
Chapter 2
The Univariate Gaussian and Related Distributions

2.1. Introduction

It is assumed that the reader has had adequate exposure to basic concepts in Proba-
bility, Statistics, Calculus and Linear Algebra. This chapter will serve as a review of the
basic ideas about the univariate Gaussian, or normal, distribution as well as related dis-
tributions. We will begin with a discussion of the univariate Gaussian density. We will
adopt the following notation: real scalar mathematical or random variables will be de-
noted by lower-case letters such as x, y, z, whereas vector or matrix-variate mathematical
or random variables will be denoted by capital letters such as X, Y, Z, . . . . Statisticians
usually employ the double notation X and x where it is claimed that x is a realization of
X. Since x can vary, it is a variable in the mathematical sense. Treating mathematical and
random variables the same way will simplify the notation and possibly reduce the con-
fusion. Complex variables will be written with a tilde such as x̃, ỹ, X̃, Ỹ , etc. Constant
scalars and matrices will be written without a tilde unless for stressing that the constant
matrix is in the complex domain. In such a case, a tilde will be also be utilized for the
constant. Constant matrices will be denoted by A, B, C, . . . .

The numbering will first indicate the chapter and then the section. For example,
Eq. (2.1.9) will be the ninth equation in Sect. 2.1 of this chapter. Local numbering for
sub-sections will be indicated as (i), (ii), and so on.

Let x1 be a real univariate Gaussian, or normal, random variable whose parameters are
μ1 and σ 2

1 ; this will be written as x1 ∼ N1(μ1, σ
2
1 ), the associated density being given by

f (x1) = 1

σ1
√
2π

e
− 1

2σ21
(x1−μ1)

2

, −∞ < x1 < ∞, −∞ < μ1 < ∞, σ1 > 0.

In this instance, the subscript 1 in N1(·) refers to the univariate case. Incidentally, a density
is a real-valued scalar function of x such that f (x) ≥ 0 for all x and

∫
x
f (x)dx = 1.

The moment generating function (mgf) of this Gaussian random variable x1, with t1 as
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its parameter, is given by the following expected value, where E[·] denotes the expected
value of [·]:

E[et1x1] =
∫ ∞

−∞
et1x1f (x1)dx1 = et1μ1+ 1

2 t21σ 2
1 . (2.1.1)

2.1a. The Complex Scalar Gaussian Variable

Let x̃ = x1 + ix2, i = √
(−1), x1, x2 real scalar variables. Let E[x1] = μ1, E[x2] =

μ2, Var(x1) = σ 2
1 , Var(x2) = σ 2

2 , Cov(x1, x2) = σ12. By definition, the variance of the
complex random variable x̃ is defined as

Var(x̃) = E[x̃ − E(x̃)][x̃ − E(x̃)]∗

where * indicates a conjugate transpose in general; in this case, it simply means the conju-
gate since x̃ is a scalar. Since x̃ − E(x̃) = x1 + ix2 − μ1 − iμ2 = (x1 − μ1) + i(x2 − μ2)

and [x̃ − E(x̃)]∗ = (x1 − μ1) − i(x2 − μ2),

Var(x̃) =E[x̃ − E(x̃)][x̃ − E(x̃)]∗
=E[(x1 − μ1)+i(x2 − μ2)][(x1 − μ1)−i(x2 − μ2)]=E[(x1−μ1)

2+(x2−μ2)
2]

=σ 2
1 + σ 2

2 ≡ σ 2. (i)

Observe that Cov(x1, x2) does not appear in the scalar case. However, the covariance will
be present in the vector/matrix case as will be explained in the coming chapters. The
complex Gaussian density is given by

f (x̃) = 1

πσ 2
e− 1

σ2
(x̃−μ̃)∗(x̃−μ̃) (ii)

for x̃ = x1 + ix2, μ̃ = μ1 + iμ2, −∞ < xj < ∞, −∞ < μj < ∞, σ 2 > 0, j = 1, 2.
We will write this as x̃ ∼ Ñ1(μ̃, σ 2). It can be shown that the two parameters appearing in
the density in (ii) are the mean value of x̃ and the variance of x̃. We now establish that the
density in (ii) is equivalent to a real bivariate Gaussian density with σ 2

1 = 1
2σ

2, σ 2
2 = 1

2σ
2

and zero correlation. In the real bivariate normal density, the exponent is the following,
with Σ as given below:

−1

2
[(x1 − μ1), (x2 − μ2)]Σ−1

[
x1 − μ1

x2 − μ2

]

, Σ =
[1
2σ

2 0
0 1

2σ
2

]

= − 1

σ 2
{(x1 − μ1)

2 + (x2 − μ2)
2} = − 1

σ 2
(x̃ − μ̃)∗(x̃ − μ̃).



The Univariate Gaussian Density and Related Distributions 59

This exponent agrees with that appearing in the complex case. Now, consider the constant
part in the real bivariate case:

(2π)|Σ | 12 = (2π)

∣
∣
∣
∣
1
2σ

2 0
0 1

2σ
2

∣
∣
∣
∣

1
2

= πσ 2,

which also coincides with that of the complex Gaussian. Hence, a complex scalar Gaussian
is equivalent to a real bivariate Gaussian case whose parameters are as described above.

Let us consider the mgf of the complex Gaussian scalar case. Let t̃ = t1 + it2, i =√
(−1), with t1 and t2 being real parameters, so that t̃∗ = ¯̃t = t1 − it2 is the conjugate of

t̃ . Then t̃∗x̃ = t1x1 + t2x2 + i(t1x2 − t2x1). Note that t1x1 + t2x2 contains the necessary
number of parameters (that is, 2) and hence, to be consistent with the definition of the
mgf in a real bivariate case, the imaginary part should not be taken into account; thus, we
should define the mgf as E[e�(t̃∗x̃)], where �(·) denotes the real part of (·). Accordingly,
in the complex case, the mgf is obtained as follows:

Mx̃(t̃) = E[e�(t̃∗x̃)]
= 1

πσ 2

∫

x̃

e�(t̃∗x̃)− 1
σ2

(x̃−μ̃)∗(x̃−μ̃)dx̃

= e�(t̃∗μ̃)

πσ 2

∫

x̃

e�(t̃∗(x̃−μ̃))− 1
σ2

(x̃−μ̃)∗(x̃−μ̃)dx̃.

Let us simplify the exponent:

�(t̃∗(x̃ − μ̃)) − 1

σ 2
(x̃ − μ̃)∗(x̃ − μ̃)

= −{ 1

σ 2
(x1 − μ1)

2 + 1

σ 2
(x2 − μ2)

2 − t1(x1 − μ1) − t2(x2 − μ2)}

= σ 2

4
(t21 + t22 ) − {(y1 − σ

2
t1)

2 + (y2 − σ

2
t2)

2}

where y1 = x1−μ1
σ

, y2 = x2−μ2
σ

, dyj = 1
σ
dxj , j = 1, 2. But

1√
π

∫ ∞

−∞
e−(yj− σ

2 tj )
2
dyj = 1, j = 1, 2.

Hence,

Mx̃(t̃) = e�(t̃∗μ̃)+ σ2
4 t̃∗ t̃ = et1μ1+t2μ2+ σ2

4 (t21+t22 ), (2.1a.1)

which is the mgf of the equivalent real bivariate Gaussian distribution.
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Note 2.1.1. A statistical density is invariably a real-valued scalar function of the variables
involved, be they scalar, vector or matrix variables, real or complex.

2.1.1. Linear functions of Gaussian variables in the real domain

If x1, . . . , xk are statistically independently distributed real scalar Gaussian variables
with parameters (μj , σ

2
j ), j = 1, . . . , k and if a1, . . . , ak are real scalar constants then the

mgf of a linear function u = a1x1 + · · · + akxk is given by

Mu(t) = E[etu] = E[eta1x1+···+takxk ] = Mx1(a1t) · · · Mxk
(akt), as Max(t) = Mx(at),

= e(ta1μ1+···+takμk)+ 1
2 t2(a21σ

2
1 +···+a2kσ 2

k )

= et (
∑k

j=1 ajμj )+ 1
2 t2(

∑k
j=1 a2j σ 2

j )
,

which is the mgf of a real normal random variable whose parameters are (
∑k

j=1 ajμj ,
∑k

j=1 a2j σ
2
j ). Hence, the following result:

Theorem 2.1.1. Let the real scalar random variable xj have a real univariate normal
(Gaussian) distribution, that is, xj ∼ N1(μj , σ

2
j ), j = 1, . . . , k and let x1, . . . , xk be sta-

tistically independently distributed. Then, any linear function u = a1x1+· · ·+akxk, where
a1, . . . , ak are real constants, has a real normal distribution with mean value

∑k
j=1 ajμj

and variance
∑k

j=1 a2j σ
2
j , that is, u ∼ N1(

∑k
j=1 ajμj ,

∑k
j=1 a2j σ

2
j ).

Vector/matrix notation enables one to express this result in a more convenient form.
Let

L =
⎡

⎢
⎣

a1
...

ak

⎤

⎥
⎦ , μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ , X =

⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
k

⎤

⎥
⎥
⎥
⎦

.

Then denoting the transposes by primes, u = L′X = X′L, E(u) = L′μ = μ′L, and

Var(u) = E[(u − E(u))(u − E(u))′] = L′E[(X − E(X))(X − E(X))′]L
= L′Cov(X)L = L′ΣL

where, in this case, Σ is the diagonal matrix diag(σ 2
1 , . . . , σ 2

k ). If x1, . . . , xk is a simple
random sample from x1, that is, from the normal population specified by the density of x1
or, equivalently, if x1, . . . , xk are iid (independently and identically distributed) random
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variables having as a common distribution that of x1, then E(u) = μ1L
′J = μ1J

′L
and Var(u) = σ 2

1L′L where u is the linear function defined in Theorem 2.1.1 and J ′ =
(1, 1, . . . , 1) is a vector of unities.

Example 2.1.1. Let x1 ∼ N1(−1, 1) and x2 ∼ N1(2, 2) be independently distributed
real normal variables. Determine the density of the linear function u = 5x1 − 2x2 + 7.

Solution 2.1.1. Since u is a linear function of independently distributed real scalar nor-
mal variables, it is real scalar normal whose parameters E(u) and Var(u) are

E(u) = 5E(x1) − 2E(x2) + 7 = 5(−1) − 2(2) + 7 = −2

Var(u) = 25Var(x1) + 4Var(x2) + 0 = 25(1) + 4(2) = 33,

the covariance being zero since x1 and x2 are independently distributed. Thus, u ∼
N1(−2, 33).

2.1a.1. Linear functions in the complex domain

We can also look into the distribution of linear functions of independently distributed
complex Gaussian variables. Let a be a constant and x̃ a complex random variable, where
a may be real or complex. Then, from the definition of the variance in the complex domain,
one has

Var(ax̃) = E[(ax̃ − E(ax̃))(ax̃ − E(ax̃))∗] = aE[(x̃ − E(x̃))(x̃ − E(x̃))∗]a∗

= aVar(x̃)a∗ = aa∗Var(x̃) = |a|2Var(x̃) = |a|2σ 2

when the variance of x̃ is σ 2, where |a| denotes the absolute value of a. As well, E[ax̃] =
aE[x̃] = aμ̃. Then, a companion to Theorem 2.1.1 is obtained.

Theorem 2.1a.1. Let x̃1, . . . , x̃k be independently distributed scalar complex Gaussian
variables, x̃j ∼ Ñ1(μ̃j , σ

2
j ), j = 1, . . . , k. Let a1, . . . , ak be real or complex constants

and ũ = a1x̃1+· · ·+akx̃k be a linear function. Then, ũ has a univariate complex Gaussian
distribution given by ũ ∼ Ñ1(

∑k
j=1 aj μ̃j ,

∑k
j=1 |aj |2Var(x̃j )).

Example 2.1a.1. Let x̃1, x̃2, x̃3 be independently distributed complex Gaussian univari-
ate random variables with expected values μ̃1 = −1 + 2i, μ̃2 = i, μ̃3 = −1 − i respec-
tively. Let x̃j = x1j + ix2j , j = 1, 2, 3. Let [Var(x1j ),Var(x2j )] = [(1, 1), (1, 2), (2, 3)],
respectively. Let a1 = 1+ i, a2 = 2−3i, a3 = 2+ i, a4 = 3+2i. Determine the density
of the linear function ũ = a1x̃1 + a2x̃2 + a3x̃3 + a4.
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Solution 2.1a.1.

E(ũ) = a1E(x̃1) + a2E(x̃2) + a3E(x̃3) + a4

= (1 + i)(−1 + 2i) + (2 − 3i)(i) + (2 + i)(−1 − i) + (3 + 2i)

= (−3 + i) + (3 + 2i) + (−1 − 3i) + (3 + 2i) = 2 + 2i;
Var(ũ) = |a1|2Var(x̃1) + |a2|2Var(x̃2) + |a3|2Var(x̃3)

and the covariances are equal to zero since the variables are independently distributed.
Note that x̃1 = x11 + ix21 and hence, for example,

Var(x̃1) = E[(x̃1 − E(x̃1))(x̃1 − E(x̃1))
∗]

= E{[(x11 − E(x11)) + i(x21 − E(x21))][(x11 − E(x11)) − i(x21 − E(x21))]}
= E[(x11 − E(x11))

2] − (i)2E[(x21 − E(x21))
2]

= Var(x11) + Var(x21) = 1 + 1 = 2.

Similarly, Var(x̃2) = 1 + 2 = 3,Var(x̃3) = 2 + 3 = 5. Moreover, |a1|2 = (1)2 + (1)2 =
2, |a2|2 = (2)2 + (3)2 = 13, |a3|2 = (2)2 + (1)2 = 5. Accordingly, Var(ũ) = 2(2) +
(13)(3) + (5)(5) = 68. Thus, ũ ∼ Ñ1(2 + 2i, 68). Note that the constant a4 only affects
the mean value. Had a4 been absent from ũ, its mean value would have been real and equal
to −1.

2.1.2. The chisquare distribution in the real domain

Suppose that x1 follows a real standard normal distribution, that is, x1 ∼ N1(0, 1),
whose mean value is zero and variance, 1. What is then the density of x2

1 , the square of
a real standard normal variable? Let the distribution function or cumulative distribution
function of x1 be Fx1(t) = Pr{x1 ≤ t} and that of y1 = x2

1 be Fy1(t) = Pr{y1 ≤ t}. Note
that since y1 > 0, t must be positive. Then,

Fy1(t) = Pr{y1 ≤ t} = Pr{x2
1 ≤ t} = Pr{|x1| ≤ √

t} = Pr{−√
t ≤ x1 ≤ √

t}
= Pr{x1 ≤ √

t} − Pr{x1 ≤ −√
t} = Fx1(

√
t) − Fx1(−

√
t). (i)

Denoting the density of y1 by g(y1), this density at y1 = t is available by differentiating
the distribution function Fy1(t) with respect to t . As for the density of x1, which is the
standard normal density, it can be obtained by differentiating Fx1(

√
t) with respect to

√
t .

Thus, differentiating (i) throughout with respect to t , we have
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g(t)|t=y1 =
[ d

dt
Fx1(

√
t) − d

dt
Fx1(−

√
t)
]∣∣
∣
t=y1

=
[ d

d
√

t
Fx1(

√
t)
d
√

t

dt
− d

d
√

t
Fx1(−

√
t)
d(−√

t)

dt

]∣∣
∣
t=y1

= 1

2
t
1
2−1 1√

(2π)
e− 1

2 t
∣
∣
∣
t=y1

+ 1

2
t
1
2−1 1√

(2π)
e− 1

2 t
∣
∣
∣
t=y1

= 1

2
1
2Γ (1/2)

y
1
2−1
1 e− 1

2y1, 0 ≤ y1 < ∞, with Γ (1/2) = √
π. (ii)

Accordingly, the density of y1 = x2
1 or the square of a real standard normal variable, is a

two-parameter real gamma with α = 1
2 and β = 2 or a real chisquare with one degree of

freedom. A two-parameter real gamma density with the parameters (α, β) is given by

f1(y1) = 1

βαΓ (α)
yα−1
1 e− y1

β , 0 ≤ y1 < ∞, α > 0, β > 0, (2.1.2)

and f1(y1) = 0 elsewhere. When α = n
2 and β = 2, we have a real chisquare density with

n degrees of freedom. Hence, the following result:

Theorem 2.1.2. The square of a real scalar standard normal random variable is a real
chisquare variable with one degree of freedom. A real chisquare with n degrees of freedom
has the density given in (2.1.2) with α = n

2 and β = 2.

A real scalar chisquare random variable with m degrees of freedom is denoted as χ2
m.

From (2.1.2), by computing the mgf we can see that the mgf of a real scalar gamma random
variable y is My(t) = (1 − βt)−α for 1 − βt > 0. Hence, a real chisquare with m

degrees of freedom has the mgf Mχ2
m
(t) = (1 − 2t)−m

2 for 1 − 2t > 0. The condition
1−βt > 0 is required for the convergence of the integral when evaluating the mgf of a real
gamma random variable. If yj ∼ χ2

mj
, j = 1, . . . , k and if y1, . . . , yk are independently

distributed, then the sum y = y1+· · ·+yk ∼ χ2
m1+···+mk

, a real chisquare withm1+· · ·+mk

degrees of freedom, with mgf My(t) = (1 − 2t)− 1
2 (m1+···+mk) for 1 − 2t > 0.

Example 2.1.2. Let x1 ∼ N1(−1, 4), x2 ∼ N1(2, 2) be independently distributed. Let
u = x2

1 + 2x2
2 + 2x1 − 8x2 + 5. Compute the density of u.

Solution 2.1.2.

u = x2
1 + 2x2

2 + 2x1 − 8x2 + 5 = (x1 + 1)2 + 2(x2 − 2)2 − 4

= 4
[(x1 + 1)2

4
+ (x2 − 2)2

2

]
− 4.
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Since x1 ∼ N1(−1, 4) and x2 ∼ N1(2, 2) are independently distributed, so are (x1+1)2

4 ∼
χ2
1 and (x2−2)2

2 ∼ χ2
1 , and hence the sum is a real χ2

2 random variable. Then, u = 4y − 4
with y = χ2

2 . But the density of y, denoted by fy(y), is

fy(y) = 1

2
e− y

2 , 0 ≤ y < ∞,

and fy(y) = 0 elsewhere. Then, z = 4y has the density

fz(z) = 1

8
e− z

8 , 0 ≤ z < ∞,

and fz(z) = 0 elsewhere. However, since u = z − 4, its density is

fu(u) = 1

8
e− (u+4)

8 , −4 ≤ u < ∞,

and zero elsewhere.

2.1a.2. The chisquare distribution in the complex domain

Let us consider the distribution of z̃1z̃
∗
1 of a scalar standard complex normal variable

z̃1. The density of z̃1 is given by

fz̃1(z̃1) = 1

π
e−z̃∗

1 z̃1, z̃1 = z11 + iz12, −∞ < z1j < ∞, j = 1, 2.

Let ũ1 = z̃∗
1z̃1. Note that z̃∗

1z̃1 is real and hence we may associate a real parameter t to
the mgf. Note that z̃1z̃∗

1 in the scalar complex case corresponds to z2 in the real scalar case
where z ∼ N1(0, 1). Then, the mgf of ũ1 is given by

Mũ1(t) = E[e�(t̃ ũ1)] = 1

π

∫

z̃1

e−�[(1−t)z̃∗
1 z̃1]dz̃1.

However, z̃∗
1z̃1 = z211 + z212 as z̃1 = z11 + iz12, i = √

(−1), where z11 and z12 are

real. Thus, the above integral gives (1 − t)− 1
2 (1 − t)− 1

2 = (1 − t)−1 for 1 − t > 0,
which is the mgf of a real scalar gamma variable with parameters α = 1 and β = 1.
Let z̃j ∼ Ñ1(μ̃j , σ

2), j = 1, . . . , k, be scalar complex normal random variables that are
independently distributed. Letting

ũ =
k∑

j=1

( z̃j − μ̃j

σj

)∗( z̃j − μ̃j

σj

)
∼ real scalar gamma with parameters α = k, β = 1,
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whose density is

fũ(u) = 1

Γ (k)
uk−1e−u, 0 ≤ u < ∞, k = 1, 2, . . . , (2.1a.2)

ũ is referred to as a scalar chisquare in the complex domain having k degrees of freedom,
which is denoted ũ ∼ χ̃2

k . Hence, the following result:

Theorem 2.1a.2. Let z̃j ∼ Ñ1(μ̃j , σ
2
j ), j = 1, . . . , k, be independently distributed

and ũ = ∑k
j=1(

z̃j−μ̃j

σj
)∗( z̃j−μ̃j

σj
). Then ũ is called a scalar chisquare having k degrees of

freedom in the complex domain whose density as given in (2.1a.2) is that of a real scalar
gamma random variable with parameters α = k and β = 1.

Example 2.1a.2. Let x̃1 ∼ Ñ1(i, 2), x̃2 ∼ Ñ1(1 − i, 1) be independently distributed
complex Gaussian univariate random variables. Let ũ = x̃∗

1 x̃1 + 2x̃∗
2 x̃2 − 2x̃∗

2 − 2x̃2 +
i(x̃1 + 2x̃∗

2 ) − i(x̃∗
1 + 2x̃2) + 5. Evaluate the density of ũ.

Solution 2.1a.2. Let us simplify ũ, keeping in mind the parameters in the densities of
x̃1 and x̃2. Since terms of the type x̃∗

1 x̃1 and x̃∗
2 x̃2 are present in ũ, we may simplify into

factors involving x̃∗
j and x̃j for j = 1, 2. From the density of x̃1 we have

(x̃1 − i)∗(x̃1 − i)

2
∼ χ̃2

1

where
(x̃1 − i)∗(x̃1 − i) = (x̃∗

1 + i)(x̃1 − i) = x̃∗
1 x̃1 + ix̃1 − ix̃∗

1 + 1. (i)

After removing the elements in (i) from ũ, the remainder is

2x̃∗
2 x̃2 − 2x̃∗

2 − 2x̃2 + 2ix̃∗
2 − 2ix̃2 + 4

= 2[(x̃2 − 1)∗(x̃2 − 1) − ix̃2 + ix̃∗
2 + 1]

= 2[(x̃2 − 1 + i)∗(x̃2 − 1 + i)].
Accordingly,

ũ = 2
[(x̃1 − i)∗(x̃1 − i)

2
+ (x̃2 − 1 + i)∗(x̃2 − 1 + i)

]

= 2[χ̃2
1 + χ̃2

1 ] = 2χ̃2
2

where χ̃2
2 is a scalar chisquare of degree 2 in the complex domain or, equivalently, a real

scalar gamma with parameters (α = 2, β = 1). Letting y = χ̃2
2 , the density of y, denoted

by fy(y), is
fy(y) = y e−y, 0 ≤ y < ∞,
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and fy(y) = 0 elsewhere. Then, the density of u = 2y, denoted by fu(u), which is
given by

fu(u) = u

2
e− u

2 , 0 ≤ u < ∞,

and fu(u) = 0 elsewhere, is that of a real scalar gamma with the parameters (α = 2,
β = 2).

2.1.3. The type-2 beta and F distributions in the real domain

What about the distribution of the ratio of two independently distributed real scalar
chisquare random variables? Let y1 ∼ χ2

m and y2 ∼ χ2
n , that is, y1 and y2 are real chisquare

random variables with m and n degrees of freedom respectively, and assume that y1 and
y2 are independently distributed. Let us determine the density of u = y1/y2. Let v = y2
and consider the transformation (y1, y2) onto (u, v). Noting that

∂u

∂y1
= 1

y2
,

∂v

∂y2
= 1,

∂v

∂y1
= 0,

one has

du ∧ dv =
∣
∣
∣
∣
∣

∂u
∂y1

∂u
∂y2

∂v
∂y1

∂v
∂y2

∣
∣
∣
∣
∣
dy1 ∧ dy2 =

∣
∣
∣
∣

1
y2

∗
0 1

∣
∣
∣
∣ dy1 ∧ dy2

= 1

y2
dy1 ∧ dy2 ⇒ dy1 ∧ dy2 = v du ∧ dv

where the asterisk indicates the presence of some element in which we are not interested
owing to the triangular pattern for the Jacobian matrix. Letting the joint density of y1 and
y2 be denoted by f12(y1, y2), one has

f12(y1, y2) = 1

2
m+n
2 Γ (m

2 )Γ (n
2 )

y
m
2 −1
1 y

n
2−1
2 e− y1+y2

2

for 0 ≤ y1 < ∞, 0 ≤ y2 < ∞, m, n = 1, 2, . . ., and f12(y1, y2) = 0 elsewhere. Let the
joint density of u and v be denoted by g12(u, v) and the marginal density of u be denoted
by g1(u). Then,
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g12(u, v) = c v(uv)
m
2 −1v

n
2−1e− 1

2 (uv+v), c = 1

2
m+n
2 Γ (m

2 )Γ (n
2 )

,

g1(u) = c u
m
2 −1

∫ ∞

v=0
v

m+n
2 −1e−v

(1+u)
2 dv

= c u
m
2 −1Γ

(m + n

2

)(1 + u

2

)−m+n
2

= Γ (m+n
2 )

Γ (m
2 )Γ (n

2 )
u

m
2 −1(1 + u)−

m+n
2 (2.1.3)

for m, n = 1, 2, . . . , 0 ≤ u < ∞ and g1(u) = 0 elsewhere. Note that g1(u) is a type-2
real scalar beta density. Hence, we have the following result:

Theorem 2.1.3. Let the real scalar y1 ∼ χ2
m and y2 ∼ χ2

n be independently distributed,
then the ratio u = y1

y2
is a type-2 real scalar beta random variable with the parameters m

2
and n

2 where m, n = 1, 2, . . ., whose density is provided in (2.1.3).

This result also holds for general real scalar gamma random variables x1 > 0 and
x2 > 0 with parameters (α1, β) and (α2, β), respectively, where β is a common scale
parameter and it is assumed that x1 and x2 are independently distributed. Then, u = x1

x2
is

a type-2 beta with parameters α1 and α2.

If u as defined in Theorem 2.1.3 is replaced by m
n
Fm,n or F = Fm,n = χ2

m/m

χ2
n/n

= n
m

u

is known as the F -random variable with m and n degrees of freedom, where the degrees
of freedom indicate those of the numerator and denominator chisquare random variables
which are independently distributed. Denoting the density of F by fF (F ) we have the
following result:

Theorem 2.1.4. Letting F = Fm,n = χ2
m/m

χ2
n/n

where the two real scalar chisquares are

independently distributed, the real scalar F-density is given by

fF (F ) = Γ (m+n
2 )

Γ (m
2 )Γ (n

2 )

(m

n

)m
2 F

m
2 −1

(1 + m
n
F)

m+n
2

(2.1.4)

for 0 ≤ F < ∞, m, n = 1, 2, . . . , and fF (F ) = 0 elsewhere.

Example 2.1.3. Let x1 and x2 be independently distributed real scalar gamma random
variables with parameters (α1, β) and (α2, β), respectively, β being a common parameter,
whose densities are as specified in (2.1.2). Let u1 = x1

x1+x2
, u2 = x1

x2
, u3 = x1 + x2.
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Show that (1): u3 has a real scalar gamma density as given in (2.1.2) with the parameters
(α1 + α2, β); (2): u1 and u3 as well as u2 and u3 are independently distributed; (3): u2 is a
real scalar type-2 beta with parameters (α1, α2) whose density is specified in (2.1.3); (4):
u1 has a real scalar type-1 beta density given as

f1(u1) = Γ (α1 + α2)

Γ (α1)Γ (α2)
u

α1−1
1 (1 − u1)

α2−1, 0 ≤ u1 ≤ 1, (2.1.5)

for �(α1) > 0, �(α2) > 0 and zero elsewhere. [In a statistical density, the parameters are
usually real; however, since the integrals exist for complex parameters, the conditions are
given for complex parameters as the real parts of α1 and α2, which must be positive. When
they are real, the conditions will be simply α1 > 0 and α2 > 0.]

Solution 2.1.3. Since x1 and x2 are independently distributed, their joint density is the
product of the marginal densities, which is given by

f12(x1, x2) = c x
α1−1
1 x

α2−1
2 e− 1

β
(x1+x2), 0 ≤ xj < ∞, j = 1, 2, (i)

for �(αj ) > 0, �(β) > 0, j = 1, 2 and zero elsewhere, where

c = 1

βα1+α2Γ (α1)Γ (α2)
.

Since the sum x1 + x2 is present in the exponent and both x1 and x2 are positive, a conve-
nient transformation is x1 = r cos2 θ, x2 = r sin2 θ, 0 ≤ r < ∞, 0 ≤ θ ≤ π

2 . Then,
the Jacobian is available from the detailed derivation of Jacobian given in the beginning of
Sect. 2.1.3 or from Example 1.6.1. That is,

dx1 ∧ dx2 = 2r sin θ cos θ dr ∧ dθ. (ii)

Then from (i) and (ii), the joint density of r and θ , denoted by fr,θ (r, θ), is the following:

fr,θ (r, θ) = c (cos2 θ)α1−1(sin2 θ)α2−12 cos θ sin θ rα1+α2−1e− 1
β
r (iii)

and zero elsewhere. As fr,θ (r, θ) is a product of positive integrable functions involving
solely r and θ , r and θ are independently distributed. Since u3 = x1 + x2 = r cos2 θ +
r sin2 θ = r is solely a function of r and u1 = x1

x1+x2
= cos2 θ and u2 = cos2 θ

sin2 θ
are solely

functions of θ , it follows that u1 and u3 as well as u2 and u3 are independently distributed.
From (iii), upon multiplying and dividing by Γ (α1 + α2), we obtain the density of u3 as

f1(u3) = 1

βα1+α2Γ (α1 + α2)
u

α1+α2−1
3 e− u3

β , 0 ≤ u3 < ∞, (iv)
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and zero elsewhere, which is a real scalar gamma density with parameters (α1 + α2, β).
From (iii), the density of θ , denoted by f2(θ), is

f2(θ) = c (cos2 θ)α1−1(sin2 θ)α2−1, 0 ≤ θ ≤ π

2
(v)

and zero elsewhere, for �(αj ) > 0, j = 1, 2,. From this result, we can obtain the density
of u1 = cos2 θ . Then, du1 = −2 cos θ sin θ dθ . Moreover, when θ → 0, u1 → 1 and when
θ → π

2 , u1 → 0. Hence, the minus sign in the Jacobian is needed to obtain the limits in
the natural order, 0 ≤ u1 ≤ 1. Substituting in (v), the density of u1 denoted by f3(u1),
is as given in (2.1.5), u1 being a real scalar type-1 beta random variable with parameters
(α1, α2). Now, observe that

u2 = cos2 θ

sin2 θ
= cos2 θ

1 − cos2 θ
= u1

1 − u1
. (vi)

Given the density of u1 as specified in (2.1.5), we can obtain the density of u2 as follows.
As u2 = u1

1−u1
, we have u1 = u2

1+u2
⇒ du1 = 1

(1+u2)2
du2; then substituting these values in

the density of u1, we have the following density for u2:

f3(u2) = Γ (α1 + α2)

Γ (α1)Γ (α2)
u

α1−1
2 (1 + u2)

−(α1+α2), 0 ≤ u2 < ∞, (2.1.6)

and zero elsewhere, for �(αj ) > 0, j = 1, 2, which is a real scalar type-2 beta density
with parameters (α1, α2). The results associated with the densities (2.1.5) and (2.1.6) are
now stated as a theorem.

Theorem 2.1.5. Let x1 and x2 be independently distributed real scalar gamma random
variables with the parameters (α1, β), (α2, β), respectively, β being a common scale pa-
rameter. [If x1 ∼ χ2

m and x2 ∼ χ2
n , then α1 = m

2 , α2 = n
2 and β = 2.] Then u1 = x1

x1+x2
is a real scalar type-1 beta whose density is as specified in (2.1.5) with the parameters
(α1, α2), and u2 = x1

x2
is a real scalar type-2 beta whose density is as given in (2.1.6) with

the parameters (α1, α2).

2.1a.3. The type-2 beta and F distributions in the complex domain

It follows that in the complex domain, if χ̃2
m and χ̃2

n are independently distributed, then
the sum is a chisquare with m + n degrees of freedom, that is, χ̃2

m + χ̃2
n = χ̃2

m+n. We now
look into type-2 beta variables and F -variables and their connection to chisquare variables
in the complex domain. Since, in the complex domain, the chisquares are actually real
variables, the density of the ratio of two independently distributed chisquares with m and
n degrees of freedom in the complex domain, remains the same as the density given in
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(2.1.3) with m
2 and n

2 replaced by m and n, respectively. Thus, letting ũ = χ̃2
m/χ̃2

n where
the two chisquares in the complex domain are independently distributed, the density of ũ,
denoted by g̃1(u), is

g̃1(u) = Γ (m + n)

Γ (m)Γ (n)
um−1(1 + u)−(m+n) (2.1a.3)

for 0 ≤ u < ∞, m, n = 1, 2, . . . , and g̃1(u) = 0 elsewhere.

Theorem 2.1a.3. Let ỹ1 ∼ χ̃2
m and ỹ2 ∼ χ̃2

n be independently distributed where ỹ1 and

ỹ2 are in the complex domain; then, ũ = ỹ1
ỹ2

is a real type-2 beta whose density is given in
(2.1a.3).

If the F random variable in the complex domain is defined as F̃m,n = χ̃2
m/m

χ̃2
n/n

where the

two chisquares in the complex domain are independently distributed, then the density of F̃

is that of the real F -density with m and n replaced by 2m and 2n in (2.1.4), respectively.

Theorem 2.1a.4. Let F̃ = F̃m,n = χ̃2
m/m

χ̃2
n/n

where the two chisquares in the complex do-

main are independently distributed; then, F̃ is referred to as an F random variable in the
complex domain and it has a real F -density with the parameters m and n, which is given
by

g̃2(F ) = Γ (m + n)

Γ (m)Γ (n)

(m

n

)m

Fm−1(1 + m

n
F)−(m+n) (2.1a.4)

for 0 ≤ F < ∞, m, n = 1, 2, . . . , and g̃2(F ) = 0 elsewhere.

A type-1 beta representation in the complex domain can similarly be obtained from
Theorem 2.1a.3. This will be stated as a theorem.

Theorem 2.1a.5. Let x̃1 ∼ χ̃2
m and x̃2 ∼ χ̃2

n be independently distributed scalar
chisquare variables in the complex domain with m and n degrees of freedom, respectively.
Let ũ1 = x̃1

x̃1+x̃2
, which is a real variable that we will call u1. Then, ũ1 is a scalar type-1

beta random variable in the complex domain with the parameters m, n, whose real scalar
density is

f̃1(ũ1) = Γ (m + n)

Γ (m)Γ (n)
um−1
1 (1 − u1)

n−1, 0 ≤ u1 ≤ 1, (2.1a.5)

and zero elsewhere, for m, n = 1, 2, . . . .
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2.1.4. Power transformation of type-1 and type-2 beta random variables

Let us make a power transformation of the type u1 = ayδ, a > 0, δ > 0. Then,
du1 = aδyδ−1dy. For convenience, let the parameters in (2.1.5) be α1 = α and α2 = β.
Then, the density given in (2.1.5) becomes

f11(y) = Γ (α + β)

Γ (α)Γ (β)
δaαyαδ−1(1 − ayδ)β−1, 0 ≤ y ≤ 1

a
1
δ

, (2.1.7)

and zero elsewhere, for a > 0, δ > 0, �(α) > 0, �(β) > 0. We can extend the support
to −a− 1

δ ≤ y ≤ a− 1
δ by replacing y by |y| and multiplying the normalizing constant by 1

2 .
Such power transformed models are useful in practical applications. Observe that a power
transformation has the following effect: for y < 1, the density is reduced if δ > 1 or raised
if δ < 1, whereas for y > 1, the density increases if δ > 1 or diminishes if δ < 1. For
instance, the particular case α = 1 is highly useful in reliability theory and stress-strength
analysis. Thus, letting α = 1 in the original real scalar type-1 beta density (2.1.7) and
denoting the resulting density by f12(y), one has

f12(y) = aδβyδ−1(1 − ayδ)β−1, 0 ≤ y ≤ a− 1
δ , (2.1.8)

for a > 0, δ > 0, �(β) > 0, and zero elsewhere. In the model in (2.1.8), the reliability,
that is, Pr{y ≥ t}, for some t , can be easily determined. As well, the hazard function
f12(y=t)
P r{y≥t} is readily available. Actually, the reliability or survival function is

Pr{y ≥ t} = (1 − atδ)β, a > 0, δ > 0, t > 0, β > 0, (i)

and the hazard function is
f12(y = t)

P r{y ≥ t} = aδβtδ−1

1 − atδ
. (ii)

Observe that the free parameters a, δ and β allow for much versatility in model building
situations. If β = 1 in the real scalar type-1 beta model in (2.1.7), then the density reduces
to αyα−1, 0 ≤ y ≤ 1, α > 0, which is a simple power function. The most popular
power function model in the statistical literature is the Weibull model, which is a power
transformed exponential density. Consider the real scalar exponential density

g(x) = θe−θx, θ > 0, x ≥ 0, (iii)

and zero elsewhere, and let x = yδ, δ > 0. Then the model in (iii) becomes the real scalar
Weibull density, denoted by g1(y):

g1(y) = θδyδ−1e−θyδ

, θ > 0, δ > 0, y ≥ 0, (iv)

and zero elsewhere.
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Now, let us consider power transformations in a real scalar type-2 beta density given
in (2.1.6). For convenience let α1 = α and α2 = β. Letting y2 = ayδ, a > 0, δ > 0, the
model specified by (2.1.6) then becomes

f21(y) = aαδ
Γ (α + β)

Γ (α)Γ (β)
yαδ−1(1 + ayδ)−(α+β) (v)

for a > 0, δ > 0, �(α) > 0, �(β) > 0, and zero elsewhere. As in the type-1 beta case,
the most interesting special case occurs when α = 1. Denoting the resulting density by
f22(y), we have

f22(y) = aδβyδ−1(1 + ayδ)−(β+1), 0 ≤ y < ∞, (2.1.9)

for a > 0, δ > 0, �(β) > 0, α = 1, and zero elsewhere. In this case as well, the
reliability and hazard functions can easily be determined:

Reliability function = Pr{y ≥ t} = (1 + atδ)−β, (vi)

Hazard function = f22(y = t)

P r{y ≥ t} = aδβtδ−1

1 + atδ
. (vii)

Again, for application purposes, the forms in (vi) and (vii) are seen to be very versatile due
to the presence of the free parameters a, δ and β.

2.1.5. Exponentiation of real scalar type-1 and type-2 beta variables

Let us consider the real scalar type-1 beta model in (2.1.5) where, for convenience, we
let α1 = α and α2 = β. Letting u1 = ae−by , we denote the resulting density by f13(y)

where

f13(y) = aαb
Γ (α + β)

Γ (α)Γ (β)
e−b α y(1 − ae−b y)β−1, y ≥ ln a

1
b , (2.1.10)

for a > 0, b > 0, �(α) > 0, �(β) > 0, and zero elsewhere. Again, for practical
application the special case α = 1 is the most useful one. Let the density corresponding to
this special case be denoted by f14(y). Then,

f14(y) = abβe−b y(1 − ae−b y)β−1, y ≥ ln a
1
b , (i)

for a > 0, b > 0, β > 0, and zero elsewhere. In this case,

Reliability function = Pr{y ≥ t} = (1 − ae−bt )β, (ii)

Hazard function = f14(y = t)

P r{y ≥ t} = abβe−bt

[1 − ae−bt )
. (iii)
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Now, consider exponentiating a real scalar type-2 beta random variable whose density
is given in (2.1.6). For convenience, we will let the parameters be (α1 = α and α2 = β).
Letting u2 = e−by in (2.1.6), we obtain the following density:

f21(y) = aαb
Γ (α + β)

Γ (α)Γ (β)
e−bαy(1 + ae−by)−(α+β), −∞ < y < ∞, (2.1.11)

for a > 0, b > 0, �(α) > 0, �(β) > 0, and zero elsewhere. The model in (2.1.11) is
in fact the generalized logistic model introduced by Mathai and Provost (2006). For the
special case α = 1, β = 1, a = 1, b = 1 in (2.1.11), we have the following density:

f22(y) = e−y

(1 + e−y)2
= ey

(1 + ey)2
, −∞ < y < ∞. (iv)

This is the famous logistic model which is utilized in industrial applications.

2.1.6. The Student-t distribution in the real domain

A real Student-t variable with ν degrees of freedom, denoted by tν , is defined as tν =
z√
χ2

ν /ν
where z ∼ N1(0, 1) and χ2

ν is a real scalar chisquare with ν degrees of freedom,

z and χ2
ν being independently distributed. It follows from the definition of a real Fm,n

random variable, that t2ν = z2

χ2
ν /ν

= F1,ν , an F random variable with 1 and ν degrees of

freedom. Thus, the density of t2ν is available from that of an F1,ν . On substituting the values
m = 1, n = ν in the F -density appearing in (2.1.4), we obtain the density of t2 = w,
denoted by fw(w), as

fw(w) = Γ (ν+1
2 )√

πΓ (ν
2 )

(1

ν

) 1
2 w

1
2−1

(1 + w
ν
)

ν+1
2

, 0 ≤ w < ∞, (2.1.12)

for w = t2, ν = 1, 2, . . . and fw(w) = 0 elsewhere. Since w = t2, then the part of the
density for t > 0 is available from (2.1.12) by observing that 1

2w
1
2−1dw = dt for t > 0.

Hence for t > 0 that part of the Student-t density is available from (2.1.12) as

f1t (t) = 2
Γ (ν+1

2 )√
πνΓ (ν

2 )
(1 + t2

ν
)−( ν+1

2 ), 0 ≤ t < ∞, (2.1.13)

and zero elsewhere. Since (2.1.13) is symmetric, we extend it over (−∞, ∞) and so,
obtain the real Student-t density, denoted by ft(t). This is stated in the next theorem.
Theorem 2.1.6. Consider a real scalar standard normal variable z, which is divided
by the square root of a real chisquare variable with ν degrees of freedom divided by its
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number of degrees of freedom ν, that is, t = z√
χ2

nu/ν
, where z and χ2

ν are independently

distributed; then t is known as the real scalar Student-t variable and its density is given
by

ft(t) = Γ (ν+1
2 )√

πνΓ (ν
2 )

(
1 + t2

ν

)−( ν+1
2 )

, −∞ < t < ∞, (2.1.14)

for ν = 1, 2, . . ..

2.1a.4. The Student-t distribution in the complex domain

Let z̃ ∼ Ñ1(0, 1) and ỹ ∼ χ̃2
ν in the complex domain or equivalently ỹ is distributed

as a real gamma with the parameters (α = ν, β = 1), and let these random variables be
independently distributed. Then, we will define Student-t with ν degrees of freedom in the
complex domain as follows:

t̃ = t̃ν = |z̃|
√

χ̃2
ν /ν

, |z̃| = (z21 + z22)
1
2 , z̃ = z1 + iz2

with z1, z2 real and i = √
(−1). What is then the density of t̃ν? The joint density of z̃ and

ỹ, denoted by f̃ (ỹ, z̃), is

f̃ (z̃, ỹ)dỹ ∧ dz̃ = 1

πΓ (ν)
yν−1e−y−|z̃|2dỹ ∧ dz̃.

Let z̃ = z1+ iz2, i = √
(−1), where z1 = r cos θ and z2 = r sin θ, 0 ≤ r < ∞, 0 ≤ θ ≤

2π . Then, dz1 ∧ dz2 = r dr ∧ dθ , and the joint density of r and ỹ, denoted by f1(r, y), is
the following after integrating out θ , observing that y has a real gamma density:

f1(r, y)dr ∧ dy = 2

Γ (ν)
yν−1e−y−r2rdr ∧ dy.

Let u = t2 = νr2

y
and y = w. Then, du∧dw = 2νr

w
dr ∧dy and so, rdr ∧dy = w

2νdu∧dw.
Letting the joint density of u and w be denoted by f2(u, w), we have

f2(u, w) = 1

νΓ (ν)
wνe−(w+ uw

ν
)

and the marginal density of u, denoted by g(u), is as follows:

g(u) =
∫ ∞

w=0
f2(u, v)dw =

∫ ∞

0

wν

Γ (ν + 1)
e−w(1+ u

ν
)dw =

(
1 + u

ν

)−(ν+1)
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for 0 ≤ u < ∞, ν = 1, 2, . . . , u = t2 and zero elsewhere. Thus the part of the density of
t , for t > 0 denoted by f1t (t) is as follows, observing that du = 2tdt for t > 0:

f1t (t) = 2t
(
1 + t2

ν

)−(ν+1)
, 0 ≤ t < ∞, ν = 1, 2, ... (2.1a.6)

Extending this density over the real line, we obtain the following density of t̃ in the com-
plex case:

f̃ν(t) = |t |
(
1 + t2

ν

)−(ν+1)
, −∞ < t < ∞, ν = 1, .... (2.1a.7)

Thus, the following result:

Theorem 2.1a.6. Let z̃ ∼ Ñ1(0, 1), ỹ ∼ χ̃2
ν , a scalar chisquare in the complex domain

and let z̃ and ỹ in the complex domain be independently distributed. Consider the real
variable t = tν = |z̃|√

ỹ/ν
. Then this t will be called a Student-t with ν degrees of freedom

in the complex domain and its density is given by (2.1a.7).

2.1.7. The Cauchy distribution in the real domain

We have already seen a ratio distribution in Sect. 2.1.3, namely the real type-2 beta
distribution and, as particular cases, the real F-distribution and the real t2 distribution. We
now consider a ratio of two independently distributed real standard normal variables. Let
z1 ∼ N1(0, 1) and z2 ∼ N1(0, 1) be independently distributed. The joint density of z1 and
z2, denoted by f (z1, z2), is given by

f (z1, z2) = 1

2π
e− 1

2 (z21+z22), −∞ < zj < ∞, j = 1, 2.

Consider the quadrant z1 > 0, z2 > 0 and the transformation u = z1
z2

, v = z2. Then
dz1∧dz2 = vdu∧dv, see Sect. 2.1.3. Note that u > 0 covers the quadrants z1 > 0, z2 > 0
and z1 < 0, z2 < 0. The part of the density of u in the quadrant u > 0, v > 0, denoted as
g(u, v), is given by

g(u, v) = v

2π
e− 1

2v2(1+u2)

and that part of the marginal density of u, denoted by g1(u), is

g1(u) = 1

2π

∫ ∞

0
ve−v2

(1+u2)
2 dv = 1

2π(1 + u2)
.
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The other two quadrants z1 > 0, z2 < 0 and z1 < 0, z2 > 0, which correspond to u < 0,
will yield the same form as above. Accordingly, the density of the ratio u = z1

z2
, known as

the real Cauchy density, is as specified in the next theorem.

Theorem 2.1.7. Consider the independently distributed real standard normal variables
z1 ∼ N1(0, 1) and z2 ∼ N1(0, 1). Then the ratio u = z1

z2
has the real Cauchy distribution

having the following density:

gu(u) = 1

π(1 + u2)
, −∞ < u < ∞. (2.1.15)

By integrating out in each interval (−∞, 0) and (0, ∞), with the help of a type-2 beta
integral, it can be established that (2.1.15) is indeed a density. Since gu(u) is symmetric,
Pr{u ≤ 0} = Pr{u ≥ 0} = 1

2 , and one could posit that the mean value of u may be zero.
However, observe that

∫ ∞

0

u

1 + u2
du = 1

2
ln(1 + u2)

∣
∣∞
0 → ∞.

Thus, E(u), the mean value of a real Cauchy random variable, does not exist, which im-
plies that the higher moments do not exist either.

Exercises 2.1

2.1.1. Consider someone throwing dart at a board to hit a point on the board. Taking this
target point as the origin, consider a rectangular coordinate system. If (x, y) is a point of
hit, then compute the densities of x and y under the following assumptions: (1): There is no
bias in the horizontal and vertical directions or x and y are independently distributed; (2):
The joint density is a function of the distance from the origin

√
x2 + y2. That is, if f1(x)

and f2(y) are the densities of x and y then it is given that f1(x)f2(y) = g(
√

x2 + y2)

where f1, f2, g are unknown functions. Show that f1 and f2 are identical and real normal
densities.

2.1.2. Generalize Exercise 2.1.1 to 3-dimensional Euclidean space or

g(

√
x2 + y2 + z2) = f1(x)f2(y)f3(z).

2.1.3. Generalize Exercise 2.1.2 to k-space, k ≥ 3.

2.1.4. Let f (x) be an arbitrary density. Then Shannon’s measure of entropy or uncertainty
is S = −k

∫
x
f (x) ln f (x)dx where k is a constant. Optimize S, subject to the conditions
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(a):
∫ ∞
−∞ f (x)dx = 1; (b): Condition in (a) plus

∫ ∞
−∞ xf (x)dx = given quantity; (c):

The conditions in (b) plus
∫ ∞
−∞ x2f (x)dx = a given quantity. Show that under (a), f is

a uniform density; under (b), f is an exponential density and under (c), f is a Gaussian
density. Hint: Use Calculus of Variation.

2.1.5. Let the error of measurement ε satisfy the following conditions: (1) ε = ε1 + ε2 +
· · · or it is a sum of infinitely many infinitesimal contributions εj ’s where the εj ’s are
independently distributed. (2): Suppose that εj can only take two values δ with probability
1
2 and −δ with probability 1

2 for all j . (3): Var(ε) = σ 2 < ∞. Then show that this error
density is real Gaussian. Hint: Use mgf. [This is Gauss’ derivation of the normal law and
hence it is called the error curve or Gaussian density also.]

2.1.6. The pathway model of Mathai (2005) has the following form in the case of real
positive scalar variable x:

f1(x) = c1x
γ [1 − a(1 − q)xδ] 1

1−q , q < 1, 0 ≤ x ≤ [a(1 − q)]− 1
δ ,

for δ > 0, a > 0, γ > −1 and f1(x) = 0 elsewhere. Show that this generalized type-1
beta form changes to generalized type-2 beta form for q > 1,

f2(x) = c2x
γ [1 + a(q − 1)xδ]− 1

q−1 , q > 1, x ≥ 0, δ > 0, a > 0

and f2(x) = 0 elsewhere, and for q → 1, the model goes into a generalized gamma form
given by

f3(x) = c3x
γ e−axδ

, a > 0, δ > 0, x ≥ 0

and zero elsewhere. Evaluate the normalizing constants c1, c2, c3. All models are available
either from f1(x) or from f2(x) where q is the pathway parameter.

2.1.7. Make a transformation x = e−t in the generalized gamma model of f3(x) of Exer-
cise 2.1.6. Show that an extreme-value density for t is available.

2.1.8. Consider the type-2 beta model

f (x) = Γ (α + β)

Γ (α)Γ (β)
xα−1(1 + x)−(α+β), x ≥ 0, �(α) > 0, �(β) > 0

and zero elsewhere. Make the transformation x = ey and then show that y has a general-
ized logistic distribution and as a particular case there one gets the logistic density.

2.1.9. Show that for 0 ≤ x < ∞, β > 0, f (x) = c[1 + eα+βx]−1 is a density, which is
known as Fermi-Dirac density. Evaluate the normalizing constant c.
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2.1.10. Let f (x) = c[eα+βx − 1]−1 for 0 ≤ x < ∞, β > 0. Show that f (x) is a density,
known as Bose-Einstein density. Evaluate the normalizing constant c.

2.1.11. Evaluate the incomplete gamma integral γ (α; b) = ∫ b

0 xα−1e−xdx and show that
it can be written in terms of the confluent hypergeometric series

1F1(β; δ; y) =
∞∑

k=0

(β)k

(δ)k

yk

k! ,

(α)k = α(α + 1) · · · (α + k − 1), α �= 0, (α)0 = 1 is the Pochhammer symbol. Evaluate
the normalizing constant c if f (x) = cxα−1e−x, 0 ≤ x ≤ a, α > 0 and zero elsewhere, is
a density.

2.1.12. Evaluate the incomplete beta integral b(α;β; b) = ∫ b

0 xα−1(1 − x)β−1, α >

0, β > 0, 0 ≤ b ≤ 1. Show that it is available in terms of a Gauss’ hypergeometric series
of the form 2F1(a, b; c; z) = ∑∞

k=0
(a)k(b)k

(c)k

zk

k! , |z| < 1.

2.1.13. For the pathway model in Exercise 2.1.6 compute the reliability function Pr{x ≥
t} when γ = 0 for all the cases q < 1, q > 1, q → 1.

2.1.14. Weibull density: In the generalized gamma density f (x) = cxγ−1e−axδ
, x ≥

0, γ > 0, a > 0, δ > 0 and zero elsewhere, if δ = γ then f (x) is called a Weibull density.
For a Weibull density, evaluate the hazard function h(t) = f (t)/P r{x ≥ t}.
2.1.15. Consider a type-1 beta density f (x) = Γ (α+β)

Γ (α)Γ (β)
xα−1(1−x)β−1, 0 ≤ x ≤ 1, α >

0, β > 0 and zero elsewhere. Let α = 1. Consider a power transformation x = yδ,
δ > 0. Let this model be g(y). Compute the reliability function Pr{y ≥ t} and the hazard
function h(t) = g(t)/P r{y ≥ t}.
2.1.16. Verify that if z is a real standard normal variable,E(et z2) = (1−2t)−1/2, t < 1/2,
which is the mgf of a chi-square random variable having one degree of freedom. Owing to
the uniqueness of the mgf, this result establishes that z2 ∼ χ2

1 .

2.2. Quadratic Forms, Chisquaredness and Independence in the Real Domain

Let x1, . . . , xp be iid (independently and identically distributed) real scalar random
variables distributed asN1(0, 1) andX be a p×1 vector whose components are x1, . . . , xp,
that is, X′ = (x1, . . . , xp). Consider the real quadratic form u1 = X′AX for some p × p

real constant symmetric matrix A = A′. Then, we have the following result:
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Theorem 2.2.1. The quadratic form u1 = X′AX, A = A′, where the components of X

are iid N1(0, 1), is distributed as a real chisquare with r , r ≤ p, degrees of freedom if and
only if A is idempotent, that is, A = A2, and A of rank r .

Proof: When A = A′ is real, there exists an orthonormal matrix P , PP ′ = I, P ′P = I ,
such that P ′AP = diag(λ1, . . . , λp), where the λj ’s are the eigenvalues of A. Consider
the transformation X = PY or Y = P ′X. Then

X′AX = Y ′P ′APY = λ1y
2
1 + λ2y

2
2 + · · · + λpy2

p (i)

where y1, . . . , yp are the components of Y and λ1, . . . , λp are the eigenvalues of A. We
have already shown in Theorem 2.1.1 that all linear functions of independent real normal
variables are also real normal and hence, all the yj ’s are normally distributed. The ex-
pectation of Y is E[Y ] = E[P ′X] = P ′E(X) = P ′O = O and the covariance matrix
associated with Y is

Cov(Y ) = E[Y − E(Y )][Y − E(Y )]′ = E[YY ′] = P ′Cov(X)P = P ′IP = P ′P = I

which means that the yj ’s are real standard normal variables that are mutually indepen-
dently distributed. Hence, y2

j ∼ χ2
1 or each y2

j is a real chisquare with one degree of

freedom each and the yj ’s are all mutually independently distributed. If A = A2 and
the rank of A is r , then r of the eigenvalues of A are unities and the remaining ones are
equal to zero as the eigenvalues of an idempotent matrix can only be equal to zero or one,
the number of ones being equal to the rank of the idempotent matrix. Then the represen-
tation in (i) becomes sum of r independently distributed real chisquares of one degree
of freedom each and hence the sum is a real chisquare of r degrees of freedom. Hence,
the sufficiency of the result is proved. For the necessity, we assume that X′AX ∼ χ2

r

and we must prove that A = A2 and A is of rank r . Note that it is assumed throughout
that A = A′. If X′AX is a real chisquare having r degrees of freedom, then the mgf of
u1 = X′AX is given by Mu1(t) = (1 − 2t)− r

2 . From the representation given in (i), the

mgf’s are as follows: My2j
(t) = (1 − 2t)− 1

2 ⇒ Mλjy
2
j
(t) = (1 − 2λj t)

− 1
2 , j = 1, . . . , p,

the yj ’s being independently distributed. Thus, the mgf of the right-hand side of (i) is

Mu1(t) = ∏p

j=1(1 − 2λj t)
− 1

2 . Hence, we have

(1 − 2t)−
r
2 =

p∏

j=1

(1 − 2λj t)
− 1

2 , 1 − 2t > 0, 1 − 2λj t > 0, j = 1, . . . , p. (ii)
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Taking the natural logarithm of each side of (ii), expanding the terms and then comparing
the coefficients of (2t)n

n
on both sides for n = 1, 2, . . ., we obtain equations of the type

r =
p∑

j=1

λj =
p∑

j=1

λ2j =
p∑

j=1

λ3j = · · · (iii)

The only solution resulting from (iii) is that r of the λj ’s are unities and the remaining
ones are zeros. This result, combined with the property that A = A′ guarantees that A is
idempotent of rank r .

Observe that the eigenvalues of a matrix being ones and zeros need not imply that the
matrix is idempotent; take for instance triangular matrices whose diagonal elements are
unities and zeros. However, this property combined with the symmetry assumption will
guarantee that the matrix is idempotent.

Corollary 2.2.1. If the simple random sample or the iid variables came from a real
N1(0, σ 2) distribution, then the modification needed in Theorem 2.2.1 is that 1

σ 2X
′AX ∼

χ2
r , A = A′, if and only if A = A2 and A is of rank r .

The above result, Theorem 2.2.1, coupled with another result on the independence
of quadratic forms, are quite useful in the areas of Design of Experiment, Analysis of
Variance and Regression Analysis, as well as in model building and hypotheses testing
situations. This result on the independence of quadratic forms is stated next.

Theorem 2.2.2. Let x1, . . . , xp be iid variables from a real N1(0, 1) population. Con-
sider two real quadratic forms u1 = X′AX, A = A′ and u2 = X′BX, B = B ′, where the
components of the p × 1 vector X are the x1, . . . , xp. Then, u1 and u2 are independently
distributed if and only if AB = O.

Proof: Let us assume that AB = O. Then AB = O = O ′ = (AB)′ = B ′A′ = BA.
When AB = BA, there exists a single orthonormal matrix P, PP ′ = I, P ′P = I , such
that both the quadratic forms are reduced to their canonical forms by the same P . Let

u1 = X′AX = λ1y
2
1 + · · · + λpy2

p (i)

and

u2 = X′BX = ν1y
2
1 + · · · + νpy2

p (ii)
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where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are the eigenvalues of B. Since
A = A′, the eigenvalues λj ’s are all real. Moreover,

AB = O ⇒

P ′ABP = P ′APP ′BP = D1D2 =

⎡

⎢
⎢
⎢
⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λp

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . .

...

0 0 . . . νp

⎤

⎥
⎥
⎥
⎦

= O,

(iii)

which means that λjνj = 0 for all j = 1, . . . , p. Thus, whenever a λj is not zero, the
corresponding νj is zero and vice versa. Accordingly, the λj ’s and νj ’s are separated in
(i) and (ii), that is, the independent components are mathematically separated and hence
u1 and u2 are statistically independently distributed. The converse which can be stated as
follows: if u1 and u2 are independently distributed, A = A′, B = B ′ and the xj ’s are
real iid N1(0, 1), then AB = O, is more difficult to establish. The proof which requires
additional properties of matrices, will not be herein presented. Note that there are several
incorrect or incomplete “proofs” in the literature. A correct derivation may be found in
Mathai and Provost (1992).

When x1, . . . , xp are iid N1(0, σ 2), the above result on the independence of quadratic
forms still holds since the independence is not altered by multiplying the quadratic forms
by 1

σ 2 .

Example 2.2.1. Construct two 3 × 3 matrices A and B such that A = A′, B = B ′ [both
are symmetric], A = A2 [A is idempotent], AB = O [A and B are orthogonal to each
other], and A has rank 2. Then (1): verify Theorem 2.2.1; (2): verify Theorem 2.2.2.

Solution 2.2.1. Consider the following matrices:

A =
⎡

⎣

1
2 0 −1

2
0 1 0

−1
2 0 1

2

⎤

⎦ , B =
⎡

⎣
1 0 1
0 0 0
1 0 1

⎤

⎦ .

Note that both A and B are symmetric, that is, A = A′, B = B ′. Further, the rank of A

is 2 since the first and second row vectors are linearly independent and the third row is a
multiple of the first one. Note that A2 = A and AB = O. Now, consider the quadratic
forms u = X′AX and v = X′BX. Then u = 1

2x
2
1+x2

2+ 1
2x

2
3−x1x3 = x2

2+[ 1√
2
(x1−x3)]2.

Our initial assumption is that xj ∼ N1(0, 1), j = 1, 2, 3 and the xj ’s are independently
distributed. Let y1 = 1√

2
(x1 − x3). Then, E[y1] = 0,Var(y1) = +1

2[Var(x1)+Var(x3)] =
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1
2 [1 + 1] = 1. Since y1 is a linear function of normal variables, y1 is normal with the
parameters E[y1] = 0 and Var(y1) = 1, that is, y1 ∼ N1(0, 1), and hence y2

1 ∼ χ2
1 ;

as well, x2
2 ∼ χ2

1 . Thus, u ∼ χ2
2 since x2 and y1 are independently distributed given

that the variables are separated, noting that y1 does not involve x2. This verifies Theo-
rem 2.2.1. Now, having already determined that AB = O, it remains to show that u and
v are independently distributed where v = X′BX = x2

1 + x2
3 + 2x1x3 = (x1 + x3)

2. Let
y2 = 1√

2
(x1 + x3) ⇒ y2 ∼ N1(0, 1) as y2 is a linear function of normal variables and

hence normal with parameters E[y2] = 0 and Var(y2) = 1. On noting that v does not con-
tain x2, we need only consider the parts of u and v containing x1 and x3. Thus, our question
reduces to: are y1 and y2 independently distributed? Since both y1 and y2 are linear func-
tions of normal variables, both y1 and y2 are normal. Since the covariance between y1 and
y2, that is, Cov(y1, y2) = 1

2Cov(x1−x3, x1+x3) = 1
2 [Var(x1)−Var(x3)] = 1

2 [1−1] = 0,
the two normal variables are uncorrelated and hence, independently distributed. That is, y1
and y2 are independently distributed, thereby implying that u and v are also independently
distributed, which verifies Theorem 2.2.2.

2.2a. Hermitian Forms, Chisquaredness and Independence in the Complex Domain

Let x̃1, x̃2, . . . , x̃k be independently and identically distributed standard univariate
Gaussian variables in the complex domain and let X̃ be a k × 1 vector whose com-
ponents are x̃1, . . . , x̃k. Consider the Hermitian form X̃∗AX̃, A = A∗ (Hermitian)
where A is a k × k constant Hermitian matrix. Then, there exists a unitary matrix Q,
QQ∗ = I, Q∗Q = I , such that Q∗AQ = diag(λ1, . . . , λk). Note that the λj ’s are real
since A is Hermitian. Consider the transformation X̃ = QỸ . Then,

X̃∗AX̃ = λ1|ỹ1|2 + · · · + λk|ỹk|2
where the ỹj ’s are iid standard normal in the complex domain, ỹj ∼ Ñ1(0, 1), j =
1, . . . , k. Then, ỹ∗

j ỹj = |ỹj |2 ∼ χ̃2
1 , a chisquare having one degree of freedom in the

complex domain or, equivalently, a real gamma random variable with the parameters
(α = 1, β = 1), the |ỹj |2’s being independently distributed for j = 1, . . . , k. Thus,
we can state the following result whose proof parallels that in the real case.

Theorem 2.2a.1. Let x̃1, . . . , x̃k be iid Ñ1(0, 1) variables in the complex domain. Con-
sider the Hermitian form u = X̃∗AX̃, A = A∗ where X̃ is a k × 1 vector whose compo-
nents are x̃1, . . . , x̃k. Then, u is distributed as a chisquare in the complex domain with r

degrees of freedom or a real gamma with the parameters (α = r, β = 1), if and only if A

is of rank r and A = A2.
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Theorem 2.2a.2. Let the x̃j ’s and X̃ be as in Theorem 2.2a.1. Consider two Hermitian
forms u1 = X̃∗AX̃, A = A∗ and u2 = X̃∗BX̃, B = B∗. Then, u1 and u2 are indepen-
dently distributed if and only if AB = O (null matrix).

Example 2.2a.1. Construct two 3×3 Hermitian matrices A and B, that is A = A∗, B =
B∗, such that A = A2 [idempotent] and is of rank 2 with AB = O. Then (1): verify
Theorems 2.2a.1, (2): verify Theorem 2.2a.2.

Solution 2.2a.1. Consider the following matrices

A =
⎡

⎢
⎣

1
2 0 − (1+i)√

8
0 1 0

− (1−i)√
8

0 1
2

⎤

⎥
⎦ , B =

⎡

⎢
⎣

1
2 0 (1+i)√

8
0 0 0

(1−i)√
8

0 1
2

⎤

⎥
⎦ .

It can be readily verified that A = A∗, B = B∗, A = A2, AB = O. Further, on multi-
plying the first row of A by −2(1−i)√

8
, we obtain the third row, and since the third row is a

multiple of the first one and the first and second rows are linearly independent, the rank of
A is 2. Our initial assumption is that x̃j ∼ Ñ1(0, 1), j = 1, 2, 3, that is, they are univariate
complex Gaussian, and they are independently distributed. Then, x̃∗

j x̃j ∼ χ̃2
1 , a chisquare

with one degree of freedom in the complex domain or a real gamma random variable with
the parameters (α = 1, β = 1) for each j = 1, 2, 3. Let us consider the Hermitian forms
u = X̃∗AX̃ and v = X̃∗BX̃, X̃′ = (x̃1, x̃2, x̃3). Then

u = 1

2
x̃∗
1 x̃1 − (1 + i)√

8
x̃∗
1 x̃3 − (1 − i)√

8
x̃∗
3 x̃1 + 1

2
x̃∗
3 x̃3 + x̃∗

2 x̃2

= x̃∗
2 x̃2 + 1

2
[x̃∗

1 x̃1 − 4
(1 + i)√

8
x̃∗
1 x̃3 + x̃∗

3 x̃3]

= χ̃2
1 +

[ 1√
2
(ỹ1 − x̃3)]∗[ 1√

2
(ỹ1 − x̃3)

]
(i)

where

ỹ1 = 2
(1 + i)√

8
x̃1 ⇒ E[ỹ1] = 0, Var(ỹ1) =

∣
∣
∣2

(1 + i)√
8

∣
∣
∣
2
Var(x̃1)

Var(ỹ1) = E
{[

2
(1 + i)√

8

]∗[
2
(1 + i)√

8

]
x̃∗
1 x̃1

}
= E{x̃∗

1 x̃1} = Var(x̃1) = 1. (ii)

Since ỹ1 is a linear function of x̃1, it is a univariate normal in the complex domain with
parameters 0 and 1 or ỹ1 ∼ Ñ1(0, 1). The part not containing the χ̃2

1 in (i) can be written
as follows: [ 1√

2
(ỹ1 − x̃3)

]∗[ 1√
2
(ỹ1 − x̃3)

]
∼ χ̃2

1 (iii)
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since ỹ1 − x̃3 ∼ Ñ1(0, 2) as ỹ1 − x̃3 is a linear function of the normal variables ỹ1 and x̃3.
Therefore u = χ̃2

1 + χ̃2
1 = χ̃2

2 , that is, a chisquare having two degrees of freedom in the
complex domain or a real gamma with the parameters (α = 2, β = 1). Observe that the
two chisquares are independently distributed because one of them contains only x̃2 and the
other, x̃1 and x̃3. This establishes (1). In order to verify (2), we first note that the Hermitian
form v can be expressed as follows:

v = 1

2
x̃∗
1 x̃1 + (1 + i)√

8
x̃∗
1 x̃3 + (1 − i)√

8
x̃∗
3 x̃1 + 1

2
x̃∗
3 x̃3

which can be written in the following form by making use of steps similar to those leading
to (iii):

v =
[
2
(1 + i)√

8

x̃1√
2

+ x̃3√
2

]∗[
2
(1 + i)√

8

x̃1√
2

+ x̃3√
2

]
= χ̃2

1 (iv)

or v is a chisquare with one degree of freedom in the complex domain. Observe that x̃2 is
absent in (iv), so that we need only compare the terms containing x̃1 and x̃3 in (iii) and (iv).
These terms are ỹ2 = 2 (1+i)√

8
x̃1 + x̃3 and ỹ3 = 2 (1+i)√

8
x̃1 − x̃3. Noting that the covariance

between ỹ2 and ỹ3 is zero:

Cov(ỹ2, ỹ3) =
∣
∣
∣2

(1 + i)√
8

∣
∣
∣
2
Var(x̃1) − Var(x̃3) = 1 − 1 = 0,

and that ỹ2 and ỹ3 are linear functions of normal variables and hence normal, the fact that
they are uncorrelated implies that they are independently distributed. Thus, u and v are
indeed independently distributed, which establishes (2).

2.2.1. Extensions of the results in the real domain

Let xj ∼ N1(μj , σ
2
j ), j = 1, . . . , k, be independently distributed. Then, xj

σj
∼

N1(
μj

σj
, 1), σj > 0, j = 1, . . . , k. Let

X =
⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 ... σ 2
k

⎤

⎥
⎥
⎥
⎦

, Σ
1
2 =

⎡

⎢
⎢
⎢
⎣

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 0 ... σk

⎤

⎥
⎥
⎥
⎦

.

Then, let

Y = Σ− 1
2X =

⎡

⎢
⎣

y1
...

yk

⎤

⎥
⎦ , E[Y ] = Σ− 1

2E[X] = Σ− 1
2μ.
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If μ = O, it has already been shown that Y ′Y ∼ χ2
k . If μ �= O, then Y ′Y ∼ χ2

k (λ), λ =
1
2μ

′Σ−1μ. It is assumed that the noncentral chisquare distribution has already been dis-
cussed in a basic course in Statistics. It is defined for instance in Mathai and Haubold
(2017a, 2017b) and will be briefly discussed in Sect. 2.3.1. If μ = O, then for any k × k

symmetric matrix A = A′, Y ′AY ∼ χ2
r if and only if A = A2 and A is of rank r . This

result has already been established. Now, if μ = O, then X′AX = Y ′Σ 1
2AΣ

1
2Y ∼ χ2

k if

and only if Σ
1
2AΣ

1
2 = Σ

1
2AΣAΣ

1
2 ⇒ A = AΣA and Σ

1
2AΣ

1
2 is of rank r or A is of

rank r since Σ > O. Hence, we have the following result:

Theorem 2.2.3. Let the real scalars xj ∼ N1(μj , σ
2
j ), j = 1, . . . , k, be independently

distributed. Let

X =
⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , Y =

⎡

⎢
⎣

y1
...

yk

⎤

⎥
⎦ = Σ− 1

2X, E(Y ) = Σ− 1
2μ, μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ .

Then for any k × k symmetric matrix A = A′,

X′AX = Y ′Σ
1
2AΣ

1
2Y ∼

{
χ2

r if μ = O

χ2
k (λ) if μ �= O, λ = 1

2μ
′Σ− 1

2AΣ− 1
2μ

if and only if A = AΣA and A is of rank r .

Independence is not altered if the variables are relocated. Consider two quadratic forms
X′AX and X′BX, A = A′, B = B ′. Then, X′AX = Y ′Σ 1

2AΣ
1
2Y and X′BX =

Y ′Σ 1
2BΣ

1
2Y, and we have the following result:

Theorem 2.2.4. Let xj , X, Y, Σ be as defined in Theorem 2.2.3. Then, the quadratic

forms X′AX = Y ′Σ 1
2AΣ

1
2Y and X′BX = Y ′Σ 1

2BΣ
1
2Y, A = A′, B = B ′, are indepen-

dently distributed if and only if AΣB = O.

Let X, A and Σ be as defined in Theorem 2.2.3, Z be a standard normal vector whose
components zi, i = 1, . . . , k are iid N1(0, 1), and P be an orthonormal matrix such that
P ′Σ 1

2AΣ
1
2P = diag(λ1, . . . , λk); then, a general quadratic form X′AX can be expressed

as follows:

X′AX = (Z′Σ
1
2 + μ′)A(Σ

1
2Z + μ) = (Z + Σ− 1

2μ)′PP ′Σ
1
2AΣ

1
2PP ′(Z + Σ− 1

2μ)
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where λ1, . . . , λk are the eigenvalues of Σ
1
2AΣ

1
2 . Hence, the following decomposition of

the quadratic form:

X′AX = λ1(u1 + b1)
2 + · · · + λk(uk + bk)

2, (2.2.1)

where

⎡

⎢
⎣

b1
...

bk

⎤

⎥
⎦ = P ′Σ− 1

2μ,

⎡

⎢
⎣

u1
...

uk

⎤

⎥
⎦ = P ′

⎡

⎢
⎣

z1
...

zk

⎤

⎥
⎦, and hence the ui’s are iid N1(0, 1).

Thus, X′AX can be expressed as a linear combination of independently distributed
non-central chisquare random variables, each having one degree of freedom, whose non-
centrality parameters are respectively b2j /2, j = 1, . . . , k. Of course, the k chisquares will
be central when μ = O.

2.2a.1. Extensions of the results in the complex domain

Let the complex scalar variables x̃j ∼ Ñ1(μ̃j , σ
2
j ), j = 1, . . . , k, be independently

distributed and Σ = diag(σ 2
1 , . . . , σ 2

k ). As well, let

X̃ =
⎡

⎢
⎣

x̃1
...

x̃k

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
k

⎤

⎥
⎥
⎥
⎦

, Σ− 1
2 X̃ = Ỹ =

⎡

⎢
⎣

ỹ1
...

ỹk

⎤

⎥
⎦ , μ̃ =

⎡

⎢
⎣

μ̃1
...

μ̃k

⎤

⎥
⎦

where Σ
1
2 is the Hermitian positive definite square root of Σ . In this case, ỹj ∼

Ñ1(
μ̃j

σj
, 1), j = 1, . . . , k and the ỹj ’s are assumed to be independently distributed. Hence,

for any Hermitian form X̃∗AX̃, A = A∗, we have X̃∗AX̃ = Ỹ ∗Σ 1
2AΣ

1
2 Ỹ . Hence if

μ̃ = O (null vector), then from the previous result on chisquaredness, we have:

Theorem 2.2a.3. Let X̃, Σ, Ỹ , μ̃ be as defined above. Let u = X̃∗AX̃, A = A∗ be a
Hermitian form. Then u ∼ χ̃2

r in the complex domain if and only if A is of rank r , μ̃ = O

and A = AΣA. [A chisquare with r degrees of freedom in the complex domain is a real
gamma with parameters (α = r, β = 1).]

If μ̃ �= O, then we have a noncentral chisquare in the complex domain. A result on the
independence of Hermitian forms can be obtained as well.

Theorem 2.2a.4. Let X̃, Ỹ , Σ be as defined above. Consider the Hermitian forms u1 =
X̃∗AX̃, A = A∗ and u2 = X̃∗BX̃, B = B∗. Then u1 and u2 are independently distributed
if and only if AΣB = O.
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The proofs of Theorems 2.2a.3 and 2.2a.4 parallel those presented in the real case and
are hence omitted.

Exercises 2.2

2.2.1. Give a proof to the second part of Theorem 2.2.2, namely, given that X′AX, A =
A′ and X′BX, B = B ′ are independently distributed where the components of the p × 1
vector X are mutually independently distributed as real standard normal variables, then
show that AB = O.

2.2.2. Let the real scalar xj ∼ N1(0, σ 2), σ 2 > 0, j = 1, 2, . . . , k and be indepen-
dently distributed. Let X′ = (x1, . . . , xk) or X is the k × 1 vector where the elements are
x1, . . . , xk. Then the joint density of the real scalar variables x1, . . . , xk, denoted by f (X),
is

f (X) = 1

(
√
2π)k

e− 1
2σ2

X′X
, −∞ < xj < ∞, j = 1, . . . , k.

Consider the quadratic form u = X′AX, A = A′ and X is as defined above. (1): Compute
the mgf of u; (2): Compute the density of u if A is of rank r and all eigenvalues of A

are equal to λ > 0; (3): If the eigenvalues are λ > 0 for m of the eigenvalues and the
remaining n of them are λ < 0, m + n = r , compute the density of u.

2.2.3. In Exercise 2.2.2 compute the density of u if (1): r1 of the eigenvalues are λ1 each
and r2 of the eigenvalues are λ2 each, r1 + r2 = r . Consider all situations λ1 > 0, λ2 > 0
etc.

2.2.4. In Exercise 2.2.2 compute the density of u for the general case with no restrictions
on the eigenvalues.

2.2.5. Let xj ∼ N1(0, σ 2), j = 1, 2 and be independently distributed. Let X′ = (x1, x2).
Let u = X′AX where A = A′. Compute the density of u if the eigenvalues of A are (1): 2
and 1, (2): 2 and −1; (3): Construct a real 2 × 2 matrix A = A′ where the eigenvalues are
2 and 1.

2.2.6. Show that the results on chisquaredness and independence in the real or complex
domain need not hold if A �= A∗, B �= B∗.
2.2.7. Construct a 2 × 2 Hermitian matrix A = A∗ such that A = A2 and verify The-
orem 2.2a.3. Construct 2 × 2 Hermitian matrices A and B such that AB = O, and then
verify Theorem 2.2a.4.
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2.2.8. Let x̃1, . . . , x̃m be a simple random sample of size m from a complex normal pop-
ulation Ñ1(μ̃1, σ

2
1 ). Let ỹ1, . . . , ỹn be iid Ñ(μ̃2, σ

2
2 ). Let the two complex normal popula-

tions be independent. Let

s21 =
m∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x)/σ 2
1 , s22 =

n∑

j=1

(ỹj − ¯̃y)∗(ỹj − ¯̃y)/σ 2
2 ,

s211 = 1

σ 2
1

m∑

j=1

(x̃j − μ̃1)
∗(x̃j − μ̃1), s

2
21 = 1

σ 2
2

n∑

j=1

(ỹj − μ̃2)
∗(ỹj − μ̃2)

Then, show that
s211/m

s221/n
∼ F̃m,n,

s21/(m − 1)

s22/(n − 1)
∼ F̃m−1,n−1

for σ 2
1 = σ 2

2 .

2.2.9. In Exercise 2.2.8 show that
s211
s221

is a type-2 beta with the parameters m and n, and

s21
s22

is a type-2 beta with the parameters m − 1 and n − 1 for σ 2
1 = σ 2

2 .

2.2.10. In Exercise 2.2.8 if σ 2
1 = σ 2

2 = σ 2 then show that

1

σ 2

[ m∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) +
n∑

j=1

(ỹj − ¯̃y)∗(ỹj − ¯̃y)
]

∼ χ̃2
m+n−2.

2.2.11. In Exercise 2.2.10 if ¯̃x and ¯̃y are replaced by μ̃1 and μ̃2 respectively then show
that the degrees of freedom of the chisquare is m + n.

2.2.12. Derive the representation of the general quadratic form X’AX given in (2.2.1).

2.3. Simple Random Samples from Real Populations and Sampling Distributions

For practical applications, an important result is that on the independence of the sam-
ple mean and sample variance when the sample comes from a normal (Gaussian) pop-
ulation. Let x1, . . . , xn be a simple random sample of size n from a real N1(μ1, σ

2
1 ) or,

equivalently, x1, . . . , xn are iid N1(μ1, σ
2
1 ). Recall that we have established that any lin-

ear function L′X = X′L, L′ = (a1, . . . , an), X
′ = (x1, . . . , xn) remains normally dis-

tributed (Theorem 2.1.1). Now, consider two linear forms y1 = L′
1X, y2 = L′

2X, with
L′
1 = (a1, . . . , an), L′

2 = (b1, . . . , bn) where a1, . . . , an, b1, . . . , bn are real scalar con-
stants. Let us examine the conditions that are required for assessing the independence of
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the linear forms y1 and y2. Since x1, . . . , xn are iid, we can determine the joint mgf of
x1, . . . , xn. We take a n×1 parameter vector T , T ′ = (t1, . . . , tn) where the tj ’s are scalar
parameters. Then, by definition, the joint mgf is given by

E[eT ′X] =
n∏

j=1

Mxj
(tj ) =

n∏

j=1

etjμ1+ 1
2 t2j σ 2

1 = eμ1T
′J+ σ21

2 T ′T (2.3.1)

since the xj ’s are iid, J ′ = (1, . . . , 1). Since every linear function of x1, . . . , xn is a

univariate normal, we have y1 ∼ N1(μ1L
′
1J,

σ 2
1 t21
2 L′

1L1) and hence the mgf of y1, taking

t1 as the parameter for the mgf, is My1(t1) = et1μ1L
′
1J+ σ21 t21

2 L′
1L1 . Now, let us consider the

joint mgf of y1 and y2 taking t1 and t2 as the respective parameters. Let the joint mgf be
denoted by My1,y2(t1, t2). Then,

My1,y2(t1, t2) = E[et1y1+t2y2] = E[e(t1L
′
1+t2L

′
2)X]

= eμ1(t1L
′
1+t2L

′
2)J+ σ21

2 (t1L1+t2L2)
′(t1L1+t2L2)

= eμ1(L
′
1+L′

2)J+ σ21
2 (t21L′

1L1+t22L′
2L2+2t1t2L′

1L2)

= My1(t1)My2(t2)e
σ 2
1 t1t2L

′
1L2 .

Hence, the last factor on the right-hand side has to vanish for y1 and y2 to be independently
distributed, and this can happen if and only if L′

1L2 = L′
2L1 = 0 since t1 and t2 are

arbitrary. Thus, we have the following result:

Theorem 2.3.1. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ). Let y1 = L′

1X and y2 = L′
2X where

X′ = (x1, . . . , xn), L′
1 = (a1, . . . , an) and L′

2 = (b1, . . . , bn), the aj ’s and bj ’s being
scalar constants. Then, y1 and y2 are independently distributed if and only if L′

1L2 =
L′
2L1 = 0.

Example 2.3.1. Let x1, x2, x3, x4 be a simple random sample of size 4 from a real normal
population N1(μ = 1, σ 2 = 2). Consider the following statistics: (1): u1, v1, w1, (2):
u2, v2, w2. Check for independence of various statistics in (1): and (2): where

u1 = x̄ = 1

4
(x1 + x2 + x3 + x4), v1 = 2x1 − 3x2 + x3 + x4, w1 = x1 − x2 + x3 − x4;

u2 = x̄ = 1

4
(x1 + x2 + x3 + x4), v2 = x1 − x2 + x3 − x4, w2 = x1 − x2 − x3 + x4.

Solution 2.3.1. Let X′ = (x1, x2, x3, x4) and let the coefficient vectors in (1) be denoted
by L1, L2, L3 and those in (2) be denoted by M1, M2, M3. Thus they are as follows :
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L1 = 1

4

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ , L2 =

⎡

⎢
⎢
⎣

2
−3
1
1

⎤

⎥
⎥
⎦ , L3 =

⎡

⎢
⎢
⎣

1
−1
1

−1

⎤

⎥
⎥
⎦ ⇒ L′

1L2 = 1

4
, L′

1L3 = 0, L′
2L3 = 5.

This means that u1 and w1 are independently distributed and that the other pairs are not
independently distributed. The coefficient vectors in (2) are

M1 = 1

4

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ , M2 =

⎡

⎢
⎢
⎣

1
−1
1

−1

⎤

⎥
⎥
⎦ , M3 =

⎡

⎢
⎢
⎣

1
−1
−1
1

⎤

⎥
⎥
⎦ ⇒ M ′

1M2 = 0, M ′
1M3 = 0, M ′

2M3 = 0.

This means that all the pairs are independently distributed, that is, u2, v2 and w2 are mu-
tually independently distributed.

We can extend Theorem 2.3.1 to sets of linear functions. Let Y1 = AX and Y2 = BX

where A of dimension m1 × n, m1 ≤ n and B of dimension m2 × n, m2 ≤ n are constant
matrices and X′ = (x1, . . . , xn) where the xj ’s are iid N1(μ1, σ

2
1 ). Let the parameter

vectors T1 and T2 be of dimensions m1 × 1 and m2 × 1, respectively. Then, the mgf of Y1

is MY1(T1) = E[eT ′
1Y1] = E[eT ′

1A1X], which can be evaluated by integration over the joint
density of x1, . . . , xn, individually, or over the vector X′ = (x1, . . . , xn) with E[X′] =
[μ1, μ1, . . . , μ1] = μ1[1, 1, . . . , 1] = μ1J

′, J ′ = [1, . . . , 1] ⇒ E[Y1] = μ1A1J . The
mgf of Y1 is then

MY1(T1) = E[eμ1T
′
1A1J+T ′

1A1[X−E(X)]] = E[eμ1T
′
1A1J+T ′

1A1Z], Z = X − E(X), (i)

and the exponent in the expected value, not containing μ1, simplifies to

− 1

2σ 2
1

{Z′Z − 2σ 2
1 T ′

1A1Z} = − 1

2σ 2
1

{(Z′ − σ1T
′
1A1)(Z − σ1A

′
1T1) − σ 2

1 T ′
1A1A

′
1T1}.

Integration over Z or individually over the elements of Z, that is, z1, . . . , zn, yields 1 since
the total probability is 1, which leaves the factor not containing Z. Thus,

MY1(T1) = eμ1T
′
1A1J+ 1

2T ′
1A1A

′
1T1, (ii)

and similarly,

MY2(T2) = eμ1T
′
2A2J+ 1

2T ′
2A2A

′
2T2 . (iii)
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The joint mgf of Y1 and Y2 is then

MY1,Y2(T1, T2) = eμ1(T
′
1A1J+T ′

2A2J )+ 1
2 (T ′

1A1+T ′
2A2)(T

′
1A1+T ′

2A2)
′

= MY1(T1)MY2(T2)e
T ′
1A1A

′
2T2 . (iv)

Accordingly, Y1 and Y2 will be independent if and only if A1A
′
2 = O ⇒ A2A

′
1 = O since

T1 and T2 are arbitrary parameter vectors, the two null matrices having different orders.
Then, we have

Theorem 2.3.2. Let Y1 = A1X and Y2 = A2X, with X′ = (x1, . . . , xn), the xj ’s being
iid N1(μ1, σ

2
1 ), j = 1, . . . , n, be two sets of linear forms where A1 is m1 × n and A2

is m2 × n, m1 ≤ n, m2 ≤ n, are constant matrices. Then, Y1 and Y2 are independently
distributed if and only if A1A

′
2 = O or A2A

′
1 = O.

Example 2.3.2. Consider a simple random sample of size 4 from a real scalar normal
population N1(μ1 = 0, σ 2

1 = 4). Let X′ = (x1, x2, x3, x4). Verify whether the sets of
linear functions U = A1X, V = A2X, W = A3X are pairwise independent, where

A1 =
[
1 1 1 1
1 −1 1 −1

]

, A2 =
⎡

⎣
1 2 3 4
2 −1 1 3
1 2 −1 −2

⎤

⎦ , A3 =
[

1 −1 −1 1
−1 −1 1 1

]

.

Solution 2.3.2. Taking the products, we have A1A
′
2 �= O, A1A

′
3 = O, A2A

′
3 �= O.

Hence, the pair U and W are independently distributed and other pairs are not.

We can apply Theorems 2.3.1 and 2.3.2 to prove several results involving sample statis-
tics. For instance, let x1, . . . , xn be iid N1(μ1, σ

2
1 ) or a simple random sample of size n

from a real N1(μ1, σ
2
1 ) and x̄ = 1

n
(x1 + · · · + xn). Consider the vectors

X =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

, μ =

⎡

⎢
⎢
⎢
⎣

μ1

μ1
...

μ1

⎤

⎥
⎥
⎥
⎦

, X̄ =

⎡

⎢
⎢
⎢
⎣

x̄

x̄
...

x̄

⎤

⎥
⎥
⎥
⎦

.

Note that when the xj ’s are iid N1(μ1, σ
2
1 ), xj −μ1 ∼ N1(0, σ 2

1 ), and that since X − X̄ =
(X−μ)−(X̄−μ),wemay take xj ’s as coming fromN1(0, σ 2

1 ) for all operations involving
(X, X̄). Moreover, x̄ = 1

n
J ′X, J ′ = (1, 1, . . . , 1)where J is a n×1 vector of unities. Then,
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X − X̄ =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ −

⎡

⎢
⎣

x̄
...

x̄

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x1 − 1
n
J ′X

x2 − 1
n
J ′X

...

xn − 1
n
J ′X

⎤

⎥
⎥
⎥
⎦

= (I − 1

n
JJ ′)X, (i)

and on letting A = 1
n
JJ ′, we have

A = A2, I − A = (I − A)2, A(I − A) = O. (ii)

Also note that

(X − X̄)′(X − X̄) =
n∑

j=1

(xj − x̄)2 and s2 = 1

n

n∑

j=1

(xj − x̄)2 (iii)

where s2 is the sample variance and 1
n
J ′X = x̄ is the sample mean. Now, observe that in

light of Theorem 2.3.2, Y1 = (I −A)X and Y2 = AX are independently distributed, which
implies that X − X̄ and X̄ are independently distributed. But X̄ contains only x̄ = 1

n
(x1 +

· · ·+xn) and henceX−X̄ and x̄ are independently distributed.We nowwill make use of the
following result: If w1 and w2 are independently distributed real scalar random variables,
then the pairs (w1, w

2
2), (w2

1, w2), (w2
1, w

2
2) are independently distributed when w1 and

w2 are real scalar random variables; the converses need not be true. For example, w2
1 and

w2
2 being independently distributed need not imply the independence of w1 and w2. If w1

and w2 are real vectors or matrices and if w1 and w2 are independently distributed then
the following pairs are also independently distributed wherever the quantities are defined:
(w1, w2w

′
2), (w1, w

′
2w2), (w1w

′
1, w2), (w′

1w1, w2), (w′
1w1, w

′
2w2). It then follows from

(iii) that x̄ and (X − X̄)′(X − X̄) = ∑n
j=1(xj − x̄)2 are independently distributed. Hence,

the following result:

Theorem 2.3.3. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ) or a simple random sample of size n

from a univariate real normal population N1(μ1, σ
2
1 ). Let x̄ = 1

n
(x1 + · · · + xn) be the

sample mean and s2 = 1
n

∑n
j=1(xj − x̄)2 be the sample variance. Then x̄ and s2 are

independently distributed.

This result has several corollaries. When x1, . . . , xn are iid N1(μ1, σ
2
1 ), then the sam-

ple sum of products, which is also referred to as the corrected sample sum of products
(corrected in the sense that x̄ is subtracted), is given by

n∑

j=1

(xj − x̄)2 = X′(I − A)X, A = 1

n

⎡

⎢
⎣

1 1 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 1

⎤

⎥
⎦
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where both A and I − A are idempotent. In this case, tr(A) = 1
n
(1 + · · · + 1) = 1 and

tr(I − A) = n − 1 and hence, the ranks of A and I − A are 1 and n − 1, respectively.
When a matrix is idempotent, its eigenvalues are either zero or one, the number of ones
corresponding to its rank. As has already been pointed out, when X and X̄ are involved,
it can be equivalently assumed that the sample is coming from a N1(0, σ 2

1 ) population.
Hence

ns2

σ 2
1

= 1

σ 2
1

n∑

j=1

(xj − x̄)2 ∼ χ2
n−1 (2.3.2)

is a real chisquare with n − 1 (the rank of the idempotent matrix of the quadratic form)
degrees of freedom as per Theorem 2.2.1. Observe that when the sample comes from a

real N1(μ1, σ
2
1 ) distribution, we have x̄ ∼ N1(μ1,

σ 2
1
n

) so that z =
√

n(x̄−μ1)

σ1
∼ N1(0, 1) or

z is a real standard normal, and that
(n−1)s21

σ 2
1

∼ χ2
n−1 where s21 =

∑n
j=1(xj−x̄)2

n−1 . Recall that

x̄ and s2 are independently distributed. Hence, the ratio

z

s1/σ1
∼ tn−1

has a real Student-t distribution with n − 1 degrees of freedom, where z =
√

n(x̄−μ1)

σ1
and

z
s1/σ1

=
√

n(x̄−μ1)

s1
. Hence, we have the following result:

Theorem 2.3.4. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ). Let x̄ = 1

n
(x1 + · · · + xn) and s21 =

∑n
j=1(xj−x̄)2

n−1 . Then, √
n(x̄ − μ1)

s1
∼ tn−1 (2.3.3)

where tn−1 is a real Student-t with n − 1 degrees of freedom.

It should also be noted that when x1, . . . , xn are iid N1(μ1, σ
2
1 ), then

∑n
j=1(xj − μ1)

2

σ 2
1

∼ χ2
n,

∑n
j=1(xj − x̄)2

σ 2
1

∼ χ2
n−1,

√
n(x̄ − μ1)

2

σ 2
1

∼ χ2
1 ,

wherefrom the following decomposition is obtained:

1

σ 2
1

n∑

j=1

(xj − μ1)
2 = 1

σ 2
1

[ n∑

j=1

(xj − x̄)2 + n(x̄ − μ1)
2
]

⇒ χ2
n = χ2

n−1 + χ2
1 , (2.3.4)

the two chisquare random variables on the right-hand side of the last equation being inde-
pendently distributed.
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2.3a. Simple Random Samples from a Complex Gaussian Population

The definition of a simple random sample from any population remains the same as
in the real case. A set of complex scalar random variables x̃1, . . . , x̃n, which are iid as
Ñ1(μ̃1, σ

2
1 ) is called a simple random sample from this complex Gaussian population. Let

X̃ be the n×1 vector whose components are these sample variables, ¯̃x = 1
n
(x̃1 +· · ·+ x̃n)

denote the sample average, and ¯̃
X′ = ( ¯̃x, . . . , ¯̃x) be the 1×n vector of sample means; then

X̃,
¯̃
X and the sample sum of products matrix s̃ are respectively,

X̃ =
⎡

⎢
⎣

x̃1
...

x̃n

⎤

⎥
⎦ ,

¯̃
X =

⎡

⎢
⎣

¯̃x
...
¯̃x

⎤

⎥
⎦ and s̃ = (X̃ − ¯̃

X)∗(X̃ − ¯̃
X).

These quantities can be simplified as follows with the help of the vector of unities J ′ =
(1, 1, . . . , 1): ¯̃x = 1

n
J ′X̃, X̃ − ¯̃

X = [I − 1
n
JJ ′]X̃, ¯̃

X = 1
n
JJ ′X̃, s̃ = X̃∗[I − 1

n
JJ ′]X̃.

Consider the Hermitian form

X̃∗[I − 1

n
JJ ′]X̃ =

n∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) = ns̃2

where s̃2 is the sample variance in the complex scalar case, given a simple random sample
of size n.

Consider the linear forms ũ1 = L∗
1X̃ = ā1x̃1 + · · · + ānx̃n and ũ2 = L∗

2X̃ = b̄1x̃1 +
· · · + b̄nx̃n where the aj ’s and bj ’s are scalar constants that may be real or complex, āj

and b̄j denoting the complex conjugates of aj and bj , respectively.

E[X̃]′ = (μ̃1)[1, 1, . . . , 1] = (μ̃1)J
′, J ′ = [1, . . . , 1],
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since the x̃j ’s are iid Ñ1(μ̃1, σ
2
1 ), j = 1, . . . , n. The mgf of ũ1 and ũ2, denoted by

Mũj
(t̃j ), j = 1, 2 and the joint mgf of ũ1 and ũ2, denoted by Mũ1,ũ2(t̃1, t̃2) are the fol-

lowing, where �(·) denotes the real part of (·):
Mũ1(t̃1) = E[e�(t̃∗1 ũ1)] = E[e�(t̃∗1L∗

1X̃)]
= e�(μ̃1 t̃

∗
1L∗

1J )E[e�(t̃∗1L∗
1(X̃−E(X̃))) = e�(μ̃1 t̃

∗
1L∗

1J )e
σ21
4 t̃∗1L∗

1L1 t̃1 (i)

Mũ2(t̃2) = e�(μ̃1 t̃
∗
2L∗

2J )+ σ21
4 t̃∗2L∗

2L2 t̃2 (ii)

Mũ1,ũ2(t̃1, t̃2) = Mũ1(t̃1)Mũ2(t̃2)e
σ21
2 t̃∗1L∗

1L2 t̃2 . (iii)

Consequently, ũ1 and ũ2 are independently distributed if and only if the exponential part
is 1 or equivalently t̃∗1L∗

1L2t̃2 = 0. Since t̃1 and t̃2 are arbitrary, this means L∗
1L2 = 0 ⇒

L∗
2L1 = 0. Then we have the following result:

Theorem 2.3a.1. Let x̃1, . . . , x̃n be a simple random sample of size n from a univariate
complex Gaussian population Ñ1(μ̃1, σ

2
1 ). Consider the linear forms ũ1 = L∗

1X̃ and ũ2 =
L∗
2X̃ where L1, L2 and X̃ are the previously defined n × 1 vectors, and a star denotes the

conjugate transpose. Then, ũ1 and ũ2 are independently distributed if and only if L∗
1L2 =

0.

Example 2.3a.1. Let x̃j , j = 1, 2, 3, 4 be iid univariate complex normal Ñ1(μ̃1, σ
2
1 ).

Consider the linear forms

ũ1 = L∗
1X̃ = (1 + i)x̃1 + 2ix̃2 − (1 − i)x̃3 + 2x̃4

ũ2 = L∗
2X̃ = (1 + i)x̃1 + (2 + 3i)x̃2 − (1 − i)x̃3 − ix̃4

ũ3 = L∗
3X̃ = −(1 + i)x̃1 + ix̃2 + (1 − i)x̃3 + x̃4.

Verify whether the three linear forms are pairwise independent.

Solution 2.3a.1. With the usual notations, the coefficient vectors are as follows:

L∗
1 = [1 + i, 2i, −1 + i, 2] ⇒ L′

1 = [1 − i, −2i, −1 − i, 2]
L∗
2 = [1 + i, 2 + 3i, 1 − i, −i] ⇒ L′

2 = [1 − i, 2 − 3i, 1 + i, i]
L∗
3 = [−(1 + i), i, 1 − i, 1] ⇒ L′

3 = [−(1 − i), −i, 1 + i, 1].
Taking the products we have L∗

1L2 = 6+ 6i �= 0, L∗
1L3 = 0, L∗

2L3 = 3− 3i �= 0. Hence,
only ũ1 and ũ3 are independently distributed.

We can extend the result stated in Theorem 2.3a.1 to sets of linear forms. Let Ũ1 =
A1X̃ and Ũ2 = A2X̃ where A1 and A2 are constant matrices that may or may not be in
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the complex domain, A1 is m1 × n and A2 is m2 × n, with m1 ≤ n, m2 ≤ n. As was
previously the case, X̃′ = (x̃1, . . . , x̃n), x̃j , j = 1, . . . , n, are iid Ñ1(μ̃1, σ

2
1 ). Let T̃1 and

T̃2 be parameter vectors of orders m1 × 1 and m2 × 1, respectively. Then, on following the
steps leading to (iii), the mgf of Ũ1 and Ũ2 and their joint mgf are obtained as follows:

MŨ1
(T̃1) = E[e�(T̃ ∗

1 A1X̃)] = e�(μ̃1T̃
∗
1 A1J )+ σ21

4 T̃ ∗
1 A1A

∗
1T̃1 (iv)

MŨ2
(T̃2) = e�(μ̃1T̃

∗
2 A2J )+ σ21

4 T̃ ∗
2 A2A

∗
2T̃2 (v)

MŨ1,Ũ2
(T̃1, T̃2) = MŨ1

(T̃1)MŨ2
(T̃2)e

σ21
2 T̃ ∗

1 A1A
∗
2T̃2 . (vi)

Since T̃1 and T̃2 are arbitrary, the exponential part in (vi) is 1 if and only if A1A
∗
2 = O or

A2A
∗
1 = O, the two null matrices having different orders. Then, we have:

Theorem 2.3a.2. Let the x̃j ’s and X̃ be as defined in Theorem 2.3a.1. Let A1 be a m1×n

constant matrix and A2 be a m2 × n constant matrix, m1 ≤ n, m2 ≤ n, and the constant
matrices may or may not be in the complex domain. Consider the general linear forms
Ũ1 = A1X̃ and Ũ2 = A2X̃. Then Ũ1 and Ũ2 are independently distributed if and only if
A1A

∗
2 = O or, equivalently, A2A

∗
1 = O.

Example 2.3a.2. Let x̃j , j = 1, 2, 3, 4, be iid univariate complex Gaussian Ñ1(μ̃1, σ
2
1 ).

Consider the following sets of linear forms Ũ1 = A1X̃, Ũ2 = A2X̃, Ũ3 = A3X̃ with
X′ = (x1, x2, x3, x4), where

A1 =
[
2 + 3i 2 + 3i 2 + 3i 2 + 3i
1 + i −(1 + i) −(1 + i) 1 + i

]

A2 =
⎡

⎣
2i −2i 2i −2i

1 − i 1 − i −1 + i −1 + i

−(1 + 2i) 1 + 2i −(1 + 2i) 1 + 2i

⎤

⎦ , A3 =
[
1 + 2i 0 1 − 2i −2
−2 −1 + i −1 + i 2i

]

.

Verify whether the pairs in Ũ1, Ũ2, Ũ3 are independently distributed.

Solution 2.3a.2. Since the products A1A
∗
2 = O, A1A

∗
3 �= O, A2A

∗
3 �= O, only Ũ1 and

Ũ2 are independently distributed.

As a corollary of Theorem 2.3a.2, one has that the sample mean ¯̃x and the sample
sum of products s̃ are also independently distributed in the complex Gaussian case, a
result parallel to the corresponding one in the real case. This can be seen by taking A1 =
1
n
JJ ′ and A2 = I − 1

n
JJ ′. Then, since A1 = A2

1, A2 = A2
2, and A1A2 = O, we have
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1
σ 2
1
X̃∗A1X̃ ∼ χ̃2

1 for μ̃1 = 0 and 1
σ 2
1
X̃∗A2X̃ ∼ χ̃2

n−1, and both of these chisquares in the

complex domain are independently distributed. Then,

1

σ 2
1

ns̃ = 1

σ 2
1

n∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) ∼ χ̃2
n−1. (2.3a.1)

The Student-t with n − 1 degrees of freedom can be defined in terms of the standardized
sample mean and sample variance in the complex case.

2.3.1. Noncentral chisquare having n degrees of freedom in the real domain

Let xj ∼ N1(μj , σ
2
j ), j = 1, . . . , n and the xj ’s be independently distributed. Then,

xj−μj

σj
∼ N1(0, 1) and

∑n
j=1

(xj−μj )
2

σ 2
j

∼ χ2
n where χ2

n is a real chisquare with n degrees of

freedom. Then, when at least one of the μj ’s is nonzero,
∑n

j=1
x2j

σ 2
j

is referred to as a real

non-central chisquare with n degrees of freedom and non-centrality parameter λ, which is
denoted χ2

n(λ), where

λ = 1

2
μ′Σ−1μ, μ =

⎡

⎢
⎣

μ1
...

μn

⎤

⎥
⎦ , and Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
n

⎤

⎥
⎥
⎥
⎦

.

Let u = ∑n
j=1

x2j

σ 2
j

. In order to derive the distribution of u, let us determine its mgf. Since u

is a function of the xj ’s where xj ∼ N1(μj , σ
2
j ), j = 1, . . . , n, we can integrate out over

the joint density of the xj ’s. Then, with t as the mgf parameter,

Mu(t) = E[etu]

=
∫ ∞

−∞
...

∫ ∞

−∞
1

(2π)
n
2 |Σ | 12

e
t
∑n

j=1

x2
j

σ2
j

− 1
2

∑n
j=1

(xj −μj )2

σ2
j dx1 ∧ ... ∧ dxn.

The exponent, excluding −1
2 can be simplified as follows:

−2t
n∑

j=1

x2
j

σ 2
j

+
n∑

j=1

(xj − μj)
2

σ 2
j

= (1 − 2t)
n∑

j=1

x2
j

σ 2
j

− 2
n∑

j=1

μjxj

σ 2
j

+
n∑

j=1

μ2
j

σ 2
j

.
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Let yj = √
(1 − 2t)xj . Then, (1 − 2t)− n

2 dy1 ∧ . . . ∧ dyn = dx1 ∧ . . . ∧ dxn, and

(1 − 2t)
n∑

j=1

( x2
j

σ 2
j

)
− 2

n∑

j=1

(μjxj

σ 2
j

)
=

n∑

j=1

y2
j

σ 2
j

− 2
n∑

j=1

μjyj

σ 2
j

√
(1 − 2t)

+
n∑

j=1

( μj

σj

√
(1 − 2t)

)2 −
n∑

j=1

μ2
j

σ 2
j (1 − 2t)

=
n∑

j=1

(
(
yj − μj√

(1−2t)

)

σj

)2

−
n∑

j=1

μ2
j

σ 2
j (1 − 2t)

.

But
∫ ∞

−∞
· · ·

∫ ∞

−∞
1

(2π)
n
2 |Σ | 12

e
−∑n

j=1
1

2σ2
j

(
yj− μj√

(1−2t)

)2

d y1 ∧ . . . ∧ dyn = 1.

Hence, for λ = 1
2

∑n
j=1

μ2
j

σ 2
j

= 1
2μ

′Σ−1μ,

Mu(t) = 1

(1 − 2t)
n
2
[e−λ+ λ

(1−2t) ] (2.3.5)

=
∞∑

k=0

λke−λ

k!
1

(1 − 2t)
n
2+k

.

However, (1−2t)−( n
2+k) is the mgf of a real scalar gamma with parameters (α = n

2+k, β =
2) or a real chisquare with n + 2k degrees of freedom or χ2

n+2k. Hence, the density of a
non-central chisquare with n degrees of freedom and non-centrality parameter λ, denoted
by gu,λ(u), is obtained by term by term inversion as follow:

gu,λ(u) =
∞∑

k=0

λke−λ

k!
u

n+2k
2 −1e− u

2

2
n+2k
2 Γ (n

2 + k)
(2.3.6)

= u
n
2−1e− u

2

2
n
2Γ (n

2 )

∞∑

k=0

λke−λ

k!
uk

(n
2 )k

(2.3.7)

where (n
2 )k is the Pochhammer symbol given by

(a)k = a(a + 1) · · · (a + k − 1), a �= 0, (a)0 being equal to 1, (2.3.8)
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and, in general, Γ (α + k) = Γ (α)(α)k for k = 1, 2, . . . , whenever the gamma functions
are defined. Hence, provided (1 − 2t) > 0, (2.3.6) can be looked upon as a weighted sum
of chisquare densities whose weights are Poisson distributed, that is, (2.3.6) is a Poisson
mixture of chisquare densities. As well, we can view (2.3.7) as a chisquare density having
n degrees of freedom appended with a Bessel series. In general, a Bessel series is of the
form

0F1( ; b; x) =
∞∑

k=0

1

(b)k

xk

k! , b �= 0, −1, −2, . . . , (2.3.9)

which is convergent for all x.

2.3.1.1. Mean value and variance, real central and non-central chisquare

The mgf of a real χ2
ν is (1 − 2t)− ν

2 , 1 − 2t > 0. Thus,

E[χ2
ν ] = d

dt
(1 − 2t)−

ν
2 |t=0 =

(
− ν

2

)
(−2)(1 − 2t)−

ν
2−1|t=0 = ν

E[χ2
ν ]2 = d2

dt2
(1 − 2t)−

ν
2 |t=0 =

(
− ν

2

)
(−2)

(
− ν

2
− 1

)
(−2) = ν(ν + 2).

That is,
E[χ2

ν ] = ν and Var(χ2
ν ) = ν(ν + 2) − ν2 = 2ν. (2.3.10)

What are then the mean and the variance of a real non-central χ2
ν (λ)? They can be derived

either from the mgf or from the density. Making use of the density, we have

E[χ2
ν (λ)] =

∞∑

k=0

λke−λ

k!
∫ ∞

0
u

u
ν
2+k−1e− u

2

2
ν
2+kΓ (ν

2 + k)
du,

the integral part being equal to

Γ (ν
2 + k + 1)

Γ (ν
2 + k)

2
ν
2+k+1

2
ν
2+k

= 2
(ν

2
+ k

)
= ν + 2k.

Now, the remaining summation over k can be looked upon as the expected value of ν + 2k
in a Poisson distribution. In this case, we can write the expected values as the expected
value of a conditional expectation: E[u] = E[E(u|k)], u = χ2

ν (λ). Thus,

E[χ2
ν (λ)] = ν + 2

∞∑

k=0

k
λke−λ

k! = ν + 2E[k] = ν + 2λ.
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Moreover,

E[χ2
ν (λ)]2 =

∞∑

k=0

λke−λ

k!
∫ ∞

0
u2 u

ν
2+k−1

2
ν
2+kΓ (ν

2 + k)
du,

the integral part being

Γ (ν
2 + k + 2)

Γ (ν
2 + k)

2
ν
2+k+2

2
ν
2+k

= 22(
ν

2
+ k + 1)(

ν

2
+ k)

= (ν + 2k + 2)(ν + 2k) = ν2 + 2νk + 2ν(k + 1) + 4k(k + 1).

Since E[k] = λ, E[k2] = λ2 + λ for a Poisson distribution,

E[χ2
ν (λ)]2 = ν2 + 2ν + 4νλ + 4(λ2 + 2λ).

Thus,

Var(χ2
ν (λ)) = E[χ2

ν (λ)]2 − [E(χ2
ν (λ))]2

= ν2 + 2ν + 4νλ + 4(λ2 + 2λ) − (ν + 2λ)2

= 2ν + 8λ.

To summarize,
E[χ2

ν (λ)] = ν + 2λ and Var(χ2
ν (λ)) = 2ν + 8λ. (2.3.11)

Example 2.3.3. Let x1 ∼ N1(−1, 2), x2 ∼ N1(1, 3) and x3 ∼ N1(−2, 2) be indepen-

dently distributed and u = x21
2 + x22

3 + x23
2 . Provide explicit expressions for the density of u,

E[u] and Var(u).

Solution 2.3.3. This u has a noncentral chisquare distribution with non-centrality pa-
rameter λ where

λ = 1

2

[μ2
1

σ 2
1

+ μ2
2

σ 2
2

+ μ2
3

σ 2
3

]
= 1

2

[(−1)2

2
+ (1)2

3
+ (−2)2

2

]
= 17

12
,

and the number of degrees of freedom is n = 3 = ν. Thus, u ∼ χ2
3 (λ) or a real noncentral

chisquare with ν = 3 degrees of freedom and non-centrality parameter 17
12 . Then E[u] =

E[χ2
3 (λ)] = ν+2λ = 3+2(1712) = 35

6 . Var(u) = Var(χ2
3 (λ)) = 2ν+8λ = (2)(3)+8(1712) =

52
3 . Let the density of u be denoted by g(u). Then
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g(u) = u
n
2−1e− u

2

2
n
2Γ (n

2 )

∞∑

k=0

λke−λ

k!
uk

(n
2 )k

= u
1
2 e− u

2√
2π

∞∑

k=0

(17/12)ke−17/12

k!
uk

(32)k
, 0 ≤ u < ∞,

and zero elsewhere.

2.3a.1. Noncentral chisquare having n degrees of freedom in the complex domain

Let us now consider independently Gaussian distributed variables in the complex do-
main. Let the complex scalar variables x̃j ∼ Ñ(μ̃j , σ

2
j ), j = 1, . . . , n, be independently

distributed. Then, we have already established that
∑n

j=1(
x̃j−μ̃j

σj
)∗( x̃j−μ̃j

σj
) ∼ χ̃2

n , which
is a chisquare variable having n degrees of freedom in the complex domain. If we let

ũ = ∑n
j=1

x̃∗
j x̃j

σ 2
j

, then this u will be said to have a noncentral chisquare distribution with

n degrees of freedom and non-centrality parameter λ in the complex domain where x̃∗
j is

only the conjugate since it is a scalar quantity. Since, in this case, ũ is real, we may asso-
ciate the mgf of ũ with a real parameter t . Now, proceeding as in the real case, we obtain
the mgf of ũ, denoted by Mũ(t), as follows:

Mũ(t) = E[et ũ] = (1 − t)−ne−λ+ λ
1−t , 1 − t > 0, λ =

n∑

j=1

μ̃∗
j μ̃j

σ 2
j

= μ̃∗Σ−1μ̃

=
∞∑

k=0

λk

k! e
−λ(1 − t)−(n+k). (2.3a.2)

Note that the inverse corresponding to (1 − t)−(n+k) is a chisquare density in the complex
domain with n + k degrees of freedom, and that part of the density, denoted by f1(u), is

f1(u) = 1

Γ (n + k)
un+k−1e−u = 1

Γ (n)(n)k
un−1uke−u.

Thus, the noncentral chisquare density with n degrees of freedom in the complex domain,
that is, u = χ̃2

n(λ), denoted by fu,λ(u), is

fu,λ(u) = un−1

Γ (n)
e−u

∞∑

k=0

λk

k! e
−λ uk

(n)k
, (2.3a.3)

which, referring to Eqs. (2.3.5)–(2.3.9) in connection with a non-central chisquare in the
real domain, can also be represented in various ways.
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Example 2.3a.3. Let x̃1 ∼ Ñ1(1 + i, 2), x̃2 ∼ Ñ1(2 + i, 4) and x̃3 ∼ Ñ1(1 − i, 2) be
independently distributed univariate complex Gaussian random variables and

ũ = x̃∗
1 x̃1

σ 2
1

+ x̃∗
2 x̃2

σ 2
2

+ x̃∗
3 x̃3

σ 2
3

= x̃∗
1 x̃1

2
+ x̃∗

2 x̃2

4
+ x̃∗

3 x̃3

2
.

Compute E[ũ] and Var(ũ) and provide an explicit representation of the density of ũ.

Solution 2.3a.3. In this case, ũ has a noncentral chisquare distribution with degrees of
freedom ν = n = 3 and non-centrality parameter λ given by

λ = μ̃∗
1μ̃1

σ 2
1

+ μ̃∗
2μ̃2

σ 2
2

+ μ̃∗
3μ̃3

σ 2
3

= [(1)2 + (1)2]
2

+ [(2)2 + (1)2]
4

+ [(1)2 + (−1)2]
2

= 1 + 5

4
+ 1 = 13

4
.

The density, denoted by g1(ũ), is given in (i). In this case ũ will be a real gamma with the
parameters (α = n, β = 1) to which a Poisson series is appended:

g1(u) =
∞∑

k=0

λk

k! e
−λun+k−1e−u

Γ (n + k)
, 0 ≤ u < ∞, (i)

and zero elsewhere. Then, the expected value of u and the variance of u are available from
(i) by direct integration.

E[u] =
∫ ∞

0
ug1(u)du =

∞∑

k=0

λk

k! e
−λΓ (n + k + 1)

Γ (n + k)
.

But Γ (n+k+1)
Γ (n+k)

= n + k and the summation over k can be taken as the expected value of

n+k in a Poisson distribution. Thus, E[χ̃2
n(λ)] = n+E[k] = n+λ. Now, in the expected

value of
[χ̃2

n(λ)][χ̃2
n(λ)]∗ = [χ̃2

n(λ)]2 = [u]2,
which is real in this case, the integral part over u gives

Γ (n + k + 2)

Γ (n + k)
= (n + k + 1)(n + k) = n2 + 2nk + k2 + n + k

with expected value n2 + 2nλ + n + λ + (λ2 + λ). Hence,

Var(χ̃2
n(λ)) = E[u−E(u)][u−E(u)]∗ = Var(u) = n2+2nλ+n+λ+(λ2+λ)−(n+λ)2,

which simplifies to n + 2λ. Accordingly,

E[χ̃2
n(λ)] = n + λ and Var(χ̃2

n(λ)) = n + 2λ, (ii)
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so that

E[u] = n + λ = 3 + 13

4
= 25

4
and Var(u) = n + 2λ = 3 + 13

2
= 19

2
. (iii)

The explicit form of the density is then

g1(u) = u2e−u

2

∞∑

k=0

(13/4)ke−13/4

k!
uk

(3)k
, 0 ≤ u < ∞, (iv)

and zero elsewhere.

Exercises 2.3

2.3.1. Let x1, . . . , xn be iid variables with common density a real gamma density with
the parameters α and β or with the mgf (1 − βt)−α, 1 − βt > 0, α > 0, β > 0. Let

u1 = x1 + · · · + xn, u2 = 1
n
(x1 + · · · + xn), u3 = u2 − αβ, u4 =

√
nu3

β
√

α
. Evaluate the mgfs

and thereby the densities of u1, u2, u3, u4. Show that they are all gamma densities for all
finite n, may be relocated. Show that when n → ∞, u4 → N1(0, 1) or u4 goes to a real
standard normal when n goes to infinity.

2.3.2. Let x1, . . . , xn be a simple random sample of size n from a real population with
mean value μ and variance σ 2 < ∞, σ > 0. Then the central limit theorem says that√

n(x̄−μ)

σ
→ N1(0, 1) as n → ∞, where x̄ = 1

n
(x1 +· · ·+ xn). Translate this statement for

(1): binomial probability function f1(x) =
(
n

x

)
px(1−p)n−x, x = 0, 1, . . . , n, 0 < p < 1

and f1(x) = 0 elsewhere; (2): negative binomial probability law f2(x) =
(
x − 1
k − 1

)
pk(1 −

p)x−k, x = k, k + 1, . . . , 0 < p < 1 and zero elsewhere; (3): geometric probability law
f3(x) = p(1 − p)x−1, x = 1, 2, . . . , 0 < p < 1 and f3(x) = 0 elsewhere; (4): Poisson
probability law f4(x) = λx

x! e
−λ, x = 0, 1, . . . , λ > 0 and f4(x) = 0 elsewhere.

2.3.3. Repeat Exercise 2.3.2 if the population is (1): g1(x) = c1x
γ−1e−axδ

, x ≥ 0, δ >

0, a > 0, γ > 0 and g1(x) = 0 elsewhere; (2): The real pathway model g2(x) = cqx
γ [1−

a(1−q)xδ] 1
1−q , a > 0, δ > 0, 1−a(1−q)xδ > 0 and for the cases q < 1, q > 1, q → 1,

and g2(x) = 0 elsewhere.

2.3.4. Let x ∼ N1(μ1, σ
2
1 ), y ∼ N1(μ2, σ

2
2 ) be real Gaussian and be independently dis-

tributed. Let x1, . . . , xn1, y1, . . . , yn2 be simple random samples from x and y respectively.
Let u1 = ∑n1

j=1(xj − μ1)
2, u2 = ∑n2

j=1(yj − μ2)
2, u3 = 2x1 − 3x2 + y1 − y2 + 2y3,
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u4 =
∑n1

j=1(xj − μ1)
2/σ 2

1
∑n2

j=1(yj − μ2)2/σ
2
2

, u5 =
∑n1

j=1(xj − x̄)2/σ 2
1

∑n2
j=1(yj − ȳ)2/σ 2

2

.

Compute the densities of u1, u2, u3, u4, u5.

2.3.5. In Exercise 2.3.4 if σ 2
1 = σ 2

2 = σ 2 compute the densities of u3, u4, u5 there, and
u6 = ∑n1

j=1(xj − x̄)2 + ∑n2
j=1(yj − ȳ)2 if (1): n1 = n2, (2): n1 �= n2.

2.3.6. For the noncentral chisquare in the complex case, discussed in (2.3a.5) evaluate the
mean value and the variance.

2.3.7. For the complex case, starting with the mgf, derive the noncentral chisquare density
and show that it agrees with that given in (2.3a.3).

2.3.8. Give the detailed proofs of the independence of linear forms and sets of linear
forms in the complex Gaussian case.

2.4. Distributions of Products and Ratios and Connection to Fractional Calculus

Distributions of products and ratios of real scalar random variables are connected to
numerous topics including Krätzel integrals and transforms, reaction-rate probability inte-
grals in nuclear reaction-rate theory, the inverse Gaussian distribution, integrals occurring
in fractional calculus, Kobayashi integrals and Bayesian structures. Let x1 > 0 and x2 > 0
be real scalar positive random variables that are independently distributed with density
functions f1(x1) and f2(x2), respectively. We respectively denote the product and ratio of
these variables by u2 = x1x2 and u1 = x2

x1
. What are then the densities of u1 and u2? We

first consider the density of the product. Let u2 = x1x2 and v = x2. Then x1 = u2
v
and

x2 = v, dx1 ∧ dx2 = 1
v
du ∧ dv. Let the joint density of u2 and v be denoted by g(u2, v)

and the marginal density of u2 by g2(u2). Then

g(u2, v) = 1

v
f1

(u2

v

)
f2(v) and g2(u2) =

∫

v

1

v
f2

(u2

v

)
f1(v)dv. (2.4.1)

For example, let f1 and f2 be generalized gamma densities, in which case

fj (xj ) = a

γj
δj

j

Γ (
γj

δj
)
x

γj−1
j e−aj x

δj
j , aj > 0, δj > 0, γj > 0, xj ≥ 0 j = 1, 2,

and fj (xj ) = 0 elsewhere. Then,
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g2(u2) = c

∫ ∞

0

(1

v

)(u2

v

)γ1−1
vγ2−1

× e−a2v
δ2−a1(

u2
v

)δ1 dv, c =
2∏

j=1

a

γj
δj

j

Γ (
γj

δj
)

= c u
γ1−1
2

∫ ∞

0
vγ2−γ1−1e−a2v

δ2−a1(u
δ1
2 /vδ1)dv. (2.4.2)

The integral in (2.4.2) is connected to several topics. For δ1 = 1, δ2 = 1, this integral is the
basic Krätzel integral and Krätzel transform, see Mathai and Haubold (2020). When δ2 =
1, δ1 = 1

2, the integral in (2.4.2) is the basic reaction-rate probability integral in nuclear
reaction-rate theory, see Mathai and Haubold (1988). For δ1 = 1, δ2 = 1, the integrand
in (2.4.2), once normalized, is the inverse Gaussian density for appropriate values of γ2 −
γ1 − 1. Observe that (2.4.2) is also connected to the Bayesian structure of unconditional
densities if the conditional and marginal densities belong to generalized gamma family of
densities. When δ2 = 1, the integral is a mgf of the remaining part with a2 as the mgf
parameter (It is therefore the Laplace transform of the remaining part of the function).

Now, let us consider different f1 and f2. Let f1(x1) be a real type-1 beta density with
the parameters (γ + 1, α), �(α) > 0, �(γ ) > −1 (in statistical problems, the parameters
are real but in this case the results hold as well for complex parameters; accordingly, the
conditions are stated for complex parameters), that is, the density of x1 is

f1(x1) = Γ (γ + 1 + α)

Γ (γ + 1)Γ (α)
x

γ

1 (1 − x1)
α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1,

and f1(x1) = 0 elsewhere. Let f2(x2) = f (x2) where f is an arbitrary density. Then, the
density of u2 is given by

g2(u2) = c
1

Γ (α)

∫

v

1

v

(u2

v

)γ (
1 − u2

v

)α−1
f (v)dv, c = Γ (γ + 1 + α)

Γ (γ + 1)

= c
u

γ

2

Γ (α)

∫

v≥u2>0
v−γ−α(v − u2)

α−1f (v)dv (2.4.3)

= c K−α
2,u2,γ

f (2.4.4)
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where K−α
2,u2,γ

f is the Erdélyi-Kober fractional integral of order α of the second kind,
with parameter γ in the real scalar variable case. Hence, if f is an arbitrary density, then
K−α

2,u2,γ
f is Γ (γ+1)

Γ (γ+1+α)
g2(u2) or a constant multiple of the density of a product of inde-

pendently distributed real scalar positive random variables where one of them has a real
type-1 beta density and the other has an arbitrary density. When f1 and f2 are densities,
then g2(u2) has the structure

g2(u2) =
∫

v

1

v
f1

(u2

v

)
f2(v)dv. (i)

Whether or not f1 and f2 are densities, the structure in (i) is called the Mellin convolution
of a product in the sense that if we take the Mellin transform of g2, with Mellin parameter
s, then

Mg2(s) = Mf1(s)Mf2(s) (2.4.5)

where Mg2(s) = ∫ ∞
0 us−1

2 g2(u2)du2,

Mf1(s) =
∫ ∞

0
xs−1
1 f1(x1)dx1 and Mf2(s) =

∫ ∞

0
xs−1
2 f2(x2)dx2,

whenever the Mellin transforms exist. Here (2.4.5) is the Mellin convolution of a prod-
uct property. In statistical terms, when f1 and f2 are densities and when x1 and x2 are
independently distributed, we have

E[us−1
2 ] = E[xs−1

1 ]E[xs−1
2 ] (2.4.6)

whenever the expected values exist. Taking different forms of f1 and f2, where f1 has a

factor (1−x1)
α−1

Γ (α)
for 0 ≤ x1 ≤ 1, �(α) > 0, it can be shown that the structure appearing

in (i) produces all the various fractional integrals of the second kind of order α available
in the literature for the real scalar variable case, such as the Riemann-Liouville fractional
integral, Weyl fractional integral, etc. Connections of distributions of products and ratios
to fractional integrals were established in a series of papers which appeared in Linear
Algebra and its Applications, see Mathai (2013, 2014, 2015).

Now, let us consider the density of a ratio. Again, let x1 > 0, x2 > 0 be independently
distributed real scalar random variables with density functions f1(x1) and f2(x2), respec-
tively. Let u1 = x2

x1
and let v = x2. Then dx1 ∧ dx2 = − v

u21
du1 ∧ dv. If we take x1 = v,

the Jacobian will be only v and not − v

u21
and the final structure will be different. However,

the first transformation is required in order to establish connections to fractional integral
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of the first kind. If f1 and f2 are generalized gamma densities as described earlier and if
x1 = v, then the marginal density of u1, denoted by g1(u1), will be as follows:

g1(u1) = c

∫

v

vvγ1−1(u1v)γ2−1e−a1v
δ1−a2(u1v)δ2 dv, c =

2∏

j=1

a

γj
δj

j

Γ (
γj

δj
)
,

= c u
γ2−1
1

∫ ∞

v=0
vγ1+γ2−1e−a1v

δ1−a2(u1v)δ2 dv (2.4.7)

= c

δ
Γ

(γ1 + γ2

δ

)
u

γ2−1
1 (a1 + a2u

δ
1)

− γ1+γ2
δ , for δ1 = δ2 = δ. (2.4.8)

On the other hand, if x2 = v, then the Jacobian is − v

u21
and the marginal density, again

denoted by g1(u1), will be as follows when f1 and f2 are gamma densities:

g1(u1) = c

∫

v

( v

u2
1

)( v

u1

)γ1−1
vγ2−1e

−a1(
v
u1

)δ1−a2v
δ2
dv

= c u
−γ1−1
1

∫ ∞

v=0
vγ1+γ2−1e

−a2v
δ2−a1(

v
u1

)δ1
dv.

This is one of the representations of the density of a product discussed earlier, which is
also connected to Krátzel integral, reaction-rate probability integral, and so on. Now, let
us consider a type-1 beta density for x1 with the parameters (γ, α) having the following
density:

f1(x1) = Γ (γ + α)

Γ (γ )Γ (α)
x

γ−1
1 (1 − x1)

α−1, 0 ≤ x1 ≤ 1,

for γ > 0, α > 0 and f1(x1) = 0 elsewhere. Let f2(x2) = f (x2) where f is an arbitrary
density. Letting u1 = x2

x1
and x2 = v, the density of u1, again denoted by g1(u1), is

g1(u1) = Γ (γ + α)

Γ (γ )Γ (α)

∫

v

v

u2
1

( v

u1

)γ−1(
1 − v

u1

)α−1
f (v)dv

= Γ (γ + α)

Γ (γ )

u
−γ−α

1

Γ (α)

∫

v≤u1

vγ (u1 − v)α−1f (v)dv (2.4.9)

= Γ (γ + α)

Γ (γ )
K−α

1,u1,γ
f, �(α) > 0, (2.4.10)
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where K−α
1,u1,γ

f is Erdélyi-Kober fractional integral of the first kind of order α and param-
eter γ . If f1 and f2 are densities, this Erdélyi-Kober fractional integral of the first kind is
a constant multiple of the density of a ratio g1(u1). In statistical terms,

u1 = x2

x1
⇒ E[us−1

1 ] = E[xs−1
2 ]E[x−s+1

1 ] with E[x−s+1
1 ] = E[x(2−s)−1

1 ] ⇒
Mg1(s) = Mf1(2 − s)Mf2(s), (2.4.11)

which is the Mellin convolution of a ratio. Whether or not f1 and f2 are densities, (2.4.11)
is taken as the Mellin convolution of a ratio and it cannot be given statistical interpretations

when f1 and f2 are not densities. For example, let f1(x1) = x−α
1

(1−x1)
α−1

Γ (α)
and f2(x2) =

xα
2 f (x2) where f (x2) is an arbitrary function. Then the Mellin convolution of a ratio, as
in (2.4.11), again denoted by g1(u1), is given by

g1(u1) =
∫

v≤u1

(u1 − v)α−1

Γ (α)
f (v)dv, �(α) > 0. (2.4.12)

This is Riemann-Liouville fractional integral of the first kind of order α if v is bounded
below; when v is not bounded below, then it is Weyl fractional integral of the first kind of
order α. An introduction to fractional calculus is presented in Mathai and Haubold (2018).
The densities of u1 and u2 are connected to various problems in different areas for different
functions f1 and f2.

In the p × p matrix case in the complex domain, we will assume that the matrix is
Hermitian positive definite. Note that when p = 1, Hermitian positive definite means a
real positive variable. Hence in the scalar case, we will not discuss ratios and products in
the complex domain since densities must be real-valued functions.

Exercises 2.4

2.4.1. Derive the density of (1): a real non-central F, where the numerator chisquare is
non-central and the denominator chisquare is central, (2): a real doubly non-central F
where both the chisquares are non-central with non-centrality parameters λ1 and λ2 re-
spectively.

2.4.2. Let x1 and x2 be real gamma random variables with parameters (α1, β) and (α2, β)

with the same β respectively and be independently distributed. Let u1 = x1
x1+x2

, u2 =
x1
x2

, u3 = x1 + x2. Compute the densities of u1, u2, u3. Hint: Use the transformation x1 =
r cos2 θ, x2 = r sin2 θ .
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2.4.3. Let x1 and x2 be as defined as in Exercise 2.4.2. Let u = x1x2. Derive the density
of u.

2.4.4. Let xj have a real type-1 beta density with the parameters (αj , βj ), j = 1, 2 and
be independently distributed. Let u1 = x1x2, u2 = x1

x2
. Derive the densities of u1 and u2.

State the conditions under which these densities reduce to simpler known densities.

2.4.5. Evaluate (1): Weyl fractional integral of the second kind of order α if the arbitrary
function is f (v) = e−v; (ii) Riemann-Liouville fractional integral of the first kind of order
α if the lower limit is 0 and the arbitrary function is f (v) = vδ.

2.4.6. In Exercise 2.4.2 show that (1): u1 and u3 are independently distributed; (2): u2

and u3 are independently distributed.

2.4.7. In Exercise 2.4.2 show that for arbitrary h, E
[

x1
x1+x2

]h = E(xh
1 )

E(x1+x2)h
and state the

conditions for the existence of the moments. [Observe that, in general, E(
y1
y2

)h �= E(yh
1 )

E(yh
2 )

even if y1 and y2 are independently distributed.]

2.4.8. Derive the corresponding densities in Exercise 2.4.1 for the complex domain by
taking the chisquares in the complex domain.

2.4.9. Extend the results in Exercise 2.4.2 to the complex domain by taking chisquare
variables in the complex domain instead of gamma variables.

2.5. General Structures

2.5.1. Product of real scalar gamma variables

Let x1, . . . , xk be independently distributed real scalar gamma random variables with

xj having the density fj (xj ) = cjx
αj−1
j e

− xj
βj , 0 ≤ xj < ∞, αj > 0, βj > 0 and

fj (xj ) = 0 elsewhere. Consider the product u = x1x2 · · · xk. Such structures appear
in many situations such as geometrical probability problems when we consider gamma
distributed random points, see Mathai (1999). How can we determine the density of such
a general structure? The transformation of variables technique is not a feasible procedure
in this case. Since the xj ’s are positive, we may determine the Mellin transforms of the
xj ’s with parameter s. Then, when fj (xj ) is a density, the Mellin transform Mfj

(s), once
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expressed in terms of an expected value, is Mfj
(s) = E[xs−1

j ] whenever the expected
value exists:

Mfj
(s) = E[xs−1

j ] = 1

β
αj

j Γ (βj )

∫ ∞

0
xs−1

j x
αj−1
j e

− xj
βj dxj

= Γ (αj + s − 1)

Γ (αj )
βs−1

j , �(αj + s − 1) > 0.

Hence,

E[us−1] =
k∏

j=1

E[xs−1
j ] =

k∏

j=1

Γ (αj + s − 1)

Γ (αj )
βs−1

j , �(αj + s − 1) > 0, j = 1, . . . , k,

and the density of u is available from the inverse Mellin transform. If g(u) is the density
of u, then

g(u) = 1

2πi

∫ c+i∞

c−i∞

{ k∏

j=1

Γ (αj + s − 1)

Γ (αj )
βs−1

j

}
u−sdx, i = √

(−1). (2.5.1)

This is a contour integral where c is any real number such that c > −�(αj − 1), j =
1, . . . , k. The integral in (2.5.1) is available in terms of a known special function, namely
Meijer’s G-function. The G-function can be defined as follows:

G(z) = Gm,n
p,q (z) = Gm,n

p,q

[
z
∣
∣a1,...,ap

b1,...,bq

]

= 1

2πi

∫

L

{∏m
j=1 Γ (bj + s)}{∏n

j=1 Γ (1 − aj − s)}
{∏q

j=m+1 Γ (1 − bj − s)}{∏p

j=n+1 Γ (aj + s)}z
−sds, i = √

(−1).

(2.5.2)

The existence conditions, different possible contours L, as well as properties and appli-
cations are discussed in Mathai (1993), Mathai and Saxena (1973, 1978), and Mathai et
al. (2010). With the help of (2.5.2), we may now express (2.5.1) as follows in terms of a
G-function:

g(u) =
{ k∏

j=1

1

βjΓ (αj )

}
G

k,0
0,k

[
u

β1 · · · βk

∣
∣
αj−1,j=1,...,k

]

(2.5.3)

for 0 ≤ u < ∞. Series and computable forms of a general G-function are provided
in Mathai (1993). They are built-in functions in the symbolic computational packages
Mathematica and MAPLE.
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2.5.2. Product of real scalar type-1 beta variables

Let y1, . . . , yk be independently distributed real scalar type-1 beta random variables
with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, . . . , k. Consider the product u1 =
y1 · · · yk. Such a structure occurs in several contexts. It appears for instance in geometrical
probability problems in connection with type-1 beta distributed random points. As well,
when testing certain hypotheses on the parameters of one or more multivariate normal
populations, the resulting likelihood ratio criteria, also known as λ-criteria, or one- to-one
functions thereof, have the structure of a product of independently distributed real type-1
beta variables under the null hypothesis. The density of u1 can be obtained by proceeding
as in the previous section. Since the moment of u1 of order s − 1 is

E[us−1
1 ] =

k∏

j=1

E[ys−1
j ]

=
k∏

j=1

Γ (αj + s − 1)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + s − 1)
(2.5.4)

for �(αj + s − 1) > 0, j = 1, . . . , k, Then, the density of u1, denoted by g1(u1), is given
by

g1(u1) = 1

2πi

∫ c+i∞

c−i∞
[E(us−1

1 )]u−s
1 ds

=
{ k∏

j=1

Γ (αj + βj )

Γ (αj )

} 1

2πi

∫ c+i∞

c−i∞

{ k∏

j=1

Γ (αj + s − 1)

Γ (αj + βj + s − 1)

}
u−s
1 ds

=
{ k∏

j=1

Γ (αj + βj )

Γ (αj )

}
G

k,0
k,k

[
u1

∣
∣αj+βj−1, j=1,...,k
αj−1, j=1,...,k

]
(2.5.5)

for 0 ≤ u1 ≤ 1, �(αj + s − 1) > 0, j = 1, . . . , k.

2.5.3. Product of real scalar type-2 beta variables

Let u2 = z1z2 · · · zk where the zj ’s are independently distributed real scalar type-2
beta random variables with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, . . . , k. Such
products are encountered in several situations, including certain problems in geometrical
probability that are discussed in Mathai (1999). Then,
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E[zs−1
j ] = Γ (αj + s − 1)

Γ (αj )

Γ (βj − s + 1)

Γ (βj )
, −�(αj − 1) < �(s) < �(βj + 1),

and

E[us−1
2 ] =

k∏

j=1

E[zs−1
j ] = { k∏

j=1

[Γ (αj )Γ (βj )]−1}{
k∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
.

(2.5.6)

Hence, the density of u2, denoted by g2(u2), is given by

g2(u2) = { k∏

j=1

[Γ (αj )Γ (βj )]−1} 1

2πi

∫ c+i∞

c−i∞
{ k∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
u−s
2 ds

= { k∏

j=1

[Γ (αj )Γ (βj )]−1}G
k,k
k,k

[
u2

∣
∣−βj , j=1,...,k
αj−1, j=1,...,k

]
, u2 ≥ 0. (2.5.7)

2.5.4. General products and ratios

Let us consider a structure of the following form:

u3 = t1 · · · tr
tr+1 · · · tk,

where the tj ’s are independently distributed real positive variables, such as real type-1
beta, real type-2 beta, and real gamma variables, where the expected values E[t s−1

j ] for
j = 1, . . . , k, will produce various types of gamma products, some containing +s and
others,−s, both in the numerator and in the denominator. Accordingly, we obtain a general
structure such as that appearing in (2.5.2), and the density of u3, denoted by g3(u3), will
then be proportional to a general G-function.

2.5.5. The H-function

Let u = v1v2 · · · vk where the vj ’s are independently distributed generalized real
gamma variables with densities

hj (vj ) = a

γj
δj

j

Γ (
γj

δj
)
v

γj−1
j e−aj v

δj
j , vj ≥ 0,
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for aj > 0, δj > 0, γj > 0, and hj (vj ) = 0 elsewhere for j = 1, . . . , k. Then,

E[vs−1
j ] =

Γ (
γj+s−1

δj
)

Γ (
γj

δj
)

1

a

s−1
δj

j

,

for �(γj + s − 1) > 0, vj ≥ 0, δj > 0, aj > 0, γj > 0, j = 1, . . . , k, and

E[us−1] =
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

}{ k∏

j=1

Γ (
γj − 1

δj

+ s

δj

) a
− s

δj

j

}
. (2.5.8)

Thus, the density of u, denoted by g3(u), is given by

g3(u) =
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

} 1

2πi

∫

L

{ k∏

j=1

Γ (
γj − 1

δj

+ s

δj

) a
− s

δj

j

}
u−sds

=
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

}
H

k,0
0,k

⎡

⎣
{ k∏

j=1

a

1
δj

j

}
u

∣
∣
∣
(
γj −1

δj
, 1
δj

), j=1,...,k

⎤

⎦ (2.5.9)

for u ≥ 0, �(γj +s−1) > 0, j = 1, . . . , k, where L is a suitable contour and the general
H-function is defined as follows:

H(z) = Hm,n
p,q (z) = Hm,n

p,q

[
z
∣
∣(a1,α1),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= 1

2πi

∫

L

{∏m
j=1 Γ (bj + βjs)}{∏n

j=1 Γ (1 − aj − αjs)}
{∏q

j=m+1 Γ (1 − bj − βjs)}{∏p

j=n+1 Γ (aj + αjs)}z
−sds (2.5.10)

where αj > 0, j = 1, . . . , p; βj > 0, j = 1, . . . , q are real and positive, bj ’s and aj ’s
are complex numbers, the contour L separates the poles of Γ (bj + βjs), j = 1, . . . , m,

lying on one side of it and the poles of Γ (1 − aj − αjs), j = 1, . . . , n, which must
lie on the other side. The existence conditions and the various types of possible contours
are discussed in Mathai and Saxena (1978) and Mathai et al. (2010). Observe that we
can consider arbitrary powers of the variables present in u, u1, u2 and u3 as introduced in
Sects. 2.5.1–2.5.5; however, in this case, the densities of these various structures will be
expressible in terms of H-functions rather than G-functions. In the G-function format as
defined in (2.5.2), the complex variable s has ±1 as its coefficients, whereas the coeffi-
cients of s in the H-function, that is, ±αj , αj > 0 and ±βj , βj > 0, are not restricted to
unities.
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We will give a simple illustrative example that requires the evaluation of an inverse
Mellin transform. Let f (x) = e−x, x > 0. Then, the Mellin transform is

Mf (s) =
∫ ∞

0
xs−1e−xdx = Γ (s), �(s) > 0,

and it follows from the inversion formula that

f (x) = 1

2πi

∫ c+i∞

c−i∞
Γ (s)x−sds, �(s) > 0, i = √

(−1). (2.5.11)

If f (x) is unknown and we are told that the Mellin transform of a certain function is Γ (s),
then are we going to retrieve f (x) as e−x from the inversion formula? Let us explore this
problem. The poles of Γ (s) occur at s = 0, −1, −2, . . .. Thus, if we take c in the contour
of integration as c > 0, this contour will enclose all the poles of Γ (s). We may now apply
Cauchy’s residue theorem. By definition, the residue at s = −ν, denoted by Rν , is

Rν = lim
s→−ν

(s + ν)Γ (s)x−s .

We cannot substitute s = −ν to obtain the limit in this case. However, noting that

(s + ν)Γ (s) x−s = (s + ν)(s + ν − 1) · · · s Γ (s)x−s

(s + ν − 1) · · · s = Γ (s + ν + 1)x−s

(s + ν − 1) · · · s ,

which follows from the recursive relationship, αΓ (α) = Γ (α + 1), the limit can be taken:

lim
s→−ν

(s + ν)Γ (s) x−s = lim
s→−ν

Γ (s + ν + 1)x−s

(s + ν − 1) · · · s
= Γ (1)xν

(−1)(−2) · · · (−ν)
= (−1)νxν

ν! . (2.5.12)

Hence, the sum of the residues is

∞∑

ν=0

Rν =
∞∑

ν=0

(−1)νxν

ν! = e−x,

and the function is recovered.

Note 2.5.1. Distributions of products and ratios of random variables in the complex do-
main could as well be worked out. However, since they may not necessarily have practical
applications, they will not be discussed herein. Certain product and ratio distributions for
variables in the complex domain which reduce to real variables, such as a chisquare in the
complex domain, have already been previously discussed.
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Exercises 2.5

2.5.1. Evaluate the density of u = x1x2 where the xj ’s are independently distributed real
type-1 beta random variables with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, 2
by using Mellin and inverse Mellin transform technique. Evaluate the density for the case
α1 − α2 �= ±ν, ν = 0, 1, ... so that the poles are simple.

2.5.2. Repeat Exercise 2.5.1 if xj ’s are (1): real type-2 beta random variables with param-
eters (αj , βj ), αj > 0, βj > 0 and (2): real gamma random variables with the parameters
(αj , βj ), αj > 0, βj > 0, j = 1, 2.

2.5.3. Let u = u1
u2

where u1 and u2 are real positive random variables. Then the h-th

moment, for arbitrary h, is E[u1
u2

]h �= E[uh
1]

E[uh
2]
in general. Give two examples where E[u1

u2
]h =

E[uh
1 ]

E[uh
2 ]
.

2.5.4. E[ 1
u
]h = E[u−h] �= 1

E[uh] in general. Give two examples where E[ 1
u
] = 1

E[u] .

2.5.5. Let u = x1x2
x3x4

where the xj ’s are independently distributed. Let x1, x3 be type-1
beta random variables, x2 be a type-2 beta random variable, and x4 be a gamma random
variable with parameters (αj , βj ), αj > 0, βj > 0, j = 1, 2, 3, 4. Determine the density
of u.

2.6. A Collection of Random Variables

Let x1, . . . , xn be iid (independently and identically distributed) real scalar random
variables with a common density denoted by f (x), that is, assume that the sample comes
from the population that is specified by f (x). Let the common mean value be μ and the
common variance be σ 2 < ∞, that is, E(xj ) = μ and Var(xj ) = σ 2, j = 1, . . . , n, where
E denotes the expected value. Denoting the sample average by x̄ = 1

n
(x1+· · ·+xn), what

can be said about x̄ when n → ∞? This is the type of questions that will be investigated
in this section.

2.6.1. Chebyshev’s inequality

For some k > 0, let us examine the probability content of |x − μ| where μ = E(x)

and the variance of x is σ 2 < ∞. Consider the probability that the random variable x lies
outside the interval μ − kσ < x < μ + kσ , that is k times the standard deviation σ away
from the mean value μ. From the definition of the variance σ 2 for a real scalar random
variable x,
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σ 2 =
∫ ∞

−∞
(x − μ)2f (x)dx

=
∫ μ−kσ

−∞
(x − μ)2f (x)dx +

∫ μ+kσ

μ−kσ

(x − μ)2f (x)dx +
∫ ∞

μ+kσ

(x − μ)2f (x)dx

≥
∫ μ−kσ

−∞
(x − μ)2f (x)dx +

∫ ∞

μ+kσ

(x − μ)2f (x)dx

since the probability content over the interval μ − kσ < x < μ + kσ is omitted. Over this
interval, the probability is either positive or zero, and hence the inequality. However, the
intervals (−∞, μ−kσ ] and [μ+kσ, ∞), that is,−∞ < x ≤ μ−kσ andμ+kσ ≤ x < ∞
or −∞ < x − μ ≤ −kσ and kσ ≤ x − μ < ∞, can thus be described as the intervals
for which |x − μ| ≥ kσ . In these intervals, the smallest value that |x − μ| can take on is
kσ, k > 0 or equivalently, the smallest value that |x − μ|2 can assume is (kσ )2 = k2σ 2.
Accordingly, the above inequality can be further sharpened as follows:

σ 2 ≥
∫

|x−μ|≥kσ

(x − μ)2f (x)dx ≥
∫

|x−μ|≥kσ

(kσ )2f (x)dx ⇒
σ 2

k2σ 2
≥

∫

|x−μ|≥kσ

f (x)dx ⇒
1

k2
≥

∫

|x−μ|≥kσ

f (x)dx = Pr{|x − μ| ≥ kσ, } that is,
1

k2
≥ Pr{|x − μ| ≥ kσ },

which can be written as

Pr{|x − μ| ≥ kσ } ≤ 1

k2
or Pr{|x − μ| < kσ } ≥ 1 − 1

k2
. (2.6.1)

If kσ = k1, k = k1
σ 2 , and the above inequalities can be written as follows:

Pr{|x − μ| ≥ k} ≤ σ 2

k2
or Pr{|x − μ| < k} ≥ 1 − σ 2

k2
. (2.6.2)

The inequalities (2.6.1) and (2.6.2) are known as Chebyshev’s inequalities (also referred
to as Chebycheff’s inequalities). For example, when k = 2, Chebyshev’s inequality states
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that Pr{|x − μ| < 2σ } ≥ 1 − 1
4 = 0.75, which is not a very sharp probability limit. If

x ∼ N1(μ, σ 2), then we know that

Pr{|x − μ| < 1.96σ } ≈ 0.95 and Pr{|x − μ| < 3σ } ≈ 0.99.

Note that the bound 0.75 resulting from Chebyshev’s inequality seriously underestimate
the actual probability for a Gaussian variable x. However, what is astonishing about this
inequality, is that the given probability bound holds for any distribution, whether it be
continuous, discrete or mixed. Sharper bounds can of course be obtained for the probability
content of the interval [μ − kσ, μ + kσ ] when the exact distribution of x is known.

These inequalities can be expressed in terms of generalized moments. Letμ
1
r
r = {E|x−

μ|r} 1
r , r = 1, 2, . . . , which happens to be a measure of scatter in x from the mean value

μ. Given that

μr =
∫ ∞

−∞
|x − μ|rf (x)dx,

consider the probability content of the intervals specified by |x − μ| ≥ kμ
1
r
r for k > 0.

Paralleling the derivations of (2.6.1) and (2.6.2), we have

μr ≥
∫

|x−μ|≥k μ
1
r
r

|x − μ|rf (x)dx ≥
∫

|x−μ|≥k μ
1
r
r

|(kμ
1
r
r )|rf (x)dx ⇒

Pr{|x − μ| ≥ kμ
1
r
r } ≤ 1

kr
or Pr{|x − μ| < kμ

1
r
r } ≥ 1 − 1

kr
, (2.6.3)

which can also be written as

Pr{|x − μ| ≥ k} ≤ μr

kr
or Pr{|x − μ| < k} ≥ 1 − μr

kr
, r = 1, 2, . . . . (2.6.4)

Note that when r = 2, μr = σ 2, and Chebyshev’s inequalities as specified in (2.6.1)
and (2.6.2) are obtained from (2.6.3) and (2.6.4), respectively. If x is a real scalar positive
random variables with f (x) = 0 for x ≤ 0, we can then obtain similar inequalities in
terms of the first moment μ. For k > 0,

μ = E(x) =
∫ ∞

0
xf (x)dx since f (x) = 0 for x ≤ 0

=
∫ k

0
xf (x)dx +

∫ ∞

k

xf (x)dx ≥
∫ ∞

k

xf (x)dx ≥
∫ ∞

k

kf (x)dx ⇒
μ

k
≥

∫ ∞

k

f (x)dx = Pr{x ≥ k}.
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Accordingly, we have the following inequality for any real positive random variable x:

Pr{x ≥ k} ≤ μ

k
for x > 0, k > 0. (2.6.5)

Suppose that our variable is x̄ = 1
n
(x1 + · · · + xn), where x1, . . . , xn are iid variables

with common mean value μ and the common variance σ 2 < ∞. Then, since Var(x̄) = σ 2

n

and E(x̄) = μ, Chebyshev’s inequality states that

Pr{|x̄ − μ| < k} ≥ 1 − σ 2

n
→ 1 as n → ∞ (2.6.6)

or Pr{|x̄ − μ| ≥ k} → 0 as n → ∞. However, since a probability cannot be greater than
1, Pr{|x̄ − μ| < k} → 1 as n → ∞. In other words, x̄ tends to μ with probability 1 as
n → ∞. This is referred to as the Weak Law of Large Numbers.

The Weak Law of Large Numbers

Let x1, . . . , xn be iid with common mean value μ and common variance σ 2 < ∞.
Then, as n → ∞,

P r{x̄ → μ} → 1. (2.6.7)

Another limiting property is known as the Central Limit Theorem. Let x1, . . . , xn be iid
real scalar random variables with common mean value μ and common variance σ 2 < ∞.
Letting x̄ = 1

n
(x1 + · · · + xn) denote the sample mean, the standardized sample mean is

u = x̄ − E(x̄)√
Var(x̄)

=
√

n

σ
(x̄ − μ) = 1

σ
√

n
[(x1 − μ) + · · · + (xn − μ)]. (i)

Consider the characteristic function of x − μ, that is,

φx−μ(t) = E[eit (x−μ)] = 1 + it

1!E(x − μ) + (it)2

2! E(x − μ)2 + · · ·

= 1 + 0 − t2

2!E(x − μ)2 + · · · = 1 + t

1!φ
(1)(0) + t2

2!φ
(2)(0) + · · · (ii)

where φ(r)(0) is the r-th derivative of φ(t) with respect to t , evaluated at t = 0. Let us
consider the characteristic function of our standardized sample mean u.

Making use of the last representation of u in (i), we have φ∑n
j=1(xj −μ)

σ
√

n

(t) =
[φxj−μ( t

σ
√

n
)]n so that φu(t) = [φxj−μ( t

σ
√

n
)]n or lnφu(t) = n lnφxj−μ( t

σ
√

n
). It then
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follows from (ii) that

[φxj−μ(
t

σ
√

n
)] = 1 + 0 − t2

2!
σ 2

nσ 2
− i

t3

3!
E(xj − μ)3

(σ
√

n)3
+ ...

= 1 − t2

2n
+ O

( 1

n
3
2

)
. (iii)

Now noting that ln(1 − y) = −[y + y2

2 + y3

3 + · · · ] whenever |y| < 1, we have

lnφxj −μ(
t

σ
√

n
) = − t2

2n
+ O

( 1

n
3
2

)
⇒ n lnφxj −μ(

t

σ
√

n
) = − t2

2
+ O

( 1

n
1
2

)
→ − t2

2
as n → ∞.

Consequently, as n → ∞,

φu(t) = e− t2
2 ⇒ u → N1(0, 1) as n → ∞.

This is known as the central limit theorem.

The Central Limit Theorem. Let x1, . . . , xn be iid real scalar random variables having
common mean value μ and common variance σ 2 < ∞. Let the sample mean be x̄ =
1
n
(x1 + · · · + xn) and u denote the standardized sample mean. Then

u = x̄ − E(x̄)√
Var(x̄)

=
√

n

σ
(x̄ − μ) → N1(0, 1) as n → ∞. (2.6.8)

Generalizations, extensions and more rigorous statements of this theorem are available
in the literature. We have focussed on the substance of the result, assuming that a simple
random sample is available and that the variance of the population is finite.

Exercises 2.6

2.6.1. For a binomial random variable with the probability function f (x) =
(

n

x

)

px

(1 − p)n−x, 0 < p < 1, x = 0, 1, . . . , n, n = 1, 2, . . . and zero elsewhere, show that the
standardized binomial variable itself, namely x−np√

np(1−p)
goes to the standard normal when

n → ∞.

2.6.2. State the central limit theorem for the following real scalar populations by evaluat-
ing the mean value and variance there, assuming that a simple random sample is available:
(1) Poisson random variable with parameter λ; (2) Geometric random variable with pa-
rameter p; (3) Negative binomial random variable with parameters (p, k); (4) Discrete
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hypergeometric probability law with parameters (a, b, n); (5) Uniform density over [a, b];
(6) Exponential density with parameter θ ; (7) Gamma density with the parameters (α, β);
(8) Type-1 beta random variable with the parameters (α, β); (9) Type-2 beta random vari-
able with the parameters (α, β).

2.6.3. State the central limit theorem for the following probability/density functions: (1):

f (x) =
{
0.5, x = 2

0.5, x = 5

and f (x) = 0 elsewhere; (2): f (x) = 2e−2x, 0 ≤ x < ∞ and zero elsewhere; (3):
f (x) = 1, 0 ≤ x ≤ 1 and zero elsewhere. Assume that a simple random sample is
available from each population.

2.6.4. Consider a real scalar gamma random variable x with the parameters (α, β) and
show that E(x) = αβ and variance of x is αβ2. Assume a simple random sample
x1, . . . , xn from this population. Derive the densities of (1): x1 + · · · + xn; (2): x̄; (3):
x̄ − αβ; (4): Standardized sample mean x̄. Show that the densities in all these cases are
still gamma densities, may be relocated, for all finite values of n however large n may be.

2.6.5. Consider the density f (x) = c
xα , 1 ≤ x < ∞ and zero elsewhere, where c is

the normalizing constant. Evaluate c stating the relevant conditions. State the central limit
theorem for this population, stating the relevant conditions.

2.7. Parameter Estimation: Point Estimation

There exist several methods for estimating the parameters of a given den-
sity/probability function, based on a simple random sample of size n (iid variables from
the population designated by the density/probability function). The most popular methods
of point estimation are the method of maximum likelihood and the method of moments.

2.7.1. The method of moments and the method of maximum likelihood

The likelihood function L(θ) is the joint density/probability function of the sample
values, at an observed sample point, x1, . . . , xn. As a function of θ, L(θ), or a one-to-one
function thereof, is maximized in order to determine the most likely value of θ in terms
of a function of the given sample. This estimation process is referred to as the method of
maximum likelihood.

Let mr =
∑n

j=1 xr
j

n
denote the r-th integer moment of the sample, where x1, . . . , xn is

the observed sample point, the corresponding population r-th moment being E[xr ], where
E denotes the expected value. According to the method of moments, the estimates of the
parameters are obtained by solving mr = E[xr ], r = 1, 2, . . . .



The Univariate Gaussian Density and Related Distributions 121

For example, consider a N1(μ, σ 2) population with density

f (x) = 1√
2πσ

e− 1
2σ2

(x−μ)2
, −∞ < x < ∞, −∞ < μ < ∞, σ > 0, (2.7.1)

where μ and σ 2 are the parameters here. Let x1, . . . , xn be a simple random sam-
ple from this population. Then, the joint density of x1, . . . , xn, denoted by L =
L(x1, . . . , xn;μ, σ 2), is

L = 1

[√2πσ ]n e
− 1

2σ2

∑n
j=1(xj−μ)2 = 1

[√2πσ ]n e
− 1

2σ2
[∑n

j=1(xj−x̄)2+n(x̄−μ)2] ⇒

lnL = −n ln(
√
2πσ) − 1

2σ 2

[ n∑

j=1

(xj − x̄)2 + n(x̄ − μ)2
]
, x̄ = 1

n
(x1 + · · · + xn).

(2.7.2)

Maximizing L or lnL, since L and lnL are one-to-one functions, with respect to μ and
θ = σ 2, and solving for μ and σ 2 produces the maximum likelihood estimators (MLE’s).
An observed value of the estimator is the corresponding estimate. It follows from a basic
result in Calculus that the extrema of L can be determined by solving the equations

∂

∂μ
lnL = 0 (i)

and

∂

∂θ
lnL = 0, θ = σ 2. (ii)

Equation (i) produces the solutionμ = x̄ so that x̄ is the MLE ofμ. Note that x̄ is a random
variable and that x̄ evaluated at a sample point or at a set of observations on x1, . . . , xn

produces the corresponding estimate. We will denote both the estimator and estimate of
μ by μ̂. As well, we will utilize the same abbreviation, namely, MLE for the maximum
likelihood estimator and the corresponding estimate. Solving (ii) and substituting μ̂ to μ,
we have θ̂ = σ̂ 2 = 1

n

∑n
j=1(xj − x̄)2 = s2 = the sample variance as an estimate of

θ = σ 2. Does the point (x̄, s2) correspond to a local maximum or a local minimum or
a saddle point? Since the matrix of second order partial derivatives at the point (x̄, s2) is
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negative definite, the critical point (x̄, s2) corresponds to a maximum. Thus, in this case,
μ̂ = x̄ and σ̂ 2 = s2 are the maximum likelihood estimators/estimates of the parameters
μ and σ 2, respectively. If we were to differentiate with respect to σ instead of θ = σ 2

in (ii), we would obtain the same estimators, since for any differentiable function g(t),
d
dt g(t) = 0 ⇒ d

dφ(t)
g(t) = 0 if d

dt φ(t) �= 0. In this instance, φ(σ) = σ 2 and d
dσ σ 2 �= 0.

For obtaining the moment estimates, we equate the sample integer moments to the
corresponding population moments, that is, we let mr = E[xr ], r = 1, 2, two equations
being required to estimate μ and σ 2. Note that m1 = x̄ and m2 = 1

n

∑n
j=1 x2

j . Then,
consider the equations

x̄ = E[x] = μ and
1

n

n∑

j=1

x2
j = E[x2] ⇒ s2 = σ 2.

Thus, the moment estimators/estimates of μ and σ 2, which are μ̂ = x̄ and σ̂ 2 = s2,
happen to be identical to the MLE’s in this case.

Let us consider the type-1 beta population with parameters (α, β) whose density is

f1(x) = Γ (α + β)

Γ (α)Γ (β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0, (2.7.3)

and zero otherwise. In this case, the likelihood function contains gamma functions and the
derivatives of gamma functions involve psi and zeta functions. Accordingly, the maximum
likelihood approach is not very convenient here. However, we can determine moment esti-
mates without much difficulty from (2.7.3). The first two population integer moments are
obtained directly from a representation of the h-th moment:

E[xh] = Γ (α + h)

Γ (α)

Γ (α + β)

Γ (α + β + h)
, �(α + h) > 0 ⇒

E[x] = Γ (α + 1)

Γ (α)

Γ (α + β)

Γ (α + β + 1)
= α

α + β
(2.7.4)

E[x2] = α(α + 1)

(α + β)(α + β + 1)
= E[x] α + 1

α + β + 1
. (2.7.5)

Equating the sample moments to the corresponding population moments, that is, letting
m1 = E[x] and m2 = E[x2], it follows from (2.7.4) that

x̄ = α

α + β
⇒ β

α
= 1 − x̄

x̄
; (iii)

Then, from (2.7.5), we have
1
n

∑n
j=1 x2

j

x̄
= α + 1

α + β + 1
= 1

1 + β
α+1

⇒ x̄ − ∑n
j=1 x2

j /n
∑n

j=1 x2
j /n

= β

α + 1
. (iv)
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The parameter β can be eliminated from (iii) and (iv), which yields an estimate of α; β̂

is then obtained from (iii). Thus, the moment estimates are available from the equations,
mr = E[xr ], r = 1, 2, even though these equations are nonlinear in the parameters α

and β. The method of maximum likelihood or the method of moments can similarly yield
parameters estimates for populations that are otherwise distributed.

2.7.2. Bayes’ estimates

This procedure is more relevant when the parameters in a given statistical den-
sity/probability function have their own distributions. For example, let the real scalar vari-
able x be discrete having a binomial probability law for the fixed (given) parameter p, that

is, let f (x|p) =
(

n

x

)

px(1 − p)n−x, 0 < p < 1, x = 0, 1, . . . , n, n = 1, 2, . . . , and

f (x|p) = 0 elsewhere be the conditional probability function. Let p have a prior type-1
beta density with known parameters α and β, that is, let the prior density of p bec

g(p) = Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1, 0 < p < 1, α > 0, β > 0

and g(p) = 0 elsewhere. Then, the joint probability function f (x, p) = f (x|p)g(p) and
the unconditional probability function of x, denoted by f1(x), is as follows:

f1(x) = Γ (α + β)

Γ (α)Γ (β)

(
n

x

)∫ 1

0
pα+x−1(1 − p)β+n−x−1dp

= Γ (α + β)

Γ (α)Γ (β)

(
n

x

)
Γ (α + x)Γ (β + n − x)

Γ (α + β + n)
.

Thus, the posterior density of p, given x, denoted by g1(p|x), is

g1(p|x) = f (x, p)

f1(x)
= Γ (α + β + n)

Γ (α + x)Γ (β + n − x)
pα+x−1(1 − p)β+n−x−1.

Accordingly, the expected value of p in this conditional distribution of p given x, which
is called the posterior density of p, is known as the Bayes estimate of p:
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E[p|x] = Γ (α + β + n)

Γ (α + x)Γ (β + n − x)

∫ 1

0
p pα+x−1(1 − p)β+n−x−1dp

= Γ (α + β + n)

Γ (α + x)Γ (β + n − x)

Γ (α + x + 1)Γ (β + n − x)

Γ (α + β + n + 1)

= Γ (α + x + 1)

Γ (α + x)

Γ (α + β + n)

Γ (α + β + n + 1)
= α + x

α + β + n
.

The prior estimate/estimator of p as obtained from the binomial distribution is x
n
and the

posterior estimate or the Bayes estimate of p is

E[p|x] = α + x

α + β + n
,

so that x
n
is revised to α+x

α+β+n
. In general, if the conditional density/probability function

of x given θ is f (x|θ) and the prior density/probability function of θ is g(θ), then the
posterior density of θ is g1(θ |x) and E[θ |x] or the expected value of θ in the conditional
distribution of θ given x is the Bayes estimate of θ .

2.7.3. Interval estimation

Before concluding this section, the concept of confidence intervals or interval esti-
mation of a parameter will be briefly touched upon. For example, let x1, . . . , xn be iid
N1(μ, σ 2) and let x̄ = 1

n
(x1 + · · · + xn). Then, x̄ ∼ N1(μ, σ 2

n
), (x̄ − μ) ∼ N1(0, σ 2

n
)

and z =
√

n

σ
(x̄ − μ) ∼ N1(0, 1). Since the standard normal density N1(0, 1) is free of

any parameter, one can select two percentiles, say, a and b, from a standard normal table
and make a probability statement such as Pr{a < z < b} = 1 − α for every given α; for
instance, Pr{−1.96 ≤ z ≤ 1.96} ≈ 0.95 for α = 0.05. Let Pr{−zα

2
≤ z ≤ zα

2
} = 1 − α

where zα
2
is such that Pr(z > zα

2
) = α

2 . The following inequalities are mathemati-
cally equivalent and hence the probabilities associated with the corresponding intervals
are equal:

−zα
2

≤ z ≤ zα
2

⇔ −zα
2

≤
√

n

σ
(x̄ − μ) ≤ zα

2

⇔ μ − zα
2

σ√
n

≤ x̄ ≤ μ + zα
2

σ√
n

⇔ x̄ − zα
2

σ√
n

≤ μ ≤ x̄ + zα
2

σ√
n
. (i)

Accordingly,

Pr{μ − zα
2

σ√
n

≤ x̄ ≤ μ + zα
2

σ√
n
} = 1 − α (ii)



The Univariate Gaussian Density and Related Distributions 125

⇔
Pr{x̄ − zα

2

σ√
n

≤ μ ≤ x̄ + zα
2

σ√
n
} = 1 − α. (iii)

Note that (iii) is not a usual probability statement as opposed to (ii), which is a probability
statement on a random variable. In (iii), the interval [x̄ − zα

2

σ√
n
, x̄ + zα

2

σ√
n
] is random and

μ is a constant. This can be given the interpretation that the random interval covers the
parameter μ with probability 1− α, which means that we are 100(1− α)% confident that
the random interval will cover the unknown parameter μ or that the random interval is an
interval estimator and an observed value of the interval is the interval estimate of μ. We
could construct such an interval only because the distribution of z is parameter-free, which
enabled us to make a probability statement on μ.

In general, if u = u(x1, . . . , xn, θ) is a function of the sample values and the parameter
θ (which may be a vector of parameters) and if the distribution of u is free of all parameter,
then such a quantity is referred to as a pivotal quantity. Since the distribution of the pivotal
quantity is parameter-free, we can find two numbers a and b such that Pr{a ≤ u ≤ b} =
1 − α for every given α. If it is possible to convert the statement a ≤ u ≤ b into a
mathematically equivalent statement of the type u1 ≤ θ ≤ u2, so that Pr{u1 ≤ θ ≤
u2} = 1 − α for every given α, then [u1, u2] is called a 100(1 − α)% confidence interval
or interval estimate for θ , u1 and u2 being referred to as the lower confidence limit and
the upper confidence limit, and 1 − α being called the confidence coefficient. Additional
results on interval estimation and the construction of confidence intervals are, for instance,
presented in Mathai and Haubold (2017b).

Exercises 2.7

2.7.1. Obtain the method of moments estimators for the parameters (α, β) in a real type-2
beta population. Assume that a simple random sample of size n is available.

2.7.2. Obtain the estimate/estimator of the parameters by the method of moments and the
method of maximum likelihood in the real (1): exponential population with parameter θ ,
(2): Poisson population with parameter λ. Assume that a simple random sample of size n

is available.

2.7.3. Let x1, . . . , xn be a simple random sample of size n from a point Bernoulli popula-
tion f2(x) = px(1 − p)1−x, x = 0, 1, 0 < p < 1 and zero elsewhere. Obtain the MLE as
well as moment estimator for p. [Note: These will be the same estimators for p in all the
populations based on Bernoulli trials, such as binomial population, geometric population,
negative binomial population].
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2.7.4. If possible, obtain moment estimators for the parameters of a real generalized
gamma population, f3(x) = c xα−1e−bxδ

, α > 0, b > 0, δ > 0, x ≥ 0 and zero else-
where, where c is the normalizing constant.

2.7.5. If possible, obtain the MLE of the parameters a, b in the following real uniform
population f4(x) = 1

b−a
, b > a, a ≤ x < b and zero elsewhere. What are the MLE if

a < x < b? What are the moment estimators in these two situations?

2.7.6. Construct the Bayes’ estimate/estimator of the parameter λ in a Poisson probability
law if the prior density for λ is a gamma density with known parameters (α, β).

2.7.7. By selecting the appropriate pivotal quantities, construct a 95% confidence interval
for (1): Poisson parameter λ; (2): Exponential parameter θ ; (3): Normal parameter σ 2; (4):
θ in a uniform density f (x) = 1

θ
, 0 ≤ x ≤ θ and zero elsewhere.
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