
Chapter 12
Classification Problems

12.1. Introduction

We will use the same notations as in the previous chapters. Lower-case letters x, y, . . .

will denote real scalar variables, whether mathematical or random. Capital letters X, Y, . . .

will be used to denote real matrix-variate mathematical or random variables, whether
square or rectangular matrices are involved. A tilde will be placed on top of letters such as
x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for instance
be denoted by A, B, C. A tilde will not be used on constant matrices unless the point is to
be stressed that the matrix is in the complex domain. The determinant of a square matrix A

will be denoted by |A| or det(A) and, in the complex case, the absolute value or modulus of
the determinant ofAwill be denoted as |det(A)|. When matrices are square, their order will
be taken as p ×p, unless specified otherwise. When A is a full rank matrix in the complex
domain, then AA∗ is Hermitian positive definite where an asterisk designates the complex
conjugate transpose of a matrix. Additionally, dX will indicate the wedge product of all
the distinct differentials of the elements of the matrix X. Thus, letting the p × q matrix
X = (xij ) where the xij ’s are distinct real scalar variables, dX = ∧p

i=1 ∧q

j=1 dxij . For the

complex matrix X̃ = X1+ iX2, i = √
(−1), where X1 and X2 are real, dX̃ = dX1∧dX2.

Historically, classification problems arose in anthropological studies. By taking a set of
measurements on skeletal remains, anthropologists wanted to classify them as belonging
to a certain racial group such as being of African or European origin. The measurements
might have been of the following type: x1 = width of the skull, x2 = volume of the skull,
x3 = length of the thigh bone, x4 = width of the pelvis, and so on. Let the measurements
be represented by a p × 1 vector X, with X′ = (x1, . . . , xp) where a prime denotes
the transpose. Nowadays, classification procedures are employed in all types of problems
occurring in various contexts. For example, consider the situation of a battery of tests in
an entrance examination to admit students into a professional program such as medical
sciences, law studies, engineering science or management studies. Based on the p × 1
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vector of test scores, a statistician would like to classify an applicant as to whether or not
he/she belongs to the group of applicants who will successfully complete a given program.
This is a 2-group situation. If a third category is added such as those who are expected to
complete the program with flying colors, this will become a 3-group situation. In general,
one will have a k-group situation when an individual is classified into one of k classes.

Let us begin with the 2-group situation. The problem consists of classifying the p × 1
vector X into one of two, groups, classes or categories. Let the categories be denoted by
population π1 and population π2. This means X will either belong to π1 or to π2, no other
options being considered. The p × 1 vector X may be taken as a point in a p-space Rp

or p-dimensional Euclidean space �p. In a two-group situation when it is decided that the
candidate either belongs to the population π1 or the population π2, two subspaces A1 and
A2 within the p-space Rp are determined: A1 ⊂ Rp and A2 ⊂ Rp, with A1∩A2 = O (the
empty set) or a decision rule can be symbolically written as A = (A1, A2). If X falls in
A1, the candidate is classified into π1 and if X falls in A2, then the candidate is classified
into π2. In other words, X ∈ A1 means the individual is classified into population π1 and
X ∈ A2 means that the individual is classified into population π2. The regions A1 and
A2 or the rule A = (A1, A2) are not known beforehand. These are to be determined by
employing certain decision rules. Criteria for determining A1 and A2 will be subsequently
put forward. Let us now consider the consequences. When a decision is made to classify
X as coming from π1, either the decision is correct or the decision is erroneous. If the
population is actually π1 and the decision rule classifies X into π1, then the decision is
correct. If X is classified into π2 when in reality the population is π1, then a mistake has
been committed or a misclassification occurred. Misclassification will involve penalties,
costs or losses. Let such a penalty, cost or loss of classifying an individual into group i

when he/she actually belongs to group j, be denoted by C(i|j). In a 2-group situation,
i and j can only equal 1 or 2. That is, C(1|2) > 0 and C(2|1) > 0 are the costs of
misclassifying, whereas C(1|1) = 0 and C(2|2) = 0 since there is no cost or penalty
associated with correct decisions. The following table summarizes this discussion:

Table 12.1: Cost of misclassification C(i|j)

Statistician’s decision to classify into
π1 π2

Population π1 0 C(2|1)
In reality π2 C(1|2) 0
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12.2. Probabilities of Classification

The vector random variable corresponding to the observation vector X may have its
own probability/density function. The real scalar variables as well as the observations on
them will be denoted by the lower-case letters x1, . . . , xp. When dealing with the proba-
bility/density function of X, X is taken as vector random variable, whereas when looked
upon as a point in the p-space, Rp, X is deemed to be an observation vector. The p × 1
vector X may have a probability/density function P(X). In a 2-group or two classes situa-
tion, P(X) is either P1(X), the population density of π1 or P2(X), the population density
of π2. For convenience, it will be assumed that X of the continuous type, the derivations
in the discrete case being analogous. In the 2-group situation, P(X) can only be P1(X)

or P2(X). What is then the probability of achieving a correct classification under the rule
A = (A1, A2)? If the sample point X falls in A1, we classify the candidate as belonging to
π1, and if the true population is also π1, then a correct decision is made. In that instance,
the corresponding probability is

Pr{1|1, A} =
∫

A1

P1(X)dX (12.2.1)

where dX = dx1 ∧ dx2 ∧ . . .∧ dxp, A = (A1, A2) denoting one decision rule or one given
set of subspaces of the p-space Rp. The probability of misclassification in this case is

Pr{2|1, A} =
∫

A2

P1(X)dX. (12.2.2)

Similarly, the probabilities of correctly selecting and misclassifying P2(X) are respectively
given by

Pr{2|2, A} =
∫

A2

P2(X)dX (12.2.3)

and

Pr{1|2, A} =
∫

A1

P2(X)dX. (12.2.4)

In a Bayesian setting, there is a prior probability q1 of selecting the population π1 and q2 of
selecting the population π2, with q1+q2 = 1. Then, what will be the probability of drawing
an observation from π1 and misclassifying it as belonging to π2? It is q1 × Pr{2|1, A} =
q1

∫
A2

P1(X)dX and, similarly, the probability of drawing an observation from π2 and
misclassifying it as coming from π1 is q2×Pr{1|2, A} = q2

∫
A1

P2(X), with the respective
costs of misclassifications being C(2|1) = C(2|1, A) and C(1|2) = C(1|2, A). What is
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then the expected cost of misclassification? It is the sum of the costs multiplied by the
corresponding probabilities. Thus,

the expected cost = q1 C(2|1)P r{2|1, A} + q2 C(1|2)P r{1|2, A}. (12.2.5)

So, an advantageous criterion to rely on, when setting up A1 and A2 would consist in min-
imizing the expected cost as given in (12.2.5). A rule could be devised for determining A1

and A2 accordingly. In this regard, this actually corresponds to Bayes’ rule. How can one
interpret this expected cost? For example, in the case of admitting students to a particular
program of study based on a vector X of test scores, it is the cost of admitting potentially
incompetent students or students who would not have successfully completed the program
of study and training them, plus the projected cost of losing good students who would have
successfully completed the program of study.

If prior probabilities q1 and q2 are not involved, then the expected cost of misclassify-
ing an observation from π1 as coming from π2 is

C(2|1)P r{2|1, A} ≡ E1(A), (12.2.6)

and the expected cost of misclassifying an observation from π2 as coming from π1 is

C(1|2)P r{1|2, A} ≡ E2(A). (12.2.7)

We would like to haveE1(A) andE2(A) as small as possible. In this case, a procedure, rule
or criterion A = (A1, A2) corresponds to determining suitable subspaces A1 and A2 in the
p-space Rp. If there is another procedure A(j) = (A

(j)

1 , A
(j)

2 ) such that E1(A) ≤ E1(A
(j))

and E2(A) ≤ E2(A
(j)), then procedure A is said to be as good as A(j), and if at least one

of the inequalities above is a strict inequality, that is < , then A is preferable to A(j). If
procedure A is preferable to all other available procedures A(j), j = 1, 2, . . ., A is said to
be admissible. We are seeking an admissible class {A} of procedures.
12.3. Two Populations with Known Distributions

Let π1 and π2 be the two populations. Let P1(X) and P2(X) be the known p-variate
probability/density functions associated with π1 and π2, respectively. That is, P1(X) and
P2(X) are two p-variate probability/density functions which are fully known in the sense
that all their parameters are known in addition to their functional forms. Consider the
Bayesian situation where it is assumed that the prior probabilities q1 and q2 of selecting
π1 and π2, respectively, are known. Suppose that a particular p-vector X is at hand. What
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is the probability that this given X is an observation from π1? This probability is q1 P1(X)

if X is discrete or q1P1(X)dX if X is continuous. What is the probability that the given
vector X is an observation vector either from π1 or from π2? This probability is q1P1(X)+
q2P2(X) or [q1P1(X)+q2P2(X)]dX. What is then the probability that the vectorX at hand
is from P1(X), given that it is an observation vector from π1 or π2? As this is a conditional
statement, it is given by the following in the discrete or continuous case:

q1P1(X)

q1P1(X) + q2P2(X)
or

q1P1(X)dX

[q1P1(X) + q2P2(X)]dX
= q1P1(X)

q1P1(X) + q2P2(X)
(12.3.1)

where dX, which is the wedge product of differentials and positive in this case, cancels
out. If the conditional probability that a given X is an observation from π1 is larger than or
equal to the conditional probability that the given vector X is an observation from π2 and
if we assign X to π1, then the chance of misclassification is reduced. Our main objective
is to minimize the probability of misclassification and then come up with a decision rule.
This statement is equivalent to the following: If

q1P1(X)

q1P1(X) + q1P2(X)
≥ q2P2(X)

q1P1(X) + q2P2(X)
⇒ q1P1(X) ≥ q2P2(X) (12.3.2)

then we assign X to π1, meaning that our subspace A1 is specified by the following rule:

A1 : q1P1(X) ≥ q2P2(X) ⇒ P1(X)

P2(X)
≥ q2

q1

A2 : q1P1(X) < q2P2(X) ⇒ P1(X)

P2(X)
<

q2

q1
. (12.3.3)

Note that if q1P1(X) = q2P2X), then X can be assigned to either π1 or π2; however,
we have assigned it to π1 for convenience. Observe that, it is assumed that q1P1(X) +
q2P2(X) �= 0, q1 > 0, q2 > 0 and q1 + q2 = 1 in (12.3.2). The conditional statement
made in (12.3.2), which can also be written as

qiPi(X)

q1P1(X) + q2P2(X)
= ηiPi(X)

η1P1(X) + η2P2(X)
, ηi > 0, η1+η2 = η > 0,

ηi

η
= qi, i = 1, 2,

holds for some weight functions ηi, i = 1, 2.
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If the observation is from π1 : P1(X), then the expected cost of misclassification is
q1P1(X)C(2|1) + q2P2(X)C(2|2) = q1P1(X)C(2|1) since C(i|i) = 0, i = 1, 2. Sim-
ilarly, the expected cost of misclassifying of the observation X from π2 : P2(X) is
q2P2(X)C(1|2). If P1(X) is our preferred distribution, then we would like the associated
expected cost of misclassification to be the lesser one, that is,

q1P1(X)C(2|1) < q2P2(X)C(1|2) in A2 ⇒
P1(X)

P2(X)
<

q2C(1|2)
q1C(2|1) in A2 or

P1(X)

P2(X)
≥ q2C(1|2)

q1C(2|1) in A1, (12.3.4)

which is the same rule as in (12.3.3) where q1 is replaced by q1C(2|1) and q2, by q2C(1|2).
12.3.1. Best procedure

It can be established that the procedure A = (A1, A2) in (12.3.3) is the best one for
minimizing the probability of misclassification. To this end, consider any other procedure
A(j) = (A

(j)

1 , A
(j)

2 ), j = 1, 2, . . . . The probability of misclassification under the proce-
dure A(j) is the following:

q1

∫
A

(j)
2

P1(X)dX + q2

∫
A

(j)
1

P2(X)dX

=
∫

A
(j)
2

[q1P1(X) − q2P2(X)]dX + q2

∫
A

(j)
1 ∪A

(j)
2

P2(X)dX. (12.3.5)

If A
(j)

1 ∪A
(j)

2 = Rp, then
∫
A

(j)
1 ∪A

(j)
2

P2(X)dX = 1; it is otherwise a given positive constant.

However, q1P1(X)−q2P2(X) can be negative, zero or positive, whereas the left-hand side
of (12.3.5) is a positive probability. Accordingly, the left-hand side is minimum if

q1P1(X) − q2P2(X) < 0 ⇒ P1(X)

P2(X)
<

q2

q1
, (i)

which actually is the rejection region A2 of the procedure A = (A1, A2). Hence, the
procedure A = (A1, A2) minimizes the probabilities of misclassification; in other words,
it is the best procedure. If cost functions are also involved, then (i) becomes the following:

P1(X)

P2(X)
<

C(1|2) q2

C(2|1) q1
. (ii)
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The region where q1P1(X)−q2P2(X) = 0 or q1C(2|1)P1(X)−q2C(1|2)P2(X) = 0 need
not be empty and the probability over this set need not be zero. If

Pr

{
P1(X)

P2(X)
= q2 C(1|2)

q1 C(2|1)
∣∣∣πi

}
= 0, i = 1, 2, (12.3.6)

it can also be shown that the above Bayes procedure A = (A1, A2) is unique. This is stated
as a theorem:

Theorem 12.3.1. Let q1 be the prior probability of drawing an observation X from the
population π1 with probability/density function P1(X) and let q2 be the prior probabil-
ity of selecting an observation X from the population π2 with probability/density function
P2(X). Let the cost or loss associated with misclassifying an observation from π1 as com-
ing from π2 be C(2|1) and the cost of misclassifying an observation from π2 as originating
from π1 be C(1|2). Letting

Pr

{
P1(X)

P2(X)
= C(1|2) q2

C(2|1) q1

∣∣∣πi

}
= 0, i = 1, 2,

the classification rule given by A = (A1, A2) of (12.3.4) is unique and best in the sense
that it minimizes the probabilities of misclassification.

Example 12.3.1. Let π1 and π2 be two univariate exponential populations whose param-
eters are θ1 and θ2 with θ1 �= θ2. Let the prior probability of drawing an observation from
π1 be q1 = 1

2 and that of selecting an observation from π2 be q2 = 1
2 . Let the costs or loss

associated with misclassifications be C(2|1) = C(1|2). Compute the regions and prob-
abilities of misclassification if (1): a single observation x is drawn; (2): iid observations
x1, . . . , xn are drawn.

Solution 12.3.1.(1). In this case, one observation is drawn and the populations are

Pi(x) = 1

θi

e
− x

θi , x ≥ 0, θi > 0, i = 1, 2.

Consider the following inequality on the support of the density:

P1(x)

P2(x)
≥ C(1|2) q2

C(2|1) q1
= 1,

or equivalently,
θ2

θ1
e
−x( 1

θ1
− 1

θ2
) ≥ 1 ⇒ e

−x( 1
θ1

− 1
θ2

) ≥ θ1

θ2
.
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On taking logarithms, we have

−x
( 1

θ1
− 1

θ2

)
≥ ln

θ1

θ2
⇒ x

( 1

θ2
− 1

θ1

)
≥ ln

θ1

θ2

⇒ x ≥ θ1θ2

θ1 − θ2
ln

θ1

θ2
for θ1 > θ2.

Letting θ1 > θ2, the steps in the case θ1 < θ2 being parallel, we have

x ≥ k, k = θ1θ2

θ1 − θ2
ln

θ1

θ2
.

Accordingly,
A1 : x ≥ k and A2 : x < k.

The probabilities of misclassification are:

P(2|1) =
∫

A2

P1(x)dx =
∫ k

x=0

1

θ1
e
− x

θ1 dx = 1 − e
− k

θ1

P(1|2) =
∫ ∞

x=k

1

θ2
e
− x

θ2 dx = e
− k

θ2 .

Solution 12.3.1.(2). In this case, X′ = (x1, . . . , xn) and

Pi(X) =
n∏

j=1

1

θi

e
− xj

θi = 1

θn
i

e
− u

θi , i = 1, 2,

where u = ∑n
j=1 xj is gamma distributed with the parameters (n, θi), i = 1, 2. The

density of u is then given by

gi(u) = 1

θn
i Γ (n)

un−1e
− u

θi , i = 1, 2.

Proceeding as above, for θ1 > θ2, A1 : u ≥ k1 and A2 : u < k1, k1 = θ1θ2
θ1−θ2

ln[ θ1
θ2

]n = nk

where k is as given in Solution 12.3.1(1). Consequently, the probabilities of misclassifica-
tion are as follows:

P(2|1) =
∫ k1

u=0

un−1

θn
1Γ (n)

e
− u

θ1 du =
∫ k1

θ1

0

un−1

Γ (n)
e−udu

P (1|2) =
∫ ∞

k1

un−1

θn
2Γ (n)

e
− u

θ2 du =
∫ ∞

k1
θ2

un−1

Γ (n)
e−udu
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where the integrals can be expressed in terms of incomplete gamma functions or deter-
mined by using integration by parts.

Example 12.3.2. Assume that no prior probabilities or costs are involved. Suppose that
in a certain clinic, the waiting time before a customer is attended to, depends upon the
manager on duty. If manager M1 is on duty, the expected waiting time is 10 minutes, and
if manager M2 is on duty, the expected waiting time is 5 minutes. Assume that the waiting
times are exponentially distributed with expected waiting time equal to θi, i = 1, 2. On
a particular day (1): a customer had to wait 6 minutes before she was attended to, (2):
three customers had to wait 6, 6 and 8 minutes, respectively. Who between M1 and M2

was likely to be on duty on that day?

Solution 12.3.2.(1). In this case, θ1 = 10, θ2 = 5 and the populations are exponential
with parameters θ1 and θ2, respectively. Thus, k = θ1θ2

θ1−θ2
ln θ1

θ2
= (10)(5)

10−5 ln 10
5 = 10 ln 2,

k
θ1

= 10 ln 2
10 = ln 2, k

θ2
= 2 ln 2 = ln 4, e

− k
θ1 = e− ln 2 = 1

2 = 0.5, and e
− k

θ2 = e− ln 4 = 1
4 =

0.25. In (1): the observed value of x = 6 < 10(ln 2) = 10(0.69314718056) ≈ 6.9315.
Accordingly, we classify x to M2, that is, the manager M2 was likely to be on duty. Thus,

P(2|2, A) = The probability of making a correct decision

=
∫

x<k

P2(x)dx =
∫ k

0
P2(x)dx =

∫ k

0

1

5
e− x

5 dx

= 1 − e− ln 4 = 1 − 1

4
= 0.75;

P(2|1, A) = Probability of misclassification or making an incorrect decision

=
∫ k

0
P1(x)dx =

∫ k

0

1

10
e− x

10 dx = 1 − e− k
10 = 1 − e− ln 2 = 1

2
= 0.5.

Solution 12.3.2.(2). Here, u = 6 + 6 + 8 = 20, n = 3 and k1 = θ1θ2
θ1−θ2

n ln θ1
θ2

=
(10)(5)
10−5 3 ln 10

5 = 30 ln 2. Since 30 ln 2 ≈ 20.795 and the observed value of u is 20, u < k1,

and we assign the sample to π2 or to P2(X) or M2, with
k1
θ2

= 30 ln 2
5 = 6 ln 2 and k1

θ1
=

30 ln 2
10 = 3 ln 2. Thus,

P(2|2, A) = Probability of making a correct classification decision

= Pr{u < k1|P2(X)} =
∫ k1

0

un−1

θn
2Γ (n)

e
− u

θ2 du

=
∫ 6 ln 2

0

v2e−v

Γ (3)
dv, with Γ (3) = 2! = 2.
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Integrating by parts, ∫
v2e−vdv = −[v2 + 2v + 2]e−v.

Then,

1

2

∫ 6 ln 2

0
v2e−vdv = −{[2v2/2 + v + 1]e−v}6 ln 20 = 1 − 1

64
[(6 ln 2)2/2 + (6 ln 2) + 1]

≈ 1 − 1

64
[13.797] ≈ 0.785, and

P(2|1, A) = Probability of misclassification

=
∫ k1

0
P1(X)dX = 1

2

∫ 3 ln 2

0
v2e−vdv = −[12v2 + v + 1]e−v

∣∣3 ln 2
0

= 1 − 1

23
[(3 ln 2)2/2 + (3 ln 2) + 1] ≈ 0.485.

Example 12.3.3. Let the two populations π1 and π2 be univariate normal with mean
values μ1 and μ2, respectively, and the same variance σ 2, that is, P1(x) : N1(μ1, σ

2)

and P2(x) : N1(μ2, σ
2). Let the prior probabilities of drawing an observation from these

populations be q1 = 1
2 and q2 = 1

2 , respectively, and the costs or loss involved with
misclassification be C(1|2) = C(2|1). Determine the regions of misclassification and the
corresponding probabilities of misclassification if (1): a single observation x is available;
(2): iid observations x1, . . . , xn are available, from π1 or π2.

Solution 12.3.3.(1). If one observation is available,

Pi(x) = 1

σ
√
2π

e− (x−μi )
2

2σ2 , −∞ < x < ∞, −∞ < μi < ∞, σ > 0.

Consider regions

A1 : P1(x)

P2(x)
≥ C(1|2) q2

C(2|1) q1
= 1 ⇒ e− 1

2σ2
[(x−μ1)

2−(x−μ2)
2] ≥ 1

⇒ −
[ 1

2σ 2
[(x − μ1)

2 − (x − μ2)
2
]

≥ 0.

Now, note that

−[(x − μ1)
2 − (x − μ2)

2] = 2x(μ1 − μ2) − (μ2
1 − μ2

2) ≥ 0 ⇒
x ≥ 1

2

(μ2
1 − μ2

2)

(μ1 − μ2)
= 1

2
(μ1 + μ2) for μ1 > μ2 ⇒

A1 : x ≥ 1

2
(μ1 + μ2) and A2 : x <

1

2
(μ1 + μ2).
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The probabilities of misclassification are the following for k = 1
2(μ1 + μ2):

P(2|1) =
∫ k

−∞
1

σ
√
2π

e− (x−μ1)2

2σ2 dx = Φ
(k − μ1

σ

)

P(1|2) =
∫ ∞

k

1

σ
√
2π

e− (x−μ2)2

2σ2 dx = 1 − Φ
(k − μ2

σ

)

where Φ(·) is the distribution function of a univariate standard normal density and k =
1
2(μ1 + μ2).

Solution 12.3.3.(2). In this case, x1, . . . , xn are iid and X′ = (x1, . . . , xn). The multivari-
ate densities are

Pi(X) = 1

σn(
√
2π)n

e− 1
2σ2

∑n
j=1(xj−μi)

2 = e− 1
2σ2

(
∑n

j=1(xj−x̄)2+n(x̄−μi)
2)

σ n(
√
2π)n

, i = 1, 2,

where x̄ = 1
n

∑n
j=1 xj . Hence for μ1 > μ2,

A1 : P1(X)

P2(X)
≥ 1 ⇒ e− n

2σ2
[(x̄−μ1)

2−(x̄−μ2)
2] ≥ 1.

Taking logarithms and simplifying, we have

− n

2σ 2
[(x̄ − μ1)

2 − (x̄ − μ2)
2] ≥ 0 ⇒

x̄ ≥ μ2
1 − μ2

2

2(μ1 − μ2)
= 1

2
(μ1 + μ2) for μ1 > μ2

where

x̄ ∼ N1

(
μi,

σ 2

n

)
, i = 1, 2.

Therefore the probabilities of misclassification are the following:

P(2|1) =
∫ k

−∞

√
n

σ
√
2π

e− n

2σ2
(x̄−μ1)

2

dx̄ = Φ
(√

n(μ2 − μ1)

2σ

)

P(1|2) =
∫ ∞

k

√
n

σ
√
2π

e− n

2σ2
(x̄−μ2)

2

dx̄ = 1 − Φ
(√

n(μ1 − μ2)

2σ

)

where k = 1
2(μ1+μ2) and Φ(·) is the distribution function of a univariate standard normal

random variable.
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Example 12.3.4. Assume that no prior probabilities or costs are involved. A tuber crop
called tapioca is planted by farmers. While farmer F1 applies a standard fertilizer to the
soil to enhance the growth of the tapioca plants, farmer F2 does not apply any fertilizer
and let the plants grow naturally. At harvest time, a tapioca plant is pulled up with all
its tubers attached to the bottom of the stem. The upper part of the stem is cut off and
the lower part with its tubers is put out for sale. Tuber yield per plant, x, is measured
by weighing the lower part of the stem with the tubers attached. It is known from past
experience that x is normally distributed with mean value μ1 = 5 and variance σ 2 = 1
for F1 type farms, that is, x ∼ N1(μ1 = 5, σ 2 = 1)|F1 and that for F2 type farms,
x ∼ N1(μ2 = 3, σ 2 = 1)|F2, the weights being measured in kilograms. A road-side
vendor is selling tapioca and his collection is either from F1 type farms or F2 type farms,
but not both. A customer picked (1): one stem with its tubers attached weighing 4.2 kg (2)
a random sample of four stems respectively weighing 6, 4, 3 and 5 kg. To which type of
farms will you classify the observations in (1) and (2)?

Solution 12.3.4. (1). The decision is based on k = 1
2(μ1 + μ2) = 1

2(5 + 3) = 4. In this
case, the decision rule A = (A1, A2) is such that A1 : x ≥ k and A2 : x < k for μ1 > μ2.
Note that k−μ1

σ
= k − μ1 = 4 − 5 = −1 and k−μ2

σ
= (4 − 3) = 1. As the observed x is

4.2 > 4 = k, we classify x into P1(X) : N1(μ1, 1). Moreover,

P(1|1, A) = Probability of making a correct classification decision

= Pr{x ≥ k|P1(x)} =
∫ ∞

k

e− 1
2 (x−μ1)

2

√
(2π)

dx

=
∫ ∞

−1

e− 1
2u2

√
(2π)

= 0.5 +
∫ 1

0

e− 1
2u2

√
(2π)

dx ≈ 0.84,

and

P(1|2, A) = Probability of misclassification

= Pr{x ≥ k|P2(x)} =
∫ ∞

k

e− 1
2 (x−μ2)

2

√
(2π)

dx =
∫ ∞

1

e− 1
2u2

√
(2π)

dx ≈ 0.16.

Solution 12.3.4. (2). In this case, x̄ = 1
4(6+4+3+5) = 4.5, n = 4, x̄ ∼ N(μi,

1
n
), i =

1, 2, (k−μ1)

σ/
√

n
= 2(4 − 5) = −2 and (k−μ2)

σ/
√

n
= 2(4 − 3) = 2. Since the observed x̄ is

4.5 > 4 = k, we assign the sample to P1(X) : N(μ1, 1), the criterion being A1 : x̄ ≥ k

and A2 : x̄ < k. Additionally,
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P(1|1, A) = Probability of a correct classification

= Pr{x̄ ≥ k|P1(X)} =
∫ ∞

k

e− n
2 (x̄−μ1)

2

√
(2π)

dx̄ =
∫ ∞

−2

e− 1
2u2

√
(2π)

du

= 0.5 +
∫ 2

0

e− 1
2u2

√
(2π)

du ≈ 0.98,

and

P(1|2, A) = Probability of misclassification

= Pr{x̄ ≥ k|P2(X)} =
∫ ∞

k

e− n
2 (x̄−μ2)

2

√
(2π)

dx̄ =
∫ ∞

2

e− 1
2u2

√
(2π)

du ≈ 0.023.

Example 12.3.5. Let π1 and π2 be two p-variate real nonsingular normal popula-
tions sharing the same covariance matrix, π1 : Np(μ(1), Σ), Σ > O, and π2 :
Np(μ(2), Σ), Σ > O, whose mean values are such that μ(1) �= μ(2). Let the prior
probabilities be q1 = q2 and the cost functions be C(1|2) = C(2|1). Consider a single
p-vector X to be classified into π1 or π2. Determine the regions of misclassification and
the corresponding probabilities.

Solution 12.3.5. The p-variate real normal densities are the following:

Pi(X) = 1

(2π)
p
2 |Σ | 12

e− 1
2 (X−μ(i))′Σ−1(X−μ(i)) (i)

for i = 1, 2, Σ > O, μ(1) �= μ(2). Consider the inequality

P1(X)

P2(X)
≥ C(1|2) q2

C(2|1) q1
= 1 ⇒

e−1
2 [(X−μ(1))′Σ−1(X−μ(1))−(X−μ(2))′Σ−1(X−μ(2))] ≥ 1.

Taking logarithms, we have

−1
2 [(X − μ(1))′Σ−1(X − μ(1)) − (X − μ(2))′Σ−1(X − μ(2))] ≥ 0 ⇒

(μ(1) − μ(2))′Σ−1X − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2)) ≥ 0.

Let
u = (μ(1) − μ(2))′Σ−1X − 1

2(μ
(1) − μ(2))′Σ−1(μ(1) + μ(2)). (12.3.7)
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Then, u has a univariate normal distribution since it is a linear function of the components
of X, which is a p-variate normal. Thus,

Var(u) = Var[(μ(1) − μ(2))′Σ−1X]
= (μ(1) − μ(2))′Σ−1Cov(X)Σ−1(μ(1) − μ(2))

= (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = Δ2 (12.3.8)

whereΔ2 is Mahalanobis’ distance. The mean values of u under π1 and π2 are respectively,

E(u)|π1 = (μ(1) − μ(2))′Σ−1E(X)|π1 − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 1
2(μ

(1) − μ(2))′Σ−1(μ(1) − μ(2)) = 1
2Δ

2, (12.3.9)

E(u)|π2 = (μ(1) − μ(2))′Σ−1μ(2) − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 1
2(μ

(1) − μ(2))′Σ−1(μ(2) − μ(1)) = −1
2Δ

2, (12.3.10)

so that

u ∼ N1(
1
2Δ

2, Δ2) under π1,

u ∼ N1(−1
2Δ

2, Δ2) under π2. (12.3.11)

Accordingly, the regions of misclassification are

A2 : u < 0|π1 : u ∼ N1(
1
2Δ

2, Δ2) and A1 : u ≥ 0|π2 : u ∼ N1(−1
2Δ

2, Δ2), (12.3.12)

and the probabilities of misclassification are as follows:

P(2|1) =
∫ 0

−∞
1

Δ
√
2π

e− 1
2Δ2 (u− 1

2Δ2)2du

=
∫ 0− 1

2Δ2

Δ

−∞
1√
2π

e− t2
2 dt = Φ(−1

2Δ) (ii)

P(1|2) =
∫ ∞

0

1

Δ
√
2π

e− 1
2Δ2 (u+ 1

2Δ2)du

=
∫ ∞

0+ 1
2Δ2

Δ

1√
2π

e− t2
2 dt = 1 − Φ(12Δ) (iii)

where Φ(·) denotes the distribution function of a univariate standard normal variable.
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Note 12.3.1. If no conditions are imposed on the prior probabilities, q1 and q2, or on the
costs of misclassification, C(2|1) and C(1|2), then the regions are determined as A1 : u ≥
k, k = ln C(1|2) q2

C(2|1) q1
, and A2 : u < k. In this case, the probabilities of misclassification will

be Φ
(k− 1

2Δ2

Δ

)
and 1 − Φ

(k+ 1
2Δ2

Δ

)
, respectively.

Note 12.3.2. If the prior probabilities q1 and q2 are not known, we may assume that the
two populations π1 and π2 are equally likely to be chosen or equivalently that q1 = q2 =
1
2 , in which instance k = ln C(1|2)

C(2|1) . Then, the correct decisions are to assign the vector
X at hand to π1 in the region A1 and to π2 in the region A2, where A1 : u ≥ k and
A2 : u < k, k = ln q2 C(1|2)

q1 C(2|1) with q1, q2, C(2|1) and C(1|2) assumed to be known and

u = (μ(1) − μ(2))′Σ−1X − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2))

whose first term, namely (μ(1)−μ(2))′Σ−1X, is known as the linear discriminant function,
which is utilized to discriminate or to separate two p-variate populations, not necessarily
normally distributed, having mean value vectors μ(1) and μ(2) and sharing the same co-
variance matrix Σ > O.

Example 12.3.6. Assume that no prior probabilities or costs are involved. Applicants
to a certain training program are given tests to evaluate their aptitude for languages and
aptitude for science. Let the test scores be denoted by x1 and x2, respectively. Let X be

the bivariate vector X =
[
x1
x2

]
. After completing the training program, their aptitudes

are tested again. Let X(1)′ = [x(1)
1 , x

(1)
2 ] be the score vector in the group of success-

ful trainees and let X(2)′ = [x(2)
1 , x

(2)
2 ] be the score vector in the group of unsuccessful

trainees. From previous experience of conducting such tests over the years, it is known
that X(1) ∼ N2(μ

(1), Σ), Σ > O, and X(2) ∼ N2(μ
(2), Σ), Σ > O, where

μ(1) =
[
4
1

]
, μ(2) =

[
2
1

]
, Σ =

[
2 1
1 1

]
⇒ Σ−1 =

[
1 −1

−1 2

]
.

Then (1): one applicant taken at random before the training program started obtained the

test scores X0 =
[
4
1

]
; (2): three applicants chosen at random before the training program

started had the following scores:
[
4
2

]
,

[
3
1

]
,

[
5
1

]
.

In (1), classify X0 to π1 or π2 and in (2), classify the entire sample of three vectors into π1

or π2.
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Solution 12.3.6. Let us compute certain quantities which are needed to answer the ques-
tions:

1

2
(μ(1) + μ(2)) = 1

2

([
4
1

]
+

[
2
1

])
= 1

2

[
6
2

]
=

[
3
1

]
;

μ(1) − μ(2) =
[
2
0

]
, (μ(1) − μ(2))′Σ−1X = [2, −2]X = 2x1 − 2x2;

Δ2 = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = [2, 0]
[

1 −1
−1 2

] [
2
0

]
= 4;

(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)) = [2, 0]
[

1 −1
−1 2

] [
6
2

]
= 8.

Hence,

u = (μ(1) − μ(2))′Σ−1X − 1

2
(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 2x1 − 2x2 − 4;
u|π1 ∼ N1(

1
2Δ

2, Δ2), u|π2 ∼ N1(−1
2Δ

2, Δ2);
A1 : u ≥ 0, A2 : u < 0.

Since, in (1), the observed X0 =
[
4
1

]
, the observed u is u = 2x1 − 2x2 − 4 = 8 − 2 −

4 = 2 > 0 and we classify the observed X0 into π1 : N1(
1
2Δ

2, Δ2), the criterion being
A1 : u ≥ 0 and A2 : u < 0. Thus,

P(1|1, A) = Probability of making a correct classification decision

= Pr{u ≥ 0|π1} =
∫ ∞

0

e− 1
2Δ2 (u− 1

2Δ2)2

Δ
√

(2π)
du =

∫ ∞

−Δ
2

e− 1
2v2

√
(2π)

dv

=
∫ ∞

−1

e− 1
2v2

√
(2π)

dv = 0.5 +
∫ 1

0

e− 1
2v2

√
(2π)

dv ≈ 0.841;

P(1|2, A) = Probability of misclassification

=
∫ ∞

0

e− 1
2Δ2 (u+ 1

2Δ2)2

Δ
√

(2π)
du =

∫ ∞

1

e− 1
2v2

√
(2π)

dv ≈ 0.159.

When solving (2), the entire sample is to be classified. Proceeding as in the derivation of
the criterion u in case (1), it is seen that for the problem at hand, X0 will be replaced by X̄,
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the average of the sample vectors or the sample mean value vector, and then u will become
u1 = 2x̄1 − 2x̄2 − 4 where X̄′ = [x̄1, x̄2]. Thus, we require the sample average:

[
4
2

]
+

[
3
1

]
+

[
5
1

]
=

[
12
4

]
⇒ observed sample mean = 1

3

[
12
4

]
.

This means that x̄1 = 12
3 = 4, x̄2 = 4

3 , and the observed u1 = 2x̄1−2x̄2−4 = 8− 8
3 −4 >

0. Hence, we classify the whole sample to π1 as the criterion is A1 : u1 ≥ 0 and A2 : u1 <

0. Since X̄ is normally distributed with E[X̄] = μ(i) and Cov(X̄) = 1
n
Σ, i = 1, 2, where

n is the sample size, the densities of u1 under π1 and π2 are the following:

u1|π1 ∼ N1(
1
2Δ

2, 1
3Δ

2), n = 3,

u1|π2 ∼ N1(−1
2Δ

2, 1
3Δ

2).

Moreover,

P(1|1, A) = Probability of making a correct classification decision

= Pr{u1 ≥ 0|π1} =
∫ ∞

0

√
3

Δ
√

(2π)
e− 3

2Δ2 (u1− 1
2Δ2)2du1

=
∫ ∞

−
√
3Δ
2

e− 1
2v2

√
(2π)

dv =
∫ ∞

−√
3

e− 1
2v2

√
(2π)

dv = 0.5 +
∫ √

3

0

e− 1
2v2

√
(2π)

dv ≈ 0.958

and

P(1|2, A) = Probability of misclassification

= Pr{u1 ≥ 0|π2} =
∫ ∞

0

√
3

Δ
√

(2π)
e− 3

2Δ2 (u1+ 1
2Δ2)2du1

=
∫ ∞

√
3

e− 1
2v2

√
(2π)

≈ 0.042.

12.4. Linear Discriminant Function

Let X be a p × 1 vector and B a p × 1 arbitrary constant vector, B ′ = (b1, . . . , bp).
Consider the arbitrary linear function w = B ′X. Then, the mean value and variance of w

are the following: E(w) = B ′E(X) and Var(w) = Var(B ′X) = B ′Cov(X)B = B ′ΣB

where Σ > O is the covariance matrix of X. Suppose that the X could be from a p-variate
real population π1 with mean value vector μ(1) or from the p-variate real population π2

with mean value vector μ(2). Suppose that both the populations π1 and π2 have the same
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covariance matrix Σ > O. Then, a measure of discrimination or separation between π1

and π2 is |B ′μ(1) − B ′μ(2)| as measured in terms of the standard deviation
√
Var(w) for

determining the best choice of B. Taking the squared distance, let

δ = [B ′μ(1) − B ′μ(2)]2
B ′ΣB

= [B ′(μ(1) − μ(2)]2
B ′ΣB

= B ′(μ(1) − μ(2))(μ(1) − μ(2))′B
B ′ΣB

(12.4.1)
since the square of a scalar quantity is the scalar quantity times its transpose, B ′(μ(1) −
μ(2)) being a scalar quantity. Accordingly, we will maximize δ as specified in (12.4.1).
This will be achieved by selecting a particular B in such a way that δ attains a maximum
which corresponds to the maximum distance between π1 and π2. Without any loss of
generality, we may assume that B ′ΣB = 1, so that only the numerator in (12.4.1) need be
maximized, subject to the condition B ′ΣB = 1. Let λ denote a Lagrangian multiplier and

η = B ′(μ(1) − μ(2))(μ(1) − μ(2))′B − λ(B ′ΣB − 1).

Let us take the partial derivative of η with respect to the vector B and equate the result to
a null vector (the reader may refer to Chap. 1 for the derivative of a scalar variable with
respect to a vector variable):

∂η

∂B
= O ⇒ 2(μ(1) − μ(2))(μ(1) − μ(2))′B − 2λΣB = O

⇒ Σ−1(μ(1) − μ(2))(μ(1) − μ(2))′B = λB. (i)

Note that (μ(1) − μ(2))′B ≡ α is a scalar quantity and B is a specific vector coming from
(i) and hence we may write (i) as

B = α

λ
Σ−1(μ(1) − μ(2)) ≡ c Σ−1(μ(1) − μ(2)) (ii)

where c is a real scalar quantity. Observe that δ as given in (12.4.1) will remain the same
if B is multiplied by any scalar quantity. Thus, we may take c = 1 in (ii) without any loss
of generality. The linear discriminant function then becomes

B ′X = (μ(1) − μ(2))′Σ−1X, (12.4.2)

and when B ′X is as given in (12.4.2), δ as defined in (12.4.1), can be expressed as follows:

δ = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2))(μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

(μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

= (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = Δ2 ≡ Mahalanobis’ distance

= Var(w) = Variance of the discriminant function. (12.4.3)
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This δ is also the generalized squared distance between the vectors μ(1) and μ(2) or the
squared distance between the vectors Σ− 1

2μ(1) and Σ− 1
2μ(2) in the mathematical sense

(Euclidean distance). Hence Mahalanobis’ distance between two p-variate populations
with different mean value vectors and the same covariance matrix is a measure of dis-
crimination or separation between the populations, and the linear discriminant function is
given in (12.4.2). Hence for an observed value X, if u = (μ(1) − μ(2))′Σ−1X > 0 when
μ(1), μ(2) and Σ are known, then we choose population π1 with mean value μ(1), and if
u < 0, then we select population π2 with mean value μ(2). When u = 0, both π1 and π2

are equally favored.

Example 12.4.1. In a small township, there is only one grocery store. The town is laid
out on the East and West sides of the sole main road. We will refer to the villagers as East-
enders and West-enders. These townspeople shop only once a week for groceries. The
grocery store owner found that the East-enders and West-enders have somewhat different
buying habits. Consider the following items: x1 = grain items in kilograms, x2 = vegetable
items in kilograms, x3 = dairy products in kilograms, and let [x1, x2, x3] = X′ where X is
the vector of weekly purchases. Then, the expected quantities bought by the East-enders
and West-enders are E(X) = μ(1) and E(X) = μ(2), respectively, with the common
covariance matrix Σ > O. From past history, the grocery store owner determined that

X =
⎡
⎣x1

x2
x3

⎤
⎦ , μ(1) =

⎡
⎣2
3
1

⎤
⎦ , μ(2) =

⎡
⎣1
3
2

⎤
⎦ , Σ =

⎡
⎣3 0 0
0 2 −1
0 −1 1

⎤
⎦ .

Consider the following situations: (1) A customer walked in and bought x1 = 1 kg of grain
items, x2 = 2 kg of vegetable items, and x3 = 1 kg of dairy products. Is she likely to be
an East-ender or West-ender? (2): Another customer bought the three types of items in
the quantities (10, 1, 1), respectively. Is she more likely to be an East-ender than a West-
ender?

Solution 12.4.1. The inverse of the covariance matrix, μ(1) − μ(2), as well as other
relevant quantities are the following:

Σ−1 =
⎡
⎣

1
3 0 0
0 1 1
0 1 2

⎤
⎦ , μ(1) − μ(2) =

⎡
⎣2
3
1

⎤
⎦ −

⎡
⎣1
3
2

⎤
⎦ =

⎡
⎣ 1

0
−1

⎤
⎦ ,

(μ(1) − μ(2))′Σ−1 = [1, 0, −1]
⎡
⎣

1
3 0 0
0 1 1
0 1 2

⎤
⎦ = [13 , −1, −2].



730 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

In (1), X′ = (1, 2, 1) and since

(μ(1) − μ(2))′Σ−1X = [13 , −1, −2]
⎡
⎣1
2
1

⎤
⎦ < 0,

we classify this customer as a West-ender from her buying pattern. In (2),

(μ(1) − μ(2))′Σ−1X = [13 , −1, −2]
⎡
⎣10
1
1

⎤
⎦ > 0,

so that, given her purchases, this customer is classified as an East-ender.

12.5. Classification When the Population Parameters are Unknown

We now consider the classification problem involving two populations π1 and π2 for
which the parameters of the corresponding densities are unknown. Since the structure of
the parameters in these general densities P1(X) and P2(X) is not known, we will present
a specific example: Consider the two p-variate normal populations of Example 12.3.3.
Let π1 : Np(μ(1), Σ) and π2 : Np(μ(2), Σ), which share the same positive definite co-
variance matrix Σ . Suppose that we have a single observation vector X to be classified
into π1 or π2. When the parameters μ(1), μ(2) and Σ are unknown, we will have to es-
timate them from some training samples. But, for a problem such as classifying skeletal
remains, one does not have samples from the respective ancestral groups. Nevertheless,
one can obtain training samples from living racial groups, and so, secure estimates of the
parameters involved. Assume that we have simple random samples of sizes n1 and n2 from
Np(μ(1), Σ) and Np(μ(2), Σ), respectively. Denote the sample values by X

(1)
1 , . . . , X

(1)
n1 ,

and X
(2)
1 , . . . , X

(2)
n2 , and let X̄

(1) and X̄(2) be the sample averages. That is,

X
(1)
j =

⎡
⎢⎣

x
(1)
1j
...

x
(1)
pj

⎤
⎥⎦ , j = 1, . . . , n1; X

(2)
j =

⎡
⎢⎣

x
(2)
1j
...

x
(2)
pj

⎤
⎥⎦ , j = 1, . . . , n2;

X̄(1) =
⎡
⎢⎣

x̄
(1)
1
...

x̄
(1)
p

⎤
⎥⎦ , x̄

(1)
k = 1

n1

n1∑
j=1

x
(1)
kj ; X̄(2) =

⎡
⎢⎣

x̄
(2)
1
...

x̄
(2)
p

⎤
⎥⎦ , x̄

(2)
k = 1

n2

n2∑
j=1

x
(2)
kj . (12.5.1)

Let the sample matrices be denoted by bold-faced letters where the p×n1 matrix X(1) and
the p × n2 matrix X(2) are the sample matrices and let X̄(1) and X̄(2) be the matrices of
sample means. Thus, we have
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X(1) = [X(1)
1 , . . . , X(1)

n1
] =

⎡
⎢⎣

x
(1)
11 . . . x

(1)
1n1

...
. . .

...

x
(1)
p1 . . . x

(1)
pn1

⎤
⎥⎦ ,

X̄(1) = [X̄(1), . . . , X̄(1)] =
⎡
⎢⎣

x̄
(1)
1 . . . x̄

(1)
1

...
. . .

...

x̄
(1)
p . . . x̄

(1)
p

⎤
⎥⎦ ,

X(2) = [X(2)
1 , . . . , X(2)

n2
] =

⎡
⎢⎣

x
(2)
11 . . . x

(2)
1n2

...
. . .

...

x
(2)
p1 . . . x

(2)
pn2

⎤
⎥⎦ ,

X̄(2) = [X̄(2), . . . , X̄(2)] =
⎡
⎢⎣

x̄
(2)
1 . . . x̄

(2)
1

...
. . .

...

x̄
(2)
p . . . x̄

(2)
p

⎤
⎥⎦ . (12.5.2)

Then, the sample sum of products matrices are

Si = (X(i) − X̄(i))(X(i) − X̄(i))′, i = 1, 2;

Sm = (s
(m)
ij ), s

(m)
ij =

nm∑
k=1

(x
(m)
ik − x̄

(m)
i )(x

(m)
jk − x̄

(m)
j ), m = 1, 2, S = S1 + S2. (12.5.3)

The unbiased estimators of μ(1), μ(2) and Σ are respectively X̄(1), X̄(2) and S
n(2)

=
S1+S2
n(2)

, n(2) = n1 + n2 − 2. The criteria for classification, the regions, the statistic, and so
on, are available from Example 12.3.3. That is,

A1 : u ≥ k, A2 : u < k, k = ln
C(1|2)q2
C(2|1)q1 ,

where

u = X′Σ−1(μ(1) − μ(2)) − 1

2
(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)).

Note that q1 and q2 are the prior probabilities of selecting the populations π1 and π2 and
C(1|2) and C(2|1) are the costs or loss associated with misclassification. We will assume
that q1, q2, C(1|2) and C(2|1) are all known but the parameters μ(1), μ(2) and Σ are
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estimated by their unbiased estimators. Denoting the estimator of u as v, we obtain the
following criterion, assuming that we have one p-vector X to be classified into π1 or π2:

A1 : v ≥ k, A2 : v < k, k = ln
q2C(1|2)
q1C(2|1),

v = n(2)X
′S−1(X̄(1) − X̄(2)) − n(2)

1
2(X̄

(1) − X̄(2))′S−1(X̄(1) + X̄(2))

= n(2)[X − 1
2(X̄

(1) + X̄(2))]′S−1(X̄(1) − X̄(2)). (12.5.4)

As it turns out, it already proves quite challenging to obtain the exact distribution of v as
given in (12.5.4) where X is a single p-vector either from π1 or from π2.

12.5.1. Some asymptotic results

Before considering asymptotic properties of u and v as defined in Sect. 12.4, let us
recall certain results obtained in earlier chapters. Let the p × 1 vectors Yj , j = 1, . . . , n,

be iid vectors from some population for which E[Yj ] = μ and Cov(Yj ) = Σ > O, j =
1, . . . , n. Let the sample matrix, the matrix of sample means wherein the sample mean
Ȳ = 1

n

∑n
j=1 Yj and the sample sum of products matrix S be the as follows:

Y = [Y1, . . . , Yn], Ȳ = [Ȳ , . . . , Ȳ ], S = (sij ), sij =
n∑

k=1

(yik − ȳi)(yjk − ȳj ),

S = [Y − Ȳ][Y − Ȳ]′ = Y [ In − JJ ′/n ]Y, Y ′
j = [y1j , y2j , . . . , ypj ], (i)

where J is a n × 1 vector of unities. Since a matrix of the form Y − Ȳ is present, we
may let μ = O without any loss of generality in the following computations since Yj −
Ȳ = (Yj − μ) − (Ȳ − μ). Note that B = B ′ = In − 1

n
JJ ′ = B2 and hence, B is

idempotent and of rank n − 1. Since B = B ′, there exists an orthonormal matrix Q such
that Q′BQ = diag(1, . . . , 1, 0) = D, QQ′ = I, Q′Q = I, the diagonal elements being
1’s and 0 since B = B2 and of rank n − 1. Then,

S = YQ diag(1, . . . , 1, 0)Q′ Y′ = YQDD′Q′Y′,
D = diag(1, . . . , 1, 0). (ii)

Consider Σ− 1
2SΣ− 1

2 . Let Uj = Σ− 1
2Yj , j = 1, . . . , n, where Yj is the j -th column of Y

and it is assumed that μ = O. Observe that E[Uj ] = O,Cov(Uj ) = Ip, j = 1, . . . , n,

and the Uj ’s are uncorrelated. Letting U = [U1, . . . , Un], (ii) implies that

Σ− 1
2SΣ− 1

2 = UQDDQ′U′. (iii)
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Denoting by U(j) the j -th row ofU, it follows that the elements of U(j) are iid uncorrelated
real scalar variables with mean value zero and variance 1. Consider the transformation
V(j) = U(j)Q; then E[V(j)] = O and Cov[V(j)] = In, j = 1, . . . , p, the V(j)’s being
the uncorrelated. Let V be the p × n matrix whose rows are V(j), j = 1, . . . , p. Let the
columns of V be Vj , j = 1, . . . , n, that is, V = [V1, . . . , Vn]. Then, (iii) implies the
following:

Σ− 1
2SΣ− 1

2 = VDD′V′ = {[V1, . . . , Vn]D}{[V1, . . . , Vn]D}′
= [V1, . . . , Vn−1, O][V1, . . . , Vn−1, O]′ = V1V

′
1 + · · · + Vn−1V

′
n−1 ⇒

E[Σ− 1
2SΣ− 1

2 ] = E[V1V
′
1] + · · · + E[Vn−1V

′
n−1] = Ip + · · · + Ip = (n − 1)Ip ⇒

E[S] = (n − 1)Σ or E
[ S

n − 1

]
= Σ. (iv)

Additionally,

Cov(Ȳ ) = 1

n2
Cov[Y1 + · · · + Yn] = 1

n2
[Cov(Y1) + · · · + Cov(Yn)]

= 1

n2
[Σ + · · · + Σ] = n

n2
Σ = Σ

n
→ O as n → ∞, (v)

when Σ is finite with respect to any norm of Σ , namely ‖Σ‖ < ∞. Appealing to the
extended Chebyshev inequality, this shows that the unbiased estimator of μ, namely Ȳ ,
converges to μ in probability, that is,

Pr(Ȳ → μ) → 1 when n → ∞ or lim
n→∞ Pr(Ȳ → μ) = 1. (vi)

An unbiased estimator of Σ is Σ̂ = S
n−1 with E[Σ̂] = Σ . Will Σ̂ also converge to Σ in

probability when n → ∞? In order to establish this, we require the covariance structure
of the elements in S. For arbitrary populations, it is somewhat difficult to verify this result;
however, it is rather straightforward for normal populations. We will examine this aspect
next.

12.5.2. Another method

Let the p × 1 vectors Xj, j = 1, . . . , n, be a simple random sample of size n from
a population having a real Np(μ, Σ), Σ > O, distribution. Letting S denote the sample
sum of products matrix, S will be distributed as a Wishart matrix with m = n − 1 degrees
of freedom and Σ > O as its parameter matrix, whose density is

f (S) = 1

2
mp
2 |Σ |m

2 Γp(m
2 )

|S|m
2 −p+1

2 e− 1
2 tr(Σ

−1S), S > O, m ≥ p; (i)
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the reader may also refer to real matrix-variate gamma density discussed in Chap. 5. This is
usually written as S ∼ Wp(m, Σ), Σ > O. Letting S(∗) = Σ− 1

2SΣ− 1
2 , S(∗) ∼ Wp(m, I).

Consider the transformation S(∗) = T T ′ where T = (tij ) is a lower triangular matrix
whose diagonal elements are positive, that is, tij = 0, i < j, and tjj > 0, j = 1, . . . , p.
It was explained in Chaps. 1 and 3 that the tij ’s are mutually independently distributed with
the tij ’s such that i > j distributed as standard normal variables and t2jj , as a chisquare
variable having m − (j − 1) degrees of freedom. The j -th diagonal element of T T ′ is of
the form t2j1 + · · · + t2jj−1 + t2jj where t2jk ∼ χ2

1 , for k = 1, . . . , j − 1, that is, the square

of a real standard normal variable. Thus, the j -th diagonal element is distributed as χ2
1 +

· · · + χ2
1 + χ2

m−(j−1) ∼ χ2
m since all the individual chisquare variables are independently

distributed, in which case the resulting number of degrees of freedom is the sum of the
degrees of freedom of the chisquares. Now, noting that for a χ2

ν ,

E[χ2
ν ] = ν and Var(χ2

ν ) = 2 ν, (ii)

the expected value of each of the diagonal elements in T T ′, which are the diagonal ele-
ments in S(∗), will be m = n − 1. The non-diagonal elements in T T ′ result from a sum of
terms of the form tiktii , k < i, whose expected value is E[tiktii] = E[tik]E[tjj ]; but since
E[tik] = 0, i > k, all the non-diagonal elements will have zero as their expected values.
Accordingly,

E[S(∗)] = diag(m, . . . , m) ⇒ E
[S(∗)

m

]
= I ⇒ E

[ S

m

]
= Σ , m = n − 1, (iii)

and the estimator Σ̂ = S
m
is unbiased for Σ , m being equal to n − 1. Now, let us examine

the covariance structure of S(∗). Let W denote a single vector comprising all the distinct
elements of S(∗) = T T ′ and consider its covariance structure. In this vector of order
p(p+1)

2 ×1, convert all the original tij ’s and tjj ’s in terms of standard normal and chisquare
variables. Let z1, . . . , zp(p−1)

2
be the standard normal variables and y1, . . . , yp denote the

chisquare variables. Then, each element of Cov(W) = [W − E(W)][W − E(W)]′ will be
a sum of terms of the type

[Var(yk)][Var(zj )] = Var(yk) = [twice the number of degrees of freedom of yk], (iv)

which happens to be a linear function of m. Our estimator being Σ̂ = S
m

= Σ
1
2

S(∗)

m
Σ

1
2 ,

the covariance structure of S(∗)

m
which is 1

m2Cov(W) tends to O when m → ∞, since
each element of Cov(W) is of the form a m + b where a and b are real scalars, so that
a m+b

m2 → 0 as m → ∞, or equivalently, as n → ∞ since m = n − 1. Thus, it follows
from an extended version of Chebyshev’s inequality that
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Pr
( S

m
→ Σ

)
→ 1 as m → ∞ or as n → ∞ since m = n − 1. (v)

These last two results are stated next as a theorem.

Theorem 12.5.1. Let the p × 1 vectors Xj, j = 1, . . . , n, be iid with E[Xj ] = μ and
Cov(Xj ) = Σ, j = 1, . . . , n. Assume that Σ is finite in the sense that ‖Σ‖ < ∞. Then,
letting X̄ = 1

n

∑n
j=1 Xj denote the sample mean,

Pr(X̄ → μ) → 1 as n → ∞. (12.5.5)

Further, letting Xj ∼ Np(μ, Σ), Σ > O,

Pr
(
Σ̂ = S

m
→ Σ

)
→ 1 as m → ∞ or as n → ∞ since m = n − 1. (12.5.6)

Let us now examine the criterion in (12.5.4). In this case, we can obtain an asymptotic
distribution of the criterion v for large n(2) or when n(2) → ∞ in the sense that n1 → ∞
and n2 → ∞. When n(2) → ∞, we have X̄(1) → μ(1), X̄(2) → μ(2) and S

n(2)
→ Σ , so

that the criterion v in (12.5.4) becomes

u = (μ(1) − μ(2))′Σ−1X − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2))

= [X − 1
2(μ

(1) − μ(2))]′Σ−1(μ(1) − μ(2)), (12.5.7)

which is nothing but u as specified in (12.3.7) with the densities N1(
1
2Δ

2, Δ2) in π1 and
N1(−1

2Δ
2, Δ2) in π2. Hence, the following result:

Theorem 12.5.2. When n1 → ∞ and n2 → ∞, the criterion v provided in (12.5.4)
becomes u as specified in (12.5.7) with the univariate normal densities N1(

1
2Δ

2, Δ2) in
π1 and N1(−1

2Δ
2, Δ2) in π2, where Δ2 is Mahalanobis’ distance given in (12.3.8). We

classify X, the observation vector at hand, to π1 when X ∈ A1 and, to π2 when X ∈ A2

where A1 : u ≥ k and A2 : u < k with k = ln C(1|2) q2
C(2|1) q1

, q1 and q2 being the prior
probabilities of selecting the populations π1 and π2, respectively, and C(2|1) and C(1|2)
denoting the costs or loss associated with misclassification.

In a practical situation, when n1 and n2 are large, we may replaceΔ2 in Theorem 12.5.2
by the corresponding sample value n(2)(X̄

(1) − X̄(2))′S−1(X̄(1) − X̄(2)) where S = S1+S2
and n(2) = n1 + n2 − 2 and utilize the criterion u as specified in (12.5.7) to classify the
given vector X into π1 and π2. It is assumed that q1, q2, C(2|1) and C(1|2) are available.
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12.5.3. A new sample from π1 or π2

As in Examples 12.3.1 and 12.3.2, suppose that a simple random sample of size n3
is available either from π1 : Np(μ(1), Σ) or from π2 : Np(μ(2), Σ), Σ > O. Letting

the new sample be X
(3)
1 , . . . , X

(3)
n3 , the p × n3 sample matrix, the sample mean X̄(3) =

1
n3

∑n3
j=1 X

(3)
j , the p × n3 matrix of sample means and the sample sum of products matrix

are the following:

X(3) = [X(3)
1 , . . . , X(3)

n3
], X̄(3) = [X̄(3), X̄(3), . . . , X̄(3)],

S3 = [X(3) − X̄(3)][X(3) − X̄(3)]′ = (s
(3)
ij ),

s
(3)
ij =

n3∑
k=1

(x
(3)
ik − x̄

(3)
i )(x

(3)
jk − x̄

(3)
j ). (12.5.8)

An unbiased estimate from this third sample is Σ̂ = S3
n3−1 , as E[Σ̂] = Σ . A pooled

estimate of Σ obtained from the three samples is

S1 + S2 + S3

n1 + n2 + n3 − 3
≡ S

n(3)
, S = S1 + S2 + S3, n(3) = n1 + n2 + n3 − 3. (12.5.9)

Then, the criterion corresponding to (12.3.4) changes to:

A1 : w ≥ k and A2 : w < k, k = ln
C(1|2) q2

C(2|1) q1
, (12.5.10)

where
w = n(3)[X̄(3) − 1

2(X̄
(1) + X̄(2))]′S−1(X̄(1) − X̄(2)) (12.5.11)

with S = S1+S2+S3, n(3) = n1+n2+n3−3 and X̄(3) being the sample average from the
third sample, which either comes from π1 : Np(μ(1), Σ) or π2 : Np(μ(2), Σ), Σ > O.
Thus, the classification rule is the following:

A1 : w ≥ k and A2 : w < k, k = ln
C(1|2) q2

C(2|1) q1
, (12.5.12)

w being as defined in (12.5.11). That is, classify the new sample into π1 if w ≥ k and, into
π2 if w < k.

As was explained in Sect. 12.5.2, as nj → ∞, j = 1, 2, X̄(i) → μ(i), i = 1, 2, and
although n3 usually remains finite, as n1 → ∞ and n2 → ∞, we have n(3) → ∞ and
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S
n(3)

→ Σ . Accordingly, the criterion w as given in (12.5.11) converges to w1 for large
values of n1 and n2, where

w1 = [X̄(3) − 1
2(μ

(1) + μ(2))]′Σ−1(μ(1) − μ(2)). (12.5.13)

Compared to u as specified in (12.3.7), the only difference is that X associated with u

is replaced by X̄(3) in w1. Hence, the variance in u will be multiplied by 1
n3
, and the

asymptotic distributions will be as follows:

w1|π1 ∼ N1

(1
2
Δ2,

1

n3
Δ2

)
and w1|π2 ∼ N1

(
− 1

2
Δ2,

1

n3
Δ2

)
, (12.5.14)

as n1 → ∞ and n2 → ∞.

Theorem 12.5.3. Consider two populations π1 : Np(μ(1), Σ) and π2 : Np(μ(2), Σ),

Σ > O, and simple random samples of respective sizes n1 and n2 from these two popula-
tions. Suppose that a simple random sample of size n3 is available, either from π1 or π2.
For classifying the third sample into π1 or π2, the criterion to be utilized is w as given in
(12.5.11). Then, the asymptotic distribution of w, when ni → ∞, i = 1, 2, is that of w1

specified in (12.5.13) and the regions of classification are as given in (12.5.12).

In a practical situation, when the sample sizes n1 and n2 are large, one may replace
Δ2 by its sample analogue, and then use (12.5.14) to reach a decision. As it turns out, it
proves quite difficult to derive the exact density of w.

Example 12.5.1. A certain milk collection and distribution center collects and sells the
milk supplied by local farmers to the community, the balance, if any, being dispatched to
a nearby city. In that locality, there are two types of cows. Some farmers only keep Jersey
cows and others, only Holstein cows. Samples of the same quantities of milk are taken
and the following characteristics are evaluated: x1, the fat content, x2, the glucose content,
and x3, the protein content. It is known that X′ = (x1, x2, x3) is normally distributed
as X ∼ N3(μ

(1), Σ), Σ > O, for Jersey cows, and X ∼ N3(μ
(2), Σ), Σ > O, for

Holstein cows, with μ(1) �= μ(2), the covariance matrices Σ being assumed identical.
These parameters which are not known, are estimated on the basis of 100 milk samples
from Jersey cows and 102 samples from Holstein cows, all the samples being of equal
volume. The following are the summarized data with our standard notations, where S1 and
S2 are the sample sums of products matrices:

X̄(1) =
⎡
⎣2
1
2

⎤
⎦ , X̄(2) =

⎡
⎣1
2
2

⎤
⎦ , S1 =

⎡
⎣ 50 −50 50

−50 100 0
50 0 150

⎤
⎦ , S2 =

⎡
⎣ 150 −150 150

−150 300 0
150 0 450

⎤
⎦ .
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Three farmers just brought in their supply of milk and (1): a sample denoted by X1 is
collected from the first farmer’s supply and evaluated; (2) a sample, X2, is taken from a
second farmer’s supply and evaluated; (3) a set of 5 random samples are collected from a
third farmer’s supply, the sample average being X̄. The data is

X1 =
⎡
⎣2
1
1

⎤
⎦ , X2 =

⎡
⎣1
1
2

⎤
⎦ and X̄ =

⎡
⎣2
2
1

⎤
⎦ , n = 5.

Classify, X1, X2 and the sample of size 5 to either coming from Jersey or Holstein cows.

Solution 12.5.1. The following preliminary calculations are needed:

S

n1 + n2 − 2
= S1 + S2

n1 + n2 − 2
= S1 + S2

200
=

⎡
⎣ 1 −1 1

−1 2 0
1 0 3

⎤
⎦ ,

( S

200

)−1 =
⎡
⎣ 6 3 −2

3 2 −1
−2 −1 1

⎤
⎦ , X̄(1) − X̄(2) =

⎡
⎣ 1

−1
0

⎤
⎦ , X̄(1) + X̄(2) =

⎡
⎣3
3
4

⎤
⎦ .

Then,

(X̄(1) − X̄(2))′
( S

200

)−1 = [1, −1, 0]
⎡
⎣ 6 3 −2

3 2 −1
−2 −1 1

⎤
⎦ = [3, 1, −1],

1

2
(X̄(1) − X̄(2))′

( S

200

)−1
(X̄(1) + X̄(2)) = 1

2
[3, 1, −1]

⎡
⎣3
3
4

⎤
⎦ = 4,

(X̄(1) − X̄(2))′
( S

200

)−1
X = [3, 1, −1]X = 3x1 + x2 − x3 ⇒ w = 3x1 + x2 − x3 − 4

where the w is given in (12.5.11). For answering (1), we substitute X1 to X in w. That
is, w at X1 is 3(2) + (1) − (1) − 4 = 2 > 0. Hence, we assign X1 to Jersey cows.
For answering (2), we replace X in w by X2, that is, 3(1) + (1) − (2) − 4 = −2 < 0.
Thus, we assign X2 to Holstein cows. For answering (3), we replace X in w by X̄. That
is, 3(2) + (2) − (1) − 4 = 3 > 0. Accordingly, we classify this sample as coming from
Jersey cows.

12.6. Maximum Likelihood Method of Classification

As before, let π1 be the p-variate real normal population Np(μ(1), Σ), Σ > O,

with the simple random sample X
(1)
1 , . . . , X

(1)
n1 of size n1 drawn from that population,
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and π2 : Np(μ(2), Σ), Σ > O, with the simple random sample X
(2)
1 , . . . , X

(2)
n2 of size n2

so distributed. A p-vector X at hand is to be classified into π1 or π2. Let the sample means
and the sample sums of products matrices be X̄(1), X̄(2), S1 and S2. Then, the problem
of classification of X into π1 or π2 can be stated in terms of testing a hypothesis of the
following type: X and X

(1)
1 , . . . , X

(1)
n1 are from Np(μ(1), Σ) and X

(2)
1 , . . . , X

(2)
n2 are from

π2 constitutes the null hypothesis, versus, the alternative X and X
(2)
1 , . . . , X

(2)
n2 are from

Np(μ(2), Σ) and X
(1)
1 , . . . , X

(1)
n1 are from Np(μ(1), Σ). Let the likelihood functions under

the null and alternative hypotheses be denoted as L0 and L1, respectively, where

L0 =
{ n1∏

j=1

e− 1
2 (Xj−μ(1))′Σ−1(Xj−μ(1))

(2π)
p
2 |Σ | 12

}e− 1
2 (X−μ(1))′Σ−1(X−μ(1))

(2π)
p
2 |Σ | 12

×
{ n2∏

j=1

e− 1
2 (Xj−μ(2))′Σ−1(Xj−μ(2))

(2π)
p
2 |Σ | 12

}
,

L0 = e− 1
2ρ1

(2π)
(n1+n2+1)p

2 |Σ | n1+n2+1
2

, ρ1 = ν + (X − μ(1))′Σ−1(X − μ(1)), (i)

L1 = e− 1
2ρ2

(2π)
(n1+n2+1)p

2 |Σ | n1+n2+1
2

, ρ2 = ν + (X − μ(2))Σ−1(X − μ(2)), (ii)

where

ν = tr(Σ−1S1) + n1

2
(X̄(1) − μ(1))′Σ−1(X̄(1) − μ(1))

+ tr(Σ−1S2) + n2

2
(X̄(2) − μ(2))′Σ−1(X̄(2) − μ(2)) (iii)

and S1 and S2 are the sample sums of products matrices from the samples X
(1)
1 , . . . , X

(1)
n1

and X
(2)
1 , . . . , X

(2)
n2 , respectively. Referring to Chaps. 1 and 3 for vector/matrix derivatives

and the maximum likelihood estimators (MLE’s) of the parameters of normal populations,
the MLE’s obtained from (i) are the following, denoting the estimators/estimates with a
hat: The MLE’s under L0 are the following:

μ̂(1) = n1X̄
(1) + X

n1 + 1
, μ̂(2) = X̄(2), Σ̂ = S1 + S2 + S

(1)
3

n1 + n2 + 1
≡ Σ̂1,

S
(1)
3 = (X − μ̂(1))(X − μ̂(1))′ =

(
X − n1X̄

(1) + X

n1 + 1

)(
X − n1X̄

(1) + X

n1 + 1

)′

=
( n1

n1 + 1

)2
(X − X̄(1))(X − X̄(1))′, (12.6.1)
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observing that the scalar quantity

(X − μ̂(1))′Σ−1(X − μ̂(1)) = tr(X − μ̂(1))′Σ−1(X − μ̂(1)) = tr(Σ−1S
(1)
3 ).

By substituting the MLE’s in L0, we obtain the maximum of L0:

maxL0 = e− (n1+n2+1)p
2

(2π)
(n1+n2+1)p

2 |Σ̂1|
(n1+n2+1)

2

,

Σ̂1 = S1 + S2 + ( n1
n1+1)

2(X − X̄(1))(X − X̄(1))′

n1 + n2 + 1
. (12.6.2)

Under L1, the MLE’s are

μ̂(2) = n2X̄
(2) + X

n2 + 1
, μ̂(1) = X̄(1), Σ̂ = S1 + S2 + S

(2)
3

n1 + n2 + 1
≡ Σ̂2,

S
(2)
3 =

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′. (12.6.3)

Thus,

maxL1 = e− (n1+n2+1)p
2

(2π)
(n1+n2+1)p

2 |Σ̂2|
n1+n2+1

2

,

Σ̂2 = 1

n1 + n2 + 1

[
S1 + S2 +

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′

]
.

Hence,

λ1 = maxL0

maxL1
=

( |Σ̂2|
|Σ̂1|

) n1+n2+1
2 ⇒ λ

2
n1+n2+1

1 = z1 = |Σ̂2|
|Σ̂1|

, so that

z1 = |S1 + S2 + ( n2
n2+1)

2(X − X̄(2))(X − X̄(2))′|
|S1 + S2 + ( n1

n1+1)
2(X − X̄(1))(X − X̄(1))′| . (12.6.4)

If z1 ≥ 1, then maxL0 ≥ maxL1, which means that the likelihood of X coming from π1

is greater than or equal to the likelihood of X originating from π2. Hence, we may classify
X into π1 if z1 ≥ 1 and classify X into π2 if z1 < 1. In other words,

A1 : z1 ≥ 1 and A2 : z1 < 1. (iv)
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If we let S = S1 + S2, then z1 ≥ 1 ⇒
|S +

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′|

≥ |S +
( n1

n1 + 1

)2
(X − X̄(1))(X − X̄(1))′|. (v)

We can re-express this last inequality in a more convenient form. Expanding the following
partitioned determinant in two different ways, we have the following, where S is p × p

and Y is p × 1: ∣∣∣∣ S −Y

Y ′ 1

∣∣∣∣ = |S + YY ′| = |S| |1 + Y ′S−1Y |
= |S|[1 + Y ′S−1Y ], (vi)

observing that 1 + Y ′S−1Y is a scalar quantity. Accordingly, z1 ≥ 1 means that

1 +
( n2

n2 + 1

)2
(X − X̄(2))′S−1(X − X̄(2)) ≥ 1 +

( n1

n1 + 1

)2
(X − X̄(1))′S−1(X − X̄(1)).

That is,

z2 =
( n2

n2 + 1

)2
(X − X̄(2))′S−1(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))S−1(X − X̄(1)) ≥ 0 ⇒

z3 =
( n2

n2 + 1

)2
(X − X̄(2))′

( S

n1 + n2 − 2

)−1
(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))′

( S

n1 + n2 − 2

)−1
(X − X̄(1)) ≥ 0. (12.6.5)

Hence, the regions of classification are the following:

A1 : z3 ≥ 0 and A2 : z3 < 0. (vii)

Thus, classify X into π1 when z3 ≥ 0 and, X into π2 when z3 < 0. For large n1 and n2,
some interesting results ensue. When n1 → ∞ and n2 → ∞, we have ni

ni+1 → 1, i =
1, 2, X̄(i) → μ(i), i = 1, 2, and S

n1+n2−2 → Σ . Then, z3 converges to z4 where

z4 = 1
2(X − μ(2))′Σ−1(X − μ(2)) − (X − μ(1))′Σ−1(X − μ(1)) ≥ 0 (viii)

⇒ [X − 1
2(μ

(1) + μ(2))]′Σ−1(μ(1) − μ(2)) ≥ 0 ⇒ u ≥ 0

where u is the same criterion u as that specified in (12.5.7). Hence, we have the following
result:
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Theorem 12.6.1. Let X
(1)
1 , . . . , X

(1)
n1 be a simple random sample of size n1 from π1 :

Np(μ(1), Σ), Σ > O and X
(2)
1 , . . . , X

(2)
n2 be a simple random sample of size n2 from the

population π2 : Np(μ(2), Σ), Σ > O. Letting X be a vector at hand to be classified into
π1 or π2, when n1 → ∞ and n2 → ∞, the likelihood ratio criterion for classification
is the following: Classify X into π1 if u ≥ 0 and, X into π2 if u < 0 or equivalently,
A1 : u ≥ 0 and A2 : u < 0 where u = [X − 1

2(μ
(1) + μ(2))]′Σ−1(μ(1) − μ(2)) whose

density is u ∼ N1(
1
2Δ

2, Δ2) when X is assigned to π1 and u ∼ N1(−1
2Δ

2, Δ2) when
X is assigned to π2, with Δ2 = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) denoting Mahalanobis’
distance.

The likelihood ratio criterion for classification specified in (12.6.5) can also be given
the following interpretation: For large values of n1 and n2, the criterion reduces to
the following: (X − μ(2))′Σ−1(X − μ(2)) − (X − μ(1))′Σ−1(X − μ(1)) ≥ 0 where
(X − μ(2))′Σ−1(X − μ(2)) is the generalized distance between X and μ(2), and (X −
μ(1))′Σ−1(X − μ(1)) is the generalized distance between X and μ(1), which means that
the generalized distance between X and μ(2) is larger than the generalized distance be-
tween X and μ(1) when u > 0. That is, X is closer to μ(1) than μ(2) and accordingly,
we classify X into π1, which is the case u > 0. Similarly, if X is closer to μ(2) when
compared to the distance to μ(1), we assign X to π2, which is the case u < 0. The case
u = 0 is also included in the first inequality, but only for convenience. However, when
Pr{u = 0|πi, i = 1, 2} = 0, replacing u > 0 by u ≥ 0 is fully justified.

Note 12.6.1. The reader may refer to Example 12.3.3 for an illustration of the compu-
tations involved in connection with the probabilities of misclassification. For large values
of n1 and n2, one has the z4 of (viii) as an approximation to the u appearing in the same
equation as well as the u of (12.5.7) or that of Example 12.3.3. In order to apply Theo-
rem 12.6.1, one needs to know the parameters μ(1), μ(2) and Σ . When they are not avail-
able, one may substitute to them the corresponding estimates X̄(1), X̄(2) and Σ̂ = S1+S2

n1+n2−2
when n1 and n2 are large. Then, the approximate probabilities of misclassification can be
determined.

Example 12.6.1. Redo the problem considered in Example 12.5.1 by making use of the
maximum likelihood procedure.

Solution 12.6.1. In order to answer the questions, we need to compute

z4 =
( n2

n2 + 1

)2
(X − X̄(2))′

( S

n1 + n2 − 1

)−1
(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))′

( S

n1 + n2 − 2

)2
(X − X̄(1)).
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In this case, n1
n1+1 = 100

101 ≈ 1 and n2
n2+1 = 102

103 ≈ 1 and hence, the criterion z4 is the same
as w of (12.5.4) and the decisions arrived at an Example 12.5.1 will remain unchanged in
this example. Since n1 and n2 are large, we have reasonably accurate approximations of
the parameters as

X̄(1) → μ(1), X̄(2) → μ(2) and
S

n1 + n2 − 2
→ Σ,

so that the probabilities of misclassification can be evaluated by using their estimates. The
approximate distributions are then given by

w|π1 ∼ N1(
1
2Δ̂

2, Δ̂2) and w|π2 ∼ N1(−1
2Δ̂

2, Δ̂2)

where Δ̂2 = (X̄(1) − X̄(2))′( S
n1+n2−2)

−1(X̄(1) − X̄(2)). From the computations done in
Example 12.5.1, we have

(X̄(1) − X̄(2))′ = [1, −1, 0], (X̄(1) − X̄(2))′
( S

n1 + n2 − 2

)−1 = [3, 1, −1],

Δ̂2 = [3, 1, −1]
⎡
⎣ 1

−1
0

⎤
⎦ = 2

⇒ w|π1 ∼ N1(1, 2) and w|π2 ∼ N1(−1, 2), approximately.

As well, A1 : w ≥ 0 and A2 : w < 0. For the data pertaining to (1) of Example 12.5.1,
we have w > 0 and X1 is assigned to π1. Observing that w → u of (12.5.7),

P(1|1, A) = Probability of arriving at a correct decision

= Pr{u > 0|π1} =
∫ ∞

0

1√
2
√

(2π)
e− 1

4 (u−1)2du

=
∫ ∞

0−1√
2

1√
(2π)

e− 1
2v2dv ≈ 0.76;

P(1|2, A) = Probability of misclassification

= Pr{u > 0|π2} =
∫ ∞

0

1√
2
√

(2π)
e− 1

4 (u+1)2du

=
∫ ∞

1√
2

1√
(2π)

e− 1
2v2dv ≈ 0.24.

In Example 12.5.1, the observed vector provided for (2) is classified into π2 since w < 0.
Thus, the probability of making the right decision is P(2|2, A) = Pr{u < 0|π2} ≈ 0.76
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and the probability of misclassification is P(2|1, A) = Pr{u < 0|π1} ≈ 0.24. Given the
data related to (3) of Example 12.5.1, the only difference is that the distributions in π1

and π2 will be slightly different, the mean values remaining the same but the variance Δ̂2

being replaced by Δ̂2/n where n = 5. The computations are similar to those provided for
(1), the sample mean being assigned to π1 in this case.

12.7. Classification Involving k Populations

Consider the p-variate populations π1, . . . , πk and let X be a p-vector at hand to be
classified into one of these k populations. Let q1, . . . , qk be the prior probabilities of select-
ing these populations, qj > 0, j = 1, . . . , k, with q1 + · · · + qk = 1. Let the cost of mis-
classification of a p-vector belonging to πi being improperly classified into πj be C(j |i)
for i �= j so that C(i|i) = 0, i = 1, . . . , k. A decision rule A = (A1, . . . , Ak) determines
subspaces Aj ⊂ Rp, j = 1, . . . , k, with Ai ∩Aj = φ (the empty set) for all i �= j . Let the
probability/density functions associated with the k populations be Pj(X), j = 1, . . . , k,
respectively. Let P(j |i, A) = Pr{X ∈ Aj |πi : Pi(X), A} = probability of an observation
coming from or belonging to the population πi or originating from the probability/density
function Pi(X), being improperly assigned to πj or misclassified as coming from Pj(X),
and the cost associated with this misclassification be denoted by C(j |i). Under the rule
A = (A1, . . . , Ak), the probabilities of correctly classifying and misclassifying an ob-
served vector are the following, assuming that the Pj(X)′s, j = 1, . . . , k, are densities:

P(i|i, A) =
∫

Ai

Pi(X)dX and P(j |i, A) =
∫

Aj

Pi(X)dX, i, j = 1, . . . , k, (i)

where P(i|i, A) is a probability of achieving a correct classification, that is, of assigning
an observation X to πi when the population is actually πi , and P(j |i, A) is the probability
of an observation X coming from πi being misclassified as originating from πj . Consider
a p-vector X at hand. What is then the probability that this X came from Pi(X), given
that X is an observation vector from one of the populations π1, . . . , πk? This is in fact a
conditional statement involving

qiPi(X)

q1P1(X) + q2P2(X) + · · · + qkPk(X)
.

Suppose that for specific i and j , the conditional probability

qiPi(X)

q1P1(X) + · · · + qkPk(X)
≥ qjPj (X)

q1P1(X) + · · · + qkPk(X)
. (ii)

This is tantamount to presuming that the likeliness of X originating from Pi(X) is greater
than or equal to that of X coming from Pj(X). In this case, we would like to assign X to
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πi rather than πj . If (ii) holds for all j = 1, . . . , k, j �= i, then we classify X into πi .
Equation (ii) for j = 1, . . . , k, j �= i, implies that

qiPi(X) ≥ qjPj (X) ⇒ Pi(X)

Pj (X)
≥ qj

qi

, j = 1, . . . , k, j �= i. (12.7.1)

Accordingly, we adopt (12.7.1) as a decision rule A = (A1, . . . , Ak). This decision rule
corresponds to the following: When X ∈ A1 ⊂ Rp or X falls in A1, then X is clas-
sified into π1, when X ∈ A2, then X is assigned to π2, and so on. What is the ex-
pected cost of an X belonging to πi being misclassified into πj under some decision rule
B = (B1, . . . , Bk), Bj ⊂ Rp, j = 1, . . . , k, Bi ∩Bj = O, i �= j, for all i and j? This is
qiPi(X)C(j |i) ≡ Ei(B). The expected cost of an X belonging to πj being misclassified
into πi under the same decision rule B is Ej(B) = qjPj (X)C(i|j). If Ei(B) < Ej(B),
then we favor Pi(X) over Pj(X) as it is always desirable to minimize the expected cost in
any procedure or decision. If Ei(B) < Ej(B) for all j = 1, . . . , k, j �= i, then Pi(X) or
πi is preferred over all other populations to which X could be assigned. Note that

Ei(B) < Ej(B) ⇒ qiPi(X)C(j |i) < qjPj (X)C(i|j) ⇒ Pi(X)

Pj (X)
<

qj C(i|j)

qi C(j |i) , (iii)

for j = 1, . . . , k, j �= i, so that (iii) is the situation resulting from the following misclas-
sification rule: if

Pi(X)

Pj (X)
≥ qj C(i|j)

qi C(j |i) , j = 1, . . . , k, j �= i, (12.7.2)

we classify X into πi or equivalently, X ∈ Ai , which is the decision rule A =
(A1, . . . , Ak). Thus, the decision rule B in (iii) is identical to A. Observing that when
C(i|j) = C(j |i), (12.7.2) reduces to (12.7.1); the decision rule A = (A1, . . . , Ak) in
(12.7.1) is seen to yield the maximum probability of assigning an observation X at hand
to πi compared to the probability of assigning X to any other πj , j = 1, . . . , k, j �= i,

when the costs of misclassification are equal. As well, it follows from (12.7.2) that the
decision rule A = (A1, . . . , Ak) gives the minimum expected cost associated with as-
signing the observation X at hand to πi compared to assigning X to any other population
πj , j = 1, . . . , k , j �= i.

12.7.1. Classification when the populations are real Gaussian

Let the populations be p-variate real normal, that is, πj ∼ Np(μ(j), Σ), Σ > O, j =
1, . . . , k, with different mean value vectors but the same covariance matrix Σ > O. Let
the density of πj be denoted by Pj(X) � Np(μ(j), Σ), Σ > O. A vector X at hand is to
be assigned to one of the πi’s, i = 1, . . . , k. In Sect. 12.3 or Example 12.3.3, the decision
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rule involves two populations. Letting the two populations be πi : Pi(X) and πj : Pj(X)

for specific i and j , it was determined that the decision rule consists of classifying X into
πi if ln

Pi(X)
Pj (X)

≥ ln ρ, ρ = qjC(i|j)

qiC(j |i) , with ρ = 1 so that ln ρ = 0 whenever C(i|j) = C(j |i)
and qi = qj . When ln ρ = 0, we have seen that the decision rule is to classify the p-vector
X into πi or Pi(X) if uij (X) ≥ 0 and to assign X to Pj(X) or πj if uij (X) < 0, where

uij (X) = (μ(i) − μ(j))′Σ−1X − 1
2(μ

(i) − μ(j))′Σ−1(μ(i) + μ(j))

= [X − 1
2(μ

(i) + μ(j))]′Σ−1(μ(i) − μ(j)). (iv)

Now, on applying the result obtained in (iv) to (12.7.1) and (12.7.2), one arrives at the
following decision rule:

Ai : uij (X) ≥ 0 or Ai : uij (X) ≥ ln k, k = qj C(i|j)

qi C(j |i) , j = 1, . . . , k, j �= i, (12.7.3)

with ln ρ = 0 occurring when qi = qj and C(i|j) = C(j |i).

Note 12.7.1. What will interchanging i and j in uij (X) entail? Note that, as defined,
uij (X) involves the terms (μ(i) − μ(j)) = −(μ(j) − μ(i)) and (μ(i) + μ(j)), the latter
being unaffected by the interchange of μ(i) and μ(j). Hence, for all i and j ,

uij (X) = −uji(X), i �= j. (12.7.4)

When the underlying population is X ∼ Np(μ(i), Σ), E[uij (X)|πi] = 1
2Δ

2
ij , which im-

plies that E[uji |πi] = −1
2Δ

2
ij = −E[uij (X)|πi] where Δ2

ij = (μ(i) − μ(j))′Σ−1(μ(i) −
μ(j)).

Note 12.7.2. For computing the probabilities of correctly classifying and misclassify-
ing an observed vector, certain assumptions regarding the distributions associated with
the populations πj , j = 1, . . . , k, are needed, the normality assumption being the most
convenient one.

Example 12.7.1. A certain milk collection and distribution center collects and sells the
milk supplied by local farmers to the community, the balance, if any, being dispatched to
a nearby city. In that locality, there are three dairy cattle breeds, namely, Jersey, Holstein
and Guernsey, and each farmer only keeps one type of cows. Samples are taken and the
following characteristics are evaluated in grams per liter: x1, the fat content, x2, the glu-
cose content, and x3, the protein content. It has been determined that X′ = (x1, x2, x3)
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is normally distributed as X ∼ N3(μ
(1), Σ) for Jersey cows, X ∼ N3(μ

(2), Σ) for Hol-
stein cows and X ∼ N3(μ

(3), Σ) for Guernsey cows, with a common covariance matrix
Σ > O, where

μ(1) =
⎡
⎣2
3
1

⎤
⎦ , μ(2) =

⎡
⎣1
3
2

⎤
⎦ , μ(3) =

⎡
⎣2
3
3

⎤
⎦ and Σ =

⎡
⎣3 0 0
0 2 −1
0 −1 1

⎤
⎦ .

(1): A farmer brought in his supply of milk from which one liter was collected. The three
variables were evaluated, the result beingX′

0 = (2, 3, 4). (2): Another one liter sample was
taken from a second farmer’s supply and it was determined that the vector of the resulting
measurements was X′

1 = (2, 2, 2). No prior probabilities or costs are involved. Which
breed of dairy cattle is each of these farmers likely to own?

Solution 12.7.1. Our criterion is based on uij (X) where

uij (X) = (μ(i) − μ(j))′Σ−1X − 1

2
(μ(i) − μ(j))′Σ−1(μ(i) + μ(j)).

Let us evaluate the various quantities of interest:

μ(1) − μ(2) =
⎡
⎣ 1

0
−1

⎤
⎦ , μ(1) − μ(3) =

⎡
⎣ 0

0
−2

⎤
⎦ , μ(2) − μ(3) =

⎡
⎣−1

0
−1

⎤
⎦ ,

μ(1) + μ(2) =
⎡
⎣3
6
3

⎤
⎦ , μ(1) + μ(3) =

⎡
⎣4
6
4

⎤
⎦ , μ(2) + μ(3) =

⎡
⎣3
6
5

⎤
⎦ ;

Σ−1 =
⎡
⎣

1
3 0 0
0 1 1
0 1 2

⎤
⎦ ;

A1 : {u12(X) ≥ 0, u13(X) ≥ 0}, A2 : {u21(X) ≥ 0, u23(X) ≥ 0},
A3 : {u31(X) ≥ 0, u32(X) ≥ 0};

(μ(1) − μ(2))′Σ−1X = (1, 0, −1)Σ−1X = (13 , −1, −2)X = 1
3x1 − x2 − 2x3

(μ(1) − μ(3))′Σ−1X = (0, 0, −2)Σ−1X = (0, −2, −4)X = −2x2 − 4x3

(μ(2) − μ(3))′Σ−1X = (−1, 0, −1)Σ−1X = (−1
3 , −1, −2)X = −1

3x1 − x2 − 2x3;
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1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2)) = 1
2 [13 , −1, −2]

⎡
⎣3
6
3

⎤
⎦ = −11

2

1
2(μ

(1) − μ(3))′Σ−1(μ(1) + μ(3)) = 1
2 [0, −2, −4]

⎡
⎣4
6
4

⎤
⎦ = −14

1
2(μ

(2) − μ(3))′Σ−1(μ(2) + μ(3)) = 1
2 [−1

3 , −1, −2]
⎡
⎣3
6
5

⎤
⎦ = −17

2
.

Hence,
u12(X) = 1

3x1 − x2 − 2x3 + 11
2 ; u13(X) = −2x2 − 4x3 + 14;

u21(X) = −1
3x1 + x2 + 2x3 − 11

2 ; u23(X) = −1
3x1 − x2 − 2x3 + 17

2 ;
u31(X) = 2x2 + 4x3 − 14; u32(X) = 1

3x1 + x2 + 2x3 − 17
2 .

In order to answer (1), we substitute X0 to X and first, evaluate u12(X0) and u13(X0) to
determine whether they are≥ 0. Since u12(X0) = 1

3(2)−(3)−2(4)+ 11
2 < 0, the condition

is violated and hence we need not check for u13(X0) ≥ 0. Thus, X0 is not in A1. Now,
consider u21(X0) = −1

3(2)+3+2(4)− 11
2 > 0 and u23(X0) = −1

3(2)−(3)−2(4)− 17
2 < 0;

again the condition is violated and we deduce that X0 is not in A2. Finally, we verify A3:
u31(X0) = 2(3) + 2(4) − 14 = 0 and u32(X0) = 1

3(2) + (3) + 2(4) − 17
2 > 0. Thus,

X0 ∈ A3, that is, we conclude that the sample milk came from Guernsey cows.

For answering (2), we substitute X1 to X in uij (X). Noting that u12(X1) = 1
3(2) −

(2)−2(2)+ 11
2 > 0 and u13(X1) = −2(2)−4(2)+14 > 0, we can surmise that X1 ∈ A1,

that is, the sample milk came from Jersey cows. Let us verify A2 and A3 to ascertain that
no mistake has been made in the calculations. Since u21(X1) < 0, X1 is not in A2, and
since u31(X0) < 0, X1 is not in A3. This completes the computations.

12.7.2. Some distributional aspects

For computing the probabilities of correctly classifying and misclassifying an observa-
tion, we require the distributions of our criterion uij (X). Let the populations be normally
distributed, that is, πj ∼ Np(μ(j), Σ), Σ > O, with the same covariance matrix Σ for
all k populations, j = 1, . . . , k. Then, the probability of achieving a correct classification
when X is assigned to πi is the following under the decision rule A = (A1, . . . , Ak):

P(i|i, A) =
∫

Ai

Pi(X)dX (12.7.5)
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where dX = dx1 ∧ . . . ∧ dxp and the integral is actually a multiple integral. But Ai is
defined by the inequalities ui1(X) ≥ 0, ui2(X) ≥ 0, . . . , uik(X) ≥ 0, where uii(X) is
excluded. This is the case when no prior probabilities and costs are involved or when the
prior probabilities are equal and the cost functions are identical. Otherwise, the region is
{Ai : uij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) , j = 1, . . . , k, j �= i}. Integrating (12.7.5) is
challenging as the region is determined by k − 1 inequalities.

When the parameters μ(j), j = 1, . . . , k, and Σ are known, we can evaluate the
joint distributions of uij (X), j = 1, . . . , k, j �= i, under the normality assumption for
πj , j = 1, . . . , k. Let us examine the distributions of uij (X) for normally distributed
πi : Pi(X), i = 1, . . . , k. In this instance, E[X]|πi = μ(i), and under πi ,

E[uij (X)]|πi = (μ(i) − μ(j))′Σ−1μ(i) − 1
2(μ

(i) − μ(j))′Σ−1(μ(i) + μ(j))

= 1
2(μ

(i) − μ(j))′Σ−1(μ(i) − μ(j)) = 1
2Δ

2
ij ;

Var(uij (X))|πi = Var[(μ(i) − μ(j))′Σ−1X] = Δ2
ij .

Since uij (X) is a linear function of the vector normal variable X, it is normal and the
distribution of uij (X)|πi is

uij (X) ∼ N1(
1
2Δ

2
ij , Δ

2
ij ), j = 1, . . . , k, j �= i. (12.7.6)

This normality holds for each j , j = 1, . . . , k, j �= i, and for a fixed i. Then, we can
evaluate the joint density of ui1(X), ui2(X), . . . , uik(X), excluding uii(X), and we can
evaluate P(i|i, A) from this joint density. Observe that for j = 1, . . . , k, j �= i, the
uij (X)’s are linear functions of the same vector normal variable X and hence, they have a
joint normal distribution. In that case, the mean value vector is a (k − 1)-vector, denoted
by μ(ii), whose elements are 1

2Δ
2
ij , j = 1, . . . , k, j �= i, for a fixed i, or equivalently,

μ′
(ii) = [12Δ2

i1, . . . ,
1
2Δ

2
ik] = E[U ′

ii] with U ′
ii = [ui1(X), . . . , uik(X)],

excluding the elements uii(X) and Δ2
ii = 0. The subscript ii in Uii indicates the re-

gion Ai and the original population Pi(X). The covariance matrix of Uii , denoted by Σii ,
will be a (k − 1) × (k − 1) matrix of the form Σii = [Cov(uir , uit )] = (crt ), crt =
Cov(uir(X), uit (X)). The subscript ii in Σii indicates the region Ai and the original pop-
ulation Pi(X). Observe that for two linear functions t1 = C′X = c1x1 + · · · + cpxp and
t2 = B ′X = b1x1 + · · · + bpxp, having a common covariance matrix Cov(X) = Σ , we
have Var(t1) = C′ΣC, Var(t2) = B ′ΣB and Cov(t1, t2) = C′ΣB = B ′ΣC. Therefore,

crt = (μ(i) − μ(r))′Σ−1(μ(i) − μ(t)), i �= r, t; Σii = (crt ).
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Let the vector Uii be such that U ′
ii = (ui1(X), . . . , uik(X)), excluding uii(X). Thus, for a

specific i,

Uii ∼ Nk−1(μ(ii), Σii), Σii > O,

and its density function, denoted by gii(Uii), is

gii(Uii) = 1

(2π)
k−1
2 |Σii |

1
2

e− 1
2 (Uii−μ(ii))

′Σ−1
ii (Uii−μ(ii)).

Then,

P(i|i, A) =
∫

uij (X)≥0, j=1,...,k, j �=i

gii(Uii)dUii

=
∫ ∞

ui1(X)=0
· · ·

∫ ∞

uik(X)=0
gii(Uii)dui1(X) ∧ ... ∧ duik(X), (12.7.7)

the differential duii being absent from dUii , which is also the case for uii(X) ≥ 0 in the
integral. If prior probabilities and cost functions are involved, then replace uij (X) ≥ 0 in

the integral (12.7.7) by uij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) . Thus, the problem reduces to de-
termining the joint density gii(Uii) and then evaluating the multiple integrals appearing in
(12.7.7). In order to compute the probability specified in (12.7.7), we standardize the nor-

mal density by letting Vii = Σ
− 1

2
ii Uii where Vii ∼ Nk−1(O, I), and with the help of this

standard normal, we may compute this probability through Vii . Note that (12.7.7) holds
for each i, i = 1, . . . , k, and thus, the probabilities of achieving a correct classification,
P(i|i, A) for i = 1, . . . , k, are available from (12.7.7).

For computing probabilities of misclassification of the type P(i|j, A), we can proceed
as follows: In this context, the basic population is πj : Pj(X) ∼ Np(−1

2Δ
2
ij , Δ

2
ij ), the

region of integration being Ai : {ui1(X) ≥ 0, . . . , uik(X) ≥ 0}, excluding the element
uii(X) ≥ 0. Consider the vector Uij corresponding to the vector Uii . In Uij , i stands for
the region Ai and j , for the original population Pj(X). The elements of Uij are the same
as those of Uii , that is, U ′

ij = (ui1(X), . . . , uik(X)), excluding uii(X). We then proceed as
before and compute the covariance matrixΣij ofUij in the original population Pj(X). The
variances of uim(X), m = 1, . . . , k, m �= i, will remain the same but the covariances will
be different since they depend on the mean values. Thus, Uij ∼ Nk−1(μ(ij), Σij ), and on
standardizing, one has Vij ∼ Nk−1(O, I), so that the required probability P(i|j, A) can
be computed from the elements of Vij . Note that when the prior probabilities and costs are
equal,
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P(i|j, A) =
∫

ui1(X)≥0,...,uik(X)≥0
gij (Uij ) dui1(X) ∧ . . . ∧ duik(X)

=
∫ ∞

ui1(X)=0
· · ·

∫ ∞

uik(X)=0
gij (Uij ) dUij , (12.7.8)

excluding uii(X) in the integral as well as the differential duii(X). Thus, dUij = dui1(X)∧
. . . ∧ duik(X), excluding duii(X).

Example 12.7.2. Given the data provided in Example 12.7.1, what is the probability of
correctly assigning X to π1? That is, compute the probability P(1|1, A).

Solution 12.7.2. Observe that the joint density of u12(X) and u13(X) is that of a bivariate
normal distribution since u12(X) and u13(X) are linear functions of the same vector X

where X has a multivariate normal distribution. In order to compute the joint bivariate
normal density, we need E[u1j (X)], Var(u1j (X)), j = 2, 3 and Cov(u12(X), u13(X)).
The following quantities are evaluated from the data given in Example 12.7.1:

Var(u12(X)) = Var[(μ(1) − μ(2))′Σ−1X − 1
2(μ

(1) − μ(2))′Σ−1(μ(1) + μ(2))]
= Var[(μ(1) − μ(2))′Σ−1X] = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

= [13 , −1, −2]
⎡
⎣ 1

0
−1

⎤
⎦ = 7

3
⇒ E[u12(X)] = 7

6
;

Var(u13(X)) = (μ(1) − μ(3))′Σ−1(μ(1) − μ(3))

= [0, −2, −4]
⎡
⎣ 0

0
−2

⎤
⎦ = 8 ⇒ E[u13(X)] = 4;

Cov(u12(X), u13(X)) = (μ(1) − μ(2))′Σ−1(μ(1) − μ(3)) = [13 , −1, −2]
⎡
⎣ 0

0
−2

⎤
⎦ = 4.

Hence, the covariance matrix of U11 =
[
u12(X)

u13(X)

]
, denoted by Σ11, is the following:

Σ11 =
[
7
3 4
4 8

]
⇒ |Σ11| = 8

3

Σ−1
11 = 3

8

[
8 −4

−4 7
3

]
= 1

8

[
24 −12

−12 7

]
,
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where

1

8

[
24 −12

−12 7

]
= 1

8

[
2
√
6 0

−√
6 1

] [
2
√
6 −√

6
0 1

]
= B ′B with

B = 1√
8

[
2
√
6 −√

6
0 1

]
⇒ |B| = |B ′| = |Σ11|− 1

2 = 2
√
6

8
.

The bivariate normal density of U11 is the following:

U11 =
[
u12(X)

u13(X)

]
∼ N2(μ(1), Σ11), μ(1) =

[
7/6
4

]
, (12.7.9)

with Σ11 and Σ−1
11 = B ′B as previously specified. Letting Y = B(U11 − E[U11]), Y ∼

N2(O, I). Note that

Y =
[
y1
y2

]
, U11 − E[U11] =

[
u12(X) − E[u12(X)]
u13(X) − E[u13(X)]

]
=

[
u12(X) − 7/6
u13(X) − 4

]
,

y1 = 2
√
6√
8

(u12(X) − 7/6) −
√
6√
8
(u13(X) − 4),

y2 =
√
6√
8
(u13(X) − 4).

Then,

B−1 =
√
8

2
√
6

[
1

√
6

0 2
√
6

]
=

[
1√
3

√
2

0 2
√
2

]
,

and we have [
u12(X) − 7/6
u13(X) − 4

]
=

[
1√
3

√
2

0 2
√
2

][
y1
y2

]
,

which yields u12(X) = 7
6 + 1√

3
y1 + √

2 y2 and u13(X) = 4 + 2
√
2 y2. The intersection

of the two lines corresponding to u12(X) = 0 and u13(X) = 0 is the point (y1, y2) =
(
√
3(56), −

√
2). Thus, u12(X) ≥ 0 and u13(X) ≥ 0 give y2 ≥ − 4

2
√
2

= −√
2 and 7

6 +
1√
3
y1 + √

2 y2 ≥ 0. We can express the resulting probability as ρ1 − ρ2 where

ρ1 =
∫ ∞

y2=−√
2

∫ ∞

y1=−∞
1
2π e

− 1
2 (y21+y22 )dy1 ∧ dy2 = 1 − Φ(−√

2), (12.7.10)
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which is explicitly available, where Φ(·) denotes the distribution function of a standard
normal variable, and

ρ2 =
∫ √

3(56 )

y1=−∞

∫ 1√
2
(
7
6+ 1√

3
y1)

y2=−√
2

1
2π e

−1
2 (y21+y22 )dy1 ∧ dy2

=
∫ √

3(56 )

y1=−∞
1√
(2π)

e−1
2y21 [Φ(− 1√

2
(76 + 1√

3
y1)) − Φ(−√

2)]dy1

=
∫ √

3(56 )

y1=−∞
1√
(2π)

e−1
2y21Φ(− 1√

2
(76 + 1√

3
y1))dy1 − Φ(

√
3(56))Φ(−√

2). (12.7.11)

Therefore, the required probability is

ρ1 − ρ2 = 1 − Φ(−√
2) + Φ(−√

2)Φ(
√
3(56))

−
∫ √

3(56 )

y1=−∞
1√
(2π)

e−1
2y21 Φ(− 1√

2
(76 + 1√

3
y1)) dy1. (12.7.12)

Note that all quantities, except the integral, are explicitly available from standard normal
tables. The integral part can be read from a bivariate normal table. If a bivariate normal ta-
ble is used, then one can approximate the required probability from (12.7.9). Alternatively,
once evaluated numerically, the integral is found to be equal to 0.2182 which subtracted
from 0.9941, yields a probability of 0.7759 for P(1|1, A).

12.7.3. Classification when the population parameters are unknown

When training samples are available from the populations πi, i = 1, . . . , k, we can
estimate the parameters and proceed with the classification. Let X

(i)
j , j = 1, . . . , ni, be a

simple random sample of size ni from the i-th population πi . Then, the sample average
is X̄(i) = 1

ni

∑ni

j=1 X
(i)
j , and with our usual notations, the sample matrix, the matrix of

sample means and sample sum of products matrix are the following:

X(i) = [X(i)
1 , . . . , X(i)

ni
], X̄(i) = [X̄(i), . . . , X̄(i)],

Si = [X(i) − X̄(i)][X(i) − X̄(i)]′, i = 1, . . . , k,

where

X(i) =
⎡
⎢⎣

x
(i)
11 . . . x

(i)
1ni

...
. . .

...

x
(i)
p1 . . . x

(i)
pni

⎤
⎥⎦ , Si = (s

(i)
rt ), s

(i)
rt =

ni∑
m=1

(x(i)
rm − x̄(i)

r )(x
(i)
tm − x̄

(i)
t ), i = 1, . . . , k.
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Note thatX(i) and X̄(i) are p×ni matrices andX
(i)
j is a p×1 vector for each j = 1, . . . , ni ,

and i = 1, . . . , k. Let the population mean value vectors and the common covari-
ance matrix be μ(1), . . . , μ(k), and Σ > O, respectively. Then, the unbiased estima-
tors for these parameters are the following, identifying the estimators/estimates by a hat:
μ̂

(i)
j = X̄(i), i = 1, . . . , k, and Σ̂ = S

n1+···+nk−k
, S = S1 + · · · + Sk. On replacing the

population parameters by their unbiased estimators, the classification criteria uij (X), j =
1, . . . , k, j �= i, become the following: Classify an observation vector X into πi if
ûij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) , j = 1, . . . , k, j �= i, or ûij ≥ 0, j = 1, . . . , k, j �= i, if
q1 = · · · = qk, and the C(i|j)’s are equal j = 1, . . . , k, j �= i, where

ûij (X) = (X̄(i) − X̄(j))′Σ̂−1X − 1
2(X̄

(i) − X̄(j))′Σ̂−1(X̄(i) + X̄(j)) (12.7.13)

for j = 1, . . . , k, j �= i. Unfortunately, the exact distribution of ûij (X) is difficult to
obtain even when the populations πi’s have p-variate normal distributions. However, when
nj → ∞, X̄(j) → μ(j), j = 1, . . . , k, and when nj → ∞, j = 1, . . . , k, Σ̂ → Σ .
Then, asymptotically, that is, when nj → ∞, j = 1, . . . , k, ûij (X) → uij (X), so
that the theory discussed in the previous sections is applicable. As well, the classification
probabilities can then be evaluated as illustrated in Example 12.7.2.

12.8. The Maximum Likelihood Method when the Population Covariances Are
Equal

Consider k real normal populations πi : Pi(X) � Np(μ(i), Σ), Σ > O, i =
1, . . . , k, having the same covariance matrix but different mean value vectors μ(i), i =
1, . . . , k. A p-vector X at hand is to be classified into one of these populations πj , j =
1, . . . , k. Consider a simple random sample X

(i)
1 , X

(i)
2 , . . . , X

(i)
ni

of sizes ni from πi for
i = 1, . . . , k. Employing our usual notations, the sample means, sample matrices, matri-
ces of sample means and the sample sum of products matrices are as follows:

X̄(i) = 1

ni

ni∑
j=1

X
(i)
j , X(i) = [X(i)

1 , . . . , X(i)
ni

] =
⎡
⎢⎣

x
(i)
11 . . . x

(i)
1ni

...
. . .

...

x
(i)
p1 . . . x

(i)
pni

⎤
⎥⎦ ,

X̄(i) = [X̄(i), . . . , X̄(i)], S(i) = [X(i) − X̄(i)][X(i) − X̄(i)]′,

S(i) = (s
(i)
rt ), s

(i)
rt =

ni∑
m=1

(x(i)
rm − x̄(i)

r )(x
(i)
tm − x̄

(i)
t ), S = S(1) + S(2) + · · · + S(k).

(12.8.1)
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Then, the unbiased estimators of the population parameters, denoted with a hat, are

μ̂(i) = X̄(i), i = 1, . . . , k, and Σ̂ = S

n1 + n2 + · · · + nk − k
. (12.8.2)

The null hypothesis can be taken as X
(i)
1 , . . . , X

(i)
ni

and X originating from πi and

X
(j)

1 , . . . , X
(j)
nj

coming from πj , j = 1, . . . , k, j �= i, the alternative hypothesis be-

ing: X and X
(j)

1 , . . . , X
(j)
nj

coming from πj for j = 1, . . . , k, j �= i, and X
(i)
1 , . . . , X

(i)
ni

originating from πi . On proceeding as in Sect. 12.6, when the prior probabilities are equal
and the cost functions are identical, the criterion for classification of the observed vector
X to πi for a specific i is

Ai :
( nj

nj + 1

)2
(X − X̄(j))′

( S

n(k)

)−1
(X − X̄(j))

−
( ni

ni + 1

)2
(X − X̄(i))′

( S

n(k)

)−1
(X − X̄(i)) ≥ 0 (12.8.3)

for j = 1, . . . , k, j �= i,where the decision rule isA = (A1, . . . , Ak), S = S(1)+· · ·+S(k)

and n(k) = n1 + n2 + · · · + nk − k. Note that (12.8.3) holds for each i, i = 1, . . . , k, and
hence, A1, . . . , Ak are available from (12.8.3). Thus, the vector X at hand is classified into
Ai , that is, assigned to the population πi, if the inequalities in (12.8.3) are satisfied. This
statement holds for each i, i = 1, . . . , k. The exact distribution of the criterion in (12.8.3)
is difficult to establish but the probabilities of classification can be computed from the
asymptotic theory discussed in Sect. 12.7 by observing the following:

When ni → ∞, X̄(i) → μ(i), i = 1, . . . , k, and when n1 → ∞, . . . , nk →
∞, Σ̂ → Σ . Thus, asymptotically, when ni → ∞, i = 1, . . . , k, the criterion specified
in (12.8.3) reduces to the criterion (12.7.3) of Sect. 12.7. Accordingly, when ni → ∞ or
for very large ni’s, i = 1, . . . , k, one may utilize (12.7.3) for computing the probabilities
of classification, which was illustrated in Examples 12.7.1 and 12.7.2.

12.9. Maximum Likelihood Method and Unequal Covariance Matrices

The likelihood procedure can also provide a classification rule when the normal pop-
ulation covariance matrices are different. For example, let π1 : P1(X) � Np(μ(1), Σ1),
Σ1 > O, and π2 : P2(X) � Np(μ(2), Σ2), Σ2 > O, where μ(1) �= μ(2) and Σ1 �= Σ2.

Let a simple random sampleX
(1)
1 , . . . , X

(1)
n1 of size n1 from π1 and a simple random sample

X
(2)
1 , . . . , X

(2)
n2 of size n2 from π2 be available. Let X̄(1) and X̄(2) be the sample averages

and S1 and S2 be the sample sum of products matrices, respectively. In classification prob-
lems, there is an additional vector X which comes from π1 under the null hypothesis and
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from π2 under the alternative. Then, the maximum likelihood estimators, denoted by a hat,
will be the following:

μ̂(1) = X̄(1), μ̂(2) = X̄(2), Σ̂1 = S1

n1
and Σ̂2 = S2

n2
, (i)

respectively, when no additional vector is involved. However, these estimators will change
in the presence of the additional vector X, where X is the vector at hand to be assigned
to π1 or π2. When X originates from π1 or π2, μ(1) and μ(2) are respectively estimated as
follows:

μ̂(1)∗ = n1X̄1 + X

n1 + 1
and μ̂(2)∗ = n2X̄2 + X

n2 + 1
, (ii)

and when X comes from π1 or π2, Σ1 and Σ2 are estimated by

Σ̂1∗ = S1 + S
(1)
3

n1 + 1
and Σ̂2∗ = S2 + S

(2)
3

n2 + 1
(iii)

where

S
(1)
3 = (X − μ̂(1)∗ )(X − μ̂(1)∗ )′ =

( n1

n1 + 1

)2
(X − X̄1)(X − X̄1)

′

S
(2)
3 = (X − μ̂(2)∗ )(X − μ̂(2)∗ )′ =

( n2

n2 + 1

)2
(X − X̄2)(X − X̄2)

′, (iv)

referring to the derivations provided in Sect. 12.6 when discussing maximum likelihood
procedures. Thus, the null hypothesis can be X and X

(1)
1 , . . . , X

(1)
n1 are from π1 and

X
(2)
1 , . . . , X

(2)
n2 are from π2, versus the alternative: X and X

(2)
1 , . . . , X

(2)
n2 being from π2

and X
(1)
1 , . . . , X

(1)
n1 , from π1. Let L0 and L1 denote the likelihood functions under the null

and alternative hypotheses, respectively. Observe that under the null hypothesis, Σ1 is es-
timated by Σ̂1∗ of (iii) and Σ2 is estimated by Σ̂ of (i), respectively, so that the likelihood
ratio criterion λ is given by

λ = maxL0

maxL1
= |Σ̂2∗|

n2+1
2 |Σ̂1|

n1
2

|Σ̂1∗|
n1+1
2 |Σ̂2|

n2
2

. (12.9.1)

The determinants in (12.9.1) can be represented as follows, referring to the simplifications
discussed in Sect. 12.6:

λ = (n1 + 1)
p(n1+1)

2

(n2 + 1)
p(n2+1)

2

|S2|
n2+1
2

|S1|
n1+1
2

[1 + ( n2
n2+1)

2(X − X̄2)
′S−1

2 (X − X̄2)]
n2+1
2 |Σ̂1|

n1
2

[1 + ( n1
n1+1)

2(X − X̄1)′S−1
1 (X − X̄1)]

n1+1
2 |Σ̂2|

n2
2

. (12.9.2)
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The classification rule then consists of assigning the observed vector X to π1 if λ ≥ 1 and,
to π2 if λ < 1. We could have expressed the criterion in terms of λ1 = λ

2
n if n1 = n2 = n,

which would have simplified the expressions appearing in (12.9.2).
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