
Chapter 6
Hypothesis Testing and Null Distributions

6.1. Introduction

It is assumed that the readers are familiar with the concept of testing statistical hy-
potheses on the parameters of a real scalar normal density or independent real scalar nor-
mal densities. Those who are not or require a refresher may consult the textbook: Mathai
and Haubold (2017) on basic “Probability and Statistics” [De Gruyter, Germany, 2017, free
download]. Initially, we will only employ the likelihood ratio criterion for testing hypothe-
ses on the parameters of one or more real multivariate Gaussian (or normal) distributions.
All of our tests will be based on a simple random sample of size n from a p-variate nonsin-
gular Gaussian distribution, that is, the p × 1 vectors X1, . . . , Xn constituting the sample
are iid (independently and identically distributed) as Xj ∼ Np(μ, Σ), Σ > O, j =
1, . . . , n, when a single real Gaussian population is involved. The corresponding test cri-
terion for the complex Gaussian case will also be mentioned in each section.

In this chapter, we will utilize the following notations. Lower-case letters such as x, y

will be used to denote real scalar mathematical or random variables. No distinction will be
made between mathematical and random variables. Capital letters such as X, Y will denote
real vector/matrix-variate variables, whether mathematical or random. A tilde placed on
a letter as for instance x̃, ỹ, X̃ and Ỹ will indicate that the variables are in the complex
domain. No tilde will be used for constant matrices unless the point is to be stressed that
the matrix concerned is in the complex domain. The other notations will be identical to
those utilized in the previous chapters.

First, we consider certain problems related to testing hypotheses on the parameters of
a p-variate real Gaussian population. Only the likelihood ratio criterion, also referred to as
λ-criterion, will be utilized. Let L denote the joint density of the sample values in a simple
random sample of size n, namely, X1, . . . , Xn, which are iid Np(μ, Σ), Σ > O. Then,
as was previously established,
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L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
, (6.1.1)

where S = ∑n
j=1(Xj − X̄)(Xj − X̄)′ is the sample sum of products matrix and X̄ =

1
n
(X1 +· · ·+Xn) is the sample average, n being the sample size. As well, we have already

determined that the maximum likelihood estimators (MLE’s) of μ and Σ are μ̂ = X̄ and
Σ̂ = 1

n
S, the sample covariance matrix. Consider the parameter space

� = {(μ, Σ)|Σ > O, μ′ = (μ1, . . . , μp), − ∞ < μj < ∞, j = 1, . . . , p}.
The maximum value of L within � is obtained by substituting the MLE’s of the parameters
into L, and since (X̄ − μ̂) = (X̄ − X̄) = O and tr(Σ̂−1S) = tr(nIp) = np,

max
�

L = e− np
2

(2π)
np
2 | 1

n
S| n

2
= e− np

2 n
np
2

(2π)
np
2 |S| n

2
. (6.1.2)

Under any given hypothesis on μ or Σ , the parameter space is reduced to a subspace ω in
� or ω ⊂ �. For example, if Ho : μ = μo where μo is a given vector, then the parameter
space under this null hypothesis reduces to ω = {(μ, Σ)|μ = μo, Σ > O} ⊂ �,
“null hypothesis” being a technical term used to refer to the hypothesis being tested. The
alternative hypothesis against which the null hypothesis is tested, is usually denoted by H1.
If μ = μo specifies Ho, then a natural alternative is H1 : μ �= μo. One of two things can
happen when considering the maximum of the likelihood function under Ho. The overall
maximum may occur in ω or it may be attained outside of ω but inside �. If the null
hypothesis Ho is actually true, then ω and � will coincide and the maxima in ω and in �

will agree. If there are several local maxima, then the overall maximum or supremum is
taken. The λ-criterion is defined as follows:

λ = supωL

sup�L
, 0 < λ ≤ 1. (6.1.3)

If the null hypothesis is true, then λ = 1. Accordingly, an observed value of λ that is close
to 0 in a testing situation indicates that the null hypothesis Ho is incorrect and should then
be rejected. Hence, the test criterion under the likelihood ratio test is to “reject Ho for
0 < λ ≤ λo”, that is, for small values of λ, so that, under Ho, the coverage probability
over this interval is equal to the significance level α or the probability of rejecting Ho

when Ho is true, that is, Pr{0 < λ ≤ λo |Ho} = α for a pre-assigned α, which is also
known as the size of the critical region or the size of the type-1 error. However, rejecting
Ho when it is not actually true or when the alternative H1 is true is a correct decision
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whose probability is known as the power of the test and written as 1 − β where β is the
probability of committing a type-2 error or the error of not rejecting Ho when Ho is not
true. Thus we have

Pr{0 < λ ≤ λo |Ho} = α and Pr{0 < λ ≤ λo |H1} = 1 − β. (6.1.4)

When we preassign α = 0.05, we are allowing a tolerance of 5% for the probability of
committing the error of rejecting Ho when it is actually true and we say that we have a test
at the 5% significance level. Usually, we set α as 0.05 or 0.01. Alternatively, we can allow
α to vary and calculate what is known as the p-value when carrying out a test. Such is the
principle underlying the likelihood ratio test, the resulting test criterion being referred to
as the λ-criterion.

In the complex case, a tilde will be placed above λ and L, (6.1.3) and (6.1.4) remaining
essentially the same:

λ̃ = supωL̃

sup�L̃
, 0 < |λ̃| ≤ 1, (6.1a.1)

and
Pr{0 < |λ̃| ≤ λo |Ho} = α, P r{0 < |λ̃| ≤ λo |H1} = 1 − β (6.1a.2)

where α is the size or significance level of the test and 1 − β, the power of the test.

6.2. Testing Ho : μ = μ0 (Given) When Σ is Known, the Real Np(μ, Σ) Case

When Σ is known, the only parameter to estimate is μ, its MLE being X̄. Hence, the
maximum in � is the following:

sup�L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (6.2.1)

In this case, μ is also specified under the null hypothesis Ho, so that there is no parameter
to estimate. Accordingly,

supωL = e− 1
2

∑n
j=1(Xj−μo)

′Σ−1(Xj−μo)

(2π)
np
2 |Σ | n

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μo)
′Σ−1(X̄−μo)

(2π)
np
2 |Σ | n

2
. (6.2.2)

Thus,

λ = supωL

sup�L
= e− n

2 (X̄−μo)
′Σ−1(X̄−μo), (6.2.3)
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and small values of λ correspond to large values of n
2 (X̄ − μo)

′Σ−1(X̄ − μo). When
Xj ∼ Np(μ, Σ), Σ > O, it has already been established that X̄ ∼ Np(μ, 1

n
Σ), Σ > O.

As well, n(X̄ −μo)
′Σ−1(X̄ −μo) is the exponent in a p-variate real normal density under

Ho, which has already been shown to have a real chisquare distribution with p degrees of
freedom or

n(X̄ − μo)
′Σ−1(X̄ − μo) ∼ χ2

p.

Hence, the test criterion is

Reject Ho if n(X̄ − μo)
′Σ−1(X̄ − μo) ≥ χ2

p,α, with Pr{χ2
p ≥ χ2

p, α} = α. (6.2.4)

Under the alternative hypothesis, the distribution of the test statistic is a noncen-
tral chisquare with p degrees of freedom and non-centrality parameter λ = n

2 (μ −
μo)

′Σ−1(μ − μo).

Example 6.2.1. For example, suppose that we have a sample of size 5 from a population
that has a trivariate normal distribution and let the significance level α be 0.05. Let μo, the
hypothesized mean value vector specified by the null hypothesis, the known covariance
matrix Σ , and the five observation vectors X1, . . . , X5 be the following:

μo =
⎡

⎣
1
0

−1

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦ ⇒ Σ−1 =
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ ,

X1 =
⎡

⎣
1
0
1

⎤

⎦ , X2 =
⎡

⎣
2

−1
4

⎤

⎦ , X3 =
⎡

⎣
0

−1
−2

⎤

⎦ , X4 =
⎡

⎣
2
4
1

⎤

⎦ , X5 =
⎡

⎣
4
2

−1

⎤

⎦ ,

the inverse of Σ having been evaluated via elementary transformations. The sample aver-
age, 1

5(X1 + · · · + X5) denoted by X̄, is

X̄ = 1

5

⎧
⎨

⎩

⎡

⎣
1
0
1

⎤

⎦+
⎡

⎣
2

−1
4

⎤

⎦+
⎡

⎣
0

−1
−2

⎤

⎦+
⎡

⎣
2
4
1

⎤

⎦+
⎡

⎣
4
2

−1

⎤

⎦

⎫
⎬

⎭ = 1

5

⎡

⎣
9
4
3

⎤

⎦ ,

and

X̄ − μo = 1

5

⎡

⎣
9
4
3

⎤

⎦−
⎡

⎣
1
0

−1

⎤

⎦ = 1

5

⎡

⎣
4
4
8

⎤

⎦ .
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For testing Ho, the following test statistic has to be evaluated:

n(X̄ − μo)
′Σ−1(X̄ − μo) = 5

52

[
4 4 8

]
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
4
4
8

⎤

⎦ = 40

5
= 8.

As per our criterion, Ho should be rejected if 8 ≥ χ2
p,α. Since χ2

p,α = χ2
3, 0.05 = 7.81, this

critical value being available from a chisquare table, Ho : μ = μo should be rejected at the
specified significance level. Moreover, in this case, the p-value is Pr{χ2

3 ≥ 8} ≈ 0.035,

which can be evaluated by interpolation from the percentiles provided in a chi-square table
or by making use of statistical packages such as R.

6.2.1. Paired variables and linear functions

Let Y1, . . . , Yk be p × 1 vectors having their own p-variate distributions which are
not known. However, suppose that a certain linear function X = a1Y1 + · · · + akYk is
known to have a p-variate real Gaussian distribution with mean value vector E[X] =
μ and covariance matrix Cov(X) = Σ, Σ > O, that is, X = a1Y1 + · · · + akYk ∼
Np(μ, Σ), Σ > O, where a1, . . . , ak are fixed known scalar constants. An example
of this type is X = Y1 − Y2 where Y1 consists of measurements on p attributes before
subjecting those attributes to a certain process, such as administering a drug to a patient,
and Y2 consists of the measurements on the same attributes after the process is completed.
We would like to examine the difference Y1 − Y2 to study the effect of the process on
these characteristics. If it is reasonable to assume that this difference X = Y1 − Y2 is
Np(μ, Σ), Σ > O, then we could test hypotheses on E[X] = μ. When Σ is known,
the general problem reduces to that discussed in Sect. 6.2. Assuming that we have iid
variables on Y1, . . . , Yk, we would evaluate the corresponding values of X, which produces
iid variables on X, that is, a simple random sample of size n from X = a1Y1 + · · ·+ akYk.
Thus, when Σ is known, letting u = n(X̄ − μo)

′Σ−1(X̄ − μo) ∼ χ2
p where X̄ denote the

sample average, the test would be carried out as follows at significance level α:

Reject Ho : μ = μo (specified) when u ≥ χ2
p, α, with Pr{χ2

p ≥ χ2
p, α} = α, (6.2.5)

the non-null distribution of the test statistic u being a non-central chisquare.

Example 6.2.2. Three variables x1 = systolic pressure, x2 = diastolic pressure and
x3 = weight are monitored after administering a drug for the reduction of all these p = 3
variables. Suppose that a sample of n = 5 randomly selected individuals are given the
medication for one week. The following five pairs of observations on each of the three
variables were obtained before and after the administration of the medication:
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⎡

⎣
150, 140
90, 90
70, 68

⎤

⎦ ,

⎡

⎣
180, 150
95, 90
75, 70

⎤

⎦ ,

⎡

⎣
160, 160
85, 80
70, 65

⎤

⎦ ,

⎡

⎣
140, 138
85, 90
70, 71

⎤

⎦ ,

⎡

⎣
130, 128

85, 85
75, 74

⎤

⎦ .

Let X denote the difference, that is, X is equal to the reading before the medication was
administered minus the reading after the medication could take effect. The observation
vectors on X are then

X1 =
⎡

⎣
150 − 140
90 − 90
70 − 68

⎤

⎦ =
⎡

⎣
10
0
2

⎤

⎦ , X2 =
⎡

⎣
30
5
5

⎤

⎦ , X3 =
⎡

⎣
0
5
5

⎤

⎦ , X4 =
⎡

⎣
2

−5
−1

⎤

⎦ , X5 =
⎡

⎣
2
0
1

⎤

⎦ .

In this case, X1, . . . , X5 are observations on iid variables. We are going to assume that
these iid variables are coming from a population whose distribution is N3(μ, Σ), Σ > O,

where Σ is known. Let the sample average X̄ = 1
5(X1 +· · ·+X5), the hypothesized mean

value vector specified by the null hypothesis Ho : μ = μo, and the known covariance
matrix Σ be as follows:

X̄ = 1

5

⎡

⎣
44
5
12

⎤

⎦ , μo =
⎡

⎣
8
0
2

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦ ⇒ Σ−1 =
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

Let us evaluate X̄ − μo and n(X̄ − μo)
′Σ−1(X̄ − μo) which are needed for testing the

hypothesis Ho : μ = μo:

X̄ − μo = 1

5

⎡

⎣
44
5
12

⎤

⎦−
⎡

⎣
8
0
2

⎤

⎦ = 1

5

⎡

⎣
4
5
2

⎤

⎦

n(X̄ − μo)
′Σ−1(X̄ − μo) = 5

52

[
4 5 2

]
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
4
5
2

⎤

⎦ = 8.4.

Let us test Ho at the significance level α = 0.05. The critical value which can readily be
found in a chisquare table is χ2

p, α = χ2
3, 0.05 = 7.81. As per our criterion, we reject Ho if

8.4 ≥ χ2
p, α; since 8.4 > 7.81, we reject Ho. The p-value in this case is Pr{χ2

p ≥ 8.4} =
Pr{χ2

3 ≥ 8.4} ≈ 0.04.

6.2.2. Independent Gaussian populations

Let Yj ∼ Np(μ(j), Σj ), Σj > O, j = 1, . . . , k, and let these k populations
be independently distributed. Assume that a simple random sample of size nj from Yj

is available for j = 1, . . . , k; then these samples can be represented by the p-vectors
Yjq, q = 1, . . . , nj , which are iid as Yj1, for j = 1, . . . , k. Consider a given linear
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function X = a1Y1 + · · · + akYk where X is p × 1 and the Yj ’s are taken in a given
order. Let U = a1Ȳ1 + · · · + akȲk where Ȳj = 1

nj

∑nj

q=1 Yjq for j = 1, . . . , k. Then
E[U ] = a1μ(1) +· · ·+akμ(k) = μ (say), where a1, . . . , ak are given real scalar constants.

The covariance matrix in U is Cov(U) = a2
1

n1
Σ1 + · · · + a2

k

nk
Σk = 1

n
Σ (say), where n is

a symbol. Consider the problem of testing hypotheses on μ when Σ is known or when
aj , Σj , j = 1, . . . , k, are known. Let Ho : μ = μo (specified), in the sense μ(j) is a
known vector for j = 1, . . . , k, when Σ is known. Then, under Ho, all the parameters are
known and the standardized U is observable, the test statistic being

k∑

j=1

ajnj (Ȳ1 − μ(j))
′Σ−1

j (Ȳj − μ(j)) ∼
k∑

j=1

ajχ
2(j)
p (6.2.6)

where χ
2(j)
p , j = 1, . . . , k, denote independent chisquares random variables, each having

p degrees of freedom. However, since this is a linear function of independent chisquare
variables, even the null distribution is complicated. Thus, only the case of two independent
populations will be examined.

Consider the problem of testing the hypothesis μ1 − μ2 = δ (a given vector) when
there are two independent normal populations sharing a common covariance matrix Σ

(known). Then U is U = Ȳ1 − Ȳ2 with E[U ] = μ1 − μ2 = δ (given) under Ho and
Cov(U) = ( 1

n1
+ 1

n2
)Σ = n1+n2

n1n2
Σ, the test statistic, denoted by v, being

v = n1n2

n1 + n2
(U−δ)′Σ−1(U−δ) = n1n2

n1 + n2
(Ȳ1−Ȳ2−δ)′Σ−1(Ȳ1−Ȳ2−δ) ∼ χ2

p. (6.2.7)

The resulting test criterion is

Reject Ho if the observed value of v ≥ χ2
p, α with Pr{χ2

p ≥ χ2
p,α} = α. (6.2.8)

Example 6.2.3. Let Y1 ∼ N3(μ(1), Σ) and Y2 ∼ N3(μ(2), Σ) represent independently
distributed normal populations having a known common covariance matrix Σ . The null
hypothesis is Ho : μ(1) − μ(2) = δ where δ is specified. Denote the observation vectors on
Y1 and Y2 by Y1j , j = 1, . . . , n1 and Y2j , j = 1, . . . , n2, respectively, and let the sample
sizes be n1 = 4 and n2 = 5. Let those observation vectors be

Y11 =
⎡

⎣
2
1
5

⎤

⎦ , Y12 =
⎡

⎣
5
5
3

⎤

⎦ , Y13 =
⎡

⎣
7
8
7

⎤

⎦ , Y14 =
⎡

⎣
8
10
12

⎤

⎦ and

Y21 =
⎡

⎣
2
1
3

⎤

⎦ , Y22 =
⎡

⎣
4
3
2

⎤

⎦ , Y23 =
⎡

⎣
7
10
8

⎤

⎦ , Y24 =
⎡

⎣
6
5
6

⎤

⎦ , Y25 =
⎡

⎣
1
1
2

⎤

⎦ ,
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and the common covariance matrix Σ be

Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦ ⇒ Σ−1 =
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

Let the hypothesized vector under Ho : μ(1) − μ(2) = δ be δ′ = (1, 1, 2). In order to test
this null hypothesis, the following quantities must be evaluated:

Ȳ1 = 1

n1
(Y11 + · · · + Y1n1) = 1

4
(Y11 + Y12 + Y13 + Y14),

Ȳ2 = 1

n2
(Y21 + · · · + Y2n2) = 1

5
(Y21 + · · · + Y25),

U = Ȳ1 − Ȳ2, v = n1n2

n1 + n2
(U − δ)′Σ−1(U − δ).

They are

Ȳ1 = 1

4

⎧
⎨

⎩

⎡

⎣
2
1
5

⎤

⎦+
⎡

⎣
5
5
3

⎤

⎦+
⎡

⎣
7
8
7

⎤

⎦+
⎡

⎣
8
10
12

⎤

⎦

⎫
⎬

⎭ = 1

4

⎡

⎣
22
24
27

⎤

⎦ ,

Ȳ2 = 1

5

⎧
⎨

⎩

⎡

⎣
2
1
3

⎤

⎦+
⎡

⎣
4
3
2

⎤

⎦+
⎡

⎣
7
10
8

⎤

⎦+
⎡

⎣
6
5
6

⎤

⎦+
⎡

⎣
1
1
2

⎤

⎦

⎫
⎬

⎭ = 1

5

⎡

⎣
20
20
21

⎤

⎦ ,

U = Ȳ1 − Ȳ2 = 1

4

⎡

⎣
22
24
27

⎤

⎦− 1

5

⎡

⎣
20
20
21

⎤

⎦ =
⎡

⎣
1.50
2.00
2.55

⎤

⎦ .

Then,

U − δ =
⎡

⎣
1.50
2.00
2.55

⎤

⎦−
⎡

⎣
1
1
2

⎤

⎦ =
⎡

⎣
0.50
1.00
0.55

⎤

⎦ .

v = n1n2

n1 + n2
(U − δ)′Σ−1(U − δ)

= (4)(5)

9

[
0.50 1.00 0.55

]
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
0.50
1.00
0.55

⎤

⎦

= 1.3275 × 20

9
= 2.95.
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Let us test Ho at the significance level α = 0.05. The critical value which is available
from a chisquare table is χ2

p, α = χ2
3, 0.05 = 7.81. As per our criterion, we reject Ho if

2.95 ≥ χ2
p, α; however, since 2.95 < 7.81, we cannot reject Ho. The p-value in this case

is Pr{χ2
p ≥ 2.95} = Pr{χ2

3 ≥ 2.95} ≈ 0.096, which can be determined by interpolation.

6.2a. Testing Ho : μ = μo (given) When Σ is Known, Complex Gaussian Case

The derivation of the λ-criterion in the complex domain is parallel to that provided for
the real case. In the parameter space,

sup�L̃ = e−tr(Σ−1S̃)

πnp|det(Σ)|n (6.2a.1)

and under Ho : μ = μo, a given vector,

supωL̃ = e−tr(Σ−1S̃)−n(
¯̃
X−μo)

∗Σ−1(
¯̃
X−μo)

πnp|det(Σ)|n . (6.2a.2)

Accordingly,

λ̃ = supωL̃

sup�L̃
= e−n(

¯̃
X−μo)

∗Σ−1(
¯̃
X−μo). (6.2a.3)

Here as well, small values of λ̃ correspond to large values of ỹ ≡ n(
¯̃
X−μo)

∗Σ−1(
¯̃
X−μo),

which has a real gamma distribution with the parameters (α = p, β = 1) or a chisquare
distribution with p degrees of freedom in the complex domain as described earlier so that
2ỹ has a real chisquare distribution having 2p degrees of freedom. Thus, a real chisquare
table can be utilized for testing the null hypothesis Ho, the criterion being

Reject Ho if 2n(
¯̃
X − μo)

∗Σ−1(
¯̃
X − μo) ≥ χ2

2p,α, with Pr{χ2
2p ≥ χ2

2p,α} = α. (6.2a.4)

The test criteria as well as the decisions are parallel to those obtained for the real case in
the situations of paired values and in the case of independent populations. Accordingly,
such test criteria and associated decisions will not be further discussed.

Example 6.2a.1. Let p = 2 and the 2 × 1 complex vector X̃ ∼ Ñ2(μ̃, Σ̃), Σ̃ = Σ̃∗ >

O, with Σ̃ assumed to be known. Consider the null hypothesis Ho : μ̃ = μ̃o where μ̃o is
specified. Let the known Σ̃ and the specified μ̃o be the following where i = √

(−1):

μ̃o =
[

1 + i

1 − 2i

]
, Σ̃ =

[
2 1 + i

1 − i 3

]
⇒ Σ̃−1 = 1

4

[
3 −(1 + i)

−(1 − i) 2

]
, Σ̃ = Σ̃∗ > O.
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Let the general μ̃ and general X̃ be represented as follows for p = 2:

μ̃ =
[
μ1 + iν1

μ2 + iν2

]
, X̃ =

[
x1 + iy1

x2 + iy2

]

so that, for the given Σ̃ ,

det(Σ̃) = (2)(3) − (1 + i)(1 − i) = 6 − (12 + 12) = 4 = det(X̃∗) = |det(X̃)|.
The exponent of the general density for p = 2, excluding −1, is the form (X̃ −
μ̃)∗Σ̃−1(X̃ − μ̃). Further,

[(X̃ − μ̃)∗Σ̃−1(X̃ − μ̃)]∗ = (X̃ − μ̃)∗Σ̃−1(X̃ − μ̃)

since both Σ̃ and Σ̃−1 are Hermitian. Thus, the exponent, which is 1 × 1, is real and
negative definite. The explicit form, excluding −1, for p = 2 and the given covariance
matrix Σ̃ , is the following:

Q = 1

4
{3[(x1 − μ1)

2 + (y1 − ν2
1)] + 2[(x2 − μ2)

2 + (y2 − ν2)
2]

+ 2[(x1 − μ1)(x2 − μ2) + (y1 − ν1)(y2 − ν2)]},
and the general density for p = 2 and this Σ̃ is of the following form:

f (X̃) = 1

4π2
e−Q

where the Q is as previously given. Let the following be an observed sample of size n = 4
from a Ñ2(μ̃o, Σ̃) population whose associated covariance matrix Σ̃ is as previously
specified:

X̃1 =
[

1
1 + i

]
, X̃2 =

[
2 − 3i

i

]
, X̃3 =

[
2 + i

3

]
, X̃4 =

[
i

2 − i

]
.

Then,

¯̃
X = 1

4

{[
1

1 + i

]
+
[

2 − 3i

i

]
+
[

2 + i

3

]
+
[

i

2 − i

]}
= 1

4

[
5 − i

6 + i

]

¯̃
X − μ̃o = 1

4

[
5 − i

6 + i

]
−
[

1 + i

1 − 2i

]
= 1

4

[
1 − 5i

2 + 9i

]
,
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2n(
¯̃
X − μ̃o)

∗Σ̃−1(
¯̃
X − μ̃o)

= (2)(4)
1

42

[
1 + 5i 2 − 9i

] 1

4

[
3 −(1 + i)

−(1 − i) 2

] [
1 − 5i

2 + 9i

]

= 1

8
{3(1 + 5i)(1 − 5i) + 2(2 − 9i)(2 + 9i) − (1 + i)(1 + 5i)(2 + 9i)

− (1 − i)(2 − 9i)(1 − 5i)}
= 1

8
{3 × 26 + 2 × 85 + 2 × 62} = 46.5.

Let us test the stated null hypothesis at the significance level α = 0.05. Since χ2
2p, α =

χ2
4, 0.05 = 9.49 and 46.5 > 9.49, we reject Ho. In this case, the p-value is Pr{χ2

2p ≥
46.5} = Pr{χ2

4 ≥ 46.5} ≈ 0.

6.2.3. Test involving a subvector of a mean value vector when Σ is known

Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj ’s be
independently distributed. Let the joint density of Xj, j = 1, . . . , n, be denoted by L.
Then, as was previously established,

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(i)

where X̄ = 1
n
(X1 + · · · + Xn) and, letting X = (X1, . . . , Xn) of dimension p × n and

X̄ = (X̄, . . . , X̄), S = (X − X̄)(X − X̄)′. Let X̄, Σ−1 and μ be partitioned as follows:

X̄ =
[
X̄(1)

X̄(2)

]
,

[
Σ11 Σ12

Σ21 Σ22

]
, μ =

[
μ(1)

μ(2)

]

where X̄(1) and μ(1) are r × 1, r < p, and Σ11 is r × r . Consider the hypothesis μ(1) =
μ

(1)
o (specified) with Σ known. Thus, this hypothesis concerns only a subvector of the

mean value vector, the population covariance matrix being assumed known. In the entire
parameter space �, μ is estimated by X̄ where X̄ is the maximum likelihood estimator
(MLE) of μ. The maximum of the likelihood function in the entire parameter space is then

max
�

L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (ii)
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Let us now determine the MLE of μ(2), which is the only unknown quantity under the null
hypothesis. To this end, we consider the following expansion:

(X̄ − μ)′Σ−1(X̄ − μ) = [(X̄(1) − μ(1)
o )′, (X̄(2) − μ(2))′]

[
Σ11 Σ12

Σ21 Σ22

] [
X̄(1) − μ(1)

X̄(2) − μ(2)

]

= (X̄(1) − μ(1)
o )′Σ11(X̄(1) − μ(1)

o ) + (X̄(2) − μ(2))′Σ22(X̄(2) − μ(2))

+ 2(X̄(2) − μ(2))′Σ21(X̄(1) − μ(1)
o ). (iii)

Noting that there are only two terms involving μ(2) in (iii), we have

∂

∂μ(2)
ln L = O ⇒ O − 2Σ22(X̄(2) − μ(2)) − 2Σ21(X̄(1) − μ(1)

o ) = O

⇒ μ̂(2) = X̄(2) + (Σ22)−1Σ21(X̄(1) − μ(1)
o ).

Then, substituting this MLE μ̂(2) in the various terms in (iii), we have the following:

(X̄(2) − μ̂(2))′Σ22(X̄(2) − μ̂(2)) = (X̄(1) − μ(1)
o )′Σ12(Σ22)−1Σ21(X̄(1) − μ(1)

o )

2(X̄(2) − μ̂(2))′Σ21(X̄(1) − μ(1)
o ) = −2(X̄(1) − μ(1)

o )′Σ12(Σ22)−1Σ21(X̄(1) − μ(1)
o ) ⇒

(X̄ − μ)′Σ−1(X̄ − μ) = (X̄(1) − μ(1)
o )′[Σ11 − Σ12(Σ22)−1Σ21](X̄(1) − μ(1)

o )

= (X̄(1) − μ(1)
o )′Σ−1

11 (X̄(1) − μ(1)
o ),

since, as established in Sect. 1.3, Σ−1
11 = Σ11 − Σ12(Σ22)−1Σ21. Thus, the maximum of

L under the null hypothesis is given by

max
Ho

L = e− 1
2 tr(Σ−1S)− n

2 (X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−μ
(1)
o )

(2π)
np
2 |Σ | n

2
,

and the λ-criterion is then

λ = maxHo
L

max� L
= e− n

2 (X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−μ
(1)
o ). (6.2.1)

Hence, we reject Ho for small values of λ or for large values of n(X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−
μ

(1)
o ) ∼ χ2

r since the expected value and covariance matrix of X̄(1) are respectively μ
(1)
o

and Σ11/n. Accordingly, the criterion can be enunciated as follows:

Reject Ho : μ(1) = μ(1)
o (given) if u ≡ n(X̄(1) − μ(1)

o )′Σ−1
11 (X̄(1) − μ(1)

o ) ≥ χ2
r, α (6.2.2)

with Pr{χ2
r ≥ χ2

r, α} = α. In the complex Gaussian case, the corresponding 2ũ will
be distributed as a real chisquare random variable having 2r degrees of freedom; thus, the
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criterion will consist of rejecting the corresponding null hypothesis whenever the observed
value of 2ũ ≥ χ2

2r, α.

Example 6.2.4. Let the 4 × 1 vector X have a real normal distribution N4(μ, Σ), Σ >

O. Consider the hypothesis that part of μ is specified. For example, let the hypothesis Ho

and Σ be the following:

Ho : μ = μo =

⎡

⎢⎢⎣

1
−1
μ3

μ4

⎤

⎥⎥⎦ , Σ =

⎡

⎢⎢⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥⎥⎦ = Σ ′ > O, X =

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦ ≡
[
X(1)

X(2)

]
.

Since we are specifying the first two parameters in μ, the hypothesis can be tested by

computing the distribution of X(1) =
[
x1

x2

]
. Observe that X(1) ∼ N2(μ

(1), Σ11), Σ11 >

O where

μ(1) =
[
μ1

μ2

]
, μ(1)

o =
[

1
−1

]
, Ho : μ(1) = μ(1)

o , Σ11 =
[

2 1
1 2

]
⇒ Σ−1

11 = 1

3

[
2 −1

−1 2

]
.

Let the observed vectors from the original N4(μ, Σ) population be

X1 =

⎡

⎢⎢⎣

1
0
2
4

⎤

⎥⎥⎦ , X2 =

⎡

⎢⎢⎣

−1
1
1
2

⎤

⎥⎥⎦ , X3 =

⎡

⎢⎢⎣

0
2
3
4

⎤

⎥⎥⎦ , X4 =

⎡

⎢⎢⎣

2
1

−1
3

⎤

⎥⎥⎦ , X5 =

⎡

⎢⎢⎣

2
−1

0
4

⎤

⎥⎥⎦ .

Then the observations corresponding to the subvector X(1), denoted by X
(1)
j , are the fol-

lowing:

X
(1)
1 =

[
1
0

]
, X

(1)
2 =

[−1
1

]
, X

(1)
3 =

[
0
2

]
, X

(1)
4 =

[
2
1

]
, X

(1)
5 =

[
2

−1

]
.

In this case, the sample size n = 5 and the sample mean, denoted by X̄(1), is

X̄(1) = 1

5

{[
1
0

]
+
[−1

1

]
+
[

0
2

]
+
[

2
1

]
+
[

2
−1

]}
= 1

5

[
4
3

]
⇒

X̄(1) − μ(1)
o = 1

5

[
4
3

]
−
[

1
−1

]
= 1

5

[−1
8

]
.
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Therefore

n(X̄(1) − μ(1)
o )′Σ−1

11 (X̄(1) − μ(1)
o ) = 5

52

[−1 8
] 1

3

[
2 −1

−1 2

] [−1
8

]

= 1

15
(146) = 9.73.

If 9.73 > χ2
2, α, then we would reject H

(1)
o : μ(1) = μ

(1)
o . Let us test this hypothesis at

the significance level α = 0.01. Since χ2
2, 0.01 = 9.21, we reject the null hypothesis. In

this instance, the p-value, which can be determined from a chisquare table, is Pr{χ2
2 ≥

9.73} ≈ 0.007.

6.2.4. Testing μ1 = · · · = μp, with Σ known, real Gaussian case

Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj be independently dis-
tributed. Letting μ′ = (μ1, . . . , μp), consider the hypothesis

Ho : μ1 = μ2 = · · · = μp = ν,

where ν, the common μj is unknown. This implies that μi − μj = 0 for all i and j . Con-
sider the p × 1 vector J of unities, J ′ = (1, . . . , 1) and then take any non-null vector that
is orthogonal to J . Let A be such a vector so that A′J = 0. Actually, p − 1 linearly inde-
pendent such vectors are available. For example, if p is even, then take 1, −1, . . . , 1, −1
as the elements of A and, when p is odd, one can start with 1, −1, . . . , 1, −1 and take the
last three elements as 1, −2, 1, or the last element as 0, that is,

J =

⎡

⎢⎢⎢⎢⎢⎣

1
1
...

1
1

⎤

⎥⎥⎥⎥⎥⎦
, A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

...

−1
1

−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

for p even and A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

...

1
−2

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡

⎢⎢⎢⎢⎢⎣

1
−1

...

−1
0

⎤

⎥⎥⎥⎥⎥⎦
for p odd.

When the last element of the vector A is zero, we are simply ignoring the last element in
Xj . Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj ’s be inde-
pendently distributed. Let the scalar yj = A′Xj and the 1 × n vector Y = (y1, . . . , yn) =
(A′X1, . . . , A

′Xn) = A′(X1, . . . , Xn) = A′X, where the p×n matrix X = (X1, . . . , Xn).
Let ȳ = 1

n
(y1 +· · ·+yn) = A′ 1

n
(X1 +· · ·+Xn) = A′X̄. Then.

∑n
j=1(yj − ȳ)(yj − ȳ)′ =

A′∑n
j=1(Xj −X̄)(Xj −X̄)′A where

∑n
j=1(Xj −X̄)(Xj −X̄)′ = (X−X̄)(X−X̄)′ = S =
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the sample sum of products matrix in the Xj ’s, where X̄ = (X̄, . . . , X̄) the p × n ma-
trix whose columns are all equal to X̄. Thus, one has

∑n
j=1(yj − ȳ)2 = A′SA. Con-

sider the hypothesis μ1 = · · · = μp = ν. Then, A′μ = νA′J = ν 0 = 0 under Ho.
Since Xj ∼ Np(μ, Σ), Σ > O, we have yj ∼ N1(A

′μ, A′ΣA), A′ΣA > 0. Un-
der Ho, yj ∼ N1(0, A′ΣA), j = 1, . . . , n, the yj ’s being independently distributed.
Consider the joint density of y1, . . . , yn, denoted by L:

L =
n∏

j=1

e− 1
2A′ΣA

(yj−A′μ)2

(2π)
1
2 [A′ΣA] 1

2

. (i)

Since Σ is known, the only unknown quantity in L is μ. Differentiating ln L with respect
to μ and equating the result to a null vector, we have

n∑

j=1

(yj − A′μ̂) = 0 ⇒
n∑

j=1

yj − nA′μ̂ = 0 ⇒ ȳ − A′μ̂ = 0 ⇒ A′(X̄ − μ̂) = 0.

However, since A is a fixed known vector and the equation holds for arbitrary X̄, μ̂ = X̄.
Hence the maximum of L, in the entire parameter space � = μ, is the following:

max
�

L = e− 1
2A′ΣA

∑n
j=1[A′(Xj−X̄)]2

(2π)
np
2 [A′ΣA] n

2
= e− 1

2A′ΣA
A′SA

(2π)
np
2 [A′ΣA] n

2
. (ii)

Now, noting that under Ho, A′μ = 0, we have

max
Ho

L = e− 1
2A′ΣA

∑n
j=1 A′XjX

′
jA

′

(2π)
np
2 [A′ΣA] n

2
. (iii)

From (i) to (iii), the λ-criterion is as follows, observing that A′(
∑n

j=1 XjX
′
j )A =∑n

j=1 A′(Xj − X̄)(Xj − X̄)′A + nA′(X̄X̄′A) = A′SA + nA′X̄X̄′A:

λ = e− n
2A′ΣA

A′X̄X̄′A
. (6.2.3)

But since
√

n
A′ΣA

A′X̄ ∼ N1(0, 1) under Ho, we may test this null hypothesis either by

using the standard normal variable or a chisquare variable as n
A′ΣA

A′X̄X̄′A ∼ χ2
1 under

Ho. Accordingly, the criterion consists of rejecting Ho

when

∣∣∣∣

√
n

A′ΣA
A′X̄

∣∣∣∣ ≥ zα
2
, with Pr{z ≥ zβ} = β, z ∼ N1(0, 1)

or

when u ≡ n

A′ΣA
(A′X̄X̄′A) ≥ χ2

1, α, with Pr{χ2
1 ≥ χ2

1, α} = α, u ∼ χ2
1 . (6.2.4)
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Example 6.2.5. Consider a 4-variate real Gaussian vector X ∼ N4(μ, Σ), Σ > O with
Σ as specified in Example 6.2.4 and the null hypothesis that the individual components of
the mean value vector μ are all equal, that is,

Σ =

⎡

⎢⎢⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥⎥⎦ , Ho : μ1 = μ2 = μ3 = μ4 ≡ ν (say), with μ =

⎡

⎢⎢⎣

μ1

μ2

μ3

μ4

⎤

⎥⎥⎦.

Let L be a 4 × 1 constant vector such that L′ = (1, −1, 1, −1). Then, under Ho, L′μ = 0
and u = L′X is univariate normal; more specifically, u ∼ N1(0, L′ΣL) where

L′ΣL = [
1 −1 1 −1

]

⎡

⎢⎢⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
−1

1
−1

⎤

⎥⎥⎦ = 7 ⇒ u ∼ N1(0, 7).

Let the observation vectors be the same as those used in Example 6.2.4 and let uj =
L′Xj, j = 1, . . . , 5. Then, the five independent observations from u ∼ N1(0, 7) are the
following:

u1 = L′X1 = [
1 −1 1 −1

]

⎡

⎢⎢⎣

1
0
2
4

⎤

⎥⎥⎦ = −1, u2 = L′

⎡

⎢⎢⎣

−1
1
1
2

⎤

⎥⎥⎦ = −3, u3 = L′

⎡

⎢⎢⎣

0
2
3
4

⎤

⎥⎥⎦ = −3,

u4 = L′

⎡

⎢⎢⎣

2
1

−1
3

⎤

⎥⎥⎦ = −3, u5 = L′

⎡

⎢⎢⎣

2
−1

0
4

⎤

⎥⎥⎦ = −1,

the average ū = 1
5(u1 + · · · + u5) = 1

5(−1 − 3 − 3 − 3 − 1) being equal to −11
5 . Then,

the standardized sample mean z =
√

n

σu
(ū − 0) ∼ N1(0, 1). Let us test the null hypothesis

at the significance level α = 0.05. Referring to a N1(0, 1) table, the required critical
value, denoted by zα

2
= z0.025 is 1.96. Therefore, we reject Ho in favor of the alternative

hypothesis that at least two components of μ are unequal at significance level α if the
observed value of

|z| =
∣∣∣
√

n

σu

(ū − 0)

∣∣∣ ≥ 1.96.
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Since the observed value of |z| is |
√

5√
7
(−7

5 − 0)| = √
1.4 = 1.18 is less than 1.96, we do

not reject Ho at the 5% significance level. Letting z ∼ N1(0, 1), the p-value in this case
is Pr{|z| ≥ 1.18} = 0.238, this quantile being available from a standard normal table.

In the complex case, proceeding in a parallel manner to the real case, the lambda cri-
terion will be the following:

λ̃ = e− n
A∗ΣA

A∗ ¯̃
X

¯̃
X∗A (6.2a.5)

where an asterisk indicates the conjugate transpose. Letting ũ = 2n
A∗ΣA

(A∗ ¯̃
X

¯̃
X∗A), it can

be shown that under Ho, ũ is distributed as a real chisquare random variable having 2
degrees of freedom. Accordingly, the criterion will be as follows:

Reject Ho if the observed ũ ≥ χ2
2, α with Pr{χ2

2 ≥ χ2
2, α} = α. (6.2a.6)

Example 6.2a.2. When p > 2, the computations become quite involved in the complex
case. Thus, we will let p = 2 and consider the bivariate complex Ñ2(μ̃, Σ̃) distribution
that was specified in Example 6.2a.1, assuming that Σ̃ is as given therein, the same set of
observations being utilized as well. In this case, the null hypothesis is Ho : μ̃1 = μ̃2, the
parameters and sample average being

μ̃ =
[
μ̃1

μ̃2

]
, Σ̃ =

[
2 1 + i

1 − i 3

]
,

¯̃
X = 1

4

[
5 − i

6 + i

]
.

Letting L′ = (1, −1), L′μ̃ = 0 under Ho, and

ũ = L′ ¯̃
X = 1

4

[
1 −1

] [5 − i

6 + i

]
= −1

4
(1+2i); (L′ ¯̃

X)∗(L′ ¯̃
X) = 1

16
(1−2i)(1+2i) = 5

16
;

L′Σ̃L = [
1 −1

] [ 2 1 + i

1 − i 3

] [
1

−1

]
= 3; v = 2n

L′Σ̃L
[(L′ ¯̃

X)∗(L′ ¯̃
X) = 8

3
× 5

16
= 5

6
.

The criterion consists of rejecting Ho if the observed value of v ≥ χ2
2, α. Letting the

significance level of the test be α = 0.05, the critical value is χ2
2, 0.05 = 5.99, which is

readily available from a chisquare table. The observed value of v being 5
6 < 5.99, we do

not reject Ho. In this case, the p-value is Pr{χ2
2 ≥ 5

6} ≈ 0.318.

6.2.5. Likelihood ratio criterion for testing Ho : μ1 = · · · = μp , Σ known

Consider again, Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, with the Xj ’s being
independently distributed and Σ , assumed known. Letting the joint density of X1, . . . , Xn

be denoted by L, then, as determined earlier,

L = e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(i)
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where n is the sample size and S is the sample sum of products matrix. In the entire
parameter space

� = {(μ, Σ) |Σ > O known, μ′ = (μ1, . . . , μp)},
the MLE of μ is X̄ = the sample average. Then

max
�

L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (ii)

Consider the following hypothesis on μ′ = (μ1, . . . , μp):

Ho : μ1 = · · · = μp = ν, ν is unknown.

Then, the MLE of μ under Ho is μ̂ = J ν̂ = J 1
p
J ′X̄, J ′ = (1, . . . , 1). This ν̂ is in fact

the sum of all observations on all components of Xj, j = 1, . . . , n, divided by np, which
is identical to the sum of all the coordinates of X̄ divided by p or μ̂ = 1

p
JJ ′X̄. In order to

evaluate the maximum of L under Ho, it suffices to substitute μ̂ to μ in (i). Accordingly,
the λ-criterion is

λ = maxHo
L

max� L
= e− n

2 (X̄−μ̂)′Σ−1(X̄−μ̂). (6.2.5)

Thus, we reject Ho for small values of λ or for large values of w ≡ n(X̄−μ̂)′Σ−1(X̄−μ̂).
Let us determine the distribution of v. First, note that

X̄ − μ̂ = X̄ − 1

p
JJ ′X̄ = (

Ip − 1

p
JJ ′)X̄,

and let

w = n(X̄ − μ̂)′Σ−1(X̄ − μ̂) = nX̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄ (iii)

= (X̄ − μ)′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)(X̄ − μ)

since J ′(I − 1
p
JJ ′) = O, μ = νJ being the true mean value of the Np(μ, Σ) distribution.

Observe that
√

n(X̄ − μ) ∼ Np(O, Σ), Σ > O, and that 1
p
JJ ′ is idempotent. Since

I − 1
p
JJ ′ is also idempotent and its rank is p − 1, there exists an orthonormal matrix P ,

PP ′ = I, P ′P = I , such that

I − 1

p
JJ ′ = P ′

[
Ip−1 O

O ′ 0

]
P.
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Letting U = P
√

n(X̄ − μ̂), with U ′ = (u1, . . . , up−1, up), U ∼ Np(O, PΣP ′). Now,
on noting that

U ′
[
Ip−1 O

O ′ 0

]
= (u1, . . . , up−1, 0),

we have

n(X̄ − μ̂)′Σ−1(X̄ − μ̂) = [U ′
1, 0]PΣ−1P ′

[
U1

0

]
= U ′

1B
−1U1, U ′

1 = (u1, . . . , up−1),

B being the covariance matrix associated with U1, so that U1 ∼ Np−1(O, B), B > O.
Thus, U ′

1B
−1U1 ∼ χ2

p−1, a real scalar chisquare random variable having p − 1 degrees of
freedom. Hence, upon evaluating

w = X̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄,

one would reject Ho : μ1 = · · · = μp = ν, ν unknown, whenever the observed value of

w ≥ χ2
p−1, α, with Pr{χ2

p−1 ≥ χ2
p−1, α} = α. (6.2.6)

Observe that the degrees of freedom of this chisquare variable, that is, p − 1, coincides
with the number of parameters being restricted by Ho.

Example 6.2.6. Consider the trivariate real Gaussian population X ∼ N3(μ, Σ), Σ >

O, as already specified in Example 6.2.1 with the same Σ and the same observed sample
vectors for testing Ho : μ′ = (ν, ν, ν), namely,

μ =
⎡

⎣
μ1

μ2

μ3

⎤

⎦ , X̄ = 1

5

⎡

⎣
9
4
3

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦ ⇒ Σ−1 =
⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

The following test statistic has to be evaluated for p = 3:

w = X̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄, J ′ = (1, 1, 1).
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We have to evaluate the following quantities in order to determine the value of w:

1

3
JJ ′Σ−1 = 1

3

⎡

⎣
1
2 1 0
1
2 1 0
1
2 1 0

⎤

⎦ , Σ−1 1

3
JJ ′ = 1

3

⎡

⎣
1
2

1
2

1
2

1 1 1
0 0 0

⎤

⎦ ,

1

3
JJ ′Σ−1 1

3
JJ ′ = 1

9

⎡

⎣
3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

⎤

⎦ = 1

6

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ ,

⎡

⎣
1
2 0 0
0 2 −1
0 −1 1

⎤

⎦− 1

3

⎡

⎣
1
2 1 0
1
2 1 0
1
2 1 0

⎤

⎦− 1

3

⎡

⎣
1
2

1
2

1
2

1 1 1
0 0 0

⎤

⎦

+ 1

6

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ =
⎡

⎣
1
3 −1

3 0
−1

3
3
2 −7

6
0 −7

6
7
6

⎤

⎦ = (I − 1

3
JJ ′)Σ−1(I − 1

3
JJ ′).

Thus,

w = X̄′(I − 1

3
JJ ′)Σ−1(I − 1

3
JJ ′)X̄, J ′ = (1, 1, 1)

= 1

52

[
9 4 3

]
⎡

⎣
1
3 −1

3 0
−1

3
3
2 −7

6
0 −7

6
7
6

⎤

⎦

⎡

⎣
9
4
3

⎤

⎦

= 1

52

[
92 1

3
+ 42 3

2
+ 32 7

6
− 2

3
(9)(4) − 14

6
(4)(3)

]

= 0.38.

We reject Ho whenever w ≥ χ2
p−1,α. Letting the significance level be α = 0.05, the

tabulated critical value is χ2
p−1, α = χ2

2, 0.05 = 5.99, and since 0.38 < 5.99, we do not

reject the null hypothesis. In this instance, the p-value is Pr{χ2
2 ≥ 0.38} ≈ 0.32.

6.3. Testing Ho : μ = μo (given) When Σ is Unknown, Real Gaussian Case

In this case, both μ and Σ are unknown in the entire parameter space �; however,
μ = μo known while Σ is still unknown in the subspace ω. The MLE under � is the same
as that obtained in Sect. 6.1.1., that is,

sup�L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
. (6.3.1)
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When μ = μo, Σ is estimated by Σ̂ = 1
n

∑n
j=1(Xj − μo)(Xj − μo)

′. As shown in

Sect. 3.5, Σ̂ can be reexpressed as follows:

Σ̂ = 1

n

n∑

j=1

(Xj − μo)(Xj − μo) = 1

n
S + (X̄ − μo)(X̄ − μo)

′

= 1

n
[S + n(X̄ − μo)(X̄ − μo)

′].

Then, under the null hypothesis, we have

supωL = e− np
2 n

np
2

(2π)
np
2 |S + n(X̄ − μo)(X̄ − μo)′| n

2
. (6.3.2)

Thus,

λ = supωL

sup�L
= |S| n

2

|S + n(X̄ − μo)(X̄ − μo)′| n
2
.

On applying results on the determinants of partitioned matrices which were obtained in
Sect. 1.3, we have the following equivalent representations of the denominator:

∣∣∣∣

[
S n(X̄ − μo)

−(X̄ − μo)
′ 1

]∣∣∣∣ = [1]|S + n(X̄ − μo)(X̄ − μo)
′|

= |S| |1 + n(X̄ − μo)
′S−1(X̄ − μo)|,

that is,
|S + n(X̄ − μo)(X̄ − μo)

′| = |S|[1 + n(X̄ − μo)
′S−1(X̄ − μo)],

which yields the following simplified representation of the likelihood ratio statistic:

λ = 1

[1 + n(X̄ − μo)′S−1(X̄ − μo)] n
2
. (6.3.3)

Small values of λ correspond to large values of u ≡ n(X̄ − μo)
′S−1(X̄ − μo), which is

connected to Hotelling’s T 2
n statistic. Hence the criterion is the following: “Reject Ho for

large values of u”. The distribution of u can be derived by making use of the indepen-
dence of the sample mean and sample sum of products matrix and the densities of these
quantities. An outline of the derivation is provided in the next subsection.
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6.3.1. The distribution of the test statistic

Let us examine the distribution of u = n(X̄ − μ)′S−1(X̄ − μ). We have already
established in Theorems 3.5.3, that S and X̄ are independently distributed in the case of
a real p-variate nonsingular Gaussian Np(μ, Σ) population. It was also determined in
Corollary 3.5.1 that the distribution of the sample average X̄ is a p-variate real Gaussian
vector with the parameters μ and 1

n
Σ, Σ > O and in the continuing discussion, it is

shown that the distribution of S is a matrix-variate Wishart with m = n − 1 degrees of
freedom, where n is the sample size and parameter matrix Σ > O. Hence the joint density
of S and X̄, denoted by f (S, X̄), is the product of the marginal densities. Letting Σ = I ,
this joint density is given by

f (S, X̄) = n
p
2

(2π)
p
2 2

mp
2 Γp(m

2 )
|S|m

2 −p+1
2 e− 1

2 tr(S)− n
2 tr((X̄−μ)(X̄−μ)′), m = n − 1. (i)

Note that it is sufficient to consider the case Σ = I . Due to the presence of S−1 in u =
(X̄ − μ)′S−1(X̄ − μ), the effect of any scaling matrix on Xj will disappear. If Xj goes

to A
1
2 Xj for any constant positive definite matrix A then S−1 will go to A− 1

2 S−1A− 1
2 and

thus u will be free of A.

Letting Y = S− 1
2 (X̄ −μ) for fixed S, Y ∼ Np(O, S−1/n), so that the conditional density

of Y , given S, is

g(Y |S) = n
p
2 |S| 1

2

(2π)
p
2

e− n
2 tr(SYY ′).

Thus, the joint density of S and Y , denoted by f1(S, Y ), is

f1(S, Y ) = n
p
2

(2π)
p
2 2

mp
2 Γp(m

2 )
|S|m+1

2 −p+1
2 e− 1

2 tr(S[I+nYY ′]), m = n − 1. (ii)

On integrating out S from (ii) by making use of a matrix-variate gamma integral, we obtain
the following marginal density of Y , denoted by f2(Y ):

f2(Y )dY = n
p
2

(π)
p
2

Γp(m+1
2 )

Γp(m
2 )

|I + nYY ′|−(m+1
2 )dY, m = n − 1. (iii)

However, |I + nYY ′| = 1 + nY ′Y, which can be established by considering two represen-
tations of the determinant ∣∣∣∣

I −√
nY√

nY ′ 1

∣∣∣∣ ,
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similarly to what was done in Sect. 6.3 to obtain the likelihood ratio statistic given in
(6.3.3). As well, it can easily be shown that

Γp(m+1
2 )

Γp(m
2 )

= Γ (m+1
2 )

Γ (m+1
2 − p

2 )

by expanding the matrix-variate gamma functions. Now, letting s = Y ′Y , it follows from

Theorem 4.2.3 that dY = π
p
2

Γ (
p
2 )

s
p
2 −1ds. Thus, the density of s, denoted by f3(s), is

f3(s)ds = n
p
2 Γ (m+1

2 )

Γ (m+1
2 − p

2 )Γ (
p
2 )

s
p
2 −1(1 + ns)−(m+1

2 )ds (6.3.4)

= n
p
2 Γ (n

2 )

Γ (n
2 − p

2 )Γ (
p
2 )

s
p
2 −1(1 + ns)−( n

2 )ds, m = n − 1, (6.3.5)

for n = p + 1, p + 2, . . . , 0 ≤ s < ∞, and zero elsewhere. It can then readily be seen
from (6.3.5) that ns = nY ′Y = n(X̄ − μ)′S−1(X̄ − μ) = u is distributed as a real scalar
type-2 beta random variable whose parameters are (

p
2 , n

2 − p
2 ), n = p + 1, . . . . Thus, the

following result:

Theorem 6.3.1. Consider a real p-variate normal population Np(μ, Σ), Σ > O, and
a simple random sample of size n from this normal population, Xj ∼ Np(μ, Σ), j =
1, . . . , n, the Xj ’s being independently distributed. Let the p × n matrix X = (X1, . . . ,

Xn) be the sample matrix and the p-vector X̄ = 1
n
(X1 + · · · + Xn) denote the sample

average. Let X̄ = (X̄, . . . , X̄) be a p × n matrix whose columns are all equal to X̄,

and S = (X − X̄)(X − X̄)′ be the sample sum of products matrix. Then, u = n(X̄ −
μ)′S−1(X̄ −μ) has a real scalar type-2 beta distribution with the parameters (

p
2 , n

2 − p
2 ),

so that u ∼ p
n−p

Fp, n−p where Fp, n−p denotes a real F random variable whose degrees
of freedoms are p and n − p.

Hence, in order to test the hypothesis Ho : μ = μo, the likelihood ratio statistic gives
the test criterion: Reject Ho for large values of u = n(X̄ − μo)

′S−1(X̄ − μo), which is
equivalent to rejecting Ho for large values of an F -random variable having p and n − p

degrees of freedom where Fp, n−p = n−p
p

u = n−p
p

n(X̄ − μo)
′S−1(X̄ − μo), that is,

reject Ho if
n − p

p
u = Fp, n−p ≥ Fp, n−p, α ,

with α = Pr{Fp, n−p ≥ Fn, n−p, α} (6.3.6)
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at a given significance level α where u = n(X̄−μo)
′S−1(X̄−μo) ∼ p

n−p
Fp, n−p , n being

the sample size.

Example 6.3.1. Consider a trivariate real Gaussian vector X ∼ N3(μ, Σ), Σ > O,

where Σ is unknown. We would like to test the following hypothesis on μ: Ho : μ = μo,

with μ′
o = (1, 1, 1). Consider the following simple random sample of size n = 5 from this

N3(μ, Σ) population:

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ ,

so that

X̄ = 1

5

⎡

⎣
1
2
4

⎤

⎦ , X1 − X̄ =
⎡

⎣
1
1
1

⎤

⎦− 1

5

⎡

⎣
1
2
4

⎤

⎦ = 1

5

⎡

⎣
4
3
1

⎤

⎦ , X2 − X̄ = 1

5

⎡

⎣
4

−2
−9

⎤

⎦ ,

X3 − X̄ = 1

5

⎡

⎣
−6

3
6

⎤

⎦ , X4 − X̄ = 1

5

⎡

⎣
−11

3
6

⎤

⎦ , X5 − X̄ = 1

5

⎡

⎣
9

−7
−4

⎤

⎦ .

Let X = [X1, . . . , X5] the 3×5 sample matrix and X̄ = [X̄, X̄, . . . , X̄] be the 3×5 matrix
of sample means. Then,

X − X̄ = [X1 − X̄, . . . , X5 − X̄] = 1

5

⎡

⎣
4 4 −6 −11 9
3 −2 3 3 −7
1 −9 6 6 −4

⎤

⎦ ,

S = (X − X̄)(X − X̄)′ = 1

52

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦ .

Let S = 1
52 A. In order to evaluate the test statistic, we need S−1 = 25A−1. To obtain

the correct inverse without any approximation, we will use the transpose of the cofactor
matrix divided by the determinant. The determinant of A, |A|, as obtained in terms of the
elements of the first row and the corresponding cofactors is equal to 531250. The matrix
of cofactors, denoted by Cof(A), which is symmetric in this case, is the following:

Cof(A) =
⎡

⎣
6375 4250 4250
4250 17000 −4250
4250 −4250 9500

⎤

⎦ ⇒ S−1 = 25

531250
Cof(A).
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The null hypothesis is Ho : μ = μo = (1, 1, 1)′, so that

X̄ − μo = 1

5

⎡

⎣
1
2
4

⎤

⎦−
⎡

⎣
1
1
1

⎤

⎦ = −1

5

⎡

⎣
4
3
1

⎤

⎦ ,

the observed value of the test statistic being

w = n − p

p
n(X̄ − μo)

′S−1(X̄ − μo) = (5 − 3)

3
5

25

52

[
4 3 1

]
A−1

⎡

⎣
4
3
1

⎤

⎦

= 2

3
5

25

52

1

531250
[(4)2(6375) + (3)2(17000) + (1)2(9500)

+ 2(4)(3)(4250) + 2(4)(1)(4250) − 2(3)(1)(4250)]
= 2

3
5

25

52

1

531250
[375000] = 2.35.

The test statistic w under the null hypothesis is F -distributed, that is, w ∼ Fp, n−p. Let
us test Ho at the significance level α = 0.05. Since the critical value as obtained from an
F -table is Fp,n−p, α = F3,2, 0.05 = 19.2 and 2.35 < 19.2, we do not reject Ho.

Note 6.3.1. If S is replaced by 1
n−1S, an unbiased estimator for Σ , then the test statistic

1
n−1n(X̄−μo)

′[ 1
n−1S]−1(X̄−μo) = T 2

n

n−1 where T 2
n denotes Hotelling’s T 2 statistic, which

for p = 1 corresponds to the square of a Student-t statistic having n−1 degrees of freedom.

Since u as defined in Theorem 6.3.1 is distributed as a type-2 beta random variable with
the parameters (

p
2 ,

n−p
2 ), we have the following results: 1

u
is type-2 beta distributed with

the parameters (
n−p

2 ,
p
2 ), u

1+u
is type-1 beta distributed with the parameters (

p
2 ,

n−p
2 ),

and 1
1+u

is type-1 beta distributed with the parameters (
n−p

2 ,
p
2 ), n being the sample size.

6.3.2. Paired values or linear functions when Σ is unknown

Let Y1, . . . , Yk be p × 1 vectors having their own distributions which are unknown.
However, suppose that it is known that a certain linear function X = a1Y1 +· · ·+akYk has
a p-variate real Gaussian Np(μ, Σ) distribution with Σ > O. We would like to test hy-

potheses of the type E[X] = a1μ
(o)
(1)+· · ·+akμ

(o)
(k) where the μ

(o)
j ’s, j = 1, . . . , k, are spec-

ified. Since we do not know the distributions of Y1, . . . , Yk, let us convert the iid variables
on Yj , j = 1, . . . , k, to iid variables on Xj , say X1, . . . , Xn, Xj ∼ Np(μ, Σ), Σ > O,

where Σ is unknown. First, the observations on Y1, . . . , Yk are transformed into observa-
tions on the Xj ’s. The problem then involves a single normal population whose covariance
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matrix is unknown. An example of this type is Y1 representing a p × 1 vector before a cer-
tain process, such as administering a drug to a patient; in this instance, Y1 could consists of
measurements on p characteristics observed in a patient. Observations on Y2 will then be
the measurements on the same p characteristics after the process such as after administer-
ing the drug to the patient. Then Y2q −Y1q = Xq will represent the variable corresponding
to the difference in the measurements on the q-th characteristic. Let the hypothesis be
Ho : μ = μo (given), Σ being unknown. Note that once the observations on Xj are taken,
then the individual μ(j)’s are irrelevant as they no longer are of any use. Once the Xj ’s
are determined, one can compute the sum of products matrix S in Xj . In this case, the
test statistic is u = n(X̄ − μo)

′S−1(X̄ − μo), which is distributed as a type-2 beta with
parameters (

p
2 ,

n−p
2 ). Then, u ∼ p

n−p
F where F is an F random variable having p and

n − p degrees of freedom, that is, an Fp, n−p random variable, n being the sample size.
Thus, the test criterion is applied as follows: Determine the observed value of u and the
corresponding observed value of Fp,n−p that is, n−p

p
u, and then

reject Ho if
n − p

p
u ≥ Fp, n−p, α, with Pr{Fp, n−p ≥ Fp, n−p, α} = α. (6.3.7)

Example 6.3.2. Five motivated individuals were randomly selected and subjected to an
exercise regimen for a month. The exercise program promoters claim that the subjects can
expect a weight loss of 5 kg as well as a 2-in. reduction in lower stomach girth by the end
of the month period. Let Y1 and Y2 denote the two component vectors representing weight
and girth before starting the routine and at the end of the exercise program, respectively.
The following are the observations on the five individuals:

(Y1, Y2) =
[
(85, 85)

(40, 41)

]
,

[
(80, 70)

(40, 45)

]
,

[
(75, 73)

(36, 36)

]
,

[
(70, 71)

(38, 38)

]
,

[
(70, 68)

(35, 34)

]
.

Obviously, Y1 and Y2 are dependent variables having a joint distribution. We will as-
sume that the difference X = Y1 − Y2 has a real Gaussian distribution, that is, X ∼
N2(μ, Σ), Σ > O. Under this assumption, the observations on X are

X1 =
[

85 − 85
40 − 41

]
=
[

0
−1

]
, X2 =

[
10

−5

]
, X3 =

[
2
0

]
, X4 =

[−1
0

]
, X5 =

[
2
1

]
.

Let X = [X1, X2, . . . , X5] and X− X̄ = [X1 − X̄, . . . , X5 − X̄], both being 2 × 5 matrix.
The observed sample average X̄, the claim of the exercise routine promoters μ = μo as
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well as other relevant quantities are as follows:

X̄ = 1

5
(X1 + · · · + X5) = 1

5

[
13

−5

]
, μo =

[
5
2

]
,

X1 − X̄ =
[

0
−1

]
− 1

5

[
13
−5

]
= 1

5

[−13
0

]
,

X2 − X̄ = 1

5

[
37

−20

]
, X3 − X̄ = 1

5

[−3
5

]
, X4 − X̄ = 1

5

[−18
5

]
, X5 − X̄ = 1

5

[−3
10

]
;

X − X̄ = [X1 − X̄, . . . , X5 − X̄] = 1

5

[ −13 37 −3 −18 −3
0 −20 5 5 10

]
;

S = (X − X̄)(X − X̄)′ = 1

52

[ −13 37 −3 −18 −3
0 −20 5 5 10

]

⎡

⎢⎢⎢⎢⎣

−13 0
37 −20
−3 5

−18 5
−3 10

⎤

⎥⎥⎥⎥⎦

= 1

52

[
1880 −875
−875 550

]
= 1

52
A, A =

[
1880 −875
−875 550

]
⇒ S−1 = 25A−1;

|A| = 1880(550) − (875)2 = 214975; Cof(A) =
[

550 875
875 1880

]
; A−1 = Cof(A)

|A| ;

A−1 = 1

268375

[
550 875
875 1880

]
, S−1 = 25A−1;

X̄ − μo = 1

5

[
13
−5

]
−
[

5
2

]
= −1

5

[
12
15

]
.

The test statistic being w = (n−p)
p

n(X̄ − μo)
′S−1(X̄ − μo), its observed value is

v = (5 − 2)

2
5

52

52

1

268375

[
12 15

] [550 875
875 1880

] [
12
15

]

= 3

2

5

268375
[(12)2(550) + (15)2(1880) + 2(12)(15)(875)] = 22.84.

Letting the significance level of the test be α = 0.05, the critical value is Fp, n−p, α =
F2, 3, 0.05 = 9.55. Since 22.84 > 9.55, Ho is thus rejected.

6.3.3. Independent Gaussian populations

Consider k independent p-variate real Gaussian populations whose individual distri-
bution is Np(μ(j), Σj ), Σj > O, j = 1, . . . , k. Given simple random samples of sizes
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n1, . . . , nk from these k populations, we may wish to test a hypothesis on a given linear
functions of the mean values, that is, Ho : a1μ(1) + · · · + akμ(k) = μ0 where a1, . . . , ak

are known constants and μo is a given quantity under the null hypothesis. We have already
discussed this problem for the case of known covariance matrices. When the Σj ’s are all
unknown or some of them are known while others are not, the MLE’s of the unknown co-
variance matrices turn out to be the respective sample sums of products matrices divided
by the corresponding sample sizes. This will result in a linear function of independent
Wishart matrices whose distribution proves challenging to determine, even for the null
case.

Special case of two independent Gaussian populations

Consider the special case of two independent real Gaussian populations having identical
covariance matrices. that is, let the populations be Y1q ∼ Np(μ(1), Σ), Σ > O, the Y1q’s,
q = 1, . . . , n1, being iid, and Y2q ∼ Np(μ(2), Σ), Σ > O, the Y2q’s, q = 1, . . . , n2,

being iid . Let the sample p × n1 and p × n2 matrices be denoted as Y1 = (Y11, . . . , Y1n1)

and Y2 = (Y21, . . . , Y2n2) and let the sample averages be Ȳj = 1
nj

(Yj1 + · · · + Yjnj
), j =

1, 2. Let Ȳj = (Ȳj , . . . , Ȳj ), a p × nj matrix whose columns are equal to Ȳj , j = 1, 2,

and let

Sj = (Yj − Ȳj )(Yj − Ȳj )
′, j = 1, 2,

be the corresponding sample sum of products matrices. Then, S1 and S2 are independently
distributed as Wishart matrices having n1 − 1 and n2 − 1 degrees of freedom, respectively.
As the sum of two independent p × p real or complex matrices having matrix-variate
gamma distributions with the same scale parameter matrix is again gamma distributed
with the shape parameters summed up and the same scale parameter matrix, we observe
that since the two populations are independently distributed, S1 + S2 ≡ S has a Wishart
distribution having n1 + n2 − 2 degrees of freedom. We now consider a hypothesis of the
type μ(1) = μ(2). In order to do away with the unknown common mean value, we may
consider the real p-vector U = Ȳ1 − Ȳ2, so that E(U) = O and Cov(U) = 1

n1
Σ + 1

n2
Σ =

( 1
n1

+ 1
n2

)Σ = n1+n2
n1n2

Σ . The MLE of this pooled covariance matrix is 1
n1+n2

S where S

is Wishart distributed with n1 + n2 − 2 degrees of freedom. Then, following through the
steps included in Sect. 6.3.1 with the parameter m now being n1 + n2 − 2, the power of
S will become (n1+n2−2+1)

2 − p+1
2 when integrating out S. Letting the null hypothesis be

Ho : E[Y1]−E[Y2] = δ (specified), such as δ = 0, the function resulting from integrating
out S is

c
[(n1 + n2)

n1n2
u]p

2 −1[1 + (n1 + n2)

n1n2
u
]− 1

2 (n1+n2−1)

(6.3.8)
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where c is the normalizing constant, so that w = (n1+n2)
n1n2

(Ȳ1 − Ȳ2 − δ)′S−1(Ȳ1 − Ȳ2 −
δ) is distributed as a type-2 beta with the parameters (

p
2 ,

(n1+n2−1−p)
2 ). Writing w =

p
n1+n2−1−p

Fp,n1+n2−1−p, this F is seen to be an F statistic having p and n1 + n2 − 1 − p

degrees of freedom. We will state these results as theorems.

Theorem 6.3.2. Let the p×p real positive definite matrices X1 and X2 be independently
distributed as real matrix-variate gamma random variables with densities

fj (Xj ) = |B|αj

Γp(αj )
|Xj |αj−p+1

2 e−tr(BXj ), B > O, Xj > O, �(αj ) >
p − 1

2
, (6.3.9)

j=1,2, and zero elsewhere. Then, as can be seen from (5.2.6), the Laplace transform asso-
ciated with Xj or that of fj , denoted as LXj

(∗T ), is

LXj
(∗T ) = |I + B−1∗T |−αj , I + B−1∗T > O, j = 1, 2. (i)

Accordingly, U1 = X1 + X2 has a real matrix-variate gamma density with the parameters
(α1 + α2, B) whose associated Laplace transform is

LU1(∗T ) = |I + B−1∗T |−(α1+α2), (ii)

and U2 = a1X1 + a2X2 has the Laplace transform

LU2(∗T ) = |I + a1B
−1∗T |−α1|I + a2B

−1∗T |−α2, (iii)

whenever I + ajB
−1∗T > O, j = 1, 2, where a1 and a2 are real scalar constants.

It follows from (ii) that X1 + X2 is also real matrix-variate gamma distributed. When
a1 �= a2, it is very difficult to invert (iii) in order to obtain the corresponding density. This
can be achieved by expanding one of the determinants in (iii) in terms of zonal polynomi-
als, say the second one, after having first taken |I + a1B

−1∗T |−(α1+α2) out as a factor in
this instance.

Theorem 6.3.3. Let Yj ∼ Np(μ(j), Σ), Σ > O, j = 1, 2, be independent p-variate
real Gaussian distributions sharing the same covariance matrix. Given a simple random
sample of size n1 from Y1 and a simple random sample of size n2 from Y2, let the sample
averages be denoted by Ȳ1 and Ȳ2 and the sample sums of products matrices, by S1 and S2,
respectively. Consider the hypothesis Ho : μ(1) − μ(2) = δ (given). Letting S = S1 + S2

and

w = (n1 + n2)

n1n2
(Ȳ1−Ȳ2−δ)′S−1(Ȳ1−Ȳ2−δ), w ∼ p

n1 + n2 − 1 − p
Fp, n1+n2−1−p (iv)
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where Fp, n1+n2−1−p denotes an F distribution with p and n1 + n2 − 1 − p degrees of
freedom, or equivalently, w is distributed as a type-2 beta variable with the parameters
(
p
2 ,

(n1+n2−1−p)
2 ). We reject the null hypothesis Ho if n1+n2−1−p

p
w ≥ Fp, n1+n2−1−p, α with

Pr{Fp, n1+n2−1−p ≥ Fp, n+1+n2−1−p, α} = α (vi)

at a given significance level α.

Theorem 6.3.4. Let w be as defined in Theorem 6.3.3. Then w1 = 1
w

is a real scalar

type-2 beta variable with the parameters (
n1+n2−1−p

2 ,
p
2 ); w2 = w

1+w
is a real scalar

type-1 beta variable with the parameters (
p
2 ,

(n1+n2−1−p)
2 ); w3 = 1

1+w
is a real scalar

type-1 beta variable with the parameters (
n1+n2−1−p

2 ,
p
2 ).

Those last results follow from the connections between real scalar type-1 and type-2
beta random variables. Results parallel to those appearing in (i) to (vi) and stated Theo-
rems 6.3.1–6.3.4 can similarly be obtained for the complex case.

Example 6.3.3. Consider two independent populations whose respective distributions
are N2(μ(1), Σ1) and N2(μ(2j), Σ2), Σj > O, j = 1, 2, and samples of sizes n1 =
4 and n2 = 5 from these two populations, respectively. Let the population covariance
matrices be identical with Σ1 = Σ2 = Σ , the common covariance matrix being unknown,
and let the observed sample vectors from the first population, Xj ∼ N2(μ(1), Σ), be

X1 =
[

1
0

]
, X2 =

[−1
1

]
, X3 =

[
1
2

]
, X4 =

[−1
−1

]
.

Denoting the sample mean from the first population by X̄ and the sample sum of products
matrix by S1, we have

X̄ = 1

4

[
0
2

]
and S1 = (X − X̄)(X − X̄)′, X = [X1, X2, X3, X4], X̄ = [X̄, . . . , X̄],
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the observations on these quantities being the following:

X1 − X̄ =
[

1
0

]
− 1

4

[
0
2

]
= 1

4

[
4

−2

]
,

X2 − X̄ = 1

4

[−4
2

]
, X3 − X̄ = 1

4

[
4
6

]
, X4 − X̄ = 1

4

[−4
−6

]
;

X − X̄ = 1

4

[
4 −4 4 −4

−2 2 6 −6

]
, S1 = (X − X̄)(X − X̄)′

S1 = 1

42

[
64 32
32 80

]
.

Let the sample vectors from the second population denoted as Y1, . . . , Y5 be

Y1 =
[

0
1

]
, Y2 =

[
1
0

]
, Y3 =

[
1

−1

]
, Y4 =

[
1
1

]
, Y5 =

[
2
1

]
.

Then, the sample average and the deviation vectors are the following:

Ȳ = 1

5
[Y1 + · · · + Y5] = 1

5

[
5
2

]
,

Y1 − Ȳ =
[

0
1

]
− 1

5

[
5
2

]
= 1

5

[−5
3

]
, Y2 − Ȳ = 1

5

[
0

−2

]
,

Y3 − Ȳ = 1

5

[
0

−7

]
, Y4 − Ȳ = 1

5

[
0
3

]
, Y5 − Ȳ = 1

5

[
5
3

]
,

Y − Ȳ = 1

5

[ −5 0 0 0 5
3 −2 −7 3 3

]
, S2 = (Y − Ȳ)(Y − Ȳ)′;

S2 = 1

52

[
50 0
0 80

]
; S = S1 + S2 = 1

16

[
64 32
32 80

]
+ 1

25

[
50 0
0 80

]

=
[

6.00 2.00
2.00 8.20

]
⇒ S−1 = Cof(S)

|S|
|S| = 45.20; S−1 = 1

45.20

[
8.20 −2.00

−2.00 6.00

]
.

Letting the null hypothesis be

Ho : μ(1) − μ(2) = δ =
[

1
1

]
,
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X̄ − Ȳ − δ = 1

4

[
0
2

]
− 1

5

[
5
2

]
−
[

1
1

]
= −

[
2.0
0.9

]
; n1 = 4, n2 = 5.

Thus, test statistic is u ∼ Fp,n1+n2−1−p where

u = (n1 + n2 − 1 − p)

p

(n1 + n2)

n1n2
(X̄ − Ȳ − δ)′S−1(X̄ − Ȳ − δ)

= (4 + 5 − 1 − 2)

2

(4 + 5)

(4)(5)

1

45.2

[−2.0 −0.9
] [ 8.2 −2.0

−2.0 6.0

] [−2.0
−0.9

]

≈ 0.91.

Let us test Ho at the 5% significance level. Since the required critical value is
Fp, n1+n2−1−p, α = F2, 6, 0.05 = 5.14 and 0.91 < 5.14, the null hypothesis is not rejected.

6.3.4. Testing μ1 = · · · = μp when Σ is unknown in the real Gaussian case

Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, the Xj ’s being inde-
pendently distributed. Let the p × 1 vector of unities be denoted by J or J ′ = (1, . . . , 1),

and let A be a vector that is orthogonal to J so that A′J = 0. For example, we can take

A =

⎡

⎢⎢⎢⎢⎢⎣

1
−1

...

1
−1

⎤

⎥⎥⎥⎥⎥⎦
when p is even, A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

...

1
−2

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

or A =

⎡

⎢⎢⎢⎢⎢⎣

1
−1

...

−1
0

⎤

⎥⎥⎥⎥⎥⎦
when p is odd.

If the last component of A is zero, we are then ignoring the last component of Xj .
Let yj = A′Xj, j = 1, . . . , n, and the yj ’s be independently distributed. Then
yj ∼ N1(A

′μ, A′ΣA), A′ΣA > O, is a univariate normal variable with mean value
A′μ and variance A′ΣA. Consider the p × n sample matrix comprising the Xj ’s, that is,
X = (X1, . . . , Xn). Let the sample average of the Xj ’s be X̄ = 1

n
(X1 + · · · + Xn) and

X̄ = (X̄, . . . , X̄). Then, the sample sum of products matrix S = (X−X̄)(X−X̄)′. Consider
the 1 × n vector Y = (y1, . . . , yn) = (A′X1, . . . , A

′Xn) = A′X, ȳ = 1
n
(y1 + · · · + yn) =

A′X̄,
∑n

j=1(yj − ȳ)2 = A′(X − X̄)(X − X̄)′A = A′SA. Let the null hypothesis be
Ho : μ1 = · · · = μp = ν, where ν is unknown, μ′ = (μ1, . . . , μp). Thus, Ho is
A′μ = νA′J = 0. The joint density of y1, . . . , yn, denoted by L, is then
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L =
n∏

j=1

e− 1
2A′ΣA

(yj−A′μ)2

(2π)
1
2 [A′ΣA] 1

2

= e
− 1

2(A′ΣA)

∑n
j=1(yj−A′μ)2

(2π)
n
2 [A′ΣA] n

2

= e− 1
2A′ΣA

{A′SA+nA′(X̄−μ)(X̄−μ)′A}

(2π)
n
2 [A′ΣA] n

2
(i)

where
n∑

j=1

(yj − A′μ)2 =
n∑

j=1

(yj − ȳ + ȳ − A′μ)2 =
n∑

j=1

(yj − ȳ)2 + n(ȳ − A′μ)2

=
n∑

j=1

A′(Xj − X̄)(Xj − X̄)′A + nA′(X̄ − μ)(X̄ − μ)′A

= A′SA + nA′(X̄ − μ)(X̄ − μ)′A.

Let us determine the MLE’s of μ and Σ . We have

ln L = −n

2
(2π) − n

2
ln A′ΣA − 1

2A′ΣA
[A′SA + n(A′(X̄ − μ)(X̄ − μ)′A)].

On differentiating ln L with respect to μ1 and equating the result to zero, we have

∂

∂μ1
ln L = 0 ⇒ nA′[ ∂

∂μ1
{X̄X̄′ − X̄μ′ − μX̄′ + μμ′}]A = O

⇒ nA′[−X̄[1, 0, . . . , 0] −

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ X̄′ +

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦μ′ + μ[1, 0, . . . , 0]]A = O

⇒ 2a1A
′(X̄ − μ) = 0 ⇒ μ̂ = X̄ (ii)

since the equation holds for each μj, j = 1, . . . , p, and A′ = (a1, . . . , ap), aj �= 0, j =
1, . . . , p, A being fixed. As well, (X̄ − μ)(X̄ − μ)′ = X̄X̄′ − X̄μ′ − μX̄′ + μμ′. Now,
consider differentiating ln L with respect to an element of Σ , say, σ11, at μ̂ = X̄:

∂

∂σ11
ln L = 0

⇒ −2n a2
1σ11

2A′ΣA
+ A′SA

2(A′ΣA)2
(2a2

1σ11) = 0

⇒ A′Σ̂A = 1

n
A′SA
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for each element in Σ and hence Σ̂ = 1
n
S. Thus,

max
�

L = e− n
2 n

n
2

(A′SA)
n
2
. (iii)

Under Ho, A′μ = 0 and consequently the maximum under Ho is the following:

max
Ho

L = e− n
2 n

n
2

[A′(S + nX̄X̄′)A] n
2
. (iv)

Accordingly, the λ-criterion is

λ = (A′SA)
n
2

[A′(S + nX̄X̄′)A] n
2

= 1

[1 + nA′X̄X̄′A
A′SA

] n
2

. (6.3.10)

We would reject Ho for small values of λ or for large values of u ≡ nA′X̄X̄′A/A′SA

where X̄ and S are independently distributed. Observing that S ∼ Wp(n−1, Σ), Σ > O

and X̄ ∼ Np(μ, 1
n
Σ), Σ > O, we have

n

A′ΣA
A′X̄X̄′A ∼ χ2

1 and
A′SA

A′ΣA
∼ χ2

n−1.

Hence, (n−1)u is a F statistic with 1 and n−1 degrees of freedom, and the null hypothesis
is to be rejected whenever

v ≡ n(n − 1)
A′X̄X̄′A
A′SA

≥ F1, n−1, α, with Pr{F1, n−1 ≥ F1, n−1, α} = α. (6.3.11)

Example 6.3.4. Consider a real bivariate Gaussian N2(μ, Σ) population where Σ >

O is unknown. We would like to test the hypothesis Ho : μ1 = μ2, μ′ = (μ1, μ2),

so that μ1 − μ2 = 0 under this null hypothesis. Let the sample be X1, X2, X3, X4, as
specified in Example 6.3.3. Let A′ = (1, −1) so that A′μ = O under Ho. With the
same observation vectors as those comprising the first sample in Example 6.3.3, A′X1 =
(1), A′X2 = (−2), A′X3 = (−1), A′X4 = (0). Letting y = A′Xj , the observations on
yj are (1, −2, −1, 0) or A′X = A′[X1, X2, X3, X4] = [1, −2, −1, 0]. The sample sum
of products matrix as evaluated in the first part of Example 6.3.3 is

S1 = 1

16

[
64 32
32 80

]
⇒ A′S1A = 1

16

[
1 −1

] [64 32
32 80

] [
1

−1

]
= 80

16
= 5.

Our test statistic is

v = n(n − 1)
A′X̄X̄′A
A′S1A

∼ F1,n−1, n = 4.
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Let the significance level be α = 0.05. the observed values of A′X̄X̄′A, A′S1A, v, and
the tabulated critical value of F1, n−1, α are the following:

A′X̄X̄′A = 1

4
; A′S1A = 80

16
= 5;

v = 4(3)
( 1

5 × 4

)
= 0.6; F1, n−1, α = F1, 3, 0.05 = 10.13.

As 0.6 < 10.13, Ho is not rejected.

6.3.5. Likelihood ratio test for testing Ho : μ1 = · · · = μp when Σ is unknown

In the entire parameter space � of a Np(μ, Σ) population, μ is estimated by the sample
average X̄ and, as previously determined, the maximum of the likelihood function is

max
�

L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
(i)

where S is the sample sum of products matrix and n is the sample size. Under the hypothe-
sis Ho : μ1 = · · · = μp = ν, where ν is unknown, this ν is estimated by ν̂ = 1

np

∑
i,j xij =

1
p
J ′X̄, J ′ = (1, . . . , 1), the p × 1 sample vectors X′

j = (x1j , . . . , xpj ), j = 1, . . . , n,
being independently distributed. Thus, under the null hypothesis Ho, the population co-
variance matrix is estimated by 1

n
(S + n(X̄ − μ̂)(X̄ − μ̂)′), and, proceeding as was done

to obtain Eq. (6.3.3), the λ-criterion reduces to

λ = |S| n
2

|S + n(X̄ − μ̂)(X̄ − μ̂)′| n
2

(6.3.12)

= 1

(1 + u)
n
2
, u = n(X̄ − μ̂)′S−1(X̄ − μ̂). (6.3.13)

Given the structure of u in (6.3.13), we can take the Gaussian population covariance matrix
Σ to be the identity matrix I , as was explained in Sect. 6.3.1. Observe that

(X̄ − μ̂)′ = (X̄ − 1

p
JJ ′X̄)′ = X̄′[I − 1

p
JJ ′] (ii)

where I − 1
p
JJ ′ is idempotent of rank p − 1; hence there exists an orthonormal matrix

P , PP ′ = I, P ′P = I , such that

I − 1

p
JJ ′ = P

[
Ip−1 O

O ′ 0

]
P ′ ⇒

√
n(X̄ − μ̂)′ = √

nX̄′(I − 1

p
JJ ′) = √

nX̄′P
[
Ip−1 O

O ′ 0

]
= [V ′

1, 0], V = √
nX̄′P,
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where V1 is the subvector of the first p − 1 components of V . Then the quadratic form u,
which is our test statistic, reduces to the following:

u = n(X̄ − μ̂)′S−1(X̄ − μ̂) = [V ′
1, 0]S−1

[
V1

0

]
= V ′

1S
11V1,

S−1 =
[
S11 S12

S21 S22

]
.

We note that the test statistic u has the same structure that of u in Theorem 6.3.1 with p

replaced by p − 1. Accordingly, u = n(X̄ − μ̂)′S−1(X̄ − μ̂) is distributed as a real scalar
type-2 beta variable with the parameters p−1

2 and n−(p−1)
2 , so that n−p+1

p−1 u ∼ Fp−1, n−p+1.
Thus, the test criterion consists of

rejecting Ho if the observed value of
n − p + 1

p − 1
u ≥ Fp−1, n−p+1, α,

with Pr{Fp−1, n−p+1 ≥ Fp−1, n−p+1, α} = α. (6.3.14)

Example 6.3.5. Let the population be N2(μ, Σ), Σ > O, μ′ = (μ1, μ2) and the null
hypothesis be Ho : μ1 = μ2 = ν where ν and Σ are unknown. The sample values, as
specified in Example 6.3.3, are

X1 =
[

1
0

]
, X2 =

[−1
1

]
, X3 =

[
1
2

]
, X4 =

[−1
−1

]
⇒ X̄ = 1

4

[
0
2

]
.

The maximum likelihood estimate of μ under Ho, is

μ̂ = 1

p
JJ ′X̄, J =

[
1
1

]
,

and

(X̄ − μ̂)′ = X̄′[I − 1

p
JJ ′] = X̄′[I − 1

2

(
1 1
1 1

)
] = 1

4

[−1 1
]
.

As previously calculated, the sample sum of products matrix is

S1 = 1

42

[
64 32
32 80

]
⇒ S−1

1 = 16

4096

[
80 −32

−32 64

]
= 1

256

[
80 −32

−32 64

]
; n = 4, p = 2.
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The test statistic v and its observed value are

v = (n − p + 1)

(p − 1)
n(X̄ − μ̂)′S−1

1 (X̄ − μ̂) ∼ Fp−1, n−p+1 = F1, 3

= (4 − 2 + 1)

(2 − 1)
(4)

1

42

1

256

[−1 1
] [ 80 −32

−32 64

] [−1
1

]

= (3)(4)

(42)(256)
[(−1)2(80) + (1)2(64) − 2(32)(−1)(1)]

= 0.61.

At significance level α = 0.05, the tabulated critical value F1, 3, 0.05 is 10.13, and since
the observed value 0.61 is less than 10.13, Ho is not rejected.

6.4. Testing Hypotheses on the Population Covariance Matrix

Let the p×1 independent vectors Xj, j = 1, . . . , n, have a p-variate real nonsingular
Np(μ, Σ) distribution and the p × n matrix X = (X1, . . . , Xn) be the sample matrix.
Denoting the sample average by X̄ = 1

n
(X1 +· · ·+Xn) and letting X̄ = (X̄, . . . , X̄), each

column of X̄ being equal to X̄, the sample sum of products matrix is S = (X−X̄)(X−X̄)′.
We have already established that S is Wishart distributed with m = n − 1 degrees of
freedom, that is, S ∼ Wp(m, Σ), Σ > O. Letting Sμ = (X − M)(X − M)′ where
M = (μ, . . . , μ), each of its column being the p × 1 vector μ, Sμ ∼ Wp(n, Σ), Σ > O,
where the number of degrees of freedom is n itself whereas the number of degrees of
freedom associated with S is m = n − 1. Let us consider the hypothesis Ho : Σ = Σo

where Σo is a given known matrix and μ is unspecified. Then, the MLE’s of μ and Σ in
the entire parameter space are μ̂ = X̄ and Σ̂ = 1

n
S, and the joint density of the sample

values X1, . . . , Xn, denoted by L, is given by

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1S)− n
2 tr(X̄−μ)(X̄−μ)′ . (6.4.1)

Thus, as previously determined, the maximum of L in the parameter space � =
{(μ, Σ)|Σ > O} is

max
�

L = n
np
2 e− np

2

(2π)
np
2 |S| n

2
, (i)

the maximum of L under the null hypothesis Ho : Σ = Σo being given by

max
Ho

L = e− 1
2 tr(Σ−1

o S)

(2π)
np
2 |Σo| n

2
. (ii)
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Then, the λ-criterion is the following:

λ = e
np
2

n
np
2

|Σ−1
o S | n

2 e− 1
2 tr(Σ−1

o S). (6.4.2)

Letting u = λ
2
n ,

u = ep

np
|Σ−1

o S| e− 1
n

tr(Σ−1
o S), (6.4.3)

and we would reject Ho for small values of u since it is a monotonically increasing func-
tion of λ, which means that the null hypothesis ought to be rejected for large values of
tr(Σ−1

o S) as the exponential function dominates the polynomial function for large val-
ues of the argument. Let us determine the distribution of w = tr(Σ−1

o S) whose Laplace
transform with parameter s is

Lw(s) = E[e−sw] = E[e−s tr(Σ−1
o S)]. (iii)

This can be evaluated by integrating out over the density of S which has a Wishart distri-
bution with m = n − 1 degrees of freedom when μ is estimated:

Lw(s) = 1

2
mp
2 Γp(m

2 )|Σ |m
2

∫

S>O

|S|m
2 −p+1

2 e− 1
2 tr(Σ−1S)−s tr(Σ−1

o S)dS. (iv)

The exponential part is −1
2 tr(Σ−1S) − s tr(Σ−1

o S) = −1
2 tr[(Σ− 1

2 SΣ− 1
2 )(I +

2sΣ
1
2 Σ−1

o Σ
1
2 )] and hence,

Lw(s) = |I + 2sΣ
1
2 Σ−1

o Σ
1
2 |−m

2 . (6.4.4)

The null case, Σ = Σo

In this case, Σ
1
2 Σ−1

o Σ
1
2 = I, so that

Lw(s) = |I + 2sI |−m
2 = (1 + 2s)−

mp
2 ⇒ w ∼ χ2

mp. (6.4.5)

Thus, the test criterion is the following:

Reject Ho if w ≥ χ2
mp, α, with Pr{χ2

mp ≥ χ2
mp, α} = α. (6.4.6)

When μ is known, it is used instead of its MLE to determine Sμ, and the resulting criterion
consists of rejecting Ho whenever the observed wμ = tr(Σ−1

o Sμ) ≥ χ2
np, α where n is the

sample size. These results are summarized in the following theorem.

Theorem 6.4.1. Let the null hypothesis be Ho : Σ = Σo (given) and w = tr(Σ−1
o S)

where S is the sample sum of products matrix. Then, the null distribution of w = tr(Σ−1
o S)
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has a real scalar chisquare distribution with (n−1)p degrees of freedom when the estimate
of μ, namely μ̂ = X̄, is utilized to compute S; when μ is specified, w has a chisquare
distribution having np degrees of freedom where n is the sample size.

The non-null density of w

The non-null density of w is available from (6.4.4). Let λ1, . . . , λp be the eigenvalues

of Σ
1
2 Σ−1

o Σ
1
2 . Then Lw(s) in (6.4.4) can be re-expressed as follows:

Lw(s) =
p∏

j=1

(1 + 2λj s)
−m

2 . (6.4.7)

This is the Laplace transform of a variable of the form w = λ1w1 + · · · + λpwp where
w1, . . . , wp are independently distributed real scalar chisquare random variables, each
having m = n − 1 degrees of freedom, where λj > 0, j = 1, . . . , p. The distribution
of linear combinations of chisquare random variables corresponds to the distribution of
quadratic forms; the reader may refer to Mathai and Provost (1992) for explicit represen-
tations of their density functions.

Note 6.4.1. If the population mean value μ is known, then one can proceed by making
use of μ instead of the sample mean to determine Sμ, in which case n, the sample size,
ought to be used instead of m = n − 1 in the above discussion.

6.4.1. Arbitrary moments of λ

From (6.4.2), the h-th moment of the λ-criterion for testing Ho : Σ = Σo (given) in a
real nonsingular Np(μ, Σ) population, is obtained as follows:

λh = e
nph

2

n
nph

2

|Σ−1
o | nh

2 |S| nh
2 e− h

2 tr(Σ−1
o S) ⇒

E[λh] = e
nph

2

n
nph

2 2
(n−1)p

2 |Σo| nh
2 |Σ | n−1

2 Γp(n−1
2 )

∫

S>O

|S| nh
2 + n−1

2 −p+1
2 e− 1

2 tr(Σ−1S)− h
2 tr(Σ−1

o S)dS

= e
nph

2 2p(nh
2 + n−1

2 )Γp(nh
2 + n−1

2 )

n
nph

2 2
(n−1)p

2 |Σo| nh
2 |Σ | n−1

2 Γp(n−1
2 )

|Σ−1 + hΣ−1
o |−( nh

2 + n−1
2 )

= e
nph

2

(2

n

) nph
2 |Σ | nh

2

|Σo| nh
2

Γp(nh
2 + n−1

2 )

Γp(n−1
2 )

|I + hΣΣ−1
o |−( nh

2 + n−1
2 ) (6.4.8)
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for �(nh
2 + n−1

2 ) >
p−1

2 , I + hΣΣ−1
o > O. Under Ho : Σ = Σo, we have |I +

hΣΣ−1
o |−( nh

2 + n−1
2 ) = (1 + h)−p(nh

2 + n−1
2 ). Thus, the h-th null moment is given by

E[λh|Ho] = e
nph

2

(2

n

) nph
2 Γp(nh

2 + n−1
2 )

Γp(n−1
2 )

(1 + h)−p(nh
2 + n−1

2 ) (6.4.9)

for �(nh
2 + n−1

2 ) >
p−1

2 .

6.4.2. The asymptotic distribution of −2 ln λ when testing Ho : Σ = Σo

Let us determine the asymptotic distribution of −2 ln λ where λ is the likelihood ratio
statistic for testing Ho : Σ = Σo (specified) in a real nonsingular Np(μ, Σ) population, as
n → ∞, n being the sample size. This distribution can be determined by expanding both
real matrix-variate gamma functions appearing in (6.4.9) and applying Stirling’s approx-
imation formula as given in (6.5.14) by letting n

2 (1 + h) → ∞ in the numerator gamma
functions and n

2 → ∞ in the denominator gamma functions. Then, we have

Γp(nh
2 + n−1

2 )

Γp(n−1
2 )

=
p∏

j=1

Γ (n
2 (1 + h) − 1

2 − j−1
2 )

Γ (n
2 − 1

2 − j−1
2 )

→
p∏

j=1

(2π)
1
2

(2π)
1
2

[n
2 (1 + h)] n

2 (1+h)− 1
2 − j

2

[n
2 ] n

2 − 1
2 − j

2

e− n
2 (1+h)

e− n
2

=
(n

2

) nph
2

e− nph
2 (1 + h)

np
2 (1+h)−p

2 −p(p+1)
4 .

Hence, from (6.4.9)

E[λh|Ho] → (1 + h)−
p(p+1)

4 as n → ∞, (6.4.10)

where (1 + h)−
p(p+1)

4 is the h-th moment of the distribution of e−y/2 when y ∼ χ2
p(p+1)

2

.

Thus, under Ho, −2 ln λ → χ2
p(p+1)

2

as n → ∞ . For general procedures leading to asymp-

totic normality, see Mathai (1982).

Theorem 6.4.2. Letting λ be the likelihood ratio statistic for testing Ho : Σ = Σo

(given) on the covariance matrix of a real nonsingular Np(μ, Σ) distribution, the null
distribution of −2 ln λ is asymptotically (as then sample size tends to ∞) that of a real
scalar chisquare random variable having p(p+1)

2 degrees of freedom, where n denotes the
sample size. This number of degrees of freedom is also equal to the number of parameters
restricted by the null hypothesis.
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Note 6.4.2. Sugiura and Nagao (1968) have shown that the test based on the statistic λ

as specified in (6.4.2) is biased whereas it becomes unbiased upon replacing n, the sam-
ple size, by the degrees of freedom n − 1 in (6.4.2). Accordingly, percentage points are
then computed for −2 ln λ1, where λ1 is the statistic λ given in (6.4.2) wherein n − 1 is
substituted to n. Korin (1968), Davis (1971), and Nagarsenker and Pillai (1973) computed
5% and 1% percentage points for this test statistic. Davis and Field (1971) evaluated the
percentage points for p = 2(1)10 and n = 6(1)30(5)50, 60, 120 and Korin (1968), for
p = 2(1)10.

Example 6.4.1. Let us take the same 3-variate real Gaussian population N3(μ, Σ),

Σ > O and the same data as in Example 6.3.1, so that intermediate calculations could
be utilized. The sample size is 5 and the sample values are the following:

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ ,

the sample average and the sample sum of products matrix being

X̄ = 1

5

⎡

⎣
1
2
4

⎤

⎦ , S = 1

52

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦ .

Let us consider the hypothesis Σ = Σo where

Σo =
⎡

⎣
2 0 0
0 3 −1
0 −1 2

⎤

⎦ ⇒ |Σo| = 10, Cof(Σo) =
⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦ ;

Σ−1
o = Cof(Σo)

|Σo| = 1

10

⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦ ;

tr(Σ−1
o S) = 1

(10)(52)
tr

⎧
⎨

⎩

⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦

⎫
⎬

⎭

= 1

(10)(52)
[5(270) + (4(80) + 2(85)) + (2(85) + 6(170))]

= 12.12 ; n = 5, p = 3.

Let us test the null hypothesis at the significance level α = 0.05. The distribution of the
test statistic w and the tabulated critical value are as follows:

w = tr(Σ−1
o S) ∼ χ2

(n−1)p � χ2
12 ; χ2

12, 0.05 = 21.03.
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As the observed value 12.12 < 21.03, Ho is not rejected. The asymptotic distribution of
−2 ln λ, as n → ∞, is χ2

p(p+1)/2 � χ2
6 where λ is the likelihood ratio criterion statistic.

Since χ2
6, 0.05 = 12.59 and 12.59 > 12.12, we still do not reject Ho as n → ∞.

6.4.3. Tests on Wilks’ concept of generalized variance

The concept of generalized variance was explained in Chap. 5. The sample general-
ized variance is simply the determinant of S, the sample sum of products matrix. When the
population is p-variate Gaussian, it has already been shown in Chap. 5 that S is Wishart
distributed with m = n − 1 degrees of freedom, n being the sample size, and parameter
matrix Σ > O, which is the population covariance matrix. When the population is mul-
tivariate normal, several types of tests of hypotheses involve the sample generalized vari-
ance. The first author has given the exact distributions of such tests, see Mathai (1972a,b)
and Mathai and Rathie (1971).

6.5. The Sphericity Test or Testing if Ho : Σ = σ 2I, Given a Np(μ, Σ) Sample

When the covariance matrix Σ = σ 2I , where σ 2 > 0 is a real scalar quantity, the
ellipsoid (X − μ)′Σ−1(X − μ) = c > 0, which represents a specific contour of constant
density for a nonsingular Np(μ, Σ) distribution, becomes the sphere defined by the equa-
tion 1

σ 2 (X−μ)′(X−μ) = c or 1
σ 2 ((x1−μ1)

2+· · ·+(xp−μp)2) = c > 0, whose center is
located at the point μ; hence the test’s name, the sphericity test. Given a Np(μ, Σ) sample
of size n, the maximum of the likelihood function in the entire parameter space is

sup�L = n
np
2 e− np

2

(2π)
np
2 |S| n

2
,

as was previously established. However, under the null hypothesis Ho : Σ = σ 2I ,
tr(Σ−1S) = (σ 2)−1(tr(S)) and |Σ | = (σ 2)p. Thus, if we let θ = σ 2 and substitute μ̂ = X̄

in L, under Ho the loglikelihood function will be ln Lω = −np
2 ln(2π)− np

2 ln θ − 1
2θ

tr(S).

Differentiating this function with respect to θ and equating the result to zero produces the
following estimator for θ :

θ̂ = σ̂ 2 = tr(S)

np
. (6.5.1)

Accordingly, the maximum of the likelihood function under Ho is the following:

max
ω

L = n
np
2

(2π)
np
2

e− np
2

[ tr(S)
p

] n
2
.
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Thus, the λ-criterion for testing

Ho : Σ = σ 2I, σ 2 > 0 (unknown)

is

λ = supωL

sup�L
= |S| n

2

[ tr(S)
p

] n
2
. (6.5.2)

In the complex Gaussian case when X̃j ∼ Ñp(μ̃, Σ), Σ = Σ∗ > O where an asterisk
indicates the conjugate transpose, X̃j = Xj1 + iXj2 where Xj1 and Xj2 are real p × 1
vectors and i = √

(−1). The covariance matrix associated with X̃j is then defined as

Cov(X̃j ) = E[(X̃j − μ̃)(X̃j − μ̃)∗]
= E[(Xj1 − μ(1)) + i(Xj2 − μ(2))][(Xj1 − μ(1))

′ − i(Xj2 − μ(2))
′]

= Σ11 + Σ22 + i(Σ21 − Σ12) ≡ Σ, with μ = μ(1) + iμ(2),

where Σ is assumed to be Hermitian positive definite, with Σ11 = Cov(Xj1), Σ22 =
Cov(Xj2), Σ12 = Cov(Xj1, Xj2) and Σ21 = Cov(Xj2, Xj1). Thus, the hypothesis of
sphericity in the complex Gaussian case is Σ = σ 2I where σ is real and positive. Then,
under the null hypothesis H̃o : Σ = σ 2I , the Hermitian form Ỹ ∗ΣỸ = c > 0 where c is
real and positive, becomes σ 2Ỹ ∗Ỹ = c ⇒ |ỹ1|2 + · · · + |ỹp|2 = c

σ 2 > 0, which defines
a sphere in the complex space, where |ỹj | denotes the absolute value or modulus of ỹj . If
ỹj = yj1 + iyj2 with i = √

(−1), yj1, yj2 being real, then |ỹj |2 = y2
j1 + y2

j2.

The joint density of the sample values in the real Gaussian case is the following:

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)−n(X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2

where X̄ = 1
n
(X1 + · · · + Xn), Xj, j = 1, . . . , n are iid Np(μ, Σ), Σ > O. We have

already derived the maximum of L in the entire parameter space �, which, in the real case,
is

sup�L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
, (6.5.3)

where S is the sample sum of products matrix. Under Ho, |Σ | n
2 = (σ 2)

np
2 and tr(Σ−1S) =

1
σ 2 (s11 + · · · + spp) = 1

σ 2 tr(S). Thus, the maximum likelihood estimator of σ 2 is 1
np

tr(S).
Accordingly, the λ-criterion is

λ = |S| n
2 /
( tr(S)

p

) np
2 ⇒ u1 = λ

2
n = pp|S|

[tr(S)]p , (6.5.4)
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in the real case. Interestingly, (u1)
1/p is the ratio of the geometric mean of the eigenvalues

of S to their arithmetic mean. The structure remains the same in the complex domain, in
which case det(S̃) is replaced by the absolute value |det(S̃)| so that

ũ1 = pp|det(S̃)|
[tr(S̃)]p . (6.5a.1)

For arbitrary h, the h-th moment of u1 in the real case can be obtained by integrating out
over the density of S, which, as explained in Sect. 5.5, 5.5a, is a Wishart density with
n − 1 = m degrees of freedom and parameter matrix Σ > O. However, when the null
hypothesis Ho holds, Σ = σ 2Ip, so that the h-th moment in the real case is

E[uh
1|Ho] = pph

2
mp
2 Γp(m

2 )(σ 2)
mp
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2σ2 tr(S)

(tr(S))−phdS. (i)

In order to evaluate this integral, we replace [tr(S)]−ph by an equivalent integral:

[tr(S)]−ph = 1

Γ (ph)

∫ ∞

x=0
xph−1e−x(tr(S))dx, �(h) > 0. (ii)

Then, substituting (ii) in (i), the exponent becomes − 1
2σ 2 (1 + 2σ 2x)(tr(S)). Now, letting

S1 = 1
2σ 2 (1 + 2σ 2x)S ⇒ dS = (2σ 2)

p(p+1)
2 (1 + 2σ 2x)−

p(p+1)
2 dS1, and we have

E[uh
1|Ho] = (2σ 2)ph

Γp(m
2 )

pph

Γ (ph)

∫ ∞

0
xph−1(1 + 2σ 2x)−(m

2 +h)pdx

×
∫

S1>O

|S1|m
2 +h−p+1

2 e−tr(S1)dS1

= Γp(m
2 + h)

Γp(m
2 )

pph

Γ (ph)

∫ ∞

0
yph−1(1 + y)−(m

2 +h)pdy, y = 2σ 2x

= Γp(m
2 + h)

Γp(m
2 )

pph
Γ (

mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0, m = n − 1. (6.5.5)

The corresponding h-th moment in the complex case is the following:

E[ũh
1|Ho] = Γ̃p(m + h)

Γ̃p(m)
pph Γ̃ (mp)

Γ̃ (mp + ph)
, �(h) > 0, m = n − 1. (6.5a.2)

By making use of the multiplication formula for gamma functions, one can expand the real
gamma function Γ (mz) as follows:

Γ (mz) = (2π)
1−m

2 mmz− 1
2 Γ (z)Γ

(
z + 1

m

) · · · Γ (z + m − 1

m

)
, m = 1, 2, . . . , (6.5.6)
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and for m = 2, we have the duplication formula

Γ (2z) = π− 1
2 22z−1Γ (z)Γ

(
z + 1

2

)
. (6.5.7)

Then on applying (6.5.6),

pphΓ (
mp
2 )

Γ (
mp
2 + ph)

= Γ (m
2 )

Γ (m
2 + h)

p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 + h + j

p
)
. (iii)

Moreover, it follows from the definition of the real matrix-variate gamma functions that

Γp(m
2 + h)

Γp(m
2 )

=
p∏

j=1

Γ (m
2 − j−1

2 + h)

Γ (m
2 − j−1

2 )
. (iv)

On canceling Γ (m
2 + h)/Γ (m

2 ) when multiplying (iii) by (iv), we are left with

E[uh
1|Ho] =

{ p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 − j

2 )

}{ p−1∏

j=1

Γ (m
2 − j

2 + h)

Γ (m
2 + j

p
+ h)

}
, m = n − 1. (6.5.8)

The corresponding h-th moment in the complex case is the following:

E[ũh
1|Ho] =

{ p−1∏

j=1

Γ̃ (m + j
p
)

Γ̃ (m − j)

}{ p−1∏

j=1

Γ̃ (m − j + h)

Γ̃ (m + j
p

+ h)

}
, m = n − 1. (6.5a.3)

For h = s − 1, one can treat E[us−1
1 |Ho] as the Mellin transform of the density of u1 in

the real case. Letting this density be denoted by fu1(u1), it can be expressed in terms of a
G-function as follows:

fu1(u1|Ho) = c1G
p−1,0
p−1,p−1

[
u1
∣∣

m
2 + j

p
−1, j=1,...,p−1

m
2 − j

2 −1, j=1,...,p−1

]
, 0 ≤ u1 ≤ 1, (6.5.9)

and fu1(u1|Ho) = 0 elsewhere, where

c1 =
{ p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 − j

2 )

}
,
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the corresponding density in the complex case being the following:

f̃ũ1|Ho
(ũ1) = c̃1G̃

p−1,0
p−1,p−1

[
ũ1
∣∣m+ j

p
−1, j=1,...,p−1

m−j−1, j=1,...,p−1

]
, 0 ≤ |ũ2| ≤ 1, (6.5a.4)

and f̃ũ1(ũ1) = 0 elsewhere, where G̃ is a real G-function whose parameters are different
from those appearing in (6.5.9), and

c̃1 =
{ p−1∏

j=1

Γ̃ (m + j
p
)

Γ̃ (m − j)

}
.

For computable series representation of a G-function with general parameters, the reader
may refer to Mathai (1970a, 1993). Observe that u1 in the real case is structurally a product
of p − 1 mutually independently distributed real scalar type-1 beta random variables with
the parameters (αj = m

2 − j
2 , βj = j

2 + j
p
), j = 1, . . . , p − 1. In the complex case, ũ1 is

structurally a product of p − 1 mutually independently distributed real scalar type-1 beta
random variables with the parameters (αj = m− j, βj = j + j

p
), j = 1, . . . , p −1. This

observation is stated as a result.

Theorem 6.5.1. Consider the sphericity test statistic for testing the hypothesis Ho : Σ =
σ 2I where σ 2 > 0 is an unknown real scalar. Let u1 and the corresponding complex
quantity ũ1 be as defined in (6.5.4) and (6.5a.1) respectively. Then, in the real case, u1 is
structurally a product of p − 1 independently distributed real scalar type-1 beta random
variables with the parameters (αj = m

2 − j
2 , βj = j

2 + j
p
), j = 1, . . . , p − 1, and, in the

complex case, ũ1 is structurally a product of p − 1 independently distributed real scalar
type-1 beta random variables with the parameters (αj = m − j, βj = j + j

p
), j =

1, . . . , p − 1, where m = n − 1, n = the sample size.

For certain special cases, one can represent (6.5.9) and (6.5a.4) in terms of known
elementary functions. Some such cases are now being considered.

Real case: p = 2

In the real case, for p = 2

E[uh
1|Ho] = Γ (m

2 + 1
2)

Γ (m
2 − 1

2)

Γ (m
2 − 1

2 + h)

Γ (m
2 + 1

2 + h)
=

m
2 − 1

2
m
2 − 1

2 + h
.

This means u1 is a real type-1 beta variable with the parameters (α = m
2 − 1

2 , β = 1). The
corresponding result in the complex case is that ũ1 is a real type-1 beta variable with the
parameters (α = m − 1, β = 1).
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Real case: p = 3

In the real case

E[uh
1|Ho] = Γ (m

2 + 1
3)Γ (m

2 + 2
3)

Γ (m
2 − 1

2)Γ (m
2 − 1)

Γ (m
2 − 1

2 + h)Γ (m
2 − 1 + h)

Γ (m
2 + 1

3 + h)Γ (m
2 + 2

3 + h)
,

so that u1 is equivalent to the product of two independently distributed real type-1 beta
random variables with the parameters (αj , βj ) = (m

2 − j
2 ,

j
2 + j

3 ), j = 1, 2. This density
can be obtained by treating E[uh

1|Ho] for h = s − 1 as the Mellin transform of the density
of u1. The density is then available by taking the inverse Mellin transform. Thus, again
denoting it by fu1(u1), we have

fu1(u1|Ho) = c3
1

2πi

∫ c+i∞

c−i∞
φ3(s)ds, c >

1

2

= c3

[ ∞∑

ν=0

Rν +
∞∑

ν=0

R′
ν

]
,

c3 = Γ (m
2 + 1

3)Γ (m
2 + 2

3)

Γ (m
2 − 1

2)Γ (m
2 − 1)

,

φ3(s) = Γ (m
2 − 1

2 − 1 + s)Γ (m
2 − 1 − 1 + s)

Γ (m
2 + 1

3 − 1 + s)Γ (m
2 + 2

3 − 1 + s)
u−s

1 ,

where Rν is the residue of the integrand φ3(s) at the poles of Γ (m
2 − 3

2 + s) and R′
ν is the

residue of the integrand φ3(s) at the pole of Γ (m
2 − 2 + s). Letting s1 = m

2 − 3
2 + s,

Rν = lim
s→−ν+ 3

2 −m
2

φ3(s) = lim
s1→−ν

[(s1 + ν)u
m
2 − 3

2
1

Γ (s1)Γ (−1
2 + s1)u

−s1
1

Γ (1
3 + 1

2 + s1)Γ (2
3 + 1

2 + s1)

= u
m
2 − 3

2
1

(−1)ν

ν!
Γ (−1

2 − ν)

Γ (1
3 + 1

2 − ν)Γ (2
3 + 1

2 − ν)
uν

1.

We can replace negative ν in the arguments of the gamma functions with positive ν by
making use of the following formula:

Γ (a − ν) = (−1)νΓ (a)

(−a + 1)ν
, a �= 1, 2, . . . , ν = 0, 1, . . . , (6.5.10)

where for example, (b)ν is the Pochhammer symbol

(b)ν = b(b + 1) · · · (b + ν − 1), b �= 0, (b)0 = 1, (6.5.11)
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so that

Γ
(

− 1

2
− ν

)
= (−1)νΓ (−1

2)

(3
2)ν

, Γ
(1

3
+ 1

2
− ν

)
= (−1)νΓ (1

3 + 1
2)

(−1
3 + 1

2)ν
,

Γ
(2

3
+ 1

2
− ν

)
= (−1)νΓ (2

3 + 1
2)

(−2
3 + 1

2)ν
.

The sum of the residues then becomes

∞∑

ν=0

Rν = Γ (−1
2)

Γ (1
3 + 1

2)Γ (2
3 + 1

2)
u

m
2 − 3

2
1 2F1

(
− 1

3
+ 1

2
;−2

3
+ 1

2
; 3

2
; u1

)
, 0 ≤ u1 ≤ 1.

It can be similarly shown that

∞∑

ν=0

R′
ν = Γ (1

2)

Γ (1
3 + 1)Γ (2

3 + 1)
u

m
2 −2
1 2F1

(
− 1

3
, −2

3
; 1

2
; u1

)
, 0 ≤ u1 ≤ 1.

Accordingly, the density of u1 for p = 3 is the following:

f1(u1|Ho) = c3

{ Γ (−1
2)

Γ (5
6)Γ (7

6)
u

m
2 − 3

2
1 2F1

(1

6
, −1

6
; 3

2
; u1

)

+ Γ (1
2)

Γ (4
3)Γ (5

3)
u

m
2 −2
1 2F1

(
− 1

3
, −2

3
; 1

2
; u1

)}
, 0 ≤ u1 ≤ 1 (6.5.12)

and fu1(u1|Ho) = 0 elsewhere.

Real case: p = 4

In this case,

E[uh
1|Ho] = c4

Γ (m
2 − 3

2 + s)Γ (m
2 − 2 + s)Γ (m

2 − 5
2 + s)

Γ (m
2 − 3

4 + s)Γ (m
2 − 2

4 + s)Γ (m
2 − 1

4 + s)
,

where c4 is the normalizing constant. However, noting that

Γ (m
2 − 3

2 + s)

Γ (m
2 − 1

2 + s)
= 1

m
2 − 3

2 + s
,
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there is one pole at s = −m
2 + 3

2 . The poles of Γ (m
2 − 5

2 + s) occur at s = −m
2 +

5
2 − ν, ν = 0, 1, . . . , and hence at ν = 1, the pole coincides with the earlier pole and
there is a pole of order 2 at s = −m

2 + 3
2 . Each one of other poles of the integrand is

simple, that is, of order 1. The second order pole will bring in a logarithmic function.
As all the cases for which p ≥ 4 will bring in poles of higher orders, they will not be
herein discussed. The general expansion of a G-function of the type Gm,0

m,m(·) is provided
in Mathai (1970a, 1993). In the complex case, starting from p ≥ 3, poles of higher orders
are coming in, so that the densities can only be written in terms of logarithms, psi and zeta
functions; hence, these will not be considered. Observe that ũ1 corresponds to product of
independently distributed real type-1 beta random variables, even though the densities are
available only in terms of logarithms, psi and zeta functions for p ≥ 3. The null and non-
null densities of the λ-criterion in the general case, were derived by the first author and
some results obtained under the null distribution can also be found in Mathai and Saxena
(1973). Several researchers have contributed to various aspects of the sphericity and multi-
sample sphericity tests; for some of the first author’s contributions, the reader may refer to
Mathai and Rathie (1970) and Mathai (1977, 1984, 1986).

Gamma products such as those appearing in (6.5.8) and (6.5a.3) are frequently en-
countered when considering various types of tests on the parameters of a real or complex
Gaussian or certain other types of distributions. Structural representations in the form of
product of independently distributed real scalar type-1 beta random variables occur in nu-
merous situations. Thus, a general asymptotic result on the h-th moment of such products
of type-1 beta random variables will be derived. This is now stated as a result.

Theorem 6.5.2. Let u be a real scalar random variable whose h-th moment is of the
form

E[uh] = Γp(α + αh + γ )

Γp(α + γ )

Γp(α + γ + δ)

Γp(α + αh + γ + δ)
(6.5.13)

where Γp(·) is a real matrix-variate gamma function on p × p real positive definite ma-
trices, α is real, γ is bounded, δ is real, 0 < δ < ∞ and h is arbitrary. Then, as
α → ∞, −2 ln u → χ2

2 p δ, a real chisquare random variable having 2 p δ degrees of
freedom, that is, a real gamma random variable with the parameters (α = p δ, β = 2).

Proof: On expanding the real matrix-variate gamma functions, we have the following:

Γp(α + γ + δ)

Γp(α + γ )
=

p∏

j=1

Γ (α + γ + δ − j−1
2 )

Γ (α + γ − j−1
2 )

. (i)
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Γp(α(1 + h) + γ )

Γp(α(1 + h) + γ + δ)
=

p∏

j=1

Γ (α(1 + h) + γ − j−1
2 )

Γ (α(1 + h) + γ + δ − j−1
2 )

. (ii)

Consider the following form of Stirling’s asymptotic approximation formula for gamma
functions, namely,

Γ (z + η) ≈ √
2πzz+η− 1

2 e−z for |z| → ∞ and η bounded. (6.5.14)

On applying this asymptotic formula to the gamma functions appearing in (i) and (ii) for
α → ∞, we have

p∏

j=1

Γ (α + γ + δ − j−1
2 )

Γ (α + γ − j−1
2 )

→ αp δ

and
p∏

j=1

Γ (α(1 + h) + γ − j−1
2 )

Γ (α(1 + h) + γ + δ − j−1
2 )

→ [α(1 + h)]−p δ, (iii)

so that
E[uh] → (1 + h)−p δ. (iv)

On noting that E[uh] = E[eh ln u] → (1+h)−p δ, it is seen that ln u has the mgf (1+h)−p δ

for 1 + h > 0 or −2 ln u has mgf (1 − 2h)−p δ for 1 − 2h > 0, which happens to be the
mgf of a real scalar chisquare variable with 2 p δ degrees of freedom if 2 p δ is a positive
integer or a real gamma variable with the parameters (α = p δ, β = 2). Hence the
following result.

Corollary 6.5.1. Consider a slightly more general case than that considered in Theo-
rem 6.5.2. Let the h-th moment of u be of the form

E[uh] =
{ p∏

j=1

Γ (α(1 + h) + γj )

Γ (α + γj )

}{ p∏

j=1

Γ (α + γj + δj )

Γ (α(1 + h) + γj + δj )

}
. (6.5.15)

Then as α → ∞, E[uh] → (1+h)−(δ1+···+δp), which implies that −2 ln u → χ2
2(δ1+···+δp)

whenever 2(δ1 + · · · + δp) is a positive integer or, equivalently, −2 ln u tends to a real
gamma variable with the parameters (α = δ1 + · · · + δp, β = 2) .

Let us examine the asymptotic distribution of the test statistic for the sphericity test in
the light of Theorem 6.5.2. It is seen from (6.5.4) that λh = uhn

2 . Thus, by replacing h by
n
2h in (6.5.8) with m = n − 1, we have

E[λh|Ho] =
{ p−1∏

j=1

Γ (n−1
2 + j

p
)

Γ (n−1
2 − j

2 )

}{ p−1∏

j=1

Γ (n
2 (1 + h) − 1

2 − j
2 )

Γ (n
2 (1 + h) − 1

2 + j
p
)

}
. (6.5.16)
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Then, it follows from Corollary 6.5.1 that −2 ln λ → χ2
2
∑p−1

j=1 (
j
2 + j

p
)
, a chi-square random

variable having 2
∑p−1

j=1 (
j
2 + j

p
) = p(p−1)

2 + (p − 1) = (p−1)(p+2)
2 degrees of freedom.

Hence the following result:

Theorem 6.5.3. Consider the λ-criterion for testing the hypothesis of sphericity. Then,
under the null hypothesis, −2 ln λ → χ2

(p−1)(p+2)
2

, as the sample size n → ∞. In the

complex case, as n → ∞, −2 ln λ → χ2
(p−1)(p+1), a real scalar chisquare variable with

2[p(p−1)
2 + (p−1)

2 ] = p(p − 1) + (p − 1) = (p − 1)(p + 1) degrees of freedom.

Note 6.5.1. We observe that the degrees of freedom of the real chisquare variable in the
real scalar case is (p−1)(p+2)

2 , which is also equal to the number of parameters restricted
by the null hypothesis. Indeed, when Σ = σ 2I , we have σij = 0, i �= j , which produces
p(p−1)

2 restrictions and, since σ 2 is unknown, requiring that the diagonal elements are such

that σ11 = · · · = σpp produces p−1 additional restrictions for a total of (p−1)(p+2)
2 restric-

tions being imposed. Thus, the degrees of freedom of the asymptotic chisquare variable
corresponds to the number of restrictions imposed by Ho, which, actually, is a general
result.

6.6. Testing the Hypothesis that the Covariance Matrix is Diagonal

Consider the null hypothesis that Σ , the nonsingular covariance matrix of a p-variate
real normal distribution, is diagonal, that is,

Ho : Σ = diag(σ11, . . . , σpp).

Since the population is assumed to be normally distributed, this implies that the compo-
nents of the p-variate Gaussian vector are mutually independently distributed as univariate
normal random variables whose respective variances are σjj , j = 1, . . . , p. Consider a
simple random sample of size n from a nonsingular Np(μ, Σ) population or, equivalently,
let X1, . . . , Xn be independently distributed as Np(μ, Σ) vectors, Σ > 0. Under Ho, σjj

is estimated by its MLE which is σ̂jj = 1
n
sjj where sjj is the j -th diagonal element of

S = (sij ), the sample sum of products matrix. The maximum of the likelihood function
under the null hypothesis is then

max
Ho

L =
p∏

j=1

max
Ho

Lj = 1

(2π)
np
2
∏p

j=1[sjj ]
n
2
n

np
2 e− 1

2 (np),

the likelihood function being the joint density evaluated at an observed value of the sample.
Observe that the overall maximum or the maximum in the entire parameter space remains
the same as that given in (6.1.1). Thus, the λ-criterion is given by
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λ = supωL

sup�L
= |S| n

2

∏p

j=1 s
n
2
jj

⇒ u2 = λ
2
n = |S|

∏p

j=1 sjj
(6.6.1)

where S ∼ Wp(m, Σ), Σ > O, and m = n − 1, n being the sample size. Under Ho,
Σ = diag(σ11, . . . , σpp). Then for an arbitrary h, the h-th moment of u2 is available by

taking the expected value of λ
2
n with respect to the density of S, that is,

E[uh
2|Ho] =

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ−1S)(

∏p

j=1 sjj )
−h

2
mp
2 |Σ |m

2 Γp(m
2 )

dS (6.6.2)

where, under Ho, |Σ | = σ11 · · · σpp. As was done in Sect. 6.1.1, we may replace s−h
jj by

the equivalent integral,

s−h
jj = 1

Γ (h)

∫ ∞

0
xh−1

j e−xj (sjj )dxj , �(h) > 0.

Thus,

p∏

j=1

s−h
jj = 1

[Γ (h)]p
∫ ∞

0
· · ·
∫ ∞

0
xh−1

1 · · · xh−1
p e−tr(YS)dx1 ∧ . . . ∧ dxp (i)

where Y = diag(x1, . . . , xp), so that tr(YS) = x1s11 + · · · + xpspp. Then, (6.6.2) can be
reexpressed as follow:

E[uh
2|Ho] =

∫∞
0 · · · ∫∞

0 xh−1
1 · · · xh−1

p

2
mp
2 Γp(m

2 )(
∏p

j=1 σjj )
mp
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr((Σ−1+2Y )S)dS

= Γp(m
2 + h)

Γp(m
2 )

∫∞
0 · · · ∫∞

0 xh−1
1 · · · xh−1

p

2
mp
2 (
∏p

j=1 σjj )
mp
2

×
∣∣∣
(Σ−1 + 2Y )

2

∣∣∣
−(m

2 +h)

dx1, ∧ . . . ∧ dxp,

and observing that, under Ho,

∣∣∣
(Σ−1 + 2Y )

2

∣∣∣ =
∣∣∣
Σ−1

2

∣∣∣ |I + 2ΣY | with

|I + 2ΣY | = (1 + 2σ11y1) · · · (1 + 2σppyp),
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E[uh
2|Ho] = Γp(m

2 + h)

Γp(m
2 )

p∏

j=1

1

Γ (h)

∫ ∞

0
yh−1

j (1 + yj )
−(m

2 +h)dyj , yj = 2xjσjj

= Γp(m
2 + h)

Γp(m
2 )

[ Γ (m
2 )

Γ (m
2 + h)

]p
, �(

m

2
+ h) >

p − 1

2
. (6.6.3)

Thus,

E[uh
2|Ho] =

[ Γ (m
2 )

Γ (m
2 + h)

]p p∏

j=1

Γ (m
2 − j−1

2 + h)

Γ (m
2 − j−1

2 )

= [Γ (m
2 )]p−1

{∏p−1
j=1 Γ (m

2 − j
2 )}

{∏p−1
j=1 Γ (m

2 − j
2 + h)}

[Γ (m
2 + h)]p−1

.

Denoting the density of u2 as fu2(u2|Ho), we can express it as an inverse Mellin transform
by taking h = s − 1. Then,

fu2(u2|Ho) = c2,p−1 G
p−1,0
p−1,p−1

[
u2

∣∣∣
m
2 −1,...,m

2 −1

m
2 − j

2 −1, j=1,...,p−1

]
, 0 ≤ u2 ≤ 1, (6.6.4)

and zero elsewhere, where

c2,p−1 = [Γ (m
2 )]p−1

{∏p−1
j=1 Γ (m

2 − j
2 )}

.

Some special cases of this density are expounded below.

Real and complex cases: p = 2

When p = 2, u2 has a real type-1 beta density with the parameters (α = m
2 − 1

2 , β = 1
2)

in the real case. In the complex case, it has a real type-1 beta density with the parameters
(α = m − 1, β = 1).

Real and complex cases: p = 3

In this case, fu2(u2|Ho) is given by

fu2(u2|Ho) = c2,2
1

2πi

∫ c+i∞

c−i∞
Γ (m

2 − 3
2 + s)Γ (m

2 − 2 + s)

[Γ (m
2 − 1 + s)]2

u−s
2 ds.
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The poles of the integrand are simple. Those coming from Γ (m
2 − 3

2 + s) occur at s =
−m

2 + 3
2 − ν, ν = 0, 1, . . . . The residue Rν is the following:

Rν = u
m
2 − 3

2 +ν

2
(−1)ν

ν!
Γ (−1

2 − ν)

[Γ (1
2 − ν)]2

= Γ (−1
2)

[Γ (1
2)]2

(1
2)ν(

1
2)ν(−1)ν

(3
2)ν

u
m
2 − 3

2 +ν

2

ν! .

Summing the residues, we have
∞∑

ν=0

Rν = Γ (−1
2)

[Γ (1
2)]2

u
m
2 − 3

2
2 2F1

(1

2
,

1

2
; 3

2
; u2

)
, 0 ≤ u2 ≤ 1.

Now, consider the sum of the residues at the poles of Γ (m
2 − 2 + s). Observing that

Γ (m
2 − 2 + s) cancels out one of the gamma functions in the denominator, namely Γ (m

2 −
1 + s) = (m

2 − 2 − s)Γ (m
2 − 2 + s), the integrand becomes

Γ (m
2 − 3

2 + s)u−s
2

(m
2 − 2 + s)Γ (m

2 − 1 + s)
,

the residue at the pole s = −m
2 + 2 being

Γ ( 1
2 ) u

m
2 −2

2
Γ (1)

. Then, noting that Γ (−1
2) =

−2Γ (1
2) = −2

√
π , the density is the following:

fu2(u2|Ho) = c2,2

{√
πu

m
2 −2
2 − 2√

π
u

m
2 − 3

2
2 2F1

(1

2
,

1

2
; 3

2
; u2

)}
, 0 ≤ u2 ≤ 1, (6.6.5)

and zero elsewhere.

In the complex case, the integrand is

Γ (m − 2 + s)Γ (m − 3 + s)

[Γ (m − 1 + s)]2
u−s

2 = 1

(m − 2 + s)2(m − 3 + s)
u−s

2 ,

and hence there is a pole of order 1 at s = −m + 3 and a pole of order 2 at s = −m + 2.

The residue at s = −m + 3 is
um−3

2
(1)2 = um−3

2 and the residue at s = −m + 2 is given by

lim
s→−m+2

∂

∂s
(m − 2 + s)2

[ 1

(m − 2 + s)2(m − 3 + s)
u−s

2

]
= lim

s→−m+2

∂

∂s

[ u−s
2

(m − 3 + s)

]
,

which gives the residue as um−2
2 ln u2 − um−2

2 . Thus, the sum of the residues is um−3
2 +

um−2
2 ln u2 − um−2

2 and the constant part is

[Γ (m)]2

Γ (m − 1)Γ (m − 2)
= (m − 1)2(m − 2), m > 2,
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so that the density is

fu2(u2) = (m − 1)2(m − 2)[um−3
2 + um−2

2 ln u2 − um−2
2 ], 0 < u2 ≤ 1, m ≥ 3,

and zero elsewhere. Note that as u2 → 0, the limit of
um−1

2
m−1 ln u2 is zero. By integrating out

over 0 < u2 ≤ 1 while m ≥ 3, it can be verified that fu2(·) is indeed a density function.

Real and complex cases: p ≥ 4

As poles of higher orders are present when p ≥ 4, both in the real and complex cases,
the exact density function of the test statistic will not be herein explicitly given for those
cases. Actually, the resulting densities would involve G-functions for which general ex-
pansions are for instance provided in Mathai (1993). The exact null and non-null densities
of u = λ

2
n have been previously derived by the first author. Percentage points accurate to

the 11th decimal place are available from Mathai and Katiyar (1979a, 1980) for the null
case; as well, various aspects of the distribution of the test statistic are discussed in Mathai
and Rathie (1971) and Mathai (1973, 1984, 1985)

Let us now consider the asymptotic distribution of the λ-criterion under the null hy-
pothesis,

Ho : Σ = diag(σ11, . . . , σpp).

Given the representation of the h-th moment of u2 provided in (6.6.3) and referring to
Corollary 6.5.1, it is seen that the sum of the δj ’s is

∑p−1
j=1 δj = ∑p−1

j=1
j
2 = p(p−1)

4 , so that

the number of degrees of freedom of the asymptotic chisquare distribution is 2[p(p−1)
4 ] =

p(p−1)
2 which, as it should be, is the number of restrictions imposed by Ho, noting that

when Σ is diagonal, σij = 0, i �= j , which produces p(p−1)
2 restrictions. Hence, the

following result:

Theorem 6.6.1. Let λ be the likelihood ratio criterion for testing the hypothesis that
the covariance matrix Σ of a nonsingular Np(μ, Σ) distribution is diagonal. Then, as
n → ∞, −2 ln λ → χ2

p(p−1)
2

in the real case. In the corresponding complex case, as

n → ∞, −2 ln λ → χ2
p(p−1), a real scalar chisquare variable having p(p − 1) degrees of

freedom.

6.7. Equality of Diagonal Elements, Given that Σ is Diagonal, Real Case

In the case of a p-variate real nonsingular Np(μ, Σ) population, whenever Σ is
diagonal, the individual components are independently distributed as univariate nor-
mal random variables. Consider a simple random sample of size n, that is, a set of
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p × 1 vectors X1, . . . , Xn, that are iid as Xj ∼ Np(μ, Σ) where it is assumed that
Σ = diag(σ 2

1 , . . . , σ 2
p). Letting X′

j = (x1j , . . . , xpj ), the joint density of the xrj ’s,
j = 1, . . . , n, in the above sample, which is denoted by Lr , is given by

Lr =
n∏

j=1

e
− 1

2σ2
r

(xrj−μr)
2

(2π)
1
2 (σ 2

r )
1
2

= e
− 1

2σ2
r

∑n
j=1(xrj−μr)

2

(2π)
n
2 (σ 2

r )
n
2

.

Then, on substituting the maximum likelihood estimators of μr and σ 2
r in Lr , its maximum

is

max Lr = n
n
2 e− n

2

(2π)
n
2 (srr)

n
2
, srr =

n∑

j=1

(xrj − x̄r )
2.

Under the null hypothesis Ho, σ 2
2 = · · · = σ 2

p ≡ σ 2 and the MLE of σ 2 is a pooled

estimate which is equal to 1
np

(s11 +· · ·+ spp). Thus, the λ-criterion is the following in this
case:

λ = supω

sup�

= [s11s22 · · · spp] n
2

(
s11+···+spp

p
)

np
2

. (6.7.1)

If we let

u3 = λ
2
n = pp(

∏p

j=1 sjj )

(
∑p

j=1 sjj )p
, (6.7.2)

then, for arbitrary h, the h-th moment of u3 is the following:

E[uh
3|Ho] = E

[ pph(
∏p

j=1 sh
jj )

(s11 + · · · + spp)ph

]
= E

[
pph

( p∏

j=1

sh
jj

)
(s11 + · · · + spp)−ph

]
. (6.7.3)

Observe that sjj

σ 2

iid∼ χ2
n−1 = χ2

m, m = n − 1, for j = 1, . . . , p, the density of sjj being of
the form

fsjj (sjj ) = s
m
2 −1
jj e− sjj

2σ2

(2σ 2)
m
2 Γ (m

2 )
, 0 ≤ sjj < ∞, m = n − 1 = 1, 2, . . . , (i)

under Ho. Note that (s11 + · · · + spp)−ph can be replaced by an equivalent integral as

(s11 + · · · + spp)−ph = 1

Γ (ph)

∫ ∞

0
xph−1e−x(s11+···+spp)dx, �(h) > 0. (ii)
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Due to independence of the sjj ’s, the joint density of s11, . . . , spp, is the product of the
densities appearing in (i), and on integrating out s11, . . . , spp, we end up with the follow-
ing:

1

(2σ 2)
mp
2

{ p∏

j=1

Γ (m
2 + h)

Γ (m
2 )

}{ n∏

j=1

[ (1 + 2σ 2x)

2σ 2

]−( m
2 +h)} = [Γ (m

2 + h)]p
[Γ (m

2 )]p
[ (1 + 2σ 2x)−p( m

2 +h)

(2σ 2)−ph

]
.

Now, the integral over x can be evaluated as follows:

(2σ 2)ph

Γ (ph)

∫ ∞

0
xph−1(1 + 2σ 2x)−p(m

2 +h)dx = Γ (
mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0.

Thus,

E[uh
3|Ho] = pph

Γ p(m
2 + h)

Γ p(m
2 )

Γ (
mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0. (6.7.4)

The density of u3 can be written in terms of an H-function. Since p is a positive integer,
we can expand one gamma ratio using Gauss’ multiplication formula:

Γ (
mp
2 )

Γ (
mp
2 + ph)

= (2π)
1−p

2 p
pm
2 − 1

2 Γ (m
2 )Γ (m

2 + 1
p
) · · · Γ (m

2 + p−1
p

)

(2π)
1−p

2 p
mp
2 − 1

2 +phΓ (m
2 + h) · · · Γ (m

2 + p−1
p

+ h)

for p = 1, 2, . . . , m ≥ p. Accordingly,

E[uh
3|Ho] = [Γ (m

2 + h)]p
[Γ (m

2 )]p
p−1∏

j=0

Γ (m
2 + j

p
)

Γ (m
2 + j

p
+ h)

= [Γ (m
2 + h)]p−1

[Γ (m
2 )]p−1

p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 + j

p
+ h)

= c3,p−1
[Γ (m

2 + h)]p−1

∏p−1
j=1 Γ (m

2 + j
p

+ h)
,

(6.7.5)

c3,p−1 =
∏p−1

j=1 Γ (m
2 + j

p
)

[Γ (m
2 )]p−1

, �(m
2

+ h
)

> 0. (6.7.6)

Hence, for h = s − 1, (6.7.5) is the Mellin transform of the density of u3. Thus, denoting
the density by fu3(u3), we have

fu3(u3|Ho) = c3,p−1G
p−1,0
p−1,p−1

[
u3
∣∣

m
2 −1+ j

p
, j=1,...,p−1

m
2 −1,...,m

2 −1

]
, 0 ≤ u3 ≤ 1, (6.7.7)

and zero elsewhere.
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In the complex case, the h-th moment is the following:

E[ũh
3|Ho] = c̃3,p−1

[Γ̃ (m + h)]p−1

∏p−1
j=1 Γ̃ (m + j

p
+ h)

, (6.7a.1)

c̃3,p−1 =
∏p−1

j=1 Γ̃ (m + j
p
)

˜[Γ (m)]p−1
. (6.7a.2)

and the corresponding density is given by

f̃ũ3(ũ3|Ho) = c̃3,p−1G
p−1,0
p−1,p−1

[
ũ3
∣∣m−1+ j

p
, j=1,...,p−1

m−1,...,m−1

]
, 0 ≤ |ũ3| ≤ 1, (6.7a.3)

and zero elsewhere, G denoting a real G-function.

Real and complex cases: p = 2

It is seen from (6.7.5) that for p = 2, u3 is a real type-1 beta with the parameters (α =
m
2 , β = 1

p
) in the real case. Whenever p ≥ 3, poles of order 2 or more are occurring, and

the resulting density functions which are expressible in terms generalized hypergeometric
functions, will not be explicitly provided. For a general series expansion of the G-function,
the reader may refer to Mathai (1970a, 1993).

In the complex case, when p = 2, ũ3 has a real type-1 beta density with the parameters
(α = m, β = 1

p
). In this instance as well, poles of higher orders will be present when

p ≥ 3, and hence explicit forms of the corresponding densities will not be herein provided.
The exact null and non-null distributions of the test statistic are derived for the general
case in Mathai and Saxena (1973), and highly accurate percentage points are provided in
Mathai (1979a,b).

An asymptotic result can also be obtained as n → ∞ . Consider the h-th moment of
λ, which is available from (6.7.5) in the real case and from (6.7a.1) in the complex case.
Then, referring to Corollary 6.5.2, δj = j

p
whether in the real or in the complex situations.

Hence, 2[∑p−1
j=1 δj ] = 2

∑p−1
j=1

j
p

= (p − 1) in both the real and the complex cases. As

well, observe that in the complex case, the diagonal elements are real since Σ̃ is Hermitian
positive definite. Accordingly, the number of restrictions imposed by Ho in either the real
or complex cases is p − 1. Thus, the following result:

Theorem 6.7.1. Consider the λ-criterion for testing the equality of the diagonal ele-
ments, given that the covariance matrix is already diagonal. Then, as n → ∞, the null
distribution of −2 ln λ → χ2

p−1 in both the real and the complex cases.
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6.8. Hypothesis that the Covariance Matrix is Block Diagonal, Real Case

We will discuss a generalization of the problem examined in Sect. 6.6, consid-
ering again the case of real Gaussian vectors. Let X1, . . . , Xn be iid as Xj ∼
Np(μ, Σ), Σ > O, and

Xj =
⎡

⎢⎣
x1j
...

xpj

⎤

⎥⎦ =
⎡

⎢⎣
X(1j)

...

X(kj)

⎤

⎥⎦ , X(1j) =
⎡

⎢⎣
x1j
...

xp1j

⎤

⎥⎦ , X(2j) =
⎡

⎢⎣
xp1+1,j

...

xp1+p2,j

⎤

⎥⎦ , . . . ,

Σ =

⎡

⎢⎢⎢⎣

Σ11 O · · · O

O Σ22
. . . O

...
... · · · ...

O O · · · Σkk

⎤

⎥⎥⎥⎦ , Σjj being pj × pj , j = 1, . . . , k.

In this case, the p × 1 real Gaussian vector is subdivided into subvectors of orders
p1, . . . , pk, so that p1 +· · ·+pk = p, and, under the null hypothesis Ho, Σ is assumed to
be a block diagonal matrix, which means that the subvectors are mutually independently
distributed pj -variate real Gaussian vectors with corresponding mean value vector μ(j)

and covariance matrix Σjj , j = 1, . . . , k. Then, the joint density of the sample values
under the null hypothesis can be written as L = ∏k

r=1 Lr where Lr is the joint density
of the sample values corresponding to the subvector X(rj), j = 1, . . . , n, r = 1, . . . , k.
Letting the p × n general sample matrix be X = (X1, . . . , Xn), we note that the sam-
ple representing the first p1 rows of X corresponds to the sample from the first subvector

X(1j)
iid∼ Np(μ(1), Σ11), Σ11 > O, j = 1, . . . , n. The MLE’s of μ(r) and Σrr are the

corresponding sample mean and sample covariance matrix. Thus, the maximum of Lr is
available as

max Lr = e− npr
2 n

npr
2

(2π)
npr

2 |Srr | n
2

ind⇒
k∏

r=1

max Lr = e− np
2 n

np
2

(2π)
np
2
∏k

r=1 |Srr | n
2
.

Hence,

λ = supωL

sup�L
= |S| n

2

∏k
r=1 |Srr | n

2
, (6.8.1)

and

u4 ≡ λ
2
n = |S|

∏k
r=1 |Srr |

. (6.8.2)

Observe that the covariance matrix Σ = (σij ) can be written in terms of the matrix of
population correlations. If we let D = diag(σ1, . . . , σp) where σ 2

t = σtt denotes the
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variance associated the component xtj in X′
j = (x1j , . . . , xpj ) where Cov(X) = Σ , and

R = (ρrs) be the population correlation matrix, where ρrs is the population correlation
between the components xrj and xsj , then, Σ = DRD. Consider a partitioning of Σ into
k × k blocks as well as the corresponding partitioning of D and R:

Σ =

⎡

⎢⎢⎢⎣

Σ11 Σ12 · · · Σ1k

Σ21 Σ22 · · · Σ2k

...
...

. . .
...

Σk1 Σk2 · · · Σkk

⎤

⎥⎥⎥⎦ , D =

⎡

⎢⎢⎢⎣

D1 O · · · O

O D2 · · · O
...

...
. . .

...

O O · · · Dk

⎤

⎥⎥⎥⎦ , R =

⎡

⎢⎢⎢⎣

R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

. . .
...

Rk1 Rk2 · · · Rkk

⎤

⎥⎥⎥⎦ ,

where, for example, Σjj is pj × pj , p1 + · · · + pk = p, and the corresponding par-
titioning of D and R. Consider a corresponding partitioning of the sample sum of prod-
ucts matrix S = (Sij ), D(s) and R(s) where R(s) is the sample correlation matrix and

D(s) = diag(
√

s11, . . . ,
√

spp), where Sjj , D
(s)
j , R

(s)
jj are pj × pj , p1 + · · · + pk = p.

Then, |Σ |
∏k

j=1 |Σjj |
= |R|
∏k

j=1 |Rjj |
(6.8.3)

and

u4 ≡ λ
2
n = |S|

∏k
j=1 |Sjj |

= |R(s)|
∏k

j=1 |R(s)
jj | . (6.8.4)

An additional interesting property is now pointed out. Consider a linear function of the
original p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, in the form CXj where C is the diagonal
matrix, diag(c1, . . . , cp). In this case, the product CXj is such that the r-th component of
Xj is weighted or multiplied by cr . Let C be a block diagonal matrix that is partitioned
similarly to D so that its j -th diagonal block matrix be the pj × pj diagonal submatrix
Cj . Then,

uc = |CSC′|
∏k

j=1 |CjSjjC
′
j |

= |S|
∏k

j=1 |Sjj |
= u4. (6.8.5)

In other words, u4 is invariant under linear transformations on Xj
iid∼ Np(μ, Σ), Σ >

O, j = 1, . . . , n. That is, if Yj = CXj + d where d is a constant column vector, then the
p × n sample matrix on Yj , namely, Y = (Y1, . . . , Yn) = (CX1 + d, . . . , CXn + d),

Y − Ȳ = C(X − X̄) ⇒ Sy = (Y − Ȳ)(Y − Ȳ)′ = C(X − X̄)(X − X̄)′C′ = CSC′.

Letting Sy be partitioned as S into k × k blocks and Sy = (Sijy), we have

uy ≡ |Sy |∏k
j=1 |Sjjy |

= |CSC′|
∏k

j=1 |CjSjjC
′
j |

= |S|
∏k

j=1 |Sjj |
= u4. (6.8.6)
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Arbitrary moments of u4 can be derived by proceeding as in Sect. 6.6. The h-th null mo-
ment, that is, the h-th moment under the null hypothesis Ho, is then

E[uh
4|Ho] = 1

2
mp
2 Γp(m

2 )|Σo|m
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ−1

o S)
{ k∏

r=1

|Srr |−h
}
dS (i)

where m = n − 1, n being the sample size, and

Σo =

⎡

⎢⎢⎢⎣

Σ11 O · · · O

O Σ22 · · · O
...

...
. . . O

O O · · · Σkk

⎤

⎥⎥⎥⎦ , tr(Σ−1
o S) = tr(Σ−1

11 S11) + · · · + tr(Σ−1
kk Skk), (ii)

where Srr is the r-th diagonal block of S, corresponding to Σrr of Σ whose order pr ×
pr, r = 1, . . . , k, p1 + · · · + pk = p. On noting that

|Srr |−h = 1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2 e−tr(YrSrr )dYr, r = 1, . . . , k, (iii)

where Yr > O is a pr × pr real positive definite matrix, and replacing each |Srr |−h by its
integral representation as given in (iii), the exponent of e in (i) becomes

−1

2
[tr(Σ−1

o S)+2tr(YS)], Y =

⎡

⎢⎢⎢⎣

Y1 O · · · O

O Y2 · · · O
...

...
. . .

...

O O · · · Yk

⎤

⎥⎥⎥⎦ , tr(YS) = tr(Y1S11)+· · ·+tr(YkSkk).

The right-hand side of equation (i) then becomes

E[uh
4|Ho] = Γp(m

2 + h)

Γp(m
2 )|Σo|m

2
2ph

{ k∏

r=1

1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2

}

× |Σ−1
o + 2Y |−(m

2 +h)dY1 ∧ . . . ∧ dYk, �(h) > −m

2
+ p − 1

2
. (iv)

It should be pointed out that the non-null moments of u4 can be obtained by substituting a
general Σ to Σo in (iv). Note that if we replace 2Y by Y , the factor containing 2, namely
2ph, will disappear. Further, under Ho,

|Σ−1
o + 2Y |−(m

2 +h) =
{ k∏

r=1

|Σrr |m
2 +h

}{ k∏

r=1

|I + 2ΣrrYr |−(m
2 +h)

}
. (v)
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Then, each Yr -integral can be evaluated as follows:

1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2 |I + 2ΣrrYr |−(m

2 +h)dYr

= 2−prh|Σrr |−h 1

Γpr
(h)

∫

Zr>O

|Zr |h−pr+1
2 |I + Zr |−(m

2 +h)dZr, Zr = 2Σ
1
2
rrYrΣ

1
2
rr

= 2−prh|Σrr |−hΓpr
(h)

Γpr
(h)

Γpr
(m

2 )

Γpr
(m

2 + h)
. (vi)

On combining equations (i) to (vi), we have

E[uh
4|Ho] = Γp(m

2 + h)

Γp(m
2 )

k∏

r=1

Γpr
(m

2 )

Γpr
(m

2 + h)
, �(

m

2
+ h) >

p − 1

2
, (6.8.7)

= c4,p

Γp(m
2 + h)

∏k
r=1 Γpr

(m
2 + h)

= c4,pc∗
∏p

j=1 Γ (m
2 − j−1

2 + h)
∏k

r=1[
∏pr

i=1 Γpr
(m

2 − i−1
2 + h)] , (6.8.8)

c4,p =
∏k

r=1 Γpr
(m

2 )

Γp(m
2 )

= [∏k
r=1 π

pr (pr−1)
4 ]

π
p(p−1)

4

∏k
r=1[

∏pr

i=1 Γ (m
2 − i−1

2 )]
∏p

j=1 Γ (m
2 − j−1

2 )
, (6.8.9)

c∗ = π
p(p−1)

4

∏k
r=1 π

pr (pr−1)
4

so that when h = 0, E[uh
4|Ho] = 1. Observe that one set of gamma products can be can-

celed in (6.8.8) and (6.8.9). When that set is the product of the first p1 gamma functions,
the h-th moment of u4 is given by

E[uh
4|Ho] = c4,p−p1

∏p

j=p1+1 Γ (m
2 − j−1

2 + h)
∏k

r=2[
∏pr

i=1 Γ (m
2 − i−1

2 + h)] , (6.8.10)

where c4,p−p1 is such that E[uh
4|Ho] = 1 when h = 0. Since the structure of the expression

given in (6.8.10) is that of the h-th moment of a product of p−p1 independently distributed
real scalar type-1 beta random variables, it can be inferred that the distribution of u4|Ho is
also that of a product of p − p1 independently distributed real scalar type-1 beta random
variables whose parameters can be determined from the arguments of the gamma functions
appearing in (6.8.10).

Some of the gamma functions appearing in (6.8.10) will cancel out for certain values
of p1, . . . , pk,, thereby simplifying the representation of the moments and enabling one to
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express the density of u4 in terms of elementary functions in such instances. The exact null
density in the general case was derived by the first author. For interesting representations of
the exact density, the reader is referred to Mathai and Rathie (1971) and Mathai and Saxena
(1973), some exact percentage points of the null distribution being included in Mathai
and Katiyar (1979a). As it turns out, explicit forms are available in terms of elementary
functions for the following special cases, see also Anderson (2003): p1 = p2 = p3 =
1; p1 = p2 = p3 = 2; p1 = p2 = 1, p3 = p − 2; p1 = 1, p2 = p3 = 2; p1 =
1, p2 = 2, p3 = 3; p1 = 2, p2 = 2, p3 = 4; p1 = p2 = 2, p3 = 3; p1 = 2, p2 = 3, p

is even.

6.8.1. Special case: k = 2

Let us consider a certain 2 × 2 partitioning of S, which corresponds to the special case
k = 2. When p1 = 1 and p2 = p − 1 so that p1 + p2 = p, the test statistic is

u4 = |S|
|S11| |S22| = |S11 − S12S

−1
22 S21|

|S11|
= s11 − S12S

−1
22 S21

s11
= 1 − r2

1.(2...p) (6.8.11)

where r1.(2...p) is the multiple correlation between x1 and (x2, . . . , xp). As stated in Theo-
rem 5.6.3, 1−r2

1.(2...p) is distributed as a real scalar type-1 beta variable with the parameters

(n−1
2 − p−1

2 ,
p−1

2 ). The simplifications in (6.8.11) are achieved by making use of the prop-
erties of determinants of partitioned matrices, which are discussed in Sect. 1.3. Since s11

is 1 × 1 in this case, the numerator determinant is a real scalar quantity. Thus, this yields a
type-2 beta distribution for w = u4

1−u4
and thereby n−p

p−1w has an F -distribution, so that the
test can be based on an F statistic having (n − 1) − (p − 1) = n − p and p − 1 degrees
of freedom.

6.8.2. General case: k = 2

If in a 2 × 2 partitioning of S, S11 is of order p1 × p1 and S22 is of order p2 × p2 with
p2 = p − p1. Then u4 can be expressed as

u4 = |S|
|S11| |S22| = |S11 − S12S

−1
22 S21|

|S11|
= |I − S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 | = |I − U |, U = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 (6.8.12)

where U is called the multiple correlation matrix. It will be shown that U has a real matrix-
variate type-1 beta distribution when S11 is of general order rather than being a scalar.



458 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Theorem 6.8.1. Consider u4 for k = 2. Let S11 be p1 × p1 and S22 be p2 × p2 so that
p1 + p2 = p. Without any loss of generality, let us assume that p1 ≤ p2. Then, under
Ho : Σ12 = O, the multiple correlation matrix U has a real matrix-variate type-1 beta
distribution with the parameters (

p2
2 , m

2 − p2
2 ), with m = n − 1, n being sample size, and

thereby (I − U) ∼ type-1 beta (m
2 − p2

2 ,
p2
2 ), the determinant of I − U being u4 under

the null hypothesis when k = 2.

Proof: Since Σ under Ho can readily be eliminated from a structure such as u4, we will
take a Wishart matrix S having m = n−1 degrees of freedom, n denoting the sample size,
and parameter matrix I , the identity matrix. At first, assume that Σ is a block diagonal
matrix and make the transformation S1 = Σ− 1

2 SΣ− 1
2 . As a result, u4 will be free of Σ11

and Σ22, and so, we may take S ∼ Wp(m, I). Now, consider the submatrices S11, S22, S12

so that dS = dS11 ∧ dS22 ∧ dS12. Let f (S) denote the Wp(m, I) density. Then,

f (S)dS = |S|m
2 −p+1

2

2
mp
2 Γp(m

2 )
e− 1

2 tr(S)dS, S =
[
S11 S12

S21 S22

]
, S21 = S′

12.

However, appealing to a result stated in Sect. 1.3, we have

|S| = |S22| |S11 − S12S
−1
22 S21|

= |S22| |S11| |I − S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 |.
The joint density of S11, S22, S12 denoted by f1(S11, S22, S12) is then

f1(S11, S22, S12) = |S11|m
2 −p+1

2 |S22|m
2 −p+1

2 |I − U |m
2 −p+1

2

× e− 1
2 tr(S11)− 1

2 tr(S22)

2
mp
2 Γp(m

2 )
, U = S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 .

Letting Y = S
− 1

2
11 S12S

− 1
2

22 , it follows from a result on Jacobian of matrix transformation,

previously established in Chap. 1, that dY = |S11|−
p2
2 |S22|−

p1
2 dS12. Thus, the joint density

of S11, S22, Y , denoted by f2(S11, S22, Y ), is given by

f2(S11, S22, Y ) = |S11|m
2 +p2

2 −p+1
2 |S22|m

2 +p1
2 −p+1

2 |I − YY ′|m
2 −p+1

2

× e− 1
2 tr(S11)− 1

2 tr(S22)

2
pm
2 Γp(m

2 )
,
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Note that S11, S22, Y are independently distributed as f2(·) can be factorized into functions
of S11, S22, Y . Now, letting U = YY ′, it follows from Theorem 4.2.3 that

dY = π
p1p2

2

Γp1(
p2
2 )

|U |p2
2 −p1+1

2 dU,

and the density of U , denoted by f3(U), can then be expressed as follows:

f3(U) = c |U |p2
2 −p1+1

2 |I − U |m
2 −p2

2 −p1+1
2 , O < U < I, (6.8.13)

which is a real matrix-variate type-1 beta density with the parameters (
p2
2 , m

2 − p2
2 ), where

c is the normalizing constant. As a result, I − U has a real matrix-variate type-1 beta
distribution with the parameters (m

2 − p2
2 ,

p2
2 ). Finally, observe that u4 is the determinant

of I − U .

Corollary 6.8.1. Consider u4 as given in (6.8.12) and the determinant |I − U | where U

and I − U are defined in Theorem 6.8.1. Then for k = 2 and an arbitrary h, E[uh
4|Ho] =

|I − U |h.

Proof: On letting k = 2 in (6.8.8), we obtain the h-th moment of u4|Ho as

E[uh
4|Ho] = c4,p

∏p

j=1 Γ (m
2 − j−1

2 + h)

{∏p1
j=1 Γ (m

2 − j−1
2 + h)}{∏p2

j=1 Γ (m
2 − j−1

2 + h)} . (i)

After canceling p2 of the gamma functions, the remaining gamma product in the numerator
of (i) is

Γ
(
α − p2

2

)
Γ
(
α − p2 + 1

2

)
· · · Γ

(
α − p − 1

2

)
= Γp1

(
α − p2

2

)
, α = m

2
+ h,

excluding π
p1(p1−1)

4 . The remainder of the gamma product present in the denominator is

comprised of the gamma functions coming from Γp1(
m
2 + h), excluding π

p1(p1−1)

4 . The
normalizing constant will automatically take care of the factors containing π . Now, the
resulting part containing h is Γp1(

m
2 − p2

2 +h)/Γp1(
m
2 +h), which is the gamma ratio in the

h-th moment of a p1 × p1 real matrix-variate type-1 beta distribution with the parameters
(m

2 − p2
2 ,

p2
2 ).

Since this happens to be E[|I − U |]h for I − U distributed as is specified in Theo-
rem 6.8.1, the Corollary is established.

An asymptotic result can be established from Corollary 6.5.1 and the λ-criterion for
testing block-diagonality or equivalently the independence of subvectors in a p-variate
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Gaussian population. The resulting chisquare variable will have 2
∑

j δj degrees of free-
dom where δj is as defined in Corollary 6.5.1 for the second parameter of the real scalar
type-1 beta distribution. Referring to (6.8.10), we have

∑

j

δj =
p∑

j=p1+1

j − 1

2
−

k∑

j=2

pj∑

i=1

i − 1

2
=

p∑

j=p1+1

j − 1

2
−

k∑

j=2

pj (pj − 1)

4

=
p∑

j=1

j − 1

2
−

k∑

j=1

pj (pj − 1)

4
= p(p − 1)

4
−

k∑

j=1

pj (pj − 1)

4
=

k∑

j=1

pj (p − pj )

4
.

Accordingly, the degrees of freedom of the resulting chisquare is 2[∑k
j=1

pj (p−pj )

4 ] =
∑k

j=1
pj (p−pj )

2 in the real case. It can also be observed that the number of restrictions
imposed by the null hypothesis Ho is obtained by first letting all the off-diagonal elements
of Σ = Σ ′ equal to zero and subtracting the off-diagonal elements of the k diagonal blocks
which produces p(p−1)

2 − ∑k
j=1

pj (pj−1)

2 = ∑k
j=1

pj (p−pj )

2 . In the complex case, the
number of degrees of freedom will be twice that obtained for the real case, the chisquare
variable remaining a real scalar chisquare random variable. This is now stated as a theorem.

Theorem 6.8.2. Consider the λ-criterion given in (6.8.1) in the real case and let the
corresponding λ in the complex case be λ̃. Then −2 ln λ → χ2

δ as n → ∞ where n is the

sample size and δ = ∑k
j=1

pj (p−pj )

2 , which is also the number of restrictions imposed by

Ho. Analogously, in the complex case, −2 ln λ̃ → χ2
δ̃

as n → ∞, where the chisquare

variable remains a real scalar chisquare random variable, δ̃ = ∑k
j=1 pj(p − pj) and n

denotes the sample size.

6.9. Hypothesis that the Mean Value and Covariance Matrix are Given

Consider a real p-variate Gaussian population Xj ∼ Np(μ, Σ), Σ > O, and a sim-
ple random sample, X1, . . . , Xn, from this population, the Xi’s being iid as Xj . Let the
sample mean and the sample sum of products matrix be denoted by X̄ and S, respectively.
Consider the hypothesis Ho : μ = μo, Σ = Σo where μo and Σo are specified. Let us
examine the likelihood ratio test for testing Ho and obtain the resulting λ-criterion. Let
the parameter space be � = {(μ, Σ)|Σ > O, − ∞ < μj < ∞, j = 1, . . . , p, μ′ =
(μ1, . . . , μp)}. Let the joint density of X1, . . . , Xn be denoted by L. Then, as previously
obtained, the maximum value of L is

max
�

L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
(6.9.1)
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and the maximum under Ho is

max
Ho

L = e− 1
2 tr(

∑n
j=1(Xj−μo)

′Σ−1
o (Xj−μo))

(2π)
np
2 |Σo| n

2
. (6.9.2)

Thus,

λ = maxHo
L

max� L
= e

np
2 |S| n

2

n
np
2 |Σo| n

2
e− 1

2 tr(
∑n

j=1(Xj−μo)
′Σ−1

o (Xj−μo)). (6.9.3)

We reject Ho for small values of λ. Since the exponential part dominates the poly-
nomial part for large values, we reject for large values of the exponent, excluding
(−1), which means for large values of

∑n
j=1(Xj − μo)

′Σ−1
o (Xj − μo) ∼ χ2

np since

(Xj − μo)
′Σ−1

o (Xj − μo)
iid∼ χ2

p for each j . Hence the criterion consists of

rejecting Ho if the observed values of
n∑

j=1

(Xj − μo)
′Σ−1

o (Xj − μo) ≥ χ2
np,α

with
Pr{χ2

np ≥ χ2
np,α} = α. (6.9.4)

Let us determine the h-th moment of λ for an arbitrary h. Note that

λh = e
nph

2

n
nph

2 |Σo| nh
2

|S| nh
2 e− h

2 tr(Σ−1
o S)− hn

2 (X̄−μo)
′Σ−1

o (X̄−μo). (6.9.5)

Since λ contains S and X̄ and these quantities are independently distributed, we can in-
tegrate out the part containing S over a Wishart density having m = n − 1 degrees of
freedom and the part containing X̄ over the density of X̄. Thus, for m = n − 1,

E
[
(|S| nh

2 /|Σo| nh
2 ) e− h

2 tr(Σ−1
o S)|Ho

]
=
∫
S>O

|S|m
2 + nh

2 −p+1
2 e− (1+h)

2 tr(Σ−1
o S)

2
mp
2 Γp(m

2 )|Σo| n
2 (1+h)− 1

2

dS

= 2
nph

2
Γp(n

2 (1 + h) − 1
2)

Γp(n
2 − 1

2)
(1 + h)−[ n

2 (1+h)− 1
2 ]p. (i)

Under Ho, the integral over X̄ gives

∫

X̄

√
n

(2π)
p
2 |Σo| 1

2

e−(1+h) n
2 (X̄−μo)

′Σ−1
o (X̄−μo)dX̄ = (1 + h)−

p
2 . (ii)
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From (i) and (ii), we have

E[λh|Ho] = e
nph

2 2
nph

2

n
nph

2

Γp(n
2 (1 + h) − 1

2)

Γp(n−1
2 )

(1 + h)−[ n
2 (1+h)]p. (6.9.6)

The inversion of this expression is quite involved due to branch points. Let us examine
the asymptotic case as n → ∞. On expanding the gamma functions by making use of
the version of Stirling’s asymptotic approximation formula for gamma functions given in
(6.5.14), namely Γ (z + η) ≈ √

2πzz+η− 1
2 e−z for |z| → ∞ and η bounded, we have

Γp(n
2 (1 + h) − 1

2)

Γp(n−1
2 )

=
p∏

j=1

Γ (n
2 (1 + h) − 1

2 − j−1
2 )

Γ (n−1
2 − j−1

2 )

=
p∏

j=1

√
2π [n

2 (1 + h)] n
2 (1+h)− 1

2 − 1
2 − j−1

2 e− n
2 (1+h)

√
2π [n

2 ] n
2 − 1

2 − 1
2 − j−1

2 e− n
2

=
[n

2

] nph
2

e− nph
2 (1 + h)

n
2 (1+h)p−p

2 −p(p+1)
4 . (iii)

Thus, as n → ∞, it follows from (6.9.6) and (iii) that

E[λh|Ho] = (1 + h)−
1
2 (p+p(p+1)

2 ), (6.9.7)

which implies that, asymptotically, −2 ln λ has a real scalar chisquare distribution with
p + p(p+1)

2 degrees of freedom in the real Gaussian case. Hence the following result:

Theorem 6.9.1. Given a Np(μ, Σ), Σ > O, population, consider the hypothesis Ho :
μ = μo, Σ = Σo where μo and Σo are specified. Let λ denote the λ-criterion for
testing this hypothesis. Then, in the real case, −2 ln λ → χ2

δ as n → ∞ where δ =
p + p(p+1)

2 and, in the corresponding complex case, −2 ln λ → χ2
δ1

as n → ∞ where
δ1 = 2p + p(p + 1), the chisquare variable remaining a real scalar chisquare random
variable.

Note 6.9.1. In the real case, observe that the hypothesis Ho : μ = μo, Σ = Σo imposes
p restrictions on the μ parameters and p(p+1)

2 restrictions on the Σ parameters, for a total

of p + p(p+1)
2 restrictions, which corresponds to the degrees of freedom for the asymp-

totic chisquare distribution in the real case. In the complex case, there are twice as many
restrictions.
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Example 6.9.1. Consider the real trivariate Gaussian distribution N3(μ, Σ), Σ > O

and the hypothesis Ho : μ = μo, Σ = Σo where μo, Σo and an observed sample of size
5 are as follows:

μo =
⎡

⎣
1

−1
1

⎤

⎦ , Σo =
⎡

⎣
3 0 0
0 4 −2
0 −2 3

⎤

⎦ ⇒ |Σo| = 24, Cof(Σo) =
⎡

⎣
8 0 0
0 9 6
0 6 12

⎤

⎦ ,

Σ−1
o = Cof(Σo)

|Σo| = 1

24

⎡

⎣
8 0 0
0 9 6
0 6 12

⎤

⎦ ;

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ .

Now,

(X1 − μo)
′Σ−1

o (X1 − μo) = 36

24
, (X2 − μo)

′Σ−1
o (X2 − μo) = 33

24
,

(X3 − μo)
′Σ−1

o (X3 − μo) = 104

24
, (X4 − μo)

′Σ−1
o (X4 − μo) = 144

24
,

(X5 − μo)
′Σ−1

o (X5 − μo) = 20

24
,

and

5∑

j=1

(Xj − μo)
′Σ−1

o (Xj − μo) = 1

24
[36 + 33 + 104 + 144 + 20] = 337

24
= 14.04.

Note that, in this example, n = 5, p = 3 and np = 15. Letting the significance level of
the test be α = 0.05, Ho is not rejected since 14.04 < χ2

15, 0.05 = 25.

6.10. Testing Hypotheses on Linear Regression Models or Linear Hypotheses

Let the p×1 real vector Xj have an expected value μ and a covariance matrix Σ > O

for j = 1, . . . , n, and the Xj ’s be independently distributed. Let Xj, μ, Σ be partitioned
as follows where x1j , μ1 and σ11 are 1 × 1, μ(2), Σ21 are (p − 1) × 1, Σ12 = Σ ′

21 and
Σ22 is (p − 1) × (p − 1):

Xj =
[

x1j

X(2)j

]
, μ =

[
μ1

μ(2)

]
, Σ =

[
σ11 Σ12

Σ21 Σ22

]
. (i)
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If the conditional expectation of x1j , given X(2)j is linear in X(2)j , then omitting the sub-
script j since the Xj ’s are iid, it was established in Eq. (3.3.5) that

E[x1|X(2)] = μ1 + Σ12Σ
−1
22 (X(2) − μ(2)). (6.10.1)

When the regression is linear, the best linear predictor of x1 in terms of X(2) will be of the
form

E[x1|X(2)] − E(x1) = β ′(X(2) − E(X(2))), β ′ = (β2, . . . , βp). (6.10.2)

Then, by appealing to properties of the conditional expectation and conditional variance,
it was shown in Chap. 3 that β ′ = Σ12Σ

−1
22 . Hypothesizing that X(2) is not random, or

equivalently that the predictor function is a function of the preassigned values of X(2),
amounts to testing whether Σ12Σ

−1
22 = O. Noting that Σ22 > O since Σ > O, the

null hypothesis thus reduces to Ho : Σ12 = O. If the original population X is p-variate
real Gaussian, this hypothesis is then equivalent to testing the independence of x1 and
X(2). Actually, this has already been discussed in Sect. 6.8.2 for the case of k = 2, and
is also tantamount to testing whether the population multiple correlation ρ1.(2...k) = 0.

Assuming that the population is Gaussian and letting of u = λ
2
n where λ is the lambda

criterion, u ∼ type-1 beta(n−p
2 ,

p−1
2 ) under the null hypothesis; this was established in

Theorem 6.8.1 for p1 = 1 and p2 = p − 1. Then, v = u
1−u

∼ type-2 beta (
n−p

2 ,
p−1

2 ),

that is, v ∼ n−p
p−1Fn−p, p−1 or (p−1)

(n−p)
u

1−u
∼ Fn−p, p−1. Hence, in order to test Ho : β = O,

reject Ho if Fn−p, p−1 ≥ Fn−p, p−1, α, with Pr{Fn−p, p−1 ≥ Fn−p, p−1, α} = α

(6.10.3)
The test statistic u is of the form

u = |S|
s11|S22| , S ∼ Wp(n − 1, Σ), Σ > O,

(p − 1)

(n − p)

u

1 − u
∼ Fn−p, p−1,

where the submatrices of S, s11 is 1 × 1 and S22 is (p − 1) × (p − 1). Observe that the
number of parameters being restricted by the hypothesis Σ12 = O is p1p2 = 1(p − 1) =
p − 1. Hence as n → ∞, the null distribution of −2 ln λ is a real scalar chisquare having
p − 1 degrees of freedom. Thus, the following result:

Theorem 6.10.1. Let the p × 1 vector Xj be partitioned into the subvectors x1j of order
1 and X(2)j of order p − 1. Let the regression of x1j on X(2)j be linear in X(2)j , that is,
E[x1j |X(2)j ]−E(x1j ) = β ′(X(2)j −E(X(2)j )). Consider the hypothesis Ho : β = O. Let
Xj ∼ Np(μ, Σ), Σ > O, for j = 1, . . . , n, the Xj ’s being independently distributed,
and let λ be the λ-criterion for testing this hypothesis. Then, as n → ∞, −2 ln λ → χ2

p−1.
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Example 6.10.1. Let the population be N3(μ, Σ), Σ > O, and the observed sample of
size n = 5 be

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0
1

⎤

⎦ , X3 =
⎡

⎣
−1

1
0

⎤

⎦ , X4 =
⎡

⎣
1
1
2

⎤

⎦ , X5 =
⎡

⎣
−1
−1
−2

⎤

⎦ .

The resulting sample average X̄ and deviation vectors are then

X̄ = 1

5

⎡

⎣
1
2
2

⎤

⎦ , X1 − X̄ =
⎡

⎣
1
1
1

⎤

⎦− 1

5

⎡

⎣
1
2
2

⎤

⎦ = 1

5

⎡

⎣
4
3
3

⎤

⎦ ,

X2 − X̄ = 1

5

⎡

⎣
4

−2
3

⎤

⎦ , X3 − X̄ = 1

5

⎡

⎣
−6

3
−2

⎤

⎦ ,

X4 − X̄ = 1

5

⎡

⎣
4
3
8

⎤

⎦ , X5 − X̄ = 1

5

⎡

⎣
−6
−7
−12

⎤

⎦ .

Letting

X = [X1, . . . , X5], X̄ = [X̄, . . . , X̄] and S = (X − X̄)(X − X̄)′,

X − X̄ = 1

5

⎡

⎣
4 4 −6 4 −6
3 −2 3 3 −7
3 3 −2 8 −12

⎤

⎦ ,

S = 1

52

⎡

⎣
120 40 140
40 80 105
140 105 230

⎤

⎦ =
[
s11 S12

S21 S22

]
,

s11 = 120

25
, S12 = 1

25
[40, 140],

S22 = 1

25

[
80 105
105 230

]
, S−1

22 = 25

7375

[
230 −105

−105 80

]
,

S12S
−1
22 S21 =

[ 1

(25)2

][ 25

7375

] [
40 140

] [ 230 −105
−105 80

] [
40
140

]
= 760000

(25)(7375)
,



466 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

so that the test statistic is

u = s11 − S12S
−1
22 S21

s11
= 1 − S12S

−1
22 S21

s11
= 1 − r2

1.(2,3)

= 1 − 760000

(120)(7375)
= 1 − 0.859 = 0.141 ⇒

v = (p − 1)

(n − p)

u

1 − u
=
(2

2

)(0.141

0.859

)
= 0.164, v ∼ Fn−p,p−1.

Let us test Ho at the significance level α = 0.05. In that case, the critical value which is
available from F tables is Fn−p, p−1, α = F2, 2, 0.05 = 19. Since the observed value of v is
0.164 < 19, Ho is not rejected.

Note 6.10.1. Observe that

u = 1 − r2
1.(2,3), r2

1.(2,3) = S12S
−1
22 S21

s11

where r1.(2,3) is the sample multiple correlation between the first component of Xj ∼
N3(μ, Σ), Σ > O, and the other two components of Xj . If the population covariance
matrix Σ is similarly partitioned, that is,

Σ =
[

σ11 Σ12

Σ21 Σ22

]
, where σ11 is 1 × 1, Σ22 is (p − 1) × (p − 1),

then, the population multiple correlation coefficient is ρ1.(2,3) where

ρ2
1.(2,3) = Σ12Σ

−1
22 Σ21

σ11
.

Thus, if Σ12 = Σ ′
21 = O, ρ1.(2,3) = 0 and conversely since σ11 > 0 and Σ22 > O ⇒

Σ−1
22 > O. The regression coefficient β being equal to the transpose of Σ12Σ

−1
22 , Σ12 =

O also implies that the regression coefficient β = O and conversely. Accordingly, the
hypothesis that the regression coefficient vector β = O is equivalent to hypothesizing
that the population multiple correlation ρ1,(2,...,p) = 0, which also implies the hypothesis
that the two subvectors are independently distributed in the multivariate normal case, or
that the covariance matrix Σ12 = O, the only difference being that the test on regression
coefficients is in the conditional space whereas testing the independence of the subvectors
or whether the population multiple correlation equals zero is carried out in the entire space.
The numerical example included in this section also illustrates the main result presented in
Sect. 6.8.1 in connection with testing whether a population multiple correlation coefficient
is equal to zero.
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6.10.1. A simple linear model

Consider a linear model of the following form where a real scalar variable y is esti-
mated by a linear function of pre-assigned real scalar variables z1, . . . , zq :

yj = βo + β1z1j + · · · + βqzqj + ej , j = 1, . . . , n (i)

where y1, . . . , yn are n observations on y, zi1, zi2, . . . , zin, i = 1, . . . , q, are preassigned
values on z1, . . . , zq , and βo, β1, . . . , βq are unknown parameters. The random compo-
nents ej , j = 1, . . . , n, are the corresponding sum total contributions coming from all
unknown factors. There are two possibilities with respect to this model: βo = 0 or βo �= 0.
If βo = 0, βo is omitted in model (i) and we let yj = xj . If βo �= 0, the model is modified
by taking xj = yj − ȳ where ȳ = 1

n
(y1 + · · · + yn), then becoming

xj = yj − ȳ = β1(z1j − z̄1) + · · · + βq(zqj − z̄q) + εj (ii)

for some error term εj , where z̄i = 1
n
(zi1 + · · · + zin), i = 1, . . . , q. Letting Z′

j =
(z1j , . . . , zqj ) if βo = 0 and Z′

j = (z1j − z̄1, . . . , zqj − z̄q), otherwise, equation (ii) can
be written in vector/matrix notation as follows:

εj = (xj − β1z1j − · · · − βqzqj ) = (xj − β ′Zj), β ′ = (β1, . . . , βq),

n∑

j=1

ε2
j =

n∑

j=1

(xj − β1z1j − · · · − β1qzqj )
2 =

n∑

j=1

(xj − β ′Zj)
2.

Letting

X =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ , ε =
⎡

⎢⎣
ε1
...

εn

⎤

⎥⎦ and Z =

⎡

⎢⎢⎢⎣

z11 . . . z1n

z21 . . . z2n
...

. . .
...

zq1 . . . zqn

⎤

⎥⎥⎥⎦ , (iii)

ε′ = (X′ − β ′Z) ⇒
n∑

j=1

ε2
j = ε′ε = (X′ − β ′Z)(X − Z′β). (iv)

The least squares minimum is thus available by differentiating ε′ε with respect to β, equat-
ing the resulting expression to a null vector and solving, which will produce a single criti-
cal point that corresponds to the minimum as the maximum occurs at +∞:
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∂

∂β

( n∑

j=1

ε2
j

)
= O ⇒

n∑

j=1

xjZ
′
j − β̂ ′

n∑

j=1

ZjZ
′
j

⇒ β̂ =
( n∑

j=1

ZjZ
′
j

)−1( n∑

j=1

xjZ
′
j

)
; (v)

∂

∂β
(ε′ε) = O ⇒ β̂ = (ZZ′)−1ZX, (vi)

that is,

β̂ =
( n∑

j=1

ZjZ
′
j

)−1( n∑

j=1

xjZj

)
. (6.10.4)

Since the zij ’s are preassigned quantities, it can be assumed without any loss of generality
that (ZZ′) is nonsingular, and thereby that (ZZ′)−1 exists, so that the least squares mini-
mum, usually denoted by s2, is available by substituting β̂ for β in ε′ε. Then, at β = β̂,

ε′|
β=β̂

= X′ − X′Z′(ZZ′)−1Z = X′[I − Z′(ZZ′)−1Z] so that

s2 = ε′ε|
β=β̂

= X′[I − Z′(ZZ′)−1Z]X (6.10.5)

where I − Z′(ZZ′)−1Z is idempotent and of rank (n − 1) − q. Observe that if βo �= 0
in (i) and we had proceeded without eliminating βo, then β would have been of order
(k + 1)× 1 and I −Z′(ZZ′)−1Z, of rank n− (q + 1) = n− 1 − q, whereas if βo �= 0 and
we had eliminated βo from the model, then the rank of I − Z′(ZZ′)−1Z would have been
(n− 1)− q, that is, unchanged, since

∑n
j=1(xj − x̄)2 = X′[I − 1

n
JJ ′]X, J ′ = (1, . . . , 1)

and the rank of I − 1
n
JJ ′ = n − 1.

Some distributional assumptions on εj are required in order to test hypotheses on β.
Let εj ∼ N1(0, σ 2), σ 2 > 0, j = 1, . . . , n, be independently distributed. Then xj ∼
N1(β

′Zj, σ
2), j = 1, . . . , n are independently distributed but not identically distributed

as the mean value depends on j . Under the normality assumption for the εj ’s, it can readily
be seen that the least squares estimators of β and σ 2 coincide with the maximum likelihood
estimators. It can also be observed that σ 2 is estimated by s2

n
where n is the sample size.

In this simple linear regression context, the parameter space � = {(β, σ 2)|σ 2 > 0}. Thus,
under the normality assumption, the maximum of the likelihood function L is given by

max
�

L = e− n
2 n

n
2

(2π)
n
2 [s2] n

2
. (vi)
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Under the hypothesis Ho : β = O or β1 = 0 = · · · = βq , the least squares minimum,
usually denoted as s2

o , is X′X and, assuming normality, the maximum of the likelihood
function under Ho is the following:

max
Ho

L = e− n
2 n

n
2

(2π)
n
2 [s2

o ]
n
2
. (vii)

Thus, the λ-criterion is

λ = maxHo
L

max� L
=
[s2

s2
o

] n
2

⇒ u = λ
2
n = X′[I − Z′(ZZ′)−1Z]X

X′X

= X′[I − Z′(ZZ′)−1Z]X
X′[I − Z′(ZZ′)−1Z]X + X′Z′(ZZ′)−1ZX

= 1

1 + u1
(6.10.6)

where

u1 = X′Z′(ZZ′)−1ZX

X′[I − Z′(ZZ′)−1Z]X = s2
o − s2

s2
(viii)

with the matrices Z′(ZZ′)−1Z and I − Z′(ZZ′)−1Z being idempotent, mutually orthog-
onal, and of ranks q and (n − 1) − q, respectively. We can interpret s2

o − s2 as the sum of
squares due to the hypothesis and s2 as the residual part. Under the normality assumption,
s2
o−s2 and s2 are independently distributed in light of independence of quadratic forms that

was discussed in Sect. 3.4.1; moreover, their representations as quadratic forms in idem-

potent matrices of ranks q and (n − 1) − q implies that s2
o−s2

σ 2 ∼ χ2
q and s2

σ 2 ∼ χ2
(n−1)−q .

Accordingly, under the null hypothesis,

u2 = (s2
o − s2)/q

s2/[(n − 1) − q] ∼ Fq, n−1−q, (6.10.7)

that is, an F -statistic having q and n − 1 − q degrees of freedom. Thus, we reject Ho for
small values of λ or equivalently for large values of u2 or large values of Fq, n−1−q . Hence,
the following criterion:

Reject Ho if the observed value of u2 ≥ Fq, n−1−q, α, P r{Fq, n−1−q ≥ Fq, n−1−q, α} = α.

(6.10.8)
A detailed discussion of the real scalar variable case is provided in Mathai and Haubold
(2017).
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6.10.2. Hypotheses on individual parameters

Denoting the expected value of (·) by E[(·)], it follows from (6.10.4) that

E[β̂] = (ZZ′)−1ZE(X) = (ZZ′)−1ZZ′β = β, E[X] = Z′β, and

Cov(β̂) = (ZZ′)−1Z[Cov(X)]Z′(ZZ′)−1 = (ZZ′)−1Z(σ 2I )Z′(ZZ′)−1

= σ 2(ZZ′)−1.

Under the normality assumption on xj , we have β̂ ∼ Nq(β, σ 2(ZZ′)−1). Letting the
(r, r)-th diagonal element of (ZZ′)−1 be brr , then β̂r , the estimator of the r-th component
of the parameter vector β, is distributed as β̂r ∼ N1(βr, σ

2brr), so that

β̂r − βr

σ̂
√

brr

∼ tn−1−q (6.10.9)

where tn−1−q denotes a Student-t distribution having n − 1 − q degrees of freedom and

σ̂ 2 = s2

n−1−q
is an unbiased estimator for σ 2. On writing s2 in terms of ε, it is easily

seen that E[s2] = (n − 1 − q)σ 2 where s2 is the least squares minimum in the entire
parameter space �. Thus, one can test hypotheses on βr and construct confidence intervals
for that parameter by means of the Student-t statistic specified in (6.10.9) or its square
t2
n−1−q which has an F distribution having 1 and n − 1 − q degrees of freedom, that is,

t2
n−1−q ∼ F1,n−1−q .

Example 6.10.2. Let us consider a linear model of the following form:

yj = βo + β1z1j + · · · + βqzqj + ej , j = 1, . . . , n,

where the zij ’s are preassigned numbers of the variable zi . Let us take n = 5 and q = 2,
so that the sample is of size 5 and, excluding βo, the model has two parameters. Let the
observations on y and the preassigned values on the zi’s be the following:

1 = βo + β1(0) + β1(1) + e1

2 = βo + β1(1) + β2(−1) + e2

4 = βo + β1(−1) + β2(2) + e3

6 = βo + β1(2) + β2(−2) + e4

7 = βo + β1(−2) + β2(5) + e5 .
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The averages on y, z1 and z2 are then

ȳ = 1

5
[1 + 2 + 4 + 6 + 7] = 4, z̄1 = 1

5
[0 + 1 + (−1) + 2 + (−2)] = 0 and

z̄2 = 1

5
[1 + (−1) + 2 + (−2) + 5] = 1,

and, in terms of deviations, the model becomes

xj = yj − ȳ = β1(z1j − z̄1) + β2(z2j − z̄2) + εj , εj = ej − ē .

That is, ⎡

⎢⎢⎢⎢⎣

−3
−2

0
2
3

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 0
1 −2

−1 1
2 −3

−2 4

⎤

⎥⎥⎥⎥⎦

[
β1

β2

]
+

⎡

⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

⎤

⎥⎥⎥⎥⎦
⇒ X = Z′β + ε.

When minimizing ε′ε = (X − Z′β)′(X − Z′β), we determined that β̂, the least squares
estimate of β, the least squares minimum s2 and s2

o − s2 = corresponding to the sum of
squares due to β, could be express as

β̂ = (ZZ′)−1ZX, s2
o − s2 = X′Z′(ZZ′)−1ZX,

s2 = X′[I − Z′(ZZ′)−1Z]X and that

Z′(ZZ′)−1Z = [Z′(ZZ′)−1Z]2, I − Z′(ZZ′)−1Z = [I − Z′(ZZ′)−1Z]2,

[I − Z′(ZZ′)−1Z][Z′(ZZ′)−1Z] = O.

Let us evaluate those quantities:

Z =
[

0 1 −1 2 −2
0 −2 1 −3 4

]
, ZZ′ =

[
10 −17

−17 30

]
,

|ZZ′| = 11, Cof(ZZ′) =
[

30 17
17 10

]
, (ZZ′)−1 = 1

11

[
30 17
17 10

]
,

(ZZ′)−1Z = 1

11

[
30 17
17 10

] [
0 1 −1 2 −2
0 −2 1 −3 4

]

= 1

11

[
0 −4 −13 9 8
0 −3 −7 4 6

]
;
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β̂ = (ZZ′)−1ZX = 1

11

[
0 −4 −13 9 8
0 −3 −7 4 6

]

⎡

⎢⎢⎢⎢⎣

−3
−2

0
2
3

⎤

⎥⎥⎥⎥⎦

= 1

11

[
50
32

]
=
[
β̂1

β̂2

]
;

Z′(ZZ′)−1Z = 1

11

⎡

⎢⎢⎢⎢⎣

0 0
1 −2

−1 1
2 −3

−2 4

⎤

⎥⎥⎥⎥⎦

[
0 −4 −13 9 8
0 −3 −7 4 6

]

= 1

11

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
0 2 1 1 −4
0 1 6 −5 −2
0 1 −5 6 −2
0 −4 −2 −2 8

⎤

⎥⎥⎥⎥⎦
.

Then,

X′Z′(ZZ′)−1ZX = 1

11

[−3 −2 0 2 3
]

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
0 2 1 1 −4
0 1 6 −5 −2
0 1 −5 6 −2
0 −4 −2 −2 8

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

−3
−2

0
2
3

⎤

⎥⎥⎥⎥⎦

= 120

11
, X′X = 26,

X′[I − Z′(ZZ′)−1Z]X = 26 − 120

11
= 166

11
, with n = 5 and q = 2.
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The test statistics u1 and u2 and their observed values are the following:

u1 = X′Z′(ZZ′)−1ZX

X′[I − Z′(ZZ′)−1Z]X = s2
o − s2

s2

= 120

166
= 0.72;

u2 = (s2
o − s2)/q

s2/(n − 1 − q)
∼ Fq, n−1−q

= 120/2

166/2
= 0.72.

Letting the significance level be α = 0.05, the required tabulated critical value is
Fq, n−1−q, α = F2, 2, 0.05 = 19. Since 0.72 < 19, the hypothesis Ho : β = O is not
rejected. Thus, we will not proceed to test individual hypotheses on the regression coeffi-
cients β1 and β2. For tests on general linear models, refer for instance to Mathai (1971).

6.11. Problem Involving Two or More Independent Gaussian Populations

Consider k independent p-variate real normal populations Xj ∼ Np(μ(j), Σ), Σ >

O, j = 1, . . . , k, having the same nonsingular covariance matrix Σ but possibly different
mean values. We consider the problem of testing hypotheses on linear functions of the
mean values. Let b = a1μ(1) + · · · + akμ(k) where a1, . . . , ak, are real scalar constants,
and the null hypothesis be Ho : b = bo (given), which means that the aj ’s and μ(j)’s,
j = 1, . . . , k, are all specified. It is also assumed that Σ is known. Suppose that simple
random samples of sizes n1, . . . , nk from these k independent normal populations can be
secured, and let the sample values be Xjq, q = 1, . . . , nj , where Xj1, . . . , Xjnj

are iid as

Np(μ(j), Σ), Σ > O. Let the sample averages be denoted by X̄j = 1
nj

∑nj

q=1 Xjq, j =
1, . . . , k. Consider the test statistic Uk = a1X̄1 + · · · + akX̄k. Since the populations are
independent and Uk is a linear function of independent vector normal variables, Uk is
normally distributed with the mean value b = a1μ(1) +· · ·+akμ(k) and covariance matrix
1
n
Σ , where 1

n
= (

a2
1

n1
+ · · · + a2

k

nk
) and so,

√
n Σ− 1

2 (Uk − b) ∼ Np(O, I). Then, under the
hypothesis Ho : b = bo (given), which is being tested against the alternative H1 : b �= bo,
the test criterion is obtained by proceeding as was done in the single population case. Thus,
the test statistic is z = n(Uk − bo)

′Σ−1(Uk − bo) ∼ χ2
p and the criterion will be to reject

the null hypothesis for large values of the z. Accordingly, the criterion is

Reject Ho : b = bo if the observed value of n(Uk − bo)
′Σ−1(Uk − bo) ≥ χ2

p, α,

with Pr{χ2
p ≥ χ2

p, α} = α. (6.11.1)
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In particular, suppose that we wish to test the hypothesis Ho : δ = μ(1) − μ(2) = δ0, such
as δo = 0 as is often the case, against the natural alternative. In this case, when δo = 0,

the null hypothesis is that the mean value vectors are equal, that is, μ(1) = μ(2), and the
test statistic is z = n(X̄1 − X̄2)

′Σ−1(X̄1 − X̄2) ∼ χ2
p with 1

n
= 1

n1
+ 1

n2
, the test criterion

being

Reject Ho : μ(1) − μ(2) = 0 if the observed value of z ≥ χ2
p, α,

with Pr{χ2
p ≥ χ2

p, α} = α. (6.11.2)

For a numerical example, the reader is referred to Example 6.2.3. One can also determine
the power of the test or the probability of rejecting Ho : δ = μ(1) − μ(2) = δ0,

under an alternative hypothesis, in which case the distribution of z is a noncen-
tral chisquare variable with p degrees of freedom and non-centrality parameter
λ = 1

2
n1n2

n1+n2
(δ − δo)

′Σ−1(δ − δo), δ = μ(1) − μ(2), where n1 and n2 are the sample sizes.
Under the null hypothesis, the non-centrality parameter λ is equal to zero. The power is
given by

Power = Pr{reject Ho|H1} = Pr{χ2
p(λ) ≥ χ2

p, α(λ)}. (6.11.3)

When the population covariance matrices are identical and the common covariance matrix
is unknown, one can also construct a statistic for testing hypotheses on linear functions
of the mean value vectors by making use of steps parallel to those employed in the single
population case, with the resulting criterion being based on Hotelling’s T 2 statistic for
testing Ho : μ(1) = μ(2).

6.11.1. Equal but unknown covariance matrices

Let us consider the same procedure as in Sect. 6.11 to test a hypothesis on a linear
function b = a1μ(1) + · · · + akμ(k) where a1, . . . , ak are known real scalar constants
and μ(j), j = 1, . . . , k, are the population mean values. We wish to test the hypothesis
Ho : b = bo (given) in the sense all the mean values μ(j), j = 1, . . . , k and a1, . . . , ak,

are specified. . Let Uk = a1X̄1 + · · · + akX̄k as previously defined. Then, E[Uk] = b

and Cov(Uk) = (
a2

1
n1

+ · · · + a2
k

nk
)Σ , where (

a2
1

n1
+ · · · + a2

k

nk
) ≡ 1

n
for some symbol n.

The common covariance matrix Σ has the MLE 1
n1+···+nk

(S1 + · · · + Sk) where Sj is the
sample sum of products matrix for the j -th Gaussian population. It has been established
that S = S1 + · · · + Sk has a Wishart distribution with (n1 − 1) + · · · + (nk − 1) =
N − k, N = n1 + · · · + nk, degrees of freedom, that is,

S ∼ Wp(N − k, Σ), Σ > O, N = n1 + · · · + nk. (6.11.4)
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Then, when Σ is unknown, it follows from a derivation parallel to that provided in Sect. 6.3
for the single population case that

w ≡ n(Uk − b)′S−1(Uk − b) ∼ type-2 beta
(p

2
,

N − k − p

2

)
, (6.11.5)

or, w has a real scalar type-2 beta distribution with the parameters (
p
2 ,

N−k−p
2 ). Letting

w = p
N−k−p

F , this F is an F -statistic with p and N − k − p degrees of freedom.

Theorem 6.11.1. Let Uk, n, N, b, S be as defined above. Then w = n(Uk − b)′S−1

(Uk − b) has a real scalar type-2 beta distribution with the parameters (
p
2 ,

N−k−p
2 ).

Letting w = p
N−k−p

F , this F is an F -statistic with p and N − k − p degrees of freedom.

Hence for testing the hypothesis Ho : b = bo (given), the criterion is the following:

Reject Ho if the observed value of F = N − k − p

p
w ≥ Fp N−k−p, α, (6.11.6)

with Pr{Fp, N−k−p ≥ Fp,N−k−p, α} = α. (6.11.7)

Note that by exploiting the connection between type-1 and type-2 real scalar beta random
variables, one can obtain a number of properties on this F -statistic.

This situation has already been covered in Theorem 6.3.4 for the case k = 2.

6.12. Equality of Covariance Matrices in Independent Gaussian Populations

Let Xj ∼ Np(μ(j), Σj ), Σj > O, j = 1, . . . , k, be independently distributed
real p-variate Gaussian populations. Consider simple random samples of sizes n1, . . . , nk

from these k populations, whose sample values, denoted by Xjq, q = 1, . . . , nj , are iid
as Xj1, j = 1, . . . , k. The sample sums of products matrices denoted by S1, . . . , Sk,

respectively, are independently distributed as Wishart matrix random variables with nj −
1, j = 1, . . . , k, degrees of freedoms. The joint density of all the sample values is then
given by

L =
k∏

j=1

Lj, Lj = e− 1
2 tr(Σ−1

j Sj )− nj
2 (X̄j−μ(j))

′Σ−1
j (X̄j−μ(j))

(2π)
nj p

2 |Σj |
nj
2

, (6.12.1)

the MLE’s of μ(j) and Σj being ˆμ(j) = X̄j and Σ̂j = 1
nj

Sj . The maximum of L in the
entire parameter space � is

max
�

L =
k∏

j=1

max
�

Lj =
[∏k

j=1 n

nj p

2
j

]
e−Np

2

(2π)
Np
2
∏k

j=1 |Sj |
nj
2

, N = n1 + · · · + nk. (i)
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Let us test the hypothesis of equality of covariance matrices:

Ho : Σ1 = Σ2 = · · · = Σk = Σ

where Σ is unknown. Under this null hypothesis, the MLE of μ(j) is X̄j and the MLE of
the common Σ is 1

N
(S1 + · · · + Sk) = 1

N
S, N = n1 + · · · + nk, S = S1 + · · · + Sk. Thus,

the maximum of L under Ho is

max
Ho

L = N
Np
2 e−Np

2

(2π)
Np
2
∏k

j=1 |S| nj
2

= N
Np
2 e−Np

2

(2π)
Np
2 |S|N

2

, (ii)

and the λ-criterion is the following:

λ =
N

Np
2

{∏k
j=1 |Sj |

nj
2

}

|S|N
2

{∏k
j=1 n

nj p

2
j

} . (6.12.2)

Let us consider the h-th moment of λ for an arbitrary h. Letting c = N
Np
2{

∏k
j=1 n

nj p

2
j

} ,

λh = ch

{∏k
j=1 |Sj |

nj h

2

}

|S|Nh
2

= ch
{ k∏

j=1

|Sj |
nj h

2

}
|S|−Nh

2 . (6.12.3)

The factor causing a difficulty, namely |S|−Nh
2 , will be replaced by an equivalent integral.

Letting Y > O be a real p × p positive definite matrix, we have the identity

|S|−Nh
2 = 1

Γp(Nh
2 )

∫

Y>O

|Y |Nh
2 −p+1

2 e−tr(YS)dY, �(
Nh

2
) >

p − 1

2
, S > O, (6.12.4)

where
tr(YS) = tr(YS1) + · · · + tr(YSk). (iii)

Thus, once (6.12.4) is substituted in (6.12.3), λh splits into products involving Sj , j =
1, . . . , k; this enables one to integrate out over the densities of Sj , which are Wishart
densities with mj = nj − 1 degrees of freedom. Noting that the exponent involving Sj is
−1

2 tr(Σ−1
j Sj ) − tr(YSj ) = −1

2 tr[Sj (Σ
−1
j + 2Y )], the integral over the Wishart density of

Sj gives the following:
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k∏

j=1

1

2
mj p

2 Γp(
mj

2 )|Σj |
mj
2

∫

Sj>O

|Sj |
mj
2 + nj h

2 −p+1
2 e− 1

2 tr[Sj (Σ
−1+2Y )]dSj

=
k∏

j=1

2
nj hp

2 Γp(
mj

2 + njh

2 )|Σ−1
j + 2Y |−(

mj
2 + nj h

2 )

Γp(
mj

2 )|Σj |
mj
2

= 2
Nph

2

k∏

j=1

|Σj |
nj h

2 |I + 2ΣjY |−(
mj
2 + nj h

2 )Γp(
mj

2 + njh

2 )

Γp(
mj

2 )
. (iv)

Thus, on substituting (iv) in E[λh], we have

E[λh] = ch2
Nph

2

Γp(Nh
2 )

∫

Y>O

|Y |Nh
2 −p+1

2

×
{ k∏

j=1

|Σj |
nj h

2 |I + 2ΣjY |−(
mj
2 + nj h

2 )Γp(
mj

2 + njh

2 )

Γp(
mj

2 )

}
dY, (6.12.5)

which is the non-null h-th moment of λ. The h-th null moment is available when Σ1 =
· · · = Σk = Σ . In the null case,

k∏

j=1

|I + 2YΣj |−(
mj
2 + nj h

2 )|Σj |
nj h

2
Γp(

mj

2 + njh

2 )

Γp(
mj

2 )

= |Σ |Nh
2 |I + 2YΣ |−(N−k

2 +Nh
2 )
{ k∏

j=1

Γp(
mj

2 + njh

2 )

Γp(
mj

2 )

}
. (v)

Then, substituting (v) in (6.12.5) and integrating out over Y produces

E[λh|Ho] = ch
Γp(N−k

2 )

Γp(N−k
2 + Nh

2 )

{ k∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
. (6.12.6)

Observe that when h = 0, E[λh|Ho] = 1. For h = s − 1 where s is a complex parameter,
we have the Mellin transform of the density of λ, denoted by f (λ), which can be expressed
as follows in terms of an H-function:

f (λ) = 1

c

Γp(N−k
2 )

{∏k
j=1 Γp(

nj−1
2 )

}H
k,0
1,k

[
λ

c

∣∣∣
(− k

2 , N
2 )

(− 1
2 ,

nj
2 ), j=1,...,k

]
, 0 < λ < 1, (6.12.7)
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and zero elsewhere, where the H-function is defined in Sect. 5.4.3, more details being
available from Mathai and Saxena (1978) and Mathai et al. (2010). Since the coefficients
of h

2 in the gammas, that is, n1, . . . , nk and N , are all positive integers, one can expand
all gammas by using the multiplication formula for gamma functions, and then, f (λ) can
be expressed in terms of a G-function as well. It may be noted from (6.12.5) that for
obtaining the non-null moments, and thereby the non-null density, one has to integrate out
Y in (6.12.5). This has not yet been worked out for a general k. For k = 2, one can obtain
a series form in terms of zonal polynomials for the integral in (6.12.5). The rather intricate
derivations are omitted.

6.12.1. Asymptotic behavior

We now investigate the asymptotic behavior of −2 ln λ as nj → ∞, j = 1, . . . , k,
N = n1 + · · · + nk. On expanding the real matrix-variate gamma functions in the the
gamma ratio involving h in (6.12.6), we have

∏k
j=1 Γp(

nj

2 (1 + h) − 1
2)

Γp(N
2 (1 + h) − k

2)
→

∏k
j=1

{∏p

i=1 Γ (
nj

2 (1 + h) − 1
2 − i−1

2 )
}

∏p

i=1 Γ (N
2 (1 + h) − k

2 − i−1
2 )

, (i)

excluding the factor containing π . Letting nj

2 (1+h) → ∞, j = 1, . . . , k, and N
2 (1+h) →

∞ as nj → ∞, j = 1, . . . , k, with N → ∞, we now express all the gamma functions in
(i) in terms of Sterling’s asymptotic formula. For the numerator, we have

k∏

j=1

{ p∏

i=1

Γ
(nj

2
(1 + h) − 1

2
− i − 1

2

)}

→
k∏

j=1

{ p∏

i=1

√
(2π)

[nj

2
(1 + h)

] nj
2 (1+h)− 1

2 − i
2
e− nj

2 (1+h)
}

=
k∏

j=1

(
√

2π)p
[nj

2
(1 + h)

] nj
2 (1+h)p−p

2 −p(p+1)
4

e− nj
2 (1+h)p

= (
√

2π)kp
[ k∏

j=1

(nj

2

) nj
2 (1+h)p−p

2 −p(p+1)
4
]
e−N

2 (1+h)p

× (1 + h)
N
2 (1+h)− kp

2 −k
p(p+1)

4 , (ii)
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and the denominator in (i) has the following asymptotic representation:

p∏

i=1

Γ
(N

2
(1 + h) − k

2
− i − 1

2

)
→

p∏

i=1

(
√

2π)
[N

2
(1 + h)

]N
2 (1+h)− k

2 − i
2
e−N

2 (1+h)

= (
√

2π)p
[N

2

]N
2 (1+h)p− kp

2 −p(p+1)
4

e−N
2 (1+h)p

× (1 + h)
N
2 (1+h)p− kp

2 −p(p+1)
4 . (iii)

Now, expanding the gammas in the constant part Γp(N−k
2 )/

∏k
j=1 Γp(

nj−1
2 ) and then tak-

ing care of ch, we see that the factors containing π , the nj ’s and N disappear leaving

(1 + h)−(k−1)
p(p+1)

4 .

Hence −2 ln λ → χ2
(k−1)

p(p+1)
2

and hence we have the following result:

Theorem 6.12.1. Consider the λ-criterion in (6.12.2) or the null density in (6.12.7).
When nj → ∞, j = 1, . . . , k, the asymptotic null density of −2 ln λ is a real scalar
chisquare with (k − 1)

p(p+1)
2 degrees of freedom.

Observe that the number of parameters restricted by the null hypothesis Ho : Σ1 =
· · · = Σk = Σ where Σ is unknown, is (k − 1) times the number of distinct parameters
in Σ , which is p(p+1)

2 , which coincides with the number of degrees of freedom of the
asymptotic chisquare distribution under Ho.

6.13. Testing the Hypothesis that k Independent p-variate Real Gaussian Popula-
tions are Identical and Multivariate Analysis of Variance

Consider k independent p-variate real Gaussian populations Xij ∼ Np(μ(i), Σi),

Σi > O, i = 1, . . . , k, and j = 1, . . . , ni, where the p × 1 vector Xij is the j -th
sample value belonging to the i-th population, these samples (iid variables) being of sizes
n1, . . . , nk from these k populations. The joint density of all the sample values, denoted
by L, can be expressed as follows:

L =
k∏

i=1

Li, Li =
ni∏

j=1

e− 1
2

∑ni
j=1(Xij−μ(i))′Σ−1

i (Xij−μ(i))

(2π)
nip

2 |Σi |
ni
2

= e− 1
2 tr(Σ−1

i Si)− ni
2 (X̄i−μ(i))′Σ−1

i (X̄i−μ(i))

(2π)
ni
2 |Σi |

ni
2
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where X̄i = 1
ni

(Xi1 +· · ·+Xini
), i = 1, . . . , k, and E[Xij ] = μ(i), j = 1, . . . , ni . Then,

letting N = n1 + · · · + nk,

max
�

L =
k∏

i=1

max
�

Li =
k∏

i=1

n
nip

2
i e− nip

2

(2π)
nip

2 |Si |
ni
2

= {∏k
i=1 n

nip

2
i }e−Np

2

(2π)
Np
2 {∏k

i=1 |Si |
ni
2 }

.

Consider the hypothesis Ho : μ(1) = · · · = μ(k) = μ, Σ1 = · · · = Σk = Σ, where μ

and Σ are unknown. This corresponds to the hypothesis of equality of these k populations.
Under Ho, the maximum likelihood estimator (MLE) of μ, denoted by μ̂, is given by
μ̂ = 1

N
[n1X̄1 + · · · + nkX̄k] where N and X̄i are as defined above. As for the common Σ ,

its MLE is

Σ̂ = 1

N

k∑

i=1

ni∑

j=1

(Xij − μ̂)(Xij − μ̂)′

= 1

N
[S1 + · · · + Sk +

k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′]

where Si is the sample sum of products matrix for the i-th sample, observing that
ni∑

j=1

(Xij − μ̂)(Xij − μ̂)′ =
ni∑

j=1

(Xij − X̄i + X̄i − μ̂)(Xij − X̄i + X̄i − μ̂)′

=
ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
′ +

ni∑

j=1

(X̄i − μ̂)(X̄i − μ̂)′

= Si + ni(X̄i − μ̂)(X̄i − μ̂)′.

Hence the maximum of the likelihood function under Ho is the following:

max
Ho

L = e−Np
2 N

Np
2

(2π)
Np
2 |S +∑k

i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N
2

where S = S1 + · · · + Sk. Therefore the λ-criterion is given by

λ = maxHo

max�

= {∏k
i=1 |Si |

ni
2 }N Np

2

{∏k
i=1 n

nip

2
i }|S +∑k

i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N
2

. (6.13.1)
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6.13.1. Conditional and marginal hypotheses

For convenience, we may split λ into the product λ1λ2 where λ1 is the λ-criterion for
the conditional hypothesis Ho1 : μ(1) = · · · = μ(k) = μ given that Σ1 = · · · = Σk = Σ

and λ2 is the λ-criterion for the marginal hypothesis Ho2 : Σ1 = · · · = Σk = Σ where
μ and Σ are unknown. The conditional hypothesis Ho1 is actually the null hypothesis
usually being made when establishing the multivariate analysis of variance (MANOVA)
procedure. We will only consider Ho1 since the marginal hypothesis Ho2 has already been
discussed in Sect. 6.12. When the Σi’s are assumed to be equal, the common Σ is esti-
mated by the MLE 1

N
(S1 + · · · + Sk) where Si is the sample sum of products matrix in

the i-th population. The common μ is estimated by 1
N

(n1X̄1 + · · · + nkX̄k). Accordingly,
the λ-criterion for this conditional hypothesis is the following:

λ1 = |S|N
2

|S +∑k
i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N

2

(6.13.2)

where S = S1 + · · · + Sk, μ̂ = 1
N

(n1X̄1 + · · · + nkX̄k), N = n1 + · · · + nk. Note
that the Si’s are independently Wishart distributed with ni − 1 degrees of freedom, that is,

Si
ind∼ Wp(ni − 1, Σ), i = 1, . . . , k, and hence S ∼ Wp(N − k, Σ). Let

Q =
k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′.

Since Q only contains sample averages and the sample averages and the sample sum of
products matrices are independently distributed, Q and S are independently distributed.
Moreover, since we can write X̄i − μ̂ as (X̄i −μ)− (μ̂ −μ), where μ is the common true
mean value vector, without any loss of generality we can deem the X̄i’s to be independently

Np(O, 1
ni

Σ) distributed, i = 1, . . . , k, and letting Yi = √
niX̄i , one has Yi

iid∼ Np(O, Σ)

under the hypothesis Ho1. Now, observe that

X̄i − μ̂ = X̄i − 1

N
(n1X̄1 + · · · + nkX̄k)

= −n1

N
X̄1 − · · · − ni−1

N
X̄i−1 +

(
1 − ni

N

)
X̄i − ni+1

N
X̄i+1 − · · · − nk

N
X̄k , (i)
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Q =
k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′

=
k∑

i=1

niX̄iX̄
′
i − Nμ̂μ̂′ (ii)

=
k∑

i=1

YiY
′
i − 1

N
(
√

n1Y1 + · · · + √
nkYk)(

√
n1Y1 + · · · + √

nkYk)
′,

where
√

n1Y1 + · · · + √
nkYk = (Y1, . . . , Yk)DJ with J being the k × 1 vector of unities,

J ′ = (1, . . . , 1), and D = diag(
√

n1, . . . ,
√

nk). Thus, we can express Q as follows:

Q = (Y1, . . . , Yk)[I − 1

N
DJJ ′D](Y1, . . . , Yk)

′. (iii)

Let B = 1
N

DJJ ′D and A = I − B. Then, observing that J ′D2J = N , both B and
A are idempotent matrices, where B is of rank 1 since the trace of B or equivalently
the trace of 1

N
J ′D2J is equal to one, so that the trace of A which is also its rank, is

k − 1. Then, there exists an orthonormal matrix P , PP ′ = Ik, P ′P = Ik, such that

A = P ′
[
Ik−1 O

O ′ 0

]
P where O is a (k − 1)× 1 null vector, O ′ being its transpose. Letting

(U1, . . . , Uk) = (Y1, . . . , Yk)P
′, the Ui’s are still independently Np(O, Σ) distributed

under Ho1, so that

Q = (U1, . . . , Uk)

[
Ik−1 O

O ′ 0

]
(U1, . . . , Uk)

′ = (U1, . . . , Uk−1, O)(U1, . . . , Uk−1, O)′

=
k−1∑

i=1

UiU
′
i ∼ Wp(k − 1, Σ). (iv)

Thus, S+∑k
i=1 ni(X̄i −μ̂)(X̄i −μ̂)′ ∼ Wp(N −1, Σ), which clearly is not independently

distributed of S, referring to the ratio in (6.13.2).

6.13.2. Arbitrary moments of λ1

Given (6.13.2), we have

λ1 = |S|N
2

|S + Q|N
2

⇒ λh
1 = |S|Nh

2 |S + Q|−Nh
2 (v)
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where |S + Q|−Nh
2 will be replaced by the equivalent integral

|S + Q|−Nh
2 = 1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2 e−tr((S+Q)T )dT (vi)

with the p × p matrix T > O. Hence, the h-th moment of λ1, for arbitrary h, is the
following expected value:

E[λh
1|Ho1] = E{|S|Nh

2 |S + Q|−Nh
2 }. (vii)

We now evaluate (vii) by integrating out over the Wishart density of S and over the joint
multinormal density for U1, . . . , Uk−1:

E[λh
1|Ho1] = 1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2

×
∫
S>O

|S|Nh
2 +N−k

2 −p+1
2 e− 1

2 tr(Σ−1S)−tr(ST )

2
(N−k)p

2 Γp(N−k
2 )|Σ |N−k

2

dS

×
∫

U1,.,..,Uk−1

e− 1
2

∑k−1
i=1 U ′

iΣ
−1Ui−∑k−1

i=1 tr(T UiU
′
i )

(2π)
(k−1)p

2 |Σ | k−1
2

dU1 ∧ . . . ∧ dUk−1 ∧ dT .

The integral over S is evaluated as follows:

∫
S>O

|S|Nh
2 +N−k

2 −p+1
2 e− 1

2 tr(Σ−1(S+2T S))

2
(N−k)p

2 Γp(N−k
2 )|Σ |N−k

2

dS

= 2
Nhp

2 |Σ |Nh
2

Γp(N−k
2 + Nh

2 )

Γp(N−k
2 )

|I + 2ΣT |−(Nh
2 +N−k

2 ) (viii)

for I +2ΣT > O, �(N−k
2 + Nh

2 ) >
p−1

2 . The integral over U1, . . . , Uk−1 is the following,
denoted by δ:

δ =
∫

U1,...,Uk−1

e− 1
2

∑k−1
i=1 U ′

iΣ
−1Ui−tr(

∑k−1
i=1 T UiU

′
i )

(2π)
(k−1)p

2 |Σ | k−1
2

dU1 ∧ . . . ∧ dUk−1

where

tr
( k−1∑

i=1

T UiU
′
i

)
= tr

( k−1∑

i=1

U ′
i T Ui

)
=

k−1∑

i=1

U ′
i T Ui
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since U ′
i T Ui is scalar; thus, the exponent becomes −1

2

∑k−1
i=1 U ′

i [Σ−1 + 2T ]Ui and the
integral simplifies to

δ = |I + 2ΣT |− k−1
2 , I + 2ΣT > O. (ix)

Now the integral over T is the following:

1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2 |I + 2ΣT |−(Nh
2 +N−k

2 + k−1
2 )

= Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

2−Nhp
2 |Σ |−Nh

2 , �(
N − k

2
+ Nh

2
) >

p − 1

2
. (x)

Therefore,

E[λh
1|Ho1] = Γp(N−k

2 + Nh
2 )

Γp(N−k
2 )

Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

(6.13.3)

for �(N−k
2 + Nh

2 ) >
p−1

2 .

6.13.3. The asymptotic distribution of −2 ln λ1

An asymptotic distribution of −2 ln λ1 as N → ∞ can be derived from (6.13.3). First,
on expanding the real matrix-variate gamma functions in (6.13.3), we obtain the following
representation of the h-th null moment of λ1:

E[λh
1|Ho1] =

{ p∏

j=1

Γ (N−k
2 + k−1

2 − j−1
2 )

Γ (N−k
2 − j−1

2 )

}

×
{ p∏

j=1

Γ (N
2 (1 + h) − k

2 − j−1
2 )

Γ (N
2 (1 + h) − k

2 + k−1
2 − j−1

2 )

}
. (xi)

Let us now express all the gamma functions in terms of Sterling’s asymptotic formula by
taking N

2 → ∞ in the constant part and N
2 (1 + h) → ∞ in the part containing h. Then,

Γ (N
2 (1 + h) − k

2 − j−1
2 )

Γ (N
2 (1 + h) − k

2 + k−1
2 − j−1

2 )
→ (2π)

1
2

(2π)
1
2

[N
2 (1 + h)]N

2 (1+h)− k
2 − j

2

[N
2 (1 + h)]N

2 (1+h)− k
2 + k−1

2 − j
2

e
N
2 (1+h)

e
N
2 (1+h)

= 1

[N
2 (1 + h)] k−1

2

, (xii)

Γ (N
2 − k

2 + k−1
2 − j−1

2 )

Γ (N
2 − k

2 − j−1
2 )

→
(N

2

) (k−1)
2

. (xiii)
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Hence,

E[λh
1|Ho1] → (1 + h)−

(k−1)p
2 as N → ∞. (6.13.4)

Thus, the following result:

Theorem 6.13.1. For the test statistic λ1 given in (6.13.2), −2 ln λ1 → χ2
(k−1)p, that is,

−2 ln λ1 tends to a real scalar chisquare variable having (k − 1)p degrees of freedom as
N → ∞ with N = n1 + · · · + nk, nj being the sample size of the j -th p-variate real
Gaussian population.

Under the marginal hypothesis Ho2 : Σ1 = · · · = Σk = Σ where Σ is unknown,
the λ-criterion is denoted by λ2, and its h-th moment, which is available from (6.12.6) of
Sect. 6.12, is given by

E[λh
2|Ho2] = ch

Γp(N−k
2 )

Γp(N−k
2 + Nh

2 )

{ p∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
(6.13.5)

for �(
nj−1

2 + njh

2 ) >
p−1

2 , j = 1, . . . , k. Hence the h-th null moment of the λ criterion
for testing the hypothesis Ho of equality of the k independent p-variate real Gaussian
populations is the following:

E[λh|Ho] = E[λh
1|Ho1]E[λh

2|Ho2]

= Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

ch
{ p∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
(6.13.6)

for �(
nj−1

2 + njh

2 ) >
p−1

2 , j = 1, . . . , k, N = n1 + · · · + nk, where c is the constant
associated with the h-th moment of λ2. Combining Theorems 6.13.1 and Theorem 6.12.1,
the asymptotic distribution of −2 ln λ of (6.13.6) is a real scalar chisquare with (k −1)p+
(k − 1)

p(p+1)
2 degrees of freedom. Thus, the following result:

Theorem 6.13.2. For the λ-criterion for testing the hypothesis of equality of k indepen-
dent p-variate real Gaussian populations, −2 ln λ → χ2

ν , ν = (k − 1)p + (k − 1)
p(p+1)

2
as nj → ∞, j = 1, . . . , k.

Note 6.13.1. Observe that for the conditional hypothesis Ho1 in (6.13.2), the degrees of
freedom of the asymptotic chisquare distribution of −2 ln λ1 is (k − 1)p, which is also
the number of parameters restricted by the hypothesis Ho1. For the hypothesis Ho2, the
corresponding degrees of freedom of the asymptotic chisquare distribution of −2 ln λ2 is
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(k−1)
p(p+1)

2 , which as well is the number of parameters restricted by the hypothesis Ho2.
The asymptotic chisquare distribution of −2 ln λ for the hypothesis Ho of equality of k

independent p-variate Gaussian populations the degrees of freedom is the sum of these
two quantities, that is, (k − 1)p + (k − 1)

p(p+1)
2 = p(k − 1)

(p+3)
2 , which also coincides

with the number of parameters restricted under the hypothesis Ho.

Exercises

6.1. Derive the λ-criteria for the following tests in a real univariate Gaussian population
N1(μ, σ 2), assuming that a simple random sample of size n, namely x1, . . . , xn, which
are iid as N1(μ, σ 2), is available: (1): μ = μo (given), σ 2 is known; (2): μ = μo, σ 2

unknown; (3): σ 2 = σ 2
o (given), also you may refer to Mathai and Haubold (2017).

In all the following problems, it is assumed that a simple random sample of size n is
available. The alternative hypotheses are the natural alternatives.

6.2. Repeat Exercise 6.1 for the corresponding complex Gaussian.

6.3. Construct the λ-criteria in the complex case for the tests discussed in Sects. 6.2–6.4.

6.4. In the real p-variate Gaussian case, consider the hypotheses (1): Σ is diagonal or
the individual components are independently distributed; (2): The diagonal elements are
equal, given that Σ is diagonal (which is a conditional test). Construct the λ-criterion in
each case.

6.5. Repeat Exercise 6.4 for the complex Gaussian case.

6.6. Let the population be real p-variate Gaussian Np(μ, Σ), Σ = (σij ) > O, μ′ =
(μ1, . . . , μp). Consider the following tests and compute the λ-criteria: (1): σ11 = · · · =
σpp = σ 2, σij = ν for all i and j , i �= j . That is, all the variances are equal and all the
covariances are equal; (2): In addition to (1), μ1 = μ2 = · · · = μ or all the mean values
are equal. Construct the λ-criterion in each case. The first one is known as Lvc criterion
and the second one is known Lmvc criterion. Repeat the same exercise for the complex
case. Some distributional aspects are examined in Mathai (1970b) and numerical tables
are available in Mathai and Katiyar (1979b).

6.7. Let the population be real p-variate Gaussian Np(μ, Σ), Σ > O. Consider the
hypothesis (1):

Σ =

⎡

⎢⎢⎢⎣

a b b · · · b

b a b · · · b
...

...
...

. . .
...

b b b · · · a

⎤

⎥⎥⎥⎦ , a �= 0, b �= 0, a �= b.
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(2):

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 =

⎡

⎢⎢⎢⎣

a1 b1 · · · b1

b1 a1 · · · b1
...

...
. . .

...

b1 b1 · · · a1

⎤

⎥⎥⎥⎦ , Σ22 =

⎡

⎢⎢⎢⎣

a2 b2 · · · b2

b2 a2 · · · b2
...

...
. . .

...

b2 b2 · · · a2

⎤

⎥⎥⎥⎦

where a1 �= 0, a2 �= 0, b1 �= 0, b2 �= 0, a1 �= b1, a2 �= b2, Σ12 = Σ ′
21 and all the

elements in Σ12 and Σ21 are each equal to c �= 0. Construct the λ-criterion in each case.
(These are hypotheses on patterned matrices).

6.8. Repeat Exercise 6.7 for the complex case.

6.9. Consider k independent real p-variate Gaussian populations with different parame-
ters, distributed as Np(Mj, Σj), Σj > O, M ′

j = (μ1j , . . . , μpj ), j = 1, . . . , k. Con-
struct the λ-criterion for testing the hypothesis Σ1 = · · · = Σk or the covariance matrices
are equal. Assume that simple random samples of sizes n1, . . . , nk are available from these
k populations.

6.10. Repeat Exercise 6.9 for the complex case.

6.11. For the second part of Exercise 6.7, which is also known as Wilks’ Lmvc criterion,
show that if u = λ

2
n where λ is the likelihood ratio criterion and n is the sample size, then

u = |S|
[s + (p − 1)s1][s − s1 + n

p−1

∑p

j=1(x̄j − x̄)2] (i)

where S = (sij ) is the sample sum of products matrix, s = 1
p

∑p

i=1 sii, s1 =
1

p(p−1)

∑p

i �=j=1 sij , x̄ = 1
p

∑p

i=1 x̄i , x̄i = 1
n

∑n
k=1 xik. For the statistic u in (i), show

that the h-th null moment or the h-th moment when the null hypothesis is true, is given by
the following:

E[uh|Ho] =
p−2∏

j=0

Γ (n−1
2 + h − j

2 )

Γ (n−1
2 − j

2 )

Γ (n+1
2 + j

p−1)

Γ (n+1
2 + h + j

p−1)
. (ii)

Write down the conditions for the existence of the moment in (ii). [For the null and non-
null distributions of Wilks’ Lmvc criterion, see Mathai (1978).]
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6.12. Let the (p + q) × 1 vector X have a (p + q)-variate nonsingular real Gaussian
distribution, X ∼ Np+q(μ, Σ), Σ > O. Let

Σ =
[
Σ1 Σ2

Σ ′
2 Σ3

]

where Σ1 is p × p with all its diagonal elements equal to σaa and all other elements equal
to σaa′ , Σ2 has all elements equal to σab, Σ3 has all diagonal elements equal to σbb and all
other elements equal to σbb′ where σaa, σaa′, σbb, σbb′ are unknown. Then, Σ is known as
bipolar. Let λ be the likelihood ratio criterion for testing the hypothesis that Σ is bipolar.
Then show that the h-th null moment is the following:

E[λh|Ho] = [(p − 1)p−1(q − 1)q−1] Γ [ (q−1)(n−1)
2 ]Γ [ (p−1)(n−1)

2 ]
Γ [(p − 1)(h + n−1

2 )]Γ [(q − 1)(h + n−1
2 )]

×
p+q−3∏

j=0

Γ [h + n−3
2 − j

2 ]
Γ [n−3

2 − j
2 ]

where n is the sample size. Write down the conditions for the existence of this h-th null
moment.

6.13. Let X be m × n real matrix having the matrix-variate Gaussian density

f (X) = 1

|2πΣ | n
2

e− 1
2 tr[Σ−1(X−M)(X−M)′], Σ > O.

Letting S = XX′, S is a non-central Wishart matrix. Derive the density of S and show that
this density, denoted by fs(S), is the following:

fs(S) = 1

Γm(n
2 )|2Σ | n

2
|S| n

2 −m+1
2 e−tr(�)− 1

2 tr(Σ−1S)

× 0F1( ; n

2
; 1

2
Σ−1S)

where � = 1
2MM ′Σ−1 is the non-centrality parameter and 0F1 is a Bessel function of

matrix argument.

6.14. Show that the h-th moment of the determinant of S, the non-central Wishart matrix
specified in Exercise 6.13, is given by

E[|S|h] = Γm(h + n
2 )

Γ (n
2 )|2Σ |h e−tr(�)

1F1(h + n

2
; n

2
;�)
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where 1F1 is a hypergeometric function of matrix argument and � is the non-centrality
parameter defined in Exercise 6.13.

6.15. Letting v = λ
2
n in Eq. (6.3.10), show that, under the null hypothesis Ho, v is

distributed as a real scalar type-1 beta with the parameters (n−1
2 , 1

2) and that nA′X̄X̄′A
A′SA

is
real scalar type-2 beta distributed with the parameters (1

2 , n−1
2 ).

6.16. Show that for an arbitrary h, the h-th null moment of the test statistic λ specified in
Eq. (6.3.10) is

E[λh|Ho] = Γ (n−1
2 + nh

2 )

Γ (n−1
2 )

Γ (n
2 )

Γ (n
2 + nh

2 )
, �(h) > −n − 1

n
.
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