
Chapter 4
The Matrix-Variate Gaussian Distribution

4.1. Introduction

This chapter relies on various results presented in Chap. 1. We will introduce a class
of integrals called the real matrix-variate Gaussian integrals and complex matrix-variate
Gaussian integrals wherefrom a statistical density referred to as the matrix-variate Gaus-
sian density and, as a special case, the multivariate Gaussian or normal density will be
obtained, both in the real and complex domains.

The notations introduced in Chap. 1 will also be utilized in this chapter. Scalar vari-
ables, mathematical and random, will be denoted by lower case letters, vector/matrix
variables will be denoted by capital letters, and complex variables will be indicated by
a tilde. Additionally, the following notations will be used. All the matrices appearing in
this chapter are p × p real positive definite or Hermitian positive definite unless stated
otherwise. X > O will mean that that the p × p real symmetric matrix X is positive
definite and X̃ > O, that the p × p matrix X̃ in the complex domain is Hermitian, that
is, X̃ = X̃∗ where X̃∗ denotes the conjugate transpose of X̃ and X̃ is positive definite.
O < A < X < B will indicate that the p × p real positive definite matrices are such that
A > O, B > O, X > O, X−A > O, B−X > O.

∫
X

f (X)dX represents a real-valued
scalar function f (X) being integrated out over all X in the domain of X where dX stands
for the wedge product of differentials of all distinct elements in X. If X = (xij ) is a real
p×q matrix, the xij ’s being distinct real scalar variables, then dX = dx11∧dx12∧. . .∧dxpq

or dX = ∧p

i=1 ∧q

j=1 dxij . If X = X′, that is, X is a real symmetric matrix of dimension

p ×p, then dX = ∧p

i≥j=1dxij = ∧p

i≤j=1dxij , which involves only p(p +1)/2 differential
elements dxij . When taking the wedge product, the elements xij ’s may be taken in any
convenient order to start with. However, that order has to be maintained until the com-
putations are completed. If X̃ = X1 + iX2, where X1 and X2 are real p × q matrices,
i = √

(−1), then dX̃ will be defined as dX̃ = dX1 ∧ dX2.
∫
A<X̃<B

f (X̃)dX̃ represents
the real-valued scalar function f of complex matrix argument X̃ being integrated out over
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all p × p matrix X̃ such that A > O, X̃ > O, B > O, X̃ − A > O, B − X̃ > O (all
Hermitian positive definite), where A and B are constant matrices in the sense that they are
free of the elements of X̃. The corresponding integral in the real case will be denoted by∫
A<X<B

f (X)dX = ∫ B

A
f (X)dX, A > O, X > O, X − A > O, B > O, B − X > O,

where A and B are constant matrices, all the matrices being of dimension p × p.

4.2. Real Matrix-variate and Multivariate Gaussian Distributions

Let X = (xij ) be a p × q matrix whose elements xij are distinct real variables. For
any real matrix X, be it square or rectangular, tr(XX′) = tr(X′X) = sum of the squares
of all the elements of X. Note that XX′ need not be equal to X′X. Thus, tr(XX′) =∑p

i=1

∑q

j=1 x2
ij and, in the complex case, tr(X̃X̃∗) = ∑p

i=1

∑q

j=1 |x̃ij |2 where if x̃rs =
xrs1 + ixrs2 where xrs1 and xrs2 are real, i = √

(−1), with |x̃rs | = +[x2
rs1 + x2

rs2]
1
2 .

Consider the following integrals over the real rectangular p × q matrix X:

I1 =
∫

X

e−tr(XX′)dX =
∫

X

e−∑p
i=1

∑q
j=1 x2ijdX =

∏

i,j

∫ ∞

−∞
e−x2ijdxij

=
∏

i,j

√
π = π

pq
2 , (i)

I2 =
∫

X

e− 1
2 tr(XX′)dX = (2π)

pq
2 . (ii)

Let A > O be p×p and B > O be q ×q constant positive definite matrices. Then we can
define the unique positive definite square roots A

1
2 and B

1
2 . For the discussions to follow,

we need only the representations A = A1A
′
1, B = B1B

′
1 with A1 and B1 nonsingular, a

prime denoting the transpose. For an m × n real matrix X, consider

tr(AXBX′) = tr(A
1
2A

1
2XB

1
2B

1
2X′) = tr(A

1
2XB

1
2B

1
2X′A

1
2 )

= tr(YY ′), Y = A
1
2XB

1
2 . (iii)

In order to obtain the above results, we made use of the property that for any two matrices
P and Q such that PQ and QP are defined, tr(PQ) = tr(QP ) where PQ need not be
equal to QP . As well, letting Y = (yij ), tr(YY ′) = ∑p

i=1

∑q

j=1 y2
ij . YY ′ is real positive

definite when Y is p × q, p ≤ q, is of full rank p. Observe that any real square matrix U

that can be written as U = V V ′ for some matrix V where V may be square or rectangular,
is either positive definite or at least positive semi-definite. When V is a p × q matrix,
q ≥ p, whose rank is p, V V ′ is positive definite; if the rank of V is less than p, then V V ′
is positive semi-definite. From Result 1.6.4,
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Y = A
1
2XB

1
2 ⇒ dY = |A| q

2 |B|p
2 dX

⇒ dX = |A|− q
2 |B|−p

2 dY (iv)

where we use the standard notation |(·)| = det(·) to denote the determinant of (·) in
general and |det(·)| to denote the absolute value or modulus of the determinant of (·) in
the complex domain. Let

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(AXBX′), A > O, B > O (4.2.1)

for X = (xij ), −∞ < xij < ∞ for all i and j . From the steps (i) to (iv), we see that
fp,q(X) in (4.2.1) is a statistical density over the real rectangular p × q matrix X. This
function fp,q(X) is known as the real matrix-variate Gaussian density. We introduced a
1
2 in the exponent so that particular cases usually found in the literature agree with the
real p-variate Gaussian distribution. Actually, this 1

2 factor is quite unnecessary from a
mathematical point of view as it complicates computations rather than simplifying them.
In the complex case, the factor 1

2 does not appear in the exponent of the density, which is
consistent with the current particular cases encountered in the literature.

Note 4.2.1. If the factor 1
2 is omitted in the exponent, then 2π is to be replaced by π in

the denominator of (4.2.1), namely,

fp,q(X) = |A| q
2 |B|p

2

(π)
pq
2

e−tr(AXBX′), A > O, B > O. (4.2.2)

When p = 1, the matrix X is 1 × q and we let X = (x1, . . . , xq) where X is a row vector
whose components are x1, . . . , xq . When p = 1, A is 1 × 1 or a scalar quantity. Letting
A = 1 and B = V −1, V > O, be of dimension q × q, then in the real case,

f1,q(X) = |12V −1| 12
π

q
2

e− 1
2XV −1X′

, X = (x1, . . . , xq),

= 1

(2π)
q
2 |V | 12

e− 1
2XV −1X′

, (4.2.3)

which is the usual real nonsingular Gaussian density with parameter matrix V , that is,X′ ∼
Nq(O, V ). If a location parameter vector μ = (μ1, . . . , μq) is introduced or, equivalently,
if X is replaced by X − μ, then we have

f1,q(X) = [(2π)
q
2 |V | 12 ]−1e− 1

2 (X−μ)V −1(X−μ)′, V > O. (4.2.4)

On the other hand, when q = 1, a real p-variate Gaussian or normal density is available
from (4.2.1) wherein B = 1; in this case, X ∼ Np(μ, A−1) where X and the location
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parameter vector μ are now p × 1 column vectors. This density is given by

fp,1(X) = |A| 12
(2π)

p
2
e− 1

2 (X−μ)′A(X−μ), A > O. (4.2.5)

Example 4.2.1. Write down the exponent and the normalizing constant explicitly in a
real matrix-variate Gaussian density where

X =
[
x11 x12 x13
x21 x22 x23

]

, E[X] = M =
[

1 0 −1
−1 −2 0

]

,

A =
[
1 1
1 2

]

, B =
⎡

⎣
1 1 1
1 2 1
1 1 3

⎤

⎦ ,

where the xij ’s are real scalar random variables.

Solution 4.2.1. Note that A = A′ and B = B ′, the leading minors in A being |(1)| =
1 > 0 and |A| = 1 > 0 so that A > O. The leading minors in B are |(1)| = 1 >

0,

∣
∣
∣
∣
1 1
1 2

∣
∣
∣
∣ = 1 > 0 and

|B| = (1)

∣
∣
∣
∣
2 1
1 3

∣
∣
∣
∣ − (1)

∣
∣
∣
∣
1 1
1 3

∣
∣
∣
∣ + (1)

∣
∣
∣
∣
1 2
1 1

∣
∣
∣
∣ = 2 > 0,

and hence B > O. The density is of the form

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A(X−M)B(X−M)′)

where the normalizing constant is (1)
3
2 (2)

2
2

(2π)
(2)(3)
2

= 2
(2π)3

= 1
4π3 . Let X1 and X2 be the two rows

of X and let Y = X − M =
[
Y1

Y2

]

. Then Y1 = (y11, y12, y13) = (x11 − 1, x12, x13 + 1),

Y2 = (y21, y22, y23) = (x21 + 1, x22 + 2, x23). Now

(X − M)B(X − M)′ =
[
Y1

Y2

]

B[Y ′
1, Y

′
2] =

[
Y1BY ′

1 Y1BY ′
2

Y2BY ′
1 Y2BY ′

2

]

,

A(X − M)B(X − M)′ =
[
1 1
1 2

] [
Y1BY ′

1 Y1BY ′
2

Y2BY ′
1 Y2BY ′

2

]

=
[

Y1BY ′
1 + Y2BY ′

1 Y1BY ′
2 + Y2BY ′

2
Y1BY ′

1 + 2Y2BY ′
1 Y1BY ′

2 + 2Y2BY ′
2

]

.
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Thus,

tr[A(X − M)B(X − M)′] = Y1BY ′
1 + Y2BY ′

1 + Y1BY ′
2 + 2Y2BY ′

2

= Y1BY ′
1 + 2Y1BY ′

2 + 2Y2BY ′
2, ≡ Q, (i)

noting that Y1BY ′
2 and Y2BY ′

1 are equal since both are real scalar quantities and one is the
transpose of the other. Here are now the detailed computations of the various items:

Y1BY ′
1 = y2

11 + 2y11y12 + 2y11y13 + 2y2
12 + 2y12y13 + 3y2

13 (ii)

Y2BY ′
2 = y2

21 + 2y21y22 + 2y21y23 + 2y2
22 + 2y22y23 + 3y2

23 (iii)

Y1BY ′
2 = y11y21 + y11y22 + y11y23 + y12y21 + 2y12y22 + y12y23

+ y13y21 + y13y22 + 3y13y33 (iv)

where the y1j ’s and y2j ’s and the various quadratic and bilinear forms are as specified
above. The density is then

f2,3(X) = 1

4π3
e− 1

2 (Y1BY ′
1+2Y1BY ′

2+Y2BY ′
2)

where the terms in the exponent are given in (ii)-(iv). This completes the computations.

4.2a. The Matrix-variate Gaussian Density, Complex Case

In the following discussion, the absolute value of a determinant will be denoted by
|det(A)| where A is a square matrix. For example, if det(A) = a + ib with a and b real
scalar and i = √

(−1), the determinant of the conjugate transpose of A is det(A∗) =
a − ib. Then the absolute value of the determinant is

|det(A)| = +
√

(a2 + b2) = +[(a+ib)(a−ib)] 12 = +[det(A)det(A∗)] 12 = +[det(AA∗)] 12 .
(4.2a.1)

The matrix-variate Gaussian density in the complex case, which is the counterpart to that
given in (4.2.1) for the real case, is

f̃p,q(X̃) = |det(A)|q |det(B)|p
πpq

e−tr(AX̃BX̃∗) (4.2a.2)

for A > O, B > O, X̃ = (x̃ij ), |(·)| denoting the absolute value of (·). When p = 1 and
A = 1, the usual multivariate Gaussian density in the complex domain is obtained:

f̃1,q(X̃) = |det(B)|
πq

e−(X̃−μ)B(X̃−μ)∗, X̃′ ∼ Ñq(μ̃
′, B−1) (4.2a.3)
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where B > O and X̃ and μ are 1 × q row vectors, μ being a location parameter vector.
When q = 1 in (4.2a.1), we have the p-variate Gaussian or normal density in the complex
case which is given by

f̃p,1(X̃) = |det(A)|
πp

e−(X̃−μ)∗A(X̃−μ), X̃ ∼ Ñp(μ, A−1) (4.2a.4)

where X̃ and the location parameter also denoted by μ are now p × 1 vectors.

Example 4.2a.1. Consider a 2×3 complex matrix-variate Gaussian density. Write down
the normalizing constant and the exponent explicitly if

X̃ =
[
x̃11 x̃12 x̃13
x̃21 x̃22 x̃23

]

, E[X̃] = M̃ =
[
i −i 1 + i

0 1 − i 1

]

,

A =
[

3 1 + i

1 − i 2

]

, B =
⎡

⎣
4 1 + i i

1 − i 2 1 − i

−i 1 + i 3

⎤

⎦ ,

where the x̃ij ’s are scalar complex random variables.

Solution 4.2a.1. Let us verify the definiteness of A and B. It is obvious that A =
A∗, B = B∗ and hence they are Hermitian. The leading minors of A are |(3)| = 3 >

0, |A| = 4 > 0 and hence A > O. The leading minors of B are |(4)| = 4 >

0,

∣
∣
∣
∣

4 1 + i

1 − i 2

∣
∣
∣
∣ = 6 > 0,

|B| = 4

∣
∣
∣
∣

2 1 − i

1 + i 3

∣
∣
∣
∣ − (1 + i)

∣
∣
∣
∣
1 − i 1 − i

−i 3

∣
∣
∣
∣ + i

∣
∣
∣
∣
1 − i 2
−i 1 + i

∣
∣
∣
∣ = 8 > 0,

and hence B > O. The normalizing constant is then

|det(A)|q |det(B)|p
πpq

= (43)(82)

π6
.

Let the two rows of X̃ be X̃1 and X̃2. Let (X̃ − M̃) = Ỹ =
[
Ỹ1

Ỹ2

]

,

Ỹ1 = (ỹ11, ỹ12, ỹ13) = (x̃11 − i, x̃12 + i, x̃13 − (1 + i))

Ỹ2 = (ỹ21, ỹ22, ỹ23) = (x̃21, x̃22 − (1 − i), x̃23 − 1).
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(X̃ − M̃)B(X̃ − M̃)∗ = ỸBỸ ∗ =
[
Ỹ1

Ỹ2

]

B[Ỹ ∗
1 , Ỹ ∗

2 ]

=
[
Ỹ1BỸ ∗

1 Ỹ1BỸ ∗
2

Ỹ2BỸ ∗
1 Ỹ2BỸ ∗

2

]

.

Then,

tr[A(X̃ − M̃)B(X̃ − M̃)∗] = tr

{[
3 1 + i

1 − i 2

] [
Ỹ1BỸ ∗

1 Ỹ1BỸ ∗
2

Ỹ2BỸ ∗
1 Ỹ2BỸ ∗

2

]}

= 3Ỹ1BỸ ∗
1 + (1 + i)(Ỹ2BỸ ∗

1 ) + (1 − i)(Ỹ1BỸ ∗
2 ) + 2Ỹ2BỸ ∗

2

≡ Q (i)

where

Ỹ1BỸ ∗
1 = 4ỹ11ỹ

∗
11 + 2ỹ12ỹ

∗
12 + 3ỹ13ỹ

∗
13

+ (1 + i)ỹ11ỹ
∗
12 + iỹ11ỹ

∗
13 + (1 − i)ỹ12ỹ

∗
11

+ (1 − i)ỹ12ỹ
∗
13 − iỹ13ỹ

∗
11 + (1 + i)ỹ13ỹ

∗
12 (ii)

Ỹ2BỸ ∗
2 = 4ỹ21ỹ

∗
21 + 2ỹ22ỹ

∗
22 + 3ỹ23ỹ

∗
23

+ (1 + i)ỹ21ỹ
∗
22 + iỹ21ỹ

∗
23 + (1 − i)ỹ22ỹ

∗
21

+ (1 − i)ỹ22ỹ
∗
23 − iỹ23ỹ

∗
21 + (1 + i)ỹ23ỹ

∗
22 (iii)

Ỹ1BỸ ∗
2 = 4ỹ11ỹ

∗
21 + 2ỹ12ỹ

∗
22 + 3ỹ13ỹ

∗
23

+ (1 + i)ỹ11ỹ
∗
22 + iỹ11ỹ

∗
23 + (1 − i)ỹ12ỹ

∗
21

+ (1 − i)ỹ12ỹ
∗
23 − iỹ13ỹ

∗
21 + (1 + i)ỹ13ỹ

∗
22 (iv)

Ỹ2BỸ ∗
1 = (iv) with ỹ1j and ỹ2j interchanged. (v)

Hence, the density of X̃ is given by

f̃2,3(X̃) = (43)(82)

π6
e−Q

where Q is given explicitly in (i)-(v) above. This completes the computations.
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4.2.1. Some properties of a real matrix-variate Gaussian density

In order to derive certain properties, we will need some more Jacobians of matrix
transformations, in addition to those provided in Chap. 1. These will be listed in this sec-
tion as basic results without proofs. The derivations as well as other related Jacobians are
available from Mathai (1997).

Theorem 4.2.1. Let X be a p×q, q ≥ p, real matrix of rank p, that is, X has full rank,
where the pq elements of X are distinct real scalar variables. Let X = T U1 where T is
a p × p real lower triangular matrix whose diagonal elements are positive and U1 is a
semi-orthonormal matrix such that U1U

′
1 = Ip. Then

dX =
⎧
⎨

⎩

p∏

j=1

t
q−j

jj

⎫
⎬

⎭
dT h(U1) (4.2.6)

where h(U1) is the differential element corresponding to U1.

Theorem 4.2.2. For the differential elements h(U1) in (4.2.6), the integral is over the
Stiefel manifold Vp,q or over the space of p × q, q ≥ p, semi-orthonormal matrices and
the integral over the full orthogonal group Op when q = p are respectively

∫

Vp,q

h(U1) = 2pπ
pq
2

Γp(
q
2 )

and
∫

Op

h(U1) = 2pπ
p2

2

Γp(
p
2 )

(4.2.7)

where Γp(α) is the real matrix-variate gamma function given by

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) >
p−1
2 , (4.2.8)

�(·) denoting the real part of (·).
For example,

Γ3(α) = π
3(2)
4 Γ (α)Γ (α − 1/2)Γ (α − 1) = π

3
2Γ (α)Γ (α − 1/2)Γ (α − 1), �(α) > 1.

With the help of Theorems 4.2.1, 4.2.2 and 1.6.7 of Chap. 1, we can derive the follow-
ing result:

Theorem 4.2.3. Let X be a real p × q, q ≥ p, matrix of rank p and S = XX′. Then,
S > O (real positive definite) and

dX = π
pq
2

Γp(
q
2 )

|S| q
2−p+1

2 dS, (4.2.9)

after integrating out over the Stiefel manifold.
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4.2a.1. Some properties of a complex matrix-variate Gaussian density

The corresponding results in the complex domain follow.

Theorem 4.2a.1. Let X̃ be a p × q, q ≥ p, matrix of rank p in the complex domain and
T̃ be a p × p lower triangular matrix in the complex domain whose diagonal elements
tjj > 0, j = 1, . . . , p, are real and positive. Then, letting Ũ1 be a semi-unitary matrix
such that Ũ1Ũ

∗
1 = Ip,

X̃ = T̃ Ũ1 ⇒ dX̃ =
⎧
⎨

⎩

p∏

j=1

t
2(q−j)+1
jj

⎫
⎬

⎭
dT̃ h̃(Ũ1) (4.2a.5)

where h̃(Ũ1) is the differential element corresponding to Ũ1.

When integrating out h̃(Ũ1), there are three situations to be considered. One of the
cases is q > p. When q = p, the integration is done over the full unitary group Õp;
however, there are two cases to be considered in this instance. One case occurs where all
the elements of the unitary matrix Ũ1, including the diagonal ones, are complex, in which
case Õp will be denoted by Õ

(1)
p , and the other one, wherein the diagonal elements of Ũ1

are real, in which instance the unitary group will be denoted by Õ
(2)
p . When unitary trans-

formations are applied to Hermitian matrices, this is our usual situations when Hermitian
matrices are involved, then the diagonal elements of the unique Ũ1 are real and hence the
unitary group is Õ

(2)
p . The integral of h̃(Ũ1) under these three cases are given in the next

theorem.

Theorem 4.2a.2. Let h̃(Ũ1) be as defined in equation (4.2a.5). Then, the integral of
h̃(Ũ1), over the Stiefel manifold Ṽp,q of semi-unitary matrices for q > p, and when q = p,

the integrals over the unitary groups Õ
(1)
p and Õ

(2)
p are the following:

∫

Ṽp,q

h̃(Ũ1) = 2pπpq

Γ̃p(q)
, q > p;

∫

Õ
(1)
p

h̃(Ũ1) = 2pπp2

Γ̃p(p)
,

∫

Õ
(2)
p

h̃(Ũ1) = πp(p−1)

Γ̃p(p)
, (4.2a.6)

the factor 2p being omitted when Ũ1 is uniquely specified; Õ
(1)
p is the case of a general X̃,

Õ
(2)
p is the case corresponding to X̃ Hermitian, and Γ̃p(α) is the complex matrix-variate

gamma, given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (4.2a.7)
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For example,

Γ̃3(α) = π
3(2)
2 Γ (α)Γ (α − 1)Γ (α − 2) = π3Γ (α)Γ (α − 1)Γ (α − 2), �(α) > 2.

Theorem 4.2a.3. Let X̃ be p × q, q ≥ p, matrix of rank p in the complex domain and
S̃ = X̃X̃∗ > O. Then after integrating out over the Stiefel manifold,

dX̃ = πpq

Γ̃p(q)
|det(S̃)|q−pdS̃. (4.2a.8)

4.2.2. Additional properties in the real and complex cases

On making use of the above results, we will establish a few results in this section
as well as additional ones later on. Let us consider the matrix-variate Gaussian densities
corresponding to (4.2.1) and (4.2a.2) with location matrices M and M̃, respectively, and
let the densities be again denoted by fp,q(X) and f̃p,q(X̃) respectively, where

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr[A(X−M)B(X−M)′] (4.2.10)

and

f̃p,q(X̃) = |det(A)|q |det(B)|p
πpq

e−tr[A(X̃−M̃)B(X̃−M̃)∗]. (4.2a.9)

Then, in the real case the expected value of X or the mean value of X, denoted by E(X),
is given by

E(X) =
∫

X

Xfp,q(X) dX =
∫

X

(X − M)fp,q(X) dX + M

∫

X

fp,q(X) dX. (i)

The second integral in (i) is the total integral in a density, which is 1, and hence the second
integral gives M . On making the transformation Y = A

1
2 (X − M)B

1
2 , we have

E[X] = M + A− 1
2

1

(2π)
np
2

∫

Y

Y e− 1
2 tr(YY ′)dYB− 1

2 . (ii)

But tr(YY ′) is the sum of squares of all elements in Y . Hence Y e− 1
2 tr(YY ′) is an odd function

and the integral over each element in Y is convergent, so that each integral is zero. Thus,
the integral over Y gives a null matrix. Therefore E(X) = M . It can be shown in a similar
manner that E(X̃) = M̃ .
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Theorem 4.2.4, 4.2a.4. For the densities specified in (4.2.10) and (4.2a.9),

E(X) = M and E(X̃) = M̃. (4.2.11)

Theorem 4.2.5, 4.2a.5. For the densities given in (4.2.10), (4.2a.9)

E[(X − M)B(X − M)′] = qA−1, E[(X − M)′A(X − M)] = pB−1 (4.2.12)

and

E[(X̃ − M̃)B(X̃ − M̃)∗] = qA−1, E[(X̃ − M̃)∗A(X̃ − M̃)] = pB−1. (4.2a.10)

Proof: Consider the real case first. Let Y = A
1
2 (X − M)B

1
2 ⇒ A− 1

2Y = (X − M)B
1
2 .

Then

E[(X − M)B(X − M)′] = A− 1
2

(2π)
pq
2

∫

Y

YY ′e− 1
2 tr(YY ′)dYA− 1

2 . (i)

Note that Y is p×q and YY ′ is p×p. The non-diagonal elements in YY ′ are dot products of
the distinct row vectors in Y and hence linear functions of the elements of Y . The diagonal
elements in YY ′ are sums of squares of elements in the rows of Y . The exponent has all
sum of squares and hence the convergent integrals corresponding to all the non-diagonal
elements in YY ′ are zeros. Hence, only the diagonal elements need be considered. Each
diagonal element is a sum of squares of q elements of Y . For example, the first diagonal
element in YY ′ is y2

11 + y2
12 + · · · + y2

1q where Y = (yij ). Let Y1 = (y11, . . . , y1q) be the

first row of Y and let s = Y1Y
′
1 = y2

11 + · · · + y2
1q . It follows from Theorem 4.2.3 that

when p = 1,

dY1 = π
q
2

Γ (
q
2 )

s
q
2−1ds. (ii)

Then
∫

Y1

Y1Y
′
1e

− 1
2Y1Y

′
1dY1 =

∫ ∞

s=0
s

π
q
2

Γ (
q
2 )

s
q
2−1e− 1

2 sds. (iii)

The integral part over s is 2
q
2+1Γ (

q
2 + 1) = 2

q
2+1 q

2Γ (
q
2 ) = 2

q
2 qΓ (

q
2 ). Thus Γ (

q
2 ) is

canceled and (2π)
q
2 cancels with (2π)

pq
2 leaving (2π)

(p−1)q
2 in the denominator and q in

the numerator. We still have p −1 such sets of q, y2
ij ’s in the exponent in (i) and each such
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integrals is of the form
∫ ∞
−∞ e− 1

2z2dz = √
(2π) which gives (2π)

(p−1)q
2 and thus the factor

containing π is also canceled leaving only q at each diagonal position in YY ′. Hence the
integral 1

(2π)
pq
2

∫
Y

YY ′e− 1
2 tr(YY ′)dY = qI where I is the identity matrix, which establishes

one of the results in (4.2.12). Now, write

tr[A(X − M)B(X − M)′] = tr[(X − M)′A(X − M)B] = tr[B(X − M)′A(X − M)].
This is the same structure as in the previous case where B occupies the place of A and
the order is now q in place of p in the previous case. Then, proceeding as in the deriva-
tions from (i) to (iii), the second result in (4.2.12) follows. The results in (4.2a.10) are
established in a similar manner.

From (4.2.10), it is clear that the density of Y, denoted by g(Y ), is of the form

g(Y ) = 1

(2π)
pq
2
e− 1

2 tr(YY ′), Y = (yij ), −∞ < yij < ∞, (4.2.13)

for all i and j . The individual yij ’s are independently distributed and each yij has the
density

gij (yij ) = 1√
(2π)

e− 1
2y2ij , −∞ < yij < ∞. (iv)

Thus, we have a real standard normal density for yij . The complex case corresponding
to (4.2.13), denoted by g̃(Ỹ ), is given by

g̃(Ỹ ) = 1

πpq
e−tr(Ỹ Ỹ ∗). (4.2a.11)

In this case, the exponent is tr(Ỹ Ỹ ∗) = ∑p

i=1

∑q

j=1 |ỹij |2 where ỹrs = yrs1 + iyrs2, yrs1,

yrs2 real, i = √
(−1) and |ỹrs |2 = y2

rs1 + y2
rs2.

For the real case, consider the probability that yij ≤ tij for some given tij and this is the
distribution function of yij , which is denoted by Fyij

(tij ). Then, let us compute the density
of y2

ij . Consider the probability that y2
ij ≤ u, u > 0 for some u. Let uij = y2

ij . Then,
Pr{uij ≤ vij } for some vij is the distribution function of uij evaluated at vij , denoted by
Fuij

(vij ). Consider

Pr{y2
ij ≤ t, t > 0} = Pr{|yij | ≤ √

t} = Pr{−√
t ≤ yij ≤ √

t} = Fyij
(
√

t)−Fyij
(−√

t).

(v)
Differentiate throughout with respect to t . When Pr{y2

ij ≤ t} is differentiated with respect
to t , we obtain the density of uij = y2

ij , evaluated at t . This density, denoted by hij (uij ),
is given by
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hij (uij )|uij=t = d

dt
Fyij

(
√

t) − d

dt
F (−√

t)

= gij (yij = t)12 t
1
2−1 − gij (yij = t)(−1

2 t
1
2−1)

= 1√
(2π)

[t 1
2−1e− 1

2 t ] = 1√
(2π)

[u
1
2−1
ij e− 1

2uij ] (vi)

evaluated at uij = t for 0 ≤ t < ∞. Hence we have the following result:

Theorem 4.2.6. Consider the density fp,q(X) in (4.2.1) and the transformation Y =
A

1
2XB

1
2 . Letting Y = (yij ), the yij ’s are mutually independently distributed as in (iv)

above and each y2
ij is distributed as a real chi-square random variable having one degree

of freedom or equivalently a real gamma with parameters α = 1
2 and β = 2 where the

usual real scalar gamma density is given by

f (z) = 1

βαΓ (α)
zα−1e− z

β , (vii)

for 0 ≤ z < ∞, �(α) > 0, �(β) > 0 and f (z) = 0 elsewhere.

As a consequence of the y2
ij ’s being independently gamma distributed,

∑q

j=1 y2
ij is real

gamma distributed with the parameters α = q
2 and β = 2. Then tr(YY ′) is real gamma

distributed with the parameters α = pq
2 and β = 2 and each diagonal element in YY ′

is real gamma distributed with parameters q
2 and β = 2 or a real chi-square variable

with q degrees of freedom and an expected value 2q
2 = q. This is an alternative way

of proving (4.2.12). Proofs for the other results in (4.2.12) and (4.2a.10) are parallel and
hence are omitted.

4.2.3. Some special cases

Consider the real p×q matrix-variate Gaussian case where the exponent in the density
is −1

2 tr(AXBX′). On making the transformation A
1
2X = Z ⇒ dZ = |A| q

2 dX, Z has a
p × q matrix-variate Gaussian density of the form

fp,q(Z) = |B|p
2

(2π)
pq
2
e− 1

2 tr(ZBZ′). (4.2.14)

If the distribution has a p × q constant matrix M as location parameter, then replace Z by
Z−M in (4.2.14), which does not affect the normalizing constant. Letting Z1, Z2, . . . , Zp

denote the rows of Z, we observe that Zj has a q-variate multinormal distribution with the
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null vector as its mean value and B−1 as its covariance matrix for each j = 1, . . . , p.
This can be seen from the considerations that follow. Let us consider the transformation
Y = ZB

1
2 ⇒ dZ = |B|−p

2 dY . The density in (4.2.14) then reduces to the following,
denoted by fp,q(Y ):

fp,q(Y ) = 1

(2π)
pq
2
e− 1

2 tr(YY ′). (4.2.15)

This means that each element yij in Y = (yij ) is a real univariate standard normal variable,
yij ∼ N1(0, 1) as per the usual notation, and all the yij ’s are mutually independently
distributed. Letting the p rows of Y be Y1, . . . , Yp, then each Yj is a q-variate standard
normal vector for j = 1, . . . , p. Letting the density of Yj be denoted by fYj

(Yj ), we have

fYj
(Yj ) = 1

(2π)
q
2
e− 1

2 (YjY
′
j ).

Now, consider the transformation Zj = YjB
− 1

2 ⇒ dYj = |B| 12 dZj and Yj = ZjB
1
2 . That

is, YjY
′
j = ZjBZ′

j and the density of Zj denoted by fZj
(Zj ) is as follows:

fZj
(Zj ) = |B| 12

(2π)
q
2
e− 1

2 (ZjBZ′
j ), B > O, (4.2.16)

which is a q-variate real multinormal density with the covariance matrix of Zj given by
B−1, for each j = 1, . . . , p, and the Zj ’s, j = 1, . . . , p, are mutually independently
distributed. Thus, the following result:

Theorem 4.2.7. Let Z1, . . . , Zp be the p rows of the p × q matrix Z in (4.2.14). Then
each Zj has a q-variate real multinormal distribution with the covariance matrix B−1, for
j = 1, . . . , p, and Z1, . . . , Zp are mutually independently distributed.

Observe that the exponent in the original real p × q matrix-variate Gaussian density
can also be rewritten in the following format:

−1

2
tr(AXBX′) = −1

2
tr(X′AXB) = −1

2
tr(BX′AX)

= −1

2
tr(U ′AU) = −1

2
tr(ZBZ′), A

1
2X = Z, XB

1
2 = U.

Now, on making the transformation U = XB
1
2 ⇒ dX = |B|−p

2 dU , the density of U ,
denoted by fp,q(U), is given by

fp,q(U) = |A| q
2

(2π)
pq
2
e− 1

2 tr(U
′AU). (4.2.17)

Proceeding as in the derivation of Theorem 4.2.7, we have the following result:
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Theorem 4.2.8. Consider the p × q real matrix U in (4.2.17). Let U1, . . . , Uq be the
columns of U . Then, U1, . . . , Uq are mutually independently distributed with Uj having a
p-variate multinormal density, denoted by fUj

(Uj ), given as

fUj
(Uj ) = |A| 12

(2π)
p
2
e− 1

2 (U ′
jAUj ). (4.2.18)

The corresponding results in the p × q complex Gaussian case are the following:

Theorem 4.2a.6. Consider the p × q complex Gaussian matrix X̃. Let A
1
2 X̃ = Z̃ and

Z̃1, . . . , Z̃p be the rows of Z̃. Then, Z̃1, . . . , Z̃p are mutually independently distributed
with Z̃j having a q-variate complex multinormal density, denoted by f̃Z̃j

(Z̃j ), given by

f̃Z̃j
(Z̃j ) = |det(B)|

πq
e−(Z̃jBZ̃∗

j )
. (4.2a.12)

Theorem 4.2a.7. Let the p×q matrix X̃ have a complex matrix-variate distribution. Let
Ũ = X̃B

1
2 and Ũ1, . . . , Ũq be the columns of Ũ . Then Ũ1, . . . , Ũq are mutually indepen-

dently distributed as p-variate complex multinormal with covariance matrix A−1 each,
the density of Ũj , denoted by f̃Ũj

(Ũj ), being given as

f̃Ũj
(Ũj ) = |det(A)|

πp
e−(Ũ∗

j AŨj ). (4.2a.13)

Exercises 4.2

4.2.1. Prove the second result in equation (4.2.12) and prove both results in (4.2a.10).

4.2.2. Obtain (4.2.12) by establishing first the distribution of the row sum of squares and
column sum of squares in Y , and then taking the expected values in those variables.

4.2.3. Prove (4.2a.10) by establishing first the distributions of row and column sum of
squares of the absolute values in Ỹ and then taking the expected values.

4.2.4. Establish 4.2.12 and 4.2a.10 by using the general polar coordinate transformations.

4.2.5. First prove that
∑q

j=1 |ỹij |2 is a 2q-variate real gamma random variable. Then

establish the results in (4.2a.10) by using the those on real gamma variables, where Ỹ =
(ỹij ), the ỹij ’s in (4.2a.11) being in the complex domain and |ỹij | denoting the absolute
value or modulus of ỹij .
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4.2.6. Let the real matrix A > O be 2 × 2 with its first row being (1, 1) and let B > O

be 3 × 3 with its first row being (1, 1, −1). Then complete the other rows in A and B so
that A > O, B > O. Obtain the corresponding 2×3 real matrix-variate Gaussian density
when (1): M = O, (2): M 
= O with a matrix M of your own choice.

4.2.7. Let the complex matrix A > O be 2 × 2 with its first row being (1, 1 + i) and
let B > O be 3 × 3 with its first row being (1, 1 + i, −i). Complete the other rows with
numbers in the complex domain of your own choice so that A = A∗ > O, B = B∗ > O.
Obtain the corresponding 2×3 complex matrix-variate Gaussian density with (1): M̃ = O,
(2): M̃ 
= O with a matrix M̃ of your own choice.

4.2.8. Evaluate the covariance matrix in (4.2.16), which is E(Z′
jZj ), and show that it is

B−1.

4.2.9. Evaluate the covariance matrix in (4.2.18), which is E(UjU
′
j ), and show that it is

A−1.

4.2.10. Repeat Exercises 4.2.8 and 4.2.9 for the complex case in (4.2a.12) and (4.2a.13).

4.3. Moment Generating Function and Characteristic Function, Real Case

Let T = (tij ) be a p × q parameter matrix. The matrix random variable X = (xij ) is
p × q and it is assumed that all of its elements xij ’s are real and distinct scalar variables.
Then

tr(T X′) =
p∑

i=1

q∑

j=1

tij xij = tr(X′T ) = tr(XT ′). (i)

Note that each tij and xij appear once in (i) and thus, we can define the moment generating
function (mgf) in the real matrix-variate case, denoted by Mf (T ) or MX(T ), as follows:

Mf (T ) = E[etr(T X′)] =
∫

X

etr(T X′)fp,q(X)dX = MX(T ) (ii)

whenever the integral is convergent, where E denotes the expected value. Thus, for the
p × q matrix-variate real Gaussian density,

MX(T ) = Mf (T ) = |A| q
2 |B|p

2

(2π)
pq
2

∫

X

etr(T X′)− 1
2 tr(A

1
2 XBX′A

1
2 )dX

where A is p × p, B is q × q and A and B are constant real positive definite matrices so
that A

1
2 and B

1
2 are uniquely defined. Consider the transformation Y = A

1
2XB

1
2 ⇒ dY =

|A| q
2 |B|p

2 dX by Theorem 1.6.4. Thus, X = A− 1
2YB− 1

2 and

tr(T X′) = tr(T B− 1
2Y ′A− 1

2 ) = tr(A− 1
2T B− 1

2Y ′) = tr(T(1)Y
′)
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where T(1) = A− 1
2T B− 1

2 . Then

MX(T ) = 1

(2π)
pq
2

∫

Y

etr(T(1)Y
′)− 1

2 tr(YY ′)dY.

Note that T(1)Y
′ and YY ′ are p×p. Consider −2tr(T(1)Y

′)+ tr(YY ′), which can be written
as

−2tr(T(1)Y
′) + tr(YY ′) = −tr(T(1)T

′
(1)) + tr[(Y − T(1))(Y − T(1))

′].

Therefore

MX(T ) = e
1
2 tr(T(1)T

′
(1))

1

(2π)
pq
2

∫

Y

e− 1
2 tr[(Y−T(1))(Y

′−T ′
(1))]dY

= e
1
2 tr(T(1)T

′
(1)) = e

1
2 tr(A

− 1
2 T B−1T ′A− 1

2 ) = e
1
2 tr(A

−1T B−1T ′) (4.3.1)

since the integral is 1 from the total integral of a matrix-variate Gaussian density.

In the presence of a location parameter matrix M , the matrix-variate Gaussian density
is given by

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A

1
2 (X−M)B(X−M)′A

1
2 ) (4.3.2)

where M is a constant p×q matrix. In this case, T X′ = T (X−M +M)′ = T (X−M)′ +
T M ′, and

MX(T ) = Mf (T ) = E[etr(T X′)] = etr(T M ′)E[etr(T (X−M)′)]
= etr(T M ′)e

1
2 tr(A

−1T B−1T ′) = etr(T M ′)+tr( 12A−1T B−1T ′). (4.3.3)

When p = 1, we have the usual q-variate multinormal density. In this case, A is 1× 1 and
taken to be 1. Then the mgf is given by

MX(T ) = eT M ′+ 1
2T B−1T ′

(4.3.4)
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where T , M and X are 1 × q and B > O is q × q. The corresponding characteristic
function when p = 1 is given by

φ(T ) = eiT M ′− 1
2T B−1T ′

. (4.3.5)

Example 4.3.1. Let X have a 2×3 real matrix-variate Gaussian density with the follow-
ing parameters:

X =
[
x11 x12 x13
x21 x22 x23

]

, E[X] = M =
[

1 0 −1
−1 1 0

]

, A =
[
1 1
1 2

]

,

B =
⎡

⎣
3 −1 1

−1 2 1
1 1 3

⎤

⎦ .

Consider the density f2,3(X) with the exponent preceded by 1
2 to be consistent with p-

variate real Gaussian density. Verify whether A and B are positive definite. Then compute
the moment generating function (mgf) ofX or that associated with f2,3(X) and write down
the exponent explicitly.

Solution 4.3.1. Consider a 2×3 parameter matrix T = (tij ). Let us compute the various
quantities in the mgf. First,

T M ′ =
[
t11 t12 t13
t21 t22 t23

]
⎡

⎣
1 −1
0 1

−1 0

⎤

⎦ =
[
t11 − t13 −t11 + t12
t21 − t23 −t21 + t22

]

,

so that
tr(T M ′) = t11 − t13 − t21 + t22. (i)

Consider the leading minors in A and B. Note that |(1)| = 1 > 0, |A| = 1 > 0, |(3)| =
3 > 0,

∣
∣
∣
∣
3 −1

−1 2

∣
∣
∣
∣ = 5 > 0, |B| = 8 > 0; thus both A and B are positive definite. The

inverses of A and B are obtained by making use of the formula C−1 = 1
|C|(Cof(C))′; they

are

A−1 =
[

2 −1
−1 1

]

, B−1 = 1

8

⎡

⎣
5 4 −3
4 8 −4

−3 −4 5

⎤

⎦ .
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For determining the exponent in the mgf, we need A−1T and B−1T ′, which are

A−1T =
[

2 −1
−1 1

] [
t11 t12 t13
t21 t22 t23

]

=
[
2t11 − t21 2t12 − t22 2t13 − t23
−t11 + t21 −t12 + t22 −t13 + t23

]

B−1T ′ = 1

8

⎡

⎣
5 4 −3
4 8 −4

−3 −4 5

⎤

⎦

⎡

⎣
t11 t21
t12 t22
t13 t23

⎤

⎦

= 1

8

⎡

⎣
5t11 + 4t12 − 3t13 5t21 + 4t22 − 3t23
4t11 + 8t12 − 4t13 4t21 + 8t22 − 4t23

−3t11 − 4t12 + 5t13 −3t21 − 4t22 + 5t23

⎤

⎦ .

Hence,

1

2
tr[A−1T B−1T ′] = 1

16
[(2t11 − t21)(5t11 + 4t12 − 3t13)

+ (2t12 − t22)(4t11 + 8t12 − 4t13) + (2t13 − t23)(−3t11 − 4t12 + 5t13)

+ (−t11 + t21)(5t21 + 4t22 − 3t23) + (−t12 + t22)(4t21 + 8t22 − 4t23)

+ (−t13 + t23)(−3t21 − 4t22 + 5t23)]. (ii)

Thus, the mgf is MX(T ) = eQ(T ) where

Q(T ) = tr(T M ′) + 1

2
tr(A−1T B−1T ′),

these quantities being given in (i) and (ii). This completes the computations.

4.3a. Moment Generating and Characteristic Functions, Complex Case

Let X̃ = (x̃ij ) be a p × q matrix where the x̃ij ’s are distinct scalar complex variables.
We may write X̃ = X1 + iX2, i = √

(−1), X1, X2 being real p × q matrices. Let T̃

be a p × q parameter matrix and T̃ = T1 + iT2, T1, T2 being real p × q matrices. The
conjugate transposes of X̃ and T̃ are denoted by X̃∗ and T̃ ∗, respectively. Then,

tr(T̃ X̃∗) = tr[(T1 + iT2)(X
′
1 − iX′

2)]
= tr[T1X′

1 + T2X
′
2 + i(T2X

′
1 − T1X

′
2)]

= tr(T1X
′
1) + tr(T2X

′
2) + i tr(T2X

′
1 − T1X

′
2).
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If T1 = (t
(1)
ij ), X1 = (x

(1)
ij ), X2 = (x

(2)
ij ), T2 = (t

(2)
ij ), tr(T1X′

1) = ∑p

i=1

∑q

j=1 t
(1)
ij x

(1)
ij ,

tr(T2X′
2) = ∑p

i=1

∑q

j=1 t
(2)
ij x

(2)
ij . In other words, tr(T1X′

1) + tr(T2X′
2) gives all the xij ’s

in the real and complex parts of X̃ multiplied by the corresponding tij ’s in the real and
complex parts of T̃ . That is,E[etr(T1X′

1)+tr(T2X′
2)] gives a moment generating function (mgf)

associated with the complex matrix-variate Gaussian density that is consistent with real
multivariate mgf. However, [tr(T1X′

1) + tr(T2X′
2)] = �(tr[T̃ X̃∗]), �(·) denoting the real

part of (·). Thus, in the complex case, the mgf for any real-valued scalar function g(X̃) of
the complex matrix argument X̃, where g(X̃) is a density, is defined as

M̃X̃(T̃ ) =
∫

X̃

e�[tr(T̃ X̃∗)]g(X̃)dX̃ (4.3a.1)

whenever the expected value exists. On replacing T̃ by iT̃ , i = √
(−1), we obtain the

characteristic function of X̃ or that associated with f̃ , denoted by φX̃(T̃ ) = φf̃ (T̃ ). That
is,

φX̃(T̃ ) =
∫

X̃

e�[tr(iT̃ X̃∗)]g(X̃)dX̃. (4.3a.2)

Then, the mgf of the matrix-variate Gaussian density in the complex domain is available
by paralleling the derivation in the real case and making use of Lemma 3.2a.1:

M̃X̃(T̃ ) = E[e�[tr(T̃ X̃∗)]]
= e�[tr(T̃ M̃∗)]+ 1

4�[tr(A− 1
2 T̃ B−1T̃ ∗A− 1

2 )]. (4.3a.3)

The corresponding characteristic function is given by

φX̃(T̃ ) = e�[tr(iT̃ M̃∗)]− 1
4�[tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 )]. (4.3a.4)

Note that when A = A∗ > O and B = B∗ > O (Hermitian positive definite),

(A− 1
2 T̃ B−1T̃ ∗A− 1

2 )∗ = A− 1
2 T̃ B−1T̃ ∗A− 1

2 ,

that is, this matrix is Hermitian. Thus, letting Ũ = A− 1
2 T̃ B−1T̃ ∗A− 1

2 = U1 + iU2

where U1 and U2 are real matrices, U1 = U ′
1 and U2 = −U ′

2, that is, U1 and U2

are respectively symmetric and skew symmetric real matrices. Accordingly, tr(Ũ) =
tr(U1) + itr(U2) = tr(U1) as the trace of a real skew symmetric matrix is zero. Therefore,
�[tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 )] = tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 ), the diagonal elements of a Hermitian

matrix being real.
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When p = 1, we have the usual q-variate complex multivariate normal density and
taking the 1 × 1 matrix A to be 1, the mgf is as follows:

M̃X̃(T̃ ) = e�(T̃ M̃∗)+ 1
4 (T̃ B−1T̃ ∗) (4.3a.5)

where T̃ , M̃ are 1 × q vectors and B = B∗ > O (Hermitian positive definite), the
corresponding characteristic function being given by

φX̃(T̃ ) = e�(iT̃ M̃∗)− 1
4 (T̃ B−1T̃ ∗). (4.3a.6)

Example 4.3a.1. Consider a 2 × 2 matrix X̃ in the complex domain having a complex
matrix-variate density with the following parameters:

X̃ =
[
x̃11 x̃12
x̃21 x̃22

]

, E[X̃] = M̃ =
[
1 + i i

2 − i 1

]

,

A =
[

2 i

−i 3

]

, B =
[
2 −i

i 1

]

.

Determine whether A and B are Hermitian positive definite; then, obtain the mgf of this
distribution and provide the exponential part explicitly.

Solution 4.3a.1. Clearly, A > O and B > O. We first determine A−1, B−1, A−1T̃ ,

B−1T̃ ∗:

A−1 = 1

5

[
3 −i

i 2

]

, A−1T̃ = 1

5

[
3 −i

i 2

] [
t̃11 t̃12
t̃21 t̃22

]

= 1

5

[
3t̃11 − it̃21 3t̃12 − it̃22
it̃11 + 2t̃21 it̃12 + 2t̃22

]

,

B−1 =
[

1 i

−i 2

]

, B−1T̃ ∗ =
[

t̃∗11 + it̃∗12 t̃∗21 + it̃∗22−it̃∗11 + 2t̃∗12 −it̃∗21 + 2t̃∗22

]

.

Letting δ = 1
2 tr(A

−1T̃ B−1T̃ ∗),

10δ = {(3t̃11 − it̃21)(t̃
∗
11 + it̃∗12) + (3t̃12 − it̃22)(−it̃∗11 + 2t̃∗12)

+ (it̃11 + 2t̃21)(t̃
∗
21 + it̃∗22) + (it̃12 + 2t̃22)(−it̃∗21 + 2t̃∗22)},

10δ = {3t̃11 t̃∗11 + 3it̃11 t̃
∗
12 − it̃21t̃

∗
11 + t̃21 t̃

∗
12

+ 6t̃12 t̃
∗
12 − t̃22 t̃

∗
11 − 2it̃22t̃

∗
12 − 3it̃12 t̃

∗
11

+ it̃11 t̃
∗
21 − t̃11 t̃

∗
22 + 2t̃21 t̃

∗
21 + 2it̃21 t̃

∗
22

+ t̃12 t̃
∗
21 + 2it̃12 t̃

∗
22 − 2it̃22 t̃

∗
21 + 4t̃22 t̃

∗
22},
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10δ = 3t̃11 t̃
∗
11 + 6t̃12 t̃

∗
12 + 2t̃21 t̃

∗
21 + 4t̃22 t̃

∗
22

+ 3i[t̃11 t̃∗12 − t̃12 t̃
∗
11] − [t̃22 t̃∗11 + t̃11 t̃

∗
22]

+ i[t̃11 t̃∗21 − t̃∗11 t̃21] + [t̃12 t̃∗21 + t̃∗12 t̃21]
+ 2i[t̃21 t̃∗22 − t̃∗21 t̃22] + 2i[t̃12 t̃∗22 − t̃∗12 t̃22].

Letting t̃rs = trs1 + itrs2, i = √
(−1), trs1, trs2 being real, for all r and s, then δ, the

exponent in the mgf, can be expressed as follows:

δ = 1

10
{3(t2111 + t2112) + 6(t2121 + t2122) + 2(t2211 + t2212) + 4(t2221 + t2222)

− 6(t112t121 − t111t122) − 2(t111t221 − t112t222) − 2(t112t211 − t111t212)

+ 2(t121t211 + t122t212) − 4(t212t221 − t211t222) − 4(t122t221 − t121t222)}.
This completes the computations.

4.3.1. Distribution of the exponent, real case

Let us determine the distribution of the exponent in the p×q real matrix-variate Gaus-
sian density. Letting u = tr(AXBX′), its density can be obtained by evaluating its associ-
ated mgf. Then, taking t as its scalar parameter since u is scalar, we have

Mu(t) = E[etu] = E[et tr(AXBX′)].
Since this expected value depends on X, we can integrate out over the density of X:

Mu(t) = C

∫

X

et tr(AXBX′)− 1
2 tr(AXBX′)dX

= C

∫

X

e− 1
2 (1−2t)(tr(AXBX′))dX for 1 − 2t > 0 (i)

where

C = |A| q
2 |B|p

2

(2π)
pq
2

.

The integral in (i) is convergent only when 1−2t > 0. Then distributing
√

(1 − 2t) to each
element in X and X′, and denoting the new matrix by Xt , we have Xt = √

(1 − 2t)X ⇒
dXt = (

√
(1 − 2t))pqdX = (1− 2t)

pq
2 dX. Integral over Xt , together with C, yields 1 and

hence
Mu(t) = (1 − 2t)−

pq
2 , provided 1 − 2t > 0. (4.3.6)
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The corresponding density is a real chi-square having pq degrees of freedom or a real
gamma density with parameters α = pq

2 and β = 2. Thus, the resulting density, denoted
by fu1(u1), is given by

fu1(u1) = [2pq
2 Γ (pq/2)]−1u

pq
2 −1
1 e− u1

2 , 0 ≤ u1 < ∞, p, q = 1, 2, . . . , (4.3.7)

and fu1(u1) = 0 elsewhere.

4.3a.1. Distribution of the exponent, complex case

In the complex case, letting ũ = tr(A
1
2 X̃BX̃∗A 1

2 ), we note that ũ = ũ∗ and ũ is a
scalar, so that ũ is real. Hence, the mgf of ũ, with real parameter t , is given by

Mũ(t) = E[et tr(A
1
2 X̃BX̃∗A

1
2 )] = C1

∫

X̃

e−(1−t)tr(A
1
2 X̃BX̃∗A

1
2 )dX̃, 1 − t > 0, with

C1 = |det(A)|q |det(B)|p
πp q

.

On making the transformation Ỹ = A
1
2 X̃B

1
2 , we have

Mũ(t) = 1

πp q

∫

Ỹ

e−(1−t)tr(Ỹ Ỹ ∗)dỸ .

However,

tr(Ỹ Ỹ ∗) =
p∑

r=1

q∑

s=1

|ỹrs |2 =
p∑

r=1

q∑

s=1

(y2
rs1 + y2

rs2)

where ỹrs = yrs1 + iyrs2, i = √
(−1), yrs1, yrs2 being real. Hence

1

π

∫ ∞

−∞

∫ ∞

−∞
e−(1−t)(y2rs1+y2rs2)dyrs1 ∧ dyrs2 = 1

1 − t
, 1 − t > 0.

Therefore,
Mũ(t) = (1 − t)−p q, 1 − t > 0, (4.3a.7)

and ũ = v has a real gamma density with parameters α = p q, β = 1, or a chi-square
density in the complex domain with p q degrees of freedom, that is,

fv(v) = 1

Γ (p q)
vp q−1e−v, 0 ≤ v < ∞, (4.3a.8)

and fv(v) = 0 elsewhere.



240 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

4.3.2. Linear functions in the real case

Let the p × q real matrix X = (xij ) of the real scalar random variables xij ’s have the
density in (4.2.2), namely

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A(X−M)B(X−M)′) (4.3.8)

for A > O, B > O, where M is a p × q location parameter matrix. Let L1 be a p × 1
vector of constants. Consider the linear function Z1 = L′

1X where Z1 is 1× q. Let T be a
1 × q parameter vector. Then the mgf of the 1 × q vector Z1 is

MZ1(T ) = E[e(T Z′
1)] = E[e(T X′L1)] = E[etr(T X′L1)]

= E[etr((L1T )X′)]. (i)

This can be evaluated by replacing T by L1T in (4.3.4). Then

MZ1(T ) = etr((L1T )M ′)+ 1
2 tr(A

−1L1T B−1(L1T )′)

= etr(T M ′L1)+ 1
2 tr[(L′

1A
−1L1)T B−1T ′]. (ii)

Since L′
1A

−1L1 is a scalar,

(L′
1A

−1L1)T B−1T ′ = T (L′
1A

−1L1)B
−1T ′.

On comparing the resulting expression with the mgf of a q-variate real normal distribution,
we observe that Z1 is a q-variate real Gaussian vector with mean value vector L′

1M and
covariance matrix [L′

1A
−1L1]B−1. Hence the following result:

Theorem 4.3.1. Let the real p × q matrix X have the density specified in (4.3.8) and L1

be a p × 1 constant vector. Let Z1 be the linear function of X, Z1 = L′
1X. Then Z1, which

is 1 × q, has the mgf given in (ii) and thereby Z1 has a q-variate real Gaussian density
with the mean value vector L′

1M and covariance matrix [L′
1A

−1L1]B−1.

Theorem 4.3.2. Let L2 be a q × 1 constant vector. Consider the linear function Z2 =
XL2 where the p × q real matrix X has the density specified in (4.3.8). Then Z2, which is
p × 1, is a p-variate real Gaussian vector with mean value vector ML2 and covariance
matrix [L′

2B
−1L2]A−1.

The proof of Theorem 4.3.2 is parallel to the derivation of that of Theorem 4.3.1.
Theorems 4.3.1 and 4.3.2 establish that when the p × q matrix X has a p × q-variate real
Gaussian density with parameters M, A > O, B > O, then all linear functions of the
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form L′
1X where L1 is p × 1 are q-variate real Gaussian and all linear functions of the

type XL2 where L2 is q × 1 are p-variate real Gaussian, the parameters in these Gaussian
densities being given in Theorems 4.3.1 and 4.3.2.

By retracing the steps, we can obtain characterizations of the density of the p × q real
matrix X through linear transformations. Consider all possible p × 1 constant vectors L1

or, equivalently, let L1 be arbitrary. Let T be a 1 × q parameter vector. Then the p × q

matrix L1T , denoted by T(1), contains pq free parameters. In this case the mgf in (ii) can
be written as

M(T(1)) = etr(T(1)M
′)+ 1

2 tr(A
−1T(1)B

−1T ′
(1)), (iii)

which has the same structure of the mgf of a p × q real matrix-variate Gaussian density
as given in (4.3.8), whose the mean value matrix is M and parameter matrices are A > O

and B > O. Hence, the following result can be obtained:

Theorem 4.3.3. Let L1 be a constant p × 1 vector, X be a p × q matrix whose elements
are real scalar variables and A > O be p ×p and B > O be q × q constant real positive
definite matrices. If for an arbitrary vector L1, L′

1X is a q-variate real Gaussian vector
as specified in Theorem 4.3.1, then X has a p × q real matrix-variate Gaussian density as
given in (4.3.8).

As well, a result parallel to this one follows from Theorem 4.3.2:

Theorem 4.3.4. Let L2 be a q × 1 constant vector, X be a p × q matrix whose elements
are real scalar variables and A > O be p ×p and B > O be q × q constant real positive
definite matrices. If for an arbitrary constant vector L2, XL2 is a p-variate real Gaus-
sian vector as specified in Theorem 4.3.2, then X is p × q real matrix-variate Gaussian
distributed as in (4.3.8).

Example 4.3.2. Consider a 2 × 2 matrix-variate real Gaussian density with the parame-
ters

A =
[
2 1
1 1

]

, B =
[
2 1
1 2

]

, M =
[

1 −1
0 1

]

= E[X], X =
[
x11 x12
x21 x22

]

.

Letting U1 = L′
1X, U2 = XL2, U3 = L′

1XL2, evaluate the densities of U1, U2, U3

by applying Theorems 4.3.1 and 4.3.2 where L′
1 = [1, 1], L′

2 = [1, −1]; as well, obtain
those densities without resorting to these theorems.

Solution 4.3.2. Let us first compute the following quantities:

A−1, B−1, L′
1A

−1L1, L′
2B

−1L2, L′
1M, ML2, L′

1ML2.
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They are

A−1 =
[

1 −1
−1 2

]

, B−1 = 1

3

[
2 −1

−1 2

]

,

L′
1M = [1, 1]

[
1 −1
0 1

]

= [1, 0], ML2 =
[

2
−1

]

,

L′
1A

−1L1 = [1, 1]
[

1 −1
−1 2

] [
1
1

]

= 1, L′
2B

−1L2 = 1

3
[1, −1]

[
2 −1

−1 2

] [
1

−1

]

= 2,

L′
1ML2 = [1, 0]

[
2

−1

]

= 2.

Let U1 = L′
1X, U2 = XL2, U3 = L′

1XL2. Then by making use of Theorems 4.3.1
and 4.3.2 and then, results from Chap. 2 on q-variate real Gaussian vectors, we have the
following:

U1 ∼ N2((1, 0), (1)B
−1), U2 ∼ N2(ML2, 2A

−1), U3 ∼ N1(1, (1)(2)) = N1(1, 2).

Let us evaluate the densities without resorting to these theorems. Note that U1 = [x11 +
x21, x12 + x22]. Then U1 has a bivariate real distribution. Let us compute the mgf of U1.
Letting t1 and t2 be real parameters, the mgf of U1 is

MU1(t1, t2) = E[et1(x11+x21)+t2(x12+x22)] = E[et1x11+t1x21+t2x12+t2x22],

which is available from the mgf of X by letting t11 = t1, t21 = t1, t12 = t2, t22 = t2.
Thus,

A−1T =
[

1 −1
−1 2

] [
t1 t2
t1 t2

]

=
[
0 0
t1 t2

]

B−1T ′ = 1

3

[
2 −1

−1 2

] [
t1 t1
t2 t2

]

= 1

3

[
2t1 − t2 2t1 − t2

−t1 + 2t2 −t1 + 2t2

]

,

so that

1

2
tr(A−1T B−1T ′) = 1

2

{1

3
[2t21 + 2t22 − 2t1t2]

}
= 1

2
[t1, t2]B−1

[
t1
t2

]

. (i)

Since

U2 = XL2 =
[
x11 − x12
x21 − x22

]

,
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we let t11 = t1, t12 = −t1, t21 = t2, t22 = −t2. With these substitutions, we have the
following:

A−1T =
[

2 −1
−1 2

] [
t1 −t1
t2 −t2

]

=
[

t1 − t2 −t1 + t2
−t1 + 2t2 t1 − 2t2

]

B−1T ′ = 1

3

[
2 −1

−1 2

] [
t1 t2

−t1 −t2

]

=
[

t1 t2
−t1 −t2

]

.

Hence,

tr(A−1T B−1T ′) = t1(t1 − t2) − t1(−t1 + t2) + t2(−t1 + 2t2) − t2(t1 − 2t2)

= 2[t1, t2]
[

1 −1
−1 2

] [
t1
t2

]

.

Therefore, U2 is a 2-variate real Gaussian with covariance matrix 2A−1 and mean value

vector

[
2

−1

]

. That is, U2 ∼ N2(ML2, 2A−1). For determining the distribution of U3,

observe that L′
1XL2 = L′

1U2. Then, L′
1U2 is univariate real Gaussian with mean value

E[L′
1U2] = L′

1ML2 = [1, 1]
[

2
−1

]

= 1 and varianceL′
1Cov(U2)L1 = L′

12A
−1L1 = 2.

That is, U3 = u3 ∼ N1(1, 2). This completes the solution.

The results stated in Theorems 4.3.1 and 4.3.2 are now generalized by taking sets of
linear functions of X:

Theorem 4.3.5. Let C′ be a r × p, r ≤ p, real constant matrix of full rank r and G

be a q × s matrix, s ≤ q, of rank s. Let Z = C ′X and W = XG where X has the
density specified in (4.3.8). Then, Z has a r × q real matrix-variate Gaussian density
with M replaced by C′M and A−1 replaced by C′A−1C, B−1 remaining unchanged, and
W = XG has a p × s real matrix-variate Gaussian distribution with B−1 replaced by
G′B−1G and M replaced by MG, A−1 remaining unchanged.

Example 4.3.3. Let the 2 × 2 real X = (xij ) have a real matrix-variate Gaussian dis-
tribution with the parameters M, A and B. Consider the set of linear functions U = C ′X
where

M =
[
2 −1
1 1

]

, A =
[

2 −1
−1 1

]

, B =
[
2 1
1 3

]

, C′ =
[ √

2 − 1√
2

0 1√
2

]

.

Show that the rows of U are independently distributed real q-variate Gaussian vectors with
common covariance matrix B−1 and the rows of M as the mean value vectors.
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Solution 4.3.3. Let us compute A−1 and C′A−1C:

A−1 =
[
1 1
1 2

]

C′A−1C =
[√

2 − 1√
2

0 1√
2

][
1 1
1 2

][ √
2 0

− 1√
2

1√
2

]

=
[
1 0
0 1

]

= I2.

In the mgf of U = C′X, A−1 is replaced by C′A−1C = I2 and B−1 remains the
same. Then, the exponent in the mgf of U , excluding tr(T M ′) is 1

2 tr(T B−1T ′) =
1
2

∑p

j=1 TjB
−1T ′

j where Tj is the j -th row of T . Hence the p rows of U are indepen-

dently distributed q-variate real Gaussian with the common covariance matrix B−1. This
completes the computations.

The previous example entails a general result that now is stated as a corollary.

Corollary 4.3.1. Let X be a p×q-variate real Gaussian matrix with the usual parameters
M, A and B, whose density is as given in (4.3.8). Consider the set of linear functions
U = C′X where C is a p × p constant matrix of full rank p and C is such that A = CC ′.
Then C′A−1C = C′(CC′)−1C = C′(C′)−1C−1C = Ip. Consequently, the rows of U ,
denoted by U1, . . . , Up, are independently distributed as real q-variate Gaussian vectors
having the common covariance matrix B−1.

It is easy to construct such a C. Since A = (aij ) is real positive definite, set it as
A = CC′ where C is a lower triangular matrix with positive diagonal elements. The first
row, first column element in C = (cij ) is c11 = +√

a11. Note that since A > O, all the
diagonal elements are real positive. The first column of C is readily available from the first
column of A and c11. Now, given a22 and the first column in C, c22 can be determined, and
so on.

Theorem 4.3.6. Let C, G and X be as defined in Theorem 4.3.5. Consider the r × s

real matrix Z = C′XG. Then, when X has the distribution specified in (4.3.8), Z has an
r × s real matrix-variate Gaussian density with M replaced by C ′MG, A−1 replaced by
C′A−1C and B−1 replaced by G′B−1G.

Example 4.3.4. Let the 2 × 2 matrix X = (xij ) have a real matrix-variate Gaussian
density with the parameters M, A and B, and consider the set of linear functions Z =
C′XG where C′ is a p × p constant matrix of rank p and G is a q × q constant matrix of
rank q, where
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M =
[
2 −1
1 5

]

, A =
[

2 −1
−1 1

]

, B =
[
2 1
1 3

]

,

C′ =
[√

2 − 1√
2

0 1√
2

]

, G =
[√

2 0
1√
2

√
5
2

]

.

Show that all the elements zij ’s in Z = (zij ) are mutually independently distributed real
scalar standard Gaussian random variables when M = O.

Solution 4.3.4. We have already shown in Example 4.3.3 that C′A−1C = I . Let us
verify that GG′ = B and compute G′B−1G:

GG′ =
[√

2 0
1√
2

√
5
2

]⎡

⎣

√
2 1√

2

0
√

5
2

⎤

⎦ =
[
2 1
1 3

]

= B;

B−1 = 1

5

[
3 −1

−1 2

]

,

G′B−1G = 1

5

⎡

⎣

√
2 1√

2

0
√

5
2

⎤

⎦
[

3 −1
−1 2

]

G = 1

5

⎡

⎣
3
√
2 − 1√

2
0

−
√

5
2 2

√
5
2

⎤

⎦G

= 1

5

⎡

⎣
3
√
2 − 1√

2
0

−
√

5
2 2

√
5
2

⎤

⎦

[√
2 0
1√
2

√
5
2

]

= 1

5

[
5 0
0 5

]

= I2.

Thus, A−1 is replaced by C′A−1C = I2 and B−1 is replaced by G′B−1G = I2 in the mgf
of Z, so that the exponent in the mgf, excluding tr(T M ′), is 1

2 tr(T T ′). It follows that all
the elements in Z = C′XG are mutually independently distributed real scalar standard
normal variables. This completes the computations.

The previous example also suggests the following results which are stated as corollar-
ies:

Corollary 4.3.2. Let the p × q real matrix X = (xij ) have a real matrix-variate Gaus-
sian density with parameters M, A and B, as given in (4.3.8). Consider the set of lin-
ear functions Y = XG where G is a q × q constant matrix of full rank q, and let
B = GG′. Then, the columns of Y , denoted by Y(1), . . . , Y(q), are independently dis-
tributed p-variate real Gaussian vectors with common covariance matrix A−1 and mean
value (MG)(j), j = 1, . . . , q, where (MG)(j) is the j -th column of MG.
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Corollary 4.3.3. Let Z = C′XG where C is a p × p constant matrix of rank p, G is a
q × q constant matrix of rank q and X is a real p × q Gaussian matrix whose parameters
are M = O, A and B, the constant matrices C and G being such that A = CC ′ and
B = GG′. Then, all the elements zij in Z = (zij ) are mutually independently distributed
real scalar standard Gaussian random variables.

4.3a.2. Linear functions in the complex case

We can similarly obtain results parallel to Theorems 4.3.1–4.3.6 in the complex case.
Let X̃ be p × q matrix in the complex domain, whose elements are scalar complex vari-
ables. Assume that X̃ has a complex p × q matrix-variate density as specified in (4.2a.9)
whose associated moment generating function is as given in (4.3a.3). Let C̃1 be a p × 1
constant vector, C̃2 be a q × 1 constant vector, C̃ be a r × p, r ≤ p, constant matrix of
rank r and G̃ be a q × s, s ≤ q, a constant matrix of rank s. Then, we have the following
results:

Theorem 4.3a.1. Let C̃1 be a p × 1 constant vector as defined above and let the p × q

matrix X̃ have the density given in (4.2a.9) whose associated mgf is as specified in (4.3a.3).
Let Ũ be the linear function of X̃, Ũ = C̃∗

1 X̃. Then Ũ has a q-variate complex Gaussian
density with the mean value vector C̃∗

1M̃ and covariance matrix [C̃∗
1A

−1C̃1]B−1.

Theorem 4.3a.2. Let C̃2 be a q × 1 constant vector. Consider the linear function Ỹ =
X̃C̃2 where the p × q complex matrix X̃ has the density (4.2a.9). Then Ỹ is a p-variate
complex Gaussian random vector with the mean value vector M̃C̃2 and the covariance
matrix [C̃∗

2B
−1C̃2]A−1.

Note 4.3a.1. Consider the mgf’s of Ũ and Ỹ in Theorems 4.3a.1 and 4.3a.2, namely
MŨ(T̃ ) = E[e�(T̃ Ũ∗)] and MỸ (T̃ ) = E[e�(Ỹ ∗T̃ )] with the conjugate transpose of the
variable part in the linear form in the exponent; then T̃ in MŨ(T̃ ) has to be 1 × q and
T̃ in MỸ (T̃ ) has to be p × 1. Thus, the exponent in Theorem 4.3a.1 will be of the
form [C̃∗

1A
−1C̃1]T̃ B−1T̃ ∗ whereas the corresponding exponent in Theorem 4.3a.2 will

be [C̃∗
2B

−1C̃2]T̃ ∗A−1T̃ . Note that in one case, we have T̃ B−1T̃ ∗ and in the other case, T̃
and T̃ ∗ are interchanged as are A and B. This has to be kept in mind when applying these
theorems.

Example 4.3a.2. Consider a 2 × 2 matrix X̃ having a complex 2 × 2 matrix-variate
Gaussian density with the parameters M = O, A and B, as well as the 2 × 1 vectors L1

and L2 and the linear functions L∗
1X̃ and X̃L2 where
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A =
[
2 −i

i 1

]

, B =
[

1 i

−i 2

]

, L1 =
[−2i

3i

]

, L2 =
[ −i

−2i

]

and X̃ =
[

x̃11 x̃12
x̃21 x̃22

]

.

Evaluate the densities of Ũ = L∗
1X̃ and Ỹ = X̃L2 by applying Theorems 4.3a.1 and 4.3a.2,

as well as independently.

Solution 4.3a.2. First, we compute the following quantities:

A−1 =
[

1 i

−i 2

]

, B−1 =
[
2 −i

i 1

]

,

L∗
1 = [2i, −3i], L∗

2 = [i, 2i],
so that

L∗
1A

−1L1 = [2i, −3i]
[

1 i

−i 2

] [−2i
3i

]

= 22

L∗
2B

−1L2 = [i, 2i]
[
2 −i

i 1

] [ −i

−2i

]

= 6.

Then, as per Theorems 4.3a.1 and 4.3a.2, Ũ is a q-variate complex Gaussian vector whose
covariance matrix is 22B−1 and Ỹ is a p-variate complex Gaussian vector whose co-
variance matrix is 6 A−1, that is, Ũ ∼ Ñ2(O, 22B−1), Ỹ ∼ Ñ2(O, 6A−1). Now, let us
determine the densities of Ũ and Ỹ without resorting to these theorems. Consider the mgf
of Ũ by taking the parameter vector T̃ as T̃ = [t̃1, t̃2]. Note that

T̃ Ũ∗ = t1(−2ix̃∗
11 + 3ix̃∗

21) + t2(−2ix̃∗
12 + 3ix̃∗

22). (i)

Then, in comparison with the corresponding part in the mgf of X̃ whose associated general
parameter matrix is T̃ = (t̃ij ), we have

t̃11 = −2it̃1, t̃12 = −2it̃2, t̃21 = 3it̃1, t̃22 = 3it̃2. (ii)

We now substitute the values of (ii) in the general mgf of X̃ to obtain the mgf of Ũ . Thus,

A−1T̃ =
[

1 i

−i 2

] [−2it̃1 −2it̃2
3it̃1 3it̃2

]

=
[
(−3 − 2i)t̃1 (−3 − 2i)t̃2
(−2 + 6i)t̃1 (−2 + 6i)t̃2

]

B−1T̃ ∗ =
[
2 −i

i 1

] [
2it̃∗1 −3it̃∗1
2it̃∗2 −3it̃∗2

]

=
[
4it̃∗1 + 2t̃∗2 −6it̃∗1 − 3t̃∗2−2t̃∗1 + 2it̃∗2 3t̃∗1 − 3it̃∗2

]

.
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Here an asterisk only denotes the conjugate as the quantities are scalar.

tr[A−1T̃ B−1T̃ ∗] = [−3 − 2i]t̃1[4it̃∗1 + 2t̃∗2 ] + [(−3 − 2i)t̃2[−2t̃∗1 + 2it̃∗2 ]
+ [(−2 + 6i)t̃1][(−6it̃∗1 − 3t̃∗2 ] + [(−2 + 6i)t̃2[3t̃∗1 − 3it̃∗2 ]

= 22 [2t̃1 t̃∗1 − it̃1 t̃
∗
2 + it̃2t̃

∗
1 + t̃2 t̃

∗
2 ]

= 22 [t̃1, t̃2]
[
2 −i

i 1

] [
t̃∗1
t̃∗2

]

= 22 T̃ B−1T̃ ∗, T̃ = [t̃1, t̃2].

This shows that Ũ ∼ Ñ2(O, 22B−1). Now, consider

Ỹ = X̃L2 =
[
x̃11 x̃12
x̃21 x̃22

] [ −i

−2i

]

=
[−ix̃11 − 2ix̃12
−ix̃21 − 2ix̃22

]

.

Then, on comparing the mgf of Ỹ with that of X̃ whose general parameter matrix is T̃ =
(t̃ij ), we have

t̃11 = it̃1, t̃12 = 2it̃1, t̃21 = it̃2, t̃22 = 2it̃2.

On substituting these values in the mgf of X̃, we have

A−1T̃ =
[

1 i

−i 2

] [
it̃1 2it̃1
it̃2 2it̃2

]

=
[

it̃1 − t̃2 2it̃1 − 2t̃2
t̃1 + 2it̃2 2t̃1 + 4it̃2

]

B−1T̃ ∗ =
[
2 −i

i 1

] [ −it̃∗1 −it̃∗2−2it̃∗1 −2it̃∗2

]

=
[
(−2 − 2i)t̃∗1 (−2 − 2i)t̃∗2
(1 − 2i)t̃∗1 (1 − 2i)t̃∗2

]

,

so that

tr[A−1T̃ B−1T̃ ∗] = [(t̃1 − t̃2)][(−2 − 2i)t̃∗1 ] + [2it̃1 − 2t̃2][(1 − 2i)t̃∗1 ]
+ [t̃1 + 2it̃2][(−2 − 2i)t̃∗2 ] + [2t̃1 + 4it̃2][(1 − 2i)t̃∗2 ]

= 6 [t̃1 t̃∗1 − it̃1 t̃
∗
2 + it̃2t̃

∗
1 + 2t̃2 t̃

∗
2 ]

= 6 [t̃∗1 , t̃∗2 ]
[

1 i

−i 2

] [
t̃1
t̃2

]

= 6 T̃ ∗A−1T̃ ;

refer to Note 4.3a.1 regarding the representation of the quadratic forms in the two cases
above. This shows that Ỹ ∼ Ñ2(O, 6A−1). This completes the computations.

Theorem 4.3a.3. Let C̃1 be a constant p×1 vector, X̃ be a p×q matrix whose elements
are complex scalar variables and let A = A∗ > O be p × p and B = B∗ > O be q × q

constant Hermitian positive definite matrices, where an asterisk denotes the conjugate
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transpose. If, for an arbitrary p × 1 constant vector C̃1, C̃∗
1 X̃ is a q-variate complex

Gaussian vector as specified in Theorem 4.3a.1, then X̃ has the p × q complex matrix-
variate Gaussian density given in (4.2a.9).

As well, a result parallel to this one follows from Theorem 4.3a.2:

Theorem 4.3a.4. Let C̃2 be a q ×1 constant vector, X̃ be a p×q matrix whose elements
are complex scalar variables and let A > O be p × p and B > O be q × q Hermitian
positive definite constant matrices. If, for an arbitrary constant vector C̃2, X̃C̃2 is a p-
variate complex Gaussian vector as specified in Theorem 4.3a.2, then X̃ is p × q complex
matrix-variate Gaussian matrix which is distributed as in (4.2a.9).

Theorem 4.3a.5. Let C̃∗ be a r × p, r ≤ p, complex constant matrix of full rank r and
G̃ be a q × s, s ≤ q, constant complex matrix of full rank s. Let Ũ = C̃∗X̃ and W̃ = X̃G̃

where X̃ has the density given in (4.2a.9). Then, Ũ has a r × q complex matrix-variate
density with M̃ replaced by C̃∗M̃ ,A−1 replaced by C̃∗A−1C̃ andB−1 remaining the same,
and W̃ has a p × s complex matrix-variate distribution with B−1 replaced by G̃∗B−1G̃,
M̃ replaced by M̃G̃ and A−1 remaining the same.

Theorem 4.3a.6. Let C̃∗, G̃ and X̃ be as defined in Theorem 4.3a.5. Consider the r × s

complex matrix Z̃ = C̃∗X̃G̃. Then when X̃ has the distribution specified by (4.2a.9), Z̃

has an r × s complex matrix-variate density with M̃ replaced by C̃∗M̃G̃, A−1 replaced by
C̃∗A−1C̃ and B−1 replaced by G̃∗B−1G̃.

Example 4.3a.3. Consider a 2 × 3 matrix X̃ having a complex matrix-variate Gaussian
distribution with the parameter matrices M̃ = O, A and B where

A =
[

2 i

−i 1

]

, B =
⎡

⎣
3 i 0

−i 1 i

0 −i 2

⎤

⎦ , X̃ =
[
x̃11 x̃12 x̃13
x̃21 x̃22 x̃23

]

.

Consider the linear forms

C∗X̃ =
[
ix̃11 − ix̃21 ix̃12 − ix̃22 ix̃13 − ix̃23
x̃11 + 2x̃21 x̃12 + 2x̃22 x̃13 + 2x̃23

]

X̃G =
[
x̃11 + ix̃12 + 2x̃13 x̃12 ix̃11 − ix̃12 + ix̃13
x̃21 + ix̃22 + 2x̃23 x̃22 ix̃21 − ix̃22 + ix̃23

]

.
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(1): Compute the distribution of Z̃ = C∗X̃G; (2): Compute the distribution of Z̃ = C∗X̃G

if A remains the same and G is equal to

⎡

⎢
⎢
⎣

√
3 0 0

− i√
3

√
2
3 0

0 −i

√
3
2

1√
2

⎤

⎥
⎥
⎦ ,

and study the properties of this distribution.

Solution 4.3a.3. Note that A = A∗ and B = B∗ and hence both A and B are Hermitian.
Moreover, |A| = 1 and |B| = 1 and since all the leading minors of A and B are positive,
A and B are both Hermitian positive definite. Then, the inverses of A and B in terms of
the cofactors of their elements are

A−1 =
[
1 −i

i 2

]

, [Cof(B)]′ =
⎡

⎣
1 −2i −1
2i 6 −3i
−1 3i 2

⎤

⎦ = B−1.

The linear forms provided above in connection with part (1) of this exercise can be respec-
tively expressed in terms of the following matrices:

C∗ =
[
i −i

1 2

]

, G =
⎡

⎣
1 0 i

i 1 −i

2 0 i

⎤

⎦ .

Let us now compute C∗A−1C and G∗B−1G:

C∗A−1C =
[
i −i

1 2

] [
1 −i

i 2

] [−i 1
i 2

]

= 3

[
1 1 − i

1 + i 3

]

G∗B−1G =
⎡

⎣
1 −i 2
0 1 0

−i i −i

⎤

⎦

⎡

⎣
1 −2i −1
2i 6 −3i
−1 3i 2

⎤

⎦

⎡

⎣
1 0 i

i 1 −i

2 0 i

⎤

⎦

=
⎡

⎣
3 −2i −2 + i

2i 6 1 − 6i
−2 − i 1 + 6i 7

⎤

⎦ .

Then in (1), C∗X̃G is a 2 × 3 complex matrix-variate Gaussian with A−1 replaced by
C∗A−1C and B−1 replaced by G∗B−1G where C∗A−1C and G∗B−1G are given above.
For answering (2), let us evaluate G∗B−1G:
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G∗B−1G =

⎡

⎢
⎢
⎣

√
3 i√

3
0

0
√

2
3 i

√
3
2

0 0 1√
2

⎤

⎥
⎥
⎦

⎡

⎣
1 −2i −1
2i 6 −3i
−1 3i 2

⎤

⎦

⎡

⎢
⎢
⎣

√
3 0 0

− i√
3

√
2
3 0

0 −i

√
3
2

1√
2

⎤

⎥
⎥
⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = I3.

Observe that this q × q matrix G which is such that GG∗ = B, is nonsingular; thus,
G∗B−1G = G∗(GG∗)−1G = G∗(G∗)−1G−1G = I . Letting Ỹ = X̃G, X̃ = ỸG−1, and
the exponent in the density of X̃ becomes

tr(A−1X̃BX̃∗) = tr(A−1ỸG−1B(G∗)−1Ỹ ∗) = tr(Y ∗AỸ ) =
p∑

j=1

Ỹ ∗
(j)AỸ(j)

where the Ỹ(j)’s are the columns of Ỹ , which are independently distributed complex p-
variate Gaussian vectors with common covariance matrix A−1. This completes the com-
putations.

The conclusions obtained in the solution to Example 4.3a.1 suggest the corollaries that
follow.

Corollary 4.3a.1. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transfor-
mation Ũ = C∗X̃ where C is a p × p nonsingular matrix such that CC∗ = A so that
C∗A−1C = I . Then the rows of Ũ , namely Ũ1, . . . , Ũp, are mutually independently dis-
tributed q-variate complex Gaussian vectors with common covariance matrix B−1.

Corollary 4.3a.2. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
Ỹ = X̃GwhereG is a q×q nonsingular matrix such thatGG∗ = B so thatG∗B−1G = I .
Then the columns of Ỹ , namely Ỹ(1), . . . , Ỹ(q), are independently distributed p-variate
complex Gaussian vectors with common covariance matrix A−1.

Corollary 4.3a.3. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
Z̃ = C∗X̃G where C is a p × p nonsingular matrix such that CC∗ = A and G is a
q × q nonsingular matrix such that GG∗ = B. Then, the elements z̃ij ’s of Z̃ = (z̃ij ) are
mutually independently distributed complex standard Gaussian variables.
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4.3.3. Partitioning of the parameter matrix

Suppose that in the p × q real matrix-variate case, we partition T as

[
T1
T2

]

where T1 is

p1 × q and T2 is p2 × q, so that p1 + p2 = p. Let T2 = O (a null matrix). Then,

T B−1T ′ =
(

T1
O

)

B−1 (T ′
1 O

) =
[
T1B

−1T ′
1 O1

O2 O3

]

where T1B
−1T ′

1 is a p1 × p1 matrix, O1 is a p1 × p2 null matrix, O2 is a p2 × p1 null
matrix and O3 is a p2 × p2 null matrix. Let us similarly partition A−1 into sub-matrices:

A−1 =
[
A11 A12

A21 A22

]

,

where A11 is p1 × p1 and A22 is p2 × p2. Then,

tr(A−1T B−1T ′) = tr

[
A11T1B

−1T ′
1 O

O O

]

= tr(A11T1B
−1T ′

1).

If A is partitioned as

A =
[
A11 A12

A21 A22

]

,

where A11 is p1 × p1 and A22 is p2 × p2, then, as established in Sect. 1.3, we have

A11 = (A11 − A12A
−1
22 A21)

−1.

Therefore, under this special case of T , the mgf is given by

E[etr(T1X1)] = e
1
2 tr((A11−A12A

−1
22 A21)

−1T1B
−1T ′

1), (4.3.9)

which is also the mgf of the p1 × q sub-matrix of X. Note that the mgf’s in (4.3.9)
and (4.3.1) share an identical structure. Hence, due to the uniqueness of the mgf, X1 has a
real p1 × q matrix-variate Gaussian density wherein the parameter B remains unchanged
and A is replaced by A11 − A12A

−1
22 A21, the Aij ’s denoting the sub-matrices of A as de-

scribed earlier.
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4.3.4. Distributions of quadratic and bilinear forms

Consider the real p × q Gaussian matrix U defined in (4.2.17) whose mean value
matrix is E[X] = M = O and let U = XB

1
2 . Then,

U ′AU =

⎡

⎢
⎢
⎢
⎣

U ′
1AU1 U ′

1AU2 . . . U ′
1AUq

U ′
2AU1 U ′

2AU2 . . . U ′
2AUq

...
...

. . .
...

U ′
qAU1 U ′

qAU2 . . . U ′
qAUq

⎤

⎥
⎥
⎥
⎦

(4.3.10)

where the p×1 column vectors ofU , namely,U1, . . . , Uq , are independently distributed as
Np(O, A−1) vectors, that is, theUj ’s are independently distributed real p-variate Gaussian
(normal) vectors whose covariance matrix is A−1 = E[UU ′], with density

fUj
(Uj ) = |A| 12

(2π)
p
2
e− 1

2 (U ′
jAUj ), A > O. (4.3.11)

What is then the distribution of U ′
jAUj for any particular j and what are the distributions

of U ′
iAUj , i 
= j = 1, . . . , q? Let zj = U ′

jAUj and zij = U ′
iAUj , i 
= j . Letting t be a

scalar parameter, consider the mgf of zj :

Mzj
(t) = E[etzj ] =

∫

Uj

etU ′
jAUj fUj

(Uj )dUj

= |A| 12
(2π)

p
2

∫

Uj

e− 1
2 (1−2t)U ′

jAUjdUj

= (1 − 2t)−
p
2 for 1 − 2t > 0,

which is the mgf of a real gamma random variable with parameters α = p
2 , β = 2 or a

real chi-square random variable with p degrees of freedom for p = 1, 2, . . . . That is,

U ′
jAUj ∼ χ2

p (a real chi-square random variable having p degrees of freedom).

(4.3.12)
In the complex case, observe that Ũ∗

j AŨj is real when A = A∗ > O and hence, the pa-

rameter in the mgf is real. On making the transformationA
1
2 Ũj = Ṽj , |det(A)| is canceled.

Then, the exponent can be expressed in terms of

−(1 − t)Ỹ ∗Ỹ = −(1 − t)

p∑

j=1

|ỹj |2 = −(1 − t)

p∑

j=1

(y2
j1 + y2

j2),



254 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

where ỹj = yj1 + iyj2, i = √
(−1). The integral gives (1 − t)−p for 1 − t > 0. Hence,

Ṽj = Ũ∗
j AŨj has a real gamma distribution with the parameters α = p, β = 1, that is, a

chi-square distribution with p degrees of freedom in the complex domain. Thus, 2Ṽj is a
real chi-square random variable with 2p degrees of freedom, that is,

2Ṽj = 2 Ũ∗
j AŨj ∼ χ2

2p. (4.3a.9)

What is then the distribution of U ′
iAUj , i 
= j? Let us evaluate the mgf of U ′

iAUj = zij .
As zij is a function of Ui and Uj , we can integrate out over the joint density of Ui and Uj

where Ui and Uj are independently distributed p-variate real Gaussian random variables:

Mzij
(t) = E[etzij ] =

∫

Ui

∫

Uj

et U ′
iAUj fUi

(Ui)fUj
(Uj )dUi ∧ dUj

= |A|
(2π)p

∫ ∫
et U ′

iAUj− 1
2U ′

jAUj− 1
2U ′

iAUidUi ∧ dUj .

Let us first integrate out Uj . The relevant terms in the exponent are

−1

2
(U ′

jA Uj) + 1

2
(2t)(U ′

iA Uj) = −1

2
(Uj − C)′A (Uj − C) + 1

2
t2U ′

iA Ui, C = t Ui.

But the integral over Uj which is the integral over Uj − C will result in the following
representation:

Mzij
(t) = |A| 12

(2π)
p
2

∫

Ui

e
t2
2 U ′

iAUi− 1
2U ′

iAUidUi

= (1 − t2)−
p
2 for 1 − t2 > 0. (4.3.13)

What is the density corresponding to the mgf (1 − t2)−
p
2 ? This is the mgf of a real scalar

random variable u of the form u = x − y where x and y are independently distributed
real scalar chi-square random variables. For p = 2, x and y will be exponential variables
so that u will have a double exponential distribution or a real Laplace distribution. In the
general case, the density of u can also be worked out when x and y are independently
distributed real gamma random variables with different parameters whereas chi-squares
with equal degrees of freedom constitutes a special case. For the exact distribution of
covariance structures such as the zij ’s, see Mathai and Sebastian (2022).
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Exercises 4.3

4.3.1. In the moment generating function (mgf) (4.3.3), partition the p × q parameter
matrix T into column sub-matrices such that T = (T1, T2) where T1 is p × q1 and T2 is
p × q2 with q1 + q2 = q. Take T2 = O (the null matrix). Simplify and show that if X is
similarly partitioned as X = (Y1, Y2), then Y1 has a real p × q1 matrix-variate Gaussian
density. As well, show that Y2 has a real p × q2 matrix-variate Gaussian density.

4.3.2. Referring to Exercises 4.3.1, write down the densities of Y1 and Y2.

4.3.3. If T is the parameter matrix in (4.3.3), then what type of partitioning of T is re-
quired so that the densities of (1): the first row of X, (2): the first column of X can be
determined, and write down these densities explicitly.

4.3.4. Repeat Exercises 4.3.1–4.3.3 by taking the mgf in (4.3a.3) for the corresponding
complex case.

4.3.5. Write down the mgf explicitly for p = 2 and q = 2 corresponding to (4.3.3)
and (4.3a.3), assuming general A > O and B > O.

4.3.6. Partition the mgf in the complex p × q matrix-variate Gaussian case, correspond-
ing to the partition in Sect. 4.3.1 and write down the complex matrix-variate density cor-
responding to T̃1 in the complex case.

4.3.7. In the real p × q matrix-variate Gaussian case, partition the mgf parameter matrix
into T = (T(1), T(2)) where T(1) is p × q1 and T(2) is p × q2 with q1 + q2 = q. Obtain the
density corresponding to T(1) by letting T(2) = O.

4.3.8. Repeat Exercise 4.3.7 for the complex p × q matrix-variate Gaussian case.

4.3.9. Consider v = Ũ∗
j AŨj . Provide the details of the steps for obtaining (4.3a.9).

4.3.10. Derive the mgf of Ũ∗
i AŨj , i 
= j, in the complex p × q matrix-variate Gaussian

case, corresponding to (4.3.13).

4.4. Marginal Densities in the Real Matrix-variate Gaussian Case

On partitioning the real p × q Gaussian matrix into X1 of order p1 × q and X2 of
order p2 × q so that p1 + p2 = p, it was determined by applying the mgf technique
that X1 has a p1 × q matrix-variate Gaussian distribution with the parameter matrices B

remaining unchanged while A was replaced by A11 − A12A
−1
22 A21 where the Aij ’s are the

sub-matrices of A. This density is then the marginal density of the sub-matrix X1 with
respect to the joint density of X. Let us see whether the same result is available by direct



256 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

integration of the remaining variables, namely by integrating out X2. We first consider the
real case. Note that

tr(AXBX′) = tr

[

A

(
X1

X2

)

B(X′
1 X′

2)

]

= tr

[

A

(
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

)]

.

Now, letting A be similarly partitioned, we have

tr(AXBX′) = tr

[(
A11 A12

A21 A22

)(
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

)]

= tr(A11X1BX′
1) + tr(A12X2BX′

1)

+ tr(A21X1BX′
2) + tr(A22X2BX′

2),

as the remaining terms do not appear in the trace. However, (A12X2BX′
1)

′ = X1BX′
2A21,

and since tr(PQ) = tr(QP ) and tr(S) = tr(S′) whenever S, PQ and QP are square
matrices, we have

tr(AXBX′) = tr(A11X1BX′
1) + 2tr(A21X1BX′

2) + tr(A22X2BX′
2).

We may now complete the quadratic form in tr(A22X2BX′
2) + 2tr(A21X1BX′

2) by taking
a matrix C = A−1

22 A21X1 and replacing X2 by X2 + C. Note that when A > O, A11 > O

and A22 > O. Thus,

tr(AXBX′) = tr(A22(X2 + C)B(X2 + C)′)+tr(A11X1BX′
1)−tr(A12A

−1
22 A21X1BX′

1)

= tr(A22(X2 + C)B(X2 + C)′) + tr((A11 − A12A
−1
22 A21)X1BX′

1).

On applying a result on partitioned matrices from Sect. 1.3, we have

|A| = |A22| |A11 − A12A
−1
22 A21|,

and clearly, (2π)
pq
2 = (2π)

p1q

2 (2π)
p2q

2 . When integrating out X2, |A22| q
2 and (2π)

p2q

2 are
getting canceled. Hence, the marginal density of X1, the p1 × q sub-matrix of X, denoted
by fp1,q(X1), is given by

fp1,q(X1) = |B|p1
2 |A11 − A12A

−1
22 A21| q

2

(2π)
p1q

2

e− 1
2 tr((A11−A12A

−1
22 A21)X1BX′

1). (4.4.1)

When p1 = 1, p2 = 0 and p = 1, we have the usual multivariate Gaussian density.
When p = 1, the 1 × 1 matrix A will be taken as 1 without any loss of generality.
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Then, from (4.4.1), the multivariate (q-variate) Gaussian density corresponding to (4.2.3)
is given by

f1,q(X1) = (1/2)
q
2 |B| 12

π
q
2

e− 1
2 tr(X1BX′

1) = |B| 12
(2π)

q
2
e− 1

2X1BX′
1

since the 1× 1 quadratic form X1BX′
1 is equal to its trace. It is usually expressed in terms

of B = V −1, V > O. When q = 1, X is reducing to a p × 1 vector, say Y . Thus, for a
p × 1 column vector Y with a location parameter μ, the density, denoted by fp,1(Y ), is
the following:

fp,1(Y ) = 1

|V | 12 (2π)
p
2

e− 1
2 (Y−μ)′V −1(Y−μ), (4.4.2)

where Y ′ = (y1, . . . , yp), μ′ = (μ1, . . . , μp), −∞ < yj < ∞, −∞ < μj < ∞, j =
1, . . . , p, V > O. Observe that when Y is p × 1, tr(Y − μ)′V −1(Y − μ) = (Y −
μ)′V −1(Y − μ). From symmetry, we can write down the density of the sub-matrix X2 of
X from the density given in (4.4.1). Let us denote the density of X2 by fp2,q(X2). Then,

fp2,q(X2) = |B|p2
2 |A22 − A21A

−1
11 A12| q

2

(2π)
p2q

2

e− 1
2 tr((A22−A21A

−1
11 A12)X2BX′

2). (4.4.3)

Note that A22 − A21A
−1
11 A12 > O as A > O, our intial assumptions being that A > O

and B > O.

Theorem 4.4.1. Let the p×q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices A > O and B > O where A is p × p and B is q × q. Let X

be partitioned into sub-matrices as X =
(

X1

X2

)

where X1 is p1 × q and X2 is p2 × q, with

p1 + p2 = p. Let A be partitioned into sub-matrices as A =
[
A11 A12

A21 A22

]

where A11 is

p1 × p1. Then X1 has a p1 × q real matrix-variate Gaussian density with the parameter
matrices A11 − A12A

−1
22 A21 > O and B > O, as given in (4.4.1) and X2 has a p2 × q

real matrix-variate Gaussian density with the parameter matrices A22−A21A
−1
11 A12 > O

and B > O, as given in (4.4.3).

Observe that the p1 rows taken in X1 need not be the first p1 rows. They can be any
set of p1 rows. In that instance, it suffices to make the corresponding permutations in the
rows and columns of A and B so that the new set of p1 rows can be taken as the first p1

rows, and similarly for X2.

Can a similar result be obtained in connection with a matrix-variate Gaussian distribu-
tion if we take a set of column vectors and form a sub-matrix of X? Let us partition the
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p × q matrix X into sub-matrices of columns as X = (Y1 Y2) where Y1 is p × q1 and Y2 is
p×q2 such that q1+q2 = q. The variables Y1, Y2 are used in order to avoid any confusion
with X1, X2 utilized in the discussions so far. Let us partition B as follows:

B =
[
B11 B12

B21 B22

]

, B11 being q1 × q1, B22 being q2 × q2.

Then,

tr(AXBX′) = tr[A(Y1 Y2)

[
B11 B12

B21 B22

](
Y ′
1

Y ′
2

)

]
= tr(AY1B11Y

′
1) + tr(AY2B21Y

′
1) + tr(AY1B12Y

′
2) + tr(AY2B22Y

′
2)

= tr(AY1B11Y
′
1) + 2tr(AY1B12Y

′
2) + tr(AY2B22Y

′
2).

As in the previous case of row sub-matrices, we complete the quadratic form:

tr(AXBX′) = tr(AY1B11Y
′
1) − tr(AY1(B12B

−1
22 B21Y

′
1) + tr(A(Y2 + C)B22(Y2 + C)′)

= tr(AY1(B11 − B12B
−1
22 B21)Y

′
1) + tr(A(Y2 + C)B22(Y2 + C)′).

Now, by integrating out Y2, we have the result, observing that A > O, B > O, B11 −
B12B

−1
22 B21 > O and |B| = |B22| |B11 − B12B

−1
22 B21|. A similar result follows for the

marginal density of Y2. These results will be stated as the next theorem.

Theorem 4.4.2. Let the p×q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices M = O, A > O and B > O where A is p × p and B is
q × q. Let X be partitioned into column sub-matrices as X = (Y1 Y2) where Y1 is p × q1
and Y2 is p × q2 with q1 + q2 = q. Then Y1 has a p × q1 real matrix-variate Gaussian
density with the parameter matrices A > O and B11 − B12B

−1
22 B21 > O, denoted by

fp,q1(Y1), and Y2 has a p × q2 real matrix-variate Gaussian density denoted by fp,q2(Y2)

where

fp,q1(Y1) = |A| q1
2 |B11 − B12B

−1
22 B21|p

2

(2π)
pq1
2

e− 1
2 tr[AY1(B11−B12B

−1
22 B21)Y

′
1] (4.4.4)

fp,q2(Y2) = |A| q2
2 |B22 − B21B

−1
11 B12|p

2

(2π)
pq2
2

e− 1
2 tr[AY2(B22−B21B

−1
11 B12)Y

′
2]. (4.4.5)

If q = 1 and q2 = 0 in (4.4.4), q1 = 1. When q = 1, the 1 × 1 matrix B is taken
to be 1. Then Y1 in (4.4.4) is p × 1 or a column vector of p real scalar variables. Let it
still be denoted by Y1. Then the corresponding density, which is a real p-variate Gaussian
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(normal) density, available from (4.4.4) or from the basic matrix-variate density, is the
following:

fp,1(Y1) = |A| 12 (1/2)p
2

π
p
2

e− 1
2 tr(AY1Y

′
1)

= |A| 12
(2π)

p
2
e− 1

2 tr(Y
′
1AY1) = |A| 12

(2π)
p
2
e− 1

2Y ′
1AY1, (4.4.6)

observing that tr(Y ′
1AY1) = Y ′

1AY1 since Y1 is p × 1 and then, Y ′
1AY1 is 1 × 1. In the

usual representation of a multivariate Gaussian density, A replaced by A = V −1, V being
positive definite.

Example 4.4.1. Let the 2 × 3 matrix X = (xij ) have a real matrix-variate distribution
with the parameter matrices M = O, A > O, B > O where

X =
[
x11 x12 x13
x21 x22 x23

]

, A =
[
2 1
1 1

]

, B =
⎡

⎣
3 −1 0

−1 1 1
0 1 2

⎤

⎦ .

Let us partition X, A and B as follows:

X =
[
X1

X2

]

= [Y1, Y2], A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

where A11 = (2), A12 = (1), A21 = (1), A22 = (1), X1 = [x11, x12, x13], X2 =
[x21, x22, x23],

Y1 =
[
x11 x12
x21 x22

]

, Y2 =
[
x13
x23

]

, B11 =
[

3 −1
−1 1

]

, B12 =
[
0
1

]

,

B21 = [0, 1], B22 = (2). Compute the densities of X1, X2, Y1 and Y2.

Solution 4.4.1. We need the following quantities: A11 − A12A
−1
22 A21 = 2 − 1 = 1,

A22 − A21A
−1
11 A12 = 1 − 1

2 = 1
2 , |B| = 1,

B22 − B21B
−1
11 B12 = 2 − [0, 1]

(1

2

) [
1 1
1 3

] [
0
1

]

= 2 − 3

2
= 1

2

B11 − B12B
−1
22 B21 =

[
3 −1

−1 1

]

−
[
0
1

] (1

2

)
[0, 1] =

[
3 −1

−1 1
2

]

.
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Let us compute the constant parts or normalizing constants in the various densities. With
our usual notations, the normalizing constants in fp1,q(X1) and fp2,q(X2) are

|B|p1
2 |A11 − A12A

−1
22 A21| q

2

(2π)
p1q

2

= |B| 12 (1) 3
2

(2π)
3
2

|B|p2
2 |A22 − A21A

−1
11 A12| 32

(2π)
p2q

2

= |B| 12 (12)
3
2

(2π)
3
2

.

Hence, the corresponding densities of X1 and X2 are the following:

f1,3(X1) = |B| 12
(2π)

3
2

e− 1
2X1BX′

1, −∞ < x1j < ∞, j = 1, 2, 3,

f1,3(X2) = |B| 12
2

3
2 (2π)

3
2

e− 1
4 (X2BX′

2), −∞ < x2j < ∞, j = 1, 2, 3.

Let us now evaluate the normalizing constants in the densities fp,q1(Y1), fp,q2(Y2):

|A| q1
2 |B11 − B12B

−1
22 B21|p

2

(2π)
pq1
2

= |A| 12 (12)1
4π2

= 1

8π2
,

|A| q2
2 |B22 − B21B

−1
11 B12|p

2

(2π)
pq2
2

= |A| 12 (12)1
2π

= 1

4π
.

Thus, the density of Y1 is

f2,2(Y1) = 1

8π2
e− 1

2 tr{AY1(B11−B12B
−1
22 B21)Y

′
1}

= 1

8π2
e− 1

2Q, −∞ < xij < ∞, i, j = 1, 2,

where

Q = tr

{[
2 1
1 1

] [
x11 x12
x21 x22

] [
3 −1

−1 1
2

] [
x11 x21
x12 x22

]}

= 6x2
11 + x2

12 + 3x2
21 + 1

2
x2
22 − 4x11x12 − 2x11x22

+ 3x11x21 + x12x22 − 2x12x21 − x22x21,
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the density of Y2 being

f2,1(Y2) = 1

4π
e− 1

2 tr{AY2(B22−B21B
−1
11 B12)Y

′
1}

= 1

4π
e− 1

4 [2x213+x223+2x13x23], −∞ < xi3 < ∞, i = 1, 2.

This completes the computations.

4.4a. Marginal Densities in the Complex Matrix-variate Gaussian Case

The derivations of the results are parallel to those provided in the real case. Accord-
ingly, we will state the corresponding results.

Theorem 4.4a.1. Let the p×q matrix X̃ have a complex matrix-variate Gaussian density
with the parameter matrices M = O, A > O, B > O where A is p × p and B is
q × q. Consider a row partitioning of X̃ into sub-matrices X̃1 and X̃2 where X̃1 is p1 × q

and X̃2 is p2 × q, with p1 + p2 = p. Then, X̃1 and X̃2 have p1 × q complex matrix-
variate and p2 × q complex matrix-variate Gaussian densities with parameter matrices
A11−A12A

−1
22 A21 andB, andA22−A21A

−1
11 A12 andB, respectively, denoted by f̃p1,q(X̃1)

and f̃p2,q(X̃2). The density of X̃1 is given by

f̃p1,q(X̃1) = |det(B)|p1|det(A11 − A12A
−1
22 A21)|q

πp1q
e−tr((A11−A12A

−1
22 A21)X̃1BX̃∗

1), (4.4a.1)

the corresponding vector case for p = 1 being available from (4.4a.1) for p1 = 1, p2 = 0
and p = 1; in this case, the density is

f̃1,q(X̃1) = |det(B)|
πq

e−(X̃1−μ)B(X̃1−μ)∗ (4.4a.2)

where X̃1 and μ are 1 × q and μ is a location parameter vector. The density of X̃2 is the
following:

f̃p2,q(X̃2) = |det(B)|p2|det(A22 − A21A
−1
11 A12)|q

πp2q
e−tr((A22−A21A

−1
11 A12)X̃2BX̃∗

2). (4.4a.3)

Theorem 4.4a.2. Let X̃, A and B be as defined in Theorem 4.2a.1 and let X̃ be parti-
tioned into column sub-matrices X̃ = (Ỹ1 Ỹ2) where Ỹ1 is p ×q1 and Ỹ2 is p ×q2, so that
q1 + q2 = q. Then Ỹ1 and Ỹ2 have p × q1 complex matrix-variate and p × q2 complex
matrix-variate Gaussian densities given by
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f̃p,q1(Ỹ1) = |det(A)|q1|det(B11 − B12B
−1
22 B21)|p

πpq1

× e−tr(AỸ1(B11−B12B
−1
22 B21)Ỹ

∗
1 ) (4.4a.4)

f̃p,q2(Ỹ2) = |det(A)|q2|det(B22 − B21B
−1
11 B21)|p

πpq2

× e−tr(AỸ2(B22−B21B
−1
11 B12)Ỹ

∗
2 ). (4.4a.5)

When q = 1, we have the usual complex multivariate case. In this case, it will be a p-
variate complex Gaussian density. This is available from (4.4a.4) by taking q1 = 1, q2 = 0
and q = 1. Now, Ỹ1 is a p × 1 column vector. Let μ be a p × 1 location parameter vector.
Then the density is

f̃p,1(Ỹ1) = |det(A)|
πp

e−(Ỹ1−μ)∗A(Ỹ1−μ) (4.4a.6)

where A > O (Hermitian positive definite), Ỹ1 − μ is p × 1 and its 1 × p conjugate
transpose is (Ỹ1 − μ)∗.
Example 4.4a.1. Consider a 2×3 complex matrix-variate Gaussian distribution with the
parameters M = O, A > O, B > O where

X̃ =
[
x̃11 x̃12 x̃13
x̃21 x̃22 x̃23

]

, A =
[

2 i

−i 2

]

, B =
⎡

⎣
2 −i i

i 2 −i

−i i 2

⎤

⎦ .

Consider the partitioning

A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

, X̃ =
[
X̃1

X̃2

]

= [Ỹ1, Ỹ2]
where

Ỹ1 =
[
x̃11
x̃21

]

, Ỹ2 =
[
x̃12 x̃13
x̃22 x̃23

]

, B22 =
[
2 −i

i 2

]

, B21 =
[

i

−i

]

,

X̃1 = [x̃11, x̃12, x̃13], X̃2 = [x̃21, x̃22, x̃23], A11 = (2), A12 = (i), A21 = (−i), A22 = 2;
B11 = (2), B12 = [−i, i]. Compute the densities of X̃1, X̃2, Ỹ1, Ỹ2.

Solution 4.4a.1. It is easy to ascertain that A = A∗ and B = B∗; hence both matrices
are Hermitian. As well, all the leading minors of A and B are positive so that A > O and
B > O. We need the following numerical results: |A| = 3, |B| = 2,

A11 − A12A
−1
22 A21 = 2 − (i)(1/2)(−i) = 2 − 1

2
= 3

2

A22 − A21A
−1
11 A12 = 2 − (−i)(1/2)(i) = 2 − 1

2
= 3

2
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B11 − B12B
−1
22 B21 = 2 − [−i, i]

(1

3

) [
2 i

−i 2

] [
i

−i

]

= 2

3

B22 − B21B
−1
11 B12 =

[
2 −i

i 2

]

−
[

i

−i

] (1

2

)
[−i, i] =

[
2 −i

i 2

]

− 1

2

[
1 −1

−1 1

]

= 1

2

[
3 1 − 2i

1 + 2i 3

]

.

With these preliminary calculations, we can obtain the required densities with our usual
notations:

f̃p1,q(X̃1) = |det(B)|p1|det(A11 − A12A
−1
22 A21)|q

πp1q

× e−tr[(A11−A12A
−1
22 A21)X̃1BX̃∗

1 ], that is,

f̃1,3(X̃1) = 2(3/2)3

π3
e− 3

2 X̃1BX̃∗
1

where

Q1 = X̃1BX̃∗
1 = [x̃11, x̃12, x̃13]

⎡

⎣
2 −i i

i 2 −i

−i i 2

⎤

⎦

⎡

⎣
x̃∗
11

x̃∗
12

x̃∗
13

⎤

⎦

= 2x̃11x̃
∗
11 + 2x̃12x̃

∗
12 + 2x̃13x̃

∗
13 − ix̃11x̃

∗
12 + ix̃11x̃

∗
13

+ ix̃12x̃
∗
11 − ix̃12x̃

∗
13 − ix̃13x̃

∗
11 + ix̃13x̃

∗
12;

f̃p2,q(X̃2) = |det(A)|p2|det(A22 − A21A
−1
11 A12)|q

πp2q

× e−tr[(A22−A21A
−1
11 A12)X̃2BX̃∗

2 ], that is,

f̃1,3(X̃2) = 2(3/2)3

π3
e− 3

2 X̃2BX̃∗
2

where let Q2 = X̃2BX̃∗
2, Q2 being obtained by replacing X̃1 in Q1 by X̃2;

f̃p,q1(Ỹ1) = |det(A)|q1|det(B11 − B12B
−1
22 B21)|p

πpq1

× e−tr[AỸ1(B11−B12B
−1
22 B21)Ỹ

∗
1 ], that is,

f̃2,1(Ỹ1) = 3(2/3)2

π2
e−tr( 23Q3)
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where

Q3 = Ỹ ∗
1 AỸ1 = [x̃∗

11, x̃
∗
21]

[
2 i

−i 2

] [
x̃11
x̃21

]

= 2x̃11x̃
∗
11 + 2x̃21x̃

∗
21 + ix̃21x̃

∗
11 − ix̃∗

21x̃11;

f̃p,q2(Ỹ2) = |det(A)|q2|det(B22 − B21B
−1
11 B12)|p

πpq2

× e−tr[AỸ2(B22−B21B
−1
11 B12)Ỹ

∗
2 ], that is,

f̃2,2(Ỹ2) = 32

π4
e− 1

2Q

where

2Q = tr

[
2 i

−i 2

] [
x̃12 x̃13
x̃22 x̃23

] [
3 1 − 2i

1 + 2i 3

] [
x̃∗
12 x̃∗

22
x̃∗
13 x̃∗

23

]

= 6x̃12x̃
∗
12 + 6x̃13x̃

∗
13 + 6x̃22x̃

∗
22 + 6x̃23x̃

∗
23

+ [2(1 − 2i)(x̃12x̃
∗
13 + x̃22x̃

∗
23) + 2(1 + 2i)(x̃23x̃

∗
22 + x̃13x̃

∗
12)]

+ [i(1 − 2i)(x̃22x̃
∗
13 − x̃12x̃

∗
23) − i(1 + 2i)(x̃13x̃

∗
22 − x̃23x̃

∗
12)]

+ 3i[x̃22x̃∗
12 + x̃23x̃

∗
13 − x̃12x̃

∗
22 − x̃13x̃

∗
23].

This completes the computations.

Exercises 4.4

4.4.1. Write down explicitly the density of a p × q matrix-variate Gaussian for p =
3, q = 3. Then by integrating out the other variables, obtain the density for the case (1):
p = 2, q = 2; (2): p = 2, q = 1; (3): p = 1, q = 2; (4): p = 1, q = 1. Take the location
matrix M = O. Let A and B to be general positive definite parameter matrices.

4.4.2. Repeat Exercise 4.4.1 for the complex case.

4.4.3. Write down the densities obtained in Exercises 4.4.1 and 4.4.2. Then evaluate the
marginal densities for p = 2, q = 2 in both the real and complex domains by partitioning
matrices and integrating out by using matrix methods.

4.4.4. Let the 2×2 real matrix A > O where the first row is (1, 1). Let the real B > O be
3× 3 where the first row is (1, −1, 1). Complete A and B with numbers of your choosing
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so that A > O, B > O. Consider a real 2 × 3 matrix-variate Gaussian density with these
A and B as the parameter matrices. Take your own non-null location matrix. Write down
the matrix-variate Gaussian density explicitly. Then by integrating out the other variables,
either directly or by matrix methods, obtain (1): the 1×3 matrix-variate Gaussian density;
(2): the 2 × 2 matrix-variate Gaussian density from your 2 × 3 matrix-variate Gaussian
density.

4.4.5. Repeat Exercise 4.4.4 for the complex case if the first row of A is (1, 1+ i) and the
first row of B is (2, 1 + i, 1 − i) where A = A∗ > O and B = B∗ > O.

4.5. Conditional Densities in the Real Matrix-variate Gaussian Case

Consider a real p × q matrix-variate Gaussian density with the parameters M =
O, A > O, B > O. Let us consider the partition of the p × q real Gaussian matrix

X into row sub-matrices as X =
(

X1

X2

)

where X1 is p1 × q and X2 is p2 × q with

p1 + p2 = p. We have already established that the marginal density of X2 is

fp2,q(X2) = |A22 − A21A
−1
11 A12| q

2 |B|p2
2

(2π)
p2q

2

e− 1
2 tr[(A22−A21A

−1
11 A12)X2BX′

2].

Thus, the conditional density of X1 given X2 is obtained as

fp1,q(X1|X2) = fp,q(X)

fp2,q(X2)
= |A| q

2 |B|p
2

|A22 − A21A
−1
11 A12| q

2 |B|p2
2

(2π)
p2q

2

(2π)
pq
2

× e− 1
2 [tr(AXBX′)]+tr[(A22−A21A

−1
11 A12)X2BX′

2].

Note that

AXBX′ = A

(
X1

X2

)

B(X′
1 X′

2) = A

[
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

]

=
[
A11 A12

A21 A22

] [
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

]

=
[
α ∗
∗ β

]

where α = A11X1BX′
1 + A12X2BX′

1, β = A21X1BX′
2 + A22X2BX′

2 and the asterisks
designate elements that are not utilized in the determination of the trace. Then

tr(AXBX′) = tr(A11X1BX′
1 + A12X2BX′

1) + tr(A21X1BX′
2 + A22X2BX′

2).
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Thus the exponent in the conditional density simplifies to

tr(A11X1BX′
1) + 2tr(A12X2BX′

1) + tr(A22X2BX′
2) − tr[(A22 − A21A

−1
11 A12)X2BX′

2)]
= tr(A11X1BX′

1) + 2tr(A12X2BX′
1) + tr[A21A

−1
11 A12X2BX′

2]
= tr[A11(X1 + C)B(X1 + C)′], C = A−1

11 A12X2.

We note that E(X1|X2) = −C = −A−1
11 A12X2: the regression of X1 on X2, the constant

part being |A11| q
2 |B|p1

2 /(2π)
p1q

2 . Hence the following result:

Theorem 4.5.1. If the p × q matrix X has a real matrix-variate Gaussian density with
the parameter matrices M = O, A > O and B > O where A is p × p and B is q × q

and if X is partitioned into row sub-matrices X =
(

X1

X2

)

where X1 is p1 × q and X2 is

p2 × q, so that p1 + p2 = p, then the conditional density of X1 given X2, denoted by
fp1,q(X1|X2), is given by

fp1,q(X1|X2) = |A11| q
2 |B|p1

2

(2π)
p1q

2

e− 1
2 tr[A11(X1+C)B(X1+C)′] (4.5.1)

where C = A−1
11 A12X2 if the location parameter is a null matrix; otherwise C = −M1 +

A−1
11 A12(X2−M2) with M partitioned into row sub-matrices M1 and M2, M1 being p1×q

and M2, p2 × q.

Corollary 4.5.1. Let X, X1, X2, M, M1 and M2 be as defined in Theorem 4.5.1;
then, in the real Gaussian case, the conditional expectation of X1 given X2, denoted by
E(X1|X2), is

E(X1|X2) = M1 − A−1
11 A12(X2 − M2). (4.5.2)

We may adopt the following general notation to represent a real matrix-variate Gaus-
sian (or normal) density:

X ∼ Np,q(M, A, B), A > O, B > O, (4.5.3)

which signifies that the p × q matrix X has a real matrix-variate Gaussian distribution
with location parameter matrix M and parameter matrices A > O and B > O where A is
p × p and B is q × q. Accordingly, the usual q-variate multivariate normal density will
be denoted as follows:

X1 ∼ N1,q(μ, B), B > O ⇒ X′
1 ∼ Nq(μ

′, B−1), B > O, (4.5.4)
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where μ is the location parameter vector, which is the first row of M , and X1 is a 1 × q

row vector consisting of the first row of the matrix X. Note that B−1 = Cov(X1) and
the covariance matrix usually appears as the second parameter in the standard notation
Np(·, ·). In this case, the 1 × 1 matrix A will be taken as 1 to be consistent with the
usual notation in the real multivariate normal case. The corresponding column case will
be denoted as follows:

Y1 ∼ Np,1(μ(1), A), A > O ⇒ Y1 ∼ Np(μ(1), A
−1), A > O, A−1 = Cov(Y1) (4.5.5)

where Y1 is a p × 1 vector consisting of the first column of X and μ(1) is the first column
of M . With this partitioning of X, we have the following result:

Theorem 4.5.2. Let the real matrices X, M, A and B be as defined in Theorem 4.5.1
and X be partitioned into column sub-matrices as X = (Y1 Y2) where Y1 is p × q1
and Y2 is p × q2 with q1 + q2 = q. Let the density of X, the marginal densities
of Y1 and Y2 and the conditional density of Y1 given Y2, be respectively denoted by
fp,q(X), fp,q1(Y1), fp,q2(Y2) and fp,q1(Y1|Y2). Then, the conditional density of Y1 given
Y2 is

fp,q1(Y1|Y2) = |A| q1
2 |B11|p

2

(2π)
pq1
2

e− 1
2 tr[A(Y1−M(1)+C1)B11(Y1−M(1)+C1)

′] (4.5.6)

where A > O, B11 > O and C1 = (Y2−M2)B21B
−1
11 , so that the conditional expectation

of Y1 given Y2, or the regression of Y1 on Y2, is obtained as

E(Y1|Y2) = M(1) − (Y2 − M(2))B21B
−1
11 , M = (M(1) M(2)), (4.5.7)

where M(1) is p ×q1 and M(2) is p ×q2 with q1 +q2 = q. As well, the conditional density
of Y2 given Y1 is the following:

fp,q2(Y2|Y1) = |A| q2
2 |B22|p

2

(2π)
pq2
2

e− 1
2 tr[A(Y2−M(2)+C2)B22(Y2−M(2)+C2)

′] (4.5.8)

where
M(2) − C2 = M(2) − (Y1 − M(1))B12B

−1
22 = E[Y2|Y1]. (4.5.9)

Example 4.5.1. Consider a 2 × 3 real matrix X = (xij ) having a real matrix-variate
Gaussian distribution with the parameters M, A > O and B > O where

M =
[
1 −1 1
2 0 −1

]

, A =
[
2 1
1 3

]

, B =
⎡

⎣
2 −1 1

−1 3 0
1 0 1

⎤

⎦ .
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Let X be partitioned as

[
X1

X2

]

=[Y1, Y2] where X1 = [x11, x12, x13], X2 = [x21, x22, x23],

Y1 =
[
x11 x12
x21 x22

]

and Y2 =
[
x13
x23

]

. Determine the conditional densities of X1 given

X2, X2 given X1, Y1 given Y2, Y2 given Y1 and the conditional expectations E[X1|X2],
E[X2|X1], E[Y1|Y2] and E[Y2|Y1].
Solution 4.5.1. Given the specified partitions of X, A and B are partitioned accordingly
as follows:

A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

, B11 =
[

2 −1
−1 3

]

, B12 =
[
1
0

]

B21 = [1, 0], B22 = (1), A11 = (2), A12 = (1), A21 = (1), A22 = (3).

The following numerical results are needed:

A11 − A12A
−1
22 A21 = 2 − (1)(1/3)(1) = 5

3

A22 − A21A
−1
11 A12 = 3 − (1)(1/2)(1) = 5

2

B11 − B12B
−1
22 B21 =

[
2 −1

−1 3

]

−
[
1
0

]

(1)[1, 0] =
[

1 −1
−1 3

]

B22 − B21B
−1
11 B12 = 1 − [1, 0](1/5)

[
3 1
1 2

] [
1
0

]

= 2

5
;

|A11| = 2, |A22| = 3, |A| = 5, |A11 − A12A
−1
22 A21| = 5

3
, |A22 − A21A

−1
11 A12| = 5

2
,

|B11| = 5, |B22| = 1, |B11 − B12B
−1
22 B21| = 2, |B22 − B21B

−1
11 B12| = 2

5
, |B| = 2;

A−1
11 A12 = 1

2
, A−1

22 A21 = 1

3
, B−1

22 B21 = [1, 0]

B−1
11 B12 = 1

5

[
3 1
1 2

] [
1
0

]

= 1

5

[
3
1

]

, M1 = [1, −1, 1], M2 = [2, 0, −1]

M(1) =
[
1 −1
2 0

]

, M(2) =
[

1
−1

]

.
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All the conditional expectations can now be determined. They are

E[X1|X2] = M1 − A−1
11 A12(X2 − M2) = [1, −1, 1] − 1

2
(x21 − 2, x22, x23 + 1)

= [1 − 1

2
(x21 − 2), −1 − 1

2
x22, 1 − 1

2
(x23 + 1)] (i)

E[X2|X1] = M2 − A−1
22 A21(X1 − M1) = [2, 0, −1] − 1

3
[x11 − 1, x12 + 1, x13 − 1]

= [2 − 1

3
(x11 − 1), −1

3
(x12 + 1), −1 − 1

3
(x13 − 1)]; (ii)

E[Y1|Y2] = M(1) − (Y2 − M(2))B21B
−1
11 =

[
1 −1
2 0

]

− 1

5

[
x13 − 1
x23 + 1

]

[1, 0]
[
3 1
1 2

]

=
[
1 − 3

5(x13 − 1) −1 − 1
5(x13 − 1)

2 − 3
5(x23 + 1) −1

5(x23 + 1)

]

(iii)

E[Y2|Y1] = M(2) − (Y1 − M(1))B12B
−1
22

=
[

1
−1

]

−
[
x11 − 1 x12 + 1
x21 − 2 x22

] [
1
0

]

[(1)] =
[
2 − x11
1 − x21

]

. (iv)

The conditional densities can now be obtained. That of X1 given X2 is

fp1,q(X1|X2) = |A11| q
2 |B|p1

2

(2π)
p1q

2

e− 1
2 tr[A11(X1−M1+C)B(X1−M1+C)′]

for the matrices A > O and B > O previously specified; that is,

f1,3(X1|X2) = 4

(2π)
3
2

e− 2
2 (X1−M1+C)B(X1−M1+C)′

where M1 − C = E[X1|X2] is given in (i). The conditional density of X2|X1 is the
following:

fp2,q(X2|X1) = |A22| q
2 |B|p2

2

(2π)
p2q

2

e− 1
2 tr[A22(X2−M2+C1)B(X2−M2+C1)

′],

that is,

f1,3(X2|X1) = (3
3
2 )(2

1
2 )

(2π)
3
2

e− 3
2 (X2−M2+C1)B(X2−M2+C2)

′
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where M2 − C2 = E[X2|X1] is given in (ii). The conditional density of Y1 given Y2 is

fp,q1(Y1|Y2) = |A| q1
2 |B11|p

2

(2π)
p q1
2

e− 1
2 tr[A(Y1−M(1)+C2)B11(Y1−M(1)+C2)

′];

that is,

f2,2(Y1|Y2) = 25

(2π)2
e− 1

2 tr[A(Y1−M(1)+C2)B11(Y1−M(1)+C2)
′]

where M(1) − C1 = E[Y1|Y2] is specified in (iii). Finally, the conditional density of Y2|Y1

is the following:

fp,q2(Y2|Y1) = |A| q2
2 |B22|p

2

(2π)
p q2
2

e− 1
2 tr[A(Y2−M(2)+C3)B22(Y2−M(2)+C3)

′];

that is,

f2,1(Y2|Y1) =
√
5

(2π)
e−tr[A(Y2−M(2)+C3)B22(Y2−M(2)+C3)

′]

where M(2) − C3 = E[Y2|Y1] is given in (iv). This completes the computations.

4.5a. Conditional Densities in the Matrix-variate Complex Gaussian Case

The corresponding distributions in the complex case closely parallel those obtained for
the real case. A tilde will be utilized to distinguish them from the real distributions. Thus,

X̃ ∼ Ñp,q(M̃, A, B), A = A∗ > O, B = B∗ > O

will denote a complex p × q matrix X̃ having a p × q matrix-variate complex Gaussian
density. For the 1 × q case, that is, the q-variate multivariate normal distribution in the
complex case, which is obtained from the marginal distribution of the first row of X̃, we
have

X̃1 ∼ Ñ1,q(μ, B), B > O, X̃1 ∼ Ñq(μ, B−1), B−1 = Cov(X̃1),

where X̃1 is 1 × q vector having a q-variate complex normal density with E(X̃1) = μ.
The case q = 1 corresponds to a column vector in X̃, which constitutes a p × 1 column
vector in the complex domain. Letting it be denoted as Ỹ1, we have

Ỹ1 ∼ Ñp,1(μ(1), A), A > O, that is, Ỹ1 ∼ Ñp(μ(1), A
−1), A−1 = Cov(Ỹ1),

where μ(1) is the first column of M .
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Theorem 4.5a.1. Let X̃ be p × q matrix in the complex domain having a p × q matrix-

variate complex Gaussian density denoted by f̃p,q(X̃). Let X̃ =
(

X̃1

X̃2

)

be a row partition-

ing of X̃ into sub-matrices where X̃1 is p1 × q and X̃2 is p2 × q, with p1 + p2 = p. Then
the conditional density of X̃1 given X̃2 denoted by f̃p1,q(X̃1|X̃2), is given by

f̃p1,q(X̃1|X̃2) = |det(A11)|q |det(B)|p1

πp1q
e−tr[A11(X̃1−M1+C̃)B(X̃1−M1+C̃)∗] (4.5a.1)

where C̃ = A−1
11 A12(X̃2 − M2), E[X̃] = M =

[
M1

M2

]

, and the regression of X̃1 on X̃2 is

as follows:

E(X̃1|X̃2) =

⎧
⎪⎨

⎪⎩

M1 − A−1
11 A12(X̃2 − M2) if M =

(
M1

M2

)

−A−1
11 A12X̃2 if M = O.

(4.5a.2)

Analogously, the conditional density of X̃2 given X̃1 is

f̃p2,q(X̃2|X̃1) = |det(A22)|q |det(B)|p2

πp2q
e−tr[A22(X̃2−M2+C1)B(X̃2−M2+C1)

∗] (4.5a.3)

where C1 = A−1
22 A21(X̃1 − M1), so that the conditional expectation of X̃2 given X̃1 or the

regression of X̃2 on X̃1 is given by

E[X̃2|X̃1] = M2 − A−1
22 A21(X̃1 − M1). (4.5a.4)

Theorem 4.5a.2. Let X̃ be as defined in Theorem 4.5a.1. Let X̃ be partitioned into col-
umn submatrices, that is, X̃ = (Ỹ1 Ỹ2)where Ỹ1 is p×q1 and Ỹ2 is p×q2, with q1+q2 = q.
Then the conditional density of Ỹ1 given Ỹ2, denoted by f̃p,q1(Ỹ1|Ỹ2) is given by

f̃p,q1(Ỹ1|Ỹ2) = |det(A)|q1|det(B11)|p
πpq1

e−tr[A(Ỹ1−M(1)+C̃(1))B11(Ỹ1−M(1)+C̃(1))] (4.5a.5)

where C̃(1) = (Ỹ2 − M(2))B21B
−1
11 , and the regression of Ỹ1 on Ỹ2 or the conditional

expectation of Ỹ1 given Ỹ2 is given by

E(Ỹ1|Ỹ2) = M(1) − (Ỹ2 − M(2))B21B
−1
11 (4.5a.6)
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with E[X̃] = M = [M(1) M(2)] = E[Ỹ1 Ỹ2]. As well the conditional density of Ỹ2 given
Ỹ1 is the following:

f̃p,q2(Ỹ2|Ỹ1) = |det(A)|q2|det(B22)|p
πpq2

e−tr[A(Ỹ2−M(2)+C(2))B22(Ỹ2−M(2)+C(2))
∗] (4.5a.7)

where C(2) = (Ỹ1 − M(1))B12B
−1
22 and the conditional expectation of Ỹ2 given Ỹ1 is then

E[Ỹ2|Ỹ1] = M(2) − (Ỹ1 − M(1))B12B
−1
22 . (4.5a.8)

Example 4.5a.1. Consider a 2×3 matrix-variate complex Gaussian distribution with the
parameters

A =
[

2 i

−i 1

]

, B =
⎡

⎣
3 −i 0
i 2 i

0 −i 1

⎤

⎦ , M = E[X̃] =
[
1 + i i −i

i 2 + i 1 − i

]

.

Consider the partitioning of X̃ =
[
X̃1

X̃2

]

= [Ỹ1 Ỹ2] where X̃1 = [x̃11, x̃12, x̃13], X̃2 =

[x̃21, x̃22, x̃23], Ỹ1 =
[
x̃11
x̃21

]

and Ỹ2 =
[
x̃12 x̃13
x̃22 x̃23

]

. Determine the conditional densities of

X̃1|X̃2, X̃2|X̃1, Ỹ1|Ỹ2 and Ỹ2|Ỹ1 and the corresponding conditional expectations.

Solution 4.5a.1. As per the partitioning of X̃, we have the following partitions of A, B
and M:

A =
[
A11 A12
A21 A22

]

, B =
[
B11 B12
B21 B22

]

, B22 =
[

2 i

−i 1

]

, B−1
22 =

[
1 −i

i 2

]

, B21 =
[
i

0

]

,

A11 = (2), A12 = (i), A21 = (−i), A22 = (1), B12 = [−i, 0], A−1
11 = 1

2
, A−1

22 = 1, B−1
11 = 1

3
,

A11 − A12A
−1
22 A21 = 2 − (i)(1)(−i) = 1, |A11 − A12A

−1
22 A21| = 1,

A22 − A21A
−1
11 A12 = 1

2
, |A22 − A21A

−1
11 A12| = 1

2
, |A| = 1, |B| = 2,

B11 − B12B
−1
22 B21 = 3 − [−i 0]

[
1 −i

i 2

] [
i

0

]

= 2, |B11 − B12B
−1
22 B21| = 2,

B22 − B21B
−1
11 B12 =

[
2 i

−i 1

]

−
[
i

0

]

(1/3)[−i 0] =
[

5
3 i

−i 1

]

, |B22 − B21B
−1
11 B12| = 2

3
.

M1 = [1 + i, i, − i], M2 = [i, 2 + i, 1 − i], M(1) =
[
1 + i

i

]

, M(2) =
[

i −i

2 + i 1 − i

]

.
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All the conditional expectations can now be determined. They are

E[X̃1|X̃2] = M1 − A−1
11 A12(X̃2 − M2) = [1 + i, i, − i] − i

2
(X̃2 − M2) (i)

E[X̃2|X̃1] = M2 − A−1
22 A21(X̃1 − M1) = [i, 2 + i, 1 − i] + i(X̃1 − M1) (ii)

E[Ỹ1|Ỹ2] = M(1) − (Ỹ2 − M(2))B21B
−1
11 = 1

3

[
2 + ix̃12

−1 + 5i − ix̃22

]

(iii)

E[Ỹ2|Ỹ1] = M(2) − (Ỹ1 − M(1))B12B
−1
22

=
[

i −i

2 + i 1 − i

]

−
[
x̃11 − (1 + i)

x̃21 − i

]
[−i 0

]
[

1 −i

−i 2

]

=
[

ix̃11 + 1 x̃11 − 1 − 2i
−ix̃21 + i + 3 x̃21 + 1 − 2i

]

. (iv)

Now, on substituting the above quantities in equations (4.5a.1), (4.5a.3), (4.5a.5)
and (4.5a.7), the following densities are obtained:

f̃1,3(X̃1|X̃2) = 24

π3
e−2(X̃1−E1)B(X̃1−E1)

∗

where E1 = E[X̃1|X̃2] given in (i);

f̃1,3(X̃2|X̃1) = 2

π3
e−(X̃2−E2)B(X̃2−E2)

∗

where E2 = E[X̃2|X̃1] given in (ii);

f̃2,1(Ỹ1|Ỹ2) = 32

π2
e−3tr[A(Ỹ1−E3)(Ỹ1−E3)

∗]

where E3 = E[Ỹ1|Ỹ2] given in (iii);

f̃2,2(Ỹ2|Ỹ1) = 1

π4
e−tr[A(Ỹ2−E4)B22(Ỹ2−E4)

∗]

where E4 = E[Ỹ2|Ỹ1] given in (iv). The exponent in the density of Ỹ1|Ỹ2 can be simplified
as follows:

− tr[A(Ỹ1 − M(1))B11(Ỹ1 − M(1))
∗] = −3(Ỹ1 − M(1))

∗A(Ỹ1 − M(1))

= −3[(x̃11 − (1 + i))∗ (x̃21 − i)∗]
[

2 i

−i 1

] [
(x̃11 − (1 + i))

(x̃21 − i)

]

= −6{(x2
111 + x2

112) + 1
2(x

2
211 + x2

212) + (x112x211 − x111x212) − 2x112 − x111 − x211 + 3
2}

by writing x̃k1 = xk11 + ixk12, k = 1, 2, i = √
(−1). This completes the computations.
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4.5.1. Re-examination of the case q = 1

When q = 1, we have a p × 1 vector-variate or the usual p-variate Gaussian density
of the form in (4.5.5). Let us consider the real case first. Let the p × 1 vector be denoted
by Y1 with

Y1 =
⎡

⎢
⎣

y1
...

yp

⎤

⎥
⎦ =

[
Y(1)

Y(2)

]

, Y(1) =
⎡

⎢
⎣

y1
...

yp1

⎤

⎥
⎦ , Y(2) =

⎡

⎢
⎣

yp1+1
...

yp

⎤

⎥
⎦ ;

M(1) =
[
M

(p1)

(1)

M
(p2)

(2)

]

, M
(p1)

(1) =
⎡

⎢
⎣

m1
...

mp1

⎤

⎥
⎦ , M

(p2)

(2) =
⎡

⎢
⎣

mp1+1
...

mp

⎤

⎥
⎦ , E[Y1] = M(1), p1 + p2 = p.

Then, from (4.5.2) wherein q = 1, we have

E[Y(1)|Y(2)] = M
(p1)

(1) − A−1
11 A12(Y(2) − M

(p2)

(2) ), (4.5.10)

with A = Σ−1, Σ being the covariance matrix of Y1, that is, Cov(Y1) = E[(Y1 −
E(Y1))(Y1 − E(Y1))

′]. Let

A−1 = Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, where Σ11 is p1 × p1 and Σ22 is p2 × p2.

From the partitioning of matrices presented in Sect. 1.3, we have

− A−1
11 A12 = A12(A22)−1 = Σ12Σ

−1
22 . (4.5.11)

Accordingly, we may rewrite (4.5.10) in terms of the sub-matrices of the covariance matrix
as

E[Y(1)|Y(2)] = M
(p1)

(1) + Σ12Σ
−1
22 (Y(2) − M

(p2)

(2) ). (4.5.12)

If p1 = 1, then Y(2) will contain p − 1 elements, denoted by Y ′
(2) = (y2, . . . , yp). Letting

E[y1] = m1, we have

E[y1|Y(2)] = m1 + Σ12Σ
−1
22 (Y(2) − M

(p2)

(2) ), p2 = p − 1. (4.5.13)

The conditional expectation (4.5.13) is the best predictor of y1 at the preassigned values
of y2, . . . , yp, where m1 = E[y1]. It will now be shown that Σ12Σ

−1
22 can be expressed

in terms of variances and correlations. Let σ 2
j = σjj = Var(yj ) where Var(·) denotes the
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variance of (·). Note that σij = Cov(yi, yj ) or the covariance between y1 and yj . Letting
ρij be the correlation between yi and yj , we have

Σ12 = [Cov(y1, y2), . . . ,Cov(y1, yp)]
= [σ1σ2ρ12, . . . , σ1σpρ1p].

Then

Σ =

⎡

⎢
⎢
⎢
⎣

σ1σ1 σ1σ2ρ12 · · · σ1σpρ1p
σ2σ1ρ21 σ2σ2 · · · σ2σpρ2p

...
...

. . .
...

σpσ1ρp1 σpσ2ρp2 · · · σpσp

⎤

⎥
⎥
⎥
⎦

, ρij = ρji, ρjj = 1,

for all j . Let D = diag(σ1, . . . , σp) be a diagonal matrix whose diagonal elements are
σ1, . . . , σp, the standard deviations of y1, . . . , yp, respectively. Letting R = (ρij ) = de-
note the correlation matrix wherein ρij is the correlation between yi and yj , we can express
Σ as DRD, that is,

Σ =

⎡

⎢
⎢
⎢
⎣

σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p
...

...
. . .

...

σp1 σp2 · · · σpp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 ρ12 · · · ρ1p
ρ21 1 · · · ρ2p
...

...
. . .

...

ρp1 ρp2 · · · 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp

⎤

⎥
⎥
⎥
⎦

so that
Σ−1 = D−1R−1D−1, p = 2, 3, . . . (4.5.14)

We can then re-express (4.5.13) in terms of variances and correlations since

Σ12Σ
−1
22 = σ1R12D(2)D

−1
(2)R

−1
22 D−1

(2) = σ1R12R
−1
22 D−1

(2)

where D(2) = diag(σ2, . . . , σp) and R is partitioned accordingly. Thus,

E[y1|Y(2)] = m1 + σ1R12R
−1
22 D−1

(2) (Y(2) − M
(p2)

(2) ). (4.5.15)

An interesting particular case occurs when p = 2, as there are then only two real scalar
variables y1 and y2, and

E[y1|y2] = m1 + σ1

σ2
ρ12(y2 − m2), (4.5.16)

which is the regression of y1 on y2 or the best predictor of y1 at a given value of y2.
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4.6. Sampling from a Real Matrix-variate Gaussian Density

Let the p × q matrix Xα = (xijα) have a p × q real matrix-variate Gaussian density
with parameter matrices M, A > O and B > O. When n independently and identically
distributed (iid) matrix random variables that are distributed as Xα are available, we say
that we have a simple random sample of size n from Xα or from the population distributed
asXα. We will consider simple random samples from a p×q matrix-variate Gaussian pop-
ulation in the real and complex domains. Since the procedures are parallel to those utilized
in the vector variable case, we will recall the particulars in connection with that particu-
lar case. Some of the following materials are re-examinations of those already presented
Chap. 3. For q = 1, we have a p-vector which will be denoted by Y1. In our previous
notations, Y1 is the same Y1 for q1 = 1, q2 = 0 and q = 1. Consider a sample of size
n from a population distributed as Y1 and let the p × n sample matrix be denoted by Y.
Then,

Y = [Y1, . . . , Yn] =

⎡

⎢
⎢
⎢
⎣

y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...

yp1 yp2 · · · ypn

⎤

⎥
⎥
⎥
⎦

, Y1 =
⎡

⎢
⎣

y11
...

yp1

⎤

⎥
⎦ .

In this case, the columns of Y, that is, Yj , j = 1, . . . , n, are iid variables, distributed as
Y1. Let an n × 1 column vector whose components are all equal to 1 be denoted by J and
consider

Ȳ = 1

n
YJ = 1

n

⎡

⎢
⎢
⎢
⎣

y11 · · · y1n
y21 · · · y2n
...

. . .
...

yp1 · · · ypn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

ȳ1
ȳ2
...

ȳp

⎤

⎥
⎥
⎥
⎦

where ȳj =
∑n

k=1 yjk

n
denotes the average of the variables, distributed as yj . Let

S = (Y − Ȳ)(Y − Ȳ)′ where the bold-faced Ȳ =

⎡

⎢
⎢
⎢
⎣

ȳ1 · · · ȳ1
ȳ2 · · · ȳ2
...

. . .
...

ȳp · · · ȳp

⎤

⎥
⎥
⎥
⎦

= [Ȳ , . . . , Ȳ ].

Then,

S = (sij ), sij =
n∑

k=1

(yik − ȳi)(yjk − ȳj ) for all i and j. (4.6.1)

This matrix S is known as the sample sum of products matrix or corrected sample sum of
products matrix. Here “corrected” indicates that the deviations are taken from the respec-



Matrix-Variate Gaussian Distribution 277

tive averages ȳ1, . . . , ȳp. Note that 1
n
sij is equal to the sample covariance between yi and

yj and when i = j , it is the sample variance of yi . Observing that

J =
⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ ⇒ JJ ′ =

⎡

⎢
⎢
⎢
⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥
⎥
⎥
⎦

and J ′J = n,

we have

Y
(1

n
JJ ′) = Ȳ ⇒ Y − Ȳ = Y[I − 1

n
JJ ′].

Hence

S = (Y − Ȳ)(Y − Ȳ)′ = Y[I − 1

n
JJ ′][I − 1

n
JJ ′]′Y′.

However,

[I − 1

n
JJ ′][I − 1

n
JJ ′]′ = I − 1

n
JJ ′ − 1

n
JJ ′ + 1

n2
JJ ′JJ ′

= I − 1

n
JJ ′ since J ′J = n.

Thus,

S = Y[I − 1

n
JJ ′]Y′. (4.6.2)

Letting C1 = (I − 1
n
JJ ′), we note that C2

1 = C1 and that the rank of C1 is n − 1.
Accordingly,C1 is an idempotent matrix having n−1 eigenvalues equal to 1, the remaining
one being equal to zero. Now, letting C2 = 1

n
JJ ′, it is easy to verify that C2

2 = C2 and
that the rank of C2 is one; thus, C2 is idempotent with n − 1 eigenvalues equal to zero,
the remaining one being equal to 1. Further, since C1C2 = O, that is, C1 and C2 are
orthogonal to each other, Y − Ȳ = YC1 and Ȳ = YC2 are independently distributed, so
that Y− Ȳ and Ȳ are independently distributed. Consequently, S = (Y− Ȳ)(Y− Ȳ)′ and
Ȳ are independently distributed as well. This will be stated as the next result.

Theorem 4.6.1, 4.6a.1. Let Y1, . . . , Yn be a simple random sample of size n from a p-
variate real Gaussian population having a Np(μ, Σ), Σ > O, distribution. Let Ȳ be the
sample average and S be the sample sum of products matrix; then, Ȳ and S are statistically
independently distributed. In the complex domain, let the Ỹj ’s be iid Np(μ̃, Σ̃), Σ̃ =
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Σ̃∗ > O, and ¯̃
Y and S̃ denote the sample average and sample sum of products matrix;

then, ¯̃
Y and S̃ are independently distributed.

4.6.1. The distribution of the sample sum of products matrix, real case

Reprising the notations of Sect. 4.6, let the p × n matrix Y denote a sample matrix
whose columns Y1, . . . , Yn are iid asNp(μ, Σ), Σ > O, Gaussian vectors. Let the sample
mean be Ȳ = 1

n
(Y1 + · · · + Yn) = 1

n
YJ where J ′ = (1, . . . , 1). Let the bold-faced

matrix Ȳ = [Ȳ , . . . , Ȳ ] = YC1 where C1 = In − 1
n
JJ ′. Note that C1 = In − C2 = C2

1
and C2 = 1

n
JJ ′ = C2

2 , that is, C1 and C2 are idempotent matrices whose respective
ranks are n − 1 and 1. Since C1 = C′

1, there exists an n × n orthonormal matrix P ,
PP ′ = In, P ′P = In, such that P ′C1P = D where

D =
[
In−1 O

O 0

]

= P ′C1P.

Let Y = ZP ′ where Z is p × n. Then, Y = ZP ′ ⇒ YC1 = ZP ′C1 = ZP ′PDP ′ =
ZDP ′, so that

S = (YC1)(YC1)
′ = YC1C

′
1Y

′ = Z

[
In−1 O

O 0

] [
In−1 O

O 0

]

Z′

= (Zn−1, O)(Zn−1, O)′ = Zn−1Z
′
n−1 (4.6.3)

where Zn−1 is a p×(n−1) matrix obtained by deleting the last column of the p×n matrix
Z. Thus, S = Zn−1Z

′
n−1 where Zn−1 contains p(n − 1) distinct real variables. Accord-

ingly, Theorems 4.2.1, 4.2.2, 4.2.3, and the analogous results in the complex domain, are
applicable to Zn−1 as well as to the corresponding quantity Z̃n−1 in the complex case. Ob-
serve that when Y1 ∼ Np(μ, Σ),Y−Ȳ has expected valueM−M = O,M = (μ, . . . , μ).
Hence, Y− Ȳ = (Y−M)− (Ȳ−M) and therefore, without any loss of generality, we can
assume Y1 to be coming from a Np(O, Σ), Σ > O, vector random variable whenever
Y − Ȳ is involved.

Theorem 4.6.2. Let Y, Ȳ , Ȳ, J, C1 and C2 be as defined in this section. Then, the
p × n matrix (Y − Ȳ)J = O, which implies that there exist linear relationships among
the columns of Y. However, all the elements of Zn−1 as defined in (4.6.3) are distinct real
variables. Thus, Theorems 4.2.1, 4.2.2 and 4.2.3 are applicable to Zn−1.

Note that the corresponding result for the complex Gaussian case also holds.
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4.6.2. Linear functions of sample vectors

Let Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, or equivalently, let the Yj ’s constitutes

a simple random sample of size n from this p-variate real Gaussian population. Then, the
density of the p × n sample matrix Y, denoted by L(Y), is the following:

L(Y) = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr[Σ−1(Y−M)(Y−M)′],

whereM = (μ, . . . , μ) is p×n whose columns are all equal to the p×1 parameter vector
μ. Consider a linear function of the sample values Y1, . . . , Yn. Let the linear function be
U = YA where A is an n × q constant matrix of rank q, q ≤ p ≤ n, so that U is p × q.
Let us consider the mgf of U . Since U is p ×q, we employ a q ×p parameter matrix T so
that tr(T U) will contain all the elements in U multiplied by the corresponding parameters.
The mgf of U is then

MU(T ) = E[etr(T U)] = E[etr(TYA)] = E[etr(ATY)]
= etr(ATM)E[etr(AT (Y−M))]

where M = (μ, . . . , μ). Letting W = Σ− 1
2 (Y − M), dY = |Σ | n

2 dW and

MU(T ) = etr(ATM)|Σ | n
2E[etr(AT Σ

1
2 W)]

= etr(ATM)

(2π)
np
2

∫

W

etr(AT Σ
1
2 W)− 1

2 tr(WW ′)dW.

Now, expanding

tr[(W − C)(W − C)′] = tr(WW ′) − 2tr(WC′) + tr(CC′).

and comparing the resulting expression with the exponent in the integrand, which ex-
cluding −1

2 , is tr(WW ′) − 2tr(AT Σ
1
2W), we may let C′ = AT Σ

1
2 so that tr(CC′) =

tr(AT ΣT ′A′) = tr(T ΣT ′A′A). Since tr(ATM) = tr(TMA) and

1

(2π)
np
2

∫

W

e− 1
2 ((W−C)(W−C)′)dW = 1,

we have
MU(T ) = MYA(T ) = etr(TMA)+ 1

2 tr(T ΣT ′A′A)

where MA = E[YA], Σ > O, A′A > O, A being a full rank matrix, and T ΣT ′A′A is
a q × q positive definite matrix. Hence, the p × q matrix U = YA has a matrix-variate
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real Gaussian density with the parameters MA = E[YA] and A′A > O, Σ > O. Thus,
the following result:

Theorem 4.6.3, 4.6a.2. Let Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, or equiva-

lently, let the Yj ’s constitutes a simple random sample of size n from this p-variate real
Gaussian population. Consider a set of linear functions of Y1, . . . , Yn, U = YA where
Y = (Y1, . . . , Yn) is a p × n sample matrix and A is an n × q constant matrix of rank q,
q ≤ p ≤ n. Then, U has a nonsingular p × q matrix-variate real Gaussian distribution
with the parametersMA = E[YA], A′A > O, and Σ > O. Analogously, in the complex
domain, Ũ = ỸA is a p × q-variate complex Gaussian distribution with the correspond-
ing parameters E[ỸA], A∗A > O, and Σ̃ > O, A∗ denoting the conjugate transpose of
A. In the usual format of a p × q matrix-variate Np,q(M, A, B) real Gaussian density, M
is replaced by MA, A, by A′A and B, by Σ , in the real case, with corresponding changes
for the complex case.

A certain particular case turns out to be of interest. Observe thatMA = μ(J ′A), J ′ =
(1, . . . , 1), and that when q = 1, we are considering only one linear combination of
Y1, . . . , Yn in the form U1 = a1Y1+· · ·+anYn, where a1, . . . , an are real scalar constants.
Then J ′A = ∑n

j=1 aj , A′A = ∑n
j=1 a2j , and the p × 1 vector U1 has a p-variate real

nonsingular Gaussian distribution with the parameters (
∑n

j=1 aj )μ and (
∑n

j=1 a2j )Σ . This
result was stated in Theorem 3.5.4.

Corollary 4.6.1, 4.6a.1. Let A as defined in Theorem 4.6.3 be n × 1, in which case
A is a column vector whose components are a1, . . . , an, and the resulting single linear
function of Y1, . . . , Yn is U1 = a1Y1 + · · · + anYn. Let the population be p-variate real
Gaussian with the parameters μ and Σ > O. Then U1 has a p-variate nonsingular real
normal distribution with the parameters (

∑n
j=1 aj )μ and (

∑n
j=1 a2j )Σ . Analogously, in

the complex Gaussian population case, Ũ1 = a1Ỹ1+· · ·+anỸn is distributed as a complex
Gaussian with mean value (

∑n
j=1 aj )μ̃ and covariance matrix (

∑n
j=1 a∗

j aj )Σ̃ . Taking

a1 = · · · = an = 1
n
, U1 = 1

n
(Y1 + · · · + Yn) = Ȳ , the sample average, which has a

p-variate real Gaussian density with the parameters μ and 1
n
Σ . Correspondingly, in the

complex Gaussian case, the sample average ¯̃
Y is a p-variate complex Gaussian vector

with the parameters μ̃ and 1
n
Σ̃, Σ̃ = Σ̃∗ > O.

4.6.3. The general real matrix-variate case

In order to avoid a multiplicity of symbols, we will denote the p×q real matrix-variate
random variable by Xα = (xijα) and the corresponding complex matrix by X̃α = (x̃ijα).
Consider a simple random sample of size n from the population represented by the real
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p × q matrix Xα = (xijα). Let Xα = (xijα) be the α-th sample value, so that the Xα’s,
α = 1, . . . , n, are iid as X1. Let the p × nq sample matrix be denoted by the bold-faced
X = [X1, X2, . . . , Xn] where each Xj is p × q. Let the sample average be denoted by
X̄ = (x̄ij ), x̄ij = 1

n

∑n
α=1 xijα. Let Xd be the sample deviation matrix which is the

p × qn matrix

Xd = [X1 − X̄, X2 − X̄, . . . , Xn − X̄], Xα − X̄ = (xijα − x̄ij ), (4.6.4)

wherein the corresponding sample average is subtracted from each element. For example,

Xα − X̄ =

⎡

⎢
⎢
⎢
⎣

x11α − x̄11 x12α − x̄12 · · · x1qα − x̄1q
x21α − x̄21 x22α − x̄22 · · · x2qα − x̄2q

...
...

. . .
...

xp1α − x̄p1 xp2α − x̄p2 · · · xpqα − x̄pq

⎤

⎥
⎥
⎥
⎦

= [
C1α C2α · · · Cqα

]
(i)

where Cjα is the j -th column in the α-th sample deviation matrix Xα −X̄. In this notation,
the p × qn sample deviation matrix can be expressed as follows:

Xd = [C11, C21, . . . , Cq1, C12, C22, . . . , Cq2, . . . , C1n, C2n, . . . , Cqn] (ii)

where, for example, Cγα denotes the γ -th column in the α-th p × q matrix, Xα − X̄, that
is,

Cγα =

⎡

⎢
⎢
⎢
⎣

x1γα − x̄1γ
x2γα − x̄2γ

...

xpγα − x̄pγ

⎤

⎥
⎥
⎥
⎦

. (iii)

Then, the sample sum of products matrix, denoted by S, is given by

S = XdXd
′ = C11C

′
11 + C21C

′
21 + · · · + Cq1C

′
q1

+ C12C
′
12 + C22C

′
22 + · · · + Cq2C

′
q2

...

+ C1nC
′
1n + C2nC

′
2n + · · · + CqnC

′
qn. (iv)

Let us rearrange these matrices by collecting the terms relevant to each column ofXwhich
are ⎡

⎢
⎢
⎢
⎣

x11
x21
...

xp1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

x12
x22
...

xp2

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

x1q
x2q
...

xpq

⎤

⎥
⎥
⎥
⎦

.
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Then, the terms relevant to these columns are the following:

S = XdXd
′ = C11C

′
11 + C21C

′
21 + · · · + Cq1C

′
q1

+ C12C
′
12 + C22C

′
22 + · · · + Cq2C

′
q2

...

+ C1nC
′
1n + C2nC

′
2n + · · · + CqnC

′
qn

≡ S1 + S2 + · · · + Sq (v)

where S1 denotes the p × p sample sum of products matrix in the first column of X, S2,
the p × p sample sum of products matrix corresponding to the second column of X, and
so on, Sq being equal to the p × p sample sum of products matrix corresponding to the
q-th column of X.

Theorem 4.6.4. Let Xα = (xijα) be a real p × q matrix of distinct real scalar variables
xijα’s. Letting Xα, X̄, X, Xd, S, and S1, . . . , Sq be as previously defined, the sample
sum of products matrix in the p × nq sample matrix X, denoted by S, is given by

S = S1 + · · · + Sq. (4.6.5)

Example 4.6.1. Consider a 2×2 real matrix-variate N2,2(O, A, B) distribution with the
parameters

A =
[
2 1
1 1

]

and B =
[

3 −1
−1 2

]

.

Let Xα, α = 1, . . . , 5, be a simple random sample of size 5 from this real Gaussian
population. Suppose that the following observations on Xα, α = 1, . . . , 5, were obtained:

X1 =
[
1 1
1 2

]

, X2 =
[−1 1
−2 1

]

, X3 =
[
0 1
1 2

]

X4 =
[−1 1

1 2

]

, X5 =
[−4 1
−1 −2

]

.

Compute the sample matrix, the sample average, the sample deviation matrix and the sam-
ple sum of products matrix.
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Solution 4.6.1. The sample average is available as

X̄ = 1

5
[X1 + · · · + X5]

= 1

5

[
1 + (−1) + 0 + (−1) + (−4) 1 + 1 + 1 + 1 + 1
1 + (−2) + 1 + 1 + (−1) 2 + 1 + 2 + 2 + (−2)

]

=
[−1 1

0 1

]

.

The deviations are then

X1d = X1 − X̄ =
[
1 1
1 2

]

−
[−1 1

0 1

]

=
[
2 0
1 1

]

, X2d =
[

0 0
−2 0

]

X3d =
[
1 0
1 1

]

, X4d =
[
0 0
1 1

]

, X5d =
[−3 0
−1 −3

]

.

Thus, the sample matrix, the sample average matrix and the sample deviation matrix, de-
noted by bold-faced letters, are the following:

X = [X1, X2, X3, X4, X5], X̄ = [X̄, . . . , X̄] and Xd = [X1d, X2d, X3d, X4d, X5d].
The sample sum of products matrix is then

S = [X − X̄][X − X̄]′ = [Xd][Xd]′ = S1 + S2

where S1 is obtained from the first columns of each of Xαd, α = 1, . . . , 5, and S2 is
evaluated from the second columns of Xαd, α = 1, . . . , 5. That is,

S1 =
[
2
1

]

[2 1] +
[

0
−2

]

[0 − 2] +
[
1
1

]

[1 1] +
[
0
1

]

[0 1] +
[−3
−1

]

[−3 − 1]

=
[
4 2
2 1

]

+
[
0 0
0 4

]

+
[
1 1
1 1

]

+
[
0 0
0 1

]

+
[
9 3
3 1

]

=
[
14 6
6 8

]

;

S2 =
[
0
1

]

[0 1] +
[
0
0

]

[0 0] +
[
0
1

]

[0 1] +
[
0
1

]

[0 1] +
[

0
−3

]

[0 − 3]

=
[
0 0
0 1

]

+ O +
[
0 0
0 1

]

+
[
0 0
0 1

]

+
[
0 0
0 9

]

=
[
0 0
0 12

]

;

S = S1 + S2 =
[
14 6
6 20

]

.

This S can be directly verified by taking [X − X̄][X − X̄]′ = [Xd][Xd]′ = where

X − X̄ = Xd =
[
2 0 0 0 1 0 0 0 −3 0
1 1 −2 0 1 1 1 1 −1 −3

]

, S = XdX′
d .
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4.6a. The General Complex Matrix-variate Case

The preceding analysis has its counterpart for the complex case. Let X̃α = (x̃ijα)

be a p × q matrix in the complex domain with the x̃ijα’s being distinct complex scalar
variables. Consider a simple random sample of size n from this population designated by
X̃1. Let the α-th sample matrix be X̃α, α = 1, . . . , n, the X̃α’s being iid as X̃1, and the
p × nq sample matrix be denoted by the bold-faced X̃ = [X̃1, . . . , X̃n]. Let the sample

average be denoted by ¯̃
X = ( ¯̃xij ) , ¯̃xij = 1

n

∑n
α=1 x̃ijα, and X̃d be the sample deviation

matrix:
X̃d = [X̃1 − ¯̃

X, . . . , X̃n − ¯̃
X].

Let S̃ be the sample sum of products matrix, namely, S̃ = X̃dX̃∗
d where an asterisk de-

notes the complex conjugate transpose and let S̃j be the sample sum of products matrix
corresponding to the j -th column of X̃. Then we have the following result:

Theorem 4.6a.3. Let X̃,
¯̃
X, X̃d, S̃ and S̃j be as previously defined. Then,

S̃ = S̃1 + · · · + S̃q = X̃dX̃∗
d . (4.6a.1)

Example 4.6a.1. Consider a 2 × 2 complex matrix-variate Ñ2,2(O, A, B) distribution
where

A =
[

2 1 + i

1 − i 3

]

and B =
[

2 i

−1 2

]

.

A simple random sample of size 4 from this population is available, that is, X̃α
iid∼

Ñ2,2(O, A, B), α = 1, 2, 3, 4. The following are one set of observations on these sample
values:

X̃1 =
[

2 i

−i 1

]

, X̃2 =
[
3 −i

i 1

]

, X̃3 =
[

1 1 − i

1 + i 3

]

, X̃4 =
[

2 3 + i

3 − i 7

]

.

Determine the observed sample average, the sample matrix, the sample deviation matrix
and the sample sum of products matrix.

Solution 4.6a.1. The sample average is

¯̃
X = 1

4
[X̃1 + X̃2 + X̃3 + X̃4]

= 1

4

{[
2 i

−i 1

]

+
[
3 −i

i 1

]

+
[

1 1 − i

1 + i 3

]

+
[

2 3 + i

3 − i 7

]}

=
[
2 1
1 3

]
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and the deviations are as follows:

X̃1d = X̃1 − ¯̃
X =

[
0 −1 + i

−1 − i −2

]

, X̃2d =
[

1 −1 − i

−1 + i −2

]

,

X̃3d =
[−1 −i

i 0

]

, X̃4d =
[

0 2 + i

2 − i 4

]

.

The sample deviation matrix is then X̃d = [X̃1d, X̃2d, X̃3d, X̃4d]. If Vα1 denotes the first
column of X̃αd , then with our usual notation, S̃1 = ∑4

j=1 Vα1V
∗
α1 and similarly, if Vα2 is

the second column of X̃αd, then S̃2 = ∑4
α=1 Vα2V

∗
α2 , the sample sum of products matrix

being S̃ = S̃1 + S̃2. Let us evaluate these quantities:

S̃1=
[

0
−1 − i

]

[0 − 1 + i]+
[

1
−1 + i

]

[1 − 1 − i]+
[−1

i

]

[−1 − i]+
[

0
2 − i

]

[0 2 + i]

=
[
0 0
0 2

]

+
[

1 −1 − i

−1 + i 2

]

+
[

1 i

−i 1

]

+
[
0 0
0 5

]

=
[
2 −1

−1 10

]

,

S̃2 =
[−1 + i

−2

]

[−1 − i − 2] +
[−1 − i

−2

]

[−1 + i − 2] +
[−i

0

]

[i 0] +
[
2 + i

4

]

[2 − i 4]

=
[

2 2 − 2i
2 + 2i 4

]

+
[

2 2 + 2i
2 − 2i 4

]

+
[
1 0
0 0

]

+
[

5 8 + 4i
8 − 4i 16

]

=
[

10 12 + 4i
12 − 4i 24

]

,

and then,

S̃ = S̃1 + S̃2 =
[

2 −1
−1 10

]

+
[

10 12 + 4i
12 − 4i 24

]

=
[

12 11 + 4i
11 − 4i 34

]

.

This can also be verified directly as S̃ = [X̃d][X̃d]∗ where the deviation matrix is

X̃d =
[

0 −1 + i 1 −1 − i −1 −i 0 2 + i

−i − 1 −2 −1 + i −2 i 0 2 − i 4

]

.

As expected,

[X̃d][X̃d]∗ =
[

12 11 + 4i
11 − 4i 34

]

.

This completes the calculations.
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Exercises 4.6

4.6.1. Let A be a 2× 2 matrix whose first row is (1, 1) and B be 3× 3 matrix whose first
row is (1, −1, 1). Select your own real numbers to complete the matrices A and B so that
A > O and B > O. Then consider a 2×3 matrix X having a real matrix-variate Gaussian
density with the location parameter M = O and the foregoing parameter matrices A and
B. Let the first row of X be X1 and its second row be X2. Determine the marginal densities
of X1 and X2, the conditional density of X1 given X2, the conditional density of X2 given
X1, the conditional expectation of X1 given X2 = (1, 0, 1) and the conditional expectation
of X2 given X1 = (1, 2, 3).

4.6.2. Consider the matrix X utilized in Exercise 4.6.1. Let its first two columns be Y1

and its last one be Y2. Then, obtain the marginal densities of Y1 and Y2, and the conditional
densities of Y1 given Y2 and Y2 given Y1, and evaluate the conditional expectation of Y1

given Y ′
2 = (1, −1) as well as the conditional expectation of Y2 given Y1 =

[
1 1
1 2

]

.

4.6.3. Let A > O and B > O be 2× 2 and 3× 3 matrices whose first rows are (1, 1− i)

and (2, i, 1+ i), respectively. Select your own complex numbers to complete the matrices
A = A∗ > O and B = B∗ > O. Now, consider a 2 × 3 matrix X̃ having a complex
matrix-variate Gaussian density with the aforementioned matrices A and B as parameter
matrices. Assume that the location parameter is a null matrix. Letting the row partitioning
of X̃, denoted by X̃1, X̃2, be as specified in Exercise 4.6.1, answer all the questions posed
in that exercise.

4.6.4. Let A, B and X̃ be as given in Exercise 4.6.3. Consider the column partitioning
specified in Exercise 4.6.2. Then answer all the questions posed in Exercise 4.6.2.

4.6.5. Repeat Exercise 4.6.4 with the non-null location parameter

M̃ =
[

2 1 − i i

1 + i 2 + i −3i

]

.

4.7. The Singular Matrix-variate Gaussian Distribution

Consider the moment generating function specified in (4.3.3) for the real case, namely,

MX(T ) = Mf (T ) = etr(T M ′)+ 1
2 tr(Σ1T Σ2T

′) (4.7.1)

where Σ1 = A−1 > O and Σ2 = B−1 > O. In the complex case, the moment generating
function is of the form

M̃X̃(T̃ ) = e�[tr(T̃ M̃∗)]+ 1
4 tr(Σ1T̃ Σ2T̃

∗). (4.7a.1)
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The properties of the singular matrix-variate Gaussian distribution can be studied by mak-
ing use of (4.7.1) and (4.7a.1). Suppose that we restrict Σ1 and Σ2 to be positive semi-
definite matrices, that is, Σ1 ≥ O and Σ2 ≥ O. In this case, one can also study many
properties of the distributions represented by the mgf’s given in (4.7.1) and (4.7a.1); how-
ever, the corresponding densities will not exist unless the matrices Σ1 and Σ2 are both
strictly positive definite. The p × q real or complex matrix-variate density does not ex-
ist if at least one of A or B is singular. When either or both Σ1 and Σ2 are only positive
semi-definite, the distributions corresponding to the mgf’s specified by (4.7.1) and (4.7a.1)
are respectively referred to as real matrix-variate singular Gaussian and complex matrix-
variate singular Gaussian.

For instance, let

Σ1 =
[
4 2
2 1

]

and Σ2 =
⎡

⎣
3 −1 0

−1 2 1
0 1 1

⎤

⎦

in the mgf of a 2 × 3 real matrix-variate Gaussian distribution. Note that Σ1 = Σ ′
1 and

Σ2 = Σ ′
2. Since the leading minors of Σ1 are |(4)| = 4 > 0 and |Σ1| = 0 and those

of Σ2 are |(3)| = 3 > 0,

∣
∣
∣
∣
3 −1

−1 2

∣
∣
∣
∣ = 5 > 0 and |Σ2| = 2 > 0, Σ1 is positive

semi-definite and Σ2 is positive definite. Accordingly, the resulting Gaussian distribution
does not possess a density. Fortunately, its distributional properties can nevertheless be
investigated via its associated moment generating function.
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