Chapter 7 )
Rectangular Matrix-Variate Distributions L

7.1. Introduction

Thus far, we have primarily been dealing with distributions involving real positive
definite or Hermitian positive definite matrices. We have already considered rectangular
matrices in the matrix-variate Gaussian case. In this chapter, we will examine rectangular
matrix-variate gamma and beta distributions and also consider to some extent other types
of distributions. We will begin with the rectangular matrix-variate real gamma distribution,
a version of which was discussed in connection with the pathway model introduced in
Mathai (2005). The notations will remain as previously specified. Lower-case letters such
as x, y, z will denote real scalar variables, whether mathematical or random. Capital letters
such as X, Y will be used for matrix-variate variables, whether square or rectangular. In
the complex domain, a tilde will be placed above the corresponding scalar and matrix-
variables; for instance, we will write x, ¥y, X , Y. Constant matrices will be denoted by
upper-case letter such as A, B, C. A tilde will not be utilized for constant matrices except
for stressing the point that the constant matrix is in the complex domain. When X is a
p X p real positive definite matrix, then A < X < B will imply that the constant matrices
A and B are positive definite, thatis, A > O, B > O, and furtherthat X > O, X — A >
O, B — X > O. Real positive definite matrices will be assumed to be symmetric. The
corresponding notation for a p x p Hermitian positive definite matrix is A < X < B.
The determinant of a square matrix A will be denoted by |A| or det(A) whereas, in the
complex case, the absolute value or modulus of the determinant of A will be denoted as
|det(A)|. When matrices are square, their order will be taken as being p x p unless specified
otherwise. Whenever A isareal p x g, g > p, rectangular matrix of full rank p, AA’ is
positive definite, a prime denoting the transpose. When A is in the complex domain, then
A A* is Hermitian positive definite where an A* indicates the complex conjugate transpose
of A. Note that all positive definite complex matrices are necessarily Hermitian. As well,
dX will denote the wedge product of all differentials in the matrix X. If X = (x;;) is a
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real p x g matrix, then dX = A/_, /\;7.:1 dx;;. Whenever X = (x;;) is a p x p real

symmetric matrix, dX = A;>;dx;; = A;<;dx;;, that is, the wedge product of the p(pTH)

distinct differentials. As for the complex matrix X=X +iXs, i = +/(—1), where X,
and X, are real, dX = dX| A dX».

7.2. Rectangular Matrix-Variate Gamma Density, Real Case

The most commonly utilized real gamma type distributions are the gamma, generalized
gamma and Wishart in Statistics and the Maxwell-Boltzmann and Raleigh in Physics. The
first author has previously introduced real and complex matrix-variate analogues of the
gamma, Maxwell-Boltzmann, Raleigh and Wishart densities where the matrices are p x p
real positive definite or Hermitian positive definite. For the generalized gamma density
in the real scalar case, a matrix-variate analogue can be written down but the associated
properties cannot be studied owing to the problem of making a transformation of the type
Y = X? for § # +1; additionally, when X is real positive definite or Hermitian positive
definite, the Jacobians will produce awkward forms that cannot be easily handled, see
Mathai (1997) for an illustration wherein § = 2 and the matrix X is real and symmetric.
Thus, we will provide extensions of the gamma, Wishart, Maxwell-Boltzmann and Raleigh
densities to the rectangular matrix-variate cases for § = 1, in both the real and complex
domains.

The Maxwell-Boltzmann and Raleigh densities are associated with numerous prob-
lems occurring in Physics. A multivariate analogue as well as a rectangular matrix-variate
analogue of these densities may become useful in extending the usual theories giving rise
to these univariate densities, to multivariate and matrix-variate settings. It will be shown
that, as was explained in Mathai (1999), this problem is also connected to the volumes
of parallelotopes determined by p linearly independent random points in the Euclidean
n-space, n > p. Structural decompositions of the resulting random determinants and path-
way extensions to gamma, Wishart, Maxwell-Boltzmann and Raleigh densities will also
be considered.

In the current nuclear reaction-rate theory, the basic distribution being assumed for the
relative velocity of reacting particles is the Maxwell-Boltzmann. One of the forms of this
density for the real scalar positive variable case is

4 3 2 —,3x2
fl(x)=?ﬁ2x e, 0<x<o00, >0, (7.2.1)
T

and f1(x) = 0 elsewhere. The Raleigh density is given by
2
flx) = Se 2, 0<x <00, @ >0, (7.2.2)
o
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and f> = 0 elsewhere, and the three-parameter generalized gamma density has the form

8 b5
Wx“—le—bxﬁ, x>0, b>0 a>0 8>0, (7.2.3)
3

f3(x) =
and f3 = 0 elsewhere. Observe that (7.2.1) and (7.2.2) are special cases of (7.2.3). For
derivations of a reaction-rate probability integral based on Maxwell-Boltzmann velocity
density, the reader is referred to Mathai and Haubold (1988). Various basic results associ-
ated with the Maxwell-Boltzmann distribution are provided in Barnes et al. (1982), Critch-
field (1972), Fowler (1984), and Pais (1986), among others. The Maxwell-Boltzmann and
Raleigh densities have been extended to the real positive definite matrix-variate and the
real rectangular matrix-variate cases in Mathai and Princy (2017). These results will be in-
cluded in this section, along with extensions of the gamma and Wishart densities to the real
and complex rectangular matrix-variate cases. Extensions of the gamma and Wishart den-
sities to the real positive definite and complex Hermitian positive definite matrix-variate
cases have already been discussed in Chap. 5. The Jacobians that are needed and will be
frequently utilized in our discussion are already provided in Chaps. 1 and 4, further details
being available from Mathai (1997). The previously defined real matrix-variate gamma
I'y(a) and complex matrix-variate gamma fp(a) functions will also be utilized in this
chapter.

7.2.1. Extension of the gamma density to the real rectangular matrix-variate case

Consider a p x g, g > p, real matrix X of full rank p, whose rows are thus linearly
independent, and a real-valued scalar function f (X X’) whose integral over X is conver-
gent, that is, f ¢ f(XX')dX < oo. Letting § = X X', S will be symmetric as well as real
positive definite meaning that for every p x 1 non-null vector Y, Y'SY > O forall Y # O
(a non-null vector). Then, § = (s;;) will involve only ”(I’TH) differential elements, that is,
ds = /\f’> jzlds,- j» whereas dX will contain pg differential elements dx;;’s. As has pre-
viously been explained in Chap. 4, the connection between dX and dS can be established
via a sequence of two or three matrix transformations.

Letthe X = (x;;) bea p x g, ¢ > p, real matrix of rank p where the x;;’s are distinct
real scalar variables. Let A be a p x p real positive definite constant matrix and B be a
q x q real positive definite constant matrix, A2 and B? denoting the respective positive
definite square roots of the positive definite matrices A and B. We will now determine the
value of c that satisfies the following integral equation:

1 :
—=/ |AXBX'|Ve " AXBXDqx. (i)
c X
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Note that tr(AXBX') = tr(A2XBX'A?). Letting Y = AZXB?, it follows from Theo-
rem 1.7.4 that dY = |A|?|B|%dX. Thus,
1

- |A|—‘£|B|—§/ 1YY/ |V e Y gy, (ii)
¢ Y

Letting S = YY’, we note that S is a pXp real positive definite matrix, and on applying

Theorem 4.2.3, we have dY = F q )|S |’_ > dS where I',(-) is the real matrix-variate

gamma function. Thus,

qp

1 T2

= A I|BI T S|P+ e )4 A= 0, B> 0, (i)
q

c I'y(3) Jsso

the integral being a real matrix-variate gamma integral given by I',(y +%) for R(y +%) >
pT_l, where N(-) is the real part of (-), so that

A|Z|B|2T, (% —1
_APIBELG) oy + 9= 2= 40, B> 0. (7.2.4)
n2(y +%) 2 2
Let
f4(X) = c|AXBX'|V e W(AXBX) (7.2.5)
forA> 0, B> 0, R(y+%) > ;, = (xjj), —00 <xjj <00, i=1,....,p, j=
1,...,q, where c is as specified in (7 2.4). Then, f4(X) is a statistical density that will be

referred to as the rectangular real matrix-variate gamma density with shape parameter y

and scale parameter matrices A > O and B > O. Although the parameters are usually

real in a statistical density, the above conditions apply to the general complex case.
Forp=1,g=1 y=1, A=1and B= 8 > 0, we have |AXBX'| = Bx? and

ABBIETG) _ (BT} _2JB
i ry+9  xir@ VT

3 . .
so that ¢ = %5,85 for —oo < x < o00. Note that when the support of f(x) is restricted

to the interval 0 < x < o0, the normalizing constant will be multiplied by 2, f(x) be-
ing a symmetric function. Then, for this particular case, f4(X) in (7.2.5) agrees with the
Maxwell-Boltzmann density for the real scalar positive variable x whose density is given
in (7.2.1). Accordingly, when y = 1, (7.2.5) with ¢ as specified in (7.2.4) will be re-
ferred to as the real rectangular matrix-variate Maxwell-Boltzmann density. Observe that
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for y = 0, (7.2.5) is the real rectangular matrix-variate Gaussian density that was con-

sidered in Chap.4. In the Raleigh case, letting p = 1, g =1, A =1, B = glz and

1
yzj’

2 1
|AXBX’|V:<x2)2 _ andc:L
2t V2| V2a
which gives
x| _x2 x _x
f5(x):ﬁe 20?2, —00 <X <00 Or f5(x):—ze 22, 0<x < 00,
o a

for o > 0, and f5 = 0 elsewhere where |x| denotes the absolute value of x, which is
the real positive scalar variable case of the Raleigh density given in (7.2.2). Accordingly,
(7.2.5) with ¢ as specified in (7.2.4) wherein y = % will be called the real rectangular
matrix-variate Raleigh density.

From (7.2.5), which is the density for X = (x;;), p x g, ¢ > p of rank p, with
—00 < x;j < o0, i =1,...,p, j =1,...,q, we obtain the following density for
Y = A2XB2:

Fp(%) Ny o—tr(YY')
fe(Y)dY = —; [YY'|"e dY (7.2.6)
T2y + %)

for y + % > pT_l, and fs = 0 elsewhere. We will refer to (7.2.6) as the standard form of
the real rectangular matrix-variate gamma density. The density of S = YY" is then

1
FS)AS = fo ST e (7.2.7)
p 2

forS> 0, y+1> pT_l, and f7 = 0 elsewhere.

Example 7.2.1. Specify the distribution of u = tr(A%X BX' A%), the exponent of the
density given in (7.2.5).

Solution 7.2.1. Let us determine the moment generating function (mgf) of u with pa-
rameter ¢. That is,

M,(t) = E[e™] = E[e”f(A%XBX/A%)]

1 1
=C/ |A2XBX'AZ|V e~ I-DTAIXBX'AD) gy
X
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where c is given in (7.2.4). Let us make the following transformations: ¥ = A2XB? , S =
YY’'. Then, all factors, except Iy + %), are canceled and the mgf becomes

M) = ——— S|+ e (neS) g g
Iy(y + %) 5>0

for 1 — ¢ > 0. On making the transformation (1 — #)S = §; and then integrating out Sy,
we obtain the following representation of the moment generating function:

My(t) = (1 —t)"PY*TD 1 _t >0,

which happens to be the mgf of a real scalar gamma random variables with the parameters
(x =ply + %), B = 1), which owing to the uniqueness of the mgf, is the distribution of
u.

Example 7.2.2. Let Uy = A2XBX'A%, U, = XBX', Uy = B2X'AXB?, Uy =
X’AX. Determine the corresponding densities when they exist.

Solution 7.2.2. Let us examine the exponent in the density (7.2.5). By making use of the
commutative property of trace, one can write

tr(AZXBX'A?) = [ A(XBX')] = tr(B2X'AX B?) = tr[B(X'AX)].

Observe that the exponent depends on the matrix A2XBX' A%, which is symmetric and
positive definite, and that the functional part of the density also involves its determinant.
Thus, the structure is that of real matrix-variate gamma density; however, (7.2.5) gives the
density of X. Hence, one has to reach U; from X and derive the density of U;. Consider

the transformation ¥ = A2 XBX'AZ. This will bring X to Y. Now, let § = YY' = U
so that the matrix U; has the real matrix-variate gamma distribution specified in (7.2.7),
that is, U is a real matrix-variate gamma variable with shape parameter y + % and scale
parameter matrix /. Next, consider U;. Let us obtain the density of U; from the density
(7.2.5) for X. Proceeding as above while ignoring A or taking A = I, (7.2.7) will become
the following density, denoted by f,, (Uz):

F\ias: iy

fuZ(Uz)dUz = W | U2|V+%_pTe—tr(AUz)dU2,
p 2

which shows that U, is a real matrix-variate gamma variable with shape parameter y + %
and scale parameter matrix A. With respect to U3 and U4, when g > p, one has the positive
semi-definite factor X’BX whose determinant is zero; hence, in this singular case, the
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densities do not exist for Uz and Us. However, when ¢ = p, U3 has a real matrix-variate
gamma distribution with shape parameter y + g and scale parameter matrix / and U4 has
a real matrix-variate gamma distribution with shape parameter y + g and scale parameter
matrix B, observing that when g = p both Uz and U, are g x g and positive definite. This
completes the solution.

The above findings are stated as a theorem:

Theorem 7.2.1. Let X = (x;;) be a real full rank p x q matrix, ¢ > p, having the
density specified in (7.2.5). Let Uy, Ua, Uz and Uy be as defined in Example 7.2.2. Then,
U, is real matrix-variate gamma variable with scale parameter matrix 1 and shape pa-
rameter y + L, U, is real matrix-variate gamma variable with shape parameter y + %
and scale parameter matrix A; Uz and Uy are singular and do not have densities when
q > p; however, and when q = p, Uj is real matrix-variate gamma distributed with
shape parameter y + % and scale parameter matrix I, and Uy is real matrix-variate
gamma distributed with shape parameter y + % and scale parameter matrix B. Further

I, — A2XBXA?| = |I, — B2X'AXB2|.

Proof: All the results, except the last one, were obtained in Solution 7.2.2. Hence, we
shall only consider the last part of the theorem. Observe that when g > p, |A%X BX' A%l

> (, the matrix being positive definite, whereas |B%X "AX B%| = 0, the matrix being
positive semi-definite. The equality is established by noting that in accordance with results
previously stated in Sect. 1.3, the determinant of the following partitioned matrix has two
representations:

I, AXB3|_
B2X'Az I,

|1, |1, — (B2 XAz)I 1(A 2XB2 )|_|I —BzXAXBz|
|1y 1) —(A2XB2)I 1(BZXA2)|_|I —AzXBXA2|

7.2.2. Multivariate gamma and Maxwell-Boltzmann densities, real case

Multivariate usually means a collection of scalar variables, real or complex. Many real
scalar variable cases corresponding to (7.2.1) or a multivariate analogue of thereof can be
obtained from (7.2.5) by taking p = 1 and A = b > 0. Note that in this case, X is 1 x ¢,
that is, X = (x1, ..., x4), and X BX' is a positive definite quadratic form of the type

X1
XBX' = (xi1,...,x4)B

Xq
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Thus, the density appearing in (7.2.5) becomes

b |BIA (%)
Til(y + 1)

fo(X)dX = [XBX'|"e PXBXNgx (7.2.8)

for X = (x1,...,x4), —00<xj<o0, j=1,...,q, B=B">0,b>0,and g =0
elsewhere. Then, the density of Y = B 21X’ is given by

r

q
f9(Y)dY = b)/+21—q
72l (y +3)

(OF + -+ 32O gy (7.2.9)

where Y/ = (y1,...,¥), —o0 <yj <00, j=1,...,4,b>0, y+% >0, and
fo = 0 elsewhere. We will take (7.2.8) as the multivariate gamma as well as multivariate
Maxwell-Boltzmann density, and (7.2.9) as the standard multivariate gamma as well as
standard multivariate Maxwell-Boltzmann density.

How can we show that (7.2.9) is a statistical density? One way consists of writing
fo(Y)dY as fo(S)dS, applying Theorem 4.2.3 of Chap.4 and writing dY in terms of dS
for p = 1. This will yield the result. Another way is to integrate out variables yi, ..., y,
from fo(Y)dY, which can be achieved via a general polar coordinate transformation such
as the following: Consider the variables yy,...,y,, —00 <y; <00, j=1,...,¢q, and
the transformation,

y1=r sin01
yj=r cosfcosth---cos@;_1sinf;, j=2,3,...,q9 —1,
Yg =71 cosfcost---cosb, i,

for—5 <0; <%, j=1,...,9 =2, —m < 6,1 <m, which was discussed in Mathai
(1997). Its Jacobian is then given by

g—1
dyi Ao Ady, =77 [ lcos 01977 b dr AdOL AL AdO,—1. (7:2.10)
j=1

Under this transformation, yl2 + -+ y(? = r2. Hence, integrating over r, we have
R NP L _(+9) g q
f FHri e dr==b"""2) ' (y+ =), y+ = > 0. (7.2.11)
=0 2 2 2

Note that the 0;’s are present only in the Jacobian elements. There are formulae giving the
integral over each differential element. We will integrate the 6;’s one by one. Integrating
over 0 gives
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s i 1
2 2
(cos Ql)q_2d91 = 2/ (cos 01)‘1_2d01 = 2/ Zq_2(1 — Zz)_%dz
0 0

[SIE]

_rerag
rg 1T

The integrals over 6, 63, ..., 6,2 can be similarly evaluated as
1 —2 1 —3 1

rHrs=) rer) I'(3)

rsh rs2) re)

forg > p—1, the last integral ff - 40,1 giving 277. On taking the product, several gamma
functions cancel out, leaving

q
2

27 ()% 2¢
rg — ré

(7.2.12)

It follows from (7.2.11) and (7.2.12) that (7.2.9) is indeed a density which will be referred
to as the standard real multivariate gamma or standard real Maxwell-Boltzmann density.

Example 7.2.3. Write down the densities specified in (7.2.8) and (7.2.9) explicitly if

3 -1 0
B=|—-1 2 1|,b=2andy =2.
0 1 1

Solution 7.2.3. Let us evaluate the normalizing constant in (7.2.8). Since in this case,

|B| =2,

BN 2¥ir(d) oo
tiry+%  wire+3d)  1s5xi

The normalizing constant in (7.2.9) which will be denoted by c9, is the same as cg exclud-

ing |B|? = 22. Thus,

()

&

2%
c9 = T
1572
Note that for X = [x1, x2, x3], XBX' = 3x12 + 2x§ + x% — 2x1x2 + 2xox3 and YY' =
yl2 + y% + y32. Hence the densities fg(X) and fo(Y) are the following, where cg and cg are
given in (i) and (ii):

(i)

2 210 2,2
J3(X) = cg [3)6% +2x5 4+ x5 — 2x102 + ZX2X3] e 203x]+2x) +x3—2x1X242x2x3]
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for —oo < xj <00, j=1,2,3,and

2

fMY)=wm[yf+y§+0€]e_”ﬁ+ﬁ+ﬁL for —oo < y; <o0, j=1,2,3.
This completes the computations.
7.2.3. Some properties of the rectangular matrix-variate gamma density

For the real rectangular matrix-variate gamma and Maxwell-Bolztmann distribution
whose density is specified in (7.2.5), what might be the 4-th moment of the determinant
|AX BX'| for an arbitrary h? This statistical quantity can be evaluated by looking at the
normalizing constant ¢ given in (7.2.4) since the integrand used to evaluate E[|AX BX’ |]h,
where E denotes the expected value, is nothing but the density of X wherein y is replaced
by y + h. Hence we have

q
O+3+h gy 1,P=1 (7.2.13)
Ip(y + %) 2 2

In many calculations involving the Maxwell-Boltzmann density for the real scalar variable
case x, one has to integrate a function of x, say v(x), over the Maxwell-Boltzmann density,
as can be seen for example in equations (4.1) and (4.2) of Mathai and Haubold (1988) in
connection with a certain reaction-rate probability integral. Thus, the expression appearing
in (7.2.13) corresponds to the integral of a power function over the Maxwell-Boltzmann
density.

This arbitrary i-th moment expression also reveals an interesting point. By expanding
the matrix-variate gamma functions, we have the following:

E[|JAXBX'|I"] =

Ty +%+h _lﬁlr(y+%—%+h) _ﬁE(f‘)h
iy +% ro+4-:4554 ’

j=1 j=1
where 7; is a real scalar gamma random variable with parameter (y + % — % ), j=
1, ..., p, whose density is
1 +4-UZ0 g (G-1D
80 (1)) = o ez 0yt 0, (7.2.14)
r'y+3—-5>)
and zero elsewhere. Thus structurally,
|AXBX'| =tity--- 1, (7.2.15)

where 11, . .., 1, are independently distributed real scalar gamma random variables with ¢,

having the gamma density given in (7.2.14) for j =1, ..., p.
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7.2.4. Connection to the volume of a random parallelotope

First, observe that [AXBX'| = |(A2XB2)(A2XB2)| = |UU'| where U = A>X B3,
Then, note that U is p X g, g > p, and of full rank p, and that the p linearly independent
rows of U, taken in the order, will then create a convex hull and a parallelotope in the
g-dimensional Euclidean space. The p rows of U represent p linearly independent vectors
in the Euclidean g-space as well as p points in the same space. In light of (7.2.14), these
random points are gamma distributed, that is, the joint density of the p vectors or the p ran-
dom points is the real rectangular matrix-variate density given in (7.2.5), and the volume
content of the parallelotope created by these p random points is |AX BX'| 2, Accordingly,
(7.2.13) represents the (2/)-th moment of the random volume of the p-parallelotope gener-

ated by the p linearly independent rows of A2XB2.The geometrical probability problems
considered in the literature usually pertain to random volumes generated by independently
distributed isotropic random points, isotropic meaning that their associated density is in-
variant with respect to orthonormal transformations or rotations of the coordinate axes. For
instance, the density given in (7.2.9) constitutes an example of isotropic form. The distri-
butions of random geometrical configurations is further discussed in Chap.4 of Mathai
(1999).

7.2.5. Pathway to real matrix-variate gamma and Maxwell-Boltzmann densities

Consider a model of the following form for a p x ¢, ¢ > p, matrix X of full rank p:
Fio(X) = 10l AXBX'|’|I —a(l —a)A2XBX'AZ|T%, a < 1, (7.2.16)

forA >0, B>0,a>0,n>0,1-a(l —a)A%XBX/A% > O (positive definite),
and f10(X) = 0 elsewhere. It will be determined later that the parameter y is subject to
the condition y + % > pT_l. Whena > 1,welet]l —a = —(a — 1), o > 1, so that the
model specified in (7.2.16) shifts to the model

fi1(X) = en|AXBX'[ |1 +a(@ — DA2XBX' AZ| a1, a > 1 (7.2.17)

forn >0,a >0, A> O, B> 0O, and f1;(X) = 0elsewhere. ObservethatA%XBX/A%
is symmetric as well as positive definite when X is of full rank p and A > O, B >
O. For this model, the condition a%] -y — % > pT_l is required in addition to that
applying to the parameter y in (7.2.16). Note that when f19(X) and f11(X) are taken as
statistical densities, c1g and ¢ are the associated normalizing constants. Proceeding as in

the evaluation of ¢ in (7.2.4), we obtain the following representations for cjg and cq1:
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4y Ty(y + 2+ 4 2l
clo = |AIZ|B|2[a(1 — a)]PO+D) ng) A Bl ZH (7.2.18)
T2 Fp(V‘F%)Fp(%&‘{‘pT)
—1
forn >0, a<1,a>0, A>0, B> O, y+%>pT,
|A13|B| 5 [a(@ — DIPYTD,4) r,GGL) 72.19)
Cll = > e
7 Ly +HhGE-v -9

fora >1,7>0,a>0, A> 0, B> 0O, y—i—%>p—_l L—y—%>p7_l.When
a — 1_in (7.2.18) and ¢ — 14 in (7.2.19), the models (7.2.16) and (7.2.17) converge
to the real rectangular matrix-variate gamma or Maxwell-Boltzmann density specified in
(7.2.5). This can be established by applying the following lemmas.

Lemma 7.2.1.
lim | —a(l — a)A%XBX/Aaﬁ — e—antr(AXBX’)
a—>1_
and 1 .
lim |/ +a(e — 1)A2XBX'A2| a1 = ¢ @(AXBX) (7.2.20)
a—>14
Proof: Letting Aq, ..., A, be the eigenvalues of the symmetric matrix A%X BX' A%, we
have
1 1 n P n
I —a(l —a)A2XBX'AY e = [ ][l —a(l —a)1,]T=.
j=1

However, since
lim [1—a(l — a)A;]7e = e,
a—1_

the product gives the sum of the eigenvalues, that is, tr(A%X BX' A%) in the exponent,
hence the result. The same result can be similarly obtained for the case « > 1. We can
also show that the normalizing constants cjo and ¢y reduce to the normalizing constant
in (7.2.4). This can be achieved by making use of an asymptotic expansion of gamma
functions, namely,

I'(z+98) ~2n z“"s_% e * for |z] — oo, & bounded. (7.2.21)

This first term approximation is also known as Stirling’s formula.
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Lemma 7.2.2.
Ly + 4+ 1% + 28
lim [a(l — q)PrtHY T2 e 20 (yrrtd
o=l ry(id + 55
and
- r+$ p(a=) r+9
lim [a(x — 1)]PY T2 7 7 = (ap)PV T2 (7.2.22)
a—14 Fp(m—)f—§)

Proof: On expanding I, (-) using its definition, for & > 1, we have

lat@ — DIPT+D 1, (1)
Fp(% - Y — %)

14
= la(e = DIV T]

1 q _ Jj—=1y°
i GG —v—=—3-—7)

Now, on applying the Stirling’s formula as given in (7.2.21) to each of the gamma functions
n

by taking z = _~5 — oo when o — 1.4, it is seen that the right-hand side of the above
equality reduces to (an)” (¥+3)_ The result can be similarly established for the case o < 1.

This shows that cjg and c11 of (7.2.18) and (7.2.19) converge to the normalizing con-
stant in (7.2.4). This means that the models specified in (7.2.16), (7.2.17), and (7.2.5) are
all available from either (7.2.16) or (7.2.17) via the pathway parameter . Accordingly,
the combined model, either (7.2.16) or (7.2.17), is referred to as the pathway generalized
real rectangular matrix-variate gamma density. The Maxwell-Boltzmann case corresponds
to y = 1 and the Raleigh case, to y = % If either of the Maxwell-Boltzmann or Raleigh
densities is the ideal or stable density in a physical system, then these stable densities as
well as the unstable neighborhoods, described through the pathway parameter « < 1 and
a > 1, and the transitional stages, are given by (7.2.16) or (7.2.17). The original pathway
model was introduced in Mathai (2005).

For addressing other problems occurring in physical situations, one may have to in-
tegrate functions of X over the densities (7.2.16), (7.2.17) or (7.2.5). Consequently, we
will evaluate an arbitrary A-th moment of |AX BX’| in the models (7.2.16) and (7.2.17).
For example, let us determine the i-th moment of |[AX BX'| with respect to the model
specified in (7.2.16):

E[JAXBX'|"] = cm/ IAXBX'|"*"|I —a(1 — a)A2XBX'AZ| T3 dX.
X
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Note that the only change in the integrand, as compared to (7.2.16), is that y is replaced
by ¥ + h. Hence the result is available from the normalizing constant c¢1¢, and the answer
is the following:

Ly +4+h To+%+2+2
E[JAXBX'|"] = [a(1 — a)] 7" r(v 2 ) ot g —= (7.2.23)
Iy +3) Fp()/+%+li+p7+h)

for R(y + % +h) > 2%, a > 0, a < 1. Therefore

Ella(1 — ) AXBX'|"]
Lo +$+h L +§+7+5)
L+ Lo +4+ 2%+ 2+

n

I
—

- ﬁ E (ﬁ) (7.2.24)

where y; is a real scalar type-1 beta random variable with the parameters (y + % —
%, % + pTH), J = 1,..., p, the y;’s being mutually independently distributed.
Hence, we have the structural relationship

la(l —a)AXBX'| =y1---y,. (7.2.25)
Proceeding the same way for the model (7.2.17), we have

W+ 5+ LG —y =4 —h)

E[|AXBX'|"] = - D]”
[l "] = la(e — 1] Lo+D L —y-0

(7.2.26)

for Ry +4+hm) > 2 R —y -4 —h) > Zlor—(y + D+ 2L <) <

—1
i i—1
roy+4-3+nrGh-v-45-45-n

j—1 j—1
ro+$-50  rek-r-$-5

p
Ella(@ — DAXBX'|"] = ]_[
j=1

p
= 1‘[ E(h) (7.2.27)
j=1
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where z; is a real scalar type-2 beta random variable with the parameters (y + % —

%, a”j -y —-%- %) for j = 1,..., p, the z;’s being mutually independently

distributed. Thus, for @ > 1, we have the structural representation
la(a — DAXBX'| =z e Zp . (7.2.28)

As previously explained, one can consider the p linearly independent rows of A2X B2
as p vectors in the Euclidean g-space. Then, these p vectors are jointly distributed as
rectangular matrix-variate type-2 beta, and E[|AX BX'|"] = E[|AX BX'|2]?" is the (2h)-
th moment of the volume of the random parallelotope generated by these p g-vectors for
q > p. Inthis case, the random points will be called type-2 beta distributed random points.

The real Maxwell-Boltzmann case will correspond y = 1 and the Raleigh case, to
y = %, and all the above extensions and properties will apply to both of these distributions.

7.2.6. Multivariate gamma and Maxwell-Boltzmann densities, pathway model

Consider the density given in (7.2.16) for the case p = 1. In this instance, the p x p
constant matrix A is 1 x 1 and we shall let A = b > 0, a positive real scalar quantity.
Then for ¢ < 1, (7.2.16) reduces to the following where X is 1 x g of the form X =
(X1,...,xg), —00<xj<o00, j=1,...,q:

r) ry+4%+ds+1
5 Toy+HrE +1
x [bXBX'T[1 —a(l — a)bX BX'|7 (7.2.29)

Fia(X) = b3|B|2[a(l — )] 7 +D)

forb >0, B=B">0,a>01>0 y+%>0 —o00<x; <o00, j=
I,...,q, 1 —a(l —a)bXBX' > 0, a < 1, and f» = 0 elsewhere. Note that

X1
XBX = (x1,...,x4)B
Xq

is a real quadratic form whose associated matrix B is positive definite. Letting the 1 x ¢
1 . . .
vector Y = X Bz, the density of ¥ when o < 1 is given by

r&) riy+4$+%+0
8 Ty +HrL+1)
< [O7 4+ ¥V [l —a(l —a)b(7 + -+ ypITady,  (7.230)

f13Y)dY = b)""%[a(l — a)](y+%)
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forb >0, y+%>0,7>0 —oc0<yj<oo, j=1...,q, 1 —a(l —a)b(y} +
R yg) > 0, and fi3 = 0 elsewhere, which will be taken as the standard form of the
real multivariate gamma density in its pathway generalized form, and for y = 1, it will
be the real pathway generalized form of the Maxwell-Boltzmann density in the standard
multivariate case. For « > 1, the corresponding standard form of the real multivariate
gamma and Maxwell-Boltzmann densities is given by

r) rt
2t T+ HrL -y =D
X [ 4+ yDI [ +ale — DbOF + -+ y)I"#1dY.  (7.231)

fra()dY = " (e — 1)]7HD

forb >0, y+%2>0,a>0,7>0, 5—y—%1>0, —co<yj<oo0, j=1,...,q,
and f14 = 0 elsewhere. This will be taken as the pathway generalized real multivariate
gamma density for « > 1, and for y = 1, it will be the standard form of the real pathway
extended Maxwell-Boltzmann density for « > 1. Note that when o« — 1_ in (7.2.30) and

a — 141n(7.2.31), we have

w4 o+t T3
fis(Y)dY =b""2(an)V T —
il (y +%)
X [ 4 -+ 4y e 0T Hi gy, (7.2.32)

forb>0,a>0,n>0,y +% > 0, and fi5 = 0 elsewhere, which for y = 1, is the real
multivariate Maxwell-Bolzmann density in the standard form. From (7.2.30), (7.2.31), and
thereby from (7.2.32), one can obtain the density of u = yl2 R yg, either by using the
general polar coordinate transformation or the transformation of variables technique, that
is, going from dY to dS with S = YY’, Y being 1 x p. Then, the density of u for the case
a<lis

ry+4+5+0
14 qz l—na My+%—1[1_a(1—a)bu]$, a <1,
roy+Hrig+H

(7.2.33)

forb >0, a >0, n>0,a <1, y—l—%>0, 1 —a(l —a)bu > 0, and fig = 0
elsewhere, the density of u for @ > 1 being

fis@) = b 3 [a(1—a)]'*3

INGLY.

+4-1 -2
P+ hrGE —y—pY e Dhe e,
=

fir(u) = B 2 [a(@— 1] tE

(7.2.34)
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forb>0,a>0,7>0,y+%4>0, 5 —y—%>0, u>0,and f17 = 0 elsewhere.

Observe that as « — 1, both (7.2.33) and (7.2.34) converge to the form

v+4%
(anb)r™2 uy-}—%—le—abnu

fig(u) = ro+9)

(7.2.35)

fora >0, b >0, n >0, u>0, and fig = 0 elsewhere. For y = %, we have the
corresponding Raleigh cases.
Letting y = 1 and ¢ = 1 in (7.2.32), we have

3

[ST[S%}

b

> 2b2 2
ol = g O = R e s <o b0
2
3
4b§ 2 —b 2
=—yje 1, 0<y <oo, b>0, (7.2.36)
ST

and fj9 = O elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
we let y = % and p =1, ¢ = 1 in (7.2.32), which results in the following density:

1 7.2
Foyn) =b(yH2e™1, —co <y <00, b>0
— 2blyi|e ™1, 0 < y; <00, b >0, (7.2.37)

and f>9 = 0 elsewhere.
7.2.7. Concluding remarks

There exist natural phenomena that are suspected to involve an underlying distribution
which is not Maxwell-Boltzman but may be some deviation therefrom. In such instances,
it is preferable to model the collected data by means of the pathway extended model pre-
viously specified for p = 1, ¢ = 1 (real scalar case), p = 1 (real multivariate case)
and the general matrix-variate case. The pathway parameter o will capture the Maxwell-
Boltzmann case, the neighboring models described by the pathway model for « < 1 and
for @ > 1 and the transitional stages when moving from one family of functions to another,
and thus, to all three different families of functions. Incidentally, for y = 0, one has the
rectangular matrix-variate Gaussian density given in (7.2.5) and its pathway extension in
(7.2.16) and (7.2.17) or the general extensions in the standard forms in (7.2.30), (7.2.31),
and (7.2.32) wherein y = 0. The structures in (7.2.24), (7.2.27), and (7.2.28) suggest that
the corresponding densities can also be written in terms of G- and H-functions. For the
theory and applications of the G- and H-functions, the reader is referred to Mathai (1993)
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and Mathai et al. (2010), respectively. The complex analogues of some matrix-variate dis-
tributions, including the matrix-variate Gaussian, were introduced in Mathai and Provost
(2006). Certain bivariate distributions are discussed in Balakrishnan and Lai (2009) and
some general method of generating real multivariate distributions are presented in Mar-
shall and Olkin (1967).

Example 7.2.4. Let X = (x;;) beareal p x g, ¢ > p, matrix of rank p, where the x;;’s
are distinct real scalar variables. Let the constant matrices A =b > 0Obe 1 x 1 and B > O
be g x g. Consider the following generalized multivariate Maxwell-Boltzmann density

f(X)=c|AXBX')Y e—[tr(AXBx’)]5
foré6 >0, A=b>0, X =[xq,...,x4]. Evaluate ¢ if f(X) is a density.

Solution 7.2.4. Since X is 1 x¢q, |AXBX’'| = b[XBX'] where X BX' is a real quadratic
form. For f(X) to be a density, we must have

1= f F(X)dX = ¢ b” f [XBX'] e lGXBX)P gx (i)
X X

Let us make the transformations ¥ = X B% and s = YY’. Then (i) reduces to the following:

q

T2 e
1= cbVF(q)|B|—5/ sV +E—1e=(0s) g (if)
7 0

1
Letting t = Bs%, b>0,s>0=ds = %%dt, (ii) becomes

o0
T
1=c—f 5t le ! ds
0

Hence,
q 1
RERLEINCOILIE

7 .
TG+ )

No additional conditions are required other than y > 0, § > 0, ¢ > 0, B > O. This

completes the solution.
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7.2a. Complex Matrix-Variate Gamma and Maxwell-Boltzmann Densities

The matrix-variate gamma density in the real positive definite matrix case was defined
in equation (5.2.4) of Sect.5.2. The corresponding matrix-variate gamma density in the
complex domain was given in Eq.(5.2a.4). Those distributions will be extended to the
rectangular matrix-variate cases in this section. A particular case of the rectangular matrix-
variate gamma in the complex domain will be called the Maxwell-Boltzmann density in
the complex matrix-variate case. Let X =G j)beap xgq, g > p, rectangular matrix of
rank p in the complex domain whose elements x;; are distinct scalar complex variables.
Let |det(-)| denote the absolute value of the determinant of (-). Let A of order p x p and
B of order g x ¢ be real positive definite or Hermitian positive definite constant matrices.
The conjugate transpose of X will be denoted by X*. Consider the function:

F(X)dX = &|det(AX BX*)| e WAXBX g (7.2a.1)

forA > O, B> O, f(y +¢q) > p— 1 where ¢ is the normalizing constant so that f(f()
is a statistical density. One can evaluate ¢ by proceeding as was done in the real case. Let

Y = A2XB? = d¥ = |det(A)|?|det(B)|PdX,

the Jacobian of this matrix transformation being provided in Chap. 1 or Mathai (1997).
Then, f(X) becomes

(V) dY = &|det(A)|~9|det(B)|~P|det(Y )| e "I Ty (7.2a.2)
Now, letting
- -~ ~ 9P - -
S=V7* = dV = —|det($)|7"PdS
Fp(Q)

by applying Result 4.2a.3 where fp (g) 1s the complex matrix-variate gamma function, fl
changes to

qp

£(8)dS = & |det(A)| 9 |det(B)| P —
Ip(q)

% |det(S) |V H4PetS)gs. (7.2a.3)
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Finally, integrating out S by making use of a complex matrix-variate gamma integral, we
have I',(y +¢q) for %i(y +¢) > p — 1. Hence, the normalizing constant ¢ is the following:

|det(A)|7|det(B)|”  T,(q)
map Ly +q)

¢ = Ny+q)>p—1, A>0, B>0. (72a4)

Example 7.2a.1. Evaluate the normalizing constant in the density in (7.2a.1) if y =
2,q=3, p=2,

. 30 i
A:[lii 1;”],13: 0 2 I1+i
—i 1—i 2

Solution 7.2a.1. Note that A and B are both Hermitian matrices since A = A™* and
3 141

B = B*. The leading minors of A are |(3)] = 3 > 0, 1—i 2|7 32— A+

i) (1 —i) = 4 > 0 and hence, A > O (positive definite). The leading minors of B
30 2 14 10 2

are |[3)] =3 > 0, 02—6>0, |B|_31—i ) —I—O-l—l_l. 1_il =

3(4—-2)+i(2i) =4 > 0. Hence B > O and |B| = 4. The normalizing constant

|det(A)|?|det(B)|”  Tp(q)
P Iy +4q)
@@ 0LG) £ ar3)re)
T 1% By ntal (G4
27
=5

¢ =

This completes the computations.

7.2a.1. Extension of the Matrix-Variate Gamma Density in the Complex Domain

Consider the density of X is given in (7.2a.1) with ¢ given in (7.2a.4). The density of
Y= A2XB>is given by

Iy(q)

— T ey(P 7)) eI T (7.2a.5)
TPy (y +q)

fY) =

for R(y +¢q) > p — 1, and f; = 0 elsewhere, and the density of S = YY* is
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-~ 1 - =
H(8) = ————[det(S)|" TP Ry +q) > p—1, (7.2a.6)
Fp(y + Q)

and fz = 0 elsewhere. Then, the density given in (7.2a.1), namely, f (X) for y =1 will
be called the Maxwell-Boltzmann density for the complex rectangular matrix-variate case
since for p = 1 and g = 1 in the real scalar case, the density corresponds to the case
y = 1,and (7.2a.1) for y = % will be called complex rectangular matrix-variate Raleigh
density.

7.2a.2. The multivariate gamma density in the complex matrix-variate case

Consider the case p = 1 and A = b > 0 where b is a real positive scalar as the p x p
matrix A is assumed to be Hermitian positive definite. Then, X is 1 x g and

i*
1

AXBX* = bXBX* =b(%y,...,%,)B
=k

Xg

is a positive definite Hermitian form, an asterisk denoting only the conjugate when the
elements are scalar quantities. Thus, when p = 1 and A = b > 0, the density f(X)
reduces to

. r

f(X) = b”"ldet(B)l%

det(X BX*)|Y e P(XBX) (7.2a.7)
w1l (y +q)

for X = (X1,...,%4), B=B"> 0, b >0, %y +¢q) > 0,and f}, = 0 elsewhere.
Letting Y* = B X *, the density of Y is the following:

pr+ar N - ; y
DD (502 1 g (5, Py e PP (7.2a.8)
wiI'(y +q)

fa(¥) =

forb > 0,R(y +¢) > 0, and f4 = 0 elsewhere, where |y;] is the absolute value or

modulus of the complex quantity y;. We will take (7.2a.8) as the complex multivariate

gamma density; when y = 1, it will be referred to as the complex multivariate Maxwell-

Boltzmann density, and when y = % it will be called complex multivariate Raleigh den-
sity. These densities are believed to be new.

Let us verify by integration that (7.2a.8) is indeed a density. First, consider the trans-

formation s = YY*. In view of Theorem 4.2a.3, the integral over the Stiefel mani-
fold gives dY = fﬂ( :)Eq —1d5, so that % is canceled. Then, the integral over s yields
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b=+t [ (y + q), N(y +¢q) > 0, and hence it is verified that (7.2a.8) is a statistical
density.

7.2a.3. Arbitrary moments, complex case

Let us determine the A-th moment of u = |det(AX BX*)| for an arbitrary h, that is,
the A-th moment olf ~the~abS(1)lute value of the determinant of the matrix AXBX™ or its
symmetric form A2 X BX*A2, which is

Lo o 1o
E[|det(AXBX*)|" = 5[ |det(AX BX)|Tve WAZXBXTAZ) q (7.2a.9)
X

Observe that the only change, as compared to the total integral, is that y is replaced by
v + h, so that the s-th moment is available from the normalizing constant ¢. Accordingly,

Ly +q+h)
I'y(y +9)

:lﬁlr<y+q+h—(j—1)>
i Tor+a-G-1)

= EW)EWY) - EWb) (7.2a.11)

E[u"] =

, My +qg+h)>p—1, (7.2a.10)

where the u ;’s are independently distributed real scalar gamma random variables with pa-
rameters (y +q — (j — 1), 1), j = 1,..., p. Thus, structurally u = |det(A)~(B)~(*)| is
a product of independently distributed real scalar gamma random variables with param-
eters (y +qg — (j — 1), 1), j = 1,..., p. The corresponding result in the real case is
that |AX BX'| is structurally a product of independently distributed real gamma random

variables with parameters (y + % — % 1), j = 1,..., p, which can be seen from

(7.2.15).
7.2a.4. A pathway extension in the complex case

A pathway extension is also possible in the complex case. The results and properties
are parallel to those obtained in the real case. Hence, we will only mention the pathway
extended density. Consider the following density:

F5(X) = & |det(A2 X BX*A%)||det(I — a(l — a)A2XBX*AD)|e  (7.2a.12)
fora >0, x <1, I —a(l —a)A%)N(Bf(*A% > O (positive definite), A > O, B >

O, n>0 RNy +¢q)>p—1,and f5 = 0 elsewhere. Observe that (7.2a.12) remains in
the generalized type-1 beta family of functions for & < 1 (type-1 and type-2 beta densities
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in the complex rectangular matrix-variate cases will be considered in the next sections). If
a > 1, then on writing | —o = —(0¢ — 1), « > 1, the model in (7.2a.12) shifts to the
model

Fo(X) = &|det(A2 X BX*AD)|” |det(I + a(a — DAZXBX*AZ)|"a1  (7.2a.13)

fora >0, a>1, A>0, B> 0, AiZXBX*A7 > 0, n>0, R —y —q) >
p—1, Ry +¢) > p—1, and fs = 0 elsewhere, where & is the normalizing constant,
differenE from ¢;. When @« — 1, both models (7.2a.12) and (7.2a.13) converge to the
model f7 where

1. - 1
F5(X) = &|det(A2 X BX* A7)V e @ nt(A2XBX*A2) (7.2a.14)

fora>0,7>0, A>0, B>0, Ry +q)>p—1, AZXBX*A> > 0,and f =0
elsewhere. The normalizing constants can be evaluated by following steps parallel to those
used in the real case. They respectively are:

Iy Doy +a+ 25 +p)

¢ = |det(A)|9|det(B)|P[a(l — )PV 9 _ - (7.2a.15)
T Ly + (25 + p)
forn>0,a>0,a<1, A>0, B>0,R(y+q)>p—1;
i r I
¢y = |det(A)|?|det(B)|Pla(a — 1)]PY+9) p(@) Dla-l (7.2a.16)

map fp(y+Q)fp(%_V_Q)
fora >0, 0>1,7>0, A>0, B>0,Ry+q)>p—1, R5-rv—q) >p—1
(@)
w4 Ip(y +q)
fora >0, n>0, A>0, B> 0, Ry+q)>p—1

&3 = (an)?YT|det(A)|?|det(B)|” (7.2a.17)

7.2a.5. The Maxwell-Boltzmann and Raleigh cases in the complex domain

The complex counterparts of the Maxwell-Boltzmann and Raleigh cases may not be
available in the literature. Their densities can be derived from (7.2a.8). Letting p = 1 and
qg = 11n(7.2a.8), we have

~ byl - b2~ . .
fGh) = m[lyllz]”e PVIT 51 =y + iy, i = V(=1),
by—H
- m% + yh]7 e POTHD) (7.2a.18)
y
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forb >0, Ry +1) >0, —oc0 <y <00, j=1,2, andfg = 0 elsewhere. We
may take y = 1 as the Maxwell-Boltzmann case and y = % as the Raleigh case. Then, for
y = 1, we have

N UL AP g :
fo) = ;lyll e s Y=y +iyie

forb > 0, —o0 < yj; < o0, j = 1,2, and fg = 0 elsewhere. Note that in the

real case yj2 = 0 so that the functional part of f6 becomes ylzle_bylzl, — 00 < Yy < Q.
However, the normalizing constants in the real and complex cases are evaluated in different
domains. Observe that, corresponding to (7.2a.18), the normalizing constant in the real
case is b 2 /I i (y+ %)]. Thus, the normalizing constant has to be evaluated separately.
Consider the integral

o0 o0 o0
2 2 3_ — Y4
/ yhe P ndyn = 2[ yie P ndyn = / wr e du = £
—00 0 0

3
2b2
Hence,
3
o) = 22232 b b>0
10Y11) = —=Y11¢€ , —O00 <Y1 <00, b >0,
JT
: by 0 < b>0 (7.22.19)
== _ylle 9 = )’11 < 00, >V, -za.
JT

and fjo = O elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
letting y = 5 in (7.2a.18) yields

3

~ - bj - l _ ~ 12
fuG) = —=-0512e P p >0,
7l
3
2b2
= —3[)’%1 +y122]%e_b(y‘21+y‘22), —oco<yj<oo, j=1,2,b>0,
T2

(7.2a.20)

and fn = 0 elsewhere. Then, for y;» = 0, the functional part of fn is | y11|e_by121 with
—00 < y11 < oo. The integral over yy; gives

OO —by? OO —by? -1
|yiile™ P iidy; =2 yire Pidyyp =b" .
0

—00
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Thus, in the Raleigh case,
2
fi2(m1) = b ynle i, — o0 <y <00, b >0,
=2by e PN, 0<y; <00, b>0, (7.2a21)

and f1» = 0 elsewhere. The normalizing constant in (7.2a.18) can be verified by making
use of the polar coordinate transformation: y;; = rcos6f, yj» = rsiné, so that dyj; A
dypp =rdrAndf, 0 <6 <2m, 0<r < oo.Then,

> > 2 2 — (2 4+y2) 00 5 e
/ / i+ yiple e dyuAdylz=2”/ 2 e rar
o0 J oo A
=7 b_()’+1) F(]/ + 1)
forb >0, R(y +1) > 0.

Exercises 7.2

7.2.1. Supply a proof to (7.2.9) by using Theorem 4.2.3.

7.2.2. Derive the exact density of the determinant in (7.2.15) for p = 2.
7.2.3. Verify the results in (7.2.18) and (7.2.19).

7.2.4. Derive the normalizing constants ¢ in (7.2a.12) and ¢, in (7.2a.13).
7.2.5. Derive &3 in (7.2a.14) by integrating out over X.

7.2.6. Approximate ¢; and ¢, of Exercise 7.2.4 by making use of Stirling’s approxima-
tion, and then show that the result agrees with that in Exercise 7.2.5.

7.2.7. Derive (state and prove) for the complex case the lemmas corresponding to Lem-
mas 7.2.1 and 7.2.2.

7.3. Real Rectangular Matrix-Variate Type-1 and Type-2 Beta Densities

Let us begin with the real case. Let A > O be p x pand B > O be g x g where A
and B are real constant matrices. Let X = (x;;) be a p x g, ¢ > p, matrix of distinct real

scalar variables x;;’s as its elements, X being of full rank p. Then, A%XBX/A% > O is

real positive definite where A2 is the positive definite square root of the positive definite
matrix A. Let |(-)| represent the determinant of (-) when (+) is real or complex, and |det(-)|
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be the absolute value of the determinant of (-) when (-) is in the complex domain. Consider
the following density:

21(X) = C1|ASXBX'AS|" | — A2 XBX A |P~"5 (7.3.1)

forA> O, B> O, I—A2XBX'A? > 0, R(B) > pT_l, Ny +1) > pT_l,andgl =0

elsewhere, where C; is the normalizing constant. Accordingly, U = A2XBX'A? > O
and /—U > O or U and I —U are both positive definite. We now make the transformations
Y = A%X B% and S = YY'. Then, proceeding as in the case of the rectangular matrix-
variate gamma density discussed in Sect. 7.2, and evaluating the final part involving S
with the help of a real positive definite matrix-variate type-1 beta integral, we obtain the
following normalizing constant:

g[‘p(%) Fp(y+%+,3)

q
C1 = |A|?|B]
7% DBy + %)

(7.3.2)

forA> O, B> 0, R(B) > pT_l, Ry +9) > pT_l Usually the parameters associated
with a statistical density are real, which is the case for y and . Nonetheless, the conditions
will be stated for general complex parameters. When the density of X is as given in g1, the

density of Y = A2XB? is given by
L) Lo+ 5+

Y) =
oM = B+ D

YY)l — Yy |B- (7.3.3)

for N(y + %’) > pT_l, YY' > 0, 1—-YY > 0,and g, = 0 elsewhere. When X has the
density specified in (7.3.1), the density of S = Y'Y’ is given by

Iy +%+8)

r,(B)r,(y + q)|S|V+'§—pz“|1 B S|ﬁ_pT+l (7.3.4)
p plV T3

83(S) =

for R(B) > pT_l, Ry + %) > pT_], S>0,1—-S > 0,and g3 = 0 elsewhere,
which is the usual real matrix-variate type-1 beta density. Observe that the density g (X)
is also available from the pathway form of the real matrix-variate gamma case introduced

in Sect. 7.2.

Example 7.3.1. Let U; = A2XBX'A2, U = XBX', Uy = B:X'AXB? and Uy =
X’AX.If X has the rectangular matrix-variate type-1 beta density given in (7.3.1), evaluate
the densities of Uy, U,, Usz and U4 whenever possible.



Rectangular Matrix- Variate Distributions 519

Solution 7.3.1. The matrix U; is already present in the density of X, namely (7.3.1).
Now, we have to convert the density of X into the density of U;. Consider the transfor-
mations ¥ = A%XB%, S =YY’ = U and the density of S is given in (7.3.4). Thus, U,
has a real matrix-variate type-1 beta density with the parameters y + % and 8. Now, on
applying the same transformations as above with A = I, the density appearing in (7.3.4),
which is the density of U;, becomes

Fp(y —|—%1—|—,B)
Iy + HIrp)

1 p+1
g3(Up)dU, = AT T - AU P AU, )

for RB) > 251, Ny +9 > &, A > 0, Uy > 0, I — A3UA? > O, and
zero elsewhere, so that U, has a scaled real matrix-variate type-1 beta distribution with
parameters (y-i—%, B) and scaling matrix A > O.Forg > p,both X’AX and B>X'AXB?
are positive semi-definite matrices whose determinants are thus equal to zero. Accordingly,
the densities do not exist whenever ¢ > p. When g = p, U3 has a g x g real matrix-variate
type-1 beta distribution with parameters (y + %, B) and Uy is a scaled version of a type-1
beta matrix variable whose density is of the form given in (i) wherein B is the scaling
matrix and p and ¢ are interchanged. This completes the solution.

7.3.1. Arbitrary moments

The /-th moment of the determinant of U = A2XBX'A? with h being arbitrary, is
available from the normalizing constant given in (7.3.2) on observing that when the A-th
moment is taken, the only change is that y turns into y + A. Thus,

E[IU" = E[lYY'|"] = E[|S|"]
Iy +%+h Iy +%+p8

= (7.3.5)
iy+% Ly+i++h
:ﬁmwgJ;M>mw%w—%> 13.6)
o Ty+i-5Y ro+4+8-LF+n o
= E[u}]E[u}]- - E[u"] (7.3.7)
where uy, ..., u, are mutually independf':nﬁly distributed real scalar type-1 beta randonll
q _ Jj= p=

variables with the parameters (y + 35 — 5—, B), j = 1,..., p, provided %(B) > 5=
and R(y +%) > pr1.
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7.3.2. Special case: p =1

For the case p = 1, let the positive definite 1 x 1 matrix A be the scalar b > 0 and X
whichis 1 x g, be equal to (xy, ..., x4). Then,

X1
AXBX' =b(xi,...,x4)B

Xq

is a real quadratic form, the matrix of the quadratic form being B > O. Letting Y = X B%,
dYy = |B|%dX , and the density of Y, denoted by g4(Y), is then given by
4 PTHIry+3+4p)
71 Ty +HIr )
x|I —bYY'|P71 YY' > 0, I —bYY' > O, Ry + %) >0, RB) >0
_ ré) riy+4%+a)
7t Ty +9HIrB)
X [1=bGi+ 4+ 3P Y =iy, (7.3.8)

ga(Y) =b"" YY')Y

i+ 4550

forb >0, Ry +1) >0, R(B) >0, 1 —b(y{ +...+y7) > 0, and g4 = 0 elsewhere.
The form of the density in (7.3.8) presents some interest as it appears in various areas of
research. In reliability studies, a popular model for the lifetime of components corresponds
to (7.3.8) wherein y = 0 in both the scalar and multivariate cases. When independently
distributed isotropic random points are considered in connection with certain geometrical
probability problems, a popular model for the distribution of the random points is the type-
1 beta form or (7.3.8) for y = 0. Earlier results obtained assuming that y = 0 and the
new case where y # 0 in geometrical probability problems are discussed in Chapter 4 of
Mathai (1999). We will take (7.3.8) as the standard form of the real rectangular matrix-
variate type-1 beta density for the case p = 1 ina p x g, g > p, real matrix X of rank
p. For verifying the nqormalizing constant in (7.3.8), one can apply Theorem 4.2.3. Letting

S =YY, ,dY = If(g) |S|%’ldS, which once substituted to dY in (7.3.8) yields a total
2

integral equal to one upon integrating out S with the help of a real matrix-variate type-1
beta integral (in this case a real scalar type-1 beta integral); accordingly, the constant part
in (7.3.8) is indeed the normalizing constant. In this case, the density of S = YY" is given

by

'y +%+8)
'y +4re)

g5(S) = b7 T3 ISPHEN T — S|P (7.3.9)
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forS > O, b >0, Ry + %’) > 0, RN(B) > 0, and g5 = 0 elsewhere. Observe that this S
is actually a real scalar variable.
As obtained from (7.3.8), the type-1 beta form of the density in the real scalar case,
thatis, for p =landg =1, is
aTw+3+8
Iy +pre)

forb >0, B >0, y —|—% >0, — \/LE <y < Lb, and gg = 0 elsewhere. When the

g6(y1) = b” [y?17[1 — byl !, (7.3.10)

supportis 0 < y; < \/LE’ the above density which is symmetric, is multiplied by two.

7.3a. Rectangular Matrix-Variate Type-1 Beta Density, Complex Case
Consider the following function:
R ~ lo sp .l lo o1
g1(X) = Ci|det(A2XBX*A2)|"|det(I — A2XBX*A2)|P~P (7.3a.1)

forA> 0, B>0, RB)>p—1, Ry +q)>p—1, [ — A2XBX*A> > O, and
g1 = 0 elsewhere. The normalizing constant can be evaluated by proceeding as in the real

. . = 1o 1 c ~ ~ i
rectangular matrix-variate case. Let Y = A2X B2 so that § = YY*, and then integrate
out S by using a complex matrix-variate type-1 beta integral, which yields the following
normalizing constant:

(@) Ty +q+B)

TP Ty + ) p(B)
forM(y +q)>p—1, RB)>p—-1, A> 0, B> 0.

C, = |det(A)|?|det(B)|” (7.3a.2)

7.3a.1. Different versions of the type-1 beta density, the complex case

The densities that follow can be obtained from that specified in (7.3a.1) and certain
related transformations. The density of ¥ = A2XB? is given by

@) Ty +q+8)
P [y(y + @) T p(B)

forN(B) >p—1, My+q)>p—-1, 1— YY* > 0, and g>» = 0 elsewhere. The density
of § = Y Y™ is the following:

Ly +q+p)
Ly + ) (B)

for RB)>p—1, Ry +q¢)>p—1,8§>0, -S> 0,and g3 = 0 elsewhere.

8(Y) = |det(YY*)|” |det(I — YY*)|F~P (7.3a.3)

2308 = |det(8)|” T4=P|det(] — §)|P~P (7.3a.4)




522 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

7.3a.2. Multivariate type-1 beta density, the complex case

When p =1, X is the 1 x q vector (X1, ..., Xy) and the 1 x 1 matrix A will be denoted
by b > 0. The resulting density will then have the same structure as that given in (7.3a.1)
with p replaced by 1 and A replaced by b > 0:

84(X) = Ca|det(X BX*)|” |det(I — bXBX*)|P~! (7.3a.5)

forB>0,b>0 %PB)>p—1, Ry+q)>p—1, I —bXBX*> 0,and g4 =0
elsewhere, where the normalizing constant C; is

@) F'y+q+B)

Gy = b H|det(B)| T+ F )

(7.3a.6)

forb >0, B> O, R(PB) > 0, R(y +¢) > 0. Letting ¥ = XB? so that df =
|det(B)|dX, the density of ¥ reduces to

_ gl @ Ty +a+p
71 Iy + ) (B)
_ gl @ Ty +a+p
71 Iy +a) ' (B)

g5(Y) |det(YY*)|”|det(I — bYY*)|P~! (7.3a.7)

U512 4 -+ 1521710 = (51 + -+ 15,11
(7.3a.8)

for N(B) > 0, Ry +¢q) >0, 1 —=b(|511>+---+|341*) > 0, and g5 = 0 elsewhere. The
form appearing in (7.3a.8) is applicable to several problems occurring in various areas, as
was the case for (7.3.8) in the real domain. However, geometrical probability problems do
not appear to have yet been formulated in the complex domain. Let § = YY* § being in
this case a real scalar denoted by s whose density is

Fhr+a+B) g
Fly+q) )

forR(B) >0, Ry +¢g) >0, s >0, 1 —bs >0, and g¢ = 0 elsewhere. Thus, s is real
scalar type-1 beta random variable with parameters (y + ¢, B) and scaling factor b > 0.
Note that in the real case, the distribution was also a scalar type-1 beta random variable,
but having a different first parameter, namely, y + %, its second parameter and scaling
factor remaining 8 and b.

Zo(s) = Y+ A=bs)!~', b>0 (7.3a.9)
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Example 7.3a.1. Express the density (7.3a.5) explicitly forb =5, p=1, ¢ =2, B =
3, y =4, X =[X1, X2l = [x1 +iy1, x2+iy2], where x;, y;, j = 1,2, are real variables,

i =4/(—1), and
3 1+
=], 2 ]

Solution 7.3a.1. Observe that since B = B*, B is Hermitian. Its leading minors being

1(3)] =3 > Oand 131' “1” =31 —(1+i)(1—i)=3-2=1>0, B isalso

positive definite. Letting Q = X BX*,

O =301 +iyD)(xr —iy) + (D)2 +iy2) (2 —iy2) + (1 + D) (xy + iy (x2 — iy2)
+ (1 —i)(x2 + iy2)(x1 —iy1)
=3+ D) + (F + ¥ + A+ Dlxix2 + yiy2 — i(x1y2 — x231)]
+ (1 = Dxix2 + y1y2 —i(x2y1 — x1y2)]
=3(x{ + yD) + (67 + ¥3) + 20r1x2 + y1y2) + 2(x1y2 — x201). (i)

The normalizing constant being

F@D Lo +a+h _ 60l _TO)

! Iy +q)I(B) n* TOre)
50 (@) 5°(168)
T a2(HERy - n?

bY T4 |det(B)]

(it)
The explicit form of the density (7.3a.5) is thus the following:

59(168)

= Q0’1 -501”, 1-30>0, Q >0,

ga(X) =

and zero elsewhere, where Q is given in (i). It is a multivariate generalized type-1 complex-
variate beta density whose scaling factor is 5. Observe that even though X is complex,
24(X) is real-valued.

7.3a.3. Arbitrary moments in the complex case

Consider again the density of the complex p x g, ¢ > p, matrix-variate random
variable X of full rank p having the density specified in (7.3a.1). Let U = A2XBX*Az.
The h-th moment of the absolute value of the determinant of U, that is, E[|det(U)|"], will
now be determined for arbitrary /4. As before, note that when the expected value is taken,
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the only change is that the parameter y is replaced by y + 4, so that the moment is available
from the normalizing constant present in (7.3a.2). Thus,

Fy(y+q+h) Tyy+q+p)

E[|det(0)|"] = = . (7.3a.10)
Iy(y +q) I'p(y +q+p+h)
:ﬁrw+q+mwr4» Fy+q+B=G=1) 5
i Ty+a=G=0) T'y+g+p-(G-D+h

= E[i11"Eluz]" - - Elu,)" (7.3a.12)

where uy, ..., u, are independently distributed real scalar type-1 beta random variables
with the parameters (y +g—(j—1), B)for j = 1, ..., p. The results are the same as those
obtained in the real case except that the parameters are slightly different, the parameters
being (y —I—%— % B), j =1,..., p,inthe real domain. Accordingly, the absolute value

of the determinant of U in the complex case has the following structural representation:
det(0)| = |det(AZX BX*AZ)| = |det(YT*)| = |det(S)| = u; - Uy (7.3a.13)

where uy, ..., u, are mutually independently distributed real scalar type-1 beta random
variables with the parameters (y +¢qg — (j — 1), B), j=1,...,p.

We now consider the scalar type-1 beta density in the complex case. Thus, letting
p=1andg = 1in (7.3a.8), we have

Lo 1 F(y+1+p8)

= b7t —— -

s 7 F(y + DI(B)
2 T + DI (B)

forb > 0, R(B) >0, R(y) > -1, —co<yj<oo, j=1,2, 1 —=b(y} + ) >0,
and g7 = 0 elsewhere. The normalizing constant in (7.3a.14) can be verified by making
the polar coordinate transformation y1; = r cosf, yj» = r sin#, as was done earlier.

U512 = b1511P1P 7Y, 51 =y +iyin

[y, + yHI7 1 — b3, + y2)1P ! (7.3a.14)

Exercises 7.3

7.3.1. Derive the normalizing constant Cy in (7.3.2) and verify the normalizing constants
in (7.3.3) and (7.3.4).

7.3.2. From E[|A%XBX’A% []" or otherwise, derive the h-th moment of |X BX’|. What
is then the structural representation corresponding to (7.3.7)?
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7.3.3. From (7.3.7) or otherwise, derive the exact density of |U| for the cases (1): p =
2; (2): p=3.

7.3.4. Write down the conditions on the parameters y and 8 in (7.3.6) so that the exact
density of |U| can easily be evaluated for some p > 4.

7.3.5. Evaluate the normalizing constant in (7.3.8) by making use of the general polar
coordinate transformation.

7.3.6. Evaluate the normalizing constant in (7.3a.2).
7.3.7. Derive the exact density of |det(U)| in (7.3a.13) for (1): p=2; (2): p=3.

7.4. The Real Rectangular Matrix-Variate Type-2 Beta Density
Let us consider a p x g, g > p, matrix X of full rank p and the following associated
density:
g5(X) = C3|AXBX'|"|I + AXBX'|~ V5P (7.4.1)

forA > O, B > 0, R(PB) > PT_l, Ny +9) > pT_l, and gg = O elsewhere. The
normalizing constant can be seen to be the following:

Fp(%) Fp(y+%+,3)

7.4.2
<% T, 1 DI, B) (742)

C; = |A|3|B|*

forA>0, B> 0, R(B) > 25, Ry + 1) > 251 Letting Y = A2X B3, its density
denoted by go(Y), is

Iy ryy+%+8)
Y) = pP\2 P 2
o0 = T G F DB

\YY'|V|I + VY|~ t3+h) (7.4.3)

for R(B) > pT_l Ry +%) > pT_l, and gg = 0 elsewhere. The density of S = Y'Y’ then
reduces to

Fp(V + % +8)
Ly + HIp(B)

g10(8) = S|P | 4 s|m R (7.4.4)

for R(B) > pT*I, Ry +19) > prl, and g9 = 0 elsewhere.
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7.4.1. The real type-2 beta density in the multivariate case

Consider the case p = 1 and A = b > 0 in (7.4.1). The resulting density has the
same structure, with A replaced by b and X being the 1 x g vector (xy, ..., x4). Letting

Y = XB%, the following density of ¥ = (y1, ..., y,), denoted by g;1(Y), is obtained:
11 —by+‘1F(q) ry+%+8

nr Ty +9HIr )

X [1+ b7+ 4y v FHh) (7.4.5)

i+ gl

forb > 0, N(y + %) > 0, M(B) > 0, and g11 = 0O elsewhere. The density appearing
in (7.4.5) will be referred to as the standard form of the real rectangular matrix-variate

type-2 beta density. In this case, Aistakenas A =b > 0and Y = X B>. What might be

the standard form of the real type-2 beta density in the real scalar case, that is, when it is

assumedthat p =1, g =1, A=b > 0and B = 1in (7.4.1)? In this case, it is seen from

(7.4.5) that

s L+ 3 5 +B)
I'(y g)F (B)

for R(B) > 0, R(y +3) >0, b > 0, and g2 = O elsewhere.

1
g12(y1) = V[ 4 by 2P — 00 < y; <00,  (7.4.6)

7.4.2. Moments in the real rectangular matrix-variate type-2 beta density

Letting U = AZXBX' A%, what would be the A-th moment of the determinant of U,
that is, E[|U|"] for arbitrary 4? Upon determining E[|U|"], the parameter y is replaced
by y + h while the other parameters remain unchanged. The /-th moment which is thus
available from the normalizing constant, is given by

Ly +4+h)r,8—h

E[U" =~ o+D @ (7.4.7)
=]ﬁ[r(y+___.fh)r(ﬁ___h) (7.4.8)

o To+$-5hH  re-4h
= E[ul]E[uZ] e E[u ] (7.4.9)
where uy, ..., u, are mutually 1ndependently distributed real scalar type-2 beta random
variables w1th the parameters (y —|— ¢ _ izt B — —) j=1,..., p. Thatis, (7.4.9) or

(7.4.10) gives a structural representatlon to the determinant of U as

U| = |AZXBX'A2| = |YY'| = |S| =u1--u, (7.4.10)
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where the u ;’s are mutually independently distributed real scalar type-2 beta random vari-
ables as specified above.

Example 7.4.1. Evaluate the density of u = |A%X BX’ A%l for p = 2 and the general
parameters y, g, B where X has a real rectangular matrix-variate type-2 beta density with
the parameter matrices A > O and B > O where Ais p X p, Bisg x g and X is a
p X ¢q, q = p, rank p matrix.

Solution 7.4.1. The general i-th moment of u# can be determined from (7.4.8). Letting
p = 2, we have

ry+4-3+mroy+4¢+mnrB-5+-nre-nh

Fry+%4-Hroy+% r@-ypre

for —y — % —|—% <Nh)<p - %, B > %, y + % > % Since four pairs of gamma func-

tions differ by %, we can combine them by applying the duplication formula for gamma
functions, namely,

E[u"] =

()

Tz +1/2) = 7221721 (27). (ii)
Take z = y + % — % +handz =y + % — 1 in the first set of gamma ratios in (i) and
z=8—- % —handz = — % in the second set of gamma ratios in (i). Then, we have the

following:

Fy+4—3+nIy+%+h 7327 2=0t1-2ir 2y g — 1 4 2h)
ry+4%-)rv+4% 722124+ 2y 4+ g — 1)
'y +q-1)
F(B—3—mr@—h x32-26+142r0p 1 —2p)
re-5nre) w3 21284128 — 1)
_ 22hF(2,3 —1—-2h)
reg-1

the product of (iii) and (iv) yielding the simplified representation of the /#-th moment of u
that follows:

(iii)

(iv)

FQy+q—1+20)TCQB—1—2h)
I'Cy +q—-1) reg-1y o
Now, since E[u"] = E[uz]?" = E[y'] with y = u? and 1 = 2h, we have

El t]_F(2y+q—1+t)F(2/3—1—t)
Ty +g—10 TRE-1)

E[u"] =

)
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As t is arbitrary in (v), the moment expression will uniquely determine the density of y.
Accordingly, y has a real scalar type-2 beta distribution with the parameters (2y + g —
1, 28 — 1), and so, its density denoted by f(y), is
Fdy = 'y +q+28-2) y2y+q_2(l n y)_(2y+q+2/3_2)dy
I'Cy+q-DIreg-1
= "Gy +q+26-2) lu_%u’”’%_](l + u%)_(zyﬂﬂﬂ_z)du.
FQy+q-Hreg-—1n2

Thus, the density of u, denoted by g(u), is the following:

1_I@y+q+2p-2) W (] ) Qrat2s-2)
2Ty +q- DI 2B —1)

for 0 < u < o0, and zero elsewhere, where the original conditions on the parameters
remain the same. It can be readily verified that g(u) is a density.

glu) =

7.4.3. A pathway extension in the real case

Let us relabel f10(X) as specified in (7.2.16), as g;3(X) in this section:
g13(X) = C4|AXBX'|"|I —a(l — a)A2XBX A?|T= (7.4.11)

forA>0,B>0,n0>0 a>0 a<1, 1 —a(l—a)AZXBX'A> > O, and g13 = 0
elsewhere, where Cjy is the normalizing constant. Observe that fora < 1, a(l —«) > 0
and hence the model in (7.4.11) is a generalization of the real rectangular matrix-variate
type-1 beta density considered in (7.3.1). When o < 1, the normalizing constant Cy is
of the form given in (7.2.18). For « > 1, we may write | — ¢ = —(a¢ — 1), so that
—a(l—a) = a(@—1) > 0, @ > 1in(7.4.11) and the exponent 1~ changes to ——+ thus,
the model appearing in (7.4.11) becomes the following generalization of the rectangular
matrix-variate type-2 beta density given in (7.4.1):

¢14(X) = Cs|AXBX'|"|I +a(a — 1)AZXBX'AZ| @ (7.4.12)

forA > 0O, B>0,n>0,a>0, «a>1andgus = 0 elsewhere. The normalizing
constant Cs will then be different from that associated with the type-1 case. Actually, in
the type-2 case, the normalizing constant is available from (7.2.19). The model appearing
in (7.4.12) is a generalization of the real rectangular matrix-variate type-2 beta model
considered in (7.4.1). When o — 1, the model in (7.4.11) converges to a generalized form
of the real rectangular matrix-variate gamma model in (7.2.5), namely,

g15(X) = Cg|AX BX'|V e~ ¢1tr(AXBX) (7.4.13)
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where

q P
¢, |AI2|B|2T,(%)

Ce = (an)p(y+2) - y
T2 Fp()/ + §)

fora >0, >0, A>0, B> 0, R(y+1%) > pT_l, and g15 = 0 elsewhere. More

properties of the model given in (7.4.11) have already been provided in Sect. 4.2. The real
rectangular matrix-variate pathway model was introduced in Mathai (2005).

(7.4.14)

7.4a. Complex Rectangular Matrix-Variate Type-2 Beta Density

Let us consider a full rank p x ¢, ¢ > p, matrix X in the complex domain and the
following associated density:

33(X) = C3 |det(AX BX*)|” |det(I + AXBX*)|~PHr+a) (7.4a.1)

f9rA >0, B>0, NB)>p—1, Ry +¢q) > p—1, and gg = 0 elsewhere, where
C3 is the normalizing constant. Let

Y = A2XB? = d¥ = |det(A)|?|det(B)|PdX,

and make the transformation

—yy* 5 _ V9P dS
=YY" =dY = < |det(S)|7~FdS.
I'y(q)

(%51

Then, the integral over § can be evaluated by means of a complex matrix-variate type-2
beta integral. That is,

Ly + ) (B)
Lty +q+8)

f~ |det(S)|Y TP |det(I + S)|"PTYTOdS = (7.4a.2)
S

for R(B) > p—1, R(y +¢) > p—1. The normalizing constant C3 as well as the densities
of Y and § can be determined from the previous steps. The normalizing constant is

(@) Ty +q+B)

Cz = |det(A)|?|det(B)|” _ _
’ TP Fy(y +q) ()

(7.4a.3)

for R(B) > p— 1, R(y +¢q) > p — 1. The density of ¥, denoted by go(Y), is given by

Iy(q) To(y +q+8)
P Loy + @) p(B)

Zo(Y) = |det(YY*)|” |det(] + YY*)|~+a+h (7.4a.4)
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for W(B) > p—1, Ry +¢g) > p— 1, and g9 = 0 elsewhere. The density of S, denoted
by g10(S), is the following:

N I . .
210(S) = = (v 4 + p) det(S)|Y TP |det(I + S)|~FTr T (7.4a.5)

Ipy(y + ) Ip(B)
forM(B) >p—1, Ny +¢q9) > p—1, and g9 = O elsewhere.

7.4a.1. Multivariate complex type-2 beta density

As in Sect. 7.3a, let us consider the special case p = 1 in (7.4a.1). So, let the 1 x 1

matrix A be denoted by b > 0 and the 1 x g vector X = (X1,...,Xq). Then,
AXBX* =bXBX* =b(,....5)B| : | =bU (a)
i*

q

where, in the case of a scalar, an asterisk only designates a complex conjugate. Note that
when p =1, U = X BX™ is a positive definite Hermitian form whose density, denoted by
g11(U), is obtained as:

F@ I'y+q+4)
4 Py +q)(B)

for N(B) >0, Ry +¢) >0and b > 0, and g;; = 0 elsewhere. Now, letting X B
= (Y1, .- ., Yq), the density of Y, denoted by glz(Y) is obtained as

F@OQTy+q+h ., -2 N el

_bV+q YI1+b N (y+q+8B)

s R R LSS R)
(7.4a.7)

for N(B) > 0, N(y +¢q) > 0, b > 0, and g, = 0 elsewhere. The constant in (7.4a.7)
can be verified to be a normalizing constant, either by making use of Theorem 4.2a.3 or a
(2n)-variate real polar coordinate transformation, which is left as an exercise to the reader.

211(0) = b+ |det(B)| |det(0)|” |det(I + bU)|~Y T4+ (7.4a.6)

g12(Y)

Example 7.4a.1. Provide an explicit representation of the complex multivariate density
in(74aTyforp=2, y=2,q=3, b=3and g =2.

Solution 7.4a.1. The normalizing constant, denoted by ¢, is the following:

quF(q) Fy+q+8

Py + )L (B)
_l® (M s 6y (60)3°
73 TSI (Q) o3 @nay - w3

()
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Letting y1 = y11 + iyi2, Y2 = y21 + iy, ¥3 = y31 +iy32, yij, ¥2j, ¥3j, j = 1,2,
being real and i = /(—1),

Q =511+ [%21° + 1531 = OFy +y1) + 031 +33) + 03y +y5)- (@)
Thus, the required density, denoted by g1>(Y) as in (7.4a.7), is given by

g(Y) =¢0*(14+30)77, —c0o<yj<o0,i=1,23,j=12.
where ¢ is specified in (i) and Q, in (ii). This completes the solution.

The density in (7.4a.6) is called a complex multivariate type-2 beta density in the gen-
eral form and (7.4a.7) is referred to as a complex multivariate type-2 beta density in its
standard form. Observe that these constitute only one form of the multivariate case of a
type-2 beta density. When extending a univariate function to a multivariate one, there is
no such thing as a unique multivariate analogue. There exist a multitude of multivariate
functions corresponding to specified marginal functions, or marginal densities in statisti-
cal problems. In the latter case for instance, there are countless possible copulas associated
with some specified marginal distributions. Copulas actually encapsulate the various de-
pendence relationships existing between random variables. We have already seen that one
set of generalizations to the multivariate case for univariate type-1 and type-2 beta densities
are the type-1 and type-2 Dirichlet densities and their extensions. The densities appearing
in (7.4a.6) and (7.4a.7) are yet another version of a multivariate type-2 beta density in the
complex case.

What will be the resulting distribution when ¢ = 1 in (7.4a.7)? The standard form of
this density then becomes the following, denoted by g13(y1):

sl Ty +B+1)
7 [(y + DI (B)

g131) =b 511217 [1 + b3 |*]~ TR (7.4a.8)

for R(B) > 0, R(y +1) > 0, b > 0, and g13 = O elsewhere. We now verify that this
is indeed a density function. Let y; = y;; +iyi2, y11 and y;» being real scalar quantities
and i = 4/(—1). When y; is in the complex plane, —o0 < y;; < oo, j = 1,2. Let
us make a polar coordinate transformation. Letting y;; = rcos6@ and yj» = rsiné,
dyi1 Adypp =rdrAdf, 0 <r < oo, 0 <6 <2m. The integral over the functional part
of (7.4a.8) yields
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0 [ee]
/~ ST+ 512 g =f f iy + izl
1 —00 J—00
X [14 b3 + yi)1" YT P dyyy A dyio

2 e’}
= / / [F217[1 + br? ]~ TP do A dr
=0 Jr=0

o0

= (2ﬂ)(%) f (1 + bty VTP gy

=0

which is equal to
- b—<y+1>F(V + 1)1”(/9).
I'(y +1+8)
This establishes that the function specified by (7.4a.8) is a density.

7.4a.2. Arbitrary moments in the complex type-2 beta density

Let us consider the h-th moment of |det(0)| = |det(A2 X BX*A?)| in (7.4a.1). Since
the only change upon integration is that y is replaced by y 4+, the h-th moment is available
from the normalizing constant in (7.4a.2):

Ipy(y +q+h) Ip(B=h)

E[|det(D)|"] = o ta ) (7.4a.9)
br — G =D+ TB—-G-1—h
- Fotr—G—n TG=g= (40
= E[u}]-- E[u}] (7.4a.11)
where uy, ..., u, mutually independently distributed real scalar type-2 beta random vari-

ables with the parameters (y +qg — (j — 1), B—(j — 1)), j=1,..., p. Thus, |det(l7)|
has the structural representation

det(0)| = |det(AZX BX*AZ)| = |det(YT*)| = |det(S)| = u - - - ) (7.4a.12)

where the uy, ..., u, are as previously defined. The density for a complex scalar type-2
beta random variable is provided in (7.4a.8).

7.4a.3. A pathway version of the complex rectangular matrix-variate type-1 beta
density

Consider the model specified in (7.2a.12), that is,

g14(X) = Caldet(A2 XBX*AD)|”|det(I — a(1 — @) A2XBX*AY)| e (7.4a.13)
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fora>0,a <1, A>0,B>0,n>0, [ —a(l—a)AZXBX*A> > 0, and 14 = 0
elsewhere, where Cy4 is the normalizing constant given in (7.2a.15). When o < 1, the
model appearing in (7.4a.13) is a generalization of the complex rectangular matrix-variate
type-1 beta model considered in (7.3a.1). Wheno > 1, wewrite | —o = —(¢—1), a > 1
and re-express g4 as

315(X) = Cs|det(A2XBX*A2)|Y [det(] + a(a — 1)AZXBX*AZ)|"a1  (7.4a.14)

fora >0, «a >1,n >0, A> 0O, B> 0, and g5 = 0 elsewhere, where the
normalizing constant C 5 is the same as the one in (7.2a.16). Observe that the model in
(7.4a.14) is a generalization of the complex rectangular matrix-variate type-2 beta model
in (7.4.1). When ¢ — 1, the models in (7.4a.13) and (7.4a.14) both converge to the
following model:

1. e 1
316(X) = Coldet(A2 X BX*A?)|Y e antr(A2XBX A2) (7.4a.15)

fora >0, n >0, A> O, B> O, and gj6 = 0 elsewhere, where the normalizing
constant 66 is the same as that in (7.2a.17). The model specified in (7.4a.15) is a gener-
alization of the complex rectangular matrix-variate gamma model considered in (7.2a.1).
Thus, model in (7.4a.13) contains all the three models (7.4a.13), (7.4a.14), and (7.4a.15),
which are generalizations of the models given in (7.3a.1), (7.4a.l), and (7.2a.1), respec-
tively. The pathway model in the complex domain, namely (7.4a.13), was introduced in
Mathai and Provost (2006). Additional properties of the pathway model have already been
discussed in Sect. 7.2a.

Exercises 7.4
7.4.1. Following the instructions or otherwise, derive the normalizing constant C3 in
(7.4a.3).
7.4.2. By integrating over Y, show that (7.4a.4) is a density.

7.4.3. Evaluate the normalizing constant in (7.4a.7) by using (1): Theorem 4.2a.3; (2): a
(2n)-variate real polar coordinate transformation.

7.4.4. Given the standard real matrix-variate type-2 beta model in (7.4.5), evaluate the
marginal joint density of yi, ..., y,, ¥ < p.

7.4.5. Evaluate the density in (7.4a.4) explicitly for p = 1 and g = 2.
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7.4.6. Given the standard complex matrix-variate type-2 beta model in (7.4a.7), evaluate
the joint marginal density of ¥, ..., y,, r < p.

7.4.7. Derive the density of |det(U)| in (7.4a.12) for the cases (1): p = 1; (2): p = 2.
7.4.8. Derive the density of |U| in (7.4.10) for (1): p =2; (2): p =3.

7.5,7.5a. Ratios Involving Rectangular Matrix-Variate Random Variables

Since scalar variables such as type-1 beta, type-2 beta, F, Student- and Cauchy vari-
ables are all associated with ratios of independently distributed random variables, we will
explore ratios involving rectangular matrix-variate random variables. Such ratios will yield
the rectangular matrix-variate versions of the aforementioned ratios of scalar variables. Let
the p x ny, p < ny, full rank matrix X; and the p x n,, p < nj, full rank matrix X,
be independently distributed real matrix-variate random variables having the rectangular
matrix-variate gamma densities specified in (7.2.5), that is,

nj r n;
|A;172|Bj|2p(5)
oy = B S
x T Ly +3)

A X B X e KB =100 (750

for Aj > O, Bj > 0, R(y; + %) > 2%, and n; > p where A; is p x p and Bj is

n; x nj. Then, owing to the statistical independence of the variables, the joint density of
X1 and X, is f(X1, X2) = f1(X1) f2(X3). Consider the ratios

1

o=

2 1 1 o 1 1 2 1 1
ui=> <A]2.Xijx;A;) (AleBlX’lAf) (A;Xijx;A;) (i)
j=1 j=1
and 1 1
1 , 1\ 2 1 , 1 1 , 1\ 2
Uy = (A,;Xszsz;) (AfX131X1A12> (AZ%XszXzA;) : (if)

1 1
Let us derive the densities of U; and U». Letting V; = Ajz. X jB]?, we have dX; =

|A; |_n7j |B; |_§de. Denoting the joint density of V| and V; by g(Vi, V»), it follows that
f(Xl, X7)dX; AdXp = g(Vq, V»>)dV; A dV; and so,

S
g(Vi, Vo)dVindV, = 1_[ . A)

- — L VIV{" |V V3|2 TV 4y ad .
=TT Ly + )
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nr n;

Letting W; = V; V]f, dv; = I’f(ﬁ.)leﬁ]_pTHde, and the joint density of W and W5,
153

denoted by (W1, W), is the following:

2
1 ny ptl n 1
h(Wy, Wy) = Uyt wy ettt Wi W) (750

j=1 Ip(yj + n_2])

1 1
Note that U} = (W) + Wz)_%Wl(Wl + Wz)_% and Uy = W2_7W1W2_§. Then, given
the relationship between independently distributed matrix-variate gamma variables and
a type-1 matrix-variate beta variable and a type-2 matrix-variate beta variable, U; and
U, are distributed as real matrix-variate type-1 beta and type-2 beta random variables,
respectively, both with the parameters (y1 + 5, y2 4+ %), that is,

ni nz ni ny
Ui ~ type-1 beta(m to ot 7) and U ~ type-2 beta(yl +o Tt 7).

Thus, we have the following result:

Theorem 7.5.1. Let X of dimension p xny, p < ny, and X, of dimension p xn», p <
no, be rank p matrices that are independently distributed rectangular real matrix-variate
gamma random variables whose densities are specified in (7.5.1). Then, as defined in
(i) and (ii), Uy and U, are respectively real matrix-variate type-1 beta and type-2 beta
distributed with the same parameters (y; + "7‘, V2 + "72). Thus they have the following
densities, denoted by g;(U;), j=1,2:

n 1 n 1
e (UNAU, = ¢ U T35 11 — Uy >3- duy, 0 < Uy < 1, (7.5.3)
and zero elsewhere, and
n 1 n n
@2 (Un)dUs = ¢ |Us" T35 |1 4+ Us|" 7243+ 4y, Uy > 0, (7.5.4)

where

Ln+rn+s+% ~ —1
= 1pn 22 22) (,~+ﬁ)>—p Lj=12
I+ +F) 2 2
Analogous derivations will yield the densities of Uy and U, the corresponding matrix-
variate random variables in the complex domain:
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Theorem 7.5a.1. Let X of dimension pxni, p < ny, and X» of dimension pxny, p <
na, be full rank rectangular matrix-variate complex gamma random variables that are
independently distributed whose densities are

|A;|"i | B;|PTy(n ;)
Py (yj+nj)

Fi(XpdX; = |det(A; X B; X¥)|71e " WNEXDax; (7541

where A; = A > O and B; = B > O with Aj being p X p and Bj, nj X nj,
p=<nj, j=1, 2Lettlng
1

2 2
(Zf iXiAL) Al X181XA>(Z ATX;B;X3AT)

j:

I\)\'—‘

and %” “*%—l %” ”*% %” “*%—l
= (A;X2B2X5A5) 2(A{ X1 B1XTA])(A; X2 Bo X5A5)7 2, (7.5a.2)
the densities of Uy and Us, denoted by gj(ﬁj), Jj = 1,2, are respectively given by
§1(UN)dU; = &|det(U)) | =P|det(I — U)["?1"27Pd0y, O < Uy <1,  (7.5a.3)
and

22(Up)dU, = E|det(Uy) "M~ P|det( + Uy)|~MHr2tmitndqg, U, > 0, (71.5a.4)

where

. Ty + y2 + 11 +n2)
Iy(yr +n)Ip(y2 + n2)

o

Ry +n)>p—1, j=1,2.

The densities specified in (7.5.4) and (7.5a.4) happen to be quite useful in real-life
applications. Connections of the type-2 beta distribution to the F-distribution, the Student-
2 distribution and the distribution of the sample correlation coefficient when the pop-
ulation is Gaussian, have already been pointed out in the course of our previous dis-
cussions with respect to the scalar, vector variable and matrix-variate cases. Some fur-
ther relationships are next pointed out. Let {Y7,...,Y,} constitutes a simple random

sample where Y id Ny(u,x), ¥ > O, j = 1,...,n, and the sample matrix be
denoted by Y = [Y1, Vs, ..., Y,]; letting Y = %[Yl + --- 4+ Y,] and the matrix of
sample means be Y = [Y,...,Y], the sample sum of products (corrected) matrix is

S = (Y — Y)(Y — Y)', which is unaffected by . We have determined that S follows
a real Wishart distribution having m = n — 1 degrees of freedom, and that when u is
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known to be a null vector, YY’ is real Wishart matrix with n degrees of freedom. Now,
consider A? Y; £ Np (A%;,L, A2 Y A%); when u = O, the sample sum of products matrix
is A2YY' A%, which can be expressed in the form of the product of matrices appearing in

(7.5.1) with B = I. Hence, we can regard A2XBX'A? (or equivalently AX BX' in the
determinant in (7.5.1)) as a weighted sample sum of products matrix with sample sizes n|
and ny. Then, the type-2 beta density in (7.5.4) with U, replaced by Z—;Uz corresponds to
a generalized real rectangular matrix-variate F-density having ny and n, degrees of free-
dom where U, is as defined in (ii). Moreover, for y; = 0 = y», this density will correspond
to a rectangular matrix-variate Student-t density. The material included in Sect. 7.5,7.5a
may not be available in the literature.

7.5.1. Multivariate F, Student-r and Cauchy densities

The densities appearing in (7.5.4) and (7.5a.4) for the p x p positive definite matrices
U; and Uz have dU; and dU2 as differential elements. A positive definite matrix such as
U,, can be expressed as U, = TT’ where T of dimension p x ny, p < nj, has rank
p, and we can write dU; in terms of d7". We can also consider the format Uy = TCT’
where C > O is an n| x n| positive definite constant matrix. In other words, we can arrive
at the format in (7.4.1) from (7.5.4), and correspondingly obtain (7.4a.1) from (7.5a.4).
Let us re-examine the expressions given in (7.4.1) and (7.4a.1), which could be referred
to as rectangular matrix-variate F and Student-t densities in the real and complex cases
for specific values of the parameters  and y. Now, let p = 1and A = a > 0in (7.4.1)
wherein a location parameter vector p is inserted. The resulting density is

By +5+8)
h(X)dX = 7 [(X —w)B(X — w1
w2y +4)(B)

x [14+a(X — p)BX — )" +2tPdx (7.5.5)

where X and p are 1 x g row vectors, the corresponding density in the complex domain,
denoted by 2 (X), being the following:
s oo al"MdetBINQIy +q+B) o o
h(X)dX = ! 220 - B — 1
nd I'(y +q)I"(B)
x [14+a(X — )B(X — p)*1~v+atPyx. (7.5a.5)

For specific values of the parameters, the densities appearing in (7.5.5) and (7.5a.5) can
be respectively called the multivariate F and Student-t densities in the real and complex
domains. With a view to model certain types of signal processes, (Kondo et al., 2020)
made use of a special form of the complex multivariate Student-t wherein y = 0, a = %
and B = 3, which is given next.
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7.5a.1. A complex multivariate Student-s having v degrees of freedom

211G+ q)
()T (3)|det(2))]

]—(E-HJ

hi(X)dX [1 + %(f{ —xNx - p* )df(. (7.5a.6)

A complex multivariate Cauchy density that, as well, is mentioned in Kondo et al. (2020),
can be obtained by letting v = 1 in (7.5a.6). We conclude this section with its representa-
tion, denoted by A, (X):

7.5a.2. A complex multivariate Cauchy density

29T (5 +q)
74 I (3)|det(2)]

iy (X)dX = 142X — )Z~Y(X = ) 1"9+2dX.  (7.5a.7)

Exercises 7.5

7.5.1. Derive the complex densities in (7.5a.3) and (7.5a.4).

7.5.2. Derive the normalizing constant in (7.5a.6) by integrating out the functional por-
tion of this density.

7.5.3. Derive the normalizing constant in (7.5a.7) by integrating out the functional por-
tion of this density.

7.5.4. Derive the density in (7.5a.6) from complex g-variate Gaussian densities.
7.5.5. Derive the density in (7.5a.7) from complex g-variate Gaussian densities.

7.6. Rectangular Matrix-Variate Dirichlet Density, Real Case

For the real matrix-variate type-1 and type-2 Dirichlet models involving sets of real
positive definite matrices, the reader is referred to Sects. 5.8.6 and 5.8.7. The correspond-
ing rectangular matrix-variate cases will be considered in this section. Let A; > O, j =
I,...,k, be p x p real positive definite constant matrices, and B;, j = 1,...,k, be
qj X q; real positive definite constant matrices. Let X;, j =1,...,k,be pxgq;, q; > p,
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rank p real matrices whose elements are distinct real scalar variables. Then, consider the
real-valued scalar function of X, ..., Xz,

fiX, ... X)) = CrlA1 X Bi X -+ | A X B X | 7

1 1 1 1 1
X |I— A2X\B\X|A? — - — A2 X BeX[AZ T (7.6.1)

1 1 1 1
1 1 . k 1 1
fOI‘Aj>0, Bj>0, AJZ-X]'B]'X;AJZ->0,]=1,...,/<, I—ZjZIAJZ-XijX;A12~>

0, N(y;+ %) > pT_l, j=1,...,k,and f; = 0 elsewhere, where Cy is the normalizing
constant. This normalizing constant can be evaluated as follows: Letting
1 1 qj P
YjZAJZ.Xijzide=|Aj|7|Bj|7de, j=1,...,k, ()
the joint density of Y1, ..., Yk, denoted by f>(Y1, ..., Yi), is given by
d 4j p
L0 vo =TT 218,17 cny{ vy
j=1
k 1
x |1 =Y ¥yt (7.6.2)
j=1
Now, let
4jP
, 9j _p+l . ..
SjZYij:>de=F—qj|Sj|2 Zde,]ZI,...,k. (1D)
p(?)
Then, the joint density of S1, ..., Sk, which follows, is a real matrix-variate type-1 Dirich-
let density:
k 4P
faSi 50 = TT1a 718,78 2
j=1 P(T)
i 9j _ p+l ptl
x {]_[|Sj|yf+7—7}|1—sl oS (7.6.3)
j=1
for §; > O, N(y; + %) > pT_l j = 1,..., k. Next, on integrating out Sy, ..., Sk, by

making use of a type-1 real matrix-variate Dirichlet integral that was defined in Sect. 5.8.6,
we have

T2 Ty + N (i)

4, _pr—1
k+1 T,
Qi livi+ 2 %)

2 2

. Ry, + L j=1,...k (iii)
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and N(yg41) > pT_l.Then, as obtained from (7), (if) and (iii), the normalizing constant is
k qi
9j » Ip(3) 1
Ck:{H|Af|2|Bf|2 qu%’ qj }
j=1 T2 Fp(yj + 7)
Dt A Ve S+ )
T2y T vy + 3 (i)

forA; > O, Bj > O, q; > p, 9?(1/;+%)>”T_1, j=1,...,k, andﬁ}i(yk+1)>p7_l.

(7.6.4)

7.6.1. Certain properties, real rectangular matrix-variate type-1 Dirichlet density

Letting U = Z _1 A X;jB; X, Aj2 , what might be the distributions of U and I —U? In
the real scalar case, one could have easily evaluated the moments E[(1 — u)"] for arbitrary
h, which would have automatically determined the distribution of 1 — u, and therefrom
that of u. In the matrix-variate case as well, one can readily determine the /4-th moment of
the determinant of I — U, E[|I — U |h], and the unique resulting distribution. However,
the distribution of a determinant being unique does not imply that the distribution of the
corresponding matrix is unique. Thus, we have to resort to other approaches for obtaining

the distributions of U and I — U. Consider the following transformation:

k
1 1
Vi =AIX;B;X}A%, j=1,... k=1, Vs = ZAXBX’AzzU
j=1
1 1 1 1
Then A,?Xk.BkX;{A; =U — V1 — e — Vk—l and [ — Zl;zl AJZ-XJBJ'X;A; =1 — Vk =
I — U. Noting that
k 4yr
71 L T
Xm/\.../\kaz{H 2l (q])}dvl CAAVio AdU, (765

the joint density of Vi, ..., Vk_1, U, denoted by f3(Vq, ..., Vx—1, U), is seen to be

Fp(Zlf-:l(VJ 2)+Vk+l) {]i—[l”/ |y]+;_7}
TT52) Dy + OV (k)

X|U—=Vj—- = V_ 1|Vk+“*|1 U+~ (7.6.6)

LV, Ve, U) =

where

U=Vi— = Vil = Ul —UTTViUT2 = — U2V U],
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Letting W; = U_%VjU_%, j=1,...,k—1,for fixed U we have

n+1
dVin...AdV_ = |U|(k_l)(%)dW1 Ao ANdWE_.

Now, the joint density of Wy, ..., Wy_; and U, denoted by f4(Wy, ..., Wi_1, U), is the
following:

k—1
k 24y _ptl _ptl o 9j_ prl
oW1, Wiy, U) = GU =m0t D50 g =5 T w2 =
j=1
+1
X[ I =W —-— Wk_1|Vk+q7k—pT (7.6.7)
where C; is the normalizing constant. We then integrate out Wi, ..., Wy_; by using a

(k — 1)-variate type-1 Dirichlet integral, this yielding the result:

k k
i qj qj, _p—1 .
{pr(yj—f—? }/Fp(zl(yjﬁL?)forfﬁ(yj—l—E e
]: J:

Accordingly, the marginal density of U is the following:

(Ch i+ %) + v
(S v+ SN ()

for O < U < I, Wy, + %) > 224 j = 1,...k, Rus) > 27, and f5 = 0

elsewhere. Thus, U is a real matrix-variate type-1 beta with the parameters (lezl(yj +

qj 1
f5(U) = U Zn D= gt (768)

%), vk+1) and therefore that I — U is a real matrix-variate type-1 beta with the parameters
(Vk+1, Zl;'=1 (yj + %)). These results are now stated as a theorem.

1 1
Theorem 7.6.1.  Consider the density given in (7.6.1). Let U = Y 5_, A? X;B; X, A?.
Then, U has a real matrix-variate type-1 beta distribution whose parameters are
(lezl(yj + %), Vk+1) and 1 — U is distributed as a real matrix-variate type-1 beta

with the parameters (Vi+1, ZI;:1 (y; + %)).
The h-th moment of the determinant of the matrix / — U can be evaluated either from

Theorem 7.6.1 or from Eq.(7.6.1). This A-th moment of the determinant, which can be
worked out from the normalizing constant appearing in (7.6.8), is

Iy (Vi1 + 1) Fp(zljzl(l’j + 4+ virD)

hy —
Bl Ul = e e p
P Vik+1 Fp( ]:1()/] + 2)+Vk+1 + )

(7.6.9)
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for R(y; + %) > pT_l, NRYi+1) > pT_l. Observe that a representation of the 4-th moment

of the determinant of U cannot be derived from (7.6.9). However, E[|U|"] can be readily
evaluated from Theorem 7.6.1:

L i+ D+ L v+ D + v

E[U" = .
Fp(zljzl(yj +4)) Fp(zlj'zl(yj + %)+ ye1 + h)

(7.6.10)

for R(y; + %) > pT_l, j=1,....k, RVy1) > pT_l. Upon expanding the I',(-)’s in

terms of I"(-)’s, the following structural representations are obtained:

[ —-Ul=ui---up, (7.6.11)

Ul =vi---vp, (7.6.12)

where uy, ..., u, are independently distributed real scalar type-1 beta random variables
with the parameters (yxy| — J—gl, lezl(yj +4)), j=1,....k, and vy, ..., v are

independently distributed real scalar type-1 beta random variables with the parameters
i+ = . j=1. k.

7.6.2. A multivariate version of the real matrix-variate type-1 Dirichlet density

For p = 1, consider the joint density of Yy, ..., Yx in fo(Y1, ..., Yx), which shall be
denoted by fe(Y1, ..., Yx). Then,

f6(Y1,....,Yk):{

£y F(Zl;zl()/j + 9 ) (£ ,
j H Y, Y57
o1 7 }{ J }

q .
[Tios F + Do 52

1 T2
1
X | = Y1Y] = — Yy ren="a (7.6.13)

the conditions on the parameters remaining as previously stated. Note that Y; is of the
form Y; = (yj1, ..., yjq;), so that YjY]/. = yjz.1 + -4 yjz.qj. Thus, in light of its structure,
the density appearing in (7.6.13) has interesting properties. For instance, it can be ob-
served that all the subsets of Y7, ..., Y also have densities belonging to the same family.
Accordingly, the marginal density of Y7 is the following:
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r) ro+4+yr)

F(N) = [yfy + o+ yig,
2t Toi+Ho " .
1
)1 =y = yfql]wwﬁ%l—% (7.6.14)

for—oco < y;, <00, r=1,...,q1, 0 < ylzl—i----—l—ylqu <1, Ryi+%9) >0, R(yp) >
0, and f7 = O elsewhere. As has already been mentioned, the structure in (7.6.14) is related
to geometrical probability problems involving type-1 beta distributed isotropic random
points. Thus, (7.6.13) suggests the possibility of generalizing such geometrical probabil-
ity problems in connection with a type-1 Dirichlet density as the underlying density for
the random points. This does not appear to have yet been discussed in the literature on
geometrical probability.

The complex case of the type-1 rectangular matrix-variate Dirichlet density, the real
and complex cases of the rectangular matrix-variate type-2 Dirichlet density and their
generalized forms can be similarly handled; hence, they will not be further discussed.
Certain of these cases are brought up in this section’s exercises.

Note 7.6.1. One could also consider a pathway version of the model appearing in
Eq. (7.6.1). Let us replace the second line in (7.6.1) by

: 3 3 1 11
|I —61(1 _“)(A%XIBIXiAlz +"'+A]§XkBkX]/<AI§)|ﬁ_pT

where a > 0, o < 1, n > 0 are real scalar and 4 by %, and denote the resulting
moded by fs whose corresponding equation number will be referred to as (7.6.15). Ob-
serve that (7.6.15) belongs to a generalized type-1 Dirichlet family of models and that the
new normalizing constant will be denoted Cy;. Fora > 1, write —a(l—«) = a(a—1) > 0,
and then = = ——L;. Number the resulting model of (7.6.1) as fo, with (7.6.16) as the
associated equation number. Note that (7.6.16) is actually a generalized type-2 Dirichlet
model whose normalizing constant, denoted Cy,, will be different. Taking the limits as
a — 1_in (7.6.15) and ¢ — 14 in (7.6.16), both the models f3 in (7.6.15) and f9 in
(7.6.16) will converge to a model f¢p whose associated equation number will be (7.6.17),
wherein the second line corresponding to the second line in (7.6.1) will be

1 1 1 1
2 2 2 2
e aNUAL X1 BIX|AT AL Xk BXG AL

this limiting model having its own normalizing constant denoted by Cy3. As well, it can
be established that, under the above limiting process, both Cy; and Cy, will converge to
Cx3. Now, observe that the matrices X1, ..., Xy in model f}¢ are mutually independently
distributed real rectangular matrix-variate gamma random variables. This turns out to be
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an unforeseen result as, in this case, the pathway parameter « is also seen to control the
dependence to independence transitional stages. Results analogous to those obtained in
Sects. 7.6, 7.6.1, and 7.6.2 could similarly be derived within the complex domain.

Exercises 7.6

7.6.1. Construct, in the complex domain, the rectangular matrix-variate type-1 Dirich-
let density corresponding to the density specified in (7.6.1) and determine the associated
normalizing constant.

7.6.2. Establish, in the complex domain, a theorem corresponding to Theorem 7.6.1.

7.6.3. Establish, for the complex case, the structural representations corresponding to
(7.6.11) and (7.6.12).

7.6.4. Construct a real rectangular matrix-variate type-2 Dirichlet density corresponding
to the density in (7.6.1).

7.6.5. Construct a complex rectangular matrix-variate type-2 Dirichlet density corre-
sponding to the density in (7.6.1).

7.6.6. When the p x g; matrices X ;’s jointly have a real type-2 Dirichlet density with

the parameter matrices A; > O, B; > O asin (7.6.1) where Ajis p X p, Bjisq; X q;

and X; is p x qj, q; = p, j = 1,...,k, of full rank p, establish that U = [I +
1 1

le‘.:] (AJZ. X;BjX }A?)]_l has a real matrix-variate type-1 beta distribution and specify its
1 1

parameters. What about the density of Z];:1 (AJZ. X;B;X }A?) in this case?

7.6.7. Answer the questions in Exercise 7.6.6 for the corresponding type-2 Dirichlet

density in the complex domain, replacing X ; by X; and X ; by X ;"

7.6.8. For the real type-2 Dirichlet density in Exercise 7.6.4, determine E[|U|"] for U as

specified in Exercise 7.6.6.

7.6.9. Extend all the results obtained in Sect. 7.6 to the complex domain.

7.6.10. Derive, in the complex domain, results that are analogous to those obtained for
the real case in Note 7.6.1, while keeping a, n and « real.

7.7. Generalizations of the Real Rectangular Dirichlet Models

The first author and his collaborators have considered several types of generalizations
to the type-1 and type-2 Dirichlet models for real positive definite matrices and Hermi-
tian positive definite matrices. We will propose certain extensions of those results to rect-
angular matrix-variate cases, both in the real and complex domains. Again, let X; be a
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p X qj, q;j = p, matrix of full rank p having distinct real scalar variables as its elements,
for j = 1,..., k. Let the constant real positive definite matrices A; > O and B; > O,
where Ajis p x pand Bjisq; x qj, j = 1,..., k, be as defined in Sect. 7.6. Consider
the real model

1 1 1 1
fii(X1, ..., Xp) = Dl AF X Bi XA | — A2X B X[ AP

1 1 2o 1
x |A3 X2 By X5 A3 121 =Y " AZX ;B X, AP
=1
1 1 k 1 1 p+1
X |A7 Xy Be X AZ |1 — ZA;XJ-BJ-X}A;P’"“”L’B"_T (7.7.1)
j=1
for N(y; + %) > pT_l, j=1,...,k, Rogy1) > pT_l and other conditions to be speci-

fied later, where Dy is the normalizing constant. For evaluating the normalizing constant,
consider the following transformations:

1 1 4j
Zj=AIX;B} = dX; = |Aj|"7|B;|"1dzZ;, j=1.....k (i)

so that the model f1; changes to fi, where

k
_4 _2
fu(Zy, ..., Zy) = Dk{ [T14,17 218 2}|le/1|3”1
j=1

x |I — Z1Z1|P11 2,2, |7

k
X | — Z\Zy — ZoZh\P2 -\ 2y Z) ) | T — szz}|yk+ﬂk—%“_
"~ (7.7.2)
Now, letting
ajp
2,7, =8 = dZ; = ——|s;177"7ds;, j=1,....k i
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the model becomes

q;jp

=~
I~

_9 _p T2 a_pH
fi3(St, -, S0 = {H 41185175 sy e
izl Ip(3)
X 1= SIS E =5 = 5 = 5l
k
ST Sl ) S (7.7.3)
j=1
Now, consider the transformation (5.8.20), namely,
Si=Y
= (I - Y1) NI - 1)
1 1 1 1
=U-Y)2---(I=Y;_)2Y;d=Y;_)2---(I =Y1)? (7.7.4)
for j = 2,...,k. Then Yy, ..., Yy will be independently distributed real matrix-variate
type-1 beta random variables with the parameters (o; = y; + %, 8;), j =1,...,k,
where
qj+1
§j = Vj+l+%+ SRVAREE Lt +ﬂj+ “+Bk. j=1,...,k, and giy1 = 0. (iii)

The normalizing constant Dy is thus the following:

8l () (35 6 +a))

H A7

75 | T () Ty (8))]

(7.7.5)

fora; > pT_l, 3; > pT_l, J=1,...,k, where the «;’s and §;’s are as previously given.
Properties parallel to those pointed out in Sects. 7.1-7.6 can also be studied for the model
specified in (7.7.1). The marginal distributions of subsets of the matrices X1, Xo, ..., Xk,
taken in the order, will belong to the same family of densities. There exist other general-
izations of the type-1 and type-2 Dirichlet models. For all such generalizations, one can
extend the results to the rectangular matrix-variate cases in both the real and complex
domains.
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Exercises 7.7

7.7.1. Develop the transformation corresponding to (7.7.4) for the real type-2 Dirichlet
case. Specify the Jacobians of the transformation (7.7.4) and the corresponding transfor-
mation for the type-2 case.

7.7.2. Verify the result for §; in (iii) following (7.7.4) and develop the expression corre-
sponding to §; for the type-2 Dirichlet case.

7.7.3. Derive the joint marginal density of X, ..., X,, r < k, by integrating out the
matrices starting with Xy in (7.7.1).

7.7.4. Develop, in the complex domain, the model corresponding to (7.7.1) and derive its
associated normalizing constant.

1 1
7.7.5. If possible, derive the density of U = Zl;zl AZX;jB;jX’A; where the X’s, j =
1, ..., k, jointly have the density given in (7.7.1).
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