
Chapter 11
Factor Analysis

11.1. Introduction

We will utilize the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. In the real and com-
plex cases, the determinant of a square matrix A will be denoted by |A| or det(A) and,
in the complex case, the absolute value or modulus of the determinant of A will be de-
noted as |det(A)|. When matrices are square, their order will be taken as p × p, unless
specified otherwise. When A is a full rank matrix in the complex domain, then AA∗ is
Hermitian positive definite where an asterisk designates the complex conjugate transpose
of a matrix. Additionally, dX will indicate the wedge product of all the distinct differen-
tials of the elements of the matrix X. Thus, letting the p × q matrix X = (xij ) where
the xij ’s are distinct real scalar variables, dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix

X̃ = X1 + iX2, i = √
(−1), where X1 and X2 are real, dX̃ = dX1 ∧ dX2.

Factor analysis is a statistical method aiming to identify a relatively small number
of underlying (unobserved) factors that could explain certain interdependencies among a
larger set of observed variables. Factor analysis also proves useful for analyzing causal
mechanisms. As a statistical technique, Factor Analysis was originally developed in con-
nection with psychometrics. It has since been utilized in operations research, finance and
biology, among other disciplines. For instance, a score available on an intelligence test
will often assess several intellectual faculties and cognitive abilities. It is assumed that a
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certain linear function of the contributions from these various mental factors is producing
the final score. Hence, there is a parallel to be made with analysis of variance as well as
design of experiments and linear regression models.

11.2. Linear Models from Different Disciplines

In order to introduce the current topic, we will first examine a linear regression model
and an experimental design model.

11.2.1. A linear regression model

Let x be a real scalar random variable and let t1, . . . , tr be either r real fixed numbers
or given values of r real random variables. Let the conditional expectation of x, given
t1, . . . , tr , be of the form

E[x|t1, . . . , tr ] = ao + a1t1 + · · · + ar tr

or the corresponding model be

x = ao + a1t1 + · · · + ar tr + e

where ao, a1, . . . , ar are unknown constants, t1, . . . , tr are given values and e is the error
component or the sum total of contributions coming from unknown or uncontrolled factors
plus the experimental error. For example, x might be an inflation index with respect to a
particular base year, say 2010. In this instance, t1 may be the change or deviation in the
average price per kilogram of certain staple vegetables from the base year 2010, t2 may
be the change or deviation in the average price of a kilogram of rice compared to the base
year, t3 may be the change or deviation in the average price of flour per kilogram with
respect to the base year, and so on, and tr may be the change or deviation in the average
price of milk per liter compared to the base year 2010. The notation tj , j = 1, . . . , r,
is utilized to designate the given values as well as the corresponding random variables.
Since we are taking deviations from the base values, we may assume without any loss of
generality that the expected value of tj is zero, that is, E[tj ] = 0, j = 1, . . . , r . We may
also take the expected value of the error term e to be zero, that is, E[e] = 0. Now, let x1
be the inflation index, x2 be the caloric intake index per person, x3 be the general health
index and so on. In all these cases, the same t1, . . . , tr can act as the independent variables
in a regression set up. Thus, in such a situation, a multivariate linear regression model will
have the following format:

X =

⎡
⎢⎢⎢⎣

x1
x2
...

xp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

μ1

μ2
...

μp

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

a11 a12 . . . a1r
a21 a22 . . . a2r
...

...
. . .

...

ap1 ap2 . . . apr

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f1
f2
...

fr

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

e1
e2
...

ep

⎤
⎥⎥⎥⎦ , (11.2.1)
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and we may write this model as

X = M + ΛF + ε

where Λ = (λij ) is a p × r , r ≤ p, matrix of full rank r , ε is p × 1 and F is r × 1. In
(11.2.1), λij = aij and fj = tj . Then, E[X] = M + ΛE[F ] + E[ε] = M since we have
assumed that E[F ] = O (a null matrix) and E[ε] = O. When F and ε are uncorrelated,
the covariance matrix associated with X, denoted by Cov(X) = Σ, is the following:

Σ = Cov(X) = E{(X − M)(X − M)′} = E{(ΛF + ε)(ΛF + ε)′}
= Λ Cov(F ) Λ′ + Cov(ε) + O

= ΛΦ Λ′ + Ψ (11.2.2)

where the covariance matrices of F and ε are respectively denoted by Φ > O (positive
definite) and Ψ > O. In the above formulation, F is taken to be a real vector random
variable. In a simple linear model, the covariance matrix of ε, namely Ψ , is usually taken
as σ 2I where σ 2 > 0 is a real scalar quantity and I is the identity matrix. In a more general
setting, Ψ can be taken to be a diagonal matrix whose diagonal elements are positive; in
such a model, the ej ’s are uncorrelated and their variances need not be equal. It will be
assumed that the covariance matrix Ψ in (11.2.2) is a diagonal matrix having positive
diagonal elements.

11.2.2. A design of experiment model

Consider a completely randomized experiment where one set of treatments are under-
taken. In this instance, the experimental plots are assumed to be fully homogeneous with
respect to all the known factors of variation that may affect the response. For example, the
observed value may be the yield of a particular variety of corn grown in an experimental
plot. Let the set of treatments be r different fertilizers F1, . . . , Fr , the effects of these fer-
tilizers being denoted by α1, . . . , αr . If no fertilizer is applied, the yield from a test plot
need not be zero. Let μ1 be a general effect when F1 is applied so that we may regard α1

as a deviation from this effect μ1 due to F1. Let e1 be the sum total of the contributions
coming from all unknown or uncontrolled factors plus the experimental error, if any, when
F1 is applied. Then a simple linear one-way classification model for F1 is

x1 = μ1 + α1 + e1,
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with x1 representing the yield from the test plot where F1 was applied. Then, correspond-
ing to F1, . . . , Fr, r = p we have the following system:

x1 = μ1 + α1 + e1
...

xp = μp + αp + ep

or, in matrix notation,
X = M + ΛF + ε (11.2.3)

where

X =
⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ , ε =

⎡
⎢⎣

e1
...

ep

⎤
⎥⎦ , F =

⎡
⎢⎣

α1
...

αp

⎤
⎥⎦ , and Λ =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ .

In this case, the elements of Λ are dictated by the design itself. If the vector F is fixed,
we call the model specified by (11.2.3), the fixed effect model, whereas if F is assumed to
be random, then it is referred to as the random effect model. With a single observation per
cell, as stated in (11.2.3), we will not be able to estimate the parameters or test hypotheses.
Thus, the experiment will have to be replicated. So, let the j -th replicated observation
vector be

Xj =
⎡
⎢⎣

x1j
...

xpj

⎤
⎥⎦ , j = 1, . . . , n,

Σ, Φ, and Ψ remaining the same for each replicate within the random effect model.
Similarly, for the regression model given in (11.2.1), the j -th replication or repetition
vector will be X′

j = (x1j , . . . , xpj ) with Σ, Φ and Ψ therein remaining the same for each
sample.

We will consider a general linear model encompassing those specified in (11.2.1) and
(11.2.3) and carry out a complete analysis that will involve verifying the existence and
uniqueness of such a model, estimating its parameters and testing various types of hy-
potheses. The resulting technique is referred to as Factor Analysis.

11.3. A General Linear Model for Factor Analysis

Consider the following general linear model:

X = M + ΛF + ε (11.3.1)
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where

X =
⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ , M =

⎡
⎢⎣

μ1
...

μp

⎤
⎥⎦ , ε =

⎡
⎢⎣

e1
...

ep

⎤
⎥⎦ ,

Λ =

⎡
⎢⎢⎢⎣

λ11 λ12 . . . λ1r
λ21 λ22 . . . λ2r
...

...
. . .

...

λp1 λp2 . . . λpr

⎤
⎥⎥⎥⎦ and F =

⎡
⎢⎣

f1
...

fr

⎤
⎥⎦ , r ≤ p,

with the μj ’s, λij ’s, fj ’s being real scalar parameters, the xj ’s, j = 1, . . . , p, being real
scalar quantities, and Λ being of dimension p × r, r ≤ p, and of full rank r . When
considering expected values, variances, covariances, etc., X, F, and ε will be assumed to
be random quantities; however, when dealing with estimates, X will represent a vector of
observations. This convention will be employed throughout this chapter so as to avoid a
multiplicity of symbols for the variables and the corresponding observations.

From a geometrical perspective, the r columns of Λ, which are linarly independent,
span an r-dimensional subspace in the p-dimensional Euclidean space. In this case, the
r × 1 vector F is a point in this r-subspace and this subspace is usually called the factor
space. Then, right-multiplying the p×r matrixΛ by a matrix will correspond to employing
a new set of coordinate axes for the factor space.

Factor Analysis is a subject dealing with the identification or unique determination of
a model of the type specified in (11.3.1), as well as the estimation of its parameters and
the testing of various related hypotheses. The subject matter was originally developed in
connection with intelligence testing. Suppose that a test is administered to an individual
to evaluate his/her mathematical skills, spatial perception, language abilities, etc., and that
the score obtained is recorded. There will be a component in the model representing the
expected score. If the test is administered to 10th graders belonging to a particular school,
the grand average of such test scores among all 10th graders across the nation could be
taken as the expected score. Then, inputs associated to various intellectual faculties or
combinations thereof will come about. All such factors may be contributing towards the
observed test score. If f1, . . . , fr, are the contributions coming from r factors correspond-
ing to specific intellectual abilities, then, when a linear model is assumed, a certain linear
combination of these inputs will constitute the final quantity accounting for the observed
test score. A test score, x1, may then result from a linear model of the following form:

x1 = μ1 + λ11f1 + λ12f2 + · · · + λ1rfr + e1
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with λ11, . . . , λ1r being the coefficients of f1, . . . , fr , where f1, . . . , fr , are contributions
from r factors toward x1; these factors may be called the main intellectual factors in this
case, and the coefficients λ11, . . . , λ1r may be referred to as the factor loadings for these
main factors. In this context, μ1 is the general expected value and e1 is the error com-
ponent or the sum total of contributions originating from all unknown factors plus the
experimental error, if any. Note that the contributions f1, . . . , fr due to the main intel-
lectual factors can vary from individual to individual, and hence it is appropriate to treat
f1, . . . , fr as random variables rather than fixed unknown quantities. These f1, . . . , fr are
not observable as in the case of the design model in (11.2.3), whereas in the regression
type model specified by (11.2.1), they may take on the recorded values of the observable
variables which are called the independent variables. Thus, the model displayed in (11.3.1)
may be analyzed either by treating f1, . . . , fr as fixed quantities or as random variables.
If they are treated as random variables, we can assume that f1, . . . , fr follow some joint
distribution. Usually, joint normality is presupposed for f1, . . . , fr . Since f1, . . . , fr are
deviations from the general effect μ1 due to certain main intellectual faculties under con-
sideration, it may be assumed that the expected value is a null vector, that is, E[F ] = O.
We will denote the covariance matrix associated with F as Φ: Cov(F ) = Φ > O (real
positive definite). Note that the model’s error term ej is always a random variable. Letting
x1, . . . , xp be the test scores on p individuals, we have the error vector ε′ = (e1, . . . , ep).
Without any loss of generality, we may take the expected value of ε as being a null vector,
that is, E[ε] = O. For a very simple situation, we may assume the covariance matrix as-
sociated with ε to be Cov(ε) = σ 2I where σ 2 > 0 is a real positive scalar quantity and I

is the identity matrix. For a somewhat more general situation, we may take Cov(ε) = Ψ

where Ψ is a real positive definite diagonal matrix, or a diagonal matrix with positive di-
agonal elements. In the most general case, we may take Ψ to be a real positive definite
matrix. It will be assumed that Ψ is diagonal with positive diagonal elements in the model
(11.3.1), and that F and ε are uncorrelated. Thus, letting Σ be the covariance matrix of X,
we have

Σ = E[(X − M)(X − M)′] = E[(ΛF + ε)(ΛF + ε)′]
= ΛE(FF ′)Λ′ + E(εε′) + O

= ΛΦΛ′ + Ψ (11.3.2)

where Σ , Φ and Ψ , with Σ = ΛΦΛ′ + Ψ , are all assumed to be real positive definite
matrices.
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11.3.1. The identification problem

Is the model specified by (11.3.1) unique or could it represent different situations? In
other words, does it make sense as a model as stated? Given any r × r nonsingular matrix
A, let AF = F ∗ and ΛA−1 = Λ∗. Then, Λ∗F ∗ = ΛA−1AF = ΛF . In other words,

X = M + ΛF + ε = M + Λ∗F ∗ + ε. (11.3.3)

Consequently, the model in (11.3.1) is not identified, that is, it is not uniquely determined.

The identification problem can also be stated as follows: Does there exist a real positive
definite p × p matrix Σ > O containing p(p + 1)/2 distinct elements, which can be
uniquely represented as ΛΦΛ′ + Ψ where Λ has p r distinct elements, Φ > O has
r(r + 1)/2 distinct elements and Ψ is a diagonal matrix having p distinct elements? There
is clearly no such matrices as can be inferred from (11.3.3). Note that an r × r arbitrary
matrix A represents r2 distinct elements. It can be observed from (11.3.3) that we can
impose r2 conditions on the parameters in Λ, Φ and Ψ . The question could also be posed
as follows: Can the p(p + 1)/2 distinct elements in Σ plus the r2 elements in A (r2

conditions) uniquely determine all the elements of Λ, Ψ and Φ? Let us determine how
many elements there are in total. Λ, Ψ and Φ have a total of pr +p+r(r +1)/2 elements
while A and Σ have a total of r2 + p(p + 1)/2 elements. Hence, the difference, denoted
by δ, is

δ = p(p + 1)

2
+ r2 −

[
pr + r(r + 1)

2
+ p

]
= 1

2
[(p − r)2 − (p + r)]. (11.3.4)

Observe that the right-hand side of (11.3.2) is not a linear function ofΛ, Φ andΨ . Thus, if
δ > 0, we can anticipate that existence and uniqueness will hold although these properties
cannot be guaranteed, whereas if δ < 0, then existence can be expected but uniqueness
may be in question. Given (11.3.2), note that

Σ = Ψ + ΛΦΛ′ ⇒ Σ − Ψ = ΛΦΛ′

where ΛΦΛ′ is positive semi-definite of rank r , since the p × r, r ≤ p, matrix Λ has full
rank r and Φ > O (positive definite). Then, the existence question can also be stated as
follows: Given a p ×p real positive definite matrix Σ > O, can we find a diagonal matrix
Ψ with positive diagonal elements such that Σ − Ψ is a real positive semi-definite matrix
of a specified rank r , which is expressible in the form BB ′ for some p × r matrix B of
rank r where r ≤ p? For the most part, the available results on this question of existence
can be found in Anderson (2003) and Anderson and Rubin (1956). If a set of parameters
exist and if the model is uniquely determined, then we say that the model is identified, or
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alternatively, identifiable. The concept of identification or identifiability within the context
of Factor Analysis has been studied by Ihara and Kano (1995), Wegge (1996), Allman et al.
(2009) and Chen et al. (2020), among others.

Assuming that Φ = I will impose r(r + 1)/2 conditions. However, r2 = r(r+1)
2 +

r(r−1)
2 . Thus, we may impose r(r − 1)/2 additional conditions after requiring that Φ = I .

Observe that when Φ = I , Λ∗ΦΛ′∗ = Λ∗Λ′∗ = ΛA−1A′−1
Λ′, and if this is equal to

ΛΛ′ assuming that Φ = I , this means that (A′A)−1 = I or A′A = I , that is, A is an
orthonormal matrix. Thus, under the condition Φ = I , the arbitrary r × r matrix A be-
comes an orthonormal matrix. In this case, the transformation Y = ΛA is an orthonormal
transformation or a rotation of the coordinate axes. The following r × r symmetric matrix
of r(r + 1)/2 distinct elements

Δ = Λ′Ψ −1Λ (11.3.5)

is needed for solving estimation and hypothesis testing problems; accordingly, we can im-
pose r(r − 1)/2 conditions by requiring Δ to be diagonal with distinct diagonal elements,
that is, Δ = diag(η1, . . . , ηr), ηj > 0, j = 1, . . . , r . This imposes r(r+1)

2 − r = r(r−1)
2

conditions. Thus, for the model to be identifiable or for all the parameters in Λ, Φ, Ψ

to be uniquely determined, we can impose the condition Φ = I and require that
Δ = Λ′Ψ −1Λ be diagonal with positive diagonal elements. These two conditions will
provide r(r+1)

2 + r(r−1)
2 = r2 restrictions on the model which will then be identified.

When Φ = I , the main factors are orthogonal. If Φ is a diagonal matrix (including
the identity matrix), the covariances are zeros and it is an orthogonal situation, in which
case we say that the main factors are orthogonal. If Φ is not diagonal, then we say that the
main factors are oblique.

One can also impose r(r − 1)/2 conditions on the p × r matrix Λ. Consider the first
r × r block, that is, the leading r × r submatrix or the upper r × r block in the p × r

matrix, which we will denote by B. Imposing the condition that this r × r block B is
lower triangular will result in r2 − r(r+1)

2 = r(r−1)
2 conditions. Hence, Φ = I and the

condition that this leading r × r block B is lower triangular will guarantee r2 restrictions,
and the model will then be identified. One can also take a preselected r × r matrix B1 and
then impose the condition that B1B be lower triangular. This will, as well, produce r(r−1)

2
conditions. Thus, Φ = I and B1B being lower triangular will ensure the identification of
the model.

When we impose conditions on Φ and Ψ , the unknown covariance matrices must as-
sume certain formats. Such conditions can be justified. However, could conditions be put
on Λ, the factor loadings? Letting the first r × r block B in the p × r matrix Λ be lower
triangular is tantamount to assuming that λ12 = 0 = λ13 = · · · = λ1r or, equivalently, that



Factor Analysis 687

f2, . . . , fr do not contribute to the model for determining x1 in X′ = (x1, x2, . . . , xp).
Such restrictions are justified if we can design the experiment in such a way that x1 de-
pends on f1 alone and not on f2, . . . , fr . In psychological tests, it is possible to design
tests in such a way that only certain main factors affect the scores. Thus, in such instances,
we are justified to utilize a triangular format such that, in general, there are no contri-
butions from fi+1, . . . , fr, toward xi or, equivalently, the factor loadings λi i+1, . . . , λir

equal zero for i = 1, . . . , r − 1. For example, suppose that the first r tests are designed
in such a way that only f1, . . . , fi and no other factors contribute to xi or, equivalently,
xi = μi + λi1f1 + · · · + λiifi + ei, i = 1, . . . , r . We can also measure the contribution
from fi in λii units or we can take λii = 1. By taking B = Ir,we can impose r2 conditions
without requiring that Φ = I . This means that the first r tests are specifically designed so
that x1 only has a one unit contribution from f1, x2 only has a one unit contribution from
f2, and so on, xr receiving a one unit contribution from fr. When B is taken to be diago-
nal, the factor loadings are λ11, λ22, . . . , λrr , respectively, so that only fi contributes to
xi for i = 1, . . . , r . Accordingly, the following are certain model identification conditions:

(1): Φ = I and Λ′Ψ −1Λ is diagonal with distinct diagonal elements;

(2): Φ = I and the leading r × r submatrix B in the p × r matrix Λ is triangular;

(3): Φ = I and B1B is lower triangular where B1 is a preselected matrix;

(4): The leading r × r submatrix B in the p × r matrix Λ is an identity matrix.

Observe that when r = p, condition (4) corresponds to the design model considered in
(11.2.3).

11.3.2. Scaling or units of measurement

A shortcoming of any analysis being based on a covariance matrix Σ is that the co-
variances depend on the units of measurement of the individual variables. Thus, mod-
ifying the units will affect the covariances. If we let yi and yj be two real scalar ran-
dom variables with variances σii and σjj and associated covariance σij , the effect of
scaling or changes in the measurement units may be eliminated by considering the vari-
ables zi = yi/

√
σii and zj = yj/

√
σjj whose covariance Cov(zi, zj ) ≡ rij is actually

the correlation between yi and yj , which is free of the units of measurement. Letting
Y ′ = (y1, . . . , yp) and D = diag( 1√

σ11
, . . . , 1√

σpp
), consider Z = DY . We note that

Cov(Y ) = Σ ⇒ Cov(Z) = DΣD = R which is the correlation matrix associated
with Y .
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In psychological testing situations or referring to the model (11.3.1), when a test score xj

is multiplied by a scalar quantity cj , then the factor loadings λj1, . . . , λjr , the error term
ej and the general effectμj are all multiplied by cj , that is, cjxj = cjμj +cj (λj1f1+· · ·+
λjrfr) + cj ej . Let Cov(X) = Σ = (σij ), that is, Cov(xi, xj ) = σij , X′ = (x1, . . . , xp)

and D = diag( 1√
σ11

, . . . , 1√
σpp

). Consider the model

DX = DM + DΛF + Dε ⇒ Cov(DX) = DΣD = DΛΦΛ′D + DΨ D. (11.3.6)

If X∗ = DX, M∗ = DM, Λ∗ = DΛ, and ε∗ = Dε, then we obtain the following model
and the resulting covariance matrix:

X∗ = M∗ + Λ∗F + ε∗ ⇒ Σ∗ = Cov(X∗) = Λ∗Cov(F )Λ∗′ + Ψ ∗

⇒ DΣD = DΛΦΛ′D + DΨ D

⇒ R = Λ∗ΦΛ∗′ + Ψ ∗ (11.3.7)

where R = (rij ) is the correlation matrix in X. An interesting point to be noted is that the
identification conditions Φ = I and Λ∗′Ψ ∗−1Λ∗ being diagonal become the following:
Φ = I and Λ∗′Ψ ∗−1Λ∗ = Λ′DD−1Ψ −1D−1DΛ = Λ′Ψ −1Λ which is diagonal, that is,
Λ′Ψ −1Λ is invariant under scaling transformations on the model or under X∗ = DX and
Ψ ∗ = DΨ D.

11.4. Maximum Likelihood Estimators of the Parameters

A simple random sample of size n from the model X = M + ΛF + ε specified in
(11.3.1) is understood to be constituted of independently and identically distributed (iid)
Xj ’s, j = 1, . . . , n, where

Xj = M + ΛF + Ej, j = 1, . . . , n, Xj =

⎡
⎢⎢⎢⎣

x1j
x2j
...

xpj

⎤
⎥⎥⎥⎦ , Ej =

⎡
⎢⎢⎢⎣

e1j
e2j
...

epj

⎤
⎥⎥⎥⎦ , (11.4.1)

and the Xj ’s are iid. Let fj and Ej be independently normally distributed. Let Ej ∼
Np(O, Ψ ) and Xj ∼ Np(μ, Σ), Σ = ΛΦΛ′ + Ψ where Φ = Cov(F ) > O, Ψ =
Cov(ε) > O and Σ > O, Ψ being a diagonal matrix with positive diagonal elements.
Then, the likelihood function is the following:

L =
n∏

j=1

1

(2π)
p
2 |Σ | 12

e− 1
2 (Xj−M)′Σ−1(Xj−M)

= 1

(2π)
np
2 |Σ | n

2
e− 1

2

∑n
j=1(Xj−M)′Σ−1(Xj−M)

. (11.4.2)
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The sample matrix will be denoted by a boldface X = (X1, . . . , Xn). Let J be the n × 1
vector of unities, that is, J = (1, 1, . . . , 1)′. Then,

X = (X1, . . . , Xn) =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤
⎥⎥⎥⎦

⇒ 1

n
XJ =

⎡
⎢⎣

1
n
(
∑n

j=1 x1j )
...

1
n
(
∑n

j=1 xpj )

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

x̄1
x̄2
...

x̄p

⎤
⎥⎥⎥⎦ = X̄

where X̄ is the sample average vector or the sample mean vector. Let the boldface X̄ be
the p × n matrix X̄ = (X̄, X̄, . . . , X̄). Then,

(X − X̄)(X − X̄)′ = S = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ), (11.4.3)

where S is the sample sum of products matrix or the “corrected” sample sum of squares
and cross products matrix. Note that

X̄ = 1

n
XJ

⇒ X̄ = (X̄, . . . , X̄) = X
(1
n
JJ ′)

⇒ X − X̄ = X
(
I − 1

n
JJ ′).

Thus,

S = X
(
I − 1

n
JJ ′)(

I − 1

n
JJ ′)′

X′ = X
(
I − 1

n
JJ ′)X′. (11.4.4)
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Since (Xj − M)′Σ−1(Xj − M) is a real scalar quantity, we have the following:

n∑
j=1

(Xj − M)′Σ−1(Xj − M) =
n∑

j=1

tr(Xj − M)′Σ−1(Xj − M)

=
n∑

j=1

tr[Σ−1(Xj − M)(Xj − M)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄ + X̄ − M)(Xj − X̄ + X̄ − M)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄)(Xj − X̄)′]

+ n tr[Σ−1(X̄ − M)(X̄ − M)′]
= tr(Σ−1S) + n(X̄ − M)′Σ−1(X̄ − M). (11.4.5)

Hence,
L = (2π)−

np
2 |Σ |− n

2 e− 1
2 {tr(Σ−1S)+n(X̄−M)′Σ−1(X̄−M)}. (11.4.6)

Differentiating (11.4.6) with respect to M , equating the result to a null vector and solving,
we obtain an estimator for M , denoted by M̂ , as M̂ = X̄. Then, lnL evaluated at M = X̄

is

lnL = −np

2
ln(2π) − n

2
ln |Σ | − 1

2
tr(Σ−1S)

= −np

2
ln(2π) − n

2
ln |ΛΦΛ′ + Ψ | − 1

2
tr[(ΛΦΛ′ + Ψ )−1S]. (11.4.7)

11.4.1. Maximum likelihood estimators under identification conditions

The derivations in the following sections parallel to those found in Mathai (2021). One
of the conditions for identification of the model is Φ = I and Λ′Ψ −1Λ being a diagonal
matrix with positive diagonal elements. We will examine the maximum likelihood estima-
tors (MLE)/maximum likelihood estimates (MLE) under this identification condition. In
this case, it follows from (11.4.7) that

lnL = −np

2
ln(2π) − n

2
ln |ΛΛ′ + Ψ | − 1

2
tr[(ΛΛ′ + Ψ )−1S]. (11.4.8)
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By expanding the following determinant in two different ways by applying properties of
partitioned determinants that are stated in Sect. 1.3, we have the following identities:

∣∣∣∣
Ψ −Λ

Λ′ Ir

∣∣∣∣ = |Ψ | |I + Λ′Ψ −1Λ| = |Ψ + ΛΛ′|. (11.4.9)

Hence, letting

Δ = Λ′Ψ −1Λ = diag(δ′
1δ1, δ

′
2δ2, . . . , δ

′
rδr),

we have

ln |ΛΛ′ + Ψ | = ln |Ψ | + ln |I + Λ′Ψ −1Λ|

=
p∑

j=1

lnψjj +
r∑

j=1

ln(1 + δ′
j δj ), (11.4.10)

where δ′
j = Λ′

jΨ
− 1

2 , Λj is the j -th column of Λ and ψjj , j = 1, . . . , p, is the j -
th diagonal element of the diagonal matrix Ψ , the identification condition being that
Φ = I and Λ′Ψ −1Λ = Δ = diag(δ′

1δ1, . . . , δ
′
rδr). Accordingly, if we can write

tr(Σ−1S) = tr[(ΛΛ′ + Ψ )−1S] in terms of ψjj , j = 1, . . . , p, and δ′
j δj , j = 1, . . . , r,

then the likelihood equation can be directly evaluated from (11.4.8) and (11.4.10), and the
estimators can be determined. The following result will be helpful in this connection.

Theorem 11.4.1. Whenever ΛΛ′ + Ψ is nonsingular, which in this case, means real
positive definite, the inverse is given by

(ΛΛ′ + Ψ )−1 = Ψ −1 − Ψ −1Λ(Δ + I )−1Λ′Ψ −1 (11.4.11)

where the Δ is defined in (11.4.10).

It can be readily verified that pre and post multiplications of Ψ −1 − Ψ −1Λ(Δ +
I )−1Λ′Ψ −1 by ΛΛ′ + Ψ yield the identity matrix Ip.

11.4.2. Simplifications of |Σ | and tr(Σ−1S)

In light of (11.4.9) and (11.4.10), we have

|Σ | = |ΛΛ′ + Ψ | = |Ψ | |Λ′Ψ −1Λ + I |

= |Ψ | |I + Δ| =
{ p∏

j=1

ψjj

}{ r∏
j=1

(1 + δ′
j δj )

}
.
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Now, observe the following: InΛ(Δ+I )−1 = Λ diag( 1
1+δ′

1δ1
, . . . , 1

1+δ′
r δr

), the j -th column

of Λ is multiplied by 1
1+δ′

j δj
, j = 1, . . . , r, and

Λ(Δ + I )−1Λ′ =
r∑

j=1

1

1 + δ′
j δj

ΛjΛ
′
j

where Λj is the j -th column of Λ and the δj ’s are specified in (11.4.10). Thus,

ln |Σ | =
p∑

j=1

lnψjj +
r∑

j=1

ln(1 + δ′
j δj ) (11.4.12)

and, on applying Theorem 11.4.1,

tr(Σ−1S) = tr[(ΛΛ′ + Ψ )−1S] = tr[(Ψ −1S)] − tr[Ψ −1Λ(Δ + I )−1Λ′Ψ −1S]

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

tr(ΛjΛ
′
j (Ψ

−1SΨ −1))

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

tr(Λ′
j (Ψ

−1SΨ −1)Λj )

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

Λ′
j (Ψ

−1SΨ −1)Λj (11.4.13)

where Λj is the j -th column of Λ, which follows by making use of the property tr(AB) =
tr(BA) and observing that Λ′

j (Ψ
−1SΨ −1)Λj is a quadratic form.

11.4.3. Special case Ψ = σ 2Ip

Letting Ψ = σ 2I where σ 2 is a real scalar, Ψ −1 = σ−2Ip = θIp where θ = σ−2, and
the log-likelihood function can be simplified as

lnL = −np

2
ln(2π) + np

2
ln θ − n

2

r∑
j=1

ln(1 + δ′
j δj )

− θ

2
tr(S) + θ2

2

r∑
j=1

1

1 + δ′
j δj

Λ′
jSΛj
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where 1+ δ′
j δj = 1+ θΛ′

jΛj with Λj being the j -th column of Λ. Consider the equation

∂

∂θ
lnL = 0 ⇒
np

θ
− n

r∑
j=1

Λ′
jΛj

1 + θΛ′
jΛj

− tr(S)

+ 2θ
r∑

j=1

Λ′
jSΛj

1 + θΛ′
jΛj

− θ2
r∑

j=1

Λ′
jΛj

(1 + θΛ′
jΛj )2

Λ′
jSΛj = 0. (11.4.14)

For a specific j , we have

∂

∂Λj

lnL = O ⇒

−n

2

2θΛj

1 + θΛ′
jΛj

+ θ2

2

2SΛj

1 + θΛ′
jΛj

− θ2

2

Λ′
jSΛj

[1 + θΛ′
jΛj ]2 (2θ)Λj = O. (11.4.15)

Pre-multiplying (11.4.15) by Λ′
j yields

− nθΛ′
jΛj

1 + θΛ′
jΛj

+ θ2Λ′
jSΛj

1 + θΛ′
jΛj

− θ3(Λ′
jSΛj)(Λ

′
jΛj )

(1 + θΛ′
jΛj )2

= 0. (11.4.16)

Now, on comparing (11.4.16) with (11.4.14) after multiplying (11.4.14) by θ , we have

np − θ tr(S) + θ2
r∑

j=1

Λ′
jSΛj

1 + θΛ′
jΛj

= 0. (11.4.17)

Multiplying the left-hand side of (11.4.15) by [1 + θΛ′
jΛj ]2/θ gives

− n(1 + θΛ′
jΛj )Λj + θ(1 + θΛ′

jΛj )SΛj − θ2(Λ′
jSΛj)Λj = O. (11.4.18)

Then, by pre-multiplying (11.4.18) by Λ′
j , we obtain

−n(1 + θΛ′
jΛj )Λ

′
jΛj + θ[(1 + θΛ′

jΛj )Λ
′
jSΛj − θ2(Λ′

jSΛj)Λ
′
jΛj = 0 ⇒

θ(Λ′
jSΛj) = n(1 + θΛ′

jΛj )(Λ
′
jΛj ), (11.4.19)

which provides the following representation of θ :

θ = nΛ′
jΛj

Λ′
jSΛj − n(Λ′

jΛj )2
for Λ′

jSΛj − n(Λ′
jΛj )

2 > 0 (i)
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since θ must be positive. Further, on substituting θΛ′
jSΛj

(11.4.19)= n(1 +
θΛ′

jΛj )(Λ
′
jΛj ) in (11.4.18), we have

−nΛj + θ[S − n(Λ′
jΛj )I ]Λj = O, (ii)

which, on replacing θ by the right-hand side of (i) yields

−(Λ′
jSΛj)Λj + (Λ′

jΛj )SΛj = O

or, equivalently,

[
S − Λ′

jSΛj

Λ′
jΛj

I

]
Λj = O ⇒ (11.4.20)

[S − λjI ]Λj = O (11.4.21)

where λj = Λ′
j SΛj

Λ′
jΛj

. Observe that Λj in (11.4.20) is an eigenvector of S for j = 1, . . . , p.

Substituting the value ofΛ′
jSΛj from (11.4.19) into (11.4.17) gives the following estimate

of θ :
θ̂ = np

tr(S) − n
∑p

j=1 Λ̂′
j Λ̂j

(11.4.22)

whenever the denominator is positive as θ is by definition positive. Now, in light of
(11.4.18) and (11.4.19), we can also obtain the following result for each j :

θ̂ = nΛ̂′
j Λ̂j

Λ̂′
jSΛ̂j − n(Λ̂′

j Λ̂j )2
, j = 1, . . . , p, (11.4.23)

requiring again that the denominator be positive. In this case, Λ̂j is an eigenvector of S for
j = 1, . . . , p. Let us conveniently normalize the Λ̂j ’s so that the denominator in (11.4.22)
and (11.4.23) remain positive.

Thus, Λ̂j is an eigenvector of S with the corresponding eigenvalue λj for each j ,
j = 1, . . . , p. Out of these, the first r of them, corresponding to the r largest eigenvalues,
will also be estimates for the factor loadings Λj, j = 1, . . . , r . Observe that we can
multiply Λ̂j by any constant c1 without affecting equations (11.4.20) or (11.4.21). This
constant c1 may become necessary to keep the denominators in (11.4.22) and (11.4.23)
positive. Hence we have the following result:
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Theorem 11.4.2. The sum of all the eigenvalues of S from Eq. (11.4.20), including the
estimates of the r factor loadings Λ̂1, . . . , Λ̂p, is given by

p∑
j=1

Λ̂′
jSΛ̂j

Λ̂′
j Λ̂j

= tr(S). (11.4.24)

It can be established that the representations of θ̂ given by (11.4.22) and (11.4.23) are
one and the same. The equation giving rise to (11.4.23) is

θ[Λ′
jSΛj − n(Λ′

jΛj )
2] = nΛ′

jΛj for each j. (iii)

Let us divide both sides of (iii) by Λ′
jΛj . Observe that

Λ′
j SΛj

Λ′
jΛj

= λj is an eigenvalue

of S for j = 1, . . . , p, treating Λj as an eigenvector of S. Now, taking the sum over
j = 1, . . . , p, on both sides of (iii) after dividing by Λ′

jΛj , we have

θ
[ p∑

j=1

λj − n

p∑
j=1

(Λ′
jΛj )

]
= np ⇒

θ
[
tr(S) − n

p∑
j=1

Λ′
jΛj

]
= np, (iv)

which is Eq. (11.4.22). This proves the claim.

Hence the procedure is the following: Compute the eigenvalues and the corresponding
eigenvectors of the sample sum of products matrix S. The estimates for the factor loadings,
denoted by Λ̂j , are available from the eigenvectors Λ̂j of S after appropriate normaliza-
tion to make the denominators in (11.4.22) and (1.4.23) positive. Take the first r largest
eigenvalues of S and then compute the corresponding eigenvectors to obtain estimates for
all the factor loadings. This methodology is clearly related to that utilized in Principal
Component Analysis, the estimates of the variances of the principal components being
Λ̂′

jSΛ̂j/Λ̂
′
j Λ̂j for j = 1, . . . , r .

Verification

Does the representation of θ given in (11.4.22) and (11.4.23) satisfy the likelihood
Eq. (11.4.14)? Since θ is estimated through Λj for each j = 1, . . . , p, we may replace θ

in (11.4.14) by θj and insert the summation symbol. Equation (11.4.14) will then be
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n
∑

j

1

θj

− n
∑

j

Λ′
jΛj

1 + θjΛ
′
jΛj

− tr(S)

+ 2
∑

j

θj

Λ′
jSΛj

1 + θjΛ
′
jΛj

−
∑

j

θ2j

Λ′
jΛj (Λ

′
jSΛj)

(1 + θjΛ
′
jΛj )2

= 0. (11.4.25)

Now, substituting the value of θj specified in (11.4.23) into (11.4.14), the left-hand side of
(11.4.14) reduces to the following:

n
∑

j

[Λ′
jSΛj − n(Λ′

jΛj )
2]

nΛ′
jΛj

− n
∑

j

Λ′
jΛj

Λ′
jSΛj

[Λ′
jSΛj − n(Λ′

jΛj )
2] − tr(S)

+ 2
∑

j

nΛ′
jΛj −

∑
j

Λ′
jΛj

ΛjSΛj

(nΛ′
jΛj )

2

=
∑

j

Λ′
jSΛj

Λ′
jΛj

− tr(S) = 0,

owing to Theorem 11.4.2. Hence, Eq. (11.4.14) holds for the value of θ given in (11.4.23)
and the value of Λj specified in (11.4.20).

Since the basic estimating equation for θ̂ arises from (11.4.23) as

θ[Λ′
jSΛj − n(Λ′

jΛj )
2] = nΛ′

jΛj , (v)

a combined estimate for θ can be secured. On dividing both sides of (v) by Λ′
jΛj and

summing up over j , j = 1, . . . , p, it is seen that the resulting estimate of θ agrees with
that given in (11.4.22).

11.4.4. Maximum value of the exponent

We have the estimate θ̂ of θ provided in (11.4.23) at the estimated value Λ̂j of Λj

for each j , where Λ̂j is an eigenvector of S resulting from (11.4.20). The exponent of
the likelihood function is −1

2 tr(Σ
−1S) and, in the current context, Σ = ΛΦΛ′ + Ψ ,

the identification conditions being that Φ = Ip and Λ′Ψ −1Λ be a diagonal matrix with
positive diagonal elements. Under these conditions and for the special case Ψ = σ 2Ip

with σ−2 = θ, we have shown that the exponent in the log-likelihood function reduces to

−1
2θ tr(S) + 1

2θ
2 ∑r

j=1
Λ′

j SΛj

1+θΛ′
jΛj

. Now, consider θ tr(S) − ∑r
j=1 θ2

Λ′
j SΛj

1+θΛ′
jΛj

≡ δ. Then,
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δ = θ tr(S) − θ

r∑
j=1

θ
Λ′

jSΛj

1 + θΛ′
jΛj

= θ
[
tr(S) −

p∑
j=1

θ
Λ′

jSΛj

1 + θΛ′
jΛj

]

= θ
[
tr(S) −

p∑
j=1

nΛ′
jΛj

]
from (11.4.19)

= np from (11.4.22).

Hence the result.

Example 11.4.1. Tests are conducted to evaluate x1 : verbal-linguistic skills, x2 : spatial
visualization ability, and x3 : mathematical abilities. Test scores on x1, x2, and x3 are
available. It is known that these abilities are governed by two intellectual faculties that
will be identified as f1 and f2, and that linear functions of f1 and f2 are contributing
to x1, x2, x3. These coefficients in the linear functions, known as factor loadings, are
unknown. Let Λ = (λij ) be the matrix of factor loadings. Then, we have the model

x1 = λ11f1 + λ12f2 + μ1 + e1

x2 = λ21f1 + λ22f2 + μ2 + e2

x3 = λ31f1 + λ32f2 + μ3 + e3.

Let

X =
⎡
⎣

x1
x2
x3

⎤
⎦ , M =

⎡
⎣

μ1

μ2

μ3

⎤
⎦ , ε =

⎡
⎣

e1
e2
e3

⎤
⎦ and F =

[
f1
f2

]
,

where M is some general effect, ε is the error vector or the sum total of the contributions
from unknown factors, F represents the vector of contributing factors and Λ, the levels
of the contributions. Let Cov(X) = Σ, Cov(F ) = Φ and Cov(ε) = Ψ . Under the
assumptions Φ = I , Ψ = σ 2I where σ 2 is a real scalar quantity, and I is the identity
matrix, and Λ′Ψ −1Λ is diagonal, estimate the factor loadings λij ’s and σ 2 in Ψ . A battery
of tests are conducted on a random sample of six individuals and the following are the
data, where our notations are X: the matrix of sample values, X̄: the sample average, X̄:
the matrix of sample averages, and S: the sample sum of products matrix. So, letting

X = [X1, X2, . . . , X6] =
⎡
⎣
4 2 4 2 4 2
4 2 1 2 1 2
2 5 3 3 3 2

⎤
⎦ ,

estimate the factor loadings λij ’s and the variance σ 2.
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Solution 11.4.1. We begin with the computations of the various quantities required to
arrive at a solution. Observe that since the matrix of factor loadings Λ is 3 × 2 and a
random sample of 6 observation vectors is available, n = 6, p = 3 and r = 2 in our
notation.
In this case,

X̄ =
⎡
⎣
3
2
3

⎤
⎦ , X̄ = [X̄, X̄, . . . , X̄],

X − X̄ =
⎡
⎣

1 −1 1 −1 1 −1
2 0 −1 0 −1 0

−1 2 0 0 0 −1

⎤
⎦ ,

[X − X̄][X − X̄]′ = S =
⎡
⎣

6 0 −2
0 6 −2

−2 −2 6

⎤
⎦ .

An estimator/estimate of Σ is Σ̂ = S
n
whereas an unbiased estimator/estimate of Σ is

S
n−1 . An eigenvalue of

S
α
is 1

α
times the corresponding eigenvalue of S. Moreover, constant

multiples of eigenvectors are also eigenvectors for a given eigenvalue. Accordingly, we
will work with S instead of Σ̂ or an unbiased estimate of Σ . Since

∣∣∣∣∣∣
6 − λ 0 −2
0 6 − λ −2

−2 −2 6 − λ

∣∣∣∣∣∣
= 0 ⇒ (6 − λ)(λ2 − 12λ + 28) = 0,

the eigenvalues are λ1 = 6 + √
8, λ2 = 6, λ3 = 6 − √

8, the two largest ones being
λ1 = 6 + √

8 and λ2 = 6. Let us evaluate the eigenvectors U1, U2 and U3 associated
with these three eigenvalues. An eigenvector U1 corresponding to λ1 = 6 + √

8 will be a
solution of the equation

⎡
⎣
−√

8 0 −2
0 −√

8 −2
−2 −2 −√

8

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ ⇒ U1 =

⎡
⎢⎣

− 1√
2

− 1√
2

1

⎤
⎥⎦ .

For λ2 = 6, the equation to be solved is
⎡
⎣

0 0 −2
0 0 −2

−2 −2 0

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ ⇒ U2 =

⎡
⎣

1
−1
0

⎤
⎦ .
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As for the eigenvalue λ3 = 6 − √
8, it is seen from the derivation of U1 that U ′

3 =
[ 1√

2
, 1√

2
, 1]. Let us now examine the denominator of θ̂ in (11.4.22). Observe that U ′

1U1 =
2, U ′

2U2 = 2, U ′
3U3 = 2 and n

∑p

j=1 U ′
jUj = 6(2+2+2) = 36. However, tr(S) = (6+√

8)+(6)+(6−√
8) = 18. So, let us multiply each vector by 1√

3
so that n(

∑p

j=1 U ′
jUj =

6(23 + 2
3 + 2

3) = 12 and tr(S) − n
∑p

j=1 U ′
jUj = 18 − 12 > 0. Thus, the estimate of θ is

given by

θ̂ = np

tr(S) − n
∑p

j=1 U ′
jUj

= (6)(3)

18 − 12
= 3 ⇒ σ̂ 2 = 1

3

In light of (11.4.20), the factor loadings are estimated by U1 and U2 scaled by 1√
3
.

Hence, the estimates of the factor loadings, denoted with a hat, are the following:
λ̂11 = ( 1√

3
)(− 1√

2
) = − 1√

6
, λ̂21 = ( 1√

3
)(− 1√

2
) = − 1√

6
, λ̂31 = ( 1√

3
)(1) = 1√

3
, λ̂12 =

( 1√
3
)(1) = 1√

3
, λ̂22 = ( 1√

3
)(−1) = − 1√

3
, λ̂32 = 0.

11.5. General Case

Let

δj =

⎡
⎢⎢⎢⎣

θ1λ1j
θ2λ2j

...

θpλpj

⎤
⎥⎥⎥⎦ , δ′

j δj = Λ′
jΘ

2Λj, Λj =

⎡
⎢⎢⎢⎣

λ1j
λ2j
...

λpj

⎤
⎥⎥⎥⎦ ,

Ψ −1 = Θ2 =

⎡
⎢⎢⎢⎣

θ21 0 . . . 0
0 θ22 . . . 0
...

...
. . .

...

0 0 . . . θ2p

⎤
⎥⎥⎥⎦ and |I + Λ′Θ2Λ| =

r∏
j=1

(1 + δ′
j δj ).

Wewill take δj , j = 1, . . . , r, and Θ = diag(θ1, θ2, . . . , θp) as the parameters. Expressed
in terms of the δj ’s and Θ , the log-likelihood function is the following:

lnL = −np

2
ln(2π) + n

p∑
j=1

ln θj − n

2

r∑
j=1

ln(1 + δ′
j δj )

− 1

2
tr(Θ2S) + 1

2

r∑
j=1

1

1 + δ′
j δj

(δ′
jΘSΘ δj ). (11.5.1)
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Let us take δj , j = 1, . . . , r, and Θ as the parameters. Differentiating lnL partially with
respect to the vector δj , for a specific j , and equating the result to a null vector, we have
the following (referring to Chap. 1 for vector/matrix derivatives):

−n

2

2δj

1 + δ′
j δj

− 1

2
(δ′

jΘSΘ δj )
2δj

(1 + δ′
j δj )2

+ 1

2

2ΘSΘ δj

1 + δ′
j δj

= O, (i)

which multiplied by 1 + δ′
j δj > 0, yields

− nδj − (δ′
jΘSΘδj )

1 + δ′
j δj

δj + (ΘSΘ)δj = O. (11.5.2)

On premultiplying (11.5.2) by δ′
j and then by 1 + δ′

j δj , and simplifying, we then have

−n(1 + δ′
j δj )(δ

′
j δj ) + (δ′

jΘSΘδj ) = O ⇒
δ′
jΘSΘδj

1 + δ′
j δj

= nδ′
j δj . (11.5.3)

Let us differentiate lnL as given in (11.5.1) partially with respect to θj for a specific j

such as j = 1. Then,

n

θj

− 1

2
2θj sjj + 1

2

r∑
j=1

1

1 + δ′
j δj

∂

∂θj

(δ′
jΘSΘδj ),

where

∂

∂θj

(δ′
jΘSΘδj ) = δ′

j

[ ∂

∂θj

Θ
]
SΘδj + δ′

jΘS
[ ∂

∂θj

Θ
]
δj ,

∂

∂θ1
Θ =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ ⇒ θ1

∂

∂θ1
Θ =

⎡
⎢⎢⎢⎣

θ1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0,

⎤
⎥⎥⎥⎦ ,

so that [
θ1

∂

∂θ1
+ · · · + θp

∂

∂θp

]
Θ = Θ. (ii)

Hence, [ p∑
j=1

θj

∂

∂θj

] r∑
j=1

δ′
jΘSΘδj

1 + δ′
j δj

= 2
r∑

j=1

δ′
jΘSΘδj

1 + δ′
j δj

,
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and then,

[ p∑
j=1

θj

∂

∂θj

]
L = 0 ⇒

np −
p∑

j=1

θ2j sjj +
r∑

j=1

δ′
jΘSΘδj

1 + δ′
j δj

= 0. (11.5.4)

However, given (11.5.3), we have nδ′
j δj = δ′

jΘSΘδj/(1 + δ′
j δj ), j = 1, . . . , r, and

therefore (11.5.4) can be expressed as

np −
p∑

j=1

θ2j sjj +
r∑

j=1

nδ′
j δj = 0. (iii)

Letting

c = 1

p

r∑
j=1

δ′
j δj , (11.5.5)

equation(iii) can be written as

p∑
j=1

[n(1 + c) − θ2j sjj ] = 0, c = 0, j = r + 1, . . . , p,

so that a solution for θj is

θ̂2j = n(1 + c)

sjj
or σ̂ 2

j = sjj

n(1 + c)
, (11.5.6)

with the proviso that c = 0 for θ̂2j and σ̂ 2
j , j = r + 1, . . . , p. Then, an estimate of ΘSΘ

is given by

Θ̂SΘ̂ = n(1 + c)

⎡
⎢⎢⎢⎢⎣

1√
s11

0 . . . 0

0 1√
s22

. . . 0
...

...
. . .

...

0 0 . . . 1√
spp

⎤
⎥⎥⎥⎥⎦

S

⎡
⎢⎢⎢⎢⎣

1√
s11

0 . . . 0

0 1√
s22

. . . 0
...

...
. . .

...

0 0 . . . 1√
spp

⎤
⎥⎥⎥⎥⎦

= n(1 + c)R (11.5.7)
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where R is the sample correlation matrix, and on applying the identities (11.5.3) and
(11.5.7), (11.5.2) becomes

−nδj − n(δ′
j δj )δj + (n(1 + c)R)δj = 0 ⇒

[
R − 1 + δ̂′

j δ̂j

1 + c
I
]
δj = O. (11.5.8)

This shows that δj is an eigenvector of R. If νj is an eigenvalue of R, then the largest r

eigenvalues are of the form

νj = 1 + δ̂′
j δ̂j

1 + c
, j = 1, . . . , r, (11.5.9)

and the remaining ones are νr+1, . . . , νp, where c is as specified in (11.5.5). Thus, the pro-
cedure is the following: Compute the eigenvalues νj , j = 1, . . . , p, of R and determine
the corresponding eigenvectors, denoted by δj , j = 1, . . . , p. The first r of them which
correspond to the r largest νj ’s, are δ̂j = Θ̂Λ̂j ⇒ Λ̂j = Θ̂−1δ̂j , j = 1, . . . , r . Let

δ̂j =

⎡
⎢⎢⎢⎣

δ̂1j

δ̂2j
...

δ̂pj

⎤
⎥⎥⎥⎦ , Λ̂j =

⎡
⎢⎢⎢⎣

λ̂1j

λ̂2j
...

λ̂pj

⎤
⎥⎥⎥⎦ and Θ̂2 =

⎡
⎢⎢⎢⎢⎣

n(1+c)
s11

0 . . . 0

0 n(1+c)
s22

. . . 0
...

...
. . .

...

0 0 . . .
n(1+c)

spp

⎤
⎥⎥⎥⎥⎦

. (11.5.10)

Then,

λ̂ij =
√

sjj√
n(1 + c)

δ̂ij , i = 1, . . . , p, j = 1, . . . , r, (11.5.11)

and Θ̂ is available from (11.5.10). All the model parameters have now been estimated.

11.5.1. The exponent in the likelihood function

Given the MLE’s of the parameters which are available from (11.5.6), (11.5.8),
(11.5.10) and (11.5.11), what will be the maximum value of the likelihood function? Let
us examine its exponent:

−1

2
tr(Θ̂2S) + n

2

r∑
j=1

δ̂′
j δ̂j = −1

2
n(1 + c)tr(R) + n

2
pc

= −1

2
n(1 + c)p + 1

2
npc = −np

2
,
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that is, the same value of the exponent that is obtained under a general Σ . The estimates
were derived under the assumptions that Σ = Ψ + ΛΛ′, Λ′Ψ −1Λ is diagonal with the
diagonal elements δ′

j δj , j = 1, . . . , r, and Ψ = Θ−2.

Example 11.5.1. Using the data set provided in Example 11.4.1, estimate the factor load-
ings and the diagonal elements of Cov(ε) = Ψ = diag(ψ11, . . . , ψpp). In this example,
p = 3, n = 6, r = 2.

Solution 11.5.1. We will adopt the same notations and make use of some of the com-
putational results already obtained in the previous solution. First, we need to compute the
eigenvalues of the sample correlation matrix R. The sample sum of products matrix S is
given by

S =
⎡
⎣

6 0 −2
0 6 −2

−2 −2 6

⎤
⎦ ⇒ R =

⎡
⎣

1 0 −2
6

0 1 −2
6−2

6 −2
6 1

⎤
⎦ = 1

6
S.

Hence, the eigenvalues of R are 1
6 times the eigenvalues of S, that is, ν1 = 1

6(6 + √
8) =

1 +
√
2
3 , ν2 = 1

6(6) = 1 and ν3 = 1−
√
2
3 . Since 1

6 will be canceled when determining the
eigenvectors, the eigenvectors of S will coincide with those of R. They are the following,
denoted again by δj , j = 1, 2, 3:

δ1 =
⎡
⎢⎣

− 1√
2

− 1√
2

1

⎤
⎥⎦ , δ2 =

⎡
⎣

1
−1
0

⎤
⎦ , δ3 =

⎡
⎢⎣

1√
2
1√
2
1

⎤
⎥⎦ .

Therefore, δ′
1δ1 = 2, δ′

2δ2 = 2, δ′
3δ3 = 2 and c as defined in (11.5.5) is c = 1

3(2 + 2) =
4
3 ⇒ n(1 + c) = 6(1 + 4

3) = 14. Then, in light of (11.5.10), the estimates of ψjj , j =
1, 2, 3, are available as ψ̂jj = θ̂−2

j = sjj
n(1+c)

or ψ̂11 = θ̂−2
1 = 6

14 = 3
7 = ψ̂22 = ψ̂33,

denoting the estimates with a hat. Therefore, the diagonal matrix Ψ̂ = diag(37 ,
3
7 ,

3
7).

Hence, the matrix Θ−1 = Ψ
1
2 is estimated by Θ̂−1 = diag(

√
3√
7
,

√
3√
7
,

√
3√
7
). From (11.5.11),

Λ̂j = Θ̂−1δj = diag(
√
3√
7
,

√
3√
7
,

√
3√
7
) δj , that is, δj is pre-multiplied by

√
3√
7
. Therefore, the

estimates of the factor loadings are: λ̂11 = −(
√
3√
7
)( 1√

2
) = λ̂21 = −λ̂13 = −λ̂23, λ̂31 =

√
3√
7

= λ̂33 = λ̂12 = −λ̂22, and λ̂32 = 0.
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11.6. Tests of Hypotheses

The usual test in connection with the current topic consists of assessing identifiability,
that is, testing the hypothesis H0 that the population covariance matrix Σ > O can be
represented as Σ = ΛΦΛ′ + Ψ when Φ = I , Λ′Ψ −1Λ is a diagonal matrix with positive
diagonal elements, Ψ > O is a diagonal matrix and Λ = (λij ) is a p × r, r ≤ p, matrix
of full rank r , whose elements are the factor loadings. That is,

H0 : Σ = ΛΛ′ + Ψ. (11.6.1)

In this instance, a crucial aspect of the hypothesis Ho consisting of determining whether
“the model fits”, is that the number r be designated since the other quantities n, the sample
size, and p, the order of the observation vector, are preassigned. Thus, the phrase “model
fits” means that for a given r , Σ can be expressed in the form Σ = Ψ + ΛΛ′, in addition
to satisfying the identification conditions. The assumed model has the representation: X =
M + ΛF + ε where X′ = (x1, . . . , xp) stands for the p × 1 vector of observed scores on
p tests or p batteries of tests, M is a p × 1 vector of general effect, F is an r × 1 vector of
unknown factors, Λ = (λij ) is the unknown p × r matrix of factor loadings and ε is the
p × 1 error vector. When ε and F are uncorrelated, the covariance matrix of X is given by

Σ = ΛΦΛ′ + Ψ

where Φ = Cov(F ) > O and Ψ = Cov(ε) > O with Φ being r × r and Ψ being p × p

and diagonal. A simple random sample from X will be taken to mean a sample of inde-
pendently and identically distributed (iid) p × 1 vectors X′

j = (x1j , x2j , . . . , xpj ), j =
1, . . . , n, with n denoting the sample size. The sample sum of products matrix or “cor-
rected” sample sum of squares and cross products matrix is S = (sij ), sij = ∑n

k=1(xik −
x̄i)(xjk − x̄j ), where, for example, the average of the xi’s comprising the i-th row of
X = [X1, . . . , Xn], namely, x̄i , is x̄i = ∑n

k=1 xik/n. If ε and F are independently nor-
mally distributed, then the likelihood ratio criterion or λ-criterion is

λ = maxH0 L

maxL
= |Σ̂ | n

2

|Λ̂Λ̂′ + Ψ̂ | n
2

⇒ w = λ
2
n = |Σ̂ |

|Λ̂Λ̂′ + Ψ̂ | (11.6.2)

where Σ̂ = 1
n
S and the covariance matrix Σ = ΛΛ′ + Ψ under H0, with Φ = Cov(F )

assumed to be an identity matrix and the r × r matrix Λ′Ψ −1Λ = diag(δ′
1δ1, . . . , δ

′
rδr)

having positive diagonal elements δ′
j δj , j = 1, . . . , r . Referring to Sect. 11.4.2, we have

|ΛΛ′ + Ψ | = |Ψ | |Λ′Ψ −1Λ + I | (11.6.3)
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and 1 + δ′
j δj = 1 + Λ′

jΨ
−1Λj = 1 + Λ′

jΘ
2Λj where δj = Ψ − 1

2Λj = ΘΛj and Λj is
the j -th column of Λ for j = 1, . . . , r . It was shown in (11.5.8) that δj is an eigenvector
of the sample correlation matrix R and

r∏
j=1

(1 + δ′
j δj ) = |Λ′Ψ −1Λ + I |.

However, in view of the discussion following (11.5.8), an eigenvalue of R is of the form

νj = 1+δ′
j δj

(1+c)
, j = 1, . . . , r . Let ν1, . . . νp be the eigenvalues of R and let the largest r

of them be ν1, . . . , νr . It also follows from (11.5.8) that Θ̂2 = n(1 + c)diag( 1
s11

, . . . , 1
spp

)

with Θ = Ψ − 1
2 . Thus,

|Σ̂ |
|Ψ̂ | =

∣∣∣Θ̂
(S

n

)
Θ̂

∣∣∣ = |(1 + c)R| =
{ r∏

j=1

(1 + c)νj

}
(1 + 0)p−rνr+1 · · · νp

=
{ r∏

j=1

(1 + δ̂′
j δ̂j )

}
νr+1 · · · νp

⇒ | 1
n
S|

|Ψ̂ | |Λ̂′Ψ̂ −1Λ̂ + I | = {∏r
j=1(1 + δ̂′

j δ̂j )}νr+1 · · · νp

{∏r
j=1(1 + δ̂′

j δ̂j )}
= νr+1 · · · νp = w = λ

2
n . (11.6.4)

Hence, we reject the null hypothesis for small values of the product νr+1 · · · νp, that is,
the product of the smallest p − r eigenvalues of the sample correlation matrix R. In order
to evaluate critical points, one would require the null distribution of the product of the
eigenvalues, νr+1 · · · νp, which is difficult to determine for a general p. How can rejecting
the null hypothesis that the “model fits” be interpreted? Since, in the whole structure, the
decisive quantity is r , we are actually rejecting the hypothesis that a given r is the number
of main factors contributing to the observations. Hence, we may seek a larger or smaller r ,
keeping the structure unchanged and testing the same hypothesis again until the hypothesis
is not rejected. We may then assume that the r specified at the last stage is the number of
main factors contributing to the observation or we may assert that, with that particular r ,
there is evidence that the model fits.

We will now determine conditions ensuring that the likelihood ratio criterion λ be less
than or equal to one. While, assuming that Λ′Ψ −1Λ is diagonal, the left-hand side of the
deciding equation,Σ = ΛΛ′+Ψ , has p(p+1)/2 parameters, there are p r+p−r(r−1)/2
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conditions on the right-hand side where r(r − 1)/2 arises from the diagonality condition.
The difference is then

p(p + 1)

2
−

[
p r + p − r(r − 1)

2

]
= 1

2
[(p − r)2 − (p + r)] ≡ ρ. (11.6.5)

This ρ depends upon the parameters p and r , whereas λ depends upon p, r and c. Thus, λ
may not be ≤ 1. In order to make λ ≤ 1, we can make c close to 0 by multiplying the δ̂j ’s
by a constant, observing that this is always possible because the δ̂j ’s are the eigenvectors
of R. By selecting a constant m and taking the new δ̂j as 1√

m
δj , c can be made close to

0 and λ will be ≤ 1, so that rejecting the null hypothesis for small values of λ will make
sense. It may so happen that there will not be any parameter left to be restricted by the
hypothesis Ho that “model fits”. The quantity ρ appearing in (11.6.5) could then be ≤ 0,
and in such an instance, the hypothesis would not make sense and could not be tested.

The density of the sample correlation matrix R is provided in Example 1.25 of Mathai
(1997, p. 58). Denoting this density by f (R), it is the following for the population covari-
ance matrix Σ in a parent Np(μ, Σ) population with Σ being a positive definite diagonal
matrix, as was assumed in Sect. 11.6:

f (R) = [Γ (m
2 )]p

Γp(m
2 )

|R|m
2 −p+1

2 , R > O, m = n − 1, n > p, (11.6.6)

and zero elsewhere, where n is the sample size.

11.6.1. Asymptotic distribution of the likelihood ratio statistic

For a large sample size n, −2 ln λ is approximately distributed as a chisquare random
variable having k degrees of freedom where λ is the likelihood ratio criterion and k is the
number of parameters restricted by the hypothesis H0. This approximation holds whenever
the sample size n is large and k ≥ 1. With ρ as defined in (11.6.5), we have

k = ρ = 1

2
[(p − r)2 − (p + r)]. (11.6.7)

However, p−r = 1 and p+r = 5 in the illustrative example, so that k = −2. Accordingly,
even if the sample size n were large, this asymptotic result would not be applicable.

11.6.2. How to decide on the number r of main factors?

The structure of the population covariance matrix Σ under the model Xj = M+ΛF +
Ej, j = 1, . . . , n, is

Σ = ΛΦΛ′ + Ψ ⇒ Σ = ΛΛ′ + Ψ for Φ = I, (11.6.8)
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where it is assumed that Ej and F are uncorrelated, Σ = Cov(Xj ) > O is p × p,
Φ = Cov(F ) = I, the r × r identity matrix, Ψ = Cov(Ej ) is a p × p diagonal matrix
and Λ = (λij ) is a full rank p × r, r ≤ p, matrix whose elements are the factor loadings.
Under the orthogonal factor model, Φ = I . Moreover, to ensure the identification of the
model, we assume that Λ′Ψ −1Λ is a diagonal matrix. Before initiating any data analysis,
we have to assign a value to r on the basis of the data set at hand in order to set up the
model. Thus, the matter of initially setting the number of main factors has to be addressed.
Given

R = ΛΛ′ + Ψ (11.6.9)

where Λ = (λij ) is a p × r matrix and Ψ is a p × p diagonal matrix, does a solution that
is expressible in terms of the elements of R (or those of S if S is used), exist for all λij ’s
and ψjj ’s? In general

R = λ1U1U
′
1 + · · · + λpUpU ′

p (11.6.10)

where the λj ’s are the eigenvalues of R and the Uj ’s are the corresponding normalized
eigenvectors. Observe that UjU

′
j is p × p whereas U ′

jUj = 1, j = 1, . . . , p. If r =
p, then a solution always exists for (11.6.9). When taking Ψ = O, we can always let
R = BB ′ for some p × p matrix B, which can be achieved for example via a triangular
decomposition. Accordingly, the relevant aspects are r < p and the diagonal elements in
Ψ , namely, the ψjj ’s being positive. Can we then solve for all the λij ’s and ψjj ’s involved
in (11.6.9) in terms of the elements in R? The answer is that a solution exists, but only
when certain conditions are satisfied. Our objective is to select a value of r that is as small
as possible and then, to obtain a solution to (11.6.9) in terms of the elements in R.

The analysis is to be carried out by utilizing either the sample sum of products matrix S

or the sample correlation matrix R. The following are some of the guidelines for selecting
r in order to set up the model.

(i): Compute all the eigenvalues of R (or S). Let r be the number of eigenvalues ≥ 1 if
the sample correlation matrix R is used. If S is used, then determine all the eigenvalues,
calculate the average of these eigenvalues, and count the number of eigenvalues that are
greater than or equal to this average. Take that number to be r .

(2): Carry out a Principal Component Analysis on R (or S). If S is used, ensure that
the units of measurements are not creating discrepancies. Compute the variances of these
Principal Components, which are the eigenvalues of R (or S). Let λj , j = 1, . . . , p,

denote these eigenvalues. Compute the ratios

λ1 + · · · + λm

λ1 + · · · + λp

, m = 1, 2, . . . ,
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and stop with that m for which the desired fraction of the total variation in the data is
accounted for. Take that m as r . When implementing the principal component approach,
the factor loadings λij ’s and the ψjj ’s can be estimated as follows: From (11.6.10), write

R = A + B with A =
r∑

j=1

λjUjU
′
j and B =

p∑
j=r+1

λjUjU
′
j ,

where A can be expressed as V V ′ with V = [√λjU1, . . . ,
√

λjUr ]. Then, V is taken as

an approximate estimate of Λ or as Λ̂. Observe that λj > 0, j = 1, . . . , p. The sum over
j of the i-th diagonal elements of λjUjU

′
j , j = r +1, . . . , p, will provide an estimate for

ψii, i = 1, . . . , p. These estimates can also be obtained as follows: Consider the estimate
of σii denoted by σ̂ii which is equal to the sum of all the i-th diagonal elements in A + B;
it will be 1 if R is used and σ̂ii if S is utilized in the analysis; then, ψ̂ii = σ̂ii − ∑r

j=1 λ̂ij

and ψ̂ii is now the sum of the i-th diagonal elements in B.

(iii): Consider the individual correlations in the sample correlation matrix R. Identify the
largest ones in absolute value. If the largest ones occur at the (1,3)-th and (2,3)-th positions,
then the factor f3 will be deemed influential. Start with r = 1 (factor f3) and carry out the
analysis. Then, assess the proportion of the total variation accounted for by σ̂33. Should the
proportion not be satisfactory, we may continue with r = 2. If the (2,3)-th position value
is larger in absolute value than the value at the (1,3)-th position, then f2 may be the next
significant factor. Compute σ̂33 + σ̂22 and determine the proportion to the total variation.
If the resulting model is rejected, then take r = 3, and continue in this fashion until an
acceptable proportion of the total variation is accounted for.

(iv): The maximum likelihood method. With this approach, we begin with a preselected r

and test the hypothesis that, when comprising r factors, the model fits. If the hypothesis is
rejected, then we let number of influential factors be r−1 or r+1 and continue the process
of testing and deciding until the hypothesis is not rejected. That final r is to be taken as the
number of main factors contributing towards the observations. The initial value of r may
be determined by employing one of the methods described in (i) or (ii) or (iii).

Exercises

11.1. For the following data, where the 6 columns of the matrix represent the 6 observa-
tion vectors, verify whether r = 2 provides a good fit to the data. The proposed model is
the Factor Analysis model X = M + ΛF + ε, F ′ = (f1, f2), Λ is 3 × 2 and of rank 2,
Cov(ε) = Ψ is diagonal, Cov(F ) = Φ = I, and Cov(X) = Σ > O. The data set is
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⎡
⎣

0 1 −1 0 1 −1
1 1 0 2 2 0

−1 −1 0 −1 −1 −2

⎤
⎦ .

11.2. For the model X = M + ΛF + ε with the conditions as specified in Exercise
11.1, verify whether the model with r = 2 or r = 3 gives a good fit on the basis of the
following data, where the columns in the matrix represent five observation vectors:

⎡
⎢⎢⎣

1 0 −1 1 0
−1 1 1 0 −1
1 0 1 2 1
1 1 2 1 0

⎤
⎥⎥⎦ .

11.3. Do a Principal Component Analysis in Exercise 11.1 to assess what percentage of
the total variation in the data is accounted for by r = 2.

11.4. Do a Principal Component Analysis in Exercise 11.2 to determine what percentages
of the total variation in the data are accounted for by r = 2 and r = 3.

11.5. Even though the sample sizes are not large, perform tests based on the asymptotic
chisquare to assess whether the two tests there agree with the findings in Exercises 11.1
and 11.2.

11.6. Four model identification conditions are stated at the end of Sect 11.3.1. Develop
λ-criteria under the conditions stated in (i): case (2); (ii): case (3), selecting your own B1;
(iii): case (4).
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