
Chapter 15
Cluster Analysis and Correspondence Analysis

15.1. Introduction

We will employ the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital letters
X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of letters
such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for
instance be denoted by A, B, C. A tilde will not be used on constant matrices unless the
point is to be stressed that the matrix is in the complex domain. The determinant of a
square matrix A will be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix X.
Thus, letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

15.1.1. Clusters

A cluster means a group or a cloud of items close together with reference to one or
more characteristics. For instance, in a countryside, there are villages which are clusters of
houses. In a city, there are clusters of high-rise buildings or clusters of apartment blocks. If
we have 2-dimensional data points marked on a sheet of paper, then there may be several
places where the points are grouped together in large crowds, at other places the points
may be bunched together in smaller clumps and somewhere else, there may be singleton
points. In a classification problem, we have a number of preassigned populations and we
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want to assign a point at hand to one of those populations. This cannot be achieved in the
context of cluster analysis as we do not know beforehand how many clusters there are in
the data at hand or which data point belongs to which cluster. Cluster analysis is akin to
pattern recognition whereas classification is a sort of taxonomy. Suppose that a new plant
is to be classified as belonging to one of the known species of plants; if it does not fall into
any of the known species, then we have a member from a new species. In cluster analysis,
we are, in a manner of speaking, going to create various ‘species’. To start with, we have
only a cloud of items and we do not know how many categories or clusters there exist.

Cluster analysis techniques are widely utilized in many fields such as psychiatry, so-
ciology, anthropology, archeology, medicine, criminology, engineering and geology, to
mention only a few areas. If real scalar variables are to be classified as belonging to a
certain category, one way of achieving this is to ascertain their joint dispersion or joint
variation as measured in terms of scale-free covariance or correlation. Those variables that
are similarly correlated may be grouped together.

We will consider the problem of cluster analysis involving n points X1, . . . , Xn where
each Xj is a real p-dimensional vector, that is, we have a p × n data matrix

X = [X1, X2, . . . , Xn] =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤
⎥⎥⎥⎦ . (15.1.1)

15.1.2. Distance measures

Two real p-vectors are close together if the “distance” between them is small. Many
types of distance measures can be defined. Let Xr and Xs be two real p-vectors. These are
the r-th and s-th members or columns in the data matrix (15.1.1). Then, the following are
some distance measures:

dm(Xr, Xs) =
[ p∑

i=1

|xir − xis |m
] 1

m ;

for m = 2, we have the Euclidean distance d2(Xr, Xs) = [∑p

i= |xir −xis |2] 12 , or, denoting
d2
2 as d2, we have

d2(Xr, Xs) =
p∑

i=1

(xir − xis)
2, (15.1.2)
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where the absolute value sign can be replaced by parentheses since we are dealing
with real elements. We will utilize this convenient quantity d2 for comparing observa-
tion vectors. There may be joint variation or covariances among the coordinates in each
of the vectors, in which case, Cov(Xr) = Σ > O. If all the Xj ’s, j = 1, . . . , n,

have the same covariance matrix, then Cov(Xj ) = Σ, j = 1, . . . , n, and a statisti-
cian might wish to consider the generalized distance between Xr and Xs , or its square,
d2

(g)(Xr, Xs) = (Xr − Xs)
′ Σ−1(Xr − Xs), the subscript g designating the generalized

distance. Since Σ is unknown, we may wish to estimate it. However, if there are clusters,
it may not be appropriate to make use of the entire data set of all n points, since the joint
variation or the covariance within each cluster is likely to be different. And as we do not
know beforehand whether clusters are present, securing a proper estimate of Σ turns out
to prove problematic. As a result, this problem is usually circumvented by resorting to the
ordinary Euclidean distance instead of the generalized distance.

Let us examine the effect of scaling a vector. If the unit of measurement in one vector is
changed, what will be the effect on the squared distance? Consider the following vectors:

X1 =
⎡
⎣

−1
0

−2

⎤
⎦ and X2 =

⎡
⎣

−3
2
4

⎤
⎦ ⇒ d2(X1, X2) = (X1 − X2)

′(X1 − X2)

= [(−1) − (−3)]2 + [(0) − (2)]2 + [(−2) − (4)]2 = 44.

The squared distances between the vectors when (1) X1 is multiplied by 2; (2) X2 is
multiplied by 2; (3) X1 and X2 are each multiplied by 2, are

d2(2X1, X2) = (−2 + 3)2 + (0 − 2)2 + (−4 − 4)2 = 69

d2(X1, 2X2) = (−1 + 6)2 + (0 − 4)2 + (−2 − 8)2 = 141

d2(2X1, 2X2) = 4[(X1 − X2)
′(X1 − X2)] = 4 × 44 = 176.

Note that they are fully distorted as 69 �= 4(44) and 141 �= 4(44). Thus, the scaling of
individual vectors can fully alter the nature of the clusters when there are clusters in the
original data. As well, members of the original clusters need not be members of the same
clusters in the scaled data and the number of clusters may also change. Accordingly, it is
indeed inadvisable to make use of the generalized distance. Nor is re-scaling the individual
vectors a good idea if we are seeking clusters. Accordingly, the recommended procedure
consists of utilizing the original data without modifying them. It may also happen that the
components in each p-vector are recorded in different units of measurement. Then, how
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to eliminate the location and scale effect on the components in each vector? This can be
achieved by standardizing them individually, that is, by subtracting the average value of
the components from the components of each vector and dividing the result by the sample
standard deviation. Let us see what happens in the case of our numerical example. Letting
x̄1 and x̄2 be the averages of the components in X1 and X2, and s21 and s22 be the associated
sums of products, we have

x̄1 = 1

3
[(−1) + (0) + (−2)] = −1, x̄2 = 1

3
[(−3) + (2) + (4)] = 1,

s21 =
p∑

i=1

(xi1 − x̄1)
2 = [(−1) − (−1)]2 + [(0) − (−1)]2 + [(−2) − (−1)]2 = 2,

s22 =
p∑

i=1

(xi2 − x̄2)
2 = 26.

Thus, the standardized vectors X1 and X2, denoted by Y1 and Y2, are the following:

Y1 =
√
3√
2

⎡
⎣

−1 − (−1)
0 − (−1)

−2 − (−1)

⎤
⎦ =

√
3√
2

⎡
⎣

0
1

−1

⎤
⎦ and Y2 =

√
3√
26

⎡
⎣

−4
1
3

⎤
⎦ ,

and d2(Y1, Y2) = (Y1−Y2)
′(Y1−Y2) = 7.6641. However, Y1 and Y2 are very distorted and

the distance between X1 and X2 is also modified. Hence, such procedures will change the
clustering aspect as well, with new clusters possibly differing from the original clusters.

Let us consider the matrix of squared distances, denoted by D:

D =

⎡
⎢⎢⎢⎣

0 d2
12 . . . d2

1n
d2
21 0 . . . d2

2n
...

...
. . .

...

d2
n1 d2

n2 . . . d2
nn

⎤
⎥⎥⎥⎦ = D′. (15.1.3)

For example, letting

X1 =
⎡
⎣

1
0

−1

⎤
⎦ , X2 =

⎡
⎣
2
1
3

⎤
⎦ , X3 =

⎡
⎣
0
1
2

⎤
⎦ and X4 =

⎡
⎣
3
1
2

⎤
⎦ ,
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we have d2
12 = (1 − 2)2 + (0 − 1)2 + (−1 − 3)2 = 18, d2

13 = 11, d2
14 = 14, d2

23 =
5, d2

24 = 2, d2
34 = 9, so that

D =

⎡
⎢⎢⎣
0 18 11 14
18 0 5 2
11 5 0 9
14 2 9 0

⎤
⎥⎥⎦ .

The question of interest is the following: Given a set of n vectors of order p, how can one
determine the number of clusters and then, classify them into these clusters?

15.2. Different Methods of Clustering

The main methods are hierarchical in nature, the other ones being non-hierarchical.
We will begin with non-hierarchical techniques. In this category, the most popular one
involves optimization or partitioning.

15.2.1. Optimization or partitioning

With this approach, we have to come up with two numbers: k, a probable number of
clusters, and r , the maximum separation between the members of each prospective cluster.
Based on the distances or on the dissimilarity matrix, D, one should be able to determine
the likely number of clusters, that is, k. Then, one has to find a set of k vectors among the
n given vectors, which will be taken as seed members or starting members within the k

potential clusters. Several methods have been proposed for determining this k, including
the following:

1. Examine the closeness of the original vectors as indicated by the dissimilarity matrix
D and, to start with, decide on an initial numbers for k and the likely distance between
members within a cluster denoted by r .

2. Examine the original data points or original p-vectors and, based on the comparative
magnitudes of the components of the observed p-vectors, ascertain whether there is any
grouping possible and predict a value for each of k and r .

3. Evaluate the sample sum of products matrix S from the original data matrix. Compute
the two main principal components associated with this S. Substitute Xj , the j -th obser-
vation vector, in the two principal components. This provides a pair of numbers or one
point in a two-dimensional space. Compute n such points for j = 1, . . . , n. Plot these
points. From the graph, assess the clustering pattern, the number k of possible clusters,
estimates for r , the maximum distance between two members within a cluster as well as
the minimum distance between the clusters.
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4. Choose any number k, select k vectors at random from the set of n vectors; then,
preselect a number r and use it as a measure of maximum separation between vectors.

5. Take any number k and select as seed vectors the first k vectors whose separation is at
least two units among the set of n vectors.

6. Look at the farthest points. Select k of them that are separated by at least r units for
preselected values of k and r .

If the dissimilarity matrixD is utilized, then the separation number r must be measured
in d2

ij units, whereas r should be in dij units if the actual distances dij are used. After the
seed vectors are selected, the remaining n − k points are to be associated to these seed
points to form clusters. Assign the vectors closest to each of the seed vectors and form the
initial k clusters of two or more vectors. For example, if there are three closest members
at equal distance to a seed vector then, that cluster comprises 4 members, including the
seed vector. Then, compute the centroids of all initial clusters. The centroid of a cluster is
the simple average of the vectors included in that cluster. Thus, the centroid is a p-vector.
Then, measure the distances of all the points belonging to the same cluster from each
centroid, and incorporate all points within the distance of r from a centroid to that cluster.
This process will create the second stage of k clusters. Now, evaluate the centroid of each
of these k clusters. Again, repeat the process of computing the distances of all points from
each centroid. If a member in a cluster is found to be closer to the centroid of another
cluster than to its own cluster’s centroid, then redirect that vector to the cluster to which
it belongs. Rearrange all vectors in such a manner, assigning each one to a cluster whose
centroid is the closest. Note that the number k can increase or decrease in the course of
this process. Continue the procedure until no more improvement is possible. At this stage,
that final k is the number of clusters in the data and the final members in each cluster are
set. This procedure is also called k-means approach.

This k-means approach has a serious shortcoming: if one starts with a different set of
seed vectors, then it is possible to end up with a different set of final clusters. On the other
hand, this method has the appreciable advantage that it allows a member provisionally
assigned to a cluster to be moved to another cluster where it really belongs, that is, it
allows the transfer of points. The following example should clarify the procedure.

Example 15.2.1. Ten volunteers are given an exercise routine in an experiment that mon-
itors systolic pressure, diastolic pressure and heart beat. These are measured after adher-
ing to the exercise routine for four weeks. The data entries are systolic pressure minus
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120 (SP), diastolic pressure minus 80 (DP) and heart beat minus 60 (HB), where 120, 80
and 60 are taken as the standard readings of systolic pressure, diastolic pressure and heart
beat, respectively. Carry out a cluster analysis of the data. The data matrix is the following
where (1), . . . , (10) represent the data vectors A1, . . . , A10 for the 10 volunteers, the first
row represents SP, the second row, DP, and the third, HB:

↓→ (1) (2) (3) (4) (5)
SP : 0 1 1 2 3
DP : 1 0 −1 3 2
HB : −1 −1 −1 −2 5

(6) (7) (8) (9) (10)
4 6 8 5 10
3 8 10 6 8
2 7 8 9 4

Solution 15.2.1. Let us compute the dissimilarity matrix D:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↓→ (1) (2) (3) (4) (5) (6) (7) (8)
(1) 0 2 5 9 46 29 149 226
(2) 2 0 1 11 44 27 153 230
(3) 5 1 0 18 49 34 170 251
(4) 9 11 18 0 51 20 122 185
(5) 46 44 49 51 0 11 49 98
(6) 29 27 34 20 11 0 54 101
(7) 149 153 170 122 49 54 0 9
(8) 226 230 251 185 98 101 9 0
(9) 150 152 165 139 36 59 9 26
(10) 174 170 187 125 86 65 25 24

(9) (10)
150 174
152 170
165 187
139 125
36 86
59 65
9 25
26 24
0 54
54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The data matrix suggests the possibility of three clusters. Accordingly, we may begin with
the vectors A2, A5 and A8 as seed vectors and take the separation width as r = 15 units.
From D, we find d2

23 = 1, the smallest number, and hence A2 and A3 form the cluster:
{A2, A3}. Note that d2

56 = 11, so that A6 and A5 form the cluster: {A5, A6}. Since d2
87 = 9,

A7 and A8 form a cluster: {A7, A8}. Now, consider the centroids. Letting C11, C21 and
C31 denote the centroids, C11 = 1

2(A2 + A3), C21 = 1
2(A5 + A6) and C31 = 1

2(A7 + A8),
that is,

C11 =
⎡
⎣

1
−1/2
−1

⎤
⎦ , C21 =

⎡
⎣
7/2
5/2
7/2

⎤
⎦ and C31 =

⎡
⎣

7
9

15/2

⎤
⎦ .
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Let us calculate the distances of A1, . . . , A10 from C11, C21, C31:

d2(C11, A1) = 13

4
, d2(C11, A2) = 1

4
, d2(C11, A3) = 1

4
, d2(C11, A4) = 57

4
,

d2(C11, A5) = 185

2
, d2(C11, A6) = 121

4
, d2(C11, A7) = 645

4
, d2(C11, A8) = 961

4
,

d2(C11, A9) = 633

4
, d2(C11, A10) = 713

4
, d2(C21, A1) = 139

4
, d2(C21, A2) = 131

4
,

d2(C21, A3) = 155

4
, d2(C21, A4) = 131

4
, d2(C21, A5) = 11

4
, d2(C21, A6) = 11

4
,

d2(C21, A7) = 195

4
, d2(C21, A8) = 387

4
, d2(C21, A9) = 179

4
, d2(C21, A10) = 291

4
,

d2(C31, A1) = 741

4
, d2(C31, A2) = 757

4
, d2(C31, A3) = 833

4
, d2(C31, A4) = 605

4
,

d2(C31, A5) = 285

4
, d2(C31, A6) = 301

4
, d2(C31, A7) = 9

4
, d2(C31, A8) = 9

4
,

d2(C31, A9) = 61

4
, d2(C31, A10) = 89

4
.

We include all the points located within 15 units of distance to the nearest cluster. Then, the
second set of clusters are the following: Cluster 1: {A1, A2, A3, A4}, cluster 2: {A5, A6},
cluster 3: {A7, A8}. Note that A9 is quite close to Cluster 3. We may either include it in
Cluster 3 or treat it as a singleton. Since the next stage calculations do not change the
composition of the clusters, we may take the final clusters as {A1, A2, A3, A4}, {A5, A6},
{A7, A8, A9} and {A10} where Cluster 4 consists of a single element. This completes the
computations.

Let us examine the principal components of the sample sum of products matrix and
plot the points to see whether any cluster can be detected. The sample matrix denoted by
X and the sample average, denoted by X̄, are the following:

X =
⎡
⎣

0 1 1 2 3
1 0 −1 3 2

−1 −1 −1 −2 5

4 6 8 5 10
3 8 10 6 8
2 7 8 9 4

⎤
⎦ , X̄ =

⎡
⎣
4
4
3

⎤
⎦ .

Let the matrix of sample averages be X̄ = [X̄, X̄, . . . , X̄] and the deviation matrix be
Xd = X − X̄. Then,

Xd =
⎡
⎣

−4 −3 −3 −2 −1 0 2 4 1 6
−3 −4 −5 −1 −2 −1 4 6 2 4
−4 −4 −4 −5 2 −1 4 5 6 1

⎤
⎦ ,
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and the sample sum of products matrix is S = XdX′
d , that is,

S =
⎡
⎣
96 101 88
101 128 112
88 112 156

⎤
⎦ .

The eigenvalues of S are λ1 = 330.440, λ2 = 40.522 and λ3 = 9.039. An eigenvec-
tor corresponding to λ1 = 330.440 and an eigenvector corresponding to λ2 = 40.522,
respectively denoted by U1 and U2 are the following:

U1 =
⎡
⎣
0.782
0.943
1.000

⎤
⎦ and U2 =

⎡
⎣

−0.676
−0.500
−1.000

⎤
⎦ .

Then the first two principal components are U ′
1Y and U ′

2Y with Y ′ = [y1, y2, y3]. We
substitute our sample points A1, . . . , A10 to obtain 10 pairs of numbers. For example,

U ′
1A1 = [0.782, 0.943, 1]

⎡
⎣

0
1

−1

⎤
⎦ = −0.057, U ′

2A1 = [−0.676, −0.5, 1]
⎡
⎣

0
1

−1

⎤
⎦ = −1.5

and hence the first pair of numbers or the first point is P1 : (−0.057, −1.500).
Similar calculations yield the remaining 9 points as: P2 : (−0.218, −1.676), P3 :
(−1.161, −1.176), P4 : (2.393, −4.852), P5 : (9.232, 1.972), P6 : (7.957, −2.204), P7 :
(19.236, −1.056), P8 : (23.686, −2.408), P9 : (18.568, 2.620), P10 : (19.364, −6.760).
It is seen that these points which are plotted in Fig. 15.2.2 form the same clusters as
the original points shown in Fig. 15.2.1, that is, Cluster 1: {A1, A2, A3, A4}; Cluster 2:
{A5, A6}; Cluster 3: {A7, A8, A9}; Cluster 4: {A10}.

Other non-hierarchical methods are currently in use. We will mention these procedures
later, after discussing the main hierarchical technique known as single linkage or nearest
neighbor method.

15.3. Hierarchical Methods of Clustering

Hierarchical procedures are of two categories. In one of them, we begin with all the n

data points as n different clusters of one element each. Then, by applying certain rules, we
start combining these single-member clusters into larger clusters, the process being halted
when a desired number of clusters are obtained. If the process is continued, we ultimately
end up with a single cluster containing all of the n points. In the second category, we
initially consider one cluster that comprises the n elements. We then start splitting this
cluster into two clusters by making use of some criteria. Next, one or both of these sub-
clusters are divided again by applying the same criteria. If the process is continued, we
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Figure 15.2.1 The original 10 data points

Figure 15.2.2 Second versus first principal component evaluated at the Ai’s

finally end up with n clusters of one element each. The process is halted when a desired
number of clusters are obtained. In all these procedures, one cannot objectively determine
when to stop the process or how many distinct clusters are present. We have to specify
some stopping rules as a means of selecting a suitable number of clusters.

15.3.1. Single linkage or nearest neighbor method

In this single linkage procedure, we begin by assuming that there are n clusters con-
sisting of one item each. We then combine these clusters by applying a minimum distance
rule. At the initial stage, we have only one element in each ‘cluster’, but at the following
steps, each cluster will potentially contain several items and hence, the rule is stated for
general clusters. Consider two clusters A and B whose elements are denoted by Xj and



Cluster Analysis and Correspondence Analysis 855

Yj , that is, Xj ∈ A and Yj ∈ B, the Xj ’s and Yj ’s being p-vectors belonging to the data
set at hand. In the minimum distance rule, we define the distance between two clusters,
denoted by d(A, B), as follows:

d(A, B) = min{d(Xi, Yj ), for all Xi ∈ A, Yj ∈ B}. (15.3.1)

This distance is measured in the units of the definition of the distance being utilized. We
will illustrate the single linkage hierarchical procedure by making use of the data set pro-
vided in Example 15.2.1 and its associated dissimilarity matrix D. We will utilize the dis-
similarity matrix D to represent various “distances”. Since the matrix D will be repeatedly
referred to at every stage, it is duplicated next for ready reference:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↓→ (1) (2) (3) (4) (5) (6) (7) (8)
(1) 0 2 5 9 46 29 149 226
(2) 2 0 1 11 44 27 153 230
(3) 5 1 0 18 49 34 170 251
(4) 9 11 18 0 51 20 122 185
(5) 46 44 49 51 0 11 49 98
(6) 29 27 34 20 11 0 54 101
(7) 149 153 170 122 49 54 0 9
(8) 226 230 251 185 98 101 9 0
(9) 150 152 165 139 36 59 9 26
(10) 174 170 187 125 86 65 25 24

(9) (10)
150 174
152 170
165 187
139 125
36 86
59 65
9 25
26 24
0 54
54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To start with, we have 10 clusters {Aj }, j = 1, . . . , 10. At the initial stage, each cluster has
one element. Then d(A, B) as defined in (15.3.1) is the smallest distance (dissimilarity)
appearing in D, that is, 1 which occurs between the elements corresponding to A2 and
A3. These two clusters of one vector each are combined and replaced by B1 by taking
the smaller entries in each column of the combined representation of the dissimilarity
measures correspondingA2 andA3. For illustration, we now list the dissimilarity measures
corresponding to the original A2 and A3 and the new B1 as rows:

A2 : (2) [0 1] (11) (44) (27) (153) (230) (152) (170)
A3 : 5 [1 0] 18 49 34 170 251 165 187
B1 : 2 [0] 11 44 27 153 230 152 170

The rows representing A2 and A3 are combined and replaced by B1 as shown above. The
second and third columns in D are combined into one column, namely, the B1 column.
The elements in B1 are the smaller elements in each column of A2 and A3. The bracketed
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elements in A2 and A3, namely [0, 1] and [1, 0], are combined into one element [0] in
B1, the updated dissimilarity matrix having one fewer row and one fewer column. These
are the intersections of the two rows and columns. Other smaller elements in the two
original columns, which make up B1, are displayed in parentheses. This process will be
repeated at each stage. At the first stage of the procedure, we end up with 9 clusters:
C1 = {A2, A3}, {Aj }, j = 1, 4, . . . , 10, the resulting configuration of the dissimilarity
matrix, denoted by D1, being

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↓→ A1 B1 A4 A5 A6 A7 A8 A9 A10

A1 0 2 9 46 29 149 226 150 174
B1 2 0 11 44 27 153 230 152 170
A4 9 11 0 51 20 122 185 139 125
A5 46 44 51 0 11 49 98 36 86
A6 29 27 20 11 0 54 101 59 65
A7 149 153 122 49 54 0 9 9 25
A8 226 230 185 98 101 9 0 26 24
A9 150 152 139 36 59 9 26 0 54
A10 174 170 125 86 65 25 24 54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, the next smallest dissimilarity is 2 which occurs at (A1, B1). Thus, the rows
(columns) corresponding to A1 and B1 are combined into one row (column) B2. The
original rows corresponding to A1 and B1 and the new row corresponding to B2 are the
following:

A1 : [0 2] (9) 46 29 (149) (226) (150) 174
B1 : [2 0] 11 (44) (27) 153 230 152 (170)
B2 : [0] 9 44 27 149 226 150 170 .

The new configuration, denoted by D2, is the following:

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↓→ B2 A4 A5 A6 A7 A8 A9 A10

B2 0 9 44 27 149 226 150 170
A4 9 0 51 20 122 185 139 125
A5 44 51 0 11 49 98 36 86
A6 27 20 11 0 54 101 59 65
A7 149 122 49 54 0 9 9 25
A8 226 185 98 101 9 0 26 24
A9 150 139 36 59 9 26 0 54
A10 170 125 86 65 25 24 54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the resulting clusters being C2 = {A1, A2, A3}, {Aj }, j = 4, . . . , 10. The next smallest
dissimilarity is 9, which occurs at (B2, A4). Hence these are combined, that is, the first
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two columns (rows) are merged as explained. The combined row, denoted by B3, is the
following, its transpose becoming the first column:

B3 = [0, 44, 20, 122, 185, 139, 125],
and the new configuration is the following:

D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

↓→ B3 A5 A6 A7 A8 A9 A10

B3 0 44 20 122 185 139 125
A5 44 0 11 49 98 36 86
A6 20 11 0 54 101 59 65
A7 122 49 54 0 9 9 25
A8 185 98 101 9 0 26 24
A9 139 36 59 9 26 0 54
A10 125 86 65 25 24 54 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

At this stage, the clusters are C2 = {A1, A2, A3, A4}, {Aj }, j = 5, . . . , 10. The next
smallest number is 9, which is occurring at (A7, A8), (A7, A9). Accordingly, we combine
A7, A8 and A9, and the resulting configuration is the following where the resultant of the
replacement rows (columns) is denoted by B4:

D4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

↓→ B3 A5 A6 B4 A10

B3 0 44 20 122 125
A5 44 0 11 36 86
A6 20 11 0 54 65
B4 122 36 54 0 24
A10 125 86 65 24 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

the clusters being C2 = {A1, A2, A3, A4}, C3 = {A7, A8, A9}, {Ai}, i = 5, 6, 10. The
next smallest dissimilarity measure is 11 at (A5, A6). Combining these, the replacement
row is B5 = [20, 0, 36, 65], and the new configuration, denoted by D5 is as follows:

D5 =

⎡
⎢⎢⎢⎢⎣

↓→ B3 B5 B4 A10

B3 0 20 122 125
B5 20 0 36 65
B4 122 36 0 24
A10 125 65 24 0

⎤
⎥⎥⎥⎥⎦

,

the resulting clusters being C2 = {A1, A2, A3, A4}, C3 = {A7, A8, A9}, C4 = {A5, A6},
C5 = {A10}.
We may stop at this stage since the clusters obtained from the other methods coincide with
C2, C3, C4, C5. At the following step of the procedure, C4 would combine with C3, with
the next final stage resulting in a single cluster that would encompass all 10 points.
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15.3.2. Average linking as a modified distance measure

An alternative distance measure involving all the items in pairs of clusters is considered
in this subsection. As one proceeds from any stage to the next one in a hierarchical proce-
dure, a decision is based on the next smallest distance between two clusters. At the initial
stage, this does not pose any problem since the dissimilarity matrix D is available and each
cluster contains only a single element. However, further on in the process, as there are sev-
eral elements in the clusters, a more suitable definition of “distance” is required in order to
proceed to the next stage. Several types of methods have been proposed in the literature.
One such procedure is the average linkage method under which the distance between two
clusters A and B, denoted again by d(A, B), is defined as follows:

d(A, B) = 1

n1n2

n2∑
j=1

n1∑
i=1

d(Xi, Yj ) for all Xi ∈ A, Yj ∈ B (15.3.2)

where the Xi’s and Yj ’s are all p-vectors from the given set of data points. In this case, the
rule being applied is that two clusters having the smallest distance, as measured in terms
of (15.3.2), are combined before initiating the next stage.

15.3.3. The centroid method

In a hierarchical single linkage procedure, another way of determining the distance
between two clusters before proceeding to the next stage is referred to as the centroid
method under which the Euclidean distance between the centroids of clusters A and B is
defined as follows:

d(A, B) = d(X̄, Ȳ ) with X̄ = 1

n1

n1∑
j=1

Xj and Ȳ = 1

n2

n2∑
j=1

Yj , (15.3.3)

where X̄ is the centroid of the cluster A and Ȳ is the centroid of the cluster B, Xi ∈
A, i = 1, . . . , n1, Yj ∈ B, j = 1, . . . , n2. In this case, the process involves combining
two clusters with the smallest d(A, B) as specified in (15.3.3) into a single cluster. After
combining them, or equivalently, after taking the union of A and B, the centroid of the
combined cluster, denoted by Z̄, is

Z̄ = n1X̄ + n2Ȳ

n1 + n2
= 1

n1 + n2

n1+n2∑
j=1

Zj, Zj ∈ A ∪ B,

where the Zj ’s are the original vectors that were included in A or B.
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15.3.4. The median method

A main shortcoming of the centroid method of joining two clusters is that if n1 is
very large compared to n2, then Z̄ is likely to be closer of X̄, and vice versa. In order to
avoid this type of imbalance, a method based on the median is suggested, under which the
median of the combined clusters A and B is defined as

MedianA∪B = 1

2
(X̄ + Ȳ ) with Xi ∈ A and Yj ∈ B, (15.3.4)

for all i, j and r . In this process, the clustersA and B for which MedianA∪B is the smallest
are combined to form the next cluster whose elements are the Zr ’s, Zr ∈ A ∪ B.

15.3.5. The residual sum of products method

From the one-way MANOVA layout, a residual or within group (within cluster) sum
of products for clusters A, B and A∪B, denoted by RA, RB and RA∪B , are the following:

RA =
n1∑
i=1

(Xi − X̄)′(Xi − X̄), RB =
n2∑

j=1

(Yj − Ȳ )′(Yj − Ȳ )

RA∪B =
n1+n2∑
r=1

(Zr − Z̄)′(Zr − Z̄), Zj ∈ A ∪ B, Z̄ = n1X̄ + n2Ȳ

n1 + n2
.

Once those sums of squares have been evaluated, we compute the quantity

TA∪B = RA∪B − (RA + RB), (15.3.5)

which can be interpreted as the increase in residual sum of products due to the process of
merging the clusters A and B. Then, the procedure consists of combining those clusters A

and B for which TA∪B as defined in (15.3.5) is the minimum. This method is also called
Ward’s method.

There exist other methods for combining clusters such as the flexible beta method, and
several comparative studies point out the merits and drawbacks of the various methods.

In the hierarchical procedures considered in Sect. 15.3, we begin with the n data points
as n distinct clusters of one element each. Then, by applying certain “minimum distance”
methods, “distance” being defined in different ways, we combined the clusters one by one.
We may also consider a hierarchical procedure wherein the n data points are treated as one
cluster of n elements. At this stage, by making use of some rules, we break up this cluster
into two clusters. Then, one of these or both are split again as two clusters by applying
the same rule. We continue the process and stop it when it is determined that there is a
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sufficient number of clusters. If the process is not halted at a certain stage, we will end
up with a single cluster containing all of the n elements or points. We will not elaborate
further on such procedures.

15.3.6. Other criteria for partitioning or optimization

In Sect. 15.2, we considered a non-hierarchical procedure known as the k-means
method, which is the most popular in this area. After discussing this, we described the most
widely utilized non-hierarchical procedure in Sect. 15.3. We will now examine other non-
hierarchical procedures in common use. Some of these are connected with the MANOVA
or multivariate analysis of variation of a one-way classification. In a multivariate one-way
layout, let Xij be the j -th vector in the i-th group or i-th cluster, all vectors being p-
vectors or p × 1 real vectors. Let there be k groups (k clusters) of sizes n1, . . . , nk with
n1 + n2 + · · · + nk = n. = n, that is, the cluster sizes are n1, . . . , nk, respectively. Let
the residual sum of products or sum of squares and cross products matrix be denoted by
U , which is p × p. This matrix U is also called within group or within cluster variation
matrix. Let the between groups or between clusters variation matrix be V . In this setup, U
and V are the following:

U =
k∑

i=1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)
′, X̄i = 1

ni

ni∑
j=1

Xij , (15.3.6)

V =
∑
i j

(X̄i − X̄)(X̄i − X̄)′ =
k∑

i=1

ni(X̄i − X̄)(X̄i − X̄)′, X̄ = 1

n.

∑
i j

Xij . (15.3.7)

Then, under the hypothesis that the group effects or cluster effects are the same, and under
the normality assumption on the Xij ’s, U and V are independently distributed Wishart
matrices with n. − k and k − 1 degrees of freedom, respectively, where Σ > O is the
parameter matrix in the Wishart densities as well as the common covariance matrix of
the Xij ’s, referring to Chap. 5. Thus, W1 = (U + V )− 1

2U(U + V )− 1
2 is a real matrix-

variate type-1 beta random variable with the parameters (n.−k
2 , k−1

2 ), W2 = U− 1
2V U− 1

2

is a real matrix-variate type-2 beta random variable with the parameters (k−1
2 , n.−k

2 ) and
W3 = U + V follows a real Wishart distribution having n. − 1 degrees of freedom and
parameter matrix Σ > O, again referring Chap. 5. Observe that both U and V are real
positive definite matrices, so that all of their eigenvalues are positive. The likelihood ratio
criterion λ for testing the hypothesis that the group effects are the same is the following:
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λ
2
n. = |U |

|U + V | = |W1| = 1

|I + U− 1
2V U− 1

2 |
= 1

|I + W2| . (15.3.8)

We are aiming to have the within cluster variation small and the between cluster variation
large, which means, in some sense, that U will be small and V will be large, in which case
λ as given in (15.3.8) will be small. This also means that the trace of U must be small and
trace of W2 must be large. Accordingly, a few criteria for merging clusters are based on
tr(U), |U | and tr(W2). The following are some commonly utilized criteria for combining
clusters:

(1) Minimizing tr(U);

(2) Minimizing |U |;
(3) Maximizing tr(W2).

These criteria are applied as follows: One of the n observation vectors is moved to a
selected cluster if tr(U) is a minimum (|U | is a minimum and tr(W2) is a maximum for the
other criteria). Then, tr(U) is evaluated after moving the observation vectors one by one
to the selected cluster and, each time, tr(U) is noted; the vector for which tr(U) attains
a minimum value belongs to the selected cluster, that is, it is combined with the selected
cluster. Observe that

tr(U) = tr
(∑

i j

(Xij − X̄i)(Xij − X̄i)
′)

= tr
( n1∑

j=1

(X1j − X̄1)(X1j − X̄1)
′) + · · · + tr

( nk∑
j=1

(Xkj − X̄k)(Xkj − X̄k)
′)

=
n1∑

j=1

(X1j − X̄1)
′(X1j − X̄1) + · · · +

nk∑
j=1

(Xkj − X̄k)
′(Xkj − X̄k), (15.3.9)

owing to the property that, for two matrices P and Q, tr(PQ) = tr(QP ) as long as
PQ and QP are defined. As well, observe that since (Xij − X̄i)

′(Xij − X̄i) is a scalar
quantity for every i and j , it is equal to its trace. How does this criterion work in practice?
Consider moving a member from the s-th cluster to the selected cluster, namely, the r-th
cluster. The original centroids are X̄r and X̄s , and when one element is added to the r-
th cluster from the s-th cluster, both centroids will respectively change to, say, X̄r+1 and
X̄s−1. Compute the updated sums of squares in the new r-th and s-th clusters. Then, add
up all the sums of squares in all the clusters and obtain a new tr(U). Carry out this process
for every member in every other cluster and compute tr(U) each time. Take the smallest
value of tr(U) thus calculated, including the original value of tr(U), before considering



862 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

transferring any point. That vector for which tr(U) is minimum really belongs to the r-th
cluster and so, is included in it. Repeat the process until no more improvement can be
made, at which point no more transfer of points is necessary.

Simplification of the computations of tr(U)

As will be explained, computing tr(U) can be simplified. Consider the new sum
of squares in the r-th cluster. Let the new and old sums of squares be denoted by
(New)r , (New)s, and (Old)r , (Old)s , respectively. Let the vector transferred from the s-th
cluster to the r-th cluster be denoted by Y . Then,

(New)r =
r∑

j=1

(Xrj − X̄r+1)
′(Xrj − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1)

=
r∑

j=1

(Xrj − X̄r + (X̄r − X̄r+1))
′(Xrj − X̄r + (X̄r − X̄r+1))

+ (Y − X̄r+1)
′(Y − X̄r+1)

=
r∑

j=1

(Xrj − X̄r)
′(Xrj − X̄r) + r(X̄r − X̄r+1)

′(X̄r − X̄r+1)

+ (Y − X̄r+1)
′(Y − X̄r+1)

= (Old)r + r(X̄r − X̄r+1)
′(X̄r − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1).

The difference between the new sum of squares and the old one is

δ1 = r(X̄r − X̄r+1)
′(X̄r − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1).

Noting that

X̄r − X̄r+1 = X̄r − rX̄r + Y

r + 1
= 1

r + 1
[X̄r − Y ] and Y − X̄r+1 = r

r + 1
[Y − X̄r ],

δ1 simplifies to

δ1 = r

r + 1
(Y − X̄r)

′(Y − X̄r).
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A similar procedure can be used for the s-th cluster. In that case, the new sum of
squares can be written as

(New)s =
s−1∑
j=1

(Xsj − X̄s−1)
′(Xsj − X̄s−1)

=
s∑

j=1

(Xij − X̄s−1)
′(Xsj − X̄s−1) − (Y − X̄s−1)

′(Y − X̄s−1).

Then, proceeding as in the case of the r-th cluster and denoting the difference between the
new and the old sums of squares as δ2, we have

δ2 = − s

s − 1
(Y − X̄s)

′(Y − X̄s), s > 1,

so that the sum of the differences between the new and old sums of squares, denoted by δ,
is the following:

δ = δ1 + δ2 = r

r + 1
(Y − X̄r)

′(Y − X̄r) − s

s − 1
(Y − X̄s)

′(Y − X̄s) (15.3.10)

for s > 1, where X̄r and X̄s are the original centroids of the r-th and s-th clusters, respec-
tively. As such, computing δ is very simple. Evaluate the quantity specified in (15.3.10)
for all the points outside the r-th cluster and look for the minimum of δ, including the
original value of δ = 0. If the minimum occurs at a point Y1 outside of the r-th cluster,
then transfer that point to the r-th cluster. Continue the process for every vector in the s-th
cluster and then, for r = 1, . . . , k, assuming there are k clusters, until δ = 0. In the end,
all the clusters are stabilized, and k may take on another value.

Among the three statistics tr(U), |U | and tr(W2), tr(U) is the easiest to compute, as
was just explained. However, if we consider a non-singular transformation, other than an
orthonormal transformation, then |U | and tr(W2) are invariant, but tr(U) is not.

We have discussed one hierarchical methodology of single linkage nearest neighbor
method and one non-hierarchical procedure consisting of the k-means method. These seem
to be the most widely utilized. We also mentioned other hierarchical and non-hierarchical
methods without going into the details. All these procedures are not well-defined mathe-
matical procedures. None of the procedures can uniquely determine the clusters if there are
some clusters in the multivariate data at hand, and none of the methods can uniquely de-
termine the number of clusters. The advantages and shortcomings of the various methods
will not be discussed so as not to confound the reader.
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Exercises 15

15.1. For the p × 1 vectors X1, . . . , Xn, let the dissimilarity measures be (1) d
(1)
ij =∑n

k=1 |xik − xjk|, (2) d
(2)
ij = ∑n

k=1(xik − xjk)
2, X′

i = [x1i , x2i , . . . , xpi]. Compute the

matrices (1) (d
(1)
ij ); (2) (d

(2)
ij ), for the following vectors:

X1 =
⎡
⎣

1
−1
2

⎤
⎦ , X2 =

⎡
⎣

−1
1
2

⎤
⎦ , X3 =

⎡
⎣

1
2

−1

⎤
⎦ , X4 =

⎡
⎣

2
1

−1

⎤
⎦ .

15.2. Nine test runs T − 1, . . . , T − 9 are done to test the breaking strengths of three
alloys. The following data are the deviations from the respective expected strengths:

↓→ T − 1 T − 2 T − 3 T − 4 T − 5 T − 6 T − 7 T − 8 T − 9
Alloy-1 0 −1 1 2 −1 2 5 4 5
Alloy-2 1 1 1 1 3 4 7 −4 8
Alloy-3 −1 0 1 2 2 3 8 4 −7

Carry out a cluster analysis by applying the following methods: (1) The single linkage
or nearest neighbor method; (2) The average linkage method; (3) The centroid method;
(4) The residual sum of products method.

15.3. Using the data provided in Exercise 15.2, carry out a cluster analysis by utilizing the
following methods: (1) Partitioning or optimization; (2) Minimization of tr(U); (3) Mini-
mization of |U |; (4) Maximization of tr(W2) where U and W are given in Sect. 15.3.6.

15.4. Compare the results from the different methods in (1) Exercise 15.2; (2) Exer-
cise 15.3, and make your observations.

15.5. Compare the results from the different methods in Exercises 15.2 and 15.3, and
comment on the similarities and differences.

15.4. Correspondence Analysis

If the data at hand are classified according to two attributes, these characteristics may
be of the same type, that is, both quantitative or both qualitative, or of different types, and
whatever the types may be, we may construct a two-way contingency table. In a contin-
gency table, the entries in the cells are frequencies or the number of times various com-
binations of the attributes appear. Correspondence Analysis is a process of identifying,
quantifying, separating and plotting associations among the characteristics and relation-
ships among the various levels. In a two-way contingency table, we identify, separate and
plot associations between the two characteristics and attempt to identify relationships be-
tween row and column labels.
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15.4.1. Two-way contingency table

Consider the following example. A random sample of 100 persons from a certain town-
ship are classified according to their educational level and their liberal disposition. In the
frequency Table 15.4.1, theAj ’s represent their dispositions and theBj ’s, their educational
levels, with A1 ≡ tolerant, A2 ≡ indifferent, A3 ≡ intolerant, B1 ≡ primary school ed-
ucation level, B2 ≡ high school education level, B3 ≡ bachelor’s degree education level,
B4 ≡ master’s and higher degree education level.

Table 15.4.1: A two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 6 14 16 4 40
A2 17 5 8 10 40
A3 7 6 6 1 20
Total 30 25 30 15 100

There are 6 persons having a tolerant disposition and primary school level of education.
There is one person with an intolerant disposition and a master’s degree or a higher level
of education, and so on. The marginal sums are also provided in the table. For example, the
total number of persons having a primary school level of education is 30, the total number
of persons having an intolerant disposition is 20, and so on. The corresponding relative
frequencies (a given frequency divided by 100, the total frequency) are as follows (Table
15.4.2):

Table 15.4.2: Relative frequencies fij in the two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 0.06(f11) 0.14(f12) 0.16(f13) 0.04(f14) 0.40(f1.)
A2 0.17(f21) 0.05(f22) 0.08(f23) 0.10(f24) 0.40(f2.)
A3 0.07(f31) 0.06(f32) 0.06(f33) 0.01(f34) 0.20(f3.)
Total 0.30(f.1) 0.25(f.2) 0.30(f.3) 0.15(f.4) 1.00(f..)

The relative frequencies are denoted in parentheses by fij where the summation with
respect to a subscript is designated by a dot, that is, fi. = ∑

j fij , f.j = ∑
i fij and

f.. = ∑
i

∑
j fij . Note that f.. = 1. In a general notation, a two-way contingency table

and the corresponding relative frequencies are displayed as follows (Table 15.4.3):
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Table 15.4.3: A two-way contingency table and a table of relative frequencies

↓ → B1 B2 · · · Bs Total
A1 n11 n12 · · · n1s n1.
A2 n21 n22 · · · n2s n2.
...

...
...

. . .
...

...

Ar nr1 nr2 · · · nrs nr.

Total n.1 n.2 · · · n.s n.. = n

,

↓ → B1 B2 · · · Bs Total
A1 f11 f12 · · · f1s f1.
A2 f21 f22 · · · f2s f2.
...

...
...

. . .
...

...

Ar fr1 fr2 · · · frs fr.

Total f.1 f.2 · · · f.s f.. = 1

Letting the true probability of the occurrence of an observation in the (i, j)-th cell be
pij , the following is the table of true probabilities:

Table 15.4.4: True probabilities pij in a two-way contingency table

↓ → B1 B2 · · · Bs Total
A1 p11 p12 · · · p1s p1.

A2 p21 p22 · · · p2s p2.
...

...
...

. . .
...

...

Ar pr1 pr2 · · · prs pr.

Total p.1 p.2 · · · p.s p.. = 1

These are multinomial probabilities and, in this case, the nij ’s become multinomial
variables. An estimate of pij , denoted by p̂ij , is p̂ij = fij , the corresponding relative
frequency. The marginal sums in Table 15.4.4 can be interpreted as follows: p1. = the
probability of finding an item in the first row or the probability of an event will have the
attribute A1; p.j = the probability that an event will have the characteristic Bj , and so on.
Thus,

p̂ij = fij = nij

n
, p̂i. = ni.

n
, p̂.j = n.j

n
, i = 1, . . . , r, j = 1, . . . , s.

If Ai and Bj are respectively interpreted as the event that an observation will belong to
the i-th row or the event of the occurrence of the characteristic Ai , and the event that an
observation will belong to the j -th column or the event of the occurrence of the attribute
Bj , and if we let pi. = P(Ai) and p.j = P(Bj ), then pij = P(Ai ∩ Bj), where P(Ai)

is the probability of the event Ai , P(Bj ) is the probability of the event Bj , and (Ai ∩
Bj) is the intersection or joint occurrence of the events Ai and Bj . If Ai and Bj are
independent events, P(Ai ∩ Bj) = P(Ai)P (Bj ) or pij = pi.p.j , the product of the
marginal probabilities or the marginal totals in the table of probabilities. That is,
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P(Ai ∩ Bj) = P(Ai)P (Bj ) ⇒ pij = pi.p.j , p̂ij =
(ni.

n

)(n.j

n

)
= ni.n.j

n2
(15.4.1)

for all i and j . In a multinomial distribution, the expected frequency in the (i, j)-th cell
is npij where n is the total frequency. Then, the expected frequency, denoted by E[·], the
maximum likelihood estimate (MLE) of the expected frequency, denoted by Ê[·], and the
MLE of the expected frequency under the hypothesis Ho of independence of events Ai and
Bj , are the following:

E[nij ] = npij , Ê[nij ] = np̂ij = n
(nij

n

)
, np̂ij |Ho = np̂i,p̂.j = n

(ni.

n

)(n.j

n

)
= ni.n.j

n
.

(15.4.2)
Now, referring to our numerical example and the first row of Table 15.4.1, the estimated
expected frequencies, under Ho are: E[n11|Ho] = n1.n.1

n
= 40×30

100 = 12, E[n12|Ho] =
n1.n.2

n
= 40×25

100 = 10, E[n13|Ho] = 40×30
100 = 12, E[n14|Ho] = 40×15

100 = 6. All the
estimated expected frequencies are shown in parentheses next to the observed frequencies
in Table 15.4.5:

Table 15.4.5: A two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 6(12) 14(10) 16(12) 4(6) 40(40)
A2 17(12) 5(10) 8(12) 10(6) 40(40)
A3 7(6) 6(5) 6(6) 1(3) 20(20)
Total 30(30) 25(25) 30(30) 15(15) 100(100)

15.4.2. Some general computations

Let Jr and Js be respectively r × 1 and s × 1 vectors of unities and P be the true
probability matrix, that is,

Jr =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ , Js =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1s

p21 p22 · · · p2s
...

...
. . .

...

pr1 pr2 · · · prs

⎤
⎥⎥⎥⎦ . (15.4.3)

Letting the marginal totals be denoted by R and C ′, we have

R = PJs =

⎡
⎢⎢⎢⎣

p1.

p2.
...

pr.

⎤
⎥⎥⎥⎦ ,

J ′
rP = [p.1, p.2, . . . , p.s] = C′

J ′
rR = 1 = C′Js .

(15.4.4)
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Referring to the initial numerical example, we have the following:

R̂ =

⎡
⎢⎢⎢⎣

p̂1.

p̂2.
...

p̂r.

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

n1./n

n2./n
...

nr./n

⎤
⎥⎥⎥⎦ =

⎡
⎣
40/100
40/100
20/100

⎤
⎦ =

⎡
⎣
0.4
0.4
0.2

⎤
⎦

Ĉ′ = [p̂.1, p̂.2, . . . , p̂.s] =
[n.1

n
, . . . ,

n.s

n

]

= [ 30
100 ,

25
100 ,

30
100 ,

15
100 ] = [0.30, 0.25, 0.30, 0.15].

Writing the bordered matrix P as

⎡
⎢⎢⎢⎢⎢⎣

p11 p12 · · · p1s p1.

p21 p22 · · · p2s p2.
...

...
. . .

...
...

pr1 pr2 · · · prs pr.

p.1 p.2 · · · p.s 1

⎤
⎥⎥⎥⎥⎥⎦

=
[
P R

C′ 1

]
, (15.4.5)

in the numerical example, these quantities are

[
P̂ R̂

Ĉ′ 1

]
=

⎡
⎢⎢⎣
0.06 0.14 0.16 0.04 0.40
0.17 0.05 0.08 0.10 0.40
0.07 0.06 0.06 0.01 0.20
0.30 0.25 0.30 0.15 1.00

⎤
⎥⎥⎦ .

Let Dr and Dc be the following diagonal matrices corresponding respectively to the row
and column marginal probabilities:

Dr =

⎡
⎢⎢⎢⎣

p1. 0 · · · 0
0 p2. · · · 0
...

...
. . .

...

0 0 · · · pr.

⎤
⎥⎥⎥⎦ , Dc =

⎡
⎢⎢⎢⎣

p.1 0 · · · 0
0 p.2 · · · 0
...

...
. . .

...

0 0 · · · p.s

⎤
⎥⎥⎥⎦ or

Dr = diag(p1., p2., . . . , pr.), Dc = diag(p.1, p.2, . . . , p.s). (15.4.6)

In the numerical example, these quantities are

D̂r = diag(0.4, 0.4, 0.2) and D̂c = diag(0.30, 0.25, 0.30, 0.15).
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Now, consider D−1
r P and PD−1

c :

D−1
r P =

⎡
⎢⎢⎢⎣

p11
p1.

p12
p1.

· · · p1s
p1.

p21
p2.

p22
p2.

· · · p2s
p2.

...
...

. . .
...

pr1
pr.

pr2
pr.

· · · prs

pr.

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

R′
1

R′
2
...

R′
r

⎤
⎥⎥⎥⎦ , Rj =

⎡
⎢⎢⎢⎢⎣

pj1
pj.
pj2
pj.

...
pjs

Pj.

⎤
⎥⎥⎥⎥⎦

, (15.4.7)

PD−1
c =

⎡
⎢⎢⎢⎣

p11
p.1

p12
p.2

· · · p1s
p.s

p21
p.1

p22
p.2

· · · p2s
p.s

...
...

. . .
...

pr1
p.1

pr2
p.2

· · · prs

p.s

⎤
⎥⎥⎥⎦ ≡ [C1, . . . , Cs], Cj =

⎡
⎢⎢⎢⎢⎣

p1j
p.j
p2j
p.j

...
prj

p.j

⎤
⎥⎥⎥⎥⎦

. (15.4.8)

Referring to the numerical example, we have

D̂−1
r P̂ =

⎡
⎢⎢⎢⎣

n11/n1. n12/n1. · · · n1s/n1.
n21/n2. n22/n2. · · · n2s/n2.

...
...

. . .
...

nr1/nr. nr2/nr. · · · nrs/nr.

⎤
⎥⎥⎥⎦ =

⎡
⎣
6/40 14/40 16/40 4/40
17/40 5/40 8/40 10/40
7/20 6/20 6/20 1/20

⎤
⎦

D̂−1
r P̂ Js =

⎡
⎣
1
1
1

⎤
⎦

P̂ D̂−1
c =

⎡
⎢⎢⎢⎣

n11/n.1 n12/n.2 · · · n1s/n.s

n21/n.1 n22/n.2 · · · n2s/n.s
...

...
. . .

...

nr1/n.1 nr2/n.2 · · · nrs/n.s

⎤
⎥⎥⎥⎦ =

⎡
⎣
6/30 14/25 16/30 4/15
17/30 5/25 8/30 10/15
7/30 6/25 6/30 1/15

⎤
⎦

J ′
r P̂ D̂−1

c = [1, 1, 1, 1].

For computing the test statistics in vector/matrix notation, we need (15.4.7) and (15.4.8).

15.5. Various Representations of Pearson’s χ2 Statistic

Now, let us consider Pearson’s χ2 statistic for testing the hypothesis that there is no
association between the two characteristics of classification or the hypothesis Ho : pij =
pi.p.j . The χ2 statistic is the following:
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χ2 =
∑
ij

(observed frequency − expected frequency)2

(expected frequency)
=

∑
ij

(nij − ni.n.j

n
)2

ni.n.j

n

(15.5.1)

=
∑
ij

n
(
nij

n
− ni.

n

n.j

n
)2

ni.

n

n.j

n

= n
∑
ij

(p̂ij − p̂i.p̂.j )
2

p̂i.p̂.j

(15.5.2)

=
r∑

i=1

np̂i.

s∑
j=1

[( p̂ij

p̂i.

− p̂.j

)2
/p̂.j

]
(15.5.3)

=
s∑

j=1

np̂.j

r∑
i=1

[( p̂ij

p̂.j

− p̂i.

)2
/p̂i.

]
. (15.5.4)

In order to simplify the notation, we shall omit placing a hat on top of the estimates of
Ri, Cj , R, C, Dc andDr . We may then express the χ2 statistic as the following quadratic
forms:

χ2 =
r∑

i=1

npi.(Ri − C)′D−1
c (Ri − C) (15.5.5)

=
s∑

j=1

np.j (Cj − R)′D−1
r (Cj − R). (15.5.6)

The forms given in (15.5.5) and (15.5.6) are very convenient for extending the theory to
multi-way classifications.

It is well known that, under Ho, Pearson’s χ2 statistic is asymptotically distributed as a
chisquare random variable having (r − 1)(s − 1) degrees of freedom as n → ∞. One can
also express (15.4.8) as a generalized distance between the observed frequencies and the
expected frequencies, which is a quadratic form involving the inverse of the true covariance
matrix of the multinomial distribution of the nij ’s. Then, on applying the multivariate
version of the central limit theorem, it can be established that, as n → ∞, Pearson’s χ2

statistic has a χ2 distribution with (r−1)(s−1) degrees of freedom. For the representation
of Pearson’s χ2 goodness-of-fit statistic as a generalized distance and as a quadratic form,
and for the proof of its asymptotic distribution, the reader may refer to Mathai and Haubold
(2017). There exist other derivations of this result in the literature.

The quadratic forms specified in (15.5.5) and (15.5.6) can also be interpreted as com-
paring the generalized distance between the vectors Ri and C in (15.5.5) and between the
vectors Cj and R in (15.5.6), respectively. These will also be equivalent to testing the hy-
pothesis Ho : pij = pi.p.j . As well, an interpretation can be provided in terms of profile
analysis: then, the test will correspond to testing the hypothesis that the weighted row pro-
files are similar; analogously, using (15.5.6) corresponds to testing the hypothesis that the



Cluster Analysis and Correspondence Analysis 871

column profiles in a two-way contingency table are similar. Now, examine the following
item:

P − RC′ =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1s

p21 p22 · · · p2s
...

...
. . .

...

pr1 pr2 · · · prs

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

p1.

p2.
...

pr.

⎤
⎥⎥⎥⎦ [p.1, p.2, . . . , p.s]

=

⎡
⎢⎢⎢⎣

p11 − p1.p.1 p12 − p1.p.2 · · · p1s − p1.p.s

p21 − p2.p.1 p22 − p2.p.2 · · · p2s − p2.p.s
...

...
. . .

...

prs − pr.p.1 pr2 − pr.p.2 · · · prs − pr.p.s

⎤
⎥⎥⎥⎦ .

Referring to our numerical example, these quantities are the following:

P̂ − R̂Ĉ′ =
⎡
⎢⎣

n11
n

− n1.n.1
n2

· · · n1s
n

− n1.n.s

n2
...

. . .
...

nr1
n

− nr.n.1
n2

· · · nrs

n
− nr.n.s

n2

⎤
⎥⎦ = 1

100
×

⎡
⎣
6 − (40)(30)/100 14 − (40)(25)/100 16 − (40)(30)/100 4 − (40)(15)/100
17 − (40)(30)/100 5 − (40)(25)/100 8 − (40)(30)/100 10 − (40)(15)/100
7 − (20)(30)/100 6 − (20)(25)/100 6 − (20)(30)/100 1 − (20)(15)/100

⎤
⎦

=
⎡
⎣

−6 4 4 −2
5 −5 −4 4
1 1 0 −2

⎤
⎦ .

15.5.1. Testing the hypothesis of no association in a two-way contingency table

The observed value of Pearson’s χ2 statistic is

χ2 =
[
(−6)2

12
+ (5)2

12
+ (1)2

6

]
+

[
(4)2

10
+ (−5)2

10
+ (1)2

5

]

+
[
(4)2

12
+ (−4)2

12
+ (0)2

6

]
+

[
(−2)2

6
+ (4)2

6
+ (−2)2

3

]

= 16.88.

Given our data, (r − 1)(s − 1) = (2)(3) = 6, and the tabulated critical value is χ2
6,0.05 =

12.59 at the 5% significance level. Since 12.59 < 16.88, the hypothesis of no association
between the classification attributes is rejected as per the evidence provided by the data.
This χ2 approximation may be questionable since one of the expected cell frequencies is
less that 5. For a proper application of this approximation, the cell frequencies ought to be
at least 5.
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15.6. Plot of Row and Column Profiles

Now, (P − RC′)D−1
c means that the columns of (P − RC ′) are multiplied by

1
p.1

, . . . , 1
p.s

, respectively. Then, (P − RC′)D−1
c (P − RC′)′ is a matrix of all square and

cross product terms involving pij −pi.p.j for all i and j , where the s columns are weighted
by 1

p.j
, and if pre-multiplied by D−1

r , the rows are weighted by 1
p1.

, . . . , 1
pr.

, respectively.

Looking at the diagonal elements, we note that Pearson’s χ2 statistic is nothing but

χ2 = n tr[D−1
r (P − RC′)D−1

c (P − RC′)′] (15.6.1)

= n
∑
ij

(pij − pi.p.j )
2

pi.p.j

(15.6.2)

= n(λ21 + · · · + λ2k) (15.6.3)

where λ21, . . . , λ
2
k are the nonzero eigenvalues of the matrix D−1

r (P −RC′)D−1
c (P −RC′)′

or of the matrix D
− 1

2
r (P −RC′)D−1

c (P −RC′)′D− 1
2

r with k being the rank of P −RC′. For
the numerical example, the observed value of the matrix Y = (yij ) with yij = pij−pi.p.j√

pi.p.j
,

is obtained as follows, observing that

√
n

p̂ij − p̂i.p̂.j√
p̂i.p̂.j

=
[
nij − ni.n.j

n

]/√
ni.n.j /n.

From the representation of P̂ − R̂Ĉ′, we already have the matrix nij − ni.n.j /n, that is,(
(nij − ni.n.j /n)√

ni.n.j /n

)

=
⎡
⎣

(6 − 12)/
√
12 (14 − 10)/

√
10 (16 − 12)/

√
12 (4 − 6)/

√
6

(17 − 12)/
√
12 (5 − 10)/

√
10 (8 − 12)/

√
12 (10 − 6)/

√
6

(7 − 6)/
√
6 (6 − 5)/

√
5 (6 − 6)/

√
6 (1 − 3)/

√
3

⎤
⎦

=
⎡
⎣

−6/
√
12 4/

√
10 4/

√
12 −2/

√
6

5/
√
12 −5/

√
10 −4/

√
12 4/

√
6

1/
√
6 1/

√
5 0/

√
6 −2/

√
3

⎤
⎦ .

Then,

nYY ′ =
⎡
⎢⎣

33
5 −43

6
17

√
2

30

−43
6

103
12 −17

√
2

12
17

√
2

30 −17
√
2

12
17
10

⎤
⎥⎦ . (15.6.4)
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The representation in (15.6.1) has the advantage that

tr[D− 1
2

r (P − RC′)D−1
c (P − RC′)′D− 1

2
r ]

= tr[YY ′], Y = D
− 1

2
r (P − RC′)D− 1

2
c = (yij ),

yij = pij − pi.p.j√
pi.p.j

,
∑

j

nŷ2
ij = χ2 = ntr(Ŷ Ŷ ′). (15.6.5)

Note that Y is r × s and the rank of Y is equal to the rank of P −RC ′, which is k, referring
to (15.6.3). Thus, there are k nonzero eigenvalues associated with the r × r matrix YY ′ as
well as with the s × s matrix Y ′Y , which are λ21, . . . , λ

2
k. Since tr(YY ′) = λ21 + · · · + λ2k,

we can represent Pearson’s χ2 statistic as follows, substituting the estimates of pij , pi.

and p.j , etc:

χ2

n
= tr(YY ′) = λ21 + · · · + λ2k

=
k∑

i=1

p̂i.(R̂i − Ĉ)′D̂−1
c (R̂i − Ĉ) (15.6.6)

=
s∑

j=1

p̂.j (Ĉj − R̂)′D̂−1
r (Ĉj − R̂). (15.6.7)

The expressions given in (15.6.6) and (15.6.7) and the sum of the λ2j ’s are called the total
inertia in a two-way contingency table. We can also define the squared distance between
two rows as

d2
ij(r) = (Ri − Rj)

′D−1
c (Ri − Rj) (15.6.8)

and the squared distance between two columns as

d2
ij(c) = (Ci − Cj)

′D−1
r (Ci − Cj). (15.6.9)

When the distance as specified in (15.6.8) is very small, we may combine the i-th and
j -th rows, if necessary. Sometimes, the cell frequencies are small and we may wish to
combine the small frequencies with other cell frequencies so that the χ2 approximation
of Pearson’s χ2 statistic be more accurate. Then, one can rely on (15.6.8) and (15.6.9) to
determine whether it is indicated to combine rows and columns.

For convenience, let r ≤ s. LetU1, . . . , Ur be the r×1 normalized eigenvectors of YY ′
and let the r × k matrix U = [U1, U2, . . . , Uk], k ≤ r . Let V1, . . . , Vs be the normalized
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eigenvectors of Y ′Y and let the r × k matrix V = [V1, . . . , Vk], k ≤ s. Now, consider the
singular value decomposition

Y = D
− 1

2
r (P − RC′)D− 1

2
c = UΛV ′ (15.6.10)

where UU ′ = Ik = V ′V and Λ = diag(λ1, . . . , λk). Then, we can write

P − RC′ = D
1
2
r UΛV ′D

1
2
c = WΛZ′ (15.6.11)

where W = D
1
2
r U and Z = D

1
2
c V . Let Wj, j = 1, . . . , k, denote the columns

of W = [W1, W2, . . . , Wk] and let Zj, j = 1, . . . , k, denote the columns of Z =
[Z1, Z2, . . . , Zk]. Then, we can write

P − RC′ =
k∑

j=1

λjWjZ
′
j (15.6.12)

where W ′D−1
r W = U ′U = Ik = V ′V = Z′D−1

c Z. Note that P − RC′ is the deviation
matrix under the hypothesis Ho : pij = pi.p.j or

P − RC′ = (pij − pi.p.j ) and Y = (yij ) = D
− 1

2
r (P − RC′)D− 1

2
c =

(
pij − pi.p.j√

pi.p.j

)
.

Thus, the procedure is as follows: If r ≤ s, then compute the r eigenvalues of the r × r

matrix YY ′. If Y is of rank r , YY ′ > O (positive definite), otherwise YY ′ is positive
semi-definite. Let the nonzero eigenvalues of YY ′ be λ21, . . . , λ

2
k, assuming that k is the

number of nonzero eigenvalues of YY ′. These will also be the nonzero eigenvalues of
Y ′Y . Compute the normalized eigenvectors from YY ′ and denote those corresponding to
the nonzero eigenvalues by U = [U1, . . . , Uk] where Uj is the j -th column of U . Letting
the normalized eigenvectors obtained from Y ′Y , which correspond to the same nonzero
eigenvalues, be denoted by V = [V1, . . . , Vk], we have

Y = UΛV ′, Λ = diag(λ1, . . . , λk), YY ′ = UΛ2U ′ and Y ′Y = V Λ2V ′. (15.6.13)

Example 15.6.1. Construct a singular value decomposition of the following matrix Q:

Q =
[−1 1 −1 0

1 1 0 2

]
.
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Solution 15.6.1. Let us compute QQ′ as well as Q′Q and the eigenvalues of QQ′. Since

QQ′ =
[ −1 1 −1 0

1 1 0 2

]
⎡
⎢⎢⎣

−1 1
1 1

−1 0
0 2

⎤
⎥⎥⎦ =

[
3 0
0 6

]
,

the eigenvalues of QQ′ are λ1 = 3 and λ2 = 6. Let us determine the normalized eigen-
vectors of QQ′. Consider the equation [QQ′ − λI ]X = O for λ = 3 and 6, and let
X′ = [x1, x2] and O ′ = [0, 0]. Then, for λ = 3, we see that x2 = 0 and for λ = 6, we note
that x1 = 0. Thus, the normalized solutions are

U1 =
[
1
0

]
and U2 =

[
0
1

]
⇒ U = [U1, U2] =

[
1 0
0 1

]
.

Note that −U1 or −U2 or −U1, −U2 will also satisfy all the conditions, and we could take
any of these forms for convenience. Now, consider the equation (Q′Q − λI)X = O,

where X′ = [x1, x2, x3, x4] and O ′ = [0, 0, 0, 0] for λ = 3, 6. For λ = 3, the coefficient
matrix is

Q′Q − 3I =

⎡
⎢⎢⎣

−1 0 1 2
0 −1 −1 2
1 −1 −2 0
2 2 0 1

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

−1 0 1 2
0 −1 −1 2
0 0 0 0
0 0 0 9

⎤
⎥⎥⎦

by elementary transformations. Observe that x4 = 0 so that −x1+x3 = 0 and −x2−x3 =
0. Thus, one solution or an eigenvector corresponding to λ = 3 and their normalized form
are ⎡

⎢⎢⎣
1

−1
1
0

⎤
⎥⎥⎦ ⇒ V1 = 1√

3

⎡
⎢⎢⎣

1
−1
1
0

⎤
⎥⎥⎦ .

Now, take λ = 6 and consider the equation (Q′Q − 6I )X = O; the coefficient matrix and
its reduced form obtained through elementary transformations are the following:

⎡
⎢⎢⎣

−4 0 1 2
0 −4 −1 2
1 −1 −5 0
2 2 0 −2

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

1 −1 −5 0
0 −4 −1 2
0 0 −21 0
0 0 9 0

⎤
⎥⎥⎦ ,
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which shows that x3 = 0, so that x1 − x2 = 0 and −4x2 + 2x4 = 0. Hence, an eigenvector
and its normalized form are

⎡
⎢⎢⎣
1
1
0
2

⎤
⎥⎥⎦ ⇒ V2 = 1√

6

⎡
⎢⎢⎣
1
1
0
2

⎤
⎥⎥⎦ .

Thus, V = [V1, V2]. As mentioned earlier, we could have −V1 or −V2 or −V1, −V2 as the
normalized eigenvectors. As per our notation,

Λ = diag(
√
3,

√
6) and Q = UΛV ′.

Let us verify this last equality. Since

UΛV ′ =
[
1 0
0 1

] [√
3 0
0

√
6

] [
1√
3

− 1√
3

1√
3

0
1√
6

1√
6

0 2√
6

]

=
[
1 −1 1 0
1 1 0 2

]
,

we should take −V1 to obtain Q. Then,

[U1, U2]
[√

3 0
0

√
6

] [−V ′
1

V ′
2

]
= Q,

which verifies the result and completes the computations.

Now, we shall continue with our row and column profile plots. From (15.6.4), we have

nYY ′ =
⎡
⎢⎣

33
5 −43

6
17

√
2

30

−43
6

103
12 −17

√
2

12
17

√
2

30 −17
√
2

12
17
10

⎤
⎥⎦ and nY ′Y =

⎡
⎢⎢⎢⎢⎣

63
12 −47

√
30

60 −11
3

7
√
2

3

−47
√
30

60
43
10

3
√
30
5 −16

√
15

15

−11
3

3
√
30
5

8
3 −2

√
2

7
√
2

3 −16
√
15

15 −2
√
2 14

3

⎤
⎥⎥⎥⎥⎦

.

The eigenvalues of nYY ′ are λ1 = 15.1369, λ2 = 1.7471 and λ3 = 0 and the normalized
eigenvectors from nYY ′, corresponding to λ1, λ2 and λ3 are U1, U2 , U3, so that U =
[U1, U2, U3] where

U =
⎡
⎣

4.28
−4.99

1

−0.49
−0.22

1

1.41
1.41
1

⎤
⎦ and Λ = diag(

√
15.1369,

√
1.7471, 0).
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For the same eigenvalues λ1, λ2 and λ3, the normalized eigenvectors determined from
nY ′Y , which correspond to the nonzero eigenvalues, are V1 and V2, with

V = [V1, V2] =

⎡
⎢⎢⎣

1.10 −0.84
−1.06 −0.16
−0.83 0.28

1 1

⎤
⎥⎥⎦ .

Since λ3 = 0, k = 2, and we can take the r ×k, that is, 3×2 matrix G = (gij ) = D
− 1

2
r UΛ

to represent the row deviation profiles and the s × k = 4 × 2 matrix H = (hij ) =
D

− 1
2

c V Λ to represent the column deviation profiles. For our numerical example, it follows
from (15.4.6) that

Dr = diag(0.4, 0.4.0.2) ⇒ D
− 1

2
r = diag

( 1

0.63
,

1

0.63
,

1

0.45

)

Dc = diag(0.30, 0.25, 0.30, 0.15) ⇒ D
− 1

2
c = diag(

1

0.55
,

1

0.50
,

1

0.55
,

1

0.39
)

Λ = diag(
√
15.1369,

√
1.7471, 0) = diag(3.89, 1.32, 0).

We only take the first two columns of U and V since λ3 = 0; besides, only the first two
vectors are required for plotting. Let U(1) and V(1) represent the first two columns of U

and V , respectively. Then,D
− 1

2
r U(1)Λwill be equivalent to multiplying the first and second

columns by 3.89 and 1.32, respectively, and multiplying the first and second rows by 1
0.63

and the third row by 1
0.45 . Then, we have

U(1) =
⎡
⎣

4.28 −0.49
−4.99 −0.22

1 1

⎤
⎦ , D

− 1
2

r U(1)Λ =
⎡
⎣

26.42 −1.03
−30.81 −0.46

6.17 2.09

⎤
⎦ ≡ G2

where G2 is the matrix consisting of the first two columns of G. Hence, the points re-
quired for plotting the row profile are: (26.42, −1.03), (−30.81, −0.46), (6.17, 2.09).
These points being far apart, no two rows should be combined. Now, consider the col-

umn profiles: the effect of D
− 1

2
c V(1)Λ is to multiply the columns of V(1) by 3.89 and 1.32,

respectively, and to multiply the rows by 1
0.55 ,

1
0.50 ,

1
0.55 ,

1
0.39 , respectively. Thus,

V(1) =

⎡
⎢⎢⎣

1.10 −0.84
−1.06 −0.16
−0.83 0.28

1 1

⎤
⎥⎥⎦ , D

− 1
2

c V(1)Λ =

⎡
⎢⎢⎣

7.78 −2.02
−8.25 −0.42
−5.87 −0.67
9.97 3.38

⎤
⎥⎥⎦ ≡ H2
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where H2 is the matrix consisting of the first two columns of H . The row profile and the
column profile points are plotted in Fig. 15.6.1 where r next to a point indicates a row
point and c designates a column point. That is, i r indicates the i-th row point and j c, the
j -th column point. It can be seen from this plot that the row points are far apart while the
second and third column points are somewhat close; accordingly, if necessary, the second
and third columns could be combined.

1r
2r

1c

2c
3c

4c

3r

–30 –20 –10 10 20

–2

–1

1

2

3

Figure 15.6.1 Row profile and column profile points

15.7. Correspondence Analysis in a Multi-way Contingency Table

When the data is classified under a number of variables, each variable having a num-
ber of categories, the resulting frequency table is referred to as a multi-way classification.
Correspondence analysis for a multi-way classification involves converting data in a multi-
way classification setting into a two-way classification framework and then, employing the
techniques developed in Sects. 15.5 and 15.6. The first step in this regard consists of creat-
ing an indicator matrix C. In order to illustrate the steps, we will first present an example.
Suppose that 10 persons selected at random from a community, are classified according
to three variables. Variable 1 is gender. Under this variable, we shall consider the cate-
gories male and female. Variable 2 is weight. Under this variable, we are considering three
categories: underweight, normal and overweight. The third variable is education which
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is assumed to have four levels: level 1, level 2, level 3 and level 4. Thus, there are three
variables and 9 categories. The actual data are provided in Table 15.7.1.

Table 15.7.1: Ten persons classified under three variables

Variables
Person # Gender Weight Educational level
1 Female Overweight Level 2
2 Female Normal Level 4
3 Male Underweight Level 1
4 Female Normal Level 3
5 Male Overweight Level 1
6 Male Normal Level 2
7 Female Overweight Level 3
8 Female Underweight Level 4
9 Male Normal Level 3
10 Female Overweight Level 1

Table 15.7.2: Entries of the indicator matrix of the data included in Table 15.7.1

Variables
Gender Weight Educational level

Person # M F U N O L1 L2 L3 L4
1 0 1 0 0 1 0 1 0 0
2 0 1 0 1 0 0 0 0 1
3 1 0 1 0 0 1 0 0 0
4 0 1 0 1 0 0 0 1 0
5 1 0 0 0 1 1 0 0 0
6 1 0 0 1 0 0 1 0 0
7 0 1 1 0 0 0 0 1 0
8 0 1 1 0 0 0 0 0 1
9 1 0 0 1 0 0 0 1 0
10 0 1 0 0 1 1 0 0 0
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Next, we construct the indicator matrix C—distinct from C as defined in (15.4.4)—of
the data displayed in Table 15.7.1. If an item is present, we write 1 in the corresponding
location in Table 15.7.2, and if it is absent, we write 0, thus populating this table where
M≡ Male, F≡ Female, U≡ underweight, N≡ Normal, O ≡ overweight, L1≡ Level 1,
L2≡ Level 2, L3≡ Level 3 and L4≡ Level 4. The resulting indicator matrix C is

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0
1 0 0 0 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that since a person will belong to a single category of every variable, the row sum
of every row will always be equal to the number of variables, which is 3 in the example.
The sum of all the column entries under each variable is the number of items classified (10
in the example). We now convert the data into a two-way classification, which is achieved
by converting C into a Burt matrix B, where B = C ′C. In our example,

B = C′C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 1 2 1 2 1 1 0
0 6 1 2 3 1 1 2 2
1 1 2 0 0 1 0 0 1
2 2 0 4 0 0 1 2 1
1 3 0 0 4 2 1 1 0
2 1 1 0 2 3 0 0 0
1 1 0 1 1 0 2 0 0
1 2 0 2 1 0 0 3 0
0 2 1 1 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Observe that the diagonal blocks in C ′C correspond to the variables, gender, weight and
educational level or gender versus gender, weight versus weight, educational level versus
educational level. These blocks are the following:

[
4 0
0 6

]
,

⎡
⎣
2 0 0
0 4 0
0 0 4

⎤
⎦ ,

⎡
⎢⎢⎣
3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

⎤
⎥⎥⎦ .
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Various two-way contingency tables, namely gender versus weight, gender versus educa-
tional level, weight versus educational level, are combined into one two-way table dis-
playing category versus category. The observed Pearson’s χ2 statistic from C′C is seen to
be 79.85. In this case, the number of degrees of freedom is 8 × 8 = 64 and at 5% level,
the tabulated χ2

64,0.05 ≈ 84 > 79.85; hence, the hypothesis of no association in C ′C is
not rejected. Note that this χ2 approximation is unreliable since the expected frequencies
are small. The most relevant parts in the Burt matrix C ′C are the non-diagonal blocks of
frequencies. The two non-diagonal blocks of the first two rows represent the two-way con-
tingency tables for gender versus weight and gender versus educational level. Similarly,
the non-diagonal block in the third to fifth rows represent the two-way contingency table
for weight versus educational level. These are the following, denoted by A1, A2, A3 re-
spectively, where A1 is the two-way contingency table of gender versus weight, A2 is the
contingency table of gender versus educational level and A3 is the table of weight versus
educational level:

A1 =
[
1 2 1
1 2 3

]
, A2 =

[
2 1 1 0
1 1 2 2

]
, A3 =

⎡
⎣
1 0 0 1
0 1 2 1
2 1 1 0

⎤
⎦ .

The corresponding matrices of expected frequencies, under the hypothesis of no associa-
tion between the characteristics of classification, denoted by E(Ai), i = 1, 2, 3 are

E(A1) =
[
0.8 1.6 1.6
1.2 2.4 2.4

]
, E(A2) =

[
1.2 0.8 1.2 0.8
1.8 1.2 1.8 1.2

]
,

E(A3) =
⎡
⎣
0.6 0.4 0.6 0.4
1.2 0.8 1.2 0.8
1.2 0.8 1.2 0.8

⎤
⎦ .

The observed values of Pearson’s χ2 statistic under the hypothesis of no association in
the contingency table, and the corresponding tabulaled χ2 critical values at the 5% signif-
icance level, are the following: A1 : χ2 = 0.63, χ2

2,0.05 = 5.99 > 0.63; A2 : χ2 =
2.36, χ2

3,0.05 = 7.81 > 2.36; A3 : χ2 = 5.42, χ2
6,0.05 = 12.59 > 5.42; hence the

hypothesis would not be rejected in any of the contingency table if Pearson’s statistic were
applicable. Actually, the χ2 approximation is not appropriate in any of these cases since
the expected frequencies are quite small. Hence, decisions cannot be made on the basis of
Pearson’s statistic in these instances.

Observe that the first column of the matrix C corresponds to the count on “Male”, the
second to the count on “Female”, the third to “Underweight”, the fourth to “Normal”, the
fifth to “Overweight”, the sixth to “Level 1”, the seventh to “Level 2”, the eighth to “Level
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3” and the ninth to “Level 4”. Thus, the columns represent the various characteristics or
the various variables and their categories. So, if we were to plot one column as one point in
the two-dimensional space, then by looking at the points we could determine which points
are close to each other. For example, if the “Overweight” column point is close to the
“Male” column point, then there is possibility of association between “Overweight” and
“Male”. Thus, our aim will be to plot each column of C or each column of C ′C as a point
in two dimensions. For this purpose, we may make use of the plotting technique described
in Sects. 15.5 and 15.6. Consider a singular value decomposition of C = UΛV ′, U ′U =
Ik, V ′V = Ik. If C is r × s, s < r, then U is r × k and V is s × k where k is the number
of nonzero eigenvalues of CC′ as well as those of C′C, and Λ = diag(λ1, . . . , λk) where
λ2j , j = 1, . . . , k, are the nonzero eigenvalues of CC ′ and C′C. In the numerical example,
r = 10 and s = 9. Consider the eigenvalues of C ′C since in this case, the order is smaller
than the order of CC′. Let the nonzero eigenvalues of C ′C be λ21 ≥ · · · ≥ λ2k. From
C′C, compute the normalized eigenvectors corresponding to these nonzero eigenvalues.
This s × k matrix of normalized eigenvectors is V in the singular value decomposition. By
using the same nonzero eigenvalues, compute the normalized eigenvectors from CC ′. This
r × k matrix is U in the singular value decomposition. Since the columns of C and C ′C
represent the various variables and their subdivisions, only the columns are useful for our
geometrical representation, that is, only V will be relevant for plotting the points. Consider
H = V Λ and let λ21 ≥ λ22 ≥ · · · ≥ λ2k. Observe that C = UΛV ′ ⇒ C′ = V ΛU ′ = HU ′.
The rows of C′ represent the various variables and their categories. Let h1, . . . , hs be the
rows of H . Then, we have

h1U
′ = Men-row

h2U
′ = Women-row
...

hsU
′ = Level 4-row.

This shows that the rows h1, . . . , hs represent the various variables and their categories.
Since the first two eigenvalues are the largest ones and V1, V2 are the corresponding eigen-
vectors, we can take it for granted that most of the information about the various variables
and their categories is contained in the first two elements in h1, . . . , hs or in the first two
columns weighted by λ1 and λ2. Accordingly, take the first two columns from H and
denote this submatrix by H(2) where

H(2) =

⎡
⎢⎢⎢⎣

h11 h12

h21 h22
...

...

hs1 hs2

⎤
⎥⎥⎥⎦ .
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Plot the points (h11, h12), (h21, h22), . . . , (hs1, hs2). These s points correspond to the s

columns in the r × s matrix C or the s rows in C ′.

Referring to our numerical example, the eigenvalues are

λ21 = 11.66, λ22 = 5.57, λ23 = 5.28, λ24 = 3.47, λ25 = 2.34,

λ26 = 1, 14, λ27 = 0.54, λ8 = λ9 = 0,

so that k = 7 and the nonzero eigenvalues,
√

λ2j , j = 1, . . . , 7, are

λ1 = 3.41, λ2 = 2.36, λ3 = 2.30, λ4 = 1.86, λ5 = 1.53, λ6 = 1.07, λ7 = 0.73.

Thus, the matrix Λ is

Λ = diag(3.41, 2.36, 2.30, 1.86, 1.53, 1.07, 0.73),

and the

total inertia = 11.66 + 5.57 + 5.28 + 3.47 + 2.34 + 1.14 + 0.54 = 30 = tr(C′C).

Noting that 11.6630 = 0.39 and (11.66+5.57+5.28)
30 = 0.75, we can assert that 75% of the inertia

is accounted for by the first three eigenvalues of C ′C.

The normalized eigenvectors ofC ′C, which correspond to the nonzero eigenvalues and
are denoted by V = [V1, . . . , V7], are the following:

V1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.293826
0.615045
0.138401
0.36352

0.406951
0.248836
0.173839
0.306906
0.179291

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.711194
0.512432

−0.0995834
−0.106977
0.00779839
−0.386116

−0.0833586
0.041766
0.228947

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V3=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.123362
−0.0941084
−0.0879546

0.638327
−0.521119
−0.428293
0.0446188
0.302598
0.110329

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V4=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0732966
0.107206
0.601988
−0.03252

−0.388966
0.167134

−0.164402
−0.357001
0.534772

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0406003
0.0238456
−0.124608
0.110633

0.0784214
−0.206691
0.754879

−0.584142
0.1004

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.115587
−0.0128351
−0.572877
0.408319

0.0361355
0.400243

−0.367304
−0.382451

0.22109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.320998
−0.262335
−0.162227
−0.195339
0.416228

−0.427087
−0.191702
0.0724589
0.604993

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then, the first two eigenvectors weighted by λ1 and λ2 and the points to be plotted are

λ1V1 = 3.41472

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.293826
0.615045
0.138401
0.36352
0.406951
0.248836
0.173839
0.306906
0.179291

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00333
2.10021
0.4726
1.24132
1.38962
0.849704
0.593611

1.048
0.612228

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λ2V2 = 2.36098

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.711194
0.512432

−0.0995834
−0.106977
0.00779839
−0.386116

−0.0833586
0.041766
0.228947

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.67911
1.20984

−0.235114
−0.25257
0.0184118
−0.911613
−0.196808
0.0986087
0.540539

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Points to be plotted :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1.00333, −1.67911)
(2.10021, 1.20984)

(0.4726, −0.235114)
(1.24132, −0.25257)
(1.38962, 0.0184118)

(0.849704, −0.911613)
(0.593611, −0.196808)

(1.048, 0.0986087)
(0.612228, 0.540539)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Men
Women

Underweight
Normal

Overweight
Level 1
Level 2
Level 3
Level 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The plot of these points is displayed in Fig. 15.7.1.

It is seen from the points plotted in Fig. 15.7.1 that the categories underweight and
educational level 2 are somewhat close to each other, which is indicative of a possible
association, whereas the categories underweight and women are the farthest apart.
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Figure 15.7.1 Multiple contingency plot

Exercises 15 (continued)

15.6. In the following two-way contingency table, where the entries in the cells are
frequencies, (1) calculate Pearson’s χ2 statistic and give the representations in (15.5.1)–
(15.5.6); (2) plot the row profiles; (3) plot the column profiles:

↓→ B1 B2 B3 B4

A1 10 15 20 15
A2 15 10 10 5

15.7. Repeat Exercise 15.6 for the following two-way contingency table:

↓→ B1 B2 B3 B4

A1 10 5 15 5
A2 5 10 10 20
A3 10 5 10 5
A4 15 10 5 10

15.8. For the data in (1) Exercise 15.6, (2) Exercise 15.7, and by using the nota-
tions defined in Sects. 15.5 and 15.6, compute the following items: Estimates of (i) A =
D

− 1
2

r (P −RC′)D−1
c (P −RC′)′D− 1

2
r ; (ii) Eigenvalues of A and tr(A); (iii) Total inertia and

proportions of inertia accounted for by the eigenvalues; (iv) The matrix of row-profiles;
(v) The matrix of column-profiles, and make comments.

15.9. Referring to Exercises 15.6 and 15.7, plot the row profiles and column profiles and
make comments.
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15.10. In a used car lot, there are high price, average price and low price cars, the cars
come in the following colors: red, white, blue and silver, and the paint finish is either mat
or shiny. Fourteen customers bought vehicles from this car lot. Their preferences are given
next. (1) Carry out a multiple correspondence analysis, plot the column profiles and make
comments; (2) Create individual two-way contingency tables, analyze these tables and
make comments. The following is the data where the first column indicates the customer’s
serial number:

1 Low price white color mat finish
2 Low price red color shiny finish
3 Average price silver color shiny finish
4 High price red color shiny finish
5 High price blue color shiny finish
6 Average price white color mat finish
7 Average price blue color mat finish
8 High price blue color shiny finish
9 High price red color mat finish
10 Average price silver color mat finish
11 Low price white color shiny finish
12 Average price white color mat finish
13 Average price silver color shiny finish
14 Low price white color shiny finish

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	15 Cluster Analysis and Correspondence Analysis 
	15.1 Introduction
	15.1.1 Clusters
	15.1.2 Distance measures

	15.2 Different Methods of Clustering
	15.2.1 Optimization or partitioning

	15.3 Hierarchical Methods of Clustering
	15.3.1 Single linkage or nearest neighbor method
	15.3.2 Average linking as a modified distance measure
	15.3.3 The centroid method
	15.3.4 The median method
	15.3.5 The residual sum of products method
	15.3.6 Other criteria for partitioning or optimization

	15.4 Correspondence Analysis
	15.4.1 Two-way contingency table
	15.4.2 Some general computations

	15.5 Various Representations of Pearson's χ2 Statistic
	15.5.1 Testing the hypothesis of no association in a two-way contingency table

	15.6 Plot of Row and Column Profiles
	15.7 Correspondence Analysis in a Multi-way Contingency Table


