2p
...

...
. . .

...

σp1 σp2 . . . σpp

⎤
⎥⎥⎥⎦ . (9.1.1)

Then,
Var(u) = Var(A′X) = Var(X′A) = A′ΣA. (9.1.2)

9.2. Principal Components

As will be explained further, the central objective in connection with the derivation of
principal components consists of maximizingA′ΣA. Such an exercise would indeed prove
meaningless unless some constraint is imposed on A, considering that, for an arbitrary
vector A, the minimum of A′ΣA occurs at zero and the maximum, at +∞, Σ = E[X −
E(X)][X − E(X)]′ being either positive definite or positive semi-definite. Since Σ is
symmetric and non-negative definite, its eigenvalues, denoted by λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,
are real. Moreover, Σ being symmetric, there exists an orthonormal matrix P, PP ′ =
I, P ′P = I, such that

P ′ΣP = diag(λ1, . . . , λp) ≡ Λ =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp

⎤
⎥⎥⎥⎦ (9.2.1)
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and

Σ = PΛP ′ = λ1P1P
′
1 + · · · + λpPpP ′

p , (9.2.2)

where P1, . . . , Pp constitute the columns of P , Pi denoting a normalized eigenvector cor-
responding to λi, i = 1, . . . , p; this is expounded for instance in Mathai and Haubold
(2017a). Note that all real symmetric matrices, including those having repeated eigenval-
ues, can be diagonalized. Since the optimization problem is pointless when A is arbitrary,
the search for an optimum shall be confined to vectorsA such thatA′A = 1, that is, vectors
lying on the unit sphere in 	p. Without any loss of generality, the coefficients of the linear
function can be selected so that the Euclidean norm of the coefficient vector is unity, in
which case a minimum and a maximum will both exist. Hence, the problem can be restated
as follows:

Maximize A′ΣA subject to A′A = 1. (i)

We will resort to the method of Lagrangian multipliers to optimize A′ΣA subject to the
constraint A′A = 1. Let

φ1 = A′ΣA − λ(A′A − 1) (ii)

where λ is a Lagrangian multiplier. Differentiating φ1 with respect to A and equating the
result to a null vector (vector/matrix derivatives are discussed in Chap. 1, as well as in
Mathai 1997), we have the following:

∂φ1

∂A
= O ⇒ 2ΣA − 2λA = O ⇒ ΣA = λA. (iii)

On premultiplying (iii) by A′, we have

A′ΣA = λA′A = λ. (9.2.3)

In order to obtain a non-null solution for A in (iii), the coefficient matrix Σ − λI has to
be singular or, equivalently, its determinant has to be zero, that is, |Σ − λI | = 0, which
implies that λ is an eigenvalue of Σ , A being the corresponding eigenvector. Thus, it
follows from (9.2.3) that the maximum of the quadratic form A′ΣA, subject to A′A = 1,
is the largest eigenvalue of Σ :

max
A′A=1

[A′ΣA] = λ1 = the largest eigenvalue of Σ.

Similarly,
min

A′A=1
[A′ΣA] = λp = the smallest eigenvalue of Σ. (9.2.4)
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Since Var(A′X) = A′ΣA = λ, the largest variance associated with a linear combina-
tion A′X wherein the vector A is normalized, is equal to λ1, the largest eigenvalue of Σ ,
and letting A1 be the normalized (A′

1A1 = 1) eigenvector corresponding λ1, u1 = A′
1X

will be that linear combination of X having the maximum variance. Thus, u1 is called
the first principal component which is the linear function of X having the maximum vari-
ance. Although normalized, the vector A1 is not unique, as (−A1)

′(−A1) is also equal to
one. In order to ensure the unicity, we will require that the first nonzero element of A1—
and the other p − 1 normalized eigenvectors—be positive. Recall that since Σ is a real
symmetric matrix, the λj ’s are real and so are the corresponding eigenvectors. Consider
the second largest eigenvalue λ2 and determine the associated normalized eigenvector A2;
then u2 = A′

2X will be the second principal component. Since the matrix P that di-
agonalizes Σ into the diagonal matrix of its eigenvalues is orthonormal, the normalized
eigenvectors A1, A2, . . . , Ap are necessarily orthogonal to each other, which means that
the corresponding principal components u1 = A′

1X, u2 = A′
2X, . . . , up = A′

pX will be
uncorrelated. Let us see whether uncorrelated normalized eigenvectors could be obtained
by making use of the above procedure. When constructing A2, we can impose an addi-
tional condition to the effect that A′X should be uncorrelated with A′

1X, A′
1ΣA1 being

equal to λ1, the largest eigenvalue of Σ . The covariance between A′X and A′
1X is

Cov(A′X, A′
1X) = A′Cov(X)A1 = A′ΣA1 = A′

1ΣA. (9.2.5)

Hence, we may require that A′ΣA1 = A′
1ΣA = 0. However,

0 = A′ΣA1 = A′(ΣA1) = A′λ1A1 = λ1A
′A1 ⇒ A′A1 = 0. (iv)

Observe that λ1 > 0, noting that Σ would be a null matrix if its largest eigenvalue were
equal to zero, in which case no optimization problem would remain to be solved. Consider

φ2 = A′ΣA − 2μ1(A
′ΣA1 − 0) − μ2(A

′A − 1) (v)

where μ1 and μ2 are the Lagrangian multipliers. Now, differentiating φ2 with respect to A

and equating the result to a null vector, we have the following:

∂φ2

∂A
= O ⇒ 2ΣA − 2μ1(ΣA1) − 2μ2A = O. (vi)

Premultiplying (vi) by A′
1 yields

A′
1ΣA − μ1A

′
1ΣA1 − μ2A

′
1A = 0 ⇒ 0 − μ1λ1 − 0 ⇒ μ1 = 0, (vii)
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which entails that the added condition of uncorrelatedness with u1 = A′
1X is superfluous.

When determining Aj , we could require that A′X be uncorrelated with the principal com-
ponents u1 = A′

1X, . . . , uj−1 = A′
j−1X; however, as it turns out, these conditions become

redundant when optimizing A′ΣA subject to A′A = 1. Thus, after determining the nor-
malized eigenvector Aj (whose first nonzero element is positive) corresponding the j -th
largest eigenvalue of Σ , we form the j -th principal component, uj = A′

jX, which will
necessarily be uncorrelated with the preceding principal components. The question that
arises at this juncture is whether all of u1, . . . , up are needed or a subset thereof would
suffice? For instance, we could interrupt the computations when the variance of the prin-
cipal component uj = A′

jX, namely λj , falls below a predetermined threshold, in which
case we can regard the remaining principal components, uj+1, . . . , up, as unimportant
and omit the associated calculations. In this way, a reduction in the number of variables is
achieved as the original number of variables p is reduced to j < p principal components.
However, this reduction in the number of variables could be viewed as a compromise since
the new variables are linear functions of all the original ones and so, may not be as inter-
pretable in a real-life situation. Other drawbacks will be considered in the next section.
Observe that since Var(uj ) = λj , j = 1, . . . , p, the fraction

ν1 = λ1∑p

j=1 λj

= the proportion of the total variation accounted for by u1, (9.2.6)

and letting r < p,

νr =
∑r

j=1 λj∑p

j=1 λj

= the proportion of total variation accounted for by u1, . . . , ur . (9.2.7)

If ν1 = 0.7, ν1 accounts for 70% of the total variation in the original variables or 70% of
the total variation is due to the first principal component. If r = 3 and ν3 = 0.99, then
the sum of the first three principal components accounts for 99% of the total variation. We
can also use this percentage of the total variation as a stopping rule for the determination
of the principal components. For example when νr of (9.2.7) is say, greater than or equal
to 95%, we may interrupt the determination of the principal components beyond ur .

Example 9.2.1. Even though reducing the number of variables is a main objective of
Principal Component Analysis, for illustrative purposes, we will consider a case involving
three variables, that is, p = 3. Compute the principal components associated with the
following covariance matrix:

V =
⎡
⎣

3 −1 0
−1 3 1
0 1 3

⎤
⎦ .
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Solution 9.2.1. Let us verify that V is positive definite. The leading minors of V = V ′
being

|(3)| = 3 > 0,

∣∣∣∣
3 −1

−1 3

∣∣∣∣ = 32 − (−1)2 = 8 > 0,

∣∣∣∣∣∣
3 −1 0

−1 3 1
0 1 3

∣∣∣∣∣∣
= 3[32 − (−1)2] − (−1)[(−1)(3) − 0] = 21 > 0,

V > O. Let us compute the eigenvalues of V . Consider the equation |V − λI | = 0 ⇒
(3−λ)[(3−λ)2−1]−(3−λ) = 0⇒ (3−λ)[(3−λ)2−2] = 0⇒ (3−λ)(3−λ±√

2) = 0.
Hence the eigenvalues are λ1 = 3 + √

2, λ2 = 3, λ3 = 3 − √
2. Let us compute an

eigenvector corresponding to λ1 = 3 + √
2. Consider (V − λ1I )X = O, that is,

⎡
⎣

3 − λ1 −1 0
−1 3 − λ1 1
0 1 3 − λ1

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ . (i)

There are three linear equations involving the xj ’s in (i). Since the matrix V − λI is
singular, we need only consider any two of these three linear equations and solve to obtain
a solution. Let the first equation be −√

2x1 −x2 = 0 ⇒ x2 = −√
2x1, and the second one

be −x1 − √
2x2 + x3 = 0 ⇒ −x1 + 2x1 + x3 = 0 ⇒ x3 = −x1. Now, one solution is

X1 =
⎡
⎣

1
−√

2
−1

⎤
⎦ , which once normalized is A1 = 1

2

⎡
⎣

1
−√

2
−1

⎤
⎦ .

Observe that X1 also satisfies the third equation in (i) and that

A′
1V A1 = 1

4
[1, −√

2, −1]
⎡
⎣

3 −1 0
−1 3 1
0 1 3

⎤
⎦

⎡
⎣

1
−√

2
−1

⎤
⎦

= 1

4
[3(1)2 + 3(−√

2)2 + 3(−1)2 − 2(1)(−√
2) + 2(−√

2)(−1)]
= 3 + √

2 = λ1.

Thus, the first principal component, denoted by u1, is

u1 = A′
1X = 1

2
[x1 − √

2x2 − x3]. (ii)
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Now, consider an eigenvector corresponding to λ2 = 3. (V − λ2I )X = O provides the
first equation: −x2 = 0 ⇒ x2 = 0, the third equation giving −x1 + x3 = 0 ⇒ x1 = x3.
Therefore, one solution for X is

X2 =
⎡
⎣
1
0
1

⎤
⎦ whose normalized form is A2 = 1√

2

⎡
⎣
1
0
1

⎤
⎦ ,

so that the second principal component is

u2 = 1√
2
[x1 + x3]. (iii)

It can readily be checked that A′
2V A2 = 3 = λ2. Let us now obtain an eigenvector

corresponding to the eigenvalue λ3 = 3−√
2. Consider the linear system (V −λ3)X = O.

The first equation is
√
2x1 − x2 = 0 ⇒ x2 = √

2x1, and the third one gives x2 + √
2x3 =

0 ⇒ x2 = −√
2x3. One solution is

X3 =
⎡
⎣

1√
2

−1

⎤
⎦ , its normalized form being A3 = 1

2

⎡
⎣

1√
2

−1

⎤
⎦ .

The third principal component is then

u3 = 1

2
[x1 + √

2x2 − x3]. (iv)

It is easily verified that A′
3V A3 = λ3 = 3 − √

2. As well,

Var(u1) = 1

4
[Var(x1) + 2Var(x2) + Var(x3) − 2

√
2Cov(x1, x2)

− 2Cov(x1, x3) + 2
√
2Cov(x2, x3)]

= 1

4
[3 + 2 × 3 + 3 + 2

√
2(−1) − 2(0) + 2

√
2]

= 1

4
[3 × 4 + 4

√
2] = 3 + √

2 = λ1.

Similar calculations will confirm that Var(u2) = 3 = λ2 and Var(u3) = 2 − √
2 = λ3.

Now, consider the covariance between u1 and u2:

Cov(u1, u2) = 1√
2
[Var(x1) + Cov(x1, x3) − √

2Cov(x1, x2) − √
2Cov(x2, x3)

− Cov(x3, x1) − Var(x3)]
= 1

4
[ 3 + 0 + √

2 − √
2 − 0 − 0 − 3 ] = 0.



604 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

It can be likewise verified that Cov(u1, u3) = 0 and Cov(u2, u3) = 0. Note that u1, u2,

and u3 respectively account for 49.1%, 33.3% and 17.6% of the total variation. As none of
these proportions is negligibly small, all three principal components are deemed relevant
and, in this instance, it is not indicated to reduce the number of the original variables.
Although we still end up with as many variables, the uj ’s, j = 1, 2, 3, are uncorrelated,
which was not the case for the original variables.

9.3. Issues to Be Mindful of when Constructing Principal Components

Since variances and covariances are expressed in units of measurement, principal com-
ponents also depend upon the scale on which measurements on the individual variables are
made. If we change the units of measurement, the principal components will differ. Sup-
pose that xj is multiplied by a real scalar constant dj , j = 1, . . . , p, where some of the
dj ’s are not equal to 1. This is equivalent to changing the units of measurement of some
of the variables. Let

X =
⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ , Y =

⎡
⎢⎣

d1x1
...

dpxp

⎤
⎥⎦ = DX, D =

⎡
⎢⎢⎢⎣

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dp

⎤
⎥⎥⎥⎦ , (9.3.1)

and consider the linear functions A′X and A′Y . Then,

Var(A′X) = A′ΣA, Var(A′Y ) = A′Var(DX)A = A′DΣDA. (9.3.2)

Since the eigenvalues of Σ and DΣD differ, so will the corresponding principal com-
ponents, and if the original variables are measured in various units of measurements, it
would be advisable to attempt to standardize them. Letting R denote the correlation ma-
trix which is scale-invariant, observe that the covariance matrix Σ = Σ1R Σ1 where
Σ1 = diag(σ1, . . . , σp), σ 2

j being the variance of xj , j = 1, . . . , p. Thus, if the orig-
inal variables are scaled by the inverses of their associated standard deviations, that
is, xj

σj
or equivalently, via the transformation Σ−1

1 X, the resulting covariance matrix is

Cov(Σ−1
1 X) = R, the correlation matrix. Accordingly, constructing the principal compo-

nents by making use of R instead of Σ , will mitigate the issue stemming from the scale of
measurement.

If λ1, . . . , λp are the eigenvalues of Σ , then λk
1, . . . , λ

k
p will be the eigenvalues of Σk.

Moreover, λ and λk will share the same eigenvectors. Note that the collection (λk
1, . . . , λ

k
p)

will be well separated compared to the set (λ1, . . . , λp) when the λi’s are distinct and
greater than one. Hence, in some instances, it might be preferable to construct principal
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components by making use of Σk for an appropriate value of k instead of Σ . Observe that,
in certain situations, it is not feasible to provide a physical interpretation of the principal
components which are a linear function of the original x1, . . . , xp. Nonetheless, they can
at times be informative by pointing to the average of certain variables (for example, u2

in the previous numerical example) or by eliciting contrasts between two sets of variables
(for example, u3 in the previous numerical example, which opposes x3 to x1 and x2).

To illustrate how the eigenvalues of a correlation matrix are determined, we revisit Ex-
ample 9.2.1 wherein the variances of the xj ’s or the diagonal elements of the covariance
matrix are all equal to 3. Thus, in this case, the correlation matrix is R = 1

3V , and the
eigenvalues of R will be 1

3 times the eigenvalues of V . However, the normalized eigen-
vectors will remain identical to those of V , and therefore the principal components will
not change. We now consider an example wherein the diagonal elements of the covariance
matrix are different.

Example 9.3.1. Let X′ = (x1, x2, x3) where the xj ’s are real scalar random variables.
Compute the principal components resulting from R, the correlation matrix of X, where

R =
⎡
⎢⎣

1 0 1√
6

0 1 − 1√
6

1√
6

− 1√
6

1

⎤
⎥⎦ .

Solution 9.3.1. Let us compute the eigenvalues of R. Consider the equation

|R − λI | = 0 ⇒ (1 − λ)
[
(1 − λ)2 − 1

6

]
− 1√

6

[
− 1√

6
(1 − λ)

]
= 0

⇒ (1 − λ)
[
(1 − λ)2 − 1

3

]
= 0.

Thus, the eigenvalues are λ1 = 1 + 1√
3
, λ2 = 1, λ3 = 1 − 1√

3
. Let us compute an

eigenvector corresponding to λ1 = 1 + 1√
3
. Consider the system (R − λ1I )X = O. The

first equation is

− 1√
3
x1 + 1√

6
x3 = 0 ⇒ x1 = 1√

2
x3,

the second equation being

− 1√
3
x2 − 1√

6
x3 = 0 ⇒ x2 = − 1√

2
x3.
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Let us take x3 = √
2. Then, an eigenvector corresponding to λ1 is

X1 =
⎡
⎣

1
−1√
2

⎤
⎦ , and its normalized form is A1 = 1

2

⎡
⎣

1
−1√
2

⎤
⎦ .

Let us verify that the third equation is also satisfied by X1 or A1. This is the case since
1√
6

+ 1√
6

−
√
2√
3

= 0, and the first principal component is indeed u1 = 1
2 [x1 − x2 + √

2x3].
As well, the variance of u1 is equal to λ1:

Var(u1) = 1

4
[Var(x1) + Var(x2) + 2Var(x3) − 2Cov(x1, x2)

+ 2
√
2Cov(x1, x3) − 2

√
2Cov(x2, x3)]

= 1

4

[
1 + 1 + 2 + 2

√
2√
6

+ 2
√
2√
6

]
= 1 + 1√

3
= λ1.

Let us compute an eigenvector corresponding to the eigenvalue λ2 = 1. Consider the linear
system (R − λ2I )X = O. The first equation, 1√

6
x3 = 0, gives x3 = 0 and the second one

also yields x3 = 0; as for the third one, x1√
6

− x2√
6

= 0 ⇒ x1 = x2. Letting x1 = 1, an
eigenvector is

X2 =
⎡
⎣
1
1
0

⎤
⎦ , its normalized form being given by A2 = 1√

2

⎡
⎣
1
1
0

⎤
⎦ .

Thus, the second principal component is u2 = 1√
2
[x1 + x2]. In the case of λ3, we consider

the system (R − λ3I )X = O whose first equation is

1√
3
x1 + 1√

6
x3 = 0 ⇒ x1 = − 1√

2
x3,

the second one being
x2√
3

+ x3√
6

= 0 ⇒ x2 = 1√
2
x3.

Letting x3 = √
2, an eigenvector corresponding to λ3 is

X3 =
⎡
⎣

−1
1√
2

⎤
⎦ , its normalized form being A3 = 1

2

⎡
⎣

−1
1√
2

⎤
⎦ .
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For the matrix [A1, A2, A3] to be uniquely determined, we may multiply A3 by −1 so that
the first nonzero element is positive. Hence, the third principal component is u3 = 1

2 [x1 −
x2 − √

2x3]. As was shown in the case of u1, it can also be verified that Var(u2) = 1 =
λ2, Var(u3) = λ3 = 1 − 1√

3
, Cov(u1, u2) = 0, Cov(u1, u3) = 0 and Cov(u2, u3) = 0.

We note that

λ1

λ1 + λ2 + λ3
= 1 + 1/

√
3

3
≈ 0.525,

λ1 + λ2

λ1 + λ2 + λ3
= 2 + 1/

√
3

3
≈ 0.859.

Thus, almost 53% of the total variation is accounted for by the first principal component
and nearly 86% of the total variation is due to the first two principal components.

9.4. The Vector of Principal Components

Observe that the determinant of a matrix is the product of its eigenvalues and that its
trace is the sum of its eigenvalues, that is, |Σ | = λ1 · · · λp and tr(Σ) = λ1 + · · · + λp.
As previously pointed out, the determinant of a covariance matrix corresponds to Wilks’
concept of generalized variance. Let us consider the vector of principal components. The
principal components are uj = A′

jX, with Var(uj ) = A′
jΣAj = λj , j = 1, . . . , p, and

Cov(ui, uj ) = 0 for all i �= j . Thus,

U =
⎡
⎢⎣

u1
...

up

⎤
⎥⎦ =

⎡
⎢⎣

A′
1X
...

A′
pX

⎤
⎥⎦ ⇒ Cov(U) = Λ =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp

⎤
⎥⎥⎥⎦ . (9.4.1)

The determinant of the covariance matrix is the product λ1 · · · λp and its trace, the sum
λ1 + · · · + λp. Hence the following result:

Theorem 9.4.1. Let X be a p × 1 real vector whose associated covariance matrix is Σ .
Let the principal components of X be denoted by uj = A′

jX with Var(uj ) = A′
jΣAj =

λj = j -th largest eigenvalue of Σ , and U ′ = (u1, . . . , up) with Cov(U) ≡ Σu. Then,
|Σu| = |Σ | = product of the eigenvalues, λ1 · · · λp, and tr(Σu) = tr(Σ) = sum of the
eigenvalues, λ1 + · · · + λp. Observe that the determinant as well as the eigenvalues and
the trace are invariant with respect to orthonormal transformations or rotations of the
coordinate axes.
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Let A = [A1, A2, . . . , Ap]. Then
ΣA = AΛ, A′A = I, A′ΣA = Λ. (9.4.2)

Note that U ′ = (u1, . . . , up) where u1, . . . , up are linearly independent. We have not
assumed any distribution for the p × 1 vector X so far. If the p × 1 vector X has a p-
variate nonsingular Gaussian distribution, that is, X ∼ Np(O, Σ), Σ > O, then

uj ∼ N1(0, λj ), U ∼ Np(O, Λ). (9.4.3)

Since Principal Components involve variances or covariances, which are free of any loca-
tion parameter, we may take the mean value vector to be a null vector without any loss of
generality. Then, E[uj ] = 0 by assumption, Var(uj ) = A′

jΣAj = λj , j = 1, . . . , p and

Cov(U) = Λ = diag(λ1, . . . , λp). Accordingly, λ1
λ1+···+λp

is the proportion of the total
variance accounted for by the largest eigenvalue λ1, where λ1 is equal to the variance of
the first principal component. Similarly, λ1+···+λr

λ1+···+λp
is the proportion of the total variance

due to the first r principal components, r ≤ p.

Example 9.4.1. Let X ∼ N3(μ, Σ), Σ > O, where

X =
⎡
⎣

x1
x2
x3

⎤
⎦ , μ =

⎡
⎣

1
0

−1

⎤
⎦ , Σ =

⎡
⎣
2 0 1
0 2 −1
1 −1 3

⎤
⎦ .

Derive the densities of the principal components of X.

Solution 9.4.1. Let us determine the eigenvalues of Σ . Consider the equation

|Σ − λI | = 0 ⇒
∣∣∣∣∣∣
2 − λ 0 1
0 2 − λ −1
1 −1 3 − λ

∣∣∣∣∣∣
= 0

⇒ (2 − λ)[(2 − λ)(3 − λ) − 1] − (2 − λ) = 0

⇒ (2 − λ)[λ2 − 5λ + 4] = 0 ⇒ λ1 = 4, λ2 = 2, λ3 = 1.

Let us compute an eigenvector corresponding to λ1 = 4. Consider the linear system (Σ −
λ1I )X = O, whose first equation gives −2x1 + x3 = 0 or x1 = 1

2x3, the second equation,
−2x2 − x3 = 0, yielding x2 = −1

2x3. Letting x3 = 2, one solution is

X1 =
⎡
⎣

1
−1
2

⎤
⎦ , and its normalized form is A1 = 1√

6

⎡
⎣

1
−1
2

⎤
⎦ .
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Thus, the first principal component is u1 = A′
1X = 1√

6
[x1 − x2 + 2x3] with E[u1] =

1√
6
[1 − 0 − 2] = − 1√

6
and

Var(u1) = 1

6
[Var(x1) + Var(x2) + 4Var(x3) − 2Cov(x1, x2)

+ 4Cov(x1, x3) − 4Cov(x2, x3)]
= 1

6
[2 + 2 + 4 × 3 − 2(0) + 4(1) − 4(−1)] = 4 = λ1.

Since u1 is a linear function of normal variables, u1 has the following Gaussian distribu-
tion:

u1 ∼ N1

(
− 1√

6
, 4

)
.

Let us compute an eigenvector corresponding to λ2 = 2. Consider the system (Σ −
λ2I )X = O, whose first and second equations give x3 = 0, the third equation
x1 − x2 + x3 = 0 yielding x1 = x2. Hence, one solution is

X2 =
⎡
⎣
1
1
0

⎤
⎦ , its normalized form being A2 = 1√

2

⎡
⎣
1
1
0

⎤
⎦ ,

and the second principal component is u2 = A′
2X = 1√

2
[x1 + x2] with E[u2] = 1√

2
[1 +

0] = 1√
2
. Let us verify that the variance of u2 is λ2 = 2:

Var(u2) = 1

2
[Var(x1) + Var(x2) + 2Cov(x1, x2)] = 1

2
[2 + 2 + 2(0)] = 2 = λ2.

Hence, u2 has the following real univariate normal distribution:

u2 ∼ N1

( 1√
2

, 2
)
.

We finally construct an eigenvector associated with λ3 = 1. Consider the linear system
(Σ − λ3I )X = O. In this case, the first equation is x1 + x3 = 0 ⇒ x1 = −x3 and the
second one is x2 − x3 = 0 or x2 = x3. Let x3 = 1. One eigenvector is

X3 =
⎡
⎣

−1
1
1

⎤
⎦ , its normalized form being A3 = 1√

3

⎡
⎣

−1
1
1

⎤
⎦ .
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In order to ensure the uniqueness of the matrix [A1, A2, A3], we may multiply A3 by −1
to ensure that the first nonzero element is positive. Then, the third principal component is
u3 = 1√

3
[x1 − x2 − x3] with E[u3] = 1√

3
[1 − 0 + 1] = 2√

3
. The variance of u3 is indeed

equal to λ3 as

Var(u3) = 1

3
[Var(x1) + Var(x2) + Var(x3) − 2Cov(x1, x2)

− 2Cov(x1, x3) + 2Cov(x2, x3)]
= 1

3
[2 + 2 + 3 − 2(0) − 2(1) + 2(−1)] = 1.

Thus,

u3 ∼ N1

( 2√
3

, 1
)
.

It can easily be verified that Cov(u1, u2) = 0, Cov(u1, u3) = 0 and Cov(u2, u3) = 0.
Accordingly, letting

U =
⎡
⎣

u1

u2

u3

⎤
⎦ =

⎡
⎣

A′
1X

A′
2X

A′
3X

⎤
⎦ ,

Cov(U) =
⎡
⎣

A′
1ΣA1 A′

1ΣA2 A′
1ΣA3

A′
2ΣA1 A′

2ΣA2 A′
2ΣA3

A′
3ΣA1 A′

3ΣA2 A′
3ΣA3

⎤
⎦ =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ .

As well, ΣAj = λjAj , j = 1, 2, 3, that is,

⎡
⎣

2 0 1
0 2 −1
1 −1 3

⎤
⎦

⎡
⎢⎣

1√
6

1√
2

1√
3

− 1√
6

1√
2

− 1√
3

2√
6

0 − 1√
3

⎤
⎥⎦ =

⎡
⎢⎣

1√
6

1√
2

1√
3

− 1√
6

1√
2

− 1√
3

2√
6

0 − 1√
3

⎤
⎥⎦

⎡
⎣
4 0 0
0 2 0
0 0 1

⎤
⎦ .

This completes the computations.

9.4.1. Principal components viewed from differing perspectives

Let X be a p × 1 real vector whose covariance matrix is Cov(X) = Σ > O. Assume
that E(X) = O. Then, X′Σ−1X = c > 0 is commonly referred to as an ellipsoid of
concentration, centered at the origin of the coordinate system, with X′X being the square
of the distance between the origin and a point X on the surface of this ellipsoid. A prin-
cipal axis of this ellipsoid is defined when this squared distance has a stationary point.
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The stationary points are determined by optimizing X′X subject to X′Σ−1X = c > 0.
Consider

w = X′X − λ(X′Σ−1X − c),
∂w

∂X
= O ⇒ 2X − 2λΣ−1X = O

⇒ Σ−1X = 1

λ
X ⇒ ΣX = λX (i)

where λ is a Lagrangian multiplier. It is seen from (i) that λ is an eigenvalue of Σ and X

is the corresponding eigenvector. Letting λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be the eigenvalues and
A1, . . . , Ap be the corresponding eigenvectors, A1, . . . , Ap give the principal axes of this
ellipsoid of concentration. It follows from (i) that

c = A′
jΣ

−1Aj = 1

λj

A′
jAj ⇒ A′

jAj = λjc.

Thus, the length of the j -th principal axis is 2
√

A′
jAj = 2

√
λj c.

As another approach, consider a plane passing through the origin. The equation of this
plane will be β ′X = 0 where β is a p × 1 constant vector and X is the p × 1 vector of the
coordinate system. Without any loss of generality, let β ′β = 1. Let the p × 1 vector Y be
a point in the Euclidean space. The distance between this point and the plane is then β ′Y .
Letting Y be a random point such that E(Y ) = O and Cov(Y ) = Σ > O, the expected
squared distance from this point to the plane is E[β ′Y ]2 = E[β ′YY ′β] = β ′E(YY ′)β =
β ′Σβ. Accordingly, the two-dimensional planar manifold of closest fit to the point Y is
that plane whose coefficient vector β is such that β ′Σβ is minimized subject to β ′β = 1.
This, once again, leads to the eigenvalue problem encountered in principal component
analysis.

9.5. Sample Principal Components

When X ∼ Np(O, Σ), Σ > O, the maximum likelihood estimator of Σ is Σ̂ = 1
n
S

where n > p is the sample size and S is the sample sum of products matrix, as defined
for instance in Mathai and Haubold (2017b). In general, whether Σ is nonsingular or
singular and X is p-variate Gaussian or not, we may take Σ̂ as an estimate of Σ . The
sample eigenvalues and eigenvectors are then available from Σ̂β = kβ where β �= O

is a p × 1 eigenvector corresponding to the eigenvalue k of Σ̂ = 1
n
S. For a non-null

β, (Σ̂ − kI)β = O ⇒ Σ̂ − kI is singular or |Σ̂ − kI | = 0 and k is a solution of

|Σ̂ − kI | = 0 ⇒ (Σ̂ − kj I )Bj = O, j = 1, . . . , p. (9.5.1)

We may only consider the normalized eigenvectors Bj such that B ′
jBj = 1, j = 1, . . . , p.

If the eigenvalues of Σ are distinct, it can be shown that the eigenvalues of Σ̂ are also
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distinct, k1 > k2 > · · · > kp almost surely. Note that even though B ′
jBj = 1, Bj is not

unique as one also has (−Bj)
′(−Bj) = 1. Thus, we require that the first nonzero element

of Bj be positive to ensure uniqueness. Since Σ̂ is a real symmetric matrix, its eigenvalues
k1, . . . , kp are real, and so are the corresponding normalized eigenvectors B1, . . . , Bp. As
well, there exist a full set of orthonormal eigenvectors B1, . . . , Bp, B ′

jBj = 1, B ′
jBi =

0, i �= j, j = 1, . . . , p, such that for B = (B1, . . . , Bp),

B ′Σ̂B = K = diag(k1, . . . , kp), Σ̂B = BK and Σ̂ = k1B1B
′
1+· · ·+kpBpB ′

p. (9.5.2)

Also, observe that k1
k1+···+kp

is the proportion of the total variation in the data which is

accounted for by the first principal component. Similarly, k1+···+kr

k1+···+kp
is the proportion of the

total variation due to the first r principal components, r ≤ p.

Example 9.5.1. LetX be a 3×1 vector of real scalar random variables,X′ = [x1, x2, x3],
with E[X] = μ and covariance matrix Cov(X) = Σ > O where both μ and Σ are
unknown. Let the following observation vectors be a simple random sample of size 5 from
this population:

X1 =
⎡
⎣
1
1
0

⎤
⎦ , X2 =

⎡
⎣

−1
1
0

⎤
⎦ , X3 =

⎡
⎣

1
−1
−1

⎤
⎦ , X4 =

⎡
⎣

−1
−1
−1

⎤
⎦ , X5 =

⎡
⎣
0
0
2

⎤
⎦ .

Compute the principal components of X from an estimate of Σ that is based on those
observations.

Solution 9.5.1. An estimate of Σ is Σ̂ = 1
n
S where n is the sample size and S is the

sample sum of products matrix. In this case, n = 5. We first compute S. To this end, we
determine the sample average vector, the sample matrix, the deviation matrix and finally
S. The sample average is X̄ = 1

n
[X1 + X2 + X3 + X4 + X5] and the sample matrix is

X = [X1, X2, X3, X4, X5]. The matrix of sample means is X̄ = [X̄, X̄, X̄, X̄, X̄]. The
deviation matrix is Xd = X − X̄ and the sample sum of products matrix S = XdX′

d =
[X − X̄][X − X̄]′. Based on the given random sample, these quantities are
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X̄ = 1

5

⎧⎨
⎩

⎡
⎣
1
1
0

⎤
⎦ +

⎡
⎣

−1
1
0

⎤
⎦ +

⎡
⎣

1
−1
−1

⎤
⎦ +

⎡
⎣

−1
−1
−1

⎤
⎦ +

⎡
⎣
0
0
2

⎤
⎦

⎫⎬
⎭ =

⎡
⎣
0
0
0

⎤
⎦ ,

X = [X1, X2, X3, X4, X5] =
⎡
⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤
⎦ ,

Xd = [X1 − X̄, X2 − X̄, X3 − X̄, X4 − X̄, X5 − X̄]

=
⎡
⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤
⎦ ,

S =
⎡
⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤
⎦

⎡
⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤
⎦

′

=
⎡
⎣
4 0 0
0 4 2
0 2 6

⎤
⎦ .

An estimate of Σ is Σ̂ = 1
n
S = 1

5S. However, since the eigenvalues of Σ̂ are those of

S multiplied by 1
5 and the normalized eigenvectors of Σ̂ and S will then be identical, we

will work with S. The eigenvalues of S are available from the equation |S − λI | = 0. That
is, (4−λ)[(4−λ)(6−λ)−4] = 0 ⇒ (4−λ)[λ2−10λ+20] = 0 ⇒ λ1 = 5+√

5, λ2 =
4, λ3 = 5 − √

5. An eigenvector corresponding to λ1 = 5 + √
5 can be determined from

the system (S − λ1I )X = O wherein first equation gives x1 = 0 and the third one yields
2x2 + (1 − √

5)x3 = 0. Taking x3 = 2, x2 = −(1 − √
5), and it is easily verified that

these values also satisfy the second equation. Thus, an eigenvector, denoted by Y1, is the
following:

Y1 =
⎡
⎣

0√
5 − 1
2

⎤
⎦ with its normalized form being A1 = 1√

10 − 2
√
5

⎡
⎣

0√
5 − 1
2

⎤
⎦ ,

so that the first principal component is u1 = 1√
10−2

√
5
[(√5 − 1)x2 + 2x3]. Let us verify

that the variance of u1 equals λ1:
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Var(u1) = 1

10 − 2
√
5
[(√5 − 1)2Var(x2) + 4Var(x3) + 2(

√
5 − 1)Cov(x2, x3)]

= 1

10 − 2
√
5
[(6 − 2

√
5)(4) + 4(6) + 2(

√
5 − 1)(4)] = 20(5 + √

5)

20

= 5 + √
5 = λ1.

An eigenvector corresponding to λ2 = 4 is available from (S − λ2I )X = O. The first
equation shows that all variables are arbitrary. The second and third equations yield x3 = 0
and x2 = 0. Taking x1 = 1, an eigenvector corresponding to λ2 = 4, denoted by Y2, is

Y2 =
⎡
⎣
1
0
0

⎤
⎦ which is already normalized so that A2 =

⎡
⎣
1
0
0

⎤
⎦ .

Thus, the second principal component is u2 = x1 and its variance is Var(x1) = 4. An
eigenvector corresponding to λ3 = 5 − √

5 can be determined from the linear system
(S − λ3I )X = O whose first equation yields x1 = 0, the third one giving 2x2 + (1 +√
5)x3 = 0. Taking x3 = 2, x2 = −(1 + √

5), and it is readily verified that these values
satisfy the second equation as well. Then, an eigenvector, denoted by Y3, is

Y3 =
⎡
⎣

0
−(

√
5 + 1)
2

⎤
⎦ , its normalized form being A3 = 1√

10 + 2
√
5

⎡
⎣

0
−(

√
5 + 1)
2

⎤
⎦ .

In order to select the matrix [A1, A2, A3] uniquely, we may multiply A3 by −1 so
that the first nonzero element is positive. Thus, the third principal component is u3 =

1√
10+2

√
5
[(1 + √

5)x2 − 2x3] and, as the following calculations corroborate, its variance

is indeed equal to λ3:

Var(u3) = 1√
10 + 2

√
5
[(1 + √

5)2Var(x2) + 4Var(x3) − 4(1 + √
5)Cov(x2, x3)]

= 1

2(5 + √
5)

[4(6 + 2
√
5) + 4(6) − 4(1 + √

5)(2)] = 20

5 + √
5

= 5 − √
5 = λ3.

Additionally,
λ1

λ1 + λ2 + λ3
= 5 + √

5

14
≈ 0.52,
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that is, approximately 52% of the total variance is due to u1 or nearly 52% of the total
variation in the data is accounted for by the first principal component. Also observe that

S[A1, A2, A3] = [A1, A2, A3]D, D = diag(5 + √
5, 4, 5 − √

5) or

S = [A1, A2, A3]D
⎡
⎣

A′
1

A′
2

A′
3

⎤
⎦ .

That is,

S =
⎡
⎣
4 0 0
0 4 2
0 2 6

⎤
⎦

=

⎡
⎢⎢⎣

0 1 0√
5−1√

10−2
√
5

0 − (1+√
5)√

10+2
√
5

2√
10−2

√
5

0 2√
10+2

√
5

⎤
⎥⎥⎦

⎡
⎣
5 + √

5 0 0
0 4 0
0 0 5 − √

5

⎤
⎦

⎡
⎢⎢⎣
0

√
5−1√

10−2
√
5

2√
10−2

√
5

1 0 0

0 − (1+√
5)√

10+2
√
5

2√
10+2

√
5

⎤
⎥⎥⎦ ,

which completes the computations.

9.5.1. Estimation and evaluation of the principal components

If X ∼ Np(O, Σ), Σ > O, then the maximum likelihood estimator of Σ , denoted
by Σ̂ = 1

n
S where n is the sample size and S is the sample sum of products matrix.

How can one evaluate the eigenvalues and eigenvectors in order to construct the principal
components? One method consists of solving the polynomial equation |Σ−λI | = 0 for the
population eigenvalues λ1, . . . , λp, or |Σ̂ − kI | = 0 for obtaining the sample eigenvalues
k1 ≥ k2 ≥ · · · ≥ kp. Direct evaluation of k by solving the determinantal equation is not
difficult when p is small. However, for large values of p, one has to resort to mathematical
software or some iterative process. We will illustrate such an iterative process for the
population values λ1 > λ2 > · · · > λp and the corresponding normalized eigenvectors
A1, . . . , Ap (using our notations). Let us assume that the eigenvalues are distinct. Consider
the following equation for determining the eigenvalues and eigenvectors:

ΣAj = λjAj , j = 1, . . . , k. (9.5.3)

Take any initial p-vector Wo that is not orthogonal to A1, the eigenvector corresponding
to the largest eigenvalue λ1. If Wo is orthogonal to A1, then, in the iterative process, Wj

will not reach A1. Let Yo = 1√
W ′

oWo

Wo be the normalized W0. Consider the equation

ΣYj−1 = Wj, that is, ΣY0 = W1, ΣY1 = W2, . . . , Yj = 1√
(W ′

jWj)
Wj , j = 1, . . . .

(9.5.4)
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Halt the iteration whenWj approximately agrees withWj−1, that is,Wj converges to some
W which will then be λ1A1 or Yj converges to Y1. At each stage, compute the quadratic
form δj = Y ′

jΣYj and make sure that δj is increasing. Suppose that Wj converges to some
W for certain values of j or as j → ∞. At that stage, the equation is ΣY = W where
Y = 1√

W ′W W , the normalized W . Then, the equation is ΣY = √
W ′WY . In other words,√

W ′W = λ1 and Y = A1, which are the largest eigenvalue of Σ and the corresponding
eigenvector A1. That is,

lim
j→∞

√
W ′

jWj = λ1

lim
j→∞

[
1√

(W ′
jWj)

Wj

]
= lim

j→∞ Yj = A1.

The rate of convergence in (9.5.4) depends upon the ratio λ2
λ1
. If λ2 is close to λ1, then the

convergence will be very slow. Hence, the larger the difference between λ1 and λ2, the
faster the convergence. It is thus indicated to raise Σ to a suitable power m and initiate the
iteration on this Σm so that the difference between the resulting λ1 and λ2 be magnified
accordingly, λm

j , j = 1, . . . , p, being the eigenvalues of Σm. If an eigenvalue is equal to
one, then Σ must first be multiplied by a constant so that all the resulting eigenvalues of Σ

are well separated, which will not affect the eigenvectors. As well, observe thatΣ andΣm,
m = 1, 2, . . . , share the same eigenvectors even though the eigenvalues are λj and λm

j ,
j = 1, . . . , p, respectively; in other words, the normalized eigenvectors remain the same.
After obtaining the largest eigenvalue λ1 and the corresponding normalized eigenvector
A1, consider

Σ2 = Σ − λ1A1A
′
1, Σ = λ1A1A

′
1 + λ2A2A

′
2 + · · · + λpApA′

p,

where Aj is the column eigenvector corresponding to λj so that AjA
′
j is a p × p matrix

for j = 1, 2, . . . , p. Now, carry out the iteration on Σ2, as was previously done on Σ .
This will produce λ2 and the corresponding normalized eigenvector A2. Note that λ2 is the
largest eigenvalue of Σ2. Next, consider

Σ3 = Σ2 − λ2A2A
′
2

and continue this process until all the required eigenvectors are obtained. Similarly, for
small p, the sample eigenvalues k1 ≥ k2 ≥ · · · ≥ kp are available by solving the equation
|Σ̂ − kI | = 0; otherwise, the sample eigenvalues and eigenvectors can be computed by
applying the iterative process described above with Σ replaced by Σ̂ , λj interchanged
with kj and Bj substituted to the eigenvector Aj , j = 1, . . . , p.
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Example 9.5.2. Principal component analysis is especially called for when the number
of variables involved is large. For the sake of illustration, we will take p = 2. Consider the
following 2 × 2 covariance matrix

Σ =
[

2 −1
−1 1

]
= Cov(X), X =

[
x1
x2

]
.

Construct the principal components associated with this matrix while working with the
symbolic representations of the eigenvalues λ1 and λ2 rather than their actual values.

Solution 9.5.2. Let us first evaluate the eigenvalues of Σ in the customary fashion. Con-
sider

|Σ − λI | = 0 ⇒ (2 − λ)(1 − λ) − 1 = 0 ⇒ λ2 − 3λ + 1 = 0 (i)

⇒ λ1 = 1

2
[3 + √

5], λ2 = 1

2
[3 − √

5].
Let us compute an eigenvector corresponding to the largest eigenvalue λ1. Then,

[
2 −1

−1 1

] [
x1
x2

]
= λ1

[
x1
x2

]
⇒

(2 − λ1)x1 − x2 = 0

−x1 + (1 − λ1)x2 = 0. (ii)

Since the system is singular, we need only solve one of these equations. Letting x2 = 1 in
(ii), x1 = (1−λ1). For illustrative purposes, we will complete the remaining steps with the
general parameters λ1 and λ2 rather than their numerical values. Hence, one eigenvector is

C =
[
1 − λ1

1

]
, ‖C‖ =

√
1 + (1 − λ1)2 ⇒ A1 = 1

‖C‖C = 1√
1 + (1 − λ1)2

[
1 − λ1

1

]
.

Thus, the principal components are the following:

u1 = 1

‖C‖C′X = 1√
1 + (1 − λ1)2

{(1 − λ1)x1 + x2}

u2 = 1√
1 + (1 − λ2)2

{(1 − λ2)x1 + x2}.

Let us verify that Var(u1) = λ1 and Var(u2) = λ2. Note that

‖C‖2 = 1 + (1 − λ1)
2 = λ21 − 2λ1 + 2 = (λ21 − 3λ1 + 1) + λ1 + 1 = λ1 + 1, (iii)
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given the characteristic equation (i). However,

Var(C′X) = Var((1 − λ1)x1 + x2)

= (1 − λ1)
2Var(x1) + Var(x2) + 2(1 − λ1)Cov(x1, x2)

= 2(1 − λ1)
2 + 1 − 2(1 − λ1)

= 2λ21 − 2λ1 + 1 = 2(λ21 − 3λ1 + 1) + 4λ1 − 1 = 4λ1 − 1, (iv)

given (i), the characteristic (or starting) equation. We now have Var(C ′X) = Var((1 −
λ1)x1 + x2) = 4λ1 − 1 from (iv) and ‖C‖ = λ1 + 1 from (iii). Hence, we must have
Var(C′X) = ‖C‖2λ1 = [1 + (1 − λ1)

2]λ1 = (λ1 + 1)λ1 from (iii). Since

λ1(λ1 + 1) = λ21 + λ1 = (λ21 − 3λ1 + 1) + 4λ1 − 1 = 4λ1 − 1,

agrees with (iv), the result is verified for u1. Moreover, on replacing λ1 by λ2, we have
Var(u2) = λ2.

9.5.2. L1 and L2 norm principal components

For any p × 1 vector Y , Y ′ = (y1, . . . , yp), where y1, . . . , yp are real quantities, the
L2 and L1 norms are respectively defined as follows:

‖Y‖2 = (y2
1 + · · · + y2

p)
1
2 = [Y ′Y ] 12 ⇒ ‖Y‖22 = Y ′Y (9.5.5)

‖Y‖1 = |y1| + |y2| + · · · + |yp| =
p∑

j=1

|yj |. (9.5.6)

In Sect. 9.5, we set up the principal component analysis on the basis of the sample sum of
products matrix, assuming a p-variate real population, not necessarily Gaussian, having
μ as its mean value vector and Σ > O as its covariance matrix. Then, we considered
Xj, j = 1, . . . , n, iid vector random variables, that is, a simple random sample of size
n from this population such that E[Xj ] = μ and Cov(Xj ) = Σ > O, j = 1, . . . , n.
We denoted the sample matrix by X = [X1, . . . , Xn], the sample average by X̄ = 1

n
[X1 +

· · ·+Xn], the matrix of sample means by X̄ = [X̄, . . . , X̄] and the sample sum of products
matrix by S = [X − X̄][X − X̄]′. If the population mean value vector is the null vector,
that is, μ = O, then we can take S = XX′. For convenience, we will consider this case.
For determining the sample principal components, we then maximized

A′XX′A subject to A′A = 1
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where A is an arbitrary constant vector that will result in the coefficient vector of the
principal components. This can also be stated in terms of maximizing the square of an L2
norm subject to A′A = 1, that is,

max
A′A=1

‖A′X‖22. (9.5.7)

When carrying out statistical analyses, it turns out that the L2 norm is more sensitive to
outliers than the L1 norm. If we utilize the L1 norm, the problem corresponding to (9.5.7)
is

max
A′A=1

‖A′X‖1. (9.5.8)

Observe that when μ = O, the sum of products matrix can be expressed as

S = XX′ =
p∑

j=1

XjX
′
j , X = [X1, . . . , Xn],

where Xj is the j -th column of X or j -th sample vector. Then, the initial optimization
problem can be restated as follows:

max
A′A=1

‖A′X‖22 = max
A′A=1

n∑
j=1

A′XjX
′
jA = max

A′A=1

n∑
j=1

‖A′Xj‖22 , (9.5.9)

and the corresponding L1 norm optimization problem can be formulated as follows:

max
A′A=1

‖A′X‖1 = max
A′A=1

n∑
j=1

‖A′Xj‖1. (9.5.10)

We have obtained exact analytical solutions for the coefficient vectorA in (9.5.9); however,
this is not possible when attempting to optimize (9.5.10) subject to A′A = 1. Thankfully,
iterative procedures are available in this case.

Let us consider a generalization of the basic principal component analysis. Let W be a
p ×m, m < p, matrix of full rank m. Then, the general problem in L2 norm optimization
is the following:

max
W ′W=I

tr(W ′SW) = max
W ′W=I

n∑
j=1

‖W ′Xj‖22 (9.5.11)

where I is the m × m identity matrix, the corresponding L1 norm optimization problem
being

max
W ′W=I

n∑
j=1

‖WXj‖1. (9.5.12)
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In Sect. 9.4.1, we have considered a dual problem of minimization for constructing prin-
cipal components. The dual problems of minimization corresponding to (9.5.11) and
(9.5.12) can be stated as follows:

min
W ′W=I

n∑
j=1

‖Xj − WW ′Xj‖22 (9.5.13)

with respect to the L2 norm, and

min
W ′W=I

n∑
j=1

‖Xj − WW ′Xj‖1 (9.5.14)

with respect to the L1 norm. The form appearing in (9.5.13) suggests that the construction
of principal components by making use of the L2 norm is also connected to general model
building, Factor Analysis and related topics. The general mathematical problem pertaining
to the basic structure in (9.5.13) is referred to as low-rank matrix factorization. Readers
interested in such statistical or mathematical problems may refer to the survey article, Shi
et al. (2017). L1 norm optimization problems are for instance discussed in Kwak (2008)
and Nie and Huang (2016).

9.6. Distributional Aspects of Eigenvalues and Eigenvectors

Let us examine the distributions of the variances of the sample principal components
and the coefficient vectors in the sample principal components. Let A be a p × p or-
thonormal matrix whose columns are denoted by A1, . . . , Ap, so that A′

jAj = 1, A′
iAj =

0, i �= j, or AA′ = I, A′A = I . Let uj = A′
jX be the sample principal components

for j = 1, . . . , p. Let the p × 1 vector X have a nonsingular normal density with the null
vector as its mean value vector, that is, X ∼ Np(O, Σ), Σ > O. We can assume that
the Gaussian distribution has a null mean value vector without any loss of generality since
we are dealing with variances and covariances, which are free of any location parameter.
Consider a simple random sample of size n from this normal population. Letting S denote
the sample sum of products matrix, the maximum likelihood estimate of Σ is Σ̂ = 1

n
S.

Given that S has a Wishart distribution having n− 1 degrees of freedom, the density of Σ̂ ,
denoted by f (Σ̂), is given by

f (Σ̂) = n
mp
2

|2Σ |m
2 Γp(m

2 )
|Σ̂ |m

2 −p+1
2 e− n

2 tr(Σ
−1Σ̂),

where Σ is the population covariance matrix and m = n − 1, n being the sample size.
Let k1, . . . , kp be the eigenvalues of Σ̂ ; it was shown that k1 ≥ k2 ≥ · · · ≥ kp > 0 are
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actually the variances of the sample principal components. Letting Bj, j = 1, . . . , p,

denote the coefficient vectors of the sample principal components and B = (B1, . . . , Bp),
it was established that B ′Σ̂B = diag(k1, . . . , kp) ≡ D. The first nonzero component of
Bj is required to be positive for j = 1, . . . , p, so that B be uniquely determined. Then,
the joint density of B and D is available by transforming Σ̂ in terms of B and D. Let the
joint density of B and D and the marginal densities of D and B be respectively denoted
by g(D, B), g1(D) and g2(B). In light of the procedures and results presented in Chap. 8
or in Mathai (1997), we have the following joint density:

g(D, B)dD ∧ dB = n
mp
2

|2Σ |m
2 Γp(m

2 )

{ p∏
j=1

kj

}m
2 −p+1

2
{ ∏

i<j

(ki − kj )
}

× e− n
2 tr((B

′Σ−1B)D)h(B)dD (9.6.1)

where h(B) is the differential element corresponding to B, which is given in Chap. 8 and
in Mathai (1997). The marginal densities of D and B are not explicitly available in a
convenient form for a general Σ . In that case, they can only be expressed in terms of
hypergeometric functions of matrix argument and zonal polynomials. See, for example,
Mathai et al. (1995) for a discussion of zonal polynomials. However, when Σ = I , the
joint and marginal densities are available in closed forms. They are

g(D, B)dD ∧ dB = n
mp
2

2
mp
2 Γp(m

2 )

{ p∏
j=1

kj

}m
2 −p+1

2
{∏

i<j

(ki − kj )
}
e− n

2 (k1+···+kp)h(B)dD,

(9.6.2)

g1(D) = n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

{ p∏
j=1

kj

}m
2 −p+1

2
e− n

2 (k1+···+kp)
{ ∏

i<j

(ki − kj )
}
,

(9.6.3)

g2(B)dB = Γp(
p
2 )

π
p2
2

h(B), BB ′ = I = B ′B, k1 > k2 > · · · > kp > 0. (9.6.4)

Given the representation of the joint density g(D, B) appearing in (9.6.2), it is readily seen
that D and B are independently distributed. Similar results are obtainable for Σ = σ 2I

where σ 2 > 0 is a real scalar quantity and I is the identity matrix.

Example 9.6.1. Show that the function g1(D) given in (9.6.3) is a density for p =
2, n = 6, m = 5, and derive the density of k1 for this special case.
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Solution 9.6.1. We have p+1
2 = 3

2 ,
m
2 − 3

2 = 1. As g1(D) is manifestly nonnegative, it
suffices to show that the total integral equals 1. When p = 2 and n = 6, the constant part
of (9.6.3) is the following:

n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

= 65

25Γp(52)

π2

Γ2(1)

= 35√
πΓ (52)Γ (22)

π2

√
πΓ (1)

√
π

= 35√
π(32)(

1
2)

√
π

π2

√
π

√
π

= 4(34). (i)

As for the integral part, we have

∫ ∞

k1=0

∫ k1

k2=0
k1k2(k1 − k2)e

−3(k1+k2)dk1 ∧ dk2

=
∫ ∞

k1=0
k21e

−3k1
[ ∫ k1

k2=0
k2e

−3k2dk2
]
dk1 −

∫ ∞

k1=0
k1e

−3k1
[ ∫ k1

k2=0
k22e

−3k2dk2
]
dk1

=
∫ ∞

k1=0

(
k21e

−3k1
[

− k1

3
e−3k1 + 1

32
(1 − e−3k1)

]

− k1e
−3k1

[
− k21

3
e−3k1 − 2k1

32
e−3k1 + 2

33
(1 − e−3k1)

])
dk1 (ii)

= −1

3
[Γ (4)6−4] + 1

9
[Γ (3)3−3] − 1

32
[Γ (3)6−3]

+ 1

3
[Γ (4)6−4] + 2

32
[Γ (3)6−3] − 2

33
[Γ (2)3−2] + 2

32
[Γ (2)6−2]

= 1

32
[Γ (3)6−3] + 2

33
[Γ (2)6−2] + 1

32
[Γ (3)3−3] − 2

33
[Γ (2)3−2]

=
[1
4

+ 2

4
+ 2 − 2

] 1

35
= 1

4(34)
. (iii)

The product of (i) and (iii) being equal to 1, this establishes that g1(D) is indeed a density
function for p = 2 and n = 6. On integrating out k2, the resulting integrand appearing in
(ii) yields the marginal density of k1. Denoting the marginal density of k1 by g11(k1), after
some simplifications, we have

g11(k1) = 4(34)
{(k21

32
+ 2k1

33

)
e−6k1 +

(k21

32
− 2k1

33

)
e−3k1

}
, 0 < k1 < ∞,
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and zero elsewhere. Similarly, given g1(D), the marginal density of k2 is obtained by
integrating out k1 from k2 to ∞. This completes the computations.

9.6.1. The distributions of the largest and smallest eigenvalues

One can determine the distribution of the j -th largest eigenvalue kj and thereby, the
distribution of the largest one, k1, as well as that of the smallest one, kp. Actually, many
authors have been investigating the problem of deriving the distributions of the eigenvalues
of a central Wishart matrix and matrix-variate type-1 beta and type-2 beta distributions.
Some of the test statistics discussed in Chap. 6 can also be treated as eigenvalue problems
involving real and complex type-1 beta matrices. Let k1 > k2 > · · · > kp > 0 be the
eigenvalues of the real sampling distribution of a Wishart matrix generated from a p-
variate real Gaussian sample. Then, as given in (9.6.3), the joint density of k1, . . . , kp,
denoted by g1(D), is the following:

g1(D)dD = n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

{ p∏
j=1

k
m
2 −p+1

2
j

}
e− n

2 (k1+···+kp)
{ ∏

i<j

(ki − kj )
}
dD (9.6.5)

where m = n − 1 is the number of degrees of freedom, n being the sample size. More
generally, we may consider a p × p real matrix-variate gamma distribution having α as
its shape parameter and aI, a > 0, as its scale parameter matrix, I denoting the identity
matrix. Noting that the eigenvalues of aS are equal to the eigenvalues of S multiplied
by the scalar quantity a, we may take a = 1 without any loss of generality. Let g(S)dS
denote the density of the resulting gamma matrix and g(D) be g(S) expressed in terms
of λ1 > λ2 > · · · > λp > 0, the eigenvalues of S. Then, given the Jacobian of the
transformation S → D specified in (9.6.7), the joint density of λ1, . . . , λp, denoted by
g1(D) is obtained as

g(D)dS = π
p2

2

Γp(α)Γp(
p
2 )

{ p∏
j=1

λ
α−p+1

2
j

}
e−(λ1+···+λp)

{ ∏
i<j

(λi − λj )
}
dD ≡ g1(D)dD

(9.6.6)
where dD = dλ1 ∧ . . . ∧ dλp. The corresponding p × p complex matrix-variate gamma
distribution will have real eigenvalues, also denoted by λ1 > · · · > λp > 0, the matrix
S̃ being Hermitian positive definite in this case. Then, in light of the relationship (9.6a.2)
between the differential elements of S̃ and D, the joint density of λ1, . . . , λp, denoted by
g̃1(D), is given by
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g̃(D)dS̃ = πp(p−1)

Γ̃p(α)Γ̃p(p)

{ p∏
j=1

λ
α−p

j

}
e−(λ1+···+λp)

{∏
i<j

(λi − λj )
2
}
dD ≡ g̃1(D)dD

(9.6a.1)
where g̃(D) is g̃(S̃) expressed in terms of D, g̃(S̃) denoting the density function of a
matrix-variate gamma random variable whose shape parameter and scale parameter matrix
are α and I , respectively.

As explained for instance in Mathai (1997), when S and S̃ are the p × p gamma
matrices in the real and complex domains, the integration over the Stiefel manifold yields

dS = π
p2

2

Γp(
p
2 )

{ ∏
i<j

(λi − λj )
}
dD (9.6.7)

and

dS̃ = πp(p−1)

Γ̃p(p)

{ ∏
i<j

(λi − λj )
2
}
dD, (9.6a.2)

respectively. When endeavoring to derive the marginal density of λj for any fixed j , the
difficulty arises from the factor

∏
i<j (λi − λj ). So, let us first attempt to simplify this

factor.

9.6.2. Simplification of the factor
∏

i<j (λi − λj )

It is well known that one can write
∏

i<j (λi − λj ) as a Vandermonde determinant
which, incidentally, has been utilized in connection with nonlinear transformations in
Mathai (1997). That is,

∏
i<j

(λi − λj ) =

∣∣∣∣∣∣∣∣∣

λ
p−1
1 λ

p−2
1 . . . λ1 1

λ
p−1
2 λ

p−2
2 . . . λ2 1

...
...

. . .
...

...

λ
p−1
p λ

p−2
p . . . λp 1

∣∣∣∣∣∣∣∣∣
≡ |A| = |(aij )|, (9.6.8)

where the (i, j)-th element aij = λ
p−j

i for all i and j . We could consider a cofactor
expansion of the determinant, |A|, consisting of expanding it in terms of the elements and
their cofactors along any row. In this case, it would be advantageous to do so along the
i-th row as the cofactors would then be free of λi and the coefficients of the cofactors
would only be powers of λi . However, we would then lose the symmetry with respect to
the elements of the cofactors in this instance. Since symmetry is required for the procedure
to be discussed, we will consider the general expansion of a determinant, that is,
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|A| =
∑
K

(−1)ρKa1k1a2k2 · · · apkp
=

∑
K

(−1)ρKλ
p−k1
1 λ

p−k2
2 · · · λp−kp

p (9.6.9)

where K = (k1, . . . , kp) and (k1, . . . , kp) is a given permutation of the numbers
(1, 2, . . . , p). Defining ρK as the number of transpositions needed to bring (k1, . . . , kp)

into the natural order (1, 2, . . . , p), (−1)ρK will correspond to a − sign for the corre-
sponding term if ρK is odd, the sign being otherwise positive. For example, for p = 3, the
possible permutations are (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1), so that
there are 3! = 6 terms. For the sequence (1, 2, 3), k1 = 1, k2 = 2 and k3 = 3; for the
sequence (1, 3, 2), k1 = 1, k2 = 3 and k3 = 2, and so on,

∑
K representing the sum of

all such terms multiplied by (−1)ρK . For (1, 2, 3), ρK = 0 corresponding to a plus sign;
for (1, 3, 2), ρK = 1 corresponding to a minus sign, and so on. Other types of expansions
of |A| could also be utilized. As it turns out, the general expansion given in (9.6.9) is the
most convenient one for deriving the marginal densities.

In the complex case,

∏
i<j

(λi − λj )
2 = |A|2 = |AA′| = |A′A|

where

A′ =

∣∣∣∣∣∣∣∣∣

λ
p−1
1 λ

p−1
2 . . . λ

p−1
p

λ
p−2
1 λ

p−2
2 . . . λ

p−2
p

...
...

. . .
...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣
= [α1, α2, . . . , αp], αj =

⎡
⎢⎢⎢⎢⎣

λ
p−1
j

λ
p−2
j
...

1

⎤
⎥⎥⎥⎥⎦

. (i)

Observe that αj only contains λj and that A′A = α1α
′
1 + · · · + αpα′

p, so that for instance

the (i, j)-th element in α1α
′
1 is λ

2p−(i+j)

1 . Accordingly, the (i, j)-th element of α1α
′
1 +

· · · + αpα′
p is

∑p

r=1 λ
2p−(i+j)
r . Thus, letting B = A′A = (bij ), bij = ∑p

r=1 λ
2p−(i+j)
r .

Now, consider the expansion (9.6.9) of |B|, that is,
∏
i<j

(λi − λj )
2 = |B| = |A′A| =

∑
K

(−1)ρKb1k1b2k2 · · · bpkp
(ii)

where K = (k1, . . . , kp) and (k1, . . . , kp) is a permutation of the sequence (1, 2, . . . , p).
Note that
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b1k1 = λ
2p−(1+k1)

1 + λ
2p−(1+k1)

2 + · · · + λ2p−(1+k1)
p

b2k2 = λ
2p−(2+k2)

1 + λ
2p−(2+k2)

2 + · · · + λ2p−(2+k2)
p

...

bpkp
= λ

2p−(p+kp)

1 + λ
2p−(p+kp)

2 + · · · + λ
2p−(p+kp)
p . (iii)

Let us write
b1k1b2k2 · · · bpkp

=
∑

r1,...,rp

λ
r1
1 · · · λrp

p . (iv)

Then, ∏
i<j

(λi − λj )
2 = |B| =

∑
K

(−1)ρK

[ ∑
r1,...,rp

λ
r1
1 · · · λrp

p

]
(9.6a.3)

where the rj ’s, j = 1, . . . , p, are nonnegative integers. We may now express the joint
density of the eigenvalues in a systematic way.

9.6.3. The distributions of the eigenvalues

The joint density of λ1, . . . , λp as specified in (9.6.6) and (9.6a.1) can be expressed as
follows. In the real case,

f (D)dD = π
p2

2

Γp(
p
2 )Γp(α)

( p∏
j=1

λ
α−p+1

2
j

)
e−(λ1+···+λp)

( ∑
K

(−1)ρKλ
p−k1
1 · · · λp−kp

p

)
dD

= π
p2

2

Γp(
p
2 )Γp(α)

∑
K

(−1)ρK (λ
m1
1 · · · λmp

p ) e−(λ1+···+λp)dD (9.6.10)

with

mj = α − p + 1

2
+ p − kj . (i)

In the complex case, the joint density is

f̃ (D)dD = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rp

(λ
α−p+r1
1 · · · λα−p+rp

p ) e−(λ1+···+λp)dD

= πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rp

(λ
m1
1 · · · λmp

p ) e−(λ1+···+λp)dD (9.6a.4)
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with mj = α − p + rj and rj as defined in (9.6a.3). For convenience, we will use the
same symbol mj for both the real and complex cases; however, in the real case, mj =
α − p+1

2 + p − kj and, in the complex case, mj = α − p + rj .

The distributions of the largest, smallest and j -th largest eigenvalues were consid-
ered by many authors. Earlier works mostly dealt with eigenvalue problems associated
with testing hypotheses on the parameters of one or more real Gaussian populations. In
such situations, a one-to-one function of the likelihood ratio statistics could be explored in
terms of the eigenvalues of a real type-1 beta distributed matrix-variate random variable.
In a series of papers, Pillai constructed the distributions of the seven largest eigenvalues
in the type-1 beta distribution and produced percentage points as well; the reader may re-
fer for example to Pillai (1964) and the references therein. In a series of papers including
Khatri (1964), Khatri addressed the distributions of eigenvalues in the real and complex
domains. In a series of papers, Krishnaiah and his co-authors dealt with various distribu-
tional aspects of eigenvalues, see for instance Krishnaiah et al. (1973). Clemm et al. (1973)
computed upper percentage points of the distribution of the eigenvalues of the Wishart ma-
trix. James (1964) considered the eigenvalue problem of different types of matrix-variate
random variables and determined their distributions in terms of functions of matrix ar-
guments and zonal polynomials. In a series of papers Davis, dealt with the distributions
of eigenvalues by creating and solving systems of differential equations, see for example
Davis (1972). Edelman (1991) discussed the distributions and moments of the smallest
eigenvalue of Wishart type matrices. Johnstone (2001) examined the distribution of the
largest eigenvalue in Principal Component Analysis. Recently, Chiani (2014) and James
and Lee (2021) discussed the distributions of the eigenvalues of Wishart matrices. The
methods employed in these papers lead to representations of the distributions of eigen-
values in terms of Pfaffians of skew symmetric matrices, incomplete gamma functions,
multiple integrals, functions of matrix argument and zonal polynomials, ratios of determi-
nants, solutions of differential equations, and so on. None of those methods yield tractable
forms for the distribution or density functions of eigenvalues.

In the next subsections, we provide, in explicit forms, the exact distributions of any of
the j -th largest eigenvalue of a general real or complex matrix-variate gamma type matrix,
either as finite sums when a certain quantity is a positive integer or as a product of infinite
series in the general non-integer case. These include, for instance, the distributions of the
largest and smallest eigenvalue as well as the joint distributions of several of the largest or
smallest eigenvalues, and readily apply to the real and complex Wishart distributions.
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9.6.4. Density of the smallest eigenvalue λp in the real matrix-variate gamma case

We will initially examine the situation where mj = α − p+1
2 + p − kj is an integer, so

that mj in the real matrix-variate gamma case is a positive integer. We will integrate out
λ1, . . . , λp−1 to obtain the marginal density of λp. Since mj is a positive integer, we can
integrate by parts. For instance,

∫ ∞

λ1=λ2

λ
m1
1 e−λ1dλ1 = [−λ

m1
1 e−λ1]∞λ2 + [−m1λ

m1−1
1 e−λ1]∞λ2 + · · · + [−e−λ1]∞λ2

=
m1∑

μ1=0

m1!
(m1 − μ1)! λ

m1−μ1
2 e−λ2, (i)

and integrating λ1, . . . , λj−1 gives the following:
∫

λ1

∫
λ2

· · ·
∫

λj−1

λ
m1
1 · · · λmj−1

j−1 e−(λ1+···+λj−1)dλ1 ∧ . . . ∧ dλj−1

=
m1∑

μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑
μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

×
m1−μ1+···+mj−1∑

μj−1=0

(m1 − μ1 + · · · + mj−1)!
(j − 1)μj−1+1(m1 − μ1 + · · · + mj−1 − μj−1)!λ

m1−μ1+···+mj−1−μj−1
j e−jλj

≡ φj−1(λj ). (ii)

Hence, the following result:

Theorem 9.6.1. When mj = α − p+1
2 +p − kj is a positive integer, where mj is defined

in (9.6.10), the marginal density of the smallest eigenvalue λp of the p × p real gamma
distributed matrix with parameters (α, I ), denoted by f1p(λp), is the following:

f1p(λp)dλp

= cK φp−1(λp) λ
mp
p e−λp

= cK

m1∑
μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑
μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

m1−μ1+···+mp−1∑
μp−1=0

× (m1 − μ1 + · · · + mp−1)!
(p − 1)μp−1+1(m1 − μ1 + · · · + mp−1 − μp−1)!λ

m1−μ1+···+mp−1−μp−1+mp

p−1 e−pλpdλp

(9.6.11)
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for 0 < λp < ∞, where

cK = π
p2

2

Γp(
p
2 )Γp(α)

∑
K

(−1)ρK ,

φj−1(λj ) is specified in (ii) and K = (k1, . . . , kp) is defined in (9.6.9).

In the complex p × p matrix-variate gamma case, rj is as defined in (9.6a.3) and the
expression for φj−1(λj ) given in (ii) remains the same with the exception that mj in the
complex case is mj = α−p+rj . Then, in the complex domain, the density of λp, denoted
by f̃1p(λp), is the following:

Theorem 9.6a.1. When mj = α − p + rj is a positive integer, where rj is defined
in (9.6a.3), the density of the smallest eigenvalue of the complex matrix-variate gamma
distribution is the following:

f̃1p(λp)dλp

= c̃K φp−1(λp) λ
mp
p e−pλp

= c̃K

m1∑
μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑
μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

m1−μ1+···+mp−1∑
μp−1=0

× (m1 − μ1 + · · · + mp−1)!
(p − 1)μp−1+1(m1 − μ1 + · · · + mp−1 − μp−1)!

λ
m1−μ1+···+mp−1−μp−1+mp

p−1 e−pλpdλp

(9.6a.5)

for 0 < λp < ∞, where

c̃K = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rk

.

Note 9.6.1. In the complex Wishart case, α = m where m is the number of degrees of
freedom, which is a positive integer. Hence, Theorem 9.6a.1 gives the final result in the
general case for that distribution. One can obtain the joint density of the p−j +1 smallest
eigenvalues from φj−1(λj ) as defined in (ii), both in the real and complex cases. If the
scale parameter matrix of the gamma distribution is of the form aI where a > 0 is a
real scalar and I is the identity matrix, then the distributions of the eigenvalues can also
be obtained from the proposed procedure since for any square matrix B, the eigenvalues
of aB are a νj ’s where the νj ’s are the eigenvalues of B. In the case of real Wishart
distributions originating from a sample of size n from a p-variate Gaussian population
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whose covariance matrix is the identity matrix, the λj ’s are multiplied by the constant
a = n

2 . If the Wishart matrix is not an estimator obtained from the sample values, they
should only be multiplied by a = 1

2 in the real case, no multiplicative constant being
necessary in the complex Wishart case.

9.6.5. Density of the largest eigenvalue λ1 in the real matrix-variate gamma case

Consider the case of mj = α − p+1
2 + p − kj being an integer first. Then, in the real

case, mj is as defined in (9.6.10). One has to integrate out λp, . . . , λ2 in order to obtain
the marginal density of λ1. As the initial step, consider the integration of λp, that is,

Step 1 integral :
∫ λp−1

λp=0
λ

mp
p e−λpdλp

= [−λ
mp
p e−λp ]λp−1

0 + · · · + [−mp! e−λp ]λp−1
0

= mp! −
mp∑

νp=0

mp!
(mp − νp)!λ

mp−νp

p−1 e−λp−1 . (i)

Now, multilying each term by λ
mp−1
p−1 e−λp−1 and integrating by parts, we have the second

step integral:

Step 2 integral

= mp!
∫ λp−2

λp−1=0
λ

mp−1
p−1 e−λp−1dλp−1 −

mp∑
νp=0

mp!
(mp − νp)!

∫ λp−2

λp−1=0
λ

mp−νp+mp−1
p−1 e−2λp−1dλp−1

= mp! mp−1! − mp!
mp−1∑

νp−1=0

mp−1!
(mp−1 − νp−1)!λ

mp−1−νp−1
p−2 e−λp−2

−
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1

+
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑
νp−1=0

(mp − νp + mp−1)!
2νp−1+1(mp − νp + mp−1 − νp−1)!

λ
mp−νp+mp−1−νp−1
p−2 e−2λp−2 .

(ii)

At the j -th step of integration, there will be 2j terms of which 2j

2 = 2j−1 will be positive
and 2j−1 will be negative. All the terms at the j -th step can be generated by 2j sequences
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of zeros and ones. Each sequence (each row) consists of j positions with a zero or one
occupying each position. Depending on whether the number of ones in a sequence is odd
or even, the corresponding term will start with a minus or a plus sign, respectively. The
following are the sequences, where the last column indicates the sign of the term:

Step 1:
0 +
1 − , Step 2:

0 0 +
0 1 −
1 0 −
1 1 +

, Step 3:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

, Step 3:

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

Step 4:

0 0 0 0 +
0 0 0 1 −
0 0 1 0 −
0 0 1 1 +

,

0 1 0 0 −
0 1 0 1 +
0 1 1 0 +
0 1 1 1 −

,

1 0 0 0 −
1 0 0 1 +
1 0 1 0 +
1 0 1 1 −

,

1 1 0 0 +
1 1 0 1 −
1 1 1 0 −
1 1 1 1 +

.

All the terms at the j -th step can be written down by using the following rules:

(1): If the first entry in a sequence (row) is zero, then the corresponding factor in the term
is mp! ;
(2): If the first entry in a sequence is 1, then the corresponding factor in the term is∑mp

νp=0
mp!

(mp−νp)! or this sum multiplied by λ
mp−νp

p−1 e−λp−1 if this 1 is the last entry in the
sequence;

(3): If the r-th and (r−1)-th entries in the sequence both equal zero, then the corresponding
factor in the term is mp−r+1! ;
(4): If the r-th entry in the sequence is zero and the (r − 1)-th entry is 1, then the cor-
responding factor in the term is (nr−1+mp−r+1)!

(ηr−1+1)nr−1+mp−r+1+1 , where nr−1 is the argument of the

denominator factorial and (ηr−1)
νp−r+2+1 is the factor in the denominator corresponding

to the (r − 1)-th entry;

(5): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is zero, then the cor-
responding factor in the term is

∑mp−r+1
νp−r+1=0

mp−r+1!
(mp−r+1−νp−r+1)! or this sum multiplied by

λ
mp−r+1−νp−r+1
p−r e−λp−r if this 1 is the last entry in the sequence;

(6): If the r-th and (r − 1)-th entries in the sequence are both equal to 1, then the corre-
sponding factor in the term is

∑nr−1+mp−r+1
νp−r+1=0

(nr−1+mp−r+1)!
(ηr−1+1)νp−r+1 (nr−1+mp−r+1−νp−r+1)! or this sum

multiplied by λ
nr−1+mp−r+1−νp−r+1
p−r e−(ηr−1+1)λp−r if this 1 is the last entry in the sequence,

where nr−1 and ηr−1 are defined in rule (4). By applying the above rules, let us write down
the terms at step 3, that is, j = 3. The sequences are then the following:
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Step 3 sequences:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

,

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

. (iii)

The corresponding terms in the order of the sequences are the following:

Step 3 integral

= mp!mp−1!mp−2! − mp!mp−1!
mp−2∑

νp−2=0

mp−2!
(mp−2 − νp−2)!λ

mp−2−νp−2
p−3 e−λp−3

− mp!
mp−1∑

νp−1=0

mp−1!
(mp−1 − νp−1)!

(mp−1 − νp−1 + mp−2)!
2mp−1−νp−1+mp−2+1

+ mp!
mp−1∑

νp−1=0

(mp−1)!
(mp−1 − νp−1)!

mp−1−νp−1+mp−2∑
νp−2=0

(mp−1 − νp−1 + mp−2)!
2νp−2+1(mp−1 − νp−1 + mp−2 − νp−2)!

× λ
mp−1−νp−1+mp−2−νp−2
p−3 e−2λp−3

−
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1

mp−2!

+
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1+1

mp−2∑
νp−2=0

mp−2!
(mp−2 − νp−2)!λ

mp−2−νp−2
p−3 e−λp−3

+
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑
νp−1=0

(mp − νp + mp−1)!
(mp − νp + mp−1 − νp−1)!

× (mp − νp + mp−1 − νp−1 + mp−2)!
3mp−νp+mp−1−νp−1+mp−2

−
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑
νp−1=0

(mp − νp + mp−1)!
2νp−1+1(mp − νp + mp−1 − νp−1)!

×
mp−νp+mp−1−νp−1+mp−2∑

νp−2=0

(mp − νp + mp−1 − νp−1 + mp−2)!
3νp−2+1(mp − νp + mp−1 − νp−1 + mp−2 − νp−2)!

× λ
mp−νp+mp−1−νp−1+mp−2−νp−2
p−3 e−3λp−3 . (iv)

The terms in (iv) are to be multiplied by λ
mp−3
p−3 e−λp−3 to obtain the final result if we are

stopping, that is, if p = 4. The terms in (iv) can be verified by multiplying the step 2
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integral by λ
mp−2
p−2 e−λp−2 and then integrating (ii), term by term. Denoting the sum of the

terms at the j -th step by ψj(λp−j ), the density of the largest eigenvalue λ1, denoted by
f11(λ1), is the following:

Theorem 9.6.2. When mj = α − p+1
2 + p − kj is a positive integer and ψj(λp−j ) is as

defined in the preceding paragraph, where kj is given in (9.6.10), the density of λ1 in the
real matrix-variate gamma case, denoted by f11(λ1), is the following:

f11(λ1)dλ1 = π
p2

2

Γp(α)Γp(
p
2 )

∑
K

(−1)ρk ψp−1(λ1) λ
m1
1 e−λ1 dλ1, 0 < λ1 < ∞, (9.6.12)

where it is assumed that mj is a positive integer.

In the corresponding complex case, the procedure is parallel and the expression for
ψj(λp−j ) remains the same, except that mj will then be equal to α − p + rj , where rj
is defined in (9.6a.3). Assuming that mj is a positive integer and letting the density in the
complex case be denoted by f̃11(λ1), we have the following result:

Theorem 9.6a.2. Letting mj = α − p + rj be a positive integer and ψj(λp−j ) have the
same representation as in the real case except that mj = α − p + rj , in the complex case,
the density of λ1, denoted by f̃11(λ1), is the following:

f̃11(λ1)dλ1 = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rk

ψp−1(λ1) λ
m1
1 e−λ1 dλ1, 0 < λ1 < ∞.

(9.6a.6)

Note 9.6.2. One can also compute the density of the j -th eigenvalue λj from Theo-
rems 9.6.1 and 9.6.2. For obtaining the density of λj , one has to integrate out λ1, . . . , λj−1

and λp, λp−1, . . . , λj+1, the resulting expressions being available from the (j − 1)-
th step when integrating λ1, . . . , λj−1 and from the (p − j)-th step when integrating
λp, λp−1, . . . , λj+1.

9.6.6. Density of the largest eigenvalue λ1 in the general real case

By general case, it is meant that mj = α− p+1
2 +p−kj is not a positive integer. In the

real Wishart case, mj will then be a half-integer; however in the general gamma case α can
be any real number greater than p−1

2 . In this general case, we will expand the exponential
part and then integrate term by term. That is,
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Step 1 integral:
∫ λp−1

λp=0
λ

mp
p e−λpdλp =

∞∑
νp=0

(−1)νp

νp!
∫ λp−1

λp=0
λ

mp+νp
p dλp

=
∞∑

νp=0

(−1)νp

νp!
1

(mp + νp + 1)
λ

mp+νp+1
p−1 . (i)

Continuing this process, we have

Step j integral =
∞∑

νp=0

(−1)νp

νp!
1

mp + νp + 1

∞∑
νp−1=0

(−1)νp−1

νp−1!
1

mp + νp + mp−1 + νp−1 + 2

· · ·
∞∑

νp−j+1=0

(−1)νp−j+1

νp−j+1!
1

mp + νp + · · · + mp−j+1 + νp−j+1 + j

≡ Δj(λp−j ). (ii)

Then, in the general real case, the density of λ1, denoted by f21(λ1), is the following:

Theorem 9.6.3. When mj = α − p+1
2 + p − kj is not a positive integer, where kj is as

specified in (9.6.10), the density of the largest eigenvalue λ1 in the general real matrix-
variate gamma case, denoted by f21(λ1), is given by

f21(λ1)dλ1 = π
p2

2

Γp(
p
2 )Γp(α)

∑
K

(−1)ρKΔp−1(λ1) λ
m1
1 e−λ1dλ1, 0 < λ1 < ∞, (9.6.13)

where Δj(λp−j ) is defined in (ii).

The corresponding density of λ1 in the general situation of the complex matrix-variate
gamma distribution is given in the next theorem. Observe that in the complexWishart case,
mj is an integer and hence there is no general case to consider.

Theorem 9.6a.3. When mj = α − p + rj is not a positive integer, where rj is as defined
in (9.6a.3), the density of λ1 in the complex case, denoted by f̃21(λ1), is given by

f̃21(λ1)dλ1 = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rp

Δp−1(λ1) λ
m1
1 e−λ1dλ1, 0 < λ1 < ∞,

(9.6a.7)
where the Δj(λp−j ) has the representation specified in (ii) except that mj = α − p + rj .
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9.6.7. Density of the smallest eigenvalue λp in the general real case

Once again, ‘general case’ is understood to mean that mj = α − p+1
2 + p − kj is

not a positive integer, where kj is defined in (9.6.10). For the real Wishart distribution,
‘general case’ corresponds to mj being a half-integer. In order to determine the density
of the smallest eigenvalue, we will integrate out λ1, . . . , λp−1. We initially evaluate the
following integral:

Step 1 integral:
∫ ∞

λ1=λ2

λ
m1
1 e−λ1dλ1 = Γ (m1 + 1) −

∫ λ2

λ1=0
λ

m1
1 e−λ1dλ1

= Γ (m1 + 1) −
∞∑

μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1
λ

m1+μ1+1
2 . (i)

The second step consists of integrating out λ2 from the expression obtained in (i) multi-
plied by λ

m2
2 e−λ2 :

Step 2 integral:

Γ (m1 + 1)
∫ ∞

λ2=λ3

λ
m2
2 e−λ2dλ2 −

∞∑
μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1

∫ ∞

λ2=λ3

λ
m1+μ1+m2+1
2 e−λ2dλ2

= Γ (m1 + 1)Γ (m2 + 1) − Γ (m1 + 1)
∞∑

μ2=0

(−1)μ2

μ2!
1

m2 + μ2 + 1
λ

m2+μ2+1
3

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)

+
∞∑

μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1

∞∑
μ2=0

(−1)μ2

μ2!
λ

m1+μ1+m2+μ2+2
3

m1 + μ1 + m2 + μ2 + 2
. (ii)

A pattern is now seen to emerge. At step j, there will be 2j terms, of which 2j−1 will start
with a plus sign and 2j−1 will start with a minus sign. All the terms at the j -th step are
available from the 2j sequences of zeros and ones provided in Sect. 9.6.5. The terms can
be written down by utilizing the following rules:

(1): If the sequence starts with a zero, then the corresponding factor in the term is Γ (m1 +
1);

(2): If the sequence starts with a 1, then the corresponding factor in the term is∑∞
μ1=0

(−1)μ1
μ1!

1
m1+μ1+1 or this series multiplied by λ

m1+μ1+1
2 if this 1 is the last entry in the

sequence;

(3): If the r-th entry in the sequence is a zero and the (r − 1)-th entry in the sequence is
also zero, then the corresponding factor in the term is Γ (mr + 1);
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(4): If the r-th entry in the sequence is a zero and the (r − 1)-th entry in the sequence
is a 1, then the corresponding factor in the term is Γ (nr−1 + mr + 1) where nr−1 is the
denominator factor in the (r − 1)-th factor excluding the factorial;

(5): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is zero, then the corre-
sponding factor in the term is

∑∞
μr=0

(−1)μ1
μr !

1
mr+μr+1 or this series multiplied by λ

mr+μr+1
r+1

if this 1 happens to be the last entry in the sequence;

(6): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is also 1, then the
corresponding factor in the term is

∑∞
μr=0

(−1)μr

μr !
1

nr−1+mr+μr+1 or this series multiplied by

λ
nr−1+mr+μr+1
r+1 if this 1 is the last entry in the sequence, where nr−1 is the factor appearing

in the denominator of the (r − 1)-th factor excluding the factorial.

These rules enable one to write down all the terms at any step. For example for j = 3,
that is, at the third step, the terms are available from the following step 3 sequences:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

,

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

.

The terms corresponding to the sequences in the order are the following:

Step 3 integral

= Γ (m1 + 1)Γ (m2 + 1)Γ (m3 + 1)

− Γ (m1 + 1)Γ (m2 + 1)
∞∑

μ3=0

(−1)μ3

μ3!
1

m3 + μ3 + 1
λ

m3+μ3+1
4

− Γ (m1 + 1)
∞∑

μ2=0

(−1)μ2

μ2!(m2 + μ2 + 1)
Γ (m2 + μ2 + m3 + 2)

+ Γ (m1 + 1)
∞∑

μ2=0

(−1)μ2

μ2!
1

m2 + μ2 + 1

∞∑
μ3=0

(−1)μ3

μ3!
λ

m2+μ2+m3+μ3+2
4

m2 + μ2 + m3 + μ3 + 2

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)Γ (m3 + 1)

+
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)

∞∑
μ3=0

(−1)μ3

μ3!
λ

m3+μ3+1
4

(m3 + μ3 + 1)
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+
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)

∞∑
μ2=0

(−1)μ2

μ2!(m1 + μ1 + m2 + μ2 + 2)

× Γ (m1 + μ1 + m2 + μ2 + m3 + 3)

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)

∞∑
μ2=0

(−1)μ2

μ2!(m1 + μ1 + m2 + μ2 + 2)

×
∞∑

μ3=0

(−1)μ3

μ3!
λ

m1+μ1+m2+μ2+m3+μ3+3
4

(m1 + μ1 + m2 + μ2 + m3 + μ3 + 3)
. (iii)

Then, the step j will be the following, denoted by wj(λj+1):

wj(λj+1) = Γ (m1 + 1) · · · Γ (mj + 1) − · · · + (−1)j
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
· · ·

×
∞∑

μj=0

(−1)μj

μj !
λ

m1+μ1+···+mj+μj+j

j+1

(m1 + μ1 + · · · + mj + μj + j)
. (iv)

Theorem 9.6.4. The density of λp for the general real matrix-variate gamma distribu-
tion, denoted by f2p(λp), is the following:

f2p(λp)dλp = π
p2

2

Γp(
p
2 )Γp(α)

∑
K

(−1)ρK wp−1(λp) λ
mp
p e−λp dλp, 0 < λp < ∞,

(9.6.14)
where the wj(λj+1) is defined in (iv).

The corresponding distribution of λp for a general complex matrix-variate gamma dis-
tribution, denoted by f̃2p(λp), is the following:

Theorem 9.6a.4. In the general complex case, in which instance mj = α −p + rj is not
a positive integer, rj being as defined in (9.6a.3), the density of the smallest eigenvalue λp,
denoted by f̃2p(λp), is given by

f̃2p(λp)dλp = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑
K

(−1)ρK

∑
r1,...,rp

wp−1(λp) λ
mp
p e−λp dλp, 0 < λp < ∞,

(9.6a.8)
where wj(λj+1) has the representation given in (iv) above for the real case, except that
mj = α − p + rj .
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Note 9.6.3. In the complex Wishart case, α = m where m > p − 1 is the number of
degrees of freedom, which is a positive integer. Hence, in this instance, one would simply
apply Theorem 9.6a.1. It should also be observed that one can integrate out λ1, . . . , λj−1

by using the procedure described in Theorem 9.6.4 and integrate out λp, . . . , λj+1 by
employing the procedure provided in Theorem 9.6.3, and thus derive the density of λj

or the joint density of any set of successive λj ’s. In a similar manner, one can obtain the
density of λj or the joint density of any set of successive λj ’s in the complex domain by
making use of the procedures outlined in Theorems 9.6a.3 and 9.6a.4.

References

M. Chiani (2014): Distribution of the largest eigenvalue for real Wishart and Gaussian
random matrices and a simple approximation for the Tracy-Widom distribution, Journal
of Multivariate Analysis, 129, 69–81.

D. S. Clemm, A. K. Chattopadhyay and P. R. Krishnaiah (1973): Upper percentage points
of the individual roots of the Wishart matrix, Sankhya, Series B, 35(3), 325–338.

A. W. Davis (1972): On the marginal distributions of the latent roots of the multivariate
beta matrix, The Annals of Mathematical Statistics, 43(5), 1664–1670.

A. Edelman (1991): The distribution and moments of the smallest eigenvalue of a random
matrix of Wishart type, Linear Algebra and its Applications, 159, 55–80.

A. T. James (1964): Distributions of matrix variates and latent roots derived from normal
samples, The Annals of Mathematical Statistics, 35, 475–501.

O. James and H.-N. Lee (2021): Concise probability distributions of eigenvalues of real-
valued Wishart matrices, https://arxiv.org/ftp/arxiv/paper/1402.6757.pdf

I. M. Johnstone (2001): On the distribution of the largest eigenvalue in Principal Compo-
nents Analysis, The Annals of Statistics, 29(2), 295–327.

C. G. Khatri (1964): Distribution of the largest or smallest characteristic root under null
hypothesis concerning complex multivariate normal populations. The Annals of Mathe-
matical Statistics, 35, 1807–1810

P. R. Krishnaiah, F.J. Schuurmannan and V.B. Waikar (1973): Upper percentage points of
the intermediate roots of the manova matrix, Sankhya, Ser.B, 35(3), 339–358

N. Kwak (2008): Principal component analysis based on L1-norm maximization, IEEE
Transaction on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.

A. M. Mathai (1997): Jacobians of Matrix Transformations and Functions of Matrix Ar-
gument, World Scientific Publishing, New York.

https://arxiv.org/ftp/arxiv/paper/1402.6757.pdf


Principal Component Analysis 639

A. M. Mathai and H. J. Haubold (2017a): Linear Algebra for Physicists and Engineers,
De Gruyter, Germany.

A. M. Mathai and H. J. Haubold (2017b): Probability and Statistics for Physicists and
Engineers, De Gruyter, Germany.

A. M. Mathai, S. B. Provost and T. Hayakawa (1995): Bilinear Forms and Zonal Polyno-
mials, Springer Lecture Notes, New York.

F. Nie and H. Huang (2016): Non-greedy L21-normmaximization for principal component
analysis, arXiv:1603.08293v1[cs,LG] 28 March 2016.

K. C. S. Pillai (1964): On the distribution of the largest seven roots of a matrix in multi-
variate analysis, Biometrika, 51(1/2), 270–275.

J. Shi, X. Zheng and W. Yang (2017): Survey on probabilistic models of low-rank matrix
factorization, Entropy, 19, 424, doi:10.3390/e19080424.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Principal Component Analysis 
	9.1 Introduction
	9.2 Principal Components
	9.3 Issues to Be Mindful of when Constructing Principal Components
	9.4 The Vector of Principal Components
	9.4.1 Principal components viewed from differingperspectives

	9.5 Sample Principal Components
	9.5.1 Estimation and evaluation of the principal components
	9.5.2 L1 and L2 norm principal components

	9.6 Distributional Aspects of Eigenvalues and Eigenvectors
	9.6.1 The distributions of the largest and smallesteigenvalues
	9.6.2 Simplification of the factor i<j(λi-λj)
	9.6.3 The distributions of the eigenvalues
	9.6.4 Density of the smallest eigenvalue λp in the real matrix-variate gamma case
	9.6.5 Density of the largest eigenvalue λ1 in the real matrix-variate gamma case
	9.6.6 Density of the largest eigenvalue λ1 in the generalreal case
	9.6.7 Density of the smallest eigenvalue λp in the generalreal case

	References


