
Chapter 13

Multivariate Analysis of Variation

13.1. Introduction

We will employ the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital letters
X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of letters
such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for
instance be denoted by A, B, C. A tilde will not be used on constant matrices unless the
point is to be stressed that the matrix is in the complex domain. The determinant of a
square matrix A will be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix X.
Thus, letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.
In this chapter, we only consider analysis of variance (ANOVA) and multivariate anal-

ysis of variance (MANOVA) problems involving real populations. Even though all the
steps involved in the following discussion focusing on the real variable case can readily be
extended to the complex domain, it does not appear that a parallel development of anal-
ysis of variance methodologies in the complex domain has yet been considered. In order
to elucidate the various steps in the procedures, we will first review the univariate case.
For a detailed exposition of the analysis of variance technique in the scalar variable case,
the reader may refer Mathai and Haubold (2017). We will consider the cases of one-way
classification or completely randomized design as well as two-way classification with-
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out and with interaction or randomized block design. With this groundwork in place, the
derivations of the results in the multivariate setting ought to prove easier to follow.

In the early nineteenth century, Gauss and Laplace utilized methodologies that may be
regarded as forerunners to ANOVA in their analyses of astronomical data. However, this
technique came to full fruition in Ronald Fisher’s classic book titled “Statistical Meth-
ods for Research Workers”, which was initially published in 1925. The principle behind
ANOVA consists of partitioning the total variation present in the data into variations at-
tributable to different sources. It is actually the total variation that is split rather than the
total variance, the latter being a fraction of the former. Accordingly, the procedure could be
more appropriately referred to as “analysis of variation”. As has already been mentioned,
we will initially consider the one-way classification model, which will then be extended to
the multivariate situation.

Let us first focus on an experimental design called a completely randomized experi-
ment. In this setting, the subject matter was originally developed for agricultural experi-
ments, which influenced its terminology. For example, the basic experimental unit is re-
ferred to as a “plot”, which is a piece of land in an agricultural context. When an experi-
ment is performed on human beings, a plot translates into an individual. If the experiment
is carried out on some machinery, then a machine corresponds to a plot. In a completely
randomized experiment, a set of n1 + n2 + · · · + nk plots, which are homogeneous with
respect to all factors of variation, are selected. Then, k treatments are applied at random to
these plots, the first treatment to n1 plots, the second treatment to n2 plots, up to the k-th
treatment being applied to nk plots. For instance, if the effects of k different fertilizers on
the yield of a certain crop are to be studied, then the treatments consist of these k fertilizers,
the first treatment meaning one of the fertilizers, the second treatment, another one and so
on, with the k-th treatment corresponding to the last fertilizer. If the experiment involves
studying the yield of corn among k different varieties of corn, then a treatment coincides
with a particular variety. If an experiment consists of comparing k teaching methods, then
a treatment refers to a method of teaching and a plot corresponds to a student. When an
experiment compares the effect of k different medications in curing a certain ailment, then
a treatment is a medication, and so on. If the treatments are denoted by t1, . . . , tk, then
treatment tj is applied at random to nj homogeneous plots or nj homogeneous plots are
selected at random and treatment tj is applied to them, for j = 1, . . . , k. Random assign-
ment is done to avoid possible biases or the influence of confounding factors, if any. Then,
observations measuring the effect of these treatments on the experimental units are made.
For example, in the case of various methods of teaching, the observation xij could be the
final grade obtained by the j -th student who was subjected to the i-th teaching method. In
the case of comparing k different varieties of corn, the observation xij could consist of the
yield of corn observed at harvest time in the j -th plot which received the i-th variety of
corn. Thus, in this instance, i stands for the treatment number and j represents the serial
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number of the plot receiving the i-th treatment, xij being the final observation. Then, the
corresponding linear additive fixed effect model is the following:

xij = μ + αi + eij , j = 1, . . . , ni, i = 1, . . . , k, (13.1.1)

where μ is a general effect, αi is the deviation from the general effect due to treatment ti
and eij is the random component, which includes the sum total contributions originating
from unknown or uncontrolled factors. When the experiment is designed, the plots are
selected so that they be homogeneous with respect to all possible factors of variation.
The general effect μ can be interpreted as the grand average or the expected value of
xij when αi is not present or treatment ti is not applied or has no effect. The simplest
assumption that we will make is that E[eij ] = 0 for all i and j and Var(eij ) = σ 2 >

0 for all i and j and for some positive quantity σ 2, where E[ · ] denotes the expected
value of [ · ]. It is further assumed that μ, α1, . . . , αk are all unknown constants. When
α1, . . . , αk are assumed to be random variables, model (13.1.1) is referred to as a“random
effect model”. In the following discussion, we will solely consider fixed effect models. The
first step consists of estimating the unknown quantities from the data. Since no distribution
is assumed on the eij ’s, and thereby on the xij ’s, we will employ the method of least
squares for estimating the parameters. In that case, one has to minimize the error sum of
squares which is ∑

ij

e2ij =
∑

ij

[xij − μ − αi]2.

Applying calculus principles, we equate the partial derivatives of
∑

ij e2ij with respect to μ

to zero and then, equate the partial derivatives of
∑

ij e2ij with respect to α1, . . . , αk to zero
and solve these equations. A convenient notation in this area is to represent a summation
by a dot. As an example, if the subscript j is summed up, it is replaced by a dot, so that∑

j xij ≡ xi. ; similarly,
∑

ij xij ≡ x.. . Thus,

∂

∂μ

[∑

ij

e2ij

]
= 0 ⇒ −2

∑

ij

[xij − μ − αi] = 0 ⇒
∑

i

(∑

j

[xij − μ − αi]
)

= 0

that is,
∑

i

[xi. − niμ − niαi] = 0 ⇒ x.. − n. μ −
k∑

i=1

niαi = 0,

and since we have taken αi as a deviation from the general effect due to treatment ti, we
can let

∑
i niαi = 0 without any loss of generality. Then, x../n. is an estimate of μ, and

denoting estimates/estimators by a hat, we write μ̂ = x../n.. Now, note that for example
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α1 appears in the terms (x11−μ−α1)
2+· · ·+ (x1n1 −μ−α1)

2 = ∑
j (x1j −μ−α1)

2 but
does not appear in the other terms in the error sum of squares. Accordingly, for a specific
i,

∂

∂αi

[∑

ij

e2ij

]
= 0 ⇒

∑

j

[xij − μ − αi] = 0 ⇒ xi. − niμ̂ − niα̂i = 0,

that is, α̂i = xi.

ni
− μ̂ . Thus,

μ̂ = 1

n.

x.. and α̂i = 1

ni

xi. − μ̂ . (13.1.2)

The least squares minimum is obtained by substituting the least squares estimates of μ and
αi, i = 1, . . . , k, in the error sum of squares. Denoting the least squares minimum by s2,

s2 =
∑

ij

(xij − μ̂ − α̂i)
2 =

∑

ij

[
xij − x..

n.

−
(xi.

ni

− x..

n.

)]2

=
∑

ij

[
xij − xi.

ni

]2 =
∑

ij

[
xij − x..

n.

]2 −
∑

ij

[xi.

ni

− x..

n.

]2
. (13.1.3)

When the square is expanded, the middle term will become −2
∑

ij (
xi.

ni
− x..

n.
)2, thus yield-

ing the expression given in (13.1.3). As well, we have the following identity:

∑

ij

(xi.

ni

− x..

n.

)2 =
k∑

i=1

ni

(xi.

ni

− x..

n.

)2 =
∑

i

x2
i.

ni

− x2
..

n.

.

Now, let us consider the hypothesis Ho : α1 = α2 = · · · = αk, which is equivalent to
the hypothesis α1 = α2 = · · · = αk = 0 since, by assumption,

∑
i niαi = 0. Proceeding

as before, the least squares minimum, under the null hypothesis Ho, denoted by s20 , is the
following:

s20 =
∑

ij

(
xij − x..

n.

)2

and hence the sum of squares due to the hypothesis or due to the presence of the αj ’s, is
given by s20 − s2 = ∑

ij (
xi.

ni
− x..

n.
)2. Thus, the total variation is partitioned as follows:

s20 = [s20 − s2] + [s2]
∑

ij

(
xij − x..

n.

)2 =
[∑

i

ni

(xi.

ni

− x..

n.

)2] +
[∑

ij

(
xij − xi.

ni

)2]
, that is,

Total variation (s20)=variation due to the αj ’s (s20 − s2)+the residual variation (s2),
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which is the analysis of variation principle. If eij
iid∼ N1(0, σ 2) for all i and j where

σ 2 > 0 is a constant, it follows from the chisquaredness and independence of quadratic

forms, as discussed in Chaps. 2 and 3, that
s20
σ 2 ∼ χ2

n.−1, a real chisquare variable having

n. − 1 degrees of freedom,
[s20−s2]

σ 2 ∼ χ2
k−1 under the hypothesis Ho and s2

σ 2 ∼ χ2
n.−k,

where the sum of squares due to the αj ’s, namely s20 − s2, and the residual sum of squares,
namely s2, are independently distributed under the hypothesis. Usually, these findings
are put into a tabular form known as the analysis of variation table or ANOVA table. The
usual format is as follows:

ANOVA Table for the One-Way Classification

Variation due to df SS MS
(1) (2) (3) (3)/(2)

treatments k − 1
∑

i ni(
xi.

ni
− x..

n.
)2 (s20 − s2)/(k − 1)

residuals n. − k
∑

ij (xij − xi.

ni
)2 s2/(n. − k)

total n. − 1
∑

ij (xij − x..

n.
)2

where df denotes the number of degrees of freedom, SS means sum of squares and MS

stands for mean squares or the average of the squares. There is usually a last column which
contains the F-ratio, that is, the ratio of the treatments MS to the residuals MS, and enables
one to determine whether to reject the null hypothesis, in which case the test statistic is
said to be “significant”, or not to reject the null hypothesis, when the test statistic is “not
significant”. Further details on the real scalar variable case are available from Mathai and
Haubold (2017).

In light of this brief review of the scalar variable case of one-way classification data
or univariate data secured from a completely randomized design, the concepts will now be
extended to the multivariate setting.

13.2. Multivariate Case of One-Way Classification Data Analysis

Extension of the results to the multivariate case is parallel to the scalar variable case.
Consider a model of the type

Xij = M + Ai + Eij , j = 1, . . . , ni, i = 1, . . . , k, (13.2.1)

with Xij , M, Ai and Eij all being p × 1 real vectors where Xij denotes the j -th observa-
tion vector in the i-th group or the observed vectors obtained from the ni plots receiving
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the i-th vector of treatments, M is a general effect vector, Ai is a vector of deviations from
M due to the i-th treatment vector so that

∑
i niAi = O since we are taking deviations

from the general effect M , and Eij is a vector of random components assumed to be nor-

mally distributed as follows: Eij
iid∼ Np(O, Σ), Σ > O, for all i and j where Σ is a

positive definite covariance matrix, that is,

Cov(Eij ) = E[(Eij − O)(Eij − O)′] = E[EijE
′
ij ] = Σ > O for all i and j,

whereE[ · ] denotes the expected value operator. This normality assumption will be needed
for testing hypotheses and developing certain distributional aspects. However, the multi-
variate analysis of variation can be set up without having to resort to any distributional
assumption. In the real scalar variable case, we minimized the sum of the squares of the
errors since the variations only involved single scalar variables. In the vector case, if we
take the sum of squares of the elements in Eij , that is, E′

ijEij and its sum over all i and j ,
then we are only considering the variations in the individual elements of Eij ’s; however,
in the vector case, there is joint variation among the elements of the vector and that is also
to be taken into account. Hence, we should be considering all squared terms and cross
product terms or the whole matrix of squared and cross product terms. This is given by
EijE

′
ij and so, we should consider this matrix and carry out some type of minimization.

Consider ∑

ij

EijE
′
ij =

∑

ij

[Xij − M − Ai][Xij − M − Ai]′. (13.2.2)

For obtaining estimates of M and Ai, i = 1, . . . , k, we will minimize the trace of∑
ij EijE

′
ij as a criterion. There are terms of the type [Xij − M − Ai]′[Xij − M − Ai] in

this trace. Thus,

∂

∂M

[
tr
(∑

ij

EijE
′
ij

)]
=

∑

ij

∂

∂M
[Xij − M − Ai]′[Xij − M − Ai] = O

⇒
∑

ij

Xij − n.M −
∑

i

niAi = O ⇒ M̂ = 1

n.

X.. ,

noting that we assumed that
∑

i niAi = O. Now, on differentiating the trace of EijE
′
ij

with respect to Ai for a specific i, we have

∂

∂Ai

tr
[∑

ij

EijE
′
ij

]
= ∂

∂Ai

∑

ij

[Xij − M − Ai]′[Xij − M − Ai] = O

⇒
∑

j

[Xij − M − Ai] = O ⇒ Âi = 1

ni

Xi. − M̂ = 1

ni

Xi. − 1

n.

X.. .
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Observe that there is only one critical vector for M̂ and for Âi, i = 1, . . . , k. Accordingly,
the critical point will either correspond to a minimum or a maximum of the trace. But
for arbitrary M and Ai , the maximum occurs at plus infinity and hence, the critical point
(M̂, Âi, i = 1, . . . , k) corresponds to a minimum. Once evaluated at these estimates, the
sum of squares and cross products matrix, denoted by S, is the following:

S =
∑

ij

[Xij − M̂ − Âi][Xij − M̂ − Âi]′ =
∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′

=
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′ −
∑

i

ni

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′

(13.2.3)

Note that as in the scalar case, the middle terms and the last term will combine into the
second term above. Now, let us impose the hypothesis Ho : A1 = A2 = · · · = Ak =
O. Note that equality of the Aj ’s will automatically imply that each one is null because
the weighted sum is null as per our initial assumption in the model (13.2.1). Under this
hypothesis, the model will be Xij = M + Eij , and then proceeding as in the univariate
case, we end up with the following sum of squares and cross products matrix, denoted by
S0:

S0 =
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′
, (13.2.4)

so that the sum of squares and cross products matrix due to the Ai’s is the difference

S0 − S =
∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′
. (13.2.5)

Thus, the following partitioning of the total variation in the multivariate data:

S0 = [S0 − S] + S

Total variation = [Variation due to the Ai’s] + [Residual variation]
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′ =
∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′

+
∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′
.

Under the normality assumption for the random component Eij
iid∼ Np(O, Σ), Σ >

O, we have the following properties, which follow from results derived in Chap. 5, the
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notation Wp(ν, Σ) standing for a Wishart distribution having ν degrees of freedom and
parameter matrix Σ :

Total variation = S0 =
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′
,

S0 ∼ Wp(n. − 1, Σ);
Variation due to the Ai’s = S0 − S =

∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′
,

S0 − S ∼ Wp(k − 1, Σ) under the hypothesis A1 = A2 = · · · = Ak = O;
Residual variation = S =

∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′
,

S ∼ Wp(n. − k, Σ).

We can summarize these findings in a tabular form known as the multivariate analysis of
variation table or MANOVA table, where df means degrees of freedom in the correspond-
ingWishart distribution, and SSP represents the sum of squares and cross products matrix.

Multivariate Analysis of Variation (MANOVA) Table

Variation due to df SSP

treatments k − 1
∑

ij [ 1
ni

Xi. − 1
n.

X..][ 1
ni

Xi. − 1
n.

X..]′
residuals n. − k

∑
ij [Xij − 1

ni
Xi.][Xij − 1

ni
Xi.]′

total n. − 1
∑

ij [Xij − 1
n.

X..][Xij − 1
n.

X..]′

13.2.1. Some properties

The sample values from the i-th sample or the i-th group or the plots receiving the i-th
treatment are Xi1, Xi2, . . . , Xini

. In this case, the average is
∑ni

j=1
Xij

ni
= Xi.

ni
and the i-th

sample sum of squares and products matrix is

Si =
ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′
.

As well, it follows from Chap. 5 that Si ∼ Wp(ni − 1, Σ) when Eij
iid∼ Np(O, Σ), Σ >

O. Then, the residual sum of squares and products matrix can be written as follows, de-
noting it by the matrix V :
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V =
∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′ =
k∑

i=1

[ ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′]

=
k∑

i=1

Si = S1 + S2 + · · · + Sk (13.2.6)

where Si ∼ Wp(ni − 1, Σ), i = 1, . . . , k, and the Si’s are independently distributed
since the sample values from the k groups are independently distributed among themselves
(within the group) and between groups. Hence, S ∼ Wp(ν, Σ), ν = (n1−1)+ (n2−1)+
· · · + (nk − 1) = n. − k. Note that X̄i = Xi.

ni
has Cov(X̄i) = 1

ni
Σ , so that

√
ni(X̄i − X̄)

are iid Np(O, Σ) where X̄ = X../n. . Then, the sum of squares and products matrix due
to the treatments or due to the Ai’s is the following, denoting it by U :

U =
k∑

i=1

ni

[Xi.

ni

− X..

n.

][Xi.

ni

− X..

n.

]′ ∼ Wp(k − 1, Σ) (13.2.7)

under the null hypothesis; when the hypothesis is violated, it is a noncentral Wishart dis-
tribution. Further, the sum of squares and products matrix due to the treatments and the
residual sum of squares and products matrix are independently distributed. Thus, by com-
paring U and V , we should be able to reach a decision regarding the hypothesis. One
procedure that is followed is to take the determinants of U and V and compare them.
This does not have much of a basis and determinants should not be called “generalized
variance” as previously explained since the basic condition of a norm is violated by the
determinant. The basis for comparing determinants will become clear from the point of
view of testing hypotheses by applying the likelihood ratio criterion, which is discussed
next.

13.3. The Likelihood Ratio Criterion

Let Eij
iid∼ Np(O, Σ), Σ > O, and suppose that we have simple random samples

of sizes n1, . . . , nk from the k groups relating to the k treatments. Then, the likelihood
function, denoted by L, is the following:

L =
∏

ij

e− 1
2 (Xij−M−Ai)

′Σ−1(Xij−M−Ai)

(2π)
p
2 |Σ | 12

= e− 1
2

∑
ij (Xij−M−Ai)

′Σ−1(Xij−M−Ai)

(2π)
pn.
2 |Σ | n.

2
. (13.3.1)
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The maximum likelihood estimators/estimates (MLE’s) of M is M̂ = X..

n.
= X̄ and that

of Ai is Âi = Xi.

ni
− M̂ . With a view to obtaining the MLE of Σ , we first note that the

exponent is a real scalar quantity which is thus equal to its trace, so that we can express
the exponent as follows, after substituting the MLE’s of M and Ai :

−1

2

∑

ij

[Xij − M̂ − Âi]′Σ−1[Xij − M̂ − Âi]

= −1

2

∑

ij

tr
([

Xij − Xi.

ni

]′
Σ−1

[
Xij − Xi.

ni

])

= −1

2

∑

ij

tr
(
Σ−1

[
Xij − Xi.

ni

][
Xij − Xi.

ni

]′)
.

Now, following through the estimation procedure of the MLE included in Chap. 3, we
obtain the MLE of Σ as

Σ̂ = 1

n.

∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′
. (13.3.2)

After substituting M̂, Âi and Σ̂ , the exponent in the likelihood ratio criterion λ becomes
−1

2n. tr(Ip) = −1
2n.p. Hence, the maximum value of the likelihood function L under the

general model becomes

maxL = e− 1
2 (n.p)n

n.p
2

.

(2π)
n.p
2 |∑ij (Xij − Xi.

ni
)(Xij − Xi.

ni
)′| . (13.3.3)

Under the hypothesis Ho : A1 = A2 = · · · = Ap = O, the model is Xij = M + Eij and
the MLE of M under Ho is still 1

n.
X.. and Σ̂ under Ho is 1

n.

∑
ij (Xij − 1

n.
X..)(Xij − 1

n.
X..)

′,
so that maxL under Ho, denoted by maxLo, is

maxLo = e− 1
2n.pn

n.p
2

.

(2π)
n.p
2 |∑ij (Xij − 1

n.
X..)(Xij − 1

n.
X..)′| n.

2
. (13.3.4)

Therefore, the λ-criterion is the following:

λ = maxLo

maxL
= |∑ij (Xij − Xi.

ni
)(Xij − Xi.

ni
)′| n.

2

|∑ij (Xij − X..

n.
)(Xij − X..

n.
)′| n.

2

= |V | n.
2

|U + V | n.
2

(13.3.5)
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where

U =
∑

ij

(Xi.

ni

− X..

n.

)(Xi.

ni

− X..

n.

)′
, V =

∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′

and U ∼ Wp(k − 1, Σ) under Ho is the sum of squares and cross products matrix due
to the Ai’s and V ∼ Wp(n. − k, Σ) is the residual sum of squares and cross prod-
ucts matrix. It has already been shown that U and V are independently distributed. Then
W1 = (U +V )− 1

2V (U +V )− 1
2 , with the determinant |V |

|U+V | , is a real matrix-variate type-1

beta with parameters (n.−k
2 , k−1

2 ), as defined in Chap. 5, and W2 = V − 1
2UV − 1

2 is a real
matrix-variate type-2 beta with the parameters (k−1

2 , n.−k
2 ). Moreover, Y1 = I − W1 =

(U + V )− 1
2U(U + V )− 1

2 with |U |
|U+V | is a real matrix-variate type-1 beta random vari-

ables with parameters (k−1
2 , n.−k

2 ). Given the properties of independent real matrix-variate
gamma random variables, we have seen in Chap. 5 that W1 and Y2 = U + V are indepen-
dently distributed. Similarly, Y1 = I − W1 and Y2 are independently distributed. Further,
W−1

2 = V
1
2U−1V

1
2 is a real matrix-variate type-2 beta random variable with the parame-

ters (n.−k
2 , k−1

2 ). Observe that

|W1| = |V |
|U + V | = 1

|V − 1
2UV − 1

2 + I |
= 1

|W2 + I | , W1 = (I + W2)
−1.

A one-to-one function of λ is

w = λ
2
n. = |V |

|U + V | = |W1|. (13.3.6)

13.3.1. Arbitrary moments of the likelihood ratio criterion

For an arbitrary h, the h-th moment of w as well as that of λ can be obtained from
the normalizing constant of a real matrix-variate type-1 beta density with the parameters
(n.−k

2 , k−1
2 ). That is,

E[wh] = Γp(n.−k
2 + h)

Γp(n.−k
2 )

Γp(n.−1
2 )

Γp(n.−1
2 + h)

, (n. − k) + (k − 1) = n. − 1,

=
⎧
⎨

⎩

p∏

j=1

Γ (n.−1
2 − j−1

2 )

Γ (n.−k
2 − j−1

2 )

⎫
⎬

⎭

⎧
⎨

⎩

p∏

j=1

Γ (n.−k
2 − j−1

2 + h)

Γ (n.−1
2 − j−1

2 + h)

⎫
⎬

⎭ . (13.3.7)
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As E[λh] = E[wn.
2 ]h = E[w(n.

2 )h], the h-th moment of λ is obtained by replacing h by
(n.

2 )h in (13.3.7). That is,

E[λh] = Cp,k

⎧
⎨

⎩

p∏

j=1

Γ (n.−k
2 − j−1

2 + (n.

2 )h)

Γ (n.−1
2 − j−1

2 + (n.

2 )h)

⎫
⎬

⎭ (13.3.8)

where

Cp.k =
⎧
⎨

⎩

p∏

j=1

Γ (n.−1
2 − j−1

2 )

Γ (n.−k
2 − j−1

2 )

⎫
⎬

⎭ .

13.3.2. Structural representation of the likelihood ratio criterion

It can readily be seen from (13.3.7) that the h-th moment of w is of the form of the h-th
moment of a product of independently distributed real scalar type-1 beta random variables.
That is,

E[wh] = E[w1w2 · · · wp]h, w = w1w2 · · · wp, (13.3.9)

wherew1, . . . , wp are independently distributed andwj is a real scalar type-1 beta random
variable with the parameters (n.−k

2 − j−1
2 , k−1

2 ), j = 1, . . . , p, for n. − k > p − 1 and
n. > k + p − 1. Hence the exact density of w is available by constructing the density
of a product of independently distributed real scalar type-1 beta random variables. For
special values of p and k, one can obtain the exact densities in the forms of elementary
functions. However, for the general case, the exact density corresponding to E[wh] as
specified in (13.3.7) can be expressed in terms of a G-function and, in the case of E[λh]
as given in (13.3.8), the exact density can be represented in terms of an H-function. These
representations are as follows, denoting the densities of w and λ as fw(w) and fλ(λ),
respectively:

fw(w) = Cp,k Gp,0
p,p

[
w

∣∣∣
n.−1
2 − j−1

2 −1, j=1,...,p

n.−k
2 − j−1

2 −1, j=1,...,p

]
, 0 < w ≤ 1, (13.3.10)

fλ(λ) = Cp,k Hp,0
p,p

[
λ

∣∣∣
( n.−1

2 − j−1
2 − n.

2 , n.
2 ), j=1,...,p

( n.−k
2 − j−1

2 − n.
2 , n.

2 ), j=1,...,p

]
, 0 < λ ≤ 1, (13.3.11)

for n. > p + k − 1, p ≥ 1 and fw(w) = 0, fλ(λ) = 0, elsewhere. The evaluation of
G and H-functions can be carried out with the help of symbolic computing packages such
as Mathematica and MAPLE. Theoretical considerations, applications and several special
cases of the G and H-functions are, for instance, available fromMathai (1993) and Mathai,
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Saxena and Haubold (2010). The special cases listed therein can also be utilized to work
out the densities for particular cases of (13.3.10) and (13.3.11). Explicit structures of the
densities for certain special cases are listed in the next section.

13.3.3. Some special cases

Several particular cases can be worked out by examining the moment expressions

in (13.3.7) and (13.3.8). The h-th moment of the w = λ
2
n. , where λ is the likelihood

ratio criterion, is available from (13.3.7) as

E[wh] = Cp,k

Γ (n.−k
2 + h)Γ (n.−k

2 − 1
2 + h) · · · Γ (n.−k

2 − p−1
2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h) · · · Γ (n.−1

2 − p−1
2 + h)

. (i)

Case (1): p = 1

In this case, from (i),

E[wh] = C1,k
Γ (n.−k

2 + h)

Γ (n.−1
2 + h)

,

which is the h-th moment of a real scalar type-1 beta random variable with the parameters
(n.−k

2 , k−1
2 ) and, in this case, w is simply a real scalar type-1 beta random variable with

the parameters (n.−k
2 , k−1

2 ). We reject the null hypothesis Ho : A1 = A2 = · · · = Ak = O

for small values of the λ-criterion and, accordingly, we reject Ho for small values of w

or the hypothesis is rejected when the observed value of w ≤ wα where wα is such that∫ wα

0 fw(w)dw = α for the preassigned size α of the critical region, fw(w) denoting the
density of w for p = 1, n. > k.

Case (2): p = 2

From (i), we have

E[wh] = C2,k
Γ (n.−k

2 + h)Γ (n.−k
2 − 1

2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

and therefore

E[w 1
2 ]h = C2,k

Γ (n.−k
2 + h

2 )Γ (n.−k
2 − 1

2 + h
2 )

Γ (n.−1
2 + h

2 )Γ (n.−1
2 − 1

2 + h
2 )

. (ii)

The gamma functions in (ii) can be combined by making use of a duplication formula for
gamma functions, namely,

Γ (z)Γ (z + 1/2) = π
1
2 21−2zΓ (2z). (13.3.12)
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Take z = n.−k
2 − 1

2 + h
2 and z = n.−1

2 − 1
2 + h

2 in the part containing h and in the constant
part wherein h = 0, and then apply formula (13.3.12) to obtain

E[w 1
2 ]h = Γ (n. − 2)

Γ (n. − k − 1)

Γ (n. − k − 1 + h)

Γ (n. − 2 + h)
,

which is, for an arbitrary h, the h-th moment of a real scalar type-1 beta random variable
with parameters (n. − k − 1, k − 1) for n. − k − 1 > 0, k > 1. Thus, y = w

1
2 is a real

scalar type-1 beta random variable with the parameters (n. − k − 1, k − 1). We would then
reject Ho for small values of w, that is, for small values of y or when the observed value
of y ≤ yα with yα such that

∫ yα

0 fy(y)dy = α for a preassigned probability of type-I error
which is the error of rejecting Ho when Ho is true, where fy(y) is the density of y for
p = 2 whenever n. > k + 1.

Case (3): k = 2, p ≥ 1, n. > p + 1

In this case, the h-th moment of w as specified in (13.3.7) is the following:

E[wh] = Cp,2
Γ (n.−2

2 + h)Γ (n.−2
2 − 1

2 + h) · · · Γ (n.−2
2 − p−1

2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h) · · · Γ (n.−1

2 − p−1
2 + h)

= Cp,2
Γ (n.−1

2 − p
2 + h)

Γ (n.−1
2 + h)

since the numerator gamma functions, except the last one, cancel with the denominator
gamma functions except the first one. This expression happens to be the h-th moment of
a real scalar type-1 beta random variable with the parameters (

n.−1−p
2 ,

p
2 ) and hence, for

k = 2, n. −1−p > 0 and p ≥ 1, w is a real scalar type-1 beta random variable. Then, we
reject the null hypothesis Ho for small values of w or when the observed value of w ≤ wα,

with wα such that
∫ wα

0 fw(w)dw = α for a preassigned significance level α, fw(w) being
the density of w for this case. We will use the same notation fw(w) for the density of w in
all the special cases.

Case (4): k = 3, p ≥ 1

Proceeding as in Case (3), we see that all the gammas in the h-th moment of w cancel
out except the last two in the numerator and the first two in the denominator. Thus,

E[wh] = Cp,3
Γ (n.−3

2 + 1
2 − p−1

2 + h)Γ (n.−3
2 − p−1

2 )

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

= Cp,3
Γ (n.−1

2 − p
2 + h)Γ (n.−1

2 − p
2 − 1

2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

.
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After combining the gammas in y = w
1
2 with the help of the duplication formula (13.3.12),

we have the following:

E[yh] = Γ (n. − 2)

Γ (n. − 2 − p)

Γ (n. − p − 2 + h)

Γ (n. − 2 + h)
.

Therefore, y = w
1
2 is a real scalar type-1 random variable with the parameters (n. − p −

2, p). We reject the null hypothesis for small values of y or when the observed value of
y ≤ yα, with yα such that

∫ yα

0 fy(y)dy = α for a preassigned significance level α. We
will use the same notation fy(y) for the density of y in all special cases.

We can also obtain some special cases for t1 = 1−w
w

and t2 = 1−y
y

, with y = √
w.

With this transformation, t1 and t2 will be available in terms of type-2 beta variables in
the real scalar case, which conveniently enables us to relate this distribution to real scalar
F random variables so that an F table can be used for testing the null hypothesis and
reaching a decision. We have noted that

w = |V |
|U + V | = |(U + V )−

1
2V (U + V )−

1
2 | = |W1|

= 1

|V − 1
2UV − 1

2 + I |
= 1

|W2 + I |
where W1 is a real matrix-variate type-1 beta random variable with the parameters
(n.−k

2 , k−1
2 ) and W2 is a real matrix-variate type-2 beta random variable with the parame-

ters (k−1
2 , n.−k

2 ). Then, when p = 1, W1 and W2 are real scalar variables, denoted by w1

and w2, respectively. Then for p = 1, we have one gamma ratio with h in the general h-th
moment (13.3.7) and then,

t1 = 1 − w

w
= 1

w
− 1 = (w2 + 1) − 1 = w2

where w2 is a real scalar type-2 beta random variable with the parameters (
p−1
2 , n.−k

2 ).
As well, in general, for a real matrix-variate type-2 beta matrix W2 with the parameters
(ν1
2 , ν2

2 ), we have ν2
ν1

W2 = Fν1,ν2 where Fν1,ν2 is a real matrix-variate F matrix random
variable with degrees of freedom ν1 and ν2. When p = 1 or in the real scalar case ν2

ν1
w2 =

Fν1,ν2 where, in this case, F is a real scalar F random variable with ν1 and ν2 degrees of
freedom. We have used F for the scalar and matrix-variate case in order to avoid too many
symbols. For p = 2, we combine the gamma functions in the numerator and denominator
by applying the duplication formula for gamma functions (13.3.12); then, for t2 = 1−y

y
the

situation turns out to be the same as in the case of t1, the only difference being that in the
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real scalar type-2 beta w2, the parameters are (k − 1, n. − k − 1). Note that the original
k−1
2 has become k − 1 and the original n.−k

2 has become n. − k − 1. Thus, we can state the
following two special cases.

Case (5): p = 1, t1 = 1−w
w

As was explained, t1 is a real type-2 beta random variable with the parameters
(k−1

2 , n.−k
2 ), so that

n. − k

k − 1
t1 � Fk−1,n.−k,

which is a real scalar F random variable with k − 1 and n. − k degrees of freedom.
Accordingly, we reject Ho for small values of w and y, which corresponds to large values
of F . Thus, we reject the null hypothesis Ho whenever the observed value of Fk−1,n.−k ≥
Fk−1,n.−k,α where Fk−1,n.−k,α is the upper 100α% percentage point of the F distribution
or

∫ ∞
a

g(F )dF = α where a = Fk−1,n.−k,α and g(F ) is the density of F in this case.

Case (6): p = 2, t2 = 1−y
y

, y = √
w

As previously explained, t2 is a real scalar type-2 beta random variable with the pa-
rameters (k − 1, n. − k − 1) or

n. − k − 1

k − 1
t2 � F2(k−1),2(n.−k−1),

which is a real scalar F random variable having 2(k − 1) and 2(n. − k − 1) degrees of
freedom. We reject the null hypothesis for large values of t2 or when the observed value of
[n.−k−1

k−1 ]t2 ≥ b with b such that
∫ ∞
b

g(F )dF = α, g(F ) denoting in this case the density
of a real scalar random variable F with degrees of freedoms 2(k − 1) and 2(n. − k − 1),
and b = F2(k−1),2(n.−k−1),α.

Case (7): k = 2, p ≥ 1, t1 = 1−w
w

For the case k = 2, we have already seen that the gamma functions with h in their
arguments cancel out, leaving only one gamma in the numerator and one gamma in the
denominator, so that w is distributed as a real scalar type-1 beta random variable with the
parameters (

n.−1−p
2 ,

p
2 ). Thus, t1 = 1−w

w
is a real scalar type-2 beta with the parameters

(
p
2 ,

n.−p−1
2 ), and

[n. − 1 − p

p

]
t1 � Fp,n.−1−p,

which is a real scalar F random variable having p and n. − 1 − p degrees of freedom.
We reject Ho for large values of t1 or when the observed value of [n.−1−p

p
]t1 ≥ b where b
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is such that
∫ ∞
b

g(F )dF = α with g(F ) being the density of an F random variable with
degrees of freedoms p and n. − 1 − p in this special case.

Case (8): k = 3, p ≥ 1, t2 = 1−y
y

, y = √
w

On combining Cases (4) and (6), it is seen that t2 is a real scalar type-2 beta random
variable with the parameters (p, n. − p − 1), so that

n. − 1 − p

p
t2 � F2p,2(n.−p−1),

which is a real scalar F random variable with the degrees of freedoms (2p, 2(n. −p−1)).
Thus, we reject the hypothesis for large values of this F random variable. For a test at
significance level α or with α as the size of its critical region, the hypothesis Ho : A1 =
A2 = · · · = Ak = O is rejected when the observed value of this F ≥ F2p,2(n.−1−p),α

where F2p,2(n.−1−p),α is the upper 100α% percentage point of the F distribution.

Example 13.3.1. In a dieting experiment, three different diets D1, D2 and D3 are tried
for a period of one month. The variables monitored are weight in kilograms (kg), waist
circumference in centimeters (cm) and right mid-thigh circumference in centimeters. The
measurements are x1 = final weight minus initial weight, x2 = final waist circumference
minus initial waist reading and x3 = final minus initial thigh circumference. Diet D1 is
administered to a group of 5 randomly selected individuals (n1 = 5), D2, to 4 randomly
selected persons (n2 = 4), and 6 randomly selected individuals (n3 = 6) are subjected
to D3. Since three variables are monitored, p = 3. As well, there are three treatments or
three diets, so that k = 3. In our notation,

X =
⎡

⎣
x1
x2
x3

⎤

⎦ , Xij =
⎡

⎣
x1ij
x2ij
x3ij

⎤

⎦ , X1j =
⎡

⎣
x11j
x21j
x31j

⎤

⎦ , X2j =
⎡

⎣
x12j
x22j
x32j

⎤

⎦ , X3j =
⎡

⎣
x13j
x23j
x33j

⎤

⎦ ,

where i corresponds to the diet number and j stands for the sample serial number. For
example, the observation vector on individual #3 within the group subjected to diet D2 is
denoted by X23. The following are the data on x1, x2, x3:

Diet D1 : X1j , j = 1, 2, 3, 4, 5 :

X11 =
⎡

⎣
2
3
1

⎤

⎦ , X12 =
⎡

⎣
4

−2
−1

⎤

⎦ , X13 =
⎡

⎣
−1
−2
1

⎤

⎦ , X14 =
⎡

⎣
−1
1

−1

⎤

⎦ , X15 =
⎡

⎣
1
0
0

⎤

⎦ .
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Diet D2 : X2j , j = 1, 2, 3, 4 :

X21 =
⎡

⎣
1
2
2

⎤

⎦ , X22 =
⎡

⎣
3

−1
−2

⎤

⎦ , X23 =
⎡

⎣
−1
2
1

⎤

⎦ , X24 =
⎡

⎣
1
1

−1

⎤

⎦ .

Diet D3 : X3j , j = 1, 2, 3, 4, 5, 6 :

X31 =
⎡

⎣
2
2

−1

⎤

⎦ , X32 =
⎡

⎣
1
3
1

⎤

⎦ , X33 =
⎡

⎣
−1
2
2

⎤

⎦ ,

X34 =
⎡

⎣
2
4
2

⎤

⎦ , X35 =
⎡

⎣
2
0
0

⎤

⎦ , X36 =
⎡

⎣
0
1
2

⎤

⎦ .

(1): Perform an ANOVA test on the first component consisting of weight measurements;
(2): Carry out a MANOVA test on the first two components, weight and waist measure-
ments; (3): Do a MANOVA test on all the three variables, weight, waist and thigh mea-
surements.

Solution 13.3.1. We first compute the vectors X1., X̄1, X2., X̄2, X3., X̄3, X.. and X̄:

X1. =
⎡

⎣
5
0
0

⎤

⎦ , X̄1 = X1.

n1
= 1

5

⎡

⎣
5
0
0

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ , X2. =
⎡

⎣
4
4
0

⎤

⎦ , X̄2 = X2.

n2
= 1

4

⎡

⎣
4
4
0

⎤

⎦ =
⎡

⎣
1
1
0

⎤

⎦ ,

X3. =
⎡

⎣
6
12
6

⎤

⎦ , X̄3 = X3.

6
=

⎡

⎣
1
2
1

⎤

⎦ , X.. =
⎡

⎣
15
16
6

⎤

⎦ , X̄ = X..

n.

= 1

15

⎡

⎣
15
16
6

⎤

⎦ =
⎡

⎣
1

16/15
6/15

⎤

⎦ .

Problem (1): ANOVA on the first component x1. The first components of the observa-
tions are x1ij . The first components under diet D1 are

[x111, x112, x113, x114, x115] = [2, 4, −1, −1, 1] with x11. = 5;
the first components of observations under diet D2 are

[x121, x122, x123, x124] = [1, 3, −1, 1] with x12. = 4;
and the first components under diet D3 are

[x131, x132, x133, x134, x135, x136] = [2, 1, −1, 2, 2, 0] with x13. = 6.
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Hence, the total on the first component x1.. = 15, and x̄1 = x1..
n.

= 15
15 = 1. The first

component model is the following:

x1ij = μ + αi + e1ij , j = 1, . . . , ni, i = 1, . . . , k.

Note again that estimators and estimates will be denoted by a hat. As previously men-
tioned, the same symbols will be used for the variables and the observations on those
variables in order to avoid using too many symbols; however, the notations will be clear
from the context. If the discussion pertains to distributions, then variables are involved,
and if we are referring to numbers, then we are dealing with observations.

The least squares estimates are μ̂ = x1..
n.

= 1, α̂1 = x11.
5 = 5

5 = 1, α̂2 = x12.
4 = 4

4 = 1,

α̂3 = x13.
6 = 6

6 = 1. The first component hypothesis is α1 = α2 = α3 = 0. The total sum
of squares is

∑

ij

(x1ij − x̄1)
2 =

∑

ij

x2
1ij − x2

1..

n.

= (2 − 1)2 + (4 − 1)2 + (−1 − 1)2 + (−1 − 1)2 + (1 − 1)2

+ (1 − 1)2 + (3 − 1)2 + (−1 − 1)2 + (1 − 1)2

+ (2 − 1)2 + (1 − 1)2 + (−1 − 1)2 + (2 − 1)2 + (2 − 1)2 + (0 − 1)2

= 34.

The sum of squares due to the αi’s is available from

∑

i

ni

(x1i.

ni

− x1..

n.

)2 =
∑

i

x2
1i.

ni

− x2
1..

n.

= 5
( 5

5
− 15

15

)2 + 4
( 4

4
− 15

15

)2 + 6
( 6

6
− 15

15

)2 = 0.

Hence the following table:

ANOVA Table

Variation due to df SS MS F-ratio
diets 2 0 0 0
residuals 12 34
total 14 34

Since the sum of squares due to the αi’s is null, the hypothesis is not rejected at any level.
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Problem (2): MANOVA on the first two components. We are still using the notation
Xij for the two and three-component cases since our general notation does not depend
on the number of components in the vector concerned; as well, we can make use of the
computations pertaining to the first component in Problem (1). The relevant quantities
computed from the data on the first two components are the following:

Diet D1:

[
2 4 −1 −1 1
3 −2 −2 1 0

]
, X1. =

[
x11.
x21.

]
=

[
5
0

]
, X̄1 = 1

5

[
5
0

]
=

[
1
0

]
;

Diet D2:

[
1 3 −1 1
2 −1 2 1

]
, X2. =

[
x12.
x22.

]
=

[
4
4

]
, X̄2 = 1

4

[
4
4

]
=

[
1
1

]
;

Diet D3:

[
2 1 −1 2 2 0
2 3 2 4 0 1

]
, X3. =

[
6
12

]
, X̄3 =

[
1
2

]
.

In this case, the grand total, denoted by X.., and the grand average, denoted by X̄, are the
following:

X.. =
[
15
16

]
, X̄ = 1

15

[
15
16

]
=

[
1

16/15

]
.

Note that the total sum of squares and cross products matrix can be written as follows:

∑

ij

(Xij − X̄)(Xij − X̄)′ =
5∑

j=1

(X1j − X̄)(X1j − X̄)′ +
4∑

j=1

(X2j − X̄)(X2j − X̄)′

+
6∑

j=1

(X3j − X̄)(X3j − X̄)′.

Then,
5∑

j=1

(X1j − X̄)(X1j − X̄)′ =
[

1 29/15
29/15 292/152

]
+

[
9 −138/15

−138/15 462/152

]

+
[

4 92/15
92/15 462/152

]
+

[
4 2/15

2/15 1/152

]
+

[
0 0
0 162/152

]

=
[
18 −1
−1 5330/152

]
;

4∑

j=1

(X2j − X̄)(X2j − X̄)′ =
[
0 0
0 142/152

]
+

[
4 −62/15

−62/15 312/152

]

+
[

4 −28/15
−28/15 142/152

]
+

[
0 0
0 1/152

]
=

[
8 −6

−6 1354/152

]
;
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6∑

j=1

(X3j − X̄)(X3j − X̄)′ =
[

1 14/15
14/15 142/152

]
+

[
0 0
0 292/152

]
+

[
4 −28/15

−28/15 142/152

]

+
[

1 44/15
44/15 442/152

]
+

[
1 −16/15

−16/15 162/152

]

+
[

1 1/15
1/15 1/152

]
=

[
8 1
1 3426/152

]
;

∑

ij

(Xij − X̄)(Xij − X̄)′ =
[
18 −1
−1 5330/152

]
+

[
8 −6

−6 1354/152

]
+

[
8 1
1 3426/152

]

=
[
34 −6
−6 674/15

]
and

∣∣∣∣
34 −6
−6 674/15

∣∣∣∣ = 1491.73.

Now, consider the residual sum of squares and cross products matrix:

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

5∑

j=1

(X1j − X1.
n1

)(X1j − X1.
n1

)′

+
4∑

j=1

(X2j − X2.
n2

)(X2j − X2.
n2

)′ +
6∑

j=1

(X3j − X3.
n3

)(X3j − X3.
n3

)′.

That is,

5∑

j=1

(X1j − X1.
n1

)(X1j − X1.
n1

)′ =
[
1 3
3 9

]
+

[
9 −6

−6 4

]
+

[
4 4
4 4

]

+
[

4 −2
−2 1

]
+

[
0 0
0 0

]
=

[
18 −1

−1 18

]
;

4∑

j=1

(X2j − X2.
n2

)(X2j − X2.
n2

)′ =
[
0 0
0 1

]
+

[
4 −4

−4 4

]
+

[
4 −2

−2 1

]

+
[
0 0
0 0

]
=

[
8 −6

−6 6

]
;
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6∑

j=1

(X3j − X3.
n3

)(X3j − X3.
n3

)′ =
[
1 0
0 0

]
+

[
0 0
0 1

]
+

[
4 0
0 0

]

+
[
1 2
2 4

]
+

[
1 −2

−2 4

]
+

[
1 1
1 1

]
=

[
8 1
1 10

]
.

Hence,

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

[
18 −1
−1 18

]
+

[
8 −6

−6 6

]
+

[
8 1
1 10

]

=
[
34 −6
−6 34

]
and

∣∣∣∣
34 −6
−6 34

∣∣∣∣ = 1120.

Therefore, the observed w is given by

w = 1120

1491.73
= 0.7508,

√
w = 0.8665.

This is the case p = 2, k = 3, that is, our special Case (8). Then, the observed value of

t2 = 1−√
w√

w
= 0.1335

0.8665
= 0.1540,

and
n. − 1 − p

p
t2 = 15 − 1 − 2

2
(0.1540) = 0.9244.

Our F-statistic is F2p,2(n.−p−1) = F4,24. Let us test the hypothesis A1 = A2 = A3 = O

at the 5% significance level or α = 0.05. Since the observed value 0.9244 < 5.77 =
F4,24,0.05 which is available from F-tables, we do not reject the hypothesis.

Verification of the calculations

Denoting the total sum of squares and cross products matrix by St , the residual sum of
squares and cross products matrix by Sr and the sum of squares and cross products matrix
due to the hypothesis or due to the effects Ai’s by Sh, we should have St = Sr + Sh where

St =
[
34 −6
−6 674/15

]
and Sr =

[
34 −6
−6 34

]
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as previously determined. Let us compute

Sh =
k∑

i=1

ni

(Xi.

ni

− X..

n.

)(Xi.

ni

− X..

n.

)′
.

For the first two components, we already have the following:

X1.

n1
− X..

n.

=
[
1
0

]
−

[
1

16/15

]
=

[
0

−16/15

]
, n1 = 5

X2.

n2
− X..

n.

=
[
1
1

]
−

[
1

16/15

]
=

[
0

−1/15

]
, n2 = 4

X3.

n3
− X..

n.

=
[
1
2

]
−

[
1

16/15

]
=

[
0

14/15

]
, n3 = 6.

Hence,

Sh = 5

[
0 0
0 162/152

]
+ 4

[
0 0
0 1/152

]
+ 6

[
0 0
0 142/152

]

=
[
0 0
0 2460/152

]
=

[
0 0
0 164/15

]
.

As 34 + 164
15 = 674

15 , St = Sr + Sh, that is,

[
34 −6
−6 674/15

]
=

[
34 −6
−6 34

]
+

[
0 0
0 164/15

]
.

Thus, the result is verified.

Problem (3): Data on all the three variables. In this case, we have p = 3, k = 3. We
will first use X1., X̄1, X2., X̄2, X3., X̄3, X.. and X̄ which have already been evaluated, to
compute the residual sum of squares and cross product matrix. Since all the matrices are
symmetric, for convenience, we will only display the diagonal elements and those above
the diagonal. As in the case of two components, we compute the following, making use of
the calculations already done for the 2-component case (the notations remaining the same
since our general notation does not involve p):
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5∑

j=1

(X1j − X1.
n1

)(X1j − X1.
n1

)′ =
⎡

⎣
1 3 1

9 3
1

⎤

⎦ +
⎡

⎣
9 −6 −3

4 2
1

⎤

⎦ +
⎡

⎣
4 4 −2

4 −2
1

⎤

⎦

+
⎡

⎣
4 −2 2

1 −1
1

⎤

⎦ +
⎡

⎣
0 0 0

0 0
0

⎤

⎦ =
⎡

⎣
18 −1 −2

18 2
4

⎤

⎦ ;

4∑

j=1

(X2j − X2.
n2

)(X2j − X2.
n2

)′ =
⎡

⎣
0 0 0

1 2
4

⎤

⎦ +
⎡

⎣
4 −4 −4

4 4
4

⎤

⎦ +
⎡

⎣
4 −2 −2

1 1
1

⎤

⎦

+
⎡

⎣
0 0 0

0 0
1

⎤

⎦ =
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦ ;

6∑

j=1

(X3j − X3.
n3

)(X3j − X3.
n3

)′ =
⎡

⎣
1 0 2

0 0
4

⎤

⎦ +
⎡

⎣
0 0 0

1 0
0

⎤

⎦ +
⎡

⎣
4 0 −2

0 0
1

⎤

⎦

+
⎡

⎣
1 2 1

4 2
1

⎤

⎦ +
⎡

⎣
1 −2 −1

4 2
1

⎤

⎦ +
⎡

⎣
1 1 −1

1 −1
1

⎤

⎦

=
⎡

⎣
8 1 −5

10 3
8

⎤

⎦ .

Then,

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

⎡

⎣
18 −1 −2

18 2
4

⎤

⎦ +
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦ +
⎡

⎣
8 1 −5

10 3
8

⎤

⎦

=
⎡

⎣
34 −6 −13

34 12
22

⎤

⎦

whose determinant is equal to

= 34

∣∣∣∣
34 12
12 22

∣∣∣∣ + 6

∣∣∣∣
−6 12
−13 22

∣∣∣∣ − 13

∣∣∣∣
−6 34
−13 12

∣∣∣∣

= 15870.
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The total sum of squares and cross products matrix is the following:

∑

ij

(Xij − X̄)(Xij − X̄)′ =
5∑

j=1

(X1j − X̄)(X1j − X̄)′ +
4∑

j=1

(X2j − X̄)(X2j − X̄)′

+
6∑

j=1

(X3j − X̄)(X3j − X̄)′,

with

5∑

j=1

(X1j − X̄)(X1j − X̄)′ =
⎡

⎣
1 29/15 9/15

292/152 (29 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
9 −(3 × 46)/15 −(3 × 21)/15

462/152 (46 × 21)/152

212/152

⎤

⎦ +
⎡

⎣
4 92/15 −18/15

462/152 −(46 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
4 2/15 42/15

1/152 21/152

212/152

⎤

⎦ +
⎡

⎣
0 0 0

162/152 96/152

36/152

⎤

⎦

=
⎡

⎣
18 −1 −2

5330/152 930/152

1080/152

⎤

⎦ ,

4∑

j=1

(X2j − X̄)(X2j − X̄)′ =
⎡

⎣
0 0 0

142/152 (14 × 24)/152

242/152

⎤

⎦

+
⎡

⎣
4 −62/15 −72/15

312/152 (31 × 36)/152

362/152

⎤

⎦ +
⎡

⎣
4 −28/15 −18/15

142/152 (14 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
0 0 0

1/152 21/152

212/152

⎤

⎦ =
⎡

⎣
8 −6 −6

1354/152 1599/152

2394/152

⎤

⎦ ,
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6∑

j=1

(X3j − X̄)(X3j − X̄)′ =
⎡

⎣
1 14/15 −21/15

142/152 −(14 × 21)/152

211/152

⎤

⎦

+
⎡

⎣
0 0 0

292/152 (29 × 9)/152

92/152

⎤

⎦ +
⎡

⎣
4 −28/15 −48/15

142/152 (14 × 24)/152

242/152

⎤

⎦

+
⎡

⎣
1 44/15 24/15

442/152 (44 × 24)/152

242/152

⎤

⎦ +
⎡

⎣
1 −16/15 −6/15

162/152 96/152

62/152

⎤

⎦

+
⎡

⎣
1 1/15 −24/15

1/152 −24/152

242/152

⎤

⎦ =
⎡

⎣
8 1 −5

3426/152 1431/152

2286/152

⎤

⎦ .

Hence the total sum of squares and cross products matrix is

∑

ij

(Xij − X̄)(Xij − X̄)′ =
⎡

⎣
18 −1 −2

5330/152 930/152

1080/152

⎤

⎦ +
⎡

⎣
8 −6 −6

1354/152 1599/152

2394/152

⎤

⎦

+
⎡

⎣
8 1 −5

3426/152 1431/152

2286/152

⎤

⎦ =
⎡

⎣
34 −6 −13
−6 674/15 264/15
−13 264/15 384/15

⎤

⎦

and its determinant = 34

∣∣∣∣
674/15 264/15
264/15 384/15

∣∣∣∣ + 6

∣∣∣∣
−6 264/15
−13 384/15

∣∣∣∣

− 13

∣∣∣∣
−6 674/15
−13 264/15

∣∣∣∣ = 342126/15.

Then, the observed value of

w = 15870 × 15

342126
= 0.6958,

√
w = 0.8341.

Since p = 3 and k = 3, an exact distribution is available from our special Case (8) for

t2 = 1−√
w√

w
and an observed value of t2 = 0.1989. Then,

n. − 1 − p

p
t2 = 15 − 1 − 3

3
t2 = 11

3
t2 ∼ F2p,2(n.−1−p) = F6,22.
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The critical value obtained from an F-table at the 5% significance level is F6,22,.05 ≈ 3.85.
Since the observed value of F6,22 is 11

3 (0.1989) = 0.7293 < 3.85, the hypothesis A1 =
A2 = A3 = O is not rejected. It can also be verified that St = Sr + Sh.

13.3.4. Asymptotic distribution of the λ-criterion

We can obtain an asymptotic real chisquare distribution for n. → ∞. To this end,
consider the general h-th moments of λ or E[λh] from (13.3.8), that is,

E[λh] = Cp,k

p∏

j=1

[
Γ

(n. − k

2
− j − 1

2
+ n.

2
h
)/

Γ
(n. − 1

2
− j − 1

2
+ n.

2
h
)]

= Cp,k

p∏

j=1

[
Γ

(n.

2
(1 + h) − j − 1

2
− k

2

)
/Γ

(n.

2
(1 + h) − j − 1

2
− 1

2

)]
.

Let us expand all the gamma functions in E[λh] by using the first term in the asymptotic
expansion of a gamma function or by making use of Stirling’s approximation formula,
namely,

Γ (z + δ) ≈ √
(2π)zz+δ− 1

2 e−z (13.3.13)

for |z| → ∞ when δ is a bounded quantity. Taking n.

2 → ∞ in the constant part and
n.

2 (1 + h) → ∞ in the part containing h, we have

Γ
(n.

2
(1 + h) − j − 1

2
− k

2

)/
Γ

(n.

2
(1 + h) − j − 1

2
− 1

2
)

≈ {√
(2π)[n.

2 (1 + h)] n.
2 (1+h)− j−1

2 − k
2− 1

2 e− n.
2 (1+h)

/√
(2π)[n.

2 (1 + h)]n.

2 (1+h)− j−1
2 − 1

2− 1
2 e

n.
2 (1+h)

}

= (n.

2 )−( k−1
2 )(1 + h)−( k−1

2 ).

The factor (n.

2 )−( k−1
2 ) is canceled from the expression coming from the constant part. Then,

taking the product over j = 1, . . . , p, we have

λh → (1 + h)−p(k−1)/2 or λ−2h → (1 − 2h)−p(k−1)/2 for 1 − 2h > 0,

which is the moment generating function (mgf) of a real scalar chisquare with p(k − 1)
degrees of freedom. Hence, we have the following result:
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Theorem 13.3.1. Letting λ be the likelihood ratio criterion for testing the hypothesis
Ho : A1 = A2 = · · · = Ak = O, the asymptotic distribution of −2 ln λ is a real chisquare
random variable having p(k − 1) degrees of freedom as n. → ∞, that is,

− 2 ln λ → χ2
p(k−1) as n. → ∞. (13.3.14)

Observe that we only require the sum of the sample sizes n1 + · · · + nk = n. to go
to infinity, and not that the individual nj ’s be large. This chisquare approximation can
be utilized for testing the hypothesis for large values of n., and we then reject Ho for
small values of λ, which means for large values of −2 ln λ or large values of χ2

p(k−1), that

is, when the observed −2 ln λ ≥ χ2
p(k−1),α where χ2

p(k−1),α denotes the upper 100α%
percentage point of the chisquare distribution.

13.3.5. MANOVA and testing the equality of population mean values

In a one-way classification model, we have the following for the p-variate case:

Xij = M + Ai + Eij or Xij = Mi + Eij , with Mi = M + Ai, (13.3.15)

for j = 1, . . . , ni, i = 1, . . . , k. When the error vector is assumed to have a null expected
value, that is, E[Eij ] = O, for all i and j , we have E[Xij ] = Mi for all i and j . Thus, this
assumption, in conjunction with the hypothesis A1 = A2 = · · · = Ak = O, implies that
M1 = M2 = · · · = Mk, that is, the hypothesis of equality of the population mean value
vectors or the test is equivalent to testing the equality of population mean value vectors
in k independent populations with common covariance matrix Σ > O. We have already
tackled this problem in Chap. 6 under both assumptions that Σ is known and unknown,
when the populations are Gaussian, that is, Xij ∼ Np(Mi, Σ), Σ > O. Thus, the hypoth-
esis made in a one-way classification MANOVA setting and the hypothesis of testing the
equality of mean value vectors in MANOVA are one and the same. In the scalar case too,
the ANOVA in a one-way classification data coincides with testing the equality of popu-
lation mean values in k independent univariate populations. In the ANOVA case, we are
comparing the sum of squares attributable to the hypothesis to the residual sum of squares.
If the hypothesis really holds true, then the sum of squares due to the hypothesis or to the
αj ’s (deviations from the general effect due to the j -th treatment) must be zero and hence
for large values of the sum of squares due to the presence of the αj ’s, as compared to the
residual sum of squares, we reject the hypothesis. In MANOVA, we are comparing two
sums of squares and cross product matrices, namely,

U =
∑

ij

[Xi.

ni

− X..

n.

][Xi.

ni

− X..

n.

]′
and V =

∑

ij

[
Xij − Xi.

ni

][
Xij − Xi.

ni

]′
.



Multivariate Analysis of Variation 787

We have the following distributional properties:

T1 = (U + V )
−1
2U(U + V )

−1
2 ∼ real matrix-variate type-1 beta with parameters

(k−1
2 , n.−k

2 );
T2 = (U + V )

−1
2V (U + V )

−1
2 ∼ real matrix-variate type-1 beta with parameters

(n.−k
2 , k−1

2 );
T3 = V

−1
2UV

−1
2 ∼ real matrix-variate type-2 beta with parameters (k−1

2 , n.−k
2 );

T4 = U− 1
2V U− 1

2 ∼ real matrix-variate type-2 beta with parameters (n.−k
2 , k−1

2 ).

(13.3.16)

The likelihood ratio criterion is

λ = |V |
|U + V | = |T2| = 1

|T3 + I | = 1
∏p

j=1(1 + ηj )
(13.3.17)

where the ηj ’s are the eigenvalues of T3. We reject Ho for small values of λ which means
for large values of

∏p

j=1[1+ ηj ]. The basic objective in MANOVA consists of comparing
U and V , the matrices due to the presence of treatment effects and due to the residuals,
respectively. We can carry out this comparison by using the type-1 beta matrices T1 and
T2 or the type-2 beta matrices T3 and T4 or by making use of the eigenvalues of these
matrices. In the type-1 beta case, the eigenvalues will be between 0 and 1, whereas in
the type-2 beta case, the eigenvalues will be real positive or simply positive. We may
also note that the eigenvalues of T1 and its nonsymmetric forms U(U + V )−1 or (U +
V )−1U are identical. Similarly, the eigenvalues of the symmetric form T2 and V (U +V )−1

or (U + V )−1V are one and the same. As well, the eigenvalues of the symmetric form
T3 and the nonsymmetric forms UV −1 or V −1U are the same. Again, the eigenvalues
of the symmetric form T4 and its nonsymmetric forms U−1V or V U−1 are the same.
Several researchers have constructed tests based on the matrices T1, T2, T3, T4 or their
nonsymmetric forms or their eigenvalues. Some of the well-known test statistics are the
following:

Lawley-Hotelling trace = tr(T3)

Roy’s largest root = the largest eigenvalue of T2

Pillai’s trace = tr(T1)

Wilks’ lambda = |T2| = the likelihood ratio statistic.
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For example, when the hypothesis is true, we expect the eigenvalues of T3 to be small and
hence we may reject the hypothesis when its smallest eigenvalue is large or the trace of
T3 is large. If we are using T4, then when the hypothesis is true, we expect T4 to be large
in the sense that the eigenvalues will be large, and therefore we may reject the hypothesis
for small values of its largest eigenvalue or its trace. If we are utilizing T1, we are actually
comparing the contribution attributable to the treatments to the total variation. We expect
this to be small under the hypothesis and hence, we may reject the hypothesis for large
values of its smallest eigenvalue or its trace. If we are using T2, we are comparing the
residual part to the total variation. If the hypothesis is true, then we can expect a substantial
contribution from the residual part so that we may reject the hypothesis for small values
of the largest eigenvalue or the trace in this case. These are the main ideas in connection
with constructing statistics for testing the hypothesis on the basis of the eigenvalues of the
matrices T1, T2, T3 and T4.

13.3.6. When Ho is rejected

When Ho : A1 = · · · = Ak = O is rejected, it is plausible that some of the differences
may be non-null, that is,Ai−Aj �= O for some i and j , i �= j . We may then test individual
hypotheses of the type Ho1 : Ai = Aj for i �= j . There are k(k − 1)/2 such differences.
This type of test is equivalent to testing the equality of the mean value vectors in two
independent p-variate Gaussian populations with the same covariance matrix Σ > O.
This has already been discussed in Chap. 6 for the cases Σ known and Σ unknown. In this
instance, we can use the special Case (7) where for k = 2, and the statistic t1 is real scalar
type-2 beta distributed with the parameters (

p
2 ,

n.−1−p
2 ), so that

n. − 1 − p

p
t1 ∼ Fp,n.−1−p (13.3.18)

where n. = ni + nj for some specific i and j . We can make use of (13.3.18) for testing
individual hypotheses. By utilizing Special Case (8) for k = 3, we can also test a hypoth-
esis of the type Ai = Aj = Am for different i, j, m. Instead of comparing the results of
all the k(k − 1)/2 individual hypotheses, we may examine the estimates of Ai , namely,
Âi = Xi.

ni
− X..

n.
, i = 1, . . . , k. Consider the norms ‖Xi.

ni
− Xj.

nj
‖, i �= j (the Euclidean

norm may be taken for convenience). Start with the individual test corresponding to the
maximum value of these norms. If this test is not rejected, it is likely that tests on all
other differences will not be rejected either. If it is rejected, we then take the next largest
difference and continue testing.
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Note 13.3.1. Usually, before initiating a MANOVA, the assumption that the covariance
matrices associated with the k populations or treatments are equal is tested. It may happen
that the error variable E1j , j = 1, . . . , n1, may have the common covariance matrix Σ1,
E2j , j = 1, . . . , n2, may have the common covariance matrix Σ2, and so on, where not
all the Σj ’s equal. In this instance, we may first test the hypothesis Ho : Σ1 = Σ2 =
· · · = Σk. This test is already described in Chap. 6. If this hypothesis is not rejected,
we may carry out the MANOVA analysis of the data. If this hypothesis is rejected, then
some of the Σj ’s may not be equal. In this case, we test individual hypotheses of the type
Σi = Σj for some specific i and j , i �= j . Include all treatments for which the individual
hypotheses are not rejected by the tests and exclude the data on the treatments whose Σj ’s
may be different, but distinct from those already selected. Continue with the MANOVA
analysis of the data on the treatments which are retained, that is, those for which the Σj ’s
are equal in the sense that the corresponding tests of equality of covariance matrices did
not reject the hypotheses.

Example 13.3.2. For the sake of illustration, test the hypothesis Ho : A1 = A2 with the
data provided in Example 13.3.1.

Solution 13.3.2. We can utilize some of the computations done in the solution to Exam-
ple 13.3.1. Here, n1 = 5, n2 = 4 and n. = n1 + n2 = 9. We disregard the third sample.
The residual sum of squares and cross products matrix in the present case is available from
the Solution 13.3.1 by omitting the matrix corresponding to the third sample. Then,

2∑

i=1

ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′ =
⎡

⎣
18 −1 −2

18 2
4

⎤

⎦ +
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦

=
⎡

⎣
26 −7 −8
−7 24 9
−8 9 14

⎤

⎦

whose determinant is

26

∣∣∣∣
24 9
9 14

∣∣∣∣ + 7

∣∣∣∣
−7 9
−8 14

∣∣∣∣ − 8

∣∣∣∣
−7 24
−8 9

∣∣∣∣ = 5416.
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Let us compute
∑2

i=1
∑ni

j=1(Xij − X..

n.
)(Xij − X..

n.
)′:

5∑

j=1

(
X1j − X..

n.

)(
X1j − X..

n.

)′ =
⎡

⎣
1 23/9 5/9

232/92 115/92

52/92

⎤

⎦ +
⎡

⎣
9 −66/9 −39/9

222/92 286/92

132/92

⎤

⎦

+
⎡

⎣
4 22/9 −10/9

222/92 −110/92

52/92

⎤

⎦ +
⎡

⎣
4 −10/9 26/9

52/92 −65/92

132/92

⎤

⎦

+
⎡

⎣
0 0 0

42/92 16/92

42/92

⎤

⎦ =
⎡

⎣
18 −31/9 −18/9

1538/92 242/92

404/92

⎤

⎦ ;

4∑

j=1

(
X2j − X..

n.

)(
X2j − X..

n.

)′ =
⎡

⎣
0 0 0

142/92 142/92

142/92

⎤

⎦ +
⎡

⎣
4 −26/9 −44/9

132/92 (13 × 22)/92

222/92

⎤

⎦

+
⎡

⎣
4 −28/9 −10/9

142/92 70/92

52/92

⎤

⎦ +
⎡

⎣
0 0 0

52/92 −65/92

132/92

⎤

⎦

=
⎡

⎣
8 −6 −6

586/92 487/92

874/92

⎤

⎦ .

Hence the sum

2∑

i=1

ni∑

j=1

(
Xij − X..

n.

)(
Xij − X..

n.

)′ =
⎡

⎣
18 −31/9 −18/9

1538/92 242/92

404/92

⎤

⎦ +
⎡

⎣
8 −6 −6

586/92 487/92

874/92

⎤

⎦

=
⎡

⎣
26 −85/9 −8

−85/9 236/9 9
−8 9 142/9

⎤

⎦ = U + V

whose determinant is

26

∣∣∣∣
236/9 9
9 142/9

∣∣∣∣ + 85

9

∣∣∣∣
−85/9 9

−8 142/9

∣∣∣∣ − 8

∣∣∣∣
−85/9 236/9

−8 9

∣∣∣∣ = 8380.0549.
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So, the observed values are as follows:

w = |V |
|U + V | = 5416

8380.055
= 0.6463

t1 = 1 − w

w
= 0.3537

0.6463
= 0.5413

n. − 1 − p

p
t1 = 5

3
t1 = 5

3
(0.5413) = 0.9022,

and Fp,n.−1−p = F3,5. Let us test the hypothesis at the 5% significance level. The criti-
cal value obtained from F-tables is F3,5,0.05 = 9.01. But since the observed value of F is
0.9022 < 9.01, the hypothesis is not rejected. We expected this result because the hypoth-
esis A1 = A2 = A3 was not rejected. This example was mainly presented to illustrate the
steps.

13.4. MANOVA for Two-Way Classification Data

As was done previously for the one-way classification, we will revisit the real scalar
variable case first. Thus, we consider the case of two sets of treatments, instead of the sin-
gle set analyzed in Sect. 13.3. In an agricultural experiment, suppose that we are consider-
ing r fertilizers as the first set of treatments, say F1, . . . , Fr, along with a set of s different
varieties of corn, V1, . . . , Vs, as the second set of treatments. A randomized block experi-
ment belongs to this category. In this case, r blocks of land, which are homogeneous with
respect to all factors that may affect the yield of corn, such as precipitation, fertility of
the soil, exposure to sunlight, drainage, and so on, are selected. Fertilizers F1, . . . , Fr are
applied to these r blocks at random, the first block receiving any one of F1, . . . , Fr, and
so on. Each block is divided into s equivalent plots, all the plots being of the same size,
shape, and so on. Then, the s varieties of corn are applied to each block at random, with
one variety to each plot. Such an experiment is called a randomized block experiment.
This experiment is then replicated t times. This replication is done so that possible inter-
action between fertilizers and varieties of corn could be tested. If the randomized block
experiment is carried out only once, no interaction can be tested from such data because
each plot will have only one observation. Interaction between the i-th fertilizer and j -th
variety is a joint effect for the (Fi, Vj ) combination, that is, the effect of Fi on the yield
varies with the variety of corn. For instance, an interaction will be present if the effect of
F1 is different when combined with V1 or V2. In other words, there are individual effects
and joint effects, a joint effect being referred to as an interaction between the two sets of
treatments. As an example, consider one set of treatments consisting of r different meth-
ods of teaching and a second set of treatments that could be s levels of previous exposure
of the students to the subject matter.
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13.4.1. The model in a two-way classification

The additive, fixed effect, two-way classification or two-way layout model with inter-
action is the following:

xijk = μ + αi + βj + γij + eijk, i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t, (13.4.1)

where μ is a general effect, αi is the deviation from the general effect due to the i-th treat-
ment of the first set, βj is the deviation from the general effect due to the j -th treatment
of the second set, and γij is the effect due to interaction term or the joint effect of first and
second sets of treatments. In a randomized block experiment, the treatments belonging to
the first set are called “blocks” or “rows” and the treatments belonging to the second set are
called “treatments” or “columns”; thus, the two sets correspond to rows, say R1, . . . , Rr,

and columns, say C1, . . . , Cs . Then, γij is the deviation from the general effect due to the
combination (Ri, Cj ). The random component eijk is the sum total contributions coming
from all unknown factors and xijk is the observation resulting from the effect of the com-
bination of treatments (Ri, Cj ) at the k-th replication or k-th identical repetition of the
experiment. In an agricultural setting, the observation may be the yield of corn whereas,
in a teaching experiment, the observation may be the grade obtained by the “(i, j, k)”-th
student. In a fixed effect model, all parameters μ, α1, . . . , αr, β1, . . . , βs are assumed to
be unknown constants. In a random effect model α1, . . . , αr or β1, . . . , βs or both sets are
assumed to be random variables. We assume that E[eijk] = 0 and Var(eijk) = σ 2 > 0
for all i, j, k, where E(·) denotes the expected value of (·). In the present discussion, we
will only consider the fixed effect model. Under this model, the data are called two-way
classification data or two-way layout data because they can be classified according to the
two sets of treatments, “rows” and “columns”. Since we are not making any assumption
about the distribution of eijk, and thereby that of xijk, we will apply the method of least
squares to estimate the parameters.

13.4.2. Estimation of parameters in a two-way classification

The error sum of squares is

e2ijk =
∑

ijk

(xijk − μ − αi − βj − γij )
2.

Our first objective consists of isolating the sum of squares due to interaction and test the
hypothesis of no interaction, that is, Ho : γij = 0 for all i, j and k. If γij �= 0, part of the
effect of the i-th row Ri is mixed up with the interaction and similarly, part of the effect
of the j -th column, Cj , is intermingled with γij , so that no hypothesis can be tested on
the αi’s and βj ’s unless γij is zero or negligibly small or the hypothesis γij = 0 is not
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rejected. As well, on noting that in [μ + αi + βj + γij ], the subscripts either appear none
at a time, one at a time and both at a time, we may write μ + αi + βj + γij = mij . Thus,

∑

ijk

e2ijk =
∑

ijk

(xijk − mij )
2 ⇒ ∂

∂mij

[e2ijk] = 0

⇒
∑

k

(xijk − mij ) = 0 ⇒ xij. − t m̂ij = 0 or m̂ij = xij.

t
.

We employ the standard notation in this area, namely that a summation over a subscript is
denoted by a dot. Then, the least squares minimum under the general model or the residual
sum of squares, denoted by s2, is given by

s2 =
∑

ijk

(
xijk − xij.

t

)2
. (13.4.2)

Now, consider the hypothesis Ho : γij = 0 for all i and j . Under this Ho, the model
becomes

xijk = μ + αi + βj + eijk or
∑

ijk

e2ijk =
∑

ijk

(xijk − μ − αi − βj )
2.

We differentiate this partially with respect to μ and αi for a specific i, and to βj for a
specific j , and then equate the results to zero and solve to obtain estimates for μ, αi and
βj . Since we have taken αi, βj and γij as deviations from the general effect μ, we may let
α. = α1 + · · · + αr = 0, β. = β1 + · · · + βs = 0 and γi. = 0, for each i and γ.j = 0 for
each j , without any loss of generality. Then,

∂

∂μ
[e2ijk] = 0 ⇒

(∑

ijk

xijk

)
− rstμ − stα. − rtβ. = 0 ⇒ μ̂ = x...

rst

∂

∂αi

[e2ijk] = 0 ⇒
∑

jk

[xijk − μ − αi − βj ] = 0

⇒ xi.. − stμ − stαi − tβ. = 0 ⇒ α̂i = xi..

st
− μ̂

∂

∂βj

[e2ijk] = 0 ⇒
∑

ik

[xijk − μ − αi − βj ] = 0

⇒ x.j. − rtμ − tα. − rtβj = 0 ⇒ β̂j = x.j.

rt
− μ̂ .
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Hence, the least squares minimum under the hypothesis Ho, denoted by s20 , is

s20 =
∑

ijk

[(
xijk − x...

rst

)
−

(xi..

st
− x...

rst

)
−

(x.j.

rt
− x...

rst

)]2

=
∑

ijk

(
xijk − x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2 − rt
∑

j

(x.j.

rt
− x...

rst

)2
,

the simplifications resulting from properties of summations with respect to subscripts.
Thus, the sum of squares due to the hypothesisHo : γij = 0 for all i and j or the interaction
sum of squares, denoted by s2γ is the following:

s2γ = s20 − s2 =
∑

ijk

(
xijk − x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2

− rt
∑

j

(x.j.

rt
− x...

rst

)2 −
∑

ijk

(
xijk − xij.

t

)2
,

and since
∑

ijk

(
xijk − xij.

t

)2 =
∑

ijk

(
xijk − x...

rst

)2 − t
∑

ij

(xij.

t
− x...

rst

)2
,

the sum of squares due to the hypothesis or attributable to the γij ’s, that is, due to interac-
tion is

s2γ = t
∑

ij

(xij.

t
− x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2 − rt
∑

j

(x.j.

rt
− x...

rst

)2
. (13.4.3)

If the hypothesis γij = 0 is not rejected, the effects of the γij ’s are deemed insignificant
and then, setting the hypothesis γij = 0, αi = 0, i = 1, . . . , r , we obtain the sum of
squares due to the αi’s or sum of squares due to the rows denoted as s2r , is

s2r =
∑

ijk

(xi..

st
− x...

rst

)2 = st

r∑

i=1

(xi..

st
− x...

rst

)2
. (13.4.4)

Similarly, the sum of squares attributable to the βj ’s or due to the columns, denoted as s2c ,
is

s2c = rt

s∑

j=1

(x.j.

rt
− x...

rst

)2
. (13.4.5)
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Observe that the sum of squares due to rows plus the sum of squares due to columns,
once added to the interaction sum of squares, is the subtotal sum of squares, denoted by
s2rc = t

∑
ij

(xij.

t
− x...

rst

)2
or this subtotal sum of squares is partitioned into the sum of

squares due to the rows, due to the columns and due to interaction. This is equivalent
to an ANOVA on the subtotals

∑
k xijk or an ANOVA on a two-way classification with

a single observation per cell. As has been pointed out, in that case, we cannot test for
interaction, and moreover, this subtotal sum of squares plus the residual sum of squares is
the grand total sum of squares. If we assume a normal distribution for the error terms, that

is, eijk
iid∼ N1(0, σ 2), σ 2 > 0, for all i, j, k, then under the hypothesis Ho : γij = 0, it can

be shown that

s2γ

σ 2
∼ χ2

ν , ν = (rs − 1) − (r − 1) − (s − 1) = (r − 1)(s − 1), (13.4.6)

and the residual variation s2 has the following distribution whether Ho holds or not:

s2

σ 2
∼ χ2

ν1
, ν1 = rst − 1 − (rs − 1) = rs(t − 1), (13.4.7)

where s2γ and s2 are independently distributed. Then, under the hypothesis γij = 0 for all
i and j or when this hypothesis is not rejected, it can be established that

s2r

σ 2
∼ χ2

r−1,
s2c

σ 2
∼ χ2

s−1 (13.4.8)

and s2r and s2 as well as s2c and s2 are independently distributed whenever Ho : γij = 0 is
not rejected. Hence, under the hypothesis,

s2γ /(r − 1)(s − 1)

s2/(rs(t − 1))
∼ Fν, ν1, ν = (r − 1)(s − 1), ν1 = rs(t − 1). (13.4.9)

The total sum of squares is
∑

ijk

(
xijk − x...

rst

)2
. Thus, the first decomposition and the first

part of ANOVA in this two-way classification scheme is the following:

Total variation = Variation due to the subtotals + Residual variation,

the second stage being

Variation due to the subtotals = Variation due to the rows

+ Variation due to the columns + Variation due to interaction,

and the resulting ANOVA table is the following:
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ANOVA Table for the Two-Way Classification

df SS MS

Variation due to (1) (2) (3)=(2)/(1)

rows r − 1 s2r = st
∑r

i=1(
xi..

st
− x...

rst
)2 s2r /(r − 1) = D1

columns s − 1 s2c = rt
∑s

j=1(
x.j.

rt
− x...

rst
)2 s2c /(s − 1) = D2

interaction (r − 1)(s − 1) s2γ s2γ /(r − 1)(s − 1) = D3

subtotal rs − 1 t
∑

ij (
xij.

t
− x...

rst
)2

residuals rs(t − 1) s2 s2/[rs(t − 1)] = D

total rst − 1
∑

ijk(xijk − x...

rst
)2

where df designates the number of degrees of freedom, SS means sum of squares,
MS stands for mean squares, the expressions for the residual sum of squares is given
in (13.4.2), that for the interaction in (13.4.3), that for the rows in (13.4.4) and that for
columns in (13.4.5), respectively. Note that we test the hypothesis on the αi’s and βj ’s or
row effects and column effects, only if the hypothesis γij = 0 is not rejected; otherwise
there is no point in testing hypotheses on the αi’s and βj ’s because they are confounded
with the γij ’s.

13.5. Multivariate Extension of the Two-Way Layout

Instead of a single real scalar variable being studied, we consider a p × 1 vector of
real scalar variables. The multivariate two-way classification, the fixed effect model is the
following:

Xijk = M + Ai + Bj + Γij + Eijk, (13.5.1)

for i = 1, . . . , r, j = 1, . . . , s , k = 1, . . . , t, where M, Ai, Bj , Γij and Eijk are all p ×1
vectors. In this case, M is a general effect, Ai is the deviation from the general effect due
to the i-th row, Bj is the deviation from the general effect due to the j -th column, Γij is
the deviation from the general effect due to interaction between the rows and the columns
and Eijk is the vector of the random or error component. For convenience, the two sets
of treatments are referred to as rows and columns, the first set as rows and the second, as
columns. In a two-way layout, two sets of treatments are tested. As in the scalar case of
Sect. 13.4, we can assume, without any loss of generality, that

∑
i Ai = A1 + · · · + Ar =

A. = O, B. = O,
∑r

i=1 Γij = Γ.j = O and
∑s

j=1 Γij = Γi. = O. At this juncture, the
procedures are parallel to those developed in Sect. 13.4 for the real scalar variable case.
Instead of sums of squares, we now have sums of squares and cross products matrices. As
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before, we may write Mij = M +Ai +Bj +Γij . Then, the trace of the sum of squares and
cross products error matrix EijkE

′
ijk is minimized. Using the vector derivative operator,

we have

∂

∂Mij

tr
[∑

ijk

EijkE
′
ijk

]
= O ⇒

∑

k

(Xijk − Mij ) = O

⇒ M̂ij = 1

t
Xij. ,

so that the residual sum of squares and cross products matrix, denoted by Sres , is

Sres =
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′
. (13.5.2)

All other derivations are analogous to those provided in the real scalar case. The sum of
squares and cross products matrix due to interaction, denoted by Sint is the following:

Sint = t
∑

ij

(Xij.

t
− X...

rst

)(Xij.

t
− X...

rst

)′

− st
∑

i

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′

− rt
∑

j

(X.j.

rt
− X...

rst

)(X.j.

rt
− X...

rst

)′
. (13.5.3)

The sum of squares and cross products matrices due to the rows and columns are
respectively given by

Srow = st

r∑

i=1

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′
, (13.5.4)

Scol = rt

s∑

j=1

(X.j.

rt
− X...

rst

)(X.j.

rt
− X...

rst

)′
. (13.5.5)

The sum of squares and cross products matrix for the subtotal is denoted by Ssub = Srow +
Scol + Sint . The total sum of squares and cross products matrix, denoted by Stot , is the
following:

Stot =
∑

ijk

(
Xijk − X...

rst

)(
Xijk − X...

rst

)′
. (13.5.6)



798 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

We may now construct the MANOVA table. The following abbreviations are used: df
stands for degrees of freedom of the corresponding Wishart matrix, SSP means the sum
of squares and cross products matrix, MS stands for mean squares and is equal to SSP/df,
and Srow, Scol , Sres and Stot are respectively specified in (13.5.4), (13.5.5), (13.5.2)
and (13.5.6).

MANOVA Table for a Two-Way Layout

df SSP MS

Variation due to (1) (2) (3)=(2)/(1)
rows r − 1 Srow Srow/(r − 1)

columns s − 1 Scol Scol/(s − 1)

interaction (r − 1)(s − 1) Sint Sint/[(r − 1)(s − 1)]
subtotal rs − 1 Ssub

residuals rs(t − 1) Sres Sres/[rs(t − 1)]
total rst − 1 Stot

13.5.1. Likelihood ratio test for multivariate two-way layout

Under the assumption that the error or random components Eijk
iid∼ Np(O, Σ), Σ >

O for all i, j and k, the exponential part of the multivariate normal density excluding −1
2

is obtained as follows:

E′
ijkEijk = (Xijk − M − Ai − Bj − Γij )

′Σ−1(Xijk − M − Ai − Bj − Γij )

= tr[Σ−1(Xijk − M − Ai − Bj − Γij )(Xijk − M − Ai − Bj − Γij )
′] ⇒

∑

ijk

E′
ijkEijk = tr

{
Σ−1

[∑

ijk

(Xijk − M − Ai − Bj − Γij )(Xijk − M − Ai − Bj − Γij )
′]}.

Thus, the joint density of all the Xijk’s, denoted by L, is

L = 1

(2π)
prst
2 |Σ | rst

2

× e− 1
2 tr[Σ−1 ∑

ijk(Xijk−M−Ai−Bj−Γij )(Xijk−M−Ai−Bj−Γij )
′]
.

The maximum likelihood estimates of M, Ai, Bj and Γij are the same as the least squares
estimates and hence, the maximum likelihood estimator (MLE) of Σ is the least squares
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minimum which is the residual sum of squares and cross products matrix S or Sres (in the
present notation), where

Sres =
∑

ijk

(Xijk − M̂ − Âi − B̂j − Γ̂ij )(Xijk − M̂ − Âi − B̂j − Γ̂ij )
′

=
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′
. (13.5.7)

This is the sample sum of squares and the cross products matrix under the general model
and its determinant raised to the power of rst

2 is the quantity appearing in the numerator
of the likelihood ratio criterion λ. Consider the hypothesis Ho : Γij = O for all i and j .
Then, under this hypothesis, the estimator of Σ is S0, where

S0 =
∑

ijk

[(
Xijk − X...

rst

)
−

(Xi..

st
− X...

rst

)
−

(X.j.

rt
− X...

rst

)]

×
[(

Xijk − X...

rst

)
−

(Xi..

st
− X...

rst

)
−

(X.j.

rt
− X...

rst

)]′

and |S0| rst
2 is the quantity appearing in the denominator of λ. However, S0 − Sres = Sint

is the sum of squares and cross products matrix due to the interaction terms Γij ’s or to the
hypothesis, so that S0 = Sres + Sint . Therefore, λ is given by

λ = |Sres | rst
2

|Sres + Sint | rst
2

(13.5.8)

Letting w = λ
2

rst ,

w = |Sres |
|Sres + Sint | . (13.5.9)

It follows from results derived in Chap. 5 that Sres ∼ Wp(rs(t − 1), Σ), Sint ∼ Wp((r −
1)(s − 1), Σ) under the hypothesis and Sres and Sint are independently distributed and
hence, under Ho,

W = (Sres + Sint )
− 1

2Sres(Sres + Sint )
− 1

2 ∼ real p-variate type-1 beta random variable

with the parameters (
rs(t−1)

2 ,
(r−1)(s−1)

2 ). As well,

W1 = S
− 1

2
res Sint S

− 1
2

res ∼ real p-variate type-2 beta random variable
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with the parameters (
(r−1)(s−1)

2 ,
rs(t−1)

2 ). Under Ho, the h-th arbitrary moments of w and
λ, which are readily obtained from those of a real matrix-variate type-1 beta variable, are

E[w]h =
{ p∏

j=1

Γ (ν1 + ν2 − j−1
2 )

Γ (ν1 − j−1
2 )

}{ p∏

j=1

Γ (ν1 + h − j−1
2 )

Γ (ν1 + ν2 + h − j−1
2 )

}
(13.5.10)

E[λ]h =
{ p∏

j=1

Γ (ν1 + ν2 − j−1
2 )

Γ (ν1 − j−1
2 )

}{ p∏

j=1

Γ (ν1 + rst
2 h − j−1

2 )

Γ (ν1 + ν2 + rst
2 h − j−1

2 )

}
(13.5.11)

where ν1 = rs(t−1)
2 and ν2 = (r−1)(s−1)

2 . Note that we reject the null hypothesis Ho : Γij =
O, i = 1, . . . , r, j = 1, . . . , s, for small values of w and λ. As explained in Sect. 13.3,
the exact general density of w in (13.5.10) can be expressed in terms of a G-function and
the exact general density of λ in (13.5.11) can be written in terms of a H-function. For the
theory and applications of the G-function and the H-function, the reader may respectively
refer to Mathai (1993) and Mathai et al. (2010).

13.5.2. Asymptotic distribution of λ in the MANOVA two-way layout

Consider the arbitrary h-th moment specified in (13.5.11). On expanding all the gamma
functions for large values of rst in the constant part and for large values of rst (1 + h) in
the functional part by applying Stirling’s formula or using the first term in the asymp-
totic expansion of a gamma function referring to (13.3.13), it can be verified that the h-th
moment of λ behaves asymptotically as follows:

λh → (1 + h)−
p(r−1)(s−1)

2 ⇒ −2 ln λ → χ2
p(r−1)(s−1) as rst → ∞. (13.5.12)

Thus, for large values of rst , one can utilize this real scalar chisquare approximation for
testing the hypothesis Ho : Γij = O for all i and j . We can work out a large number of
exact distributions of w of (13.5.10) for special values of r, s, t, p. Observe that

E[wh] = C

p∏

j=1

Γ (
rs(t−1)

2 − j−1
2 + h)

Γ (
rs(t−1)

2 + (r−1)(s−1)
2 − j−1

2 + h)
(13.5.13)

where C is the normalizing constant such that when h = 0, E[wh] = 1. Thus, when
(r − 1)(s − 1) is a positive integer or when r or s is odd, the gamma functions cancel
out, leaving a number of factors in the denominator which can be written as a sum by
applying the partial fractions technique. For small values of p, the exact density will then
be expressible as a sum involving only a few terms. For larger values of p, there will be
repeated factors in the denominator, which complicates matters.
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13.5.3. Exact densities of w in some special cases

We will consider several special cases of the h-th moment of w as given in (13.5.13).

Case (1): p = 1. In this case, h-th moment becomes

E[wh] = C1
Γ (

rs(t−1)
2 + h)

Γ (
rs(t−1)

2 + (r−1)(s−1)
2 + h)

where C1 is the associated normalizing constant. This is the h-th moment of a real scalar
type-1 beta random variable with the parameters (

rs(t−1)
2 ,

(r−1)(s−1)
2 ). Hence y = 1−w

w
is a

real scalar type-2 beta with parameters (
(r−1)(s−1)

2 ,
rs(t−1)

2 ), and

rs(t − 1)

(r − 1)(s − 1)
y ∼ F(r−1)(s−1),rs(t−1).

Accordingly, the test can be carried out by using this F -statistic. One would reject
the null hypothesis Ho : Γij = O if the observed F ≥ F(r−1)(s−1),rs(t−1),α where
F(r−1)(s−1),rs(t−1),α is the upper 100α% percentile of this F -density. For example, for
r = 2, s = 3, t = 3 and α = 0.05, we have F2,12,0.05 = 19.4 from F-tables so that Ho

would be rejected if the observed value of F2,12 ≥ 19.4 at the specified significance level.

Case (2): p = 2. In this case, we have a ratio of two gamma functions differing by 1
2 .

Combining the gamma functions in the numerator and in the denominator by using the
duplication formula and proceeding as in Sect. 13.3 for the one-way layout, the statistic

t1 = 1−√
w√

w
, and we have

rs(t − 1)

(r − 1)(s − 1)
t1 ∼ F2(r−1)(s−1),2(rs(t−1)−1),

so that the decision can be made as in Case (1).

Case (3): (r − 1)(s − 1) = 1 ⇒ r = 2, s = 2. In this case, all the gamma functions
in (13.3.13) cancel out except the last one in the numerator and the first one in the de-
nominator. This gamma ratio is that of a real scalar type-1 beta random variable with the
parameters (

rs(t−1)+1−p
2 ,

p
2 ), and hence y = 1−w

w
is a real scalar type-2 beta so that

rs(t − 1) + 1 − p

p
y ∼ Fp,rs(t−1)+1−p,

and decision can be made by making use of this F distribution as in Case (1).
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Case(4): (r − 1)(s − 1) = 2. In this case,

E[wh] = C1

p∏

j=1

1
rs(t−1)

2 − j−1
2 + h

with the corresponding normalizing constant C1. This product of p factors can be ex-
pressed as a sum by using partial fractions. That is,

E[wh] = C1

p−1∑

j=0

bj

a + h − j
2

(i)

where

bj = lim
a+h→ j

2

[(a + h)(a + h − 1
2) · · · (a + h − j−1

2 )(a + h − j+1
2 ) · · · (a + h − p−1

2 )],

(ii)

a = rs(t − 1)

2
.

Thus, the density of w, denoted by fw(w), which is available from (i) and (ii), is the
following:

fw(w) = C1

p−1∑

j=0

bjw
a− j

2−1, 0 ≤ w ≤ 1,

and zero elsewhere. Some additional special cases could be worked out but the expres-
sions would become complicated. For large values of rst , one can apply the asymptotic
chisquare result given in (13.5.12) for testing the hypothesis Ho : Γij = O.

Example 13.5.1. An experiment is conducted among heart patients to stabilize their sys-
tolic pressure, diastolic pressure and heart rate or pulse around the standard numbers which
are 120, 80 and 60, respectively. A random sample of 24 patients who may be considered
homogeneous with respect to all factors of variation, such as age, weight group, race, gen-
der, dietary habits, and so on, are selected. These 24 individuals are randomly divided into
two groups of equal size. One group of 12 subjects are given the medication combination
Med-1 and the other 12 are administered the medication combination Med-2. Then, the
Med-1 group is randomly divided into three subgroups of 4 subjects. These subgroups are
assigned exercise routines Ex-1, Ex-2, Ex-3. Similarly, the Med-2 group is also divided at
random into 3 subgroups of 4 individuals who are respectively subjected to exercise rou-
tines Ex-1, Ex-2, Ex-3. After one week, the following observations are made x1 = current
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reading on systolic pressure minus 120, x2 = current reading on diastolic pressure minus
80, x3 = current reading on heart rate minus 60. The structure of the two-way data layout
is as follows:

Ex-1 Ex-2 Ex-3
Med-1 four 3 × 1 vectors four 3 × 1 vectors four 3 × 1 vectors
Med-2 four 3 × 1 vectors four 3 × 1 vectors four 3 × 1 vectors

LetXijk be the k-th vector in the i-the row (i-th medication) and j -th column (j -th exercise
routine). For convenience, the data are presented in matrix form:

A11 = [X111, X112, X113, X114], A12 = [X121, X122, X123, X124],
A13 = [X131, X132, X133, X134], A21 = [A211, A212, A213, A214],
A22 = [A221, A222, A223, A224], A23 = [X231, X232, X233, X234];

A11 =
−2 3 2 5
1 −1 1 −1
2 −1 −1 0

, A12 =
1 4 −1 4

−2 −2 −3 3
3 −2 −1 0

, A13 =
4 −3 3 4
2 −3 2 3
1 −1 1 −1

,

A21 =
2 0 −2 0
1 4 1 2
2 1 −1 −2

, A22 =
3 −1 −1 3
4 4 0 0
0 1 −1 4

, A23 =
−2 −1 0 −1
1 4 0 3

−2 0 −2 0
.

(1) Perform a two-way ANOVA on the first component, namely, x1, the current reading
minus 120; (2) Carry out a MANOVA on the full data.

Solution 13.5.1. We need the following quantities:

X11. =
⎡

⎣
8
0
0

⎤

⎦ , X12. =
⎡

⎣
8

−4
0

⎤

⎦ , X13. =
⎡

⎣
8
4
0

⎤

⎦ ⇒ X1.. =
⎡

⎣
24
0
0

⎤

⎦

X21. =
⎡

⎣
0
8
0

⎤

⎦ , X22. =
⎡

⎣
4
8
4

⎤

⎦ , X23. =
⎡

⎣
−4
8

−4

⎤

⎦ ⇒ X2.. =
⎡

⎣
0
24
0

⎤

⎦

X.1. =
⎡

⎣
8
8
0

⎤

⎦ , X.2. =
⎡

⎣
12
4
4

⎤

⎦ , X.3. =
⎡

⎣
4
12

−4

⎤

⎦ ⇒ X... =
⎡

⎣
24
24
0

⎤

⎦

X̄ = X...

rst
= 1

24

⎡

⎣
24
24
0

⎤

⎦ =
⎡

⎣
1
1
0

⎤

⎦ , r = 2, s = 3, t = 4.
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By using the first elements in all these vectors, we will carry out a two-way ANOVA and
answer the first question. Since these are all observations on real scalar variables, we will
utilize lower-case letters to indicate scalar quantities. Thus, we have the following values:

s2tot =
∑

ij

(xijk − x̄)2 = (−2 − 1)2 + (3 − 1)2 + · · · + (−1 − 1)2 = 136,

s2row = 12
2∑

i=1

(xi..

12
− 1

)2 = 12[(2 − 1)2 + (0 − 1)2] = 24,

s2col = 8
3∑

j=1

(x.j.

8
− 1

)2 = 8
[
(1 − 1)2 +

(3
2

− 1
)2 +

(1
2

− 1
)2] = 4,

s2int = 4
∑

ij

(xij.

4
− xi..

12
− x.j.

8
+ 1

)2

= 4
[(8

4
− 24

12
− 8

8
+ 1

)2 + · · · +
(

− 4

4
− 0 − 4

8
+ 1

)2] = 4,

s2sub = 4
∑

ij

(xij.

4
− x...

24

)2 = 4
[(8

4
− 1

)2 + · · · +
(

− 4

4
− 1

)]
= 32,

s2res =
∑

ijk

(
xijk − xij.

4

)2 = (−2 − 2)2 + · · · + (−1 + 1)2 = 104,

s2tot =
∑

ijk

(
xijk − x...

24

)2 = (−2 − 1)2 + (3 − 1)2 + · · · + (−1 − 1)2 = 136.

All quantities have been calculated separately in order to verify the computations. We
could have obtained the interaction sum of squares from the subtotal sum of squares minus
the sum of squares due to rows and columns. Similarly, we could have obtained the residual
sum of squares from the total sum of squares minus the subtotal sum of squares. We will
set up the ANOVA table, where, as usual, df stands for degrees of freedom, SS means
sum of squares and MS denotes mean squares:
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ANOVA Table for a Two-Way Layout with Interaction

df. SS MS

Variation due to (1) (2) (3)=(2)/(1) F-ratio
rows 1 24 24 24/5.78

columns 2 4 2 2/5.78

interaction 2 4 2 2/5.78
subtotal 5 32
residuals 18 104 5.78
total 23 136

For testing the hypothesis of no interaction, the F -value at the 5% significance level
is F2,18,0.05 ≈ 19. The observed value of this F2,18 being 2

5.78 ≈ 0.35 < 19, the
hypothesis of no interaction is not rejected. Thus, we can test for the significance of
the row and column effects. Consider the hypothesis α1 = α2 = 0. Then under this
hypothesis and no interaction hypothesis, the F -ratio for the row sum of squares is
24/5.78 ≈ 4.15 < 240 = F1,18,0.05, the tabulated value of F1,18 at α = 0.05. There-
fore, this hypothesis is not rejected. Now, consider the hypothesis β1 = β2 = β3 = 0.
Since under this hypothesis and the hypothesis of no interaction, the F -ratio for the col-
umn sum of squares is 2

5.78 = 0.35 < 19 = F2,18,0.05, it is not rejected either. Thus, the
data show no significant interaction between exercise routine and medication, and no sig-
nificant effect of the exercise routines or the two combinations of medications in bringing
the systolic pressures closer to the standard value of 120.

We now carry out the computations needed to perform a MANOVA on the full data.
We employ our standard notation by denoting vectors and matrices by capital letters. The
sum of squares and cross products matrices for the rows and columns are the following,
respectively denoted by Srow and Scol :

Srow = st

2∑

i=1

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′

= 12
{
⎡

⎣
1

−1
0

⎤

⎦ [1, −1, 0] +
⎡

⎣
−1
1
0

⎤

⎦ [−1, 1, 0]
}

= 12

⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦ ,
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Scol = rt

3∑

j=1

(X.j.

rt
− X...

rst

)(X,j.

rt
− X...

rst

)′

= 8
{
O + 1

4

⎡

⎣
1 −1 1

−1 1 −1
1 −1 1

⎤

⎦ + 1

4

⎡

⎣
1 −1 1

−1 1 −1
1 −1 1

⎤

⎦
}

=
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦ ,

Sint = t
∑

ij

(Xij.

t
− Xi..

st
− X.j.

rt
+ X...

rst

)(Xij.

t
− Xi..

st
− X.j.

rt
+ X...

rst

)′

= 4
{
O + 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ + 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ + O

+ 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ + 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦
}

=
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦ ,

Ssub = t
∑

ij

(Xij.

t
− X̄

)(Xij.

t
− X̄

)′

=
⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦ + · · · +
⎡

⎣
4 −2 2

−2 1 −1
2 −1 1

⎤

⎦ =
⎡

⎣
32 −24 8

−24 32 0
8 0 8

⎤

⎦ .

We can verify the computations done so far as follows. The sum of squares and cross
product matrices ought to be such that Srow + Scol + Sint = Ssub. These are

Srow + Scol + Sint =
⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦ +
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦ +
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦

=
⎡

⎣
32 −24 8

−24 32 0
8 0 8

⎤

⎦ = Ssub.

Hence the result is verified. Now, the total and residual sums of squares and cross product
matrices are
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Stot =
∑

ijk

(Xijk − X̄)(Xijk − X̄)′

=
⎡

⎣
9 0 −6
0 0 0

−6 0 4

⎤

⎦ + · · · +
⎡

⎣
4 −4 0

−4 4 0
0 0 0

⎤

⎦ =
⎡

⎣
136 11 16
11 112 6
16 6 60

⎤

⎦

and

Sres =
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′

=
⎡

⎣
16 −14 −8

−4 1 2
−8 2 4

⎤

⎦ + · · · +
⎡

⎣
2 3 0
3 10 2
0 2 4

⎤

⎦ =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦ .

Then,

Sres + Sint =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦ +
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦ =
⎡

⎣
108 39 12
39 84 10
12 10 56

⎤

⎦ .

The above results are included in the following MANOVA table where df means degrees
of freedom, SSP denotes a sum of squares and cross products matrix and MS is equal to
SSP divided by the corresponding degrees of freedom:

MANOVA Table for a Two-Way Layout with Interaction

df. SSP MS

Variation due to (1) (2) (3)=(2)/(1)
rows 1 Srow Srow

columns 2 Scol
1
2Scol

interaction 2 Sint
1
2Sint

subtotal 5 Ssub

residuals 18 Sres
1
18Sres

total 23 Stot
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Then, the λ-criterion is

λ = |Sres | rst
2

|Sres + Sint | rst
2

⇒ w = |Sres |
|Sres + Sint | .

The determinants are as follows:

|Sres | = 104

∣∣∣∣
80 6
6 52

∣∣∣∣ − 35

∣∣∣∣
35 6
8 52

∣∣∣∣ + 8

∣∣∣∣
35 80
8 6

∣∣∣∣ = 363436

|Sres + Sint | = 108

∣∣∣∣
84 10
10 56

∣∣∣∣ − 39

∣∣∣∣
39 10
12 56

∣∣∣∣ + 12

∣∣∣∣
39 84
12 10

∣∣∣∣ = 409320.

Therefore,

w = 363436

409320
= 0.888 ⇒ lnw = −0.118783 ⇒ −2 ln λ = 24(0.118783) = 2.8508.

We have explicit simple representations of the exact densities for the special cases p =
1, p = 2, t = 2, t = 3. However, our situation being p = 3, t = 4, they do not apply. A
chisquare approximation is available for large values of rst , but our rst is only equal to 24.
In this instance, −2 ln λ → χ2

p(r−1)(s−1) � χ2
6 as rst → ∞. However, since the observed

value of −2 ln λ = 2.8508 happens to be much smaller than the critical value resulting
from the asymptotic distribution, which is χ2

6,0.05 = 12.59 in this case, we can still safely
decide not to reject the hypothesis Ho : Γij = O for all i and j , and go ahead and test for
the main row and column effects, that is, the main effects of medical combinations Med-
1 and Med-2 and the main effects of exercise routines Ex-1, Ex-2 and Ex-3. For testing
the row effect, our hypothesis is A1 = A2 = O and for testing the column effect, it is
B1 = B2 = B3 = O, given that Γij = O for all i and j . The corresponding likelihood
ratio criteria are respectively,

λ1 =
( |Sres |
|Sres + Srow|

) rst
2
and λ2 =

( |Sres |
|Sres + Scol|

) rst
2
,

and we may utilize wj = λ
2

rst

j , j = 1, 2. From previous calculations, we have

Sres + Srow =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦ +
⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦ =
⎡

⎣
128 11 8
11 104 6
8 6 52

⎤

⎦ ,

Sres + Scol =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦ +
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦ =
⎡

⎣
108 31 12
31 84 2
12 2 56

⎤

⎦ .



Multivariate Analysis of Variation 809

The required determinants are as follows:

|Sres | = 363436, |Sres + Srow| = 675724, |Sres + Scol| = 443176 ⇒
w1 = 363436

675724
= 0.5378468 and w2 = 363436

443176
= 0.8200714,

−2 ln λ1 = −24 ln 0.5378468 = 24(0.62018) = 14.88,

χ2
p(r−1),α = χ2

3,0.05 = 7.81 < 14.88; (i)

−2 ln λ2 = −24 ln 0.8200714 = 24(0.19836) = 4.76,

χ2
p(s−1),α = χ2

6,0.05 = 12.59 > 4.76. (ii)

When rst → ∞, −2 ln λ1 → χ2
p(r−1) and −2 ln λ2 → χ2

p(s−1), referring to Exer-
cises 13.5.9 and 13.5.10, respectively. These results follow from the asymptotic expan-
sion provided in Sect. 12.5.2. Even though rst = 24 is not that large, we may use these
chisquare approximations for making decisions as the exact densities of w1 and w2 do not
fall into the special cases previously discussed. When making use of the likelihood ratio
criterion, we reject the hypotheses A1 = A2 = O and B1 = B2 = B3 = O for small
values of λ1 and λ2, respectively, which translates into large values of the approximate
chisquare values. It is seen from (i) that the observed value −2 ln λ1 is larger than the tab-
ulated critical value and hence we reject the hypothesis A1 = A2 = O at the 5% level.
However, the hypothesis B1 = B2 = B3 = O is not rejected since the observed value is
less than the critical value. We may conclude that the present data does not show any evi-
dence of interaction between the exercise routines and medication combinations, that the
exercise routine does not contribute significantly to bringing the subjects’ initial readings
closer to the standard values (120, 80, 60), whereas there is a possibility that the medical
combinations Med-1 and Med-2 are effective in significantly causing the subjects’ initial
readings to approach standard values.

Note 13.5.1. It may be noticed from the MANOVA table that the second stage anal-
ysis will involve one observation per cell in a two-way layout, that is, the (i, j)-th
cell will contain only one observation vector Xij. for the second stage analysis. Thus,
Ssub = Sint +Srow +Scol (the corresponding sum of squares in the real scalar case), and in
this analysis with a single observation per cell, Sint acts as the residual sum of squares and
cross products matrix (the residual sum of squares in the real scalar case). Accordingly,
“interaction” cannot be tested when there is only a single observation per cell.
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Exercises

13.1. In the ANOVA table obtained in Example 13.5.1, prove that (1) the sum of squares
due to interaction and the residual sum of squares, (2) the sum of squares due to rows and
residual sum of squares, (3) the sum of squares due to columns and residual sum of squares,
are independently distributed under the normality assumption for the error variables, that

is, eijk
iid∼ N1(0, σ 2), σ 2 > 0.

13.2. In the MANOVA table obtained in Example 13.5.1, prove that (1) Sint and Sres ,
(2) Srow and Sres , (3) Scol and Sres , are independently distributed Wishart matrices when

Eijk
iid∼ Np(O, Σ), Σ > O.

13.3. In a one-way layout, the following are the data on four treatments. (1) Carry out
a complete ANOVA on the first component (including individual comparisons if the hy-
pothesis of no interaction is not rejected). (2) Perform a full MANOVA on the full data.

Treatment-1

[
1
2

]
,

[−1
1

]
,

[
2
3

]
,

[
2
2

]
, Treatment-2

[
2
3

]
,

[
2
4

]
,

[
1
2

]
,

[−1
−1

]
,

[
1
3

]
,

Treatment-3

[
2

−1

]
,

[
3
2

]
,

[
1
4

]
,

[
2
1

]
, Treatment-4

[
3
3

]
,

[
2
4

]
,

[−3
−1

]
,

[−2
1

]
,

[−3
3

]
.

13.4. Carry out a full one-way MANOVA on the following data:

Treatment-1

⎡

⎣
1
0

−1

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
2
1

−1

⎤

⎦ ,

⎡

⎣
1
2
1

⎤

⎦ ,

⎡

⎣
0
2
1

⎤

⎦ ,Treatment-2

⎡

⎣
3
2
3

⎤

⎦ ,

⎡

⎣
4
2
5

⎤

⎦ ,

⎡

⎣
6
5
4

⎤

⎦ ,

⎡

⎣
5
6
5

⎤

⎦ ,

Treatment-3

⎡

⎣
0
1

−1

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
−1
1
0

⎤

⎦ ,

⎡

⎣
1
1
2

⎤

⎦ ,

⎡

⎣
−2
1
2

⎤

⎦ .

13.5. The following are the data on a two-way layout where Aij denotes the data on the
i-th row and j -th column cell. (1) Perform a complete ANOVA on the first component. (2)
Carry out a full MANOVA on the full data. (3) Verify that Srow + Scol + Sint = Ssub and
Ssub + Sres = Stot , (4) Evaluate the exact density of w.

A11 =
2 1 2 −1
1 2 1 0

−1 3 1 4
, A12 =

1 3 1 1
4 4 1 1
6 3 −1 0

, A13 =
1 −1 1 −1

−2 1 2 1
1 −2 1 −2

,

A21 =
3 4 2 3
2 −1 2 3
3 5 2 2

, A22 =
1 −1 1 −1
0 1 −1 1
1 1 1 1

, A23 =
2 3 3 0
3 2 −1 2
3 −3 2 4

.
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13.6. Carry out a complete MANOVA on the following data where Aij indicates the data
in the i-th row and j -th column cell.

A11 = 1 −1 1 1 1
3 2 1 4 2

, A12 = 4 3 4 2 2
5 6 7 2 1

, A13 = 5 3 5 4 5
5 4 2 4 5

,

A21 = 0 1 1 0 −2
2 2 0 −1 −1

, A22 = 6 7 6 4 5
4 5 2 3 4

, A23 = 1 0 1 −1 −1
1 −1 2 1 2

.

13.7. Under the hypothesis A1 = · · · = Ar = O, prove that U1 = (Sres + Srow)− 1
2Sres

(Sres + Srow)− 1
2 , is a real matrix-variate type-1 beta with the parameters (

rs(t−1)
2 , r−1

2 ) for
r ≥ p, rs(t − 1) ≥ p, when the hypothesis Γij = O for all i and j is not rejected or
assuming that Γij = O. The determinant of U1 appears in the likelihood ratio criterion in
this case.

13.8. Under the hypothesis B1 = · · · = Bs = O when the hypothesis Γij = O is not

rejected, or assuming that Γij = O, prove that U2 = (Sres + Scol)
− 1

2Sres(Sres + Scol)
− 1

2

is a real matrix-variate type-1 beta random variable with the parameters (
rs(t−1)

2 , s−1
2 ) for

s ≥ p, rs(t − 1) ≥ p. The determinant of U2 appears in the likelihood ratio criterion for
testing the main effect Bj = O, j = 1, . . . , s.

13.9. Show that when rst → ∞, −2 ln λ1 → χ2
p(r−1), that is, −2 ln λ1 asymptotically

tends to a real scalar chisquare having p(r − 1) degrees of freedom, where λ1 = |U1| and
U1 is as defined in Exercise 13.7. [Hint: Look into the general h-th moment of λ1 in this
case, which can be evaluated by using the density of U1]. Hence for large values of rst ,
one can use this approximate chisquare distribution for testing the hypothesis A1 = · · · =
Ar = O.

13.10. Show that when rst → ∞, −2 ln λ2 → χ2
p(s−1), that is, −2 ln λ2 asymptotically

converges to a real scalar chisquare having p(s − 1) degrees of freedom, where λ2 = |U2|
withU2 as defined in Exercise 13.8. [Hint: Look at the h-th moment of λ2]. For large values
of rst , one can utilize this approximate chisquare distribution for testing the hypothesis
B1 = · · · = Bs = O.
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