
Chapter 10

Canonical Correlation Analysis

10.1. Introduction

We will keep utilizing the same notations in this chapter. More specifically, lower-
case letters x, y, . . . will denote real scalar variables, whether mathematical or random.
Capital letters X, Y, . . . will be used to denote real matrix-variate mathematical or random
variables, whether square or rectangular matrices are involved. A tilde will be placed above
letters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices
will for instance be denoted by A, B, C. A tilde will not be used on constant matrices
unless the point is to be stressed that the matrix is in the complex domain. The determinant
of a square matrixAwill be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices are
square, their order will be taken as p × p, unless specified otherwise. When A is a full
rank matrix in the complex domain, then AA∗ is Hermitian positive definite where an
asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix
X. Letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.
The necessary theory for the study of Canonical Correlation Analysis has already been

introduced in Chap. 1, including the problem of optimizing a real bilinear form subject
to two quadratic form constraints. This topic happens to be connected to the prediction
problem. In regression analysis, the objective consists of seeking the best prediction func-
tion of a real scalar variable y based on a collection of preassigned real scalar variables
x1, . . . , xk. It was previously determined that the regression of y on x1, . . . , xk, or the best
predictor of y at preassigned values of x1, . . . , xk, is the conditional expectation of y at
the specified values of x1, . . . , xk, that is, E[y|x1, . . . , xk] where E denotes the expected
value. In this case, best is understood to mean ‘in the minimum mean square’ sense. Now,
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consider the following generalization of this problem. Suppose that we wish to determine
the best prediction function for a set of real scalar variables y1, . . . , yq, on the basis of
a collection of real scalar variables x1, . . . , xp, where p needs not be equal to q. Since
individual variables are available from linear functions of those variables, we will convert
the problem into one of predicting a linear function of y1, . . . , yq from an arbitrary linear
function of x1, . . . , xp, and vice versa if we are interested in determining the association
between two sets of variables. Let the linear functions be u = α1x1 + · · · + αpxp = α′X
with α′ = (α1, . . . , αp) and X′ = (x1, . . . , xp) and v = β1y1 + · · · + βqyq = β ′Y
with β ′ = (β1, . . . , βq) and Y ′ = (y1, . . . , yq), where the coefficient vectors α and β are
arbitrary. Let us provide an interpretion of best predictor in the case of two linear func-
tions. As a criterion, we may make use of the maximum joint scatter, that is, the joint
variation in u and v as measured by the covariance between u and v or, equivalently, the
maximum scale-free covariance, namely, the correlation between u and v, and optimize
this joint variation. Given the properties of linear functions of real scalar variables, we ob-
tain the variances of linear functions and covariance between linear functions as follows:
Var(u) = α′Σ11α, Var(v) = β ′Σ22β, Cov(u, v) = α′Σ12β = β ′Σ21α, Σ ′

12 = Σ21,
where Σ11 > O and Σ22 > O are the variance-covariance matrices of X and Y , re-
spectively, and Σ12 = Σ ′

21 accounts for the covariance between X and Y . Letting the

augmented vector Z =
[
X

Y

]
and its associated covariance matrix be Σ , we have

Σ = Cov

[
X

Y

]
=

[
Cov(X) Cov(X, Y )

Cov(Y, X) Cov(Y )

]
≡

[
Σ11 Σ12

Σ21 Σ22

]
.

Our aim is to maximize α′Σ12β = β ′Σ21α. When the coefficient vectors α and β are
unrestricted, the optimization of α′Σ12β proves meaningless since the quantity α′Σ12β

can vary from −∞ to ∞. Consequently, we impose the constraints, α′Σ11α = 1 and
β ′Σ22β = 1, to the coefficient vectors α and β. Accordingly, the mathematical problem
consists of optimizing α′Σ12β subject to α′Σ11α = 1 and β ′Σ22β = 1.

Letting

w = α′Σ12β − ρ1

2
(α′Σ11α − 1) − ρ2

2
(β ′Σ22β − 1) (i)

where ρ1 and ρ2 are the Lagrangian multipliers, we differentiate w with respect to α and
β and equate the resulting functions to null vectors. When differentiating with respect to
β, we may utilize the equivalent form β ′Σ21α = α′Σ12β. We then obtain the following
equations:
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∂

∂α
w = O ⇒ Σ12β − ρ1Σ11α = O (ii)

∂

∂β
w = O ⇒ Σ21α − ρ2Σ22β = O. (iii)

On pre-multiplying (ii) by α′ and (iii), by β ′, and using the fact that α′Σ11α = 1 and
β ′Σ22β = 1, one has ρ1 = ρ2 ≡ ρ and α′Σ12β = ρ. Thus,

[−ρΣ11 Σ12

Σ21 −ρΣ22

] [
α

β

]
=

[
O

O

]
(10.1.1)

and

Cov(α′X, β ′Y ) = α′Σ12β = β ′Σ21α = ρ. (10.1.2)

Hence, the maximum value of Cov(α′X, β ′Y ) yields the largest ρ. It follows from (ii) that
α = 1

ρ
Σ−1

11 Σ12β which, once substituted in (iii) yields

[Σ21Σ
−1
11 Σ12 − ρ2Σ22]β = O ⇒ [Σ−1

22 Σ21Σ
−1
11 Σ12 − ρ2I ]β = O.

This entails that ρ2 = λ, an eigenvalue of B = Σ−1
22 Σ21Σ

−1
11 Σ12 or its symmetrized

form Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 , and that β is a corresponding eigenvector. Similarly, by ob-
taining a representation of β from (iii), substituting it in (ii) and proceeding as above, it
is seen that ρ2 = λ is an eigenvalue of A = Σ−1

11 Σ12Σ
−1
22 Σ21 or its symmetrized form

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 , and that α is a corresponding eigenvector. Hence manifestly, all
the nonzero eigenvalues of A coincide with those of B. If p ≤ q and Σ12 is of full rank
p, then A > O (real positive definite) and B ≥ O (real positive semi-definite), whereas
if q ≤ p and Σ21 is of full rank p, then A ≥ O (real positive semi-definite) and B > O

(real positive definite). If p = q and Σ12 is of full rank p, then A and B are both positive
definite. If p ≤ q and Σ12 is of full rank p, then one should start with A and compute all
the p nonzero eigenvalues of A since A will be of lower order; on the other hand, if q ≤ p

and Σ21 is of full rank q, then one ought to begin with B and determine all the nonzero
eigenvalues of B. Thus, one can obtain the common nonzero eigenvalues of A and B or
their symmetrized forms by making use of one of these sets of steps. Let us denote the
largest value of these common eigenvalues λ = ρ2 by λ(1) and the corresponding eigen-
vectors with respect to A and B, by α(1) and β(1), where the eigenvectors are normalized
via the constraints α′

(1)Σ11α(1) = 1 and β ′
(1)Σ22β(1) = 1. Then, (u1, v1) ≡ (α′

(1)X, β ′
(1)Y )

is the first pair of canonical variables in the sense that u1 is the best predictor of v1 and
v1 is the best predictor of u1. Similarly, letting ρ2

(i) = λ(i) be the i-th largest common
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eigenvalue of A and B and the corresponding eigenvectors such that α′
(i)Σ11α(i) = 1 and

β ′
(i)Σ22β(i) = 1, be denoted by α(i) and β(i), the i-th largest correlation between u = α′X

and v = β ′Y will be equal to α′
(i)Σ12β(i) = ρ(i) = √

λ(i), i = 1, . . . , p, p denoting the
common number of nonzero eigenvalues of A and B, and occur when u = ui = α′

(i)X

and v = vi = β ′
(i)Y , ui and vi being the i-th pair of canonical variables. Clearly, Var(ui)

and Var(vi), i = 1, . . . , p, are both equal to one. Once again, best is taken to mean ‘in the
minimum mean square’ sense. Hence, the following results:

Theorem 10.1.1. Letting Σ , A, B, ρ, α(i), β(i), ui and vi be as previously defined,

max
α′Σ11α=1, β ′Σ22β=1

[α′Σ12β] = α′
(1)Σ12β(1) = ρ(1) (10.1.3)

where ρ(1) is the largest ρ or the largest canonical correlation, that is, the largest corre-
lation between the first pair of canonical variables, u = α′X and v = β ′Y, which is equal
to the correlation between u1 and v1, with ρ2

(1) = λ(1), the common largest eigenvalue of
A and B. Similarly, we have

min
α′Σ11α=1, β ′Σ22β=1

[α′Σ12β] = α′
(p)Σ12β(p) = ρ(p) (10.1.4)

where ρ(p),which is the smallest nonzero value of ρ with ρ2
(p) = λ(p), the common smallest

nonzero eigenvalue of A and B, represents the smallest canonical correlation between u

and v or the correlation between up and vp

This maximum correlation between the linear functions α′X and β ′Y or the correlation
between the best predictors u1 and v1 or the maximum value of ρ is called the first canon-
ical correlation between the sets X and Y in the sense the correlation between u1 and v1
attains its maximum value. When p = 1 or q = 1, the canonical correlation becomes the
multiple correlation, and when p = 1 and q = 1, it is simply the correlation between two
real scalar random variables. The matrix of the nonzero eigenvalues of A and B, denoted
by Λ, is Λ = diag(λ(1), . . . , λ(p)) when p ≤ q and Σ12 is of full rank p; otherwise, p is
replaced by q in Λ.

It should be noted that, for instance, the canonical variable β ′Y such that β satisfies
the constraint β ′Σ22β = 1 is identical to b′Σ−1/2

22 Y such that b′b = 1 since β ′Σ22β =
b′Σ−1/2

22 Σ22Σ
−1/2
22 b = b′b. Accordingly, letting the λ(i)’s as well as A and B be as previ-

ously defined, our definition of a canonical variable, that is, ui = α′
(i)X and vi = β ′

(i)Y,

coincides with the customary one, that is, u∗
i = a′

iΣ
−1/2
11 X where ai is the eigenvector

with respect to B which is associated with λ(i) and normalized by requiring that a′
iai = 1,
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and v∗
i = b′

iΣ
−1/2
22 Y where bi is an eigenvector with respect to B corresponding to λ(i)

and such that b′
ibi = 1. It can be readily proved that the canonical variables u∗

1, . . . , u
∗
p (or

equivalently the ui’s) are uncorrelated, as Cov(u∗
i , u

∗
j ) = a′

iΣ
−1/2
11 Σ11Σ

−1/2
11 aj = 0 for

i �= j since the normed eigenvectors ai are orthogonal to one another. It can be similarly
established that the v∗

i ’s or, equivalently, the vi’s are uncorrelated. Clearly, Cov(u∗
i , u

∗
j ) =

Cov(ui, uj ) = 1 and Cov(v∗
i , v

∗
j ) = Cov(vi, vj ) = 1. We now demonstrate that, for i �= k,

the canonical variables, ui and vk are uncorrelated. First, consider the equation A a = λ a,
that is,

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 a = λ a.

On pre-multiplying both sides by Σ
− 1

2
22 Σ21Σ

− 1
2

11 , we obtain B b = λ b where b =
Σ

− 1
2

22 Σ21Σ
− 1

2
11 a. Thus, if λ and a constitute an eigenvalue-eigenvector pair for A, then

λ and b must also form an eigenvalue-eigenvector pair for B, and vice versa with

a = Σ
− 1

2
11 Σ12Σ

− 1
2

22 b. By definition, Cov(u∗
i , v

∗
k )= a′

iΣ
− 1

2
11 Σ12Σ

− 1
2

22 bk where the vector

bk = θ Σ
− 1

2
22 Σ21Σ

− 1
2

11 ak, θ being a positive constant such that the Euclidean norm of
bk is one. Note that since b′

kbk = θ2 a′
k A a′

k = θ2 a′
k λ(k) ak = 1, θ must be equal to

1/
√

λ(k). Thus, bk = Σ
− 1

2
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) with Σ
− 1

2
11 ak = α(k) and bk = Σ

1
2
22β(k),

which is equivalent to (iii) with α = α(k), β = β(k) and ρ = ρ(k), that is, β(k) =
Σ−1

22 Σ21α(k)/ρ(k). Then, Cov(u∗
i , v

∗
k ) = a′

iΣ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) = the (i, k)th
element of diag(λ(1), . . . , λ(p))/

√
λ(k), which is equal to 0 whenever i �= k. As expected,

Cov(u∗
k, v

∗
k ) = √

λ(k) = ρ(k), and Cov(ui, vk) = α′
(i)Σ12β(k)

(iii)= α′
(i)Σ12Σ

−1
22 Σ21α(k)/ρ(k)

= a′
iΣ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) = Cov(u∗
i , v

∗
k ) for i, k = 1, . . . , p, assuming that

p ≤ q and Σ12 is of full rank; if p ≥ q and Σ12 is of full rank, A and B will then share q

nonzero eigenvalues.

10.1.1. An invariance property

An interesting property of canonical correlations is now pointed out. Consider the fol-
lowing nonsingular transformations of X and Y : Let X1 = A1X and Y1 = B1Y where
A1 is a p × p nonsingular constant matrix and B1 is a q × q constant nonsingular matrix
so that |A1| �= 0 and |B1| �= 0. Now, consider the linear functions α′X1 = α′A1X and
β ′Y1 = β ′B1Y whose variances and covariance are as follows:

Var(α′Y1) = Var(α′A1Y ) = α′A1Σ11A
′
1α, Var(β ′Y1) = Var(β ′B1Y ) = β ′B1Σ22B

′
1β

Cov(α′X1, β
′Y1) = α′A1Σ12B

′
1β = β ′B1Σ21A

′
1α.
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On imposing the conditions Var(α′X1) = 1 and Var(β ′Y1) = 1, and maximizing
Cov(α′X1, β ′Y1) by means of the previously used procedure, we arrive at the equations

A1Σ12B
′
1β − ρ1A1Σ11A

′
1α = 0 (iv)

−ρ2B1Σ22B
′
1β + B1Σ21A

′
1α = 0. (v)

On pre-multiplying (iv) by α′ and (v) by β ′, one has ρ1 = ρ2 ≡ ρ, say. Equations (iv) and
(v) can then be re-expressed as

[−ρA1Σ11A
′
1 A1Σ12B

′
1

B1Σ21A
′
1 −ρB1Σ22B

′
1

] [
α

β

]
=

[
O

O

]
⇒

[
A1 O

O B1

] [−ρΣ11 Σ12

Σ21 −ρΣ22

] [
A′
1 O

O B ′
1

] [
α

β

]
=

[
O

O

]
.

Taking the determinant of the coefficient matrix and equating it to zero to determine the
roots, we have

∣∣∣∣
[
A1 O

O B1

] [−ρΣ11 Σ12

Σ21 −ρΣ22

] [
A′
1 O

O B ′
1

]∣∣∣∣ = 0 ⇒ (10.1.5)
∣∣∣∣−ρΣ11 Σ12

Σ21 −ρΣ22

∣∣∣∣ = 0. (10.1.6)

As can be seen from (10.1.6), (10.1.1) and (10.1.5) have the same roots ρ, which means
that the canonical correlation ρ is invariant under nonsingular linear transformations. Ob-
serve that when Σ12 is of full rank p and p ≤ q, ρ(1), . . . , ρ(p) corresponding to the
nonzero roots of (10.1.1) or (10.1.6), encompasses all the canonical correlations, so that,
in that case, we have a matrix of canonical correlations. Hence, the following result:

Theorem 10.1.2. Let X, a p × 1 vector of real scalar random variables x1, . . . , xp, and
Y, a q × 1 vector of real scalar random variables y1, . . . , yq, have a joint distribution.
Then, the canonical correlations between X and Y are invariant under nonsingular linear
transformations, that is, the canonical correlations betweenX and Y are the same as those
between A1X and B1Y where |A1| �= 0 and |B1| �= 0.

10.2. Pairs of Canonical Variables

As previously explained, λ(1) which denotes the largest eigenvalue of the matrix

A = Σ−1
11 Σ12Σ

−1
22 Σ21 or its symmetrized form Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 , as well the largest
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eigenvalue of B = Σ−1
22 Σ21Σ

−1
11 Σ12 or Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22 , also turns out to be equal
to ρ2

(1), the square of the largest root of equation (10.1.1). Having evaluated λ(1), we com-
pute the corresponding eigenvectors α(1) and β(1) and normalize them via the constraints
α′

(1)Σ11α(1) = 1 and β ′
(1)Σ22β(1) = 1, which produces the first pair of canonical variables:

(u1, v1) = (α′
(1)X, β ′

(1)Y ). We then take the second largest nonzero eigenvalue of A or
B, denote it by λ(2), compute the corresponding eigenvectors α(2) and β(2) and normal-
ize them so that α′

(2)Σ11α(2) = 1 and β ′
(2)Σ22β(2) = 1, which yields the second pair of

canonical variables: (u2, v2) = (α′
(2)X, β ′

(2)Y ). Continuing this process with all of the
p nonzero eigenvalues if p ≤ q and Σ12 is of full rank p, or with all of the q nonzero
eigenvalues if q ≤ p and Σ21 is of full rank q, will produce a complete set of canonical
variables pairs: (ui, vi) = (α′

(i)X, β ′
(i)Y ), i = 1, . . . , p or q.

Since the symmetrized forms of A and B are symmetric and nonnegative definite,
all of their eigenvalues will be nonnegative and all nonzero eigenvalues will be positive.
As is explained in Chapter 1 and Mathai and Haubold (2017a), all the eigenvalues of
real symmetric matrices are real and for such matrices, there exists a full set of orthog-
onal eigenvectors whether some of the roots are repeated or not. Hence, α′

(j)X will be
uncorrelated with all the linear functions α′

(r)X, r = 1, 2, . . . , j − 1, and β ′
(j)Y will be

uncorrelated with β ′
(r)Y, r = 1, 2, . . . , j −1. When constructing the second pair of canon-

ical variables, we may impose the condition that the second linear functions α′X and β ′Y
must be uncorrelated with the first pair α′

(1)X and β ′
(1)Y, respectively, by taking two more

Lagrangian multipliers, adding the conditions Cov(α′X, α′
(1)X) = α′Σ11α(1) = 0 and

β ′Σ22β(1) = 0 to the optimizing function w and carrying out the optimization. We will
then realize that these additional conditions are redundant and that the original optimizing
equations are recovered, as was observed in the case of Principal Components. Similarly,
we could incorporate the conditions α′Σ11α(r) = 0, r = 1, . . . , j − 1 when constructing
α(j) and similar conditions when constructing β(j). However, these uncorrelatedness con-
ditions will become redundant in the optimization procedure. Note that λ(1) = ρ2

(1) is the
square of the first canonical correlation. Thus, the first canonical correlation is denoted by
ρ(1). Similarly λ(r) = ρ2

(r) is the square of the r-th canonical correlation, r = 1, . . . , p
when p ≤ q and Σ12 is of full rank p. That is, ρ(1), . . . , ρ(p), the p nonzero roots of
(10.1.1) when p ≤ q and Σ12 is of full rank p, are canonical correlations, ρ(r) being
called the r-th canonical correlation which is the r-th largest root of the determinantal
equation (10.1.1). If p ≤ q and Σ12 is not of full rank p, then there will be fewer nonzero
canonical correlations.
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Example 10.2.1. Let Z =
[
X

Y

]
be a 5× 1 real vector random variable where X is 3× 1

and Y is 2 × 1. Let the covariance matrix of Z be Σ where

Σ =

⎡
⎢⎢⎢⎢⎣

3 1 0 1 0
1 2 0 0 1
0 0 3 1 1
1 0 1 2 1
0 1 1 1 2

⎤
⎥⎥⎥⎥⎦ =

[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 =

⎡
⎣3 1 0
1 2 0
0 0 3

⎤
⎦ ,

Σ22 =
[
2 1
1 2

]
, Σ21 =

[
1 0 1
0 1 1

]
, Σ12 =

⎡
⎣1 0
0 1
1 1

⎤
⎦ .

Construct the pairs of canonical variables.

Solution 10.2.1. We need the following quantities:

Σ−1
22 = 1

3

[
2 −1

−1 2

]
, Σ−1

11 = 1

15

⎡
⎣ 6 −3 0

−3 9 0
0 0 5

⎤
⎦ ,

Σ−1
22 Σ21 = 1

3

[
2 −1

−1 2

] [
1 0 1
0 1 1

]
= 1

3

[
2 −1 1

−1 2 1

]
,

Σ−1
11 Σ12 = 1

15

⎡
⎣ 6 −3 0

−3 9 0
0 0 5

⎤
⎦

⎡
⎣1 0
0 1
1 1

⎤
⎦ = 1

15

⎡
⎣ 6 −3

−3 9
5 5

⎤
⎦ ;

A = Σ−1
11 Σ12Σ

−1
22 Σ21,

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

45

[
2 −1 1

−1 2 1

] ⎡
⎣ 6 −3

−3 9
5 5

⎤
⎦

= 1

45

[
20 −10

−7 26

]
.

Let us compute the eigenvalues of B since it is 2×2 whereas A is 3×3. The characteristic
equation of 45B is (20 − λ)(26 − λ) − 70 = 0 ⇒ λ2 − 46λ + 450 = 0. The roots
are λ1 = 23 + √

79, λ2 = 23 − √
79. Hence, the eigenvalues of B are ρj = λj

45 , that
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is, ρ1 = 23+√
79

45 , ρ2 = 23−√
79

45 . We have denoted the second set of real scalar random
variables by Y, Y ′ = [y1, y2]. An eigenvector corresponding to ρ1 is available from
(B − ρ1I )Y = O. Since the right-hand side is null, we may omit the denominator. The
first equation is then (−3−√

79)y1 −10y2 = 0. Taking y1 = 1, y2 = − 1
10(3+√

79). It is
easily verified that these values will also satisfy the second equation in (B − ρ1I )Y = O.
An eigenvector, denoted by β1, is the following:

β1 =
[

1
− 1

10(3 + √
79)

]
.

We normalize β1 through β ′
1Σ22β1 = 1. To this end, consider

β ′
1Σ22β1 = [1, − 1

10
(3 + √

79)]
[
2 1
1 2

] [
1

− 1
10(3 + √

79)

]

= 1

25
(79 − 2

√
79).

Hence a normalized β1, denoted by β(1), and the corresponding canonical variable v1 are
the following:

β(1) = 5√
79 − 2

√
79

[
1

− 1
10(3 + √

79)

]
, v1 = 5√

79 − 2
√
79

[y1 − 1

10
(3 + √

79)y2].

The second eigenvalue of B is ρ2 = 1
45(23 − √

79). An eigenvector corresponding to ρ2
is available from the equation (B − ρ2I )Y = O. The second equation gives −7y1 + (3 +√
79)y2 = 0. Taking y2 = 1, y1 = 1

7(3 + √
79). Hence, an eigenvector corresponding to

ρ2, denoted by β2, is the following:

β2 =
[
1
7(3 + √

79)
1

]
.

We normalize this vector through the constraint β ′
2Σ22β2 = 1. Consider

β ′
2Σ22β2 =

[1
7
(3 + √

79, 1)
] [

2 1
1 2

] [
1
7(3

√
79)

1

]

= 1

49
(316 + 26

√
79).

Hence, the normalized eigenvector, denoted by β(2), and the corresponding canonical vari-
able v2 are

β(2) = 7√
316 + 26

√
79

[
1
7(3 + √

79)
1

]
, v2 = 7√

316 + 26
√
79

[1
7
(3 + √

79)y1 + y2].



650 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

We will obtain the eigenvectors resulting from (A − ρ1I )X = O from the eigenvector β1

instead of solving the equation relating to A, as the presence of the term 3+√
79 can make

the computations tedious. From equation (ii) of Sect. 10.1, we have

α1 = 1

ρ1
Σ−1

11 Σ12β1

=
√
45√

23 + √
79

( 1

15

)⎡
⎣ 6 −3

−3 9
5 5

⎤
⎦

[
1

− 1
10(3 + √

79)

]

=
√
45

15(
√
23 + √

79)

⎡
⎣ 6 + 3

10(3 + √
79)

−3 − 9
10(3 + √

79)
5 − 5

10(3 + √
79)

⎤
⎦ .

Let us normalize this vector by requiring that α′
1Σ11α1 = 1 or α′

1Σ11α1 =
1
ρ2
1
β ′
1Σ21Σ

−1
11 Σ12β1 = γ 2

1 , say:

γ 2
1 = 45

15(23 + √
79)

[
1, − 1

10
(3 + √

79)
] [

1 0 1
0 1 1

]

×
⎡
⎣ 6 −3

−3 9
5 5

⎤
⎦ [

1
− 1

10(3 + √
79)

]

= 45

15(23 + √
79)

[
1, − 1

10
(3 + √

79)
] [

11 2
2 14

] [
1

− 1
10(3 + √

79)

]

= 45

15(23 + √
79)(25)

[553 + 11
√
79].

Hence, the normalized α1, denoted by α(1), is the following:

α(1) = α1

|γ1| = 5
√

(15)
√

(553 + 11
√
79)

⎡
⎣ 6 + 3

10(3 + √
79)

−3 − 9
10(3 + √

79)
5 − 5

10(3 + √
79)

⎤
⎦ ,

so that the corresponding canonical variable is

u1 = 5
√

(15)
√

(553 + 11
√
79)

{[
6 + 3

10
(3 + √

79)
]
x1 −

[
3 + 9

10
(3 + √

79)
]
x2

+
[
5 − 1

2
(3 + √

79)
]
x3

}
.
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Now, from the formula α2 = 1
ρ2

Σ−1
11 Σ12β2, we have

α2 =
√
45√

(23 − √
79)

( 1

15

) ⎡
⎣ 6 −3

−3 9
5 5

⎤
⎦

[
1
7(3 + √

79)
1

]

=
√
45

15(
√
23 − √

79)

⎡
⎣

6
7(3 + √

79) − 3
−3

7(3 + √
79) + 9

5
7(3 + √

79) + 5

⎤
⎦ .

Let us normalize this vector via the constraint α′
2Σ11α2 = 1 or

α′
2Σ11α2 = 1

ρ2
2

β ′
2Σ21Σ

−1
11 Σ12β2 = γ 2

2 ,

say. Thus,

γ 2
2 = 45

15(23 − √
79)

[1
7
(3 + √

79), 1
] [

11 2
2 14

] [
1
7(3 + √

79)
1

]

= 45

15(23 − √
79)

[ 1

49
(1738 + 94

√
79)

]
,

and the normalized vector α2, denoted by α(2), is

α(2) = α2

|γ2| = 7
√
15

√
(1738 + 94

√
79)

⎡
⎣

6
7(3 + √

79) − 3
−3

7(3 + √
79) + 9

5
7(3 + √

79) + 5

⎤
⎦ ,

so that the second canonical variable is

u2 = 7
√
15

√
(1738 + 94

√
79)

{[6
7
(3 + √

79) − 3
]
x1 −

[3
7
(3 + √

79) + 9
]
x2

+
[5
7
(3 + √

79) + 5
]
x3

}
.

Hence, the canonical pairs are (u1, v1), (u2, v2) where uj is the best predictor of vj and
vice versa for j = 1, 2. The pair of canonical variables (u2, v2) has the second largest
canonical correlation. It is easy to verify that Cov(u1, u2) = 0 and Cov(v1, v2) = 0.
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10.3. Estimation of the Canonical Correlations and Canonical Variables

Consider a simple random sample of size n from a population designated by the (p +
q) × 1 real vector

(
X

Y

)
. Let the (corrected) sample sum of products matrix be denoted by

S =
[
S11 S12
S21 S22

]
, S11 is p × p, S22 is q × q,

where S11 is the sample sum of products matrix corresponding to the sample from the
subvector X, whose (i, j)th element is of the form

∑n
k=1(xik − x̄i)(xjk − x̄j ) with the

matrix (xik) denoting a sample of size n from X, S22 is the sample sum of products matrix
corresponding to the subvector Y and 1

n
S12 is the sample covariance between X and Y .

Thus, denoting the estimates by hats, the estimates of Σ11, Σ22 and Σ12 are Σ̂11 = 1
n
S11,

Σ̂22 = 1
n
S22 and Σ̂12 = 1

n
S12, respectively. These will also be the maximum likelihood

estimates if we assume normality, that is, if

Z =
(

X

Y

)
∼ Np+q(ν, Σ), Σ > O, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (10.3.1)

where Σ11 = Cov(X) > O, Σ22 = Cov(Y ) > O and Σ12 = Cov(X, Y ). For the
estimates of these submatrices, equation (10.1.1) will take the following form:

∣∣∣∣−tΣ̂11 Σ̂12

Σ̂21 −tΣ̂22

∣∣∣∣ = 0 ⇒
∣∣∣∣−tS11 S12

S21 −tS22

∣∣∣∣ = 0 (10.3.2)

where t is the sample canonical correlation; the reader may also refer to Mathai and
Haubold (2017b). Letting ρ̂ = t be the estimated canonical correlation, whenever p ≤
q, t2 is an eigenvalue of the sample canonical correlation matrix given by

Σ̂
− 1

2
11 Σ̂12Σ̂

−1
22 Σ̂21Σ̂

− 1
2

11 = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 = R
− 1

2
11 R12R

−1
22 R21R

− 1
2

11 . (10.3.3)

Note that we have chosen the symmetric format for the sample canonical correlation ma-
trix. Observe that the sample size n is omitted from the middle expression in (10.3.3) as
it gets canceled. As well, the middle expression is expressed in terms of sample correla-
tion matrices in the last expression appearing in (10.3.3). The conversion from a sample
covariance matrix to a sample correlation matrix has previously been explained. Letting
S = (sij ) denote the sample sum of products matrix, we can write

S = S1RS1, S1 = diag(
√

s11, . . . ,
√

sp+q,p+q ), R = (rij ) =
[
R11 R12

R21 R22

]
,
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where rij is the (i, j)th sample correlation coefficient, and for example, R11 is the p × p

submatrix within the (p + q) × (p + q) matrix R. We will examine the distribution of t2

when the population covariance submatrix Σ12 = O, as well as when Σ12 �= O, in the
case of a (p + q)-variate real Gaussian population as given in (10.3.1), after considering
an example to illustrate the computations of the canonical correlation ρ resulting from
(10.1.1) and presenting an iterative procedure.

Example 10.3.1. Let X and Y be two real bivariate vector random variables and Z =[
X

Y

]
. Consider the following simple random sample of size 5 from Z:

Z1 =

⎡
⎢⎢⎣

1
2
1

−1

⎤
⎥⎥⎦ , Z2 =

⎡
⎢⎢⎣

2
0

−1
1

⎤
⎥⎥⎦ , Z3 =

⎡
⎢⎢⎣

2
1
0

−1

⎤
⎥⎥⎦ , Z4 =

⎡
⎢⎢⎣
0
1
1
0

⎤
⎥⎥⎦ , Z5 =

⎡
⎢⎢⎣

0
1

−1
1

⎤
⎥⎥⎦ .

Construct the sample pairs of canonical variables.

Solution 10.3.1. Let us use the standard notation. The sample matrix is Z =
[Z1, . . . , Z5], the sample average Z̄ = 1

5 [Z1 + · · · + Z5], the matrix of sample averages is
Z̄ = [Z̄, . . . , Z̄], the deviation matrix is Zd = [Z1 − Z̄, . . . , Z5 − Z̄] and the sample sum
of products matrix is S = Zd Z′

d . These quantities are the following:

Z =

⎡
⎢⎢⎣

1 2 2 0 0
2 0 1 1 1
1 −1 0 1 −1

−1 1 −1 0 1

⎤
⎥⎥⎦ , Z̄ =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ ,

Zd =

⎡
⎢⎢⎣

0 1 1 −1 −1
1 −1 0 0 0
1 −1 0 1 −1

−1 1 −1 0 1

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

4 −1 −1 −1
−1 2 2 −2
−1 2 4 −3
−1 −2 −3 4

⎤
⎥⎥⎦ ,

where, as per our notation,

S11 =
[

4 −1
−1 2

]
, S12 =

[−1 −1
2 −2

]
,

S21 =
[ −1 2

−1 −2

]
, S22 =

[
4 −3

−3 4

]
.
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We need to compute the following items:

S−1
11 = 1

7

[
2 1
1 4

]
, S−1

22 = 1

7

[
4 3
3 4

]
,

S−1
11 S12 = 1

7

[
2 1
1 4

] [−1 −1
2 −2

]
= 1

7

[
0 −4
7 −9

]
,

S−1
22 S21 = 1

7

[
4 3
3 4

] [ −1 2
−1 −2

]
= 1

7

[ −7 2
−7 −2

]
.

The matrices A and B are then the following (using the same notation as for the population
values for convenience):

A = S−1
11 S12S

−1
22 S21 = 1

72

[
0 −4
7 −9

] [ −7 2
−7 −2

]
= 2

72

[
14 4
7 16

]
,

B = S−1
22 S21S

−1
11 S12 = 1

72

[ −7 2
−7 −2

] [
0 −4
7 −9

]
= 2

72

[
7 5

−7 23

]
.

If the population covariance matrix of Z is Σ , an estimate of Σ is S
n
where S is the sample

sum of products matrix and n is the sample size, which is also the maximum likelihood
estimate of Σ if Z is Gaussian distributed. Instead of using S

n
, we will work with S since

the normalized eigenvectors of S and S
n
are identical, although the eigenvalues of S

n
are 1

n

times the eigenvalues of S.

The eigenvalues of A are 2
72

times the solution of (14 − λ)(16 − λ) − 28 = 0 ⇒
λ1 = 15 + √

29, λ2 = 15 − √
29, so that the eigenvalues of A, denoted by λ11 and λ12,

are λ11 = ( 2
72

)(15 + √
29), λ12 = 2

72
(15 − √

29). The eigenvalues of B are 2
72

times the

solutions of (7 − ν)(23 − ν) + 35 = 0 ⇒ ν1 = 15 + √
29, ν2 = 15 − √

29, so that the
eigenvalues of B, denoted by ν21 and ν22, are ν21 = 2

72
(15+ √

29), ν22 = 2
72

(15− √
29),

which, as expected, are the same as those of A. Corresponding to λ11, an eigenvector from
A is available from the equation

[
14 − (15 + √

29) 4
7 16 − (15 + √

29)

] [
x1
x2

]
=

[
0
0

]
,

deleting 2
72

from both sides. Thus, one solution is

α1 =
[
4/[1 + √

29]
1

]
.
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Let us normalize this vector through the constraint α′
1S11α1 = 1. Since

α′
1S11α1 = [ 4

1 + √
29

, 1]
[

4 −1
−1 2

] [
4

1+√
29

1

]
= 2

72
(116 − 11

√
29),

the normalized eigenvector, denoted by α(1), and the corresponding sample canonical vari-
able, denoted by u1, are

α(1) = 7√
2
√
116 − 11

√
29

[
4

1+√
29

1

]
and u1 = 7√

2
√
116 − 11

√
29

[
4

1 + √
29

x1 + x2

]
.

The eigenvalues ofB are also the same as ν1 = 15+√
29, ν2 = 15−√

29. Let us compute
an eigenvector corresponding to the eigenvalue ν1 obtained from B. This eigenvector can
be determined from the equation

[−8 − √
29 5

−7 8 − √
29

] [
y1
y2

]
=

[
0
0

]

which gives one solution as

β1 =
[

5/(8 + √
29)

1

]
.

Let us normalize under the constraint β ′
1S22β1 = 1. Since

β ′
1S22β1 = [ 5

8 + √
29

, 1]
[

4 −3
−3 4

][
5

8+√
29

1

]
= 2

72
(116 − 11

√
29),

the normalized eigenvector, denoted by β(1), and the corresponding canonical variable
denoted by v1, are the following:

β(1) = 7√
2
√
116 − 11

√
29

[
5

8+√
29

1

]
and v1 = 7√

2
√
116 − 11

√
29

[
5

8 + √
29

y1 + y2

]
.

Therefore, one pair of canonical variables is (u1, v1) where u1 is the best predictor of v1
and vice versa. Now, consider λ2 = 15 − √

29 and ν2 = 15 − √
29. Proceed as in the

above case to obtain the second pair of canonical variables (u2, v2).
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10.3.1. An iterative procedure

Without any loss of generality, let p ≤ q. We will illustrate the procedure for the
population values for convenience. Consider the matrix A as previously defined, that is,
A = Σ−1

11 Σ12Σ
−1
22 Σ21, and ρ, the canonical correlation which is a solution of (10.1.1)

with ρ2 = λ where λ is an eigenvalue of A. When p is small, we may directly solve
the determinantal equation (10.1.1) and evaluate the roots which are the canonical cor-
relations. We are now illustrating the computations for the population values. When p is
large, direct evaluation could prove tedious without resorting to computational software
packages. In this case, the following iterative procedure may be employed. Let λ be an
eigenvalue of A and α the corresponding eigenvector. We want to evaluate λ = ρ2 and
α, but we cannot solve (10.1.1) directly when p is large. In that case, take an initial trial
vector γ0 and normalize it via the constraint γ ′

0 Σ11γ0 = 1 so that α′
0 Σ11α0 = 1, α0 being

the normalized γ0. Then, α0 = 1√
γ ′
0Σ11γ0

γ0. Now, consider the equation

A α0 = γ1.

If α0 happens to be the eigenvector α(1) corresponding to the largest eigenvalue λ(1) of
A then A α0 = λ(1)α(1); A α0 = γ1 ⇒ γ ′

1Σ11γ1 = λ2(1)α
′
(1)Σ11α(1) = λ2(1) since

α′
(1)Σ11α(1) = 1. Then ρ2

(1) = λ(1) =
√

γ ′
1Σ11γ1. This gives the motivation for the it-

erative procedure. Consider the equation

A αi = γi+1, αi = 1√
γ ′

i Σ11γi

γi, i = 0, 1, . . . (i)

Continue the iteration process. At each stage compute δi = α′
iΣ11αi while ensuring that δi

is increasing. Halt the iteration when γj = γj−1 approximately, that is, when αj = αj−1

approximately, which indicates that γj converges to some vector γ . At this stage, the
normalized γ is α(1), the eigenvector corresponding to the largest eigenvalue λ(1) of A.
Then, the largest eigenvalue λ(1) of A is given by λ(1) = √

γ ′Σ11γ . Thus, as a result of
the iteration process specified by equation (i),

lim
j→∞ αj = α(1) and +

√
lim

j→∞ γ ′
jΣ11γj = λ(1). (ii)

These initial iterations produce the largest eigenvalue λ(1) = ρ2
(1) and the corresponding

eigenvector α(1). From (10.1.1), we have

Σ−1
22 Σ21α = ρ β ⇒ 1

ρ
Σ−1

22 Σ21α = β. (iii)
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Substitute the computed ρ(1) and α(1) in (iii) to obtain β(1), the eigenvector corresponding

to the largest eigenvalue λ(1) of B = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 . This completes the first stage
of the iteration process. Now, consider A2 = A − λ(1)α(1)α

′
(1). Observe that α(1)α

′
(1) is a

p × p matrix. In general, we can express a symmetric matrix in terms of its eigenvalues
and normalized eigenvectors as follows:

A = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 = λ(1)α(1)α
′
(1) + λ(2)α(2)α

′
(2) + · · · + λ(p)α(p)α

′
(p), (iv)

as explained in Chapter 1 or Mathai and Haubold (2017a). Carry out the second stage of the
iteration process on A2 as indicated in (i). This will produce the second largest eigenvalue
λ(2) of A and the corresponding eigenvector α(2). Then, compute the corresponding β(2)

via the procedure given in (iii). This will complete the second stage. For the next stage,
consider

A3 = A2 − λ(2)α(2)α
′
(2) = A − λ(1)α(1)α

′
(1) − λ(2)α(2)α

′
(2)

and perform the iterative steps (i) to (iv). This will produce λ(3), α(3) and β(3). Keep
on iterating until all the p eigenvalues λ(1), . . . , λ(p) of A as well as α(j) and β(j), the
corresponding eigenvectors of A and B are obtained for j = 1, . . . , p.

In the case of sample eigenvalues and eigenvectors, start with the sample matrices

Â = Σ̂
− 1

2
11 Σ̂12Σ̂

−1
22 Σ̂21Σ̂

− 1
2

11 = R
− 1

2
11 R12R

−1
22 R21R

− 1
2

11

B̂ = Σ̂
− 1

2
22 Σ̂21Σ̂

−1
11 Σ̂12Σ̂

− 1
2

22 = R
− 1

2
22 R21R

1
11R12R

− 1
2

22 .

Carry out the iteration steps (i) to (iv) on Â to obtain the sample eigenvalues, denoted by
ρ̂(j) = t(j), j = 1, . . . , p for p ≤ q, where t(j) is the j -th sample canonical correlation,
and the corresponding eigenvectors of Â denoted by a(j) as well as those of B̂ denoted by
b(j).

Example 10.3.2. Consider the real vectors X′ = (x1, x2), Y ′ = (y1, y2, y3), and let
Z′ = (X′, Y ′) where x1, x2, y1, y2, y3 are real scalar random variables. Let the covariance
matrix of Z be Σ > O where

Cov(Z) = Cov

[
X

Y

]
= Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Σ12 = Σ ′

21,

Cov(X) = Σ11, Cov(Y ) = Σ22, Cov(X, Y ) = Σ12,

with

Σ11 =
[
2 1
1 2

]
, Σ12 =

[
1 1 1
1 −1 1

]
, Σ22 =

⎡
⎣1 1 0
1 2 0
0 0 1

⎤
⎦ .
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Consider the problem of predicting X from Y and vice versa. Obtain the best predictors
by constructing pairs of canonical variables.

Solution 10.3.2. Let us first compute the inverses Σ−1
11 , Σ−1

22 and Σ−1
11 Σ12, Σ−1

22 Σ21.
We are taking the non-symmetric form of A as the symmetric form requires more cal-
culations. Either way, the eigenvalues are identical. On directly applying the formula
C−1 = 1

|C| × [the matrix of cofactors]′, we have

Σ−1
11 = 1

3

[
2 −1

−1 2

]
, Σ−1

22 =
⎡
⎣ 2 −1 0

−1 1 0
0 0 1

⎤
⎦ ,

Σ−1
11 Σ12 = 1

3

[
2 −1

−1 2

] [
1 1 1
1 −1 1

]
= 1

3

[
1 3 1
1 −3 1

]
,

Σ−1
22 Σ21 =

⎡
⎣ 2 −1 0

−1 1 0
0 0 1

⎤
⎦

⎡
⎣1 1
1 −1
1 1

⎤
⎦ =

⎡
⎣1 3
0 −2
1 1

⎤
⎦ .

Thus, the non-symmetric forms of A and B are

A = Σ−1
11 Σ12Σ

−1
22 Σ21 = 1

3

[
1 3 1
1 −3 1

]⎡
⎣1 3
0 −2
1 1

⎤
⎦ = 1

3

[
2 −2
2 10

]
,

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

3

⎡
⎣1 3
0 −2
1 1

⎤
⎦ [

1 3 1
1 −3 1

]
= 1

3

⎡
⎣ 4 −6 4

−2 6 −2
2 0 2

⎤
⎦ .

Let us compute the eigenvalues of 3A. Consider

∣∣∣∣2 − λ −2
2 10 − λ

∣∣∣∣ = 0 ⇒ (2−λ)(10−
λ) + 4 = 0, which gives

λ = 12 ± √
(12)2 − 4(24)

2
= 6 + 2

√
3, 6 − 2

√
3,

the eigenvalues of A being λ(1) = 2 + 2
3

√
3, λ(2) = 2 − 2

3

√
3. These are the squares

of the canonical correlation coefficient ρ resulting from (10.1.1). Let us determine the
eigenvectors corresponding to λ(1) and λ(2). Our notations for the linear functions of X

and Y are u = α′X and v = β ′Y ; in this case, α′ = (α1, α2) and β ′ = (β1, β2, β3).
Then, the eigenvector α, corresponding to λ(1) is obtained from the equation
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[2
3 − (2 + 2

3

√
3) −2

3
2
3

10
3 − (2 + 2

3

√
3)

] [
α1

α2

]
=

[
0
0

]
⇒ (i)

− (2 + √
3)α1 − α2 = 0 ⇒ α1 = 1, α2 = −(2 + √

3).

Observe that since (i) is a singular system of linear equations, we need only consider one
equation and we can preassign a value for α1 or α2. Taking α1 = 1, let us normalize the
resulting vector via the constraint α′Σ11α = 1. Since

α′Σ11α = [
1 −(2 + √

3)
] [

2 1
1 2

] [
1

−(2 + √
3)

]

= 12 + 6
√
3 ≡ γ1 ,

the normalized α, denoted by α(1), is

α(1) = 1√
γ1

[
1

−(2 + √
3)

]
⇒ u1 = 1√

γ1
[x1 − (2 + √

3)x2]. (ii)

Now, the eigenvector corresponding to the second eigenvalue λ(2) is such that

[2
3 − (2 − 2

3

√
3) −2

3
2
3

10
3 − (2 − 2

3

√
3)

] [
α1

α2

]
=

[
0
0

]
⇒

(−2 + √
3)α1 − α2 = 0 ⇒ α1 = 1, α2 = −2 + √

3.

Since

α′Σ11α = [
1 −2 + √

3
] [

2 1
1 2

] [
1

−2 + √
3

]

= 12 − 6
√
3 ≡ γ2,

the normalized α such that α′Σ11α = 1 is

α(2) = 1√
γ2

[
1

−2 + √
3

]
⇒ u2 = 1√

γ2
[x1 + (−2 + √

3)x2]. (iii)

Observe that computing the eigenvalues of B from the equation |B − λ(j)I | = 0 will be
difficult. However, we know that they are λ(1) and λ(2) as given above, the third one being
equal to zero. So, let us first verify that 3λ(1) is an eigenvalue of 3B. Consider
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|3B − (6 + 2
√
3)I | =

∣∣∣∣∣∣
4 − (6 + 2

√
3) −6 4

−2 6 − (6 + 2
√
3) −2

2 0 2 − (6 + 2
√
3)

∣∣∣∣∣∣

= 2 × 2 × 2

∣∣∣∣∣∣
1

√
3 1

−(1 + √
3) −3 2

1 0 −(2 + √
3)

∣∣∣∣∣∣

= 8

∣∣∣∣∣∣
1

√
3 1

0
√
3 3 + √

3
0 −√

3 −(3 + √
3)

∣∣∣∣∣∣ = 0.

The operations performed are the following: Taking out 2 from each row; interchanging
the second and the first rows; adding (1 + √

3) times the first row to the second row and
adding minus one times the first row to the third row. Similarly, it can be verified that
λ(2) is also an eigenvalue of B. Moreover, since the third row of B is equal to the sum
of its first two rows, B is singular, which means that the remaining eigenvalue must be
zero. In Example 10.2.1, we made use of the formula resulting from (ii) of Sect. 10.1
for determining the second set of canonical variables. In this case, they will be directly
computed from B to illustrate a different approach. Let us now determine the eigenvectors
with respect to B, corresponding to λ(1) and λ(2):

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

3

⎡
⎣ 4 −6 4

−2 6 −2
2 0 2

⎤
⎦ ;

(B − λ(1)I )β = O

⇒
⎡
⎣

4
3 − (63 + 2

3

√
3) −6

3
4
3

−2
3

6
3 − (63 + 2

3

√
3) −2

3
2
3 0 2

3 − (63 + 2
3

√
3)

⎤
⎦

⎡
⎣β1

β2

β3

⎤
⎦ =

⎡
⎣0
0
0

⎤
⎦

⇒
⎡
⎣−(1 + √

3) −3 2
−1 −√

3 −1
1 0 −(2 + √

3)

⎤
⎦

⎡
⎣β1

β2

β3

⎤
⎦ =

⎡
⎣0
0
0

⎤
⎦ .
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This yields the equations

−(1 + √
3)β1 − 3β2 + 2β3 = 0 (iv)

−β1 − √
3β2 − β3 = 0 (v)

β1 − (2 + √
3)β3 = 0, (vi)

whose solution in terms of an arbitrary β3 is β2 = −(1 + √
3)β3 and β1 = (2 + √

3)β3.
Taking β3 = 1, we have the solution, β3 = 1, β2 = −(1 + √

3), β1 = (2 + √
3). Let us

normalize the resulting vector via the constraint β ′Σ22β = 1:

β ′Σ22β = [
2 + √

3 −(1 + √
3) 1

]⎡
⎣1 1 0
1 2 0
0 0 1

⎤
⎦

⎡
⎣ 2 + √

3
−(1 + √

3)
1

⎤
⎦

= 6 + 2
√
3 = δ1.

Thus, the normalized β, denoted by β(1), is

β(1) = 1√
δ1

⎡
⎣ 2 + √

3
−(1 + √

3)
1

⎤
⎦ ⇒

v1 = 1√
δ1

[(2 + √
3)y1 − (1 + √

3)y2 + y3]. (vii)

Observe that we could also have utilized (iii) of Sect. 10.3.1 to evaluate β(1) and β(2)

from α(1) and α(2). Consider the second eigenvalue λ(2) = 6
3 − 2

3

√
3 and the equation

(B − λ(2)I )β = O, that is,

⎡
⎣

4
3 − (63 − 2

3

√
3) −6

3
4
3

−2
3

6
3 − (63 − 2

3

√
3) −2

3
2
3 0 2

3 − (63 − 2
3

√
3)

⎤
⎦

⎡
⎣β1

β2

β3

⎤
⎦ =

⎡
⎣0
0
0

⎤
⎦ ⇒

⎡
⎣−1 + √

3 −3 2
−1

√
3 −1

1 0 −2 + √
3

⎤
⎦

⎡
⎣β1

β2

β3

⎤
⎦ =

⎡
⎣0
0
0

⎤
⎦ ,
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which leads to the equations

(−1 + √
3)β1 − 3β2 + 2β3 = 0 (viii)

−β1 + √
3β2 − β3 = 0 (ix)

β1 + (−2 + √
3)β3 = 0. (x)

Thus, when β3 = 1, β1 = 2−√
3 and β2 = √

3−1. Subject to the constraint β ′Σ22β = 1,
we have

β ′Σ22β = [
(2 − √

3) (
√
3 − 1) 1

] ⎡
⎣1 1 0
1 2 0
0 0 1

⎤
⎦

⎡
⎣2 − √

3√
3 − 1
1

⎤
⎦

= 6 − 2
√
3 = δ2.

Hence, the normalized β is

β(2) = 1√
δ2

⎡
⎣2 − √

3√
3 − 1
1

⎤
⎦ ⇒

v2 = 1√
δ2

[(2 − √
3)y1 + (

√
3 − 1)y2 + y3]. (xi)

The reader may also verify that this solution for β(2) is identical to that coming from (iii)
of Sect. 10.3.1. Thus, the canonical pairs are the following: From (ii) and (vii), we have
the first canonical pair (u1, v1), the second pair (u2, v2) resulting from (iii) and (xi). This
means u1 is the best predictor of v1 and vice versa, and that u2 is the second best predictor
of v2 and vice versa.

Let us ensure that no computational errors have been committed. Consider

α′
(1)Σ12β(1) = 1√

γ1δ1
[1, −(2 + √

3)]
[
1 1 1
1 −1 1

]⎡
⎣ 2 + √

3
−(1 + √

3)
1

⎤
⎦

= 1√
γ1δ1

4(3 + 2
√
3),

with
γ1δ1 = 6(2 + √

3)2(3 + √
3) = 12(9 + 5

√
3),
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so that

[α′
(1)Σ12β(1)]2

γ1δ1
= 16(3 + 2

√
3)2

12(9 + 5
√
3)

= 16(21 + 12
√
3)

12(9 + 5
√
3)

= 4(7 + 4
√
3)

9 + 3
√
3)

= 4(7 + 4
√
3)(9 − 5

√
3)

6

= 2

3
(3 + √

3) = 2 + 2√
3

= 2 + 2

3

√
3 = λ(1) : the largest eigenvalue of A,

which corroborates the results obtained for α(1), β(1) and λ(1). Similarly, it can be verified
that α(2), β(2) and λ(2) have been correctly computed.

10.4. The Sampling Distribution of the Canonical Correlation Matrix

Consider a simple random sample of size n from Z =
[
X

Y

]
. Let the (p + q) × (p + q)

sample sum of products matrix be denoted by S and let Z have a real (p + q)-variate
standard Gaussian density. Then S has a real (p + q)-variate Wishart distribution with the
identity matrix as its parameter matrix and m = n − 1 degrees of freedom, n being the
sample size. Letting the density of S be denoted by f (S),

f (S) = |S|m
2 −p+q−1

2

2
m(p+q)

2 Γp+q(
m
2 )

e− 1
2 tr(S), S > O, m ≥ p + q. (10.4.1)

Let us partition S as follows:

S =
[
S11 S12
S21 S22

]
, S11 is p × p, S22 is q × q,

and let dS = dS11 ∧ dS22 ∧ dS12. Note that tr(S) = tr(S11) + tr(S22) and

|S| = |S22| |S11 − S12S
−1
22 S21|

= |S22| |S11| |I − S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 |.
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Letting U = S
− 1

2
11 S12S

− 1
2

22 ], dU = |S11|− q
2 |S22|−p

2 dS12 for fixed S11 and S22, so that the
joint density of S11, S22 and S12 is given by

f1(S)dS11 ∧ dS22 ∧ dS12 = |S11|m
2 −p+1

2 e− 1
2 tr(S11)

2
mp
2 Γp(m

2 )
dS11

× |S22|m
2 − q+1

2 e− 1
2 tr(S22)

2
mq
2 Γq(

m
2 )

dS22

× Γp(m
2 )Γq(

m
2 )

Γp+q(
m
2 )

|I − UU ′|m
2 −p+q−1

2 dU. (10.4.2)

It is seen from (10.4.2) that S11, S22 and U are mutually independently distributed, and
so are S11, S22 and W = UU ′. Further, S11 ∼ Wp(m, I) and S22 ∼ Wq(m, I). Note that

W = UU ′ = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 is the sample canonical correlation matrix. It follows
from Theorem 4.2.3 of Chapter 4, that for p ≤ q and U of full rank p,

dU = π
pq
2

Γp(
q
2 )

|W | q
2−p+1

2 dW. (10.4.3)

After integrating out S11 and S22 from (10.4.2) and substituting for dS12, we obtain the
following representation of the density of W :

f2(W) = π
pq
2

Γp(
q
2 )

Γp(m
2 )Γq(

m
2 )

Γp+q(
m
2 )

|W | q
2−p+1

2 |I − W |m−q
2 −p+1

2 ,

where

Γq(
m
2 )

Γp+q(
m
2 )

= π
q(q−1)

4

π
(p+q)(p+q−1)

4

Γ (m
2 ) · · · Γ (m

2 − q−1
2 )

Γ (m
2 ) · · · Γ (m

2 − p+q−1
2 )

= 1

π
pq
2 Γp(

m−q
2 )

.

Hence, the density of W is

f2(W) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

|W | q
2−p+1

2 |I − W |m−q
2 −p+1

2 . (10.4.4)

Thus, the following result:

Theorem 10.4.1. Let Z, S, S11, S22, S12, U and W be as defined above. Then, for
p ≤ q and U of full rank p, the p × p canonical correlation matrix W = UU ′ has the
real matrix-variate type-1 beta density with the parameters (

q
2 ,

m−q
2 ) that is specified in

(10.4.4) with m ≥ p + q, m = n − 1.
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When q ≤ p and S21 is of full rank q, the canonical correlation matrix W1 = U ′U =
S

− 1
2

22 S21S
−1
11 S12S

− 1
2

22 will have the density given in (10.4.4) with p and q interchanged.
Suppose that p ≤ q and we would like to consider the density of W1 = U ′U . In this case
U ′U is real positive semi-definite as the rank of U is p ≤ q. However, on expanding the
following determinant in two different ways:

∣∣∣∣Ip U

U ′ Iq

∣∣∣∣ = |Ip − UU ′| = |Iq − U ′U |,
it follows from (10.4.2) that the q × q matrix U ′U has a distribution that is equivalent to
that of the p×p matrix UU ′, as given in (10.4.4). The distribution of the sample canonical
correlation matrix has been derived in Mathai (1981) for a Gaussian population under the
assumption that Σ12 �= O.

10.4.1. The joint density of the eigenvalues and eigenvectors

Without any loss of generality, let p ≤ q and U be of full rank p. Let W denote the
sample canonical correlation matrix whose density is as given in (10.4.4) for the case when
the population canonical matrix is a null matrix. Let the eigenvalues of W be distinct and
such that 1 > ν1 > ν2 > · · · > νp > 0. Observe that νj = r2(j) where r(j), j = 1, . . . , p
are the sample canonical correlations. For a unique p × p orthonormal matrix Q, QQ′ =
I, Q′Q = I , we have Q′WQ = diag(ν1, . . . , νp) ≡ D. Consider the transformation from
W to D and the normalized eigenvectors of W , which constitute the columns of Q. Then,
as is explained in Theorem 8.2.1 or Theorem 4.4 of Mathai (1997),

dW =
[∏

i<j

(νi − νj )
]
dD ∧ h(Q) (10.4.5)

where h(Q) = ∧[(dQ)Q′] is the differential element associated with Q, and we have the
following result:

Theorem 10.4.2. The joint density of the distinct eigenvalues 1 > ν1 > ν2 > · · · >

νp > 0, p ≤ q, of W = UU ′ whose density is specified in (10.4.4), U being assumed to
be of full rank p, and the normalized eigenvectors corresponding to ν1, . . . , νp, denoted
by f3(D, Q), is the following:

f3(D, Q)dD ∧ h(Q) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

[ p∏
j=1

ν
q
2−p+1

2
j

][ p∏
j=1

(1 − νj )
m−q
2 −p+1

2

]

×
[∏

i<j

(νi − νj )
]
dD ∧ h(Q) (10.4.6)
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where h(Q) is as defined in (10.4.5). To obtain the joint density of the squares of the
sample canonical correlations r2(j) and the corresponding canonical vectors, it suffices to

replace νj by r2(j), 1 > r2(1) > · · · > r2(p) > 0, − 1 < r(j) < 1, j = 1, . . . , p.

The joint density of the eigenvalues can be determined by integrating out h(Q) from
(10.4.6) in this real case. It follows from Theorem 4.2.2 that

∫
Op

h(Q) = π
p2

2

Γp(
p
2 )

, (10.4.7)

this result being also stated in Mathai (1997). For the complex case, the expression on the
right-hand side of (10.4.7) is πp(p−1)/Γ̃p(p). Hence, the joint density of the eigenvalues
or, equivalently, the density of D and the density of Q are the following:

Theorem 10.4.3. When p ≤ q and U is of full rank p, the joint density of the distinct
eigenvalues 1 > ν1 > · · · > νp > 0 of the canonical correlation matrix W in (10.4.4),
which is available from (10.4.6) and denoted by f4(D), is

f4(D) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

π
p2

2

Γp(
p
2 )

[ p∏
j=1

ν
q
2−p+1

2
j

]

×
[ p∏

j=1

(1 − νj )
m−q
2 −p+1

2

][∏
i<j

(νi − νj )
]
, (10.4.8)

and the joint density of the normalized eigenvectors associated with W , denoted by f5(Q),
is given by

f5(Q) = Γp(
p
2 )

π
p2
2

h(Q) (10.4.9)

where h(Q) is as defined in (10.4.5).

To obtain the joint density of the squares of the sample canonical correlations r2(j), one

should replace νj by r2(j), j = 1, 2, . . . , p, in (10.4.8).

Example 10.4.1. Verify that (10.4.8) is a density for p = 2, m − q = p + 1, with q

being a free parameter.
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Solution 10.4.1. For m − q = p + 1, p = 2, the right-hand side of (10.4.8) becomes

Γp(
q+p+1

2 )

Γp(
q
2 )Γp(

p+1
2 )

π
p2

2

Γp(
p
2 )

(ν1ν2)
q−(p+1)

2 (ν1 − ν2)

= Γ2(
q+3
2 )

Γ2(
q
2 )Γ2(

p+1
2 )

π2

Γ2(1)
(ν1ν2)

m−3
2 (ν1 − ν2). (i)

The constant part simplifies as follows:

Γ2(
q+3
2 )

Γ2(
q
2 )Γ2(

p+1
2 )

π2

Γ2(1)
= Γ (

q+3
2 )Γ (

q+2
2 )

√
π [Γ (

q
2 )Γ (

q−1
2 )][Γ (32)Γ (1)]

π2

√
πΓ (1)Γ (12)

; (ii)

now, noting that

Γ
(q + 3

2

)
=

(q + 1

2

)(q − 1

2

)
Γ

(q − 1

2

)
and Γ

(q + 2

2

)
= q

2
Γ

(q

2

)
,

and substituting these values in (ii), the constant part becomes

(
q+1
2 )(

q−1
2 )(

q
2 )√

π(12)
√

π

π2

√
π

√
π

= (q − 1)q(q + 1)

4
. (iii)

Let us show that the total integral equals 1. The integral part is the following:

∫ 1

ν1=0

∫ ν1

ν2=0
(ν1ν2)

q−3
2 (ν1 − ν2)dν1 ∧ dν2

=
∫ 1

0
ν

q−1
2

1

[ ∫ ν1

ν2=0
ν

q−3
2

2 dν2
]
dν1 −

∫ 1

0
ν

q−3
2

1

[ ∫ ν1

ν2=0
ν

q−1
2

2 dν2
]
dν1

=
∫ 1

0

ν
q−1
1

(
q−1
2 )

dν1 −
∫ 1

0

ν
q−1
1

(
q+1
2 )

dν1 = 1

q(
q−1
2 )

− 1

q(
q+1
2 )

= 4

(q − 1)q(q + 1)
. (iv)

The product of (iii) and (iv) being equal to 1, this verifies that (10.4.8) is a density for
m − q = p + 1, p = 2. This completes the computations.
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10.4.2. Testing whether the population canonical correlations equal zero

In its symmetric form, wheneverΣ12 = O, the population canonical correlation matrix

is a null matrix, that is, Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 = O. Thus, when Σ12 = O, the canonical
correlations are equal to zero and vice versa. As was explained in Sect. 6.8.2, we have a
one-to-one function of u4, the likelihood ratio criterion for testing this hypothesis in the
case of a Gaussian distributed population. It was established that

u4 = |S|
|S11| |S22| = |I − S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 | = |I − UU ′| = |I − W | =
p∏

j=1

(1 − r2(j))

(10.4.10)
where r(j), j = 1, . . . , p, are the sample canonical correlations. It can also be seen from
(10.4.2) that, when U is of full rank p, U has a rectangular matrix-variate type-1 beta
distribution and W = UU ′ has a real matrix-variate type-1 beta distribution. Since it has
been determined in Sect. 6.8.2, that under Ho, the h-th moment of u4 for an arbitrary h is
given by

E[uh
4|Ho] = c

∏p+q

j=p+1 Γ (m
2 − j−1

2 + h)∏q

j=1 Γ (m
2 − j−1

2 + h)
, m = n − 1, (10.4.11)

where n is the sample size and c is such that E[u0
4|Ho] = 1, the density of u4 is expressible

in terms of a G-function. It was also shown in the same section that −n ln u4 is asymp-
totically distributed as a real chisquare random variable having (p+q)(p+q−1)

2 − p(p−1)
2 −

q(q−1)
2 = p q degrees of freedom, which corresponds to the number of parameters re-

stricted by the hypothesis Σ12 = O since there are p q free parameters in Σ12. Thus, the
following result:

Theorem 10.4.4. Consider the hypothesis Ho : ρ(1) = · · · = ρ(p) = 0, that is, the popu-
lation canonical correlations ρ(j), j = 1, . . . , p, are all equal to zero, which is equivalent
to the hypothesis Ho : Σ12 = O. Let u4 denote the (2/n)-th root of the likelihood ratio
criterion for testing this hypothesis. Then, as the sample size n → ∞, under Ho,

− n ln u4 = −2 ln(the likelihood ratio criterion) → χ2
pq , (10.4.12)

χ2
ν denoting a real chisquare random variable having ν degrees of freedom.

An illustrative numerical example has already been presented in Chap. 6.
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Note 10.1. We have initially assumed that Σ > O, Σ11 > O and Σ22 > O. However,
Σ12 = Σ ′

21 may or may not be of full rank or some of its elements could be equal to
zero. Note that Σ12Σ

−1
22 Σ21 is either positive definite or positive semi-definite. Whenever

p ≤ q and Σ12 is of rank p, Σ12Σ
−1
22 Σ21 > O and, in this instance, all the p canonical

correlations are positive. If Σ12 is not of full rank, then some of the eigenvalues of W as
previously defined, as well as the corresponding canonical correlations will be equal to
zero and, in the event that q ≤ p, similar statements would hold with respect to Σ21, W ′
and the resulting canonical correlations. This aspect will not be further investigated from
an inferential standpoint.

Note 10.2. Consider the regression of X on Y , that is, E[X|Y ], when Z =
(

X

Y

)
has the

following real (p + q)-variate normal distribution:

Z ∼ Np+q(μ, Σ), Σ > O, Σ =
[
Σ11 Σ12

Σ21 Σ22

]
,

Σ11 = Cov(X) > O is p × p, Σ22 = Cov(Y ) > O is q × q.

Then, from equation (3.3.5), we have

E[X|Y ] = μ(1) + Σ12Σ
−1
22 (Y − μ(2))

where μ′ = (μ′
(1), μ

′
(2)) and

Cov(X|Y ) = Σ11 − Σ12Σ
−1
22 Σ21.

Regression analysis is performed on the conditional space where Y is either composed of
non-random real scalar variables or given values of real scalar random variables, whereas
canonical correlation analysis is carried out in the entire space of Z. Clearly, these tech-
niques involve distinct approaches. When Y is given values of random variables, then
Σ12 and Σ22 can make sense. In this instance, the hypothesis Ho : Σ12 = O, in which
case the regression coefficient matrix is a null matrix or, equivalently, the hypothesis
that Y does not contribute to predicting X, implies that the canonical correlation matrix

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 is as well a null matrix. Accordingly, in this case, the ‘no regres-
sion’ hypothesis Σ12 = O (no contribution of Y in predicting X) is equivalent to the
hypothesis that the canonical correlations are equal to zero and vice versa.

10.5. The General Sampling Distribution of the Canonical Correlation Matrix

Let the (p + q) × 1 real vector random variable Z =
[
X

Y

]
∼ Np+q(μ, Σ), Σ > O.

Consider a simple random sample of size n from this Gaussian population and let the
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sample sum of products matrix S be partitioned as in the preceding section. Let the sample
canonical correlation matrix be denoted by R and the corresponding population canonical
correlation, by P , that is,

R = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 and P = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 .

We now examine the distribution of R, assuming that P �= O. Letting the determinant of
I − R be denoted by u, we have

u = |I − R| = |S11 − S12S
−1
22 S21||S11|−1 = |S|

|S11| |S22| .

Thus, the h-th moment of u is

E[uh] = E
[ |S|
|S11| |S22|

]h = E[|S|h|S11|−h|S22|−h].

Since S, S11 and S22 are functions of S, we can integrate out over the density of S, namely
the Wishart density with m = n − 1 degrees of freedom and parameter matrix Σ > O.
Then for m ≥ p + q,

E[uh] = 1

|2Σ |m
2 Γp+q(

m
2 )

∫
S>O

[ |S|
|S11| |S22|

]h|S|m
2 −p+q+1

2 e− 1
2 tr(Σ

−1S)dS. (10.5.1)

Let us substitute S to 1
2S so that 2 will vanish from the factors containing 2, and let us

replace |S11|−h and |S22|−h by equivalent integrals:

|S11|−h = 1

Γp(h)

∫
Y1>O

|Y1|h−p+1
2 e−tr(Y2S11)dY1, �(h) >

p − 1

2
;

|S22|−h = 1

Γq(h)

∫
Y2>O

|Y2|h− q+1
2 e−tr(Y2S22)dY2, �(h) >

q − 1

2
.

Then,

E[uh] = 1

|Σ |m
2 Γp+q(

m
2 )

1

Γp(h)Γq(h)

∫
Y1>O

∫
Y2>O

|Y1|h−p+1
2 |Y2|h− q+1

2

∫
S>O

|S|m
2 +h−p+q+1

2

× e−tr(Σ−1S+YS)dS ∧ dY1 ∧ dY2 (10.5.2)

where

tr(YS) = tr
{ (

Y1 O

O Y2

) (
S11 S12
S21 S22

) }
= tr(Y1S11) + tr(Y2S22), Y =

(
Y1 O

O Y2

)
.
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Integrating over S in (10.5.2) gives

E[uh] = Γp+q(
m
2 + h)

Γp+q(
m
2 )

1

|Σ |m
2 Γp(h)Γq(h)

∫
Y1>O

∫
Y2>O

|Y1|h−p+1
2 |Y2|h− q+1

2

× |Σ−1 + Y |−(m
2 +h)dY1 ∧ dY2.

Let

Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]
⇒ [Σ−1 + Y ] =

[
Σ11 + Y1 Σ12

Σ21 Σ22 + Y2

]
.

Then, the determinant can be expanded as follows:

|Σ−1 + Y | = |Σ22 + Y2| |Σ11 + Y1 − Σ12(Σ22 + Y2)
−1Σ21|

= |Σ22 + Y2| |Y1 + B|, B = Σ11 − Σ12(Σ22 + Y2)
−1Σ21,

so that

|Σ−1 + Y |−(m
2 +h) = |Σ22 + Y2|−(m

2 +h)|I + B−1Y1|−(m
2 +h)|B|−(m

2 +h).

Collecting the factors containing Y1 and integrating out, we have

1

Γp(h)

∫
Y1>O

|Y1|h−p+1
2 |I + B−1Y1|−(m

2 +h)dY1 = Γp(m
2 )

Γp(m
2 + h)

|B|h, �(h) >
p − 1

2
,

and |B|−(m
2 +h)|B|h = |B|−m

2 . Noting that

∣∣∣∣Σ
11 Σ12

Σ21 Σ22 + Y2

∣∣∣∣ =
{

|Σ11| |Σ22 + Y2 − Σ21(Σ11)−1Σ12|
|Σ22 + Y2| |Σ11 − Σ12(Σ22 + Y2)

−1Σ21| = |Σ22 + Y2| |B|,

|B| can be expressed in the following form:

|B| = |Σ11| |Y2 + C|
|Σ22 + Y2| , C = Σ22 − Σ21(Σ11)−1Σ12 = Σ−1

22 , (i)

so that,

|B|−m
2 = |Σ11|−m

2 |Y2 + Σ−1
22 |−m

2 |Y2 + Σ22|m
2 ⇒

|B|−m
2 |Y + Σ22|−(m

2 +h) = |Σ11|−m
2 |Y2 + Σ−1

22 |−m
2 |Y2 + Σ22|−h. (ii)
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Collecting all the factors containing Y2 and integrating out, we have the following:

1

Γq(h)

∫
Y2>O

|Y2|h− q+1
2 |Y2 + Σ−1

22 |−m
2 |Y2 + Σ22|−hdY2

= |Σ22|m
2 +h

Γq(h)

∫
Y2>O

|Y2|h− q+1
2 |I + Σ

1
2
22Y2Σ

1
2
22|−

m
2

× |Σ
1
2
22Y2Σ

1
2
22 + Σ

1
2
22Σ

22Σ
1
2
22|−hdY2

= |Σ22|m
2

Γq(h)

∫
W>O

|W |h− q+1
2 |I + W |−m

2 |W + Σ
1
2
22Σ

22Σ
1
2
22|−hdW, W = Σ

1
2
22Y2Σ

1
2
22,

(iii)

as W = Σ
1
2
22Y2Σ

1
2
22 ⇒ dY2 = |Σ22|− q+1

2 dW . Now, letting W = U−1 − I , so that dW =
|U |−(q+1)dU with O < U < I , the expression in (iii), denoted by δ, becomes

δ = |Σ22|m
2

Γq(h)

∫
O<U<I

|U |m
2 − q+1

2 |I − U |h− q+1
2 |I − AU |−hdU

where A = I −Σ
1
2
22Σ

22Σ
1
2
22. Note that since |Σ |m

2 = |Σ22|m
2 |Σ11 −Σ12(Σ22)

−1Σ21|m
2 =

|Σ22|m
2 |Σ11|−m

2 , |Σ |m
2 in the denominator of the constant part gets canceled out, the re-

maining constant expression being

Γp+q(
m
2 + h)

Γp+q(
m
2 )

Γp(m
2 )

Γp(m
2 + h)

. (iv)

The integral part of δ can be evaluated by making use of Euler’s representation of a Gauss’
hypergeometric function of matrix argument, which as given in formula (5.2.15) of Mathai
(1997), is

Γq(a)Γq(c − a)

Γq(c)
2F1(a, b; c;X) =

∫
O<Z<I

|Z|a− q+1
2 |I − Z|c−a− q+1

2 |I − XZ|−bdZ

where O < Z < I and O < X < I are q × q real matrices. Thus, δ can be expressed as
the follows:

δ = Γq(
m
2 )Γq(h)

Γq(
m
2 + h)Γq(h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2
22Σ

22Σ
1
2
22

)
,

so that

E[uh] = Γp+q(
m
2 + h)Γp(m

2 )

Γp+q(
m
2 )Γp(m

2 + h)

Γq(
m
2 )

Γq(
m
2 + h)

2F1

(m

2
, h; m

2
+h; I −Σ

1
2
22Σ

22Σ
1
2
22

)
. (10.5.3)
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For p ≤ q, it follows from the definition of the matrix-variate gamma function that
Γp+q(α) = π−p q/2 Γq(α)Γp(α − q/2). Thus, the constant part in (10.5.3) simplifies to

Γp(m
2 − q

2 + h)

Γp(m
2 − q

2 )

Γp(m
2 )

Γp(m
2 + h)

.

Then,

E[uh] = Γp(
m−q
2 + h)

Γp(
m−q
2 )

Γp(m
2 )

Γp(m
2 + h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2
22Σ

22Σ
1
2
22

)
(10.5.4)

for m ≥ p + q, �(h) > −m
2 + p−1

2 + q
2 , p ≤ q. Had Y2 been integrated out first instead

of Y1, we would have ended up with a hypergeometric function having I −Σ
1
2
11Σ

11Σ
1
2
11 as

its argument, that is,

E[uh] = Γp(
m−q
2 + h)

Γp(
m−q
2 )

Γp(m
2 )

Γp(m
2 + h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2
11Σ

11Σ
1
2
11

)
. (10.5.5)

10.5.1. The sampling distribution of the multiple correlation coefficient

When p = 1 and q > 1, r21(1...q) is equal to the square of the sample multiple correla-
tion coefficient r1(1...q). In this case, the argument in (10.5.5) is a real scalar quantity that
is equal to 1 − σ11σ

11, the real matrix-variate Γp(·) functions are simply Γ (·) functions
and u = 1 − r21(1...q). Letting y = r21(1...q), E[1 − y]h is available from (10.5.5) for p = 1
and the argument of the 2F1 hypergeometric function is then

1 − σ11σ
11 = 1 − σ11(σ11 − Σ12Σ

−1
22 Σ21)

−1 = − Σ12Σ
−1
22 Σ21

σ11 − Σ12Σ
−1
22 Σ21

. (10.5.6)

By taking the inverse Mellin transform of (10.5.5) for h = s−1 and p = 1, we can express
the density f (y) of the square of the sample multiple correlation as follows:

f (y) = (1 − ρ2)
m
2 Γ (m

2 )

Γ (
m−q
2 )Γ (

q
2 )

y
q
2−1(1 − y)

m−q
2 −1

2F1

(m

2
,
m

2
; q

2
; ρ2y

)
(10.5.7)

where ρ2 is the population multiple correlation squared, that is, ρ2 =
[Σ12Σ

−1
22 Σ21]/σ11. We can verify the result by computing the h-th moment of 1 − y
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in (10.5.7). The h-th moment can be determined as follows by expanding the 2F1 function
and then integrating:

E[1 − y]h = (1 − ρ2)
m
2 Γ (m

2 )

Γ (
m−q
2 )Γ (

q
2 )

∞∑
k=0

(m
2 )k(

m
2 )k

(
q
2 )k

(ρ2)k

k!

×
∫ 1

0
y

q
2+k−1(1 − y)

m−q
2 +h−1dy,

the integral part being

Γ (
q
2 + k)Γ (

m−q
2 + h)

Γ (m
2 + h + k)

= Γ (
q
2 )Γ (

m−q
2 + h)

Γ (m
2 + h)

(
q
2 )k

(m
2 + h)k

,

so that

E[1 − y]h = (1 − ρ2)
m
2
Γ (

m−q
2 + h)

Γ (
m−q
2 )

Γ (m
2 )

Γ (m
2 + h)

2F1

(m

2
,
m

2
; m

2
+ h; ρ2

)
. (10.5.8)

On applying the relationship,

2F1(a, b; c; z) = (1 − z)−b
2F1

(
c − a, b; c; z

z − 1

)
, (10.5.9)

we have

2F1

(m

2
,
m

2
; m

2
+ h; ρ2

)
= (1 − ρ2)−

m
2 2F1

(
h,

m

2
; m

2
+ h; ρ2

ρ2 − 1

)
,

with
ρ2

ρ2 − 1
= − Σ12Σ

−1
22 Σ21

σ11 − Σ12Σ
−1
22 Σ21

,

which agrees with (10.5.6). Observe that (1 − ρ2)
m
2 gets canceled out so that (10.5.8)

agrees with (10.5.5) for p = 1.

We can also obtain a representation of the density of the sample canonical correlation
matrix whose M-transform is as given in (10.5.5) for p ≤ q. This can be achieved by
duplicating the steps utilized for the particular case considered in this section, which yields
the following density:
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f (R) = |I − P |m
2 Γp(m

2 )

Γp(
m−q
2 )Γp(

q
2 )

|R| q
2−p+1

2 |I − R|m−q
2 −p+1

2

× 2F1

(m

2
,
m

2
; q

2
;P

1
2RP

1
2

)
(10.5.10)

where P = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 is the population canonical correlation matrix. Note
that a function giving rise to a certain M-transform need not be unique. However, by mak-
ing use of the Laplace transform and its inverse in the real matrix-variate case, Mathai
(1981) has shown that the function specified in (10.5.10) is actually the unique density
of R.

Exercises 10

10.1. In Example 10.3.2, verify that

[α′
(2)Σ12β(2)]2

γ2δ2
= λ2

where λ2 is the second largest eigenvalue of the canonical correlation matrix A.

10.2. In Example 10.3.2, use equation (10.1.1) or equation (ii) preceding it with ρ1 =
ρ2 = ρ and evaluate β(1) and β(2) from α(1) and α(2). Obtain β first, normalize it subject
to the constraint β ′Σ22β = 1 and then obtain β(1) and β(2). Then verify the results

[α′
(1)Σ12β(1)]2

γ1δ1
= λ1 and

[α′
(2)Σ12β(2)]2

γ2δ2
= λ2

where λ1 and λ2 are the largest and second largest eigenvalues of the canonical correlation
matrix A.

10.3. Let

X =
⎡
⎣x1

x2
x3

⎤
⎦ , Y =

[
y1
y2

]
, Cov(X) = Σ11 =

⎡
⎣1 1 0
1 3 0
0 0 4

⎤
⎦ ,

Cov(Y ) = Σ22 =
[

2 −1
−1 3

]
, Cov(X, Y ) =

⎡
⎣ 1 0

−1 1
1 0

⎤
⎦ ,
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where x1, x2, x3, y1, y2 are real scalar random variables. Evaluate the following where
the notations of this chapter are utilized: (1): The canonical correlations ρ(1) and
ρ(2); (2): The first pair of canonical variables (u1, v1) by direct evaluation as done in
Example 10.3.2; (3): Verify that

[β ′
(1)Σ21α(1)]2

γ1δ1
= λ1 : the largest eigenvalue of B

where B = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 ; (4): Evaluate the second pair of canonical variables
(u2, v2) by using equation (10.1.1) for constructing α(1) and α(2) after obtaining β(1) and
β(2); (5): Verify that

[β ′
(2)Σ21α(2)]2

γ2δ2
= λ2 : the second largest eigenvalue of B.

10.4. Repeat Problem 10.3 with X, Y and their associated covariance matrices defined as
follows:

X =
⎡
⎣x1

x2
x3

⎤
⎦ , Y =

⎡
⎣y1

y2
y3

⎤
⎦ , Cov(X) = Σ11 =

⎡
⎣2 0 0
0 2 2
0 2 3

⎤
⎦ ,

Cov(Y ) = Σ22 =
⎡
⎣2 2 0
2 3 0
0 0 2

⎤
⎦ , Cov(X, Y ) = Σ12 =

⎡
⎣ 1 1 1

1 −1 1
−1 1 −1

⎤
⎦

where x1, x2, x3, y1, y2, y3 are real scalar random variables. As well, compute the three
pairs of canonical variables.

10.5. Show that the M-transform in (10.5.5) is available from the density specified in
(10.5.10).
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