Chapter 4 )
The Matrix-Variate Gaussian Distribution Chestfor

4.1. Introduction

This chapter relies on various results presented in Chap. 1. We will introduce a class
of integrals called the real matrix-variate Gaussian integrals and complex matrix-variate
Gaussian integrals wherefrom a statistical density referred to as the matrix-variate Gaus-
sian density and, as a special case, the multivariate Gaussian or normal density will be
obtained, both in the real and complex domains.

The notations introduced in Chap. 1 will also be utilized in this chapter. Scalar vari-
ables, mathematical and random, will be denoted by lower case letters, vector/matrix
variables will be denoted by capital letters, and complex variables will be indicated by
a tilde. Additionally, the following notations will be used. All the matrices appearing in
this chapter are p x p real positive definite or Hermitian positive definite unless stated
otherwise. X > O will mean that that the p x p real symmetric matrix X is positive
definite and X > O, that the p X p matrix X in the complex domain is Hermitian, that
is, X = X* where X* denotes the conjugate transpose of X and X is positive definite.
O < A < X < B will indicate that the p x p real positive definite matrices are such that
A>0,B>0,X>0,X-A>0, B—X> O.fx f(X)dX represents a real-valued
scalar function f(X) being integrated out over all X in the domain of X where dX stands
for the wedge product of differentials of all distinct elements in X. If X = (x;;) is a real
p X g matrix, the x, ;s being distinct real scalar variables, then dX = dxj1Adx2A. . . Adx g
ordX = /\p 1 N =1 dy;j. If X = X', that is, X is a real symmetric matrix of dimension
px p,thendX = A" ;_ dx;j = A[_;_,dx;j, which involves only p(p +1)/2 differential
elements dx;;. When taking the wedge product, the elements x;;’s may be taken in any
convenient order to start with. However, that order has to be maintained until the com-
putations are completed. If X = X + i X», where X; and X, are real p x ¢ matrices,
i = 4/(—1), then dX will be defined as dX = dX; AdXs. fA<)~(<B f(f()df( represents

the real-valued scalar function f of complex matrix argument X being integrated out over
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all p x p matrix X suchthat A > O, X >0, B> 0, X—A> 0, B—X > O (all
Hermitian positive definite), where A and B are constant matrices in the sense that they are
free of the elements of X. The corresponding integral in the real case will be denoted by
Jhoxp fXdX = [f F(X)dX,A>0,X>0,X-A>0,B>0, B—X> 0,
where A and B are constant matrices, all the matrices being of dimension p x p.

4.2. Real Matrix-variate and Multivariate Gaussian Distributions

Let X = (x;;) be a p x g matrix whose elements x;; are distinct real variables. For
any real matrix X, be it square or rectangular, tr(X X’) = tr(X’X) = sum of the squares
of all the elements of X. Note that X X' need not be equal to X'X. Thus, tr(XX’) =

p q 2 : VYR — p q ~ 12 e~
i=1 2 j=1%i and, in the complex case, tr(XX™) = ) i, i1 |Xij|~ where if X, =

. . o i 1

Xrs1 + ixrs2 Where x,1 and x, are real, i = /(—1), with |x,5| = +[xr2s1 + xrzsz]z-

Consider the following integrals over the real rectangular p x g matrix X:

, p g 2 o0 2

I =f e "X XDgx =f e~ Li=1 Lj=1 %X = 1_[/ e iudx;;

X X .. J—00
12
=[[vr==", (0

ij

L= / e " XX gx — 2m)% (if)
X

Let A > Obe pxpand B > O be g x g constant positive definite matrices. Then we can
define the unique positive definite square roots A2 and B2. For the discussions to follow,
we need only the representations A = AjA}, B = BlBi with A; and B; nonsingular, a
prime denoting the transpose. For an m x n real matrix X, consider

r(AXBX') = tr(AZA2XB2B2X') = tr(A2 X B2 B2 X' A?)
— (YY), Y = A2XB>. (iii)

In order to obtain the above results, we made use of the property that for any two matrices
P and Q such that PQ and QP are defined, tr(P Q) = tr(QP) where P Q need not be
equal to QP. As well, letting ¥ = (y;;), (YY) = 37, 3% y7. YY is real positive
definite when Y is p x g, p < g, is of full rank p. Observe that any real square matrix U
that can be written as U = V'V’ for some matrix V where V may be square or rectangular,
is either positive definite or at least positive semi-definite. When V is a p X ¢ matrix,
g > p, whose rank is p, V'V’ is positive definite; if the rank of V is less than p, then V'V’
is positive semi-definite. From Result 1.6.4,



Matrix-Variate Gaussian Distribution 219

Y = A2XB? = dY = |A|}|B|5dX
— dX = |A|"%|B|"2dY (iv)

where we use the standard notation |(-)|] = det(-) to denote the determinant of (-) in
general and |det(-)| to denote the absolute value or modulus of the determinant of (-) in
the complex domain. Let

|A|%|B|§ —La(AXBX')
fpg(X) = ————¢€72 ,A> 0, B> 0 (4.2.1)
(2m) 2
for X = (x;j), —00 < x;; < oo for all i and j. From the steps (i) to (iv), we see that
fp.q(X) in (4.2.1) is a statistical density over the real rectangular p x g matrix X. This
function f), ;,(X) is known as the real matrix-variate Gaussian density. We introduced a
% in the exponent so that particular cases usually found in the literature agree with the

real p-variate Gaussian distribution. Actually, this % factor is quite unnecessary from a
mathematical point of view as it complicates computations rather than simplifying them.
In the complex case, the factor % does not appear in the exponent of the density, which is
consistent with the current particular cases encountered in the literature.

Note 4.2.1. If the factor % is omitted in the exponent, then 27 is to be replaced by 7 in
the denominator of (4.2.1), namely,

|AI%|BI*
fpg(X) = e MAXBX) A 5 0 B> 0. (4.2.2)
()2
When p = 1, the matrix X is I x g and we let X = (xy, ..., x;) where X is a row vector
whose components are xi, ..., x,. When p =1, Ais 1 x 1 or a scalar quantity. Letting

A=1and B=V~! V > 0O, be of dimension q X ¢, then in the real case,

bl _1 —1y/
fl,q(X): 2 q XV X’ X:(-x19 ,Xq),
T2
1 _lxv—l bd
=———¢ 2 , 4.2.3)
(2m)2|V|2
which is the usual real nonsingular Gaussian density with parameter matrix V, thatis, X’ ~
N, (O, V). If alocation parameter vector i = (i1, ..., fg) is introduced or, equivalently,
if X is replaced by X — u, then we have
Fla(X) = [m 3V le 2 K-V &K=’y o o, (4.2.4)

On the other hand, when ¢ = 1, a real p-variate Gaussian or normal density is available
from (4.2.1) wherein B = 1; in this case, X ~ N,(u, A~!) where X and the location
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parameter vector p are now p x 1 column vectors. This density is given by

1
A2 ,
Fpa(X) = ﬁe_é(x_“) AX=W A > 0. (4.2.5)
)2

Example 4.2.1. Write down the exponent and the normalizing constant explicitly in a
real matrix-variate Gaussian density where

_ | X1 X2 x13 a1 0 -1
X_[le x22 x23]’E[X]_M_[—1 -2 0 ]
I 11
A:|} ;i|,B: 1 2 1],
11 3

where the x;;’s are real scalar random variables.

Solution 4.2.1. Note that A = A’ and B = B/, the leading minors in A being |(1)| =
1 > 0and |[A] = 1 > 0sothat A > O. The leading minors in B are |(1)] = 1 >

1 1
0, ) 2_1>Oand

2
Bl =) |]

1
3

11 1 2
—aﬂ13%wnh J=2>Q
and hence B > O. The density is of the form

q P
|AIZIBIZ _1ycacx— o
fpg(X) = ————€ 3t (A(X—M)B(X—M)")

(2m) >
3 2
where the normalizing constant is ((21)§ % = (27%)3 = #. Let X and X, be the two rows
T
Y
of XandletY = X — M = Y; . Then Y1 = (y11, y12, y13) = (x11 — 1, x12, x13 + 1),
Y2 = (y21, ¥22, y23) = (x21 + 1, x22 + 2, x23). Now

) o M v v [YiBY] YiBY;
X —-—M)B(X - M) _|:Y2i| B[Yl’Yz]_[YzBY{ YZBYZ/ ’

ACX — MYB(X — MY = [1 1] [YIBYI/ YlBYz/]

1 2||v2BY] Y2BY]
_ [ niBY/ +1,BY] Y|BY}+ Y,BY
~ | ViBY] +2Y2BY] Y|BY}+2Y,BY} |
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Thus,

tr[A(X — M)B(X — M)'] = Y1BY| + Y,BY| + Y| BY; + 2Y,BY,
= Y1 BY| +2Y|BY, + 2Y,BY;, = Q, (i)

noting that Y1 BY, and Y, BY| are equal since both are real scalar quantities and one is the
transpose of the other. Here are now the detailed computations of the various items:

YiBY] = yi; + 2y11y12 + 2y11y13 + 2v1 + 2y12y13 + 331 (i0)
Y2BY; = y3) 4 2y21y22 + 2y21923 + 2¥3, + 2y2y23 + 3y33 (iii)
Y1BY; = yiiy21 + yiiy22 + yiiy2s + yizya1 + 2y12y22 + yi2y2s

+ y13y21 + y13y22 + 3y13y33 (iv)

where the yi;’s and y,;’s and the various quadratic and bilinear forms are as specified
above. The density is then

1 1
Fra(X) = — o~ 3(Y1BY[+2Y| BY]+Y, BY})
’ 47

where the terms in the exponent are given in (ii)-(iv). This completes the computations.

4.2a. The Matrix-variate Gaussian Density, Complex Case

In the following discussion, the absolute value of a determinant will be denoted by
|det(A)| where A is a square matrix. For example, if det(A) = a + ib with a and b real
scalar and i = +/(—1), the determinant of the conjugate transpose of A is det(A*) =
a — ib. Then the absolute value of the determinant is

|det(A)] = +v/(a? + b2) = +l(a+ib)(a—ib)]? = +[det(A)det(A*)]2 = +[det(AA*)]:.

(4.2a.1)
The matrix-variate Gaussian density in the complex case, which is the counterpart to that
given in (4.2.1) for the real case, is

|det(A)|9|det(B)|” o tr(AXBX)

frgX) = o (4.2a.2)

forA>0, B> 0, X = (%ij), |(-)| denoting the absolute value of (-). When p = 1 and
A =1, the usual multivariate Gaussian density in the complex domain is obtained:

|det(B)|
—¢
T4

ﬂ’q(X) — _(X_U-)B(X_M)*’ X/ ~ Nq(ﬁ/’ B—l) (4.261.3)
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where B > O and X and p are 1 x g row vectors, i being a location parameter vector.
When g = 11in (4.2a.1), we have the p-variate Gaussian or normal density in the complex
case which is given by

~ ~ th v * v ~ ~
fﬁﬂX):lj!%ﬂe*X#”A“;m,XVvA@uuA_U (4.2a.4)
T

where X and the location parameter also denoted by w are now p x 1 vectors.

Example 4.2a.1. Consider a 2 x 3 complex matrix-variate Gaussian density. Write down
the normalizing constant and the exponent explicitly if

o | X1 Xz X3 A A B o
X_[)Zzl X22 )?23:|’E[X]_M_[O 1—i 1 ]

: 4 1+ i
A:Liilzq,B: I—i 2 1-il,
—i 1+i 3
where the X;;’s are scalar complex random variables.

Solution 4.2a.1. Let us verify the definiteness of A and B. It is obvious that A

A*, B = B* and hence they are Hermitian. The leading minors of A are |[(3)] = 3 >
0, |JA] = 4 > 0 and hence A > O. The leading minors of B are |(4)| = 4 >
4 1+
0, 1—i 2 |= 6 >0,
21— A1 =i 1= l—=i 2
|m_4L+i 3 |7AFED s ‘4 1+J_8>Q

and hence B > O. The normalizing constant is then

|det(A)|?|det(B)|” (4%)(8%)
P4 TR

Let the two rows of X be X and X». Let (X — M) =Y = |:§l:|
2

Yi = G, 12, $13) = Fiy — i, K10+, F13 — (1 + 1))

Y2 = (o1, 322, 23) = (Ro1, K30 — (1 — i), X3 — 1).
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(& — M)B(X — M)* = 7BV = [ ] BIFF, 771
2
_[nBY} YBY;
~ | hBYF Y2BY}]
Then,
e 3  1+i|[YiBY¥ Y\BY}
tr[A(X — M)B(X — M)*] =t . S e
TAX = M)BX = M)’} r{|:1—l 2 ][YzBYI* ,BY;
=3Y|BY + (1 +i)(YaBY]) + (1 — i)(Y{ BY}) + 2V, BYS
=0 (@)
where
YiBY] = 45115}, + 251255, + 3513573
+ A+ Dyudh +ivnds + (4 —Dind;
+ (I = Dy12¥]3 — i31357) + (L +D)I1357, (if)

Y2BYS = 452175, + 252255 + 352355
+ (L +)32155 + 321553 + (1 — i) y2255;
+ (1= )322533 — i 923531 + (1 +)32355 (i)
Y1BY; = 451155 + 251255 + 3513553
+ (1L + )31, +ivnyi + (1 —i)yids
+ (1= D133 — i51355 + (L + D355 ()
Y,BY "= (iv) with y;; and y»; interchanged. )
Hence, the density of X is given by

B B 43 82
fz,s(X)=( 7)T(6 ) -0

where Q is given explicitly in (i)-(v) above. This completes the computations.
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4.2.1. Some properties of a real matrix-variate Gaussian density

In order to derive certain properties, we will need some more Jacobians of matrix
transformations, in addition to those provided in Chap. 1. These will be listed in this sec-
tion as basic results without proofs. The derivations as well as other related Jacobians are
available from Mathai (1997).

Theorem 4.2.1. Let X bea p x q, q > p, real matrix of rank p, that is, X has full rank,
where the pq elements of X are distinct real scalar variables. Let X = TU| where T is
a p x p real lower triangular matrix whose diagonal elements are positive and U\ is a
semi-orthonormal matrix such that Ui U 1’ = Ip. Then

p
dx = {[[«%~ { a1 hUy) (4.2.6)
j=1
where h(U)) is the differential element corresponding to U.

Theorem 4.2.2. For the differential elements h(U}) in (4.2.6), the integral is over the
Stiefel manifold V, , or over the space of p X q, q > p, semi-orthonormal matrices and
the integral over the full orthogonal group O, when q = p are respectively

/ h(UY) 2t d/ h(Uy) aal 4.2.7)
1) = an )= 2.
V. FP(%) Op Fp(g)
where I, () is the real matrix-variate gamma function given by
M@ =75 F@@—1/2)Ta—(p—1/2). Ra) > 5L, @28)

N (-) denoting the real part of (-).
For example,
I3(a) = nﬁf(a)l“(a —1/2)) (¢ —1) = E%F(a)F(a —1/2)I" (@ — 1), NRN(x) > 1.

With the help of Theorems 4.2.1, 4.2.2 and 1.6.7 of Chap. 1, we can derive the follow-
ing result:

Theorem 4.2.3. Let X be areal p x q, q > p, matrix of rank p and S = XX'. Then,
S > O (real positive definite) and

Pq
2
Rc)

after integrating out over the Stiefel manifold.

dX

151557 ds, (4.2.9)
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4.2a.1. Some properties of a complex matrix-variate Gaussian density
The corresponding results in the complex domain follow.

Theorem 4.2a.1. Let X bea p x g, q > p, matrix of rank p in the complex domain and
T be a p X p lower triangular matrix in the complex domain whose diagonal elements
tjj >0, j =1,..., p, are real and positive. Then, letting U, be a semi-unitary matrix
such that 01 Ul* = Ip,

X=T7T0, = ]_[ 2D 4T Ry (4.2a.5)

where h(U)) is the differential element corresponding to U.

When integrating out 7(U,), there are three situations to be considered. One of the
cases is ¢ > p. When g = p, the integration is done over the full unitary group Op;
however, there are two cases to be considered in this instance. One case occurs where all
the elements of the unitary matrix Ui, including the diagonal ones, are complex, in which
case O will be denoted by 0(1) and the other one, wherein the diagonal elements of U,
are real, in which instance the unitary group will be denoted by Of,z). When unitary trans-
formations are applied to Hermitian matrices, this is our usual situations when Hermitian
matrices are involved, then the diagonal elements of the unique U; are real and hence the
unitary group is O~§,2). The integral of h(U}) under these three cases are given in the next
theorem.

Theorem 4.2a.2. Let h(U;) be as defined in equation (4.2a.5). Then, the integral of
h(O,), over the Stiefel manifold Vp q Of semi-unitary matrices for g > p, and whenq = p,

the integrals over the unitary groups 01(, ) and 01(,2) are the following:

s 2P P s )
/~ h(Uy) = = , / h(Uy) = — , (4.2a.6)
o Iy(p) oy I'y(p)

the factor 2P being omitted when Uy is uniquely specified; 0~[(71) is the case of a general X,
0~[()2) is the case corresponding to X Hermitian, and I’ »(a) is the complex matrix-variate
gamma, given by

~ p(p=1)
Iy(a) =72

~IM'a—p+1), o) >p—1. (4.2a.7)
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For example,
M) = nyl“(a)l“(a —DIM(@—2)=nT @)oo — DM a—2), Ra) > 2.
Theorem 4.2a.3. Let X be p x q, g > p, matrix of rank p in the complex domain and

S=XX*> 0. Then after integrating out over the Stiefel manifold,

pPq

dXx |det(S)|¢~PdS. (4.2a.8)

I’y (q)
4.2.2. Additional properties in the real and complex cases

On making use of the above results, we will establish a few results in this section
as well as additional ones later on. Let us consider the matrix-variate Gaussian densities
corresponding to (4.2.1) and (4.2a.2) with location matrices M and M, respectively, and
let the densities be again denoted by f, ,(X) and f p.q (X) respectively, where

|AI%|B|7 _ _ _uy
fpqg(X) = oo N 2 AX—M)BX—M)] (4.2.10)
)2
and
fp,q(i) _ |det(A)|q|det(B)|pe—tr[A(}Z'—]\;[)B()N(—M)*]. (42(19)

T P4

Then, in the real case the expected value of X or the mean value of X, denoted by E(X),
is given by

E(X):/XXfp,q(X)dX:/X(X—M)fp,q(X)dX—l-M/anq(X)dX. (@)

The second integral in (i) is the total integral in a density, which is 1, and hence the second
integral gives M. On making the transformation ¥ = Az X-M )B%, we have

np

ElX]=M+ad—_ /Ye—%WY’)dYB—i. (i)
(2m)~

But tr(Y'Y’) is the sum of squares of all elements in Y. Hence Ye_%tr(y ) is an odd function

and the integral over each element in Y is convergent, so that each integral is zero. Thus,

the integral over Y glves a null matrix. Therefore E(X) = M. It can be shown in a similar

manner that £ (X ) =
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Theorem 4.2.4,4.2a.4. For the densities specified in (4.2.10) and (4.2a.9),
E(X)=Mand E(X)=M. (4.2.11)
Theorem 4.2.5, 4.2a.5. For the densities given in (4.2.10), (4.2a.9)
E[(X —M)B(X —M)1=qA"", E[(X — M)A(X — M)] = pB~! (4.2.12)
and
E[(X = M)B(X — M)*| =qA~', E[(X = M)*A(X — M)| = pB~'.  (4.24.10)

Proof: Consider the real case first. Let Y = A%(X — M)B% = ATIY = (X — M)B%.
Then

A-2

E[(X —M)B(X —M)] =

Pq

/ YY'e 2t Y gy o=3 (i)
Qn)7 Jy

Note that Y is pxq and Y'Y’ is p x p. The non-diagonal elements in Y Y’ are dot products of
the distinct row vectors in Y and hence linear functions of the elements of Y. The diagonal
elements in YY’ are sums of squares of elements in the rows of Y. The exponent has all
sum of squares and hence the convergent integrals corresponding to all the non-diagonal
elements in Y'Y’ are zeros. Hence, only the diagonal elements need be considered. Each
diagonal element is a sum of squares of g elements of Y. For example, the first diagonal
element in YY" is y%l + y%z + -+ y%q where Y = (y;;). Let Y1 = (y11, ..., y14) be the
first row of ¥ and let s = Y1Y| = y12| + - 4 ylzq. It follows from Theorem 4.2.3 that
when p =1,

ok

T

" )s%—lds. (ii)

dY; =

[NS1ES

Then

q
2

; Ly y’ *© 7w 71 _lg
1 1= .
f YiYiemz2'hidYy / S——zos7 e 2 ds (iii)
r =0 F(i)

N

The integral part over s is 2%“1“(% +1) = Z%H%F(%) = Z%qf(%). Thus I"(%) is

canceled and (277)% cancels with (27t)p7q leaving (271)(p_21)q in the denominator and ¢ in
the numerator. We still have p — 1 such sets of ¢, yl.zj ’s in the exponent in (i) and each such
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integrals is of the form ffooo e_%zzdz = /(2m) which gives (27) - and thus the factor
containing 7 is also canceled leaving only ¢ at each diagonal position in YY’. Hence the

integral — [y YY e 20 Y)gy — g1 where I is the identity matrix, which establishes
(2m) 2
one of the results in (4.2.12). Now, write

trfA(X — M)B(X — M)'] = te[(X — M) A(X — M)B] = tr[B(X — M) A(X — M)].

This is the same structure as in the previous case where B occupies the place of A and
the order is now ¢ in place of p in the previous case. Then, proceeding as in the deriva-
tions from (i) to (iii), the second result in (4.2.12) follows. The results in (4.2a.10) are
established in a similar manner.

From (4.2.10), it is clear that the density of Y, denoted by g(Y), is of the form

1 _1 l
g(V) = ——e ")y — (1), —00 < y;; < 00, (4.2.13)

27t)p7
for all i and j. The individual y;;’s are independently distributed and each y;; has the

density
1

8ij (i j) = \/ﬁ
Thus, we have a real standard normal density for y;;. The complex case corresponding
to (4.2.13), denoted by g(f), is given by

12 ,
e 2, —0o < y;j < 00. (iv)

~ 1 VOV
g(Y) = —e "X, (4.2a.11)
7T P4

In this case, the exponent is tr(Y Y*) = - 3:1 | ;1% where J,5 = Yrs1 + iVrs2, Yrsis

yrsateal, i = /(=T) and [J,5|* = y7, + Y7o

For the real case, consider the probability that y;; < f;; for some given f;; and this is the
distribution function of y;;, which is denoted by Fy,; (7;;). Then, let us compute the density
of ylzj Consider the probability that yizj < u, u > 0 for some u. Let u;; = ylzj Then,
Pr{u;j < v;;} for some v;; is the distribution function of u;; evaluated at v;;, denoted by
Fy,; (vij). Consider

Priy; <t 1> 0} = Pr{lyj| <1} = Pr{i—«/t < yij <1} = Fy,,(S)—F, (V).

)
Differentiate throughout with respect to . When Pr{ yl.zj < t} is differentiated with respect
to ¢, we obtain the density of u;; = yizl., evaluated at 7. This density, denoted by 7;;(u;;),
is given by '
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d d
hij i) ;= = aFy,.,.(\/?) — EF(‘*/;)

1

— oy = )7 (v = 1) (= Lp37]
= gij(yij = t)5t 8ij(yij = D(—35t27")
1 1

! [t%_le_%t] = [uz.

J2n) JCr) Y

evaluated at u;; =t for 0 <t < oo. Hence we have the following result:

e 2] (vi)

Theorem 4.2.6. Consider the density f), ,(X) in (4.2.1) and the transformation Y =
ATX B3, Letting Y = (yij), the y;j’s are mutually independently distributed as in (iv)
above and each yl.zj is distributed as a real chi-square random variable having one degree

of freedom or equivalently a real gamma with parameters o = % and B = 2 where the
usual real scalar gamma density is given by

fo =4 ; (a)z"“le‘g, (vii)

Jor0 <z < o0, Na) >0, R(P) > 0and f(z) =0 elsewhere.

q

=1
gamma distributed with the parameters o = % and B = 2. Then tr(YY’) isJ real gamma
distributed with the parameters o = % and B = 2 and each diagonal element in Y'Y’
is real gamma distributed with parameters % and B = 2 or a real chi-square variable
with g degrees of freedom and an expected value 2% = ¢. This is an alternative way
of proving (4.2.12). Proofs for the other results in (4.2.12) and (4.2a.10) are parallel and

hence are omitted.

As a consequence of the yl.zj ’s being independently gamma distributed, ) yizj is real

4.2.3. Some special cases

Consider the real p x ¢ matrix-variate Gaussian case where the exponent in the density
is —%tr(AXBX/). On making the transformation AiX = Z = dZ = |A|%dX, Z has a
p X g matrix-variate Gaussian density of the form

Lk —3tr(ZBZ')
fp.g(Z) = 2 )Me 2 . (4.2.14)
) 2

If the distribution has a p x g constant matrix M as location parameter, then replace Z by
Z — M in (4.2.14), which does not affect the normalizing constant. Letting Zy, Z», ..., Z,
denote the rows of Z, we observe that Z; has a g-variate multinormal distribution with the
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null vector as its mean value and B~! as its covariance matrix for each j = 1,..., p.
This can b]e seen from the cgnsiderations that follow. Let us consider the transformation
Y = ZB? = dZ = |B| zdY. The density in (4.2.14) then reduces to the following,
denoted by f) 4(Y):

Forg (V) = —— by, (4.2.15)

(2m)2

This means that each element y;; in ¥ = (y;;) is areal univariate standard normal variable,
vij ~ Ni1(0, 1) as per the usual notation, and all the y;;’s are mutually independently

distributed. Letting the p rows of Y be Y1, ..., Y, then each Y; is a g-variate standard
normal vector for j =1, ..., p. Letting the density of ¥; be denoted by fyj (Y;), we have
1 v/
(V) = ——e 2070,
(2m)2

Now, consider the transformation Z; = YjB_% =dY; = |B|%de andY; = ZJ-B%. That
is, Y Y]/. = ZJ-BZ;. and the density of Z; denoted by fz,(Z;) is as follows:

1
|B|>
(2m)*
which is a g-variate real multinormal density with the covariance matrix of Z; given by
B~! foreach j = 1,..., p, and the Z;’s, j = 1,..., p, are mutually independently

distributed. Thus, the following result:

Theorem 4.2.7. Let Zy, ..., Z, be the p rows of the p x q matrix Z in (4.2.14). Then
each Z; has a q-variate real multinormal distribution with the covariance matrix B!, for
Jj=1,....p,and Z,, ..., Z, are mutually independently distributed.

f2,(Z)) = e 2ZB%) B 0, (4.2.16)

Observe that the exponent in the original real p x g matrix-variate Gaussian density
can also be rewritten in the following format:

1 1 1
—Etr(AXBX/) — —Etr(X/AXB) — —Etr(BX/AX)

1

1 1
= —Jr(U'AU) = ~3(ZBZ)), A’X =7, XBZ =U.

Now, on making the transformation U = X B% = dX = |B|_§dU , the density of U,
denoted by f) 4(U), is given by

rq

Alf :
Frg(U) = —(2| |) e~ 2mWU'AU) (4.2.17)
)2

Proceeding as in the derivation of Theorem 4.2.7, we have the following result:
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Theorem 4.2.8. Consider the p x q real matrix U in (4.2.17). Let Uy, ..., U, be the
columns of U. Then, Uy, ..., U, are mutually independently distributed with U having a
p-variate multinormal density, denoted by fy,(Uj), given as

1
AP 1Ay
fU,(UJ-)=—| l,,e 2 Wj AU, (4.2.18)

(2m)2

The corresponding results in the p x g complex Gaussian case are the following:

Theorem 4.2a.6. Consider the p x g complex Gaussian matrix X. Let AX = 7 and
Zi,.. Z be the rows of Z. Then, Z\, ..., Z p are mutually independently distributed
with Z havmg a g-variate complex multinormal density, denoted by ij (Z;), given by

|det(B)] o (ZiBZ))

(4.2a.12)
4

ij(Zj) =

Theorem 4.2a.7. Let the p x g matrix X have a complex matrix-variate distribution. Let

U = XB? and U Iy -- U be the columns of U. Then U, .. U are mutually indepen—
dently distributed as p-variate complex multinormal with covariance matrix A~ L each,
the density of U], denoted by fU (U ), being given as

|det(A)] (04T

— (4.2a.13)

fo,WUj) =
Exercises 4.2

4.2.1. Prove the second result in equation (4.2.12) and prove both results in (4.2a.10).

4.2.2. Obtain (4.2.12) by establishing first the distribution of the row sum of squares and
column sum of squares in Y, and then taking the expected values in those variables.

4.2.3. Prove (4.2a.10) by establishing first the distributions of row and column sum of
squares of the absolute values in Y and then taking the expected values.

4.2.4. Establish 4.2.12 and 4.2a.10 by using the general polar coordinate transformations.

4.2.5. First prove that 2321 |yi j|2 is a 2qg-variate real gamma random variable. Then

establish the results in (4.24.10) by using the those on real gamma variables, where ¥ =
(3ij), the y;;’s in (4.2a.11) being in the complex domain and |y;;| denoting the absolute
value or modulus of y;;.
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4.2.6. Let the real matrix A > O be 2 x 2 with its first row being (1, 1) and let B > O
be 3 x 3 with its first row being (1, 1, —1). Then complete the other rows in A and B so
that A > O, B > O. Obtain the corresponding 2 x 3 real matrix-variate Gaussian density
when (1): M = O, (2): M # O with a matrix M of your own choice.

4.2.7. Let the complex matrix A > O be 2 x 2 with its first row being (1, 1 4+ i) and
let B > O be 3 x 3 with its first row being (1, 1 + i, —i). Complete the other rows with
numbers in the complex domain of your own choice so that A = A* > O, B = B* > O.
Obtain the corresponding 2 x 3 complex matrix-variate Gaussian density with (1): M = O,
(2): M # O with a matrix M of your own choice.

4.2.8. Evaluate the covariance matrix in (4.2.16), which is E (Z;. Z ), and show that it is
B~
4.2.9. Evaluate the covariance matrix in (4.2.18), which is E(U;U ]/.), and show that it is
AL
4.2.10. Repeat Exercises 4.2.8 and 4.2.9 for the complex case in (4.2a.12) and (4.2a.13).

4.3. Moment Generating Function and Characteristic Function, Real Case

Let T = (#;;) be a p x g parameter matrix. The matrix random variable X = (x;;) is
p x g and it is assumed that all of its elements x;;’s are real and distinct scalar variables.
Then » g
w(TX) =YY tijxij =tu(X'T) = e(XT"). (i)
i=1 j=1
Note that each 7;; and x;; appear once in (i) and thus, we can define the moment generating
function (mgf) in the real matrix-variate case, denoted by M ¢(T') or Mx (T'), as follows:

M (T) = E[e"7TX)] = f "X (X)dX = Mx(T) (if)
X

whenever the integral is convergent, where E denotes the expected value. Thus, for the
p X g matrix-variate real Gaussian density,
|AI2|B|?

en)%
where Ais p X p, Bis g x g and A and B are constant real positive definite matrices so
that A2 and B? are uniquely defined. Consider the transformation ¥ = A2X B2 =dY =
|A|%|B|5dX by Theorem 1.6.4. Thus, X = A~2Y B~ and

oo
Mx(T) =M¢(T) = / QU(TX)—3u(A2XBX'AZ) gy
X

r(TX) = t(TB2Y'A™2) = (A" 2T B™2Y") = tr(T(yY')
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where T(1) = A_%TB_%. Then

Mx(T) =

tr(T(1)Y)—ttr(YY’
M/er( W)=Y gy
Q)5 Jy

Note that 7)Y’ and YY" are p x p. Consider —2tr(7(1)Y") +tr(Y'Y’), which can be written
as

—2’[1‘(T(1)Y,) + '[I‘(YY/) = —tr(T(l)T(/l)) + tr[ (Y — T(l))(Y — T(l)),].

Therefore
My(T) = 3T Ty 1 / o SO =TV =T) )] 4y
2m)2 Jy
_1 1
— e%tr(TmT{l)) _ e%tr(A ITBTIT'ATY) _ e%tr(AflTBflT/) 43.1)

since the integral is 1 from the total integral of a matrix-variate Gaussian density.

In the presence of a location parameter matrix M, the matrix-variate Gaussian density
is given by

q j2
Al|2|B|2 3 "
fpaX) = (2| l)ﬂl—e‘i‘““(x‘f”w(x‘“) o (432)
) 2

where M is a constant p x g matrix. In this case, TX' =T(X—M+M) =T(X - M) +
TM', and

Mx(T) = Mf(T) — E[etr(TX’)] — etr(TM/)E[etr(T(X—M)’)]
_ olt(TM) (AT TB'T) _ u(TM)+u(GA™'TB™'T). 4.33)

When p = 1, we have the usual g-variate multinormal density. In this case, A is 1 x 1 and
taken to be 1. Then the mgf is given by

My (T) = eTM'+3TB'T’ (4.3.4)
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where T, M and X are 1 x g and B > O is g x q. The corresponding characteristic
function when p = 1 is given by

O(T) = i TM'—3TB'T', 4.3.5)

Example 4.3.1. Let X have a 2 x 3 real matrix-variate Gaussian density with the follow-
ing parameters:

_ X12 X13 1 0 -1 |11
X = X2 x23:|’E _|:—1 1 ():|’A_|:1 2:|’
3 - 1
B=|-1 2 1
|1 1 3

Consider the density f23(X) with the exponent preceded by 5 to be consistent with p-
variate real Gaussian density. Verify whether A and B are posmve definite. Then compute
the moment generating function (mgf) of X or that associated with f> 3(X) and write down
the exponent explicitly.

Solution 4.3.1. Consider a 2 x 3 parameter matrix 7 = (¢;;). Let us compute the various
quantities in the mgf. First,

1
TM = 11 tip 1413 0 1 _ 1 —1t3 —t1p +12
1 ty 03 _1 0 1 —th3 —Iihy+1in

so that

tr(TM') =t11 — t13 — ta1 + 1. ()
Consider the leading minors in A and B. Note that [(1)| =1 >0, |[A] =1 >0, |3)]| =
3 >0, _31 _21 ' =35>0, |B| =8 > 0; thus both A and B are positive definite. The
inverses of A and B are obtained by making use of the formula C -1 = ﬁ(Cof(C ))’; they
are

5 4 =3

_ 1
A‘1=[_21 f],B—lzg 4 8 -4
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For determining the exponent in the mgf, we need A~'7 and B~!T’, which are
AT — 2 =1 ||m t2 t3
—1 1 1 1n 13

| 2t =11 22—t  2H3 — 123
—h1+t1 —tiot+tn —hHh3+ihs

1 i 5 4 -3 1 2
B lT'==| 4 8§ —4 2 12
81-3 -4 5 ||tz m

L[ StAAdna =3n3 Sty 440 — 303

= 3 4111 + 8t1p — 4113 4tr1 + 8trp — 413

| =311 — 4112+ 5013 =3t — 460 + 53

Hence,

1 1
5tr[A—ITB—lT’] = 1gl@hi — )Gt + 412 = 313)

+ (2t12 — 1) (4111 + 8t12 — 4113) + (2113 — 123) (=311 — 4112 + 5t13)
+ (=111 + 121) (5121 + 4122 — 3123) + (—t12 + t22) (4121 + 8122 — 4123)
+ (=113 + 123)(—3121 — 4122 + S23)]. (i)

Thus, the mgfis Mx(T) = e2™) where
1
O(T) =te(TM') + Etr(A_lTB‘lT/),

these quantities being given in (i) and (ii). This completes the computations.

4.3a. Moment Generating and Characteristic Functions, Complex Case

Let X = (%;j) be a p x g matrix where the X;;’s are distinct scalar complex variables.
We may write X = X| +iX>, i = /(—1), X1, X, being real p x g matrices. Let T

be a p x g parameter matrix and T = 77 + i1, Ti, T, being real p x g matrices. The
conjugate transposes of X and 7 are denoted by X* and T*, respectively. Then,

tr(TX*) = tr[(T) + i o) (X| — i X5)]

=u[T1 X| + T X5 +i(TaX] — T1 X5)]
=tw(T1 X)) + (T X5) +ite(TaX] — T1 X5).
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h = (t(l)) X1 = (x(l)) X2 (x( ), T = (t( . e(TX]) =Y = lti(jl)xi(jl),
tr(1rX5) = Y1, 321 tl(Jz) I(J) In other words, tr(7T1X}) + tr(T2X}) gives all the x;;’s

in the real and complex parts of X multiplied by the corresponding f;; ;’s in the real and
complex parts of 7. That is, E[e"T1X DH(2X5)) gives a moment generating function (mgf)
associated with the complex matrix-variate Gaussian density that is consistent with real
multivariate mgf. However, [tr(TlX ) + tr(TzX )] = SR('[r[TX *1, M(-) denoting the real

part of (-). Thus, in the complex case, the mgf for any real-valued scalar function g(X) of
the complex matrix argument X, where g(X) is a density, is defined as

My(T) = f M T XN g (X)dX (4.3a.1)
X

whenever the expected value exists. On replacing Yiby iT, i = v (=1), we obtain the
characteristic function of X or that associated with f, denoted by ¢ (T) = ¢ f(T)- That
is,
¢ (T) = / MrGTX 6 (%)X (4.3a.2)
X

Then, the mgf of the matrix-variate Gaussian density in the complex domain is available
by paralleling the derivation in the real case and making use of Lemma 3.2a.1:

MX(T) _ E[em[tr(f)?*)]]

. B O |
— MMu(T M)+ R[uw(A 2T B~ T*A72)] (4.3a.3)
The corresponding characteristic function is given by
¢X(T) _ e.‘)t[tr(if’M*)]—%ﬂ?[tr(A_%TB_lf*A_%)]. (4.3a.4)

Note that when A = A* > O and B = B* > O (Hermitian positive definite),

N\'—‘

Y TB1T*A~

N\'—
N\

Y TB1T*A™

N\

(A~ Y =A"

that is, this matrix is Hermitian. Thus, letting U = A_%TB”T*A_% = U +iU,
where U; and U, are real matrices, Uy = U] and Uy = —U,, that is, U; and U
are respectively symmetric and skew symmetric real matrices. Accordingly, tr(U) =
tr(Uy) + itr(Uy) = tr(Uy) as the trace of a real skew symmetric matrix is zero. Therefore,
ER[tr(A_%f’B_IT*A_%)] = tr(A_%TB_ITN’*A_%), the diagonal elements of a Hermitian
matrix being real.
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When p = 1, we have the usual g-variate complex multivariate normal density and
taking the 1 x 1 matrix A to be 1, the mgf is as follows:

My (T) = M MO+3(TBIT) (4.34.5)

where T, M are 1 x g vectors and B = B* > O (Hermitian positive definite), the
corresponding characteristic function being given by

b (T) = NTMI—5 T BT, (4.34.6)

Example 4.3a.1. Consider a 2 x 2 matrix X in the complex domain having a complex
matrix-variate density with the following parameters:

5 X11 X2 ~ 1+i 1§
X_[izl izz} EIX] = [2—1 1]’

[ -]

Determine whether A and B are Hermitian positive definite; then, obtain the mgf of this
distribution and provide the exponential part explicitly.

Solution 4.3a.1. Clearly, A > O and B > O. We first determine A~ B7L A_lf",
B~IT*:

1 s U3 =i [ 1 [ 36 —itar 3f1p — it
- T=-|. -~ ~T == .- o o~ ,
~5 500 2 [|ta1 m2 50 it +201 itip+ 2
Letting § = tr(A~'TB~!T"),
106 = {(3f1; — it~21)(fik1 + ifikz) + (3f1 — ifzz)(—ifikl + 2??2)
+ (if11 + 2021) (53, + i3,) + (it12 + 200) (—it3, + 213,)},
106 = {3?11??1 4 3i2711t~ik2 - iltzlltik] + lef;kz

+ 62712;;} — fzzﬁkl — 2it~22t~1*2 — Siflzfikl

+ ifllf;1 — 1711552 + 2?2117;1 + 2il721l7§2

-+ 171227;1 -+ 2l'1712t~;2 — 2it~2217;<1 -+ 4172217;(2},
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106 = 3t~11t~1*1 + 6?1217;‘2 + 21721;;1 + 4?2217;2
+ 3ilt1t}, — tiaty;] — [int]; + f113,]
+i[t11t5, — 110211 + [1285] + 1150211
+ 2i [t~21t~;2 — 17;1522] + 2i [1712;;2 — t~1*2t~22].
Letting ;s = ty51 + itys2, i = +/(=1), ty51, 1,52 being real, for all r and s, then §, the
exponent in the mgf, can be expressed as follows:

1
5 = E{?’(tlzl] + tlzlz) + 6(t1221 + t1222) + 2([2211 —|— [2212) + 4(t2221 + t2222)

— 6(t112t121 — t1111122) — 2(t111t221 — t1128222) — 2(t112t211 — t1112212)
+ 2(t1211211 + ti22t212) — 4(82121221 — t2111222) — 4(t1221221 — t1211222) ).

This completes the computations.

4.3.1. Distribution of the exponent, real case

Let us determine the distribution of the exponent in the p x g real matrix-variate Gaus-
sian density. Letting u = tr(AX BX’), its density can be obtained by evaluating its associ-
ated mgf. Then, taking ¢ as its scalar parameter since u is scalar, we have

Mu(t) — E[el‘u] — E[ettr(AXBX/)].

Since this expected value depends on X, we can integrate out over the density of X:

M (I) _ C/ ettr(AXBX’)—%tr(AXBX/)dX
u =
X

=C / e 2(1I=20@AXBXGX for 1 —2¢ > 0 (i)
X
where .
c_ [AIIBI2
Qm)'7

The integral in (i) is convergent only when 1 —2¢ > 0. Then distributing /(1 — 2¢) to each
element in X and X', and denoting the new matrix by X,, we have X; = /(1 — 20)X =
dX, = (VT = 20))P4dX = (1 —2¢)'7 dX. Integral over X,, together with C, yields 1 and
hence

M, (t) = (1 —2t)~'7, provided 1 — 2t > 0. (4.3.6)
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The corresponding density is a real chi-square having pg degrees of freedom or a real
gamma density with parameters o = % and B = 2. Thus, the resulting density, denoted
by fu,(u1), is given by

-1

Pq u
fu ) =127 T (pg/D1 'uf e 2, 0<u <o, p.g=12,.... (437

and f,, (u1) = 0 elsewhere.
4.3a.1. Distribution of the exponent, complex case

.. Lo oy o] ~ ~ -
In the complex case, letting # = tr(A2XBX*Az), we note that u = u* and u is a
scalar, so that u is real. Hence, the mgf of i1, with real parameter ¢, is given by

X
det(A)|?|det(B)|”
C = .
P4

~ - 1 . - 1
M,;(t):E[ettr(A%XBX*Ai)]:le e U-DUW(A2XBX*A2)q% | _ 4~ (, with

On making the transformation Y = A%f( B%, we have
1 —(1=Dt(YY*) 17
M;t)y=——1_ ¢ ! dy.
u TPd )y
Howeyver,

P 9 P 9
wFY) =Y 5P =D D R+ )
r=1 s=1

r=1 s=1

where V.53 = yrs1 +1Vrs2, | =/ (—1), Yrs51, Vrs2 being real. Hence

L[ [T a0z 02 !
_ e rsl rs2 d)’rsl A dyrsz = —, 1 — 1 > 0
T J_ood-co 1—1

Therefore,
M;t)=(1—-1t)"P4 1—1t>0, (4.3a.7)

and # = v has a real gamma density with parameters « = p¢g, B = 1, or a chi-square
density in the complex domain with p g degrees of freedom, that is,

P4 le™ 0 < v < o0, (4.3a.8)

= o0

and f,(v) = 0 elsewhere.
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4.3.2. Linear functions in the real case

Let the p x g real matrix X = (x;;) of the real scalar random variables x;;’s have the
density in (4.2.2), namely

q P
|AlZ|Bl2 _1 _ MY
fp,q(X): (2 )ﬂ e 2tr(A(X M)B(X—M)") (438)
T)2

for A > O,B > O, where M is a p x g location parameter matrix. Let L be a p x 1
vector of constants. Consider the linear function Z| = L/lX where Z;is 1 x g.LetT bea
1 x g parameter vector. Then the mgf of the 1 x g vector Z; is

Mz (T) = E[eT?)] = E[eTX'IV] = E[e"TX'L)]
= E[etr((LlT)X/)]' (l)

This can be evaluated by replacing 7 by LT in (4.3.4). Then

MZ1 (T) — etr((LlT)M/)-}—%tr(A_] LlTB_] (L T))

_ etr(TM/Ll)—l—%tr[(L’lA_lL1)TB_] T/]. (ii)

Since L/IA_ILI is a scalar,
(LA L)TB'T =1L\ A7 L) BT,

On comparing the resulting expression with the mgf of a g-variate real normal distribution,
we observe that Z; is a g-variate real Gaussian vector with mean value vector L} M and
covariance matrix [L’1 A~1L{1B~!. Hence the following result:

Theorem 4.3.1. Let the real p x g matrix X have the density specified in (4.3.8) and L
be a p x 1 constant vector. Let Z1 be the linear function of X, Zy = L X. Then Z1, which
is 1 x q, has the mgf given in (ii) and thereby Z| has a q-variate real Gaussian density
with the mean value vector L’lM and covariance matrix [L’] A-'L1B7L.

Theorem 4.3.2. Let L, be a g x 1 constant vector. Consider the linear function Z, =
X L> where the p x q real matrix X has the density specified in (4.3.8). Then Z>, which is
p X 1, is a p-variate real Gaussian vector with mean value vector M L, and covariance
matrix [L’zB_le]A_l.

The proof of Theorem 4.3.2 is parallel to the derivation of that of Theorem 4.3.1.
Theorems 4.3.1 and 4.3.2 establish that when the p x g matrix X has a p x g-variate real
Gaussian density with parameters M, A > O, B > O, then all linear functions of the
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form L} X where Ly is p x 1 are g-variate real Gaussian and all linear functions of the
type X L, where L is g x 1 are p-variate real Gaussian, the parameters in these Gaussian
densities being given in Theorems 4.3.1 and 4.3.2.

By retracing the steps, we can obtain characterizations of the density of the p x ¢ real
matrix X through linear transformations. Consider all possible p x 1 constant vectors L
or, equivalently, let L be arbitrary. Let 7 be a 1 x g parameter vector. Then the p x ¢
matrix LT, denoted by 71, contains pq free parameters. In this case the mgf in (ii) can
be written as

M(Tqy) = etr(T(l)M/)—k%tr(A_lT(I)B_‘T(’l))’ (i)

which has the same structure of the mgf of a p x ¢ real matrix-variate Gaussian density
as given in (4.3.8), whose the mean value matrix is M and parameter matrices are A > O
and B > O. Hence, the following result can be obtained:

Theorem 4.3.3. Let L be a constant p x 1 vector, X be a p x g matrix whose elements
are real scalar variables and A > O be p X p and B > O be q x q constant real positive
definite matrices. If for an arbitrary vector Ly, L X is a g-variate real Gaussian vector
as specified in Theorem 4.3.1, then X has a p x q real matrix-variate Gaussian density as
given in (4.3.8).

As well, a result parallel to this one follows from Theorem 4.3.2:

Theorem 4.3.4. Let L) be a g x 1 constant vector, X be a p x q matrix whose elements
are real scalar variables and A > O be p x p and B > O be q x q constant real positive
definite matrices. If for an arbitrary constant vector Lo, XL, is a p-variate real Gaus-
sian vector as specified in Theorem 4.3.2, then X is p x q real matrix-variate Gaussian
distributed as in (4.3.8).

Example 4.3.2. Consider a 2 x 2 matrix-variate real Gaussian density with the parame-

ters
. 2 1 . 2 1 . 1 —1 . X111 X12
A_|:l l]’B_|:l 2]’M_|:0 1]_E[X]’X_|:XZ1 sz]'

Letting Uy = L1X, U, = XL, U3 = L|XL,, evaluate the densities of U, Uz, U3
by applying Theorems 4.3.1 and 4.3.2 where L} = [1, 1], L} = [1, —1]; as well, obtain
those densities without resorting to these theorems.

Solution 4.3.2. Let us first compute the following quantities:

AL BT LIATLy, LYBT Ly, LM, MLy, LiML,.
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They are

I -1 L 2 -1
-1 _ -1 _ =
e ] 1
—— [1 —17 2

-0, o, 1 2 —1[ 17 _
2] m 4B L = 1) [_1 2] [_1] 2,
=2.

LiA™'Ly =[1,1] _11
[ 2

LMLy =11,0] _1]

Let Uy = L1X,Us = XLy, U3 = L{XL,. Then by making use of Theorems 4.3.1
and 4.3.2 and then, results from Chap. 2 on g-variate real Gaussian vectors, we have the
following:

Ui ~ Na((1,0), ()B™"), Uy ~ Na(MLp, 2A7"), Us ~ Ni(1, (1)(2) = Ni(1,2).

Let us evaluate the densities without resorting to these theorems. Note that U; = [x11 +
X21, X12 + x22]. Then U; has a bivariate real distribution. Let us compute the mgf of Uj.
Letting #; and 1, be real parameters, the mgf of U is

My, (11, 1) = E[e" (x11+x21)+t2(x12+x22)] = E[eh¥nthixatiXintnim,
1 ’ )

which is available from the mgf of X by letting t{; = t1, 21 = t1, ti2 = tr, t) = b.

Thus,
1 1 —1 | 0 0
AT = |: —1 2 n n B 1
B_lT, _ l 2 —1 n n|_ 1 2t — B 2t — B
3 -1 2 || n| 3|-t+26 —t+20)°
so that
1 —1p =17 Il 5 2 1 -1t .
Su(A”' TBT'T) = 5{5[2z1 + 212 — 2t1t2]} = St ()
Since

X11—X
Uy = XL, = 11 12 ’
X21 — X22
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we let 11 = t1, t1p = —1, 1 = t, try = —tp. With these substitutions, we have the

following:
AT — 2 —1 H —N _ H—=n —1 + B
—1 2 th —b —Hn+2H -2
1
3

2 —1 t t t t

—1pr _ 1 2 | 1 2

BT = [—1 2 ][—tl —tz] B |:—t1 —tz]'
tr(AT'TB™IT) = 11(t1 — o) — t1(—11 + 1) + ta(—11 + 212) — 12(t1 — 212)

= 2[11, 12] [ _11 _21 } [g]

Therefore, U, is a 2-variate real Gaussian with covariance matrix 2A~! and mean value

_21 ] That is, Uy ~ No(ML>,2A~"). For determining the distribution of Us,

observe that L\ XL, = L|U,. Then, LU, is univariate real Gaussian with mean value

E[L\Uy]l = L\MLy =[1,1] [ _21

That is, Uz = u3 ~ N(1, 2). This completes the solution.

Hence,

vector |:
= 1 and variance L|Cov(U)L = L|2A7'Ly = 2.

The results stated in Theorems 4.3.1 and 4.3.2 are now generalized by taking sets of
linear functions of X:

Theorem 4.3.5. Let C' be ar x p, r < p, real constant matrix of full rank r and G
be a g x s matrix, s < q, of rank s. Let Z = C'X and W = XG where X has the
density specified in (4.3.8). Then, Z has a r x q real matrix-variate Gaussian density
with M replaced by C'M and A~ replaced by C'A~'C, B~ remaining unchanged, and
W = XG has a p x s real matrix-variate Gaussian distribution with B~" replaced by
G'B~'G and M replaced by MG, A~ remaining unchanged.

Example 4.3.3. Let the 2 x 2 real X = (x;;) have a real matrix-variate Gaussian dis-
tribution with the parameters M, A and B. Consider the set of linear functions U = C'X
where

— — V2 -1
e N T e bl |
%
Show that the rows of U are independently distributed real g-variate Gaussian vectors with
common covariance matrix B~! and the rows of M as the mean value vectors.
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Solution 4.3.3. Let us compute A~! and C’A~!C:
1
A= [1 2

7 L
cate— |2 I Vaiool_mo_,

In the mgf of U = C’X, A~! is replaced by C'A~!C = I, and B~! remains the
same. Then, the exponent in the mgf of U, excluding tr(TM’) is %tr(TB‘lT/) =
%Zle TjB_lT]f where T is the j-th row of 7. Hence the p rows of U are indepen-

dently distributed g-variate real Gaussian with the common covariance matrix B~'. This
completes the computations.

The previous example entails a general result that now is stated as a corollary.

Corollary 4.3.1. Let X be a p xq-variate real Gaussian matrix with the usual parameters
M, A and B, whose density is as given in (4.3.8). Consider the set of linear functions
U = C'X where C is a p x p constant matrix of full rank p and C is such that A = CC’.
Then C'A™'C = c'(cc)~!'c = c'(¢")~'c~'C = I,. Consequently, the rows of U,
denoted by Uy, ..., U,, are independently distributed as real q-variate Gaussian vectors
having the common covariance matrix B~

It is easy to construct such a C. Since A = (a;;) is real positive definite, set it as
A = CC’ where C is a lower triangular matrix with positive diagonal elements. The first
row, first column element in C = (¢;;) is ¢11 = +./ai1. Note that since A > O, all the
diagonal elements are real positive. The first column of C is readily available from the first
column of A and c1. Now, given az, and the first column in C, ¢, can be determined, and
SO on.

Theorem 4.3.6. Let C, G and X be as defined in Theorem 4.3.5. Consider the r X s
real matrix Z = C'XG. Then, when X has the distribution specified in (4.3.8), Z has an

r x s real matrix-variate Gaussian density with M replaced by C'M G, A~! replaced by
C'A~'C and B! replaced by G'B~'G.

Example 4.3.4. Let the 2 x 2 matrix X = (x;;) have a real matrix-variate Gaussian
density with the parameters M, A and B, and consider the set of linear functions Z =
C’XG where C"is a p x p constant matrix of rank p and G is a ¢ x g constant matrix of
rank g, where



Matrix-Variate Gaussian Distribution 245
2 —1 2 —1 2 1
w=[7 5 as[ 0 el

o 4o A

Show that all the elements z;;’s in Z = (z;;) are mutually independently distributed real
scalar standard Gaussian random variables when M = O.

Solution 4.3.4. We have already shown in Example 4.3.3 that C'A~™'C = I. Let us
verify that GG’ = B and compute G'B~'G:

2 [ 8B

SRR

17 3 —1
-1 _ 2
B _5_—1 2]’
B 1 1
Fy—1 _ ﬁ\_ﬁ 3 _1 _1 3\/5—\—6 O
G'B G = G = G
o 3Lt 2SS 2

[ 1
3W2-5 0 [ﬁ 0} 1[5 o] ;
5 si|lL /5075 -2
-3 23l i sLos
Thus, A~! is replaced by C’A~!C = I, and B~ is replaced by G'B~'G = I, in the mgf
of Z, so that the exponent in the mgf, excluding tr(T M’), is %tr(T T'). Tt follows that all

the elements in Z = C’XG are mutually independently distributed real scalar standard
normal variables. This completes the computations.

The previous example also suggests the following results which are stated as corollar-
ies:

Corollary 4.3.2. Let the p x q real matrix X = (x;j) have a real matrix-variate Gaus-
sian density with parameters M, A and B, as given in (4.3.8). Consider the set of lin-
ear functions Y = XG where G is a q X q constant matrix of full rank q, and let
B = GG'. Then, the columns of Y, denoted by Yy, ..., Yy, are independently dis-
tributed p-variate real Gaussian vectors with common covariance matrix A~' and mean
value (MG)y, j=1,...,q, where (MG)jy is the j-th column of MG.
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Corollary 4.3.3. Let Z = C'XG where C is a p x p constant matrix of rank p, G is a
q X g constant matrix of rank q and X is a real p x q Gaussian matrix whose parameters
are M = O, A and B, the constant matrices C and G being such that A = CC’ and
B = GG'. Then, all the elements z; j in Z = (z;;) are mutually independently distributed
real scalar standard Gaussian random variables.

4.3a.2. Linear functions in the complex case

We can similarly obtain results parallel to Theorems 4.3.1-4.3.6 in the complex case.
Let X be p x ¢ matrix in the complex domain, whose elements are scalar complex vari-
ables. Assume that X has a complex p x ¢ matrix-variate density as specified in (4.2a.9)
whose associated moment generating function is as given in (4.3a.3). Let Ci be a p x 1
constant vector, C be a g X 1 constant vector, Cbear x p, r < p, constant matrix of
rank r and G be a q X s, s < gq, aconstant matrix of rank s. Then, we have the following
results:

Theorem 4.3a.1. Let C; be a p x 1 constant vector as defined above and let the p x q
matrix X have the density given in (4.2a.9 ) whose associated mgfis as specified in (4.3a.3).
Let U be the linear function of X, U=C *X Then U has a q-variate complex Gaussian

density with the mean value vector C *M and covariance matrix [C *A-IC 1B~ L.

Theorem 4.3a.2. Let C, be a g x 1 constant vector. Consider the linear function Y =
XC» where the p x q complex matrix X has the density (4.2a.9). Then Yisa p-variate
complex Gaussian random vector with the mean value vector MC» and the covariance
matrix [C* “1C0A 1

Note 4.3a.1. Consider the mgf’s of U and Y in Theorems 4.3a.1 and 4.3a.2, namely
M[](T) = E[em(fﬁ*)] and MI;(T) = E[em(y*f)] with the conjugate transpose of the
variable part in the linear form in the exponent; then 7 in M 0(7~") has to be 1 x g and
T in M,;(T) has to be p x 1. Thus, the exponent in Theorem 4.3a.1 will be of the
form [éTA_lél]fB_IT* whereas the corresponding exponent in Theorem 4.3a.2 will
be [C;B_IC’Z]T*A_IT. Note that in one case, we have 7B~ T* and in the other case, T

and T* are interchanged as are A and B. This has to be kept in mind when applying these
theorems.

Example 4.3a.2. Consider a 2 x 2 matrix X having a complex 2 x 2 matrix-variate
Gaussian density with the parameters M = O, A and B, as well as the 2 x 1 vectors L
and L; and the linear functions L7X and X L, where
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12 =i 11 i =2 | i 5 X111 X12
A_[i 1 ] B_[—i 2]’ Ll_[ 3i ] Lz_[—2i] andx‘[fm xzz]'
Evaluate the densities of U = L*l‘f( and Y = X L, by applying Theorems 4.3a.1 and 4.3a.2,
as well as independently.

Solution 4.3a.2. First, we compute the following quantities:

1o 2
-1 _ -1 __
A _[—i 2]’3 _{i 1]

Lt =[2i,-3i], L} = [i, 2il,

so that
* —1 _ ¥ 1 l _2l _
LTA™ Ly = [2i, —-3i] |:—i 5 3 | = 22
* p—1 s . 2 _l —l _
LB~ 'L, = [l,2l]|:l. 1 5 | =

Then, as per Theorems 4.3a.1 and 4.3a.2, U is a ¢-variate complex Gaussian vector whose
covariance matrix is 22 B~! and Y is a p-variate complex Gaussian vector whose co-
variance matrix is 6 A1, that is, U ~ 1\72(0, 22 B_l), Y ~ Nz(O, 6A_1). Now, let us
determine the densities of U and ¥ without resorting to these theorems. Consider the mgf
of U by taking the parameter vector T as T = [7}, 7»]. Note that

Then, in comparison with the corresponding part in the mgf of X whose associated general
parameter matrix is T = (f; i), we have

t~]1 = —2it~1, l712 = —21‘172, 1721 = 31‘171, t~22 = 31‘172. (iD)

We now substitute the values of (ii) in the general mgf of X to obtain the mgf of U. Thus,
AT = 1 i —2it; —2ibH (=3 — 201 (=3 =2i)f
=i 2 3if; 3in | | (=24 6i)f1 (=2+6i)h

pljr_ |2 —i 2iff  =3ify | _ [ 4ify +285  —6if} — 313
i 1|20 =3it) =2t] +2ity  3t] —3ity |’
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Here an asterisk only denotes the conjugate as the quantities are scalar.

tr[A™ T BT T*] = [3 — 20171 [4if} + 2051 + [(—3 — 2i)a[—2FF + 2i 5]
+ [(=2 + 6D 1[(=6if] — 3551 + [(—2 + 6i)R[3F} — 3if5]
=22 [Zflfr — l'fllT; + ifzfik 4+ fzf;]

7 £k ~ ~ ~ ~ ~
=22 [f], t~2] |:? ll :| |:;1k:| =22 TB_lT*, T =1, ]
2

This shows that U ~ Nz(O, 22B~1). Now, consider
A g L | Bl I el
X1 Xoo || —2i —iXp1 — 2iX
Then, on comparing the mgf of ¥ with that of X whose general parameter matrix is T =

(ij), we have

On substituting these values in the mgf of X, we have
aoa [V i [in 2R _[ih—h 2if 25
T =i 2 ifz 2it~2 o 171 + 21'172 2t~1 -|-4l'172
B1F* _ 2 —i —iff —itz" _ (=2 — ZiZfi“ (-2 - 2i)~t~2*
i1 || =20 =2ity (1=2i  (A-=20)t5 |’

so that

tu[A'TB™IT*] = [(f} — B)I[(—2 — 20)FF] + [2if; — 25][(1 — 20)7}]
+ 1 + 2in][(=2 — 20)15] + [2f; + 4in][(1 — 2i)15]
=6 [ltllrik — iflf; + ilTQZT]* + Zfzfik]

= 6[7", 1] [_ll 2] [g] — 6T*A'T;

refer to Note 4.3a.1 regarding the representation of the quadratic forms in the two cases
above. This shows that ¥ ~ N2(0 6A~"). This completes the computations.

Theorem 4.3a.3. Let C; be a constant p x 1 vector, X be a p x ¢ matrix whose elements
are complex scalar variables and let A = A* > O be p X pand B = B* > O beq X q
constant Hermitian positive definite matrices, where an asterisk denotes the conjugate
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transpose. If. for an arbitrary p x 1 constant vector Cy, C Tf( is a g-variate complex

Gaussian vector as specified in Theorem 4.3a.1, then X has the p X q complex matrix-
variate Gaussian density given in (4.2a.9).

As well, a result parallel to this one follows from Theorem 4.3a.2:

Theorem 4.3a.4. Let C> be a g x 1 constant vector, X be a p x ¢ matrix whose elements
are complex scalar variables and let A > O be p x p and B > O be q x q Hermitian
positive definite constant matrices. If, for an arbitrary constant vector Cy, XCy is a p-
variate complex Gaussian vector as specified in Theorem 4.3a.2, then X is p x q complex
matrix-variate Gaussian matrix which is distributed as in (4.2a.9).

Theorem 4.3a.5. Let C* bear x p, r < p, complex constant matrix of full rank r and
G bea g X s, s < q, constant complex matrix of full rank s. Let U=C*Xand W = XG
where X has the density given in (4. 2a 9). Then, U has a r x q complex matrix-variate
density with M replaced by C*M, A~ Ureplaced by C*A~'C and B U remaining the same,
and W hasa p X s complex matrix-variate distribution with B~" replaced by G*B~1G,
M replaced by MG and A~ remaining the same.

Theorem 4.3a.6. Let C*, G and X be as defined in Theorem 4.3a.5. Consider the r X s
complex matrix 7Z = C*XG. Then when X has the distribution specified by (4.2a.9), Z

hasanr X s complex matrix-variate denszry with M replaced by C*MG, A~ Ureplaced by
C*A~1C and B! replaced by G*B~1G.

Example 4.3a.3. Consider a 2 x 3 matrix X having a complex matrix-variate Gaussian
distribution with the parameter matrices M = O, A and B where

5 30 01 . L.
A:[ . ’}, | =i 1 ,X:[’f“ e 3513].
—i 1 . X21 X22 X23
0 —i 2

Consider the linear forms

' iX1] —iX] iX12 —iXon 1X13 —iX23
C*'X=]. - ~ - ~ -
X114+ 2x21 X2+ 2x22 X134+ 2x3
%G = X1 +iXi2 +2X13 X2 iXy —iXp2 +iXi3
Xo1 +iXo2 +2X23 Xoo iXo1 —iXp +iXp3 |’
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(1): Compute the distribution of 7Z = C*XG; (2): Compute the distribution of Z =C*XG
if A remains the same and G is equal to

V30 0
i 2
7 i 0,
. /3 1
0 -ifi &

and study the properties of this distribution.

Solution 4.3a.3. Note that A = A* and B = B* and hence both A and B are Hermitian.
Moreover, |A| = 1 and |B| = 1 and since all the leading minors of A and B are positive,
A and B are both Hermitian positive definite. Then, the inverses of A and B in terms of
the cofactors of their elements are

L 1 —2i -1
Al = [ 2], [Cof(B) =| 2i 6 —=3i |=B"l
! -1 3 2

The linear forms provided above in connection with part (1) of this exercise can be respec-
tively expressed in terms of the following matrices:

i

o 1 0
C*:[; 2’],(}: i1 —i
20 i

Let us now compute C*A~!C and G*B~!G:

w1 [0 —i|[1 =i][=i 1] _ 11—
CATC=1 2][1' 2_[1' 2]_3[1+i 3

1 —i 27 1 —2i -1 1 0 i
G*B~'G = 0 1 0 2 6 —3i i1 —i
| i i =i || -1 3 2 2 0 i

3 —2i =24

= 2i 6 1 — 6i

| 2—i 1+6i 7

Then in (1), C*XG is a 2 x 3 complex matrix-variate Gaussian with A~! replaced by
C*A~!C and B! replaced by G*B~'G where C*A~!C and G*B~!G are given above.
For answering (2), let us evaluate G*B~!G:
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3s 0 1 —2i -1 */5 02 0
— . . 1
G'B-'G=|0 J% i/} 211 36 —;z ~5 \/; 0
1 — 1 - /3 1
00 5 0 i}
1.0 0
00 1

Observe that this ¢ x g matrix G which is such that GG* = B, is nonsmgular thus,
G*B~'G = G*(GG*)"'G = G*(G*)"'G™'G = I. Letting Y = XG, X = YG~!, and
the exponent in the density of X becomes

p
(A" XBX*) = (A”'YG™'B(G*)'Y*) = w(Y*AY) = Y " ¥ AY(;)
j=1

where the 17( j)’s are the columns of Y, which are independently distributed complex p-
variate Gaussian vectors with common covariance matrix A~!. This completes the com-
putations.

The conclusions obtained in the solution to Example 4.3a.1 suggest the corollaries that
follow.

Corollary 4.3a.1. Let the p x q matrix X have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transfor-
mation U = C*X where C is a pXp nonsmgular matrix such that CC* = A so that
C*A~'C = I. Then the rows of U, namely Uy, ..., U p» are mutually independently dis-
tributed g-variate complex Gaussian vectors with common covariance matrix B!,

Corollary 4.3a.2. Let the p x q matrix X have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
Y = XG where G isa q X q nonsingular matrix such that GG* = BsothatG*B~'G = 1.
Then the columns of Y, namely Y(l), cees Y(q), are independently distributed p-variate
complex Gaussian vectors with common covariance matrix AL

Corollary 4.3a.3. Let the p x q matrix X have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
7 = C*XG where C is a p X p nonsingular matrix such that CC* = A and G is a
q % q nonsingular matrix such that GG* = B. Then, the elements Z;;’s of Z = (3 i) are
mutually independently distributed complex standard Gaussian variables.
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4.3.3. Partitioning of the parameter matrix

Suppose that in the p x g real matrix-variate case, we partition 7" as where 77 is

1
I,
p1 X q and T» is p>» X g, so that p; + p» = p. Let T = O (a null matrix). Then,

-1 _ T -1 / _ TIB_IT{ 0,
TB T_(O B~ (1| 0)= 0, 0

where TlB_lTl/ isa p; x pp; matrix, O is a p; x pp null matrix, O, is a pp x p; null
matrix and O3 is a p» x p> null matrix. Let us similarly partition A~! into sub-matrices:

All A12
-
AT = [AZI Azz]’

where A!! is p; x p; and A?? is p» x p,. Then,

AUnBY'T) 0O

-1 —1pn
tr(A'TB T)—tr|: 0 0

} = tr(A''Ty B7IT)).
If A is partitioned as

Al Anp
A= :
|:A21 Azz]

where A1 is p1 x pj and As; is pa X pa, then, as established in Sect. 1.3, we have
Al = (A — ApAyy Ay
Therefore, under this special case of T, the mgf is given by

E[etf(Tlxl)] — e%tr((A”—A12A2_21A21)*1T1 BilT{)’ (4.3.9)

which is also the mgf of the p; x g sub-matrix of X. Note that the mgf’s in (4.3.9)
and (4.3.1) share an identical structure. Hence, due to the uniqueness of the mgf, X has a
real p; x g matrix-variate Gaussian density wherein the parameter B remains unchanged
and A is replaced by A — A12A2_21A21, the A;;’s denoting the sub-matrices of A as de-
scribed earlier.
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4.3.4. Distributions of quadratic and bilinear forms

Consider the real p x g Gaussian matrix U defined in (4.2.17) whose mean value
matrix is E[X] =M = O andlet U = XB%. Then,

UlAU, UjAU, ... UjAU;,
UéAUl U2’AU2 .. UZ’AUq
U'AU = : : . : (4.3.10)
UéAUl U(;AUz U;AUq
where the p x 1 column vectors of U, namely, Uy, ..., U, are independently distributed as

N, (O, A~1) vectors, that is, the U ;s are independently distributed real p-variate Gaussian
(normal) vectors whose covariance matrix is A~! = E[UU’], with density

1

A2 _Laray.

fu,U)) = Al —e2WiAUD A S 0, (4.3.11)
(2m)>

What is then the distribution of U j/.AU ;j for any particular j and what are the distributions
of UAU;, i# j=1,...,q?Letz; = UJ/.AUJ- and z;; = U/AU; ,i # j. Lettingt be a
scalar parameter, consider the mgf of z;:

M., (1) = E[e] = / VA fy (UAU;
U

J
1
Alz 1 ’ .
) (|2n|)'z’/ e 20 B,
=(1—-21)"% forl—2r>0,

which is the mgf of a real gamma random variable with parameters o = % B=2ora
real chi-square random variable with p degrees of freedom for p = 1,2, ... . Tha

!-F

U ;-AU i X,z, (a real chi-square random variable having p degrees of freedom).
o (4.3.12)
In the complex case, observe that U;.‘A Uj is real when A = A* > O and hence, the pa-

) ) . . 1~ ~ .
rameter in the mgf is real. On making the transformation A2U; = V;, |det(A)] is canceled.
Then, the exponent can be expressed in terms of

p p
A=V T === 5P = -1 =Y 6% + b,

j=1 j=1



254 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

where y yji=yj1+ iyj2, i = +/(—1). The integral gives (1 —¢)~? for 1 — ¢ > 0. Hence,
V = U AU has a real gamma distribution with the parameters « = p, f = 1, thatis, a

chi-square distribution with p degrees of freedom in the complex domain. Thus, 2\7j isa
real chi-square random variable with 2p degrees of freedom, that is,

2V; =2UFAU; ~ X3, (4.3a.9)
What is then the distribution of U/AU;, i # j? Let us evaluate the mgf of U/AU; = z;;.

As z;; 1s a function of U; and U, we can integrate out over the joint density of U; and U
where U; and U; are independently distributed p-variate real Gaussian random variables:

M, (t) = E[e"%/] = / / e' Vitli f,.(U;) fu,(Uy)dU; A dU;
: o, .

A AU~ YU AU LU’ AU
= (2| )|P//et VAl UiAY=2 ity A du;.
T

Let us first integrate out U;. The relevant terms in the exponent are
1 / 1 / 1 / 1 277/
—E(UjA Uj) + E(2t)(UiA Uj) = —E(Uj —C)A (Uj —-OC)+ Et UiA U, C=tU,.

But the integral over U; which is the integral over U; — C will result in the following
representation:

1

Al2 2.0 /

Mzii(t) _ | | . / e%UiAUi—%UiAUdei
‘ (2m)2 Ju

—(1—=t)"% forl —1>>0. (4.3.13)

What is the density corresponding to the mgf (1 — tz)_g ? This is the mgf of a real scalar
random variable u of the form u = x — y where x and y are independently distributed
real scalar chi-square random variables. For p = 2, x and y will be exponential variables
so that # will have a double exponential distribution or a real Laplace distribution. In the
general case, the density of u can also be worked out when x and y are independently
distributed real gamma random variables with different parameters whereas chi-squares
with equal degrees of freedom constitutes a special case. For the exact distribution of
covariance structures such as the z;;’s, see Mathai and Sebastian (2022).
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Exercises 4.3

4.3.1. In the moment generating function (mgf) (4.3.3), partition the p x g parameter
matrix 7" into column sub-matrices such that 7 = (T, T>) where T is p x g1 and T3 is
p X g2 with g1 + g2 = ¢q. Take T, = O (the null matrix). Simplify and show that if X is
similarly partitioned as X = (Y7, Y»), then Y| has a real p x ¢; matrix-variate Gaussian
density. As well, show that Y, has areal p x g, matrix-variate Gaussian density.

4.3.2. Referring to Exercises 4.3.1, write down the densities of Y7 and Y5.

4.3.3. If T is the parameter matrix in (4.3.3), then what type of partitioning of 7 is re-
quired so that the densities of (1): the first row of X, (2): the first column of X can be
determined, and write down these densities explicitly.

4.3.4. Repeat Exercises 4.3.1-4.3.3 by taking the mgf in (4.3a.3) for the corresponding
complex case.

4.3.5. Write down the mgf explicitly for p = 2 and ¢ = 2 corresponding to (4.3.3)
and (4.3a.3), assuming general A > O and B > O.

4.3.6. Partition the mgf in the complex p x ¢ matrix-variate Gaussian case, correspond-
ing to the partition in Sect. 4.3.1 and write down the complex matrix-variate density cor-
responding to 77 in the complex case.

4.3.7. Inthe real p x g matrix-variate Gaussian case, partition the mgf parameter matrix
intoT = (T(]), T(2)) where T(]) is p X g1 and T(z) is p X g with g1 + g2 = q. Obtain the
density corresponding to 7() by letting T(2) = O.

4.3.8. Repeat Exercise 4.3.7 for the complex p x g matrix-variate Gaussian case.

4.3.9. Consider v = l~]]’f‘Al~] ;- Provide the details of the steps for obtaining (4.3a.9).

4.3.10. Derive the mgf of Ul.*Al} j»1 # j, in the complex p x g matrix-variate Gaussian
case, corresponding to (4.3.13).

4.4. Marginal Densities in the Real Matrix-variate Gaussian Case

On partitioning the real p x g Gaussian matrix into X; of order p; x g and X, of
order p, x g so that p; + p» = p, it was determined by applying the mgf technique
that X| has a p; X g matrix-variate Gaussian distribution with the parameter matrices B
remaining unchanged while A was replaced by Ay — A12A2_21A21 where the A;;’s are the
sub-matrices of A. This density is then the marginal density of the sub-matrix X; with
respect to the joint density of X. Let us see whether the same result is available by direct
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integration of the remaining variables, namely by integrating out X;. We first consider the
real case. Note that

/ X / /
tr(AXBX') = tr [A (X;) B(X, Xz)]

/ /
_wla XIBX/1 XlBX/2 '
X2BX| X2BX,
Now, letting A be similarly partitioned, we have

(A An)(XiBX, X|BX,
tr(AXBX") =tr |:(A21 A XzBX/l XzBX/z
= tr(AHXlBX’l) + tr(AlzXzBX/I)
+ tl‘(AlelBX/z) + tl‘(AszzBX/z),
as the remaining terms do not appear in the trace. However, (A12X>BX|)" = X1 BX},As;,

and since tr(P Q) = tr(QP) and tr(S) = tr(S’) whenever S, PQ and QP are square
matrices, we have

tr(AXBX') = ‘[I‘(AHXlBX/l) + 2tl‘(A21X13X/2) + tl‘(AszzBX/z).

We may now complete the quadratic form in tr(A; X>BX /2) + 2tr(A21 X1BX /2) by taking
a matrix C = A2_21A21X1 and replacing X, by X, + C. Note that when A > O, A1 > O
and Ay> > O. Thus,
'[I‘(AXBX/) =tr(A»n(X; + C)B(X, + C)/)—{—'[I'(AHXlBX,I)—tr(A12A2_21A21XIBX/1)
= tr(An(X2 + C)B(X2 + C)) + tr((A11 — A12A5, A2) X1 BX)).

On applying a result on partitioned matrices from Sect. 1.3, we have
Al = |An| |A11 — A12AY) Aail,

and clearly, (271)% = (2n)&2q (Zn)qu. When integrating out X», |A22|% and (271)Q2q are
getting canceled. Hence, the marginal density of X1, the p; x ¢ sub-matrix of X, denoted
by fp,,q4(X1), 1s given by

P1 —1 q
B|7|A1 — AAS) Ay _ ,
fpw(Xl):l 2] “(2 )pll’lq 2 A2il e~ 3U((An—AAZ A2 X1 BX)) (4.4.1)
T) 2

When p; = 1, po = 0 and p = 1, we have the usual multivariate Gaussian density.
When p = 1, the 1 x 1 matrix A will be taken as 1 without any loss of generality.
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Then, from (4.4.1), the multivariate (g-variate) Gaussian density corresponding to (4.2.3)
is given by

4, 1 1
(1/2)2|B|26—%tr(XlBX’l) _ |B|? o3 X1BX]

q q

T2 (2m)2

since the 1 x 1 quadratic form X BX] is equal to its trace. It is usually expressed in terms
of B=V~l v>o. When g = 1, X is reducing to a p x 1 vector, say Y. Thus, for a

p x 1 column vector Y with a location parameter w, the density, denoted by f), 1(Y), is
the following:

f1,4(X1) =

fpa(Y) = %e‘%” —VT ), (4.4.2)
|VI2(2m)2
where V' = (y1, ..., ¥p)s ' = (U1,..., 1p), —00 < yj <00, —00 < Uj < 00, j =
l,...,p, V > 0. Observe that when Y is p x I, tr(Y — )’V (Y — pn) = (¥ —
w) V(Y — u). From symmetry, we can write down the density of the sub-matrix X, of
X from the density given in (4.4.1). Let us denote the density of X, by f,, 4(X2). Then,

P2 -1 4
2 — 2 —
|B| |A22 A21A11 A12| e—%tr((Azz—AzlA“lAlz)Xszé).

2 (X2) = P24
Tra (X2 on)3

(4.4.3)

Note that Ay — A21A1_11A12 > 0 as A > O, our intial assumptions being that A > O
and B > O.

Theorem 4.4.1. Let the p x q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices A > O and B > O where Ais p x pand B is q x q. Let X
Xy

x ) where X1 is p1 X q and X3 is py X g, with
2

be partitioned into sub-matrices as X = (

Al Anp
Ay Ax
p1 X p1. Then X1 has a p1 x q real matrix-variate Gaussian density with the parameter
matrices Ayl — A12A2_21A21 > 0 and B > O, as given in (4.4.1) and X» has a p» X q

p1 + p2 = p. Let A be partitioned into sub-matrices as A = |: ] where A1y is

real matrix-variate Gaussian density with the parameter matrices Axy — Ay 1A1_11A12 > 0
and B > O, as given in (4.4.3).

Observe that the p; rows taken in X need not be the first p; rows. They can be any
set of p; rows. In that instance, it suffices to make the corresponding permutations in the
rows and columns of A and B so that the new set of p; rows can be taken as the first p
rows, and similarly for X».

Can a similar result be obtained in connection with a matrix-variate Gaussian distribu-
tion if we take a set of column vectors and form a sub-matrix of X? Let us partition the
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p X g matrix X into sub-matrices of columns as X = (Y] Y») where Y] is p x g1 and Y is
p X q2 such that g1 + g2 = ¢. The variables Y7, Y> are used in order to avoid any confusion
with X, X, utilized in the discussions so far. Let us partition B as follows:

B B ) .
B = [Bll 812] , B11 being g1 x q1, By being g2 X ¢».
21 22

Then,

B Bn| (Y]
tr(AXBX') = tr[A(Y; Y- !

= tr(AY1 B11Y{) + tr(AY2 B2 Y{) + tr(AY B12Y}) + tr(AY2 B Y))
=tr(AY; By YI/) + 2tr(AY; B]2Y2/) + tl‘(AYszzYzl).

As in the previous case of row sub-matrices, we complete the quadratic form:

tr(AXBX') = tr(AY, B11Y{) — tr(AY1(B12B5,' B21Y}) + tr(A(Y2 + C) By (Y2 + C))
= tr(AY1(B11 — B12B5,' Ba1)Y]) + tr(A(Y2 + C)Baa (Y2 + C)).

Now, by integrating out Y>, we have the result, observing that A > O, B > O, B —
312B2_21 By1 > O and |B| = |By| |B11 — 31232_2] By1|. A similar result follows for the
marginal density of Y;. These results will be stated as the next theorem.

Theorem 4.4.2. Let the p x q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices M = O, A > O and B > O where A is p X p and B is
q X q. Let X be partitioned into column sub-matrices as X = (Y1 Y») where Y1 is p X qi
and Yy is p X gy with q1 + q» = q. Then Y| has a p x q real matrix-variate Gaussian
density with the parameter matrices A > O and By) — BlzB{zl By > O, denoted by
Ip.qi (Y1), and Y has a p x q real matrix-variate Gaussian density denoted by f 4,(Y2)
where

a1 -1 p
|Al2'|B11 — Bi2By, Bai|2 _1 p ol ,
fp,q1(Y1) = - )& 22 e Ft[AY(B11—B12B,, Ba1)Y(] (4.4.4)
) 2
|A|% By, — By B, Bio|?
2 — B 1217 1 By g :
frax(Y2) = gl e~ 2UAY2(Bao—Bai By Bio)Y;], (4.4.5)

Qm)=

Ifg =1and g, =0in (44.4),q; = 1. When g = 1, the 1 x 1 matrix B is taken
to be 1. Then Y| in (4.4.4) is p x 1 or a column vector of p real scalar variables. Let it
still be denoted by Y7. Then the corresponding density, which is a real p-variate Gaussian
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(normal) density, available from (4.4.4) or from the basic matrix-variate density, is the
following:

1 p
4B 1/28 _anmy
p

fp,l (Y1) = P
7T 2
1 1
_ AP eoriavy _ AP vian, (4.4.6)
Qm)2 (2m)2

observing that tr(Y{AY;) = Y{AY; since Y7 is p x 1 and then, Y{AY; is 1 x 1. In the
usual representation of a multivariate Gaussian density, A replaced by A = V=1, V being
positive definite.

Example 4.4.1. Let the 2 x 3 matrix X = (x;;) have a real matrix-variate distribution
with the parameter matrices M = O, A > O, B > O where

21 3 -1
X:Bn ilZ ?3]"4:[1 1]’32 11
21 X22 X23 0 1
Let us partition X, A and B as follows:
X1 A Ap B Bna
X = =Y. V2], A= . B=
[Xz} 11, 2] [A21 Azz] [321 Bzz]
where Ajp = (2), Aip = (1), A1 = (1), A = (1), X1 = [x11, x12, x13], X2 =
[x21, x22, x23],

X X X 3 -1 0
yi ="' 2y, =B By = , B = ,
X21 X22 X23 —1 1 1

B> = [0, 1], By = (2). Compute the densities of X1, X5, Y1 and Y>.

N = O

Solution 4.4.1. We need the following quantities: Aj; — A12A2_21 Ay =2—-1=1,
Apn — AnAjlAn=1-3=1 B =1,

_ IN[T 1(f0 3 1
By — BBy B =2-10.1](3) [1 3] [1] =2->=2

— 1 —1
By — BaBy,' By = [_31 11 ] - [(1)] (5)[0, 1= [_31 ]
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Let us compute the constant parts or normalizing constants in the various densities. With
our usual notations, the normalizing constants in f,, ,(X1) and f, ,(X2) are

Pl — q 1 3
B2 A1l — ApAy Auld |BIZ(1)?

Qr)F (27)2
r _ 3 1 3
1BI7 |An — Ay AT Al B2(3)2
Qn)% Q)3

Hence, the corresponding densities of X| and X are the following:

1
B|z /

fiz(X) = '—Ke—%XIBXI, —00 < x1; <00, j=1,2,3,

(27)2

1
B|2 /

fia(Xa) = 2o HOBXY) o vy <00, j=1,2,3.

22(2m)?2

Let us now evaluate the normalizing constants in the densities f, 4, (Y1), fp,4,(¥2):

91 — P 1
AIZ|Bi — BiuBy'Bnl?  AZ()' 1
Qr)7  4x?2 0 8n?¥’

2 - p 1
|A|7|By — BuB'Bil? AP 1

(27) L 2 47
Thus, the density of Y is

Fra(ry) = 12e—%tr{Ah(Bn—Blng;le)Y{}
’ 8

1 -1o ..
:—8 26 2E, =00 < Xxjj <00, l,]:1’2,
T

2 1| |x11 x12 3 -1 X111 X21
=t
Q r { |:l 1] |:X21 XQz] |:—1 % X12 X22

1
2 2 2 2
= 6x11 + xlz + 3XQ1 + 5)(:22 — 4x11x12 — 2X11XQ2

where

+ 3x11X21 + X12X22 — 2X12X21 — X22X21,
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the density of Y> being
f21(Y2) = e 2tr{AY2(322 3213“ B1)Y])

1 12 42
= —e a2l oo < xi3 <00, i =1, 2.

4

This completes the computations.

4.4a. Marginal Densities in the Complex Matrix-variate Gaussian Case

The derivations of the results are parallel to those provided in the real case. Accord-
ingly, we will state the corresponding results.

Theorem 4.4a.1. Let the p x g matrix X have a complex matrix-variate Gaussian density
with the parameter matrices M = O, A > O, B > O where A'is p X p and B is
q % q. Consider a row partitioning of X into sub-matrices X and X» where X1 is p1 X q
and X is ps X g, with p1 + p» = p. Then, X1 and X» have p; X q complex matrix-
variate and py X q complex matrix-variate Gaussian densities with parameter matrices
Aq —A12A2_2] Asy and B, and A22—A21A1_11A12 and B, respectively, denoted by fpuq ()~(1)
and fpz,q (X»). The density of X1 is given by

|d‘3t(B)|p1 |det(A — A12A22 Azl —tr((AU—A12A2_21A21))~(13)~(T)
P14 ’

Fora (X

(4.4a.1)

the corresponding vector case for p = 1 being available from (4.4a.1) for py =1, p» =0
and p = 1, in this case, the density is

~ ~ d t B v v *
frq(XD) = [det(B)] (q - i-wi-w (4.4a.2)
T

where X and w are 1 x q and p is a location parameter vector. The density of X, is the
following:

s o |det(B)|P2|det(Agy — Ant AT AN e do A A RaB R

fpz,q (X3) = — i e r((An—A2n A AR)X2BX7) (4.4a.3)
Theorem 4.4a.2. Let X, A and B be as defined in Theorem 4.2a.1 and let X be parti-
tioned into column Su~b mam~ces X = (Yl Yz) where Y1 is p x qy and Yz is p X q, so that
q1 + q2 = q. Then Y| and Y, have p x q| complex matrix-variate and p x q, complex

matrix-variate Gaussian densities given by
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|det(A)|' |det(B1; — Bi2By, Ba1)|”

fp,q1(?l) = 7 P41
« oA (B11=B12By, Ba)Y}) (4.4a.4)
o = |det(A)|%|det(B — Bai Bj;' Ba1)|”
’ 77 P92
« o W(AT2(B2—Ba1 By} Bi)Y}) (4.4a.5)

When g = 1, we have the usual complex multivariate case. In this case, it will be a p-
variate complex Gaussian density. This is available from (4.4a.4) by takingg; = 1, g2 =0
and g = 1. Now, Y isa p x 1 column vector. Let i be a p x 1 location parameter vector.
Then the density is

~ ~ det(A v ¥ A (Y
fpa(Y1) = [dett ] (p N et adiom (4.4a.6)
T
where A > O (Hermitian positive definite), Yi —wis p x 1 and its 1 x p conjugate
transpose is (Y1 — u)*.

Example 4.4a.1. Consider a 2 x 3 complex matrix-variate Gaussian distribution with the
parameters M = O, A > O, B > O where

. [En o 2 2
% [in )212 )ZB] A= [—i 2] CB=| i 2 —i
21 X220 X23 i i 92
Consider the partitioning
A An Bii B2 Xy
A = s B = S = ~ =Y s Y-
{Am Azz] [321 Bzz] [ ] Y1, 12

where

= x| o | X2 X3 |2 =i i
Y1—[i21], Yz—{izz 5&23]’ Bzz—[i 2], 321—[_i],
X| = [§11, X12, ¥13], X2 = [F21, 2, E3], A1y = (2), A = (i), Ayp = (—i), A = 2;

B11 = (2), B2 = [—i, i]. Compute the densities of X1, X7, Y1, Y>.

Solution 4.4a.1. It is easy to ascertain that A = A* and B = B*; hence both matrices
are Hermitian. As well, all the leading minors of A and B are positive so that A > O and
B > 0. We need the following numerical results: |A| = 3, |B| = 2,

_ ) . 1
Al — ApAL Ay =2 — (D) (1/2)(—i) =2 — ==

_ . . 1
Ay — Ap Al AR =2 — (—)(1/2)() =2 — 3=
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_ o 2 2
311—3123221321:2—[—l,l](§> [_i 12] [_’i}zg

. 2 - il .. 2 =i 11 -1
By — By By, Blz—[i 2]—[_1.](5)[—1,;]_ R I I

N I )
T o142 3 ’

With these preliminary calculations, we can obtain the required densities with our usual

notations:
—1
£ o) = |det(B)|7!|det(A; — A1pA5, Aap|?
p1.g Al T P14
x e H(An=A1245 D XBXT (harig.
. 2(3/2)% 3z pur
fi3(X1) = (—/3)6_7)(1“1
T
where
2 - i X
Q1= X|BX| =[¥11, X2, X131 | i 2 —i |[X],

vt ~ o~ ~ o~k s~ o~k s~ o~k

= 2X11X]] + 2X12X], + 2X13X]3 — iX11X], + iX11X3
.~ ~* .~ ~* .~ ~* .~ ~* .
+ 1X12X1] — 1X12X13 — 1X13X] + 1X13X]5;

|det(A)|P?|det(Ax — A2 AT} Ar2)|?

P —
Iprq(X2) P24
% e—tr[(Azz—AzlA1_11A12)5(235q], that is,

2(3/32)36_;5(235(5

fi3(X2) =
where let O, = )Z'zB)Z“Z", Q> being obtained by replacing X 1 in Q1 by f(z;

|det(A)|'|det(B1; — Bi2B5, Ba1)|”

- 7y

fp,ql( 1) TPl
N . .

x e~ tlAY1(Bi1—B12By, le)Yl*], that is,

2
3C/3)” oy
2
T

Ha(r) =
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where
.~ L 2 i||xn
Q3 = Y{AY1 =[x}, %3] [—i 2] [;21]
= 2)?11)2111 + 29221)3‘1 + i)ZZl)zikl - iiiklilﬁ
-1
7y = |det(A)|92|det(Bx, — B21 By Bi2)|?
p.q2\ 12 77 P92
x e—tr[Afz(Bzz—BﬂBﬁl312)172*]’ that is,
~ ~ 32 ,lQ
f22(Y2) = —e2
T
where

2 i|]|Xp X 3 1—2i||xF X3
o= 3ol Rl ST E
= 6%12)??2 + 6)?13%?3 + 6)?22)?52 + 6)?23%33
+ [2(1 = 20) (X 12X 15 + X22%53) + 2(1 + 2i) (X23%5, + X13X15)]
4+ [i(1— 2i)()€22)€ik3 — flzf%) —i(l1+ 2i)(f13)?§2 — )E23)Eik2)]
+ 3i [)Ezz)zikz + )?23)?1% — flzf;} — )213)253].

This completes the computations.

Exercises 4.4

4.4.1. Write down explicitly the density of a p x g matrix-variate Gaussian for p =
3, g = 3. Then by integrating out the other variables, obtain the density for the case (1):
p=2,q=22):p=2,q=1;3):p=1,9 =2;(4): p=1,q = 1. Take the location
matrix M = O. Let A and B to be general positive definite parameter matrices.

4.4.2. Repeat Exercise 4.4.1 for the complex case.

4.4.3. Write down the densities obtained in Exercises 4.4.1 and 4.4.2. Then evaluate the
marginal densities for p = 2, ¢ = 2 in both the real and complex domains by partitioning
matrices and integrating out by using matrix methods.

4.4.4. Letthe 2 x 2 real matrix A > O where the first row is (1, 1). Let thereal B > O be
3 x 3 where the first row is (1, —1, 1). Complete A and B with numbers of your choosing
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sothat A > O, B > O. Consider a real 2 x 3 matrix-variate Gaussian density with these
A and B as the parameter matrices. Take your own non-null location matrix. Write down
the matrix-variate Gaussian density explicitly. Then by integrating out the other variables,
either directly or by matrix methods, obtain (1): the 1 x 3 matrix-variate Gaussian density;
(2): the 2 x 2 matrix-variate Gaussian density from your 2 x 3 matrix-variate Gaussian
density.

4.4.5. Repeat Exercise 4.4.4 for the complex case if the first row of A is (1, 1+i) and the
firstrow of Bis (2,1 4+i,1 —i) where A= A* > O and B = B* > O.

4.5. Conditional Densities in the Real Matrix-variate Gaussian Case

Consider a real p x g matrix-variate Gaussian density with the parameters M =
O, A > O, B > O. Let us consider the partition of the p x g real Gaussian matrix

. . X . . .
X into row sub-matrices as X = Xl) where X1 is p; x g and X7 is pp X g with
2

p1 + p2 = p. We have already established that the marginal density of X is

— q P2

As — A1 AT A|2|B|E »

fpz,q(Xz)=| 22 — A2 “,,qu2| 1BIZ —Lel(An—Ana; A XaBX)1
(27‘[)T

Thus, the conditional density of X given X, is obtained as

Fr.a(X) AI2| B (2m) %
fp1,q(X1|X2): X = 1 7 2 77
Ira(X2) Ay — Ay AL A2 |BI T (21)7
w o 3[U(AXBX)]+t{(An—A2 Al A1) X2 BX)]
Note that

AXBX _A<X2> B(X/ X2)_A[XZBX/1 XBX

. A11 A12 XlBX/1 XlBX/z _ |~ k

o A21 A22 XzBX/1 XzBX/2 T % ,3
where @ = A1 X1BX| + ApX2BX|, B = A2 X1BX), + A»X>BX) and the asterisks
designate elements that are not utilized in the determination of the trace. Then

tI‘(AXBX/) = tr(A11XIBXi + A12XZBX,1) + tI'(AzlxlBXé + AszzBXlz).
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Thus the exponent in the conditional density simplifies to

tr(AnXlBX/l) + 2tr(A12X2BX’1) —+ tr(A22XZBX/2) —tr[(Ap — AzlAfllAlz)XzBX/Z)]
= tr(A11 X1 BX]) + 2tr(A12 X2 BX)) + tr[A21 A A2 X2 BX)]
=tr[A11(X1 + CO)B(X1 + CO)1, C = Aj'AnnXo.

We note that E(X|X,) = —C = —A1_11A12X2: the regression of X on X, the constant
part being |A11|%|B | 7 / (2n)%. Hence the following result:

Theorem 4.5.1. Ifthe p x q matrix X has a real matrix-variate Gaussian density with
the parameter matrices M = O, A > O and B > O where Ais p X pand B is q X q

and if X is partitioned into row sub-matrices X = 1) where X1 is p1 X g and X is

Xo
P2 X g, so that py + pa = p, then the conditional density of X given X,, denoted by
fr1.¢(X11X2), is given by

Anlf1BIT )

11 _1 ’

Forg(X11X2) = ————e HAnKHOBEHO] 4.5.1)
(2m) 2

where C = A1_11A12X2 if the location parameter is a null matrix;, otherwise C = —M1| +

Al_llAlz(Xz — M>) with M partitioned into row sub-matrices M| and M>, M| being p1 X q
and M3, p> X q.

Corollary 4.5.1. Let X, X1, X2, M, M and M; be as defined in Theorem 4.5.1;
then, in the real Gaussian case, the conditional expectation of X given X,, denoted by
E(X1]X>2), is

E(X11X2) = My — Aj' Aip(X2 — My). (45.2)

We may adopt the following general notation to represent a real matrix-variate Gaus-
sian (or normal) density:

X~N,, M, A B),A>O, B>O0, (4.5.3)

which signifies that the p x g matrix X has a real matrix-variate Gaussian distribution
with location parameter matrix M and parameter matrices A > O and B > O where A is
p X p and B is g x g. Accordingly, the usual g-variate multivariate normal density will
be denoted as follows:

Xy~ Niy4(u, B), B> 0 = X, ~N,w,B™ ", B> o0, (4.5.4)
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where u is the location parameter vector, which is the first row of M, and Xjisa 1l x ¢
row vector consisting of the first row of the matrix X. Note that B~! = Cov(X;) and
the covariance matrix usually appears as the second parameter in the standard notation
Np,(-,-). In this case, the 1 x 1 matrix A will be taken as 1 to be consistent with the
usual notation in the real multivariate normal case. The corresponding column case will
be denoted as follows:

Yi ~ Npi(pnay, A), A> 0 =Y~ Ny(uay, A1), A> 0, A7 =Cov(Y)) (4.5.5)

where Y7 is a p x 1 vector consisting of the first column of X and p(1) is the first column
of M. With this partitioning of X, we have the following result:

Theorem 4.5.2. Let the real matrices X, M, A and B be as defined in Theorem 4.5.1
and X be partitioned into column sub-matrices as X = (Y1 Yz) where Y1 is p X q1
and Y> is p x q» with q1 + q2 = q. Let the density of X, the marginal densities
of Y1 and Y, and the conditional density of Y| given Y», be respectively denoted by
Ip.0X), fo.ai (Y1), fp.go(Y2) and fp 4, (Y11Y2). Then, the conditional density of Y1 given
Y2 is

q] P
A|?2|B11]2 _1 /
fp,ql (Y1]Y2) = % e 2t AN =May+C) B (Y1—=Mm+C1)'] (4.5.6)

T) 2

where A > O, Bj1 > Oand C; = (Yo — M2)821Bl_11, so that the conditional expectation
of Y1 given Ya, or the regression of Y1 on Y», is obtained as

E(Y1|Y2) = M) — (Y2 — M) B By, M = (M) M), 4.5.7)

where M1y is p X q1 and M) is p X g2 with q1 + q2 = q. As well, the conditional density
of Y2 given Y1 is the following:

92 P
Al 7 |Ba|2 ,
fp,qg(Y2|Y1) - % e—%tr[A(Yz—M(z)+C2)322(Y2—M(2)+C2)] (4.5.8)
)2
where
Moy — Co=Mp) — (Y1 — M(l))BIZBZ_zl = E[Y>|11]. (4.5.9)

Example 4.5.1. Consider a 2 x 3 real matrix X = (x;;) having a real matrix-variate
Gaussian distribution with the parameters M, A > O and B > O where

2 -1 1
M:B _(} _”,A:ﬁ ;],B: -1 3 0
10 1
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Let X be partitioned as

X
X;]:[Y]’ Y>] where X1 = [x11, x12, x13], X2 = [x21, X22, X23],

X1l X X ) .. .. .
Y1 = A2 and Y, = 131 Determine the conditional densities of X 1 given
X21 X22 X23

X»>, X, given X1, Y| given Y, Y, given Y| and the conditional expectations E[X{|X>],
E[X2|X1], E[Y1]Y2] and E[Y>|Y1].

Solution 4.5.1. Given the specified partitions of X, A and B are partitioned accordingly
as follows:

Sl v R S T I
By =[1,0], B = (1), Ai1 = (2), Az = (1), A1 = (1), A2 = (3).
The following numerical results are needed:
A= AnAy As =2 - ()(A/3)(1) =
An — AnAj A =3 - ()A/2)(1) =
Bui — BinBy;' By = [_21 o } - [(1)] (DI1.0] = [_11 o ]

—1 3 1|1 2
B22_B21B11312:1—[1,0](1/5) 1 2 0 :g

N L W]

_ 5 _ 5
A1l =2, |An| =3, |A| =5, |A1l — AnAy Al = 3 |Ax — A2 AL Al = >

_ _ 2
|Bi1| =5, |Bx| =1, |Bi1 — B12By,' Bai| =2, |Bay — B2 By;' Bia| = 3 |B| = 2;

_ I _
Al A = > A3 Asi = =, By'Ba =[1,0]
_ 13 1](1 113
1 -1 1
wo=[2 3] we= (]
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All the conditional expectations can now be determined. They are

_ 1
E[X11X2] = My — A} An(X2 — Ma) = [1, —1,1] — 5(?621 —2,x2,x23 + 1)

1 1

1
=[1—5(?621—2),—1—57622,1—5(96234-1)] (1)

_ 1
E[X21X1] = My — Ay Ao (X1 — My) = [2,0, —1] — St = Lo+ L = 1]

1 1 1
=[2- §(x11 -1, —§(X1z +1),-1- 5()613 — DI (i1)

_ 1 -1 1 —1 31
E[Yi|Y2] =My — (Y2 — M(z))BmBH] = [2 0 } _ [XB ][1,0] [1 2]

5(x3+1
(11— 303 —1) —1—4(x3— 1)}
233+ D —33+1D)

E[V2|Y1] =M@ — (Y1 — M(l))BIZBz_zl

__1 xi1—1 xp+1[[1 . 2 — X1 .
__—1}_[)@1—2 X2 ][0][(1)]_[1—x21]' @)

The conditional densities can now be obtained. That of X given X> is

(iif)

Pl

A P
fpl q(X1|X2) = Me_%tr[All(Xl_Ml'f'C)B(Xl—Ml-}—C)/]
’ P14
(ZN)%

for the matrices A > O and B > O previously specified; that is,

FLa(X1|Xy) = = 30=MC) Bt = MiCY
s 3

(2m)>

where M| — C = E[X]|X»] is given in (i). The conditional density of X»|X; is the
following:

|An|?|B|?
frrg(X2lX) = ———5—e¢ 2tlAn(Xo— M+ C)B(X2—My+C1)']

Q2r) ™
that is,

3 1
fia(Xa] X)) = —(32)(232) e~ 3 (Xa=MatCB(Xo—Ma+Co)f
’ 2n)?
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where M, — Co = E[X>|X1] is given in (ii). The conditional density of Y| given Y> is

AT By |2
fp ql(Y1|Y2) — |Al2 Bl e—%tr[A(Yl—M(1)+C2)B11(Y1—M(1)+C2)'].

s pq )

27t)TI
that is,
fra(Y1|Ys) = 25 e—%tr[A(Yl—M(1)+C2)311(Y1—M(1)+C2)/]
’ (2m)?

where M1y — C1 = E[Y|Y>] is specified in (iii). Finally, the conditional density of Y>|Y;
is the following:

A|%|Byl?
fpqu(Y2|Y1) = % e_%tr[A(Yz_M(Z)+C3)322(Y2_M(2)+C3)/];
Q2m) 2"

that is,

fr1(Ya|Y)) = (;/g) e—tr[A(Yz—M(2>+C3)Bzz(Yz—M(z)-i-Cs)’]
T

where M) — C3 = E[Y,|Y1] 1s given in (iv). This completes the computations.

4.5a. Conditional Densities in the Matrix-variate Complex Gaussian Case

The corresponding distributions in the complex case closely parallel those obtained for
the real case. A tilde will be utilized to distinguish them from the real distributions. Thus,

X~N,,(M,A, B), A=A*> 0, B=B*> 0

will denote a complex p x ¢ matrix X having a p x ¢ matrix-variate complex Gaussian
density. For the 1 x g case, that is, the g-variate multivariate normal distribution in the
complex case, which is obtained from the marginal distribution of the first row of X, we
have

Xi ~ Ni4(u, B), B> 0, X| ~ N,(u, B"), B~! = Cov(X)),

where X is 1 x q vector having a g-variate complex normal density with E()~( 1) = u.
The case ¢ = 1 corresponds to a column vector in X, which constitutes a p x 1 column
vector in the complex domain. Letting it be denoted as Y1, we have

Y1 ~ Npi(uay, A), A> O, thatis, Y1 ~ Ny(uay, A~"), A~1 = Cov(¥y),

where 1) is the first column of M.
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Theorem 4.5a.1. Let X be p x q matrix in the complex domain having a p X g matrix-

xS S X
variate complex Gaussian density denoted by f), ,(X). Let X = (}{) be a row partition-
2

ing of X into sub-matrices where X1 is p1 X q and Xz is p2 X q, with p1 + p2 = p. Then
the conditional density of X1 given X, denoted by fp1 q(X 11X2), is given by

g ey L A BT a8y CB -4
FrraZi1%2) = ot o HANKI-MHOBE -MACNT (4 5q.1)

where C = A1_11A12()~(2 — M), E[f(] =M = [%1], and the regression off(l on )~(2 is
2
as follows:

_ ~ . M
My — A An(Xa — Mo) if M = ( 1)

E(X|X2) = M, (4.50.2)

—~A'ARXa if M = 0.
Analogously, the conditional density of X» given X1 is

~ ~ det(A2)|?|det(B)|P? 7 ; .
o q(X2|X1):| ( 227)T|p2|q BT —utan(Go-ttenBR-MAC)] (4543

where C| = A2_21A21 ()2'1 — My), so that the conditional expectation of)z'z given )~(1 or the
regression of X>on X is given by

E[X2|X1] = My — A3, Ao (X1 — My). (4.5a.4)

Theorem 4.5a.2. Ler X be as defined in Theorem 4.5a.1. Let X be partitioned into col-
umn submatrices, that is, X = (Y1 Yz) where Y1 is pxqi and Y2 IS pXq2, withqi+q2 = q.
Then the conditional density of Y| given Y>, denoted by fp g1 (Y1|Y>) is given by

~ - det(A)|?|det(By1)|? 5 = - .
fP ql(Y1|Y2): e )|7'L'1|Dq' (Bl e AT =Mu)+Ca)) Bu(Yi=Ma)+Cq))l (4.5a.5)

where 6'(1) = (172 — M(z))leBl_ll, and the regression of 171 on 172 or the conditional
expectation of Y| given Y, is given by

E(Y1|Y2) = M) — (Y2 — M(z))leBl_l1 (4.5a.6)
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with E[X] = M = (M) Mp)] = E[Y) Yal. As well the conditional density of Y, given
Y1 is the following:

~ ~ det(A)|92|det(B22)|? 5 5 .
fp,qz(Y2|Y1) = |det( )lnL‘D (B2)| e~ UlA2=M@2)+C2)) B2 (Y2—-M2)+C2)"] (4.5a.7)

where Cp) = (171 — M(l))Blsz_zl and the conditional expectation of 172 given 1?1 is then
E[V2|Y1] = M) — (V) — M(l))BuBz_zl. (4.5a.8)

Example 4.5a.1. Consider a 2 x 3 matrix-variate complex Gaussian distribution with the
parameters

i 0 o .
il =g = |t T
. I 240 1—1
0 —i 1

B
Il
1
[\
~.
o]
I
~ W
[\

) o < X ~ - T ~
Consider the partitioning of X = [21] = [Y; Y] where X1 = [X11, X12, X13], X2 =
2

O ~ X ~ X2 X ) .. ..
[X21, X202, X23], Y1 = "1 and Y, = 127131 Determine the conditional densities of
X21 X22 X23

X, |)~(2, )~(2|)~( LY 1|I72 and 172|171 and the corresponding conditional expectations.

Solution 4.5a.1.  As per the partitioning of X, we have the following partitions of A, B
and M:

A A __|Bu1 B2 2 i -1 _ | =i i
A_[A21 Azg]’B_[le 322]’322_[—i 1]’322_ i 2 BTl

. . . _ _ 1
Al =(2), A = (i), Aoy = (—i), Asp = (1), Bl = [, 0, A} = =, Ay =1, By} = 3

| =

Al = ApAy Ay =2 - (=) =1, [An1 — ApAy Anl =1,
_ 1 _ 1
An — AnAjl'An = > A — A ALl Al = > Al =1, |B| =2,
_ . 1 —i i _
Bii — B12By,' Bay =3 — [—i 0] [i ) ] [0] =2, |Bi1 — BBy, Bai| = 2,

1 2 i : 2 - 2
By — BuByyBu=|_; [| = |o|W/D=i01=]| = |, |B2— BBy 312|=§~

My=[1+i, i, —il,M>=1[i, 2+i, 1—i],M(1)=[1i+’],M<2>:[ " _’.].
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All the conditional expectations can now be determined. They are
5 o _ ~ . . I .
ElXi1Xa] = My = A An(Xo = Mo) = [L 4+, iy —il=2(Ka= M) ()

E[X2|X1]= My — AL A (X1 — My) = [i, 244, 1 —il+i(X1 — My) (i)

s - o [ 24ix
_ (V. _ b 12
EV1|Y2] = Mqy — (Yo — M@2))B21 By, = 31450 iizz] (iii)
E[V2|V1] = Mo — (Y) — M(l))Blsz_zl
I A A B ST O o ) 1 —i
_[2-!-1' l—i] [ By —i _[’ O][—i 2]
. ixip+1 X1 —1—2i (iv)
T =ixy i 43 X +1-=2i|°

Now, on substituting the above quantities in equations (4.5a.1), (4.5a.3), (4.5a.5)
and (4.5a.7), the following densities are obtained:

~ ~ ~ 24 2 % % *
_ 2 L2(X1—EDB(X1—EY)
f3(X]Xo) = —5e
where E| = E[f(llf(z] given in (i);
.~ 2 e Y
Fraal X)) = Syem e taptert
where Ep = E[f(zlf(l] given in (ii);
F T 3 3tu[A(Y1—E3) (Y1 —E3)*]
I 11y — —E3)*
faY) = —e T

where E3 = E[Ylﬂ?z] given in (iii);

fa(Na1)) = % o A2~ E4) B (Y2~ E4)*]
T

where E4 = E [172| 1?1] given in (iv). The exponent in the density of Y 1] 172 can be simplified
as follows:

— tr[A(Y1 — M) Bu (Y1 — M1))*] = =3(Y1 — M1y))*A(Y1 — M)
= =3[(X11 — (1 +i)* (X1 — )] [—21 i:| [(xn —(1+ z))]

(X21 — 1)
——6{(x2 +x? )—{—l(x2 + x2 )+ (X112X211 — X111X212) — 2X112 — X111 — X —|—§}
- 111 112 2211 212 112A211 1114212 112 111 211 2

by writing Xx; = xx11 + ixk12, K = 1,2, i = 4/(—1). This completes the computations.
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4.5.1. Re-examination of the case g = 1

When g = 1, we have a p x 1 vector-variate or the usual p-variate Gaussian density
of the form in (4.5.5). Let us consider the real case first. Let the p x 1 vector be denoted
by Y| with

1 Y 1 Ypi+1

Y = — |: (1)] , Yoy = , Yoy = ;
Yo |* YO )
| Vp Ypi Yp
_M(Pl) (1) mi () Mpy+1
1 p : p :
Moy = M((p)z)] My = i |s Mg =| i |, EMI=Ma, pi+p2=p.
L7 ()

Mp, mp
Then, from (4.5.2) wherein ¢ = 1, we have

ElY0) Yol = M) — ATl An(Ya) — ME?), 4.5.10)
with A = ¥, ¥ being the covariance matrix of Yi, that is, Cov(Y)) = E[(Y] —
E(Y1))(Y1 — E(Y1))']. Let

21 X

Al =¥ =
[221 2

:| , where X1 1s p; X p; and Xy 1S p2 X pa.

From the partitioning of matrices presented in Sect. 1.3, we have
- A1_11A12 =A@ = 21222_21. (4.5.11)

Accordingly, we may rewrite (4.5.10) in terms of the sub-matrices of the covariance matrix
as

ElY0) Yol = M{) + Z155 (Yo — ME?). (4.5.12)

If p1 =1, then Y () will contain p — 1 elements, denoted by Y(/z) = (y2,...,yp). Letting
E[yi] = m1, we have

Elyi|Yo)l =mi + 20Ty (Yo — M3?), pp=p—1. (4.5.13)
The conditional expectation (4.5.13) is the best predictor of y; at the preassigned values
of y2,...,Yp, where m; = E[y;]. It will now be shown that 21222_21 can be expressed
in terms of variances and correlations. Let sz = o0jj = Var(y;) where Var(-) denotes the
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variance of (-). Note that o;; = Cov(y;, y;) or the covariance between y; and y;. Letting
pij be the correlation between y; and y;, we have

Y12 =[Cov(y1, y2), ..., Cov(y1, yp)l

= [o102p012, ..., 010pP1p].
Then
0101 0102012 **+ O10pPip
0201021 0202 - 020pP2p
2= : : . : . Pij = Pjis pjj =1,

OpO1Ppl OpO20p2 -+ - Op0Op
for all j. Let D = diag(oy,...,0)) be a diagonal matrix whose diagonal elements are
o1, ..., 0p, the standard deviations of y;, ..., y,, respectively. Letting R = (p;;) = de-

note the correlation matrix wherein p;; is the correlation between y; and y;, we can express
X' as DRD, that is,

o1l 012 - Olp ol o --. 0 1 P12t Plp o] o ... 0
s 021 02 - 0| [0 0o Ol{pa 1 - pp||0 o2 -+ O
Opl Op2 -+ Opp 0 o ... op Ppl Pp2 - 1 0 o ... Op
so that
> '=p-'r7'D7 p=23,... (4.5.14)

We can then re-express (4.5.13) in terms of variances and correlations since
-1 _ —1p—1p—-1 _ 11
Zpdy, = O’1R12D(2)D(2) R, D(Z) =o01R12R,, D(2)

where D) = diag(os, ..., 0),) and R is partitioned accordingly. Thus,
Ely1lYo)l =mi + 01R12R2_21D(_2§(Y(2) - M((SZ)). 4.5.15)

An interesting particular case occurs when p = 2, as there are then only two real scalar
variables y; and y;, and

(o3
E[yily2l =m + O—Zplz(yz —m»y), (4.5.16)

which is the regression of y| on y» or the best predictor of y| at a given value of y>.
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4.6. Sampling from a Real Matrix-variate Gaussian Density

Let the p x g matrix X, = (x;jo) have a p x g real matrix-variate Gaussian density
with parameter matrices M, A > O and B > O. When n independently and identically
distributed (iid) matrix random variables that are distributed as X, are available, we say
that we have a simple random sample of size n from X, or from the population distributed
as X . We will consider simple random samples from a p x g matrix-variate Gaussian pop-
ulation in the real and complex domains. Since the procedures are parallel to those utilized
in the vector variable case, we will recall the particulars in connection with that particu-
lar case. Some of the following materials are re-examinations of those already presented
Chap. 3. For ¢ = 1, we have a p-vector which will be denoted by Yj. In our previous
notations, Y is the same Y| for g1 = 1, ¢o = 0 and ¢ = 1. Consider a sample of size
n from a population distributed as Y7 and let the p x n sample matrix be denoted by Y.
Then,

yir Y12 0 Yin i
Y21 Y22 0 Yo
Y:[Yla"'9Yn]: : : .. : 7Y1: :
. . . . y 1
Yp1 Yp2 - Ypn P
In this case, the columns of Y, thatis, Y;, j = 1, ..., n, are iid variables, distributed as

Y;. Letan n x 1 column vector whose components are all equal to 1 be denoted by J and
consider

yir o Y|y Vi
po byt
n n : ‘. : 1 .
Yp1 -+ Ypn }_’p
where y; = @ denotes the average of the variables, distributed as y;. Let
yioooo
o Y
S=(Y —-Y)(Y —Y) where the bold-faced Y = | . |l =1Y,..., Y]
Yp o Yp
Then,
n
S = (sij), sij = Y _ ik — 3)(vjx — ¥,) for all i and j. (4.6.1)

k=1
This matrix S is known as the sample sum of products matrix or corrected sample sum of
products matrix. Here “corrected” indicates that the deviations are taken from the respec-
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tive averages yi, ..., yp. Note that %s,- ; 1s equal to the sample covariance between y; and
y; and when i = j, it is the sample variance of y;. Observing that

1 1 1 1
11 --- 1
J=|:|=J)=|. . | and J'J = n,
I 1 1 1
we have
1 / % 3, 1 /
Y(-JJ)=Y=>Y-Y=Y[I--JJ].
n n
Hence
_ - 1 1
S=(XY-YY-Y)=Y[I--JJI--JJTY.
n n
However,
1 / 1 v/ 1 / 1 / 1 / /
I—-——=JJN—--JJ)=1-—-JJ ——-JJ —I——ZJJJJ
n n n n n
]‘ /o /
=1]——JJ since J'J =n.
n
Thus,
1
S=Y[I --JJY. (4.6.2)
n

Letting C; = (I — rl,JJ/)’ we note that C% = () and that the rank of Cy is n — 1.
Accordingly, C; is an idempotent matrix having n — 1 eigenvalues equal to 1, the remaining
one being equal to zero. Now, letting Cr, = %J J', it is easy to verify that C% = (5 and
that the rank of C; is one; thus, C, is idempotent with n — 1 eigenvalues equal to zero,
the remaining one being equal to 1. Further, since C1C> = O, that is, C; and C; are
orthogonal to each other, Y — Y = YC; and Y = YC; are independently distributed, so
that Y — Y and Y are independently distributed. Consequently, S = (Y — Y)(Y — Y)’ and
Y are independently distributed as well. This will be stated as the next result.

Theorem 4.6.1, 4.6a.1. Let Yy, ...,Y, be a simple random sample of size n from a p-
variate real Gaussian population having a N,(u, X'), X > O, distribution. Let Y be the
sample average and S be the sample sum of products matrix; then, Y and S are statistically
independently distributed. In the complex domain, let the 17 j’s be iid N,(ft, b)) ), 3 =
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T > 0, and Y and S denote the sample average and sample sum of products matrix;
then, Y and S are independently distributed.

4.6.1. The distribution of the sample sum of products matrix, real case

Reprising the notations of Sect. 4.6, let the p x n matrix Y denote a sample matrix
whose columns Yy, ..., Y, areiid as N, (u, X), X > O, Gaussian vectors. Let the sample
mean be ¥ = %(Yl + .-+ Y, = %YJ where J' = (1,...,1). Let the bold-faced
matrix Y = [V, ..., Y] = YC| where C; = I, — %JJ/. Note that C; = I, — Cp = Cl2
and C, = %J J = C%, that is, C; and C, are idempotent matrices whose respective

ranks are n — 1 and 1. Since C; = C i there exists an n x n orthonormal matrix P,
PP =1, P'P =1, suchthat P"C{ P = D where

D = [1”0—‘ g} — P'C,P.

LetY = ZP'  where Zis p x n. Then, Y = ZP' = YCy = ZP'Cy = ZP'PDP’ =
ZDP’, so that

I,.1 Of|I,-1 O
S:(Ycl)(Ycl)’zYclc;Y’zz["0 o][ﬂO O]Z’

= (Zn-1, 0)(Zu-1, 0) = Zy1Z},_, (4.6.3)
where Z,,_1 is a p x (n — 1) matrix obtained by deleting the last column of the p x n matrix
Z.Thus, § = Z,1_1Z,’1_1 where Z,_1 contains p(n — 1) distinct real variables. Accord-
ingly, Theorems 4.2.1, 4.2.2, 4.2.3, and the analogous results in the complex domain, are
applicable to Z,_; as well as to the corresponding quantity Z,_1 in the complex case. Ob-
serve that when Y1 ~ N, (u, X), Y —Y has expected valueM—M = O, M = (i, ..., 1.
Hence, Y — Y = (Y — M) — (Y — M) and therefore, without any loss of generality, we can
assume Y to be coming from a N,(0, '), ¥ > O, vector random variable whenever
Y — Y is involved.

Theorem 4.6.2. Le_t Y, Y, Y, J C 1 and Cy be as defined in this section. Then, the
p x n matrix (Y — Y)J = O, which implies that there exist linear relationships among

the columns of Y. However, all the elements of Z,,—1 as defined in (4.6.3) are distinct real
variables. Thus, Theorems 4.2.1, 4.2.2 and 4.2.3 are applicable to Z,, .

Note that the corresponding result for the complex Gaussian case also holds.
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4.6.2. Linear functions of sample vectors

LetY; id Ny(w, ), ¥ > O, j=1,...,n,or equivalently, let the Y;’s constitutes
a simple random sample of size n from this p-variate real Gaussian population. Then, the
density of the p x n sample matrix Y, denoted by L(Y), is the following:

L(Y) = 1 e—%tr[Z‘*l(Y—M)(Y—M)’],
@m)7 |2
where M = (i, ..., i) is p x n whose columns are all equal to the p x 1 parameter vector
. Consider a linear function of the sample values Y1, ..., Y,. Let the linear function be

U = YA where A is an n x g constant matrix of rank ¢, ¢ < p < n,sothat U is p x q.
Let us consider the mgf of U. Since U is p x g, we employ a g x p parameter matrix 7 so
that tr(7'U) will contain all the elements in U multiplied by the corresponding parameters.
The mgf of U is then

MU(T) — E[etl’(TU)] — E[etl’(TYA)] — E[etr(ATY)]
— etr(ATM)Ev[etr(AT(Y—M))]

where M = (u, ..., u). Letting W = 2_%(Y —M),dY = |2|%dW and

1
MU(T) — etl'(ATM)|21|%E;[etr(ATZ'z W)]

etr(ATM) 1 | ,
f etr(ATZ‘2 W)—jtr(WW)dw.
w

en?
Now, expanding
tt[(W —C)Y(W = C) ] =tr(WW') = 2tr(WC') + tr(CC)).

and comparing the resulting expression with the exponent in the integrand, which ex-
cluding —1, is t(WW’) — 2t(AT £ W), we may let C’ = AT X7 so that tr(CC’) =
tr(ATXT'A") = tr(TXT'A’A). Since tr(ATM) = tr(TMA) and

1 ,
n,,f e~ HIW=OW=CYgy — 1.
@em)? Jw

we have
My(T) = My s(T) = QU(TMA)+5 (T ET'A’A)

where MA = E[YA], ¥ > O, A’A > O, A being a full rank matrix, and T X T'A’A is
a g x g positive definite matrix. Hence, the p x ¢ matrix U = YA has a matrix-variate
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real Gaussian density with the parameters MA = E[YA]and A’A > O, X > O. Thus,
the following result:

l

Theorem 4.6.3, 4.6a.2. Let Y; i Ny, ), ¥ > O, j = 1,...,n, or equiva-
lently, let the Y;’s constitutes a szmple random sample of size n from thls p-variate real
Gaussian population. Consider a set of linear functions of Y1,...,Y,, U = YA where

= (Yy,...,Y,) isa p x n sample matrix and A is an n x q constant matrix of rank q,
q < p < n. Then, U has a nonsingular p x q matrix-variate real Gaussian distribution
with the parameters MA = E[YA], A’A > O, and X > O. Analogously, in the complex
domain, U = YA is a p % g-variate complex Gaussian distribution with the correspond-
ing parameters E[YA], A*A > O, and £ > O, A* denoting the conjugate transpose of
A. In the usual format of a p x q matrix-variate N, (M, A, B) real Gaussian density, M
is replaced by M A, A, by A’A and B, by X, in the real case, with corresponding changes
for the complex case.

A certain particular case turns out to be of interest. Observe that MA = u(J'A), J' =
(1,...,1), and that when ¢ = 1, we are considering only one linear combination of
Yi,...,Y,intheform Uy = a1Y; +-- +an Y,, where ay, ..., a, are real scalar constants.
Then J'A = Z?zlaj, A'A = ZJ 1a and the p x 1 vector U; has a p-variate real

nonsingular Gaussian distribution with the parameters (> j=1a i) and o =1 ajz.) 2. This
result was stated in Theorem 3.5.4.

Corollary 4.6.1, 4.6a.1. Let A as defined in Theorem 4.6.3 be n x 1, in which case
A is a column vector whose components are ay, ..., a,, and the resulting single linear
function of Y1, ..., Y, is Uy = a1Y1 + --- + a,Y,. Let the population be p-variate real
Gaussian with the parameters (1 and X > O. Then Uy has a p-variate nonsingular real
normal distribution with the parameters (Z?:l aj)u and (Z;‘.:1 ajz.)E. Analogously, in
the complex Gaussian population case, U | =a Y 1+---+a, I?,, is distributed as a complex
Gaussian with mean value (Z?Zl aj)p and covarinnce matrix (Z’}Zl aja ). Taking
a = - = a, = %, U = %(Yl + -4+ Y, =Y, the sample average, which has a
p-variate real Gaussian density with the parameters v and lE Correspondingly, in the

complex Gaussian case, the sample average Y is a p-variate complex Gaussian vector
with the parameters [1 and 1 E r=3*> 0.

4.6.3. The general real matrix-variate case

In order to avoid a multiplicity of symbols, we will denote the p x ¢ real matrix-variate
random variable by X, = (x;;o) and the corresponding complex matrix by X, = (X;jq)-
Consider a simple random sample of size n from the population represented by the real
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p X g matrix X, = (xjjo). Let X4 = (x;jo) be the a-th sample value, so that the X,’s,

a=1,...,n,areiid as X. Let the p x ng sample matrix be denoted by the bold-faced
X = [X1, X2, ..., X,;] where each X; is p x g. Let the sample average be denoted by
X = (xij), xij = %Zgzl Xija- Let Xq be the sample deviation matrix which is the
P X gn matrix

Xa=[X1 - X, Xo—X,..., X, — X1, Xog — X = (Xiju — Xij), (4.6.4)

wherein the corresponding sample average is subtracted from each element. For example,

Xllg — X11  X12¢ —X12 *** Xiga — Xlg
_ X2lg — X21 X220 — X220 v+ X2ga — X2g
on - X = . . .
Xpla — Xpl Xp2a —Xp2 *** Xpga — Xpq
= [Cla Cor -+ an] (l)

where C 4 is the j-th column in the o-th sample deviation matrix X, — X . In this notation,
the p x gn sample deviation matrix can be expressed as follows:

Xa =1[C11,Co1,...,C41,C12,C2, ..., Cy2y ..., Cy, Copy .o, Cyl] (i)

where, for example, C,, denotes the y-th column in the a-th p x g matrix, X, — X, that
is,

Xlya — ily

X2ya — 722)/
Cya = . . (iiD)

Xpya — Xpy

Then, the sample sum of products matrix, denoted by S, is given by
S =XgX4 = C11Cil + C21C§1 +---+ qucllﬂ
+ C12Cly + CChy + -+ + Cq2C;2

+ C1,CY, + C2uCoy + -+ + CgnCp . (iv)

Let us rearrange these matrices by collecting the terms relevant to each column of X which

X11 X12 X1q
X21 X22 X2q

Xpl Xp2 Xpq
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Then, the terms relevant to these columns are the following:

S =XaXd = C11C}y + C21Cy + -+ Cq1Cyy
+ C12C12 + szCéz + -+ Cq2C;2

+ Clncgn + C2’lCén +oe CC[”C(;n
=51 +S+--+8 (v)
where S; denotes the p x p sample sum of products matrix in the first column of X, S,
the p x p sample sum of products matrix corresponding to the second column of X, and

so on, S, being equal to the p x p sample sum of products matrix corresponding to the
q-th column of X.

Theorem 4.6.4. Let Xy = (Xija) be a real p x g matrix of distinct real scalar variables
Xijo's. Letting Xo, X, X, Xq, S, and Sy, ..., S, be as previously defined, the sample
sum of products matrix in the p x nq sample matrix X, denoted by S, is given by

S=Si+---+5, (4.6.5)

Example 4.6.1. Consider a 2 x 2 real matrix-variate N> 2(O, A, B) distribution with the

parameters
2 1 3 -1
A:|:1 1:| andB:|:_1 2:|.
Let Xy, « = 1,...,5, be a simple random sample of size 5 from this real Gaussian
population. Suppose that the following observationson X,, « = 1, ..., 5, were obtained:

11 -1 1 01
Sl e B v

-1 1 —4 1
M:[1J*“:L14]

Compute the sample matrix, the sample average, the sample deviation matrix and the sam-
ple sum of products matrix.
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Solution 4.6.1. The sample average is available as

-1
X=§[X1+---+X5]

A+ ED 40+ D+ (-4 T+ 14141 ] [-1 1
S5 THED)HIHTH (D) 24142424 (-2 '

The deviations are then
- 1 1 -1 1 20 0 0
de:Xl_X:[l 2]_[ 0 1]:[1 1] Xz”’:[—z 0]
10 00 -3 0
X3q = [1 1:| » X4a = [1 1] , Xs5qa = |:_1 _3] :

Thus, the sample matrix, the sample average matrix and the sample deviation matrix, de-
noted by bold-faced letters, are the following:

X =[X1, X2, X3, X4, X5, X=[X,..., X] and Xg = [X14, X24. X34, X4d. X54].
The sample sum of products matrix is then
S =[X-X]|[X-X] = [XallXal = 81 + 5

where S| is obtained from the first columns of each of X,4, @ = 1,...,5, and S is
evaluated from the second columns of X4, @« = 1, ..., 5. That is,

51 = ﬂ 211+ [_‘ﬂ 0 —21+ m 11+ m 011+ [j] (=3 — 1]

4 21 [o 0] [1 17 . [o 0] [9 3] T[14 6]
=2 1]+{0 4]*[1 1]+[o 1]*[3 1]:{6 8]’
0 0 0 0 0
Sy = _1] [01]+ [0] [0 0] + [1] [0 1]+ [1] [01]+ [_3] [0 —3]
0 0 0 0] [oo] [0oo0] [o o]
= o 1]+0+{0 1]*[0 1}“[0 9]:[0 12]’

14 6
S=Sl+52=|:6 20].

This S can be directly verified by taking [X — X][X — X]' = [Xq4][Xq]’ = where

< [20001000—30

_ _ _ /
X=X=Xa=]1 1 201111 -1 —3]’S_X"Xd'
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4.6a. The General Complex Matrix-variate Case

The preceding analysis has its counterpart for the complex case. Let X, = (Xija)
be a p x g matrix in the complex domain with the X;;,’s being distinct complex scalar
variables. Consider a simple random sample of size n from this population designated by
)2'1. Let the a-th sample matrix be )Z'a, a=1,...,n, the Xa’s being iid as )2'1, and the
p X nq sample matrix be denoted by the bold-faced X = [f( Lyeens X n]. Let the sample
average be denoted by X = (i; i) X = % > o1 Xija, and X4 be the sample deviation
matrix: _ _

Xg=[X;-X,..., X, — X].
Let S be the sample sum of products matrix, namely, S = de(:’i where an asterisk de-
notes the complex conjugate transpose and let S ; be the sample sum of products matrix

corresponding to the j-th column of X. Then we have the following result:

Theorem 4.6a.3. Let f(, ):( , f(d, Sand S j be as previously defined. Then,

e
9%}

L+ 5, = XX (4.6a.1)

Example 4.6a.1. Consider a 2 x 2 complex matrix-variate ]\72,2(0, A, B) distribution

where
2 14+ 2 i
A_|:1—i 3 ] andB_|:_1 2:|.

A simple random sample of size 4 from this population is available, that is, X i
N»>2(0, A, B), o = 1,2, 3, 4. The following are one set of observations on these sample
values:

5 2 i S 3 —i S 1 1—i| & 2 341
X]_[—i 1] XZ_[i 1}’ X3_[1+i 3 } X4_[3—i 7 ]
Determine the observed sample average, the sample matrix, the sample deviation matrix

and the sample sum of products matrix.

Solution 4.6a.1. The sample average is

(X1 + X2 + X3 + X4]

(B R R (RPN e | S e

X =

Bl A=
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and the deviations are as follows:
~ ~ = 0 —14+1 ~ 1 —1—1
X1d=X1—X=[_ : :|,X2d=|:_ . o ]

. -1 =i 5 0 2+i
X3d_[i O]’X4d_[2—i 4]'

The sample deviation matrix is then Xd = [X lds X 2, X 3ds )~(4d]. If V,; denotes the first
column of X, then with our usual notation, S; = Z‘}: 1 Vai V; | and similarly, if V> is

the second column of f(ad, then 3'2 = Zi:l Va2V, , the sample sum of products matrix
being S = S| + 5. Let us evaluate these quantities:

S I R RIS Y [FI Bl IR e R [ RS
0 0 I o—1=il [1 i1, [o0] [2 -1
:[o 2]+[—1+i 2 }J“[—i 1]+[0 5]:[—1 10]

5 = _I_eri][—l—i —2]+[_1_;i][—1+i —2]+[_(§] [i0]+[21i][2—i4]

2 2-2i 2 242 10 5 844

242 4 ]+[2—2i 4 }+[0 O]+[8—4i 16]
[ 10 12440

(12-4 24 |

and then,

S

S 10 1244 12 11+4i
Sl+SZ_[—1 10]+[12—4i 24 ]_{11—41' 34 ]

This can also be verified directly as S = [Xd][f(d]* where the deviation matrix is

<[ 0 —l+i 1 —l-i -1 —i 0 2+i
=11 -2 14 =2 i 0 2—-i 4 |

As expected,

oo [ 12 11+4i
[XallXal _[11—41' 34 ]

This completes the calculations.
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Exercises 4.6

4.6.1. Let A be a2 x 2 matrix whose first row is (1, 1) and B be 3 x 3 matrix whose first
row is (1, —1, 1). Select your own real numbers to complete the matrices A and B so that
A > O and B > O. Then consider a 2 x 3 matrix X having a real matrix-variate Gaussian
density with the location parameter M = O and the foregoing parameter matrices A and
B. Let the first row of X be X and its second row be X». Determine the marginal densities
of X1 and X», the conditional density of X given X», the conditional density of X, given
X1, the conditional expectation of X given X, = (1, 0, 1) and the conditional expectation
of X, given X1 = (1, 2, 3).

4.6.2. Consider the matrix X utilized in Exercise 4.6.1. Let its first two columns be Y}
and its last one be Y5. Then, obtain the marginal densities of Y| and Y>, and the conditional
densities of Y| given Y; and Y, given Yj, and evaluate the conditional expectation of Y

given Y, = (1, —1) as well as the conditional expectation of Y, given Y| = |} ;:|

4.6.3. Let A > O and B > O be 2 x 2 and 3 x 3 matrices whose first rows are (1, 1 —1i)
and (2,1, 1 +1), respectively. Select your own complex numbers to complete the matrices
A= A* > O and B = B* > O. Now, consider a 2 x 3 matrix X having a complex
matrix-variate Gaussian density with the aforementioned matrices A and B as parameter
matrices. Assume that the location parameter is a null matrix. Letting the row partitioning
of X , denoted by X 1 X 2, be as specified in Exercise 4.6.1, answer all the questions posed
in that exercise.

4.64. Let A, B and X be as given in Exercise 4.6.3. Consider the column partitioning
specified in Exercise 4.6.2. Then answer all the questions posed in Exercise 4.6.2.

4.6.5. Repeat Exercise 4.6.4 with the non-null location parameter
~ 21— i
M = |:1—|—i 241 —3i:|'
4.7. The Singular Matrix-variate Gaussian Distribution
Consider the moment generating function specified in (4.3.3) for the real case, namely,

Mx(T) = M/(T) = etr(TM’)—}-%tr(E]TZ’gT/) (4.7.1)

where X; = A™! > O and X, = B~! > O. In the complex case, the moment generating
function is of the form

~ ~ 7oA 1 7 75k
MX(T) — e?It[tr(TM )]+Ztr(21TZ‘2T ) (47@1)
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The properties of the singular matrix-variate Gaussian distribution can be studied by mak-
ing use of (4.7.1) and (4.7a.1). Suppose that we restrict X'y and X, to be positive semi-
definite matrices, that is, ¥y > O and X, > O. In this case, one can also study many
properties of the distributions represented by the mgf’s given in (4.7.1) and (4.7a.1); how-
ever, the corresponding densities will not exist unless the matrices Xy and X, are both
strictly positive definite. The p x g real or complex matrix-variate density does not ex-
ist if at least one of A or B is singular. When either or both ¥'{ and X, are only positive
semi-definite, the distributions corresponding to the mgf’s specified by (4.7.1) and (4.7a.1)
are respectively referred to as real matrix-variate singular Gaussian and complex matrix-
variate singular Gaussian.

For instance, let
) 3 -1 0
21:|: ]andez —1 2 1
0 1 1

in the mgf of a 2 x 3 real matrix-variate Gaussian distribution. Note that ¥; = X{ and
Xy = Eé. Since the leading minors of X are |(4)] = 4 > 0 and |¥;| = O and those

of Xy are |[(3)] = 3 > 0, ‘ 3 -1 =35> 0and |X;] = 2 > 0, X is positive

-1 2
semi-definite and X is positive definite. Accordingly, the resulting Gaussian distribution
does not possess a density. Fortunately, its distributional properties can nevertheless be
investigated via its associated moment generating function.
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