
Chapter 7
Rectangular Matrix-Variate Distributions

7.1. Introduction

Thus far, we have primarily been dealing with distributions involving real positive
definite or Hermitian positive definite matrices. We have already considered rectangular
matrices in the matrix-variate Gaussian case. In this chapter, we will examine rectangular
matrix-variate gamma and beta distributions and also consider to some extent other types
of distributions. We will begin with the rectangular matrix-variate real gamma distribution,
a version of which was discussed in connection with the pathway model introduced in
Mathai (2005). The notations will remain as previously specified. Lower-case letters such
as x, y, z will denote real scalar variables, whether mathematical or random. Capital letters
such as X, Y will be used for matrix-variate variables, whether square or rectangular. In
the complex domain, a tilde will be placed above the corresponding scalar and matrix-
variables; for instance, we will write x̃, ỹ, X̃, Ỹ . Constant matrices will be denoted by
upper-case letter such as A, B, C. A tilde will not be utilized for constant matrices except
for stressing the point that the constant matrix is in the complex domain. When X is a
p × p real positive definite matrix, then A < X < B will imply that the constant matrices
A and B are positive definite, that is, A > O, B > O, and further that X > O, X − A >

O, B − X > O. Real positive definite matrices will be assumed to be symmetric. The
corresponding notation for a p × p Hermitian positive definite matrix is A < X̃ < B.
The determinant of a square matrix A will be denoted by |A| or det(A) whereas, in the
complex case, the absolute value or modulus of the determinant of A will be denoted as
|det(A)|. Whenmatrices are square, their order will be taken as being p×p unless specified
otherwise. Whenever A is a real p × q, q ≥ p, rectangular matrix of full rank p, AA′ is
positive definite, a prime denoting the transpose. When A is in the complex domain, then
AA∗ is Hermitian positive definite where an A∗ indicates the complex conjugate transpose
of A. Note that all positive definite complex matrices are necessarily Hermitian. As well,
dX will denote the wedge product of all differentials in the matrix X. If X = (xij ) is a
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real p × q matrix, then dX = ∧p

i=1 ∧q

j=1 dxij . Whenever X = (xij )
′ is a p × p real

symmetric matrix, dX = ∧i≥jdxij = ∧i≤jdxij , that is, the wedge product of the
p(p+1)

2
distinct differentials. As for the complex matrix X̃ = X1 + iX2, i = √

(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

7.2. Rectangular Matrix-Variate Gamma Density, Real Case

The most commonly utilized real gamma type distributions are the gamma, generalized
gamma and Wishart in Statistics and the Maxwell-Boltzmann and Raleigh in Physics. The
first author has previously introduced real and complex matrix-variate analogues of the
gamma, Maxwell-Boltzmann, Raleigh and Wishart densities where the matrices are p ×p

real positive definite or Hermitian positive definite. For the generalized gamma density
in the real scalar case, a matrix-variate analogue can be written down but the associated
properties cannot be studied owing to the problem of making a transformation of the type
Y = Xδ for δ �= ±1; additionally, when X is real positive definite or Hermitian positive
definite, the Jacobians will produce awkward forms that cannot be easily handled, see
Mathai (1997) for an illustration wherein δ = 2 and the matrix X is real and symmetric.
Thus, we will provide extensions of the gamma,Wishart, Maxwell-Boltzmann and Raleigh
densities to the rectangular matrix-variate cases for δ = 1, in both the real and complex
domains.

The Maxwell-Boltzmann and Raleigh densities are associated with numerous prob-
lems occurring in Physics. A multivariate analogue as well as a rectangular matrix-variate
analogue of these densities may become useful in extending the usual theories giving rise
to these univariate densities, to multivariate and matrix-variate settings. It will be shown
that, as was explained in Mathai (1999), this problem is also connected to the volumes
of parallelotopes determined by p linearly independent random points in the Euclidean
n-space, n ≥ p. Structural decompositions of the resulting random determinants and path-
way extensions to gamma, Wishart, Maxwell-Boltzmann and Raleigh densities will also
be considered.

In the current nuclear reaction-rate theory, the basic distribution being assumed for the
relative velocity of reacting particles is the Maxwell-Boltzmann. One of the forms of this
density for the real scalar positive variable case is

f1(x) = 4√
π

β
3
2x2e−βx2, 0 ≤ x < ∞, β > 0, (7.2.1)

and f1(x) = 0 elsewhere. The Raleigh density is given by

f2(x) = x

α2
e− x2

2α2 , 0 ≤ x < ∞, α > 0, (7.2.2)
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and f2 = 0 elsewhere, and the three-parameter generalized gamma density has the form

f3(x) = δ b
α
δ

Γ (α
δ
)
xα−1e−bxδ

, x ≥ 0, b > 0, α > 0, δ > 0, (7.2.3)

and f3 = 0 elsewhere. Observe that (7.2.1) and (7.2.2) are special cases of (7.2.3). For
derivations of a reaction-rate probability integral based on Maxwell-Boltzmann velocity
density, the reader is referred to Mathai and Haubold (1988). Various basic results associ-
ated with the Maxwell-Boltzmann distribution are provided in Barnes et al. (1982), Critch-
field (1972), Fowler (1984), and Pais (1986), among others. The Maxwell-Boltzmann and
Raleigh densities have been extended to the real positive definite matrix-variate and the
real rectangular matrix-variate cases in Mathai and Princy (2017). These results will be in-
cluded in this section, along with extensions of the gamma andWishart densities to the real
and complex rectangular matrix-variate cases. Extensions of the gamma and Wishart den-
sities to the real positive definite and complex Hermitian positive definite matrix-variate
cases have already been discussed in Chap. 5. The Jacobians that are needed and will be
frequently utilized in our discussion are already provided in Chaps. 1 and 4, further details
being available from Mathai (1997). The previously defined real matrix-variate gamma
Γp(α) and complex matrix-variate gamma Γ̃p(α) functions will also be utilized in this
chapter.

7.2.1. Extension of the gamma density to the real rectangular matrix-variate case

Consider a p × q, q ≥ p, real matrix X of full rank p, whose rows are thus linearly
independent, and a real-valued scalar function f (XX′) whose integral over X is conver-
gent, that is,

∫
X

f (XX′)dX < ∞. Letting S = XX′, S will be symmetric as well as real
positive definite meaning that for every p × 1 non-null vector Y , Y ′SY > 0 for all Y �= O

(a non-null vector). Then, S = (sij ) will involve only
p(p+1)

2 differential elements, that is,
dS = ∧p

i≥j=1dsij , whereas dX will contain pq differential elements dxij ’s. As has pre-
viously been explained in Chap. 4, the connection between dX and dS can be established
via a sequence of two or three matrix transformations.

Let the X = (xij ) be a p × q, q ≥ p, real matrix of rank p where the xij ’s are distinct
real scalar variables. Let A be a p × p real positive definite constant matrix and B be a
q × q real positive definite constant matrix, A

1
2 and B

1
2 denoting the respective positive

definite square roots of the positive definite matrices A and B. We will now determine the
value of c that satisfies the following integral equation:

1

c
=
∫

X

|AXBX′|γ e−tr(AXBX′)dX. (i)
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Note that tr(AXBX′) = tr(A
1
2XBX′A 1

2 ). Letting Y = A
1
2XB

1
2 , it follows from Theo-

rem 1.7.4 that dY = |A| q
2 |B|p

2 dX. Thus,

1

c
= |A|− q

2 |B|−p
2

∫

Y

|YY ′|γ e−tr(YY ′)dY. (ii)

Letting S = YY ′, we note that S is a p × p real positive definite matrix, and on applying

Theorem 4.2.3, we have dY = π
qp
2

Γp(
q
2 )

|S| q
2−p+1

2 dS where Γp(·) is the real matrix-variate

gamma function. Thus,

1

c
= |A|− q

2 |B|−p
2

π
qp
2

Γp(
q
2 )

∫

S>O

|S|γ+ q
2−p+1

2 e−tr(S)dS, A > O, B > O, (iii)

the integral being a real matrix-variate gamma integral given by Γp(γ + q
2 ) for 
(γ + q

2 ) >
p−1
2 , where 
(·) is the real part of (·), so that

c = |A| q
2 |B|p

2 Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
for 
(γ + q

2
) >

p − 1

2
, A > O, B > O. (7.2.4)

Let
f4(X) = c |AXBX′|γ e−tr(AXBX′) (7.2.5)

for A > O, B > O, 
(γ + q
2 ) >

p−1
2 , X = (xij ), −∞ < xij < ∞, i = 1, . . . , p, j =

1, . . . , q, where c is as specified in (7.2.4). Then, f4(X) is a statistical density that will be
referred to as the rectangular real matrix-variate gamma density with shape parameter γ

and scale parameter matrices A > O and B > O. Although the parameters are usually
real in a statistical density, the above conditions apply to the general complex case.

For p = 1, q = 1, γ = 1, A = 1 and B = β > 0, we have |AXBX′| = βx2 and

|A| q
2 |B|p

2 Γ (
q
2 )

π
qp
2 Γp(γ + q

2 )
= (β)

1
2Γ (12)

π
1
2Γ (32)

= 2
√

β√
π

,

so that c = 2√
π
β

3
2 for −∞ < x < ∞. Note that when the support of f (x) is restricted

to the interval 0 ≤ x < ∞, the normalizing constant will be multiplied by 2, f (x) be-
ing a symmetric function. Then, for this particular case, f4(X) in (7.2.5) agrees with the
Maxwell-Boltzmann density for the real scalar positive variable x whose density is given
in (7.2.1). Accordingly, when γ = 1, (7.2.5) with c as specified in (7.2.4) will be re-
ferred to as the real rectangular matrix-variate Maxwell-Boltzmann density. Observe that
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for γ = 0, (7.2.5) is the real rectangular matrix-variate Gaussian density that was con-
sidered in Chap. 4. In the Raleigh case, letting p = 1, q = 1, A = 1, B = 1

2α2 and

γ = 1
2 ,

|AXBX′|γ =
( x2

2α2

) 1
2 = |x|√

2|α| and c = 1√
2α

which gives

f5(x) = |x|
2α2

e− x2

2α2 , − ∞ < x < ∞ or f5(x) = x

α2
e− x2

2α2 , 0 ≤ x < ∞,

for α > 0, and f5 = 0 elsewhere where |x| denotes the absolute value of x, which is
the real positive scalar variable case of the Raleigh density given in (7.2.2). Accordingly,
(7.2.5) with c as specified in (7.2.4) wherein γ = 1

2 will be called the real rectangular
matrix-variate Raleigh density.

From (7.2.5), which is the density for X = (xij ), p × q, q ≥ p of rank p, with
−∞ < xij < ∞, i = 1, . . . , p, j = 1, . . . , q, we obtain the following density for

Y = A
1
2XB

1
2 :

f6(Y )dY = Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
|YY ′|γ e−tr(YY ′)dY (7.2.6)

for γ + q
2 >

p−1
2 , and f6 = 0 elsewhere. We will refer to (7.2.6) as the standard form of

the real rectangular matrix-variate gamma density. The density of S = YY ′ is then

f7(S) dS = 1

Γp(γ + q
2 )

|S|γ+ q
2−p+1

2 e−tr(S)dS (7.2.7)

for S > O, γ + q
2 >

p−1
2 , and f7 = 0 elsewhere.

Example 7.2.1. Specify the distribution of u = tr(A
1
2XBX′A 1

2 ), the exponent of the
density given in (7.2.5).

Solution 7.2.1. Let us determine the moment generating function (mgf) of u with pa-
rameter t . That is,

Mu(t) = E[etu] = E[et tr(A
1
2 XBX′A

1
2 )]

= c

∫

X

|A 1
2XBX′A

1
2 |γ e−(1−t)tr(A

1
2 XBX′A

1
2 )dX
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where c is given in (7.2.4). Let us make the following transformations: Y = A
1
2XB

1
2 , S =

YY ′. Then, all factors, except Γp(γ + q
2 ), are canceled and the mgf becomes

Mu(t) = 1

Γp(γ + q
2 )

∫

S>O

|S|γ+ q
2−p+1

2 e−(1−t)tr(S)dS

for 1 − t > 0. On making the transformation (1 − t)S = S1 and then integrating out S1,
we obtain the following representation of the moment generating function:

Mu(t) = (1 − t)−p(γ+ q
2 ), 1 − t > 0,

which happens to be the mgf of a real scalar gamma random variables with the parameters
(α = p(γ + q

2 ), β = 1), which owing to the uniqueness of the mgf, is the distribution of
u.

Example 7.2.2. Let U1 = A
1
2XBX′A 1

2 , U2 = XBX′, U3 = B
1
2X′AXB

1
2 , U4 =

X′AX. Determine the corresponding densities when they exist.

Solution 7.2.2. Let us examine the exponent in the density (7.2.5). By making use of the
commutative property of trace, one can write

tr(A
1
2XBX′A

1
2 ) = tr[A(XBX′)] = tr(B

1
2X′AXB

1
2 ) = tr[B(X′AX)].

Observe that the exponent depends on the matrix A
1
2XBX′A 1

2 , which is symmetric and
positive definite, and that the functional part of the density also involves its determinant.
Thus, the structure is that of real matrix-variate gamma density; however, (7.2.5) gives the
density of X. Hence, one has to reach U1 from X and derive the density of U1. Consider
the transformation Y = A

1
2XBX′A 1

2 . This will bring X to Y . Now, let S = YY ′ = U1

so that the matrix U1 has the real matrix-variate gamma distribution specified in (7.2.7),
that is, U1 is a real matrix-variate gamma variable with shape parameter γ + q

2 and scale
parameter matrix I . Next, consider U2. Let us obtain the density of U2 from the density
(7.2.5) for X. Proceeding as above while ignoring A or taking A = I , (7.2.7) will become
the following density, denoted by fu2(U2):

fu2(U2)dU2 = |A|γ+ q
2

Γp(γ + q
2 )

|U2|γ+ q
2−p+1

2 e−tr(AU2)dU2,

which shows that U2 is a real matrix-variate gamma variable with shape parameter γ + q
2

and scale parameter matrixA. With respect toU3 andU4, when q > p, one has the positive
semi-definite factor X′BX whose determinant is zero; hence, in this singular case, the
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densities do not exist for U3 and U4. However, when q = p, U3 has a real matrix-variate
gamma distribution with shape parameter γ + p

2 and scale parameter matrix I and U4 has
a real matrix-variate gamma distribution with shape parameter γ + p

2 and scale parameter
matrix B, observing that when q = p both U3 and U4 are q × q and positive definite. This
completes the solution.

The above findings are stated as a theorem:

Theorem 7.2.1. Let X = (xij ) be a real full rank p × q matrix, q ≥ p, having the
density specified in (7.2.5). Let U1, U2, U3 and U4 be as defined in Example 7.2.2. Then,
U1 is real matrix-variate gamma variable with scale parameter matrix I and shape pa-
rameter γ + q

2 ; U2 is real matrix-variate gamma variable with shape parameter γ + q
2

and scale parameter matrix A; U3 and U4 are singular and do not have densities when
q > p; however, and when q = p, U3 is real matrix-variate gamma distributed with
shape parameter γ + p

2 and scale parameter matrix I , and U4 is real matrix-variate
gamma distributed with shape parameter γ + p

2 and scale parameter matrix B. Further

|Ip − A
1
2XBXA

1
2 | = |Iq − B

1
2X′AXB

1
2 |.

Proof: All the results, except the last one, were obtained in Solution 7.2.2. Hence, we
shall only consider the last part of the theorem. Observe that when q > p, |A 1

2XBX′A 1
2 |

> 0, the matrix being positive definite, whereas |B 1
2X′AXB

1
2 | = 0, the matrix being

positive semi-definite. The equality is established by noting that in accordance with results
previously stated in Sect. 1.3, the determinant of the following partitioned matrix has two
representations:

∣
∣
∣
∣
∣

Ip A
1
2XB

1
2

B
1
2X′A 1

2 Iq

∣
∣
∣
∣
∣
=
{

|Ip| |Iq − (B
1
2X′A 1

2 )I−1
p (A

1
2XB

1
2 )| = |Iq − B

1
2X′AXB

1
2 |

|Iq | |Ip − (A
1
2XB

1
2 )I−1

q (B
1
2X′A 1

2 )| = |Ip − A
1
2XBX′A 1

2 | .

7.2.2. Multivariate gamma and Maxwell-Boltzmann densities, real case

Multivariate usually means a collection of scalar variables, real or complex. Many real
scalar variable cases corresponding to (7.2.1) or a multivariate analogue of thereof can be
obtained from (7.2.5) by taking p = 1 and A = b > 0. Note that in this case, X is 1 × q,
that is, X = (x1, . . . , xq), and XBX′ is a positive definite quadratic form of the type

XBX′ = (x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠ .
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Thus, the density appearing in (7.2.5) becomes

f8(X)dX = bγ+ q
2 |B| 12Γ (

q
2 )

π
q
2 Γ (γ + q

2 )
[XBX′]γ e−b(XBX′)dX (7.2.8)

for X = (x1, . . . , xq), −∞ < xj < ∞, j = 1, . . . , q, B = B ′ > O, b > 0, and f8 = 0

elsewhere. Then, the density of Y = B
1
2X′ is given by

f9(Y )dY = bγ+ q
2

Γ (
q
2 )

π
q
2 Γ (γ + q

2 )
(y2

1 + · · · + y2
q)

γ e−b(y21+···+y2q )dY (7.2.9)

where Y ′ = (y1, . . . , yq), − ∞ < yj < ∞, j = 1, . . . , q, b > 0, γ + q
2 > 0, and

f9 = 0 elsewhere. We will take (7.2.8) as the multivariate gamma as well as multivariate
Maxwell-Boltzmann density, and (7.2.9) as the standard multivariate gamma as well as
standard multivariate Maxwell-Boltzmann density.

How can we show that (7.2.9) is a statistical density? One way consists of writing
f9(Y )dY as f9(S)dS, applying Theorem 4.2.3 of Chap. 4 and writing dY in terms of dS
for p = 1. This will yield the result. Another way is to integrate out variables y1, . . . , yq

from f9(Y )dY , which can be achieved via a general polar coordinate transformation such
as the following: Consider the variables y1, . . . , yq, − ∞ < yj < ∞, j = 1, . . . , q, and
the transformation,

y1 = r sin θ1

yj = r cos θ1 cos θ2 · · · cos θj−1 sin θj , j = 2, 3, . . . , q − 1,

yq = r cos θ1 cos θ2 · · · cos θq−1,

for −π
2 < θj ≤ π

2 , j = 1, . . . , q − 2; − π < θq−1 ≤ π , which was discussed in Mathai
(1997). Its Jacobian is then given by

dy1 ∧ . . . ∧ dyq = rq−1

⎧
⎨

⎩

q−1∏

j=1

| cos θj |q−j−1

⎫
⎬

⎭
dr ∧ dθ1 ∧ . . . ∧ dθq−1. (7.2.10)

Under this transformation, y2
1 + · · · + y2

q = r2. Hence, integrating over r , we have
∫ ∞

r=0
(r2)γ rq−1e−br2dr = 1

2
b−(γ+ q

2 )Γ (γ + q

2
), γ + q

2
> 0. (7.2.11)

Note that the θj ’s are present only in the Jacobian elements. There are formulae giving the
integral over each differential element. We will integrate the θj ’s one by one. Integrating
over θ1 gives
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∫ π
2

−π
2

(cos θ1)
q−2dθ1 = 2

∫ π
2

0
(cos θ1)

q−2dθ1 = 2
∫ 1

0
zq−2(1 − z2)−

1
2 dz

= Γ (12)Γ (
q−1
2 )

Γ (
q
2 )

, q > 1.

The integrals over θ2, θ3, . . . , θq−2 can be similarly evaluated as

Γ (12)Γ (
q−2
2 )

Γ (
q−1
2 )

,
Γ (12)Γ (

q−3
2 )

Γ (
q−2
2 )

, . . . ,
Γ (12)

Γ (32)

for q > p−1, the last integral
∫ π

−π
dθq−1 giving 2π . On taking the product, several gamma

functions cancel out, leaving

2π [Γ (12)]q−2

Γ (
q
2 )

= 2π
q
2

Γ (
q
2 )

. (7.2.12)

It follows from (7.2.11) and (7.2.12) that (7.2.9) is indeed a density which will be referred
to as the standard real multivariate gamma or standard real Maxwell-Boltzmann density.

Example 7.2.3. Write down the densities specified in (7.2.8) and (7.2.9) explicitly if

B =
⎡

⎣
3 −1 0

−1 2 1
0 1 1

⎤

⎦ , b = 2 and γ = 2.

Solution 7.2.3. Let us evaluate the normalizing constant in (7.2.8). Since in this case,
|B| = 2,

c8 = bγ+ q
2 |B| 12Γ (

q
2 )

π
q
2 Γ (γ + q

2 )
= 22+ 3

2 2
1
2Γ (32)

π
3
2Γ (2 + 3

2)
= 26

15π
3
2

. (i)

The normalizing constant in (7.2.9) which will be denoted by c9, is the same as c8 exclud-
ing |B| 12 = 2

1
2 . Thus,

c9 = 2
11
2

15π
3
2

. (ii)

Note that for X = [x1, x2, x3], XBX′ = 3x2
1 + 2x2

2 + x2
3 − 2x1x2 + 2x2x3 and YY ′ =

y2
1 + y2

2 + y2
3 . Hence the densities f8(X) and f9(Y ) are the following, where c8 and c9 are

given in (i) and (ii):

f8(X) = c8

[
3x2

1 + 2x2
2 + x2

3 − 2x1x2 + 2x2x3
]2

e−2[3x21+2x22+x23−2x1x2+2x2x3]
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for −∞ < xj < ∞, j = 1, 2, 3, and

f9(Y ) = c9

[
y2
1 + y2

2 + y2
3

]2
e−2[y21+y22+y23 ], for − ∞ < yj < ∞, j = 1, 2, 3.

This completes the computations.

7.2.3. Some properties of the rectangular matrix-variate gamma density

For the real rectangular matrix-variate gamma and Maxwell-Bolztmann distribution
whose density is specified in (7.2.5), what might be the h-th moment of the determinant
|AXBX′| for an arbitrary h? This statistical quantity can be evaluated by looking at the
normalizing constant c given in (7.2.4) since the integrand used to evaluate E[|AXBX′|]h,
where E denotes the expected value, is nothing but the density of X wherein γ is replaced
by γ + h. Hence we have

E[|AXBX′|]h] = Γp(γ + q
2 + h)

Γp(γ + q
2 )

, 
(h) > −γ − q

2
+ p − 1

2
. (7.2.13)

In many calculations involving the Maxwell-Boltzmann density for the real scalar variable
case x, one has to integrate a function of x, say ν(x), over the Maxwell-Boltzmann density,
as can be seen for example in equations (4.1) and (4.2) of Mathai and Haubold (1988) in
connection with a certain reaction-rate probability integral. Thus, the expression appearing
in (7.2.13) corresponds to the integral of a power function over the Maxwell-Boltzmann
density.

This arbitrary h-th moment expression also reveals an interesting point. By expanding
the matrix-variate gamma functions, we have the following:

Γp(γ + q
2 + h)

Γp(γ + q
2 )

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )
=

p∏

j=1

E(tj )
h

where tj is a real scalar gamma random variable with parameter (γ + q
2 − j−1

2 , 1), j =
1, . . . , p, whose density is

g(j)(tj ) = 1

Γ (γ + q
2 − (j−1)

2 )
t
γ+ q

2− (j−1)
2 −1

j e−tj , tj ≥ 0, γ + q

2
− (j − 1)

2
> 0, (7.2.14)

and zero elsewhere. Thus structurally,

|AXBX′| = t1t2 · · · tp (7.2.15)

where t1, . . . , tp are independently distributed real scalar gamma random variables with tj
having the gamma density given in (7.2.14) for j = 1, . . . , p.
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7.2.4. Connection to the volume of a random parallelotope

First, observe that |AXBX′| = |(A 1
2XB

1
2 )(A

1
2XB

1
2 )′| ≡ |UU ′| where U = A

1
2XB

1
2 .

Then, note that U is p × q, q ≥ p, and of full rank p, and that the p linearly independent
rows of U , taken in the order, will then create a convex hull and a parallelotope in the
q-dimensional Euclidean space. The p rows of U represent p linearly independent vectors
in the Euclidean q-space as well as p points in the same space. In light of (7.2.14), these
random points are gamma distributed, that is, the joint density of the p vectors or the p ran-
dom points is the real rectangular matrix-variate density given in (7.2.5), and the volume
content of the parallelotope created by these p random points is |AXBX′| 12 . Accordingly,
(7.2.13) represents the (2h)-th moment of the random volume of the p-parallelotope gener-
ated by the p linearly independent rows of A

1
2XB

1
2 . The geometrical probability problems

considered in the literature usually pertain to random volumes generated by independently
distributed isotropic random points, isotropic meaning that their associated density is in-
variant with respect to orthonormal transformations or rotations of the coordinate axes. For
instance, the density given in (7.2.9) constitutes an example of isotropic form. The distri-
butions of random geometrical configurations is further discussed in Chap. 4 of Mathai
(1999).

7.2.5. Pathway to real matrix-variate gamma and Maxwell-Boltzmann densities

Consider a model of the following form for a p × q, q ≥ p, matrix X of full rank p:

f10(X) = c10|AXBX′|γ |I − a(1 − α)A
1
2XBX′A

1
2 | η

1−α , α < 1, (7.2.16)

for A > O, B > O, a > 0, η > 0, I − a(1 − α)A
1
2XBX′A 1

2 > O (positive definite),
and f10(X) = 0 elsewhere. It will be determined later that the parameter γ is subject to
the condition γ + q

2 >
p−1
2 . When α > 1, we let 1 − α = −(α − 1), α > 1, so that the

model specified in (7.2.16) shifts to the model

f11(X) = c11|AXBX′|γ |I + a(α − 1)A
1
2XBX′A

1
2 |− η

α−1 , α > 1 (7.2.17)

for η > 0, a > 0, A > O, B > O, and f11(X) = 0 elsewhere. Observe thatA
1
2XBX′A 1

2

is symmetric as well as positive definite when X is of full rank p and A > O, B >

O. For this model, the condition η
α−1 − γ − q

2 >
p−1
2 is required in addition to that

applying to the parameter γ in (7.2.16). Note that when f10(X) and f11(X) are taken as
statistical densities, c10 and c11 are the associated normalizing constants. Proceeding as in
the evaluation of c in (7.2.4), we obtain the following representations for c10 and c11:
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c10 = |A| q
2 |B|p

2 [a(1 − α)]p(γ+ q
2 )

Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 )Γp(

η
1−α

+ p+1
2 )

(7.2.18)

for η > 0, α < 1, a > 0, A > O, B > O, γ + q
2 >

p−1
2 ,

c11 = |A| q
2 |B|p

2 [a(α − 1)]p(γ+ q
2 )Γp(

q
2 )

π
qp
2

Γp(
η

α−1)

Γp(γ + q
2 )Γp(

η
α−1 − γ − q

2 )
(7.2.19)

for α > 1, η > 0, a > 0, A > O, B > O, γ + q
2 >

p−1
2 ,

η
α−1 − γ − q

2 >
p−1
2 . When

α → 1− in (7.2.18) and α → 1+ in (7.2.19), the models (7.2.16) and (7.2.17) converge
to the real rectangular matrix-variate gamma or Maxwell-Boltzmann density specified in
(7.2.5). This can be established by applying the following lemmas.

Lemma 7.2.1.

lim
α→1−

|I − a(1 − α)A
1
2XBX′A

1
2 | η

1−α = e−aηtr(AXBX′)

and
lim

α→1+
|I + a(α − 1)A

1
2XBX′A

1
2 |− η

α−1 = e−aηtr(AXBX′). (7.2.20)

Proof: Letting λ1, . . . , λp be the eigenvalues of the symmetric matrix A
1
2XBX′A 1

2 , we
have

|I − a(1 − α)A
1
2XBX′A

1
2 | η

1−α =
p∏

j=1

[1 − a(1 − α)λj ]
η

1−α .

However, since
lim

α→1−
[1 − a(1 − α)λj ]

η
1−α = e−aηλj ,

the product gives the sum of the eigenvalues, that is, tr(A
1
2XBX′A 1

2 ) in the exponent,
hence the result. The same result can be similarly obtained for the case α > 1. We can
also show that the normalizing constants c10 and c11 reduce to the normalizing constant
in (7.2.4). This can be achieved by making use of an asymptotic expansion of gamma
functions, namely,

Γ (z + δ) ≈ √
2π zz+δ− 1

2 e−z for |z| → ∞, δ bounded. (7.2.21)

This first term approximation is also known as Stirling’s formula.



Rectangular Matrix-Variate Distributions 505

Lemma 7.2.2.

lim
α→1−

[a(1 − α)]p(γ+ q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(
η

1−α
+ p+1

2 )
= (aη)p(γ+ q

2 )

and

lim
α→1+

[a(α − 1)]p(γ+ q
2 )

Γp(
η

α−1)

Γp(
η

α−1 − γ − q
2 )

= (aη)p(γ+ q
2 ). (7.2.22)

Proof: On expanding Γp(·) using its definition, for α > 1, we have

[a(α − 1)]p(γ+ q
2 )Γp(

η
α−1)

Γp(
η

α−1 − γ − q
2 )

= [a(α − 1)]p(γ+ q
2 )

p∏

j=1

Γ (
η

α−1 − j−1
2 )

Γ (
η

α−1 − γ − q
2 − j−1

2 )
.

Now, on applying the Stirling’s formula as given in (7.2.21) to each of the gamma functions
by taking z = η

α−1 → ∞ when α → 1+, it is seen that the right-hand side of the above

equality reduces to (aη)p(γ+ q
2 ). The result can be similarly established for the case α < 1.

This shows that c10 and c11 of (7.2.18) and (7.2.19) converge to the normalizing con-
stant in (7.2.4). This means that the models specified in (7.2.16), (7.2.17), and (7.2.5) are
all available from either (7.2.16) or (7.2.17) via the pathway parameter α. Accordingly,
the combined model, either (7.2.16) or (7.2.17), is referred to as the pathway generalized
real rectangular matrix-variate gamma density. The Maxwell-Boltzmann case corresponds
to γ = 1 and the Raleigh case, to γ = 1

2 . If either of the Maxwell-Boltzmann or Raleigh
densities is the ideal or stable density in a physical system, then these stable densities as
well as the unstable neighborhoods, described through the pathway parameter α < 1 and
α > 1, and the transitional stages, are given by (7.2.16) or (7.2.17). The original pathway
model was introduced in Mathai (2005).

For addressing other problems occurring in physical situations, one may have to in-
tegrate functions of X over the densities (7.2.16), (7.2.17) or (7.2.5). Consequently, we
will evaluate an arbitrary h-th moment of |AXBX′| in the models (7.2.16) and (7.2.17).
For example, let us determine the h-th moment of |AXBX′| with respect to the model
specified in (7.2.16):

E[|AXBX′|h] = c10

∫

X

|AXBX′|γ+h |I − a(1 − α)A
1
2XBX′A

1
2 | η

1−α dX.
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Note that the only change in the integrand, as compared to (7.2.16), is that γ is replaced
by γ + h. Hence the result is available from the normalizing constant c10, and the answer
is the following:

E[|AXBX′|h] = [a(1 − α)]−ph
Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 + h)
(7.2.23)

for 
(γ + q
2 + h) >

p−1
2 , a > 0, α < 1. Therefore

E[|a(1 − α)AXBX′|h]

= Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 + h)

=
p∏

j=1

{
Γ (γ + q

2 − j−1
2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (γ + q
2 + η

1−α
+ p+1

2 − j−1
2 )

Γ (γ + q
2 + η

1−α
+ p+1

2 − j−1
2 + h)

}

=
p∏

j=1

E
(
yh

j

)
(7.2.24)

where yj is a real scalar type-1 beta random variable with the parameters (γ + q
2 −

j−1
2 ,

η
1−α

+ p+1
2 ), j = 1, . . . , p, the yj ’s being mutually independently distributed.

Hence, we have the structural relationship

|a(1 − α)AXBX′| = y1 · · · yp . (7.2.25)

Proceeding the same way for the model (7.2.17), we have

E[|AXBX′|h] = [a(α − 1)]−ph
Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(
η

α−1 − γ − q
2 − h)

Γp(
η

α−1 − γ − q
2 )

(7.2.26)

for 
(γ + q
2 + h) >

p−1
2 , 
(

η
α−1 − γ − q

2 − h) >
p−1
2 or −(γ + q

2 ) + p−1
2 < 
(h) <

η
α−1 − γ − q

2 − p−1
2 . Thus,

E[|a(α − 1)AXBX′|h] =
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (
η

α−1 − γ − q
2 − j−1

2 − h)

Γ (
η

α−1 − γ − q
2 − j−1

2 )

=
p∏

j=1

E(zh
j ) (7.2.27)
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where zj is a real scalar type-2 beta random variable with the parameters (γ + q
2 −

j−1
2 ,

η
α−1 − γ − q

2 − j−1
2 ) for j = 1, . . . , p, the zj ’s being mutually independently

distributed. Thus, for α > 1, we have the structural representation

|a(α − 1)AXBX′| = z1 · · · zp . (7.2.28)

As previously explained, one can consider the p linearly independent rows of A
1
2XB

1
2

as p vectors in the Euclidean q-space. Then, these p vectors are jointly distributed as
rectangular matrix-variate type-2 beta, and E[|AXBX′|h] = E[|AXBX′| 12 ]2h is the (2h)-
th moment of the volume of the random parallelotope generated by these p q-vectors for
q > p. In this case, the random points will be called type-2 beta distributed random points.

The real Maxwell-Boltzmann case will correspond γ = 1 and the Raleigh case, to
γ = 1

2 , and all the above extensions and properties will apply to both of these distributions.

7.2.6. Multivariate gamma and Maxwell-Boltzmann densities, pathway model

Consider the density given in (7.2.16) for the case p = 1. In this instance, the p × p

constant matrix A is 1 × 1 and we shall let A = b > 0, a positive real scalar quantity.
Then for α < 1, (7.2.16) reduces to the following where X is 1 × q of the form X =
(x1, . . . , xq), − ∞ < xj < ∞, j = 1, . . . , q:

f12(X) = b
q
2 |B| 12 [a(1 − α)](γ+ q

2 )
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + η

1−α
+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)

× [bXBX′]γ [1 − a(1 − α)bXBX′] η
1−α (7.2.29)

for b > 0, B = B ′ > O, a > 0, η > 0, γ + q
2 > 0, − ∞ < xj < ∞, j =

1, . . . , q, 1 − a(1 − α)bXBX′ > 0, α < 1, and f12 = 0 elsewhere. Note that

XBX′ = (x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠

is a real quadratic form whose associated matrix B is positive definite. Letting the 1 × q

vector Y = XB
1
2 , the density of Y when α < 1 is given by

f13(Y ) dY = bγ+ q
2 [a(1 − α)](γ+ q

2 )
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + η

1−α
+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)

× [(y2
1 + · · · + y2

q)]γ [1 − a(1 − α)b(y2
1 + · · · + y2

q)]
η

1−α dY, (7.2.30)
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for b > 0, γ + q
2 > 0, η > 0, − ∞ < yj < ∞, j = 1, . . . , q, 1 − a(1 − α)b(y2

1 +
· · · + y2

q) > 0, and f13 = 0 elsewhere, which will be taken as the standard form of the
real multivariate gamma density in its pathway generalized form, and for γ = 1, it will
be the real pathway generalized form of the Maxwell-Boltzmann density in the standard
multivariate case. For α > 1, the corresponding standard form of the real multivariate
gamma and Maxwell-Boltzmann densities is given by

f14(Y )dY = bγ+ q
2 [a(α − 1)](γ+ q

2 )
Γ (

q
2 )

π
q
2

Γ (
η

α−1)

Γ (γ + q
2 )Γ (

η
α−1 − γ − q

2 )

× [(y2
1 + · · · + y2

q)]γ [1 + a(α − 1)b(y2
1 + · · · + y2

q)]−
η

α−1 dY. (7.2.31)

for b > 0, γ + q
2 > 0, a > 0, η > 0, η

α−1 −γ − q
2 > 0, −∞ < yj < ∞, j = 1, . . . , q,

and f14 = 0 elsewhere. This will be taken as the pathway generalized real multivariate
gamma density for α > 1, and for γ = 1, it will be the standard form of the real pathway
extended Maxwell-Boltzmann density for α > 1. Note that when α → 1− in (7.2.30) and
α → 1+ in (7.2.31), we have

f15(Y )dY = bγ+ q
2 (aη)(γ+ q

2 )
Γ (

q
2 )

π
q
2 Γ (γ + q

2 )

× [(y2
1 + · · · + y2

q)]γ e−aηb(y21+···+y2q )dY, (7.2.32)

for b > 0, a > 0, η > 0, γ + q
2 > 0, and f15 = 0 elsewhere, which for γ = 1, is the real

multivariate Maxwell-Bolzmann density in the standard form. From (7.2.30), (7.2.31), and
thereby from (7.2.32), one can obtain the density of u = y2

1 + · · ·+ y2
q , either by using the

general polar coordinate transformation or the transformation of variables technique, that
is, going from dY to dS with S = YY ′, Y being 1× p. Then, the density of u for the case
α < 1 is

f16(u) = bγ+ q
2 [a(1−α)]γ+ q

2
Γ (γ + q

2 + η
1−α

+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)
uγ+ q

2−1[1−a(1−α)bu] η
1−α , α < 1,

(7.2.33)
for b > 0, a > 0, η > 0, α < 1, γ + q

2 > 0, 1 − a(1 − α)bu > 0, and f16 = 0
elsewhere, the density of u for α > 1 being

f17(u) = bγ+ q
2 [a(α−1)]γ+ q

2
Γ (

η
α−1)

Γ (γ + q
2 )Γ (

η
α−1 − γ − q

2 )
uγ+ q

2−1[1+a(α−1)bu]− η
α−1 , α > 1,

(7.2.34)
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for b > 0, a > 0, η > 0, γ + q
2 > 0, η

α−1 − γ − q
2 > 0, u ≥ 0, and f17 = 0 elsewhere.

Observe that as α → 1, both (7.2.33) and (7.2.34) converge to the form

f18(u) = (aηb)γ+ q
2

Γ (γ + q
2 )

uγ+ q
2−1e−abηu (7.2.35)

for a > 0, b > 0, η > 0, u ≥ 0, and f18 = 0 elsewhere. For γ = 1
2 , we have the

corresponding Raleigh cases.
Letting γ = 1 and q = 1 in (7.2.32), we have

f19(y1) = b
3
2

Γ (γ + 1
2)

(y2
1)

γ e−by21 = 2b
3
2√
π

y2
1e

−by21 , −∞ < y1 < ∞, b > 0

= 4b
3
2√
π

y2
1e

−by21 , 0 ≤ y1 < ∞, b > 0, (7.2.36)

and f19 = 0 elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
we let γ = 1

2 and p = 1, q = 1 in (7.2.32), which results in the following density:

f20(y1) = b(y2
1)

1
2 e−by21 , − ∞ < y1 < ∞, b > 0

= 2b|y1| e−by21 , 0 ≤ y1 < ∞, b > 0, (7.2.37)

and f20 = 0 elsewhere.

7.2.7. Concluding remarks

There exist natural phenomena that are suspected to involve an underlying distribution
which is not Maxwell-Boltzman but may be some deviation therefrom. In such instances,
it is preferable to model the collected data by means of the pathway extended model pre-
viously specified for p = 1, q = 1 (real scalar case), p = 1 (real multivariate case)
and the general matrix-variate case. The pathway parameter α will capture the Maxwell-
Boltzmann case, the neighboring models described by the pathway model for α < 1 and
for α > 1 and the transitional stages when moving from one family of functions to another,
and thus, to all three different families of functions. Incidentally, for γ = 0, one has the
rectangular matrix-variate Gaussian density given in (7.2.5) and its pathway extension in
(7.2.16) and (7.2.17) or the general extensions in the standard forms in (7.2.30), (7.2.31),
and (7.2.32) wherein γ = 0. The structures in (7.2.24), (7.2.27), and (7.2.28) suggest that
the corresponding densities can also be written in terms of G- and H-functions. For the
theory and applications of the G- and H-functions, the reader is referred to Mathai (1993)
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and Mathai et al. (2010), respectively. The complex analogues of some matrix-variate dis-
tributions, including the matrix-variate Gaussian, were introduced in Mathai and Provost
(2006). Certain bivariate distributions are discussed in Balakrishnan and Lai (2009) and
some general method of generating real multivariate distributions are presented in Mar-
shall and Olkin (1967).

Example 7.2.4. Let X = (xij ) be a real p × q, q ≥ p, matrix of rank p, where the xij ’s
are distinct real scalar variables. Let the constant matrices A = b > 0 be 1×1 and B > O

be q × q. Consider the following generalized multivariate Maxwell-Boltzmann density

f (X) = c |AXBX′|γ e−[tr(AXBX′)]δ

for δ > 0, A = b > 0, X = [x1, . . . , xq]. Evaluate c if f (X) is a density.

Solution 7.2.4. Since X is 1×q, |AXBX′| = b[XBX′] where XBX′ is a real quadratic
form. For f (X) to be a density, we must have

1 =
∫

X

f (X)dX = c bγ

∫

X

[XBX′]γ e−[(bXBX′)]δdX. (i)

Let us make the transformations Y = XB
1
2 and s = YY ′. Then (i) reduces to the following:

1 = c bγ π
q
2

Γ (
q
2 )

|B|− 1
2

∫ ∞

0
sγ+ q

2−1e−(bs)δds. (ii)

Letting t = bδsδ, b > 0, s > 0 ⇒ ds = 1
δ

t
1
δ
−1

b
dt , (ii) becomes

1 = c
π

q
2

δ b
q
2 Γ (

q
2 )|B| 12

∫ ∞

0
t

γ
δ
+ q

2δ −1e−tdt

= c
π

q
2 Γ (

γ
δ

+ q
2δ )

δ b
q
2 Γ (

q
2 )|B| 12

.

Hence,

c = δ b
q
2 Γ (

q
2 )|B| 12

π
q
2 Γ (

γ
δ

+ q
2δ )

.

No additional conditions are required other than γ > 0, δ > 0, q > 0, B > O. This
completes the solution.
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7.2a. Complex Matrix-Variate Gamma and Maxwell-Boltzmann Densities

The matrix-variate gamma density in the real positive definite matrix case was defined
in equation (5.2.4) of Sect. 5.2. The corresponding matrix-variate gamma density in the
complex domain was given in Eq. (5.2a.4). Those distributions will be extended to the
rectangular matrix-variate cases in this section. A particular case of the rectangular matrix-
variate gamma in the complex domain will be called the Maxwell-Boltzmann density in
the complex matrix-variate case. Let X̃ = (x̃ij ) be a p × q, q ≥ p, rectangular matrix of
rank p in the complex domain whose elements x̃ij are distinct scalar complex variables.
Let |det(·)| denote the absolute value of the determinant of (·). Let A of order p × p and
B of order q × q be real positive definite or Hermitian positive definite constant matrices.
The conjugate transpose of X̃ will be denoted by X̃∗. Consider the function:

f̃ (X̃)dX̃ = c̃ |det(AX̃BX̃∗)|γ e−tr(AX̃BX̃∗)dX̃ (7.2a.1)

for A > O, B > O, 
(γ + q) > p − 1 where c̃ is the normalizing constant so that f̃ (X̃)

is a statistical density. One can evaluate c̃ by proceeding as was done in the real case. Let

Ỹ = A
1
2 X̃B

1
2 ⇒ dỸ = |det(A)|q |det(B)|pdX̃,

the Jacobian of this matrix transformation being provided in Chap. 1 or Mathai (1997).
Then, f̃ (X̃) becomes

f̃1(Ỹ ) dỸ = c̃ |det(A)|−q |det(B)|−p|det(Ỹ Ỹ ∗)|γ e−tr(Ỹ Ỹ ∗)dỸ . (7.2a.2)

Now, letting

S̃ = Ỹ Ỹ ∗ ⇒ dỸ = πqp

Γ̃p(q)
|det(S̃)|q−pdS̃

by applying Result 4.2a.3 where Γ̃p(q) is the complex matrix-variate gamma function, f̃1
changes to

f̃2(S̃) dS̃ = c̃ |det(A)|−q |det(B)|−p πqp

Γ̃p(q)

× |det(S̃)|γ+q−pe−tr(S̃)dS̃. (7.2a.3)
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Finally, integrating out S̃ by making use of a complex matrix-variate gamma integral, we
have Γ̃p(γ +q) for 
(γ +q) > p−1. Hence, the normalizing constant c̃ is the following:

c̃ = |det(A)|q |det(B)|p
πqp

Γ̃p(q)

Γ̃p(γ + q)
, 
(γ + q) > p − 1, A > O, B > O. (7.2a.4)

Example 7.2a.1. Evaluate the normalizing constant in the density in (7.2a.1) if γ =
2, q = 3, p = 2,

A =
[

3 1 + i

1 − i 2

]

, B =
⎡

⎣
3 0 i

0 2 1 + i

−i 1 − i 2

⎤

⎦ .

Solution 7.2a.1. Note that A and B are both Hermitian matrices since A = A∗ and

B = B∗. The leading minors of A are |(3)| = 3 > 0,

∣
∣
∣
∣

3 1 + i

1 − i 2

∣
∣
∣
∣ = (3)(2) − (1 +

i)(1 − i) = 4 > 0 and hence, A > O (positive definite). The leading minors of B

are |(3)| = 3 > 0,

∣
∣
∣
∣
3 0
0 2

∣
∣
∣
∣ = 6 > 0, |B| = 3

∣
∣
∣
∣

2 1 + i

1 − i 2

∣
∣
∣
∣ + 0 + i

∣
∣
∣
∣
0 2

−i 1 − i

∣
∣
∣
∣ =

3(4 − 2) + i(2i) = 4 > 0. Hence B > O and |B| = 4. The normalizing constant

c̃ = |det(A)|q |det(B)|p
πpq

Γ̃p(q)

Γ̃p(γ + q)

= (4)3(4)2

π6

Γ̃2(3)

Γ̃2(5)
= 45

π6

πΓ (3)Γ (2)

πΓ (5)Γ (4)

= 27

32π6
.

This completes the computations.

7.2a.1. Extension of the Matrix-Variate Gamma Density in the Complex Domain

Consider the density of X̃ is given in (7.2a.1) with c̃ given in (7.2a.4). The density of
Ỹ = A

1
2 X̃B

1
2 is given by

f1(Ỹ ) = Γ̃p(q)

πqpΓ̃p(γ + q)
|det(Ỹ Ỹ ∗)|γ e−tr(Ỹ Ỹ ∗) (7.2a.5)

for 
(γ + q) > p − 1, and f̃1 = 0 elsewhere, and the density of S̃ = Ỹ Ỹ ∗ is
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f̃2(S̃) = 1

Γ̃p(γ + q)
|det(S̃)|γ+q−pe−tr(S̃), 
(γ + q) > p − 1, (7.2a.6)

and f̃2 = 0 elsewhere. Then, the density given in (7.2a.1), namely, f̃ (X̃) for γ = 1 will
be called the Maxwell-Boltzmann density for the complex rectangular matrix-variate case
since for p = 1 and q = 1 in the real scalar case, the density corresponds to the case
γ = 1, and (7.2a.1) for γ = 1

2 will be called complex rectangular matrix-variate Raleigh
density.

7.2a.2. The multivariate gamma density in the complex matrix-variate case

Consider the case p = 1 and A = b > 0 where b is a real positive scalar as the p × p

matrix A is assumed to be Hermitian positive definite. Then, X̃ is 1 × q and

AX̃BX̃∗ = bX̃BX̃∗ = b(x̃1, . . . , x̃q)B

⎛

⎜
⎝

x̃∗
1
...

x̃∗
q

⎞

⎟
⎠

is a positive definite Hermitian form, an asterisk denoting only the conjugate when the
elements are scalar quantities. Thus, when p = 1 and A = b > 0, the density f̃ (X̃)

reduces to

f̃3(X̃) = bγ+q |det(B)| Γ̃ (q)

πqΓ̃ (γ + q)
|det(X̃BX̃∗)|γ e−b(X̃BX̃∗) (7.2a.7)

for X̃ = (x̃1, . . . , x̃q), B = B∗ > O, b > 0, 
(γ + q) > 0, and f̃3 = 0 elsewhere.

Letting Ỹ ∗ = B
1
2 X̃∗, the density of Ỹ is the following:

f̃4(Ỹ ) = bγ+qΓ̃ (q)

πqΓ̃ (γ + q)
(|ỹ1|2 + · · · + |ỹq |2)γ e−b(|ỹ1|2+···+|ỹq |2) (7.2a.8)

for b > 0, 
(γ + q) > 0, and f̃4 = 0 elsewhere, where |ỹj | is the absolute value or
modulus of the complex quantity ỹj . We will take (7.2a.8) as the complex multivariate
gamma density; when γ = 1, it will be referred to as the complex multivariate Maxwell-
Boltzmann density, and when γ = 1

2 , it will be called complex multivariate Raleigh den-
sity. These densities are believed to be new.

Let us verify by integration that (7.2a.8) is indeed a density. First, consider the trans-
formation s = Ỹ Ỹ ∗. In view of Theorem 4.2a.3, the integral over the Stiefel mani-
fold gives dỸ = πq

Γ̃ (q)
s̃q−1ds̃, so that πq

Γ̃ (q)
is canceled. Then, the integral over s̃ yields
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b−(γ+q)Γ̃ (γ + q), 
(γ + q) > 0, and hence it is verified that (7.2a.8) is a statistical
density.

7.2a.3. Arbitrary moments, complex case

Let us determine the h-th moment of u = |det(AX̃BX̃∗)| for an arbitrary h, that is,
the h-th moment of the absolute value of the determinant of the matrix AX̃BX̃∗ or its
symmetric form A

1
2 X̃BX̃∗A 1

2 , which is

E[|det(AX̃BX̃∗)|h = c̃

∫

X̃

|det(AX̃BX̃)|h+γ e−tr(A
1
2 X̃BX̃∗A

1
2 )dX̃. (7.2a.9)

Observe that the only change, as compared to the total integral, is that γ is replaced by
γ + h, so that the h-th moment is available from the normalizing constant c̃. Accordingly,

E[uh] = Γ̃p(γ + q + h)

Γ̃p(γ + q)
, 
(γ + q + h) > p − 1, (7.2a.10)

=
p∏

j=1

Γ (γ + q + h − (j − 1))

Γ (γ + q − (j − 1))

= E(uh
1)E(uh

2) · · · E(uh
p) (7.2a.11)

where the uj ’s are independently distributed real scalar gamma random variables with pa-
rameters (γ + q − (j − 1), 1), j = 1, . . . , p. Thus, structurally u = |det(AX̃BX̃∗)| is
a product of independently distributed real scalar gamma random variables with param-
eters (γ + q − (j − 1), 1), j = 1, . . . , p. The corresponding result in the real case is
that |AXBX′| is structurally a product of independently distributed real gamma random
variables with parameters (γ + q

2 − j−1
2 , 1), j = 1, . . . , p, which can be seen from

(7.2.15).

7.2a.4. A pathway extension in the complex case

A pathway extension is also possible in the complex case. The results and properties
are parallel to those obtained in the real case. Hence, we will only mention the pathway
extended density. Consider the following density:

f̃5(X̃) = c̃1|det(A 1
2 X̃BX̃∗A

1
2 )|γ |det(I − a(1 − α)A

1
2 X̃BX̃∗A

1
2 )| η

1−α (7.2a.12)

for a > 0, α < 1, I − a(1 − α)A
1
2 X̃BX̃∗A 1

2 > O (positive definite), A > O, B >

O, η > 0, 
(γ + q) > p − 1, and f̃5 = 0 elsewhere. Observe that (7.2a.12) remains in
the generalized type-1 beta family of functions for α < 1 (type-1 and type-2 beta densities
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in the complex rectangular matrix-variate cases will be considered in the next sections). If
α > 1, then on writing 1 − α = −(α − 1), α > 1, the model in (7.2a.12) shifts to the
model

f̃6(X̃) = c̃2|det(A 1
2 X̃BX̃∗A

1
2 )|γ |det(I + a(α − 1)A

1
2 X̃BX̃∗A

1
2 )|− η

α−1 (7.2a.13)

for a > 0, α > 1, A > O, B > O, A
1
2 X̃BX̃∗A 1

2 > O, η > 0, 
(
η

α−1 − γ − q) >

p − 1, 
(γ + q) > p − 1, and f̃6 = 0 elsewhere, where c̃2 is the normalizing constant,
different from c̃1. When α → 1, both models (7.2a.12) and (7.2a.13) converge to the
model f̃7 where

f̃7(X̃) = c̃3|det(A 1
2 X̃BX̃∗A

1
2 )|γ e−a η tr(A

1
2 X̃BX̃∗A

1
2 ) (7.2a.14)

for a > 0, η > 0, A > O, B > O, 
(γ + q) > p − 1, A
1
2 X̃BX̃∗A 1

2 > O, and f̃7 = 0
elsewhere. The normalizing constants can be evaluated by following steps parallel to those
used in the real case. They respectively are:

c̃1 = |det(A)|q |det(B)|p[a(1 − α)]p(γ+q) Γ̃p(q)

πqp

Γ̃p(γ + q + η
1−α

+ p)

Γ̃p(γ + q)Γ̃p(
η

1−α
+ p)

(7.2a.15)

for η > 0, a > 0, α < 1, A > O, B > O, 
(γ + q) > p − 1;

c̃2 = |det(A)|q |det(B)|p[a(α − 1)]p(γ+q) Γ̃p(q)

πqp

Γ̃p(
η

α−1)

Γ̃p(γ + q)Γ̃p(
η

α−1 − γ − q)
(7.2a.16)

for a > 0, α > 1, η > 0, A > O, B > O, 
(γ +q) > p−1, 
(
η

α−1 −γ −q) > p−1;

c̃3 = (aη)p(γ+q)|det(A)|q |det(B)|p Γ̃p(q)

πqpΓ̃p(γ + q)
(7.2a.17)

for a > 0, η > 0, A > O, B > O, 
(γ + q) > p − 1.

7.2a.5. The Maxwell-Boltzmann and Raleigh cases in the complex domain

The complex counterparts of the Maxwell-Boltzmann and Raleigh cases may not be
available in the literature. Their densities can be derived from (7.2a.8). Letting p = 1 and
q = 1 in (7.2a.8), we have

f̃8(ỹ1) = bγ+1

πΓ̃ (γ + 1)
[|ỹ1|2]γ e−b|ỹ1|2, ỹ1 = y11 + iy12, i = √

(−1),

= bγ+1

πΓ̃ (γ + 1)
[y2

11 + y2
12]γ e−b(y211+y212) (7.2a.18)
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for b > 0, 
(γ + 1) > 0, − ∞ < y1j < ∞, j = 1, 2, and f̃8 = 0 elsewhere. We
may take γ = 1 as the Maxwell-Boltzmann case and γ = 1

2 as the Raleigh case. Then, for
γ = 1, we have

f̃9(ỹ1) = b2

π
|ỹ1|2e−b|ỹ1|2, ỹ1 = y11 + iy12

for b > 0, − ∞ < y1j < ∞, j = 1, 2, and f̃9 = 0 elsewhere. Note that in the

real case y12 = 0 so that the functional part of f̃6 becomes y2
11e

−by211, − ∞ < y11 < ∞.
However, the normalizing constants in the real and complex cases are evaluated in different
domains. Observe that, corresponding to (7.2a.18), the normalizing constant in the real
case is bγ+ 1

2 /[π 1
2Γ (γ + 1

2)]. Thus, the normalizing constant has to be evaluated separately.
Consider the integral

∫ ∞

−∞
y2
11e

−by211dy11 = 2
∫ ∞

0
y2
11e

−by211dy11 =
∫ ∞

0
u

3
2−1e−budu =

√
π

2b
3
2

.

Hence,

f10(y11) = 2b
3
2√
π

y2
11e

−by211, − ∞ < y11 < ∞, b > 0,

= 4b
3
2√
π

y2
11e

−by211, 0 ≤ y11 < ∞, b > 0, (7.2a.19)

and f10 = 0 elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
letting γ = 1

2 in (7.2a.18) yields

f̃11(ỹ1) = b
3
2

πΓ (32)
[|ỹ1|2] 12 e−b(|ỹ1|2), b > 0,

= 2b
3
2

π
3
2

[y2
11 + y2

12]
1
2 e−b(y211+y212), − ∞ < y1j < ∞, j = 1, 2, b > 0,

(7.2a.20)

and f̃11 = 0 elsewhere. Then, for y12 = 0, the functional part of f̃11 is |y11| e−by211 with
−∞ < y11 < ∞. The integral over y11 gives

∫ ∞

−∞
|y11| e−by211dy11 = 2

∫ ∞

0
y11 e

−by211dy11 = b−1.
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Thus, in the Raleigh case,

f12(y11) = b |y11| e−by211, − ∞ < y11 < ∞, b > 0,

= 2 b y11 e
−by211, 0 ≤ y11 < ∞, b > 0, (7.2a.21)

and f12 = 0 elsewhere. The normalizing constant in (7.2a.18) can be verified by making
use of the polar coordinate transformation: y11 = r cos θ, y12 = r sin θ , so that dy11 ∧
dy12 = r dr ∧ dθ , 0 < θ ≤ 2π, 0 ≤ r < ∞. Then,

∫ ∞

−∞

∫ ∞

−∞
[y2

11 + y2
12]γ e−(y211+y212)dy11 ∧ dy12 = 2π

∫ ∞

0
(r2)γ e−br2rdr

= π b−(γ+1) Γ (γ + 1)

for b > 0, 
(γ + 1) > 0.

Exercises 7.2

7.2.1. Supply a proof to (7.2.9) by using Theorem 4.2.3.

7.2.2. Derive the exact density of the determinant in (7.2.15) for p = 2.

7.2.3. Verify the results in (7.2.18) and (7.2.19).

7.2.4. Derive the normalizing constants c̃1 in (7.2a.12) and c̃2 in (7.2a.13).

7.2.5. Derive c̃3 in (7.2a.14) by integrating out over X̃.

7.2.6. Approximate c̃1 and c̃2 of Exercise 7.2.4 by making use of Stirling’s approxima-
tion, and then show that the result agrees with that in Exercise 7.2.5.

7.2.7. Derive (state and prove) for the complex case the lemmas corresponding to Lem-
mas 7.2.1 and 7.2.2.

7.3. Real Rectangular Matrix-Variate Type-1 and Type-2 Beta Densities

Let us begin with the real case. Let A > O be p × p and B > O be q × q where A

and B are real constant matrices. Let X = (xij ) be a p × q, q ≥ p, matrix of distinct real

scalar variables xij ’s as its elements, X being of full rank p. Then, A
1
2XBX′A 1

2 > O is

real positive definite where A
1
2 is the positive definite square root of the positive definite

matrix A. Let |(·)| represent the determinant of (·) when (·) is real or complex, and |det(·)|
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be the absolute value of the determinant of (·) when (·) is in the complex domain. Consider
the following density:

g1(X) = C1|A 1
2XBX′A

1
2 |γ |I − A

1
2XBX′A

1
2 |β−p+1

2 (7.3.1)

for A > O, B > O, I −A
1
2XBX′A 1

2 > O, 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , and g1 = 0

elsewhere, where C1 is the normalizing constant. Accordingly, U = A
1
2XBX′A 1

2 > O

and I−U > O orU and I−U are both positive definite. We nowmake the transformations
Y = A

1
2XB

1
2 and S = YY ′. Then, proceeding as in the case of the rectangular matrix-

variate gamma density discussed in Sect. 7.2, and evaluating the final part involving S

with the help of a real positive definite matrix-variate type-1 beta integral, we obtain the
following normalizing constant:

C1 = |A| q
2 |B|p

2
Γp(

q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

(7.3.2)

for A > O, B > O, 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 . Usually the parameters associated

with a statistical density are real, which is the case for γ and β. Nonetheless, the conditions
will be stated for general complex parameters. When the density of X is as given in g1, the
density of Y = A

1
2XB

1
2 is given by

g2(Y ) = Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

|YY ′|γ |I − YY ′|β−p+1
2 (7.3.3)

for 
(γ + q
2 ) >

p−1
2 , YY ′ > O, I − YY ′ > O, and g2 = 0 elsewhere. When X has the

density specified in (7.3.1), the density of S = YY ′ is given by

g3(S) = Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

|S|γ+ q
2−p+1

2 |I − S|β−p+1
2 (7.3.4)

for 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , S > O, I − S > O, and g3 = 0 elsewhere,

which is the usual real matrix-variate type-1 beta density. Observe that the density g1(X)

is also available from the pathway form of the real matrix-variate gamma case introduced
in Sect. 7.2.

Example 7.3.1. Let U1 = A
1
2XBX′A 1

2 , U2 = XBX′, U3 = B
1
2X′AXB

1
2 and U4 =

X′AX. IfX has the rectangular matrix-variate type-1 beta density given in (7.3.1), evaluate
the densities of U1, U2, U3 and U4 whenever possible.
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Solution 7.3.1. The matrix U1 is already present in the density of X, namely (7.3.1).
Now, we have to convert the density of X into the density of U1. Consider the transfor-
mations Y = A

1
2XB

1
2 , S = YY ′ = U1 and the density of S is given in (7.3.4). Thus, U1

has a real matrix-variate type-1 beta density with the parameters γ + q
2 and β. Now, on

applying the same transformations as above with A = I , the density appearing in (7.3.4),
which is the density of U2, becomes

g3(U2)dU2 = Γp(γ + q
2 + β)

Γp(γ + q
2 )Γ (β)

|A|γ+ q
2 |U2|γ+ q

2−p+1
2 |I − AU2|β−p+1

2 dU2 (i)

for 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , A > O, U2 > O, I − A

1
2U2A

1
2 > O, and

zero elsewhere, so that U2 has a scaled real matrix-variate type-1 beta distribution with
parameters (γ + q

2 , β) and scaling matrixA > O. For q > p, bothX′AX andB
1
2X′AXB

1
2

are positive semi-definite matrices whose determinants are thus equal to zero. Accordingly,
the densities do not exist whenever q > p. When q = p, U3 has a q×q real matrix-variate
type-1 beta distribution with parameters (γ + p

2 , β) and U4 is a scaled version of a type-1
beta matrix variable whose density is of the form given in (i) wherein B is the scaling
matrix and p and q are interchanged. This completes the solution.

7.3.1. Arbitrary moments

The h-th moment of the determinant of U = A
1
2XBX′A 1

2 with h being arbitrary, is
available from the normalizing constant given in (7.3.2) on observing that when the h-th
moment is taken, the only change is that γ turns into γ + h. Thus,

E[|U |h] = E[|YY ′|h] = E[|S|h]
= Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + β)

Γp(γ + q
2 + β + h)

(7.3.5)

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (γ + q
2 + β − j−1

2 )

Γ (γ + q
2 + β − j−1

2 + h)
(7.3.6)

= E[uh
1]E[uh

2] · · · E[uh
p] (7.3.7)

where u1, . . . , up are mutually independently distributed real scalar type-1 beta random
variables with the parameters (γ + q

2 − j−1
2 , β), j = 1, . . . , p, provided 
(β) >

p−1
2

and 
(γ + q
2 ) >

p−1
2 .
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7.3.2. Special case: p = 1

For the case p = 1, let the positive definite 1 × 1 matrix A be the scalar b > 0 and X

which is 1 × q, be equal to (x1, . . . , xq). Then,

AXBX′ = b(x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠

is a real quadratic form, the matrix of the quadratic form being B > O. Letting Y = XB
1
2 ,

dY = |B| 12 dX, and the density of Y , denoted by g4(Y ), is then given by

g4(Y ) = bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

|YY ′|γ

× |I − bYY ′|β−1, YY ′ > O, I − bYY ′ > O, 
(γ + q

2
) > 0, 
(β) > 0

= bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

[y2
1 + · · · + y2

q ]γ

× [1 − b(y2
1 + · · · + y2

q)]β−1, Y = (y1, . . . , yq), (7.3.8)

for b > 0, 
(γ + 1) > 0, 
(β) > 0, 1 − b(y2
1 + . . . + y2

q) > 0, and g4 = 0 elsewhere.
The form of the density in (7.3.8) presents some interest as it appears in various areas of
research. In reliability studies, a popular model for the lifetime of components corresponds
to (7.3.8) wherein γ = 0 in both the scalar and multivariate cases. When independently
distributed isotropic random points are considered in connection with certain geometrical
probability problems, a popular model for the distribution of the random points is the type-
1 beta form or (7.3.8) for γ = 0. Earlier results obtained assuming that γ = 0 and the
new case where γ �= 0 in geometrical probability problems are discussed in Chapter 4 of
Mathai (1999). We will take (7.3.8) as the standard form of the real rectangular matrix-
variate type-1 beta density for the case p = 1 in a p × q, q ≥ p, real matrix X of rank
p. For verifying the normalizing constant in (7.3.8), one can apply Theorem 4.2.3. Letting

S = YY ′, dY = π
q
2

Γ (
q
2 )

|S| q
2−1dS, which once substituted to dY in (7.3.8) yields a total

integral equal to one upon integrating out S with the help of a real matrix-variate type-1
beta integral (in this case a real scalar type-1 beta integral); accordingly, the constant part
in (7.3.8) is indeed the normalizing constant. In this case, the density of S = YY ′ is given
by

g5(S) = bγ+ q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

|S|γ+ q
2−1|I − bS|β−1 (7.3.9)
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for S > O, b > 0, 
(γ + q
2 ) > 0, 
(β) > 0, and g5 = 0 elsewhere. Observe that this S

is actually a real scalar variable.
As obtained from (7.3.8), the type-1 beta form of the density in the real scalar case,

that is, for p = 1 and q = 1, is

g6(y1) = bγ+ 1
2

Γ (γ + 1
2 + β)

Γ (γ + 1
2)Γ (β)

[y2
1 ]γ [1 − by2

1 ]β−1, (7.3.10)

for b > 0, β > 0, γ + 1
2 > 0, − 1√

b
< y1 < 1√

b
, and g6 = 0 elsewhere. When the

support is 0 < y1 < 1√
b
, the above density which is symmetric, is multiplied by two.

7.3a. Rectangular Matrix-Variate Type-1 Beta Density, Complex Case

Consider the following function:

g̃1(X̃) = C̃1|det(A 1
2 X̃BX̃∗A

1
2 )|γ |det(I − A

1
2 X̃BX̃∗A

1
2 )|β−p (7.3a.1)

for A > O, B > O, 
(β) > p − 1, 
(γ + q) > p − 1, I − A
1
2 X̃BX̃∗A 1

2 > O, and
g̃1 = 0 elsewhere. The normalizing constant can be evaluated by proceeding as in the real
rectangular matrix-variate case. Let Ỹ = A

1
2 X̃B

1
2 so that S̃ = Ỹ Ỹ ∗, and then integrate

out S̃ by using a complex matrix-variate type-1 beta integral, which yields the following
normalizing constant:

C̃1 = |det(A)|q |det(B)|p Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
(7.3a.2)

for 
(γ + q) > p − 1, 
(β) > p − 1, A > O, B > O.

7.3a.1. Different versions of the type-1 beta density, the complex case

The densities that follow can be obtained from that specified in (7.3a.1) and certain
related transformations. The density of Ỹ = A

1
2 X̃B

1
2 is given by

g̃2(Ỹ ) = Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(Ỹ Ỹ ∗)|γ |det(I − Ỹ Ỹ ∗)|β−p (7.3a.3)

for 
(β) > p − 1, 
(γ + q) > p − 1, I − Ỹ Ỹ ∗ > O, and g̃2 = 0 elsewhere. The density
of S̃ = Ỹ Ỹ ∗ is the following:

g̃3(S̃) = Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(S̃)|γ+q−p|det(I − S̃)|β−p (7.3a.4)

for 
(β) > p − 1, 
(γ + q) > p − 1, S̃ > O, I − S̃ > O, and g̃3 = 0 elsewhere.
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7.3a.2. Multivariate type-1 beta density, the complex case

When p = 1, X̃ is the 1×q vector (x̃1, . . . , x̃q) and the 1×1 matrix A will be denoted
by b > 0. The resulting density will then have the same structure as that given in (7.3a.1)
with p replaced by 1 and A replaced by b > 0:

g̃4(X̃) = C̃2|det(X̃BX̃∗)|γ |det(I − bX̃BX̃∗)|β−1 (7.3a.5)

for B > O, b > 0, 
(β) > p − 1, 
(γ + q) > p − 1, I − bX̃BX̃∗ > O, and g̃4 = 0
elsewhere, where the normalizing constant C̃2 is

C̃2 = bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
(7.3a.6)

for b > 0, B > O, 
(β) > 0, 
(γ + q) > 0. Letting Ỹ = X̃B
1
2 so that dỸ =

|det(B)|dX̃, the density of Ỹ reduces to

g̃5(Ỹ ) = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
|det(Ỹ Ỹ ∗)|γ |det(I − bỸ Ỹ ∗)|β−1 (7.3a.7)

= bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
[|ỹ1|2 + · · · + |ỹq |2]γ [1 − b(|ỹ1|2 + · · · + |ỹq |2)]β−1

(7.3a.8)

for 
(β) > 0, 
(γ + q) > 0, 1− b(|ỹ1|2 + · · · + |ỹq |2) > 0, and g̃5 = 0 elsewhere. The
form appearing in (7.3a.8) is applicable to several problems occurring in various areas, as
was the case for (7.3.8) in the real domain. However, geometrical probability problems do
not appear to have yet been formulated in the complex domain. Let S̃ = Ỹ Ỹ ∗, S̃ being in
this case a real scalar denoted by s whose density is

g̃6(s) = bγ+q Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
sγ+q−1(1 − bs)β−1, b > 0 (7.3a.9)

for 
(β) > 0, 
(γ + q) > 0, s > 0, 1 − bs > 0, and g̃6 = 0 elsewhere. Thus, s is real
scalar type-1 beta random variable with parameters (γ + q, β) and scaling factor b > 0.
Note that in the real case, the distribution was also a scalar type-1 beta random variable,
but having a different first parameter, namely, γ + q

2 , its second parameter and scaling
factor remaining β and b.
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Example 7.3a.1. Express the density (7.3a.5) explicitly for b = 5, p = 1, q = 2, β =
3, γ = 4, X̃ = [x̃1, x̃2] = [x1+ iy1, x2+ iy2], where xj , yj , j = 1, 2, are real variables,
i = √

(−1), and

B =
[

3 1 + i

1 − i 1

]

.

Solution 7.3a.1. Observe that since B = B∗, B is Hermitian. Its leading minors being

|(3)| = 3 > 0 and

∣
∣
∣
∣

3 1 + i

1 − i 1

∣
∣
∣
∣ = (3)(1) − (1 + i)(1 − i) = 3 − 2 = 1 > 0, B is also

positive definite. Letting Q = X̃BX̃∗,

Q = 3(x1 + iy1)(x1 − iy1) + (1)(x2 + iy2)(x2 − iy2) + (1 + i)(x1 + iy1)(x2 − iy2)

+ (1 − i)(x2 + iy2)(x1 − iy1)

= 3(x2
1 + y2

1) + (x2
2 + y2

2) + (1 + i)[x1x2 + y1y2 − i(x1y2 − x2y1)]
+ (1 − i)[x1x2 + y1y2 − i(x2y1 − x1y2)]

= 3(x2
1 + y2

1) + (x2
2 + y2

2) + 2(x1x2 + y1y2) + 2(x1y2 − x2y1). (i)

The normalizing constant being

bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
= 56(1)

Γ (2)

π2

Γ (9)

Γ (6)Γ (3)

= 56

π2

(1!)(8!)
(5!)(2!) = 56(168)

π2
. (ii)

The explicit form of the density (7.3a.5) is thus the following:

g̃4(X̃) = 56(168)

π2
Q3[1 − 5Q]2, 1 − 3Q > 0, Q > 0,

and zero elsewhere, whereQ is given in (i). It is a multivariate generalized type-1 complex-
variate beta density whose scaling factor is 5. Observe that even though X̃ is complex,
g̃4(X̃) is real-valued.

7.3a.3. Arbitrary moments in the complex case

Consider again the density of the complex p × q, q ≥ p, matrix-variate random
variable X̃ of full rank p having the density specified in (7.3a.1). Let Ũ = A

1
2 X̃BX̃∗A 1

2 .
The h-th moment of the absolute value of the determinant of Ũ , that is, E[|det(Ũ )|h], will
now be determined for arbitrary h. As before, note that when the expected value is taken,
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the only change is that the parameter γ is replaced by γ +h, so that the moment is available
from the normalizing constant present in (7.3a.2). Thus,

E[|det(Ũ )|h] = Γ̃p(γ + q + h)

Γ̃p(γ + q)

Γ̃p(γ + q + β)

Γ̃p(γ + q + β + h)
(7.3a.10)

=
p∏

j=1

Γ (γ + q + h − (j − 1))

Γ (γ + q − (j − 1))

Γ (γ + q + β − (j − 1))

Γ (γ + q + β − (j − 1) + h)
(7.3a.11)

= E[u1]hE[u2]h · · · E[up]h (7.3a.12)

where u1, . . . , up are independently distributed real scalar type-1 beta random variables
with the parameters (γ +q−(j−1), β) for j = 1, . . . , p. The results are the same as those
obtained in the real case except that the parameters are slightly different, the parameters
being (γ + q

2 − j−1
2 , β), j = 1, . . . , p, in the real domain. Accordingly, the absolute value

of the determinant of Ũ in the complex case has the following structural representation:

|det(Ũ)| = |det(A 1
2 X̃BX̃∗A

1
2 )| = |det(Ỹ Ỹ ∗)| = |det(S̃)| = u1 · · · up (7.3a.13)

where u1, . . . , up are mutually independently distributed real scalar type-1 beta random
variables with the parameters (γ + q − (j − 1), β), j = 1, . . . , p.

We now consider the scalar type-1 beta density in the complex case. Thus, letting
p = 1 and q = 1 in (7.3a.8), we have

g̃7(ỹ1) = bγ+1 1

π

Γ̃ (γ + 1 + β)

Γ̃ (γ + 1)Γ̃ (β)
[|ỹ1|2]γ [1 − b|ỹ1|2]β−1, ỹ1 = y11 + iy12

= bγ+1 1

π

Γ (γ + 1 + β)

Γ (γ + 1)Γ (β)
[y2

11 + y2
12]γ [1 − b(y2

11 + y2
12)]β−1 (7.3a.14)

for b > 0, 
(β) > 0, 
(γ ) > −1, − ∞ < y1j < ∞, j = 1, 2, 1 − b(y2
11 + y2

12) > 0,
and g̃7 = 0 elsewhere. The normalizing constant in (7.3a.14) can be verified by making
the polar coordinate transformation y11 = r cos θ, y12 = r sin θ , as was done earlier.

Exercises 7.3

7.3.1. Derive the normalizing constant C1 in (7.3.2) and verify the normalizing constants
in (7.3.3) and (7.3.4).

7.3.2. From E[|A 1
2XBX′A 1

2 |]h or otherwise, derive the h-th moment of |XBX′|. What
is then the structural representation corresponding to (7.3.7)?
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7.3.3. From (7.3.7) or otherwise, derive the exact density of |U | for the cases (1): p =
2; (2): p = 3.

7.3.4. Write down the conditions on the parameters γ and β in (7.3.6) so that the exact
density of |U | can easily be evaluated for some p ≥ 4.

7.3.5. Evaluate the normalizing constant in (7.3.8) by making use of the general polar
coordinate transformation.

7.3.6. Evaluate the normalizing constant in (7.3a.2).

7.3.7. Derive the exact density of |det(Ũ )| in (7.3a.13) for (1): p = 2; (2): p = 3.

7.4. The Real Rectangular Matrix-Variate Type-2 Beta Density

Let us consider a p × q, q ≥ p, matrix X of full rank p and the following associated
density:

g8(X) = C3|AXBX′|γ |I + AXBX′|−(γ+ q
2+β) (7.4.1)

for A > O, B > O, 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , and g8 = 0 elsewhere. The

normalizing constant can be seen to be the following:

C3 = |A| q
2 |B|p

2
Γp(

q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

(7.4.2)

for A > O, B > O, 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 . Letting Y = A

1
2XB

1
2 , its density

denoted by g9(Y ), is

g9(Y ) = Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

|YY ′|γ |I + YY ′|−(γ+ q
2+β) (7.4.3)

for 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , and g9 = 0 elsewhere. The density of S = YY ′ then

reduces to

g10(S) = Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

|S|γ+ q
2−p+1

2 |I + S|−(γ+ q
2+β), (7.4.4)

for 
(β) >
p−1
2 , 
(γ + q

2 ) >
p−1
2 , and g10 = 0 elsewhere.
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7.4.1. The real type-2 beta density in the multivariate case

Consider the case p = 1 and A = b > 0 in (7.4.1). The resulting density has the
same structure, with A replaced by b and X being the 1 × q vector (x1, . . . , xq). Letting

Y = XB
1
2 , the following density of Y = (y1, . . . , yq), denoted by g11(Y ), is obtained:

g11 = bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

[y2
1 + · · · + y2

q ]γ

× [1 + b(y2
1 + · · · + y2

q)]−(γ+ q
2+β) (7.4.5)

for b > 0, 
(γ + q
2 ) > 0, 
(β) > 0, and g11 = 0 elsewhere. The density appearing

in (7.4.5) will be referred to as the standard form of the real rectangular matrix-variate
type-2 beta density. In this case, A is taken as A = b > 0 and Y = XB

1
2 . What might be

the standard form of the real type-2 beta density in the real scalar case, that is, when it is
assumed that p = 1, q = 1, A = b > 0 and B = 1 in (7.4.1)? In this case, it is seen from
(7.4.5) that

g12(y1) = bγ+ 1
2

Γ (γ + 1
2 + β)

Γ (γ + 1
2)Γ (β)

[y2
1 ]γ [1 + by2

1 ]−(γ+ 1
2+β), − ∞ < y1 < ∞, (7.4.6)

for 
(β) > 0, 
(γ + 1
2) > 0, b > 0, and g12 = 0 elsewhere.

7.4.2. Moments in the real rectangular matrix-variate type-2 beta density

Letting U = A
1
2XBX′A 1

2 , what would be the h-th moment of the determinant of U ,
that is, E[|U |h] for arbitrary h? Upon determining E[|U |h], the parameter γ is replaced
by γ + h while the other parameters remain unchanged. The h-th moment which is thus
available from the normalizing constant, is given by

E[|U |h] = Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(β − h)

Γp(β)
(7.4.7)

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (β − j−1
2 − h)

Γ (β − j−1
2 )

(7.4.8)

= E[uh
1]E[uh

2] · · · E[uh
p] (7.4.9)

where u1, . . . , up are mutually independently distributed real scalar type-2 beta random
variables with the parameters (γ + q

2 − j−1
2 , β − j−1

2 ), j = 1, . . . , p. That is, (7.4.9) or
(7.4.10) gives a structural representation to the determinant of U as

|U | = |A 1
2XBX′A

1
2 | = |YY ′| = |S| = u1 · · · up (7.4.10)
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where the uj ’s are mutually independently distributed real scalar type-2 beta random vari-
ables as specified above.

Example 7.4.1. Evaluate the density of u = |A 1
2XBX′A 1

2 | for p = 2 and the general
parameters γ, q, β where X has a real rectangular matrix-variate type-2 beta density with
the parameter matrices A > O and B > O where A is p × p, B is q × q and X is a
p × q, q ≥ p, rank p matrix.

Solution 7.4.1. The general h-th moment of u can be determined from (7.4.8). Letting
p = 2, we have

E[uh] = Γ (γ + q
2 − 1

2 + h)Γ (γ + q
2 + h)

Γ (γ + q
2 − 1

2)Γ (γ + q
2 )

Γ (β − 1
2 − h)Γ (β − h)

Γ (β − 1
2)Γ (β)

(i)

for −γ − q
2 + 1

2 < 
(h) < β − 1
2 , β > 1

2 , γ + q
2 > 1

2 . Since four pairs of gamma func-
tions differ by 1

2 , we can combine them by applying the duplication formula for gamma
functions, namely,

Γ (z)Γ (z + 1/2) = π
1
2 21−2zΓ (2z). (ii)

Take z = γ + q
2 − 1

2 + h and z = γ + q
2 − 1

2 in the first set of gamma ratios in (i) and
z = β − 1

2 − h and z = β − 1
2 in the second set of gamma ratios in (i). Then, we have the

following:

Γ (γ + q
2 − 1

2 + h)Γ (γ + q
2 + h)

Γ (γ + q
2 − 1

2)Γ (γ + q
2 )

= π
1
2 21−2γ−q+1−2hΓ (2γ + q − 1 + 2h)

π
1
2 21−2γ−q+1Γ (2γ + q − 1)

= 2−2hΓ (2γ + q − 1 + 2h)

Γ (2γ + q − 1)
(iii)

Γ (β − 1
2 − h)Γ (β − h)

Γ (β − 1
2)Γ (β)

= π
1
2 21−2β+1+2hΓ (2β − 1 − 2h)

π
1
2 21−2β+1Γ (2β − 1)

= 22h
Γ (2β − 1 − 2h)

Γ (2β − 1)
, (iv)

the product of (iii) and (iv) yielding the simplified representation of the h-th moment of u

that follows:

E[uh] = Γ (2γ + q − 1 + 2h)

Γ (2γ + q − 1)

Γ (2β − 1 − 2h)

Γ (2β − 1)
.

Now, since E[uh] = E[u 1
2 ]2h ≡ E[yt ] with y = u

1
2 and t = 2h, we have

E[yt ] = Γ (2γ + q − 1 + t)

Γ (2γ + q − 1)

Γ (2β − 1 − t)

Γ (2β − 1)
. (v)
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As t is arbitrary in (v), the moment expression will uniquely determine the density of y.
Accordingly, y has a real scalar type-2 beta distribution with the parameters (2γ + q −
1, 2β − 1), and so, its density denoted by f (y), is

f (y)dy = Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)
y2γ+q−2(1 + y)−(2γ+q+2β−2)dy

= Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)

1

2
u− 1

2uγ+ q
2−1(1 + u

1
2 )−(2γ+q+2β−2)du.

Thus, the density of u, denoted by g(u), is the following:

g(u) = 1

2

Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)
uγ+ q−1

2 −1(1 + u
1
2 )−(2γ+q+2β−2)

for 0 ≤ u < ∞, and zero elsewhere, where the original conditions on the parameters
remain the same. It can be readily verified that g(u) is a density.

7.4.3. A pathway extension in the real case

Let us relabel f10(X) as specified in (7.2.16), as g13(X) in this section:

g13(X) = C4|AXBX′|γ |I − a(1 − α)A
1
2XBX′A

1
2 | η

1−α (7.4.11)

for A > O, B > O, η > 0, a > 0, α < 1, 1− a(1−α)A
1
2XBX′A 1

2 > O, and g13 = 0
elsewhere, where C4 is the normalizing constant. Observe that for α < 1, a(1 − α) > 0
and hence the model in (7.4.11) is a generalization of the real rectangular matrix-variate
type-1 beta density considered in (7.3.1). When α < 1, the normalizing constant C4 is
of the form given in (7.2.18). For α > 1, we may write 1 − α = −(α − 1), so that
−a(1−α) = a(α−1) > 0, α > 1 in (7.4.11) and the exponent η

1−α
changes to− η

α−1 ; thus,
the model appearing in (7.4.11) becomes the following generalization of the rectangular
matrix-variate type-2 beta density given in (7.4.1):

g14(X) = C5|AXBX′|γ |I + a(α − 1)A
1
2XBX′A

1
2 |− η

α−1 (7.4.12)

for A > O, B > O, η > 0, a > 0, α > 1 and g14 = 0 elsewhere. The normalizing
constant C5 will then be different from that associated with the type-1 case. Actually, in
the type-2 case, the normalizing constant is available from (7.2.19). The model appearing
in (7.4.12) is a generalization of the real rectangular matrix-variate type-2 beta model
considered in (7.4.1). When α → 1, the model in (7.4.11) converges to a generalized form
of the real rectangular matrix-variate gamma model in (7.2.5), namely,

g15(X) = C6|AXBX′|γ e−a η tr(AXBX′) (7.4.13)
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where

C6 = (aη)p(γ+ q
2 )

|A| q
2 |B|p

2 Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
(7.4.14)

for a > 0, η > 0, A > O, B > O, 
(γ + q
2 ) >

p−1
2 , and g15 = 0 elsewhere. More

properties of the model given in (7.4.11) have already been provided in Sect. 4.2. The real
rectangular matrix-variate pathway model was introduced in Mathai (2005).

7.4a. Complex Rectangular Matrix-Variate Type-2 Beta Density

Let us consider a full rank p × q, q ≥ p, matrix X̃ in the complex domain and the
following associated density:

g̃8(X̃) = C̃3 |det(AX̃BX̃∗)|γ |det(I + AX̃BX̃∗)|−(β+γ+q) (7.4a.1)

for A > O, B > O, 
(β) > p − 1, 
(γ + q) > p − 1, and g̃8 = 0 elsewhere, where
C̃3 is the normalizing constant. Let

Ỹ = A
1
2 X̃B

1
2 ⇒ dỸ = |det(A)|q |det(B)|pdX̃,

and make the transformation

S̃ = Ỹ Ỹ ∗ ⇒ dỸ = πqp

Γ̃p(q)
|det(S̃)|q−pdS̃.

Then, the integral over S̃ can be evaluated by means of a complex matrix-variate type-2
beta integral. That is,

∫

S̃

|det(S̃)|γ+q−p|det(I + S̃)|−(β+γ+q)dS̃ = Γ̃p(γ + q)Γ̃p(β)

Γ̃p(γ + q + β)
(7.4a.2)

for 
(β) > p−1, 
(γ +q) > p−1. The normalizing constant C̃3 as well as the densities
of Ỹ and S̃ can be determined from the previous steps. The normalizing constant is

C̃3 = |det(A)|q |det(B)|p Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
(7.4a.3)

for 
(β) > p − 1, 
(γ + q) > p − 1. The density of Ỹ , denoted by g̃9(Ỹ ), is given by

g̃9(Ỹ ) = Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(Ỹ Ỹ ∗)|γ |det(I + Ỹ Ỹ ∗)|−(γ+q+β) (7.4a.4)
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for 
(β) > p − 1, 
(γ + q) > p − 1, and g̃9 = 0 elsewhere. The density of S̃, denoted
by g̃10(S̃), is the following:

g̃10(S̃) = Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(S̃)|γ+q−p|det(I + S̃)|−(β+γ+q) (7.4a.5)

for 
(β) > p − 1, 
(γ + q) > p − 1, and g̃10 = 0 elsewhere.

7.4a.1. Multivariate complex type-2 beta density

As in Sect. 7.3a, let us consider the special case p = 1 in (7.4a.1). So, let the 1 × 1
matrix A be denoted by b > 0 and the 1 × q vector X̃ = (x̃1, . . . , x̃q). Then,

AX̃BX̃∗ = bX̃BX̃∗ = b(x̃1, . . . , x̃q)B

⎛

⎜
⎝

x̃∗
1
...

x̃∗
q

⎞

⎟
⎠ ≡ b Ũ (a)

where, in the case of a scalar, an asterisk only designates a complex conjugate. Note that
when p = 1, Ũ = X̃BX̃∗ is a positive definite Hermitian form whose density, denoted by
g̃11(Ũ), is obtained as:

g̃11(Ũ ) = bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
|det(Ũ )|γ |det(I + bŨ)|−(γ+q+β) (7.4a.6)

for 
(β) > 0, 
(γ + q) > 0 and b > 0, and g̃11 = 0 elsewhere. Now, letting X̃B
1
2 =

Ỹ = (ỹ1, . . . , ỹq), the density of Ỹ , denoted by g̃12(Ỹ ), is obtained as

g̃12(Ỹ ) = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
[|ỹ1|2+· · ·+|ỹq |2]γ [1+b(|ỹ1|2+· · ·+|ỹq |2)]−(γ+q+β)

(7.4a.7)
for 
(β) > 0, 
(γ + q) > 0, b > 0, and g̃12 = 0 elsewhere. The constant in (7.4a.7)
can be verified to be a normalizing constant, either by making use of Theorem 4.2a.3 or a
(2n)-variate real polar coordinate transformation, which is left as an exercise to the reader.

Example 7.4a.1. Provide an explicit representation of the complex multivariate density
in (7.4a.7) for p = 2, γ = 2, q = 3, b = 3 and β = 2.

Solution 7.4a.1. The normalizing constant, denoted by c̃, is the following:

c̃ = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)

= 35
Γ (3)

π3

Γ (7)

Γ (5)Γ (2)
= 35

(2!)
π3

(6!)
(4!)(1!) = (60)35

π3
. (i)
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Letting ỹ1 = y11 + iy12, ỹ2 = y21 + iy22, ỹ3 = y31 + iy32, y1j , y2j , y3j , j = 1, 2,
being real and i = √

(−1),

Q = |ỹ1|2 + |ỹ2|2 + |ỹ3|2 = (y2
11 + y2

12) + (y2
21 + y2

22) + (y2
31 + y2

32). (ii)

Thus, the required density, denoted by g̃12(Ỹ ) as in (7.4a.7), is given by

g̃12(Ỹ ) = c̃Q2(1 + 3Q)−7, − ∞ < yij < ∞, i = 1, 2, 3, j = 1, 2.

where c̃ is specified in (i) and Q, in (ii). This completes the solution.

The density in (7.4a.6) is called a complex multivariate type-2 beta density in the gen-
eral form and (7.4a.7) is referred to as a complex multivariate type-2 beta density in its
standard form. Observe that these constitute only one form of the multivariate case of a
type-2 beta density. When extending a univariate function to a multivariate one, there is
no such thing as a unique multivariate analogue. There exist a multitude of multivariate
functions corresponding to specified marginal functions, or marginal densities in statisti-
cal problems. In the latter case for instance, there are countless possible copulas associated
with some specified marginal distributions. Copulas actually encapsulate the various de-
pendence relationships existing between random variables. We have already seen that one
set of generalizations to the multivariate case for univariate type-1 and type-2 beta densities
are the type-1 and type-2 Dirichlet densities and their extensions. The densities appearing
in (7.4a.6) and (7.4a.7) are yet another version of a multivariate type-2 beta density in the
complex case.

What will be the resulting distribution when q = 1 in (7.4a.7)? The standard form of
this density then becomes the following, denoted by g̃13(ỹ1):

g̃13(ỹ1) = bγ+1 1

π

Γ (γ + β + 1)

Γ (γ + 1)Γ (β)
[|ỹ1|2]γ [1 + b|ỹ1|2]−(γ+1+β) (7.4a.8)

for 
(β) > 0, 
(γ + 1) > 0, b > 0, and g̃13 = 0 elsewhere. We now verify that this
is indeed a density function. Let ỹ1 = y11 + iy12, y11 and y12 being real scalar quantities
and i = √

(−1). When ỹ1 is in the complex plane, −∞ < y1j < ∞, j = 1, 2. Let
us make a polar coordinate transformation. Letting y11 = r cos θ and y12 = r sin θ ,
dy11 ∧ dy12 = r dr ∧ dθ , 0 ≤ r < ∞, 0 < θ ≤ 2π . The integral over the functional part
of (7.4a.8) yields
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∫

ỹ1

|ỹ1|2γ [1 + |ỹ1|2]−(γ+1+β)dỹ1 =
∫ ∞

−∞

∫ ∞

−∞
[y2

11 + y2
12]γ

× [1 + b(y2
11 + y2

12)]−(γ+1+β)dy11 ∧ dy12

=
∫ 2π

θ=0

∫ ∞

r=0
[r2]γ [1 + br2]−(γ+1+β)r dθ ∧ dr

= (2π)
(1

2

) ∫ ∞

t=0
tγ (1 + bt)−(γ+1+β)dt

which is equal to

π b−(γ+1) Γ (γ + 1)Γ (β)

Γ (γ + 1 + β)
.

This establishes that the function specified by (7.4a.8) is a density.

7.4a.2. Arbitrary moments in the complex type-2 beta density

Let us consider the h-th moment of |det(Ũ )| = |det(A 1
2 X̃BX̃∗A 1

2 )| in (7.4a.1). Since
the only change upon integration is that γ is replaced by γ +h, the h-th moment is available
from the normalizing constant in (7.4a.2):

E[|det(Ũ )|h] = Γp(γ + q + h)

Γp(γ + q)

Γp(β − h)

Γp(β)
(7.4a.9)

=
p∏

j=1

Γ (γ + q − (j − 1) + h)

Γ (γ + q − (j − 1))

Γ (β − (j − 1) − h)

Γ (β − (j − 1))
(7.4a.10)

= E[uh
1] · · · E[uh

p] (7.4a.11)

where u1, . . . , up mutually independently distributed real scalar type-2 beta random vari-
ables with the parameters (γ + q − (j − 1), β − (j − 1)), j = 1, . . . , p. Thus, |det(Ũ )|
has the structural representation

|det(Ũ)| = |det(A 1
2 X̃BX̃∗A

1
2 )| = |det(Ỹ Ỹ ∗)| = |det(S̃)| = u1 · · · up (7.4a.12)

where the u1, . . . , up are as previously defined. The density for a complex scalar type-2
beta random variable is provided in (7.4a.8).

7.4a.3. A pathway version of the complex rectangular matrix-variate type-1 beta
density

Consider the model specified in (7.2a.12), that is,

g̃14(X̃) = C̃4|det(A 1
2 X̃BX̃∗A

1
2 )|γ |det(I − a(1 − α)A

1
2 X̃BX̃∗A

1
2 )| η

1−α (7.4a.13)
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for a > 0, α < 1, A > O, B > O, η > 0, I −a(1−α)A
1
2 X̃BX̃∗A 1

2 > O, and g̃14 = 0
elsewhere, where C̃4 is the normalizing constant given in (7.2a.15). When α < 1, the
model appearing in (7.4a.13) is a generalization of the complex rectangular matrix-variate
type-1 beta model considered in (7.3a.1). When α > 1, we write 1−α = −(α−1), α > 1
and re-express g̃14 as

g̃15(X̃) = C̃5|det(A 1
2 X̃BX̃∗A

1
2 )|γ |det(I + a(α − 1)A

1
2 X̃BX̃∗A

1
2 )|− η

α−1 (7.4a.14)

for a > 0, α > 1, η > 0, A > O, B > O, and g̃15 = 0 elsewhere, where the
normalizing constant C̃5 is the same as the one in (7.2a.16). Observe that the model in
(7.4a.14) is a generalization of the complex rectangular matrix-variate type-2 beta model
in (7.4.1). When q → 1, the models in (7.4a.13) and (7.4a.14) both converge to the
following model:

g̃16(X̃) = C̃6|det(A 1
2 X̃BX̃∗A

1
2 )|γ e−a η tr(A

1
2 X̃BX̃∗A

1
2 ) (7.4a.15)

for a > 0, η > 0, A > O, B > O, and g̃16 = 0 elsewhere, where the normalizing
constant C̃6 is the same as that in (7.2a.17). The model specified in (7.4a.15) is a gener-
alization of the complex rectangular matrix-variate gamma model considered in (7.2a.1).
Thus, model in (7.4a.13) contains all the three models (7.4a.13), (7.4a.14), and (7.4a.15),
which are generalizations of the models given in (7.3a.1), (7.4a.1), and (7.2a.1), respec-
tively. The pathway model in the complex domain, namely (7.4a.13), was introduced in
Mathai and Provost (2006). Additional properties of the pathway model have already been
discussed in Sect. 7.2a.

Exercises 7.4

7.4.1. Following the instructions or otherwise, derive the normalizing constant C̃3 in
(7.4a.3).

7.4.2. By integrating over Ỹ , show that (7.4a.4) is a density.

7.4.3. Evaluate the normalizing constant in (7.4a.7) by using (1): Theorem 4.2a.3; (2): a
(2n)-variate real polar coordinate transformation.

7.4.4. Given the standard real matrix-variate type-2 beta model in (7.4.5), evaluate the
marginal joint density of y1, . . . , yr , r < p.

7.4.5. Evaluate the density in (7.4a.4) explicitly for p = 1 and q = 2.
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7.4.6. Given the standard complex matrix-variate type-2 beta model in (7.4a.7), evaluate
the joint marginal density of ỹ1, . . . , ỹr , r < p.

7.4.7. Derive the density of |det(Ũ )| in (7.4a.12) for the cases (1): p = 1; (2): p = 2.

7.4.8. Derive the density of |U | in (7.4.10) for (1): p = 2; (2): p = 3.

7.5,7.5a. Ratios Involving Rectangular Matrix-Variate Random Variables

Since scalar variables such as type-1 beta, type-2 beta, F, Student-t and Cauchy vari-
ables are all associated with ratios of independently distributed random variables, we will
explore ratios involving rectangular matrix-variate random variables. Such ratios will yield
the rectangular matrix-variate versions of the aforementioned ratios of scalar variables. Let
the p × n1, p ≤ n1, full rank matrix X1 and the p × n2, p ≤ n2, full rank matrix X2

be independently distributed real matrix-variate random variables having the rectangular
matrix-variate gamma densities specified in (7.2.5), that is,

fj (Xj ) = |Aj |
nj
2 |Bj |p

2 Γp(
nj

2 )

π
nj p

2 Γp(γj + nj

2 )
|AjXjBjX

′
j |γj e−tr(AjXjBjX

′
j ), j = 1, 2, (7.5.1)

for Aj > O, Bj > O, 
(γj + nj

2 ) >
p−1
2 , and nj ≥ p where Aj is p × p and Bj is

nj × nj . Then, owing to the statistical independence of the variables, the joint density of
X1 and X2 is f (X1, X2) = f1(X1)f2(X2). Consider the ratios

U1 =
⎛

⎝
2∑

j=1

(

A
1
2
j XjBjX

′
jA

1
2
j

)
⎞

⎠

− 1
2 (

A
1
2
1X1B1X

′
1A

1
2
1

)
⎛

⎝
2∑

j=1

(

A
1
2
j XjBjX

′
jA

1
2
j

)
⎞

⎠

− 1
2

(i)

and

U2 =
(

A
1
2
2X2B2X

′
2A

1
2
2

)− 1
2
(

A
1
2
1X1B1X

′
1A

1
2
1

)(

A
1
2
2X2B2X

′
2A

1
2
2

)− 1
2

. (ii)

Let us derive the densities of U1 and U2. Letting Vj = A
1
2
j XjB

1
2
j , we have dXj =

|Aj |−
nj
2 |Bj |−p

2 dVj . Denoting the joint density of V1 and V2 by g(V1, V2), it follows that
f (X1, X2)dX1 ∧ dX2 = g(V1, V2)dV1 ∧ dV2 and so,

g(V1, V2)dV1∧dV2 =
⎧
⎨

⎩

2∏

j=1

Γp(
nj

2 )

π
nj p

2 Γp(γj + nj

2 )

⎫
⎬

⎭
|V1V

′
1|γ1|V2V

′
2|γ2e−tr(V1V

′
1+V2V

′
2)dV1∧dV2.
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Letting Wj = VjV
′
j , dVj = π

nj p

2

Γp(
nj
2 )

|Wj |
nj
2 −p+1

2 dWj, and the joint density of W1 and W2,

denoted by h(W1, W2), is the following:

h(W1, W2) =
⎧
⎨

⎩

2∏

j=1

1

Γp(γj + nj

2 )

⎫
⎬

⎭
|W1|γ1+

n1
2 −p+1

2 |W2|γ2+
n2
2 −p+1

2 e−tr(W1+W2). (7.5.2)

Note that U1 = (W1 + W2)
− 1

2W1(W1 + W2)
− 1

2 and U2 = W
− 1

2
2 W1W

− 1
2

2 . Then, given
the relationship between independently distributed matrix-variate gamma variables and
a type-1 matrix-variate beta variable and a type-2 matrix-variate beta variable, U1 and
U2 are distributed as real matrix-variate type-1 beta and type-2 beta random variables,
respectively, both with the parameters (γ1 + n1

2 , γ2 + n2
2 ), that is,

U1 ∼ type-1 beta
(
γ1 + n1

2
, γ2 + n2

2

)
and U2 ∼ type-2 beta

(
γ1 + n1

2
, γ2 + n2

2

)
.

Thus, we have the following result:

Theorem 7.5.1. Let X1 of dimension p×n1, p ≤ n1, and X2 of dimension p×n2, p ≤
n2, be rank p matrices that are independently distributed rectangular real matrix-variate
gamma random variables whose densities are specified in (7.5.1). Then, as defined in
(i) and (ii), U1 and U2 are respectively real matrix-variate type-1 beta and type-2 beta
distributed with the same parameters (γ1 + n1

2 , γ2 + n2
2 ). Thus they have the following

densities, denoted by gj (Uj ), j = 1, 2 :

g1(U1)dU1 = c |U1|γ1+
n1
2 −p+1

2 |I − U1|γ2+
n2
2 −p+1

2 dU1, O < U1 < I, (7.5.3)

and zero elsewhere, and

g2(U2)dU2 = c |U2|γ1+
n1
2 −p+1

2 |I + U2|−(γ1+γ2+ n1
2 + n2

2 )dU2, U2 > O, (7.5.4)

where

c = Γp(γ1 + γ2 + n1
2 + n2

2 )

Γp(γ1 + n1
2 )Γp(γ2 + n2

2 )
, 


(
γj + nj

2

)
>

p − 1

2
, j = 1, 2.

Analogous derivations will yield the densities of Ũ1 and Ũ2, the corresponding matrix-
variate random variables in the complex domain:
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Theorem 7.5a.1. Let X̃1 of dimension p×n1, p ≤ n1, and X̃2 of dimension p×n2, p ≤
n2, be full rank rectangular matrix-variate complex gamma random variables that are
independently distributed whose densities are

f̃j (X̃j )dX̃j = |Aj |nj |Bj |pΓ̃p(nj )

πnjpΓ̃p(γj + nj )
|det(Aj X̃jBj X̃

∗
j )|γj e−tr(Aj X̃jBj X̃

∗
j )dX̃j (7.5a.1)

where Aj = A∗
j > O and Bj = B∗

j > O with Aj being p × p and Bj, nj × nj ,

p ≤ nj , j = 1, 2. Letting

Ũ1 =
( 2∑

j=1

A
1
2
j X̃jBj X̃

∗
jA

1
2
j

)− 1
2
(A

1
2
1 X̃1B1X̃

∗
1A

1
2
1 )
( 2∑

j=1

A
1
2
j X̃jBj X̃

∗
jA

1
2
j

)− 1
2

and

Ũ2 = (A
1
2
2 X̃2B2X̃

∗
2A

1
2
2 )−

1
2 (A

1
2
1 X̃1B1X̃

∗
1A

1
2
1 )(A

1
2
2 X̃2B2X̃

∗
2A

1
2
2 )−

1
2 , (7.5a.2)

the densities of Ũ1 and Ũ2, denoted by g̃j (Ũj ), j = 1, 2, are respectively given by

g̃1(Ũ1)dŨ1 = c̃ |det(Ũ1)|γ1+n1−p|det(I − Ũ1)|γ2+n2−pdŨ1, O < Ũ1 < I, (7.5a.3)

and

g̃2(Ũ2)dŨ2 = c̃ |det(Ũ2)|γ1+n1−p|det(I + Ũ2)|−(γ1+γ2+n1+n2)dŨ2, Ũ2 > O, (7.5a.4)

where

c̃ = Γ̃p(γ1 + γ2 + n1 + n2)

Γ̃p(γ1 + n1)Γ̃p(γ2 + n2)
, 
(γj + nj ) > p − 1, j = 1, 2.

The densities specified in (7.5.4) and (7.5a.4) happen to be quite useful in real-life
applications. Connections of the type-2 beta distribution to the F-distribution, the Student-
t2 distribution and the distribution of the sample correlation coefficient when the pop-
ulation is Gaussian, have already been pointed out in the course of our previous dis-
cussions with respect to the scalar, vector variable and matrix-variate cases. Some fur-
ther relationships are next pointed out. Let {Y1, . . . , Yn} constitutes a simple random

sample where Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the sample matrix be

denoted by Y = [Y1, Y2, . . . , Yn]; letting Ȳ = 1
n
[Y1 + · · · + Yn] and the matrix of

sample means be Ȳ = [Ȳ , . . . , Ȳ ], the sample sum of products (corrected) matrix is
S = (Y − Ȳ)(Y − Ȳ)′, which is unaffected by μ. We have determined that S follows
a real Wishart distribution having m = n − 1 degrees of freedom, and that when μ is
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known to be a null vector, YY′ is real Wishart matrix with n degrees of freedom. Now,

consider A
1
2Yj

iid∼ Np(A
1
2μ, A

1
2ΣA

1
2 ); when μ = O, the sample sum of products matrix

is A
1
2YY ′A 1

2 , which can be expressed in the form of the product of matrices appearing in
(7.5.1) with B = I . Hence, we can regard A

1
2XBX′A 1

2 (or equivalently AXBX′ in the
determinant in (7.5.1)) as a weighted sample sum of products matrix with sample sizes n1
and n2. Then, the type-2 beta density in (7.5.4) with U2 replaced by n1

n2
U2 corresponds to

a generalized real rectangular matrix-variate F-density having n1 and n2 degrees of free-
domwhere U2 is as defined in (ii). Moreover, for γ1 = 0 = γ2, this density will correspond
to a rectangular matrix-variate Student-t density. The material included in Sect. 7.5,7.5a
may not be available in the literature.

7.5.1. Multivariate F, Student-t and Cauchy densities

The densities appearing in (7.5.4) and (7.5a.4) for the p × p positive definite matrices
U2 and Ũ2 have dU2 and dŨ2 as differential elements. A positive definite matrix such as
U2, can be expressed as U2 = T T ′ where T of dimension p × n1, p ≤ n1, has rank
p, and we can write dU2 in terms of dT . We can also consider the format U2 = T CT ′
where C > O is an n1×n1 positive definite constant matrix. In other words, we can arrive
at the format in (7.4.1) from (7.5.4), and correspondingly obtain (7.4a.1) from (7.5a.4).
Let us re-examine the expressions given in (7.4.1) and (7.4a.1), which could be referred
to as rectangular matrix-variate F and Student-t densities in the real and complex cases
for specific values of the parameters β and γ . Now, let p = 1 and A = a > 0 in (7.4.1)
wherein a location parameter vector μ is inserted. The resulting density is

h(X)dX = aγ+ q
2 |B| 12Γ (

q
2 )Γ (γ + q

2 + β)

π
q
2 Γ (γ + q

2 )Γ (β)
[(X − μ)B(X − μ)′]γ

× [1 + a(X − μ)B(X − μ)′]−(γ+ q
2+β)dX (7.5.5)

where X and μ are 1 × q row vectors, the corresponding density in the complex domain,
denoted by h̃(X̃), being the following:

h̃(X̃)dX̃ = |a|γ+q |det(B)|Γ (q)Γ (γ + q + β)

πq Γ (γ + q)Γ (β)
[(X̃ − μ̃)B(X̃ − μ̃)∗]γ

× [1 + a(X̃ − μ̃)B(X̃ − μ̃)∗]−(γ+q+β)dX̃. (7.5a.5)

For specific values of the parameters, the densities appearing in (7.5.5) and (7.5a.5) can
be respectively called the multivariate F and Student-t densities in the real and complex
domains. With a view to model certain types of signal processes, (Kondo et al., 2020)
made use of a special form of the complex multivariate Student-t wherein γ = 0, a = 2

ν

and β = ν
2 , which is given next.
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7.5a.1. A complex multivariate Student-t having ν degrees of freedom

h̃1(X̃)dX̃ = 2qΓ (ν
2 + q)

(νπ)qΓ (ν
2 )|det(Σ)|

[
1 + 2

ν
(X̃ − μ̃)Σ−1(X̃ − μ̃)∗

]−( ν
2+q)

dX̃. (7.5a.6)

A complex multivariate Cauchy density that, as well, is mentioned in Kondo et al. (2020),
can be obtained by letting ν = 1 in (7.5a.6). We conclude this section with its representa-
tion, denoted by h̃2(X̃):

7.5a.2. A complex multivariate Cauchy density

h̃2(X̃)dX̃ = 2q Γ (12 + q)

πq Γ (12)|det(Σ)| [1 + 2(X̃ − μ̃)Σ−1(X̃ − μ̃)∗]−(q+ 1
2 )dX̃. (7.5a.7)

Exercises 7.5

7.5.1. Derive the complex densities in (7.5a.3) and (7.5a.4).

7.5.2. Derive the normalizing constant in (7.5a.6) by integrating out the functional por-
tion of this density.

7.5.3. Derive the normalizing constant in (7.5a.7) by integrating out the functional por-
tion of this density.

7.5.4. Derive the density in (7.5a.6) from complex q-variate Gaussian densities.

7.5.5. Derive the density in (7.5a.7) from complex q-variate Gaussian densities.

7.6. Rectangular Matrix-Variate Dirichlet Density, Real Case

For the real matrix-variate type-1 and type-2 Dirichlet models involving sets of real
positive definite matrices, the reader is referred to Sects. 5.8.6 and 5.8.7. The correspond-
ing rectangular matrix-variate cases will be considered in this section. Let Aj > O, j =
1, . . . , k, be p × p real positive definite constant matrices, and Bj, j = 1, . . . , k, be
qj ×qj real positive definite constant matrices. Let Xj, j = 1, . . . , k, be p×qj , qj ≥ p,
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rank p real matrices whose elements are distinct real scalar variables. Then, consider the
real-valued scalar function of X1, . . . , Xk,

f1(X1, . . . , Xk) = Ck|A1X1B1X
′
1|γ1 · · · |AkXkBkX

′
k|γk

× |I − A
1
2
1X1B1X

′
1A

1
2
1 − · · · − A

1
2
k XkBkX

′
kA

1
2
k |γk+1−p+1

2 (7.6.1)

for Aj > O, Bj > O, A
1
2
j XjBjX

′
jA

1
2
j > O, j = 1, . . . , k, I −∑k

j=1 A
1
2
j XjBjX

′
jA

1
2
j >

O, 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k, and f1 = 0 elsewhere, where Ck is the normalizing

constant. This normalizing constant can be evaluated as follows: Letting

Yj = A
1
2
j XjB

1
2
j ⇒ dYj = |Aj |

qj
2 |Bj |p

2 dXj, j = 1, . . . , k, (i)

the joint density of Y1, . . . , Yk, denoted by f2(Y1, . . . , Yk), is given by

f2(Y1, . . . , Yk) =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2

}
Ck|Y1Y

′
1|γ1 . . . |YkY

′
k|γk

× |I −
k∑

j=1

YjY
′
j |γk+1−p+1

2 . (7.6.2)

Now, let

Sj = YjY
′
j ⇒ dYj = π

qj p

2

Γp(
qj

2 )
|Sj |

qj
2 −p+1

2 dSj , j = 1, . . . , k. (ii)

Then, the joint density of S1, . . . , Sk, which follows, is a real matrix-variate type-1 Dirich-
let density:

f3(S1, . . . , Sk) = Ck

{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}

×
{ k∏

j=1

|Sj |γj+ qj
2 −p+1

2

}
|I − S1 − · · · − Sk|γk+1−p+1

2 (7.6.3)

for Sj > O, 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k. Next, on integrating out S1, . . . , Sk, by

making use of a type-1 real matrix-variate Dirichlet integral that was defined in Sect. 5.8.6,
we have

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)

Γp(
∑k+1

j=1 γj +∑k
j=1

qj

2 )
, 
(γj + qj

2
) >

p − 1

2
, j = 1, . . . , k, (iii)
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and 
(γk+1) >
p−1
2 .Then, as obtained from (i), (ii) and (iii), the normalizing constant is

Ck =
{ k∏

j=1

|Aj |
qj
2 |Bj |p

2
Γp(

qj

2 )

π
qj p

2

1

Γp(γj + qj

2 )

}

× Γp(γ1 + · · · + γk+1 + q1
2 + · · · + qk

2 )

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)
(7.6.4)

for Aj > O, Bj > O, qj ≥ p, 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k, and 
(γk+1) >

p−1
2 .

7.6.1. Certain properties, real rectangular matrix-variate type-1 Dirichlet density

Letting U = ∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j , what might be the distributions of U and I −U? In

the real scalar case, one could have easily evaluated the moments E[(1−u)h] for arbitrary
h, which would have automatically determined the distribution of 1 − u, and therefrom
that of u. In the matrix-variate case as well, one can readily determine the h-th moment of
the determinant of I − U , E[|I − U |h], and the unique resulting distribution. However,
the distribution of a determinant being unique does not imply that the distribution of the
corresponding matrix is unique. Thus, we have to resort to other approaches for obtaining
the distributions of U and I − U . Consider the following transformation:

Vj = A
1
2
j XjBjX

′
jA

1
2
j , j = 1, . . . , k − 1, Vk =

k∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j = U.

Then A
1
2
k XkBkX

′
kA

1
2
k = U − V1 − · · · − Vk−1 and I −∑k

j=1 A
1
2
j XjBjX

′
jA

1
2
j = I − Vk =

I − U . Noting that

dX1 ∧ . . . ∧ dXk =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}
dV1 ∧ . . . ∧ dVk−1 ∧ dU, (7.6.5)

the joint density of V1, . . . , Vk−1, U, denoted by f3(V1, . . . , Vk−1, U), is seen to be

f3(V1, . . . , Vk−1, U) = Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)

{ k−1∏

j=1

|Vj |γj+ qj
2 −p+1

2

}

× |U − V1 − · · · − Vk−1|γk+ qk
2 −p+1

2 |I − U |γk+1−p+1
2 , (7.6.6)

where

|U − V1 − · · · − Vk−1| = |U | |I − U− 1
2V1U

− 1
2 − · · · − U− 1

2Vk−1U
− 1

2 |.
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Letting Wj = U− 1
2VjU

− 1
2 , j = 1, . . . , k − 1, for fixed U we have

dV1 ∧ . . . ∧ dVk−1 = |U |(k−1)( p+1
2 )dW1 ∧ . . . ∧ dWk−1.

Now, the joint density of W1, . . . , Wk−1 and U , denoted by f4(W1, . . . , Wk−1, U), is the
following:

f4(W1, . . . , Wk−1, U) = C′
k |U |

∑k
j=1(γj+ qj

2 )−p+1
2 |I − U |γk+1−p+1

2

{ k−1∏

j=1

|Wj |γj+ qj
2 −p+1

2

}

× |I − W1 − · · · − Wk−1|γk+ qk
2 −p+1

2 (7.6.7)

where C′
k is the normalizing constant. We then integrate out W1, . . . , Wk−1 by using a

(k − 1)-variate type-1 Dirichlet integral, this yielding the result:

{ k∏

j=1

Γp(γj + qj

2
)
}/

Γp

( k∑

j=1

(γj + qj

2

)
for 
(γj + qj

2
) >

p − 1

2
, j = 1, . . . , k.

Accordingly, the marginal density of U is the following:

f5(U) = Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ))Γp(γk+1)
|U |

∑k
j=1(γj+ qj

2 )−p+1
2 |I − U |γk+1−p+1

2 (7.6.8)

for O < U < I, 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k, 
(γk+1) >

p−1
2 , and f5 = 0

elsewhere. Thus, U is a real matrix-variate type-1 beta with the parameters (
∑k

j=1(γj +
qj

2 ), γk+1) and therefore that I −U is a real matrix-variate type-1 beta with the parameters

(γk+1,
∑k

j=1(γj + qj

2 )). These results are now stated as a theorem.

Theorem 7.6.1. Consider the density given in (7.6.1). Let U = ∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j .

Then, U has a real matrix-variate type-1 beta distribution whose parameters are
(
∑k

j=1(γj + qj

2 ), γk+1) and I − U is distributed as a real matrix-variate type-1 beta

with the parameters (γk+1,
∑k

j=1(γj + qj

2 )).

The h-th moment of the determinant of the matrix I − U can be evaluated either from
Theorem 7.6.1 or from Eq. (7.6.1). This h-th moment of the determinant, which can be
worked out from the normalizing constant appearing in (7.6.8), is

E[|I − U |h] = Γp(γk+1 + h)

Γp(γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1 + h)
(7.6.9)
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for 
(γj + qj

2 ) >
p−1
2 , 
(γk+1) >

p−1
2 . Observe that a representation of the h-th moment

of the determinant of U cannot be derived from (7.6.9). However, E[|U |h] can be readily
evaluated from Theorem 7.6.1:

E[|U |h] = Γp(
∑k

j=1(γj + qj

2 ) + h)

Γp(
∑k

j=1(γj + qj

2 ))

Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1 + h)
(7.6.10)

for 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k, 
(γk+1) >

p−1
2 . Upon expanding the Γp(·)’s in

terms of Γ (·)’s, the following structural representations are obtained:

|I − U | = u1 · · · up , (7.6.11)

|U | = v1 · · · vp , (7.6.12)

where u1, . . . , up are independently distributed real scalar type-1 beta random variables
with the parameters (γk+1 − j−1

2 ,
∑k

j=1(γj + qj

2 )), j = 1, . . . , k, and v1, . . . , vk are
independently distributed real scalar type-1 beta random variables with the parameters
(
∑k

j=1(γj + qj

2 ) − j−1
2 , γk+1), j = 1, . . . , k.

7.6.2. A multivariate version of the real matrix-variate type-1 Dirichlet density

For p = 1, consider the joint density of Y1, . . . , Yk in f2(Y1, . . . , Yk), which shall be
denoted by f6(Y1, . . . , Yk). Then,

f6(Y1, . . . ., Yk) =
{ k∏

j=1

Γ (
qj

2 )

π
qj
2

} Γ (
∑k

j=1(γj + qj

2 ) + γk+1)
{∏k

j=1 Γ (γj + qj

2 )
}
Γ (γk+1)

{ k∏

j=1

|YjY
′
j |γj

}

× |I − Y1Y
′
1 − · · · − YkY

′
k|γk+1−p+1

2 , (7.6.13)

the conditions on the parameters remaining as previously stated. Note that Yj is of the
form Yj = (yj1, . . . , yjqj

), so that YjY
′
j = y2

j1 + · · · + y2
jqj

. Thus, in light of its structure,
the density appearing in (7.6.13) has interesting properties. For instance, it can be ob-
served that all the subsets of Y1, . . . , Yk also have densities belonging to the same family.
Accordingly, the marginal density of Y1 is the following:
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f7(Y1) = Γ (
q1
2 )

π
q1
2

Γ (γ1 + q1
2 + γ2)

Γ (γ1 + q1
2 )Γ (γ2)

[y2
11 + · · · + y2

1q1]γ1

× [1 − y2
11 − · · · − y2

1q1]γ2+γ1+ q1
2 −p+1

2 (7.6.14)

for −∞ < y1r < ∞, r = 1, . . . , q1, 0 < y2
11+· · ·+y2

1q1
< 1, 
(γ1+ q1

2 ) > 0, 
(γ2) >

0, and f7 = 0 elsewhere. As has already been mentioned, the structure in (7.6.14) is related
to geometrical probability problems involving type-1 beta distributed isotropic random
points. Thus, (7.6.13) suggests the possibility of generalizing such geometrical probabil-
ity problems in connection with a type-1 Dirichlet density as the underlying density for
the random points. This does not appear to have yet been discussed in the literature on
geometrical probability.

The complex case of the type-1 rectangular matrix-variate Dirichlet density, the real
and complex cases of the rectangular matrix-variate type-2 Dirichlet density and their
generalized forms can be similarly handled; hence, they will not be further discussed.
Certain of these cases are brought up in this section’s exercises.

Note 7.6.1. One could also consider a pathway version of the model appearing in
Eq. (7.6.1). Let us replace the second line in (7.6.1) by

|I − a(1 − α)(A
1
2
1X1B1X

′
1A

1
2
1 + · · · + A

1
2
k XkBkX

′
kA

1
2
k )| η

1−α
−p+1

2

where a > 0, α < 1, η > 0 are real scalar and γk+1 by η
1−α

, and denote the resulting
moded by f8 whose corresponding equation number will be referred to as (7.6.15). Ob-
serve that (7.6.15) belongs to a generalized type-1 Dirichlet family of models and that the
new normalizing constant will be denotedCk1. For α > 1, write−a(1−α) = a(α−1) > 0,
and then η

1−α
= − η

α−1 . Number the resulting model of (7.6.1) as f9, with (7.6.16) as the
associated equation number. Note that (7.6.16) is actually a generalized type-2 Dirichlet
model whose normalizing constant, denoted Ck2, will be different. Taking the limits as
α → 1− in (7.6.15) and α → 1+ in (7.6.16), both the models f8 in (7.6.15) and f9 in
(7.6.16) will converge to a model f10 whose associated equation number will be (7.6.17),
wherein the second line corresponding to the second line in (7.6.1) will be

e−a η tr(A
1
2
1 X1B1X

′
1A

1
2
1 +···+A

1
2
k XkBkX

′
kA

1
2
k ),

this limiting model having its own normalizing constant denoted by Ck3. As well, it can
be established that, under the above limiting process, both Ck1 and Ck2 will converge to
Ck3. Now, observe that the matrices X1, . . . , Xk in model f10 are mutually independently
distributed real rectangular matrix-variate gamma random variables. This turns out to be
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an unforeseen result as, in this case, the pathway parameter α is also seen to control the
dependence to independence transitional stages. Results analogous to those obtained in
Sects. 7.6, 7.6.1, and 7.6.2 could similarly be derived within the complex domain.

Exercises 7.6

7.6.1. Construct, in the complex domain, the rectangular matrix-variate type-1 Dirich-
let density corresponding to the density specified in (7.6.1) and determine the associated
normalizing constant.

7.6.2. Establish, in the complex domain, a theorem corresponding to Theorem 7.6.1.

7.6.3. Establish, for the complex case, the structural representations corresponding to
(7.6.11) and (7.6.12).

7.6.4. Construct a real rectangular matrix-variate type-2 Dirichlet density corresponding
to the density in (7.6.1).

7.6.5. Construct a complex rectangular matrix-variate type-2 Dirichlet density corre-
sponding to the density in (7.6.1).

7.6.6. When the p × qj matrices Xj ’s jointly have a real type-2 Dirichlet density with
the parameter matrices Aj > O, Bj > O as in (7.6.1) where Aj is p × p, Bj is qj × qj

and Xj is p × qj , qj ≥ p, j = 1, . . . , k, of full rank p, establish that U = [I +
∑k

j=1(A
1
2
j XjBjX

′
jA

1
2
j )]−1 has a real matrix-variate type-1 beta distribution and specify its

parameters. What about the density of
∑k

j=1(A
1
2
j XjBjX

′
jA

1
2
j ) in this case?

7.6.7. Answer the questions in Exercise 7.6.6 for the corresponding type-2 Dirichlet
density in the complex domain, replacing Xj by X̃j and X′

j by X̃∗
j .

7.6.8. For the real type-2 Dirichlet density in Exercise 7.6.4, determine E[|U |h] for U as
specified in Exercise 7.6.6.

7.6.9. Extend all the results obtained in Sect. 7.6 to the complex domain.

7.6.10. Derive, in the complex domain, results that are analogous to those obtained for
the real case in Note 7.6.1, while keeping a, η and α real.

7.7. Generalizations of the Real Rectangular Dirichlet Models

The first author and his collaborators have considered several types of generalizations
to the type-1 and type-2 Dirichlet models for real positive definite matrices and Hermi-
tian positive definite matrices. We will propose certain extensions of those results to rect-
angular matrix-variate cases, both in the real and complex domains. Again, let Xj be a
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p × qj , qj ≥ p, matrix of full rank p having distinct real scalar variables as its elements,
for j = 1, . . . , k. Let the constant real positive definite matrices Aj > O and Bj > O,
where Aj is p × p and Bj is qj × qj , j = 1, . . . , k, be as defined in Sect. 7.6. Consider
the real model

f11(X1, . . . , Xk) = Dk|A
1
2
1X1B1X

′
1A

1
2
1 |γ1|I − A

1
2
1X1B1X

′
1A

1
2
1 |β1

× |A
1
2
2X2B2X

′
2A

1
2
2 |γ2|I −

2∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j |β2 . . .

× |A
1
2
k XkBkX

′
kA

1
2
k |γk |I −

k∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j |γk+1+βk−p+1

2 (7.7.1)

for 
(γj + qj

2 ) >
p−1
2 , j = 1, . . . , k, 
(αk+1) >

p−1
2 , and other conditions to be speci-

fied later, where Dk is the normalizing constant. For evaluating the normalizing constant,
consider the following transformations:

Zj = A
1
2
j XjB

1
2
j ⇒ dXj = |Aj |−

qj
2 |Bj |−p

2 dZj, j = 1, . . . , k, (i)

so that the model f11 changes to f12 where

f12(Z1, . . . , Zk) = Dk

{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2

}
|Z1Z

′
1|γ1

× |I − Z1Z
′
1|β1|Z2Z2|γ2

× |I − Z1Z
′
1 − Z2Z

′
2|β2 · · · |ZkZ

′
k|γk |I −

k∑

j=1

ZjZ
′
j |γk+βk−p+1

2 .

(7.7.2)

Now, letting

ZjZ
′
j = Sj ⇒ dZj = π

qj p

2

Γp(
qj

2 )
|Sj |

qj
2 −p+1

2 dSj , j = 1, . . . , k, (ii)
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the model becomes

f13(S1, . . . , Sk) =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}
|S1|γ1+

q1
2 −p+1

2

× |I − S1|β1|S2|γ2+
q2
2 −p+1

2 |I − S1 − S2|β2 · · ·

× |Sk|γk+ qk
2 −p+1

2 |I −
k∑

j=1

Sj |γk+βk−p+1
2 . (7.7.3)

Now, consider the transformation (5.8.20), namely,

S1 = Y1

S2 = (I − Y1)
1
2Y2(I − Y1)

1
2

Sj = (I − Y1)
1
2 · · · (I − Yj−1)

1
2Yj (I − Yj−1)

1
2 · · · (I − Y1)

1
2 (7.7.4)

for j = 2, . . . , k. Then Y1, . . . , Yk will be independently distributed real matrix-variate
type-1 beta random variables with the parameters (αj = γj + qj

2 , δj ), j = 1, . . . , k,

where

δj = γj+1+ qj+1

2
+· · ·+γk+1+ qk+1

2
+βj +· · ·+βk, j = 1, . . . , k, and qk+1 = 0. (iii)

The normalizing constant Dk is thus the following:

Dk =
⎧
⎨

⎩

k∏

j=1

|Aj |
qj
2 |Bj |p

2
Γp(

qj

2 )

π
qj p

2

⎫
⎬

⎭

Γp(
∑k

j=1(δj + αj ))
∏k

j=1[Γp(αj )Γp(δj )]
(7.7.5)

for αj >
p−1
2 , δj >

p−1
2 , j = 1, . . . , k, where the αj ’s and δj ’s are as previously given.

Properties parallel to those pointed out in Sects. 7.1–7.6 can also be studied for the model
specified in (7.7.1). The marginal distributions of subsets of the matrices X1, X2, . . . , Xk,

taken in the order, will belong to the same family of densities. There exist other general-
izations of the type-1 and type-2 Dirichlet models. For all such generalizations, one can
extend the results to the rectangular matrix-variate cases in both the real and complex
domains.
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Exercises 7.7

7.7.1. Develop the transformation corresponding to (7.7.4) for the real type-2 Dirichlet
case. Specify the Jacobians of the transformation (7.7.4) and the corresponding transfor-
mation for the type-2 case.

7.7.2. Verify the result for δj in (iii) following (7.7.4) and develop the expression corre-
sponding to δj for the type-2 Dirichlet case.

7.7.3. Derive the joint marginal density of X1, . . . , Xr, r < k, by integrating out the
matrices starting with Xk in (7.7.1).

7.7.4. Develop, in the complex domain, the model corresponding to (7.7.1) and derive its
associated normalizing constant.

7.7.5. If possible, derive the density of U = ∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j where the Xj ’s, j =

1, . . . , k, jointly have the density given in (7.7.1).
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