
Chapter 5
Matrix-Variate Gamma and Beta Distributions

5.1. Introduction

The notations introduced in the preceding chapters will still be followed in this one.
Lower-case letters such as x, y will be utilized to represent real scalar variables, whether
mathematical or random. Capital letters such as X, Y will be used to denote vector/matrix
random or mathematical variables. A tilde placed on top of a letter will indicate that the
variables are in the complex domain. However, the tilde will be omitted in the case of con-
stant matrices such as A, B. The determinant of a square matrix A will be denoted as |A|
or det(A) and, in the complex domain, the absolute value or modulus of the determinant of
B will be denoted as |det(B)|. Square matrices appearing in this chapter will be assumed
to be of dimension p × p unless otherwise specified.

We will first define the real matrix-variate gamma function, gamma integral and
gamma density, wherefrom their counterparts in the complex domain will be developed. A
particular case of the real matrix-variate gamma density known as the Wishart density is
widely utilized in multivariate statistical analysis. Actually, the formulation of this distri-
bution in 1928 constituted a significant advance in the early days of the discipline. A real
matrix-variate gamma function, denoted by Γp(α), will be defined in terms of a matrix-
variate integral over a real positive definite matrix X > O. This integral representation
of Γp(α) will be explicitly evaluated with the help of the transformation of a real positive
definite matrix in terms of a lower triangular matrix having positive diagonal elements in
the form X = T T ′ where T = (tij ) is a lower triangular matrix with positive diagonal
elements, that is, tij = 0, i < j and tjj > 0, j = 1, . . . , p. When the diagonal elements
are positive, it can be shown that the transformation X = T T ′ is unique. Its associated
Jacobian is provided in Theorem 1.6.7. This result is now restated for ready reference: For
a p × p real positive definite matrix X = (xij ) > O,
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X = T T ′ ⇒ dX = 2p
{ p∏

j=1

t
p+1−j

jj

}
dT (5.1.1)

where T = (tij ), tij = 0, i < j and tjj > 0, j = 1, . . . , p. Consider the following
integral representation of Γp(α) where the integral is over a real positive definite matrix X

and the integrand is a real-valued scalar function of X:

Γp(α) =
∫

X>O

|X|α−p+1
2 e−tr(X)dX. (5.1.2)

Under the transformation in (5.1.1),

|X|α−p+1
2 dX = { p∏

j=1

(t2jj )
α−p+1

2
}
2p
{ p∏

j=1

t
p+1−j

jj

}
dT

= 2p
{ p∏

j=1

(t2jj )
α− j

2
}
dT .

Observe that tr(X) = tr(T T ′) = the sum of the squares of all the elements in T , which is
∑p

j=1 t2jj +∑
i>j t2ij . By letting t2jj = yj ⇒ dtjj = 1

2y
1
2−1
j dyj , noting that tjj > 0, the

integral over tjj gives

2
∫ ∞

0
(t2jj )

α− j
2 e−t2jj dtjj = Γ

(
α − j − 1

2

)
, �(α − j − 1

2

)
> 0, j = 1, . . . , p,

the final condition being �(α) >
p−1
2 . Thus, we have the gamma product Γ (α)Γ (α −

1
2) · · · Γ (α − p−1

2 ). Now for i > j , the integral over tij gives

∏

i>j

∫ ∞

−∞
e−t2ijdtij =

∏

i>j

√
π = π

p(p−1)
4 .

Therefore

Γp(α) = π
p(p−1)

4 Γ (α)Γ
(
α − 1

2

) · · · Γ (α − p − 1

2

)
, �(α) >

p − 1

2
,

=
∫

X>O

|X|α−p+1
2 e−tr(X)dX, �(α) >

p − 1

2
. (5.1.3)

For example,

Γ2(α) = π
(2)(1)
4 Γ (α)Γ

(
α − 1

2

) = π
1
2Γ (α)Γ

(
α − 1

2

)
, �(α) >

1

2
.
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This Γp(α) is known by different names in the literature. The first author calls it the real
matrix-variate gamma function because of its association with a real matrix-variate gamma
integral.

5.1a. The Complex Matrix-variate Gamma

In the complex case, consider a p×p Hermitian positive definite matrix X̃ = X̃∗ > O,
where X̃∗ denotes the conjugate transpose of X̃. Let T̃ = (t̃ij ) be a lower triangular matrix
with the diagonal elements being real and positive. In this case, it can be shown that the
transformation X̃ = T̃ T̃ ∗ is one-to-one. Then, as stated in Theorem 1.6a.7, the Jacobian is

dX̃ = 2p
{ p∏

j=1

t
2(p−j)+1
jj

}
d T̃ . (5.1a.1)

With the help of (5.1a.1), we can evaluate the following integral over p × p Hermitian
positive definite matrices where the integrand is a real-valued scalar function of X̃. We
will denote the integral by Γ̃p(α), that is,

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃. (5.1a.2)

Let us evaluate the integral in (5.1a.2) by making use of (5.1a.1). Parallel to the real case,
we have

|det(X̃)|α−pdX̃ = { p∏

i=1

(t2jj )
α−p

}
2p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃

= { p∏

j=1

2(t2jj )
α−j+ 1

2
}
dT̃ .

As well,
e−tr(X̃) = e−∑p

j=1 t2jj−
∑

i>j |t̃ij |2 .
Since tjj is real and positive, the integral over tjj gives the following:

2
∫ ∞

0
(t2jj )

α−j+ 1
2 e−t2jjdtjj = Γ (α − (j − 1)), �(α − (j − 1)) > 0, j = 1, . . . , p,

the final condition being �(α) > p − 1. Note that the absolute value of t̃ij , namely, |t̃ij |
is such that |t̃ij |2 = t2ij1 + t2ij2 where t̃ij = tij1 + itij2 with tij1, tij2 real and i = √

(−1).
Thus,

∏

i>j

∫ ∞

−∞

∫ ∞

−∞
e−(t2ij1+t2ij2)dtij1 ∧ dtij2 =

∏

i>j

π = π
p(p−1)

2 .



292 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Then

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe− tr(X̃)dX̃, �(α) >
p − 1

2
, (5.1a.3)

= π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − (p − 1)), �(α) > p − 1.

We will refer to Γ̃p(α) as the complex matrix-variate gamma because of its association
with a complex matrix-variate gamma integral. As an example, consider

Γ̃2(α) = π
(2)(1)
2 Γ (α)Γ (α − 1) = πΓ (α)Γ (α − 1), �(α) > 1.

5.2. The Real Matrix-variate Gamma Density

In view of (5.1.3), we can define a real matrix-variate gamma density with shape pa-
rameter α as follows, where X is p × p real positive definite matrix:

f1(X) =
{

1
Γp(α)

|X|α−p+1
2 e−tr(X), X > O, �(α) >

p−1
2

0, elsewhere.
(5.2.1)

Example 5.2.1. Let

X =
[
x11 x12
x12 x22

]
, X̃ =

[
x1 x2 + iy2

x2 − iy2 x3

]
, X = X′ > O, X̃ = X̃∗ > O,

where x11, x12, x22, x1, x2, y2, x3 are all real scalar variables, i = √
(−1), x22 >

0, x11x22−x2
12 > 0. While these are the conditions for the positive definiteness of the real

matrix X, x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0 are the conditions for the Hermitian
positive definiteness of X̃. Let us evaluate the following integrals, subject to the previously
specified conditions on the elements of the matrix:

(1) : δ1 =
∫

X>O

e−(x11+x22)dx11 ∧ dx12 ∧ dx22

(2) : δ2 =
∫

X̃>O

e−(x1+x3)dx1 ∧ d(x2 + iy2) ∧ dx3

(3) : δ3 =
∫

X>O

|X|e−(x11+x22)dx11 ∧ dx12 ∧ dx22

(4) : δ4 =
∫

X̃>O

|det(X̃)|2e−(x1+x3)dx1 ∧ d(x2 + iy2) ∧ dx3.
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Solution 5.2.1. (1): Observe that δ1 can be evaluated by treating the integral as a real
matrix-variate integral, namely,

δ1 =
∫

X>O

|X|α−p+1
2 e−tr(X)dX with p = 2,

p + 1

2
= 3

2
, α = 3

2
,

and hence the integral is

Γ2(3/2) = π
2(1)
4 Γ (3/2)Γ (1) = π1/2(1/2)Γ (1/2) = π

2
.

This result can also be obtained by direct integration as a multiple integral. In this case,
the integration has to be done under the conditions x11 > 0, x22 > 0, x11x22 − x2

12 >

0, that is, x2
12 < x11x22 or −√

x11x22 < x12 <
√

x11x22. The integral over x12 yields
∫ √

x11x22

−√
x11x22

dx12 = 2
√

x11x22, that over x11 then gives

2
∫ ∞

x11=0

√
x11e

−x11dx11 = 2
∫ ∞

0
x

3
2−1
11 e−x11 dx11 = 2Γ (3/2) = π

1
2 ,

and on integrating with respect to x22, we have
∫ ∞

0

√
x22e

−x22dx22 = 1

2
π

1
2 ,

so that δ1 = 1
2

√
π

√
π = π

2 .
(2): On observing that δ2 can be viewed as a complex matrix-variate integral, it is seen that

δ2 =
∫

X̃>O

|det(X̃)|2−2e−tr(X̃) dX̃ = Γ̃2(2) = π
2(1)
2 Γ (2)Γ (1) = π.

This answer can also be obtained by evaluating the multiple integral. Since X̃ > O, we

have x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0, that is, x1 >
(x22+y22 )

x3
. Integrating first with

respect to x1 and letting y = x1 − (x22+y22 )

x3
, we have

∫

x1>
(x22+y22 )

x3

e−x1d x1 =
∫ ∞

y=0
e
−y− (x22+y22 )

x3 dy = e
− (x22+y22 )

x3 .

Now, the integrals over x2 and y2 give

∫ ∞

−∞
e
− x22

x3 dx2 = √
x3

∫ ∞

−∞
e−u2du = √

x3
√

π and
∫ ∞

−∞
e
− y22

x3 dy2 = √
x3

√
π,



294 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

that with respect to x3 then yielding

∫ ∞

0
x3e

−x3dx3 = Γ (2) = 1,

so that δ2 = (1)
√

π
√

π = π.

(3): Observe that δ3 can be evaluated as a real matrix-variate integral. Then

δ3 =
∫

X>O

|X|e−tr(X)dX =
∫

X>O

|X| 52− 3
2 e−tr(X)dX, with

p + 1

2
= 3

2
as p = 2

= Γ2(5/2) = π
2(1)
4 Γ (5/2)Γ (4/2) = π

1
2 (3/2)(1/2)π1/2(1)

= 3

4
π.

Let us proceed by direct integration:

δ3 =
∫

X>O

[x11x22 − x2
12]e−(x11+x22)dx11 ∧ dx12 ∧ dx22

=
∫

X>O

x22

[
x11 − x2

12

x22

]
e−(x11+x22)dx11 ∧ dx12 ∧ dx22;

letting y = x11 − x212
x22

, the integral over x11 yields

∫

x11>
x212
x22

[
x11 − x2

12

x22

]
e−x11dx11 =

∫ ∞

y=0
y e

−y− x212
x22 dy = e

− x212
x22 .

Now, the integral over x12 gives
√

x22
√

π and finally, that over x22 yields

∫

x22>0
x

3
2
22e

−x22dx22 = Γ (5/2) = (3/2)(1/2)
√

π = 3

4
π.

(4): Noting that we can treat δ4 as a complex matrix-variate integral, we have

δ4 =
∫

X̃>O

|det(X̃)|2e−tr(X̃)dX̃ =
∫

X̃>O

|det(X̃)|4−2e− tr(X̃)dX̃ = Γ̃2(4), α = 4, p = 2,

= π
2(1)
2 Γ (4)Γ (3) = π(3!)(2!) = 12π.

Direct evaluation will be challenging in this case as the integrand involves |det(X̃)|2.
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If a scale parameter matrix B > O is to be introduced in (5.2.1), then consider
tr(BX) = tr(B

1
2XB

1
2 ) where B

1
2 is the positive definite square root of the real posi-

tive definite constant matrix B. On applying the transformation Y = B
1
2XB

1
2 ⇒ dX =

|B|− (p+1)
2 dY , as stated in Theorem 1.6.5, we have

∫

X>O

|X|α−p+1
2 e−tr(BX)dX =

∫

X>O

|X|α−p+1
2 e−tr(B

1
2 XB

1
2 ) dX

= |B|−α

∫

Y>O

|Y |α−p+1
2 e−tr(Y )dY

= |B|−αΓp(α). (5.2.2)

This equality brings about two results. First, the following identity which will turn out to
be very handy in many of the computations:

|B|−α ≡ 1

Γp(α)

∫

X>O

|X|α−p+1
2 e−tr(BX)dX, B > O, �(α) >

p − 1

2
. (5.2.3)

As well, the following two-parameter real matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B > O can be constructed from (5.2.2):

f (X) =
{ |B|α

Γp(α)
|X|α−p+1

2 e−tr(BX), X > O, B > O, �(α) >
p−1
2

0, elsewhere.
(5.2.4)

5.2.1. The mgf of the real matrix-variate gamma distribution

Let us determine the mgf associated with the density given in (5.2.4), that is, the two-
parameter real matrix-variate gamma density. Observing that X = X′, let T be a symmet-
ric p × p real positive definite parameter matrix. Then, noting that

tr(T X) =
p∑

j=1

tjj xjj + 2
∑

i>j

tij xij , (i)

it is seen that the non-diagonal elements in X multiplied by the corresponding parame-
ters will have twice the weight of the diagonal elements multiplied by the corresponding
parameters. For instance, consider the 2 × 2 case:

tr

{[
t11 t12
t12 t22

] [
x11 x12
x12 x22

]}
= tr

[
t11x11 + t12x12 α1

α2 t12x12 + t22x22

]

= t11x11 + 2t12x12 + t22x22 (ii)
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where α1 and α2 represent elements that are not involved in the evaluation of the trace.
Note that due to the symmetry of T and X, t21 = t12 and x21 = x12, so that the cross
product term t12x12 in (ii) appears twice whereas each of the terms t11x11 and t22x22 appear
only once.

However, in order to be consistent with the mgf in a real multivariate case, each
variable need only be multiplied once by the corresponding parameter, the mgf be-
ing then obtained by taking the expected value of the resulting exponential sum. Ac-
cordingly, the parameter matrix has to be modified as follows: let ∗T = (∗tij ) where

∗tjj = tjj , ∗tij = 1
2 tij , i 
= j, and tij = tj i for all i and j or, in other words, the

non-diagonal elements of the symmetric matrix T are weighted by 1
2 , such a matrix being

denoted as ∗T . Then,
tr(∗T X) =

∑

i,j

tij xij ,

and the mgf in the real matrix-variate two-parameter gamma density, denoted by MX(∗T ),
is the following:

MX(∗T ) = E[etr(∗T X)]
= |B|α

Γp(α)

∫

X>O

|X|α−p+1
2 etr(∗T X−BX)dX.

Now, since
tr(BX − ∗T X) = tr((B − ∗T )

1
2X(B − ∗T )

1
2 )

for (B − ∗T ) > O, that is, (B − ∗T )
1
2 > O, which means that Y = (B − ∗T )

1
2X(B −

∗T )
1
2 ⇒ dX = |B − ∗T )|−(

p+1
2 )dY , we have

MX(∗T ) = |B|α
Γp(α)

∫

X>O

|X|α−p+1
2 e−tr((B−∗T )X)dX

= |B|α
Γp(α)

|B − ∗T |−α

∫

Y>O

|Y |α−p+1
2 e−tr(Y )dY

= |B|α|B − ∗T |−α

= |I − B−1∗T |−α for I − B−1∗T > O. (5.2.5)

When ∗T is replaced by −∗T , (5.2.5) gives the Laplace transform of the two-parameter
gamma density in the real matrix-variate case as specified by (5.2.4), which is denoted by
Lf (∗T ), that is,

Lf (∗T ) = MX(−∗T ) = |I + B−1∗T |−α for I + B−1∗T > O. (5.2.6)



Matrix-Variate Gamma and Beta Distributions 297

For example, if

X =
[
x11 x12
x12 x22

]
, B =

[
2 −1

−1 3

]
and ∗T =

[
∗t11 ∗t12
∗t12 ∗t22

]
,

then |B| = 5 and

MX(∗T ) = |B|α|B − ∗T |−α = 5α

∣∣∣∣
2 − ∗t11 −1 − ∗t12

−1 − ∗t12 3 − ∗t22

∣∣∣∣

−α

= 5α{(2 − ∗t11)(3 − ∗t22) − (1 + ∗t12)2}−α.

If ∗T is partitioned into sub-matrices and X is partitioned accordingly as

∗T =
[

∗T 11 ∗T 12

∗T 21 ∗T 22

]
and X =

[
X11 X12

X21 X22

]
(iii)

where ∗T 11 and X11 are r × r, r ≤ p, then what can be said about the densities of the
diagonal blocks X11 and X22? The mgf of X11 is available from the definition by letting
∗T 12 = O, ∗T 21 = O and ∗T 22 = O, as then E[etr(∗T X)] = E[ etr(∗T 11X11)]. However,
B−1∗T is not positive definite since B−1∗T is not symmetric, and thereby I − B−1∗T
cannot be positive definite when ∗T 12 = O, ∗T 21 = O, ∗T 22 = O. Consequently, the
mgf of X11 cannot be determined from (5.2.6). As an alternative, we could rewrite (5.2.6)
in the symmetric format and then try to evaluate the density of X11. As it turns out, the
densities of X11 and X22 can be readily obtained from the mgf in two situations: either
when B = I or B is a block diagonal matrix, that is,

B =
[
B11 O

O B22

]
⇒ B−1 =

[
B−1
11 O

O B−1
22

]
. (iv)

Hence we have the following results:

Theorem 5.2.1. Let the p × p matrices X > O and ∗T > O be partitioned as in (iii).
Let X have a p × p real matrix-variate gamma density with shape parameter α and scale
parameter matrix Ip. Then X11 has an r × r real matrix-variate gamma density and X22

has a (p − r) × (p − r) real matrix-variate gamma density with shape parameter α and
scale parameters Ir and Ip−r , respectively.

Theorem 5.2.2. Let X be partitioned as in (iii). Let the p × p real positive definite
parameter matrix B > O be partitioned as in (iv). Then X11 has an r × r real matrix-
variate gamma density with the parameters (α and B11 > O) and X22 has a (p − r) ×
(p − r) real matrix-variate gamma density with the parameters (α and B22 > O).
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Theorem 5.2.3. Let X be partitioned as in (iii). Then X11 and X22 are statistically inde-
pendently distributed under the restrictions specified in Theorems 5.2.1 and 5.2.2.

In the general case of B, write the mgf as MX(∗T ) = |B|α|B − ∗T |−α, which corre-

sponds to a symmetric format. Then, when ∗T =
[

∗T 11 O

O O

]
,

MX(∗T ) = |B|α
∣∣∣∣
B11 − ∗T 11 B12

B21 B22

∣∣∣∣

−α

= |B|α|B22|−α|B11 − ∗T 11 − B12B
−1
22 B21|−α

= |B22|α|B11 − B12B
−1
22 B21|α|B22|−α|(B11 − B12B

−1
22 B21) − ∗T 11|−α

= |B11 − B12B
−1
22 B21|α|(B11 − B12B

−1
22 B21) − ∗T 11|−α,

which is obtained by making use of the representations of the determinant of a partitioned
matrix, which are available from Sect. 1.3. Now, on comparing the last line with the first
one, it is seen that X11 has a real matrix-variate gamma distribution with shape parameter
α and scale parameter matrix B11 − B12B

−1
22 B21. Hence, the following result:

Theorem 5.2.4. If the p×p real positive definite matrix has a real matrix-variate gamma
density with the shape parameter α and scale parameter matrix B and if X and B are
partitioned as in (iii), then X11 has a real matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B11 − B12B

−1
22 B21, and the sub-matrix X22 has a

real matrix-variate gamma density with shape parameter α and scale parameter matrix
B22 − B21B

−1
11 B12.

5.2a. The Matrix-variate Gamma Function and Density, Complex Case

Let X̃ = X̃∗ > O be a p × p Hermitian positive definite matrix. When X̃ is Her-
mitian, all its diagonal elements are real and hence tr(X̃) is real. Let det(X̃) denote the
determinant and |det(X̃)| denote the absolute value of the determinant of X̃. As a result,
|det(X̃)|α−p e−tr(X̃) is a real-valued scalar function of X̃. Let us consider the following
integral, denoted by Γ̃p(α):

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−p e−tr(X̃)dX̃, (5.2a.1)

which was evaluated in Sect. 5.1a. In fact, (5.1a.3) provides two representations of the
complex matrix-variate gamma function Γ̃p(α). With the help of (5.1a.3), we can define
the complex p × p matrix-variate gamma density as follows:
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f̃1(X̃) =
{

1
Γ̃p(α)

|det(X̃)|α−pe−tr(X̃), X̃ > O, �(α) > p − 1

0, elsewhere.
(5.2a.2)

For example, let us examine the 2 × 2 complex matrix-variate case. Let X̃ be a matrix in

the complex domain, ¯̃
X denoting its complex conjugate and X̃∗, its conjugate transpose.

When X̃ = X̃∗, the matrix is Hermitian and its diagonal elements are real. In the 2 × 2
Hermitian case, let

X̃ =
[

x1 x2 + iy2
x2 − iy2 x3

]
⇒ ¯̃

X =
[

x1 x2 − iy2
x2 + iy2 x3

]
⇒ X̃∗ = X̃.

Then, the determinants are

det(X̃) = x1x3 − (x2 − iy2)(x2 + iy2) = x1x3 − (x2
2 + y2

2)

= det(X̃∗), x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0,

due to Hermitian positive definiteness of X̃. As well,

|det(X̃)| = +[(det(X̃)(det(X̃∗))] 12 = x1x3 − (x2
2 + y2

2) > 0.

Note that tr(X̃) = x1 + x3 and Γ̃2(α) = π
2(1)
2 Γ (α)Γ (α − 1), �(α) > 1, p = 2. The

density is then of the following form:

f1(X̃) = 1

Γ̃2(α)
|det(X̃)|α−2e−tr(X̃)

= 1

πΓ (α)Γ (α − 1)
[x1x3 − (x2

2 + y2
2)]α−2e−(x1+x3)

for x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0, �(α) > 1, and f1(X̃) = 0 elsewhere.

Now, consider a p × p parameter matrix B̃ > O. We can obtain the following identity
corresponding to the identity in the real case:

|det(B̃)|−α ≡ 1

Γ̃p(α)

∫

X̃>O

|det(X̃)|α−pe− tr(B̃X̃)dX̃, �(α) > p − 1. (5.2a.3)

A two-parameter gamma density in the complex domain can then be derived by proceeding
as in the real case; it is given by

f̃ (X̃) =
⎧
⎨

⎩

|det(B̃)|α
Γ̃p(α)

|det(X̃)|α−pe− tr(B̃X̃), B̃ > O, X̃ > O, �(α) > p − 1

0, elsewhere.
(5.2a.4)
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5.2a.1. The mgf of the complex matrix-variate gamma distribution

The moment generating function in the complex domain is slightly different from that
in the real case. Let T̃ > O be a p × p parameter matrix and let X̃ be p × p two-
parameter gamma distributed as in (5.2a.4). Then T̃ = T1 + iT2 and X̃ = X1 + iX2, with
T1, T2, X1, X2 real and i = √

(−1). When T̃ and X̃ are Hermitian positive definite, T1
and X1 are real symmetric and T2 and X2 are real skew symmetric. Then consider

tr(T̃ ∗X̃) = tr(T1X1) + tr(T2X2) + i[tr(T1X2) − tr(T2X1)].

Note that tr(T1X1) + tr(T2X2) contains all the real variables involved multiplied by the
corresponding parameters, where the diagonal elements appear once and the off-diagonal
elements each appear twice. Thus, as in the real case, T̃ has to be replaced by ∗T̃ = ∗T 1 +
i∗T 2. A term containing i still remains; however, as a result of the following properties,
this term will disappear.

Lemma 5.2a.1. Let T̃ , X̃, T1, T2, X1, X2 be as defined above. Then, tr(T1X2) =
0, tr(T2X1) = 0, tr(∗T1X2) = 0, tr(∗T2X1) = 0.

Proof: For any real square matrix A, tr(A) = tr(A′) and for any two matrices A and B

where AB and BA are defined, tr(AB) = tr(BA). With the help of these two results, we
have the following:

tr(T1X2) = tr(T1X2)
′ = tr(X′

2T
′
1) = −tr(X2T1) = −tr(T1X2)

as T1 is symmetric andX2 is skew symmetric. Now, tr(T1X2) = −tr(T1X2) ⇒ tr(T1X2) =
0 since it is a real quantity. It can be similarly established that the other results stated in
the lemma hold.

We may now define the mgf in the complex case, denoted by MX̃(∗T ), as follows:

MX̃(∗T̃ ) = E[etr(∗T̃ ∗X̃)] =
∫

X̃>O

e tr(∗T̃ ∗X̃)f̃ (X̃)dX̃

= |det(B̃)|α
Γ̃p(α)

∫

X̃>O

e−tr(B̃−∗T̃ ∗)X̃dX̃.

Since tr(X̃(B̃ − ∗T̃
∗
)) = tr(CX̃C∗) for C = (B̃ − ∗T̃

∗
)
1
2 and C > O, it follows from

Theorem 1:6a.5 that Ỹ = CX̃C∗ ⇒ dỸ = |det(CC∗)|p dX̃, that is, dX̃ = |det(B̃ −
∗T̃

∗
)|−p dỸ for B̃ − ∗T̃

∗
> O. Then,
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MX̃(∗T̃ ) = |det(B̃)|α
Γ̃p(α)

| det(B̃ − ∗T̃
∗
)|−α

∫

Ỹ>O

|det(Ỹ )|α−pe−tr(Ỹ )dỸ

= | det(B̃)|α|det(B̃ − ∗T̃
∗
)|−α for B̃ − ∗T̃

∗
> O

= | det(I − B̃−1∗T̃
∗
)|−α, I − B̃−1∗T̃

∗
> O. (5.2a.5)

For example, let p = 2 and

X̃ =
[
x̃11 x̃12
x̃∗
12 x̃22

]
, B =

[
3 i

−i 2

]
and ∗T =

[
∗t̃11 ∗t̃12
∗t̃∗12 ∗t̃22

]
,

with x̃21 = x̃∗
12 and ∗t̃21 = ∗t̃ ∗

12. In this case, the conjugate transpose is only the conjugate
since the quantities are scalar. Note that B = B∗ and hence B is Hermitian. The leading
minors of B being |(3)| = 3 > 0 and |B| = (3)(2) − (−i)(i) = 5 > 0, B is Hermitian
positive definite. Accordingly,

MX̃(∗T̃ ) = |det(B)|α|det(B − ∗T̃
∗
)|−α

= 5α[(3 − ∗t̃∗11)(2 − ∗ t̃∗22) + (i + ∗t̃∗12)(i − ∗t̃12)].
Now, consider the partitioning of the following p × p matrices:

X̃ =
[
X̃11 X̃12

X̃21 X̃22

]
, ∗T̃ =

[
∗T̃ 11 ∗T̃12
∗T̃ 21 ∗T̃ 22

]
and B̃ =

[
B̃11 B̃12

B̃21 B̃22

]
(i)

where X̃11 and ∗T̃ 11 are r × r , r ≤ p. Then, proceeding as in the real case, we have the
following results:

Theorem 5.2a.1. Let X̃ have a p×p complex matrix-variate gamma density with shape
parameter α and scale parameter Ip, and X̃ be partitioned as in (i). Then, X̃11 has an
r × r complex matrix-variate gamma density with shape parameter α and scale parameter
Ir and X̃22 has a (p − r) × (p − r) complex matrix-variate gamma density with shape
parameter α and scale parameter Ip−r .

Theorem 5.2a.2. Let the p × p complex matrix X̃ have a p × p complex matrix-variate
gamma density with the parameters (α, B̃ > O) and let X̃ and B̃ be partitioned as in (i)
and B̃12 = O, B̃21 = O. Then X̃11 and X̃22 have r × r and (p − r) × (p − r) complex
matrix-variate gamma densities with shape parameter α and scale parameters B̃11 and
B̃22, respectively.

Theorem 5.2a.3. Let X̃, X̃11, X̃22 and B̃ be as specified in Theorems 5.2a.1 or 5.2a.2.
Then, X̃11 and X̃22 are statistically independently distributed as complex matrix-variate
gamma random variables on r × r and (p − r) × (p − r) matrices, respectively.
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For a general matrix B where the sub-matrices B12 and B21 are not assumed to be null,
the marginal densities of X̃11 and X̃22 being given in the next result can be determined by
proceeding as in the real case.

Theorem 5.2a.4. Let X̃ have a complex matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B = B∗ > O. Letting X̃ and B be partitioned as
in (i), then the sub-matrix X̃11 has a complex matrix-variate gamma density with shape
parameter α and scale parameter matrix B11 − B12B

−1
22 B21, and the sub-matrix X̃22 has

a complex matrix-variate gamma density with shape parameter α and scale parameter
matrix B22 − B21B

−1
11 B12.

Exercises 5.2

5.2.1. Show that

π
(p−r)(p−r−1)

4 π
tr(r−1)

4 π
2r(p−r)

4 = π
p(p−1)

4 .

5.2.2. Show that Γr(α)Γp−r (α − r
2) = Γp(α).

5.2.3. Evaluate (1):
∫
X>O

e−tr(X)dX, (2):
∫
X>O

|X| e−tr(X)dX.

5.2.4. Write down (1): Γ3(α), (2): Γ4(α) explicitly in the real and complex cases.

5.2.5. Evaluate the integrals in Exercise 5.2.3 for the complex case. In (2) replace det(X)

by |det(X)|.
5.3. Matrix-variate Type-1 Beta and Type-2 Beta Densities, Real Case

The p × p matrix-variate beta function denoted by Bp(α, β) is defined as follows in
the real case:

Bp(α, β) = Γp(α)Γp(β)

Γp(α + β)
, �(α) >

p − 1

2
, �(β) >

p − 1

2
. (5.3.1)

This function has the following integral representations in the real case where it is assumed
that �(α) >

p−1
2 and �(β) >

p−1
2 :
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Bp(α, β) =
∫

O<X<I

|X|α−p+1
2 |I − X|β−p+1

2 dX, a type-1 beta integral (5.3.2)

Bp(β, α) =
∫

O<Y<I

|Y |β−p+1
2 |I − Y |α−p+1

2 dY, a type-1 beta integral (5.3.3)

Bp(α, β) =
∫

Z>O

|Z|α−p+1
2 |I + Z|−(α+β)dZ, a type-2 beta integral (5.3.4)

Bp(β, α) =
∫

T >O

|T |β−p+1
2 |I + T |−(α+β)dT , a type-2 beta integral. (5.3.5)

For example, for p = 2, let

X =
[
x11 x12
x12 x22

]
⇒ |X| = x11x22 − x2

12 and |I − X| = (1 − x11)(1 − x22) − x2
12.

Then for example, (5.3.2) will be of the following form:

Bp(α, β) =
∫

X>O

|X|α−p+1
2 |I − X|β−p+1

2 dX

=
∫

x11>0

∫

x22>0

∫

x11x22−x212>0
[x11x22 − x2

12]α− 3
2

× [(1 − x11)(1 − x22) − x2
12]β− 3

2 dx11 ∧ dx12 ∧ dx22.

We will derive two of the integrals (5.3.2)–(5.3.5), the other ones being then directly
obtained. Let us begin with the integral representations of Γp(α) and Γp(β) for �(α) >
p−1
2 , �(β) >

p−1
2 :

Γp(α)Γp(β) =
[ ∫

X>O

|X|α−p+1
2 e−tr(X) dX

][ ∫

Y>O

|Y |β−p+1
2 e−tr(Y )dY

]

=
∫

X

∫

Y

|X|α−p+1
2 |Y |β−p+1

2 e−tr(X+Y )dX ∧ dY.

Making the transformation U = X + Y, X = V , whose Jacobian is 1, taking out U from

|U − V | = |U | |I − U− 1
2V U− 1

2 |, and then letting W = U− 1
2V U− 1

2 ⇒ dV = |U |p+1
2 dW ,

we have
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Γp(α)Γp(β) =
∫

U

∫

V

|V |α−p+1
2 |U − V |β−p+1

2 e−tr(U)dU ∧ dV

=
{ ∫

U>O

|U |α+β−p+1
2 e−tr(U)dU

}

×
{ ∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW
}

= Γp(α + β)

∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW.

Thus, on dividing both sides by Γp(α, β), we have

Bp(α, β) =
∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW. (i)

This establishes (5.3.2). The initial conditions �(α) >
p−1
2 , �(β) >

p−1
2 are sufficient

to justify all the steps above, and hence no conditions are listed at each stage. Now, take
Y = I −W to obtain (5.3.3). Let us take theW of (i) above and consider the transformation

Z = (I − W)−
1
2W(I − W)−

1
2 = (W−1 − I )−

1
2 (W−1 − I )−

1
2 = (W−1 − I )−1

which gives
Z−1 = W−1 − I ⇒ |Z|−(p+1)dZ = |W |−(p+1)dW. (ii)

Taking determinants and substituting in (ii) we have

dW = |I + Z|−(p+1)dZ.

On expressing W, I − W and dW in terms of Z, we have the result (5.3.4). Now, let T =
Z−1 with the Jacobian dT = |Z|−(p+1)dZ, then (5.3.4) transforms into the integral (5.3.5).
These establish all four integral representations of the real matrix-variate beta function. We
may also observe that Bp(α, β) = Bp(β, α) or α and β can be interchanged in the beta
function. Consider the function

f3(X) = Γp(α + β)

Γp(α)Γp(β)
|X|α−p+1

2 |I − X|β−p+1
2 (5.3.6)

for O < X < I, �(α) >
p−1
2 , �(β) >

p−1
2 , and f3(X) = 0 elsewhere. This is a type-1

real matrix-variate beta density with the parameters (α, β), where O < X < I means
X > O, I − X > O so that all the eigenvalues of X are in the open interval (0, 1). As for

f4(Z) = Γp(α + β)

Γp(α)Γp(β)
|Z|α−p+1

2 |I + Z|−(α+β) (5.3.7)

whenever Z > O, �(α) >
p−1
2 , �(β) >

p−1
2 , and f4(Z) = 0 elsewhere, this is a p × p

real matrix-variate type-2 beta density with the parameters (α, β).



Matrix-Variate Gamma and Beta Distributions 305

5.3.1. Some properties of real matrix-variate type-1 and type-2 beta densities

In the course of the above derivations, it was shown that the following results hold. If
X is a p × p real positive definite matrix having a real matrix-variate type-1 beta density
with the parameters (α, β), then:

(1): Y1 = I − X is real type-1 beta distributed with the parameters (β, α);

(2): Y2 = (I − X)− 1
2X(I − X)− 1

2 is real type-2 beta distributed with the parameters
(α, β);

(3): Y3 = (I −X)
1
2X−1(I −X)

1
2 is real type-2 beta distributed with the parameters (β, α).

If Y is real type-2 beta distributed with the parameters (α, β) then:

(4): Z1 = Y−1 is real type-2 beta distributed with the parameters (β, α);

(5): Z2 = (I +Y )− 1
2Y (I +Y )− 1

2 is real type-1 beta distributed with the parameters (α, β);

(6): Z3 = I − (I +Y )− 1
2Y (I +Y )− 1

2 = (I +Y )−1 is real type-1 beta distributed with the
parameters (β, α).

5.3a. Matrix-variate Type-1 and Type-2 Beta Densities, Complex Case

A matrix-variate beta function in the complex domain is defined as

B̃p(α, β) = Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
, �(α) > p − 1, �(β) > p − 1 (5.3a.1)

with a tilde over B. As B̃p(α, β) = B̃p(β, α), clearly α and β can be interchanged. Then,
B̃p(α, β) has the following integral representations, where �(α) > p − 1, �(β) > p − 1:

B̃p(α, β) =
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃, a type-1 beta integral (5.3a.2)

B̃p(β, α) =
∫

O<Ỹ<I

|det(Ỹ )|β−p|det(I − Ỹ )|α−pdỸ , a type-1 beta integral (5.3a.3)

B̃p(α, β) =
∫

Z̃>O

|det(Z̃)|α−p|det(I + Z̃)|−(α+β)dZ̃, a type-2 beta integral (5.3a.4)

B̃p(β, α) =
∫

T̃ >O

|det(T̃ )|β−p|det(I + T̃ )|−(α+β)dT̃ , a type-2 beta integral. (5.3a.5)
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For instance, consider the integrand in (5.3a.2) for the case p = 2. Let

X̃ =
[

x1 x2 + iy2
x2 − iy2 x3

]
, X̃ = X̃∗ > O, i = √

(−1),

the diagonal elements of X̃ being real; since X̃ is Hermitian positive definite, we have
x1 > 0, x3 > 0, x1x2− (x2

2 +y2
2) > 0, det(X̃) = x1x3− (x2

2 +y2
2) > 0 and det(I − X̃) =

(1 − x1)(1 − x3) − (x2
2 + y2

2) > 0. The integrand in (5.3a.2) is then

[x1x3 − (x2
2 + y2

2)]α− 3
2 [(1 − x1)(1 − x3) − (x2

2 + y2
2)]β− 3

2 .

The derivations of (5.3a.2)–(5.3a.5) being parallel to those provided in the real case, they
are omitted. We will list one case for each of a type-1 and a type-2 beta density in the
complex p × p matrix-variate case:

f̃3(X̃) = Γ̃p(α + β)

Γ̃p(α)Γ̃p(β)
|det(X̃)|α−p| det(I − X̃)|β−p (5.3a.6)

for O < X̃ < I, �(α) > p − 1, �(β) > p − 1 and f̃3(X̃) = 0 elsewhere;

f̃4(Z̃) = Γ̃p(α + β)

Γ̃p(α)Γ̃p(β)
|det(Z̃)|α−p| det(I + Z̃)|−(α+β) (5.3a.7)

for Z̃ > O, �(α) > p − 1, �(β) > p − 1 and f̃4(Z̃) = 0 elsewhere.
Properties parallel to (1) to (6) which are listed in Sect. 5.3.1 also hold in the complex

case.

5.3.2. Explicit evaluation of type-1 matrix-variate beta integrals, real case

A detailed evaluation of a type-1 matrix-variate beta integral as a multiple integral is
presented in this section as the steps will prove useful in connection with other compu-
tations; the reader may also refer to Mathai (2014,b). The real matrix-variate type-1 beta
function which is denoted by

Bp(α, β) = Γp(α)Γp(β)

Γp(α + β)
, �(α) >

p − 1

2
, �(β) >

p − 1

2
,

has the following type-1 beta integral representation:

Bp(α, β) =
∫

O<X<I

|X|α−p+1
2 |I − X|β−p+1

2 dX,
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for �(α) >
p−1
2 , �(β) >

p−1
2 where X is a real p × p symmetric positive def-

inite matrix. The standard derivation of this integral relies on the properties of real
matrix-variate gamma integrals after making suitable transformations, as was previously
done. It is also possible to evaluate the integral directly and show that it is equal to
Γp(α)Γp(β)/Γp(α + β) where, for example,

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) >
p − 1

2
.

A convenient technique for evaluating a real matrix-variate gamma integral consists of
making the transformation X = T T ′ where T is a lower triangular matrix whose diagonal
elements are positive. However, on applying this transformation, the type-1 beta integral

does not simplify due to the presence of the factor |I − X|β−p+1
2 . Hence, we will attempt

to evaluate this integral by appropriately partitioning the matrices and then, successively
integrating out the variables. Letting X = (xij ) be a p × p real matrix, xpp can then be
extracted from the determinants of |X| and |I − X| after partitioning the matrices. Thus,
let

X =
[
X11 X12

X21 X22

]

where X11 is the (p − 1) × (p − 1) leading sub-matrix, X21 is 1 × (p − 1), X22 = xpp

and X12 = X′
21. Then |X| = |X11||xpp − X21X

−1
11 X12| so that

|X|α−p+1
2 = |X11|α−p+1

2 [xpp − X21X
−1
11 X12]α−p+1

2 , (i)

and

|I − X|β−p+1
2 = |I − X11|β−p+1

2 [(1 − xpp) − X21(I − X11)
−1X12]β−p+1

2 . (ii)

It follows from (i) that xpp > X21X
−1
11 X12 and, from (ii) that xpp < 1 − X21(I −

X11)
−1X12; thus, we have X21X

−1
11 X12 < xpp < 1 − X21(I − X11)

−1X12. Let y =
xpp − X21X

−1
11 X12 ⇒ dy = dxpp for fixed X21, X11, so that 0 < y < b where

b = 1 − X21X
−1
11 X12 − X21(I − X11)

−1X12

= 1 − X21X
− 1

2
11 (I − X11)

− 1
2 (I − X11)

− 1
2X

− 1
2

11 X12

= 1 − WW ′, W = X21X
− 1

2
11 (I − X11)

− 1
2 .
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The second factor on the right-hand side of (ii) then becomes

[b − y]β−p+1
2 = bβ−p+1

2 [1 − y/b]β−p+1
2 .

Now letting u = y
b
for fixed b, the terms containing u and b become bα+β−(p+1)+1uα−p+1

2

(1 − u)β−p+1
2 . Integration over u then gives

∫ 1

0
uα−p+1

2 (1 − u)β−p+1
2 du = Γ (α − p−1

2 )Γ (β − p−1
2 )

Γ (α + β − (p − 1))

for �(α) >
p−1
2 , �(β) >

p−1
2 . Letting W = X21X

− 1
2

11 (I − X11)
− 1

2 for fixed X11,

dX21 = |X11| 12 |I − X11| 12 dW from Theorem 1.6.1 of Chap. 1 or Theorem 1.18 of Mathai
(1997), where X11 is a (p − 1) × (p − 1) matrix. Now, letting v = WW ′ and integrating
out over the Stiefel manifold by applying Theorem 4.2.3 of Chap. 4 or Theorem 2.16 and
Remark 2.13 of Mathai (1997), we have

dW = π
p−1
2

Γ (
p−1
2 )

v
p−1
2 −1dv.

Thus, the integral over b becomes

∫
bα+β−pdX21 =

∫ 1

0
v

p−1
2 −1(1 − v)α+β−pdv

= Γ (
p−1
2 )Γ (α + β − (p − 1))

Γ (α + β − p−1
2 )

, �(α + β) > p − 1.

Then, on multiplying all the factors together, we have

|X(1)
11 |α+ 1

2−p+1
2 |I − X

(1)
11 |β+ 1

2−p+1
2 π

p−1
2

Γ (α − p−1
2 )Γ (β − p−1

2 )

Γ (α + β − p−1
2 )

whenever �(α) >
p−1
2 , �(β) >

p−1
2 . In this case, X(1)

11 represents the (p − 1) × (p − 1)
leading sub-matrix at the end of the first set of operations. At the end of the second set of
operations, we will denote the (p − 2) × (p − 2) leading sub-matrix by X

(2)
11 , and so on.

The second step of the operations begins by extracting xp−1,p−1 and writing

|X(1)
11 | = |X(2)

11 | [xp−1,p−1 − X
(2)
21 [X(2)

11 ]−1X
(2)
12 ]
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where X
(2)
21 is a 1 × (p − 2) vector. We then proceed as in the first sequence of steps to

obtain the final factors in the following form:

|X(2)
11 |α+1−p+1

2 |I − X
(2)
11 |β+1−p+1

2 π
p−2
2

Γ (α − p−2
2 )Γ (β − p−2

2 )

Γ (α + β − p−2
2 )

for �(α) >
p−2
2 , �(β) >

p−2
2 . Proceeding in such a manner, in the end, the exponent of

π will be
p − 1

2
+ p − 2

2
+ · · · + 1

2
= p(p − 1)

4
,

and the gamma product will be

Γ (α − p−1
2 )Γ (α − p−2

2 ) · · · Γ (α)Γ (β − p−1
2 ) · · · Γ (β)

Γ (α + β − p−1
2 ) · · · Γ (α + β)

.

These gamma products, along with π
p(p−1)

4 , can be written as Γp(α)Γp(β)

Γp(α+β)
= Bp(α, β);

hence the result. It is thus possible to obtain the beta function in the real matrix-variate
case by direct evaluation of a type-1 real matrix-variate beta integral.

A similar approach can yield the real matrix-variate beta function from a type-2 real
matrix-variate beta integral of the form

∫

X>O

|X|α−p+1
2 |I + X|−(α+β)dX

where X is a p × p positive definite symmetric matrix and it is assumed that �(α) >
p−1
2

and �(β) >
p−1
2 , the evaluation procedure being parallel.

Example 5.3.1. By direct evaluation as a multiple integral, show that
∫

X>O

|X|α−p+1
2 |I − X|β−p+1

2 dX = Γp(α)Γp(β)

Γp(α + β)

for p = 2.

Solution 5.3.1. The integral to be evaluated will be denoted by δ. Let

|X| = x11[x22 − x21x
−1
11 x12] = x11

[
x22 − x2

12

x11

]

|I − X| = [1 − x11][(1 − x22) − x12(1 − x11)
−1x12] = (1 − x11)

[
1 − x22 − x2

12

1 − x11

]
.

(i)
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It is seen from (i) that
x2
12

x11
≤ x22 ≤ 1 − x2

12

1 − x11
.

Letting y = x22 − x212
x11

so that 0 ≤ y ≤ b, and b = 1 − x212
x11

− x212
1−x11

= 1 − x212
x11(1−x11)

, we
have

|X|α− 3
2 |I − X|β− 3

2 dX = x
α− 3

2
11 (1 − x11)

β− 3
2yα− 3

2

× (b − y)β− 3
2 dx11 ∧ dx22 ∧ dy.

Now, integrating out y, we have
∫ b

y=0
yα− 3

2 (b − y)β− 3
2 dy = bα+β−3+1

∫ 1

0
vα− 3

2 (1 − v)β− 3
2 dv, v = y

b

= bα+β−2Γ (α − 1
2)Γ (β − 1

2)

Γ (α + β − 1)
(ii)

whenever �(α) > 1
2 and �(β) > 1

2 , b being as previously defined. Letting w = x12

[x(1−x)] 12
,

dx12 = [x11(1 − x11] 12 dw for fixed x11. The exponents of x11 and (1 − x11) then become
α − 3

2 + 1
2 and β − 3

2 + 1
2 , and the integral over w gives the following:

∫ 1

−1
(1 − w2)α+β−2dw = 2

∫ 1

0
(1 − w2)α+β−2dw =

∫ 1

0
z
1
2−1(1 − z)α+β−2dz

= Γ (12)Γ (α + β − 1)

Γ (α + β − 1
2)

. (iii)

Now, integrating out x11, we obtain
∫ 1

0
xα−1
11 (1 − x11)

β−1dx11 = Γ (α)Γ (β)

Γ (α + β)
. (iv)

Then, on collecting the factors from (i) to (iv), we have

δ = Γ (1/2)
Γ (α)Γ (α − 1

2)Γ (β)Γ (β − 1
2)

Γ (α + β)Γ (α + β − 1
2)

.

Finally, noting that for p = 2, π
p(p−1)

4 = π
1
2 = π

1
2 π

1
2

π
1
2

, the desired result is obtained, that

is,

δ = Γ2(α)Γ2(β)

Γ2(α + β)
= B2(α, β).

This completes the computations.
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5.3a.1. Evaluation of matrix-variate type-1 beta integrals, complex case

The integral representation for Bp(α, β) in the complex case is
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃ = B̃p(α, β)

whenever �(α) > p − 1, �(β) > p − 1 where det(·) denotes the determinant of (·) and
|det(·)|, the absolute value (or modulus) of the determinant of (·). In this case, X̃ = (x̃ij )

is a p × p Hermitian positive definite matrix and accordingly, all of its diagonal elements
are real and positive. As in the real case, let us extract xpp by partitioning X̃ as follows:

X̃ =
[
X̃11 X̃12

X̃21 X̃22

]
so that I − X̃ =

[
I − X̃11 −X̃12

−X̃21 I − X̃22

]
,

where X̃22 ≡ xpp is a real scalar. Then, the absolute value of the determinants have the
following representations:

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃
−1
11 X̃∗

12|α−p (i)

where * indicates conjugate transpose, and

|det(I − X̃)|β−p = |det(I − X̃11)|β−p|(1 − xpp) − X̃21(I − X̃11)
−1X̃∗

12|β−p. (ii)

Note that whenever X̃ and I − X̃ are Hermitian positive definite, X̃−1
11 and (I − X̃11)

−1

are too Hermitian positive definite. Further, the Hermitian forms X̃21X̃
−1
11 X̃∗

12 and X̃21(I −
X̃11)

−1X̃∗
12 remain real and positive. It follows from (i) and (ii) that

X̃21X̃
−1
11 X̃∗

12 < xpp < 1 − X̃21(I − X̃11)
−1X̃∗

12.

Since the traces of Hermitian forms are real, the lower and upper bounds of xpp are real as
well. Let

W̃ = X̃21X̃
− 1

2
11 (I − X̃11)

− 1
2

for fixed X̃11. Then

dX̃21 = |det(X̃11)|−1|det(I − X̃11)|−1dW̃

and |det(X̃)|α−p, |det(I −X̃11)|β−p will become |det(X̃11)|α+1−p, | det(I −X̃11)|β+1−p,

respectively. Then, we can write

|(1 − xpp) − X̃21X̃
−1
11 X̃∗

12 − X̃21(I − X̃11)
−1X̃∗

12|β−p

= (b − y)β−p = bβ−p[1 − y/b ]β−p.
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Now, letting u = y/b, the factors containing u and b will be of the form uα−p (1 −
u)β−pbα+β−2p+1; the integral over u then gives

∫ 1

0
uα−p(1 − u)β−pdu = Γ (α − (p − 1))Γ (β − (p − 1))

Γ (α + β − 2(p − 1))
,

for �(α) > p − 1, �(β) > p − 1. Letting v = W̃W̃ ∗ and integrating out over the Stiefel
manifold by making use of Theorem 4.2a.3 of Chap. 4 or Corollaries 4.5.2 and 4.5.3 of
Mathai (1997), we have

dW̃ = πp−1

Γ (p − 1)
v(p−1)−1dv.

The integral over b gives
∫

bα+β−2p+1dX̃21 =
∫ 1

0
v(p−1)−1(1 − v)α+β−2p+1dv

= Γ (p − 1)Γ (α + β − 2(p − 1))

Γ (α + β − p + 1)
,

for �(α) > p − 1, �(β) > p − 1. Now, taking the product of all the factors yields

|det(X̃11)|α+1−p|det(I − X̃11)|β+1−pπp−1Γ (α − p + 1)Γ (β − p + 1)

Γ (α + β − p + 1)

for �(α) > p − 1, �(β) > p − 1. On extracting xp−1,p−1 from |X̃11| and |I − X̃11| and
continuing this process, in the end, the exponent of π will be (p−1)+ (p−2)+· · ·+1 =
p(p−1)

2 and the gamma product will be

Γ (α − (p − 1))Γ (α − (p − 2)) · · · Γ (α)Γ (β − (p − 1)) · · · Γ (β)

Γ (α + β − (p − 1)) · · · Γ (α + β)
.

These factors, along with π
p(p−1)

2 give

Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
= B̃p(α, β), �(α) > p − 1, �(β) > p − 1.

The procedure for evaluating a type-2 matrix-variate beta integral by partitioning matrices
is parallel and hence will not be detailed here.

Example 5.3a.1. For p = 2, evaluate the integral
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃

as a multiple integral and show that it evaluates out to B̃2(α, β), the beta function in the
complex domain.
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Solution 5.3a.1. For p = 2, π
p(p−1)

2 = π
2(1)
2 = π , and

B̃2(α, β) = π
Γ (α)Γ (α − 1)Γ (β)Γ (β − 1)

Γ (α + β)Γ (α + β − 1)

whenever �(α) > 1 and �(β) > 1. For p = 2, our matrix and the relevant determinants
are

X̃ =
[
x̃11 x̃12
x̃∗
12 x̃22

]
, |det(X̃)| and |det(I − X̃)|

where x̃∗
12 is only the conjugate of x̃12 as it is a scalar quantity. By expanding the determi-

nants of the partitioned matrices as explained in Sect. 1.3, we have the following:

det(X̃) = x̃11[x̃22 − x̃∗
12x̃

−1
11 x̃12] = x̃11

[
x̃22 − x̃12x̃

∗
12

x̃11

]
(i)

det(I − X̃) = (1 − x̃11)
[
1 − x̃22 − x̃12x̃

∗
12

1 − x̃11

]
. (ii)

From (i) and (ii), it is seen that

x̃12x̃
∗
12

x̃11
≤ x̃22 ≤ 1 − x̃12x̃

∗
12

1 − x̃11
.

Note that when X̃ is Hermitian, x̃11 and x̃22 are real and hence we may not place a tilde on
these variables. Let ỹ = x22 − x̃12x̃

∗
12/x11. Note that ỹ is also real since x̃12x̃

∗
12 is real. As

well, 0 ≤ y ≤ b, where

b = 1 −
[ x̃12x̃∗

12

x11

]
− x̃12x̃

∗
12

1 − x11
= 1 − x̃12x̃

∗
12

x11(1 − x11)
.

Further, b is a real scalar of the form b = 1 − w̃w̃∗ where w̃ = x̃12

[x11(1−x11)]
1
2

⇒ dx̃12 =
x11(1− x11)dw̃. This will make the exponents of x11 and (1− x11) as α − p + 1 = α − 1
and β − 1, respectively. Now, on integrating out y, we have

∫ b

y=0
yα−2(b − y)β−2dy = bα+β−3Γ (α − 1)Γ (β − 1)

Γ (α + β − 2)
, �(α) > 1, �(β) > 1. (iii)

Integrating out w̃, we have the following:
∫

w̃

(1 − w̃w̃∗)α+β−3dw̃ = π
Γ (α + β − 2)

Γ (α + β − 1)
. (iv)
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This integral is evaluated by writing z = w̃w̃∗. Then, it follows from Theorem 4.2a.3 that

dw̃ = πp−1

Γ (p − 1)
z(p−1)−1dz = πdz for p = 2.

Now, collecting all relevant factors from (i) to (iv), the required representation of the initial
integral, denoted by δ, is obtained:

δ = π
Γ (α)Γ (α − 1)Γ (β)Γ (β − 1)

Γ (α + β)Γ (α + β − 1)
= Γ̃2(α)Γ̃2(β)

Γ̃2(α + β)
= B̃2(α + β)

whenever �(α) > 1 and �(β) > 1. This completes the computations.

5.3.3. General partitions, real case

In Sect. 5.3.2, we have considered integrating one variable at a time by suitably parti-
tioning the matrices. Would it also be possible to have a general partitioning and integrate
a block of variables at a time, rather than integrating out individual variables? We will
consider the real matrix-variate gamma integral first. Let the p×p positive definite matrix
X be partitioned as follows:

X =
[
X11 X12

X21 X22

]
, X11 being p1 × p1 and X22, p2 × p2,

so that X12 is p1 × p2 with X21 = X′
12 and p1 + p2 = p. Without any loss of generality,

let us assume that p1 ≥ p2. The determinant can be partitioned as follows:

|X|α−p+1
2 = |X11|α−p+1

2 |X22 − X21X
−1
11 X12|α−p+1

2

= |X11|α−p+1
2 |X22|α−p+1

2 |I − X
− 1

2
22 X21X

−1
11 X12X

− 1
2

22 |α−p+1
2 .

Letting

Y = X
− 1

2
22 X21X

− 1
2

11 ⇒ dY = |X22|−
p1
2 |X11|−

p2
2 dX21

for fixed X11 and X22 by making use of Theorem 1.6.4 of Chap. 1 or Theorem 1.18 of
Mathai (1997),

|X|α−p+1
2 dX21 = |X11|α+p2

2 −p+1
2 |X22|α+p1

2 −p+1
2 |I − YY ′|α−p+1

2 dY.

Letting S = YY ′ and integrating out over the Stiefel manifold, we have

dY = π
p1p2
2

Γp2(
p1
2 )

|S|p1
2 −p2+1

2 dS;
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refer to Theorem 2.16 and Remark 2.13 of Mathai (1997) or Theorem 4.2.3 of Chap. 4.
Now, the integral over S gives

∫

O<S<I

|S|p1
2 −P2+1

2 |I − S|α−p1
2 −p2+1

2 dS = Γp2(
p1
2 )Γp2(α − p1

2 )

Γp2(α)
,

for �(α) >
p1−1
2 . Collecting all the factors, we have

|X11|α−p1+1
2 |X22|α−p2+1

2 π
p1p2
2

Γp2(α − p1
2 )

Γp2(α)
.

One can observe from this result that the original determinant splits into functions of X11

and X22. This also shows that if we are considering a real matrix-variate gamma density,
then the diagonal blocks X11 and X22 are statistically independently distributed, where
X11 will have a p1-variate gamma distribution and X22, a p2-variate gamma distribution.
Note that tr(X) = tr(X11) + tr(X22) and hence, the integral over X22 gives Γp2(α) and the
integral over X11, Γp1(α). Thus, the total integral is available as

Γp1(α)Γp2(α)π
p1p2
2

Γp2(α − p1
2 )

Γp2(α)
= Γp(α)

since π
p1p2
2 Γp1(α)Γp2(α − p1

2 ) = Γp(α).
Hence, it is seen that instead of integrating out variables one at a time, we could have

also integrated out blocks of variables at a time and verified the result. A similar procedure
works for real matrix-variate type-1 and type-2 beta distributions, as well as the matrix-
variate gamma and type-1 and type-2 beta distributions in the complex domain.

5.3.4. Methods avoiding integration over the Stiefel manifold

The general method of partitioning matrices previously described involves the integra-
tion over the Stiefel manifold as an intermediate step and relies on Theorem 4.2.3. We will
consider another procedure whereby integration over the Stiefel manifold is not required.
Let us consider the real gamma case first. Again, we begin with the decomposition

|X|α−p+1
2 = |X11|α−p+1

2 |X22 − X21X
−1
11 X12|α−p+1

2 . (5.3.8)

Instead of integrating out X21 or X12, let us integrate out X22. Let X11 be a p1×p1 matrix
and X22 be a p2 × p2 matrix, with p1 + p2 = p. In the above partitioning, we require
that X11 be nonsingular. However, when X is positive definite, both X11 and X22 will
be positive definite, and thereby nonsingular. From the second factor in (5.3.8), X22 >
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X21X
−1
11 X12 as X22 − X21X

−1
11 X12 is positive definite. We will attempt to integrate out

X22 first. Let U = X22 − X21X
−1
11 X12 so that dU = dX22 for fixed X11 and X12. Since

tr(X) = tr(X11) + tr(X22), we have

e−tr(X22) = e−tr(U)−tr(X21X
−1
11 X12).

On integrating out U, we obtain
∫

U>O

|U |α−p+1
2 e−tr(U)dU = Γp2(α − p1

2
), �(α) >

p − 1

2

since α − p+1
2 = α − p1

2 − p2+1
2 . Letting

Y = X21X
− 1

2
11 ⇒ dY = |X11|−

p2
2 dX21

for fixed X11 (Theorem 1.6.1), we have
∫

X21

e−tr(X21X
−1
11 X12)dX21 = |X11|

p2
2

∫

Y

e−tr(YY ′)dY.

But tr(YY ′) is the sum of the squares of the p1p2 elements of Y and each integral is of the
form

∫∞
−∞ e−z2 dz = √

π . Hence,

∫

Y

e−tr(YY ′)dY = π
p1p2
2 .

We may now integrate out X11:
∫

X11>O

|X11|α+p2
2 −p+1

2 e−tr(X11)dX11

=
∫

X11>O

|X11|α−p1+1
2 e−tr(X11)dX11

= Γp1(α).

Thus, we have the following factors:

π
p1p2
2 Γp2(α − p1/2)Γp1(α) = Γp(α)

since
p1(p1 − 1)

4
+ p2(p2 − 1)

4
+ p1p2

2
= p(p − 1)

4
, p = p1 + p2,
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and

Γp1(α)Γp2(α − p1/2) = Γ (α)Γ (α − 1/2) · · · Γ (α − (p1 − 1)/2)Γp2(α − (p1)/2)

= Γ (α) · · · Γ (α − (p1 + p2 − 1)/2).

Hence the result. This procedure avoids integration over the Stiefel manifold and does not
require that p1 ≥ p2. We could have integrated out X11 first, if needed. In that case, we
would have used the following expansion:

|X|α−p+1
2 = |X22|α−p+1

2 |X11 − X12X
−1
22 X21|α−p+1

2 .

Wewould have then proceeded as before by integrating outX11 first and would have ended
up with

π
p1p2
2 Γp1(α − p2/2)Γp2(α) = Γp(α), p = p1 + p2.

Note 5.3.1: If we are considering a real matrix-variate gamma density, such as the
Wishart density, then from the above procedure, observe that after integrating out X22,

the only factor containing X21 is the exponential function, which has the structure of a
matrix-variate Gaussian density. Hence, for a given X11, X21 is matrix-variate Gaussian
distributed. Similarly, for a given X22, X12 is matrix-variate Gaussian distributed. Further,
the diagonal blocks X11 and X22 are independently distributed.

The same procedure also applies for the evaluation of the gamma integrals in the com-
plex domain. Since the steps are parallel, they will not be detailed here.

5.3.5. Arbitrary moments of the determinants, real gamma and beta matrices

Let the p × p real positive definite matrix X have a real matrix-variate gamma density
with the parameters (α, B > O). Then for an arbitrary h, we can evaluate the h-th moment
of the determinant of X with the help of the matrix-variate gamma integral, namely,

∫

X>O

|X|α−p+1
2 e−tr(BX)dX = |B|−αΓp(α). (i)

By making use of (i), we can evaluate the h-th moment in a real matrix-variate gamma
density with the parameters (α, B > O) by considering the associated normalizing con-
stant. Let u1 = |X|. Then, the moments of u1 can be obtained by integrating out over the
density of X:
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E[u1]h = |B|α
Γp(α)

∫

X>O

uh
1|X|α−p+1

2 e−tr(BX)dX

= |B|α
Γp(α)

∫

X>O

|X|α+h−p+1
2 e−tr(BX)dX

= |B|α
Γp(α)

Γp(α + h)|B|−(α+h), �(α + h) >
p − 1

2
.

Thus,

E[u1]h = |B|−hΓp(α + h)

Γp(α)
, �(α + h) >

p − 1

2
.

This is evaluated by observing that when E[u1]h is taken, α is replaced by α + h in
the integrand and hence, the answer is obtained from equation (i). The same procedure
enables one to evaluate the h-th moment of the determinants of type-1 beta and type-2
beta matrices. Let Y be a p × p real positive definite matrix having a real matrix-variate
type-1 beta density with the parameters (α, β) and u2 = |Y |. Then, the h-th moment of Y

is obtained as follows:

E[u2]h = Γp(α + β)

Γp(α)Γp(β)

∫

O<Y<I

uh
2|Y |α−p+1

2 |I − Y |β−p+1
2 dY

= Γp(α + β)

Γp(α)Γp(β)

∫

O<Y<I

|Y |α+h−p+1
2 |I − Y |β−p+1

2 dY

= Γp(α + β)

Γp(α)Γp(β)

Γp(α + h)Γp(β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
,

= Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
.

In a similar manner, let u3 = |Z| where Z has a p × p real matrix-variate type-2 beta
density with the parameters (α, β). In this case, take α +β = (α +h)+ (β −h), replacing
α by α + h and β by β − h. Then, considering the normalizing constant of a real matrix-
variate type-2 beta density, we obtain the h-th moment of u3 as follows:

E[u3]h = Γp(α + h)

Γp(α)

Γp(β − h)

Γp(β)
, �(α + h) >

p − 1

2
, �(β − h) >

p − 1

2
.

Relatively few moments will exist in this case, as �(α + h) >
p−1
2 implies that �(h) >

−�(α) + p−1
2 and �(β − h) >

p−1
2 means that �(h) < �(β) − p−1

2 . Accordingly, only

moments in the range −�(α)+ p−1
2 < �(h) < �(β)− p−1

2 will exist. We can summarize



Matrix-Variate Gamma and Beta Distributions 319

the above results as follows: When X is distributed as a real p × p matrix-variate gamma
with the parameters (α, B > O),

E|X|h = |B|−hΓp(α + h)

Γp(α)
, �(α) >

p − 1

2
. (5.3.9)

When Y has a p×p real matrix-variate type-1 beta density with the parameters (α, β) and
if u2 = |Y | then

E[u2]h = Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
. (5.3.10)

When the p×p real positive definite matrix Z has a real matrix-variate type-2 beta density
with the parameters (α, β), then letting u3 = |Z|,

E[u3]h = Γp(α + h)

Γp(α)

Γp(β − h)

Γp(β)
, − �(α) + p − 1

2
< �(h) < �(β) − p − 1

2
. (5.3.11)

Let us examine (5.3.9):

E|X|h = |B|−hΓp(α + h)

Γp(α)

= |B|−hΓ (α + h)

Γ (α)

Γ (α − 1
2 + h)

Γ (α − 1
2)

. . .
Γ (α − p−1

2 + h)

Γ (α − p−1
2 )

= E[xh
1 ]E[xh

2 ] · · · E[xh
p]

where xj is a real scalar gamma random variable with shape parameter α − j−1
2 and scale

parameter λj where λj > 0, j = 1, . . . , p are the eigenvalues of B > O by observing
that the determinant is the product and trace is the sum of the eigenvalues λ1, . . . , λp. Fur-
ther, x1, .., xp, are independently distributed. Hence, structurally, we have the following
representation:

|X| =
p∏

j=1

xj (5.3.12)

where xj has the density

f1j (xj ) = λ
α− j−1

2
j

Γ (α − j−1
2 )

x
α− j−1

2 −1
j e−λj xj , 0 ≤ xj < ∞,
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for �(α) >
j−1
2 , λj > 0 and zero otherwise. Similarly, when the p × p real positive

definite matrix Y has a real matrix-variate type-1 beta density with the parameters (α, β),
the determinant, |Y |, has the structural representation

|Y | =
p∏

j=1

yj (5.3.13)

where yj is a real scalar type-1 beta random variable with the parameter (α − j−1
2 , β)

for j = 1, . . . , p. When the p × p real positive definite matrix Z has a real matrix-
variate type-2 beta density, then |Z|, the determinant of Z, has the following structural
representation:

|Z| =
p∏

j=1

zj (5.3.14)

where zj has a real scalar type-2 beta density with the parameters (α − j−1
2 , β − j−1

2 ) for
j = 1, . . . , p.

Example 5.3.2. Consider a real 2× 2 matrix X having a real matrix-variate distribution.
Derive the density of the determinant |X| ifX has (a) a gamma distribution with the param-
eters (α, B = I ); (b) a real type-1 beta distribution with the parameters (α = 3

2 , β = 3
2);

(c) a real type-2 beta distribution with the parameters (α = 3
2 , β = 3

2).

Solution 5.3.2. We will derive the density in these three cases by using three different
methods to illustrate the possibility of making use of various approaches for solving such
problems. (a) Let u1 = |X| in the gamma case. Then for an arbitrary h,

E[uh
1] = Γp(α + h)

Γp(α)
= Γ (α + h)Γ (α + h − 1

2)

Γ (α)Γ (α − 1
2)

, �(α) >
1

2
.

Since the gammas differ by 1
2 , they can be combined by utilizing the following identity:

Γ (mz) = (2π)
1−m
2 mmz− 1

2Γ (z)Γ
(
z + 1

m

) · · · Γ (z + m − 1

m

)
, m = 1, 2, . . . , (5.3.15)

which is the multiplication formula for gamma functions. For m = 2, we have the dupli-
cation formula:

Γ (2z) = (2π)−
1
2 22z−

1
2Γ (z)Γ (z + 1/2).

Thus,
Γ (z)Γ (z + 1/2) = π

1
2 21−2zΓ (2z).
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Now, by taking z = α − 1
2 +h in the numerator and z = α − 1

2 in the denominator, we can
write

E[uh
1] = Γ (α + h)Γ (α + h − 1

2)

Γ (α)Γ (α − 1
2)

= Γ (2α − 1 + 2h)

Γ (2α − 1)
2−2h.

Accordingly,

E[(4u1)]h = Γ (2α − 1 + 2h)

Γ (2α − 1)
⇒ E[2u

1
2
1 ]2h = Γ (2α − 1 + 2h)

Γ (2α − 1)
.

This shows that v = 2u
1
2
1 has a real scalar gamma distribution with the parameters (2α −

1, 1) whose density is

f (v) dv = v(2α−1)−1

Γ (2α − 1)
e−vdv = (2u

1
2
1 )2α−2

Γ (2α − 1)
e−2u

1
2
1 d(2u

1
2
1 )

= 22α−2u
α− 1

2−1
1

Γ (2α − 1)
e−2u

1
2
1 du1.

Hence the density of u1, denoted by f1(u1), is the following:

f1(u1) = 22α−2uα− 1
2−1

Γ (2α − 1)
e−2u

1
2
, 0 ≤ u1 < ∞

and zero elsewhere. It can easily be verified that f1(u1) is a density.
(b) Let u2 = |X|. Then for an arbitrary h, α = 3

2 and β = 3
2 ,

E[uh
2] = Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)

= Γ (3)Γ (52)

Γ (32)Γ (22)

Γ (32 + h)Γ (1 + h)

Γ (3 + h)Γ (52 + h)

= 3
{ 1

(2 + h)(1 + h)(32 + h)

}
= 3

{ 2

2 + h
+ 2

1 + h
− 4

3
2 + h

}
,

the last expression resulting from an application of the partial fraction technique. This
results from h-th moment of the distribution of u2, whose density which is

f2(u2) = 6{1 + u2 − 2u
1
2
2 }, 0 ≤ u2 ≤ 1,

and zero elsewhere, is readily seen to be bona fide.
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(c) Let the density u3 = |X| be denoted by f3(u3). The Mellin transform of f3(u3), with
Mellin parameter s, is

E[us−1
3 ] = Γp(α + s − 1)

Γp(α)

Γp(β − s + 1)

Γp(β)
= Γ2(

3
2 + s − 1)

Γ2(
3
2)

Γ2(
3
2 − s + 1)

Γ2(
3
2)

= 1

[Γ (3/2)Γ (1)]2Γ (1/2 + s)Γ (s)Γ (5/2 − s)Γ (2 − s),

the corresponding density being available by taking the inverse Mellin transform, namely,

f3(u3) = 4

π

1

2πi

∫ c+i∞

c−i∞
Γ (s)Γ (s + 1/2)Γ (5/2 − s)Γ (2 − s)u−s

3 ds (i)

where i = √
(−1) and c in the integration contour is such that 0 < c < 2. The integral in

(i) is available as the sum of residues at the poles of Γ (s)Γ (s + 1
2) for 0 ≤ u3 ≤ 1 and the

sum of residues at the poles of Γ (2 − s)Γ (52 − s) for 1 < u3 < ∞. We can also combine
Γ (s) and Γ (s + 1

2) as well as Γ (2 − s) and Γ (52 − s) by making use of the duplication
formula for gamma functions. We will then be able to identify the functions in each of

the sectors, 0 ≤ u3 ≤ 1 and 1 < u3 < ∞. These will be functions of u
1
2
3 as done in the

case (a). In order to illustrate the method relying on the inverse Mellin transform, we will
evaluate the density f3(u3) as a sum of residues. The poles of Γ (s)Γ (s + 1

2) are simple
and hence two sums of residues are obtained for 0 ≤ u3 ≤ 1. The poles of Γ (s) occur at
s = −ν, ν = 0, 1, . . . , and those of Γ (s + 1

2) occur at s = −1
2 − ν, ν = 0, 1, . . .. The

residues and the sum thereof will be evaluated with the help of the following two lemmas.

Lemma 5.3.1. Consider a function Γ (γ + s)φ(s)u−s whose poles are simple. The
residue at the pole s = −γ − ν, ν = 0, 1, . . ., denoted by Rν , is given by

Rν = (−1)ν

ν! φ(−γ − ν)uγ+ν.

Lemma 5.3.2. When Γ (δ) and Γ (δ − ν) are defined

Γ (δ − ν) = (−1)νΓ (δ)

(−δ + 1)ν

where, for example, (a)ν = a(a +1) · · · (a +ν −1), (a)0 = 1, a 
= 0, is the Pochhammer
symbol.
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Observe that Γ (α) is defined for all α 
= 0, −1, −2, . . . , and that an integral represen-
tation requires �(α) > 0. As well, Γ (α + k) = Γ (α)(α)k, k = 1, 2, . . . .. With the help
of Lemmas 5.3.1 and 5.3.2, the sum of the residues at the poles of Γ (s) in the integral in
(i), excluding the constant 4

π
, is the following:

∞∑

ν=0

(−1)ν

ν! Γ
(1
2

− ν
)
Γ
(5
2

+ ν
)
Γ (2 + ν)

=
∞∑

ν=0

(−1)ν

ν! Γ
(1
2

)
Γ
(5
2

)
Γ (2)

(−1)ν

(12)ν

(5
2

)

ν
(2)νu

ν
3

= 3

4
π 2F1

(5
2
, 2; 1

2
; u3

)
, 0 ≤ u3 ≤ 1,

where the 2F1(·) is Gauss’ hypergeometric function. The same procedure consisting of
taking the sum of the residues at the poles s = −1

2 − ν, ν = 0, 1, . . . , gives

−3πu
1
2
3 2F1

(
3,

5

2
; 3
2
; u3

)
, 0 ≤ u3 ≤ 1.

The inverse Mellin transform for the sector 1 < u3 < ∞ is available as the sum of
residues at the poles of Γ (52 − s) and Γ (2 − s) which occur at s = 5

2 + ν and s = 2 + ν

for ν = 0, 1, . . . . The sum of residues at the poles of Γ (52 − s) is the following:

∞∑

ν=0

(−1)ν

ν! Γ
(5
2

+ ν
)
Γ (3 + ν)Γ

(
− 1

2
− ν

)
u

− 5
2−ν

3

= −3πu
− 5

2
3 2F1

(5
2
, 3; 3

2
; 1

u3

)
, 1 < u3 < ∞,

and the sum of the residues at the poles of Γ (2 − s) is given by

3

4
πu−2

3 2F1

(
2,

5

2
; 1
2
; 1

u3

)
, 1 < u3 < ∞.

Now, on combining all the hypergeometric series and multiplying the result by the constant
4
π
, the final representation of the required density is obtained as

f3(u3) =
⎧
⎨

⎩
3 2F1(

5
2 , 2; 1

2; u3) − 12u
1
2
3 2F1(3, 5

2; 3
2; u3), 0 ≤ u3 ≤ 1,

3u−2
3 2F1(2, 5

2; 1
2; 1

u3
) − 12u

− 5
2

3 2F1(
5
2 , 3; 3

2; 1
u3

), 1 < u3 < ∞.

This completes the computations.
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5.3a.2. Arbitrary moments of the determinants in the complex case

In the complex matrix-variate case, one can consider the absolute value of the deter-
minant, which will be real; however, the parameters will be different from those in the real
case. For example, consider the complex matrix-variate gamma density. If X̃ has a p × p

complex matrix-variate gamma density with the parameters (α, B̃ > O), then the h-th
moment of the absolute value of the determinant of X̃ is the following:

E[|det(X̃)|]h = |det(B̃)|−hΓ̃p(α + h)

Γ̃p(α)

= (λ1 · · · λp)−h

p∏

j=1

Γ (α − (j − 1) + h)

Γ (α − (j − 1))
=

p∏

j=1

E[x̃j ]h,

that is, | det(X̃)| has the structural representation
|det(X̃)| = x̃1x̃2 · · · x̃p, (5.3a.8)

where the x̃j is a real scalar gamma random variablewith the parameters (α−(j−1), λj ),
j = 1, . . . , p, and the x̃j ’s are independently distributed. Similarly, when Ỹ is a p × p

complex Hermitian positive definite matrix having a complex matrix-variate type-1 beta
density with the parameters (α, β), the absolute value of the determinant of Ỹ , |det(Ỹ )|,
has the structural representation

|det(Ỹ )| =
p∏

j=1

ỹj (5.3a.9)

where the ỹj ’s are independently distributed, ỹj being a real scalar type-1 beta random
variable with the parameters (α − (j − 1), β), j = 1, . . . , p. When Z̃ is a p × p Her-
mitian positive definite matrix having a complex matrix-variate type-2 beta density with
the parameters (α, β), then for arbitrary h, the h-th moment of the absolute value of the
determinant is given by

E[|det(Z̃)|]h = Γ̃p(α + h)

Γ̃p(α)

Γ̃p(β − h)

Γ̃p(β)

=
{ p∏

j=1

Γ (α − (j − 1) + h)

Γ (α − (j − 1))

}{ p∏

j=1

Γ (β − (j − 1) − h)

Γ (β − (j − 1))

}

=
p∏

j=1

E[z̃j ]h,
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so that the absolute value of the determinant of Z̃ has the following structural representa-
tion:

|det(Z̃)| =
p∏

j=1

z̃j (5.3a.10)

where the z̃j ’s are independently distributed real scalar type-2 beta random variableswith
the parameters (α − (j − 1), β − (j − 1)) for j = 1, . . . , p. Thus, in the real case, the
determinant and, in the complex case, the absolute value of the determinant have struc-
tural representations in terms of products of independently distributed real scalar random
variables. The following is the summary of what has been discussed so far:

Distribution Parameters, real case Parameters, complex case
gamma (α − j−1

2 , λj ) (α − (j − 1), λj )

type-1 beta (α − j−1
2 , β) (α − (j − 1), β)

type-2 beta (α − j−1
2 , β − j−1

2 ) (α − (j − 1), β − (j − 1))

for j = 1, . . . , p. When we consider the determinant in the real case, the parameters differ
by 1

2 whereas the parameters differ by 1 in the complex domain. Whether in the real or
complex cases, the individual variables appearing in the structural representations are real
scalar variables that are independently distributed.

Example 5.3a.2. Even when p = 2, some of the poles will be of order 2 since the
gammas differ by integers in the complex case, and hence a numerical example will not
be provided for such an instance. Actually, when poles of order 2 or more are present, the
series representation will contain logarithms as well as psi and zeta functions. A simple
illustrative example is now considered. Let X̃ be 2 × 2 matrix having a complex matrix-
variate type-1 beta distribution with the parameters (α = 2, β = 2). Evaluate the density
of ũ = |det(X̃)|.
Solution 5.3a.2. Let us take the (s − 1)th moment of ũ which corresponds to the Mellin
transform of the density of ũ, with Mellin parameter s:

E[ũs−1] = Γ̃p(α + s − 1)

Γ̃p(α)

Γ̃p(α + β)

Γ̃p(α + β + s − 1)

= Γ (α + β)Γ (α + β − 1)

Γ (α)Γ (α − 1)

Γ (α + s − 1)Γ (α + s − 2)

Γ (α + β + s − 1)Γ (α + β + s − 2)

= Γ (4)Γ (3)

Γ (2)Γ (1)

Γ (1 + s)Γ (s)

Γ (3 + s)Γ (2 + s)
= 12

(2 + s)(1 + s)2s
.
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The inverse Mellin transform then yields the density of ũ, denoted by g̃(ũ), which is

g̃(ũ) = 12
1

2πi

∫ c+i∞

c−i∞
1

(2 + s)(1 + s)2s
u−sds (i)

where the c in the contour is any real number c > 0. There is a pole of order 1 at s = 0 and
another pole of order 1 at s = −2, the residues at these poles being obtained as follows:

lim
s→0

u−s

(2 + s)(1 + s)2
= 1

2
, lim

s→−2

u−s

(1 + s)2s
= −u2

2
.

The pole at s = −1 is of order 2 and hence the residue is given by

lim
s→−1

{ d

ds

u−s

s(2 + s)

}
= lim

s→−1

{(− ln u)u−s

s(2 + s)
− u−s

s2(2 + s)
− u−s

s(2 + s)2

}

= u ln u − u + u = u ln u.

Hence the density is the following:

g̃(ũ) = 6 − 6u2 + 12u ln u, 0 ≤ u ≤ 1,

and zero elsewhere, where u is real. It can readily be shown that g̃(ũ) ≥ 0 and
∫ 1
0 g̃(ũ)du =

1. This completes the computations.

Exercises 5.3

5.3.1. Evaluate the real p × p matrix-variate type-2 beta integral from first principles or
by direct evaluation by partitioning the matrix as in Sect. 5.3.3 (general partitioning).

5.3.2. Repeat Exercise 5.3.1 for the complex case.

5.3.3. In the 2 × 2 partitioning of a p × p real matrix-variate gamma density with shape
parameter α and scale parameter I , where the first diagonal block X11 is r × r, r < p,
compute the density of the rectangular block X12.

5.3.4. Repeat Exercise 5.3.3 for the complex case.

5.3.5. Let the p × p real matrices X1 and X2 have real matrix-variate gamma densities
with the parameters (α1, B > O) and (α2, B > O), respectively, B being the same for

both distributions. Compute the density of (1): U1 = X
− 1

2
2 X1X

− 1
2

2 , (2): U2 = X
1
2
1 X−1

2 X
1
2
1 ,

(3): U3 = (X1 + X2)
− 1

2X2(X1 + X2)
− 1

2 , when X1 and X2 are independently distributed.
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5.3.6. Repeat Exercise 5.3.5 for the complex case.

5.3.7. In the transformation Y = I − X that was used in Sect. 5.3.1, the Jacobian is
dY = (−1)

p(p+1)
2 dX. What happened to the factor (−1)

p(p+1)
2 ?

5.3.8. Consider X in the (a) 2 × 2, (b) 3 × 3 real matrix-variate case. If X is real
matrix-variate gamma distributed, then derive the densities of the determinant of X in (a)
and (b) if the parameters are α = 5

2 , B = I . Consider X̃ in the (a) 2×2, (b) 3×3 complex
matrix-variate case. Derive the distributions of |det(X̃)| in (a) and (b) if X̃ is complex
matrix-variate gamma distributed with parameters (α = 2 + i, B = I ).

5.3.9. Consider the real cases (a) and (b) in Exercise 5.3.8 except that the distribution
is type-1 beta with the parameters (α = 5

2 , β = 5
2). Derive the density of the determinant

of X.

5.3.10. Consider X̃, (a) 2× 2, (b) 3× 3 complex matrix-variate type-1 beta distributed
with parameters α = 5

2 + i, β = 5
2 − i). Then derive the density of |det(X̃)| in the cases

(a) and (b).

5.3.11. Consider X, (a) 2× 2, (b) 3× 3 real matrix-variate type-2 beta distributed with
the parameters (α = 3

2 , β = 3
2). Derive the density of |X| in the cases (a) and (b).

5.3.12. Consider X̃, (a) 2× 2, (b) 3× 3 complex matrix-variate type-2 beta distributed
with the parameters (α = 3

2, β = 3
2). Derive the density of |det(X̃)| in the cases (a) and

(b).

5.4. The Densities of Some General Structures

Three cases were examined in Section 5.3: the product of real scalar gamma vari-
ables, the product of real scalar type-1 beta variables and the product of real scalar type-2
beta variables, where in all these instances, the individual variables were mutually inde-
pendently distributed. Let us now consider the corresponding general structures. Let xj

be a real scalar gamma variable with shape parameter αj and scale parameter 1 for con-
venience and let the xj ’s be independently distributed for j = 1, . . . , p. Then, letting
v1 = x1 · · · xp,

E[vh
1 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )
, �(αj + h) > 0, �(αj ) > 0. (5.4.1)
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Now, let y1, . . . , yp be independently distributed real scalar type-1 beta random variables
with the parameters (αj , βj ), �(αj ) > 0, �(βj ) > 0, j = 1, . . . , p, and v2 = y1 · · · yp,

E[vh
2 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + h)
(5.4.2)

for �(αj ) > 0, �(βj ) > 0, �(αj + h) > 0, j = 1, . . . , p. Similarly, let z1, . . . , zp,

be independently distributed real scalar type-2 beta random variables with the parameters
(αj , βj ), j = 1, . . . , p, and let v3 = z1 · · · zp. Then, we have

E[vh
3 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )

Γ (βj − h)

Γ (βj )
(5.4.3)

for �(αj ) > 0, �(βj ) > 0, �(αj + h) > 0, �(βj − h) > 0, j = 1, . . . , p. The
corresponding densities of v1, v2, v3, respectively denoted by g1(v1), g2(v2), g3(v3), are
available from the inverse Mellin transforms by taking (5.4.1) to (5.4.3) as the Mellin
transforms of g1, g2, g3 with h = s − 1 for a complex variable s where s is the Mellin
parameter. Then, for suitable contours L, the densities can be determined as follows:

g1(v1) = 1

2πi

∫

L

E[vs−1
1 ]v−s

1 ds, i = √
(−1),

=
{ p∏

j=1

1

Γ (αj )

} 1

2πi

∫

L

{ p∏

j=1

Γ (αj + s − 1)
}
v−s
1 ds

=
{ p∏

j=1

1

Γ (αj )

}
G

p,0
0,p[v1|αj−1, j=1,...,p], 0 ≤ v1 < ∞, (5.4.4)

where �(αj + s − 1) > 0, j = 1, . . . , p, and g1(v1) = 0 elsewhere. This last representa-
tion is expressed in terms of a G-function, which will be defined in Sect. 5.4.1.

g2(v2) = 1

2πi

∫

L

E[vs−1
2 ]v−s

2 ds, i = √
(−1),

=
{ p∏

j=1

Γ (αj + βj )

Γ (αj )

} 1

2πi

∫

L

{ p∏

j=1

Γ (αj + s − 1)

Γ (αj + βj + s − 1)

}
v−s
2 ds

=
{ p∏

j=1

Γ (αj + βj )

Γ (αj )

}
Gp,0

p,p

[
v2
∣∣αj+βj−1, j=1,...,p
αj−1, j=1,...,p

]
, 0 ≤ v2 ≤ 1, (5.4.5)
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where G
p,0
p,p is a G-function, �(αj + s − 1) > 0, �(αj ) > 0, �(βj ) > 0, j = 1, . . . , p,

and g2(v2) = 0 elsewhere.

g3(v3) = 1

2πi

∫

L

E[vs−1
3 ]v−s

3 ds, i = √
(−1),

=
{ p∏

j=1

1

Γ (αj )Γ (βj )

} ∫

L

{ p∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
v−s
3 ds

=
{ p∏

j=1

1

Γ (αj )Γ (βj )

}
Gp,p

p,p

[
v3
∣∣−βj , j=1,...,p
αj−1, j=1,...,p

]
, 0 ≤ v3 < ∞, (5.4.6)

where �(αj ) > 0, �(βj ) > 0, �(αj + s − 1) > 0, �(βj − s + 1) > 0, j = 1, . . . , p,

and g3(v3) = 0 elsewhere.

5.4.1. The G-function

The G-function is defined in terms of the following Mellin-Barnes integral:

G(z) = Gm,n
p,q (z) = Gm,n

p,q

[
z
∣∣a1,...,ap

b1,...,bq

]

= 1

2πi

∫

L

φ(s)z−sds, i = √
(−1)

φ(s) = {∏m
j=1 Γ (bj + s)}{∏n

j=1 Γ (1 − aj − s)}
{∏q

j=m+1 Γ (1 − bj − s)}{∏p

j=n+1 Γ (aj + s)}
where the parameters aj , j = 1, . . . , p, bj , j = 1, . . . , q, can be complex numbers.
There are three general contours L, say L1, L2, L3 where L1 is a loop starting and ending
at −∞ that contains all the poles of Γ (bj + s), j = 1, . . . , m, and none of those of
Γ (1 − aj − s), j = 1, . . . , n. In general L will separate the poles of Γ (bj + s), j =
1, . . . , m, from those of Γ (1 − aj − s), j = 1, . . . , n, which lie on either side of the
contour. L2 is a loop starting and ending at +∞, which encloses all the poles of Γ (1 −
aj − s), j = 1, . . . , n. L3 is the straight line contour c − i∞ to c + i∞. The existence of
the contours, convergence conditions, explicit series forms for general parameters as well
as applications are available in Mathai (1993). G-functions can readily be evaluated with
symbolic computing packages such as MAPLE and Mathematica.

Example 5.4.1. Let x1, x2, x3 be independently distributed real scalar random variables,
x1 being real gamma distributed with the parameters (α1 = 3, β1 = 2), x2, real type-1 beta
distributed with the parameters (α2 = 3

2 + 2i, β2 = 1
2) and x3, real type-2 beta distributed
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with the parameters (α3 = 5
2 + i, β3 = 2− i). Let u1 = x1x2x3, u2 = x1

x2x3
and u3 = x2

x1x3
with densities gj (uj ), j = 1, 2, 3, respectively. Derive the densities gj (uj ), j = 1, 2, 3,
and represent them in terms of G-functions.

Solution 5.4.1. Observe that E
[ 1
xj

]s−1=E[x−s+1
j ], j = 1, 2, 3, and that g1(u1), g2(u2)

and g3(u3) will share the same ‘normalizing constant’, say c, which is the product of the
parts of the normalizing constants in the densities of x1, x2 and x3 that do not cancel out
when determining the moments, respectively denoted by c1, c2 and c3, that is, c = c1 c2 c3.
Thus,

c = 1

Γ (α1)

Γ (α2 + β2)

Γ (α2)

1

Γ (α3)Γ (β3)

= 1

Γ (3)

Γ (2 + 2i)

Γ (32 + 2i)

1

Γ (52 + i)Γ (2 − i)
. (i)

The following are E[xs−1
j ] and E[x−s+1

j ] for j = 1, 2, 3:

E[xs−1
1 ] = c1 2

s−1Γ (2 + s), E[x−s+1
1 ] = c1 2

−s+1Γ (4 − s) (ii)

E[xs−1
2 ] = c2

Γ (12 + 2i + s)

Γ (1 + 2i + s)
, E[x−s+1

2 ] = c2
Γ (52 + 2i − s)

Γ (3 + 2i − s)
(iii)

E[xs−1
3 ] = c3 Γ (3/2 + i + s)Γ (3 − i − s), E[x−s+1

3 ] = c3 Γ (7/2 + i − s)Γ (1 − i + s).

(iv)

Then from (i)-(iv),

E[us−1
1 ] = c 2s−1Γ (2 + s)

Γ (12 + 2i + s)

Γ (1 + 2i + s)
Γ (3/2 + i + s)Γ (3 − i − s).

Taking the inverse Mellin transform and writing the density g1(u1) in terms of a
G-function, we have

g1(u1) = c

2
G

3,1
2,3

[
u1

2

∣∣∣
−2+i, 1+2i

2, 1
2+2i, 3

2+i

]
.

Using (i)-(iv) and rearranging the gamma functions so that those involving +s appear
together in the numerator, we have the following:

E[us−1
2 ] = c

2
2s Γ (2 + s)

Γ (1 − i + s)

Γ (3 + 2i − s)
Γ (5/2 + 2i − s)Γ (7/2 + i − s).

Taking the inverse Mellin transform and expressing the result in terms of a G-function, we
obtain the density g2(u2) as

g2(u2) = c

2
G

2,2
2,3

[
u2

2

∣∣∣
− 3

2−2i, − 5
2−i

2, 1−i, 5
2+2i, −2−2i

]
.
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Using (i)-(iv) and conveniently rearranging the gamma functions involving +s, we have

E[us−1
3 ] = 2 c 2−sΓ (1/2 + 2i + s)Γ (1 − i + s)Γ (4 − s)

Γ (72 + i − s)

Γ (1 + 2i + s)
.

On taking the inverse Mellin transform, the following density is obtained:

g3(u3) = 2 c G
2,2
3,2

[
2u3

∣∣∣
−3, − 5

2−i, 1+2i

1
2+2i, 1−i

]
.

This completes the computations.

5.4.2. Some special cases of the G-function

Certain special cases of the G-function can be written in terms of elementary functions.
Here are some of them:

G
1,0
0,1(z|a) = zae−z, z 
= 0

G
1,1
1,1

[− z
∣∣1−a

0

] = Γ (a)(1 − z)−a, |z| < 1

G
1,0
1,1

[
z
∣∣α+β+1
α

] = 1

Γ (β + 1)
zα(1 − z)β, |z| < 1

G
1,1
1,1

[
azα

∣∣β/α

β/α

] = aβ/α
[ zβ

1 + azα

]
, |azα| < 1

G
1,1
1,1

[
azα

∣∣1−γ+β/α

β/α

]
= Γ (γ )aβ/α

[ zβ

(1 + azα)γ

]
, |azα| < 1

G
1,2
2,2

[
−z2

∣∣1−a, 12−a

0, 12

]
= Γ (2a)

22a
[(1 + z)−2a + (1 − z)−2a], |z| < 1

G
1,2
2,2

[
z
∣∣
1
2−a,1−a

0,−2a

]
= π

1
2

a
[1 + (1 + z)

1
2 ]−2a, |z| < 1

G
1,0
0,2

[z2

4

∣∣
1
4 ,− 1

4

]
=
( 2

πz

) 1
2
sin z

G
1,0
0,2

[z2

4

∣∣− 1
4 , 14

]
=
( 2

πz

) 1
2
cos z

G
1,0
0,2

[
− z2

4

∣∣
0,− 1

2

]
= 2

zπ
1
2

sinhz

G
1,0
0,2

[
− z2

4

∣∣
0, 12

]
= π− 1

2 coshz

G
1,2
2,2

[
± z

∣∣1,1
1,0

]
= ln(1 ± z), |z| < 1
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G
1,p
p,q+1

[
z
∣∣1−a1,...,1−ap

0,1−b1,...1−bq

]

=
[
Γ (a1) · · · Γ (ap)

Γ (b1) · · · Γ (bq)

]

pFq(a1, . . . , ap; b1, . . . , bq;−z)

for p ≤ q or p = q + 1 and |z| < 1.

5.4.3. The H-function

If we have a general structure corresponding to v1, v2 and v3 of Sect. 5.4, say w1, w2

and w3 of the form

w1 = x
δ1
1 x

δ2
2 · · · xδp

p (5.4.7)

w2 = y
δ1
1 y

δ2
2 · · · yδp

p (5.4.8)

w3 = z
δ1
1 z

δ2
2 · · · zδp

p (5.4.9)

for some δj > 0, j = 1, . . . , p the densities of w1, w2 and w3 are then available in
terms of a more general function known as the H-function. It is again a Mellin-Barnes
type integral defined and denoted as follows:

H(z) = Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣(a1,α1),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= 1

2πi

∫

L

ψ(s)z−sds, i = √
(−1),

ψ(s) = {∏m
j=1 Γ (bj + βjs)}{∏n

j=1 Γ (1 − aj − αjs)}
{∏q

j=m+1 Γ (1 − bj − βjs)}{∏p

j=n+1 Γ (aj + αjs)} (5.4.10)

where αj > 0, j = 1, . . . , p, βj > 0, j = 1, . . . , q, are real and positive, aj , j =
1, . . . , p, and bj , j = 1, . . . , q, are complex numbers. Three main contours L1, L2, L3

are utilized, similarly to those described in connection with the G-function. Existence
conditions, properties and applications of this generalized hypergeometric function are
available from Mathai et al. (2010) among other monographs. Numerous special cases can
be expressed in terms of known elementary functions.

Example 5.4.2. Let x1 and x2 be independently distributed real type-1 beta random vari-
ables with the parameters (αj > 0, βj > 0), j = 1, 2, respectively. Let y1 = x

δ1
1 , δ1 > 0,

and y2 = x
δ2
2 , δ2 > 0. Compute the density of u = y1y2.
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Solution 5.4.2. Arbitrary moments of y1 and y2 are available from those of x1 and
x2.

E[xh
j ] = Γ (αj + h)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + h)
, �(αj + h) > 0, j = 1, 2,

E[yh
j ] = E[xδjh

j ] = Γ (αj + δjh)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + δjh)
, �(αj + δjh) > 0,

E[us−1] = E[ys−1
1 ]E[ys−1

2 ]

=
2∏

j=1

Γ (αj + δj (s − 1))

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + δj (s − 1))
. (5.4.11)

Accordingly, the density of u, denoted by g(u), is the following:

g(u) = C
1

2πi

∫

L

{ 2∏

j=1

Γ (αj − δj + δj s)

Γ (αj + βj − δj + δj s)

}
u−sds

= CH
2,0
2,2

[
u

∣∣∣
(α1+β1−δ1, δ1), (α2+β2−δ2, δ2)

(α1−δ1, δ1), (α2−δ2, δ2)

]
,

C =
2∏

j=1

Γ (αj + βj )

Γ (αj )
(5.4.12)

where 0 ≤ u ≤ 1, �(αj − δj + δj s) > 0, �(αj ) > 0, �(βj ) > 0, j = 1, 2 and g(u) = 0
elsewhere.

When α1 = 1 = · · · = αp, β1 = 1 = · · · = βq , the H-function reduces to a
G-function. This G-function is frequently referred to as Meijer’s G-function and the H-
function, as Fox’s H-function.

5.4.4. Some special cases of the H-function

Certain special cases of the H-function are listed next.

H
1,0
0,1 [x|(b,β)] = β−1x

b
β e−x

1
β ;

H
1,1
1,1

[
z|(1−ν,1)

(0,1)

] = Γ (ν)(1 + z)−ν = Γ (ν)1F0(ν; ;−z), |z| < 1;

H
1,0
0,2

[z2

4

∣∣∣
( a+ν

2 , a−ν
2 ,1)

]
= (

ν

2
)aJν(z)
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where the Bessel function

Jν(z) =
∞∑

k=0

(−1)k(z/2)ν+2k

k!Γ (ν + k + 1)
= (z/2)ν

Γ (ν + 1)
0F1( ; 1 + ν;−z2

4
);

H
1,1
1,2

[
z
∣∣(1−a,1)
(0,1),(1−c,1)

]
= Γ (a)

Γ (c)
1F1(a; c;−z);

H
1,2
2,2

[
x
∣∣(1−a,1),(1−b,1)
(0,1),(1−c,1)

]
= Γ (a)Γ (b)

Γ (c)
2F1(a, b; c;−z);

H
1,1
1,2

[
−z
∣∣(1−γ,1)
(0,1),(1−β,α)

]
= Γ (γ )E

γ
α,β(z), �(γ ) > 0,

where the generalized Mittag-Leffler function

E
γ
α,β(z) =

∞∑

k=0

(γ )k

k!
zk

Γ (β + αk)
, �(α) > 0, �(β) > 0,

where Γ (γ ) is defined. For γ = 1, we have E1
α,β(z) = Eα,β(z); when γ = 1, β = 1,

E1
α,1(z) = Eα(z) and when γ = 1 = β = α, we have E1(z) = ez.

H
2,0
0,2

[
z
∣∣
(0,1),( ν

ρ
, 1
ρ
)

]
= ρKν

ρ(z)

where Kν
ρ(z) is Krätzel function

Kν
ρ(z) =

∫ ∞

0
tν−1e−tρ− z

t dt, �(z) > 0.

H
1,0
1,1

[
x

∣∣∣
(α+ 1

2 ,1)

(α,1)

]
= π− 1

2 zα(1 − z)−
1
2 , |z| < 1;
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H
2,0
2,2

[
z

∣∣∣
(α+ 1

3 ,1),(α+ 2
3 ,1)

(α,1),(α,1)

]

= zα
2F1

(2
3
,
1

3
; 1; 1 − z

)
, |1 − z| < 1.

Exercises 5.4

5.4.1. Show that
zγ G

1,0
0,1

[
pzα|β/α

] = pβ/αzβ+γ e−pzα

.

5.4.2. Show that

e−z = G
1,1
1,2

[
z
∣∣1/3
0,1/3

]
= G

2,1
2,3

[
z
∣∣− 1

2 , 12

0, 12 ,− 1
2

]
.

5.4.3. Show that

z
1
3 (1 − z)−

5
6 = Γ (1/6)G

1,0
1,1

[
z
∣∣
1
2
1
3

]
.

5.4.4. Show that
∫ ∞

0
xa−1(1 − x)b−c(1 + x − zx)−bdx

= Γ (a)Γ (c − a)

Γ (c)
2F1(a, b; c; z), |z| < 1, �(c − a) > 0.

5.4.5. Show that

(a1 − a2)H
m,n
p,q

[
z
∣∣(a1,α1),(a2,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= Hm,n
p,q

[
z
∣∣(a1,α1),(a2−1,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

− Hm,n
p,q

[
z
∣∣(a1−1,α1),(a2,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]
, n ≥ 2.

5.5, 5.5a. The Wishart Density

A particular case of the real p × p matrix-variate gamma distribution, known as the
Wishart distribution, is the preeminent distribution in multivariate statistical analysis. In
the general p × p real matrix-variate gamma density with parameters (α, B > O), let
α = m

2 , B = 1
2Σ

−1 and Σ > O; the resulting density is called a Wishart density with
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degrees of freedom m and parameter matrix Σ > O. This density, denoted by fw(W), is
given by

fw(W) = |W |m
2 −p+1

2

2
mp
2 |Σ |m

2 Γp(m
2 )

e− 1
2 tr(Σ−1W), W > O, Σ > O, (5.5.1)

for m ≥ p, and fw(W) = 0 elsewhere. This will be denoted as W ∼ Wp(m, Σ). Clearly,
all the properties discussed in connection with the real matrix-variate gamma density still
hold in this case. Algebraic evaluations of the marginal densities and explicit evaluations
of the densities of sub-matrices will be considered, some aspects having already been
discussed in Sects. 5.2 and 5.2.1.

In the complex case, the density is the following, denoted by f̃w(W̃ ):

f̃w(W̃ ) = |det(W̃ )|m−pe−tr(Σ−1W̃ )

| det(Σ)|mΓ̃p(m)
, W̃ > O, Σ > O, m ≥ p, (5.5a.1)

and f̃w(W̃ ) = 0 elsewhere. This will be denoted as W̃ ∼ W̃p(m, Σ).

5.5.1. Explicit evaluations of the matrix-variate gamma integral, real case

Is it possible to evaluate the matrix-variate gamma integral explicitly by using conven-
tional integration? We will now investigate some aspects of this question.

When theWishart density is derived from samples coming from a Gaussian population,
the basic technique relies on the triangularization process. When Σ = I , that is, W ∼
Wp(m, I), can the integral of the right-hand side of (5.5.1) be evaluated by resorting to
conventional methods or by direct evaluation? We will address this problem by making
use of the technique of partitioning matrices. Let us partition

X =
[
X11 X12

X21 X22

]

where let X22 = xpp so that X21 = (xp1, . . . , xp p−1), X12 = X′
21. Then, on applying a

result from Sect. 1.3, we have

|X|α−p+1
2 = |X11|α−p+1

2 [xpp − X21X
−1
11 X12]α−p+1

2 . (5.5.2)

Note that when X is positive definite, X11 > O and xpp > 0, and the quadratic form
X21X

−1
11 X12 > 0. As well,

[xpp − X21X
−1
11 X12]α−p+1

2 = x
α−p+1

2
pp [1 − x

− 1
2

pp X21X
− 1

2
11 X

− 1
2

11 X12x
− 1

2
pp ]α−p+1

2 . (5.5.3)
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Letting Y = x
− 1

2
pp X21X

− 1
2

11 , then referring to Mathai (1997, Theorem 1.18) or Theo-

rem 1.6.4 of Chap. 1, dY = x
−p−1

2
pp |X11|− 1

2 dX21 for fixed X11 and xpp, . The integral
over xpp gives ∫ ∞

0
x

α+p−1
2 −p+1

2
pp e−xppdxpp = Γ (α), �(α) > 0.

If we let u = YY ′, then from Theorem 2.16 and Remark 2.13 of Mathai (1997) or using
Theorem 4.2.3, after integrating out over the Stiefel manifold, we have

dY = π
p−1
2

Γ (
p−1
2 )

u
p−1
2 −1du.

(Note that n in Theorem 2.16 of Mathai (1997) corresponds to p − 1 and p is 1). Then,
the integral over u gives

∫ 1

0
u

p−1
2 −1(1 − u)α−p+1

2 du = Γ (
p−1
2 )Γ (α − p−1

2 )

Γ (α)
, �(α) >

p − 1

2
.

Now, collecting all the factors, we have

|X11|α+ 1
2−p+1

2 Γ (α)
π

p−1
2

Γ (
p−1
2 )

Γ (
p−1
2 )Γ (α − p−1

2 )

Γ (α)

= |X(1)
11 |α+ 1

2−p+1
2 π

p−1
2 Γ (α − (p − 1)/2)

for �(α) >
p−1
2 . Note that |X(1)

11 | is (p − 1) × (p − 1) and |X11|, after the completion

of the first part of the operations, is denoted by |X(1)
11 |, the exponent being changed to

α + 1
2 − p+1

2 . Now repeat the process by separating xp−1,p−1, that is, by writing

X
(1)
11 =

[
X

(2)
11 X

(2)
12

X
(2)
21 xp−1,p−1

]

.

Here, X
(2)
11 is of order (p − 2) × (p − 2) and X

(2)
21 is of order 1 × (p − 2). As before,

letting u = YY ′ with Y = x
− 1

2
p−1,p−1X

(2)
21 [X(2)

11 ]− 1
2 , dY = x

−p−2
2

p−1,p−1|X(2)
11 |− 1

2 dX(2)
21 . The

integral over the Stiefel manifold gives π
p−2
2

Γ (
p−2
2 )

u
p−2
2 −1du and the factor containing (1− u)

is (1 − u)α+ 1
2−p+1

2 , the integral over u yielding
∫ 1

0
u

p−2
2 −1(1 − u)α+ 1

2−p+1
2 du = Γ (

p−2
2 )Γ (α − p−2

2 )

Γ (α)
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and that over v = xp−1,p−1 giving

∫ 1

0
vα+ 1

2+p−2
2 −p+1

2 e−vdv = Γ (α), �(α) > 0.

The product of these factors is then

|X(2)
11 |α+1−p+1

2 π
p−2
2 Γ (α − (p − 2)/2), �(α) >

p − 2

2
.

Successive evaluations carried out by employing the same procedure yield the exponent
of π as p−1

2 + p−2
2 + · · · + 1

2 = p(p−1)
4 and the gamma product, Γ (α − p−1

2 )Γ (α −
p−2
2 ) · · · Γ (α), the final result being Γp(α). The result is thus verified.

5.5a.1. Evaluation of matrix-variate gamma integrals in the complex case

The matrices and gamma functions belonging to the complex domain will be denoted
with a tilde. As well, in the complex case, all matrices appearing in the integrals will be
p×p Hermitian positive definite unless otherwise stated; as an example, for such a matrix
X, this will be denoted by X̃ > O. The integral of interest is

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃. (5.5a.2)

A standard procedure for evaluating the integral in (5.5a.2) consists of expressing the
positive definite Hermitian matrix as X̃ = T̃ T̃ ∗ where T̃ is a lower triangular matrix with
real and positive diagonal elements tjj > 0, j = 1, . . . , p, where an asterisk indicates the
conjugate transpose. Then, referring to (Mathai (1997, Theorem 3.7) or Theorem 1.6.7 of
Chap. 1, the Jacobian is seen to be as follows:

dX̃ = 2p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃ (5.5a.3)

and then

tr(X̃) = tr(T̃ T̃ ∗)
= t211 + · · · + t2pp + |t̃21|2 + · · · + |t̃p1|2 + · · · + |t̃pp−1|2

and

|det(X̃)|α−pdX̃ = 2p
{ p∏

j=1

t
2α−2j+1
jj

}
dT̃ .
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Now. integrating out over t̃jk for j > k,

∫

t̃jk

e−|t̃jk |2dt̃jk =
∫ ∞

−∞

∫ ∞

−∞
e−(t2jk1+t2jk2)dtjk1 ∧ dtjk2 = π

and ∏

j>k

π = π
p(p−1)

2 .

As well,

2
∫ ∞

0
t
2α−2j+1
jj e−t2jj d tjj = Γ (α − j + 1), �(α) > j − 1,

for j = 1, . . . , p. Taking the product of all these factors then gives

π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1) = Γ̃p(α), �(α) > p − 1,

and hence the result is verified.

An alternative method based on partitioned matrix, complex case

The approach discussed in this section relies on the successive extraction of the diago-
nal elements of X̃, a p × p positive definite Hermitian matrix, all of these elements being
necessarily real and positive, that is, xjj > 0, j = 1, . . . , p. Let

X̃ =
[
X̃11 X̃12

X̃21 xpp

]

where X̃11 is (p − 1) × (p − 1) and

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃
−1
11 X̃12|α−p

and
tr(X̃) = tr(X̃11) + xpp.

Then,

|xpp − X̃21X̃
−1
11 X̃12|α−p = xα−p

pp |1 − x
− 1

2
pp X̃21X̃

− 1
2

11 X̃
− 1

2
11 X̃12x

− 1
2

pp |α−p.

Let

Ỹ = x
− 1

2
pp X̃21X̃

− 1
2

11 ⇒ dỸ = x−(p−1)
pp |det(X̃11)|−1 dX̃21,
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referring to Theorem 1.6a.4 or Mathai (1997, Theorem 3.2(c)) for fixed xpp and X11. Now,
the integral over xpp gives

∫ ∞

0
xα−p+(p−1)

pp e−xppdxpp = Γ (α), �(α) > 0.

Letting u = Ỹ Ỹ ∗, dỸ = up−2 πp−1

Γ (p−1)du by applying Theorem 4.2a.3 or Corollaries 4.5.2
and 4.5.3 of Mathai (1997), and noting that u is real and positive, the integral over u gives

∫ ∞

0
u(p−1)−1(1 − u)α−(p−1)−1du = Γ (p − 1)Γ (α − (p − 1))

Γ (α)
, �(α) > p − 1.

Taking the product, we obtain

|det(X̃(1)
11 )|α+1−p Γ (α)

πp−1

Γ (p − 1)

Γ (p − 1)Γ (α − (p − 1))

Γ (α)

= πp−1Γ (α − (p − 1))|det(X̃(1)
11 )|α+1−p

where X̃
(1)
11 stands for X̃11 after having completed the first set of integrations. In the second

stage, we extract xp−1,p−1, the first (p − 2) × (p − 2) submatrix being denoted by X̃
(2)
11

and we continue as previously explained to obtain |det(X̃(2)
11 )|α+2−pπp−2Γ (α − (p − 2)).

Proceeding successively in this manner, we have the exponent of π as (p −1)+ (p −2)+
· · ·+ 1 = p(p − 1)/2 and the gamma product as Γ (α − (p − 1))Γ (α − (p − 2)) · · · Γ (α)

for �(α) > p − 1. That is,

π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − (p − 1)) = Γ̃p(α).

5.5.2. Triangularization of the Wishart matrix in the real case

Let W ∼ Wp(m, Σ), Σ > O be a p × p matrix having a Wishart distribution with
m degrees of freedom and parameter matrix Σ > O, that is, let W have a density of the
following form for Σ = I :

fw(W) = |W |m
2 −p+1

2 e− 1
2 tr(W)

2
mp
2 Γp(m

2 )
, W > O, m ≥ p, (5.5.4)

and fw(W) = 0 elsewhere. Let us consider the transformation W = T T ′ where T is a
lower triangular matrix with positive diagonal elements. Since W > O, the transformation
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W = T T ′ with the diagonal elements of T being positive is one-to-one. We have already
evaluated the associated Jacobian in Theorem 1.6.7, namely,

dW = 2p
{ p∏

j=1

t
p+1−j

jj

}
dT . (5.5.5)

Under this transformation,

f (W)dW = 1

2
mp
2 Γp(m

2 )

{ p∏

j=1

(t2jj )
m
2 −p+1

2

}
e− 1

2

∑
i≥j t2ij 2p

{ p∏

j=1

t
p+1−j

jj

}
d T

= 1

2
mp
2 Γp(m

2 )
2p
{ p∏

j=1

(t2jj )
m
2 − j

2

}
e− 1

2

∑p
j=1 t2jj− 1

2

∑
i>j t2ij dT . (5.5.6)

In view of (5.5.6), it is evident that tjj , j = 1, . . . , p and the tij ’s, i > j are mutually

independently distributed. The form of the function containing tij , i > j, is e− 1
2 t2ij , and

hence the tij ’s for i > j are mutually independently distributed real standard normal
variables. It is also seen from (5.5.6) that the density of t2jj is of the form

cjy
m
2 − j−1

2 −1
j e− 1

2yj , yj = t2jj ,

which is the density of a real chisquare variable having m − (j − 1) degrees of freedom
for j = 1, . . . , p, where cj is the normalizing constant. Hence, the following result:

Theorem 5.5.1. Let the real p×p positive definite matrix W have a real Wishart density
as specified in (5.5.4) and let W = T T ′ where T = (tij ) is a lower triangular matrix
whose diagonal elements are positive. Then, the non-diagonal elements tij such that i > j

are mutually independently distributed as real standard normal variables, the diagonal
elements t2jj , j = 1, . . . , p, are independently distributed as a real chisquare variables

having m − (j − 1) degrees of freedom for j = 1, . . . , p, and the t2jj ’s and tij ’s are
mutually independently distributed.

Corollary 5.5.1. LetW ∼ Wp(n, σ 2I ), where σ 2 > 0 is a real scalar quantity. LetW =
T T ′ where T = (tij ) is a lower triangular matrix whose diagonal elements are positive.
Then, the tjj ’s are independently distributed for j = 1, . . . , p, the tij ’s, i > j, are
independently distributed, and all tjj ’s and tij ’s are mutually independently distributed,
where t2jj /σ

2 has a real chisquare distribution with m − (j − 1) degrees of freedom for
j = 1, . . . , p, and tij , i > j, has a real scalar Gaussian distribution with mean value

zero and variance σ 2, that is, tij
iid∼ N(0, σ 2) for all i > j .
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5.5a.2. Triangularization of the Wishart matrix in the complex domain

Let W̃ have the following Wishart density in the complex domain:

f̃w(W̃ ) = 1

Γ̃p(m)
|det(W̃ )|m−pe−tr(W̃ ), W̃ > O, m ≥ p, (5.5a.4)

and f̃w(W̃ ) = 0 elsewhere, which is denoted W̃ ∼ W̃p(m, I). Consider the transformation
W̃ = T̃ T̃ ∗ where T̃ is lower triangular whose diagonal elements are real and positive.
The transformation W̃ = T̃ T̃ ∗ is then one-to-one and its associated Jacobian, as given in
Theorem 1.6a.7, is the following:

dW̃ = 2p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃ . (5.5a.5)

Then we have

f̃ (W̃ )dW̃ = 1

Γ̃p(m)

{ p∏

j=1

(t2jj )
m−p

}
e−∑i≥j |t̃ij |22p

{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃

= 1

Γ̃p(m)
2p
{ p∏

j=1

(t2jj )
m−j+ 1

2

}
e−∑p

j=1 t2jj−
∑

i>j |t̃ij |2 dT̃ . (5.5a.6)

In light of (5.5a.6), it is clear that all the tjj ’s and t̃ij ’s are mutually independently dis-
tributed where t̃ij , i > j, has a complex standard Gaussian density and t2jj has a complex
chisquare density with degrees of freedom m − (j − 1) or a real gamma density with the
parameters (α = m − (j − 1), β = 1), for j = 1, . . . , p. Hence, we have the following
result:

Theorem 5.5a.1. Let the complex Wishart density be as specified in (5.5a.4), that is,
W̃ ∼ W̃p(m, I). Consider the transformation W̃ = T̃ T̃ ∗ where T̃ = (t̃ij ) is a lower
triangular matrix in the complex domain whose diagonal elements are real and positive.
Then, for i > j, the t̃ij ’s are standard Gaussian distributed in the complex domain, that is,
t̃ij ∼ Ñ1(0, 1), i > j , t2jj is real gamma distributed with the parameters (α = m − (j −
1), β = 1) for j = 1, . . . , p, and all the tjj ’s and t̃ij ’s, i > j, are mutually independently
distributed.

Corollary 5.5a.1. Let W̃ ∼ W̃p(m, σ 2I ) where σ 2 > 0 is a real positive scalar. Let
T̃ , tjj , t̃ij , i > j , be as defined in Theorem 5.5a.1. Then, t2jj /σ

2 is a real gamma variable

with the parameters (α = m − (j − 1), β = 1) for j = 1, . . . , p, t̃ij ∼ Ñ1(0, σ 2) for all
i > j, and the tjj ’s and t̃ij ’s are mutually independently distributed.
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5.5.3. Samples from a p-variate Gaussian population and the Wishart density

Let the p × 1 real vector Xj be normally distributed, Xj ∼ Np(μ, Σ), Σ > O. Let
X1, . . . , Xn be a simple random sample of size n from this normal population and the
p × n sample matrix be denoted in bold face lettering as X = (X1, X2, . . . , Xn) where
X′

j = (x1j , x2j , . . . , xpj ). Let the sample mean be X̄ = 1
n
(X1 + · · · + Xn) and the matrix

of sample means be denoted by the bold face X̄ = (X̄, . . . , X̄). Then, the p × p sample
sum of products matrix S is given by

S = (X − X̄)(X − X̄)′ = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j )

where x̄r = ∑n
k=1 xrk/n, r = 1, . . . , p, are the averages on the components. It has

already been shown in Sect. 3.5 for instance that the joint density of the sample values
X1, . . . , Xn, denoted by L, can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ
−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ). (5.5.7)

But (X − X̄)J = O, J ′ = (1, . . . , 1), which implies that the columns of (X − X̄) are
linearly related, and hence the elements in (X − X̄) are not distinct. In light of equa-
tion (4.5.17), one can write the sample sum of products matrix S in terms of a p × (n − 1)
matrix Zn−1 of distinct elements so that S = Zn−1Z

′
n−1. As well, according to Theo-

rem 3.5.3 of Chap. 3, S and X̄ are independently distributed. The p × n matrix Z is
obtained through the orthonormal transformation XP = Z, PP ′ = I, P ′P = I where
P is n × n. Then dX = dZ, ignoring the sign. Let the last column of P be pn. We can
specify pn to be 1√

n
J so that Xpn = √

nX̄. Note that in light of (4.5.17), the deleted

column in Z corresponds to
√

nX̄. The following considerations will be helpful to those
who might need further confirmation of the validity of the above statement. Observe that
X − X̄ = X(I − B), with B = 1

n
JJ ′ where J is a n × 1 vector of unities. Since I − B is

idempotent and of rank n − 1, the eigenvalues are 1 repeated n − 1 times and a zero. An
eigenvector, corresponding to the eigenvalue zero, is J normalized or 1√

n
J . Taking this as

the last column pn of P , we have Xpn = √
nX̄. Note that the other columns of P , namely

p1, . . . , pn−1, correspond to the n − 1 orthonormal solutions coming from the equation
BY = Y where Y is a n×1 non-null vector. Hence we can write dZ = dZn−1 ∧dX̄. Now,
integrating out X̄ from (5.5.7), we have

L dZn−1 = c e− 1
2 tr(Σ

−1Zn−1Z
′
n−1)dZn−1, S = Zn−1Z

′
n−1, (5.5.8)
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where c is a constant. Since Zn−1 contains p(n − 1) distinct real variables, we may apply
Theorems 4.2.1, 4.2.2 and 4.2.3, and write dZn−1 in terms of dS as

dZn−1 = π
p(n−1)

2

Γp(n−1
2 )

|S| n−1
2 −p+1

2 dS, n − 1 ≥ p. (5.5.9)

Then, if the density of S is denoted by f (S),

f (S)dS = c1
|S| n−1

2 −p+1
2

Γp(n−1
2 )

e− 1
2 tr(Σ

−1S)dS

where c1 is a constant. From a real matrix-variate gamma density, we have the normalizing
constant, thereby the value of c1. Hence

f (S)dS = |S| n−1
2 −p+1

2

2
(n−1)p

2 |Σ | n−1
2 Γp(n−1

2 )
e− 1

2 tr(Σ−1S)dS (5.5.10)

for S > O, Σ > O, n − 1 ≥ p and f (X) = 0 elsewhere, Γp(·) being the real matrix-
variate gamma given by

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) > (p − 1)/2.

Usually the sample size is taken as N so that N −1 = n the number of degrees of freedom
associated with the Wishart density in (5.5.10). Since we have taken the sample size as n,
the number of degrees of freedom is n − 1 and the parameter matrix is Σ > O. Then S

in (5.5.10) is written as S ∼ Wp(m, Σ), with m = n − 1 ≥ p. Thus, the following result:

Theorem 5.5.2. Let X1, . . . , Xn be a simple random sample of size n from a
Np(μ, Σ), Σ > O. Let Xj, X, X̄, X̄, S be as defined in Sect. 5.5.3. Then, the den-
sity of S is a real Wishart density with m = n − 1 degrees of freedom and parameter
matrix Σ > O, as given in (5.5.10).

5.5a.3. Sample from a complex Gaussian population and the Wishart density

Let X̃j ∼ Ñp(μ̃, Σ), Σ > O, j = 1, . . . , n be independently distributed. Let X̃ =
(X̃1, . . . , X̃n),

¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X) and let S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗

where a * indicates the conjugate transpose. We have already shown in Sect. 3.5a that the
joint density of X̃1, . . . , X̃n, denoted by L̃, can be written as

L̃ = 1

πnp|det(Σ)|n e
− tr(Σ−1S̃)−n(

¯̃
X−μ̃)∗Σ−1(

¯̃
X−μ̃). (5.5a.7)
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Then, following steps parallel to (5.5.7) to (5.5.10), we obtain the density of S̃, denoted by
f̃ (S̃), as the following:

f̃ (S̃)dS̃ = |det(S)|m−p

|det(Σ)|mΓ̃p(m)
e−tr(Σ−1S) dS̃, m = n − 1 ≥ p, (5.5a.8)

for S̃ > O, Σ > O, n − 1 ≥ p, and f̃ (S̃) = 0 elsewhere, where the complex matrix-
variate gamma function being given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1.

Hence, we have the following result:

Theorem 5.5a.2. Let X̃j ∼ Ñp(μ, Σ), Σ > O, j = 1, . . . , n, be independently and

identically distributed. Let X̃,
¯̃
X,

¯̃X, S̃ be as previously defined. Then, S̃ has a complex
matrix-variate Wishart density with m = n − 1 degrees of freedom and parameter matrix
Σ > O, as given in (5.5a.8).

5.5.4. Some properties of the Wishart distribution, real case

If we have statistically independently distributed Wishart matrices with the same pa-
rameter matrix Σ , then it is easy to see that the sum is again a Wishart matrix. This can
be noted by considering the Laplace transform of matrix-variate random variables dis-
cussed in Sect. 5.2. If Sj ∼ Wp(mj , Σ), j = 1, . . . , k, with the same parameter matrix
Σ > O and the Sj ’s are statistically independently distributed, then from equation (5.2.6),
the Laplace transform of the density of Sj is

LSj
(∗T ) = |I + 2Σ∗T |−

mj
2 , I + 2Σ∗T > O, j = 1, . . . , k, (5.5.11)

where ∗T is a symmetric parameter matrix T = (tij ) = T ′ > O with off-diagonal ele-
ments weighted by 1

2 . When Sj ’s are independently distributed, then the Laplace transform
of the sum S = S1 + · · · + Sk is the product of the Laplace transforms:

k∏

j=1

|I+2Σ∗T |−
mj
2 = |I+2Σ∗T |− 1

2 (m1+···+mk) ⇒ S ∼ Wp(m1+· · ·+mk, Σ). (5.5.12)

Hence, the following result:
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Theorems 5.5.3, 5.5a.3. Let Sj ∼ Wp(mj , Σ), Σ > O, j = 1, . . . , k, be statisti-
cally independently distributed real Wishart matrices with m1, . . . , mk degrees of free-
doms and the same parameter matrix Σ > O. Then the sum S = S1 + · · · + Sk is real
Wishart distributed with degrees of freedom m1 + · · · + mk and the same parameter ma-
trix Σ > O, that is, S ∼ Wp(m1 + · · · + mk, Σ), Σ > O. In the complex case, let
S̃j ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O, j = 1, . . . , k, be independently distributed with the
same Σ̃ . Then, the sum S̃ = S̃1 + · · · + S̃k ∼ W̃p(m1 + · · · + mk, Σ̃).

We now consider linear functions of independent Wishart matrices. Let Sj ∼
Wp(mj , Σ), Σ > O, j = 1, . . . k, be independently distributed and Sa = a1S1 + · · · +
akSk where a1, . . . , ak are real scalar constants, then the Laplace transform of the density
of Sa is

LSa
(∗T ) =

k∏

j=1

|I + 2ajΣ∗T |−
mj
2 , I + 2ajΣ∗T > O, j = 1, . . . , k. (i)

The inverse is quite complicated and the corresponding density cannot be easily deter-
mined; moreover, the density is not a Wishart density unless a1 = · · · = ak. The types
of complications occurring can be apprehended from the real scalar case p = 1 which is
discussed in Mathai and Provost (1992). Instead of real scalars, we can also consider p×p

constant matrices as coefficients, in which case the inversion of the Laplace transform will
be more complicated. We can also consider Wishart matrices with different parameter ma-
trices. Let Uj ∼ Wp(mj , Σj), Σj > O, j = 1, . . . , k, be independently distributed and
U = U1 +· · ·+Uk. Then, the Laplace transform of the density of U , denoted by LU(∗T ),
is the following:

LU(∗T ) =
k∏

j=1

|I + 2Σj ∗T |−
mj
2 , I + 2Σj ∗T > O, j = 1, . . . , k. (ii)

This case does not yield a Wishart density as an inverse Laplace transform either, unless
Σ1 = · · · = Σk. In both (i) and (ii), we have linear functions of independent Wishart
matrices; however, these linear functions do not have Wishart distributions.

Let us consider a symmetric transformation on a Wishart matrix S. Let S ∼
Wp(m, Σ), Σ > O and U = ASA′ where A is a p × p nonsingular constant matrix.
Let us take the Laplace transform of the density of U :
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LU(∗T ) = E[e−tr(∗T ′U)] = E[e−tr(∗T ′ASA′)] = E[e−tr(A′∗T AS)]
= E[e−tr[(A′∗T A)′S]] = LS(A′∗T A) = |I + 2Σ(A′∗T A|−m

2

= |I + 2(AΣA′)∗T |−m
2

⇒ U ∼ Wp(m, AΣA′), Σ > O, |A| 
= 0.

Hence we have the following result:

Theorems 5.5.4, 5.5a.4. Let S ∼ Wp(m, Σ > O) and U = ASA′, |A| 
= 0. Then, U ∼
Wp(m, AΣA′), Σ > O, |A| 
= 0, that is, when U = ASA′ where A is a nonsingular
p × p constant matrix, then U is Wishart distributed with degrees of freedom m and
parameter matrix AΣA′. In the complex case, the constant p × p nonsingular matrix
A can be real or in the complex domain. Let S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Then
Ũ = AS̃A∗ ∼ W̃p(m, AΣ̃A∗).

If A is not a nonsingular matrix, is there a corresponding result? Let B be a constant
q×p matrix, q ≤ p, which is of full rank q. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n,
be iid so that we have a simple random sample of size n from a real p-variate Gaussian
population. Let the q × 1 vectors Yj = BXj, j = 1, . . . , n, be iid. Then E[Yj ] =
Bμ, Cov(Yj ) = E[(Yj −E(Yj ))(Yj −E(Yj ))

′] = BE[(Xj −E(Xj))(Xj −E(Xj))
′B ′ =

BΣB ′ which is q × q. As well, Yj ∼ Nq(Bμ, BΣB ′), BΣB ′ > O. Consider the
sample matrix formed from the Yj ’s, namely the q × n matrix Y = (Y1, . . . , Yn) =
(BX1, . . . , BXn) = B(X1, . . . , Xn) = BX where X is the p × n sample matrix from
Xj . Then, the sample sum of products matrix in Y is (Y − Ȳ)(Y − Ȳ)′ = Sy , say, where
the usual notation is utilized, namely, Ȳ = 1

n
(Y1 + · · · + Yn) and Ȳ = (Ȳ , . . . , Ȳ ). Now,

the problem is equivalent to taking a simple random sample of size n from a q-variate real
Gaussian population with mean value vector Bμ and positive definite covariance matrix
BΣB ′ > O. Hence, the following result:

Theorems 5.5.5, 5.5a.5. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, be iid, and S

be the sample sum of products matrix in this p-variate real Gaussian population. Let B

be a q × p constant matrix, q ≤ p, which has full rank q. Then BSB ′ is real Wishart
distributed with degrees of freedom m = n − 1, n being equal to the sample size, and
parameter matrix BΣB ′ > O, that is, BSB ∼ Wq(m, BΣB ′). Similarly, in the complex
case, let B be a q × p, q ≤ p, constant matrix of full rank q, where B may be in the real
or complex domain. Then, BS̃B∗ is Wishart distributed with degrees of freedom m and
parameter matrix BΣ̃B∗, that is, BS̃B∗ ∼ W̃q(m, BΣ̃B∗).
5.5.5. The generalized variance

LetXj, X′
j = (x1j , . . . , xpj ), be a real p×1 vector random variable for j = 1, . . . , n,

and the Xj ’s be iid (independently and identically distributed) as Xj . Let the covariance
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matrix associated with Xj be Cov(Xj ) = E[(Xj −E(Xj))(Xj −E(Xj))
′] = Σ, Σ ≥ O,

for j = 1, . . . , n in the real case and Σ̃ = E[(X̃j − E(X̃j ))(X̃j − E(X̃j ))
∗] in the

complex case, where an asterisk indicates the conjugate transpose. Then, the diagonal
elements in Σ represent the squares of a measure of scatter or variances associated with
the elements x1j , . . . , xpj and the off-diagonal elements in Σ provide the corresponding
measure of joint dispersion or joint scatter in the pair (xrj , xsj ) for all r 
= s. Thus,Σ gives
a configuration of individual and joint squared scatter in all the elements x1j , . . . , xpj . If
we wish to have a single number or single scalar quantity representing this configuration
of individual and joint scatter in the elements x1j , . . . , xpj what should be that measure?
Wilks had taken the determinant of Σ , |Σ |, as that measure and called it the generalized
variance or square of the scatter representing the whole configuration of scatter in all
the elements x1j , . . . , xpj . If there is no scatter in one or in a few elements but there is
scatter or dispersion in all other elements, then the determinant is zero. If the matrix is
singular then the determinant is zero, but this does not mean that there is no scatter in
these elements. Thus, determinant as a measure of scatter or dispersion, violates a very
basic condition that if the proposed measure is zero then there should not be any scatter
in any of the elements or Σ should be a null matrix. Hence, the first author suggested to
take a norm of Σ , ‖Σ‖, as a single measure of scatter in the whole configuration, such
as ‖Σ‖1 = maxi

∑
j |σij | or ‖Σ‖2 = largest eigenvalue of Σ since Σ is at least positive

semi-definite. Note that normality is not assumed in the above discussion.
If S ∼ Wp(m, Σ), Σ > O, what is then the distribution of Wilks’ generalized vari-

ance in S, namely |S|, which can be referred to as the sample generalized variance? Let
us determine the h-th moment of the sample generalized variance |S| for an arbitrary h.
This has already been discussed for real and complex matrix-variate gamma distributions
in Sect. 5.4.1 and can be obtained from the normalizing constant in the Wishart density:

E[|S|h] =
∫
X>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ

−1S)

2
mp
2 Γp(m

2 )|Σ |m
2

dS

= 2ph|Σ |hΓp(m
2 + h)

Γp(m
2 )

, �(
m

2
+ h) >

p − 1

2
. (5.5.13)

Then

E[|(2Σ)−1S|h] = Γp(m
2 + h)

Γp(m
2 )

=
p∏

j=1

Γ (m
2 + h − j−1

2 )

Γ (m
2 − j−1

2 )

= E[yh
1 ]E[yh

2 ] · · · E[yh
p] (5.5.14)

where y1, · · · , yp are independently distributed real scalar gamma random variables with
the parameters (m

2 − j−1
2 , 1), j = 1, . . . , p. In the complex case
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E[|det((Σ̃)−1S̃)]h] = Γ̃p(m + h)

Γ̃p(m)
=

p∏

j=1

Γ̃ (m − (j − 1) + h)

Γ̃ (m − (j − 1))

= E[ỹh
1 ] · · · E[ỹh

p] (5.5a.9)

where ỹ1, . . . , ỹp and independently distributed real scalar gamma random variables with
the parameters (m − (j − 1), 1), j = 1, . . . , p. Note that if we consider E[|Σ−1S|h]
instead of E[|(2Σ)−1S|h] in (5.5.14), then the yj ’s are independently distributed as real
chisquare random variables having m− (j −1) degrees of freedom for j = 1, . . . , p. This
can be stated as a result.

Theorems 5.5.6, 5.5a.6. Let S ∼ Wp(m, Σ), Σ > O, and |S| be the generalized vari-
ance associated with this Wishart matrix or the sample generalized variance in the cor-
responding p-variate real Gaussian population. Then, E[|(2Σ)−1S|h] = E[yh

1 ] · · · E[yh
p]

so that |(2Σ)−1S| has the structural representation |(2Σ)−1S| = y1 · · · yp where the
yj ’s are independently distributed real gamma random variables with the parameters
(m
2 − j−1

2 , 1), j = 1, . . . , p. Equivalently, E[|Σ−1S|h] = E[zh
1] · · · E[zp]h] where

the zj ’s are independently distributed real chisquare random variables having m − (j −
1), j = 1, . . . , p, degrees of freedom. In the complex case, if we let S̃ ∼ W̃p(m, Σ̃), Σ̃ =
Σ̃∗ > O, and |det(S̃)| be the generalized variance, then | det((Σ̃)−1S̃)| has the structural
representation |det((Σ̃)−1S̃)| = ỹ1 · · · ỹp where the ỹj ’s are independently distributed
real scalar gamma random variables with the parameters (m− (j −1), 1), j = 1, . . . , p
or chisquare random variables in the complex domain having m− (j −1), j = 1, . . . , p,

degrees of freedom.

5.5.6. Inverse Wishart distribution

When S ∼ Wp(m, Σ), Σ > O, what is then the distribution of S−1? Since S has
a real matrix-variate gamma distribution, that of its inverse is directly available from the
transformation U = S−1. In light of Theorem 1.6.6, we have dS = |U |−(p+1)dU for the
real case and dX̃ = |det(Ũ Ũ∗)|−pdŨ in the complex domain. Thus, denoting the density
of U by g(U), we have the following result:

Theorems 5.5.7, 5.5a.7. Let the real Wishart matrix S ∼ Wp(m, Σ), Σ > O, and the
Wishart matrix in the complex domain S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Let U = S−1 and
Ũ = S̃−1. Letting the density of S be denoted by g(U) and that of Ũ be denoted by g̃(Ũ ),

g(U) = |U |−m
2 −p+1

2

2
mp
2 Γp(m

2 )|Σ |m
2
e− 1

2 tr(Σ
−1U−1), U > O, Σ > O, (5.5.15)
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and zero elsewhere, and

g̃(Ũ ) = |det(Ũ )|−m−p

Γ̃p(m)|det(Σ̃)|m e− tr(Σ̃−1Ũ−1), Ũ = Ũ∗ > O, Σ̃ = Σ̃∗ > O, (5.5a.10)

and zero elsewhere.

5.5.7. Marginal distributions of a Wishart matrix

At the beginning of this chapter, we had explicitly evaluated real and complex matrix-
variate gamma integrals and determined that the diagonal blocks are again real and com-
plex matrix-variate gamma integrals. Hence, the following results are already available
from the discussion on the matrix-variate gamma distribution. We will now establish the
results via Laplace transforms. Let S be Wishart distributed with degrees of freedom m

and parameter matrix Σ > O, that is, S ∼ Wp(m, Σ), Σ > O, m ≥ p. Let us partition S

and Σ as follows:

S =
[
S11 S12
S21 S22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (i)

(referred to as a 2×2 partitioning) S11, Σ11 being r×r and S22, Σ22 being (p−r)×(p−r)

– refer to Sect. 1.3 for results on partitioned matrices. Let ∗T be a similarly partitioned
p × p parameter matrix with ∗T 11 being r × r where

∗T =
[

∗T 11 O

O O

]
, ∗T 11 = ∗T ′

11 > O. (ii)

Observe that ∗T is a slightly modified parameter matrix T = (tij ) = T ′ where the tij ’s are
weighted with 1

2 for i 
= j to obtain ∗T . Noting that tr(∗T ′S) = tr(∗T ′
11S11), the Laplace

transform of the Wishart density Wp(m, Σ), Σ > O, with ∗T as defined above, is given
by

|I + 2Σ∗T |−m
2 =

∣∣∣∣
Ir + 2Σ11∗T 11 O

2Σ21∗T 11 Ip−r

∣∣∣∣

−m
2 = |Ir + 2Σ11∗T 11|−m

2 . (5.5.16)

Thus, S11 has a Wishart distribution with m degrees of freedom and parameter matrix Σ11.
It can be similarly established that S22 is Wishart distributed with degrees of freedom m

and parameter matrix Σ22. Hence, the following result:

Theorems 5.5.8, 5.5a.8. Let S ∼ Wp(m, Σ), Σ > O. Let S and Σ be partitioned into
a 2 × 2 partitioning as above. Then, the sub-matrices S11 ∼ Wr(m, Σ11), Σ11 > O,

and S22 ∼ Wp−r (m, Σ22), Σ22 > O. In the complex case, let S̃ ∼ W̃p(m, Σ̃), Σ̃ =
Σ̃∗ > O. Letting S̃ be partitioned as in the real case, S̃11 ∼ W̃r(m, Σ̃11) and S̃22 ∼
W̃p−r (m, Σ̃22).
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Corollaries 5.5.2, 5.5a.2. Let S ∼ Wp(m, Σ), Σ > O. Suppose that Σ12 = O in
the 2 × 2 partitioning of Σ . Then S11 and S22 are independently distributed with S11 ∼
Wr(m, Σ11) and S22 ∼ Wp−r (m, Σ22). Consider a k × k partitioning of S and Σ , the
order of the diagonal blocks Sjj and Σjj being pj × pj , p1 + · · · + pk = p. If Σij = O

for all i 
= j, then the Sjj ’s are independently distributed as Wishart matrices on pj

components, with degrees of freedom m and parameter matrices Σjj > O, j = 1, . . . , k.
In the complex case, consider the same type of partitioning as in the real case. Then, if
Σ̃ij = O for all i 
= j , S̃jj , j = 1, . . . , k, are independently distributed as S̃jj ∼
W̃pj

(m, Σ̃jj ), j = 1, . . . , k, p1 + · · · + pk = p.

Let S be a p × p real Wishart matrix with m degrees of freedom and parameter matrix
Σ > O. Consider the following 2 × 2 partitioning of S and Σ−1:

S =
[
S11 S12
S21 S22

]
, S11 being r × r, Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then, the density, denoted by f (S), can be written as

f (S) = |S|m
2 −p+1

2

2
mp
2 Γp(m

2 )|Σ |m
2
e− 1

2 tr(Σ
−1S)

= |S11|m
2 −p+1

2 |S22 − S21S
−1
11 S12|m

2 −p+1
2

2
mp
2 Γp(m

2 )|Σ |m
2

× e− 1
2 [tr(Σ11S11)+tr(Σ22S22)+tr(Σ12S21)+ tr(Σ21S12)].

In this case, dS = dS11 ∧ dS22 ∧ dS12. Let U2 = S22 − S21S
−1
11 S12. Referring to Sect. 1.3,

the coefficient of S11 in the exponent is Σ11 = (Σ11 − Σ12Σ
−1
22 Σ21)

−1. Let U2 = S22 −
S21S

−1
11 S12 so that S22 = U2 +S21S

−1
11 S12 and dS22 = dU2 for fixed S11 and S12. Then, the

function of U2 is of the form

|U2|m
2 −p+1

2 e− 1
2 tr(Σ

22U2).

However,U2 is (p−r)×(p−r) and we can write m
2 −p+1

2 = m−r
2 −p−r+1

2 . ThereforeU2 ∼
Wp−r (m − r, Σ22 − Σ21Σ

−1
11 Σ12) as Σ22 = (Σ22 − Σ21Σ

−1
11 Σ12)

−1. From symmetry,
U1 = S11−S12S

−1
22 S21 ∼ Wr(m−(p−r), Σ11−Σ12Σ

−1
22 Σ21). After replacing S22 in the

exponent by U2 + S21S
−1
11 S12, the exponent, excluding −1

2 , can be written as tr[Σ11S11]+
tr[Σ22S12S

−1
22 S21] + tr[Σ12S21] + tr[Σ21S12]. Let us try to integrate out S12. To this end,

let V = S
− 1

2
11 S12 ⇒ dS12 = |S11|p−r

2 dV for fixed S11. Then the determinant of S11 in f (X)
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becomes |S11|m
2 −p+1

2 × |S11|p−r
2 = |S11|m

2 − r+1
2 . The exponent, excluding −1

2 becomes the
following, denoting it by ρ:

ρ = tr(Σ12V ′S
1
2
11) + tr(Σ21S

1
2
11V ) + tr(Σ22V ′V ). (i)

Note that tr(Σ22V ′V ) = tr(V Σ22V ′) and

(V + C)Σ22(V + C)′ = V Σ22V ′ + V Σ22C′ + CΣ22V + CΣ22C′. (ii)

On comparing (i) and (ii), we have C′ = (Σ22)−1Σ21S
1
2
11. Substituting for C and C′ in

ρ, the term containing S11 in the exponent becomes −1
2 tr(S11(Σ

11 −Σ12(Σ22)−1Σ21) =
−1

2 tr(S11Σ
−1
11 ). Collecting the factors containing S11, we have S11 ∼ Wr(m, Σ11) and

from symmetry, S22 ∼ Wp−r (m, Σ22). Since the density f (S) splits into a function of

U2, S11 and S
− 1

2
11 S12, these quantities are independently distributed. Similarly, U1, S22 and

S
− 1

2
22 S21 are independently distributed. The exponent of |U1| is m

2 −p+1
2 = (m

2 −p−r
2 )− r+1

2 .
Observing that U1 is r × r , we have the density of U1 = S11 −S12S

−1
22 S21 as a real Wishart

density on r components, with degrees of freedom m − (p − r) and parameter matrix
Σ11 − Σ12Σ

−1
22 Σ21 whose the density, denoted by f1(U), is the following:

f1(U1) = |U1|m−(p−r)
2 − r+1

2

2
r(m−(p−r))

2 Γr(
m−(p−r)

2 )|Σ11 − Σ12Σ
−1
22 Σ21|m−(p−r)

2

e− 1
2 tr[U1(Σ11−Σ12Σ

−1
22 Σ21)

−1].

(iii)
A similar expression can be obtained for the density of U2. Thus, the following result:

Theorems 5.5.9, 5.5a.9. Let S ∼ Wp(m, Σ), Σ > O, m ≥ p. Consider the 2 × 2
partitioning of S as specified above, S11 being r × r . Let U1 = S11 − S12S

−1
22 S21. Then,

U1 ∼ Wr(m − (p − r), Σ11 − Σ12Σ
−1
22 Σ21). (5.5.17)

In the complex case, let S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Consider the same partitioning
as in the real case and let S̃11 be r × r . Then, letting Ũ1 = S̃11 − S̃12S̃

−1
22 S̃21, Ũ1 is Wishart

distributed as
Ũ1 ∼ W̃r(m − (p − r), Σ̃11 − Σ̃12Σ̃

−1
22 Σ̃21). (5.5a.11)

A similar density is obtained for Ũ2 = S̃22 − S̃21S̃
−1
11 S̃12.
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Example 5.5.1. Let the 3 × 3 matrix S ∼ W3(5, Σ), Σ > O. Determine the distribu-
tions of Y1 = S22 − S21S

−1
11 S12, Y2 = S22 and Y3 = S11 where

Σ =
⎡

⎣
2 −1 0

−1 3 1
0 1 3

⎤

⎦ =
[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 =

[
2 −1

−1 3

]
, S =

[
S11 S12
S21 S22

]

with S11 being 2 × 2.

Solution 5.5.1. Let the densities of Yj be denoted by fj (Yj ), j = 1, 2, 3. We need the
following matrix, denoted by B:

B = Σ22 − Σ21Σ
−1
11 Σ12 = 3 − [0, 1]

[1
5

] [3 1
1 2

] [
0
1

]

= 3 − 2

5
= 13

5
.

From our usual notations, Y1 ∼ Wp−r (m − r, B). Observing that Y1 is a real scalar, we
denote it by y1, its density being given by

f1(y1) = y
m−r
2 − (p−r)+1

2
1

2
(m−r)(p−r)

2 |B|m−r
2 Γ (m−r

2 )
e− 1

2 tr(B−1y1)

= y
3
2−1
1 e− 5

26y1

2
3
2 (13/5)

3
2Γ (32)

, 0 ≤ y1 < ∞,

and zero elsewhere. Now, consider Y2 which is also a real scalar that will be denoted by y2.
As per our notation, Y2 = S22 ∼ Wp−r (m, Σ22). Its density is then as follows, observing
that Σ22 = (3), |Σ22| = 3 and Σ−1

22 = (13):

f2(y2) = y
m
2 − (p−r)+1

2
2 e− 1

2 tr(Σ−1
22 y2)

2
m(p−r)

2 Γp−r (
m
2 )|Σ22|m

2

= y
5
2−1
2 e− 1

6y2

2
5
2Γ (52)3

5
2

, 0 ≤ y2 < ∞,

and zero elsewhere. Note that Y3 = S11 is 2 × 2. With our usual notations, p = 3, r =
2, m = 5 and |Σ11| = 5; as well,

S11 =
[
s11 s12
s12 s22

]
, Σ−1

11 = 1

5

[
3 1
1 2

]
, tr(Σ−1

11 S11) = 1

5
[3s11 + 2s12 + 2s22].
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Thus, the density of Y3 is

f3(Y3) = |S11|m
2 − r+1

2 e− 1
2 tr(Σ−1

11 S11)

2
mr
2 Γr(

m
2 )|Σ11|m

2

= [s11s22 − s212]e− 1
10 (3s11+2s12+2s22)

(3)(23)(5)
5
2π

, Y3 > O,

and zero elsewhere. This completes the calculations.

Example 5.5a.1. Let the 3 × 3 Hermitian positive definite matrix S̃ have a complex
Wishart density with degrees of freedom m = 5 and parameter matrix Σ > O. Determine
the densities of Ỹ1 = S̃22 − S̃21S̃

−1
11 S̃12, Ỹ2 = S̃22 and Ỹ3 = S̃11 where

S̃ =
[
S̃11 S̃12

S̃21 S̃22

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=
⎡

⎣
3 −i 0
i 2 i

0 −i 2

⎤

⎦

with S11 and Σ11 being 2 × 2.

Solution 5.5a.1. Observe that Σ is Hermitian positive definite. We need the following
numerical results:

B ≡ Σ22 − Σ21Σ
−1
11 Σ12 = 2 − [0, −i]

[1
5

] [ 2 i

−i 3

] [
0
i

]
= 2 − 3

5
= 7

5
;

B−1 = 5

7
, |B| = 7

5
, Σ−1

11 = 1

5

[
2 i

−i 3

]
.

Note that Ỹ1 and Ỹ2 are real scalar quantities which will be denoted as y1 and y2, respec-
tively. Let the densities of y1 and y2 be fj (yj ), j = 1, 2. Then, with our usual notations,
f1(y1) is

f1(y1) = |det(ỹ1)|(m−r)−(p−r)e−tr(B−1ỹ1)

|det(B)|m−r Γ̃p−r (m − r)

= y2
1 e

− 5
7y1

(75)
3Γ (3)

, 0 ≤ y1 < ∞,
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and zero elsewhere, and the density of ỹ2, is

f2(y2) = |det(ỹ2)|m−(p−r)e−tr(Σ−1
22 ỹ2)

|det(Σ22)|mΓ̃p−r (m)

= y4
2 e

− 1
2y2

25Γ (5)
, 0 ≤ y2 < ∞,

and zero elsewhere. Note that Ỹ3 = S̃11 is 2 × 2. Letting

S̃11 =
[
s11 s̃12
s̃∗
12 s22

]
, tr(Σ−1

11 S̃11) = 1

5
[2s11 + 3s22 + is̃∗

12 − is̃12]

and |det(Ỹ3)| = [s11s22 − s̃∗
12s̃12]. With our usual notations, the density of Ỹ3, denoted by

f̃3(Ỹ3), is the following:

f̃3(Ỹ3) = |det(Ỹ3)|m−re−tr(Σ−1
11 Ỹ3)

| det(Σ11)|mΓ̃r(m)

= [s11s22 − s̃12s̃
∗
12]3e− 1

5 [2s11+3s22+is̃∗
12−is̃12]

55Γ̃2(5)
, Ỹ3 > O,

and zero elsewhere, where 55Γ̃2(5) = 3125(144)π . This completes the computations.

5.5.8. Connections to geometrical probability problems

Consider the representation of the Wishart matrix S = Zn−1Z
′
n−1 given in (5.5.8)

where the p rows are linearly independent 1 × (n − 1) vectors. Then, these p linearly
independent rows, taken in order, form a convex hull and determine a p-parallelotope in
that hull, which is determined by the p points in the (n− 1)-dimensional Euclidean space,
n − 1 ≥ p. Then, as explained in Mathai (1999), the volume content of this parallelotope
is v = |Zn−1Z

′
n−1|

1
2 = |S| 12 , where S ∼ Wp(n − 1, Σ), Σ > O. Thus, the volume

content of this parallelotope is the positive square root of the generalized variance |S|. The
distributions of this random volume when the p random points are uniformly, type-1 beta,
type-2 beta and gamma distributed are provided in Chap. 4 of Mathai (1999).

5.6. The Distribution of the Sample Correlation Coefficient

Consider the real Wishart density or matrix-variate gamma in (5.5.10) for p = 2. For
convenience, let us take the degrees of freedom parameter n − 1 = m. Then for p = 2,
f (S) in (5.5.10), denoted by f2(S), is the following, observing that |S| = s11s22(1 − r2)

where r is the sample correlation coefficient:
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f2(S) = f2(s11, s22, r) = [s11s22(1 − r2)]m
2 − 3

2 e− 1
2 tr(Σ−1S)

2m[σ11σ22(1 − ρ2)]m
2 Γ2(

m
2 )

(5.6.1)

where ρ = the population correlation coefficient, |Σ | = σ11σ22 − σ 2
12 = σ11σ22(1 − ρ2),

Γ2(
m
2 ) = π

1
2Γ (m

2 )Γ (m−1
2 ), − 1 < ρ < 1,

Σ−1 = 1

|Σ |Cof(Σ) = 1

σ11σ22(1 − ρ2)

[
σ22 −σ12

−σ12 σ11

]

= 1

1 − ρ2

[
1

σ11
− ρ√

σ11σ22

− ρ√
σ11σ22

1
σ22

]

, σ12 = ρ
√

σ11σ22 , (i)

tr(Σ−1S) = 1

1 − ρ2

{ s11

σ11
− 2ρ

s12√
σ11σ22

+ s22

σ22

}

= 1

1 − ρ2

{ s11

σ11
− 2ρr

√
s11s22√
σ11σ22

+ s22

σ22

}
. (ii)

Let us make the substitution x1 = s11
σ11

, x2 = s22
σ22

. Note that dS = ds11 ∧ ds22 ∧ ds12.
But ds12 = √

s11s22 dr for fixed s11 and s22. In order to obtain the density of r , we must
integrate out x1 and x2, observing that

√
s11s22 is coming from ds12:

∫

s11,s22

f2(S) ds11 ∧ ds22 =
∫

x1>0

∫

x2>0

1

2m(σ11σ22)
m
2 (1 − ρ2)

m
2 π

1
2Γ (m

2 )Γ (m−1
2 )

× (1 − r2)
m−3
2 (σ11σ22x1x2)

m
2 −1e

− 1
2(1−ρ2)

{x1−2rρ
√

x1x2+x2}
σ11σ22 dx1 ∧ dx2. (iii)

For convenience, let us expand

e
− 1

2(1−ρ2)
(−2rρ

√
x1x2) =

∞∑

k=0

( rρ

1 − ρ2

)k x
k
2
1 x

k
2
2

k! . (iv)

Then the part containing x1 gives the integral
∫ ∞

x1=0
x

m
2 −1+ k

2
1 e

− x1
2(1−ρ2) dx1 = [2(1 − ρ2)]m

2 + k
2Γ (

m

2
+ k

2
), m ≥ 2. (v)

By symmetry, the integral over x2 gives [2(1 − ρ2)]m
2 + k

2Γ (m+k
2 ), m ≥ 2. Collecting all

the constants we have

(σ11σ22)
m
2 2m+k(1 − ρ2)m+kΓ 2(m+k

2 )

2m(σ11σ22)
m
2 (1 − ρ2)

m
2 π

1
2Γ (m

2 )Γ (m−1
2 )

= (1 − ρ2)
m
2 +k2kΓ 2(m+k

2 )

π
1
2Γ (m

2 )Γ (m−1
2 )

. (vi)
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We can simplify Γ (m
2 )Γ (m

2 −1
2) by using the duplication formula for gamma functions,

namely

Γ (2z) = π− 1
2 22z−1Γ (z)Γ

(
z + 1

2

)
, z = m − 1

2
, (5.6.2)

Then,

Γ
(m

2

)
Γ
(m − 1

2

)
= Γ (m − 1)π

1
2

2m−2
. (vii)

Hence the density of r , denoted by fr(r), is the following:

fr(r) = 2m−2(1 − ρ2)
m
2

Γ (m − 1)π
(1 − r2)

1
2 (m−3)

∞∑

k=0

(2rρ)k

k! Γ 2
(m + k

2

)
, − 1 ≤ r ≤ 1, (5.6.3)

and zero elsewhere, m = n − 1, n being the sample size.

5.6.1. The special case ρ = 0

In this case, (5.6.3) becomes

fr(r) = 2m−2Γ 2(m
2 )

Γ (m − 1)π
(1 − r2)

m−1
2 −1, − 1 ≤ r ≤ 1, m = n − 1 (5.6.4)

= Γ (m
2 )√

πΓ (m−1
2 )

(1 − r2)
m−1
2 −1, − 1 ≤ r ≤ 1, (5.6.5)

zero elsewhere, m = n − 1 ≥ 2, n being the sample size. The simplification is made
by using the duplication formula and writing Γ (m − 1) = π− 1

2 2m−2Γ (m−1
2 )Γ (m

2 ). For
testing the hypothesis Ho : ρ = 0, the test statistic is r and the null distribution, that
is, the distribution under the null hypothesis Ho is given in (5.6.5). Numerical tables of
percentage points obtained from (5.6.5) are available. If ρ 
= 0, the non-null distribution is
available from (5.6.3); so, if we wish to test the hypothesisHo : ρ = ρo where ρo is a given
quantity, we can compute the percentage points from (5.6.3). It can be shown from (5.6.5)
that for ρ = 0, tm = √

m r√
1−r2

is distributed as a Student-t with m degrees of freedom,

and hence for testing Ho : ρ = 0 against H1 : ρ 
= 0, the null hypothesis can be rejected
if |tm| = √

m
∣∣ r√

1−r2

∣∣ ≥ tm,α
2
where Pr{|tm| ≥ tm,α

2
} = α. For tests that make use of the

Student-t statistic, refer to Mathai and Haubold (2017b). Since the density given in (5.6.5)
is an even function, when ρ = 0, all odd order moments are equal to zero and the even
order moments can easily be evaluated from type-1 beta integrals.
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5.6.2. The multiple and partial correlation coefficients

Let the p × 1 real vector Xj with X′
j = (x1j , . . . , xpj ) have a p-variate distribution

whose mean value E(Xj) = μ and covariance matrix Cov(Xj ) = Σ, Σ > O, where μ is
p × 1 and Σ is p × p, for j = 1, . . . , n, the Xj ’s being iid (independently and identically
distributed). Consider the following partitioning of Σ :

Σ =
[

σ11 Σ12

Σ21 Σ22

]
, σ11 > 0 is 1 × 1, Σ22 > O is (p − 1) × (p − 1), Σ ′

12 = Σ21.

Let

ρ2
1.(2...p) = Σ12Σ

−1
22 Σ21

σ11
. (5.6.6)

Then, ρ1.(2...p) is called the multiple correlation coefficient of x1j on x2j , . . . , xpj . The
sample value corresponding to ρ2

1.(2...p) which is denoted by r21.(2...p) and referred to as the
square of the sample multiple correlation coefficient, is given by

r21.(2...p) = S12S
−1
22 S21

s11
with S =

[
s11 S12
S21 S22

]
(5.6.7)

where s11 is 1×1, S22 is (p−1)×(p−1), S = (X−X̄)(X−X̄)′, X = (X1, . . . , Xn) is the
p×n sample matrix, n being the sample size, X̄ = 1

n
(X1+· · ·+Xn), X̄ = (X̄, . . . , X̄) is

p × n, the Xj ’s, j = 1, . . . , n, being iid according to a given p-variate population having
mean value vector μ and covariance matrix Σ > O, which need not be Gaussian.

5.6.3. Different derivations of ρ1.(2...p)

Consider a prediction problem involving real scalar variables where x1 is predicted by
making use of x2, . . . , xp or linear functions thereof. Let A′

2 = (a2, . . . , ap) be a constant
vector where aj , j = 2, . . . , p are real scalar constants. Letting X′

(2) = (x2, . . . , xp), a
linear function of X(2) is u = A′

2X(2) = a2x2+· · ·+apxp. Then, the mean value and vari-
ance of this linear function areE[u] = E[A′

2X(2)] = A′
2μ(2) and Var(u) = Var(A′

2X(2)) =
A′
2Σ22A2 where μ′

(2) = (μ2, . . . , μp) = E[X(2)] and Σ22 is the covariance matrix asso-
ciated with X(2), which is available from the partitioning of Σ specified in the previous
subsection. Let us determine the correlation between x1, the variable being predicted, and
u, a linear function of the variables being utilized to predict x1, denoted by ρ1,u, that is,

ρ1,u = Cov(x1, u)√
Var(x1)Var(u)

,
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where Cov(x1, u) = E[(x1−E(x1))(u−E(u))] = E[(x1−E(x1))(X(2)−E(X(2)))
′A2] =

Cov(x1, X(2))A2 = Σ12A2, Var(x1) = σ11, Var(u) = A′
2Σ22A2 > O. Letting Σ

− 1
2

22 be

the positive definite square root of Σ22, we can write Σ12A2 = (Σ12Σ
− 1

2
22 )(Σ

1
2
22A2). Then,

on applying Cauchy-Schwartz’ inequality, we may write Σ12A2 = (Σ12Σ
− 1

2
22 ) (Σ

1
2
22A2) ≤√

(Σ12Σ
−1
22 Σ21)(A

′
2Σ22A2). Thus,

ρ1,u ≤
√

(Σ12Σ
−1
22 Σ21)(A

′
2Σ22A2)

√
(σ11)(A

′
2Σ22A2)

=
√

Σ12Σ
−1
22 Σ21√

σ11
, that is,

ρ2
1,u ≤ Σ12Σ

−1
22 Σ21

σ11
= ρ2

1.(2...p). (5.6.8)

This establishes the following result:

Theorem 5.6.1. The multiple correlation coefficient ρ1.(2...p) of x1 on x2, . . . , xp repre-
sents the maximum correlation between x1 and an arbitrary linear function of x2, . . . , xp.

This shows that if we consider the joint variation of x1 and (x2, . . . , xp), this scale-free
joint variation, namely the correlation, is maximum when the scale-free covariance, which
constitutes a scale-free measure of joint variation, is the multiple correlation coefficient.
Correlation measures a scale-free joint scatter in the variables involved, in this case x1 and
(x2, . . . , xp). Correlation does not measure general relationships between the variables;
counterexamples are provided in Mathai and Haubold (2017b). Hence “maximum corre-
lation” should be interpreted as maximum joint scale-free variation or joint scatter in the
variables.

For the next property, we will use the following two basic results on conditional ex-
pectations, referring also to Mathai and Haubold (2017b). Let x and y be two real scalar
random variables having a joint distribution. Then,

E[y] = E[E(y|x)] (i)

whenever the expected values exist, where the inside expectation is taken in the conditional
space of y, given x, for all x, that is, Ey|x(y|x), and the outside expectation is taken in the
marginal space of x, that is Ex(x). The other result states that

Var(y) = Var(E[y|x]) + E[Var(y|x)] (ii)

where it is assumed that the expected value of the conditional variance and the
variance of the conditional expectation exist. Situations where the results stated in
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(i) and (ii) are applicable or not applicable are described and illustrated in Mathai
and Haubold (2017b). In result (i), x can be a scalar, vector or matrix variable.
Now, let us examine the problem of predicting x1 on the basis of x2, . . . , xp. What is
the “best” predictor function of x2, . . . , xp for predicting x1, “best” being construed as in
the minimum mean square sense. If φ(x2, . . . , xp) is an arbitrary predictor, then at given
values of x2, . . . , xp, φ is a constant. Consider the squared distance (x1 − b)2 between x1
and b = φ(x2, . . . , xp|x2, . . . , xp) or b is φ at given values of x2, . . . , xp. Then, “mini-
mum in the mean square sense” means to minimize the expected value of (x1 − b)2 over
all b or minE(x1 − b)2. We have already established in Mathai and Haubold (2017b) that
the minimizing value of b is b = E[x1] at given x2, . . . , xp or the conditional expecta-
tion of x1, given x2, . . . , xp or b = E[x1|x2, . . . , xp]. Hence, this “best” predictor is also
called the regression of x1 on (x2, . . . , xp) or E[x1|x2, . . . , xp] = the regression of x1 on
x2, . . . , xp, or the best predictor of x1 based on x2, . . . , xp. Note that, in general, for any
scalar variable y and a constant a,

E[y − a]2 = E[y − E(y) + E(y) − a]2 = E[(y − E(y)]2 − 2E[(y − E(y))(E(y) − a)]
+ E[(E(y) − a)2] = Var(y) + 0 + [E(y) − a]2. (iii)

As the only term on the right-hand side containing a is [E(y) − a]2, the minimum is
attained when this term is zero since it is a non-negative constant, zero occurring when
a = E[y]. Thus, E[y − a]2 is minimized when a = E[y]. If a = φ(X(2)) at given value
of X(2), then the best predictor of x1, based on X(2) is E[x1|X(2)] or the regression of
x1 on X(2). Let us determine what happens when E[x1|X(2)] is a linear function in X(2).
Let the linear function be b0 + b2x2 + · · · + bpxp = b0 + B ′

2X(2), B ′
2 = (b2, . . . , bp),

where b0, b2, . . . , bp are real constants [Note that only real variables and real constants
are considered in this section]. That is, for some constant b0,

E[x1|X(2)] = b0 + b2x2 + · · · + bpxp. (iv)

Taking expectation with respect to x1, x2, . . . , xp in (iv), it follows from (i) that the left-
hand side becomes E[x1], the right side being b0 + b2E[x2] + · · · + bpE[xp]; subtracting
this from (iv), we have

E[x1|X(2)] − E[x1] = b2(x2 − E[x2]) + · · · + bp(xp − E[xp]). (v)

Multiplying both sides of (v) by xj − E[xj ] and taking expectations throughout, the
right-hand side becomes b2σ2j + · · · + bpσpj where σij = Cov(xi, xj ), i 
= j, and it
is the variance of xj when i = j . The left-hand side is E[(xj − E(xj ))(E[x1|x(2)] −
E(x1))] = E[E(x1xj |X(2))] − E(xj )E(x1) = E[x1xj ] − E(x1)E(xj ) = Cov(x1, xj ).
Three properties were utilized in the derivation, namely (i), the fact that Cov(u, v) =
E[(u − E(u))(v − E(v))] = E[u(v − E(v))] = E[v(u − E(u))] and Cov(u, v) =
E(uv) − E(u)E(v). As well, Var(u) = E[u − E(u)]2 = E[u(u − E(u))] as long as the
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second order moments exist. Thus, we have the following by combining all the linear
equations for j = 2, . . . , p:

Σ21 = Σ22b ⇒ b = Σ−1
22 Σ21 or b′ = Σ12Σ

−1
22 (5.6.9)

when Σ22 is nonsingular, which is the case as it was assumed that Σ22 > O. Now, the best
predictor of x1 based on a linear function of X(2) or the best predictor in the class of all
linear functions of X(2) is

E[x1|X(2)] = b′X(2) = Σ12Σ
−1
22 X(2). (5.6.10)

Let us consider the correlation between x1 and its best linear predictor based on
X(2) or the correlation between x1 and the linear regression of x1 on X(2). Observe
that Cov(x1, Σ12Σ

−1
22 X(2)) = Σ12Σ

−1
22 Cov(X(2), x1) = Σ12Σ

−1
22 Σ21, Σ21 = Σ ′

12.
Consider the variance of the best linear predictor: Var(b′X(2)) = b′Cov(X(2))b =
Σ12Σ

−1
22 Σ22Σ

−1
22 Σ21 = Σ12Σ

−1
22 Σ21. Thus, the square of the correlation between x1 and

its best linear predictor or the linear regression on X(2), denoted by ρ2
x1,b′X(2)

, is the fol-
lowing:

ρ2
x1,b′X(2)

= [Cov(x1, b′X(2))]2
Var(x1) Var(b′X(2))

= Σ12Σ
−1
22 Σ21

σ11
= ρ2

1.(2...p). (5.6.11)

Hence, the following result:

Theorem 5.6.2. The multiple correlation ρ1.(2...p) between x1 and x2, . . . , xp is also the
correlation between x1 and its best linear predictor or x1 and its linear regression on
x2, . . . , xp.

Observe that normality has not been assumed for obtaining all of the above properties.
Thus, the results hold for any population for which moments of order two exist. However,
in the case of a nonsingular normal population, that is, Xj ∼ Np(μ, Σ), Σ > O, it
follows from equation (3.3.5), that for r = 1, E[x1|X(2)] = Σ12Σ

−1
22 X(2) when E[X(2)] =

μ(2) = O and E(x1) = μ1 = 0; otherwise, E[x1|X(2)] = μ1 + Σ12Σ
−1
22 (X(2) − μ(2)).

5.6.4. Distributional aspects of the sample multiple correlation coefficient

From (5.6.7), we have

1 − r21.(2...p) = 1 − S12S
−1
22 S21

s11
= s11 − S12S

−1
22 S21

s11
= |S|

|S22|s11 , (5.6.12)
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which can be established from the expansion of the determinant |S| = |S22| |S11 −
S12S

−1
22 S21|, which is available from Sect. 1.3. In our case S11 is 1 × 1 and hence we

denote it as s11 and then |S11 − S12S
−1
22 S21| is s11 − S12S

−1
22 S21 which is 1 × 1. Let

u = 1 − r21.(2...p) = |S|
|S22|s11 . We can compute arbitrary moments of u by integrating out

over the density of S, namely the Wishart density with m = n − 1 degrees of freedom
when the population is Gaussian, where n is the sample size. That is, for arbitrary h,

E[uh] = 1

2
mp
2 |Σ |m

2 Γp(m
2 )

∫

S>O

uh|S|m
2 −p+1

2 e− 1
2 tr(Σ−1S)dS. (i)

Note that uh = |S|h|S22|−hs−h
11 . Among the three factors |S|h, |S22|−h and s−h

11 , |S22|−h

and s−h
11 are creating problems. We will replace these by equivalent integrals so that the

problematic part be shifted to the exponent. Consider the identities

s−h
11 = 1

Γ (h)

∫ ∞

x=0
xh−1e−s11xdx, x > 0, s11 > 0, �(h) > 0 (ii)

|S22|−h = 1

Γp2(h)

∫

X2>O

|X2|h−p2+1
2 e−tr(S22X2)dX2, (iii)

for X2 > O, S22 > O, �(h) >
p2−1
2 where X2 > O is a p2 × p2 real positive definite

matrix, p2 = p − 1, p1 = 1, p1 + p2 = p. Then, excluding −1
2 , the exponent in (i)

becomes the following:

tr(Σ−1S) + 2s11x + 2tr(S22X2) = tr[S(Σ−1 + 2Z)], Z =
[

x O

O X2

]
. (iv)

Noting that (Σ−1 + 2Z) = Σ−1(I + 2ΣZ), we are now in a position to integrate out S

from (i) by using a real matrix-variate gamma integral, denoting the constant part in (i)
as c1:

E[uh] = c1
1

Γ (h)Γp2(h)

∫ ∞

x=0
xh−1

∫

X2>O

|X2|h−p2+1
2

×
[ ∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr[S(Σ−1+2Z)]dS

]
dx ∧ dX2

= c12
p(m

2 +h)Γp(m/2 + h)

∫ ∞

x=0

∫

X2>O

xh−1|X2|h−p2+1
2 |Σ−1 + 2Z|−(m

2 +h)dx ∧ dX2

= c12p(m
2 +h)

Γ (h)Γp2(h)
Γp(m/2 + h)|Σ |m

2 +h

∫ ∞

x=0

∫

X2>O

xh−1|X2|h−p2+1
2

× |I + 2ΣZ|−(m
2 +h)dx ∧ dX2. (5.6.13)
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The integral in (5.6.13) can be evaluated for a general Σ, which will produce the non-
null density of 1− r21.(2...p)—non-null in the sense that the population multiple correlation
ρ1.(2...p) 
= 0. However, if ρ1.(2...p) = 0, which we call the null case, the determinant part
in (5.6.13) splits into two factors, one depending only on x and the other only involving
X2. So letting Ho: ρ1.(2...p) = 0,

E[uh|Ho] = c12p(m
2 +h)

Γ (h)Γp2(h)
Γp(m/2 + h)|Σ |m

2 +h

∫ ∞

0
xh−1[1 + 2σ11x]−(m

2 +h)dx

×
∫

X2>O

|X2|h−p2+1
2 |I + 2Σ22X2|−(m

2 +h)dX2. (v)

But the x-integral gives
Γ (h)Γ (m

2 )

Γ (m
2 +h)

(2σ11)−h for �(h) > 0 and the X2-integral gives
Γp2(h)Γp2(

m
2 )

Γp2(
m
2 +h)

|2Σ22|−h for �(h) >
p2−1
2 . Substituting all these in (v), we note that all the

factors containing 2 and Σ, σ11, Σ22 cancel out, and then by using the fact that

Γp(m
2 + h)

Γ (m
2 + h)Γp−1(

m
2 + h)

= π
p−1
2

Γ (m
2 − p−1

2 + h)

Γ (m
2 + h)

,

we have the following expression for the h-th null moment of u:

E[uh|Ho] = Γ (m
2 )

Γ (m
2 − p−1

2 )

Γ (m
2 − p−1

2 + h)

Γ (m
2 + h)

, �(h) > −m

2
+ p − 1

2
, (5.6.14)

which happens to be the h-th moment of a real scalar type-1 beta random variable with the
parameters (m

2 − p−1
2 ,

p−1
2 ). Since h is arbitrary, this h-th moment uniquely determines

the distribution, thus the following result:

Theorem 5.6.3. When the population has a p-variate Gaussian distribution with the pa-
rameters μ and Σ > O, and the population multiple correlation coefficient ρ1.(2...p) = 0,
the sample multiple correlation coefficient r1.(2...p) is such that u = 1 − r21.(2...p) is dis-

tributed as a real scalar type-1 beta random variable with the parameters (m
2 − p−1

2 ,
p−1
2 ),

and thereby v = u
1−u

= 1−r21.(2...p)

r21.(2...p)

is distributed as a real scalar type-2 beta random vari-

able with the parameters (m
2 − p−1

2 ,
p−1
2 ) and w = 1−u

u
= r21.(2...p)

1−r21.(2...p)

is distributed as

a real scalar type-2 beta random variable with the parameters (
p−1
2 , m

2 − p−1
2 ) whose

density is

fw(w) = Γ (m
2 )

Γ (m
2 − p−1

2 )Γ (
p−1
2 )

w
p−1
2 −1(1 + w)−(m

2 ), 0 ≤ w < ∞, (5.6.15)

and zero elsewhere.
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As F -tables are available, we may conveniently express the above real scalar type-2
beta density in terms of an F -density. It suffices to make the substitution w = p−1

m−p+1F

where F is a real F random variable having p − 1 and m−p + 1 degrees of freedom, that
is, an Fp−1,m−p+1 random variable, with m = n− 1, n being the sample size. The density
of this F random variable, denoted by fF (F ), is the following:

fF (F ) = Γ (m
2 )

Γ (
p−1
2 )Γ (m

2 − p−1
2 )

( p − 1

m − p + 1

)p−1
2

F
p−1
2 −1

(
1 + p − 1

m − p + 1
F
)−m

2
,

(5.6.16)
whenever 0 ≤ F < ∞, and zero elsewhere. In the above simplification, observe that
(p−1)/2
(m
2 −p−1

2 )
= p−1

m−p+1 . Then, for taking a decision with respect to testing the hypothesis

Ho : ρ1.(2...p) = 0, first compute Fp−1,m−p+1 = m−p+1
p−1 w, w = r21.(2...p)

1−r21.(2...p)

. Then, reject

Ho if the observed Fp−1,m−p+1 ≥ Fp−1,m−p+1,α for a given α. This will be a test at
significance level α or, equivalently, a test whose critical region’s size is α. The non-null
distribution for evaluating the power of this likelihood ratio test can be determined by
evaluating the integral in (5.6.13) and identifying the distribution through the uniqueness
property of arbitrary moments.

Note 5.6.1. By making use of Theorem 5.6.3 as a starting point and exploiting various
results connecting real scalar type-1 beta, type-2 beta, F and gamma variables, one can
obtain numerous results on the distributional aspects of certain functions involving the
sample multiple correlation coefficient.

5.6.5. The partial correlation coefficient

Partial correlation is a concept associated with the correlation between residuals in
two variables after removing the effects of linear regression on a set of other variables.
Consider the real vector X′ = (x1, x2, x3, . . . , xp) = (x1, x2, X

′
3), X′

3 = (x3, . . . , xp)

where x1, . . . , xp are all real scalar variables. Let the covariance matrix of X be Σ > O

and let it be partitioned as follows:

X =
⎡

⎣
x1
x2

X(3)

⎤

⎦ , Σ =
⎡

⎣
σ11 σ12 Σ13

σ21 σ22 Σ23

Σ31 Σ32 Σ33

⎤

⎦ , X(3) being (p − 2) × 1,

where σ11, σ12, σ21, σ22 are 1×1, Σ13 and Σ23 are 1×(p−2), Σ31 = Σ ′
13, Σ32 = Σ ′

23
and Σ33 is (p − 2) × (p − 2). Let E[X] = O without any loss of generality. Consider
the problem of predicting x1 by using a linear function of X(3). Then, the regression of x1

on X(3) is E[x1|X(3)] = Σ13Σ
−1
33 X(3) from (5.6.10), and the residual part, after removing
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this regression from x1 is e1 = x1 − Σ13Σ
−1
33 X(3). Similarly, the linear regression of x2

on X(3) is E[x2|X(3)] = Σ23Σ
−1
33 X(3) and the residual in x2 after removing the effect of

X(3) is e2 = x2 − Σ13Σ
−1
33 X(3). What are then the variances of e1 and e2, the covariance

between e1 and e2, and the scale-free covariance, namely the correlation between e1 and
e2? Since e1 and e2 are all linear functions of the variables involved, we can utilize the
expressions for variances of linear functions and covariance between linear functions, a
basic discussion of such results being given in Mathai and Haubold (2017b). Thus,

Var(e1) = Var(x1) + Var(Σ13Σ
−1
33 X(3)) − 2Cov(x1, Σ13Σ

−1
33 X(3))

= σ11 + Σ13Σ
−1
33 Cov(X(3))Σ

−1
33 Σ31 − 2Cov(x1, Σ−1

33 X(3))

= σ11 + Σ13Σ
−1
33 Σ31 − 2Σ13Σ

−1
33 Σ31 = σ11 − Σ13Σ

−1
33 Σ31. (i)

It can be similarly shown that

Var(e2) = σ22 − Σ23Σ
−1
33 Σ32 (ii)

Cov(e1, e2) = σ12 − Σ13Σ
−1
33 Σ32. (iii)

Then, the correlation between the residuals e1 and e2, which is called the partial correlation
between x1 and x2 after removing the effects of linear regression on X(3) and is denoted
by ρ12.(3...p), is such that

ρ2
12.(3...p) = [σ12 − Σ13Σ

−1
33 Σ32]2

[σ11 − Σ13Σ
−1
33 Σ31][σ22 − Σ23Σ

−1
33 Σ32]

. (5.6.17)

In the above simplifications, we have for instance used the fact that Σ13Σ
−1
33 Σ32 =

Σ23Σ
−1
33 Σ31 since both are real 1 × 1 and one is the transpose of the other.

The corresponding sample partial correlation coefficient between x1 and x2 after re-
moving the effects of linear regression on X(3), denoted by r12.(3...p), is such that:

r212.(3...p) = [s12 − S13S
−1
33 S32]2

[s11 − S13S
−1
33 S31][s22 − S23S

−1
33 S32]

(5.6.18)

where the sample sum of products matrix S is partitioned correspondingly, that is,

S =
⎡

⎣
s11 s12 S13
s21 s22 S23
S31 S32 S33

⎤

⎦ , S33 being (p − 2) × (p − 2), (5.6.19)
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and s11, s12, s21, s22 being 1×1. In all the above derivations, we did not use any assump-
tion of an underlying Gaussian population. The results hold for any general population
as long as product moments up to second order exist. However, if we assume a p-variate
nonsingular Gaussian population, then we can obtain some interesting results on the dis-
tributional aspects of the sample partial correlation, as was done in the case of the sample
multiple correlation. Such results will not be herein considered.

Exercises 5.6

5.6.1. Let the p × p real positive definite matrix W be distributed as W ∼ Wp(m, Σ)

with Σ = I . Consider the partitioning W =
[
W11 W12

W21 W22

]
where W11 is r × r, r < p.

Evaluate explicitly the normalizing constant in the density of W by first integrating out
(1): W11, (2): W22, (3): W12.

5.6.2. Repeat Exercise 5.6.1 for the complex case.

5.6.3. Let the p × p real positive definite matrix W have a real Wishart density with
degrees of freedom m ≥ p and parameter matrix Σ > O. Consider the transformation
W = T T ′ where T is lower triangular with positive diagonal elements. Evaluate the den-
sities of the tjj ’s and the tij ’s, i > j if (1): Σ = diag(σ11, . . . , σpp), (2): Σ > O is a
general matrix.

5.6.4. Repeat Exercise 5.6.3 for the complex case. In the complex case, the diagonal
elements in T are real and positive.

5.6.5. Let S ∼ Wp(m, Σ), Σ > O. Compute the density of S−1 in the real case, and
repeat for the complex case.

5.7. Distributions of Products and Ratios of Matrix-variate Random Variables

In the real scalar case, one can easily interpret products and ratios of real scalar vari-
ables, whether these are random or mathematical variables. However, when it comes to
matrices, products and ratios are to be carefully defined. Let X1 and X2 be independently
distributed p × p real symmetric and positive definite matrix-variate random variables
with density functions f1(X1) and f2(X2), respectively. By definition, f1 and f2 are re-
spectively real-valued scalar functions of the matrices X1 and X2. Due to statistical inde-
pendence of X1 and X2, their joint density, denoted by f (X1, X2), is the product of the
marginal densities, that is, f (X1, X2) = f1(X1)f2(X2). Let us define a ratio and a product

of matrices. Let U2 = X
1
2
2 X1X

1
2
2 and U1 = X

1
2
2 X−1

1 X
1
2
2 be called the symmetric product
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and symmetric ratio of the matrices X1 and X2, where X
1
2
2 denotes the positive definite

square root of the positive definite matrix X2. Let us consider the product U2 first. We
could have also defined a product by interchanging X1 and X2. When it comes to ratios,
we could have considered the ratios X1 to X2 as well as X2 to X1. Nonetheless, we will
start with U1 and U2 as defined above.

5.7.1. The density of a product of real matrices

Consider the transformation U2 = X
1
2
2 X1X

1
2
2 , V = X2. Then, it follows from Theo-

rem 1.6.5 that:

dX1 ∧ dX2 = |V |−p+1
2 dU2 ∧ dV. (5.7.1)

Letting the joint density of U2 and V be denoted by g(U2, V ) and the marginal density of
U2, by g2(U2), we have

f1(X1)f2(X2) dX1 ∧ dX2 = |V |−p+1
2 f1(V

− 1
2U2V

− 1
2 )f2(V ) dU2 ∧ dV

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2U2V

− 1
2 )f2(V )dV, (5.7.2)

g2(U2) being referred to as the density of the symmetric product U2 of the matrices X1 and
X2. For example, letting X1 and X2 be independently distributed two-parameter matrix-
variate gamma random variables with the densities

f3j (Xj ) = |Bj |αj

Γp(αj )
|Xj |αj−p+1

2 e−tr(BjXj ), j = 1, 2, (i)

for Bj > O, Xj > O, �(αj ) >
p−1
2 , j = 1, 2, and zero elsewhere, we have

g2(U2) = c|U2|α1−p+1
2

∫

V >O

|V |α2−α1−p+1
2 e−tr(B2V +B1V

− 1
2 U2V

− 1
2 ) dV, (5.7.3)

where c is the product of the normalizing constants of the densities specified in (i). On
comparing (5.7.3) with the Krätzel integral defined in the real scalar case in Chap. 2,
as well as in Mathai (2012) and Mathai and Haubold (1988, 2011a, 2017,a), it is seen
that (5.7.3) can be regarded as a real matrix-variate analogue of Krätzel’s integral. One
could also obtain the real matrix-variate version of the inverse Gaussian density from the
integrand.
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As another example, let f1(X1) be a real matrix-variate type-1 beta density as pre-
viously defined in this chapter, whose parameters are (γ + p+1

2 , α) with �(α) >
p−1
2 , �(γ ) > −1, its density being given by

f4(X1) = Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )Γp(α)

|X1|γ |I − X1|α−p+1
2 (ii)

for O < X1 < I, �(γ ) > −1, �(α) >
p−1
2 , and zero elsewhere. Letting f2(X2) =

f (X2) be any other density, the density of U2 is then

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2U2V

− 1
2 )f2(V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )Γp(α)

∫

V

|V |−p+1
2 |V − 1

2U2V
− 1

2 |γ |I − V − 1
2U2V

− 1
2 |α−p+1

2 f (V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )

|U2|γ
Γp(α)

∫

V >U2>O

|V |−α−γ |V − U2|α−p+1
2 f (V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )

K−α
2,U2,γ

f (5.7.4)

where

K−α
2,U2,γ

f = |U2|γ
Γp(α)

∫

V >U2>O

|V |−α−γ |V − U2|α−p+1
2 f (V )dV, �(α) >

p − 1

2
, (5.7.5)

is called the real matrix-variate Erdélyi-Kober right-sided or second kind fractional in-
tegral of order α and parameter γ as for p = 1, that is, in the real scalar case, (5.7.5)
corresponds to the Erdélyi-Kober fractional integral of the second kind of order α and pa-
rameter γ . This connection of the density of a symmetric product of matrices to a fractional
integral of the second kind was established by Mathai (2009, 2010) and further papers.

5.7.2. M-convolution and fractional integral of the second kind

Mathai (1997) referred to the structure in (5.7.2) as the M-convolution of a product
where f1 and f2 need not be statistical densities. Actually, they could be any function pro-
vided the integral exists. However, if f1 and f2 are statistical densities, this M-convolution
of a product can be interpreted as the density of a symmetric product. Thus, a physical
interpretation to an M-convolution of a product is provided in terms of statistical den-
sities. We have seen that (5.7.2) is connected to a fractional integral when f1 is a real
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matrix-variate type-1 beta density and f2 is an arbitrary density. From this observation,
one can introduce a general definition for a fractional integral of the second kind in the
real matrix-variate case. Let

f1(X1) = φ1(X1)
|I − X1|α−p+1

2

Γp(α)
, �(α) >

p − 1

2
, (iii)

and f2(X2) = φ2(X2)f (X2) where φ1 and φ2 are specified functions and f is an arbitrary
function. Then, consider the M-convolution of a product, again denoted by g2(U2):

g2(U2) =
∫

V

|V |−p+1
2 φ1(V

− 1
2U2V

− 1
2 )

|I − V − 1
2U2V

− 1
2 |α−p+1

2

Γp(α)

× φ2(V )f (V )dV, �(α) >
p − 1

2
. (5.7.6)

The right-hand side (5.7.6) will be called a fractional integral of the second kind of order α

in the real matrix-variate case. By letting p = 1 and specifying φ1 and φ2, one can obtain
all the fractional integrals of the second kind of order α that have previously been defined
by various authors. Hence, for a general p, one has the corresponding real matrix-variate
cases. For example, on letting φ1(X1) = |X1|γ and φ2(X2) = 1, one has Erdélyi-Kober
fractional integral of the second kind of (5.7.5) in the real matrix-variate case as for p = 1,
it is the Erdélyi-Kober fractional integral of the second kind of order α. Letting φ1(X1) = 1
and φ2(X2) = |X2|α, (5.7.6) simplifies to the following integral, again denoted by g2(U2):

g2(U2) = 1

Γp(α)

∫

V >U2>O

|V − U2|α−p+1
2 f (V )dV. (5.7.7)

For p = 1, (5.7.7) is Weyl fractional integral of the second kind of order α. Accord-
ingly, (5.7.7) is Weyl fractional integral of the second kind in the real matrix-variate
case. For p = 1, (5.7.7) is also the Riemann-Liouville fractional integral of the second
kind of order α in the real scalar case, if there exists a finite upper bound for V . If V is
bounded above by a real positive definite constant matrix B > O in the integral in (5.7.7),
then (5.7.7) is Riemann-Liouville fractional integral of the second kind of order α for the
real matrix-variate case. Connections to other fractional integrals of the second kind can
be established by referring to Mathai and Haubold (2017).

The appeal of fractional integrals of the second kind resides in the fact that they can
be given physical interpretations as the density of a symmetric product when f1 and f2
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are densities or as an M-convolution of products, whether in the scalar variable case or the
matrix-variate case, and that in both the real and complex domains.

5.7.3. A pathway extension of fractional integrals

Consider the following modification to the general definition of a fractional integral of
the second kind of order α in the real matrix-variate case given in (5.7.6). Let

f1(X1) = φ1(X1)
1

Γp(α)
|I − a(1 − q)X1|

η
1−q

−p+1
2 , f2(X2) = φ2(X2)f (X2), (iv)

where �(α) >
p−1
2 and q < 1, and a > 0, η > 0 are real scalar constants. For all q <

1, g2(U2) corresponding to f1(X1) and f2(X2) of (iv) will define a family of fractional
integrals of the second kind. Observe that when X1 and I − a(1 − q)X1 > O, then
O < X1 < 1

a(1−q)
I . However, by writing (1 − q) = −(q − 1) for q > 1, one can switch

into a type-2 beta form, namely, I + a(q − 1)X1 > O for q > 1, which implies that
X1 > O and the fractional nature is lost. As well, when q → 1,

|I + a(q − 1)X1|−
η

q−1 → e−a η tr(X1)

which is the exponential form or gamma density form. In this case too, the fractional nature
is lost. Thus, through q, one can obtain matrix-variate type-1 and type-2 beta families and
a gamma family of functions from (iv). Then q is called the pathway parameter which
generates three families of functions. However, the fractional nature of the integrals is lost
for the cases q > 1 and q → 1. In the real scalar case, x1 may have an exponent and
making use of [1 − (1 − q)xδ

1]α−1 can lead to interesting fractional integrals for q < 1.
However, raising X1 to an exponent δ in the matrix-variate case will fail to produce results
of interest as Jacobians will then take inconvenient forms that cannot be expressed in terms
of the original matrices; this is for example explained in detail in Mathai (1997) for the
case of a squared real symmetric matrix.

5.7.4. The density of a ratio of real matrices

One can define a symmetric ratio in four different ways: X
1
2
2 X−1

1 X
1
2
2 with V = X2 or

V = X1 and X
1
2
1 X−1

2 X
1
2
1 with V = X2 or V = X1. All these four forms will produce

different structures on f1(X1)f2(X2). Since the form U1 that was specified in Sect. 5.7

in terms of X
1
2
2 X−1

1 X
1
2
2 with V = X2 provides connections to fractional integrals of the

first kind, we will consider this one whose density, denoted by g1(U1), is the following

observing that dX1 ∧ dX2 = |V |p+1
2 |U1|−(p+1)dU1 ∧ dV :

g1(U1) =
∫

V

|V |p+1
2 |U1|−(p+1)f1(V

1
2U−1

1 V
1
2 )f2(V )dV (5.7.8)
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provided the integral exists. As in the fractional integral of the second kind in real matrix-
variate case, we can give a general definition for a fractional integral of the first kind in
the real matrix-variate case as follows: Let f1(X1) and f2(X2) be taken as in the case of
fractional integral of the second kind with φ1 and φ2 as preassigned functions. Then

g1(U1) =
∫

V

|V |p+1
2 |U1|−(p+1)φ1(V

1
2U−1

1 V
1
2 )

× 1

Γp(α)
|I − V

1
2U−1

1 V
1
2 |α−p+1

2 φ2(V )f (V )dV, �(α) >
p − 1

2
. (5.7.9)

As an example, letting

φ1(X1) = Γp(γ + α)

Γp(γ )
|X1|γ−p+1

2 and φ2(X2) = 1, �(γ ) >
p − 1

2
,

we have

g1(U1) = Γp(γ + α)

Γp(γ )

|U1|−α−γ

Γp(α)

∫

V <U1

|V |γ |U1 − V |α−p+1
2 f (V )dV

= Γp(γ + α)

Γp(γ )
K−α

1,U1,γ
f (5.7.10)

for �(α) >
p−1
2 , �(γ ) >

p−1
2 , where

K−α
1,U1,γ

f = |U1|−α−γ

Γp(α)

∫

V <U1

|V |γ |U1 − V |α−p+1
2 f (V )dV (5.7.11)

for �(α) >
p−1
2 , �(γ ) >

p−1
2 , is Erdélyi-Kober fractional integral of the first kind of

order α and parameter γ in the real matrix-variate case. Since for p = 1 or in the real
scalar case, K−α

1,u1,γ
f is Erdélyi-Kober fractional integral of order α and parameter γ , the

first author referred to K−α
1,U1,γ

f in (5.7.11) as Erdélyi-Kober fractional integral of the first
kind of order α in the real matrix-variate case.

By specializing φ1 and φ2 in the real scalar case, that is, for p = 1, one can obtain
all the fractional integrals of the first kind of order α that have been previously introduced
in the literature by various authors. One can similarly derive the corresponding results on
fractional integrals of the first kind in the real matrix-variate case. Before concluding this
section, we will consider one more special case. Let

φ1(X1) = |X1|−α−p+1
2 and φ2(X2) = |X2|α.
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In this case, g1(U1) is not a statistical density but it is the M-convolution of a ratio. Under
the above substitutions, g1(U1) of (5.7.9) becomes

g1(U1) = 1

Γp(α)

∫

V <U1

|U1 − V |α−p+1
2 f (V )dV, �(α) >

p − 1

2
. (5.7.12)

For p = 1, (5.7.12) is Weyl fractional integral of the first kind of order α; accordingly
the first author refers to (5.7.12) as Weyl fractional integral of the first kind of order α in
the real matrix-variate case. Since we are considering only real positive definite matrices
here, there is a natural lower bound for the integral or the integral is over O < V < U1.
When there is a specific lower bound, such as O < V , then for p = 1, (5.7.12) is called
the Riemann-Liouville fractional integral of the first kind of order α. Hence (5.7.12) will
be referred to as the Riemann-Liouville fractional integral of the first kind of order α in
the real matrix-variate case.

Example 5.7.1. Let X1 and X2 be independently distributed p × p real positive definite
gamma matrix-variate random variables whose densities are

fj (Xj ) = 1

Γp(αj )
|Xj |αj−p+1

2 e−tr(Xj ), Xj > O, �(αj ) >
p − 1

2
, j = 1, 2,

and zero elsewhere. Show that the densities of the symmetric ratios of matrices U1 =
X

− 1
2

1 X2X
− 1

2
1 and U2 = X

1
2
2 X−1

1 X
1
2
2 are identical.

Solution 5.7.1. Observe that for p = 1 that is, in the real scalar case, both U1 and
U2 are the ratio of real scalar variables x2

x1
but in the matrix-variate case U1 and U2 are

different matrices. Hence, we cannot expect the densities of U1 and U2 to be the same.
They will happen to be identical because of a property called functional symmetry of
the gamma densities. Consider U1 and let V = X1. Then, X2 = V

1
2U1V

1
2 and dX1 ∧

dX2 = |V |p+1
2 dV ∧ dU1. Due to the statistical independence of X1 and X2, their joint

density is f1(X1)f2(X2) and the joint density of U1 and V is |V |p+1
2 f1(V )f2(V

1
2U1V

1
2 ),

the marginal density of U1, denoted by g1(U1), being the following:

g1(U1) = |U1|α2−p+1
2

Γp(α1)Γp(α2)

∫

V >O

|V |α1+α2−p+1
2 e− tr(V +V

1
2 U1V

1
2 )dV.

The exponent of e can be written as follows:

−tr(V )−tr(V
1
2U1V

1
2 )=−tr(V )−tr(V U1)=−tr(V (I+U1))=− tr[(I+U1)

1
2V (I+U1)

1
2 ].
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Letting Y = (I + U1)
1
2V (I + U1)

1
2 ⇒ dY = |I + U1|p+1

2 dV. Then carrying out the
integration in g1(U1), we obtain the following density function:

g1(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α2−p+1

2 |I + U1|−(α1+α2), (i)

which is a real matrix-variate type-2 beta density with the parameters (α2, α1). The original
conditions �(αj ) >

p−1
2 , j = 1, 2, remain the same, no additional conditions being

needed. Now, consider U2 and let V = X2 so that X1 = V
1
2U−1

2 V
1
2 ⇒ dX1 ∧ dX2 =

|V |p+1
2 |U2|−(p+1)dV ∧ dU2. The marginal density of U2 is then:

g2(U2) = |U2|−α1+p+1
2 |U2|−(p+1)

Γp(α1)Γp(α2)

∫

V >O

|V |α1+α2−p+1
2 e−tr[V +V

1
2 U−1

2 V
1
2 ] (ii)

As previously explained, the exponent in (ii) can be simplified to −tr[(I + U−1
2 )

1
2V (I +

U−1
2 )

1
2 ], which once integrated out yields Γp(α1 + α2)|I + U−1

2 |−(α1+α2). Then,

|U2|−α1+p+1
2 |U2|−(p+1)|I + U−1

2 |−(α1+α2) = |U2|α2−p+1
2 |I + U2|−(α1+α2). (iii)

It follows from (i),(ii) and (iii) that g1(U1) = g2(U2). Thus, the densities of U1 and U2 are
indeed one and the same, as had to be proved.

5.7.5. A pathway extension of first kind integrals, real matrix-variate case

As in the case of fractional integral of the second kind, we can also construct a pathway
extension of the first kind integrals in the real matrix-variate case. Let

f1(X1) = φ1(X1)

Γp(α)
|I − a(1 − q)X1|α−p+1

2 , α = η

1 − q
, �(α) >

p − 1

2
, (5.7.13)

and f2(X2) = φ2(X2)f (X2) for the scalar parameters a > 0, η > 0, q < 1. When
q < 1, (5.7.13) remains in the generalized type-1 beta family of functions. However,
when q > 1, f1 switches to the generalized type-2 beta family of functions and when
q → 1, (5.6.13) goes into a gamma family of functions. Since X1 > O for q > 1 and
q → 1, the fractional nature is lost in those instances. Hence, only the case q < 1 is
relevant in this subsection.

For various values of q < 1, one has a family of fractional integrals of the first kind com-
ing from (5.7.13). For details on the concept of pathway, the reader may refer to Mathai
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(2005) and later papers. With the function f1(X1) as specified in (5.7.13) and the cor-
responding f2(X2) = φ2(X2)f (X2), one can write down the M-convolution of a ratio,
g1(U1), corresponding to (5.7.8). Thus, we have the pathway extended form of g1(U1).

5.7a. Density of a Product and Integrals of the Second Kind

The discussion in this section parallels that in the real matrix-variate case. Hence, only
a summarized treatment will be provided. With respect to the density of a product when
f̃1 and f̃2 are matrix-variate gamma densities in the complex domain, the results are paral-
lel to those obtained in the real matrix-variate case. Hence, we will consider an extension
of fractional integrals to the complex matrix-variate cases. Matrices in the complex do-
main will be denoted with a tilde. Let X̃1 and X̃2 be independently distributed Hermitian
positive definite complex matrix-variate random variables whose densities are f̃1(X̃1) and

f̃2(X̃2), respectively. Let Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 and Ũ1 = X̃

1
2
2 X̃−1

1 X̃
1
2
2 where X̃

1
2
2 denotes the

Hermitian positive definite square root of the Hermitian positive definite matrix X̃2. Sta-
tistical densities are real-valued scalar functions whether the argument matrix is in the real
or complex domain.

5.7a.1. Density of a product and fractional integral of the second kind, complex case

Let us consider the transformation (X̃1, X̃2) → (Ũ2, Ṽ ) and (X̃1, X̃2) → (Ũ1, Ṽ ),
the Jacobians being available from Chap. 1 or Mathai (1997). Then,

dX̃1 ∧ dX̃2 =
{

|det(Ṽ )|−pdŨ2 ∧ dṼ

|det(Ṽ )|p|det(Ũ1)|−2pdŨ1 ∧ dṼ .
(5.7a.1)

When f1 and f2 are statistical densities, the density of the product, denoted by g̃2(Ũ2), is
the following:

g̃2(Ũ2) =
∫

Ṽ

|det(Ṽ )|−pf1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )f2(Ṽ ) dṼ (5.7a.2)

where |det(·)| is the absolute value of the determinant of (·). If f1 and f2 are not statistical
densities, (5.7a.1) will be called the M-convolution of the product. As in the real matrix-
variate case, we will give a general definition of a fractional integral of order α of the
second kind in the complex matrix-variate case. Let

f̃1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − X̃1)|α−p, �(α) > p − 1,
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and f2(X̃2) = φ2(X̃2)f̃ (X̃2) where φ1 and φ2 are specified functions and f is an arbitrary
function. Then, (5.7a.2) becomes

g̃2(Ũ2) =
∫

Ṽ

|det(Ṽ )|−pφ1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )

× 1

Γ̃p(α)
| det(I − Ṽ − 1

2 Ũ2Ṽ
− 1

2 )|α−pφ2(Ṽ )f (Ṽ ) dṼ (5.7a.3)

for �(α) > p − 1. As an example, let

φ1(X̃1) = Γ̃p(γ + p + α)

Γ̃p(γ + p)
|det(X̃1)|γ and φ2(X̃2) = 1.

Observe that f̃1(X̃1) has now become a complex matrix-variate type-1 beta density with
the parameters (γ + p, α) so that (5.7a.3) can be expressed as follows:

g̃2(Ũ2) = Γ̃p(γ + p + α)

Γ̃p(γ + p)

| det(Ũ2)|γ
Γ̃p(α)

∫

Ṽ >Ũ2>O

|det(Ṽ )|−α−γ | det(Ṽ − Ũ2)|α−pf̃ (Ṽ ) dṼ

= Γ̃p(γ + p + α)

Γ̃p(γ + p)
K̃−α

2,Ũ2,γ
f (5.7a.4)

where

K̃−α

2,Ũ2,γ
f = |det(Ũ2)|γ

Γ̃p(α)

∫

Ṽ >Ũ2>O

| det(Ṽ )|−α−γ |det(Ṽ − Ũ2)|α−pf (Ṽ ) dṼ (5.7a.5)

is Erdélyi-Kober fractional integral of the second kind of order α in the complex matrix-
variate case, which is defined for �(α) > p − 1, �(γ ) > −1. The extension of fractional
integrals to complex matrix-variate cases was introduced in Mathai (2013). As a second
example, let

φ1(X̃1) = 1 and φ2(X̃2) = |det(Ṽ )|α.

In that case, (5.7a.3) becomes

g̃2(Ũ2) =
∫

Ṽ >Ũ2>O

|det(Ṽ − Ũ2)|α−pf (V ) dṼ , �(α) > p − 1. (5.7a.6)

The integral (5.7a.6) is Weyl fractional integral of the second kind of order α in the com-
plex matrix-variate case. If V is bounded above by a Hermitian positive definite constant
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matrix B > O, then (5.7a.6) is a Riemann-Liouville fractional integral of the second kind
of order α in the complex matrix-variate case.

A pathway extension parallel to that developed in the real matrix-variate case can be
similarly obtained. Accordingly, the details of the derivation are omitted.

5.7a.2. Density of a ratio and fractional integrals of the first kind, complex case

We will now derive the density of the symmetric ratio Ũ1 defined in Sect. 5.7a. If f̃1
and f̃2 are statistical densities, then the density of Ũ1, denoted by g̃1(Ũ1), is given by

g̃1(Ũ1) =
∫

Ṽ

|det(Ṽ )|p| det(Ũ1)|−2pf̃1(Ṽ
1
2 Ũ−1Ṽ

1
2 )f̃2(Ṽ ) dṼ , (5.7a.7)

provided the integral is convergent. For the general definition, let us take

f̃1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − X̃1)|α−p, �(α) > p − 1,

and f̃2(X̃2) = φ2(X̃2)f̃ (X̃2) where φ1 and φ2 are specified functions and f̃ is an arbitrary
function. Then g̃1(Ũ1) is the following:

g̃1(Ũ1) =
∫

Ṽ

|det(Ṽ )|p| det(Ũ1)|−2p 1

Γ̃p(α)
φ1(Ṽ

1
2 Ũ−1

1 Ṽ
1
2 )

× |det(I − Ṽ
1
2 Ũ−1

1 Ṽ
1
2 )|α−pφ2(Ṽ )f (Ṽ ) dṼ . (5.7a.8)

As an example, let

φ1(X̃1) = Γ̃p(γ + α)

Γ̃p(γ )
|det(X̃1)|γ−p

and φ2 = 1. Then,

g̃1(Ũ1) = Γ̃p(γ + α)

Γ̃p(γ )

|det(Ũ1)|−α−γ

Γ̃p(α)

∫

O<Ṽ <Ũ1

|det(Ṽ )|γ

× |det(Ũ1 − Ṽ )|α−pf (Ṽ ) dṼ , �(α) > p − 1

= Γ̃p(γ + α)

Γ̃p(γ )
K−α

1,Ũ1,γ
f (5.7a.9)
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where

K−α

1,Ũ1,γ
f = |det(Ũ1)|−α−γ

Γ̃p(α)

∫

V <Ũ1

| det(Ṽ )|γ |det(Ũ1 − Ṽ )|α−pf (Ṽ ) dṼ (5.7a.10)

for �(α) > p − 1, is the Erdélyi-Kober fractional integral of the first kind of order α and
parameter γ in the complex matrix-variate case. We now consider a second example. On
letting φ1(X̃1) = |det(X̃1)|−α−p and φ2(X̃2) = |det(X̃2)|α, the density of Ũ1 is

g̃1(Ũ1) = 1

Γ̃p(α)

∫

Ṽ <Ũ1

|det(Ũ1 − Ṽ )|α−pf (Ṽ )dṼ , �(α) > p − 1. (5.7a.11)

The integral in (5.7a.11) is Weyl’s fractional integral of the first kind of order α in the
complex matrix-variate case, denoted by W̃−α

1,Ũ1
f . Observe that we are considering only

Hermitian positive definite matrices. Thus, there is a lower bound, the integral being over
O < Ṽ < Ũ1. Hence (5.7a.11) can also represent a Riemann-Liouville fractional integral
of the first kind of order α in the complex matrix-variate case with a null matrix as its
lower bound. For fractional integrals involving several matrices and fractional differential
operators for functions of matrix argument, refer to Mathai (2014a, 2015); for pathway
extensions, see Mathai and Haubold (2008, 2011).

Exercises 5.7

All the matrices appearing herein are p × p real positive definite, when real, and Her-
mitian positive definite, when in the complex domain. The M-transform of a real-valued
scalar function f (X) of the p × p real matrix X, with the M-transform parameter ρ, is
defined as

Mf (ρ) =
∫

X>O

|X|ρ−p+1
2 f (X) dX, �(ρ) >

p − 1

2
,

whenever the integral is convergent. In the real case, the M-convolution of a product U2 =
X

1
2
2 X1X

1
2
2 with the corresponding functions f1(X1) and f2(X2), respectively, is

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2U2V

− 1
2 )f2(V ) dV

whenever the integral is convergent. The M-convolution of a ratio in the real case is
g1(U1). The M-convolution of a product and a ratio in the complex case are g̃2(Ũ2) and
g̃1(Ũ1), respectively, as defined earlier in this section. If α is the order of a fractional in-
tegral operator operating on f , denoted by A−αf , then the semigroup property is that
A−αA−βf = A−(α+β)f = A−βA−αf .
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5.7.1. Show that the M-transform of the M-convolution of a product is the product of the
M-transforms of the individual functions f1 and f2, both in the real and complex cases.

5.7.2. What are the M-transforms of the M-convolution of a ratio in the real and complex
cases? Establish your assertions.

5.7.3. Show that the semigroup property holds for Weyl’s fractional integral of the (1):
first kind, (2): second kind, in the real matrix-variate case.

5.7.4. Do (1) and (2) of Exercise 5.7.3 hold in the complex matrix-variate case? Prove
your assertion.

5.7.5. Evaluate the M-transforms of the Erdélyi-Kober fractional integral of order α of
(1): the first kind, (2): the second kind and state the conditions for their existence.

5.7.6. Repeat Exercise 5.7.5 for (1) Weyl’s fractional integral of order α, (2) the Riemann-
Liouville fractional integral of order α.

5.7.7. Evaluate the Weyl fractional integral of order α of (a): the first kind, (b): the second
kind, in the real matrix-variate case, if possible, if the arbitrary function is (1): e−tr(X), (2):
etr(X) and write down the conditions wherever it is evaluated.

5.7.8. Repeat Exercise 5.7.7 for the complex matrix-variate case.

5.7.9. Evaluate the Erdélyi-Kober fractional integral of order α and parameter γ of the
(a): first kind, (b): second kind, in the real matrix-variate case, if the arbitrary function is
(1): |X|δ, (2): |X|−δ, wherever possible, and write down the necessary conditions.

5.7.10. Repeat Exercise 5.7.9 for the complex case. In the complex case, |X| = determi-
nant of X, is to be replaced by | det(X̃)|, the absolute value of the determinant of X̃.

5.8. Densities Involving Several Matrix-variate Random Variables, Real Case

We will start with real scalar variables. The most popular multivariate distribution,
apart from the normal distribution, is the Dirichlet distribution, which is a generalization
of the type-1 and type-2 beta distributions.

5.8.1. The type-1 Dirichlet density, real scalar case

Let x1, . . . , xk be real scalar random variables having a joint density of the form

f1(x1, . . . , xk) = ck x
α1−1
1 · · · xαk−1

k (1 − x1 − · · · − xk)
αk+1−1 (5.8.1)

for ω = {(x1, . . . , xk)|0 ≤ xj ≤ 1, j = 1, . . . , k, 0 ≤ x1 + · · · + xk ≤ 1}, �(αj ) >

0, j = 1, . . . , k + 1 and f1 = 0 elsewhere. This is type-1 Dirichlet density where ck is
the normalizing constant. Note that ω describes a simplex and hence the support of f1 is
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the simplex ω. Evaluation of the normalizing constant can be achieved in differing ways.
One method relies on the direct integration of the variables, one at a time. For example,
integration over x1 involves two factors x

α1−1
1 and (1− x1 − · · · − xk)

αk+1−1. Let I1 be the
integral over x1. Observe that x1 varies from 0 to 1 − x2 − · · · − xk. Then

I1 =
∫ 1−x2−···−xk

x1=0
x

α1−1
1 (1 − x1 − · · · − xk)

αk+1−1dx1.

But

(1 − x1 − · · · − xk)
αk+1−1 = (1 − x2 − · · · − xk)

αk+1−1
[
1 − x1

1 − x2 − · · · − xk

]αk+1−1

.

Make the substitution y = x1
1−x2−···−xk

⇒ dx1 = (1− x2 − · · · − xk)dy, which enable one
to integrate out y by making use of a real scalar type-1 beta integral giving

∫ 1

0
yα1−1(1 − y)αk+1−1dy = Γ (α1)Γ (αk+1)

Γ (α1 + αk+1)

for �(α1) > 0, �(αk+1) > 0. Now, proceed similarly by integrating out x2 from
x

α2−1
2 (1 − x2 − · · · − xk)

α1+αk+1 , and continue in this manner until xk is reached. Fi-
nally, after canceling out all common gamma factors, one has Γ (α1) · · · Γ (αk+1)/Γ (α1 +
· · · + αk+1) for �(αj ) > 0, j = 1, . . . , k + 1. Thus, the normalizing constant is given by

ck = Γ (α1 + · · · + αk+1)

Γ (α1) · · · Γ (αk+1)
, �(αj ) > 0, j = 1, . . . , k + 1. (5.8.2)

Another method for evaluating the normalizing constant ck consists of making the follow-
ing transformation:

x1 = y1

x2 = y2(1 − y1)

xj = yj (1 − y1)(1 − y2) · · · (1 − yj−1), j = 2, . . . , k (5.8.3)

It is then easily seen that

dx1 ∧ . . . ∧ dxk = (1 − y1)
k−1(1 − y2)

k−2 · · · (1 − yk−1) dy1 ∧ . . . ∧ dyk. (5.8.4)

Under this transformation, one has

1 − x1 = 1 − y1

1 − x1 − x2 = (1 − y1)(1 − y2)

1 − x1 − · · · − xk = (1 − y1)(1 − y2) · · · (1 − yk).
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Then, we have

x
α1−1
1 · · · xαk−1

k (1 − x1 − · · · − xk)
αk+1−1dx1 ∧ . . . ∧ dxk

= y
α1−1
1 · · · yαk−1

k (1 − y1)
α2+···+αk+1−1

× (1 − y2)
α3+···+αk+1−1 · · · (1 − yk)

αk+1−1dy1 ∧ . . . ∧ dyk.

Now, all the yj ’s are separated and each one can be integrated out by making use of a
type-1 beta integral. For example, the integrals over y1, y2, . . . , yk give the following:

∫ 1

0
y

α1−1
1 (1 − y1)

α2+···+αk+1−1 dy1 = Γ (α1)Γ (α2 + · · · + αk+1)

Γ (α1 + · · · + αk+1)
∫ 1

0
y

α2−1
2 (1 − y2)

α3+···+αk+1−1 dy2 = Γ (α2)Γ (α3 + · · · + αk+1)

Γ (α2 + · · · + αk+1)

...
∫ 1

0
y

αk−1
k (1 − yk)

αk+1−1dyk = Γ (αk)Γ (αk+1)

Γ (αk + αk+1)

for �(αj ) > 0, j = 1, . . . , k + 1. Taking the product produces c−1
k .

5.8.2. The type-2 Dirichlet density, real scalar case

Let x1 > 0, . . . , xk > 0 be real scalar random variables having the joint density

f2(x1, . . . , xk) = ckx
α1−1
1 · · · xαk−1

k (1 + x1 + · · · + xk)
−(α1+···+αk+1) (5.8.5)

for xj > 0, j = 1, . . . , k, �(αj ) > 0, j = 1, . . . , k + 1 and f2 = 0 elsewhere, where ck

is the normalizing constant. This density is known as a type-2 Dirichlet density. It can be
shown that the normalizing constant ck is the same as the one obtained in (5.8.2) for the
type-1 Dirichlet distribution. This can be established by integrating out the variables one
at a time, starting with xk or x1. This constant can also be evaluated with the help of the
following transformation:

x1 = y1

x2 = y2(1 + y1)

xj = yj (1 + y1)(1 + y2) · · · (1 + yj−1), j = 2, . . . , k, (5.8.6)

whose Jacobian is given by

dx1 ∧ . . . ∧ dxk = (1 + y1)
k−1(1 + y2)

k−2 · · · (1 + yk−1) dy1 ∧ . . . ∧ dyk. (5.8.7)
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5.8.3. Some properties of Dirichlet densities in the real scalar case

Let us determine the h-th moment of (1− x1 − · · · − xk) in a type-1 Dirichlet density:

E[1 − x1 − · · · − xk]h =
∫

ω

(1 − x1 − · · · − xk)
hf1(x1, . . . , xk) dx1 ∧ . . . ∧ dxk.

In comparison with the total integral, the only change is that the parameter αk+1 is replaced
by αk+1 + h; thus the result is available from the normalizing constant. That is,

E[1 − x1 − · · · − xk]h = Γ (αk+1 + h)

Γ (αk+1)

Γ (α1 + · · · + αk+1)

Γ (α1 + · · · + αk+1 + h)
. (5.8.8)

The additional condition needed is �(αk+1 + h) > 0. Considering the structure of the
moment in (5.8.8), u = 1 − x1 − · · · − xk is manifestly a real scalar type-1 beta variable
with the parameters (αk+1, α1 + · · · + αk). This is stated in the following result:

Theorem 5.8.1. Let x1, . . . , xk have a real scalar type-1 Dirichlet density with the pa-
rameters (α1, . . . , αk;αk+1). Then, u = 1 − x1 − · · · − xk has a real scalar type-1 beta
distribution with the parameters (αk+1, α1 + · · · + αk), and 1 − u = x1 + · · · + xk has a
real scalar type-1 beta distribution with the parameters (α1 + · · · + αk, αk+1).

Some parallel results can also be obtained for type-2 Dirichlet variables. Consider
a real scalar type-2 Dirichlet density with the parameters (α1, . . . , αk;αk+1). Let v =
(1+ x1 + · · · + xk)

−1. Then, when taking the h-th moment of v, that is E[vh], we see that
the only change is that αk+1 becomes αk+1 + h. Accordingly, v has a real scalar type-1
beta distribution with the parameters (αk+1, α1 + · · · + αk). Thus, 1 − v = x1+···+xk

1+x1+···+xk

is a type-1 beta random variables with the parameters interchanged. Hence the following
result:

Theorem 5.8.2. Let x1, . . . , xk have a real scalar type-2 Dirichlet density with the pa-
rameters (α1, . . . , αk;αk+1). Then v = (1+x1 +· · ·+xk)

−1 has a real scalar type-1 beta
distribution with the parameters (αk+1, α1 + · · ·+αk) and 1− v = x1+···+xk

1+x1+···+xk
has a real

scalar type-1 beta distribution with the parameters (α1 + · · · + αk, αk+1).

Observe that the joint product moments E[xh1
1 · · · xhk

k ] can be determined both in the
cases of real scalar type-1 Dirichlet and type-2 Dirichlet densities. This can be achieved by
considering the corresponding normalizing constants. Since an arbitrary product moment
will uniquely determine the corresponding distribution, one can show that all subsets of
variables from the set {x1, . . . , xk} are again real scalar type-1 Dirichlet and real scalar
type-2 Dirichlet distributed, respectively; to identify the marginal joint density of a subset
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under consideration, it suffices to set the complementary set of hj ’s equal to zero. Type-1
and type-2 Dirichlet densities enjoy many properties, some of which are mentioned in the
exercises. As well, there exist several types of generalizations of the type-1 and type-2
Dirichlet models. The first author and his coworkers have developed several such models,
one of which was introduced in connection with certain reliability problems.

5.8.4. Some generalizations of the Dirichlet models

Let the real scalar variables x1, . . . , xk have a joint density of the following type, which
is a generalization of the type-1 Dirichlet density:

g1(x1, . . . , xk) = bk x
α1−1
1 (1 − x1)

β1x
α2−1
2 (1 − x1 − x2)

β2 · · ·
× x

αk−1
k (1 − x1 − · · · − xk)

βk+αk+1−1 (5.8.9)

for (x1, . . . , xk) ∈ ω, �(αj ) > 0, j = 1, . . . , k + 1, as well as other necessary con-
ditions to be stated later, and g1 = 0 elsewhere, where bk denotes the normalizing con-
stant. This normalizing constant can be evaluated by integrating out the variables one
at a time or by making the transformation (5.8.3) and taking into account its associ-
ated Jacobian as specified in (5.8.4). Under the transformation (5.8.3), y1, . . . , yk will
be independently distributed with yj having a type-1 beta density with the parameters
(αj , γj ), γj = αj+1 + · · · + αk+1 + βj + · · · + βk, j = 1, . . . , k, which yields the
normalizing constant

bk =
k∏

j=1

Γ (αj + γj )

Γ (αj )Γ (γj )
(5.8.10)

for �(αj ) > 0, j = 1, . . . , k + 1, �(γj ) > 0, j = 1, . . . , k, where

γj = αj+1 + · · · + αk+1 + βj + · · · + βk, j = 1, . . . , k. (5.8.11)

Arbitrary moments E[xh1
1 · · · xhk

k ] are available from the normalizing constant bk by re-
placing αj by αj + hj for j = 1, . . . , k and then taking the ratio. It can be observed from
this arbitrary moment that all subsets of the type (x1, . . . , xj ) have a density of the type
specified in (5.8.9). For other types of subsets, one has initially to rearrange the variables
and the corresponding parameters by bringing them to the first j positions and then utilize
the previous result on subsets.

The following model corresponding to (5.8.9) for the type-2 Dirichlet model was in-
troduced by the first author:

g2(x1, . . . , xk) = akx
α1−1
1 (1 + x1)

−β1x
α2−1
2 (1 + x1 + x2)

−β2 · · ·
× x

αk−1
k (1 + x1 + · · · + xk)

−(α1+···+αk+1)−βk (5.8.12)
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for xj > 0, j = 1, . . . , k, �(αj ) > 0, j = 1, . . . , k + 1, as well as other necessary
conditions to be stated later, and g2 = 0 elsewhere. In order to evaluate the normaliz-
ing constant ak, one can use the transformation (5.8.6) and its associated Jacobian given
in (5.8.7). Then, y1, . . . , yk become independently distributed real scalar type-2 beta vari-
ables with the parameters (αj , δj ), where

δj = α1 + · · · + αj−1 + αk+1 + βj + · · · + βk (5.8.13)

for �(αj ) > 0, j = 1, . . . , k + 1, �(δj ) > 0, j = 1, . . . , k. Other generalizations are
available in the literature.

5.8.5. A pseudo Dirichlet model

In the type-1 Dirichlet model, the support is the previously described simplex ω. We
will now consider a model, which was recently introduced by the first author, wherein the
variables can vary freely in a hypercube. Let us begin with the case k = 2. Consider the
model

g12(x1, x2) = c12 x
α1
2 (1−x1)

α1−1(1−x2)
α2−1(1−x1x2)

−(α1+α2−1), 0 ≤ xj ≤ 1, (5.8.14)

for �(αj ) > 0, j = 1, 2, and g12 = 0 elsewhere. In this case, the variables are free to
vary within the unit square. Let us evaluate the normalizing constant c12. For this purpose,
let us expand the last factor by making use of the binomial expansion since 0 < x1x2 < 1.
Then,

(1 − x1x2)
−(α1+α2−1) =

∞∑

k=0

(α1 + α2 − 1)k
k! xk

1x
k
2 (i)

where for example the Pochhmmer symbol (a)k stands for

(a)k = a(a + 1) · · · (a + k − 1), a 
= 0, (a)0 = 1.

Integral over x1 gives

∫ 1

0
xk
1(1 − x1)

α1−1dx1 = Γ (k + 1)Γ (α1)

Γ (α1 + k + 1)
, �(α1) > 0, (ii)

and the integral over x2 yields

∫ 1

0
x

α1+k
2 (1 − x2)

α2−1dx2 = Γ (α1 + k + 1)Γ (α2)

Γ (α1 + α2 + 1)
. (iii)
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Taking the product of the right-hand side expressions in (ii) and (iii) and observing that
Γ (α1 + α2 + k + 1) = Γ (α1 + α2 + 1)(α1 + α2 + 1)k and Γ (k + 1) = (1)k, we obtain
the following total integral:

Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)

∞∑

k=0

(1)k(α1 + α2 − 1)k
k!(α1 + α2 + 1)k

= Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)
2F1(1, α1 + α2 − 1;α1 + α2 + 1; 1)

= Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)

Γ (α1 + α2 + 1)Γ (1)

Γ (α1 + α2)Γ (2)

= Γ (α1)Γ (α2)

Γ (α1 + α2)
, �(α1) > 0, �(α2) > 0, (5.8.15)

where the 2F1 hypergeometric function with argument 1 is evaluated with the following
identity:

2F1(a, b; c; 1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(5.8.16)

whenever the gamma functions are defined. Observe that (5.8.15) is a surprising result as
it is the total integral coming from a type-1 real beta density with the parameters (α1, α2).
Now, consider the general model

g1k(x1, . . . , xk) = c1k(1 − x1)
α1−1 · · · (1 − xk)

αk−1x
α1
2 · · ·

× x
α1+···+αk−1
k (1 − x1 . . . xk)

−(α1+···+αk−1), 0 ≤ xj ≤ 1, j = 1, . . . , k.

(5.8.17)

Proceeding exactly as in the case of k = 2, one obtains the total integral as

[c1k]−1 = Γ (α1) . . . Γ (αk)

Γ (α1 + · · · + αk)
, �(αj ) > 0, j = 1, . . . , k. (5.8.18)

This is the total integral coming from a (k − 1)-variate real type-1 Dirichlet model. Some
properties of this distribution are pointed out in some of the assigned problems.

5.8.6. The type-1 Dirichlet model in real matrix-variate case

Direct generalizations of the real scalar variable Dirichlet models to real as well as
complex matrix-variate cases are possible. The type-1 model will be considered first. Let
the p × p real positive definite matrices X1, . . . , Xk be such that Xj > O, I − Xj > O,
that is Xj as well as I − Xj are positive definite, for j = 1, . . . , k, and, in addition,



Matrix-Variate Gamma and Beta Distributions 385

I − X1 − · · · − Xk > O. Let Ω = {(X1, . . . , Xk)|O < Xj < I, j = 1, . . . , k, I − X1 −
· · · − Xk > O}. Consider the model

G1(X1, . . . , Xk) = Ck|X1|α1−p+1
2 · · · |Xk|αk−p+1

2

× |I − X1 − · · · − Xk|αk+1−p+1
2 , (X1, . . . , Xk) ∈ Ω, (5.8.19)

for �(αj ) >
p−1
2 , j = 1, . . . , k + 1, and G1 = 0 elsewhere. The normalizing constant

Ck can be determined by using real matrix-variate type-1 beta integrals to integrate the
matrices one at the time. We can also evaluate the total integral by means of the following
transformation:

X1 = Y1

X2 = (I − Y1)
1
2Y2(I − Y1)

1
2

Xj = (I − Y1)
1
2 · · · (I − Yj−1)

1
2Yj (I − Yj−1)

1
2 · · · (I − Y1)

1
2 , j = 2, . . . , k. (5.8.20)

The associated Jacobian can then be determined by making use of results on matrix trans-
formations that are provided in Sect. 1.6. Then,

dX1 ∧ . . . ∧ dXk = |I − Y1|(k−1)( p+1
2 ) · · · |I − Yk−1|p+1

2 dY1 ∧ . . . ∧ dYk. (5.8.21)

It can be seen that the Yj ’s are independently distributed as real matrix-variate type-1 beta
random variables and the product of the integrals gives the following final result:

Ck = Γp(α1 + · · · + αk+1)

Γp(α1) · · · Γp(αk+1)
, �(αj ) >

p − 1

2
, j = 1, . . . , k + 1. (5.8.22)

By integrating out the variables one at a time, we can show that the marginal densities of
all subsets of {X1, . . . , Xk} also belong to the same real matrix-variate type-1 Dirichlet
distribution and single matrices are real matrix-variate type-1 beta distributed. By tak-
ing the product moment of the determinants, E[|X1|h1 · · · |Xk|hk ], one can anticipate the
results; however, arbitrary moments of determinants need not uniquely determine the den-
sities of the corresponding matrices. In the real scalar case, one can uniquely identify
the density from arbitrary moments, very often under very mild conditions. The result
I − X1 − · · · − Xk has a real matrix-variate type-1 beta distribution can be seen by taking
arbitrary moments of the determinant, that is, E[|I − X1 − · · · − Xk|h], but evaluating
the h-moment of a determinant and then identifying it as the h-th moment of the determi-
nant from a real matrix-variate type-1 beta density is not valid in this case. If one makes
a transformation of the type Y1 = X1, . . . , Yk−1 = Xk−1, Yk = I − X1 − · · · − Xk,
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it is seen that Xk = I − Y1 − · · · − Yk and that the Jacobian in absolute value is 1.
Hence, we end up with a real matrix-variate type-1 Dirichlet density of the same format but
whose parameters αk and αk+1 are interchanged. Then, integrating out Y1, . . . , Yk−1, we
obtain a real matrix-variate type-1 beta density with the parameters (αk+1, α1 +· · ·+αk).
Hence the result. When Yk has a real matrix-variate type-1 beta distribution, we have that
I − Yk = X1 + · · · + Xk is also a type-1 beta random variable with the parameters inter-
changed.

The first author and his coworkers have proposed various types of generalizations to
the matrix-variate type-1 and type-2 Dirichlet models in the real and complex cases. One
of those extensions which is defined in the real domain, is the following:

G2(X1, . . . , Xk) = C1k|X1|α1−p+1
2 |I − X1|β1|X2|α2−p+1

2

× |I − X1 − X2|β2 · · · |Xk|αk−p+1
2

× |I − X1 − · · · − Xk|αk+1+βk−p+1
2 , (5.8.23)

for (X1, . . . , Xk) ∈ Ω , �(αj ) >
p−1
2 , j = 1, . . . , k + 1, and G2 = 0 elsewhere. The

normalizing constant C1k can be evaluated by integrating variables one at a time or by
using the transformation (5.8.20). Under this transformation, the real matrices Yj ’s are
independently distributed as real matrix-variate type-1 beta variables with the parameters
(αj , γj ), γj = αj+1 + · · · + αk+1 + βj + · · · + βk. The conditions will then be �(αj ) >
p−1
2 , j = 1, . . . , k + 1, and �(γj ) >

p−1
2 , j = 1, . . . , k. Hence

C1k =
k∏

j=1

Γp(αj + γj )

Γp(αj )Γp(γj )
. (5.8.24)

5.8.7. The type-2 Dirichlet model in the real matrix-variate case

The type-2 Dirichlet density in the real matrix-variate case is the following:

G3(X1, . . . , Xk) = Ck|X1|α1−p+1
2 · · · |Xk|αk−p+1

2

× |I + X1 + · · · + Xk|−(α1+···+αk+1), Xj > O, j = 1, . . . , k, (5.8.25)

for �(αj ) >
p−1
2 , j = 1, . . . , k + 1 and G3 = 0 elsewhere, the normalizing constant Ck

being the same as that appearing in the type-1 Dirichlet case. This can be verified, either by
integrating matrices one at a time from (5.8.25) or by making the following transformation:

X1 = Y1

X2 = (I + Y1)
1
2Y2(I + Y1)

1
2

Xj = (I + Y1)
1
2 · · · (I + Yj−1)

1
2Yj (I + Yj−1)

1
2 · · · (I + Y1)

1
2 , j = 2, . . . , k. (5.8.26)
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Under this transformation, the Jacobian is as follows:

dX1 ∧ . . . ∧ dXk = |I + Y1|(k−1)( p+1
2 ) · · · |I + Yk−1|p+1

2 dY1 ∧ . . . ∧ dYk. (5.8.27)

Thus, the Yj ’s are independently distributed real matrix-variate type-2 beta variables
and the product of the integrals produces [Ck]−1. By integrating matrices one at a time, we
can see that all subsets of matrices belonging to {X1, . . . , Xk} will have densities of the
type specified in (5.8.25). Several properties can also be established for the model (5.8.25);
some of them are included in the exercises.

Example 5.8.1. Evaluate the normalizing constant c explicitly if the function f (X1, X2)

is a statistical density where the p × p real matrices Xj > O, I − Xj > O, j = 1, 2,
and I − X1 − X2 > O where

f (X1, X2) = c |X1|α1−p+1
2 |I − X1|β1|X2|α2−p+1

2 |I − X1 − X2|β2−p+1
2 .

Solution 5.8.1. Note that

|I − X1 − X2|β2−p+1
2 = |I − X1|β2−p+1

2 |I − (I − X1)
− 1

2X2(I − X1)
− 1

2 |β2−p+1
2 .

Now, letting Y = (I − X1)
− 1

2X2(I − X1)
− 1

2 ⇒ dY = |I − X1|−p+1
2 dX2, and the integral

over X2 gives the following:

|I−X1|α2+β2−p+1
2

∫

O<Y<I

|Y |α2−p+1
2 |I−Y |β2−p+1

2 dY = |I−X1|α2+β2−p+1
2

Γp(α2)Γp(β2)

Γp(α2 + β2)

for �(α2) >
p−1
2 , �(β2) >

p−1
2 . Then, the integral over X1 can be evaluated as follows:

∫

O<X1<I

|X1|α1−p+1
2 |I − X1|β1+β2+α2−p+1

2 dX1 = Γp(α1)Γp(β1 + β2 + α2)

Γp(α1 + α2 + β1 + β2)

for �(α1) >
p−1
2 , �(β1 + β2 + α2) >

p−1
2 . Collecting the results from the integrals over

X2 and X1 and using the fact that the total integral is 1, we have

c = Γp(α2 + β2)Γp(α1 + α2 + β1 + β2)

Γp(α2)Γp(β2)Γp(α1)Γp(α2 + β1 + β2)

for �(αj ) >
p−1
2 , j = 1, 2, �(β2) >

p−1
2 , and �(β1 + β2 + α2) >

p−1
2 .
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The first author and his coworkers have established several generalizations to the type-
2 Dirichlet model in (5.8.25). One such model is the following:

G4(X1, . . . , Xk) = C2k|X1|α1−p+1
2 |I + X1|−β1|X2|α2−p+1

2

× |I + X1 + X2|−β2 · · · |Xk|αk−p+1
2

× |I + X1 + · · · + Xk|−(α1+···+αk+1+βk) (5.8.28)

for �(αj ) >
p−1
2 , j = 1, . . . , k + 1, Xj > O, j = 1, . . . , k, as well as other necessary

conditions to be stated later, and G4 = 0 elsewhere. The normalizing constant C2k can be
evaluated by integrating matrices one at a time or by making the transformation (5.8.26).
Under this transformation, the Yj ’s are independently distributed real matrix-variate type-2
beta variables with the parameters (αj , δj ), where

δj = α1 + · · · + αj−1 + βj + · · · + βk. (5.8.29)

The normalizing constant is then

G2k =
k∏

j=1

Γp(αj + δj )

Γp(αj )Γp(δj )
(5.8.30)

where the δj is given in (5.8.29). The marginal densities of the subsets, if taken in the
order X1, {X1, X2}, and so on, will belong to the same family of densities as that specified
by (5.8.28). Several properties of the model (5.8.28) are available in the literature.

5.8.8. A pseudo Dirichlet model

Wewill now discuss the generalization of the model introduced in Sect. 5.8.5. Consider
the density

G1k(X1, . . . , Xk) = C1k|I − X1|α1−p+1
2 · · · |I − Xk|αk−p+1

2

× |X2|α1|X3|α1+α2 · · · |Xk|α1+···+αk−1

× |I − X
1
2
k · · · X

1
2
2 X1X

1
2
2 · · · X

1
2
k |−(α1+···+αk−p+1

2 ). (5.8.31)

Then, by following steps parallel to those used in the real scalar variable case, one can
show that the normalizing constant is given by

C1k = Γp(α1 + · · · + αk)

Γp(α1) · · · Γp(αk)

Γp(p + 1)

[Γp(
p+1
2 )]2 . (5.8.32)

The binomial expansion of the last factor determinant in (5.8.31) is somewhat complicated
as it involves zonal polynomials; this expansion is given in Mathai (1997). Compared to
the real scalar case, the only change is the appearance of the constant Γp(p+1)

[Γp(
p+1
2 )]2 which
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is 1 when p = 1. Apart from this constant, the rest is the normalizing constant in a real
matrix-variate type-1 Dirichlet model in k − 1 variables instead of k variables.

5.8a. Dirichlet Models in the Complex Domain

All the matrices appearing in the remainder of this chapter are p×p Hermitian positive
definite, that is, X̃j = X̃∗

j where an asterisk indicates the conjugate transpose. Complex

matrix-variate random variables will be denoted with a tilde. For a complex matrix X̃,
the determinant will be denoted by det(X̃) and the absolute value of the determinant, by
|det(X̃)|. For example, if det(X̃) = a + ib, a and b being real and i = √

(−1), the
absolute value is |det(X̃)| = +(a2 + b2)

1
2 . The type-1 Dirichlet model in the complex

domain, denoted by G̃1, is the following:

G̃1(X1, . . . , Xk) = C̃k|det(X̃1)|α1−p · · · |det(X̃k)|αk−p

× |det(I − X̃1 − · · · − X̃k)|αk+1−p (5.8a.1)

for (X̃1, . . . , X̃k) ∈ Ω̃, Ω̃ = {(X̃1, . . . , X̃k)|O < X̃j < I, j = 1, . . . , k, O < X̃1 +
· · ·+X̃k < I }, �(αj ) > p−1, j = 1, . . . , k+1, and G̃1 = 0 elsewhere. The normalizing
constant C̃k can be evaluated by integrating out matrices one at a time with the help of
complex matrix-variate type-1 beta integrals. One can also employ a transformation of the
type given in (5.8.20) where the real matrices are replaced by matrices in the complex
domain and Hermitian positive definite square roots are used. The Jacobian is then as
follows:

dX̃1 ∧ . . . ∧ dX̃k = |det(I − Ỹ1)|(k−1)p · · · |det(I − Yk−1)|pdỸ1 ∧ . . . ∧ dỸk. (5.8a.2)

Then Ỹj ’s are independently distributed as complex matrix-variate type-1 beta variables.
On taking the product of the total integrals, one can verify that

C̃k = Γ̃p(α1 + · · · + αk+1)

Γ̃p(α1) · · · Γ̃p(αk+1)
(5.8a.3)

where for example Γ̃p(α) is the complex matrix-variate gamma given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (5.8a.4)

The first author and his coworkers have also discussed various types of generalizations to
Dirichlet models in complex domain.
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5.8a.1. A type-2 Dirichlet model in the complex domain

One can have a model parallel to the type-2 Dirichlet model in the real matrix-variate
case. Consider the model

G̃2 = C̃k|det(X̃1)|α1−p · · · |det(X̃k)|αk−p

× |det(I + X̃1 + · · · + X̃k)|−(α1+···+αk+1) (5.8a.5)

for X̃j > O, j = 1, . . . , k, �(αj ) > p−1, j = 1, . . . , k+1, and G̃2 = 0 elsewhere. By
integrating out matrices one at a time with the help of complex matrix-variate type-2 inte-
grals or by using a transformation parallel to that provided in (5.7.26) and then integrating
out the independently distributed complex type-2 beta variables Ỹj ’s, we can show that
the normalizing constant C̃k is the same as that obtained in the complex type-1 Dirichlet
case. The first author and his coworkers have given various types of generalizations to the
complex type-2 Dirichlet density as well.

Exercises 5.8

5.8.1. By integrating out variables one at a time derive the normalizing constant in the
real scalar type-2 Dirichlet case.

5.8.2. By using the transformation (5.8.3), derive the normalizing constant in the real
scalar type-1 Dirichlet case.

5.8.3. By using the transformation in (5.8.6), derive the normalizing constant in the real
scalar type-2 Dirichlet case.

5.8.4. Derive the normalizing constants for the extended Dirichlet models in (5.8.9)
and (5.8.12).

5.8.5. Evaluate E[xh1
1 · · · xhk

k ] for the model specified in (5.8.12) and state the conditions
for its existence.

5.8.6. Derive the normalizing constant given in (5.8.18).

5.8.7. With respect to the pseudo Dirichlet model in (5.8.17), show that the product u =
x1 · · · xk is uniformly distributed.

5.8.8. Derive the marginal distribution of (1): x1; (2): (x1, x2); (3): (x1, . . . , xr), r < k,
and the conditional distribution of (x1, . . . , xr) given (xr+1, . . . , xk) in the pseudo Dirich-
let model in (5.8.17).

5.8.9. Derive the normalizing constant in (5.8.22) by completing the steps in (5.8.22) and
then by integrating out matrices one by one.
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5.8.10. From the outline given after equation (5.8.22), derive the density of I −X1−· · ·−
Xk and therefrom the density of X1 + · · · + Xk when (X1, . . . , Xk) has a type-1 Dirichlet
distribution.

5.8.11. Complete the derivation ofC1k in (5.8.24) and verify it by integrating out matrices
one at a time from the density given in (5.8.23).

5.8.12. Show that U = (I + X1 + · · · + Xk)
−1 in the type-2 Dirichlet model in (5.8.25)

is a real matrix-variate type-1 beta distributed. As well, specify its parameters.

5.8.13. Evaluate the normalizing constant Ck in (5.8.25) by using the transformation pro-
vided in (5.8.26) as well as by integrating out matrices one at a time.

5.8.14. Derive the δj in (5.8.29) and thus the normalizing constant C2k in (5.8.28).

5.8.15. For the following model in the complex domain, evaluate C:

f (X̃) = C|det(X̃1)|α1−p|det(I − X̃1)|β1|det(X̃2)|α2−p| det(I − X̃1 − X̃2)|β2 · · ·
× |det(I − X̃1 − · · · − X̃k)|αk+1−p+βk .

5.8.16. Evaluate the normalizing constant in the pseudo Dirichlet model in (5.8.31).

5.8.17. In the pseudo Dirichlet model specified in (5.8.31), show that U = X
1
2
k · · · X

1
2
2

X1X
1
2
2 · · · X

1
2
k is uniformly distributed.

5.8.18. Show that the normalizing constant in the complex type-2 Dirichlet model speci-
fied in (5.8a.5) is the same as the one in the type-1 Dirichlet case. Establish the result by
integrating out matrices one by one.

5.8.19. Show that the normalizing constant in the type-2 Dirichlet case in (5.8a.5) is the
same as that in the type-1 case. Establish this by using a transformation parallel to (5.8.26)
in the complex domain.

5.8.20. Construct a generalized model for the type-2 Dirichlet case for k = 3 parallel to
the case in (5.8.28) in the complex domain.

References

Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and
Physical Sciences, Oxford University Press, Oxford.

Mathai, A.M. (1997): Jacobians of Matrix Transformations and Functions of Matrix Ar-
gument, World Scientific Publishing, New York.

Mathai, A.M. (1999): Introduction to Geometrical Probabilities: Distributional Aspects
and Applications, Gordon and Breach, Amsterdam.



392 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, Linear
Algebra and its Applications, 396, 317–328.

Mathai, A.M. (2009): Fractional integrals in the matrix-variate case and connection to
statistical distributions, Integral Transforms and Special Functions, 20(12), 871–882.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate ana-
logues: A statistical perspective, Fractional Calculus & Applied Analysis, 13(2), 113–132.

Mathai, A.M. (2012): Generalized Krätzel integral and associated statistical densities, In-
ternational Journal of Mathematical Analysis, 6(51), 2501–2510.

Mathai, A.M. (2013): Fractional integral operators in the complex matrix-variate case,
Linear Algebra and its Applications, 439, 2901–2913.

Mathai, A.M. (2014): Evaluation of matrix-variate gamma and beta integrals, Applied
Mathematics and computations, 247, 312–318.

Mathai, A.M. (2014a): Fractional integral operators involving many matrix variables, Lin-
ear Algebra and its Applications, 446, 196–215.

Mathai, A.M. (2014b): Explicit evaluations of gamma and beta integrals in the matrix-
variate case, Journal of the Indian Mathematical Society, 81(3), 259–271.

Mathai, A.M. (2015): Fractional differential operators in the complex matrix-variate case,
Linear Algebra and its Applications, 478, 200–217.

Mathai, A.M. and H.J. Haubold, H.J. (1988) Modern Problems in Nuclear and Neutrino
Astrophysics, Akademie-Verlag, Berlin.

Mathai, A.M. and Haubold, H.J. (2008): Special Functions for Applied Scientists,
Springer, New York.

Mathai, A.M. and Haubold, H.J. (2011): A pathway from Bayesian statistical analysis to
superstatistics, Applied Mathematics and Computations, 218, 799–804.

Mathai, A.M. and Haubold, H.J. (2011a): Matrix-variate statistical distributions and frac-
tional calculus, Fractional Calculus & Applied Analysis, 24(1), 138–155.

Mathai, A.M. and Haubold, H.J. (2017): Introduction to Fractional Calculus, Nova Sci-
ence Publishers, New York.

Mathai, A.M. and Haubold, H.J. (2017a): Fractional and Multivariable Calculus: Model
Building and Optimization, Springer, New York.

Mathai, A.M. and Haubold, H.J. (2017b): Probability and Statistics, De Gruyter, Germany.



Matrix-Variate Gamma and Beta Distributions 393

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	5 Matrix-Variate Gamma and Beta Distributions
	5.1 Introduction
	5.1a The Complex Matrix-variate Gamma
	5.2 The Real Matrix-variate Gamma Density
	5.2.1 The mgf of the real matrix-variate gammadistribution

	5.2a The Matrix-variate Gamma Function and Density,Complex Case
	5.2a.1 The mgf of the complex matrix-variate gamma distribution

	5.3 Matrix-variate Type-1 Beta and Type-2 Beta Densities,Real Case
	5.3.1 Some properties of real matrix-variate type-1 and type-2 beta densities

	5.3a Matrix-variate Type-1 and Type-2 Beta Densities, Complex Case
	5.3.2 Explicit evaluation of type-1 matrix-variate beta integrals, real case
	5.3a.1 Evaluation of matrix-variate type-1 beta integrals, complex case
	5.3.3 General partitions, real case
	5.3.4 Methods avoiding integration over the Stiefel manifold
	5.3.5 Arbitrary moments of the determinants, real gamma and beta matrices
	5.3a.2 Arbitrary moments of the determinants in the complex case

	5.4 The Densities of Some General Structures
	5.4.1 The G-function
	5.4.2 Some special cases of the G-function
	5.4.3 The H-function
	5.4.4 Some special cases of the H-function

	5.5, 5.5a The Wishart Density
	5.5.1 Explicit evaluations of the matrix-variate gamma integral, real case
	5.5a.1 Evaluation of matrix-variate gamma integrals in the complex case
	5.5.2 Triangularization of the Wishart matrixin the real case
	5.5a.2 Triangularization of the Wishart matrix in the complex domain
	5.5.3 Samples from a p-variate Gaussian population and the Wishart density
	5.5a.3 Sample from a complex Gaussian population and the Wishart density
	5.5.4 Some properties of the Wishart distribution, real case
	5.5.5 The generalized variance
	5.5.6 Inverse Wishart distribution
	5.5.7 Marginal distributions of a Wishart matrix
	5.5.8 Connections to geometrical probability problems

	5.6 The Distribution of the Sample Correlation Coefficient
	5.6.1 The special case ρ=0
	5.6.2 The multiple and partial correlation coefficients
	5.6.3 Different derivations of ρ1.(2…p)
	5.6.4 Distributional aspects of the sample multiple correlation coefficient
	5.6.5 The partial correlation coefficient

	5.7 Distributions of Products and Ratios of Matrix-variate Random Variables
	5.7.1 The density of a product of real matrices
	5.7.2 M-convolution and fractional integralof the second kind
	5.7.3 A pathway extension of fractional integrals
	5.7.4 The density of a ratio of real matrices
	5.7.5 A pathway extension of first kind integrals, real matrix-variate case

	5.7a Density of a Product and Integrals of the Second Kind
	5.7a.1 Density of a product and fractional integral of the second kind, complex case
	5.7a.2 Density of a ratio and fractional integrals of the first kind, complex case

	5.8 Densities Involving Several Matrix-variate Random Variables, Real Case
	5.8.1 The type-1 Dirichlet density, real scalar case
	5.8.2 The type-2 Dirichlet density, real scalar case
	5.8.3 Some properties of Dirichlet densities in the real scalar case
	5.8.4 Some generalizations of the Dirichlet models
	5.8.5 A pseudo Dirichlet model
	5.8.6 The type-1 Dirichlet model in real matrix-variate case
	5.8.7 The type-2 Dirichlet model in the real matrix-variate case
	5.8.8 A pseudo Dirichlet model

	5.8a Dirichlet Models in the Complex Domain
	5.8a.1 A type-2 Dirichlet model in the complex domain

	References


