
Chapter 3
The Multivariate Gaussian
and Related Distributions

3.1. Introduction

Real scalar mathematical as well as random variables will be denoted by lower-case
letters such as x, y, z, and vector/matrix variables, whether mathematical or random, will
be denoted by capital letters such as X, Y, Z, in the real case. Complex variables will
be denoted with a tilde: x̃, ỹ, X̃, Ỹ , for instance. Constant matrices will be denoted by
A, B, C, and so on. A tilde will be placed above constant matrices only if one wishes
to stress the point that the matrix is in the complex domain. Equations will be numbered
chapter and section-wise. Local numbering will be done subsection-wise. The determinant
of a square matrix A will be denoted by |A| or det(A) and, in the complex case, the
absolute value of the determinant of A will be denoted as |det(A)|. Observe that in the
complex domain, det(A) = a + ib where a and b are real scalar quantities, and then,
|det(A)|2 = a2 + b2.

Multivariate usually refers to a collection of scalar variables. Vector/matrix variable
situations are also of the multivariate type but, in addition, the positions of the variables
must also be taken into account. In a function involving a matrix, one cannot permute its
elements since each permutation will produce a different matrix. For example,

X =
[
x11 x12
x21 x22

]
, Y =

[
y11 y12 y13
y21 y22 y23

]
, X̃ =

[
x̃11 x̃12
x̃12 x̃22

]

are all multivariate cases but the elements or the individual variables must remain at the
set positions in the matrices.

The definiteness of matrices will be needed in our discussion. Definiteness is defined
and discussed only for symmetric matrices in the real domain and Hermitian matrices in
the complex domain. Let A = A′ be a real p × p matrix and Y be a p × 1 real vector,
Y ′ denoting its transpose. Consider the quadratic form Y ′AY , A = A′, for all possible Y

excluding the null vector, that is, Y �= O. We say that the real quadratic form Y ′AY as well
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as the real matrix A = A′ are positive definite, which is denoted A > O, if Y ′AY > 0, for
all possible non-null Y . Letting A = A′ be a real p × p matrix, if for all real p × 1 vector
Y �= O,

Y ′AY > 0, A > O (positive definite)

Y ′AY ≥ 0, A ≥ O (positive semi-definite) (3.1.1)

Y ′AY < 0, A < O (negative definite)

Y ′AY ≤ 0, A ≤ O (negative semi-definite).

All the matrices that do not belong to any one of the above categories are said to be
indefinite matrices, in which case A will have both positive and negative eigenvalues. For
example, for some Y , Y ′AY may be positive and for some other values of Y , Y ′AY may
be negative. The definiteness of Hermitian matrices can be defined in a similar manner. A
square matrix A in the complex domain is called Hermitian if A = A∗ where A∗ means
the conjugate transpose of A. Either the conjugates of all the elements of A are taken and
the matrix is then transposed or the matrix A is first transposed and the conjugate of each
of its elements is then taken. If z̃ = a + ib, i = √

(−1) and a, b real scalar, then the
conjugate of z̃, conjugate being denoted by a bar, is ¯̃z = a − ib, that is, i is replaced by
−i. For instance, since

B =
[

2 1 + i

1 − i 5

]
⇒ B̄ =

[
2 1 − i

1 + i 5

]
⇒ (B̄)′ = B̄ ′ =

[
2 1 + i

1 − i 5

]
= B∗,

B = B∗, and thus the matrix B is Hermitian. In general, if X̃ is a p × p matrix, then,
X̃ can be written as X̃ = X1 + iX2 where X1 and X2 are real matrices and i = √

(−1).
And if X̃ = X∗ then X̃ = X1 + iX2 = X∗ = X′

1 − iX′
2 or X1 is symmetric and X2

is skew symmetric so that all the diagonal elements of a Hermitian matrix are real. The
definiteness of a Hermitian matrix can be defined parallel to that in the real case. Let
A = A∗ be a Hermitian matrix. In the complex domain, definiteness is defined only for
Hermitian matrices. Let Y �= O be a p × 1 non-null vector and let Y ∗ be its conjugate
transpose. Then, consider the Hermitian form Y ∗AY, A = A∗. If Y ∗AY > 0 for all
possible non-null Y �= O, the Hermitian form Y ∗AY, A = A∗ as well as the Hermitian
matrix A are said to be positive definite, which is denoted A > O. Letting A = A∗, if for
all non-null Y ,

Y ∗AY > 0, A > O (Hermitian positive definite)

Y ∗AY ≥ 0, A ≥ O (Hermitian positive semi-definite)

Y ∗AY < 0, A < O (Hermitian negative definite) (3.1.2)

Y ∗AY ≤ 0, A ≤ O (Hermitian negative semi-definite),
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and when none of the above cases applies, we have indefinite matrices or indefinite Her-
mitian forms.

We will also make use of properties of the square root of matrices. If we were to define
the square root of A as B such as B2 = A, there would then be several candidates for B.
Since a multiplication of A with A is involved, A has to be a square matrix. Consider the
following matrices

A1 =
[
1 0
0 1

]
, A2 =

[−1 0
0 1

]
, A3 =

[
1 0
0 −1

]
,

A4 =
[−1 0

0 −1

]
, A5 =

[
0 1
1 0

]
,

whose squares are all equal to I2. Thus, there are clearly several candidates for the square
root of this identity matrix. However, if we restrict ourselves to the class of positive def-
inite matrices in the real domain and Hermitian positive definite matrices in the complex
domain, then we can define a unique square root, denoted by A

1
2 > O.

For the various Jacobians used in this chapter, the reader may refer to Chap. 1, further
details being available from Mathai (1997).

3.1a. The Multivariate Gaussian Density in the Complex Domain

Consider the complex scalar random variables x̃1, . . . , x̃p. Let x̃j = xj1 + ixj2 where
xj1, xj2 are real and i = √

(−1). Let E[xj1] = μj1, E[xj2] = μj2 and E[x̃j ] =
μj1 + iμj2 ≡ μ̃j . Let the variances be as follows: Var(xj1) = σ 2

j1,Var(xj2) = σ 2
j2. For a

complex variable, the variance is defined as follows:

Var(x̃j ) = E[x̃j − E(x̃j )][x̃j − E(x̃j )]∗
= E[(xj1 − μj1) + i(xj2 − μj2)][(xj1 − μj1) − i(xj2 − μj2)]
= E[(xj1 − μj1)

2 + (xj2 − μj2)
2] = Var(xj1) + Var(xj2) = σ 2

j1 + σ 2
j2

≡ σ 2
j .

A covariance matrix associated with the p × 1 vector X̃ = (x̃1, . . . , x̃p)′ in the complex
domain is defined as Cov(X̃) = E[X̃ − E(X̃)][X̃ − E(X̃)]∗ ≡ Σ with E(X̃) ≡ μ̃ =
(μ̃1, . . . , μ̃p)′. Then we have

Σ = Cov(X̃) =

⎡
⎢⎢⎢⎣

σ 2
1 σ12 . . . σ1p

σ21 σ 2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ 2
p

⎤
⎥⎥⎥⎦
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where the covariance between x̃r and x̃s , two distinct elements in X̃, requires explanation.
Let x̃r = xr1 + ixr2 and x̃s = xs1 + ixs2 where xr1, xr2, xs1, xs2 are all real. Then, the
covariance between x̃r and x̃s is

Cov(x̃r , x̃s) = E[x̃r − E(x̃r)][x̃s − E(x̃s)]∗ = Cov[(xr1 + ixr2), (xs1 − ixs2)]
= Cov(xr1, xs1) + Cov(xr2, xs2) + i[Cov(xr2, xs1) − Cov(xr1, xs2) = σrs].

Note that none of the individual covariances on the right-hand side need be equal to each
other. Hence, σrs need not be equal to σsr . In terms of vectors, we have the following: Let
X̃ = X1 + iX2 where X1 and X2 are real vectors. The covariance matrix associated with
X̃, which is denoted by Cov(X̃), is

Cov(X̃) = E([X̃ − E(X̃)][X̃ − E(X̃)]∗)
= E([(X1 − E(X1)) + i(X2 − E(X2))][(X′

1 − E(X′
1)) − i(X′

2 − E(X′
2))])

= Cov(X1, X1) + Cov(X2, X2) + i[Cov(X2, X1) − Cov(X1, X2)]
≡ Σ11 + Σ22 + i[Σ21 − Σ12]

where Σ12 need not be equal to Σ21. Hence, in general, Cov(X1, X2) need not be equal to
Cov(X2, X1). We will denote the whole configuration as Cov(X̃) = Σ and assume it to be
Hermitian positive definite. We will define the p-variate Gaussian density in the complex
domain as the following real-valued function:

f (X̃) = 1

πp|det(Σ)|e
−(X̃−μ̃)∗Σ−1(X̃−μ̃) (3.1a.1)

where |det(Σ)| denotes the absolute value of the determinant of Σ . Let us verify that the
normalizing constant is indeed 1

πp|det(Σ)| . Consider the transformation Ỹ = Σ− 1
2 (X̃ − μ̃)

which gives dX̃ = [det(ΣΣ∗)] 12 dỸ = |det(Σ)|dỸ in light of (1.6a.1). Then |det(Σ)| is
canceled and the exponent becomes −Ỹ ∗Ỹ = −[|ỹ1|2 + · · · + |ỹp|2]. But

∫
ỹj

e−|ỹj |2dỹj =
∫ ∞

−∞

∫ ∞

−∞
e−(y2j1+y2j2)dyj1 ∧ dyj2 = π, ỹj = yj1 + iyj2, (i)

which establishes the normalizing constant. Let us examine the mean value and the covari-
ance matrix of X̃ in the complex case. Let us utilize the same transformation,Σ− 1

2 (X̃−μ̃).
Accordingly,

E[X̃] = μ̃ + E[(X̃ − μ̃)] = μ̃ + Σ
1
2E[Ỹ ].
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However,

E[Ỹ ] = 1

πp

∫
Ỹ

Ỹ e−Ỹ ∗ỸdỸ ,

and the integrand has each element in Ỹ producing an odd function whose integral con-
verges, so that the integral over Ỹ is null. Thus, E[X̃] = μ̃, the first parameter appearing
in the exponent of the density (3.1a.1). Now the covariance matrix in X̃ is the following:

Cov(X̃) = E([X̃ − E(X̃)][X̃ − E(X̃)]∗) = Σ
1
2E[Ỹ Ỹ ∗]Σ 1

2 .

We consider the integrand in E[Ỹ Ỹ ∗] and follow steps parallel to those used in the real
case. It is a p × p matrix where the non-diagonal elements are odd functions whose in-
tegrals converge and hence each of these elements will integrate out to zero. The first
diagonal element in Ỹ Ỹ ∗ is |ỹ1|2. Its associated integral is

∫
. . .

∫
|ỹ1|2e−(|ỹ1|2+···+|ỹp|2)dỹ1 ∧ . . . ∧ dỹp

=
{ p∏

j=2

e−|ỹj |2dỹj

} ∫
ỹ1

|ỹ1|2e−|ỹ1|2dỹ1.

From (i), ∫
ỹ1

|ỹ1|2e−|ỹ1|2dỹ1 = π;
p∏

j=2

∫
ỹj

e−|ỹj |2dỹj = πp−1,

where |ỹ1|2 = y2
11 + y2

12, ỹ1 = y11 + iy12, i = √
(−1), and y11, y12 real. Let y11 =

r cos θ, y12 = r sin θ ⇒ dy11 ∧ dy12 = r dr ∧ dθ and

∫
ỹ1

|ỹ1|2e−|ỹ1|2dỹ1 =
( ∫ ∞

r=0
r(r2)e−r2dr

)( ∫ 2π

θ=0
dθ
)
, (letting u = r2)

= (2π)
(1
2

∫ ∞

0
ue−udu

)
= (2π)

(1
2

)
= π.

Thus the first diagonal element in Ỹ Ỹ ∗ integrates out to πp and, similarly, each diagonal
element will integrate out to πp, which is canceled by the term πp present in the normal-
izing constant. Hence the integral over Ỹ Ỹ ∗ gives an identity matrix and the covariance
matrix of X̃ is Σ , the other parameter appearing in the density (3.1a.1). Hence the two
parameters therein are the mean value vector and the covariance matrix of X̃.
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Example 3.1a.1. Consider the matrixΣ and the vector X̃ with expected valueE[X̃] = μ̃

as follows:

Σ =
[

2 1 + i

1 − i 3

]
, X̃ =

[
x̃1
x̃2

]
, E[X̃] =

[
1 + 2i
2 − i

]
= μ̃.

Show that Σ is Hermitian positive definite so that it can be a covariance matrix of X̃,
that is, Cov(X̃) = Σ . If X̃ has a bivariate Gaussian distribution in the complex domain;
X̃ ∼ Ñ2(μ̃, Σ), Σ > O, then write down (1) the exponent in the density explicitly; (2)
the density explicitly.

Solution 3.1a.1. The transpose and conjugate transpose of Σ are

Σ ′ =
[

2 1 − i

1 + i 3

]
, Σ∗ = Σ̄ ′ =

[
2 1 + i

1 − i 3

]
= Σ

and hence Σ is Hermitian. The eigenvalues of Σ are available from the equation

(2 − λ)(3 − λ) − (1 − i)(1 + i) = 0 ⇒ λ2 − 5λ + 4 = 0

⇒ (λ − 4)(λ − 1) or λ1 = 4, λ2 = 1.

Thus, the eigenvalues are positive [the eigenvalues of a Hermitian matrix will always
be real]. This property of eigenvalues being positive, combined with the property that Σ

is Hermitian proves that Σ is Hermitian positive definite. This can also be established
from the leading minors of Σ . The leading minors are det((2)) = 2 > 0 and det(Σ) =
(2)(3) − (1 − i)(1 + i) = 4 > 0. Since Σ is Hermitian and its leading minors are all
positive, Σ is positive definite. Let us evaluate the inverse by making use of the formula
Σ−1 = 1

det(Σ)
(Cof(Σ))′ where Cof(Σ) represents the matrix of cofactors of the elements

in Σ . [These formulae hold whether the elements in the matrix are real or complex]. That
is,

Σ−1 = 1

4

[
3 −(1 + i)

−(1 − i) 2

]
, Σ−1Σ = I. (ii)

The exponent in a bivariate complex Gaussian density being −(X̃ − μ̃)∗ Σ−1(X̃ − μ̃), we
have

−(X̃ − μ̃)∗ Σ−1(X̃ − μ̃) = −1

4
{3 [x̃1 − (1 + 2i)]∗[x̃1 − (1 + 2i)]

− (1 + i) [x̃1 − (1 + 2i)]∗[x̃2 − (2 − i)]
− (1 − i) [x̃2 − (2 − i)]∗[x̃1 − (1 + 2i)]
+ 2 [x̃2 − (2 − i)]∗[x̃2 − (2 − i)]}. (iii)
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Thus, the density of the Ñ2(μ̃, Σ) vector whose components can assume any complex
value is

f (X̃) = e−(X̃−μ̃)∗ Σ−1(X̃−μ̃)

4π2
(3.1a.2)

where Σ−1 is given in (ii) and the exponent, in (iii).

Exercises 3.1

3.1.1. Construct a 2×2 Hermitian positive definite matrix A and write down a Hermitian
form with this A as its matrix.

3.1.2. Construct a 2 × 2 Hermitian matrix B where the determinant is 4, the trace is 5,
and first row is 2, 1 + i. Then write down explicitly the Hermitian form X∗BX.

3.1.3. Is B in Exercise 3.1.2 positive definite? Is the Hermitian form X∗BX positive
definite? Establish the results.

3.1.4. Construct two 2 × 2 Hermitian matrices A and B such that AB = O (null), if that
is possible.

3.1.5. Specify the eigenvalues of the matrix B in Exercise 3.1.2, obtain a unitary matrix
Q, QQ∗ = I, Q∗Q = I such that Q∗BQ is diagonal and write down the canonical form
for a Hermitian form X∗BX = λ1|y1|2 + λ2|y2|2.
3.2. The Multivariate Normal or Gaussian Distribution, Real Case

Wemay define a real p-variate Gaussian density via the following characterization: Let
x1, .., xp be real scalar variables and X be a p × 1 vector with x1, . . . , xp as its elements,
that is, X′ = (x1, . . . , xp). Let L′ = (a1, . . . , ap) where a1, . . . , ap are arbitrary real
scalar constants. Consider the linear function u = L′X = X′L = a1x1 + · · · + apxp.
If, for all possible L, u = L′X has a real univariate Gaussian distribution, then the
vector X is said to have a multivariate Gaussian distribution. For any linear function
u = L′X, E[u] = L′E[X] = L′μ, μ′ = (μ1, . . . , μp), μj = E[xj ], j = 1, . . . , p,
and Var(u) = L′ΣL, Σ = Cov(X) = E[X − E(X)][X − E(X)]′ in the real case. If u is
univariate normal then its mgf, with parameter t , is the following:

Mu(t) = E[etu] = etE(u)+ t2
2 Var(u) = etL′μ+ t2

2 L′ΣL.

Note that tL′μ + t2

2 L′ΣL = (tL)′μ + 1
2(tL)′Σ(tL) where there are p parameters

a1, . . . , ap when the aj ’s are arbitrary. As well, tL contains only p parameters as, for
example, taj is a single parameter when both t and aj are arbitrary. Then,
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Mu(t) = MX(tL) = e(tL)′μ+ 1
2 (tL)′Σ(tL) = eT ′μ+ 1

2T ′ΣT = MX(T ), T = tL. (3.2.1)

Thus, when L is arbitrary, the mgf of u qualifies to be the mgf of a p-vector X. The density
corresponding to (3.2.1) is the following, when Σ > O:

f (X) = c e− 1
2 (X−μ)′Σ−1(X−μ), −∞ < xj < ∞, −∞ < μj < ∞, Σ > O

for j = 1, . . . , p. We can evaluate the normalizing constant c when f (X) is a density, in
which case the total integral is unity. That is,

1 =
∫

X

f (X)dX =
∫

X

c e− 1
2 (X−μ)′Σ−1(X−μ)dX.

Let Σ− 1
2 (X − μ) = Y ⇒ dY = |Σ |− 1

2 d(X − μ) = |Σ |− 1
2 dX since μ is a constant. The

Jacobian of the transformation may be obtained from Theorem 1.6.1. Now,

1 = c|Σ | 12
∫

Y

e− 1
2Y ′YdY.

But Y ′Y = y2
1+· · ·+y2

p where y1, . . . , yp are the real elements in Y and
∫∞
−∞ e− 1

2y2j dyj =√
2π . Hence

∫
Y
e− 1

2Y ′YdY = (
√
2π)p. Then c = [|Σ | 12 (2π)

p
2 ]−1 and the p-variate real

Gaussian or normal density is given by

f (X) = 1

|Σ | 12 (2π)
p
2

e− 1
2 (X−μ)′Σ−1(X−μ) (3.2.2)

for Σ > O, −∞ < xj < ∞, −∞ < μj < ∞, j = 1, . . . , p. The density (3.2.2) is
called the nonsingular normal density in the real case—nonsingular in the sense that Σ is
nonsingular. In fact, Σ is also real positive definite in the nonsingular case. When Σ is
singular, we have a singular normal distribution which does not have a density function.
However, in the singular case, all the properties can be studied with the help of the asso-
ciated mgf which is of the form in (3.2.1), as the mgf exists whether Σ is nonsingular or
singular.

We will use the standard notation X ∼ Np(μ, Σ) to denote a p-variate real normal or
Gaussian distribution with mean value vector μ and covariance matrix Σ . If it is nonsingu-
lar real Gaussian, we write Σ > O; if it is singular normal, then we specify |Σ | = 0. If we
wish to combine the singular and nonsingular cases, we write X ∼ Np(μ, Σ), Σ ≥ O.
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What are the mean value vector and the covariance matrix of a real p-Gaussian vector
X?

E[X] = E[X − μ] + E[μ] = μ +
∫

X

(X − μ)f (X)dX

= μ + 1

|Σ | 12 (2π)
p
2

∫
X

(X − μ) e− 1
2 (X−μ)′Σ−1(X−μ)dX

= μ + Σ
1
2

(2π)
p
2

∫
Y

Y e− 1
2Y ′YdY, Y = Σ− 1

2 (X − μ).

The expected value of a matrix is the matrix of the expected value of every element in the
matrix. The expected value of the component yj of Y ′ = (y1, . . . , yp) is

E[yj ] = 1√
2π

∫ ∞

−∞
yje

− 1
2y2j dyj

{ p∏
i �=j=1

1√
2π

∫ ∞

−∞
e− 1

2y2i dyi

}
.

The product is equal to 1 and the first integrand being an odd function of yj , it is equal to
0 since integral is convergent. Thus, E[Y ] = O (a null vector) and E[X] = μ, the first
parameter appearing in the exponent of the density. Now, consider the covariance matrix
of X. For a vector real X,

Cov(X) = E[X − E(X)][X − E(X)]′ = E[(X − μ)(X − μ)′]
= 1

|Σ | 12 (2π)
p
2

∫
X

(X − μ)(X − μ)′e− 1
2 (X−μ)′Σ−1(X−μ)dX

= 1

(2π)
p
2
Σ

1
2

[ ∫
Y

YY ′e− 1
2Y ′YdY

]
Σ

1
2 , Y = Σ− 1

2 (X − μ).

But

YY ′ =
⎡
⎢⎣

y1
...

yp

⎤
⎥⎦ [y1, . . . , yp] =

⎡
⎢⎢⎢⎣

y2
1 y1y2 · · · y1yp

y2y1 y2
2 · · · y2yp

...
...

. . .
...

ypy1 ypy2 · · · y2
p

⎤
⎥⎥⎥⎦ .

The non-diagonal elements are linear in each variable yi and yj , i �= j and hence the inte-
grals over the non-diagonal elements will be equal to zero due to a property of convergent
integrals over odd functions. Hence we only need to consider the diagonal elements. When
considering y1, the integrals over y2, . . . , yp will give the following:∫ ∞

−∞
e− 1

2y2j dyj = √
2π, j = 2, . . . , p ⇒ (2π)

p−1
2
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and hence we are left with

1√
2π

∫ ∞

−∞
y2
1e

− 1
2y21 dy1 = 2√

2π

∫ ∞

0
y2
1e

− 1
2y21 dy1

due to evenness of the integrand, the integral being convergent. Let u = y2
1 so that y1 = u

1
2

since y1 > 0. Then dy1 = 1
2u

1
2−1du. The integral is available as Γ (32)2

3
2 = 1

2Γ (12)2
3
2 =√

2π since Γ (12) = √
π , and the constant is canceled leaving 1. This shows that each

diagonal element integrates out to 1 and hence the integral over YY ′ is the identity matrix
after absorbing (2π)−

p
2 . Thus Cov(X) = Σ

1
2Σ

1
2 = Σ the inverse of which is the other

parameter appearing in the exponent of the density. Hence the two parameters are

μ =E[X] and Σ = Cov(X). (3.2.3)

The bivariate case
When p = 2, we obtain the bivariate real normal density from (3.2.2), which is denoted
by f (x1, x2). Note that when p = 2,

(X − μ)′Σ−1(X − μ) = (x1 − μ1, x2 − μ2) Σ−1
(

x1 − μ1

x2 − μ2

)
,

Σ =
(

σ11 σ12
σ21 σ22

)
=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
,

where σ 2
1 = Var(x1) = σ11, σ 2

2 = Ver(x2) = σ22, σ12 = Cov(x1, x2) = σ1σ2ρ where ρ

is the correlation between x1 and x2, and ρ, in general, is defined as

ρ = Cov(x1, x2)√
Var(x1)Var(x2)

= σ12

σ1σ2
, σ1 �= 0, σ2 �= 0,

which means that ρ is defined only for non-degenerate random variables, or equivalently,
that the probability mass of either variable should not lie at a single point. This ρ is a scale-
free covariance, the covariance measuring the joint variation in (x1, x2) corresponding to
the square of scatter, Var(x), in a real scalar random variable x. The covariance, in general,
depends upon the units of measurements of x1 and x2, whereas ρ is a scale-free pure
coefficient. This ρ does not measure relationship between x1 and x2 for −1 < ρ < 1.
But for ρ = ±1 it can measure linear relationship. Oftentimes, ρ is misinterpreted as
measuring any relationship between x1 and x2, which is not the case as can be seen from
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the counterexamples pointed out in Mathai and Haubold (2017). If ρx,y is the correlation
between two real scalar random variables x and y and if u = a1x + b1 and v = a2y + b2
where a1 �= 0, a2 �= 0 and b1, b2 are constants, then ρu,v = ±ρx,y . It is positive when
a1 > 0, a2 > 0 or a1 < 0, a2 < 0 and negative otherwise. Thus, ρ is both location and
scale invariant.

The determinant of Σ in the bivariate case is

|Σ | =
∣∣∣∣ σ 2

1 ρσ1σ2
ρσ1σ2 σ 2

2

∣∣∣∣ = σ 2
1 σ 2

2 (1 − ρ2), −1 < ρ < 1, σ1 > 0, σ2 > 0.

The inverse is as follows, taking the inverse as the transpose of the matrix of cofactors
divided by the determinant:

Σ−1 = 1

σ 2
1 σ 2

2 (1 − ρ2)

[
σ 2
2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]
= 1

1 − ρ2

[ 1
σ 2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ 2
2

]
. (3.2.4)

Then,

(X − μ)′Σ−1(X − μ) =
(x1 − μ1

σ1

)2 +
(x2 − μ2

σ2

)2 − 2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
≡ Q.

(3.2.5)
Hence, the real bivariate normal density is

f (x1, x2) = 1

2πσ1σ2
√

(1 − ρ2)
e
− Q

2(1−ρ2) (3.2.6)

where Q is given in (3.2.5). Observe that Q is a positive definite quadratic form and hence
Q > 0 for all X and μ. We can also obtain an interesting result on the standardized
variables of x1 and x2. Let the standardized xj be yj = xj−μj

σj
, j = 1, 2 and u = y1 − y2.

Then

Var(u) = Var(y1) + Var(y2) − 2Cov(y1, y2) = 1 + 1 − 2ρ = 2(1 − ρ). (3.2.7)

This shows that the smaller the absolute value of ρ is, the larger the variance of u, and
vice versa, noting that −1 < ρ < 1 in the bivariate real normal case but in general,
−1 ≤ ρ ≤ 1. Observe that if ρ = 0 in the bivariate normal density given in (3.2.6),
this joint density factorizes into the product of the marginal densities of x1 and x2, which
implies that x1 and x2 are independently distributed when ρ = 0. In general, for real scalar
random variables x and y, ρ = 0 need not imply independence; however, in the bivariate
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normal case, ρ = 0 if and only if x1 and x2 are independently distributed. As well, the
exponent in (3.2.6) has the following feature:

Q = (X−μ)′Σ−1(X−μ) =
(x1 − μ1

σ1

)2+(x2 − μ2

σ2

)2−2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
= c

(3.2.8)
where c is positive describes an ellipse in two-dimensional Euclidean space, and for a
general p,

(X − μ)′Σ−1(X − μ) = c > 0, Σ > O, (3.2.9)

describes the surface of an ellipsoid in the p-dimensional Euclidean space, observing that
Σ−1 > O when Σ > O.

Example 3.2.1. Let

X =
⎡
⎣x1

x2
x3

⎤
⎦ , μ =

⎡
⎣ 1

−1
−2

⎤
⎦ , Σ =

⎡
⎣ 3 0 −1

0 3 1
−1 1 2

⎤
⎦ .

Show that Σ > O and that Σ can be a covariance matrix for X. Taking E[X] = μ and
Cov(X) = Σ, construct the exponent of a trivariate real Gaussian density explicitly and
write down the density.

Solution 3.2.1. Let us verify the definiteness of Σ . Note that Σ = Σ ′ (symmetric). The

leading minors are |(3)| = 3 > 0,

∣∣∣∣ 3 0
0 3

∣∣∣∣ = 9 > 0, |Σ | = 12 > 0, and hence Σ > O.

The matrix of cofactors of Σ , that is, Cof(Σ) and the inverse of Σ are the following:

Cof(Σ) =
⎡
⎣ 5 −1 3

−1 5 −3
3 −3 9

⎤
⎦ , Σ−1 = 1

12

⎡
⎣ 5 −1 3

−1 5 −3
3 −3 9

⎤
⎦ . (i)

Thus the exponent of the trivariate real Gaussian density is −1
2Q where

Q = 1

12
[x1 − 1, x2 + 1, x3 + 2]

⎡
⎣ 5 −1 3

−1 5 −3
3 −3 9

⎤
⎦
⎡
⎣x1 − 1

x2 + 1
x3 + 2

⎤
⎦

= 1

12
{5(x1 − 1)2 + 5(x2 + 1)2 + 9(x3 + 2)2 − 2(x1 − 1)(x2 + 1)

+ 6(x1 − 1)(x3 + 2) − 6(x2 + 1)(x3 + 2)}. (ii)
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The normalizing constant of the density being

(2π)
p
2 |Σ | 12 = (2π)

3
2 [12] 12 = 2

5
2
√
3π

3
2 ,

the resulting trivariate Gaussian density is

f (X) = [25
2
√
3π

3
2 ]−1e− 1

2Q

for −∞ < xj < ∞, j = 1, 2, 3, where Q is specified in (ii).

3.2.1. The moment generating function in the real case

We have defined the multivariate Gaussian distribution via the following character-
ization whose proof relies on its moment generating function: if all the possible linear
combinations of the components of a random vector are real univariate normal, then this
vector must follow a real multivariate Gaussian distribution. We are now looking into the
derivation of the mgf given the density. For a parameter vector T , with T ′ = (t1, . . . , tp),
we have

MX(T ) = E[eT ′X] =
∫

X

eT ′Xf (X)dX = eT ′μE[eT ′(X−μ)]

= eT ′μ

|Σ | 12 (2π)
p
2

∫
X

eT ′(X−μ)− 1
2 (X−μ)′Σ−1(X−μ)dX.

Observe that the moment generating function (mgf) in the real multivariate case is the
expected value of e raised to a linear function of the real scalar variables. Making the
transformation Y = Σ− 1

2 (X − μ) ⇒ dY = |Σ |− 1
2 dX. The exponent can be simplified as

follows:

T ′(X − μ) − 1

2
(X − μ)′Σ−1(X − μ) = −1

2
{−2T ′Σ

1
2Y + Y ′Y }

= −1

2
{(Y − Σ

1
2T )′(Y − Σ

1
2T ) − T ′ΣT }.

Hence

MX(T ) = eT ′μ+ 1
2T ′ΣT 1

(2π)
p
2

∫
Y

e− 1
2 (Y−Σ

1
2 T )′(Y−Σ

1
2 T )dY.

The integral over Y is 1 since this is the total integral of a multivariate normal density
whose mean value vector is Σ

1
2T and covariance matrix is the identity matrix. Thus the

mgf of a multivariate real Gaussian vector is

MX(T ) = eT ′μ+ 1
2T ′ΣT . (3.2.10)
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In the singular normal case, we can still take (3.2.10) as the mgf for Σ ≥ O (non-negative
definite), which encompasses the singular and nonsingular cases. Then, one can study
properties of the normal distribution whether singular or nonsingular via (3.2.10).

We will now apply the differential operator ∂
∂T

defined in Sect. 1.7 on the moment
generating function of a p × 1 real normal random vector X and evaluate the result at
T = O to obtain the mean value vector of this distribution, that is, μ = E[X]. As well,
E[XX′] is available by applying the operator ∂

∂T
∂

∂T ′ on the mgf, and so on. From the mgf
in (3.2.10), we have

∂

∂T
MX(T )|T =O = ∂

∂T
eT ′μ+ 1

2T ′ΣT |T =O

= [eT ′μ+ 1
2T ′ΣT [μ + ΣT ]|T =O] ⇒ μ = E[X]. (i)

Then,

∂

∂T ′MX(T ) = eT ′μ+ 1
2T ′ΣT [μ′ + T ′Σ]. (ii)

Remember to write the scalar quantity, MX(T ), on the left for scalar multiplication of
matrices. Now,

∂

∂T

∂

∂T ′MX(T ) = ∂

∂T
eT ′μ+ 1

2T ′ΣT [μ′ + T ′Σ]
= MX(T )[μ + ΣT ][μ′ + T ′Σ] + MX(T )[Σ].

Hence,

E[XX′] =
[ ∂

∂T

∂

∂T ′MX(T )|T =O

]
= Σ + μμ′. (iii)

But
Cov(X) = E[XX′] − E[X]E[X′] = (Σ + μμ′) − μμ′ = Σ. (iv)

In the multivariate real Gaussian case, we have only two parameters μ and Σ and both of
these are available from the above equations. In the general case, we can evaluate higher
moments as follows:

E[ · · · X′XX′] = · · · ∂

∂T ′
∂

∂T

∂

∂T ′MX(T )|T =O . (v)

If the characteristic function φX(T ), which is available from the mgf by replacing T by
iT , i = √

(−1), is utilized, then multiply the left-hand side of (v) by i = √
(−1)with each

operator operating on φX(T ) because φX(T ) = MX(iT ). The corresponding differential
operators can also be developed for the complex case.
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Given a real p-vector X ∼ Np(μ, Σ), Σ > O, what will be the distribution of a
linear function of X? Let u = L′X, X ∼ Np(μ, Σ), Σ > O, L′ = (a1, . . . , ap) where
a1, . . . , ap are real scalar constants. Let us examine its mgf whose argument is a real scalar
parameter t . The mgf of u is available by integrating out over the density of X. We have

Mu(t) = E[etu] = E[etL′X] = E[e(tL′)X].

This is of the same form as in (3.2.10) and hence, Mu(t) is available from (3.2.10) by
replacing T ′ by (tL′), that is,

Mu(t) = et (L′μ)+ t2
2 L′ΣL ⇒ u ∼ N1(L

′μ, L′ΣL). (3.2.11)

This means that u is a univariate normal with mean value L′μ = E[u] and the variance of
L′ΣL = Var(u). Now, let us consider a set of linearly independent linear functions of X.
Let A be a real q × p, q ≤ p matrix of full rank q and let the linear functions U = AX

where U is q × 1. Then E[U ] = AE[X] = Aμ and the covariance matrix in U is

Cov(U) = E[U − E(U)][U − E(U)]′ = E[A(X − μ)(X − μ)′A′]
= AE[(X − μ)(X − μ)′]A′ = A ΣA′.

Observe that since Σ > O, we can write Σ = Σ1Σ
′
1 so that AΣA′ = (AΣ1)(AΣ1)

′
and AΣ1 is of full rank which means that AΣA′ > O. Therefore, letting T be a q × 1
parameter vector, we have

MU(T ) = E[eT ′U ] = E[eT ′AX] = E[e(T ′A)X],

which is available from (3.2.10). That is,

MU(T ) = eT ′Aμ+ 1
2 (T ′AΣA′T ) ⇒ U ∼ Nq(Aμ, AΣA′).

Thus U is a q-variate multivariate normal with parameters Aμ and AΣA′ and we have the
following result:

Theorem 3.2.1. Let the vector random variable X have a real p-variate nonsingular
Np(μ, Σ) distribution and the q × p matrix A with q ≤ p, be a full rank constant matrix.
Then

U = AX ∼ Nq(Aμ, AΣA′), AΣA > O. (3.2.12)
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Corollary 3.2.1. Let the vector random variable X have a real p-variate nonsingular
Np(μ, Σ) distribution and B be a 1× p constant vector. Then U1 = BX has a univariate
normal distribution with parameters Bμ and BΣB ′.

Example 3.2.2. Let X, μ = E[X], Σ = Cov(X), Y, and A be as follows:

X =
⎡
⎣x1

x2
x3

⎤
⎦ , μ =

⎡
⎣ 2

0
−1

⎤
⎦ , Σ =

⎡
⎣ 4 −2 0

−2 3 1
0 1 2

⎤
⎦ , Y =

[
y1
y2

]
.

Let y1 = x1 + x2 + x3 and y2 = x1 − x2 + x3 and write Y = AX. If Σ > O and if
X ∼ N3(μ, Σ), derive the density of (1) Y ; (2) y1 directly as well as from (1).

Solution 3.2.2. The leading minors of Σ are |(4)| = 4 > 0,

∣∣∣∣ 4 −2
−2 3

∣∣∣∣ = 8 >

0, |Σ | = 12 > 0 and Σ = Σ ′. Being symmetric and positive definite, Σ is a bona fide
covariance matrix. Now, Y = AX where

A =
[

1 1 1
1 −1 1

]
;

E[Y ] = AE[X] = A

⎡
⎣ 2

0
−1

⎤
⎦ =

[
1 1 1
1 −1 1

]⎡
⎣ 2

0
−1

⎤
⎦ =

[
1
1

]
; (i)

Cov(Y ) = A Cov(X)A′ =
[

1 1 1
1 −1 1

]⎡
⎣ 4 −2 0

−2 3 1
0 1 2

⎤
⎦
⎡
⎣ 1 1

1 −1
1 1

⎤
⎦ =

[
7 3
3 11

]
. (ii)

Since A is of full rank (rank 2) and y1 and y2 are linear functions of the real Gaussian
vector X, Y has a bivariate nonsingular real Gaussian distribution with parameters E(Y )

and Cov(Y ). Since [
7 3
3 11

]−1

= 1

68

[
11 −3

−3 7

]
,

the density of Y has the exponent −1
2Q where

Q = 1

68

{
[y1 − 1, y2 − 1]

[
11 −3

−3 7

] [
y1 − 1
y2 − 1

]}

= 1

68
{11(y1 − 1)2 + 7(y2 − 1)2 − 6(y1 − 1)(y2 − 1)}. (iii)
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The normalizing constant being (2π)
p
2 |Σ | 12 = 2π

√
68 = 4

√
17π , the density of Y , de-

noted by f (Y ), is given by

f (Y ) = 1

4
√
17π

e− 1
2Q (iv)

whereQ is specified in (iii). This establishes (1). For establishing (2), we first start with the

formula. Let y1 = A1X ⇒ A1 = [1, 1, 1], E[y1] = A1E[X] = [1, 1, 1]
⎡
⎣ 2

0
−1

⎤
⎦ = 1

and

Var(y1) = A1Cov(X)A′
1 = [1, 1, 1]

⎡
⎣ 4 −2 0

−2 3 1
0 1 2

⎤
⎦
⎡
⎣11
1

⎤
⎦ = 7.

Hence y1 ∼ N1(1, 7). For establishing this result directly, observe that y1 is a linear func-
tion of real normal variables and hence, it is univariate real normal with the parameters
E[y1] and Var(y1). We may also obtain the marginal distribution of y1 directly from the
parameters of the joint density of y1 and y2, which are given in (i) and (ii). Thus, (2) is
also established.

The marginal distributions can also be determined from the mgf. Let us partition T , μ
and Σ as follows:

T =
[
T1
T2

]
, μ =

[
μ(1)

μ(2)

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, X =

[
X1

X2

]
(v)

where T1, μ(1), X1 are r × 1 and Σ11 is r × r . Letting T2 = O (the null vector), we have

T ′μ + 1

2
T ′ΣT = [T ′

1, O
′]
[
μ(1)

μ(2)

]
+ 1

2
[T ′

1, O
′]
[
Σ11 Σ12

Σ21 Σ22

] [
T1
O

]

= T ′
1 μ(1) + 1

2
T ′
1 Σ11T1,

which is the structure of the mgf of a real Gaussian distribution with mean value vector
E[X1] = μ(1) and covariance matrix Cov(X1) = Σ11. Therefore X1 is an r-variate real
Gaussian vector and similarly, X2 is (p − r)-variate real Gaussian vector. The standard
notation used for a p-variate normal distribution is X ∼ Np(μ, Σ), Σ ≥ O, which
includes the nonsingular and singular cases. In the nonsingular case, Σ > O, whereas
|Σ | = 0 in the singular case.
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From the mgf in (3.2.10) and (i) above, if we have Σ12 = O with Σ21 = Σ ′
12, then the

mgf of X =
(

X1

X2

)
becomes eT ′

1 μ(1)+T ′
2 μ(2)+ 1

2T ′
1 Σ11T1+ 1

2T ′
2 Σ22T2 . That is,

MX(T ) = MX1(T1)MX2(T2),

which implies that X1 and X2 are independently distributed. Hence the following result:

Theorem 3.2.2. Let the real p × 1 vector X ∼ Np(μ, Σ), Σ > O, and let X be
partitioned into subvectors X1 and X2, with the corresponding partitioning of μ and Σ ,
that is,

X =
(

X1

X2

)
, μ =

(
μ(1)

μ(2)

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, X1 and X2 are independently distributed if and only if Σ12 = Σ ′
21 = O.

Observe that a covariance matrix being null need not imply independence of the sub-
vectors; however, in the case of subvectors having a joint normal distribution, it suffices to
have a null covariance matrix to conclude that the subvectors are independently distributed.

3.2a. The Moment Generating Function in the Complex Case

The determination of the mgf in the complex case is somewhat different. Take a p-
variate complex Gaussian X̃ ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O. Let T̃ ′ = (t̃1, . . . , t̃p) be a
parameter vector. Let T̃ = T1+iT2, where T1 and T2 are p×1 real vectors and i = √

(−1).
Let X̃ = X1 + iX2 with X1 and X2 being real. Then consider T̃ ∗X̃ = (T ′

1 − iT ′
2)(X1 +

iX2) = T ′
1X1+T ′

2X2+ i(T ′
1X2−T ′

2X1). But T ′
1X1+T ′

2X2 already contains the necessary
number of parameters and all the corresponding real variables and hence to be consistent
with the definition of the mgf in the real case one must take only the real part in T̃ ∗X̃.
Hence the mgf in the complex case, denoted by MX̃(T̃ ), is defined as E[e
(T̃ ∗X̃)]. For
convenience, we may take X̃ = X̃ − μ̃ + μ̃. Then E[e
(T̃ ∗X̃)] = e
(T̃ ∗μ̃)E[e
(T̃ ∗(X̃−μ̃))].
On making the transformation Ỹ = Σ− 1

2 (X̃ − μ̃), |det(Σ)| appearing in the denominator
of the density of X̃ is canceled due to the Jacobian of the transformation and we have
(X̃ − μ̃) = Σ

1
2 Ỹ . Thus,

E[e
(T̃ ∗Ỹ )] = 1

πp

∫
Ỹ

e
(T̃ ∗Σ
1
2 Ỹ ) − Ỹ ∗ỸdỸ . (i)

For evaluating the integral in (i), we can utilize the following result which will be stated
here as a lemma.
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Lemma 3.2a.1. Let Ũ and Ṽ be two p × 1 vectors in the complex domain. Then

2
(Ũ∗Ṽ ) = U∗Ṽ + Ṽ ∗Ũ = 2
(Ṽ ∗Ũ ).

Proof: Let Ũ = U1 + iU2, Ṽ = V1 + iV2 where U1, U2, V1, V2 are real vectors and
i = √

(−1). Then Ũ∗Ṽ = [U ′
1 − iU ′

2][V1 + iV2] = U ′
1V1 + U ′

2V2 + i[U ′
1V2 − U ′

2V1].
Similarly Ṽ ∗Ũ = V ′

1U1 + V ′
2U2 + i[V ′

1U2 − V ′
2U1]. Observe that since U1, U2, V1, V2 are

real, we have U ′
iVj = V ′

jUi for all i and j . Hence, the sum Ũ∗Ṽ + Ṽ ∗Ũ = 2[U ′
1V1 +

U ′
2V2] = 2
(Ṽ ∗Ũ ). This completes the proof.

Now, the exponent in (i) can be written as


(T̃ ∗Σ
1
2 Ỹ ) = 1

2
T̃ ∗Σ

1
2 Ỹ + 1

2
Ỹ ∗Σ

1
2 T̃

by using Lemma 3.2a.1, observing that Σ = Σ∗. Let us expand (Ỹ − C)∗(Ỹ − C) as
Ỹ ∗Ỹ − Ỹ ∗C − C∗Ỹ + C∗C for some C. Comparing with the exponent in (i), we may take
C∗ = 1

2 T̃
∗Σ 1

2 so that C∗C = 1
4 T̃

∗ΣT̃ . Therefore in the complex Gaussian case, the mgf
is

MX̃(T̃ ) = e
(T̃ ∗μ̃)+ 1
4 T̃ ∗ΣT̃ . (3.2a.1)

Example 3.2a.1. Let X̃, E[X̃] = μ̃, Cov(X̃) = Σ be the following where X̃ ∼
Ñ2(μ̃, Σ), Σ > O,

X̃ =
[
x̃1
x̃2

]
, μ̃ =

[
1 − i

2 − 3i

]
, Σ =

[
3 1 + i

1 − i 2

]
.

Compute the mgf of X̃ explicitly.

Solution 3.2a.1. Let T̃ =
[
t̃1
t̃2

]
where let t̃1 = t11 + it12, t̃2 = t21 + it22 with

t11, t12, t21, t22 being real scalar parameters. The mgf of X̃ is

MX̃(T̃ ) = e
(T̃ ∗μ̃)+ 1
4 T̃ ∗ΣT̃ .

Consider the first term in the exponent of the mgf:


(T̃ ∗μ̃) = 

{
[t11 − it12, t21 − it22]

[
1 − i

2 − 3i

] }

= 
{(t11 − it12)(1 − i) + (t21 − it22)(2 − 3i)}
= t11 − t12 + 2t21 − 3t22.
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The second term in the exponent is the following:

1

4
T̃ ∗ΣT̃ = 1

4

{
[t̃∗1 , t̃∗2 ]

[
3 1 + i

1 − i 2

] [
t̃1
t̃2

] }

= 1

4
{3t̃∗1 t̃1 + 2t̃∗2 t̃2 + (1 + i)t̃∗1 t̃2 + (1 − i)t̃∗2 t̃1.}.

Note that since the parameters are scalar quantities, the conjugate transpose means only
the conjugate or t̃∗j = ¯̃tj , j = 1, 2. Let us look at the non-diagonal terms. Note that
[(1 + i)t̃∗1 t̃2] + [(1 − i)t̃∗2 t̃1] gives 2(t11t21 + t12t22 + t12t21 − t11t22). However, t̃∗1 t̃1 =
t211 + t212, t̃

∗
2 t̃2 = t221 + t222. Hence if the exponent of MX̃(t̃) is denoted by φ,

φ = [t11 − t12 + 2t21 − 3t22] + 1

4
{3(t211 + t212) + 2(t221 + t222)

+ 2(t11t21 + t12t22 + t12t21 − t11t22)}. (i)

Thus the mgf is
MX̃(T̃ ) = eφ

where φ is given in (i).

3.2a.1. Moments from the moment generating function

We can also derive the moments from the mgf of (3.2a.1) by operating with the differ-
ential operator of Sect. 1.7 of Chap. 1. For the complex case, the operator ∂

∂X1
in the real

case has to be modified. Let X̃ = X1 + iX2 be a p × 1 vector in the complex domain
where X1 and X2 are real and p × 1 and i = √

(−1). Then in the complex domain the
differential operator is

∂

∂X̃
= ∂

∂X1
+ i

∂

∂X2
. (ii)

Let T̃ = T1 + iT2, μ̃ = μ(1) + iμ(2), Σ = Σ1 + iΣ2 where T1, T2, μ(1), μ(2), Σ1, Σ2

are all real and i = √
(−1), Σ1 = Σ ′

1, and Σ ′
2 = −Σ2 because Σ is Hermitian. Note that

T̃ ∗ΣT̃ = (T ′
1 − iT ′

2)Σ(T1 + iT2) = T ′
1ΣT1 + T ′

2ΣT2 + i(T ′
1ΣT2 − T ′

2ΣT1), and observe
that

T ′
j ΣTj = T ′

j (Σ1 + iΣ2)Tj = T ′
j Σ1Tj + 0 (iii)

for j = 1, 2 since Σ2 is skew symmetric. The exponent in the mgf in (3.2a.1) can
be simplified as follows: Letting u denote the exponent in the mgf and observing that
[T̃ ∗ΣT̃ ]∗ = T̃ ∗ΣT̃ is real,



The Multivariate Gaussian and Related Distributions 149

u = 
(T̃ ∗μ̃) + 1

4
T̃ ∗ΣT̃ = 
(T ′

1 − iT ′
2)(μ(1) + iμ(2)) + 1

4
(T ′

1 − iT ′
2)Σ(T1 + iT2)

= T ′
1μ(1) + T ′

2μ(2) + 1

4
[T ′

1 ΣT1 + T ′
2 ΣT2] + 1

4
u1, u1 = i(T ′

1 ΣT2 − T ′
2 ΣT1)

= T ′
1μ(1) + T ′

2μ(2) + 1

4
[T ′

1 Σ1T1 + T ′
2 Σ1T2] + 1

4
u1. (iv)

In this last line, we have made use of the result in (iii). The following lemma will enable
us to simplify u1.

Lemma 3.2a.2. Let T1 and T2 be real p×1 vectors. Let the p×p matrixΣ be Hermitian,
Σ = Σ∗ = Σ1 + iΣ2, with Σ1 = Σ ′

1 and Σ2 = −Σ ′
2. Then

u1 = i(T ′
1 ΣT2 − T ′

2 ΣT1) = −2T ′
1 Σ2T2 = 2T ′

2 Σ2T1

⇒ ∂

∂T1
u1 = −2Σ2T2 and

∂

∂T2
u1 = 2Σ2T1. (v)

Proof: This result will be established by making use of the following general properties:
For a 1× 1 matrix, the transpose is itself whereas the conjugate transpose is the conjugate
of the same quantity. That is, (a + ib)′ = a + ib, (a + ib)∗ = a − ib and if the conjugate
transpose is equal to itself then the quantity is real or equivalently, if (a+ib) = (a+ib)∗ =
a − ib then b = 0 and the quantity is real. Thus,

u1 = i(T ′
1ΣT2 − T ′

2ΣT1) = i[T ′
1(Σ1 + iΣ2)T2 − T ′

2(Σ1 + iΣ2)T1],
= iT ′

1Σ1T2 − T ′
1Σ2T2 − iT ′

2Σ1T1 + T ′
2Σ2T1 = −T ′

1Σ2T2 + T ′
2Σ2T1

= −2T ′
1Σ2T2 = 2T ′

2Σ2T1. (vi)

The following properties were utilized: T ′
i Σ1Tj = T ′

jΣ1Ti for all i and j since Σ1 is
a symmetric matrix, the quantity is 1 × 1 and real and hence, the transpose is itself;
T ′

i Σ2Tj = −T ′
jΣ2Ti for all i and j because the quantities are 1×1 and then, the transpose

is itself, but the transpose of Σ ′
2 = −Σ2. This completes the proof.

Now, let us apply the operator ( ∂
∂T1

+ i ∂
∂T2

) to the mgf in (3.2a.1) and determine the
various quantities. Note that in light of results stated in Chap. 1, we have

∂

∂T1
(T ′

1Σ1T1) = 2Σ1T1,
∂

∂T1
(−2T ′

1Σ2T2) = −2Σ2T2,
∂

∂T1

(T̃ ∗μ̃) = μ(1),

∂

∂T2
(T ′

2Σ1T2) = 2Σ1T2,
∂

∂T2
(2T ′

2Σ2T1) = 2Σ2T1,
∂

∂T2

(T̃ ∗μ̃) = μ(2).
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Thus, given (ii)–(vi), the operator applied to the exponent of the mgf gives the following
result:
( ∂

∂T1
+ i

∂

∂T2

)
u = μ(1) + iμ(2) + 1

4
[2Σ1T1 − 2Σ2T2 + 2Σ1iT2 + 2Σ2iT1]

= μ̃ + 1

4
[2(Σ1 + iΣ2)T1 + 2(Σ1 + iΣ2)iT2 = μ̃ + 1

4
[2ΣT̃ ] = μ̃ + 1

2
ΣT̃ ,

so that

∂

∂T̃
MX̃(T̃ )|T̃ =O =

( ∂

∂T1
+ i

∂

∂T2

)
MX̃(T̃ )|T̃ =O

= [MX̃(T̃ )[μ̃ + 1

2
Σ̃T̃ ]|T1=O,T2=O = μ̃, (vii)

noting that T̃ = O implies that T1 = O and T2 = O. For convenience, let us denote the
operator by

∂

∂T̃
=
( ∂

∂T1
+ i

∂

∂T2

)
.

From (vii), we have

∂

∂T̃
MX̃(T̃ ) = MX̃(T̃ )[μ̃ + 1

2
ΣT̃ ],

∂

∂T̃ ∗MX̃(T̃ ) = [μ̃∗ + 1

2
T̃ ∗Σ̃]MX̃(T̃ ).

Now, observe that

T̃ ∗Σ = (T ′
1 − iT ′

2)Σ = T ′
1Σ − iT ′

2Σ ⇒
∂

∂T1
(T̃ ∗Σ) = Σ,

∂

∂T2
(T̃ ∗Σ) = −iΣ,

( ∂

∂T1
+ i

∂

∂T2

)
(T̃ ∗Σ) = Σ − i(i)Σ = 2Σ,

and
∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O = μ̃μ̃∗ + Σ̃.

Thus,
∂

∂T̃
MX̃(T̃ )|T̃ =O = μ̃ and

∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O = Σ̃ + μ̃μ̃∗,
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and then Cov(X̃) = Σ̃ . In general, for higher order moments, one would have

E[ · · · X̃∗X̃X̃∗] = · · · ∂

∂T̃ ∗
∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O .

3.2a.2. Linear functions

Let w̃ = L∗X̃ where L∗ = (a1, . . . , ap) and a1, . . . , ap are scalar constants, real
or complex. Then the mgf of w̃ can be evaluated by integrating out over the p-variate
complex Gaussian density of X̃. That is,

Mw̃(t̃) = E[e
(t̃w̃)] = E[e(
(t̃L∗X̃))]. (3.2a.2)

Note that this expected value is available from (3.2a.1) by replacing T̃ ∗ by t̃L∗. Hence

Mw̃(t̃) = e
(t̃(L∗μ̃))+ 1
4 t̃ t̃∗(L∗ΣL). (3.2a.3)

Then from (2.1a.1), w̃ = L∗X̃ is univariate complex Gaussian with the parameters L∗μ̃
and L∗ΣL. We now consider several such linear functions: Let Ỹ = AX̃ where A is
q ×p, q ≤ p and of full rank q. The distribution of Ỹ can be determined as follows. Since
Ỹ is a function of X̃, we can evaluate the mgf of Ỹ by integrating out over the density of
X̃. Since Ỹ is q × 1, let us take a q × 1 parameter vector Ũ . Then,

MỸ (Ũ) = E[e
(Ũ∗Ỹ )] = E[e
(Ũ∗AX̃)] = E[e
[(Ũ∗A)X̃]]. (3.2a.4)

On comparing this expected value with (3.2a.1), we can write down the mgf of Ỹ as the
following:

MỸ (Ũ) = e
(Ũ∗Aμ̃)+ 1
4 (Ũ∗A)Σ(A∗Ũ ) = e
(Ũ∗(Aμ̃))+ 1

4 Ũ∗(AΣA∗)Ũ , (3.2a.5)

which means that Ỹ has a q-variate complex Gaussian distribution with the parameters
A μ̃ and AΣA∗. Thus, we have the following result:

Theorem 3.2a.1. Let X̃ ∼ Ñp(μ̃, Σ), Σ > O be a p-variate nonsingular complex
normal vector. Let A be a q × p, q ≤ p, constant real or complex matrix of full rank q.
Let Ỹ = AX̃. Then,

Ỹ ∼ Ñq(A μ̃, AΣA∗), AΣA∗ > O. (3.2a.6)
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Let us consider the following partitioning of T̃ , X̃, Σ where T̃ is p × 1, T̃1 is r × 1,
r ≤ p, X̃1 is r × 1, Σ11 is r × r , μ̃(1) is r × 1:

T̃ =
[
T̃1

T̃2

]
, T̃1 =

⎡
⎢⎣

t̃1
...

t̃r

⎤
⎥⎦ , X̃ =

[
X̃1

X̃2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, μ̃ =

[
μ̃(1)

μ̃(2)

]
.

Let T̃2 = O. Then the mgf of X̃ becomes that of X̃1 as

[T̃ ∗
1 , O]

[
Σ11 Σ12

Σ21 Σ22

] [
T̃1
O

]
= T̃ ∗

1 Σ11T̃1.

Thus the mgf of X̃1 becomes

MX̃1
(T̃1) = e
(T̃ ∗

1 μ̃(1))+ 1
4 T̃ ∗

1 Σ11T̃1 . (3.2a.7)

This is the mgf of the r ×1 subvector X̃1 and hence X̃1 has an r-variate complex Gaussian
density with the mean value vector μ̃(1) and the covariance matrixΣ11. In a real or complex
Gaussian vector, the individual variables can be permuted among themselves with the
corresponding permutations in the mean value vector and the covariance matrix. Hence,
all subsets of components of X̃ are Gaussian distributed. Thus, any set of r components
of X̃ is again a complex Gaussian for r = 1, 2, . . . , p when X̃ is a p-variate complex
Gaussian.

Suppose that, in the mgf of (3.2a.1), Σ12 = O where X̃ ∼ Ñp(μ̃, Σ), Σ > O and

X̃ =
(

X̃1

X̃2

)
, μ̃ =

(
μ̃(1)

μ̃(2)

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, T̃ =

(
T̃1

T̃2

)
.

When Σ12 is null, so is Σ21 since Σ21 = Σ∗
12. Then Σ =

(
Σ11 O

O Σ22

)
is block-diagonal.

As well, 
(T̃ ∗μ̃) = 
(T̃ ∗
1 μ̃(1)) + 
(T̃ ∗

2 μ̃(2)) and

T̃ ∗ΣT̃ = (T̃ ∗
1 , T̃ ∗

2 )

(
Σ11 O

O Σ22

)(
T̃1

T̃2

)
= T̃ ∗

1 Σ11T̃1 + T̃ ∗
2 Σ22T̃2. (i)

In other words, MX̃(T̃ ) becomes the product of the the mgf of X̃1 and the mgf of X̃2, that
is, X̃1 and X̃2 are independently distributed whenever Σ12 = O.

Theorem 3.2a.2. Let X̃ ∼ Ñp(μ̃, Σ), Σ > O, be a nonsingular complex Gaussian
vector. Consider the partitioning of X̃, μ̃, T̃ , Σ as in (i) above. Then, the subvectors X̃1

and X̃2 are independently distributed as complex Gaussian vectors if and only if Σ12 = O

or equivalently, Σ21 = O.



The Multivariate Gaussian and Related Distributions 153

Exercises 3.2

3.2.1. Construct a 2 × 2 real positive definite matrix A. Then write down a bivariate real
Gaussian density where the covariance matrix is this A.

3.2.2. Construct a 2×2 Hermitian positive definite matrixB and then construct a complex
bivariate Gaussian density. Write the exponent and normalizing constant explicitly.

3.2.3. Construct a 3×3 real positive definite matrix A. Then create a real trivariate Gaus-
sian density with this A being the covariance matrix. Write down the exponent and the
normalizing constant explicitly.

3.2.4. Repeat Exercise 3.2.3 for the complex Gaussian case.

3.2.5. Let the p×1 real vector random variable have a p-variate real nonsingular Gaussian
density X ∼ Np(μ, Σ), Σ > O. Let L be a p×1 constant vector. Let u = L′X = X′L =
a linear function of X. Show that E[u] = L′μ, Var(u) = L′ΣL and that u is a univariate
Gaussian with the parameters L′μ and L′ΣL.

3.2.6. Show that the mgf of u in Exercise 3.2.5 is

Mu(t) = et (L′μ)+ t2
2 L′ΣL.

3.2.7. What are the corresponding results in Exercises 3.2.5 and 3.2.6 for the nonsingular
complex Gaussian case?

3.2.8. Let X ∼ Np(O, Σ), Σ > O, be a real p-variate nonsingular Gaussian vector. Let
u1 = X′Σ−1X, and u2 = X′X. Derive the densities of u1 and u2.

3.2.9. Establish Theorem 3.2.1 by using transformation of variables [Hint: Augment the

matrix A with a matrix B such that C =
(

A

B

)
is p×p and nonsingular. Derive the density

of Y = CX, and therefrom, the marginal density of AX.]

3.2.10. By constructing counter examples or otherwise, show the following: Let the
real scalar random variables x1 and x2 be such that x1 ∼ N1(μ1, σ

2
1 ), σ1 > 0, x2 ∼

N1(μ2, σ
2
2 ), σ2 > 0 and Cov(x1, x2) = 0. Then, the joint density need not be bivariate

normal.

3.2.11. Generalize Exercise 3.2.10 to p-vectors X1 and X2.

3.2.12. Extend Exercises 3.2.10 and 3.2.11 to the complex domain.
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3.3. Marginal and Conditional Densities, Real Case

Let the p × 1 vector have a real p-variate Gaussian distribution X ∼ Np(μ, Σ), Σ >

O. Let X, μ and Σ be partitioned as the following:

X =
⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ =

[
X1

X2

]
, μ =

[
μ(1)

μ(2)

]
, Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]

where X1 and μ(1) are r × 1, X2 and μ(2) are (p − r) × 1, Σ11 is r × r , and so on. Then

(X − μ)′Σ−1(X − μ) = [(X1 − μ(1))
′, (X2 − μ(2))

′]
[
Σ11 Σ12

Σ21 Σ22

] [
X1 − μ(1)

X2 − μ(2)

]

= (X1 − μ(1))
′Σ11(X1 − μ(1)) + (X2 − μ(2))

′Σ22(X2 − μ(2))

+ (X1 − μ(1))
′Σ12(X2 − μ(2)) + (X2 − μ(2))

′Σ21(X1 − μ(1)).

(i)

But
[(X1 − μ(1))

′Σ12(X2 − μ(2))]′ = (X2 − μ(2))
′Σ21(X1 − μ(1))

and both are real 1 × 1. Thus they are equal and we may write their sum as twice either
one of them. Collecting the terms containing X2 − μ(2), we have

(X2 − μ(2))
′Σ22(X2 − μ(2)) + 2(X2 − μ(2))

′Σ21(X1 − μ(1)). (ii)

If we expand a quadratic form of the type (X2 − μ(2) + C)′Σ22(X2 − μ(2) + C), we have

(X2 − μ(2) + C)′Σ22(X2 − μ(2) + C) = (X2 − μ(2))
′Σ22(X2 − μ(2))

+ (X2 − μ(2))
′Σ22C + C′Σ22(X2 − μ(2)) + C′Σ22C. (iii)

Comparing (ii) and (iii), let

Σ22C = Σ21(X1 − μ(1)) ⇒ C = (Σ22)−1Σ21(X1 − μ(1)).

Then,
C′Σ22C = (X1 − μ(1))

′Σ12(Σ22)−1Σ21(X1 − μ(1)).

Hence,

(X − μ)′Σ−1(X − μ) = (X1 − μ(1))
′[Σ11 − Σ12(Σ22)−1Σ21](X1 − μ(1))

+ (X2 − μ(2) + C)′Σ22(X2 − μ(2) + C),
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and after integrating out X2, the balance of the exponent is (X1 − μ(1))
′Σ−1

11 (X1 − μ(1)),
where Σ11 is the r × r leading submatrix in Σ ; the reader may refer to Sect. 1.3 for results
on the inversion of partitioned matrices. Observe that Σ−1

11 = Σ11 − Σ12(Σ22)−1Σ21.
The integral over X2 only gives a constant and hence the marginal density of X1 is

f1(X1) = c1 e
− 1

2 (X1−μ(1))
′Σ−1

11 (X1−μ(1)).

On noting that it has the same structure as the real multivariate Gaussian density, its nor-
malizing constant can easily be determined and the resulting density is as follows:

f1(X1) = 1

|Σ11| 12 (2π)
r
2

e− 1
2 (X1−μ(1))

′Σ−1
11 (X1−μ(1)), Σ11 > O, (3.3.1)

for −∞ < xj < ∞, −∞ < μj < ∞, j = 1, . . . , r , and where Σ11 is the covariance
matrix in X1 and μ(1) = E[X1] and Σ11 = Cov(X1). From symmetry, we obtain the
following marginal density of X2 in the real Gaussian case:

f2(X2) = 1

|Σ22| 12 (2π)
p−r
2

e− 1
2 (X2−μ(2))

′Σ−1
22 (X2−μ(2)), Σ22 > O, (3.3.2)

for −∞ < xj < ∞, −∞ < μj < ∞, j = r + 1, . . . , p.

Observe that we can permute the elements in X as we please with the correspond-
ing permutations in μ and the covariance matrix Σ . Hence the real Gaussian density in
the p-variate case is a multivariate density and not a vector/matrix-variate density. From
this property, it follows that every subset of the elements from X has a real multivariate
Gaussian distribution and the individual variables have univariate real normal or Gaussian
distribution. Hence our derivation of the marginal density of X1 is a general density for
a subset of r elements in X because those r elements can be brought to the first r posi-
tions through permutations of the elements in X with the corresponding permutations in μ

and Σ .

The bivariate case

Let us look at the explicit form of the real Gaussian density for p = 2. In the bivariate
case,

Σ =
[
σ11 σ12
σ12 σ22

]
,

∣∣∣∣σ11 σ12
σ12 σ22

∣∣∣∣ = σ11σ22 − (σ12)
2.

For convenience, let us denote σ11 by σ 2
1 and σ22 by σ 2

2 . Then σ12 = σ1σ2ρ where ρ is
the correlation between x1 and x1, and for p = 2,

|Σ | = σ 2
1 σ 2

2 − (σ1σ2ρ)2 = σ 2
1 σ 2

2 (1 − ρ2).
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Thus, in that case,

Σ−1 = 1

|Σ | [cof(Σ)]′ = 1

σ 2
1 σ 2

2 (1 − ρ2)

[
σ 2
2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]

= 1

1 − ρ2

[ 1
σ 2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ 2
2

]
, −1 < ρ < 1.

Hence, substituting these into the general expression for the real Gaussian density and
denoting the real bivariate density as f (x1, x2), we have the following:

f (x1, x2) = 1

(2π)σ1σ2
√
1 − ρ2

exp
{

− 1

2(1 − ρ2)
Q
}

(3.3.3)

where Q is the real positive definite quadratic form

Q =
(x1 − μ1

σ1

)2 − 2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
+
(x2 − μ2

σ2

)2

for σ1 > 0, σ2 > 0, −1 < ρ < 1, −∞ < xj < ∞, −∞ < μj < ∞, j = 1, 2.

The conditional density of X1 given X2, denoted by g1(X1|X2), is the following:

g1(X1|X2) = f (X)

f2(X2)
= |Σ22| 12

(2π)
r
2 |Σ | 12

× exp
{
− 1

2
[(X − μ)′Σ−1(X − μ) − (X2 − μ(2))

′Σ−1
22 (X2 − μ(2))]

}
.

We can simplify the exponent, excluding −1
2 , as follows:

(X − μ)′Σ−1(X − μ) − (X2 − μ(2))
′Σ−1

22 (X2 − μ(2))

= (X1 − μ(1))
′Σ11(X1 − μ(1)) + 2(X1 − μ(1))

′Σ12(X2 − μ(2))

+ (X2 − μ(2))
′Σ22(X2 − μ(2)) − (X2 − μ(2))

′Σ−1
22 (X2 − μ(2)).

But Σ−1
22 = Σ22 − Σ21(Σ11)−1Σ12. Hence the terms containing Σ22 are canceled. The

remaining terms containing X2 − μ(2) are

2(X1 − μ(1))
′Σ12(X2 − μ(2)) + (X2 − μ(2))

′Σ21(Σ11)−1Σ12(X2 − μ(2)).

Combining these two terms with (X1 −μ(1))
′Σ11(X1 −μ(1)) results in the quadratic form

(X1 − μ(1) + C)′Σ11(X1 − μ(1) + C) where C = (Σ11)−1Σ12(X2 − μ(2)). Now, noting
that

|Σ22| 12
|Σ | 12

=
[

|Σ22|
|Σ22| |Σ11 − Σ12Σ

−1
22 Σ21|

] 1
2

= 1

|Σ11 − Σ12Σ
−1
22 Σ21| 12

,
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the conditional density of X1 given X2, which is denoted by g1(X1|X2), can be expressed
as follows:

g1(X1|X2) = 1

(2π)
r
2 |Σ11 − Σ12Σ

−1
22 Σ21| 12

× exp{−1

2
(X1 − μ(1) + C)′(Σ11 − Σ12Σ

−1
22 Σ21)

−1(X1 − μ(1) + C)

(3.3.4)

where C = (Σ11)−1Σ12(X2 − μ(2)). Hence, the conditional expectation and covariance
of X1 given X2 are

E[X1|X2] = μ(1) − C = μ(1) − (Σ11)−1Σ12(X2 − μ(2))

= μ(1) + Σ12Σ
−1
22 (X2 − μ(2)), which is linear in X2.

Cov(X1|X2) = Σ11 − Σ12Σ
−1
22 Σ21, which is free of X2. (3.3.5)

From the inverses of partitioned matrices obtained in Sect. 1.3, we have −(Σ11)−1Σ12

= Σ12Σ
−1
22 , which yields the representation of the conditional expectation appearing in

Eq. (3.3.5). The matrix Σ12Σ
−1
22 is often called the matrix of regression coefficients. From

symmetry, it follows that the conditional density of X2, given X1, denoted by g2(X2|X1),
is given by

g2(X2|X1) = 1

(2π)
p−r
2 |Σ22 − Σ21Σ

−1
11 Σ12| 12

× exp
{
− 1

2
(X2 − μ(2) + C1)

′(Σ22 − Σ21Σ
−1
11 Σ12)

−1(X2 − μ(2) + C1)
}

(3.3.6)

where C1 = (Σ22)−1Σ21(X1 − μ(1)), and the conditional expectation and conditional
variance of X2 given X1 are

E[X2|X1] = μ(2) − C1 = μ(2) − (Σ22)−1Σ21(X1 − μ(1))

= μ(2) + Σ21Σ
−1
11 (X1 − μ(1)), which linear in X1

Cov(X2|X1) = Σ22 − Σ21Σ
−1
11 Σ12, which is free of X1, (3.3.7)

the matrix Σ21Σ
−1
11 being often called the matrix of regression coefficients.
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What is then the conditional expectation of x1 given x2 in the bivariate normal case?
From formula (3.3.5) for p = 2, we have

E[X1|X2] = μ(1) + Σ12Σ
−1
22 (X2 − μ(2)) = μ1 + σ12

σ 2
2

(x2 − μ2)

= μ1 + σ1σ2ρ

σ 2
2

(x2 − μ2) = μ1 + σ1

σ2
ρ(x2 − μ2) = E[x1|x2], (3.3.8)

which is linear in x2. The coefficient
σ1
σ2

ρ is often referred to as the regression coefficient.
Then, from (3.3.7) we have

E[x2|x1] = μ2 + σ2

σ1
ρ(x1 − μ1), which is linear in x1 (3.3.9)

and σ2
σ1

ρ is the regression coefficient. Thus, (3.3.8) gives the best predictor of x1 based
on x2 and (3.3.9), the best predictor of x2 based on x1, both being linear in the case of a
multivariate real normal distribution; in this case, we have a bivariate normal distribution.

Example 3.3.1. Let X, x1, x2, x3, E[X] = μ, Cov(X) = Σ be specified as follows
where X ∼ N3(μ, Σ), Σ > O:

X =
⎡
⎣x1

x2
x3

⎤
⎦ , μ =

⎡
⎣μ1

μ2

μ3

⎤
⎦ =

⎡
⎣ −1

0
−2

⎤
⎦ , Σ =

⎡
⎣ 3 −2 0

−2 2 1
0 1 3

⎤
⎦ .

Compute (1) the marginal densities of x1 and X2 =
[
x2
x3

]
; (2) the conditional density of

x1 given X2 and the conditional density of X2 given x1; (3) conditional expectations or
regressions of x1 on X2 and X2 on x1.

Solution 3.3.1. Let us partition Σ accordingly, that is,

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 = σ11 = (3), Σ12 = [−2, 0], Σ21 =

[ −2
0

]
, Σ22 =

[
2 1
1 3

]
.
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Let us compute the following quantities:

Σ−1
22 = 1

5

[
3 −1

−1 2

]

Σ11 − Σ12Σ
−1
22 Σ21 = 3 − [−2, 0]

(1
5

) [ 3 −1
−1 2

] [−2
0

]
= 3

5

Σ22 − Σ21Σ
−1
11 Σ12 =

[
2 1
1 3

]
−
(1
3

) [ −2
0

]
[−2, 0] =

[
2
3 1
1 3

]

[Σ11 − Σ12Σ
−1
22 Σ21]−1 = 5

3

[Σ22 − Σ21Σ
−1
11 Σ12]−1 =

[
3 −1

−1 2
3

]
.

As well,

Σ12Σ
−1
22 = [−2, 0]

(1
5

) [ 3 −1
−1 2

]
=
[

− 6

5
,
2

5

]
and Σ21Σ

−1
11 =

(1
3

) [−2
0

]
=
[−2/3

0

]
.

Then we have the following:

E[X1|X2] = μ(1) + Σ12Σ
−1
22 (X2 − μ(2))

= −1 +
[

− 6

5
,
2

5

] [
x2 − 0
x3 + 2

]
= −1 − 6

5
x2 + 2

5
(x3 + 2) (i)

and

Cov(X1|X2) = Σ11 − Σ12Σ
−1
22 Σ21 = 3

5
; (ii)

E[X2|X1] = μ(2) + Σ12Σ
−1
22 (X1 − μ(1))

=
[

0
−2

]
+
[−2/3

0

]
(x1 + 1) =

[−2
3(x1 + 1)

−2

]
(iii)

and

Cov(X2|X1) = Σ22 − Σ21Σ
−1
11 Σ12 =

[
2/3 1
1 3

]
. (iv)

The distributions of x1 and X2 are respectively x1 ∼ N1(−1, 3) and X2 ∼ N2(μ(2), Σ22),
the corresponding densities denoted by f1(x1) and f2(X2) being

f1(x1) = 1√
(2π)

√
3
e− 1

6 (x1+1)2, −∞ < x1 < ∞,

f2(X2) = 1

(2π)
√
5
e− 1

2Q1, Q1 = 1

5
[3(x2)2 − 2(x2)(x3 + 2) + 2(x3 + 2)2]
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for −∞ < xj < ∞, j = 2, 3. The conditional distributions are X1|X2 ∼ N1(E(X1|X2),

Var(X1|X2)) and X2|X1 ∼ N2(E(X2|X1),Cov(X2|X1)), the associated densities denoted
by g1(X1|X2) and g2(X2|X1) being given by

g1(X1|X2) = 1
√

(2π)(3/5)
1
2

e− 5
6 [x1+1+ 6

5x2− 2
5 (x3+2)]2,

g2(X2|X1) = 1

2π × 1
e− 1

2Q2,

Q2 = 3
[
x2 + 2

3
(x1 + 1)

]2 − 2
[
x2 + 2

3
(x1 + 1)

]
(x3 + 2) + 2

3
(x3 + 2)2

for −∞ < xj < ∞, j = 1, 2, 3. This completes the computations.

3.3a. Conditional and Marginal Densities in the Complex Case

Let the p × 1 complex vector X̃ have the p-variate complex normal distribution,
X̃ ∼ Ñp(μ̃, Σ̃), Σ̃ > O. As can be seen from the corresponding mgf which was de-
rived in Sect. 3.2a, all subsets of the variables x̃1, . . . , x̃p are again complex Gaussian
distributed. This result can be obtained by integrating out the remaining variables from the
p-variate complex Gaussian density. Let Ũ = X̃ − μ̃ for convenience. Partition X̃, μ̃, Ũ

into subvectors and Σ into submatrices as follows:

Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]
, μ̃ =

[
μ̃(1)

μ̃(2)

]
, X̃ =

[
X̃1

X̃2

]
, Ũ =

[
Ũ1

Ũ2

]

where X̃1, μ̃(1), Ũ1 are r × 1 and Σ11 is r × r . Consider

Ũ∗Σ−1Ũ = [Ũ∗
1 , Ũ∗

2 ]
[
Σ11 Σ12

Σ21 Σ22

] [
Ũ1

Ũ2

]

= Ũ∗
1Σ11Ũ1 + Ũ∗

2Σ22Ũ2 + Ũ∗
1Σ12Ũ2 + Ũ∗

2Σ21Ũ1 (i)

and suppose that we wish to integrate out Ũ2 to obtain the marginal density of Ũ1. The
terms containing Ũ2 are Ũ∗

2Σ22Ũ2 + Ũ∗
1Σ12Ũ2 + Ũ∗

2Σ21Ũ1. On expanding the Hermitian
form

(Ũ2 + C)∗Σ22(Ũ2 + C) = Ũ∗
2Σ22Ũ2 + Ũ∗

2Σ22C

+ C∗Σ22Ũ2 + C∗Σ22C, (ii)

for some C and comparing (i) and (ii), we may let Σ21Ũ1 = Σ22C ⇒ C =
(Σ22)−1Σ21Ũ1. Then C∗Σ22C = Ũ∗

1Σ12(Σ22)−1Σ21Ũ1 and (i) may thus be written
as

Ũ∗
1 (Σ11 − Σ12(Σ22)−1Σ21)Ũ1 + (Ũ2 + C)∗Σ22(Ũ2 + C), C = (Σ22)−1Σ21Ũ1.
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However, from Sect. 1.3 on partitioned matrices, we have

Σ11 − Σ12(Σ22)−1Σ21 = Σ−1
11 .

As well,

det(Σ) = [det(Σ11)][det(Σ22 − Σ21Σ
−1
11 Σ12)]

= [det(Σ11)][det((Σ22)−1)].
Note that the integral of exp{−(Ũ2+C)∗Σ22(Ũ2+C)} over Ũ2 gives πp−r |det(Σ22)−1| =
πp−r |det(Σ22 − Σ21Σ

−1
11 Σ12)|. Hence the marginal density of X̃1 is

f̃1(X̃1) = 1

πr |det(Σ11)|e
−(X̃1−μ̃(1))

∗Σ−1
11 (X̃1−μ̃(1)), Σ11 > O. (3.3a.1)

It is an r-variate complex Gaussian density. Similarly X̃2 has the (p − r)-variate complex
Gaussian density

f̃2(X̃2) = 1

πp−r |det(Σ22)|e
−(X̃2−μ̃(2))

∗Σ−1
22 (X̃2−μ̃(2)), Σ22 > O. (3.3a.2)

Hence, the conditional density of X̃1 given X̃2, is

g̃1(X̃1|X̃2) = f̃ (X̃1, X̃2)

f̃2(X̃2)
= πp−r |det(Σ22)|

πp|det(Σ)|
× e−(X̃−μ̃)∗Σ−1(X̃−μ̃)+(X̃2−μ̃(2))

∗Σ−1
22 (X̃2−μ̃(2)).

From Sect. 1.3, we have

|det(Σ)| = |det(Σ22)| |det(Σ11 − Σ12Σ
−1
22 Σ21)|

and then the normalizing constant is [πr |det(Σ11 − Σ12Σ
−1
22 Σ21)|]−1. The exponential

part reduces to the following by taking Ũ = X̃ − μ̃, Ũ1 = X̃1 − μ̃(1), Ũ2 = X̃2 − μ̃(2):

(X̃ − μ̃)∗Σ−1(X̃ − μ̃) − (X̃2 − μ̃(2))
∗Σ−1

22 (X̃2 − μ̃(2))

= Ũ∗
1Σ11Ũ1 + Ũ∗

2Σ22Ũ2 + Ũ∗
1Σ12Ũ2

+ Ũ∗
2Σ21Ũ1 − Ũ∗

2 (Σ22 − Σ21(Σ11)−1Σ12)Ũ2

= Ũ∗
1Σ11Ũ1 + Ũ∗

2Σ21(Σ11)−1Σ12Ũ2 + 2 Ũ∗
1Σ12Ũ2

= [Ũ1 + (Σ11)−1Σ12Ũ2]∗Σ11[Ũ1 + (Σ11)−1Σ12Ũ2]. (3.3a.3)
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This exponent has the same structure as that of a complex Gaussian density with
E[Ũ1|Ũ2] = −(Σ11)−1Σ12Ũ2 and Cov(X̃1|X̃2) = (Σ11)−1 = Σ11 − Σ12Σ

−1
22 Σ21.

Therefore the conditional density of X̃1 given X̃2 is given by

g̃1(X̃1|X̃2) = 1

πr |det(Σ11 − Σ12Σ
−1
22 Σ21)|

e−(X̃1−μ̃(1)+C)∗Σ11(X̃1−μ̃(1)+C),

C = −(Σ11)−1Σ12(X̃2 − μ̃(2)). (3.3a.4)

The conditional expectation of X̃1 given X̃2 is then

E[X̃1|X̃2] = μ̃(1) − (Σ11)−1Σ12(X̃2 − μ̃(2))

= μ̃(1) + Σ12Σ
−1
22 (X̃2 − μ̃(2)) (linear in X̃2) (3.3a.5)

which follows from a result on partitioning of matrices obtained in Sect. 1.3. The matrix
Σ12Σ

−1
22 is referred to as the matrix of regression coefficients. The conditional covariance

matrix is
Cov(X̃1|X̃2) = Σ11 − Σ12Σ

−1
22 Σ21 (free of X̃2).

From symmetry, the conditional density of X̃2 given X̃1 is given by

g̃2(X̃2|X̃1) = 1

πp−r |det(Σ22 − Σ21Σ
−1
11 Σ12)|

× e−(X̃2−μ̃(2)+C1)
∗Σ22(X̃2−μ̃(2)+C1), (3.3a.6)

C1 = −(Σ22)−1Σ21(X̃1 − μ̃(1)), Σ22 > O.

Then the conditional expectation and the conditional covariance of X̃2 given X̃1 are the
following:

E[X̃2|X̃1] = μ̃(2) − (Σ22)−1Σ21(X̃1 − μ̃(1))

= μ̃(2) + Σ21Σ
−1
11 (X̃1 − μ̃(1)) (linear in X̃1) (3.3a.7)

Cov(X̃2|X̃1) = (Σ22)−1 = Σ22 − Σ21Σ
−1
11 Σ12 (free of X̃1),

where, in this case, the matrix Σ21Σ
−1
11 is referred to as the matrix of regression coeffi-

cients.

Example 3.3a.1. Let X̃, μ̃ = E[X̃], Σ = Cov(X̃) be as follows:

X̃ =
⎡
⎣x̃1

x̃2
x̃3

⎤
⎦ , μ̃ =

⎡
⎣1 + i

2 − i

3i

⎤
⎦ , Σ =

⎡
⎣ 3 1 + i 0
1 − i 2 i

0 −i 3

⎤
⎦ .
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Consider the partitioning

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 =

[
3 1 + i

1 − i 2

]
, Σ12 =

[
0
i

]
, X̃ =

[
X̃1

X̃2

]
, X̃1 =

[
x̃1
x̃2

]
,

Σ21 = [0, −i], Σ22 = (3), X̃2 = (x̃3),

where x̃j , j = 1, 2, 3 are scalar complex variables and X̃ ∼ Ñ3(μ̃, Σ). Determine (1) the
marginal densities of X̃1 and X̃2; (2) the conditional expectation of X̃1|X̃2 or E[X̃1|X̃2]
and the conditional expectation of X̃2|X̃1 or E[X̃2|X̃1]; (3) the conditional densities of
X̃1|X̃2 and X̃2|X̃1.

Solution 3.3a.1. Note that Σ = Σ∗ and hence Σ is Hermitian. Let us compute the

leading minors of Σ : det((3)) = 3 > 0, det
( [ 3 1 + i

1 − i 2

] )
= 6 − (1 + 1) = 4 > 0,

det(Σ) = 3
[
det
( [ 2 i

−i 3

] )]
− (1 + i)

[
det
( [1 − i i

0 3

] )]
+ 0

= (3)(5) − 3(1 + 1) = 9 > 0.

Hence Σ is Hermitian positive definite. Note that the cofactor expansion for determinants
holds whether the elements present in the determinant are real or complex. Let us compute
the inverses of the submatrices by taking the transpose of the matrix of cofactors divided
by the determinant. This formula applies whether the elements comprising the matrix are
real or complex. Then

Σ−1
22 = 1

3
, Σ−1

11 =
[

3 1 + i

1 − i 2

]−1

= 1

4

[
2 −(1 + i)

−(1 − i) 3

]
; (i)

Σ11 − Σ12Σ
−1
22 Σ21 =

[
3 1 + i

1 − i 2

]
−
[
0
i

] (1
3

)
[0, −i]

=
[

3 1 + i

1 − i 2

]
− 1

3

[
0 0
0 1

]
=
[

3 1 + i

1 − i 5
3

]
⇒ (ii)

[Σ11 − Σ12Σ
−1
22 Σ21]−1 =

[
3 + 1 + i

1 − i 5
3

]−1

= 1

3

[
5
3 −(1 + i)

−(1 − i) 3

]
; (iii)

Σ22 − Σ21Σ
−1
11 Σ12 = 3 − [0, −i]

(1
4

[
2 −(1 + i)

−(1 − i) 3

] ) [0
i

]

= 3 − 3

4
= 9

4
⇒ (iv)

[Σ22 − Σ21Σ
−1
11 Σ12]−1 = 4

9
. (v)
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As well,

Σ12Σ
−1
22 = 1

3

[
0
i

]
=
[
0
i
3

]
; (vi)

Σ21Σ
−1
11 = [0, −i]

(1
4

[
2 −(1 + i)

−(1 − i) 3

] )
= 1

4
[1 + i, −3i]. (vii)

With these computations, all the questions can be answered. We have

X̃1 ∼ Ñ2(μ̃(1), Σ11), μ̃(1) =
[
1 + i

2 − i

]
, Σ11 =

[
3 1 + i

1 − i 2

]

and X̃2 = x̃3 ∼ Ñ1(3i, 3). Let the densities of X̃1 and X̃2 = x̃3 be denoted by f̃1(X̃1) and
f̃2(x̃3), respectively. Then

f̃2(x̃3) = 1

(π)(3)
e− 1

3 (x̃3−3i)∗(x̃3−3i);

f̃1(X̃1) = 1

(π2)(4)
e−Q1,

Q1 = 1

4
[2(x̃1 − (1 + i))∗(x̃1 − (1 + i))

− (1 + i)(x̃1 − (1 + i))∗(x̃2 − (2 − i)) − (1 − i)(x̃2

− (2 − i))∗(x̃1 − (1 + i)) + 3(x̃2 − (2 − i))∗(x̃2 − (2 − i)).

The conditional densities, denoted by g̃1(X̃1|X̃2) and g̃2(X̃2|X̃1), are the following:

g̃1(X̃1|X̃2) = 1

(π2)(3)
e−Q2,

Q2 = 1

3

[5
3
(x̃1 − (1 + i))∗(x̃1 − (1 + i))

− (1 + i)(x̃1 − (1 + i))∗(x̃2 − (2 − i) − i

3
(x̃3 − 3i))

− (1 − i)(x̃2 − (2 − i) − i

3
(x̃3 − 3i))∗(x̃1 − (1 + i))

+ 3(x̃2 − (2 − i) − i

3
(x̃3 − 3i))∗(x̃2 − (2 − i) − i

3
(x̃3 − 3i))

]
;
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g̃2(X̃2|X̃1) = 1

(π)(9/4)
e−Q3,

Q3 = 4

9
[(x̃3 − M3)

∗(x̃3 − M3) where

M3 = 3i + 1

4
{(1 + i)[x̃1 − (1 + i)] − 3i[x̃2 − (2 − i)]}

= 3i + 1

4
{(1 + i)x̃1 − 3ix̃2 + 3 + 4i}.

The bivariate complex Gaussian case
Letting ρ denote the correlation between x̃1 and x̃2, it is seen from (3.3a.5) that for p = 2,

E[X̃1|X̃2] = μ̃(1) + Σ12Σ
−1
22 (X̃2 − μ̃(2)) = μ̃1 + σ12

σ 2
2

(x̃2 − μ̃2)

= μ̃1 + σ1σ2ρ

σ 2
2

(x̃2 − μ̃2) = μ̃1 + σ1

σ2
ρ (x̃2 − μ̃2) = E[x̃1|x̃2] (linear in x̃2).

(3.3a.8)

Similarly,

E[x̃2|x̃1] = μ̃2 + σ2

σ1
ρ (x̃1 − μ̃1) (linear in x̃1). (3.3a.9)

Incidentally, σ12/σ 2
2 and σ12/σ

2
1 are referred to as the regression coefficients.

Exercises 3.3

3.3.1. Let the real p × 1 vector X have a p-variate nonsingular normal density X ∼
Np(μ, Σ), Σ > O. Let u = X′Σ−1X. Make use of the mgf to derive the density of u for
(1) μ = O, (2) μ �= O.

3.3.2. Repeat Exercise 3.3.1 for μ �= O for the complex nonsingular Gaussian case.

3.3.3. Observing that the density coming from Exercise 3.3.1 is a noncentral chi-square
density, coming from the real p-variate Gaussian, derive the non-central F (the numerator
chisquare is noncentral and the denominator chisquare is central) density with m and n

degrees of freedom and the two chisquares are independently distributed.

3.3.4. Repeat Exercise 3.3.3 for the complex Gaussian case.

3.3.5. Taking the density of u in Exercise 3.3.1 as a real noncentral chisquare density,
derive the density of a real doubly noncentral F.
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3.3.6. Repeat Exercise 3.3.5 for the corresponding complex case.

3.3.7. Construct a 3 × 3 Hermitian positive definite matrix V . Let this be the covariance
matrix of a 3× 1 vector variable X̃. Compute V −1. Then construct a Gaussian density for
this X̃. Derive the marginal joint densities of (1) x̃1 and x̃2, (2) x̃1 and x̃3, (3) x̃2 and x̃3,
where x̃1, x̃2, x̃3 are the components of X̃. Take E[X̃] = O.

3.3.8. In Exercise 3.3.7, compute (1) E[x̃1|x̃2], (2) the conditional joint density of x̃1, x̃2,
given x̃3. Take E[X̃] = μ̃ �= O.

3.3.9. In Exercise 3.3.8, compute the mgf in the conditional space of x̃1 given x̃2, x̃3, that
is, E[e
(t1x̃1)|x̃2, x̃3].
3.3.10. In Exercise 3.3.9, compute the mgf in the marginal space of x̃2, x̃3. What is the
connection of the results obtained in Exercises 3.3.9 and 3.3.10 with the mgf of X̃?

3.4. Chisquaredness and Independence of Quadratic Forms in the Real Case

Let the p × 1 vector X have a p-variate real Gaussian density with a null vector as its
mean value and the identity matrix as its covariance matrix, that is, X ∼ Np(O, I), that is,
the components of X are mutually independently distributed real scalar standard normal
variables. Let u = X′AX, A = A′ be a real quadratic form in this X. The chisquaredness
of a quadratic form such as u has already been discussed in Chap. 2. In this section, we
will start with such a u and then consider its generalizations. When A = A′, there exists an
orthonormal matrix P , that is, PP ′ = I, P ′P = I, such that P ′AP = diag(λ1, . . . , λp)

where λ1, . . . , λp are the eigenvalues of A. Letting Y = P ′X, E[Y ] = P ′O = O and
Cov(Y ) = P ′IP = I . But Y is a linear function of X and hence, Y is also real Gaus-

sian distributed; thus, Y ∼ Np(O, I). Then, y2
j

iid∼ χ2
1 , j = 1, . . . , p, or the y2

j ’s are
independently distributed chisquares, each having one degree of freedom. Note that

u = X′AX = Y ′P ′APY = λ1y
2
1 + · · · + λpy2

p. (3.4.1)

We have the following result on the chisquaredness of quadratic forms in the real p-variate
Gaussian case, which corresponds to Theorem 2.2.1.

Theorem 3.4.1. Let the p × 1 vector be real Gaussian with the parameters μ = O and
Σ = I or X ∼ Np(O, I). Let u = X′AX, A = A′ be a quadratic form in this X. Then
u = X′AX ∼ χ2

r , that is, a real chisquare with r degrees of freedom, if and only if A = A2

and the rank of A is r .
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Proof: When A = A′, we have the representation of the quadratic form given in (3.4.1).
When A = A2, all the eigenvalues of A are 1’s and 0’s. Then r of the λj ’s are unities
and the remaining ones are zeros and then (3.4.1) becomes the sum of r independently
distributed real chisquares having one degree of freedom each, and hence the sum is a
real chisquare with r degrees of freedom. For proving the second part, we will assume
that u = X′AX ∼ χ2

r . Then the mgf of u is Mu(t) = (1 − 2t)− r
2 for 1 − 2t > 0. The

representation in (3.4.1) holds in general. The mgf of y2
j , λjy

2
j and the sum of λjy

2
j are

the following:

My2j
(t) = (1 − 2t)−

1
2 , Mλjy

2
j
(t) = (1 − 2λj t)

− 1
2 , Mu(t) =

p∏
j=1

(1 − 2λj t)
− 1

2

for 1 − λj t > 0, j = 1, . . . , p. Hence, we have the following identity:

(1 − 2t)−
r
2 =

p∏
j=1

(1 − 2λj t)
− 1

2 , 1 − 2t > 0, 1 − 2λj t > 0, j = 1, . . . , p. (3.4.2)

Taking natural logarithm on both sides of (3.4.2), expanding and then comparing the coef-

ficients of 2t, (2t)2

2 , . . . , we have

r =
p∑

j=1

λj =
p∑

j=1

λ2j =
p∑

j=1

λ3j = · · · (3.4.3)

The only solution (3.4.3) can have is that r of the λj ’s are unities and the remaining ones
zeros. This property alone will not guarantee that A is idempotent. However, having eigen-
values that are equal to zero or one combined with the property that A = A′ will ensure
that A = A2. This completes the proof.

Let us look into some generalizations of the Theorem 3.4.1. Let the p × 1 vector have
a real Gaussian distribution X ∼ Np(O, Σ), Σ > O, that is, X is a Gaussian vector
with the null vector as its mean value and a real positive definite matrix as its covariance
matrix. When Σ is positive definite, we can define Σ

1
2 . Letting Z = Σ− 1

2X, Z will
be distributed as a standard Gaussian vector, that is, Z ∼ Np(O, I), since Z is a linear
function of X with E[Z] = O and Cov(Z) = I . Now, Theorem 3.4.1 is applicable to Z.
Then u = X′AX, A = A′, becomes

u = Z′Σ
1
2AΣ

1
2Z, Σ

1
2AΣ

1
2 = (Σ

1
2AΣ

1
2 )′,

and it follows from Theorem 3.4.1 that the next result holds:
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Theorem 3.4.2. Let the p × 1 vector X have a real p-variate Gaussian density X ∼
Np(O, Σ), Σ > O. Then q = X′AX, A = A′, is a real chisquare with r degrees of

freedom if and only if Σ
1
2AΣ

1
2 is idempotent and of rank r or, equivalently, if and only if

A = AΣA and the rank of A is r .

Now, let us consider the general case. Let X ∼ Np(μ, Σ), Σ > O. Let q =
X′AX, A = A′. Then, referring to representation (2.2.1), we can express q as

λ1(u1 + b1)
2 + · · · + λp(up + bp)2 ≡ λ1w

2
1 + · · · + λpw2

p (3.4.4)

where U = (u1, . . . , up)′ ∼ Np(O, I), the λj ’s, j = 1, . . . , p, are the eigenvalues of

Σ
1
2AΣ

1
2 and bi is the i-th component of P ′Σ− 1

2μ, P being a p × p orthonormal matrix
whose j -th column consists of the normalized eigenvectors corresponding to λj , j =
1, . . . , p. When μ = O, w2

j is a real central chisquare random variable having one degree
of freedom; otherwise, it is a real noncentral chisquare random variable with one degree
of freedom and noncentality parameter 1

2b
2
j . Thus, in general, (3.4.4) is a linear function of

independently distributed real noncentral chisquare random variables having one degree
of freedom each.

Example 3.4.1. Let X ∼ N3(O, Σ), q = X′AX where

X =
⎡
⎣x1

x2
x3

⎤
⎦ , Σ = 1

3

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 3

⎤
⎦ , A =

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ .

(1) Show that q ∼ χ2
1 by applying Theorem 3.4.2 as well as independently; (2) If the mean

value vector μ′ = [−1, 1, −2], what is then the distribution of q?

Solution 3.4.1. In (1) μ = O and

X′AX = x2
1 + x2

2 + x2
3 + 2(x1x2 + x1x3 + x2x3) = (x1 + x2 + x3)

2.

Let y1 = x1 + x2 + x3. Then E[y1] = 0 and

Var(y1) = Var(x1) + Var(x2) + Var(x3) + 2[Cov(x1, x2) + Cov(x1, x3) + Cov(x2, x3)]
= 1

3
[2 + 2 + 3 + 0 − 2 − 2] = 3

3
= 1.

Hence, y1 = x1 + x2 + x3 has E[u1] = 0 and Var(u1) = 1, and since it is a linear
function of the real normal vector X, y1 is a standard normal. Accordingly, q = y2

1 ∼
χ2
1 . In order to apply Theorem 3.4.2, consider AΣA:
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AΣA =
⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦(1

3

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 3

⎤
⎦)

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ =

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ = A.

Then, by Theorem 3.4.2, q = X′AX ∼ χ2
r where r is the rank of A. In this case, the rank

of A is 1 and hence y ∼ χ2
1 . This completes the calculations in connection with respect

to (1). When μ �= O, u ∼ χ2
1 (λ), a noncentral chisquare with noncentrality parameter

λ = 1
2μ

′ Σ−1μ. Let us compute Σ−1 by making use of the formula Σ−1 = 1
|Σ | [Cof(Σ)]′

where Cof(Σ) is the matrix of cofactors of Σ wherein each of its elements is replaced by
its cofactor. Now,

Σ−1 =
{1
3

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 3

⎤
⎦}−1 = 3

8

⎡
⎣5 1 2
1 5 2
2 2 4

⎤
⎦ = Σ−1.

Then,

λ = 1

2
μ′ Σ−1μ = 3

16
[−1, 1, −2]

⎡
⎣5 1 2
1 5 2
2 2 4

⎤
⎦
⎡
⎣−1

1
−2

⎤
⎦ = 3

16
× 24 = 9

2
.

This completes the computations for the second part.

3.4.1. Independence of quadratic forms

Another relevant result in the real case pertains to the independence of quadratic forms.
The concept of chisquaredness and the independence of quadratic forms are prominently
encountered in the theoretical underpinnings of statistical techniques such as the Anal-
ysis of Variance, Regression and Model Building when it is assumed that the errors are
normally distributed. First, we state a result on the independence of quadratic forms in
Gaussian vectors whose components are independently distributed.

Theorem 3.4.3. Let u1 = X′AX, A = A′, and u2 = X′BX, B = B ′, be two quadratic
forms in X ∼ Np(μ, I). Then u1 and u2 are independently distributed if and only if
AB = O.

Note that independence property holds whether μ = O or μ �= O. The result will still
be valid if the covariance matrix is σ 2I where σ 2 is a positive real scalar quantity. If the
covariance matrix is Σ > O, the statement of Theorem 3.4.3 needs modification.
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Proof: Since AB = O, we have AB = O = O ′ = (AB)′ = B ′A′ = BA, which means
that A and B commute. Then there exists an orthonormal matrix P, PP ′ = I, P ′P = I,

that diagonalizes both A and B, and

AB = O ⇒ PABP = O ⇒ P ′APP ′BP = D1D2 = O,

D1 = diag(λ1, . . . , λp), D2 = diag(ν1, . . . , νp), (3.4.5)

where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are the eigenvalues of B. Let
Y = P ′X, then the canonical representations of u1 and u2 are the following:

u1 = λ1y
2
1 + · · · + λpy2

p (3.4.6)

u2 = ν1y
2
1 + · · · + νpy2

p (3.4.7)

where yj ’s are real and independently distributed. But D1D2 = O means that whenever
a λj �= 0 then the corresponding νj = 0 and vice versa. In other words, whenever a yj

is present in (3.4.6), it is absent in (3.4.7) and vice versa, or the independent variables
yj ’s are separated in (3.4.6) and (3.4.7), which implies that u1 and u2 are independently
distributed.

The necessity part of the proof which consists in showing that AB = O given that
A = A′, B = B ′ and u1 and u2 are independently distributed, cannot be established by
retracing the steps utilized for proving the sufficiency as it requires more matrix manipu-
lations. We note that there are several incorrect or incomplete proofs of Theorem 3.4.3 in
the statistical literature. A correct proof for the central case is given in Mathai and Provost
(1992).

If X ∼ Np(μ, Σ), Σ > O, consider the transformation Y = Σ− 1
2X ∼

Np(Σ− 1
2μ, I). Then, u1 = X′AX = Y ′Σ 1

2AΣ
1
2Y, u2 = X′BX = Y ′Σ 1

2BΣ
1
2Y , and

we can apply Theorem 3.4.3. In that case, the matrices being orthogonal means

Σ
1
2AΣ

1
2Σ

1
2BΣ

1
2 = O ⇒ AΣB = O.

Thus we have the following result:

Theorem 3.4.4. Let u1 = X′AX, A = A′ and u2 = X′BX, B = B ′ where
X ∼ Np(μ, Σ), Σ > O. Then u1 and u2 are independently distributed if and only if
AΣB = O.
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What about the distribution of the quadratic form y = (X − μ)′Σ−1(X − μ) that is
present in the exponent of the p-variate real Gaussian density? Let us first determine the
mgf of y, that is,

My(t) = E[ety] = 1

(2π)
p
2 |Σ | 12

∫
X

et (X−μ)′Σ−1(X−μ)− 1
2 (X−μ)′Σ−1(X−μ)dX

= 1

(2π)
p
2 |Σ | 12

∫
X

e− 1
2 (1−2t)(X−μ)′Σ−1(X−μ)dX

= (1 − 2t)−
p
2 for (1 − 2t) > 0. (3.4.8)

This is the mgf of a real chisquare random variable having p degrees of freedom. Hence
we have the following result:

Theorem 3.4.5. When X ∼ Np(μ, Σ), Σ > O,

y = (X − μ)′Σ−1(X − μ) ∼ χ2
p, (3.4.9)

and if y1 = X′Σ−1X, then y1 ∼ χ2
p(λ), that is, a real non-central chisquare with p

degrees of freedom and noncentrality parameter λ = 1
2μ

′Σ−1μ.

Example 3.4.2. Let X ∼ N3(μ, Σ) and consider the quadratic forms u1 = X′AX and
u2 = X′BX where

X =
⎡
⎣x1

x2
x3

⎤
⎦ , Σ = 1

3

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 3

⎤
⎦ , A =

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ ,

B = 1

3

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ , μ =

⎡
⎣12
3

⎤
⎦ .

Show that u1 and u2 are independently distributed.

Solution 3.4.2. Let J be a 3 × 1 column vector of unities or 1’s as its elements.
Then observe that A = JJ ′ and B = I − 1

3JJ ′. Further, J ′J = 3, J ′Σ = J ′ and
hence AΣ = JJ ′Σ = JJ ′. Then AΣB = JJ ′[I − 1

3JJ ′] = JJ ′ − JJ ′ = O.
It then follows from Theorem 3.4.4 that u1 and u2 are independently distributed. Now,
let us prove the result independently without resorting to Theorem 3.4.4. Note that
u3 = x1 + x2 + x3 = J ′X has a standard normal distribution as shown in Exam-
ple 3.4.1. Consider the B in BX, namely I − 1

3JJ ′. The first component of BX is of the
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form 1
3 [2, −1, −1]X = 1

3 [2x1 − x2 − x3], which shall be denoted by u4. Then u3 and
u4 are linear functions of the same real normal vector X, and hence u3 and u4 are
real normal variables. Let us compute the covariance between u3 and u4, observing that
J ′Σ = J ′ = J ′Cov(X):

Cov(u3, u4) = 1

3
[1, 1, 1]Cov(X)

⎡
⎣ 2

−1
−1

⎤
⎦ = 1

3
[1, 1, 1]

⎡
⎣ 2

−1
−1

⎤
⎦ = 0.

Thus, u3 and u4 are independently distributed. As a similar result can be established with
respect to the second and third component of BX, u3 and BX are indeed independently
distributed. This implies that u2

3 = (J ′X)2 = X′JJ ′X = X′AX and (BX)′(BX) =
X′B ′BX = X′BX are independently distributed. Observe that since B is symmetric and
idempotent, B ′B = B. This solution makes use of the following property: if Y1 and Y2

are real vectors or matrices that are independently distributed, then Y ′
1Y1 and Y ′

2Y2 are also
independently distributed. It should be noted that the converse does not necessarily hold.

3.4a. Chisquaredness and Independence in the Complex Gaussian Case

Let the p × 1 vector X̃ in the complex domain have a p-variate complex Gaussian
density X̃ ∼ Ñp(O, I). Let ũ = X̃∗AX̃ be a Hermitian form, A = A∗ where A∗ denotes
the conjugate transpose of A. Then there exists a unitary matrix Q, QQ∗ = I, Q∗Q = I ,
such that Q∗AQ = diag(λ1, . . . , λp) where λ1, . . . , λp are the eigenvalues of A. It can be
shown that when A is Hermitian, which means in the real case that A = A′ (symmetric),
all the eigenvalues of A are real. Let Ỹ = Q∗X̃ then

ũ = X̃∗AX̃ = Ỹ ∗Q∗AQỸ = λ1|ỹ1|2 + · · · + λp|ỹp|2 (3.4a.1)

where |ỹj | denotes the absolute value or modulus of ỹj . If ỹj = yj1 + iyj2 where yj1 and
yj2 are real, i = √

(−1), then |ỹj |2 = y2
j1 + y2

j2. We can obtain the following result which
is the counterpart of Theorem 3.4.1:

Theorem 3.4a.1. Let X̃ ∼ Ñp(O, I) and ũ = X̃∗AX̃, A = A∗. Then ũ ∼ χ̃2
r , a

chisquare random variable having r degrees of freedom in the complex domain, if and
only if A = A2 (idempotent) and A is of rank r .

Proof: The definition of an idempotent matrix A as A = A2 holds whether the elements
of A are real or complex. Let A be idempotent and of rank r . Then r of the eigenvalues of
A are unities and the remaining ones are zeros. Then the representation given in (3.4a.1)
becomes

ũ = |ỹ1|2 + · · · + |ỹr |2 ∼ χ̃2
r ,
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a chisquare with r degrees of freedom in the complex domain, that is, a real gamma with
the parameters (α = r, β = 1) whose mgf is (1 − t)−r , 1 − t > 0. For proving the
necessity, let us assume that ũ ∼ χ̃2

r , its mgf being Mũ(t) = (1 − t)−r for 1 − t > 0. But
from (3.4a.1), |ỹj |2 ∼ χ̃2

1 and its mgf is (1− t)−1 for 1− t > 0. Hence the mgf of λj |ỹj |2
is Mλj |ỹj |2(t) = (1 − λj t)

−1 for 1 − λj t > 0, and we have the following identity:

(1 − t)−r =
p∏

j=1

(1 − λj t)
−1. (3.4a.2)

Take the natural logarithm on both sides of (3.4a.2, expand and compare the coefficients
of t, t2

2 , . . . to obtain

r =
p∑

j=1

λj =
p∑

j=1

λ2j = · · · (3.4a.3)

The only possibility for the λj ’s in (3.4a.3) is that r of them are unities and the remaining
ones, zeros. This property, combined with A = A∗ guarantees that A = A2 and A is of
rank r . This completes the proof.

An extension of Theorem 3.4a.1 which is the counterpart of Theorem 3.4.2 can also be
obtained. We will simply state it as the proof is parallel to that provided in the real case.

Theorem 3.4a.2. Let X̃ ∼ Ñp(O, Σ), Σ > O and ũ = X̃∗AX̃, A = A∗, be a
Hermitian form. Then ũ ∼ χ̃2

r , a chisquare random variable having r degrees of freedom
in the complex domain, if and only if A = AΣA and A is of rank r .

Example 3.4a.1. Let X̃ ∼ Ñ3(μ̃, Σ), ũ = X̃∗AX̃ where

X̃ =
⎡
⎣x̃1

x̃2
x̃3

⎤
⎦ , Σ = 1

3

⎡
⎣ 3 −(1 + i) −(1 − i)

−(1 − i) 3 −(1 + i)

−(1 + i) −(1 − i) 3

⎤
⎦ ,

A =
⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ , μ̃ =

⎡
⎣2 + i

−i

2i

⎤
⎦ .

First determine whether Σ can be a covariance matrix. Then determine the distribution
of ũ by making use of Theorem 3.4a.2 as well as independently, that is, without using
Theorem 3.4a.2, for the cases (1) μ̃ = O; (2) μ̃ as given above.
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Solution 3.4a.1. Note that Σ = Σ∗, that is, Σ is Hermitian. Let us verify that Σ is a
Hermitian positive definite matrix. Note that Σ must be either positive definite or positive
semi-definite to be a covariance matrix. In the semi-definite case, the density of X̃ does not

exist. Let us check the leading minors: det((3)) = 3 > 0, det
( [ 3 −(1 + i)

−(1 − i) 3

] )
=

9 − 2 = 7 > 0, det(Σ) = 13
33

> 0 [evaluated by using the cofactor expansion which is
the same in the complex case]. Hence Σ is Hermitian positive definite. In order to apply
Theorem 3.4a.2, we must now verify thatAΣA = Awhen μ̃ = O. Observe the following:
A = JJ ′, J ′A = 3J ′, J ′J = 3 where J ′ = [1, 1, 1]. Hence AΣA = (JJ ′)Σ(JJ ′) =
J (J ′Σ)JJ ′ = 1

3(JJ ′)(JJ ′) = 1
3J (J ′J )J ′ = 1

3J (3)J ′ = JJ ′ = A. Thus the condition
holds and by Theorem 3.4a.2, ũ ∼ χ̃2

1 in the complex domain, that is, ũ a real gamma
random variable with parameters (α = 1, β = 1) when μ̃ = O. Now, let us derive this
result without using Theorem 3.4a.2. Let ũ1 = x̃1 + x̃2 + x̃3 and A1 = (1, 1, 1)′. Note that
A′
1X̃ = ũ1, the sum of the components of X̃. Hence ũ∗

1ũ1 = X̃∗A1A
′
1X̃ = X̃∗AX̃. For

μ̃ = O, we have E[ũ1] = 0 and

Var(ũ1) = Var(x̃1) + Var(x̃2) + Var(x̃3) + [Cov(x̃1, x̃2) + Cov(x̃2, x̃1)]
+ [Cov(x̃1, x̃3) + Cov(x̃3, x̃1)] + [Cov(x̃2, x̃3) + Cov(x̃3, x̃2)]

= 1

3
{3 + 3 + 3 + [−(1 + i) − (1 − i)] + [−(1 − i) − (1 + i)]

+ [−(1 + i) − (1 − i)]} = 1

3
[9 − 6] = 1.

Thus, ũ1 is a standard normal random variable in the complex domain and ũ∗
1ũ1 ∼ χ̃2

1 , a
chisquare random variable with one degree of freedom in the complex domain, that is, a
real gamma random variable with parameters (α = 1, β = 1).

For μ̃ = (2 + i, −i, 2i)′, this chisquare random variable is noncentral with noncen-
trality parameter λ = μ̃∗Σ−1μ̃. Hence, the inverse of Σ has to be evaluated. To do so,
we will employ the formula Σ−1 = 1

|Σ | [Cof(Σ)]′, which also holds for the complex case.

Earlier, the determinant was found to be equal to 13
33

and

1

|Σ | [Cof(Σ)] = 33

13

⎡
⎣ 7 3 − i 3 + i

3 + i 7 3 − i

3 − i 3 + i 7

⎤
⎦ ; then

Σ−1 = 1

|Σ | [Cof(Σ)]′ = 33

13

⎡
⎣ 7 3 + i 3 − i

3 − i 7 3 + i

3 + i 3 − i 7

⎤
⎦
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and

λ = μ̃∗Σ−1μ̃ = 33

13
[2 − i, i,−2i]

⎡
⎣ 7 3 + i 3 − i

3 − i 7 3 + i

3 + i 3 − i 7

⎤
⎦
⎡
⎣2 + i

−i

2i

⎤
⎦

= (76)(33)

13
= 2052

13
≈ 157.85.

This completes the computations.

3.4a.1. Independence of Hermitian forms

We shall mainly state certain results in connection with Hermitian forms in this section
since they parallel those pertaining to the real case.

Theorem 3.4a.3. Let ũ1 = X̃∗AX̃, A = A∗, and ũ2 = X̃∗BX̃, B = B∗, where
X̃ ∼ Ñ(μ, I ). Then, ũ1 and ũ2 are independently distributed if and only if AB = O.

Proof: Let us assume that AB = O. Then

AB = O = O∗ = (AB)∗ = B∗A∗ = BA. (3.4a.4)

This means that there exists a unitary matrix Q, QQ∗ = I, Q∗Q = I , that will
diagonalize both A and B. That is, Q∗AQ = diag(λ1, . . . , λp) = D1, Q∗BQ =
diag(ν1, . . . , νp) = D2 where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are
the eigenvalues of B. But AB = O implies that D1D2 = O. As well,

ũ1 = X̃∗AX̃ = Ỹ ∗Q∗AQỸ = λ1|ỹ1|2 + · · · + λp|ỹp|2, (3.4a.5)

ũ2 = X̃∗BX̃ = Ỹ ∗Q∗BQỸ = ν1|ỹ1|2 + · · · + νp|ỹp|2. (3.4a.6)

Since D1D2 = O, whenever a λj �= 0, the corresponding νj = 0 and vice versa. Thus the
independent variables ỹj ’s are separated in (3.4a.5) and (3.4a.6) and accordingly, ũ1 and
ũ2 are independently distributed. The proof of the necessity which requires more matrix
algebra, will not be provided herein. The general result can be stated as follows:

Theorem 3.4a.4. Letting X̃ ∼ Ñp(μ, Σ), Σ > O, the Hermitian forms ũ1 = X̃∗AX̃,

A = A∗, and ũ2 = X̃∗BX̃, B = B∗, are independently distributed if and only if
AΣB = O.

Now, consider the density of the exponent in the p-variate complex Gaussian density.
What will then be the density of ỹ = (X̃ − μ̃)∗Σ−1(X̃ − μ̃)? Let us evaluate the mgf of
ỹ. Observing that ỹ is real so that we may take E[et ỹ] where t is a real parameter, we have
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Mỹ(t) = E[et ỹ] = 1

πp|det(Σ)|
∫

X̃

et (X̃−μ̃)∗Σ−1(X̃−μ̃)−(X̃−μ̃)∗Σ−1(X̃−μ̃)dX̃

= 1

πp|det(Σ)|
∫

X̃

e−(1−t)(X̃−μ̃)∗Σ−1(X̃−μ̃)dX̃

= (1 − t)−p for 1 − t > 0. (3.4a.7)

This is the mgf of a real gamma random variable with the parameters (α = p, β = 1) or a
chisquare random variable in the complex domain with p degrees of freedom. Hence we
have the following result:

Theorem 3.4a.5. When X̃ ∼ Ñp(μ̃, Σ), Σ > O then ỹ = (X̃ − μ̃)∗Σ−1(X̃ − μ̃) is
distributed as a real gamma random variable with the parameters (α = p, β = 1) or a
chisquare random variable in the complex domain with p degrees of freedom, that is,

ỹ ∼ gamma(α = p, β = 1) or ỹ ∼ χ̃2
p. (3.4a.8)

Example 3.4a.2. Let X̃ ∼ Ñ3(μ̃, Σ), ũ1 = X̃∗AX̃, ũ2 = X̃∗BX̃ where

X̃ =
⎡
⎣x̃1

x̃2
x̃3

⎤
⎦ , μ̃ =

⎡
⎣ 2 − i

3 + 2i
1 − i

⎤
⎦ , Σ = 1

3

⎡
⎣ 3 −(1 + i) −(1 − i)

−(1 − i) 3 −(1 + i)

−(1 + i) −(1 − i) 3

⎤
⎦ ,

A =
⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ , B = 1

3

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ .

(1) By making use of Theorem 3.4a.4, show that ũ1 and ũ2 are independently distributed.
(2) Show the independence of ũ1 and ũ2 without using Theorem 3.4a.4.

Solution 3.4a.2. In order to use Theorem 3.4a.4, we have to show that AΣB = O ir-
respective of μ̃. Note that A = JJ ′, J ′ = [1, 1, 1], J ′J = 3, J ′Σ = 1

3J
′, J ′B = O.

Hence AΣ = JJ ′Σ = J (J ′Σ) = 1
3JJ ′ ⇒ AΣB = 1

3JJ ′B = 1
3J (J ′B) =

O. This proves the result that ũ1 and ũ2 are independently distributed through The-
orem 3.4a.4. This will now be established without resorting to Theorem 3.4a.4. Let
ũ3 = x̃1 + x̃2 + x̃3 = J ′X and ũ4 = 1

3 [2x̃1 − x̃2 − x̃3] or the first row of BX̃.
Since independence is not affected by the relocation of the variables, we may assume,
without any loss of generality, that μ̃ = O when considering the independence of ũ3 and
ũ4. Let us compute the covariance between ũ3 and ũ4:
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Cov(ũ3, ũ4) = 1

3
[1, 1, 1]Σ

⎡
⎣ 2

−1
−1

⎤
⎦ = 1

32
[1, 1, 1]

⎡
⎣ 2

−1
−1

⎤
⎦ = 0.

Thus, ũ3 and ũ4 are uncorrelated and hence independently distributed since both are
linear functions of the normal vector X̃. This property holds for each row of BX̃ and
therefore ũ3 and BX̃ are independently distributed. However, ũ1 = X̃∗AX̃ = ũ∗

3ũ3

and hence ũ1 and (BX̃)∗(BX̃) = X̃∗B∗BX̃ = X̃∗BX̃ = ũ2 are independently dis-
tributed. This completes the computations. The following property was utilized: Let Ũ

and Ṽ be vectors or matrices that are independently distributed. Then, all the pairs
(Ũ , Ṽ ∗), (Ũ , Ṽ Ṽ ∗), (Ũ , Ṽ ∗Ṽ ), . . . , (Ũ Ũ∗, Ṽ Ṽ ∗), are independently distributed when-
ever the quantities are defined. The converses need not hold when quadratic terms are
involved; for instance, (Ũ Ũ∗, Ṽ Ṽ ∗) being independently distributed need not imply that
(Ũ , Ṽ ) are independently distributed.

Exercises 3.4

3.4.1. In the real case on the right side of (3.4.4), compute the densities of the following
items: (i) z21, (ii) λ1z

2
1, (iii) λ1z

2
1 + λ2z

2
2, (iv) λ1z

2
1 + · · · + λ4z

2
4 if λ1 = λ2, λ3 = λ4 for

μ = O.

3.4.2. Compute the density of u = X′AX, A = A′ in the real case when (i) X ∼
Np(O, Σ), Σ > O, (ii) X ∼ Np(μ, Σ), Σ > O.

3.4.3. Modify the statement in Theorem 3.4.1 if (i) X ∼ Np(O, σ 2I ), σ 2 > 0, (ii)
X ∼ Np(μ, σ 2I ), μ �= O.

3.4.4. Prove the only if part in Theorem 3.4.3

3.4.5. Establish the cases (i), (ii), (iii) of Exercise 3.4.1 in the corresponding complex
domain.

3.4.6. Supply the proof for the only if part in Theorem 3.4a.3.

3.4.7. Can a matrix A having at least one complex element be Hermitian and idempotent
at the same time? Prove your statement.

3.4.8. Let the p × 1 vector X have a real Gaussian density Np(O, Σ), Σ > O. Let
u = X′AX, A = A′. Evaluate the density of u for p = 2 and show that this density can
be written in terms of a hypergeometric series of the 1F1 type.

3.4.9. Repeat Exercise 3.4.8 if X̃ is in the complex domain, X̃ ∼ Ñp(O, Σ), Σ > O.

3.4.10. Supply the proofs for the only if part in Theorems 3.4.4 and 3.4a.4.
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3.5. Samples from a p-variate Real Gaussian Population

Let the p×1 real vectorsX1, . . . , Xn be iid asNp(μ, Σ), Σ > O. Then, the collection
X1, . . . , Xn is called a simple random sample of size n from thisNp(μ, Σ), Σ > O. Then
the joint density of X1, . . . , Xn is the following:

L =
n∏

j=1

f (Xj) =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 12

= [(2π)
np
2 |Σ | n

2 ]−1e− 1
2

∑n
j=1(Xj−μ)′Σ−1(Xj−μ)

. (3.5.1)

This L at an observed set of X1, . . . , Xn is called the likelihood function. Let the sample
matrix, which is p×n, be denoted by a bold-faced X. In order to avoid too many symbols,
we will use X to denote the p × n matrix in this section. In earlier sections, we had used
X to denote a p × 1 vector. Then

X = [X1, . . . , Xn] =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤
⎥⎥⎥⎦ , Xk =

⎡
⎢⎢⎢⎣

x1k
x2k
...

xpk

⎤
⎥⎥⎥⎦ , k = 1, . . . , n. (i)

Let the sample average be denoted by X̄ = 1
n
(X1 + · · · + Xn). Then X̄ will be of the

following form:

X̄ =
⎡
⎢⎣

x̄1
...

x̄p

⎤
⎥⎦ , x̄i = 1

n

n∑
k=1

xik = average on the i-th component of any Xj . (ii)

Let the bold-faced X̄ be defined as follows:

X̄ = [X̄, . . . , X̄] =

⎡
⎢⎢⎢⎣

x̄1 x̄1 . . . x̄1
x̄2 x̄2 . . . x̄2
...

...
. . .

...

x̄p x̄p . . . x̄p

⎤
⎥⎥⎥⎦ .

Then,

X − X̄ =

⎡
⎢⎢⎢⎣

x11 − x̄1 x12 − x̄1 . . . x1n − x̄1
x21 − x̄2 x22 − x̄2 . . . x2n − x̄2

...
...

. . .
...

xp1 − x̄p xp2 − x̄p . . . xpn − x̄p

⎤
⎥⎥⎥⎦ ,
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and
S = (X − X̄)(X − X̄)′ = (sij ),

so that

sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ).

S is called the sample sum of products matrix or the corrected sample sum of products
matrix, corrected in the sense that the averages are deducted from the observations. As
well, 1

n
sii is called the sample variance on the component xi of any vector Xk, referring to

(i) above, and 1
n
sij , i �= j, is called the sample covariance on the components xi and xj

of any Xk, 1
n
S being referred to as the sample covariance matrix. The exponent in L can

be simplified by making use of the following properties: (1) When u is a 1 × 1 matrix or
a scalar quantity, then tr(u) = tr(u′) = u = u′. (2) For two matrices A and B, whenever
AB and BA are defined, tr(AB) = tr(BA) where AB need not be equal to BA. Observe
that the following quantity is real scalar and hence, it is equal to its trace:

n∑
j=1

(Xj − μ)′Σ−1(Xj − μ) = tr
[ n∑

j=1

(Xj − μ)′Σ−1(Xj − μ)
]

= tr[Σ−1
n∑

j=1

(Xj − μ)(Xj − μ)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄ + X̄ − μ)(Xj − X̄ + X̄ − μ)′
]

= tr[Σ−1(X − X̄)(X − X̄)′] + ntr[Σ−1(X̄ − μ)(X̄ − μ)′]
= tr(Σ−1S) + n(X̄ − μ)′Σ−1(X̄ − μ)

because

tr(Σ−1(X̄ − μ)(X̄ − μ)′) = tr((X̄ − μ)′Σ−1(X̄ − μ) = (X̄ − μ)′Σ−1(X̄ − μ).

The right-hand side expression being 1× 1, it is equal to its trace, and L can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ
−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ). (3.5.2)

If we wish to estimate the parameters μ and Σ from a set of observation vectors cor-
responding to X1, . . . , Xn, one method consists in maximizing L with respect to μ and
Σ given those observations and estimating the parameters. By resorting to calculus, L is
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differentiated partially with respect to μ and Σ , the resulting expressions are equated to
null vectors and matrices, respectively, and these equations are then solved to obtain the
solutions for μ and Σ . Those estimates will be called the maximum likelihood estimates
or MLE’s.We will explore this aspect later.

Example 3.5.1. Let the 3×1 vector X1 be real Gaussian, X1 ∼ N3(μ, Σ), Σ > O. Let
Xj, j = 1, 2, 3, 4 be iid as X1. Compute the 3 × 4 sample matrix X, the sample average
X̄, the matrix of sample means X̄, the sample sum of products matrix S, the maximum
likelihood estimates of μ and Σ , based on the following set of observations on Xj, j =
1, 2, 3, 4:

X1 =
⎡
⎣ 2

0
−1

⎤
⎦ , X2 =

⎡
⎣ 1

−1
2

⎤
⎦ , X3 =

⎡
⎣10
4

⎤
⎦ , X4 =

⎡
⎣01
3

⎤
⎦ .

Solution 3.5.1. The 3 × 4 sample matrix and the sample average are

X =
⎡
⎣ 2 1 1 0

0 −1 0 1
−1 2 4 3

⎤
⎦ , X̄ = 1

4

⎡
⎣ 2 + 1 + 1 + 0

0 − 1 + 0 + 1
−1 + 2 + 4 + 3

⎤
⎦ =

⎡
⎣10
2

⎤
⎦ .

Then X̄ and X − X̄ are the following:

X̄ = [X̄, X̄, X̄, X̄] =
⎡
⎣1 1 1 1
0 0 0 0
2 2 2 2

⎤
⎦ , X − X̄ =

⎡
⎣ 1 0 0 −1

0 −1 0 1
−3 0 2 1

⎤
⎦ ,

and the sample sum of products matrix S is the following:

S = [X−X̄][X−X̄]′ =
⎡
⎣ 1 0 0 −1

0 −1 0 1
−3 0 2 1

⎤
⎦
⎡
⎢⎢⎣

1 0 −3
0 −1 0
0 0 2

−1 1 1

⎤
⎥⎥⎦ =

⎡
⎣ 2 −1 −4

−1 2 1
−4 1 14

⎤
⎦ .

Then, the maximum likelihood estimates of μ and Σ , denoted with a hat, are

μ̂ = X̄ =
⎡
⎣10
2

⎤
⎦ , Σ̂ = 1

n
S = 1

4

⎡
⎣ 2 −1 −4

−1 2 1
−4 1 14

⎤
⎦ .

This completes the computations.
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3.5a. Simple Random Sample from a p-variate Complex Gaussian Population

Our population density is given by the following:

f̃ (X̃j ) = e−(X̃j−μ̃)∗Σ̃−1(X̃j−μ̃)

πp|det(Σ)| , X̃j ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O.

Let X̃1, . . . , X̃n be a collection of complex vector random variables iid as X̃j ∼
Ñp(μ̃, Σ̃), Σ̃ > O. This collection is called a simple random sample of size n from
this complex Gaussian population f̃ (X̃j ). We will use notations parallel to those utilized

in the real case. Let X̃ = [X̃1, . . . , X̃n], ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X), and

S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗ = S̃ = (s̃ij ). Then

s̃ij =
n∑

k=1

(x̃ik − ¯̃xi)(x̃jk − ¯̃xj )
∗

with 1
n
s̃ij being the sample covariance between the components x̃i and x̃j , i �= j , of any

X̃k, k = 1, . . . , n, 1
n
s̃ii being the sample variance on the component x̃i . The joint density

of X̃1, . . . , X̃n, denoted by L̃, is given by

L̃ =
n∏

j=1

e−(X̃j−μ)∗Σ̃−1(X̃j−μ)

πp|det(Σ̃)| = e−∑n
j=1(X̃j−μ)∗Σ̃−1(X̃j−μ)

πnp|det(Σ̃)|n , (3.5a.1)

which can be simplified to the following expression by making use of steps parallel to
those utilized in the real case:

L = e−tr(Σ̃−1S̃)−n(
¯̃
X−μ)∗Σ̃−1(

¯̃
X−μ)

πnp|det(Σ̃)|n . (3.5a.2)

Example 3.5a.1. Let the 3×1 vector X̃1 in the complex domain have a complex trivariate
Gaussian distribution X̃1 ∼ Ñ3(μ̃, Σ̃), Σ̃ > O. Let X̃j , j = 1, 2, 3, 4 be iid as X̃1.

With our usual notations, compute the 3 × 4 sample matrix X̃, the sample average ¯̃
X,

the 3 × 4 matrix of sample averages ¯̃X, the sample sum of products matrix S̃ and the
maximum likelihood estimates of μ̃ and Σ̃ based on the following set of observations on
X̃j , j = 1, 2, 3, 4:

X̃1 =
⎡
⎣1 + i

2 − i

1 − i

⎤
⎦ , X̃2 =

⎡
⎣−1 + 2i

3i
−1 + i

⎤
⎦ , X̃3 =

⎡
⎣−2 + 2i

3 + i

4 + 2i

⎤
⎦ , X̃4 =

⎡
⎣−2 + 3i

3 + i

−4 + 2i

⎤
⎦ .
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Solution 3.5a.1. The sample matrix X̃ and the sample average ¯̃
X are

X̃ =
⎡
⎣1 + i −1 + 2i −2 + 2i −2 + 3i
2 − i 3i 3 + i 3 + i

1 − i −1 + i 4 + 2i −4 + 2i

⎤
⎦ ,

¯̃
X =

⎡
⎣−1 + 2i

2 + i

i

⎤
⎦ .

Then, with our usual notations, ¯̃X and X̃ − ¯̃X are the following:

¯̃X =
⎡
⎣−1 + 2i −1 + 2i −1 + 2i −1 + 2i

2 + i 2 + i 2 + i 2 + i

i i i i

⎤
⎦ ,

X̃ − ¯̃X =
⎡
⎣ 2 − i 0 −1 −1 + i

−2i −2 + 2i 1 1
1 − 2i −1 4 + i −4 + i

⎤
⎦ .

Thus, the sample sum of products matrix S̃ is

S̃ = [X̃ − ¯̃X][X̃ − ¯̃X]∗

=
⎡
⎣ 2 − i 0 −1 −1 + i

−2i −2 + 2i 1 1
1 − 2i −1 4 + i −4 + i

⎤
⎦
⎡
⎢⎢⎣

2 + i 2i 1 + 2i
0 −2 − 2i −1

−1 1 4 − i

−1 − i 1 −4 − i

⎤
⎥⎥⎦

=
⎡
⎣ 8 5i 5 + i

−5i 14 6 − 6i
5 − i 6 + 6i 40

⎤
⎦ .

The maximum likelihood estimates are as follows:

ˆ̃μ = ¯̃
X =

⎡
⎣−1 + 2i

2 + i

i

⎤
⎦ ,

ˆ̃
Σ = 1

4
S̃

where S̃ is given above. This completes the computations.

3.5.1. Some simplifications of the sample matrix in the real Gaussian case

The p × n sample matrix is

X = [X1, . . . , Xn] =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤
⎥⎥⎥⎦ , Xk =

⎡
⎢⎢⎢⎣

x1k
x2k
...

xpk

⎤
⎥⎥⎥⎦
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where the rows are iid variables on the components of the p-vector X1. For example,
(x11, x12, . . . , x1n) are iid variables distributed as the first component of X1. Let

X̄ =

⎡
⎢⎢⎢⎣

x̄1
x̄2
...

x̄p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

1
n

∑n
k=1 x1k
...

1
n

∑n
k=1 xpk

⎤
⎥⎦

=
⎡
⎢⎣

1
n
(x11, . . . , x1n)J

...
1
n
(xp1, . . . , xpn)J

⎤
⎥⎦ = 1

n
XJ, J =

⎡
⎢⎣
1
...

1

⎤
⎥⎦ , n × 1.

Consider the matrix

X̄ = (X̄, . . . , X̄) = 1

n
XJJ ′ = XB, B = 1

n
JJ ′.

Then,

X − X̄ = XA, A = I − B = I − 1

n
JJ ′.

Observe that A = A2, B = B2, AB = O, A = A′ and B = B ′ where both A and
B are n × n matrices. Then XA and XB are p × n and, in order to determine the mgf,
we will take the p × n parameter matrices T1 and T2. Accordingly, the mgf of XA is
MXA(T1) = E[etr(T ′

1XA)], that of XB is MXB(T2) = E[etr(T ′
2XB)] and the joint mgf is

E[e tr(T ′
1XA)+tr(T ′

2XB)]. Let us evaluate the joint mgf for Xj ∼ Np(O, I),

E[etr(T ′
1XA)+tr(T ′

2XB)] =
∫
X

1

(2π)
np
2 |Σ | n

2
etr(T

′
1XA)+tr(T ′

2XB)− 1
2 tr(XX

′)dX.

Let us simplify the exponent,

− 1

2
{tr(XX′) − 2tr[X(AT ′

1 + BT ′
2)]}. (i)

If we expand tr[(X − C)(X − C)′] for some C, we have

tr(XX′) − tr(CX′) − tr(XC′) + tr(CC ′)
= tr(XX′) − 2tr(XC′) + tr(CC′) (ii)

as tr(XC′) = tr(CX′) even though CX′ �= XC′. On comparing (i) and (ii), we have
C′ = AT ′

1 + BT ′
2, and then

tr(CC′) = tr[(T1A′ + T2B
′)(AT ′

1 + BT ′
2)]

= tr(T1A
′AT ′

1) + tr(T2B
′BT ′

2) + tr(T1A
′BT ′

2) + tr(T2B
′AT ′

1). (iii)
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Since the integral over X − C will absorb the normalizing constant and give 1, the joint
mgf is etr(CC′). Proceeding exactly the same way, it is seen that the mgf of XA and XB are
respectively

MXA(T1) = e
1
2 tr(T1A

′AT ′
1) and MXB(T2) = e

1
2 tr(T2B

′BT ′
2).

The independence of XA and XB implies that the joint mgf should be equal to the product
of the individual mgf’s. In this instance, this is the case as A′B = O, B ′A = O. Hence,
the following result:

Theorem 3.5.1. Assuming that X1, . . . , Xn are iid as Xj ∼ Np(O, I), let the p × n

matrixX = (X1, . . . , Xn) and X̄ = 1
n
XJ, J ′ = (1, 1, .., 1). Let X̄ = XB andX−X̄ = XA

so that A = A′, B = B ′, A2 = A, B2 = B, AB = O. Letting U1 = XB and U2 = XA,
it follows that U1 and U2 are independently distributed.

Now, appealing to a general result to the effect that if U and V are independently
distributed then U and V V ′ as well as U and V ′V are independently distributed whenever
V V ′ and V ′V are defined, the next result follows.

Theorem 3.5.2. For the p × n matrix X, let XA and XB be as defined in Theorem 3.5.1.
Then XB and XAA′X′ = XAX′ = S are independently distributed and, consequently, the
sample mean X̄ and the sample sum of products matrix S are independently distributed.

As μ is absent from the previous derivations, the results hold for a Np(μ, I) pop-
ulation. If the population is Np(μ, Σ), Σ > O, it suffices to make the transforma-

tion Yj = Σ− 1
2Xj or Y = Σ− 1

2X, in which case X = Σ
1
2Y. Then, tr(T ′

1XA) =
tr(T ′

1Σ
1
2YA) = tr[(T ′

1Σ
1
2 )YA] so that Σ

1
2 is combined with T ′

1, which does not affect
YA. Thus, we have the general result that is stated next.

Theorem 3.5.3. Letting the population be Np(μ, Σ), Σ > O, and X, A, B, S, and
X̄ be as defined in Theorem 3.5.1, it then follows that U1 = XA and U2 = XB are
independently distributed and thereby, that the sample mean X̄ and the sample sum of
products matrix S are independently distributed.

3.5.2. Linear functions of the sample vectors

Let the Xj ’s, j = 1, . . . , n, be iid as Xj ∼ Np(μ, Σ), Σ > O. Let us consider a
linear function a1X1+a2X2+· · ·+anXn where a1, . . . , an are real scalar constants. Then
the mgf’s of Xj, ajXj , U =∑n

j=1 ajXj are obtained as follows:
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MXj
(T ) = E[eT ′Xj ] = eT ′μ+ 1

2T ′ΣT , MajXj
(T ) = eT ′(ajμ)+ 1

2a2j T ′ΣT

M∑n
j=1 ajXj

(T ) =
n∏

j=1

MajXj
(T ) = eT ′μ(

∑n
j=1 aj )+ 1

2 (
∑n

j=1 a2j )T ′ΣT
,

which implies that U = ∑n
j=1 ajXj is distributed as a real normal vector

random variable with parameters (
∑n

j=1 aj )μ and (
∑n

j=1 a2j )Σ , that is, U ∼
Np(μ(

∑n
j=1 aj ), (

∑n
j=1 a2j )Σ). Thus, the following result:

Theorem 3.5.4. Let the Xj ’s be iid Np(μ, Σ), Σ > O, j = 1, . . . , n, and U =
a1X1 + · · · + anXn be a linear function of the Xj ’s, j = 1, . . . , n, where a1, . . . , an are
real scalar constants. Then U is distributed as a p-variate real Gaussian vector random
variable with parameters [(∑n

j=1 aj )μ, (
∑n

j=1 a2j )Σ], that is, U ∼ Np((
∑n

j=1 aj )μ,

(
∑n

j=1 a2j )Σ), Σ > O.

If, in Theorem 3.5.4, aj = 1
n
, j = 1, . . . , n, then

∑n
j aj = ∑n

j=1
1
n

= 1 and∑n
j=1 a2j = ∑n

j=1(
1
n
)2 = 1

n
. However, when aj = 1

n
, j = 1, . . . , n, U = X̄ =

1
n
(X1 + · · · + Xn). Hence we have the following corollary.

Corollary 3.5.1. Let the Xj ’s be Np(μ, Σ), Σ > O, j = 1, . . . , n. Then, the sam-
ple mean X̄ = 1

n
(X1 + · · · + Xn) is distributed as a p-variate real Gaussian with the

parameters μ and 1
n
Σ , that is, X̄ ∼ Np(μ, 1

n
Σ), Σ > O.

From the representation given in Sect. 3.5.1, let X be the sample matrix, X̄ = 1
n
(X1 +

· · · + Xn), the sample average, and the p × n matrix X̄ = (X̄, . . . , X̄), X − X̄ = X(I −
1
n
JJ ′) = XA, J ′ = (1, . . . , 1). Since A is idempotent of rank n − 1, there exists an

orthonormal matrix P , PP ′ = I, P ′P = I, such that P ′AP = diag(1, . . . , 1, 0) ≡
D, A = PDP ′ and XA = XPDP ′ = ZDP ′. Note that A = A′, A2 = A and D2 = D.
Thus, the sample sum of products matrix has the following representations:

S = (X − X̄)(X − X̄)′ = XAA′X = XAX′ = ZDD′Z′ = Zn−1Z′
n−1 (3.5.3)

where Zn−1 is a p×(n−1) matrix consisting of the first n−1 columns of Z = XP . When

D =
[

In−1 O

O 0

]
, Z = (Zn−1, Z(n)), ZDZ′ = Zn−1Z′

n−1,

where Z(n) denotes the last column of Z. For a p-variate real normal population wherein
the Xj ’s are iid Np(μ, Σ), Σ > O, j = 1, . . . , n, Xj − X̄ = (Xj − μ) − (X̄ − μ) and
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hence the population can be taken to be distributed as Np(O, Σ), Σ > O without any
loss of generality. Then the n − 1 columns of Zn−1 will be iid standard normal Np(O, I).
After discussing the real matrix-variate gamma distribution in the next chapter, we will
show that whenever (n − 1) ≥ p, Zn−1Z′

n−1 has a real matrix-variate gamma distribution,
or equivalently, that it is Wishart distributed with n − 1 degrees of freedom.

3.5a.1. Some simplifications of the sample matrix in the complex Gaussian case

Let the p × 1 vector X̃1 in the complex domain have a complex Gaussian den-
sity Ñp(μ̃, Σ), Σ > O. Let X̃1, . . . , X̃n be iid as X̃j ∼ Ñp(μ̃, Σ), Σ > O or
X̃ = [X̃1, . . . , X̃n] is the sample matrix of a simple random sample of size n from

a Ñp(μ̃, Σ), Σ > O. Let the sample mean vector or the sample average be ¯̃
X =

1
n
(X̃1 + · · · + X̃n) and the matrix of sample means be the bold-faced p × n matrix ¯̃X.

Let S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗. Then ¯̃X = 1
n
X̃JJ ′ = X̃B, X̃ − ¯̃X = X̃(I − 1

n
JJ ′) = X̃A.

Then, A = A2, A = A′ = A∗, B = B ′ = B∗, B = B2, AB = O, BA = O. Thus,
results parallel to Theorems 3.5.1 and 3.5.2 hold in the complex domain, and we now state
the general result.

Theorem 3.5a.1. Let the population be complex p-variate Gaussian Ñp(μ̃, Σ), Σ >

O. Let the p × n sample matrix be X̃ = (X̃1, . . . , X̃n) where X̃1, . . . , X̃n are iid as

Ñp(μ̃, Σ), Σ > O. Let X̃,
¯̃
X, S̃, X̃A, X̃B be as defined above. Then, X̃A and X̃B are

independently distributed, and thereby the sample mean ¯̃
X and the sample sum of products

matrix S̃ are independently distributed.

3.5a.2. Linear functions of the sample vectors in the complex domain

Let X̃j ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O be a p-variate complex Gaussian vector random
variable. Consider a simple random sample of size n from this population, in which case
the X̃j ’s, j = 1, . . . , n, are iid as Ñp(μ̃, Σ̃), Σ̃ > O. Let the linear function Ũ =
a1X̃1+· · ·+anX̃n where a1, . . . , an are real or complex scalar constants. Then, following
through steps parallel to those provided in Sect. 3.5.2, we obtain the following mgf:

M̃Ũ (T̃ ) = e
(T̃ ∗μ̃(
∑n

j=1 aj ))+ 1
4 (
∑n

j=1 aj a
∗
j )T̃ ∗Σ̃T̃

where
∑n

j=1 aja
∗
j = |ã1|2 + · · · + |ãn|2. For example, if aj = 1

n
, j = 1, . . . , n, then∑n

j=1 aj = 1 and
∑n

j=1 aja
∗
j = 1

n
. Hence, we have the following result and the resulting

corollary.
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Theorem 3.5a.2. Let the p × 1 complex vector have a p-variate complex Gaussian
distribution Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O. Consider a simple random sample of size n

from this population, with the X̃j ’s, j = 1, . . . , n, being iid as this p-variate complex
Gaussian. Let a1, . . . , an be scalar constants, real or complex. Consider the linear func-
tion Ũ = a1X̃1 + · · · + anX̃n. Then Ũ ∼ Ñp(μ̃(

∑n
j=1 aj ), (

∑n
j=1 aja

∗
j )Σ̃), that is,

Ũ has a p-variate complex Gaussian distribution with the parameters (
∑n

j=1 aj )μ̃ and

(
∑n

j=1 aja
∗
j )Σ̃ .

Corollary 3.5a.1. Let the population and sample be as defined in Theorem 3.5a.2. Then

the sample mean ¯̃
X = 1

n
(X̃1 + · · · + X̃n) is distributed as a p-variate complex Gaussian

with the parameters μ̃ and 1
n
Σ̃ .

Proceeding as in the real case, we can show that the sample sum of products matrix S̃

can have a representation of the form

S̃ = Z̃n−1Z̃∗
n−1 (3.5a.3)

where the columns of Z̃n−1 are iid standard normal vectors in the complex domain if the
population is a p-variate Gaussian in the complex domain. In this case, it will be shown
later, that S̃ is distributed as a complex Wishart matrix with (n − 1) ≥ p degrees of
freedom.

3.5.3. Maximum likelihood estimators of the p-variate real Gaussian distribution

Letting L denote the joint density of the sample values X1, . . . , Xn, which are p × 1
iid Gaussian vectors constituting a simple random sample of size n, we have

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 12

= e− 1
2 tr(Σ

−1S)− 1
2n(X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(3.5.4)

where, as previously denoted, X is the p × n matrix

X = (X1, . . . , Xn), X̄ = 1

n
(X1 + · · · + Xn), X̄ = (X̄, . . . , X̄),

S = (X − X̄)(X − X̄)′ = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ).

In this case, the parameters are the p × 1 vector μ and the p × p real positive definite
matrix Σ . If we resort to Calculus to maximize L, then we would like to differentiate L, or
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the one-to-one function lnL, with respect to μ and Σ directly, rather than differentiating
with respect to each element comprising μ and Σ . For achieving this, we need to further
develop the differential operators introduced in Chap. 1.

Definition 3.5.1. Derivative with respect to a matrix. Let Y = (yij ) be a p × q matrix
where the elements yij ’s are distinct real scalar variables. The operator ∂

∂Y
will be defined

as ∂
∂Y

= ( ∂
∂yij

) and this operator applied to a real scalar quantity f will be defined as

∂

∂Y
f =

( ∂f

∂yij

)
.

For example, if f = y2
11 + y2

12 + y2
13 − y11y12 + y21 + y2

22 + y23 and the 2× 3 matrix Y is

Y =
[
y11 y12 y13
y21 y22 y23

]
⇒ ∂f

∂Y
=
[

∂f
∂y11

∂f
∂y12

∂f
∂y13

∂f
∂y21

∂f
∂y22

∂f
∂y23

]
,

∂f

∂Y
=
[
2y11 − y12 2y12 − y11 2y13

1 2y22 1

]
.

There are numerous examples of real-valued scalar functions of matrix argument. The
determinant and the trace are two scalar functions of a square matrix A. The derivative
with respect to a vector has already been defined in Chap. 1. The loglikelihood function
lnL which is available from (3.5.4) has to be differentiated with respect to μ and with
respect to Σ and the resulting expressions have to be respectively equated to a null vector
and a null matrix. These equations are then solved to obtain the critical points where
the L as well as lnL may have a local maximum, a local minimum or a saddle point.
However, lnL contains a determinant and a trace. Hence we need to develop some results
on differentiating a determinant and a trace with respect to a matrix, and the following
results will be helpful in this regard.

Theorem 3.5.5. Let the p × p matrix Y = (yij ) be nonsingular, the yij ’s being distinct
real scalar variables. Let f = |Y |, the determinant of Y . Then,

∂

∂Y
|Y | =

{
|Y |(Y−1)′ for a general Y

|Y |[2Y−1 − diag(Y−1)] for Y = Y ′

where diag(Y−1) is a diagonal matrix whose diagonal elements coincide with those of
Y−1.
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Proof: A determinant can be obtained by expansions along any row (or column), the re-
sulting sums involving the corresponding elements and their associated cofactors. More
specifically, |Y | = yi1Ci1 + · · · + yipCip for each i = 1, . . . , p, where Cij is the cofactor
of yij . This expansion holds whether the elements in the matrix are real or complex. Then,

∂

∂yij

|Y | =

⎧⎪⎨
⎪⎩

Cij for a general Y

2Cij for Y = Y ′, i �= j

Cjj for Y = Y ′, i = j.

Thus, ∂
∂Y

|Y | = the matrix of cofactors = |Y |(Y−1)′ for a general Y . When Y = Y ′, then

∂

∂Y
|Y | =

⎡
⎢⎢⎢⎣

C11 2C12 · · · 2C1p

2C21 C22 · · · 2C2p
...

...
. . .

...

2Cp1 2Cp2 · · · Cpp

⎤
⎥⎥⎥⎦

= |Y | [2Y−1 − diag(Y−1)].
Hence the result.

Theorem 3.5.6. Let A and Y = (yij ) be p × p matrices where A is a constant matrix
and the yij ’s are distinct real scalar variables. Then,

∂

∂Y
[tr(AY )] =

{
A′ for a general Y
A + A′ − diag(A) for Y = Y ′.

Proof: tr(AY ) = ∑
ij ajiyij for a general Y , so that ∂

∂Y
[tr(Y )] = A′ for a general Y .

When Y = Y ′, ∂
∂yjj

[tr(AY )] = ajj and ∂
∂yij

[tr(AY )] = aij + aji for i �= j . Hence,
∂

∂Y
[tr(AY )] = A + A′ − diag(A) for Y = Y ′. Thus, the result is established.

With the help of Theorems 3.5.5 and 3.5.6, we can optimize L or lnL with L as spec-
ified in Eq. (3.5.4). For convenience, we take lnL which is given by

lnL = −np

2
ln(2π) − n

2
ln |Σ | − 1

2
tr(Σ−1S) − n

2
(X̄ − μ)′Σ−1(X̄ − μ). (3.5.5)

Then,
∂

∂μ
lnL = O ⇒ 0 − n

2

∂

∂μ
(X̄ − μ)′Σ−1(X̄ − μ) = O

⇒ nΣ−1(X̄ − μ) = O ⇒ X̄ − μ = O

⇒ μ = X̄,
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referring to the vector derivatives defined in Chap. 1. The extremal value, denoted with
a hat, is μ̂ = X̄. When differentiating with respect to Σ , we may take B = Σ−1 for
convenience and differentiate with respect to B. We may also substitute X̄ to μ because
the critical point for Σ must correspond to μ̂ = X̄. Accordingly, lnL at μ = X̄ is

lnL(μ̂, B) = −np

2
ln(2π) + n

2
ln |B| − 1

2
tr(BS).

Noting that B = B ′,

∂

∂B
lnL(μ̂, B) = O ⇒ n

2
[2B−1 − diag(B−1)] − 1

2
[2S − diag(S)] = O

⇒ n[2Σ − diag(Σ)] = 2S − diag(S)

⇒ σ̂jj = 1

n
sjj , σ̂ij = 1

n
sij , i �= j

⇒ (μ̂ = X̄, Σ̂ = 1

n
S).

Hence, the only critical point is (μ̂, Σ̂) = (X̄, 1
n
S). Does this critical point correspond to a

local maximum or a local minimum or something else? For μ̂ = X̄, consider the behavior
of lnL. For convenience, we may convert the problem in terms of the eigenvalues of B.
Letting λ1, . . . , λp be the eigenvalues of B, observe that λj > 0, j = 1, . . . , p, that the
determinant is the product of the eigenvalues and the trace is the sum of the eigenvalues.
Examining the behavior of lnL for all possible values of λ1 when λ2, . . . , λp are fixed, we
see that lnL at μ̂ goes from −∞ to −∞ through finite values. For each λj , the behavior
of lnL is the same. Hence the only critical point must correspond to a local maximum.
Therefore μ̂ = X̄ and Σ̂ = 1

n
S are the maximum likelihood estimators (MLE’s) of μ

and Σ respectively. The observed values of μ̂ and Σ̂ are the maximum likelihood esti-
mates of μ and Σ , for which the same abbreviation MLE is utilized. While maximum
likelihood estimators are random variables, maximum likelihood estimates are numerical
values. Observe that, in order to have an estimate for Σ , we must have that the sample size
n ≥ p.

In the derivation of the MLE of Σ , we have differentiated with respect to B = Σ−1

instead of differentiating with respect to the parameter Σ . Could this affect final result?
Given any θ and any non-trivial differentiable function of θ , φ(θ), whose derivative is
not identically zero, that is, d

dθ φ(θ) �= 0 for any θ , it follows from basic calculus that
for any differentiable function g(θ), the equations d

dθ g(θ) = 0 and d
dφg(θ) = 0 will lead

to the same solution for θ . Hence, whether we differentiate with respect to B = Σ−1 or
Σ , the procedures will lead to the same estimator of Σ . As well, if θ̂ is the MLE of θ ,
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then g(θ̂) will also the MLE of g(θ) whenever g(θ) is a one-to-one function of θ . The
numerical evaluation of maximum likelihood estimates for μ and Σ has been illustrated
in Example 3.5.1.

3.5a.3. MLE’s in the complex p-variate Gaussian case

Let the p×1 vectors in the complex domain X̃1, . . . , X̃n be iid as Ñp(μ̃, Σ), Σ > O.
and let the joint density of the X̃j ’s, j = 1, . . . , n, be denoted by L̃. Then

L̃ =
n∏

j=1

e−(X̃j−μ̃)∗Σ−1(X̃j−μ̃)

πp|det(Σ)| = e−∑n
j=1(X̃j−μ̃)∗Σ−1(X̃j−μ̃)

πnp|det(Σ)|n

= e−tr(Σ−1S̃)−n(
¯̃
X−μ̃)∗Σ−1(

¯̃
X−μ̃)

πnp|det(Σ)|n

where |det(Σ)| denotes the absolute value of the determinant of Σ,

S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗ = (s̃ij ), s̃ij =
n∑

k=1

(x̃ik − ¯̃xi)(x̃jk − ¯̃xj )
∗,

X̃ = [X̃1, . . . , X̃n], ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = [ ¯̃
X, . . . ,

¯̃
X],

where X̃ and ¯̃X are p × n. Hence,

ln L̃ = −np lnπ − n ln |det(Σ)| − tr(Σ−1S̃) − n(
¯̃
X − μ̃)∗Σ−1(

¯̃
X − μ̃). (3.5a.4)

3.5a.4. Matrix derivatives in the complex domain

Consider tr(B̃S̃∗), B̃ = B̃∗ > O, S̃ = S̃∗ > O. Let B̃ = B1+iB2, S̃ = S1+iS2, i =√
(−1). Then B1 and S1 are real symmetric and B2 and S2 are real skew symmetric since

B̃ and S̃ are Hermitian. What is then ∂

∂B̃
[tr(B̃S̃∗)]? Consider

B̃S̃∗ = (B1 + iB2)(S
′
1 − iS′

2) = B1S
′
1 + B2S

′
2 + i(B2S

′
1 − B1S

′
2),

tr(B̃S̃∗) = tr(B1S
′
1 + B2S

′
2) + i[tr(B2S

′
1) − tr(B1S

′
2)].

It can be shown that when B2 and S2 are real skew symmetric and B1 and S1 are real
symmetric, then tr(B2S

′
1) = 0, tr(B1S

′
2) = 0. This will be stated as a lemma.
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Lemma 3.5a.1. Consider two p × p real matrices A and B where A = A′ (symmetric)
and B = −B ′ (skew symmetric). Then, tr(AB) = 0.

Proof: tr(AB) = tr(AB)′ = tr(B ′A′) = −tr(BA) = −tr(AB), which implies that
tr(AB) = 0.

Thus, tr(B̃S̃∗) = tr(B1S
′
1 + B2S

′
2). The diagonal elements of S1 in tr(B1S

′
1) are multi-

plied once by the diagonal elements of B1 and the non-diagonal elements in S1 are multi-
plied twice each by the corresponding elements in B1. Hence,

∂

∂B1
tr(B1S

′
1) = 2S1 − diag(S1).

In B2 and S2, the diagonal elements are zeros and hence

∂

∂B2
tr(B2S

′
2) = 2S2.

Therefore

( ∂

∂B1
+ i

∂

∂B2

)
tr(B1S

′
1 + B2S

′
2) = 2(S1 + iS2) − diag(S1) = 2S̃ − diag(S̃).

Thus, the following result:

Theorem 3.5a.3. Let S̃ = S̃∗ > O and B̃ = B̃∗ > O be p × p Hermitian matrices. Let
B̃ = B1 + iB2 and S̃ = S1 + iS2 where the p × p matrices B1 and S1 are symmetric and
B2 and S2 are skew symmetric real matrices. Letting ∂

∂B̃
= ∂

∂B1
+ i ∂

∂B2
, we have

∂

∂B̃
tr(B̃S̃∗) = 2S̃ − diag(S̃).

Theorem 3.5a.4. Let Σ̃ = (σ̃ij ) = Σ̃∗ > O be a Hermitian positive definite p × p ma-
trix. Let det(Σ) be the determinant and |det(Σ)| be the absolute value of the determinant
respectively. Let ∂

∂Σ̃
= ∂

∂Σ1
+ i ∂

∂Σ2
be the differential operator, where Σ̃ = Σ1 + iΣ2,

i = √
(−1), Σ1 being real symmetric and Σ2, real skew symmetric. Then,

∂

∂Σ̃
ln |det(Σ̃)| = 2Σ̃−1 − diag(Σ̃−1).
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Proof: Note that for two scalar complex quantities, x̃ = x1 + ix2 and ỹ = y1 + iy2 where
i = √

(−1) and x1, x2, y1, y2 are real, and for the operator ∂
∂x̃

= ∂
∂x1

+ i ∂
∂x2

, the following
results hold, which will be stated as a lemma.

Lemma 3.5a.2. Given x̃, ỹ and the operator ∂
∂x1

+ i ∂
∂x2

defined above,

∂

∂x̃
(x̃ỹ) = 0,

∂

∂x̃
(x̃ỹ∗) = 0,

∂

∂x̃
(x̃∗ỹ) = 2ỹ,

∂

∂x̃
(x̃∗ỹ∗) = 2ỹ∗,

∂

∂x̃
(x̃x̃∗) = ∂

∂x̃
(x̃∗x̃) = 2x̃,

∂

∂x̃∗ (x̃∗x̃) = ∂

∂x̃∗ (x̃x̃∗) = 2x̃∗

where, for example, x̃∗ which, in general, is the conjugate transpose of x̃, is only the
conjugate in this case since x̃ is a scalar quantity.

Observe that for a p×p Hermitian positive definite matrix X̃, the absolute value of the

determinant, namely, |det(X̃)| =
√
det(X̃)det(X̃∗) = det(X̃) = det(X̃∗) since X̃ = X̃∗.

Consider the following cofactor expansion of det(X̃) (in general, a cofactor expansion
is valid whether the elements of the matrix are real or complex). Letting Cij denote the
cofactor of xij in X̃ = (xij ) when xij is real or complex,

det(X) = x11C11 + x12C12 + · · · + x1pC1p (1)

= x21C21 + x22C22 + · · · + x2pC2p (2)
...

= xp1Cp1 + xp2Cp2 + · · · + xppCpp . (p)

When X̃ = X̃∗, the diagonal elements xjj ’s are all real. From Lemma 3.5a.2 and equation
(1), we have

∂

∂x11
(x11C11) = C11,

∂

∂x1j
(x1jC1j ) = 0, j = 2, . . . , p.

From Eq. (2), note that x21 = x∗
12, C21 = C∗

12 since X̃ = X̃∗. Then from Lemma 3.5a.2
and (2), we have

∂

∂x12
(x∗

12C
∗
12) = C∗

12,
∂

∂x22
(x∗

22C
∗
22) = C∗

22,
∂

∂x2j
(x2jC2j ) = 0, j = 3, . . . , p,

observing that x∗
22 = x22 and C∗

22 = C22. Now, continuing the process with
Eqs. (3), (4), . . . , (p), we have the following result:

∂

∂xij

[det(X̃)] =
{

C∗
jj , j = 1, . . . , p

2C∗
ij for all i �= j.
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Observe that for Σ̃−1 = B̃ = B̃∗,

∂

∂B̃
[ln(det(B̃))] = 1

det(B̃)

⎡
⎢⎢⎢⎣

B∗
11 2B∗

12 . . . B∗
1p

2B∗
21 B∗

22 . . . 2B∗
2p

...
...

. . .
...

2B∗
p1 2B∗

p2 . . . B∗
pp

⎤
⎥⎥⎥⎦

= 2B̃−1 − diag(B̃−1) = 2Σ̃ − diag(Σ̃)

where Brs is the cofactor of b̃rs , B̃ = (b̃rs). Therefore, at μ̂ = ¯̃
X, for Σ̃−1 = B̃, and from

Theorems 3.5a.5 and 3.5a.6, we have
∂

∂B̃
[ln L̃] = O ⇒ n[Σ̃ − diag(Σ̃)] − [S̃ − diag(S̃)] = O

⇒ Σ̃ = 1

n
S̃ ⇒ ˆ̃

Σ = 1

n
S̃ for n ≥ p,

where a hat denotes the estimate/estimator.

Again, from Lemma 3.5a.2 we have the following:
∂

∂μ̃
[( ¯̃

X − μ̃)∗Σ̃−1(
¯̃
X − μ̃)] = ∂

∂μ̃
{ ¯̃
X∗Σ̃−1 ¯̃

X + μ̃∗Σ̃−1μ̃ − ¯̃
X∗Σ̃−1μ̃ + μ̃∗Σ̃−1 ¯̃

X} = O

⇒ O + 2Σ̃−1μ̃ − O − 2Σ̃−1 ¯̃
X = O

⇒ ˆ̃μ = ¯̃
X.

Thus, the MLE of μ̃ and Σ̃ are respectively ˆ̃μ = ¯̃
X and ˆ̃

Σ = 1
n
S̃ for n ≥ p. It is not

difficult to show that the only critical point ( ˆ̃μ,
ˆ̃

Σ) = (
¯̃
X, 1

n
S̃) corresponds to a local

maximum for L̃. Consider ln L̃ at ˆ̃μ = ¯̃
X. Let λ1, . . . , λp be the eigenvalues of B̃ = Σ̃−1

where the λj ’s are real as B̃ is Hermitian. Examine the behavior of ln L̃ when a λj is
increasing from 0 to ∞. Then ln L̃ goes from −∞ back to −∞ through finite values.

Hence, the only critical point corresponds to a local maximum. Thus, ¯̃
X and 1

n
S̃ are the

MLE’s of μ̃ and Σ̃, respectively.

Theorems 3.5.7, 3.5a.5. For the p-variate real Gaussian with the parameters μ and
Σ > O and the p-variate complex Gaussian with the parameters μ̃ and Σ̃ > O, the

maximum likelihood estimators (MLE’s) are μ̂ = X̄, Σ̂ = 1
n
S, ˆ̃μ = ¯̃

X,
ˆ̃

Σ = 1
n
S̃ where

n is the sample size, X̄ and S are the sample mean and sample sum of products matrix in
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the real case, and ¯̃
X and S̃ are the sample mean and the sample sum of products matrix in

the complex case, respectively.

A numerical illustration of the maximum likelihood estimates of μ̃ and Σ̃ in the com-
plex domain has already been given in Example 3.5a.1.

It can be shown that the MLE of μ and Σ in the real and complex p-variate Gaus-
sian cases are such that E[X̄] = μ, E[X̃] = μ̃, E[S] = n−1

n
Σ, E[S̃] = n−1

n
Σ̃ . For

these results to hold, the population need not be Gaussian. Any population for which the
covariance matrix exists will have these properties. This will be stated as a result.

Theorems 3.5.8, 3.5a.6. Let X1, . . . , Xn be a simple random sample from any p-variate
population with mean value vector μ and covariance matrix Σ = Σ ′ > O in the real
case and mean value vector μ̃ and covariance matrix Σ̃ = Σ̃∗ > O in the complex
case, respectively, and let Σ and Σ̃ exist in the sense all the elements therein exist. Let

X̄ = 1
n
(X1 + · · · + Xn),

¯̃
X = 1

n
(X̃1 + · · · + X̃n) and let S and S̃ be the sample sum of

products matrices in the real and complex cases, respectively. Then E[X̄] = μ, E[ ¯̃
X] =

μ̃, E[Σ̂] = E[ 1
n
S] = n−1

n
Σ → Σ as n → ∞ and E[ ¯̃

X] = μ̃, E[ ˆ̃
Σ] = E[ 1

n
S̃] =

n−1
n

Σ̃ → Σ̃ as n → ∞.

Proof: E[X̄] = 1
n
{E[X1] + · · · + E[Xn]} = 1

n
{μ + · · · + μ} = μ. Similarly, E[ ¯̃

X] = μ̃.
Let M = (μ, μ, . . . , μ), that is, M is a p × n matrix wherein every column is the p × 1
vector μ. Let X̄ = (X̄, . . . , X̄), that is, X̄ is a p × n matrix wherein every column is X̄.
Now, consider

E[(X − M)(X − M)′] = E[
n∑

j=1

(Xj − μ)(Xj − μ)′] =
n∑

j=1

{Σ + · · · + Σ} = nΣ.

As well,

(X − M)(X − M)′ = (X − X̄ + X̄ − M)(X − X̄ + X̄ − M)′

= (X − X̄)(X − X̄)′ + (X − X̄)(X̄ − M)′

+ (X̄ − M)(X − X̄)′ + (X̄ − M)(X̄ − M)′ ⇒

(X − M)(X − M)′ = S +
n∑

j=1

(Xj − X̄)(X̄ − μ)′ +
n∑

j=1

(X̄ − μ)(Xj − X̄)′

+
n∑

j=1

(X̄ − μ)(X̄ − μ)′

= S + O + O + n(X̄ − μ)(X̄ − μ)′ ⇒
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nΣ = E[S] + O + O + nCov(X̄) = E[S] + n
[1
n
Σ
]

= E[S] + Σ ⇒

E[S] = (n − 1)Σ ⇒ E[Σ̂] = E
[1
n
S
]

= n − 1

n
Σ → Σ as n → ∞.

Observe that
∑n

j=1(Xj − X̄) = O, this result having been utilized twice in the above
derivations. The complex case can be established in a similar manner. This completes the
proof.

3.5.4. Properties of maximum likelihood estimators

Definition 3.5.2 Unbiasedness. Let g(θ) be a function of the parameter θ which stands
for all the parameters associated with a population’s distribution. Let the independently
distributed random variables x1, . . . , xn constitute a simple random sample of size n from
a univariate population. Let T (x1, . . . , xn) be an observable function of the sample values
x1, . . . , xn. This definition for a statistic holds when the iid variables are scalar, vector or
matrix variables, whether in the real or complex domains. Then T is called a statistic (the
plural form, statistics, is not to be confused with the subject of Statistics). If E[T ] = g(θ)

for all θ in the parameter space, then T is said to be unbiased for g(θ) or an unbiased
estimator of g(θ).

We will look at some properties of the MLE of the parameter or parameters represented
by θ in a given population specified by its density/probability function f (x, θ). Consider
a simple random sample of size n from this population. The sample will be of the form
x1, . . . , xn if the population is univariate or of the form X1, . . . , Xn if the population is
multivariate or matrix-variate. Some properties of estimators in the scalar variable case
will be illustrated first. Then the properties will be extended to the vector/matrix-variate
cases. The joint density of the sample values will be denoted by L. Thus, in the univariate
case,

L = L(x1, . . . , xn, θ) =
n∏

j=1

f (xj , θ) ⇒ lnL =
n∑

j=1

ln f (xj , θ).

Since the total probability is 1, we have the following, taking for example the variable to
be continuous and a scalar parameter θ :

∫
X

L dX = 1 ⇒ ∂

∂θ

∫
X

L dX = 0, X′ = (x1, . . . , xn).
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We are going to assume that the support of x is free of theta and the differentiation can be
done inside the integral sign. Then,

0 =
∫

X

∂

∂θ
L dX =

∫
X

1

L

( ∂

∂θ
L
)

L dX =
∫

X

[ ∂

∂θ
lnL

]
L dX.

Noting that
∫
X
(·)L dX = E[(·)], we have

E
[ ∂

∂θ
lnL

]
= 0 ⇒ E

[ n∑
j=1

∂

∂θ
ln f (xj , θ)

]
= 0. (3.5.6)

Let θ̂ be the MLE of θ . Then

∂

∂θ
L|

θ=θ̂
= 0 ⇒ ∂

∂θ
lnL|

θ=θ̂
= 0

⇒ E
[ n∑

j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂

]
= 0. (3.5.7)

If θ is scalar, then the above are single equations, otherwise they represent a system of
equations as the derivatives are then vector or matrix derivatives. Here (3.5.6) is the like-
lihood equation giving rise to the maximum likelihood estimators (MLE) of θ . However,
by the weak law of large numbers (see Sect. 2.6),

1

n

n∑
j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂
→ E

[ ∂

∂θ
ln f (xj , θo)

]
as n → ∞ (3.5.8)

where θo is the true value of θ . Noting that E[ ∂
∂θ

ln f (xj , θo)] = 0 owing to the fact that∫∞
−∞ f (x)dx = 1, we have the following results:

n∑
j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂
= 0, E

[ ∂

∂θ
ln f (xj , θ)|θ=θo

]
= 0.

This means that E[θ̂ ] = θ0 or E[θ̂ ] → θo as n → ∞, that is, θ̂ is asymptotically unbiased
for the true value θo of θ . As well, θ̂ → θo as n → ∞ almost surely or with probability
1, except on a set having probability measure zero. Thus, the MLE of θ is asymptotically
unbiased and consistent for the true value θo, which is stated next as a theorem:

Theorem 3.5.9. In a given population’s distribution whose parameter or set of parame-
ters is denoted by θ , the MLE of θ , denoted by θ̂ , is asymptotically unbiased and consistent
for the true value θo.
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Definition 3.5.3. Consistency of an estimator If Pr{θ̂ → θo} → 1 as n → ∞, then
we say that θ̂ is consistent for θo, where θ̂ is an estimator for θ .

Example 3.5.2. Consider a real p-variate Gaussian population Np(μ, Σ), Σ > O.
Show that the MLE of μ is unbiased and consistent for μ and that the MLE of Σ is
asymptotically unbiased for Σ .

Solution 3.5.2. We have μ̂ = X̄ = the sample mean or sample average and Σ̂ = 1
n
S

where S is the sample sum of products matrix. From Theorem 3.5.4, E[X̄] = μ and
Cov(X̄) = 1

n
Σ → O as n → ∞. Therefore, μ̂ = X̄ is unbiased and consistent for μ.

From Theorem 3.5.8, E[Σ̂] = n−1
n

Σ → Σ as n → ∞ and hence Σ̂ is asymptotically
unbiased for Σ .

Another desirable property for point estimators is referred to as sufficiency. If T is a
statistic used to estimate a real scalar, vector or matrix parameter θ and if the conditional
distribution of the sample values, given this statistic T , is free of θ , then no more informa-
tion about θ can be secured from that sample once the statistic T is known. Accordingly,
all the information that can be obtained from the sample is contained in T or, in this sense,
T is sufficient or a sufficient estimator for θ .

Definition 3.5.4. Sufficiency of estimators Let θ be a scalar, vector or matrix parameter
associated with a given population’s distribution. Let T = T (X1, . . . , Xn) be an estimator
of θ , whereX1, . . . , Xn are iid as the given population. If the conditional distribution of the
sample values X1, . . . , Xn, given T , is free of θ , then we say that this T is a sufficient es-
timator for θ . If there are several scalar, vector or matrix parameters θ1, . . . , θk associated
with a given population and if T1(X1, . . . , Xn), . . . , Tr(X1, . . . , Xn) are r statistics, where
r may be greater, smaller or equal to k, then if the conditional distribution of X1, . . . , Xn,
given T1, . . . , Tr , is free of θ1, . . . , θk, then we say that T1, . . . , Tr are jointly sufficient for
θ1, . . . , θk. If there are several sets of statistics, where each set is sufficient for θ1, . . . , θk,
then that set of statistics which allows for the maximal reduction of the data is called the
minimal sufficient set of statistics for θ1, . . . , θk.

Example 3.5.3. Show that the MLE of μ in a Np(μ, Σ), Σ > O, is sufficient for μ.

Solution 3.5.3. Let X1, . . . , Xn be a simple random sample from a Np(μ, Σ). Then the
joint density of X1, . . . , Xn can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ
−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ), (i)

referring to (3.5.2). Since X̄ is a function of X1, . . . , Xn, the joint density of X1, . . . , Xn

and X̄ is L itself. Hence, the conditional density of X1, . . . , Xn, given X̄, is L/f1(X̄)
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where f1(X̄) is the marginal density of X̄. However, appealing to Corollary 3.5.1, f1(X̄)

is Np(μ, 1
n
Σ). Hence

L

f1(X̄)
= 1

(2π)
n(p−1)

2 n
p
2 |Σ | n−1

2

e− 1
2 tr(Σ

−1S), (ii)

which is free of μ so that μ̂ is sufficient for μ.

Note 3.5.1. We can also show that μ̂ = X̄ and Σ̂ = 1
n
S are jointly sufficient for μ and

Σ in a Np(μ, Σ), Σ > O, population. This results requires the density of S, which will
be discussed in Chap. 5.

An additional property of interest for a point estimator is that of relative efficiency. If
g(θ) is a function of θ and if T = T (x1, . . . , xn) is an estimator of g(θ), then E|T −g(θ)|2
is a squared mathematical distance between T and g(θ). We can consider the following
criterion: the smaller the distance, the more efficient the estimator is, as we would like this
distance to be as small as possible when we are estimating g(θ) by making use of T . If
E[T ] = g(θ), then T is unbiased for g(θ) and, in this case, E|T − g(θ)|2 = Var(T ), the
variance of T . In the class of unbiased estimators, we seek that particular estimator which
has the smallest variance.

Definition 3.5.5. Relative efficiency of estimators If T1 and T2 are two estimators of
the same function g(θ) of θ and if E[|T1 − g(θ)|2] < E[|T2 − g(θ)|2], then T1 is said
to be relatively more efficient for estimating g(θ). If T1 and T2 are unbiased for g(θ), the
criterion becomes Var(T1) < Var(T2).

Let u be an unbiased estimator of g(θ), a function of the parameter θ associated with
any population, and let T be a sufficient statistic for θ . Let the conditional expectation
of u, given T , be denoted by h(T ), that is, E[u|T ] ≡ h(T ). We have the two following
general properties on conditional expectations, refer to Mathai and Haubold (2017), for ex-
ample. For any two real scalar random variables x and y having a joint density/probability
function,

E[y] = E[E(y|x)] (3.5.9)

and
Var(y) = Var(E[y|x]) + E[Var(y|x)] (3.5.10)

whenever the expected values exist. From (3.5.9),

g(θ) = E[u] = E[E(u|T )] = E[h(T )] ⇒ E[h(T )] = g(θ). (3.5.11)
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Then,

Var(u) = E[u − g(θ)]2 = Var(E[u|T ]) + E[Var(E[u|T ])] = Var(h(T )) + δ, δ ≥ 0

⇒ Var(u) ≥ Var(h(T )), (3.5.12)

which means that if we have a sufficient statistic T for θ , then the variance of h(T ), with
h(T ) = E[u|T ] where u is any unbiased estimator of g(θ), is smaller than or equal to
the variance of any unbiased estimator of g(θ). Accordingly, we should restrict ourselves
to the class of h(T ) when seeking minimum variance estimators. Observe that since δ

in (3.5.12) is the expected value of the variance of a real variable, it is nonnegative. The
inequality in (3.5.12) is known in the literature as the Rao-Blackwell Theorem.

It follows from (3.5.6) that E[ ∂
∂θ

lnL] = ∫
X
( ∂
∂θ

lnL)L dX = 0. Differentiating once
again with respect to θ , we have

0 =
∫

X

∂

∂θ

[( ∂

∂θ
lnL

)
L
]
dX = 0

⇒
∫

X

{( ∂2

∂θ2
lnL

)
L +

( ∂

∂θ
lnL

)2}
dX = 0

⇒
∫

X

( ∂

∂θ
lnL

)2
L dX = −

∫
X

( ∂2

∂θ2
lnL

)
L dX,

so that

Var
( ∂

∂θ
lnL

)
= E

[ ∂

∂θ
lnL

]2 = −E
[ ∂2

∂θ2
lnL

]

= nE
[ ∂

∂θ
ln f (xj , θ)

]2 = −nE
[ ∂2

∂θ2
ln f (xj , θ)

]
. (3.5.13)

Let T be any estimator for θ , where θ is a real scalar parameter. If T is unbiased for θ ,
then E[T ] = θ ; otherwise, let E[T ] = θ + b(θ) where b(θ) is some function of θ , which
is called the bias. Then, differentiating both sides with respect to θ ,∫

X

T L dX = θ + b(θ) ⇒

1 + b′(θ) =
∫

X

T
∂

∂θ
L dX, b′(θ) = d

dθ
b(θ)

⇒ E[T (
∂

∂θ
lnL)] = 1 + b′(θ)

= Cov(T ,
∂

∂θ
lnL)
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because E[ ∂
∂θ

lnL] = 0. Hence,

[Cov(T ,
∂

∂θ
lnL)]2 = [1 + b′(θ)]2 ≤ Var(T )Var

( ∂

∂θ
lnL

)
⇒

Var(T ) ≥ [1 + b′(θ)]2
Var( ∂

∂θ
lnL)

= [1 + b′(θ)]2
nVar( ∂

∂θ
ln f (xj , θ))

= [1 + b′(θ)]2
E[ ∂

∂θ
lnL]2 = [1 + b′(θ)]2

nE[ ∂
∂θ

ln f (xj , θ)]2 , (3.5.14)

which is a lower bound for the variance of any estimator for θ . This inequality is known
as the Cramér-Rao inequality in the literature. When T is unbiased for θ , then b′(θ) = 0
and then

Var(T ) ≥ 1

In(θ)
= 1

nI1(θ)
(3.5.15)

where

In(θ) = Var
( ∂

∂θ
lnL

)
= E

[ ∂

∂θ
lnL

]2 = nE
[ ∂

∂θ
ln f (xj , θ)

]2

= −E
[ ∂2

∂θ2
lnL

]
= −nE

[ ∂2

∂θ2
ln f (xj , θ)

]
= nI1(θ) (3.5.16)

is known as Fisher’s information about θ which can be obtained from a sample of size n,
I1(θ) being Fisher’s information in one observation or a sample of size 1. Observe that
Fisher’s information is different from the information in Information Theory. For instance,
some aspects of Information Theory are discussed in Mathai and Rathie (1975).

Asymptotic efficiency and normality of MLE’s

We have already established that

0 = ∂

∂θ
lnL(X, θ)|

θ=θ̂
, (i)

which is the likelihood equation giving rise to the MLE. Let us expand (i) in a neighbor-
hood of the true parameter value θo :

0 = ∂

∂θ
lnL(X, θ)|θ=θo

+ (θ̂ − θo)
∂2

∂θ2
lnL(X, θ)|θ=θo

+ (θ̂ − θo)
2

2

∂3

∂θ3
lnL(X, θ)|θ=θ1 (ii)



202 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

where |θ̂ − θ1| < |θ̂ − θo|. Multiplying both sides by
√

n and rearranging terms, we have
the following:

√
n(θ̂ − θ0) =

− 1√
n

∂
∂θ

lnL(X, θ)|θ=θo

1
n

∂2

∂θ2
ln(X, θ)|θ=θo

+ 1
n

(θ̂−θo)
2

∂3

∂θ3
lnL(X, θ)|θ=θ1

. (iii)

The second term in the denominator of (iii) goes to zero because θ̂ → θo as n → ∞, and
the third derivative is assumed to be bounded. Then the first term in the denominator is
such that

1

n

∂2

∂θ2
lnL(X, θ)|θ=θo

= 1

n

n∑
j=1

∂2

∂θ2
ln f (xj , θ)|θ=θo

→ E
[ ∂2

∂θ2
ln f (xj , θ)

]
= −I1(θ)|θo

= −Var
[ ∂

∂θ
ln f (xj , θ)

]∣∣∣
θ=θo

,

I1(θ)|θ=θo
= Var

[ ∂

∂θ
ln f (xj , θ)

]∣∣∣
θ=θo

,

which is the information bound I1(θo). Thus,

1

n

∂2

∂θ2
lnL(X, θ)|θ=θo

→ −I1(θo), (iv)

and we may write (iii) as follows:

√
I1(θo)

√
n(θ̂ − θo) ≈

√
n√

I1(θo)

1

n

n∑
j=1

∂

∂θ
ln f (xj , θ)|θ=θo

, (v)

where ∂
∂θ

ln f (xj , θ) has zero as its expected value and I1(θo) as its variance. Further,
f (xj , θ), j = 1, . . . , n are iid variables. Hence, by the central limit theorem which is
stated in Sect. 2.6,

√
n√

I (θo)

1

n

n∑
j=1

∂

∂θ
ln f (xj , θ) → N1(0, 1) as n → ∞. (3.5.17)

where N1(0, 1) is a univariate standard normal random variable. This may also be re-
expressed as follows since I1(θo) is free of n:

1√
n

n∑
j=1

∂

∂θ
ln f (xj , θ)|θ=θo

→ N1(0, I1(θo))



The Multivariate Gaussian and Related Distributions 203

or √
I1(θo)

√
n(θ̂ − θo) → N1(0, 1) as n → ∞. (3.5.18)

Since I1(θo) is free of n, this result can also be written as

√
n(θ̂ − θo) → N1

(
0,

1

I1(θo)

)
. (3.5.19)

Thus, the MLE θ̂ is asymptotically unbiased, consistent and asymptotically normal, refer-
ring to (3.5.18) or (3.5.19).

Example 3.5.4. Show that the MLE of the parameter θ in a real scalar exponential pop-
ulation is unbiased, consistent, efficient and that asymptotic normality holds as in (3.5.18).

Solution 3.5.4. As per the notations introduced in this section,

f (xj , θ) = 1

θ
e− xj

θ , 0 ≤ xj < ∞, θ > 0,

L = 1

θn
e− 1

θ

∑n
j=1 xj .

In the exponential population, E[xj ] = θ, Var(xj ) = θ2, j = 1, . . . , n, the MLE of θ is

θ̂ = x̄, x̄ = 1
n
(x1 + · · · + xn) and Var(θ̂ ) = θ2

n
→ 0 as n → ∞. Thus, E[θ̂ ] = θ and

Var(θ̂ ) → 0 as n → ∞. Hence, θ̂ is unbiased and consistent for θ . Note that

ln f (xj , θ) = − ln θ − 1

θ
xj ⇒ −E

[ ∂2

∂θ2
f (xj , θ)

]
= − 1

θ2
+ 2

E[xj ]
θ3

= 1

θ2
= 1

Var(xj )
.

Accordingly, the information bound is attained, that is, θ̂ is minimum variance unbiased
or most efficient. Letting the true value of θ be θo, by the central limit theorem, we have

x̄ − θo√
Var(x̄)

=
√

n(θ̂ − θo)

θo

→ N1(0, 1) as n → ∞,

and hence the asymptotic normality is also verified. Is θ̂ sufficient for θ? Let us consider
the statistic u = x1 + · · · + xn, the sample sum. If u is sufficient, then x̄ = θ̂ is also
sufficient. The mgf of u is given by

Mu(t) =
n∏

j=1

(1 − θt)−1 = (1 − θt)−n, 1 − θt > 0 ⇒ u ∼ gamma(α = n, β = θ)
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whose density is f1(u) = un−1

θnΓ (n)
e− u

θ , u = x1 + · · · + xn. However, the joint density

of x1, . . . , xn is L = 1
θn e− 1

θ
(x1+···+xn). Accordingly, the conditional density of x1, . . . , xn

given θ̂ = x̄ is
L

f1(u)
= Γ (n)

un−1
,

which is free of θ , and hence θ̂ is also sufficient.

3.5.5. Some limiting properties in the p-variate case

The p-variate extension of the central limit theorem is now being considered. Let the
p × 1 real vectors X1, . . . , Xn be iid with common mean value vector μ and the common
covariance matrix Σ > O, that is, E(Xj) = μ and Cov(Xj ) = Σ > O, j = 1, . . . , n.

Assume that ‖Σ‖ < ∞ where ‖(·)‖ denotes a norm of (·). Letting Yj = Σ− 1
2Xj , E[Yj ] =

Σ− 1
2μ and Cov(Yj ) = I, j = 1, . . . , n, and letting X̄ = 1

n
(X1 + · · · + Xn), Ȳ = Σ− 1

2 X̄,

E(X̄) = μ and E(Ȳ ) = Σ− 1
2μ. If we let

U = √
nΣ− 1

2 (X̄ − μ), (3.5.20)

the following result holds:

Theorem 3.5.10. Let the p × 1 vector U be as defined in (3.5.20). Then, as n → ∞,
U → Np(O, I).

Proof: Let L′ = (a1, . . . , ap) be an arbitrary constant vector such that L′L = 1. Then,
L′Xj, j = 1, . . . , n, are iid with common mean L′μ and common variance Var(L′Xj) =
L′ΣL. Let Yj = Σ− 1

2Xj and uj = L′Yj = L′Σ− 1
2Xj . Then, the common mean of the

uj ’s is L′Σ− 1
2μ and their common variance is Var(uj ) = L′Σ− 1

2ΣΣ− 1
2L = L′L =

1, j = 1, . . . , n. Note that ū = 1
n
(u1 + · · · + un) = L′Ȳ = L′Σ− 1

2 X̄ and that Var(ū) =
1
n
L′L = 1

n
. Then, in light of the univariate central limit theorem as stated in Sect. 2.6, we

have
√

nL′Σ− 1
2 (X̄ − μ) → N1(0, 1) as n → ∞. If, for some p-variate vector W , L′W

is univariate normal for arbitrary L, it follows from a characterization of the multivariate
normal distribution that W is p-variate normal vector. Thus,

U = √
nΣ− 1

2 (X̄ − μ) → Np(O, I) as n → ∞, (3.5.21)

which completes the proof.
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A parallel result also holds in the complex domain. Let X̃j , j = 1, . . . , n, be iid from
some complex population with mean μ̃ and Hermitian positive definite covariance matrix

Σ̃ = Σ̃∗ > O where ‖Σ̃‖ < ∞. Letting ¯̃
X = 1

n
(X̃1 + · · · + X̃n), we have

√
n Σ̃− 1

2 (
¯̃
X − μ̃) → Np(O, I) as n → ∞. (3.5a.5)

Exercises 3.5

3.5.1. By making use of the mgf or otherwise, show that the sample mean X̄ = 1
n
(X1 +

· · ·+Xn) in the real p-variate Gaussian case, Xj ∼ Np(μ, Σ), Σ > O, is again Gaussian
distributed with the parameters μ and 1

n
Σ .

3.5.2. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n and iid. Let X = (X1, . . . , Xn)

be the p × n sample matrix. Derive the density of (1) tr(Σ−1(X − M)(X − M)′ where
M = (μ, . . . , μ) or a p × n matrix where all the columns are μ; (2) tr(XX′). Derive the
densities in both the cases, including the noncentrality parameter.

3.5.3. Let the p × 1 real vector Xj ∼ Np(μ, Σ), Σ > O for j = 1, . . . , n and iid. Let
X = (X1, . . . , Xn) the p × n sample matrix. Derive the density of tr(X − X̄)(X − X̄)′
where X̄ = (X̄, . . . , X̄) is the p × n matrix where every column is X̄.

3.5.4. Repeat Exercise 3.5.1 for the p-variate complex Gaussian case.

3.5.5. Repeat Exercise 3.5.2 for the complex Gaussian case and write down the density
explicitly.

3.5.6. Consider a real bivariate normal density with the parameters μ1, μ2, σ 2
1 , σ 2

2 , ρ.
Write down the density explicitly. Consider a simple random sample of size n,X1, . . . , Xn,
from this population where Xj is 2 × 1, j = 1, . . . , n. Then evaluate the MLE of these
five parameters by (1) by direct evaluation, (2) by using the general formula.

3.5.7. In Exercise 3.5.6 evaluate the maximum likelihood estimates of the five parameters
if the following is an observed sample from this bivariate normal population:[

0
−1

]
,

[
1
1

]
,

[−1
2

]
,

[
1
5

]
,

[
0
7

]
,

[
4
2

]

3.5.8. Repeat Exercise 3.5.6 if the population is a bivariate normal in the complex domain.

3.5.9. Repeat Exercise 3.5.7 if the following is an observed sample from the complex
bivariate normal population referred to in Exercise 3.5.8:[

1 + 2i
i

]
,

[
1
1

]
,

[
3i

1 − i

]
,

[
2 − i

i

]
,

[
2
1

]
.
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3.5.10. Let the p × 1 real vector X1 be Gaussian distributed, X1 ∼ Np(O, I). Consider
the quadratic forms u1 = X′

1A1X1, u2 = X′
1A2X1. LetAj = A2

j , j = 1, 2 andA1+A2 =
I . What can you say about the chisquaredness and independence of u1 and u2? Prove your
assertions.

3.5.11. Let X1 ∼ Np(O, I). Let uj = X′
1AjX1, Aj = A2

j , j = 1, . . . , k, A1 + · · · +
Ak = I . What can you say about the chisquaredness and independence of the uj ’s? Prove
your assertions.

5.3.12. Repeat Exercise 3.5.11 for the complex case.

5.3.13. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n and iid. Let X̄ = 1
n
(X1 +· · ·+Xn).

Show that the exponent in the density of X̄, excluding −1
2 , namely,

√
n(X̄ −μ)′Σ−1(X̄ −

μ) ∼ χ2
p. Derive the density of tr(X̄′Σ−1X̄).

3.5.14. LetQ = √
n(X̄−μ)′Σ−1(X̄−μ) as in Exercise 5.3.13. For a given α consider the

probability statement Pr{Q ≥ b} = α. Show that b = χ2
p,α where Pr{χ2

p ≥ χ2
p,α} = α.

3.5.15. Let Q1 = √
n(X̄ − μo)

′Σ−1(X̄ − μo) where X̄, Σ and μ are all as defined in
Exercise 5.3.14. If μo �= μ, show that Q1 ∼ χ2

p(λ) where the noncentrality parameter

λ = 1
2(μ − μo)

′Σ−1(μ − μo).

3.6. Elliptically Contoured Distribution, Real Case

Let X be a real p × 1 vector of distinct real scalar variables with x1, . . . , xp as its
components. For some p × 1 parameter vector B and p × p positive definite constant
matrix A > O, consider the positive definite quadratic form (X − B)′A(X − B). We have
encountered such a quadratic form in the exponent of a real p-variate Gaussian density,
in which case B = μ is the mean value vector and A = Σ−1, Σ being the positive
definite covariance matrix. Let g(·) ≥ 0 be a non-negative function such that |A| 12g((X −
B)′A(X − B)) ≥ 0 and ∫

X

|A| 12g((X − B)′A(X − B))dX = 1, (3.6.1)

so that |A| 12g((X − B)′A(X − B)) is a statistical density. Such a density is referred to as
an elliptically contoured density.

3.6.1. Some properties of elliptically contoured distributions

Let Y = A
1
2 (X − B). Then, from Theorem 1.6.1, dX = |A|− 1

2 dY and from (3.6.1),∫
Y

g(Y ′Y )dY = 1 (3.6.2)
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where
Y ′Y = y2

1 + y2
2 + · · · + y2

p, Y ′ = (y1, . . . , yp).

We can further simplify (3.6.2) via a general polar coordinate transformation:

y1 = r sin θ1

y2 = r cos θ1 sin θ2

y3 = r cos θ1 cos θ2 sin θ3

...

yp−2 = r cos θ1 · · · cos θp−3 sin θp−2

yp−1 = r cos θ1 · · · cos θp−2 sin θp−1

yp = r cos θ1 · · · cos θp−1 (3.6.3)

for −π
2 < θj ≤ π

2 , j = 1, . . . , p − 2, −π < θp−1 ≤ π, 0 ≤ r < ∞. It then follows that

dy1 ∧ . . . ∧ dyp = rp−1(cos θ1)
p−1 · · · (cos θp−1) dr ∧ dθ1 ∧ . . . ∧ dθp−1. (3.6.4)

Thus,
y2
1 + · · · + y2

p = r2.

Given (3.6.3) and (3.6.4), observe that r, θ1, . . . , θp−1 are mutually independently dis-
tributed. Separating the factors containing θi from (3.6.4) and then, normalizing it, we
have ∫ π

2

−π
2

(cos θi)
p−i−1dθi = 1 ⇒ 2

∫ π
2

0
(cos θi)

p−i−1dθi = 1. (i)

Let u = sin θi ⇒ du = cos θidθi . Then (i) becomes 2
∫ 1
0 (1 − u2)

p−i
2 −1du = 1, and letting

v = u2 gives (i) as

∫ 1

0
v

1
2−1(1 − v)

p−i
2 −1dv = Γ (12)Γ (

p−i
2 )

Γ (
p−i+1

2 )
. (ii)

Thus, the density of θj , denoted by fj (θj ), is

fj (θj ) = Γ (
p−j+1

2 )

Γ (12)Γ (
p−j
2 )

(cos θj )
p−j−1, −π

2
< θj ≤ π

2
, (3.6.5)

and zero, elsewhere, for j = 1, . . . , p − 2, and

fp−1(θp−1) = 1

2π
, −π < θp−1 ≤ π, (iii)
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and zero elsewhere. Taking the product of the p −2 terms in (ii) and (iii), the total integral
over the θj ’s is available as

{ p−2∏
j=1

∫ π
2

−π
2

(cos θj )
p−j−1dθj

} ∫ π

−π

dθp−1 = 2π
p
2

Γ (
p
2 )

. (3.6.6)

The expression in (3.6.6), excluding 2, can also be obtained by making the transformation
s = Y ′Y and then writing ds in terms of dY by appealing to Theorem 4.2.3.

3.6.2. The density of u = r2

From (3.6.2) and (3.6.3),

2π
p
2

Γ (
p
2 )

∫ ∞

0
rp−1g(r2)dr = 1, (3.6.7)

that is,

2
∫ ∞

r=0
rp−1g(r2)dr = Γ (

p
2 )

π
p
2

. (iv)

Letting u = r2, we have ∫ ∞

0
u

p
2 −1g(u)du = Γ (

p
2 )

π
p
2

, (v)

and the density of r , denoted by fr(r), is available from (3.6.7) as

fr(r) = 2π
p
2

Γ (
p
2 )

rp−1g(r2), 0 ≤ r < ∞, (3.6.8)

and zero, elsewhere. The density of u = r2 is then

fu(u) = π
p
2

Γ (
p
2 )

u
p
2 −1g(u), 0 ≤ u < ∞, (3.6.9)

and zero, elsewhere. Considering the density of Y given in (3.6.2), we may observe that
y1, . . . , yp are identically distributed.

Theorem 3.6.1. If yj = r uj , j = 1, . . . , p, in the transformation in (3.6.3), then
E[u2

j ] = 1
p
, j = 1, . . . , p, and u1, . . . , up are uniformly distributed.
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Proof: From (3.6.3), yj = ruj , j = 1, . . . , p. We may observe that u2
1 + · · · + u2

p = 1
and that u1, . . . , up are identically distributed. Hence E[u2

1] + E[u2
2] + · · · + E[u2

p] =
1 ⇒ E[u2

j ] = 1
p
.

Theorem 3.6.2. Consider the yj ’s in Eq. (3.6.2). If g(u) is free of p and if E[u] < ∞,
then E[y2

j ] = 1
2π ; otherwise, E[y2

j ] = 1
p
E[u] provided E[u] exists.

Proof: Since r and uj are independently distributed and since E[u2
j ] = 1

p
in light of

Theorem 3.6.1, E[y2
j ] = E[r2]E[u2

j ] = 1
p
E[r2] = 1

p
E[u]. From (3.6.9),

∫ ∞

0
u

p
2 −1g(u)du = Γ (

p
2 )

π
p
2

. (vi)

However,

E[u] = π
p
2

Γ (
p
2 )

∫ ∞

u=0
u

p
2 +1−1g(u)du. (vii)

Thus, assuming that g(u) is free of p, that p
2 can be taken as a parameter and that (vii) is

convergent,

E[y2
j ] = 1

p
E[r2] = 1

p
E[u] = 1

p

π
p
2

Γ (
p
2 )

Γ (
p
2 + 1)

π
p
2 +1

= 1

2π
; (3.6.10)

otherwise, E[y2
j ] = 1

p
E[u] as long as E[u] < ∞.

3.6.3. Mean value vector and covariance matrix

From (3.6.1),

E[X] = |A| 12
∫

X

X g((X − B)′A(X − B))dX.

Noting that
E[X] = E[X − B + B] = B + E[X − B]

= B + |A| 12
∫

X

(X − B)g((X − B)′A(X − B))dX

and letting Y = A
1
2 (X − B), we have

E[X] = B +
∫

Y

Yg(Y ′Y )dY, −∞ < yj < ∞, j = 1, . . . , p.

But Y ′Y is even whereas each element in Y is linear and odd. Hence, if the integral exists,∫
Y

Yg(Y ′Y )dY = O and so, E[X] = B ≡ μ. Let V = Cov(X), the covariance matrix
associated with X. Then
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V = E[(X − μ)(X − μ)′] = A− 1
2 [
∫

Y

(YY ′)g(Y ′Y )dY ]A− 1
2 ,

where Y = A
1
2 (X − μ), (3.6.11)

YY ′ =

⎡
⎢⎢⎢⎣

y2
1 y1y2 · · · y1yp

y2y1 y2
2 · · · y2yp

...
...

. . .
...

ypy1 ypy2 · · · y2
p

⎤
⎥⎥⎥⎦ . (viii)

Since the non-diagonal elements, yiyj , i �= j, are odd and g(Y ′Y ) is even, the integrals
over the non-diagonal elements are equal to zero whenever the second moments exist.
Since E[Y ] = O, V = E(YY ′). It has already been determined in (3.6.10) that E[y2

j ] =
1
2π for j = 1, . . . , p, whenever g(u) is free of p and E[u] exists, the density of u being as
specified in (3.6.9). If g(u) is not free of p, the diagonal elements will each integrate out
to 1

p
E[r2]. Accordingly,

Cov(X) = V = 1

2π
A−1 or V = 1

p
E[r2]A−1. (3.6.12)

Theorem 3.6.3. When X has the p-variate elliptically contoured distribution defined
in (3.6.1), the mean value vector of X, E[X] = B and the covariance of X, denoted by Σ ,
is such that Σ = 1

p
E[r2]A−1 where A is the parameter matrix in (3.6.1), u = r2 and r is

defined in the transformation (3.6.3).

3.6.4. Marginal and conditional distributions

Consider the density

f (X) = |A| 12g((X − μ)′A(X − μ)), A > O, −∞ < xj < ∞, −∞ < μj < ∞
(3.6.13)

where X′ = (x1, . . . , xp), μ′ = (μ1, . . . , μp), A = (aij ) > O. Consider the following
partitioning of X, μ and A:

X =
[
X1

X2

]
, μ =

[
μ(1)

μ(2)

]
, A =

[
A11 A12

A21 A22

]

where X1, μ1 are p1 × 1, X2, μ2 are p2 × 1, A11 is p1 × p1 and A22 is p2 × p2,
p1 + p2 = p. Then, as was established in Sect. 3.3,
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(X − μ)′A(X − μ) = (X1 − μ(1))
′A11(X1 − μ(1)) + 2(X2 − μ(2))

′A21(X1 − μ(1))

+ (X2 − μ(2))
′A22(X2 − μ(2))

= (X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1))

+ (X2 − μ(2) + C)′A22(X2 − μ(2) + C), C = A−1
22 A21(X1 − μ(1)).

In order to obtain the marginal density of X1, we integrate out X2 from f (X). Let the
marginal densities of X1 and X2 be respectively denoted by g1(X1) and g2(X2). Then

g1(X1) = |A| 12
∫

X2

g((X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1))

+ (X2 − μ(2) + C)′A22(X2 − μ(2) + C))dX2.

Letting A
1
2
22(X2 − μ(2) + C) = Y2, dY2 = |A22| 12 dX2 and

g1(X1) = |A| 12 |A22|− 1
2

∫
Y2

g((X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1)) + Y ′

2Y2) dY2.

Note that |A| = |A22| |A11 − A12A
−1
22 A21| from the results on partitioned matrices pre-

sented in Sect. 1.3 and thus, |A| 12 |A22|− 1
2 = |A11 −A12A

−1
22 A21| 12 . We have seen that Σ−1

is a constant multiple of A where Σ is the covariance matrix of the p × 1 vector X. Then

(Σ11)−1 = Σ11 − Σ12Σ
−1
22 Σ21

which is a constant multiple of A11−A12A
−1
22 A21. If Y ′

2Y2 = s2, then from Theorem 4.2.3,

dY2 = π
p2
2

Γ (
p2
2 )

∫
s2>0

s
p2
2 −1
2 g(s2 + u1) ds2 (3.6.14)

where u1 = (X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1)). Note that (3.6.14) is elliptically

contoured or X1 has an elliptically contoured distribution. Similarly, X2 has an elliptically
contoured distribution. Letting Y11 = (A11 − A12A

−1
22 A21)

1
2 (X1 − μ(1)), then Y11 has a

spherically symmetric distribution. Denoting the density of Y11 by g11(Y11), we have

g1(Y11) = π
p2
2

Γ (
p2
2 )

∫
s2>0

s
p2
2 −1
2 g(s2 + Y ′

11Y11) ds2. (3.6.15)
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By a similar argument, the marginal density of X2, namely g2(X2), and the density of Y22,
namely g22(Y22), are as follows:

g2(X2) = |A22 − A21A
−1
11 A12| 12 π

p1
2

Γ (
p1
2 )

×
∫

s1>0
s

p1
2 −1
1 g(s1 + (X2 − μ(2))

′[A22 − A21A
−1
11 A12](X2 − μ(2))) ds1,

g22(Y22) = π
p1
2

Γ (
p1
2 )

∫
s1>0

s
p1
2 −1
1 g(s1 + Y ′

22Y22) ds1. (3.6.16)

3.6.5. The characteristic function of an elliptically contoured distribution

Let T be a p ×1 parameter vector, T ′ = (t1, . . . , tp), so that T ′X = t1x1 +· · ·+ tpxp.
Then, the characteristic function of X, denoted by φX(T ), is E[ei T ′X] where E denotes
the expected value and i = √

(−1), that is,

φX(T ) = E[ei T ′X] =
∫

X

ei T ′X|A| 12g((X − μ)′A(X − μ))dX. (3.6.17)

Writing X as X − μ + μ and then making the transformation Y = A
1
2 (X − μ), we have

φX(T ) = ei T ′μ
∫

Y

ei T ′A− 1
2 Y g(Y ′Y )dY. (3.6.18)

However, g(Y ′Y ) is invariant under orthonormal transformation of the type Z =
PY, PP ′ = I, P ′P = I, as Z′Z = Y ′Y so that g(Y ′Y ) = g(Z′Z) for all orthonor-
mal matrices. Thus,

φX(T ) = ei T ′μ
∫

Z

ei T ′A− 1
2 P ′Zg(Z′Z)dZ (3.6.19)

for all P . This means that the integral in (3.6.19) is a function of (T ′A− 1
2 )(T ′A− 1

2 )′ =
T ′A−1T , say ψ(T ′A−1T ). Then,

φX(T ) = ei T ′μψ(T ′A−1T ) (3.6.20)

where A−1 is proportional to Σ , the covariance matrix of X, and

∂

∂T
φX(T )|T =O = iμ ⇒ E(X) = μ;
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the reader may refer to Chap. 1 for vector/matrix derivatives. Now, considering φX−μ(T ),
we have

∂

∂T
φX−μ(T ) = ∂

∂T
ψ(T ′A−1T ) = ψ ′(T A−1T )2A−1T

⇒ ∂

∂T ′ψ(T ′A−1T ) = ψ ′(T ′A−1T )2T ′A−1

⇒ ∂

∂T

∂

∂T ′ψ(T ′A−1T ) = ψ ′′(T ′A−1T )(2A−1T )(2T ′A−1) + ψ ′(T A−1T )2A−1

⇒ ∂

∂T

∂

∂T ′ψ(T ′A−1T )|T =O = 2A−1,

assuming that ψ ′(T ′A−1T )|T =O = 1 and ψ ′′(T ′A−1T )|T =O = 1, where ψ ′(u) =
d
duψ(u) for a real scalar variable u and ψ ′′(u) denotes the second derivative of ψ with
respect to u. The same procedure can be utilized to obtain higher order moments of the
type E[ · · · XX′XX′] by repeatedly applying vector derivatives to φX(T ) as · · · ∂

∂T
∂

∂T ′ op-
erating on φX(T ) and then evaluating the result at T = O. Similarly, higher order central
moments of the type E[ · · · (X − μ)(X − μ)′(X − μ)(X − μ)′] are available by applying
the vector differential operator · · · ∂

∂T
∂

∂T ′ on ψ(T ′A−1T ) and then evaluating the result at
T = O. However, higher moments with respect to individual variables, such as E[xk

j ], are
available by differentiating φX(T ) partially k times with respect to tj , and then evaluating
the resulting expression at T = O. If central moments are needed then the differentiation
is done on ψ(T ′A−1T ).

Thus, we can obtain results parallel to those derived for the p-variate Gaussian distribu-
tion by applying the same procedures on elliptically contoured distributions. Accordingly,
further discussion of elliptically contoured distributions will not be taken up in the coming
chapters.

Exercises 3.6

3.6.1. Let x1, . . . , xk be independently distributed real scalar random variables with den-
sity functions fj (xj ), j = 1, . . . , k. If the joint density of x1, . . . , xk is of the form
f1(x1) · · · fk(xk) = g(x2

1 + · · · + x2
k ) for some differentiable function g, show that

x1, . . . , xk are identically distributed as Gaussian random variables.

3.6.2. Letting the real scalar random variables x1, . . . , xk have a joint density such that
f (x1, . . . , xk) = c for x2

1 + · · · + x2
k ≤ r2, r > 0, show that (1) (x1, . . . , xk) is uniformly

distributed over the volume of the k-dimensional sphere; (2) E[xj ] = 0, Cov(xi, xj ) =
0, i �= j = 1, . . . , k; (3) x1, . . . , xk are not independently distributed.
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3.6.3. Let u = (X − B)′A(X − B) in Eq. (3.6.1), where A > O and A is a p × p matrix.
Let g(u) = c1(1−a u)ρ, a > 0, 1−a u > 0 and c1 is an appropriate constant. If |A| 12g(u)

is a density, show that (1) this density is elliptically contoured; (2) evaluate its normalizing
constant and specify the conditions on the parameters.

3.6.4. Solve Exercise 3.6.3 for g(u) = c2(1+a u)−ρ , where c2 is an appropriate constant.

3.6.5. Solve Exercise 3.6.3 for g(u) = c3 uγ−1(1 − a u)β−1, a > 0, 1 − a u > 0 and c3
is an appropriate constant.

3.6.6. Solve Exercise 3.6.3 for g(u) = c4 uγ−1e−a u, a > 0 where c4 is an appropriate
constant.

3.6.7. Solve Exercise 3.6.3 for g(u) = c5 uγ−1(1 + a u)−(ρ+γ ), a > 0 where c5 is an
appropriate constant.

3.6.8. Solve Exercises 3.6.3 to 3.6.7 by making use of the general polar coordinate trans-
formation.

3.6.9. Let s = y2
1 + · · · + y2

p where yj , j = 1, . . . , p, are real scalar random variables.
Let dY = dy1 ∧ . . . ∧ dyp and let ds be the differential in s. Then, it can be shown that

dY = π
p
2

Γ (
p
2 )

s
p
2 −1ds. By using this fact, solve Exercises 3.6.3–3.6.7.

3.6.10. If A =
[
3 2
2 4

]
, write down the elliptically contoured density in (3.6.1) explicitly

by taking an arbitrary b = E[X] = μ, if (1) g(u) = (a−c u)α, a > 0 , c > 0, a−c u > 0;
(2) g(u) = (a + c u)−β, a > 0, c > 0, and specify the conditions on α and β.
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
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the copyright holder.
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