
Chapter 8
The Distributions of Eigenvalues and Eigenvectors

8.1. Introduction

We will utilize the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. Other notations will
remain unchanged.

Our objective in this chapter is to examine the distributions of the eigenvalues and
eigenvectors associated with a matrix-variate random variable. Letting W be such a p × p

matrix-variate random variable, its determinant is the product of its eigenvalues and its
trace, the sum thereof. Accordingly, the distributions of the determinant and the trace of
W are available from the distributions of simple functions of its eigenvalues. Actually,
several statistical quantities are associated with eigenvalues or eigenvectors. In order to
delve into such problems, we will require certain additional properties of the matrix-variate
gamma and beta distributions previously introduced in Chap. 5. As a preamble to the study
of the distributions of eigenvalues and eigenvectors, these will be looked into in the next
subsections for both the real and complex cases.

8.1.1. Matrix-variate gamma and beta densities, real case

Let W1 and W2 be statistically independently distributed p × p real matrix-variate
gamma random variables whose respective parameters are (α1, B) and (α2, B) with
�(αj ) >

p−1
2 , j = 1, 2, their common scale parameter matrix B being a real positive

definite constant matrix. Then, the joint density of W1 and W2, denoted by f (W1, W2), is
the following:
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f (W1, W2) =

⎧
⎪⎪⎨

⎪⎪⎩

|B|α1+α2

Γp(α1)Γp(α2)
|W1|α1−p+1

2 |W2|α2−p+1
2 e−tr(B(W1+W2))

B > O, Wj > O, �(αj ) >
p−1
2 , j = 1, 2,

0 elsewhere

. (8.1.1)

Consider the transformations

U1 = (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 and U2 = W
− 1

2
2 W1W

− 1
2

2 , (8.1.2)

which are matrix-variate counterparts of the changes of variables u1 = w1
w1+w2

and u2 = w1
w2

in the real scalar case, that is, for p = 1. Note that the square roots in (8.1.2) are symmetric
positive definite matrices. Then, we have the following result:

Theorem 8.1.1. When the real matrices U1 and U2 are as defined in (8.1.2), then U1 is
distributed as a real matrix-variate type-1 beta variable with the parameters (α1, α2) and
U2, as a real matrix-variate type-2 beta variable with the parameters (α1, α2). Further,
U1 and U3 = W1+W2 are independently distributed, with U3 having a real matrix-variate
gamma distribution with the parameters (α1 + α2, B).

Proof: Given the joint density of W1 and W2 specified in (8.1.1), consider the transforma-
tion (W1,W2) → (U3 = W1 + W2, U = W1). On observing that its Jacobian is equal to
one, the joint density of U3 and U , denoted by f1(U3, U), is obtained as

f1(U3, U) dU3 ∧ dU = c |U |α1−p+1
2 |U3 − U |α2−p+1

2 e−tr(U3)dU3 ∧ dU (i)

where

c = |B|α1+α2

Γp(α1)Γp(α2)
. (ii)

Noting that

|U3 − U | = |U3| |I − U
− 1

2
3 UU

− 1
2

3 |,

we now let U1 = U
− 1

2
3 UU

− 1
2

3 for fixed U3, so that dU1 = |U3|−p+1
2 dU . Accordingly, the

joint density of U3 and U1, denoted by f2(U3, U1), is the following, observing that U1 is
as defined in (8.1.2) with W1 = U and U3 = W1 + W2:

f2(U3, U1) = c |U3|α1+α2−p+1
2 e−tr(U3)|U1|α1−p+1

2 |I − U1|α2−p+1
2 (iii)
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for �(α1) >
p−1
2 , �(α2) >

p−1
2 , U3 > O, O < U1 < I , and zero elsewhere. On

multiplying and dividing (iii) by Γp(α1 + α2), it is seen that U1 and U3 = W1 + W2 are
independently distributed as their joint density factorizes into the product of two densities
g(U1) and g1(U3), that is, f2(U1, U3) = g(U1)g1(U3) where

g(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α1−p+1

2 |I − U1|α2−p+1
2 , O < U1 < I, (8.1.3)

for �(α1) >
p−1
2 , �(α2) >

p−1
2 , and zero elsewhere, is a real matrix-variate type-1 beta

density with the parameters (α1, α2), and

g1(U3) = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3), U3 > O, (8.1.4)

for B > O, �(α1 + α2) >
p−1
2 , and zero elsewhere, which is a real matrix-variate

gamma density with the parameters (α1 + α2, B). Thus, given two independently dis-
tributed p × p real positive definite matrices W1 and W2, where W1 ∼ gamma (α1, B),

B > O, �(α1) >
p−1
2 , and W2 ∼ gamma (α2, B), B > O, �(α2) >

p−1
2 , one has

U3 = W1 + W2 ∼ gamma (α1 + α2, B), B > O.

In order to determine the distribution of U2, we first note that the exponent in (8.1.1)
is tr(B(W1 + W2)) = tr[B 1

2W1B
1
2 + B

1
2W2B

1
2 ]. Letting Vj = B

1
2WjB

1
2 , dVj =

|B|p+1
2 dWj , j = 1, 2, which eliminates B, the resulting joint density of V1 and V2, de-

noted by f3(V1, V2), being

f3(V1, V2) = 1

Γp(α1)Γp(α2)
|V1|α1−p+1

2 |V2|α2−p+1
2 e−tr(V1+V2), Vj > O, (8.1.5)

for �(αj ) >
p−1
2 , j = 1, 2, and zero elsewhere. Now, noting that tr[V1+V2] = tr[V

1
2
2 (I +

V
− 1

2
2 V1V

− 1
2

2 )V
1
2
2 ] and letting V = V

− 1
2

2 V1V
− 1

2
2 = U2 of (8.1.2) so that dV = |V2|−p+1

2 dV1

for fixed V2, the joint density of V and V2 = V3, denoted by f4(V , V3), is obtained as

f4(V , V3) = 1

Γp(α1)Γp(α2)
|V |α1−p+1

2 |V3|α1+α2−p+1
2 e−tr((I+V )

1
2 V3(I+V )

1
2 ) (8.1.6)

where tr[V
1
2
3 (I + V )V

1
2
3 ] was replaced by tr[(I + V )

1
2V3(I + V )

1
2 ]. It then suffices to

integrate out V3 from the joint density specified in (8.1.6) by making use of a real matrix-
variate gamma integral, to obtain the density of V = U2 that follows:

g2(V ) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|V |α1−p+1

2 |I + V |−(α1+α2), V > O, (8.1.7)
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for �(αj ) >
p−1
2 , j = 1, 2, and zero elsewhere, which is a real matrix-variate type-2 beta

density whose parameters are (α1, α2). This completes the proof.

8.1a. Matrix-variate Gamma and Beta Densities, Complex Case

Parallel results can be obtained in the complex domain. If W̃1 and W̃2 are statisti-
cally independently distributed p×p Hermitian positive definite matrices having complex
matrix-variate gamma densities with the parameters (α1, B̃) and (α2, B̃), B̃ = B̃∗ > O,
where an asterisk designates a conjugate transpose, then their joint density, denoted by
f̃ (W̃1, W̃2), is given by

f̃ (W̃1, W̃2) = |det(B)|α1+α2

Γ̃p(α1)Γ̃p(α2)
|det(W̃1)|α1−p|det(W̃2)|α2−pe−tr(B̃(W̃1+W̃2)) (8.1a.1)

for B̃ > O, W̃1 > O, W̃2 > O, �(αj ) > p − 1, j = 1, 2, and zero elsewhere,
with |det(W̃j )| denoting the absolute value or modulus of the determinant of W̃j . Since
the derivations are similar to those provided in the previous subsection for the real case,
the next results will be stated without proof. Note that, in the complex domain, the square
roots involved in the transformations are Hermitian positive definite matrices.

Theorem 8.1a.1. Let the p × p Hermitian positive definite matrices W̃1 and W̃2 be
independently distributed as complex matrix-variate gamma variables with the parameters
(α1, B̃) and (α2, B̃), B̃ = B̃∗ > O, respectively. Letting Ũ3 = W̃1 + W̃2,

Ũ1 = (W̃1 + W̃2)
− 1

2 W̃1(W̃1 + W̃2)
− 1

2 = Ũ
− 1

2
3 W̃1Ũ

− 1
2

3 and Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 ,

then (1): Ũ3 is distributed as a complex matrix-variate gamma with the parameters
(α1 + α1, B̃), B̃ = B̃∗ > O, �(α1 + α2) > p − 1; (2): Ũ1 and Ũ3 are indepen-
dently distributed; (3): Ũ1 is distributed as a complex matrix-variate type-1 beta random
variable with the parameters (α1, α2); (4): Ũ2 is distributed as a complex matrix-variate
type-2 beta random variable with the parameters (α1, α2).

8.1.2. Real Wishart matrices

Since Wishart matrices are distributed as matrix-variate gamma variables whose pa-
rameters are αj = mj

2 , mj ≥ p, and B = 1
2Σ

−1, Σ > O, we have the following
corollaries in the real and complex cases:

Corollary 8.1.1. Let the p × p real positive definite matrices W1 and W2 be indepen-
dently Wishart distributed, Wj ∼ Wp(mj , Σ), with mj ≥ p, j = 1, 2, degrees of
freedom, common parameter matrix Σ > O, and respective densities given by
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φj (Wj) = 1

2
pmj
2 Γp (

mj

2 )|Σ |mj
2

|Wj |
mj
2 −p+1

2 e− 1
2 tr(Σ

−1Wj), j = 1, 2, (8.1.8)

and zero elsewhere. Then (1): U3 = W1 + W2 is Wishart distributed with m1 + m2 de-
grees of freedom and parameter matrix Σ > O, that is, U3 ∼ Wp(m1+m2, Σ), Σ > O;

(2): U1 = (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 = U
− 1

2
3 W1U

− 1
2

3 is a real matrix-variate type-1
beta random variable with the parameters (α1, α2), that is, U1 ∼ type-1 beta (m1

2 , m2
2 );

(3): U1 and U3 are independently distributed; (4): U2 = W
− 1

2
2 W1W

− 1
2

2 is a real
matrix-variate type-2 beta random variable with the parameters (α1, α2), that is, V ∼
type-2 beta (m1

2 , m2
2 ).

The corresponding results for the complex case are parallel with identical numbers of
degrees of freedom, m1 and m2, and parameter matrix Σ̃ = Σ̃∗ > O (Hermitian positive
definite). Properties associated with type-1 and type-2 beta variables hold as well in the
complex domain. Consider for instance the following results which are also valid in the
complex case. If U is a type-1 beta variable with the parameters (α1, α2), then I − U is a
type-1 beta variable with the parameters (α2, α1) and (I − U)− 1

2U(I − U)− 1
2 is a type-2

beta variable with the parameters (α1, α2).

8.2. Some Eigenvalues and Eigenvectors, Real Case

Observe that when X, a p × p real positive definite matrix, has a real matrix-variate
gamma density with the parameters (α, B), B > O, �(α) >

p−1
2 , then Z = B

1
2XB

1
2

has a real matrix-variate gamma density with the parameters (α, I ) where I is the identity
matrix. The corresponding result for a Wishart matrix is the following: Let W be a real
Wishart matrix having m degrees of freedom and Σ > O as its parameter matrix, that
is, W ∼ Wp(m, Σ), Σ > O, m ≥ p, then Z = Σ− 1

2WΣ− 1
2 ∼ Wp(m, I), m ≥ p,

that is, Z is a Wishart matrix having m degrees of freedom and I as its parameter matrix.
If we are considering the roots of the determinantal equation |Ŵ1 − λŴ2| = 0 where
Ŵ1 ∼ Wp(m1, Σ) and Ŵ2 ∼ Wp(m2, Σ), Σ > O, mj ≥ p, j = 1, 2, and if Ŵ1 and

Ŵ2 are independently distributed, so will W1 = Σ− 1
2 Ŵ1Σ

− 1
2 and W2 = Σ− 1

2 Ŵ2Σ
− 1

2 be.
Then

|Σ− 1
2 Ŵ1Σ

− 1
2 − λΣ− 1

2 Ŵ2Σ
− 1

2 | = 0 ⇒ |Σ |− 1
2 |Ŵ1 − λŴ2| |Σ |− 1

2 = 0

⇒ |Ŵ1 − λŴ2| = 0. (8.2.1)

Thus, the roots of |W1 − λW2| = 0 and |Ŵ1 − λŴ2| = 0 are identical. Hence, without
any loss of generalily, one needs only consider the roots of Wj, Wj ∼ Wp(mj , I ), mj ≥



554 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

p, j = 1, 2, when independently distributed Wishart matrices sharing a common matrix
parameter are involved. Observe that

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0 (8.2.2),

which means that λ is an eigenvalue of W
− 1

2
2 W1W

− 1
2

2 when Wj
ind∼ Wp(mj , I ), j = 1, 2.

If Yj is an eigenvector corresponding to the eigenvalue λj , it must satisfy the equation

(W
− 1

2
2 W1W

− 1
2

2 )Yj = λjYj . (8.2.3)

Let the eigenvalues λj ’s be distinct so that λ1 > λ2 > · · · > λp. Actually, it can be shown

that Pr{λi = λj } = 0 almost surely for all i 	= j . When the eigenvalues of W
− 1

2
2 W1W

− 1
2

2

are distinct, then the eigenvectors are orthogonal since W
− 1

2
2 W1W

− 1
2

2 is symmetric. Thus,
in this case, there exists a set of p linearly independent mutually orthogonal eigenvectors.
Let Y1, . . . , Yp be a set of normalized mutually orthonormal eigenvectors and let Y =
(Y1, . . . , Yp) be the p × p matrix consisting of the normalized eigenvectors. Our aim is to
determine the joint density of Y and λ1, . . . , λp, and thereby the marginal densities of Y

and λ1, . . . , λp. To this end, we will need the Jacobian provided in the next theorem. For
its derivation and connection to other Jacobians, the reader is referred to Mathai (1997).

Theorem 8.2.1. Let Z be a p × p real symmetric matrix comprised of distinct real
scalar variables as its elements, except for symmetry, and let its distinct nonzero eigen-
values be λ1 > λ2 > · · · > λp, which are real owing to its symmetry. Let D =
diag(λ1, . . . , λp), dD = dλ1∧ . . .∧dλp, and P be a unique orthonormal matrix such that
PP ′ = I, P ′P = I, and Z = PDP ′. Then, after integrating out the differential element
of P over the full orthogonal group Op, we have

dZ = π
p2

2

Γp(
p
2 )

{ p−1∏

i=1

p∏

j=i+1

(λi − λj )
}
dD = π

p2

2

Γp(
p
2 )

{ ∏

i<j

(λi − λj )
}
dD. (8.2.4)

Corollary 8.2.1. Let g(Z) be a symmetric function of the p × p real symmetric matrix
Z—symmetric function in the sense that g(AB) = g(BA) whenever AB and BA are
defined, even if AB 	= BA. Let the eigenvalues of Z be distinct such that λ1 > λ2 > · · · >

λp, D = diag(λ1, . . . , λp) and dD = dλ1 ∧ . . . ∧ dλp. Then,

∫

Z

g(Z)dZ =
∫

D

g(D)
π

p2

2

Γp(
p
2 )

{ ∏

i<j

(λi − λj )
}
dD.



The Distributions of Eigenvalues and Eigenvectors 555

Example 8.2.1. Consider a p × p real matrix X having a matrix-variate gamma density
with shape parameter α = p+1

2 and scale parameter matrix I , whose density is

f (X) = 1

Γp(
p+1
2 )

e−tr(X), X > O.

A variable having this density is also said to follow the real p × p matrix-variate expo-
nential distribution. Let p = 2 and denote the eigenvalues of X by ∞ > λ1 > λ2 > 0. It
follows from Corollary 8.2.1 that the joint density of λ1 and λ2, denoted by f1(D), with
D = diag(λ1, λ2), is given by

f1(D) dD = 1

Γ2(
2+1
2 )

π
22
2

Γ2(
2
2)

(λ1 − λ2) e
−tr(D)dD.

Verify that f1(D) is a density.

Solution 8.2.1. Since f1(D) is nonnegative, it suffices to show that the total integral is
equal to 1. Excluding the constant part, the integral to be evaluated is the following:

∫ ∞

λ1=0

∫ λ1

λ2=0
(λ1 − λ2) e

−(λ1+λ2)dλ1 ∧ dλ2

=
∫ ∞

λ1=0
λ1e

−λ1
[ ∫ λ1

λ2=0
e−λ2dλ2

]
dλ1 −

∫ ∞

λ1=0
e−λ1

[ ∫ λ1

λ2=0
λ2e

−λ2dλ2
]
dλ1

=
∫ ∞

λ1=0
λ1e

−λ1[1 − e−λ1]dλ1

+
∫ ∞

0
λ1e

−2λ1dλ1 −
∫ ∞

0
e−λ1dλ1 +

∫ ∞

0
e−2λ1dλ1

=
∫ ∞

0
λ1e

−λ1dλ1 −
∫ ∞

0
e−λ1dλ1 +

∫ ∞

0
e−2λ1dλ1

= 1 − 1 + 1

2
= 1

2
. (i)

Let us now compute the constant part:

1

Γ2(
2+1
2 )

π
22
2

Γ2(
2
2)

= 1

Γ2(
3
2)

π2

Γ2(1)

= 1√
π(12

√
π)

π2

√
π

√
π

= 2. (ii)
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Since the product of (i) and (ii) gives 1, f1(D) is indeed a density.

Example 8.2.2. Consider a p×p matrix having a real matrix-variate type-1 beta density
with the parameters α = p+1

2 , β = p+1
2 , whose density, denoted by f (X), is

f (X) = Γp(p + 1)

Γp(
p+1
2 )Γp(

p+1
2 )

, O < X < I,

and zero elsewhere. This density f (X) is also referred to as a real p × p matrix-variate
uniform density. Let p = 2 and the eigenvalues of X be 1 > λ1 > λ2 > 0. Then, the
density of D = diag(λ1, λ2), denoted by f1(D), is

f1(D)dD = Γ2(2 + 1)

[Γ2(
2+1
2 )]2

π
22
2

Γ2(
2
2)

(λ1 − λ2) dD, 1 > λ1 > λ2 > 0,

and zero elsewhere. Verify that f1(D) is a density.

Solution 8.2.2. The constant part simplifies to the one:

Γ2(3)

[Γ2(
3
2)]2

π2

Γ2(1)
=

√
πΓ (3)Γ (52)

[√πΓ (32)Γ (22)]2
π2

√
πΓ (1)Γ (12)

=
√

π(2)(32)(
1
2)

√
π

[√π(12)
√

π ]2
π2

√
π

√
π

= 6. (i)

Let us now consider the functional part of the integrand:
∫ 1

λ1=0

∫ λ1

λ2=0
(λ1 − λ2) dλ1 ∧ dλ2 =

∫ 1

0
λ21 dλ1 −

∫ 1

0

λ21

2
dλ1

= 1

2

∫ 1

0
λ21 dλ1 = 1

6
. (ii)

As the product of (i) and (ii) equals 1, it is verified that f1(D) is a density.

Example 8.2.3. Consider a p × p matrix having a matrix-variate gamma density with
shape parameter α and scale parameter matrix I . Let D = diag(λ1, . . . , λp) where ∞ >

λ1 > λ2 > · · · > λp > 0 are the eigenvalues of that matrix. The joint density of the λj ’s
or the density of D is then available as

f1(D) dD = π
p2

2

Γp(
p
2 )Γp(α)

[λ1 · · · λp]α−p+1
2 e−(λ1+···+λp)

[∏

i<j

(λi − λj )
]
dD.
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Even when α is specified, the integral representation of the density f1(D) will generally
only be expressible in terms of incomplete gamma functions or confluent hypergeometric
series, with simple functional forms being obtainable only for certain values of α and p.
Verify that f1(D) is a density for α = 7

2 and p = 2.

Solution 8.2.3. For those values of p and α, we have

[λ1λ2] 72− 3
2 (λ1 − λ2)e

−(λ1+λ2) = [λ31λ22 − λ21λ
3
2]e−(λ1+λ2)

whose integral over ∞ > λ1 > λ2 > 0 is the sum of (i) and (ii):

∫ ∞

λ1=0

∫ λ1

λ2=0
λ31λ

2
2e

−(λ1+λ2)dλ2 ∧ dλ1 =
∫ ∞

λ1=0
λ31e

−λ1
[ ∫ λ1

λ2=0
λ22e

−λ2dλ2
]
dλ1

=
∫ ∞

λ1=0
[(−λ51 − 2λ41 − 2λ31)e

−2λ1 + 2λ31e
−λ1]dλ1,

(i)

−
∫ ∞

λ1=0
λ21e

−λ1
[ ∫ λ1

λ2=0
λ32e

−λ2dλ2
]
dλ1

=
∫ ∞

0
[(λ51 + 3λ41 + 6λ31 + 6λ21)e

−2λ1 − 6λ21e
−λ1]dλ1,

(ii)that is,
∫ ∞

0
[(λ41 + 4λ31 + 6λ21)e

−2λ1 + (2λ31 − 6λ21)e
−λ1]dλ1

= 2−5Γ (5) + 4(2−4)Γ (4) + 6(2−3)Γ (3) + 2Γ (4) − 6Γ (3)

= 4!
25

+ 4(3!)
24

+ 6(2!)
23

+ 2(3!) − 6(2!) = 15

4
. (iii)

Now, consider the constant part:

1

Γp(α)

π
p2

2

Γp(
p
2 )

= 1

Γ2(
7
2)

π2

Γ2(
2
2)

= 1√
π(52)(

3
2)

1
2

√
π(2!)

π2

√
π

√
π

= 4

15
. (iv)

The product of (iii) and (iv) giving 1, this verifies that f1(D) is a density when p = 2 and
α = 7

2 .
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8.2a. The Distributions of Eigenvalues in the Complex Case

The complex counterpart of Theorem 8.2.1 is stated next.

Theorem 8.2a.1. Let Z̃ be a p×p Hermitian matrix with distinct real nonzero eigenval-
ues λ1 > λ2 > · · · > λp. Let Q̃ be a p × p unique unitary matrix, Q̃Q̃∗ = I, Q̃∗Q̃ = I

such that Z̃ = Q̃DQ̃∗ where an asterisk designates the conjugate transpose. Then, after
integrating out the differential element of Q̃ over the full orthogonal group Õp, we have

dZ̃ = πp(p−1)

Γ̃p(p)

{∏

i<j

|λi − λj |2
}
dD. (8.2a.1)

Note 8.2a.1. When the unitary matrix Q̃ has diagonal elements that are real, then the
integral of the differential element over the full orthogonal group Õp will be the following:

∫

Õp

h̃(Q̃) = πp(p−1)

Γ̃p(p)
(8.2a.2)

where h̃(Q̃) = ∧[(dQ̃)Q̃∗]; the reader may refer to Theorem 4.4 and Corollary 4.3.1 of
Mathai (1997) for details. If all the elements comprising Q̃ are complex, then the numer-
ator in (8.2a.2) will be πp2

instead of πp(p−1). When unitary transformations are made
on Hermitian matrices such as Z̃ in Theorem 8.2a.1, the diagonal elements in the unitary
matrix Q̃ are real and hence the numerator in (8.2a.2) remains πp(p−1) in this case.

Note 8.2a.2. A corollary parallel to Corollary 8.2.1 also holds in the complex domain.

Example 8.2a.1. Consider a complex p × p matrix X̃ having a matrix-variate type-1
beta density with the parameters α = p and β = p, so that its density, denoted by f̃ (X̃),
is the following:

f̃ (X̃) = Γ̃p(2p)

Γ̃p(p)Γ̃p(p)
, O < X̃ < I,

which is also referred to as the p × p complex matrix-variate uniform density. Let D =
diag(λ1, . . . , λp) where 1 > λ1 > λ2 > · · · > λp > 0 are the eigenvalues of X̃. Then, the
density of D, denoted by f1(D), is given by

f1(D) dD = Γ̃p(2p)

[Γ̃p(p)]2
πp(p−1)

Γ̃p(p)

[∏

i<j

(λi − λj )
2
]
dD. (i)

Verify that (i) is a density for p = 2.
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Solution 8.2a.1. For Hermitian matrices the eigenvalues are real. Consider the integral
over (λ1 − λ2)

2:

∫ 1

λ1=0

[ ∫ λ1

λ2=0
(λ21 + λ22 − 2λ1λ2)dλ2

]
dλ1

=
∫ 1

λ1=0

[
λ31 + λ31

3
− 2

λ31

2

]
dλ1

=
∫ 1

0

λ31

3
dλ1 = 1

12
. (ii)

Let us now evaluate the constant part:

Γ̃p(2p)

[Γ̃p(p)]2
πp(p−1)

Γ̃p(p)
= Γ̃2(4)

[Γ̃2(2)]2
π2(1)

Γ̃2(2)

= πΓ (4)Γ (3)

π2[Γ (2)Γ (1)]2
π2

πΓ (2)Γ (1)
= 12. (iii)

The product of (ii) and (iii) equalling 1, the solution is complete.

Example 8.2a.2. Consider a p × p complex matrix X̃ having a matrix-variate gamma
density with the parameters (α = p, β = I ). Let D = diag(λ1, . . . , λp), where ∞ >

λ1 > · · · > λp > 0 are the eigenvalues of X̃. Denoting the density of D by f1(D), we
have

f1(D) = 1

Γ̃p(p)

πp(p−1)

Γ̃p(p)
e−(λ1+···+λp)

[ ∏

i<j

(λi − λj )
2
]
.

When α = p, this density is the p × p complex matrix-variate exponential density. Verify
that f1(D) is a density for p = 2.

Solution 8.2a.2. The constant part simplifies to the following:

1

Γ̃p(p)

πp(p−1)

Γ̃p(p)
= 1

Γ̃2(2)

π2(1)

Γ̃2(2)

= 1

πΓ (2)Γ (1)

π2

πΓ (2)Γ (1)
= 1, (i)
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and the integrals over the λj ’s are evaluated as follows:
∫ ∞

λ1=0

∫ λ1

λ2=0
(λ21 + λ22 − 2λ1λ2)e

−(λ1+λ2)dλ1 ∧ dλ2

=
∫ ∞

λ1=0
λ21e

−λ1
[ ∫ λ1

λ2=0
e−λ2dλ2

]
dλ1 +

∫ ∞

λ1=0
e−λ1

[ ∫ λ1

λ2=0
λ22e

−λ2dλ2
]
dλ1

− 2
∫ ∞

λ1=0
λ1e

−λ1
[ ∫ λ1

λ2=0
λ2e

−λ2dλ2
]
dλ1

=
∫ ∞

0
(−λ21 − λ21 − 2λ1 − 2 + 2λ21 + 2λ1)e

−2λ1dλ1

+
∫ ∞

0
(λ21 + 2 − 2λ1)e

−λ1dλ1 =
∫ ∞

0
(λ21 − 2λ1 + 2)e−λ1dλ1 − 2

∫ ∞

0
e−2λ1dλ1

= Γ (3) − 2Γ (2) + 2 − 2

2
= 1. (ii)

Now, taking the product of (i) and (ii), we obtain 1, and the result is verified.

8.2.1. Eigenvalues of matrix-variate gamma and Wishart matrices, real case

Let W1 and W2 be two p × p real positive definite matrix-variate random variables
that are independently distributed as matrix-variate gamma random variables with the pa-
rameters (α1, B) and (α2, B), respectively. When αj = mj

2 , mj ≥ p, j = 1, 2, with
m1, m2 = p, p + 1, . . . , and B = 1

2I , W1 and W2 are independently Wishart distributed
with m1 and m2 degrees of freedom, respectively; refer to the earlier discussion about the
elimination of the scale parameter matrix Σ > O in a matrix-variate Wishart distribution.
Consider the determinantal equation

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0. (8.2.5)

Thus, λ is an eigenvalue of U2 = W
− 1

2
2 W1W

− 1
2

2 . It has already been established in The-

orem 8.1.1 that U2 = W
− 1

2
2 W1W

− 1
2

2 is distributed as a real matrix-variate type-2 beta
random variable with the parameters α1 and α2 whose density is

fu(U2) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U2|α1−p+1

2 |I + U2|−(α1+α2), (8.2.6)

for U2 > O, �(αj ) >
p−1
2 , j = 1, 2, and zero elsewhere. Note that this distribution is

free of the scale parameter matrix B. Writing U2 in terms of its eigenvalues and making
use of (8.2.4), we have the following result:
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Theorem 8.2.2. Let λ1 > λ2 > · · · > λp > 0 be the distinct roots of the determinantal

equation (8.2.5) or, equivalently, let the λj ’s be the eigenvalues of U2 = W
− 1

2
2 W1W

− 1
2

2 , as
defined in (8.2.5). Then, after integrating out over the full orthogonal group Op, the joint
density of λ1, . . . , λp, denoted by g1(D) with D = diag(λ1, . . . , λp), is obtained as

g1(D) = Γp(α1 + α2)

Γp(α1)Γp(α2)

{ p∏

j=1

λ
α1−p+1

2
j

}{ p∏

j=1

(1 + λj )
−(α1+α2)

}
(8.2.7)

× π
p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}
dD, dD = dλ1 ∧ . . . ∧ dλp.

Proof: Applying the transformation U2 = PDP ′, PP ′ = I, P ′P = I , where P is a
unique orthonormal matrix, to the density of U2 given in (8.2.6), it follows from Theo-
rem 8.2.1 that

dU2 = π
p2

2

Γp(
p
2 )

{ ∏

i<j

(λi − λj )
}
dD

after integrating out the differential element corresponding to the orthonormal matrix P .
On substituting |U2| = λ1 · · · λp and |I +U2| = (1+λ1) · · · (1+λp) in (8.2.6), the result
is established.

Note 8.2.1. When α1 = m1
2 , α2 = m2

2 , mj ≥ p, with m1, m2 = p, p + 1, . . . , in
Theorem 8.2.2, we have the corresponding result for real Wishart matrices having m1 and
m2 degrees of freedom and parameter matrix 1

2Ip.

Example 8.2.4. Let the p×p real matrixX have a real matrix-variate type-2 beta density
with the parameters α = p+1

2 and β = p+1
2 . Then, the joint density of its eigenvalues

λ1 > λ2 > · · · > λp > 0, or that of D = diag(λ1, . . . , λp), denoted by g1(D), is

g1(D) = Γp(p + 1)

[Γp(
p+1
2 )]2

π
p2

2

Γp(
p
2 )

[ p∏

j=1

(1 + λj )
−(p+1)

]∏

i<j

(λi − λj ).

Verify that g1(D) is a density for p = 2.

Solution 8.2.4. Consider the total integral for p = 2. The constant part is

Γp(p + 1)

[Γp(
p+1
2 )]2

π
p2

2

Γp(
p
2 )

= Γ2(3)

[Γ2(
3
2)]2

π2

Γ2(
2
2)

=
√

πΓ (3)Γ (52)

π [Γ (32)Γ (1)]2
π2

√
πΓ (1)Γ (12)

=
√

π(2)(32)(
1
2)

√
π

π(14)π

π2

√
π

√
π

= 6, (i)
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and the integral part is obtained as follows:

∫ ∞

λ1=0

∫ λ1

λ2=0

(λ1 − λ2)

(1 + λ1)3(1 + λ2)3
dλ1 ∧ dλ2

=
∫ ∞

λ1=0

λ1

(1 + λ1)3

[ ∫ λ1

λ2=0

1

(1 + λ2)3
dλ2

]
dλ1

−
∫ ∞

λ1=0

1

(1 + λ1)3

[ ∫ λ1

λ2=0

λ2

(1 + λ2)3
dλ2

]
dλ1. (ii)

The first integral over λ2 in (ii) is

∫ λ1

λ2=0

1

(1 + λ2)3
dλ2 = 1

2

[
1 − 1

(1 + λ1)2

]
;

then, integrating with respect to λ1 yields

1

2

∫ ∞

λ1=0

λ1

(1 + λ1)3

[
1 − 1

(1 + λ1)2

]
dλ1 = 1

2

{Γ (2)Γ (1)

Γ (3)
− Γ (2)Γ (3)

Γ (5)

}

= 1

2

{1

2
− 1

12

}
= 5

24
. (iii)

Now, after integrating by parts, the second integral over λ2 in (ii) is the following:

∫ λ1

λ2=0

λ2

(1 + λ2)3
dλ2 = 1

2

[
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
;

then, integrating with respect to λ1 gives

−1

2

∫ ∞

λ1=0

1

(1 + λ1)3

[
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
dλ1

= 1

2

[Γ (2)Γ (3)

Γ (5)
− 1

2
+ 1

3

]
= − 1

24
. (iv)

Combining (iii) and (iv), the sum is

5

24
− 1

24
= 1

6
. (v)

Finally, the product of (i) and (v) is 1, which verifies that f (D) is indeed a density when
p = 2.
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8.2a.1. Eigenvalues of complex matrix-variate gamma and Wishart matrices

A parallel result can be obtained in the complex domain. Let W̃1 and W̃2 be indepen-
dently distributed p×p complex matrix-variate gamma random variables with parameters
(α1, B̃) and (α2, B̃), B̃ = B̃∗ > O, �(αj ) > p − 1, j = 1, 2. Consider the determinan-
tal equation

[det(W̃1 − λW̃2)] = 0 ⇒ [det(W̃− 1
2

2 W̃1W̃
− 1

2
2 − λI)] = 0. (8.2a.3)

It follows from Theorem 8.1a.1 that Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 has a complex matrix-variate
type-2 beta distribution with the parameters (α1, α2), whose associated density is

f̃u(Ũ2) = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)
|det(Ũ2)|α1−p|det(I + Ũ2)|−(α1+α2) (8.2a.4)

for Ũ2 = Ũ∗
2 > O, �(αj ) > p − 1, j = 1, 2, and zero elsewhere. Observe that the

distribution of Ũ2 is free of the scale parameter matrix B̃ > O and that W̃1 and W̃2 are
Hermitian positive definite so that their eigenvalues λ1 > · · · > λp > 0, assumed to be
distinct, are real and positive. Writing Ũ2 in terms of its eigenvalues and making use of
(8.2a.1), we have the following result:

Theorem 8.2a.2. Let Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 and its distinct eigenvalues λ1 > · · · > λp >

0 be as defined in the determinantal equation (8.2a.3). Then, after integrating out the
differential element corresponding to the unique unitary matrix Q̃, Q̃Q̃∗ = I, Q̃∗Q̃ = I ,
such that Ũ2 = Q̃DQ̃∗, with D = diag(λ1, . . . , λp), the joint density of λ1, . . . , λp,
denoted by g̃1(D̃), is obtained as

g̃1(D) dD = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

[ p∏

j=1

λ
α1−p

j

][ p∏

j=1

(1 + λj )
]−(α1+α2)

(8.2a.5)

×
[ ∏

i<j

|λi − λj |2
]πp(p−1)

Γ̃p(p)
dD, dD = dλ1 ∧ . . . ∧ dλp,

where

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (8.2a.6)
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Example 8.2a.3. Let the p × p matrix X̃ have a complex matrix-variate type-2 beta
density with the parameters (α = p, β = p). Let its eigenvalues be λ1 > · · · > λp > 0
and their joint density be denoted by g̃1(D), D = diag(λ1, . . . , λp). Then,

g̃1(D) = Γ̃p(2p)

[Γ̃p(p)]2
πp(p−1)

Γ̃p(p)

[ p∏

j=1

1

(1 + λj )2p

] ∏

i<j

(λi − λj )
2.

Verify that g̃1(D) is a density for p = 2.

Solution 8.2a.3. Since the total integral must be unity, let us integrate out the λj ’s. The
constant part is the following:

Γ̃p(2p)

[Γ̃p(p)]2
πp(p−1)

Γ̃p(p)
= Γ̃2(4)

[Γ̃2(2)]2
π2

Γ̃2(2)

= πΓ (4)Γ (3)

π2

π2

π
= 12. (i)

Now, consider the integrals over λ1 and λ2, noting that (λ1 − λ2)
2 = λ21 + λ22 − 2λ1λ2:

∫ ∞

λ1=0

∫ λ1

λ2=0

[λ21 + λ22 − 2λ1λ2]
(1 + λ1)4(1 + λ2)4

dλ1 ∧ dλ2

=
∫ ∞

λ1=0

λ21

(1 + λ1)4

[ ∫ λ1

λ2=0

1

(1 + λ2)4
dλ2

]
dλ1

+
∫ ∞

λ1=0

1

(1 + λ1)4

[ ∫ λ1

λ2=0

λ22

(1 + λ2)4
dλ2

]
dλ1

− 2
∫ ∞

λ1=0

λ1

(1 + λ1)4

[ ∫ λ1

λ2=0

λ2

(1 + λ2)4
dλ2

]
dλ1. (ii)

As they appear in (ii), the integrals over λ2 are

∫ λ1

λ2=0

1

(1 + λ2)4
dλ2 = 1

3

[
1 − 1

(1 + λ1)3

]
, (iii)
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∫ λ1

λ2=0

λ22

(1 + λ2)4
dλ2 = 1

3

[
− λ21

(1 + λ1)3
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
, (iv)

∫ λ1

λ2=0

λ2

(1 + λ2)4
dλ2 = 1

3

[
− λ1

(1 + λ1)3
+ 1

2
− 1

2

1

(1 + λ1)2

]
; (v)

then, integrating with respect to λ1 yields
∫ ∞

λ1=0

λ21

(1 + λ1)4

[1

3

(
1 − 1

(1 + λ1)3

)]
dλ1

= 1

3

[Γ (3)Γ (1)

Γ (4)
− Γ (3)Γ (4)

Γ (7)

]
, (vi)

∫ ∞

λ1=0

1

(1 + λ1)4

(1

3

)[
− λ21

(1 + λ1)3
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
dλ1

= −1

3

[Γ (3)Γ (4)

Γ (7)
+ Γ (2)Γ (4)

Γ (6)
− Γ (1)Γ (3)

Γ (4)
+ Γ (1)Γ (4)

Γ (5)

]
, (vii)

−2
∫ ∞

λ1=0

λ1

(1 + λ1)4

(1

3

)[
− λ1

(1 + λ1)3
+ 1

2
− 1

2

1

(1 + λ1)2

]
dλ1

= 1

3

[
2
Γ (3)Γ (4)

Γ (7)
− Γ (2)Γ (2)

Γ (4)
+ Γ (2)Γ (4)

Γ (6)

]
. (viii)

Summing (vi),(vii) and (viii), we have

1

3

[
2
Γ (3)Γ (1)

Γ (4)
− Γ (1)Γ (4)

Γ (5)
− Γ (2)Γ (2)

Γ (4)

]
= 1

3

[ 4

3! − 1

4
− 1

3!
]

= 1

12
. (ix)

As the product of (ix) and (i) is 1, the result is established. Note that since 2p is a positive
integer, the method of integration by parts works for a general p when the first parameter
in the type-2 beta density α is equal to p. However,

∏
i<j (λi − λj ) will be difficult to

handle for a general p.

Example 8.2a.4. Give an explicit representation of (8.2a.5) for p = 3, α1 = 4 and
α2 = 3.

Solution 8.2a.4. For p = 3, α1 −p = 4− 3 = 1, α1 +α2 = 4+ 3 = 7, p(p − 1) = 6.
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The constant part is the following:

Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

πp(p−1)

Γ̃p(p)
= Γ̃3(7)

Γ̃3(4)Γ̃3(3)

π3(2)

Γ̃3(3)

= Γ (7)Γ (6)Γ (5)

π3[Γ (4)Γ (3)Γ (2)][Γ (3)Γ (2)Γ (1)]
× π6

π3Γ (3)Γ (2)Γ (1)
= 43200, (i)

the functional part being the product of

( p∏

j=1

λ
α1−p

j

)( p∏

j=1

(1 + λj )
−(α1+α2)

)
= (λ1λ2λ3)[(1 + λ1)(1 + λ2)(1 + λ3)]−7 (ii)

and ∏

i<j

(λi − λj )
2 = (λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2. (iii)

Multiplying (i), (ii) and (iii) yields the answer.

8.2.2. An alternative procedure in the real case

This section describes an alternative procedure that is presented in Anderson (2003).
The real case will first be discussed. LetW1 andW2 be independently distributed real p×p

matrix-variate gamma random variables with the parameters (α1, B), (α2, B), B >

O, �(αj ) >
p−1
2 , j = 1, 2. We are considering the determinantal equation

|W1 − λW2| = 0 ⇒ |W1 − μ(W1 + W2)| = 0

⇒ |W1 − μ

1 − μ
W2| = 0 (8.2.8)

⇒ |(W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 − μI | = 0

where λ = μ
1−μ

. Thus, μ is an eigenvalue of U1 = (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 . It
follows from Theorem 8.1.1 that he joint density of W1 and W2, denoted by f (W1, W2),
can be written as

f (W1, W2) = g(U1)g1(U3) (8.2.9)

where U1 = (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 and U3 = W1 + W2 are independently dis-
tributed. Further,

g(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α1−p+1

2 |I − U1|α2−p+1
2 , O < U1 < I, (8.2.10)
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for �(αj ) >
p−1
2 , j = 1, 2, and g(U1) = 0 elsewhere, is a real matrix-variate type-1 beta

density, and

g1(U3) = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3) (8.2.11)

for B > O, �(α1+α2) >
p−1
2 , and g1(U3) = 0 elsewhere, is a real matrix-variate gamma

density with the parameters (α1 + α2, B), B > O. Now, consider the transformation
U1 = PDP ′, PP ′ = I, P ′P = I , where D = diag(μ1, . . . , μp), μ1 > · · · > μp > 0
being the distinct eigenvalues of the real positive definite matrix U1, and the orthonormal
matrix P is unique. Given the density of U1 specified in (8.2.10), the joint density of
μ1, . . . , μp, denoted by g4(D), which is obtained after integrating out the differential
element corresponding to P , is

g4(D)dD = Γp(α1 + α2)

Γp(α1)Γp(α2)

[ p∏

j=1

μ
α1−p+1

2
j

][ p∏

j=1

(1 − μj)
α2−p+1

2

]

× π
p2

2

Γp(
p
2 )

[ ∏

i<J

(μi − μj)
]
dD. (8.2.12)

Hence, the following result:

Theorem 8.2.3. The joint density of the eigenvalues μ1 > · · · > μp > 0 of the determi-
nantal equation in (8.2.8) is given by the expression appearing in (8.2.12), which is equal
to the density specified in (8.2.7).

Proof: It has already been established in Theorem 8.1.1 thatU1 = (W1+W2)
− 1

2W1 (W1+
W2)

− 1
2 has the real matrix-variate type-1 beta density given in (8.2.10). Now, make the

transformation U1 = PDP ′ where D = diag(μ1, . . . , μp) and the orthonormal matrix,
P is unique. Then, the first part is established from Theorem 8.2.2. It follows from (8.2.8)
that λ = μ

1−μ
or μ = λ

1+λ
with dμ = 1

(1+λ)2
dλ and μ = 1− 1

1+λ
. Observe that

∏
i<j (μi −

μj) = ∏
i<j

(λi−λj )

(1+λi)(1+λj )
and that, in this product’s denominator, 1+λi appears p−1 times

for i = 1, . . . , p. The exponent of 1
1+λi

is α1 − p+1
2 + α2 − p+1

2 + 2+ (p − 1) = α1 + α2.
On substituting these values in (8.2.12), a perfect agreement with (8.2.7) is established,
which completes the proof.

Example 8.2.5. Provide an explicit representation of (8.2.12) for p = 3, α1 = 4 and
α2 = 3.
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Solution 8.2.5. Note that p+1
2 = 3+1

2 = 2, α1 − p+1
2 = 4 − 2 = 2 and α2 − p+1

2 =
3 − 2 = 1. The constant part is

Γp(α1 + α2)

Γp(α1)Γp(α2)

π
p2

2

Γp(
p
2 )

= Γ3(7)

Γ3(4)Γ3(3)

π
9
2

Γ3(
3
2)

= (6!)(5!)(112 )(92)(
7
2)(

5
2)(

3
2)(

1
2)

√
π

π
3
2 (3!)(2!)(1!)(52)(32)(12)

√
π(32)2!(12)

√
π1!

× π
9
2

π
3
2 (12)

√
π

√
π

= 831600, (i)

the functional part being the product of

( p∏

j=1

μ
α1−p+1

2
j

)( p∏

j=1

(1 − μj)
α2−p+1

2

)
= (μ1μ2μ3)

2[(1 − μ1)(1 − μ2)(1 − μ3)]1 (ii)

and ∏

i<j

(μi − μj) = (μ1 − μ2)(μ1 − μ3)(μ2 − μ3). (iii)

The product of (i), (ii) and (iii) yields the answer.

8.2.3. The joint density of the eigenvectors in the real case

In order to establish the joint density of the eigenvectors, we will proceed as follows,
our starting equation being |W1 − λW2| = 0. Let λj be a root of this equation and let Yj

be the corresponding vector. Then,

W1Yj = λjW2Yj ⇒ (W1 + λjW1)Yj = λj (W1 + W2)Yj (8.2.13)

⇒ W1Yj = λj

1 + λj

(W1 + W2)Yj = μj(W1 + W2)Yj (i)

⇒ (W1 + W2)
−1W1Yj = μjYj . (ii)

This shows that Yj is the eigenvector corresponding to the eigenvalue μj of (W1 +
W2)

−1W1 or, equivalently, of (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 = U1 which is a real matrix-
variate type-1 beta random variable. Since the μj ’s are distinct, μ1 > · · · > μp > 0 and
the matrix is symmetric, the eigenvectors Y1, . . . , Yp are mutually orthogonal. Consider
the equation

W1Yj = μj(W1 + W2)Yj . (iii)
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For i 	= j , we also have
W1Yi = μi(W1 + W2)Yi. (iv)

Premultiplying (iii) by Y ′
i and (iv) by Y ′

j , and observing that W ′
1 = W1, it follows that

(Y ′
i W1Yj )

′ = Y ′
jW1Yi . Since both are real 1 × 1 matrices and one is the transpose of the

other, they are equal. Then, on subtracting the resulting right-hand sides, we obtain

0 = μjY
′
i (W1 + W2)Yj − μiY

′
j (W1 + W2)Yi = (μj − μi)Y

′
i (W1 + W2)Yj .

Since Y ′
i (W1 +W2)Yj = Y ′

j (W1 +W2)Yi by the previous argument and μi 	= μj , we must
have

Y ′
i (W1 + W2)Yj = 0 for all i 	= j. (v)

Let us normalize Yj as follows:

Y ′
j (W1 + W2)Yj = 1, j = 1, 2, . . . , p. (vi)

Then, combining (v) and (vi), we have

Y ′(W1 + W2)Y = I, Y = (Y1, . . . , Yp), (vii)

which is the p × p matrix of the normalized eigenvectors. Thus,

W1 + W2 = (Y ′)−1Y−1 = Z′Z, Z = Y−1

⇒ dY = |Z|−2pdZ or dZ = |Y |−2pdY,

which follows from an application of Theorem 1.6.6. We are seeking the joint density of
Y1, . . . , Yp or the density of Y . The density of W1 + W2 = U3 denoted by g1(U3), is
available from (8.2.11) as

g1(U3)dU3 = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3)dU3

= |B|α1+α2

Γp(α1 + α2)
|Z′Z|α1+α2−p+1

2 e−tr(BZZ′)d(Z′Z). (8.2.14)

Letting U3 = Z′Z, ascertain the connection between the differential elements dZ and dU3

from Theorem 4.2.3 for the case q = p. Then,

dZ = π
p2

2

Γp(
p
2 )

|U3|p
2 −p+1

2 dU3 ⇒ dU3 = Γp(
p
2 )

π
p2
2

|Z′Z| 12 dZ.
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Hence, the density of Z, denoted by gz(Z), is the following:

gz(Z) dZ = |B|α1+α2

Γp(α1 + α2)

Γp(
p
2 )

π
p2
2

|Z′Z|α1+α2−p
2 e−tr(BZ′Z)dZ,

so that the density of Y = Z−1, denoted by g5(Y ), is given by

g5(Y ) dY = |B|α1+α2

Γp(α1 + α2)
|Y |−2p|YY ′|−(α1+α2)+p

2 e−tr(B(YY ′)−1)dY

=
{ |B|α1+α2

Γp(α1+α2)
|YY ′|−(α1+α2+p

2 )e−tr(B(YY ′)−1)dY

0, elsewhere.
(8.2.15)

Then, we have the following result:

Theorem 8.2.4. Let W1 and W2 be independently distributed p × p real matrix-variate
gamma random variables with parameters (α1, B), (α2, B), B > O, �(αj ) >
p−1
2 , j = 1, 2. Consider the equation

|W1 − λW2| = 0 ⇒ W1Yj = λjW2Yj , j = 1, . . . , p,

where Yj is a vector corresponding to the root λj of the determinantal equation. Let
λ1 > · · · > λp > 0 be its distinct roots, which are also the eigenvalues of the ma-

trix W
− 1

2
2 W1W

− 1
2

2 . The eigenvalues λ1, . . . , λp and the linearly independent orthogonal
eigenvectors Y1, . . . , Yp are independently distributed. The joint density of the eigenval-
ues λ1, . . . , λp is available from Theorem 8.2.2 and the joint density of the eigenvectors is
given in (8.2.15).

Example 8.2.6. Illustrate the steps to show that the solutions of the determinantal equa-

tion |W1 − λW2| = 0 are also the eigenvalues of W
− 1

2
2 W1W

− 1
2

2 for the following matrices:

W1 =
[
3 1
1 3

]

, W2 =
[
2 1
1 2

]

.

Solution 8.2.6. First, let us assess whether W1 and W2 are positive definite matrices.
Clearly, W1 = W ′

1 and W2 = W ′
2 are symmetric and their leading minors are positive:

|(2)| = 2 > 0,

∣
∣
∣
∣
2 1
1 2

∣
∣
∣
∣ = 3 > 0 ⇒ W2 > O; |(3)| > 0,

∣
∣
∣
∣
3 1
1 3

∣
∣
∣
∣ = 8 > 0 ⇒ W1 > O.
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Consider the determinantal equation |W1 − λW2| = 0, that is,
∣
∣
∣
∣

[
3 1
1 3

]

− λ

[
2 1
1 2

]∣
∣
∣
∣ = (3 − 2λ)2 − (1 − λ)2 = 0, (i)

whose roots are λ1 = 2, λ2 = 4
3 . Let us determine W

− 1
2

2 . To this end, let us evaluate the
eigenvalues and eigenvectors of W2. The eigenvalues of W2 are the values of ν satisfying
the equation |W2−νI | = 0 ⇒ (2−ν)2−12 = 0 ⇒ ν1 = 3 and ν2 = 1 are the eigenvalues
of W2. An eigenvector corresponding to ν1 = 3 is given by

[
2 − ν1 1

1 2 − ν1

] [
x1
x2

]

=
[
0
0

]

⇒ x1 = 1, x2 = 1,

is one solution, the normalized eigenvector corresponding to ν1 = 3 being Y1 whose
transpose is Y ′

1 = 1√
2
[1, 1]. Similarly, an eigenvector associated with ν2 = 1 is x1 =

1, x2 = −1, which once normalized becomes Y2 whose transpose is Y ′
2 = 1√

2
[1, −1]. Let

Λ = diag(3, 1) be the diagonal matrix of the eigenvalues of W2. Then,

W2[Y1, Y2] = [Y1, Y2]Λ ⇒ W2 = 1

2

[
1 1
1 −1

] [
3 0
0 1

] [
1 1
1 −1

]

.

Observe that W2, W−1
2 , W

1
2
2 and W

− 1
2

2 share the same eigenvectors Y1 and Y2. Hence,

W
1
2
2 = 1

2

[
1 1
1 −1

] [√
3 0
0 1

] [
1 1
1 −1

]

⇒

W
− 1

2
2 = 1

2

[
1 1
1 −1

] [
1√
3

0

0 1

] [
1 1
1 −1

]

,

and

T = W
− 1

2
2 W1W

− 1
2

2 = 1

4

[
1 1
1 −1

] [
1√
3

0

0 1

] [
1 1
1 −1

] [
3 1
1 3

]

×
[
1 1
1 −1

] [
1√
3

0

0 1

] [
1 1
1 −1

]

= 1

12

[
20 −4
−4 20

]

.

The eigenvalues of T are 1
12 times the solutions of (20 − δ)2 − 42 = 0 ⇒ δ1 = 24 and

δ2 = 16. Thus, the eigenvalues of T are 24
12 = 2 and 16

12 = 4
3 , which are the solutions of the

determinantal equation (i). This verifies the result.
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8.2a.2. An alternative procedure in the complex case

Let W̃1 and W̃2 be independently distributed p × p complex matrix-variate gamma
random variables with the parameters (α1, B̃), (α2, B̃), B̃ = B̃∗ > O, �(αj ) >

p − 1, j = 1, 2. We are considering the roots λj ’s and the corresponding eigenvectors
Yj ’s of the determinantal equation

det(W̃1 − λW̃2) = 0 ⇒ W̃1Ỹj = λjW̃2Ỹj , j = 1, . . . , p

⇒ det(W̃
− 1

2
2 W̃1W̃

− 1
2

2 − λI) = 0. (8.2a.7)

Let the eigenvalues λ1, . . . , λp of W̃
− 1

2
2 W̃1W̃

− 1
2

2 > O be distinct and such that λ1 > · · · >

λp > 0, noting that for Hermitian matrices, the eigenvalues are real. We are interested
in the joint distributions of the eigenvalues λ1, . . . , λp and the eigenvectors Ỹ1, . . . , Ỹp.
Alternatively, we will consider the equation

det(W̃1 − μ(W̃1 + W̃2)) = 0 ⇒ det
(
W̃1 − μ

1 − μ
W̃2

)
= 0, λ = μ

1 − μ
. (8.2a.8)

Proceeding as in the real case, one can observe that the joint density of W̃1 and W̃2,
denoted by f̃ (W̃1, W̃2), can be factorized into the product of the density of Ũ1 =
(W̃1+W̃2)

− 1
2 W̃1(W̃1+W̃2)

− 1
2 , denoted by g̃(Ũ1), which is a complex matrix-variate type-

1 beta random variable with the parameters (α1, α2), and the density of Ũ3 = W̃1 + W̃2,
denoted by g̃1(Ũ3), which is a complex matrix-variate gamma density with the parameters
(α1 + α2, B̃), B̃ > O. That is,

f̃ (W̃1, W̃2) dW̃1 ∧ dW̃2 = g̃(Ũ1)g̃1(Ũ3) dŨ1 ∧ dŨ3 (8.2a.9)

where

g̃(Ũ1) = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)
|det(Ũ1)|α1−p|det(I − Ũ1)|α2−p (8.2a.10)

for O < Ũ1 < I, �(αj ) > p − 1, j = 1, 2, and g̃ = 0 elsewhere, and

g̃1(Ũ3) = |det(B)|α1+α2

Γ̃p(α1 + α2)
|det(Ũ3)|α1+α2−pe−tr(B̃ Ũ3) (8.2a.11)

for Ũ3 = Ũ∗
3 > O, �(α1 + α2) > p − 1, and B̃ = B̃∗ > O, and zero elsewhere.

Note that by making the transformation Ũ1 = QDQ∗ with QQ∗ = I, Q∗Q = I,

and D = diag(μ1, . . . , μp), the joint density of μ1, . . . , μp, as obtained from (8.2a.10),
is given by
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g̃2(D) dD = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

[ p∏

j=1

μ
α1−p

j

][ p∏

j=1

(1 − μj)
α2−p

]

× πp(p−1)

Γ̃p(p)

[ ∏

i<j

(μi − μj)
2
]
dD; (8.2a.12)

also refer to Note 8.2a.1. Then, we have the following result on observing that the joint
density of λ1, . . . , λp is available from (8.2a.12) by making the substitution λ = μ

1−μ
or

μ = λ
1+λ

. Note that dμj = 1
(1+λj )2

dλj , 1 − μj = 1
1+λj

, and

∏

i<j

(μi − μj)
2 =

∏

i<j

(λi − λj )
2

(1 + λi)2(1 + λj )2

whose denominator contains p − 1 times (1+ λj )
2 for each j = 1, . . . , p. Thus, the final

exponent of 1
1+λj

is (α1 − p) + (α2 − p) + 2+ 2(p − 1) = α1 + α2. Hence, the following
result:

Theorem 8.2a.3. In the complex case, the joint density of the eigenvalues μ1 > · · · >

μp > 0 of the determinantal equation in (8.2a.8) is given by the expression appearing in
(8.2a.12), which is equal to the density specified in (8.2a.5).

We now consider the joint density of the eigenvectors Ỹ1, . . . , Ỹp, which will be avail-
able from (8.2a.11), thus establishing that the set of eigenvalues λ1, . . . , λp and the eigen-
vectors Ỹ1, . . . , Ỹp are independently distributed. For determining the joint density of the
eigenvectors, we start with the equation

W̃1Ỹj = μj(W̃1 + W̃2)Yj , j = 1, . . . , p, (i)

observing that λj and μj share the same eigenvector Ỹj . That is,

W̃1Ỹi = μi(W̃1 + W̃2)Ỹi, i = 1, . . . , p. (ii)

We continue as in the real case, showing that Ỹ ∗
i (W̃1 + W̃2)Ỹj = 0 for all i 	= j . Then, we

normalize Ỹj as follows: Ỹ ∗
j (W̃1+W̃2)Ỹj = 1, j = 1, . . . , p. Letting Ỹ = (Ỹ1, . . . , Ỹp) be

the p × p matrix of the normalized eigenvectors, we have Ỹ ∗(W̃1 + W̃2)Ỹ = I ⇒ Ũ1 =
W̃1 + W̃2 = (Ỹ ∗)−1(Ỹ )−1. Letting (Ỹ )−1 = Z̃ so that Z̃∗Z̃ = (Ỹ Ỹ ∗)−1 and applying

Theorem 4.2a.3, d(Z̃∗Z̃) = Γ̃p(p)

πp(p−1)dZ̃. Hence, given the density of W̃1 + W̃2 specified in

(8.2a.11), the density of Z̃, denoted by g̃3(Z̃), is obtained as

g̃3(Z̃)dZ̃ = |det(B̃)|α1+α2

Γ̃p(α1 + α2)

Γ̃p(p)

πp(p−1)
|det(Z̃∗Z̃)|α1+α2−pe−tr(B̃Z̃∗Z̃)dZ̃. (8.2a.13)
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Now noting that Z̃ = Ỹ−1 ⇒ dZ̃ = |det(Ỹ ∗Ỹ )|−pdỸ from an application of Theo-
rem 1.6a.6, and substituting in (8.2a.13), we obtain the following density of Ỹ , denoted by
g̃4(Ỹ ):

g̃4(Ỹ )dỸ = |det(B̃)|α1+α2

Γ̃p(α1 + α2)

Γ̃p(p)

πp(p−1)
|det(Ỹ Ỹ ∗)|−α1−α2e−tr(B̃(Ỹ ∗)−1Ỹ−1)dỸ (8.2a.14)

for B̃ = B̃∗ > O, �(α1 + α2) > p − 1, and zero elsewhere.

Example 8.2a.5. Show that the roots of the determinantal equation det(W̃1 − λW̃2) =
0 are the same as the eigenvalues of W̃

− 1
2

2 W̃1W̃
− 1

2
2 for the following Hermitian positive

definite matrices:

W̃1 =
[

3 1 − i

1 + i 3

]

, W̃2 =
[

3
√
2(1 + i)√

2(1 − i) 3

]

.

Solution 8.2a.5. Let us evaluate the eigenvalues and eigenvectors of W̃2. Consider the
equation det(W̃2 − μI) = 0 ⇒ (3 − μ)2 − 22 = 0 ⇒ μ1 = 5 and μ2 = 1 are the
eigenvalues of W̃2. An eigenvector corresponding to μ1 = 5 must satisfy the equation

[
3 − 5

√
2(1 + i)√

2(1 − i) 3 − 5

] [
x1
x2

]

=
[
0
0

]

⇒ −2x1 + √
2(1 + i)x2 = 0√

2(1 − i)x1 − 2x2 = 0
.

Since it is a singular system of linear equations, we can solve any one of them for x1 and
x2. For x2 = 1, we have x1 = 1√

2
(1 + i). Thus, one eigenvector is

X̃1 =
[

1√
2
(1 + i)

1

]

⇒ X̃∗
1X̃1 = 2 ⇒ Ỹ1 = 1√

2

[
1√
2
(1 + i)

1

]

where Ỹ1 is the normalized eigenvector obtained from X̃1. Similarly, corresponding to the
eigenvalue μ2 = 1, we have the normalized eigenvector

Ỹ2 = 1√
2

[
− 1√

2
(1 + i)

1

]

and W̃2[Ỹ1, Ỹ2] = [Ỹ1, Ỹ2]
[
5 0
0 1

]

,

so that

W̃2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

] [
5 0
0 1

][
1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

,
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observing that the above format is W̃2 = ỸDỸ ∗ with Ỹ = [Ỹ1, Ỹ2] and D = diag(5, 1),

the diagonal matrix of the eigenvalues of W̃2. Since W̃2, W̃
1
2
2 , W̃−1

2 and W̃
− 1

2
2 share the

same eigenvectors, we have

W̃
1
2
2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

][√
5 0
0 1

] [
1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

⇒

W̃
− 1

2
2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

][
1√
5

0

0 1

][
1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

= 1

2

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

. (i)

It is easily verified that

W̃
− 1

2
2 W̃

− 1
2

2 = 1

4

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

×
[

1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

= 1

5

[
3 −√

2(1 + i)

−√
2(1 − i) 3

]

= W̃−1
2 .

Letting Q = W̃
− 1

2
2 W̃1W̃

− 1
2

2 , we have

Q = 1

4

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

] [
3 1 − i

1 + i 3

]

×
[

1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

= 1

4

⎡

⎣
62
5 −12

5

√
2(1 + i) + 4√

5
(1 − i)

−12
5

√
2(1 − i) + 4√

5
(1 + i) 62

5

⎤

⎦ . (ii)
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The eigenvalues of 4Q can be determined by solving the equation

(62

5
− ν

)2 −
[

− 12

5

√
2(1 + i) + 4√

5
(1 − i)

][
− 12

5

√
2(1 + i) + 4√

5
(1 − i)

]
= 0 ⇒

(62

5
− ν

)2 − 42

52
(46) = 0 ⇒

ν = 4

5
(9 ± √

46). (iii)

Thus, the eigenvalues of Q, denoted by δ, are

δ = 1

5
(9 ± √

46). (iv)

Now, let us consider the determinantal equation det(W̃1 − λW̃2) = 0, that is,
∣
∣
∣
∣

3(1 − λ) (1 − i) − λ
√
2(1 + i)

(1 + i) − λ
√
2(1 − i) 3(1 − λ)

∣
∣
∣
∣ = 0,

which yields

32(1 − λ)2 − [(1 + i) − λ
√
2(1 − i)][(1 − i) − λ

√
2(1 + i)] = 0 ⇒

32(1 − λ)2 − [(1 − √
2λ)2 + (1 + √

2λ)2] = 0 ⇒
λ = 1

5
(9 ± √

46). (v)

The eigenvalues obtained in (iv) and (v) being identical, the result is established.

8.3. The Singular Real Case

If a p × p real matrix-variate gamma distribution with parameters (α, β) and B > O

is singular and positive semi-definite, its p × p-variate density does not exist. When α =
m
2 , m ≥ p, and B = 1

2Σ
−1, Σ > O, the gamma density is called a Wishart density with

m degrees of freedom and parameter matrix Σ > O. If the rank of the gamma or Wishart
matrices is r < p, in which case they are positive semi-definite, the resulting distributions
are said to be singular. It can be shown that, in this instance, we have in fact nonsingular
r × r-variate gamma or Wishart distributions. In order to establish this, the matrix theory
results presented next are required.

Let A = A′ ≥ O (non-negative definite) be a p × p real matrix of rank r < p, and the
elementary matrices E1, E2, . . . , Ek be such that by operating on A, one has

Ek · · · E2E1AE′
1E

′
2 · · · E′

k =
[

Ir O1

O2 O3

]
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where O1, O2 and O3 are null matrices, with O3 being of order (p − r) × (p − r). Then,

A = E−1
1 · · · E−1

k

[
Ir O1

O2 O3

]

E′−1
k · · · E′−1

1 = Q

[
Ir O1

O2 O3

]

Q′

where Q is a product of inverses of elementary matrices and hence, nonsingular. Letting

Q =
[
Q11 Q12

Q21 Q22

]

, Q11 being r × r and Q22, (p − r) × (p − r),

Q

[
Ir O1

O2 O3

]

=
[
Q11 Q12

Q21 Q22

] [
Ir O

O O

]

=
[
Q11 O

Q21 O

]

.

Note that

Q

[
Ir O

O O

]

Q′ =
[
Q11Q

′
11 Q11Q

′
21

Q21Q
′
11 Q21Q

′
21

]

=
[
Q11

Q21

]

[Q′
11, Q

′
21] = A1A

′
1

where A1 =
[
Q11

Q21

]

which is a full rank p × r matrix, r < p, so that the r columns of

A1 are all linearly independent. This result can also be established by appealing to the fact
that when A ≥ O, its eigenvalues are non-negative, and A being symmetric, there exists
an orthonormal matrix P, PP ′ = I, P ′P = I, such that

A = P

[
D O

O O

]

P ′ = λ1P1P
′
1 + · · · + λrP1P

′
r + 0Pr+1P

′
r+1 + · · · + 0PpP ′

p = P(1)DP ′
(1),

D = diag(λ1, . . . , λr), P(1) = [P1, . . . , Pr ], P = [P1, . . . , Pr, . . . , Pp],
where P1, . . . , Pp are the columns of the orthonormal matrix P , λ1, . . . , λr, 0, . . . , 0 are
the eigenvalues of A where λj > 0, j = 1, . . . , r, and P(1) contains the first r columns
of P . The first r eigenvalues must be positive since A is a non-negative definite matrix of
rank r . Now, we can write A = P(1)DP ′

(1) = A1A
′
1, with A1 = P(1)D

1
2 . Observe that A1

is p × r and of rank r < p. Thus, we have the following result:

Theorem 8.3.1. LetA = A′ be a real p×p positive semi-definite matrix,A ≥ O, of rank
r < p. Then, A can be represented in the form A = A1A

′
1 where A1 is a p × r , r < p,

matrix of rank r or, equivalently, the r columns of the p × r matrix A1 are all linearly
independent.

In the case ofWishart matrices, we can interpret Theorem 8.3.1 as follows: Let the p×1
vector random variable Xj have a nonsingular Gaussian distribution whose mean value is
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the null vector and covariance matrix Σ is positive definite. Let the Xj ’s, j = 1, . . . , n,

be independently distributed, that is, Xj
iid∼ Np(O, Σ), Σ > O, j = 1, . . . , n. Letting

the p × n sample matrix be X = [X1, . . . , Xn], the joint density of X1, . . . , Xn or that of
X, denoted by f (X), is the following:

f (X)dX = 1

(2π)
np
2 |Σ | n

2
e− 1

2

∑n
j=1 X′

jΣ
−1XjdX

= 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ
−1XX′)dX . (8.3.1)

Letting W = XX′, the p×p matrix W will be positive definite provided n ≥ p; otherwise,
that is when n < p, W will be singular. Let us consider the case n ≥ p first. This will also
provide a derivation of the real Wishart density which was earlier obtained as a special
case of real matrix-variate gamma density. Observe that we can write dX in terms of dW
by applying Theorem 4.2.3, namely,

dX = π
np
2

Γp(n
2 )

|W | n
2−p+1

2 dW.

Therefore, if the density of W is denoted by f1(W), then f1(W) is available from (8.3.1)
by expressing dX in terms of dW . That is,

f1(W) = 1

2
np
2 Γp(n

2 )|Σ | n
2
|W | n

2−p+1
2 e− 1

2 tr(Σ
−1W) (8.3.2)

for n ≥ p, W > O, Σ > O, and f1(W) = 0 elsewhere. This is the density of a
nonsingular Wishart distribution with n degrees of freedom, n ≥ p, and parameter matrix
Σ > O, which is denoted W ∼ Wp(n, Σ), Σ > O, n ≥ p. It has previously been

shown that when Xj
iid∼ Np(μ, Σ), j = 1, . . . , n, where μ 	= O is the common p × 1

mean value vector and Σ is the positive definite covariance matrix,

W = (X − X̄)(X − X̄)′ ∼ Wp(n − 1, Σ), Σ > O for n − 1 ≥ p,

where X̄ = [X̄, . . . , X̄], X̄ = 1
n
(X1 + · · · + Xn). Thus, we have the following result:

Theorem 8.3.2. Let Xj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n. Let X = [X1, . . . , Xn]

and W = XX′. Then, when μ = O, the p × p positive definite matrix W ∼
Wp(n, Σ), Σ > O for n ≥ p. If μ 	= O, W = (X− X̄)(X− X̄)′ ∼ Wp(n−1, Σ), Σ >

O, for n − 1 ≥ p, where X̄ = [X̄, . . . , X̄], X̄ = 1
n
(X1 + · · · + Xn).
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Now, consider the case n < p. Let us denote n as r < p in order to avoid any confusion
with n as specified in the nonsingular case. Letting X be as previously defined, X is a real
matrix of order p × r , n = r < p. Let T1 = XX′ and T2 = X′X where X′X is an r × r

positive definite matrix since X and X′ are full rank matrices of rank r < p. Thus, all the
eigenvalues of T2 = X′X are positive and the eigenvalues of T1 are either positive or equal
to zero since T1 is a real positive semi-definite matrix. Letting λ be a nonzero eigenvalue
of T2, consider the following determinant, denoted by δ, which is expanded in two ways
by making use of certain properties of the determinants of partitioned matrices that are
provided in Sect. 1.3:

δ =
∣
∣
∣
∣

√
λIp X
X′ √

λIr

∣
∣
∣
∣ = |√λIp| |√λIr − X′(

√
λIp)−1X|

= (
√

λ)p−r |λIr − X′X|;
δ = 0 ⇒ |λIr − X′X| = 0, (8.3.3)

which shows that λ is an eigenvalue of X′X. Now expand δ as follows:

δ = |√λIr | |√λIp − X(
√

λIr)
−1X′|

= (
√

λ)−p+r |λIp − XX′|;
δ = 0 ⇒ |λIp − XX′| = 0, (8.3.4)

so that all the r nonzero eigenvalues of T2 = X′X are also eigenvalues of T1 = XX′, the
remaining eigenvalues of T1 being zeros. As well, one has |Ir −X′X| = |Ip −XX′|. These
results are next stated as a theorem.

Theorem 8.3.3. Let X be a p × r matrix of full rank r < p. Let the real p × p positive
semi-definite matrix T1 = XX′ and the r × r real positive definite matrix T2 = X′X. Then,
(a) the r positive eigenvalues of T2 are identical to those of T1, the remaining eigenvalues
of T1 being equal to zero; (b) |Ir − X′X| = |Ip − XX′|.

Additional results relating the p-variate real Gaussian distribution to the real Wishart
distribution are needed in connection with the singular case. Let the p × 1 vector Xj have
a p-variate real Gaussian distribution whose mean value is the null vector and covariance

matrix is positive definite, with Xj
iid∼ Np(O, Σ), Σ > O, j = 1, . . . , r, r < p.

Let X = [X1, . . . , Xr ] be a p × r matrix, which, in this instance, is also the sample
matrix. We are seeking the distribution of T1 = XX′ when r < p, where T1 corresponds
to a singular Wishart matrix. Letting T be an r × r lower triangular matrix with positive
diagonal elements, and G be an r ×p, r < p, semiorthonormal matrix, that is, GG′ = Ir ,
we have the representation X′ = T G, so that
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dX′ =
{ r∏

j=1

t
p−j

jj

}
dT h(G), p ≥ r, (8.3.5)

where h(G) is a differential element associated with G. Then, on applying Theorem 4.2.2,
we have

∫

Vr,p

h(G) = 2r π
pr
2

Γr(
p
2 )

, p ≥ r, (8.3.6)

where Vr,p is the Stiefel manifold or the space of semi-orthonormal r×p, r < p,matrices.
Observe that the density of X′, denoted by fX′(X′), is the following:

fX′(X′) dX′ = e− 1
2

∑r
j=1 X′

jΣ
−1Xj

(2π)
pr
2 |Σ | r

2
dX′ = e− 1

2 tr(X
′Σ−1X)

(2π)
pr
2 |Σ | r

2
dX′.

Let T2 = X′Σ−1X or simply T2 = X′X when Σ = I ; note that Σ will vanish upon letting
Y = Σ− 1

2X ⇒ dY = |Σ |− r
2 dX. Now, on expressing dX′ in terms of dT2 by making use

of Theorem 4.2.3, the following result is obtained:

Theorem 8.3.4. Let Xj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , r, r < p. Let X =

[X1, . . . , Xr ], X̄ = 1
r
(X1 + · · · + Xr) and X̄ = (X̄, . . . , X̄). Letting T2 = X′Σ−1X or

T2 = X′X when Σ = I , T2 has the following density, denoted by ft(T2), when μ = O:

ft(T2) = 1

2
pr
2 Γr(

p
2 )

|T2|p
2 − r+1

2 e− 1
2 tr(T2), T2 > O, r ≤ p, (8.3.7)

and zero elsewhere. Note that the r × r matrix T2 = X′X or T2 = X′Σ−1X when Σ 	= I,

has a Wishart distribution with p degrees of freedom and parameter matrix I , that is,
T2 ∼ Wr(p, I), r ≤ p. When μ 	= O, T2 = (X − X̄)′Σ−1(X − X̄) has a Wishart
distribution with p−1 degrees of freedom or, equivalently, T2 ∼ Wr(p−1, I ), r ≤ p−1.

8.3.1. Singular Wishart and matrix-variate gamma distributions, real case

We now consider the case of a singular matrix-variate gamma distribution. Let the
p × 1 vector Xj have a p-variate real Gaussian distribution whose mean value is the null

vector and covariance matrix is positive definite, with Xj
iid∼ Np(O, Σ), Σ > O, j =

1, . . . , r, r < p. For convenience, let Σ = Ip. Let X = [X1, . . . , Xr ] be the p × r sample
matrix. Then, for r ≥ p, XX′ is distributed as a Wishart matrix with r ≥ p degrees of
freedom, that is, XX′ ∼ Wp(r, I ), r ≥ p. This result still holds for any positive definite
matrix Σ ; it suffices then to replace I by Σ . What about the distribution of XX′ if r < p,
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which corresponds to the singular case? In this instance, the real matrixXX′ ≥ O (positive
semi-definite) and the density of X, denoted by f1(X), is the following:

f1(X) dX = e− 1
2 tr(XX

′)

(2π)
rp
2

dX. (8.3.8)

Let W2 be a p × p nonsingular Wishart matrix with n ≥ p degrees of freedom, that is,
W2 ∼ Wp(n, I ). Let X and W2 be independently distributed. Then, the joint density of X
and W2, denoted by f2(X, W2), is given by

f2(X, W2) = e− 1
2 tr(XX

′+W2)

(2π)
pr
2 2

np
2 Γp(n

2 )
|W2| n

2−p+1
2

for W2 > O, XX′ ≥ O, n ≥ p, r < p. Letting U = XX′ + W2 > O, and the joint
density of U and X be denoted by f3(X, U), we have

f3(X, U) = e− 1
2 tr(U)

(2π)
pr
2 2

np
2 Γp(n

2 )
|U − XX′| n

2−p+1
2 , n ≥ p, r < p,

where
|U − XX′| = |U | |I − U− 1

2XX′U− 1
2 |.

Letting V = U− 1
2X for fixed U , dV = |U | r

2 dX, and the joint density of U and V , denoted
by f4(U, V ), is then

f4(U, V ) = |U | n+r
2 −p+1

2 e− 1
2 tr(U)

(2π)
pr
2 2

n
2Γp(n

2 )
|I − V V ′| n

2−p+1
2 . (8.3.9)

Note that U and V are independently distributed. By integrating out U with the help of a
real matrix-variate gamma integral, we obtain the density of V , denoted by f5(V ), as

f5(V ) = c |I − V V ′| n
2−p+1

2 = c |I − V ′V | n
2−p+1

2 , (8.3.10)

in view of Theorem 8.3.3(b), where V is p × r, r < p, c being the normalizing constant.
Thus, we have the following result:

Theorem 8.3.5. Let X = [X1, . . . , Xr ] and Xj
iid∼ Np(O, I), j = 1, . . . , r, r < p.

Let the p × p real positive definite matrix W2 be Wishart distributed with n degrees of
freedom, that is, W2 ∼ Wp(n, I ). Let U = XX′ + W2 > O and let V = U− 1

2X where V
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is a p × r, r < p, matrix of full rank r . Observe that V V ′ ≥ O (positive semi-definite).
Then, the densities of the r × p matrix V ′ and the matrix S = V ′V , respectively denoted
by f5(V ) and f6(S), are as follows, U and V being independently distributed:

f5(V ) = Γr(
p
2 )

π
pr
2

Γr(
n+r
2 )

Γr(
p
2 )Γr(

n−p+r
2 )

|I − V ′V | n
2−p+1

2 , (8.3.11)

and

f6(S) = Γr(
n+r
2 )

Γr(
p
2 )Γr(

n−p+r
2 )

|S|p
2 − r+1

2 |I − S| n−p+r
2 − r+1

2 , n ≥ p, r < p, S > O. (8.3.12)

Proof: In light of Theorem 8.3.3(b), |Ip − V V ′| = |Ir − V ′V |. Observe that V V ′ is
p × p and positive semi-definite whereas V ′V is r × r and positive definite. As well,
n
2 − p+1

2 = n−p+r
2 − r+1

2 . Letting S = V ′V and expressing dV ′ in terms of dS by applying
Theorem 4.2.3, then for r < p,

dV ′ = π
rp
2

Γr(
p
2 )

|S|p
2 − r+1

2 dS. (i)

Now, integrating out S by making use of a type-1 beta integral, we have
∫

S>O

|S|p
2 − r+1

2 |I − S| n−p+1
2 − r+1

2 dS = Γr(
p
2 )Γr(

n−p+r
2 )

Γr(
n+r
2 )

(ii)

for n ≥ p, r < p. The normalizing constants in (8.3.11) and (8.3.12) follow from (i) and
(ii) . This completes the proofs.

At this juncture, we are considering the singular version of the determinantal equation
in (8.2.8). Let W1 and W2 be independently distributed p × p real matrices where W1 =
XX′, X = [X1, . . . , Xr ] with Xj

iid∼ Np(O, I), j = 1, . . . , r, r < p, and the positive
definite matrix W2 ∼ Wp(n, I ), n ≥ p. The equation

|W1 − μ(W1 + W2)| = O ⇒ |XX′ − μ(XX′ + W2)| = 0

⇒ |U− 1
2XX′U− 1

2 − μIp| = 0, U = XX′ + W2 > O

⇒ |V V ′ − μIp| = 0,

which, in turn, implies that μ is an eigenvalue of V V ′ ≥ O and all the eigenvalues are
positive or zero. However, it follows from (8.3.3) and (8.3.4) that

|V V ′ − μIp| = 0 ⇒ |V ′V − μIr | = 0.

Hence, the following result:
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Theorem 8.3.6. LetX be a p×r matrix whose columns are iidNp(O, I) and r < p. Let
W1 = XX′ ≥ O which is a p×p positive semi-definite matrix,W2 > O be a p×p Wishart
distributed matrix having n degrees of freedom, that is, W2 ∼ Wp(n, I ), n ≥ p, and let

W1 and W2 be independently distributed. Then, U = W1 + W2 > O and V = U− 1
2X are

independently distributed. Moreover,

|W1 − μ(W1 + W2)| = 0 ⇒ |V ′V − μIr | = 0

where the roots μj > 0, j = 1, . . . , r, are the eigenvalues of V ′V > O, and the eigen-
values of V V ′ are μj > 0, j = 1, . . . , r, with the remaining p − r eigenvalues of V V ′
being equal to zero.

Let S = PDP ′, D = diag(μ1, . . . , μr), PP ′ = Ir, P ′P = Ir . Then, on applying
Theorem 8.2.2,

dS = π
r2
2

Γr(
r
2)

[∏

i<j

(μi − μj)
]
dD

after integrating out over the differential element associated with the orthonormal matrix
P . Substituting in f6(S) of Theorem 8.3.5 yields the following result:

Theorem 8.3.7. Let μ1, . . . , μr be the nonzero roots of the determinantal equation

|W1 − μ(W1 + W2)| = 0 where W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, I), j =

1, . . . , r < p, W2 ∼ Wp(n, I ), n ≥ p, and W1 and W2 be independently distributed. Let-
ting μ1 > μ2 > · · · > μr > 0, r < p, the joint density of the nonzero roots μ1, . . . , μr ,
denoted by fμ(μ1, . . . , μr), is given by

fμ(μ1, . . . , μr) = π
r2
2

Γr(
r
2)

Γr(
n+r
2 )

Γr(
p
2 )Γr(

n−p+r
2 )

×
[ r∏

j=1

μ
p
2 − r+1

2
j

][ r∏

j=1

(1 − μj)
n−p+r

2 − r+1
2

][∏

i<j

(μi − μj)
]
. (8.3.13)

It can readily be observed from (8.3.9) that U = XX′ +W2 and V = U− 1
2X are indeed

independently distributed.
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8.3.2. A direct evaluation as an eigenvalue problem

Consider the singular version of the original determinantal equation

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0 (8.3.14)

where W1 is singular, W2 is nonsingular, and W1 and W2 are independently distributed.
Thus, the roots λj ’s of the equation |W1 − λW2| = 0 coincide with the eigenvalues of

the matrix U = W
− 1

2
2 W1W

− 1
2

2 . Let W2 be a real nonsingular matrix-variate gamma or

Wishart distributed matrix. Let W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, Σ), Σ >

O, j = 1, . . . , r, r < p, or, equivalently, the p × r , r < p, matrix X is a simple
random sample from this p-variate real Gaussian population. We will take Σ = I without
any loss of generality. In this case, X is a p × r full rank matrix with r < p. Let W2 ∼
Wp(n, I ), n ≥ p, that is, W2 is a nonsingular Wishart matrix with n degrees of freedom
and parameter matrix I , and W1 ≥ O (positive semi-definite). Then, the joint density of X
and W2, denoted by f7(X, W2), is the following:

f7(X, W2) = e− 1
2 tr(XX

′)|W2| n
2−p+1

2 e− 1
2 tr(W2)

(2π)
nr
2 2

np
2 Γp(n

2 )
. (i)

Consider the exponent

−1

2
tr(XX′ + W2) = −1

2
tr[W2(I + W

− 1
2

2 XX′W− 1
2

2 )] = −1

2
tr(W2(I + V V ′))

where V = W
− 1

2
2 X ⇒ dX = |W2| r

2 dV for fixed W2. The joint density of W2 and V ,
denoted by f8(V , W2), is then

f8(V , W2) = |W2| n
2+ r

2−p+1
2 e− 1

2 tr(W2(I+V V ′))

(2π)
pr
2 2

np
2 Γp(n

2 )
. (ii)

Observe that V V ′ = W
− 1

2
2 XX′W− 1

2
2 = U of (8.3.14). Integrating out W2 in (ii) by using

a real matrix-variate gamma integral, we obtain the marginal density of V , denoted by
f9(V ), as

f9(V )dV = Γp(n+r
2 )

Γp(n
2 )π

pr
2

|I + V V ′|−( n+r
2 )dV (iii)

where V V ′ ≥ O (positive semi-definite). Note that

|Ip + V V ′| = |Ir + V ′V |, V V ′ ≥ O, V ′V > O (positive definite),
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which follows from Theorem 8.3.3(b). This last result can also be established by expanding
the following determinant in two ways as was done in (8.3.3) and (8.3.4):

∣
∣
∣
∣

Ip V

−V ′ Ir

∣
∣
∣
∣ = |Ip| |Ir + V ′V | = |Ir | |Ip + V V ′|
⇒ |Ir + V ′V | = |Ip + V V ′|.

Hence, the density of V ′ must be of the following form where c1 is the normalizing con-
stant:

f10(V
′)dV ′ = c1|I + V ′V |−( n+r

2 )dV ′, n ≥ p, r < p. (iv)

On applying Theorem 4.2.3, (iv) can be transformed into a function of S1 = V ′V > O, S1
being of order r × r . Then,

dV ′ = π
pr
2

Γr(
p
2 )

|S1|p
2 − r+1

2 dS1.

Substituting the above expression for dV ′ in f10(V
′) and then integrating over the r × r

matrix S1 > O, we have

∫

V ′
f10(V

′)dV ′ = c1
π

pr
2

Γr(
p
2 )

Γr(
p
2 )Γr(

n+r−p
2 )

Γr(
n+r
2 )

= 1.

Accordingly, the density of V ′ is the following:

f10(V
′)dV ′ = Γr(

p
2 )

π
pr
2

Γr(
n+r
2 )

Γr(
p
2 )Γr(

n+r−p
2 )

|I + V ′V |−( n+r
2 )dV ′. (8.3.15)

Note that Γr(
p
2 ) cancels out. Then, by re-expressing dV ′ in terms of dS1 in (8.3.15), the

density of S1 = V ′V is obtained as

f11(S1) = Γr(
n+r
2 )

Γr(
p
2 )Γr(

n+r−p
2 )

|S1|p
2 − r+1

2 |I + S1|−( n+r
2 ) (8.3.16)

for S1 = V ′V > O, n ≥ p, r < p, and zero elsewhere, which is a real r × r matrix-
variate type-2 beta density with the parameters (

p
2 ,

n+r−p
2 ). Thus, the following result:

Theorem 8.3.8. Let W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, I), j = 1, . . . , r,

r < p, W2 ∼ Wp(n, I ), n ≥ p, and W1 and W2 be independently distributed. Let
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V = W
− 1

2
2 X, V V ′ ≥ O and S1 = V ′V > O. Then, |Ip +V V ′| = |Ir +V ′V | = |Ir +S1|.

The density of V ′ is given in (8.3.15) and that of S1, which is specified in (8.3.16), is a real
matrix-variate type-2 beta density with the parameters (

p
2 ,

n+r−p
2 ). Moreover, the positive

semi-definite matrix S2 = W
− 1

2
2 XX′W− 1

2
2 is distributed, almost surely, as S1, which has a

nonsingular real matrix-variate type-2 beta distribution with the parameters (
p
2 ,

n+r−p
2 ).

Observe that this theorem also holds when Xj
iid∼ Np(O, Σ), Σ > O and

W2 ∼ Wp(n, Σ), Σ > O, and the distribution of S2 will still be free of Σ . Con-
verting (8.3.16) in terms of the eigenvalues of S1, which are also the nonzero eigen-

values of S2 = W
− 1

2
2 XX′W− 1

2
2 of (8.3.14), we have the following density, denoted by

f12(λ1, . . . , λr)dD, D = diag(λ1, . . . , λr), assuming that the eigenvalues are distinct and
such that λ1 > λ2 > · · · > λr > 0:

f12(λ1, . . . , λr)dD = Γr(
n+r
2 )

Γr(
p
2 )Γr(

n+r−p
2 )

πr2

Γr(
r
2)

×
[ r∏

j=1

λ
p
2 − r+1

2
j

][ r∏

j=1

(1 + λj )
−( n+r

2 )
][ ∏

i<j

(λi − λj )
]
dD. (8.3.17)

Theorem 8.3.9. Let W2 and X be as defined in (8.3.14). Then, the joint density of the

nonzero eigenvalues λ1, . . . , λr of S2 = W
− 1

2
2 XX′W− 1

2
2 , which are assumed to be distinct

and such that λ1 > · · · > λr > 0, is given in (8.3.17).

In (8.3.13) we have obtained the joint density of the nonzero roots μ1 > · · · > μr of
the determinantal equation

|XX′ − μ(XX′ + W2)| = 0 ⇒ |XX′ − λW2| = 0, λ = μ

1 − μ
, μ = λ

1 + λ
,

⇒ |W− 1
2

2 XX′W− 1
2

2 − λI | = 0. (8.3.18)

Hence, making the substitution μj = λj

1+λj
in (8.3.13) should yield the density appearing

in (8.3.17). This will be stated as a theorem.

Theorem 8.3.10. When μj = λj

1+λj
or λj = μj

1−μj
, the distributions of the μj ’s or the

λj ’s, as respectively specified in (8.3.13) and (8.3.17), coincide.
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8.3a. The Singular Complex Case

The matrix manipulations that were utilized in the real case also apply in the complex
domain. The following result parallels Theorem 8.3.1:

Theorem 8.3a.1. Let the p × p matrix A = A∗ ≥ O be a Hermitian positive semi-
definite matrix of rank r < p, where A∗ designate the conjugate transpose of A. Then, A
can be represented as A = A1A

∗
1 where A1 is p × r, r < p, of rank r , that is, all the

columns of A1 are linearly independent.

A derivation of the Wishart matrix in the complex case can also be worked out from
a complex Gaussian distribution. In earlier chapters, we have derived the Wishart density
as a particular case of the matrix-variate gamma density, whether in the real or complex
domain. Let the p ×1 complex vectors X̃j , j = 1, . . . , n, be independently distributed as
p-variate complex Gaussian random variables with the null vector as their mean value and

a common Hermitian positive definite covariance matrix, that is, X̃j
iid∼ Ñp(O, Σ), Σ =

Σ∗ > O for j = 1, . . . , n. Let the p × n matrix X̃ = [X̃1, . . . , X̃n] be the simple random
sample matrix from this complex Gaussian population. Then, the density of X̃, denoted by
f̃ (X̃), is given by

f̃ (X̃) = e−∑n
j=1 X̃∗

j Σ−1X̃j

πnp|det(Σ)|n = e−tr(Σ−1X̃X̃∗)

πnp|det(Σ)|n , (8.3a.1)

for n ≥ p. Let the p × p Hermitian positive definite matrix X̃X̃∗ = W̃ . For n ≥ p, it
follows from Theorem 4.2a.3 that

dX̃ = πnp

Γ̃p(n)
|det(W̃ )|n−pdW̃ (8.3a.2)

where dX̃ = dY1 ∧ dY2, X̃ = Y1 + iY2, i = √−1, Y1, Y2 being real p × n matrices.
Given (8.3a.1) and (8.3a.2), the density of W̃ , denoted by f̃1(W̃ ), is obtained as

f̃1(W̃ ) = |det(W̃ )|n−pe−tr(Σ−1W̃ )

Γ̃p(n)|det(Σ)|n , W̃ = W̃ ∗ > O, n ≥ p, (8.3a.3)

and zero elsewhere; this is the complex Wishart density with n degrees of freedom and
parameter matrix Σ > O, which is written as W̃ ∼ W̃p(n, Σ), Σ > O, n ≥ p. If

X̃j ∼ Ñp(μ̃, Σ), Σ > O, then letting ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X) and

W̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗, (8.3a.4)
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we have W̃ ∼ W̃p(n − 1, Σ), n − 1 ≥ p, Σ > O, or W̃ has a Wishart distribution with
n − 1 instead of n degrees of freedom, μ̃ 	= O being eliminated by subtracting the sample
mean. The remainder of this section is devoted to the distribution of X̃X̃∗ for n < p, that
is, in the singular case. Proceeding as in the real case, we have

det(Ip − X̃X̃∗) = det(Ir − X̃∗X̃) (8.3a.5)

where X̃X̃∗ ≥ O is p × p, whereas the r × r , r < p, matrix X̃∗X̃ > O. Then, we have
the following result:

Theorem 8.3a.2. Let T̃1 = X̃X̃∗ and T̃2 = X̃∗X̃. Then, the eigenvalues of T̃2 are all real
and positive and the nonzero eigenvalues of T̃1 are identical to those of T̃2, the remaining
ones being equal to zero.

The complex counterpart of Theorem 8.3.4 that follows can be derived using steps
parallel to those utilized in the real case.

Theorem 8.3a.3. Let the p × 1 complex vectors X̃j
iid∼ Ñp(μ̃, Σ), Σ > O, j =

1, . . . , r . Let X̃ = [X̃1, . . . , X̃r ] be the simple random sample matrix from this complex
p-variate Gaussian population. Let T̃2 = X̃∗Σ−1X̃ or T̃2 = X̃∗X̃ if Σ = Ip. Then, the
density of T̃2, denoted by f̃u(T̃2), is the following:

f̃u(T̃2) = 1

Γ̃r (p)
|det(T̃2)|p−re−tr(T̃2), T̃2 > O, r ≤ p, (8.3a.6)

so that T̃2 ∼ W̃r(p, I ), that is, T̃2 has a complex Wishart distribution with p degrees of

freedom. If μ̃ 	= O, let T̃2 = (X̃− ¯̃X)∗(X̃− ¯̃X) or T̃2 = (X̃− ¯̃X)∗Σ−1(X̃− ¯̃X) when Σ 	= I

with ¯̃X = (
¯̃
X, . . . ,

¯̃
X)wherein ¯̃

X = 1
r
(X̃1+· · ·+X̃r). Then, T̃2 ∼ W̃r(p−1, I ), r ≤ p−1.

8.3a.1. Singular gamma or singular Gaussian distribution, complex case

Let X̃ = [X̃1, . . . , X̃r ] where the p × 1 vectors X̃1, . . . , X̃r are independently dis-
tributed as complex Gaussian vectors whose mean value is the null vector and covariance

matrix is I , that is, X̃j
iid∼ Ñp(O, I), j = 1, . . . , r, r < p. Then, the density of X̃,

denoted by f̃1(X̃), is

f̃1(X̃) = e−tr(X̃X̃∗)

πnp
. (8.3a.7)

Let r < p so that X̃X̃∗ ≥ O (Hermitian positive semi-definite). Let the p × p Hermitian
positive definite matrix W̃2 have a Wishart density with n ≥ p degrees of freedom and
parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p. Further assume that X̃ and W̃2 are
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independently distributed. Then, the joint density of X̃ and W̃2, denoted by f̃2(X̃, W̃2), is
the following:

f̃2(X̃, W̃2) = e−tr(X̃X̃∗+W̃2)|det(W̃2)|n−p

πnpΓ̃p(n)
, n ≥ p, r < p, (8.3a.8)

where X̃ is p × r , r < p. Letting the p ×p matrix Ũ = X̃X̃∗ + W̃2 > O, the joint density
of Ũ and X̃, denoted by f̃3(X̃, Ũ ), is given by

f̃3(X̃, Ũ ) = e−tr(Ũ)|det(Ũ − X̃X̃∗)|n−p

πnp Γ̃p(n)
, n ≥ p, r < p.

Letting Ũ = Ũ∗ > O, one has

|det(Ũ − X̃X̃∗)| = |det(Ũ )| |det(I − Ũ− 1
2 X̃X̃∗Ũ− 1

2 )|
= |det(Ũ )| |det(I − Ṽ Ṽ ∗)|, Ṽ = Ũ− 1

2 X̃,

where Ṽ is a p × r matrix of rank r < p. Since dX̃ = |det(Ũ )|rdṼ for fixed Ũ , the joint
density of Ũ and Ṽ is as follows:

f̃4(Ũ , Ṽ ) = |det(Ũ)|n+r−pe−tr(Ũ)

πnpΓ̃p(n)
|det(Ip − Ṽ Ṽ ∗)|n−p. (8.3a.9)

As has been previously noted,

|det(Ip − Ṽ Ṽ ∗)| = |det(Ir − Ṽ ∗Ṽ )|
where Ṽ ∗Ṽ is an r × r Hermitian positive definite matrix. Since f̃4(Ũ , Ṽ ) can be fac-
torized, Ũ and Ṽ are independently distributed, and the marginal density of Ṽ , denoted
by f̃5(Ṽ ), is of the following form, after integrating out Ũ with the help of a complex
matrix-variate gamma integral:

f̃5(Ṽ
∗)dṼ = c̃ |det(I − Ṽ Ṽ ∗)|n−pdṼ = c̃ |det(I − Ṽ ∗Ṽ )|n−pdṼ ∗ (8.3a.10)

where c̃ is the normalizing constant. Now, proceeding as in the real case, the following
result is obtained:

Theorem 8.3a.4. Let the p × 1 complex vectors X̃j
iid∼ Ñp(O, I), j = 1, . . . , r , and

X̃ = [X̃1, . . . , X̃r ] be the p × r full rank sample matrix with r < p. Let W̃2 be a p × p
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Hermitian positive definite matrix having a nonsingular Wishart density with n degrees of
freedom and parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p, and assume that W̃2

and X̃ are independently distributed. Let Ũ = X̃X̃∗ + W̃2 be Hermitian positive definite,
Ṽ = Ũ− 1

2 X̃ and S̃ = Ṽ ∗Ṽ . Then, Ũ and Ṽ are independently distributed and the densities
of Ṽ and S̃, respectively denoted by f̃5(Ṽ ) and f̃6(S̃), are

f̃5(Ṽ ) = Γ̃r (p)

πpr

Γ̃r(n + r)

Γ̃r(p)Γ̃r(n − p + r)
|det(I − Ṽ ∗Ṽ )|n−p, r < p, (8.3a.11)

and

f̃6(S̃) = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n − p + r)
|det(S̃)|p−r |det(I − S̃)|n−p, n ≥ p, r < p, (8.3a.12)

observing that n − p = (n + r − p) − r .

Let W̃1 = X̃X̃∗ where the p × r matrix X̃ is the previously defined sample matrix
arising from a standard complex Gaussian population. Let W̃2 ∼ W̃p(n, I ) and assume
that W̃1 and W̃2 are independently distributed. Letting Ũ = X̃X̃∗ + W̃2 > O, consider the
determinantal equation

det(W̃1 − μ(W̃1 + W̃2)) = 0. (i)

Then, as in the real case, the following result can be obtained:

Theorem 8.3a.5. Let W̃1, W̃2, Ṽ and Ũ be as previously defined. Then,

det(W̃1 − μ(W̃1 + W̃2)) = 0 ⇒ det(Ṽ ∗Ṽ − μIr) = 0. (ii)

This establishes that the roots μj ’s of the determinantal equation (i) coincide with the
eigenvalues of Ṽ ∗Ṽ , and since Ṽ ∗Ṽ > O, the eigenvalues are real and positive. Let the
eigenvalues be distinct, in which case μ1 > · · · > μr > 0. Then, steps parallel to those
utilized in the real case will yield the following result:

Theorem 8.3a.6. Let μ1, . . . , μr be the nonzero roots of the equation

det(W̃1 − μ(W̃1 + W̃2)) = 0

where W̃1 and W̃2 are as previously defined. Let μ1 > · · · > μr > 0, r < p, and let
D = diag(μ1, . . . , μr). Then, the joint density of the eigenvalues μ1, . . . , μr , denoted by
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f̃μ(μ1, . . . , μr), which is available from (8.3a.12) and the relationship between dS̃ and
dD, is the following:

f̃μ(μ1, . . . , μr)dD = πr(r−1)

Γ̃r (r)

Γ̃r(n + r)

Γ̃r(p)Γ̃r(n − p + r)

×
[ r∏

j=1

μ
p−r

j

][ r∏

j=1

(1 − μj)
n−p

][∏

i<j

(μi − μj)
2
]
dD. (8.3a.13)

8.3a.2. A direct method of evaluation in the complex case

The steps of the derivations being analogous to those utilized in the real case, the
corresponding theorems will simply be stated for the complex case. Let W̃1 = X̃X̃∗ be

a p × p singular Wishart matrix where the p × r matrix X̃ = [X̃1, . . . , X̃r ], X̃j
iid∼

Ñp(O, I), j = 1, . . . , r, and r < p. That is, X̃ is a simple random sample matrix from
this complex Gaussian population. Let W̃2 > O have a complex Wishart distribution with
n degrees of freedom and parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p, and assume
that W̃1 and W̃2 be independently distributed. Consider the initial equation

det(W̃1 − λW̃2) = 0 ⇒ det(W̃
− 1

2
2 W̃1W̃

− 1
2

2 − λI) = 0, (8.3a.14)

whose roots are λ1, . . . , λr, 0, . . . , 0, and the additional equation det(W̃1−μ(W̃1+W̃2)) =
0,whose roots will be denoted byμ1, . . . , μr, 0, . . . , 0. In the following theorems, the λj ’s
and μj ’s will refer to these two sets of roots.

Theorem 8.3a.7. Let W̃1 = XX∗, X = [X1, . . . , Xr ], Xj
iid∼ Ñp(O, I), j = 1, . . . , r,

and r < p. Let W̃2 ∼ W̃p(n, I ), n ≥ p, be a nonsingular complex Wishart matrix
with n degrees of freedom and parameter matrix I . Further assume that W̃1 and W̃2 are

independently distributed. Let Ṽ = W̃
− 1

2
2 X̃, Ṽ Ṽ ∗ ≥ O, Ṽ ∗Ṽ > O, and S̃1 = Ṽ ∗Ṽ > O.

Then, det(Ip + Ṽ Ṽ ∗) = det(Ir + Ṽ ∗Ṽ ) = det(Ir + S̃1), and the densities of Ṽ ∗ and S̃1
are respectively given by

f̃10(Ṽ
∗)dṼ ∗ = Γ̃r (p)

πp(p−1)

Γ̃r (n + r)

Γ̃r(p)Γ̃r(n + r − p)
|det(I + Ṽ ∗Ṽ )|−(n+r)dṼ ∗ (8.3a.15)

and

f̃11(S̃1) = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n + r − p)
|det(S̃1)|p−r |det(I + S̃1)|−(n+r), (8.3a.16)
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which is a complex matrix-variate type-2 beta distribution with the parameters (p, n −
p + r). Additionally, the positive semi-definite matrix S̃2 = W̃

− 1
2

2 X̃X̃∗W̃− 1
2

2 is distributed,
almost surely, as S̃1, which has a nonsingular complex matrix-variate type-2 beta distri-
bution with the parameters (p, n − p + r).

Theorem 8.3a.8. Let W̃2 and X̃ be as defined in Theorem 8.3a.7. Then, the joint density

of the nonzero eigenvalues λ1, . . . , λr of S̃2 = W̃
− 1

2
2 X̃X̃∗W̃− 1

2
2 , which are assumed to be

distinct and such that λ1 > · · · > λr > 0, is given by

f̃13(λ1, . . . , λr)dD = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n − p + r)

πr(r−1)

Γ̃r (r)

×
[ r∏

j=1

λ
p−r

j

][ r∏

j=1

(1 + λj )
−(n+r)

][∏

i<j

(λi − λj )
2
]
dD,

(8.3a.17)

where D = diag(λ1, . . . , λr).

Theorem 8.3a.9. When μj = λj

1+λj
or λj = μj

1−μj
, the distributions of the μj ’s and λj ’s,

as respectively defined in (8.3a.13) and (8.3a.17), coincide.

8.4. The Case of One Wishart or Gamma Matrix in the Real Domain

If we only consider a single p × p gamma matrix W with parameters (α, B), B >

O, �(α) >
p−1
2 , whose density is

f (W) = |B|α
Γp(α)

|W |α−p+1
2 e−tr(BW), W > O, B > O, �(α) >

p − 1

2
, (8.4.1)

and zero elsewhere, then it can readily be determined that Z = B
1
2W has the density

f1(Z) = 1

Γp(α)
|Z|α−p+1

2 e−tr(Z), Z > O, �(α) >
p − 1

2
, (8.4.2)

and zero elsewhere. When α = m
2 and B = 1

2I , Z has a Wishart density with m ≥ p

degrees of freedom and parameter matrix I , its density being given by

f2(Z) = 1

2
mp
2 Γp(m

2 )
|Z|m

2 −p+1
2 e− 1

2 tr(Z) (8.4.3)
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for m ≥ p, and zero elsewhere. Since Z is symmetric, there exists an orthonormal matrix
P, PP ′ = I, P ′P = I , such that Z = PDP ′ with D = diag(λ1, . . . , λp) where
λj > 0, j = 1, . . . , p, are the (assumed distinct) positive eigenvalues of Z, Z being
positive definite. Consider the equation ZQj = λjQj where the p × 1 vector Qj is an
eigenvector corresponding to the eigenvalue λj . Since the eigenvalues are distinct, the
eigenvectors are orthogonal to each other. Let Qj be the normalized eigenvector, Q′

jQj =
1, j = 1, . . . , p, Q′

iQj = 0, for all i 	= j . Letting Q = [Q1, . . . , Qp], this p ×p matrix
Q is such that

ZQ = QD ⇒ Z = QDQ′ ⇒ Q = P, P = [P1, . . . , Pp]
where P1, . . . , Pp are the columns of the p × p matrix P . Yet, P need not be unique as
P ′

jPj = 1 ⇒ (−Pj)
′(−Pj) = 1. In order to make it unique, let us require that the first

nonzero element of each of the vectors P1, . . . , Pp be positive. Considering the transfor-
mation Z = PDP ′, it follows from Theorem 8.2.1 that, before integrating over the full
orthogonal group,

dZ =
{ ∏

i<j

(λi − λj )
}
dD h(P ) (8.4.4)

where h(P ) is a differential element associated with the unique matrix of eigenvectors P ,
as is explained in Mathai (1997). The integral over h(P ) gives

∫

Op

h(P ) = π
p2

2

Γp(
p
2 )

(8.4.5)

where Op is the full orthogonal group of p × p orthonormal matrices. On observing that
|Z| = ∏p

j=1 λj and tr(Z) = λ1+· · ·+λp, it follows from (8.4.3) and (8.4.4) that the joint
density of the eigenvalues λ1, . . . , λp and the matrix of eigenvectors P can be expressed
as

f3(D, P ) dD ∧ dP = [∏p

j=1 λj ]m
2 −p+1

2 e− 1
2

∑p
j=1 λj [∏i<j (λi − λj )]

2
mp
2 Γp(m

2 )
dD h(P ). (8.4.6)

Thus, the marginal density of λ1, . . . , λp can be obtained by integrating out P . Denoting
this marginal density by f4(λ1, . . . , λp), we have

f4(λ1, . . . , λp) dD = π
p2

2

Γp(
p
2 )

[∏p

j=1 λj ]m
2 −p+1

2 e− 1
2

∑p
j=1 λj

2
mp
2 Γp(m

2 )

[∏

i<j

|λi − λj |
]
dD, (8.4.7)
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and zero elsewhere. The density of P is then the remainder of the joint density. Denoting
it by f5(P ), we have the following:

f5(P ) dP = Γp(
p
2 )

π
p2
2

h(P ), PP ′ = I, (8.4.8)

where P = [P1, . . . , Pp], the first nonzero element of Pj being positive for j = 1, . . . , p,
so as to make P unique. Hence, the following result:

Theorem 8.4.1. Let the p × p real positive definite matrix Z have a Wishart density
with m ≥ p degrees of freedom and parameter matrix I . Let λ1, . . . , λp be the distinct
positive eigenvalues of Z in decreasing order and the p × p orthonormal matrix P be the
matrix of normalized eigenvectors corresponding to the λj ’s. Then, {λ1, . . . , λp} and P

are independently distributed, with the densities of {λ1, . . . , λp} and P being respectively
given in (8.4.7) and (8.4.8).

8.4a. The Case of One Wishart or Gamma Matrix, Complex Domain

Let W̃ be a p × p complex gamma distributed matrix, W̃ = W̃ ∗ > O, whose density
is

f̃ (W̃ ) = |det(B̃)|α
Γ̃p(α)

|det(W̃ )|α−pe−tr(B̃W̃ ), W̃ > O, B̃ > O, �(α) > p − 1. (8.4a.1)

Letting Z̃ = B̃
1
2 W̃ , Z̃ has the density

f̃1(X̃) = 1

Γ̃p(α)
|det(Z̃)|α−pe−tr(Z̃), X̃ > O, �(α) > p − 1. (8.4a.2)

If α = m, m = p, p + 1, . . . in (8.4a.2), then we have the following Wishart density
having m degrees of freedom in the complex domain:

f̃2(Z̃) = 1

Γ̃p(m)
|det(Z̃)|m−pe−tr(Z̃). (8.4a.3)

Consider a unique unitary matrix P̃ , P̃ P̃ ∗ = I, P̃ ∗P̃ = I such that P̃ ∗Z̃P̃ =
diag(λ1, . . . , λp) where λ1, . . . , λp are the eigenvalues of Z̃, which are real and positive
since Z̃ is Hermitian positive definite. Letting the eigenvalues be distinct and such that
λ1 > λ2 > · · · > λp > 0, observe that

dZ̃ =
{ ∏

i<j

|λi − λj |2
}
dD h̃(P̃ ) (8.4a.4)
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where h̃(P̃ ) is the differential element corresponding to the unique unitary matrix P̃ . Then,
as established in Mathai (1997),

∫

Õp

h̃(P̃ ) = πp(p−1)

Γ̃p(p)
(8.4a.5)

where Õp is the full unitary group. Thus, the joint density of the eigenvalues λ1, . . . , λp

and their associated normalized eigenvectors, denoted by f̃3(D, P̃ ), is

f̃3(D, P̃ ) dD ∧ dP̃ = [∏p

j=1 λj ]m−pe−∑p
j=1 λj

Γ̃p(m)

[∏

i<j

|λi − λj |2
]
dD h̃(P̃ ). (8.4a.6)

Then, integrating out P̃ with the help of (8.4a.5), the marginal density of the eigenvalues
λ1 > · · · > λp > 0, denoted by f̃4(λ1, . . . , λp), is the following:

f̃4(λ1, . . . , λp) dD = πp(p−1)

Γ̃p(p)

[∏p

j=1 λj ]m−pe−∑p
j=1 λj

Γ̃p(m)

[ ∏

i<j

|λi − λj |2
]
dD. (8.4a.7)

Thus, the joint density of the normalized eigenvectors forming P̃ , denoted by f̃5(P̃ ), is
given by

f̃5(P̃ ) dP̃ = Γ̃p(p)

πp(p−1)
h̃(P̃ ). (8.4a.8)

These results are summarized in the following theorem.

Theorem 8.4a.1. Let Z̃ have the density appearing in (8.4a.3). Then, the joint density
of the distinct eigenvalues λ1 > · · · > λp > 0 of Z̃ is as given in (8.4a.7) and the joint
density of the associated normalized eigenvectors comprising the unitary matrix P is as
specified in (8.4a.8).
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