
Chapter 1

Mathematical Preliminaries

1.1. Introduction

It is assumed that the reader has had adequate exposure to basic concepts in Probability,
Statistics, Calculus and Linear Algebra. This chapter provides a brief review of the results
that will be needed in the remainder of this book. No detailed discussion of these topics
will be attempted. For essential materials in these areas, the reader is, for instance, referred
to Mathai and Haubold (2017a, 2017b). Some properties of vectors, matrices, determi-
nants, Jacobians and wedge product of differentials to be utilized later on, are included in
the present chapter. For the sake of completeness, we initially provide some elementary
definitions. First, the concepts of vectors, matrices and determinants are introduced.

Consider the consumption profile of a family in terms of the quantities of certain food
items consumed every week. The following table gives this family’s consumption profile
for three weeks:

Table 1.1: Consumption profile

Rice Lentils Carrot Beans
Week 1 2.00 0.50 1.00 2.00
Week 2 1.50 0.50 0.75 1.50
Week 3 2.00 0.50 0.50 1.25

All the numbers appearing in this table are in kilograms (kg). In Week 1 the family
consumed 2 kg of rice, 0.5 kg of lentils, 1 kg of carrots and 2 kg of beans. Looking at
the consumption over three weeks, we have an arrangement of 12 numbers into 3 rows
and 4 columns. If this consumption profile is expressed in symbols, we have the following
representation:
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A = (aij ) =
⎡
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤
⎦ =

⎡
⎣
2.00 0.50 1.00 2.00
1.50 0.50 0.75 1.50
2.00 0.50 0.50 1.25

⎤
⎦

where, for example, a11 = 2.00, a13 = 1.00, a22 = 0.50, a23 = 0.75, a32 = 0.50, a34 =
1.25.

Definition 1.1.1. A matrix An arrangement of mn items into m rows and n columns is
called an m by n (written as m × n) matrix.

Accordingly, the above consumption profile matrix is 3 × 4 (3 by 4), that is, it has
3 rows and 4 columns. The standard notation consists in enclosing the mn items within
round ( ) or square [ ] brackets as in the above representation. The above 3× 4 matrix is
represented in different ways as A, (aij ) and items enclosed by square brackets. The mn

items in the m × n matrix are called elements of the matrix. Then, in the above matrix
A, aij = the i-th row, j -th column element or the (i,j)-th element. In the above illustration,
i = 1, 2, 3 (3 rows) and j = 1, 2, 3, 4 (4 columns). A general m × n matrix A can be
written as follows:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ . (1.1.1)

The elements are separated by spaces in order to avoid any confusion. Should there be
any possibility of confusion, then the elements will be separated by commas. Note that the
plural of “matrix” is “matrices”. Observe that the position of each element in Table 1.1 has
a meaning. The elements cannot be permuted as rearranged elements will give different
matrices. In other words, two m × n matrices A = (aij ) and B = (bij ) are equal if and
only if aij = bij for all i and j , that is, they must be element-wise equal.

In Table 1.1, the first row, which is also a 1 × 4 matrix, represents this family’s first
week’s consumption. The fourth column represents the consumption of beans over the
three weeks’ period. Thus, each row and each column in an m × n matrix has a meaning
and represents different aspects. In Eq. (1.1.1), all rows are 1×n matrices and all columns
are m × 1 matrices. A 1 × n matrix is called a row vector and an m × 1 matrix is called a
column vector. For example, in Table 1.1, there are 3 row vectors and 4 column vectors. If
the row vectors are denoted by R1, R2, R3 and the column vectors by C1, C2, C3, C4, then
we have

R1 = [2.00 0.50 1.00 2.00], R2 = [1.50 0.50 0.75 1.50], R3 = [2.00 0.50 0.50 1.25]
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and

C1 =
⎡
⎣
2.00
1.50
2.00

⎤
⎦ , C2 =

⎡
⎣
0.50
0.50
0.50

⎤
⎦ , C3 =

⎡
⎣
1.00
0.75
0.50

⎤
⎦ , C4 =

⎡
⎣
2.00
1.50
1.25

⎤
⎦ .

If the total consumption in Week 1 and Week 2 is needed, it is obtained by adding the row
vectors element-wise:

R1 +R2 = [2.00+1.50 0.50+0.50 1.00+0.75 2.00+1.50] = [3.50 1.00 1.75 3.50].
We will define the addition of two matrices in the same fashion as in the above illustration.
For the addition to hold, both matrices must be of the same order m × n. Let A = (aij )

and B = (bij ) be two m × n matrices. Then the sum, denoted by A + B, is defined as

A + B = (aij + bij )

or equivalently as the matrix obtained by adding the corresponding elements. For example,

C1 + C3 =
⎡
⎣
2.00
1.50
2.00

⎤
⎦+

⎡
⎣
1.00
0.75
0.50

⎤
⎦ =

⎡
⎣
3.00
2.25
2.50

⎤
⎦ .

Repeating the addition, we have

C1 + C3 + C4 = (C1 + C3) +
⎡
⎣
2.00
1.50
1.25

⎤
⎦ =

⎡
⎣
3.00
2.25
2.50

⎤
⎦+

⎡
⎣
2.00
1.50
1.25

⎤
⎦ =

⎡
⎣
5.00
3.75
3.75

⎤
⎦ .

In general, if A = (aij ), B = (bij ), C = (cij ), D = (dij ) are m × n matrices, then
A + B + C + D = (aij + bij + cij + dij ), that is, it is the matrix obtained by adding the
corresponding elements.

Suppose that in Table 1.1, we wish to express the elements in terms of grams instead
of kilograms; then, each and every element therein must be multiplied by 1000. Thus, if A

is the matrix corresponding to Table 1.1 and B is the matrix in terms of grams, we have

A =
⎡
⎣
2.00 0.50 1.00 2.00
1.50 0.50 0.75 1.50
2.00 0.50 0.50 1.25

⎤
⎦ ,

B =
⎡
⎣
1000 × 2.00 1000 × 0.50 1000 × 1.00 1000 × 2.00
1000 × 1.50 1000 × 0.50 1000 × 0.75 1000 × 1.50
1000 × 2.00 1000 × 0.50 1000 × 0.50 1000 × 1.25

⎤
⎦ .
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We may write this symbolically as B = 1000 × A = 1000A. Note that 1000 is a 1 × 1
matrix or a scalar quantity. Any 1 × 1 matrix is called a scalar quantity. Then we may
define scalar multiplication of a matrix A by the scalar quantity c as c A or A = (aij ) ⇒
c A = (c aij ) or it is obtained by multiplying each and every element of A by the scalar
quantity c. As a convention, c is written on the left of A as c A and not as A c. Then, if
c = −1, then c A = (−1)A = −A and A + (−1)A = A − A = O where the capital O
denotes a matrix whose elements are all equal to zero. A general m × n matrix wherein
every element is zero is referred to as a null matrix and it is written as O (not zero). We
may also note that if A, B, C are m × n matrices, then A + (B + C) = (A + B) + C.
Moreover, A + O = O + A = A. If m = n, in which case the number of rows is equal
to the number of columns, the resulting matrix is referred to as a square matrix because it
is a square arrangement of elements; otherwise the matrix is called a rectangular matrix.
Some special cases of square matrices are the following: For an n × n matrix or a square
matrix of order n, suppose that aij = 0 for all i �= j (that is, all non-diagonal elements are
zeros; here “diagonal” means the diagonal going from top left to bottom right) and if there
is at least one nonzero diagonal element, then such a matrix is called a diagonal matrix
and it is usually written as diag(d1, . . . , dn) where d1, . . . , dn are the diagonal elements.
Here are some examples of 3 × 3 diagonal matrices:

D1 =
⎡
⎣
5 0 0
0 −2 0
0 0 7

⎤
⎦ , D2 =

⎡
⎣
4 0 0
0 1 0
0 0 0

⎤
⎦ , D3 =

⎡
⎣

a 0 0
0 a 0
0 0 a

⎤
⎦ , a �= 0.

If in D3, a = 1 so that all the diagonal elements are unities, the resulting matrix is called
an identity matrix and a diagonal matrix whose diagonal elements are all equal to some
number a that is not equal to 0 or 1, is referred to as a scalar matrix. A square non-null
matrix A = (aij ) that contains at least one nonzero element below its leading diagonal
and whose elements above the leading diagonal are all equal to zero, that is, aij = 0 for
all i < j , is called �a lower triangular matrix. Some examples of 2 × 2 lower triangular
matrices are the following:

T1 =
[
5 0
2 1

]
, T2 =

[
3 0
1 0

]
, T3 =

[
0 0

−3 0

]
.

If, in a square non-null matrix, all elements below the leading diagonal are zeros and there
is at least one nonzero element above the leading diagonal, then such a square matrix is
referred to as an upper triangular matrix. Here are some examples:
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T1 =
⎡
⎣
1 2 −1
0 3 1
0 0 5

⎤
⎦ , T2 =

⎡
⎣
1 0 0
0 0 4
0 0 0

⎤
⎦ , T3 =

⎡
⎣
0 0 7
0 0 0
0 0 0

⎤
⎦ .

Multiplication of Matrices Once again, consider Table 1.1. Suppose that by consuming
1 kg of rice, the family is getting 700 g (where g represents grams) of starch, 2 g protein
and 1 g fat; that by eating 1 kg of lentils, the family is getting 200 g of starch, 100 g of
protein and 100 g of fat; that by consuming 1 kg of carrots, the family is getting 100 g
of starch, 200 g of protein and 150 g of fat; and that by eating 1 kg of beans, the family
is getting 50 g of starch, 100 g of protein and 200 g of fat, respectively. Then the starch-
protein-fat matrix, denoted by B, is the following where the rows correspond to rice, lentil,
carrots and beans, respectively:

B =

⎡
⎢⎢⎣
700 2 1
200 100 100
100 200 150
50 100 200

⎤
⎥⎥⎦ .

Let B1, B2, B3 be the columns of B. Then, the first column B1 of B represents the starch
intake per kg of rice, lentil, carrots and beans respectively. Similarly, the second column
B2 represents the protein intake per kg and the third column B3 represents the fat intake,
that is,

B1 =

⎡
⎢⎢⎣
700
200
100
50

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

2
100
200
100

⎤
⎥⎥⎦ , B3 =

⎡
⎢⎢⎣

1
100
150
200

⎤
⎥⎥⎦ .

Let the rows of the matrix A in Table 1.1 be denoted by A1, A2 and A3, respectively, so
that

A1 = [2.00 0.50 1.00 2.00], A2 = [1.50 0.50 0.75 1.50], A3 = [2.00 0.50 0.50 1.25].

Then, the total intake of starch by the family in Week 1 is available from

2.00 × 700 + 0.50 × 200 + 1.00 × 100 + 2.00 × 50 = 1700g.

This is the sum of the element-wise products of A1 with B1. We will denote this by A1 ·B1

(A1 dot B1). The total intake of protein by the family in Week 1 is determined as follows:

A1.B2 = 2.00 × 2 + 0.50 × 100 + 1.00 × 200 + 2.00 × 100 = 454 g
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and the total intake of fat in Week 1 is given by

A1.B3 = 2.00 × 1 + 0.50 × 100 + 1.00 × 150 + 2.00 × 200 = 602 g.

Thus, the dot product of A1 with B1, B2, B3 provides the intake of starch, protein and fat
in Week 1. Similarly, the dot product of A2 with B1, B2, B3 gives the intake of starch,
protein and fat in Week 2. Thus, the configuration of starch, protein and fat intake over the
three weeks is

AB =
⎡
⎣

A1 · B1 A1 · B2 A1 · B3

A2 · B1 A2 · B2 A2 · B3

A3 · B1 A3 · B2 A3 · B3

⎤
⎦ .

A matrix having one column and m rows is an m× 1 matrix that is referred to as a column
vector of m elements or a column vector of order m. A matrix having one row and n

column is a 1 × n matrix called a row vector of n components or a row vector of order n.
Let A be a row or column vector of order n, which consist of n elements or components.
Let the elements comprising A be denoted by a1, . . . , an. Let B be a row or column vector
of order n consisting of the elements b1, . . . , bn. Then, the dot product of A and B, denoted
by A·B = B ·A is defined as A·B = a1b1+a2b2+· · ·+anbn so that or the corresponding
elements of A and B are multiplied and added up. Let A be an m×n matrix whose m rows
are written as A1, . . . , Am. Let B be another n × r matrix whose r columns are written as
B1, . . . , Br . Note that the number of columns of A is equal to the number of rows of B,
which in this case is n. When the number of columns of A is equal to the number of rows
of B, the product AB is defined and equal to

AB =

⎡
⎢⎢⎢⎣

A1 · B1 A1 · B2 . . . A1 · Br

A2 · B1 A2 · B2 . . . A2 · Br
...

...
. . .

...

Am · B1 Am · B2 . . . Am · Br

⎤
⎥⎥⎥⎦ with A =

⎡
⎢⎢⎢⎣

A1

A2
...

Am

⎤
⎥⎥⎥⎦ , B = [B1 B2 · · · Br ],

the resulting matrix AB being of order m × r . When AB is defined, BA need not be
defined. However, if r = m, then BA is also defined, otherwise not. In other words, if
A = (aij ) is m × n and if B = (bij ) is n × r and if C = (cij ) = AB, then cij = Ai · Bj

where Ai is the i-th row of A and Bj is the j -th column of B or cij = ∑n
k=1 aik bkj for all

i and j . For example,

A =
[
1 −1 0
2 3 5

]
, B =

⎡
⎣
2 −2
3 2
1 0

⎤
⎦ ⇒

AB =
[
(1)(2) + (−1)(3) + (0)(1) (1)(−2) + (−1)(2) + (0)(0)
(2)(2) + (3)(3) + (5)(1) 2(−2) + 3(2) + (5)(0)

]
=
[−1 −4
18 2

]
.
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Note that, in this case, BA is defined and equal to

BA =
⎡
⎣
2 −2
3 2
1 0

⎤
⎦
[
1 −1 0
2 3 5

]

=
⎡
⎣

(2)(1) + (−2)(2) (2)(−1) + (−2)(3) (2)(0) + (−2)(5)
(3)(1) + (2)(2) (3)(−1) + (2)(3) (3)(0) + (2)(5)
(1)(1) + (0)(2) (1)(−1) + (0)(3) (1)(0) + (0)(5)

⎤
⎦

=
⎡
⎣

−2 −8 −10
7 3 10
1 −1 0

⎤
⎦ .

As another example, let

A =
⎡
⎣

1
−1
2

⎤
⎦ , B = [2 3 5] ⇒ AB =

⎡
⎣

1
−1
2

⎤
⎦ [2 3 5] =

⎡
⎣

2 3 5
−2 −3 −5
4 6 10

⎤
⎦

which is 3 × 3, whereas BA is 1 × 1:

BA = [2 3 5]
⎡
⎣

1
−1
2

⎤
⎦ = 9.

As yet another example, let

A =
⎡
⎣

2 0 0
−1 1 0
1 1 1

⎤
⎦ , B =

⎡
⎣
1 0 0
0 2 0
1 −1 0

⎤
⎦ .

Note that here both A and B are lower triangular matrices. The products AB and BA are
defined since both A and B are 3 × 3 matrices. For instance,

AB =
⎡
⎣

(2)(1) + (0)(0) + (0)(1) (2)(0) + (0)(2) + (0)(−1) (2)(0) + (0)(0) + (0)(0)
(−1)(1) + (1)(0) + (0)(1) (−1)(0) + (1)(2) + (0)(−1) (−1)(0) + (1)(0) + (0)(0)
(1)(1) + (1)(0) + (1)(1) (1)(0) + (1)(2) + (1)(−1) (1)(0) + (1)(0) + (1)(0)

⎤
⎦

=
⎡
⎣

2 0 0
−1 2 0
2 1 0

⎤
⎦ .
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Observe that sinceA andB are lower triangular,AB is also lower triangular. Here are some
general properties of products of matrices: When the product of the matrices is defined, in
which case we say that they are conformable for multiplication,

(1): the product of two lower triangular matrices is lower triangular;

(2): the product of two upper triangular matrices is upper triangular;

(3): the product of two diagonal matrices is diagonal;

(4): if A is m × n, IA = A where I = Im is an identity matrix, and A In = A;

(5): OA = O whenever OA is defined, and A O = O whenever A O is defined.

Transpose of a Matrix Amatrix whose rows are the corresponding columns of A or, equiv-
alently, a matrix whose columns are the corresponding rows of A is called the transpose
of A denoted as A′ (A prime). For example,

A1 = [1 2 − 1] ⇒ A′
1 =

⎡
⎣

1
2

−1

⎤
⎦ , A2 =

[
1 0
1 1

]
⇒ A′

2 =
[
1 1
0 1

]
;

A3 =
[
1 3
3 7

]
⇒ A′

3 =
[
1 3
3 7

]
= A3; A4 =

[
0 5

−5 0

]
⇒ A′

4 =
[
0 −5
5 0

]
= −A4.

Observe that A2 is lower triangular and A′
2 is upper triangular, that A′

3 = A3, and that
A′
4 = −A4. Note that if A is m × n, then A′ is n × m. If A is 1 × 1 then A′ is the same

scalar (1 × 1) quantity. If A is a square matrix and A′ = A, then A is called a symmetric
matrix. If B is a square matrix and B ′ = −B, then B is called a skew symmetric matrix.
Within a skew symmetric matrix B = (bij ), a diagonal element must satisfy the equation
b′

jj = −bjj ,which necessitates that bjj = 0,whetherB be real or complex. Here are some
properties of the transpose: The transpose of a lower triangular matrix is upper triangular;
the transpose of an upper triangular matrix is lower triangular; the transpose of a diagonal
matrix is diagonal; the transpose of an m × n null matrix is an n × m null matrix;

(A′)′ = A; (AB)′ = B ′A′; (A1 A2 · · · Ak)
′ = A′

k · · · A′
2 A′

1 ; (A + B)′ = A′ + B ′

whenever AB, A + B, and A1 A2 · · · Ak are defined.

Trace of a Square Matrix The trace is defined only for square matrices. Let A = (aij )

be an n × n matrix whose leading diagonal elements are a11, a22, . . . , ann; then the trace
of A, denoted by tr(A) is defined as tr(A) = a11 + a22 + · · · + ann, that is, the sum of
the elements comprising the leading diagonal. The following properties can directly be
deduced from the definition. Whenever AB and BA are defined, tr(AB) = tr(BA) where
AB need not be equal to BA. If A is m × n and B is n × m, then AB is m × m whereas
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BA is n × n; however, the traces are equal, that is, tr(AB) = tr(BA), which implies that
tr(ABC) = tr(BCA) = tr(CAB).

Length of a Vector Let V be a n × 1 real column vector or a 1 × n real row vector then V

can be represented as a point in n-dimensional Euclidean space when the elements are real
numbers. Consider a 2-dimensional vector (or 2-vector) with the elements (1, 2). Then,
this vector corresponds to the point depicted in Fig. 1.1.

y

x

P

O 1

2

Figure 1.1 The point P = (1, 2) in the plane

Let O be the origin and P be the point. Then, the length of the resulting vector is the Eu-
clidean distance between O and P , that is, +√(1)2 + (2)2 = +√

5. Let U = (u1, . . . , un)

be a real n-vector, either written as a row or a column. Then the length of U , denoted by
‖U‖ is defined as follows:

‖U‖ = +
√

u2
1 + · · · + u2

n

whenever the elements u1, . . . , un are real. If u1, . . . , un are complex numbers then
‖U‖ = √|u1|2 + · · · + |un|2 where |uj | denotes the absolute value or modulus of uj . If

uj = aj +ibj , with i = √
(−1) and aj , bj real, then |uj | = +

√
(a2j + b2j ). If the length of

a vector is unity, that vector is called a unit vector. For example, e1 = (1, 0, . . . , 0), e2 =
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(0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are all unit vectors. As well, V1 = ( 1√
2
, 1√

2
) and

V2 = ( 1√
6
, −2√

6
, 1√

6
) are unit vectors. If two n-vectors, U1 and U2, are such that U1 ·U2 = 0,

that is, their dot product is zero, then the two vectors are said to be orthogonal to each
other. For example, if U1 = (1, 1) and U2 = (1, −1), then U1 · U2 = 0 and U1 and
U2 are orthogonal to each other; similarly, if U1 = (1, 1, 1) and U2 = (1, −2, 1), then
U1 · U2 = 0 and U1 and U2 are orthogonal to each other. If U1, . . . , Uk are k vectors,
each of order n, all being either row vectors or column vectors, and if Ui · Uj = 0 for all
i �= j , that is, all distinct vectors are orthogonal to each other, then we say that U1, . . . , Uk

forms an orthogonal system of vectors. In addition, if the length of each vector is unity,
‖Uj‖ = 1, j = 1, . . . , k, then we say that U1, . . . , Uk is an orthonormal system of vectors.
If a matrix A is real and its rows and its columns form an orthonormal system, then A is
called an orthonormal matrix. In this case, AA′ = In and A′A = In; accordingly, any
square matrix A of real elements such that AA′ = In and A′A = In is referred to as an
orthonormal matrix. If only one equation holds, that is, B is a real matrix such that either
BB ′ = I, B ′B �= I or B ′B = I, BB ′ �= I , then B is called a semiorthonormal matrix.
For example, consider the matrix

A =
[

1√
2

1√
2

1√
2

− 1√
2

]
; then AA′ = I2, A′A = I2,

and A is an orthonormal matrix. As well,

A =
⎡
⎢⎣

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6

− 2√
6

1√
6

⎤
⎥⎦ ⇒ AA′ = I3, A′A = I3,

and A here is orthonormal. However,

B =
[

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

]
⇒ BB ′ = I2, B ′B �= I

so that B is semiorthonormal. On deleting some rows from an orthonormal matrix, we
obtain a semiorthonormal matrix such that BB ′ = I and B ′B �= I . Similarly, if we delete
some of the columns, we end up with a semiorthonormal matrix such that B ′B = I and
BB ′ �= I .

Linear Independence of Vectors Consider the vectors U1 = (1, 1, 1), U2 = (1, −2, 1),
U3 = (3, 0, 3). Then, we can easily see that U3 = 2U1 + U2 = 2(1, 1, 1) + (1, −2, 1) =
(3, 0, 3) orU3−2U1−U2 = O (a null vector). In this case, one of the vectors can be written
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as a linear function of the others. Let V1 = (1, 1, 1), V2 = (1, 0, −1), V3 = (1, −2, 1).
Can any one of these be written as a linear function of others? If that were possible, then
there would exist a linear function of V1, V2, V3 that is equal to is a null vector. Let us
consider the equation a1V1+a2V2+a3V3 = (0, 0, 0) where a1, a2, a3 are scalars where at
least one of them is nonzero. Note that a1 = 0, a2 = 0 and a3 = 0 will always satisfy the
above equation. Thus, our question is whether a1 = 0, a2 = 0, a3 = 0 is the only solution.

a1V1 + a2V2 + a3V3 = O ⇒ a1(1, 1, 1) + a2(1, 0, −1) + a3(1, −2, 1) = (0, 0, 0)

⇒ a1 + a2 + a3 = 0 (i); a1 − 2a3 = 0 (ii); a1 − a2 + a3 = 0. (iii)

From (ii), a1 = 2a3. Then, from (iii), 3a3 − a2 = 0 ⇒ a2 = 3a3; then from (i), 2a3 +
3a3 + a3 = 0 or 6a3 = 0 or a3 = 0. Thus, a2 = 0, a1 = 0 and there is no nonzero a1
or a2 or a3 satisfying the equation and hence V1, V2, V3 cannot be linearly dependent; so,
they are linearly independent. Hence, we have the following definition: Let U1, . . . , Uk be
k vectors, each of order n, all being either row vectors or column vectors, so that addition
and linear functions are defined. Let a1, . . . , ak be scalar quantities. Consider the equation

a1U1 + a2U2 + · · · + akUk = O (a null vector). (iv)

If a1 = 0, a2 = 0, . . . , ak = 0 is the only solution to (iv), then U1, . . . , Uk are linearly
independent, otherwise they are linearly dependent. If they are linearly dependent, then
at least one of the vectors can be expressed as a linear function of others. The following
properties can be established from the definition: Let U1, . . . , Uk be n-vectors, k ≤ n.

(1) If U1, . . . , Uk are mutually orthogonal, then they are linearly independent, that is, if
Ui · Uj = 0, for all i �= j, then U1, . . . , Uk are linearly independent;

(2) There cannot be more than n mutually orthogonal n-vectors;

(3) There cannot be more than n linearly independent n-vectors.

Rank of a Matrix The maximum number of linearly independent row vectors of a m × n

matrix is called the row rank of the matrix; the maximum number of linearly independent
column vectors is called the column rank of the matrix. It can be shown that the row rank
of any matrix is equal to its column rank, and this common rank is called the rank of the
matrix. If r is the rank of a m × n matrix, then r ≤ m and r ≤ n. If m ≤ n and the rank
is m or if n ≤ m and the rank is n, then the matrix is called a full rank matrix. A square
matrix of full rank is called a nonsingular matrix. When the rank of an n × n matrix is
r < n, this matrix is referred to as a singular matrix. Singularity is defined only for square
matrices. The following properties clearly hold:
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(1) A diagonal matrix with at least one zero diagonal element is singular or a diagonal
matrix with all nonzero diagonal elements is nonsingular;

(2) A triangular matrix (upper or lower) with at least one zero diagonal element is singular
or a triangular matrix with all diagonal elements nonzero is nonsingular;

(3) A square matrix containing at least one null row vector or at least one null column
vector is singular;

(4) Linear independence or dependence in a collection of vectors of the same order and
category (either all are row vectors or all are column vectors) is not altered by multiplying
any of the vectors by a nonzero scalar;

(5) Linear independence or dependence in a collection of vectors of the same order and
category is not altered by adding any vector of the set to any other vector in the same set;

(6) Linear independence or dependence in a collection of vectors of the same order and
category is not altered by adding a linear combination of vectors from the same set to any
other vector in the same set;

(7) If a collection of vectors of the same order and category is a linearly dependent system,
then at least one of the vectors can be made null by the operations of scalar multiplication
and addition.

Note: We have defined “vectors” as an ordered set of items such as an ordered set of
numbers. One can also give a general definition of a vector as an element in a set S which
is closed under the operations of scalar multiplication and addition (these operations are
to be defined on S), that is, letting S be a set of items, if V1 ∈ S and V2 ∈ S, then cV1 ∈ S

and V1 + V2 ∈ S for all scalar c and for all V1 and V2, that is, if V1 is an element in S,
then cV1 is also an element in S and if V1 and V2 are in S, then V1 + V2 is also in S,
where operations c V1 and V1 + V2 are to be properly defined. One can impose additional
conditions on S. However, for our discussion, the notion of vectors as ordered set of items
will be sufficient.

1.2. Determinants

Determinants are defined only for square matrices. They are certain scalar func-
tions of the elements of the square matrix under consideration. We will motivate this
particular function by means of an example that will also prove useful in other ar-
eas. Consider two 2-vectors, either both row vectors or both column vectors. Let
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U = OP and V = OQ be the two vectors as shown in Fig. 1.2. If the vectors are sepa-
rated by a nonzero angle θ then one can create the parallelogram OPSQ with these two
vectors as shown in Fig. 1.2.

y

x
O

Q

P

S

θ2 R
θ

Figure 1.2 Parallelogram generated from two vectors

The area of the parallelogram is twice the area of the triangle OPQ. If the perpendic-
ular from P to OQ is PR, then the area of the triangle is 1

2PR × OQ or the area of the
parallelogram OPSQ is PR × ‖V ‖ where PR is OP × sin θ = ‖U‖ × sin θ . Therefore
the area is ‖U‖ ‖V ‖ sin θ or the area, denoted by ν is

ν = ‖U‖ ‖V ‖
√

(1 − cos2 θ).

If θ1 is the angle U makes with the x-axis and θ2, the angle V makes with the x-axis, then
if U and V are as depicted in Fig. 1.2, then θ = θ1 − θ2. It follows that

cos θ = cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2 = U · V

‖U‖ ‖V ‖ ,

as can be seen from Fig. 1.2. In this case,

ν = ‖U‖ ‖V ‖
√
1 −

( (U · V )

‖U‖ ‖V ‖
)2 =

√
(‖U‖)2 (‖V ‖)2 − (U · V )2 (1.2.1)
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and
ν2 = (‖U‖)2(‖V ‖)2 − (U · V )2. (1.2.2)

This can be written in a more convenient way. Letting X =
(

U

V

)
,

XX′ =
(

U

V

) (
U ′ V ′) =

[
UU ′ UV ′
V U ′ V V ′

]
=
[
U · U U · V

V · U V · V

]
. (1.2.3)

On comparing (1.2.2) and (1.2.3), we note that (1.2.2) is available from (1.2.3) by taking
a scalar function of the following type. Consider a matrix

C =
[
a b

c d

]
; then (1.2.2) is available by taking ad − bc

where a, b, c, d are scalar quantities. A scalar function of this type is the determinant of
the matrix C.

A general result can be deduced from the above procedure: If U and V are n-vectors
and if θ is the angle between them, then

cos θ = U · V

‖U‖ ‖V ‖
or the dot product of U and V divided by the product of their lengths when θ �= 0, and the
numerator is equal to the denominator when θ = 2nπ, n = 0, 1, 2, . . . . We now provide
a formal definition of the determinant of a square matrix.

Definition 1.2.1. The Determinant of a Square Matrix Let A = (aij ) be a n×n matrix
whose rows (columns) are denoted by α1, . . . , αn. For example, if αi is the i-th row vector,
then

αi = (ai1 ai2 . . . ain).

The determinant of A will be denoted by |A| or det(A) when A is real or complex and
the absolute value of the determinant of A will be denoted by |det(A)| when A is in the
complex domain. Then, |A| will be a function of α1, . . . , αn, written as

|A| = det(A) = f (α1, . . . , αi, . . . , αj , . . . , αn),

which will be defined by the following four axioms (postulates or assumptions): (this
definition also holds if the elements of the matrix are in the complex domain)

(1) f (α1, . . . , c αi, . . . , αn) = cf (α1, . . . , αi, . . . , αn),
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which is equivalent to saying that if any row (column) is multiplied by a scalar quantity c

(including zero), then the whole determinant is multiplied by c;

(2) f (α1, ...αi, . . . , αi + αj , . . . , αn) = f (α1, . . . , αi, . . . , αj , . . . , αn),

which is equivalent to saying that if any row (column) is added to any other row (column),
then the value of the determinant remains the same;

(3) f (α1, . . . , γi + δi, . . . , αn) = f (α1, . . . , γi, . . . , αn) + f (α1, . . . , δi, . . . , αn),

which is equivalent to saying that if any row (column), say the i-th row (column) is written
as a sum of two vectors, αi = γi + δi then the determinant becomes the sum of two
determinants such that γi appears at the position of αi in the first one and δi appears at the
position of αi in the second one;

(4) f (e1, . . . , en) = 1

where e1, . . . , en are the basic unit vectors as previously defined; this axiom states that the
determinant of an identity matrix is 1.

Let us consider some corollaries resulting from Axioms (1) to (4). On combining Ax-
ioms (1) and (2), we have that the value of a determinant remains unchanged if a linear
function of any number of rows (columns) is added to any other row (column). As well,
the following results are direct consequences of the axioms.

(i): The determinant of a diagonal matrix is the product of the diagonal elements [which
can be established by repeated applications of Axiom (1)];

(ii): If any diagonal element in a diagonal matrix is zero, then the determinant is zero,
and thereby the corresponding matrix is singular; if none of the diagonal elements of a
diagonal matrix is equal to zero, then the matrix is nonsingular.

(iii): If any row (column) of a matrix is null, then the determinant is zero or the matrix is
singular [Axiom (1)];

(iv): If any row (column) is a linear function of other rows (columns), then the determinant
is zero [By Axioms (1) and (2), we can reduce that row (column) to a null vector]. Thus,
the determinant of a singular matrix is zero or if the row (column) vectors form a linearly
dependent system, then the determinant is zero.

By using Axioms (1) and (2), we can reduce a triangular matrix to a diagonal form
when evaluating its determinant. For this purpose we shall use the following standard
notation: “c (i) + (j) ⇒” means “c times the i-th row is added to the j -th row which
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results in the following:” Let us consider a simple example. Consider a triangular matrix
and its determinant. Evaluate the determinant of the following matrix:

T =
⎡
⎣
2 1 5
0 3 4
0 0 −4

⎤
⎦ .

It is an upper triangular matrix. We take out −4 from the third row by using Axiom (1).
Then,

|T | = −4

∣∣∣∣∣∣
2 1 5
0 3 4
0 0 1

∣∣∣∣∣∣
.

Now, add (−4) times the third row to the second row and (−5) times the third row to the
first row. This in symbols is “−4(3) + (2), −5(3) + (1) ⇒”. The net result is that the
elements 5 and 4 in the last column are eliminated without affecting the other elements, so
that

|T | = −4

∣∣∣∣∣∣
2 1 0
0 3 0
0 0 1

∣∣∣∣∣∣
.

Now take out 3 from the second row and then use the second row to eliminate 1 in the first
row. After taking out 3 from the second row, the operation is “−1(2)+ (1) ⇒”. The result
is the following:

|T | = (−4)(3)

∣∣∣∣∣∣
2 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
.

Now, take out 2 from the first row, then by Axiom (4) the determinant of the resulting
identity matrix is 1, and hence |T | is nothing but the product of the diagonal elements.
Thus, we have the following result:

(v): The determinant of a triangular matrix (upper or lower) is the product of its diagonal
elements; accordingly, if any diagonal element in a triangular matrix is zero, then the
determinant is zero and the matrix is singular. For a triangular matrix to be nonsingular,
all its diagonal elements must be non-zeros.

The following result follows directly from Axioms (1) and (2). The proof is given in
symbols.

(vi): If any two rows (columns) are interchanged (this means one transposition), then the
resulting determinant is multiplied by −1 or every transposition brings in −1 outside that
determinant as a multiple. If an odd number of transpositions are done, then the whole
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determinant is multiplied by −1, and for even number of transpositions, the multiplicative
factor is +1 or no change in the determinant. An outline of the proof follows:

|A| = f (α1, . . . , αi, . . . , αj , . . . , αn)

= f (α1, . . . , αi, . . . , αi + αj , . . . , αn) [Axiom (2)]
= −f (α1, . . . , αi, . . . , −αi − αj , . . . , αn) [Axiom (1)]
= −f (α1, . . . , −αj , . . . , −αi − αj , . . . , αn) [Axiom (2)]
= f (α1, . . . , αj , . . . , −αi − αj , . . . , αn) [Axiom (1)]
= f (α1, . . . , αj , . . . , −αi, . . . , αn) [Axiom (2)]
= −f (α1, . . . , αj , . . . , αi, . . . , αn) [Axiom (1)].

Now, note that the i-th and j -th rows (columns) are interchanged and the result is that the
determinant is multiplied by −1.

With the above six basic properties, we are in a position to evaluate most of the deter-
minants.

Example 1.2.1. Evaluate the determinant of the matrix

A =

⎡
⎢⎢⎣
2 0 0 0
1 5 0 0
2 −1 1 0
3 0 1 4

⎤
⎥⎥⎦ .

Solution 1.2.1. Since, this is a triangular matrix, its determinant will be product of its
diagonal elements. Proceeding step by step, take out 2 from the first row by using Axiom
(1). Then −1(1) + (2), −2(1) + (3), −3(1) + (3) ⇒. The result of these operations is the
following:

|A| = 2

∣∣∣∣∣∣∣∣

1 0 0 0
0 5 0 0
0 −1 1 0
0 0 1 4

∣∣∣∣∣∣∣∣
.

Now, take out 5 from the second row so that 1(2) + (3) ⇒, the result being the following:

|A| = (2)(5)

∣∣∣∣∣∣∣∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 4

∣∣∣∣∣∣∣∣
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The diagonal element in the third row is 1 and there is nothing to be taken out. Now
−1(3) + (4) ⇒ and then, after having taken out 4 from the fourth row, the result is

|A| = (2)(5)(1)(4)

∣∣∣∣∣∣∣∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
.

Now, by Axiom (4) the determinant of the remaining identity matrix is 1. Therefore, the
final solution is |A| = (2)(5)(1)(4) = 40.

Example 1.2.2. Evaluate the determinant of the following matrix:

A =

⎡
⎢⎢⎣
1 2 4 1
0 3 2 1
2 1 −1 0
5 2 1 3

⎤
⎥⎥⎦ .

Solution 1.2.2. Since the first row, first column element is a convenient number 1 we
start operating with the first row. Otherwise, we bring a convenient number to the (1, 1)-th
position by interchanges of rows and columns (with each interchange the determinant is to
be multiplied by (−1). Our aim will be to reduce the matrix to a triangular form so that the
determinant is the product of the diagonal elements. By using the first row let us wipe out
the elements in the first column. The operations are −2(1) + (3), −5(1) + (4) ⇒. Then

|A| =

∣∣∣∣∣∣∣∣

1 2 4 1
0 3 2 1
2 1 −1 0
5 2 1 3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 2 4 1
0 3 2 1
0 −3 −9 −2
0 −8 −19 −2

∣∣∣∣∣∣∣∣
.

Now, by using the second row we want to wipe out the elements below the diagonal in the
second column. But the first number is 3. One element in the third row can be wiped out
by simply adding 1(2) + (3) ⇒. This brings the following:

|A| =

∣∣∣∣∣∣∣∣

1 2 4 1
0 3 2 1
0 0 −7 −1
0 −8 −19 −2

∣∣∣∣∣∣∣∣
.

If we take out 3 from the second row then it will bring in fractions. We will avoid fractions
by multiplying the second row by 8 and the fourth row by 3. In order preserve the value,
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we keep 1
(8)(3) outside. Then, we add the second row to the fourth row or (2)+ (4) ⇒. The

result of these operations is the following:

|A| = 1

(8)(3)

∣∣∣∣∣∣∣∣

1 2 4 1
0 24 16 8
0 0 −7 −1
0 −24 −57 −6

∣∣∣∣∣∣∣∣
= 1

(8)(3)

∣∣∣∣∣∣∣∣

1 2 4 1
0 24 16 8
0 0 −7 −1
0 0 −41 2

∣∣∣∣∣∣∣∣
.

Now, multiply the third row by 41 and fourth row by 7 and then add−1(3) + (4) ⇒. The
result is the following:

|A| = 1

(8)(3)(7)(41)

∣∣∣∣∣∣∣∣

1 2 4 1
0 24 16 8
0 0 −287 −41
0 0 0 55

∣∣∣∣∣∣∣∣
.

Now, take the product of the diagonal elements. Then

|A| = (1)(24)(−287)(55)

(8)(3)(7)(41)
= −55.

Observe that we did not have to repeat the 4 × 4 determinant each time. After wiping
out the first column elements, we could have expressed the determinant as follows because
only the elements in the second row and second column onward would then have mattered.
That is,

|A| = (1)

∣∣∣∣∣∣
3 2 1
0 −7 −1

−8 −19 −2

∣∣∣∣∣∣
.

Similarly, after wiping out the second column elements, we could have written the result-
ing determinant as

|A| = (1)(24)

(8)(3)

∣∣∣∣
−7 −1
−41 2

∣∣∣∣ ,

and so on.

Example 1.2.3. Evaluate the determinant of a 2 × 2 general matrix.
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Solution 1.2.3. A general 2 × 2 determinant can be opened up by using Axiom (3), that
is,

|A| =
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ =
∣∣∣∣
a11 0
a21 a22

∣∣∣∣+
∣∣∣∣
0 a12

a21 a22

∣∣∣∣ [Axiom (3)]

= a11

∣∣∣∣
1 0

a21 a22

∣∣∣∣+ a12

∣∣∣∣
0 1

a21 a22

∣∣∣∣ [Axiom (1)].

If any of a11 or a12 is zero, then the corresponding determinant is zero. In the second
determinant on the right, interchange the second and first columns, which will bring a
minus sign outside the determinant. That is,

|A| = a11

∣∣∣∣
1 0

a21 a22

∣∣∣∣− a12

∣∣∣∣
1 0

a22 a21

∣∣∣∣ = a11a22 − a12a21.

The last step is done by using the property that the determinant of a triangular matrix is the
product of the diagonal elements. We can also evaluate the determinant by using a number
of different procedures. Taking out a11 if a11 �= 0,

|A| = a11

∣∣∣∣
1 a12

a11

a21 a22

∣∣∣∣ .

Now, perform the operation −a21(1) + (2) or −a21 times the first row is added to the
second row. Then,

|A| = a11

∣∣∣∣
1 a12

a11

0 a22 − a12a21
a11

∣∣∣∣ .
Now, expanding by using a property of triangular matrices, we have

|A| = a11(1)
[
a22 − a12a21

a11

] = a11a22 − a12a21. (1.2.4)

Consider a general 3 × 3 determinant evaluated by using Axiom (3) first.

|A| =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

= a11

∣∣∣∣∣∣
1 0 0

a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
+ a12

∣∣∣∣∣∣
0 1 0

a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
0 0 1

a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

= a11

∣∣∣∣∣∣
1 0 0
0 a22 a23
0 a32 a33

∣∣∣∣∣∣
+ a12

∣∣∣∣∣∣
0 1 0

a21 0 a23
a31 0 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
0 0 1

a21 a22 0
a31 a32 0

∣∣∣∣∣∣
.
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The first step consists in opening up the first row by making use of Axiom (3). Then,
eliminate the elements in rows 2 and 3 within the column headed by 1. The next step is
to bring the columns whose first element is 1 to the first column position by transposi-
tions. The first matrix on the right-hand side is already in this format. One transposition is
needed in the second matrix and two are required in the third matrix. After completing the
transpositions, the next step consists in opening up each determinant along their second
row and observing that the resulting matrices are lower triangular or can be made so after
transposing their last two columns. The final result is then obtained. The last two steps are
executed below:

|A| = a11

∣∣∣∣∣∣
1 0 0
0 a22 a23
0 a32 a33

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣
1 0 0
0 a21 a23
0 a31 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
1 0 0
0 a21 a22
0 a31 a32

∣∣∣∣∣∣
= a11[a22a33 − a23a32] − a12[a21a33 − a23a31] + a13[a21a32 − a22a31]
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

(1.2.5)

A few observations are in order. Once 1 is brought to the first row first column position
in every matrix and the remaining elements in this first column are eliminated, one can
delete the first row and first column and take the determinant of the remaining submatrix
because only those elements will enter into the remaining operations involving opening
up the second and successive rows by making use of Axiom (3). Hence, we could have
written

|A| = a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ .
This step is also called the cofactor expansion of the matrix. In a general matrix A = (aij ),
the cofactor of the element aij is equal to (−1)i+jMij where Mij is the minor of aij .
This minor is obtained by deleting the i-th row and j -the column and then taking the
determinant of the remaining elements. The second item to be noted from (1.2.5) is that,
in the final expression for |A|, each term has one and only one element from each row
and each column of A. Some elements have plus signs in front of them and others have
minus signs. For each term, write the first subscript in the natural order 1, 2, 3 for the
3 × 3 case and in the general n × n case, write the first subscripts in the natural order
1, 2, . . . , n. Now, examine the second subscripts. Let the number of transpositions needed
to bring the second subscripts into the natural order 1, 2, . . . , n be ρ. Then, that term is
multiplied by (−1)ρ so that an even number of transpositions produces a plus sign and
an odd number of transpositions brings a minus sign, or equivalently if ρ is even, the
coefficient is plus 1 and if ρ is odd, the coefficient is −1. This also enables us to open up
a general determinant. This will be considered after pointing out one more property for
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a 3 × 3 case. The final representation in the 3 × 3 case in (1.2.5) can also be written up
by using the following mechanical procedure. Write all elements in the matrix A in the
natural order. Then, augment this arrangement with the first two columns. This yields the
following format:

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32 .

Now take the products of the elements along the diagonals going from the top left to the
bottom right. These are the elements with the plus sign. Take the products of the elements
in the second diagonals or the diagonals going from the bottom left to the top right. These
are the elements with minus sign. As a result, |A| is as follows:

|A| = [a11a22a33 + a12a23a31 + a13a21a32]
− [a13a22a31 + a11a23a32 + a12a21a33].

This mechanical procedure applies only in the 3 × 3 case. The general expansion is the
following:

|A| =

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
=
∑
i1

· · ·
∑
in

(−1)ρ(i1,...,in)a1i1a2i2 · · · anin (1.2.6)

where ρ(i1, . . . , in) is the number of transpositions needed to bring the second subscripts
i1, . . . , in into the natural order 1, 2, . . . , n.

The cofactor expansion of a general matrix is obtained as follows: Suppose that we
open up a n × n determinant A along the i-th row using Axiom (3). Then, after taking out
ai1, ai2, . . . , ain, we obtain n determinants where, in the first determinant, 1 occupies the
(i, 1)-th position, in the second one, 1 is at the (i, 2)-th position and so on so that, in the j -
th determinant, 1 occupies the (i, j)-th position. Given that i-th row, we can now eliminate
all the elements in the columns corresponding to the remaining 1. We now bring this 1 into
the first row first column position by transpositions in each determinant. The number of
transpositions needed to bring this 1 from the j -th position in the i-th row to the first
position in the i-th row, is j −1. Then, to bring that 1 to the first row first column position,
another i − 1 transpositions are required, so that the total number of transpositions needed
is (i − 1)+ (j − 1) = i + j − 2. Hence, the multiplicative factor is (−1)i+j−2 = (−1)i+j ,
and the expansion is as follows:

|A| = (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + · · · + (−1)i+nainMin

= ai1Ci1 + ai2Ci2 + · · · + ainCin (1.2.7)
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where Cij = (−1)i+jMij , Cij is the cofactor of aij and Mij is the minor of aij , the minor
being obtained by taking the determinant of the remaining elements after deleting the i-th
row and j -th column of A. Moreover, if we expand along a certain row (column) and the
cofactors of some other row (column), then the result will be zero. That is,

0 = ai1Cj1 + ai2Cj2 + · · · + ainCjn, for all i �= j. (1.2.8)

Inverse of a Matrix Regular inverses exist only for square matrices that are nonsingular.
The standard notation for a regular inverse of a matrixA isA−1. It is defined asAA−1 = In

and A−1A = In. The following properties can be deduced from the definition. First, we
note that AA−1 = A0 = I = A−1A. When A and B are n × n nonsingular matrices,
then (AB)−1 = B−1A−1, which can be established by pre- or post-multiplying the right-
hand side side by AB. Accordingly, with Am = A × A × · · · × A, A−m = A−1 × · · · ×
A−1 = (Am)−1, m = 1, 2, . . . , and when A1, . . . , Ak are n × n nonsingular matrices,
(A1A2 · · · Ak)

−1 = A−1
k A−1

k−1 · · · A−1
2 A−1

1 . We can also obtain a formula for the inverse
of a nonsingular matrix A in terms of cofactors. Assuming that A−1 exist and letting
Cof(A) = (Cij ) be the matrix of cofactors of A, that is, if A = (aij ) and if Cij is the
cofactor of aij then Cof(A) = (Cij ). It follows from (1.2.7) and (1.2.8) that

A−1 = 1

|A|(Cof(A))′ = 1

|A|

⎡
⎢⎣

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

⎤
⎥⎦

′

, (1.2.9)

that is, the transpose of the cofactor matrix divided by the determinant of A. What about
A

1
2 ? For a scalar quantity a, we have the definition that if b exists such that b × b = a,

then b is a square root of a. Consider the following 2 × 2 matrices:

I2 =
[
1 0
0 1

]
, B1 =

[−1 0
0 1

]
, B2 =

[
1 0
0 −1

]
,

B3 =
[−1 0

0 −1

]
, B4 =

[
0 1
1 0

]
, I 22 = I2, B2

j = I2, j = 1, 2, 3, 4.

Thus, if we use the definition B2 = A and claim that B is the square root of A, there are
several candidates for B; this means that, in general, the square root of a matrix cannot
be uniquely determined. However, if we restrict ourselves to the class of positive definite
matrices, then a square root can be uniquely defined. The definiteness of matrices will be
considered later.
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1.2.1. Inverses by row operations or elementary operations

Basic elementary matrices are of two types. Let us call them the E-type and the F -
type. An elementary matrix of the E-type is obtained by taking an identity matrix and
multiplying any row (column) by a nonzero scalar. For example,

I3 =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ , E1 =

⎡
⎣
1 0 0
0 −2 0
0 0 1

⎤
⎦ , E2 =

⎡
⎣
5 0 0
0 1 0
0 0 1

⎤
⎦ , E3 =

⎡
⎣
1 0 0
0 1 0
0 0 −1

⎤
⎦ ,

where E1, E2, E3 are elementary matrices of the E-type obtained from the identity matrix
I3. If we pre-multiply an arbitrary matrix A with an elementary matrix of the E-type,
then the same effect will be observed on the rows of the arbitrary matrix A. For example,
consider a 3 × 3 matrix A = (aij ). Then, for example,

E1A =
⎡
⎣
1 0 0
0 −2 0
0 0 1

⎤
⎦
⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣

a11 a12 a13
−2a21 −2a22 −2a23

a31 a32 a33

⎤
⎦ .

Thus, the same effect applies to the rows, that is, the second row is multiplied by (−2).
Observe that E-type elementary matrices are always nonsingular and so, their regular in-
verses exist. For instance,

E−1
1 =

⎡
⎣
1 0 0
0 −1

2 0
0 0 1

⎤
⎦ , E1E

−1
1 = I3 = E−1

1 E1; E−1
2 =

⎡
⎣

1
5 0 0
0 1 0
0 0 1

⎤
⎦ , E2E

−1
2 = I3.

Observe that post-multiplication of an arbitrary matrix by an E-type elementary matrix
will have the same effect on the columns of the arbitrary matrix. For example, AE1 will
have the same effect on the columns of A, that is, the second column of A is multiplied by
−2; AE2 will result in the first column of A being multiplied by 5, and so on. The F -type
elementary matrix is created by adding any particular row of an identity matrix to another
one of its rows. For example, consider a 3 × 3 identity matrix I3 and let

F1 =
⎡
⎣
1 0 0
1 1 0
0 0 1

⎤
⎦ , F2 =

⎡
⎣
1 0 0
0 1 0
1 0 1

⎤
⎦ , F3 =

⎡
⎣
1 0 0
0 1 0
0 1 1

⎤
⎦ ,
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where F1 is obtained by adding the first row to the second row of I3; F2 is obtained by
adding the first row to the third row of I3; and F3 is obtained by adding the second row of
I3 to the third row. As well, F -type elementary matrices are nonsingular, and for instance,

F−1
1 =

⎡
⎣

1 0 0
−1 1 0
0 0 1

⎤
⎦ , F−1

2 =
⎡
⎣

1 0 0
0 1 0

−1 0 1

⎤
⎦ , R−1

3 =
⎡
⎣
1 0 0
0 1 0
0 −1 1

⎤
⎦ ,

where F1F
−1
1 = I3, F

−1
2 F2 = I3 and F−1

3 F3 = I3. If we pre-multiply an arbitrary matrix
A by an F -type elementary matrix, then the same effect will be observed on the rows of
A. For example,

F1A =
⎡
⎣
1 0 0
1 1 0
0 0 1

⎤
⎦
⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣

a11 a12 a13
a21 + a11 a22 + a12 a23 + a13

a31 a32 a33

⎤
⎦ .

Thus, the same effect applies to the rows, namely, the first row is added to the second
row in A (as F1 was obtained by adding the first row of I3 to the second row of I3). The
reader may verify that F2A has the effect of the first row being added to the third row and
F3A will have the effect of the second row being added to the third row. By combining E-
and F -type elementary matrices, we end up with a G-type matrix wherein a multiple of
any particular row of an identity matrix is added to another one of its rows. For example,
letting

G1 =
⎡
⎣
1 0 0
5 1 0
0 0 1

⎤
⎦ and G2 =

⎡
⎣

1 0 0
0 1 0

−2 0 1

⎤
⎦ ,

it is seen that G1 is obtained by adding 5 times the first row to the second row in I3, and
G2 is obtained by adding −2 times the first row to the third row in I3. Pre-multiplication
of an arbitrary matrix A by G1, that is, G1A, will have the effect that 5 times the first row
of A will be added to its second row. Similarly, G2 will have the effect that −2 times the
first row of A will be added to its third row. Being product of E- and F -type elementary
matrices, G-type matrices are also nonsingular. We also have the result that if A, B, C are
n × n matrices and B = C, then AB = AC as long as A is nonsingular. In general, if
A1, . . . , Ak are n × n nonsingular matrices, we have

B = C ⇒ AkAk−1 · · · A2A1B = AkAk−1 · · · A2A1C;
⇒ A1A2B = A1(A2B) = (A1A2)B = (A1A2)C = A1(A2C).
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We will evaluate the inverse of a nonsingular square matrix by making use of elementary
matrices. The procedure will also verify whether a regular inverse exists for a given matrix.
If a regular inverse for a square matrix A exists, then AA−1 = I . We can pre- or post-
multiply A by elementary matrices. For example,

AA−1 = I ⇒ EkFr · · · E1F1AA−1 = EkFr · · · E1F1I

⇒ (Ek · · · F1A)A−1 = (Ek · · · F1).

Thus, if the operations Ek · · · F1 on A reduced A to an identity matrix, then A−1 is
Ek · · · F1. If an inconsistency has occurred during the process, we can conclude that there
is no inverse for A. Hence, our aim in performing our elementary operations on the left of
A is to reduce it to an identity matrix, in which case the product of the elementary matrices
on the right-hand side of the last equation will produce the inverse of A.

Example 1.2.4. Evaluate A−1 if it exists, where

A =

⎡
⎢⎢⎣

1 1 1 1
−1 0 1 0
2 1 1 2
1 1 −1 1

⎤
⎥⎥⎦ .

Solution 1.2.4. If A−1 exists then AA−1 = I which means
⎡
⎢⎢⎣

1 1 1 1
−1 0 1 0
2 1 1 2
1 1 −1 1

⎤
⎥⎥⎦A−1 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

This is our starting equation. Only the configuration of the elements matters. The matrix
notations and the symbol A−1 can be disregarded. Hence, we consider only the configu-
ration of the numbers of the matrix A on the left and the numbers in the identity matrix
on the right. Then we pre-multiply A and pre-multiply the identity matrix by only making
use of elementary matrices. In the first set of steps, our aim consists in reducing every
element in the first column of A to zeros, except the first one, by only using the first row.
For each elementary operation on A, the same elementary operation is done on the identity
matrix also. Now, utilizing the second row of the resulting A, we reduce all the elements in
the second column of A to zeros except the second one and continue in this manner until
all the elements in the last columns except the last one are reduced to zeros by making
use of the last row, thus reducing A to an identity matrix, provided of course that A is
nonsingular. In our example, the elements in the first column can be made equal to zeros
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by applying the following operations. We will employ the following standard notation:
a(i) + (j) ⇒ meaning a times the i-th row is added to the j -th row, giving the result.
Consider (1) + (2); −2(1) + (3); −1(1) + (4) ⇒ (that is, the first row is added to the
second row; and then −2 times the first row is added to the third row; then −1 times the
first row is added to the fourth row), (for each elementary operation on A we do the same
operation on the identity matrix also) the net result being

1 1 1 1
0 1 2 1
0 −1 −1 0
0 0 −2 0

⇔
1 0 0 0
1 1 0 0

−2 0 1 0
−1 0 0 1

.

Now, start with the second row of the resulting A and the resulting identity matrix and try
to eliminate all the other elements in the second column of the resulting A. This can be
achieved by performing the following operations: (2) + (3); −1(2) + (1) ⇒

1 0 −1 0
0 1 2 1
0 0 1 1
0 0 −2 0

⇔
0 −1 0 0
1 1 0 0

−1 1 1 0
−1 0 0 1

Now, start with the third row and eliminate all other elements in the third column. This
can be achieved by the following operations. Writing the row used in the operations (the
third one in this case) within the first set of parentheses for each operation, we have 2(3)+
(4); −2(3) + (2); (3) + (1) ⇒

1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 2

⇔
−1 0 1 0
3 −1 −2 0

−1 1 1 0
−3 2 2 1

Divide the 4th row by 2 and then perform the following operations: 1
2(4); −1(4) +

(3); (4) + (2); −1(4) + (1) ⇒

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⇔
1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

.
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Thus,

A−1 =

⎡
⎢⎢⎣

1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

⎤
⎥⎥⎦ .

This result should be verified to ensure that it is free of computational errors. Since

AA−1 =

⎡
⎢⎢⎣

1 1 1 1
−1 0 1 0
2 1 1 2
1 1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

the result is indeed correct.

Example 1.2.5. Evaluate A−1 if it exists where

A =
⎡
⎣
1 1 1
1 −1 1
2 0 2

⎤
⎦ .

Solution 1.2.5. If A−1 exists, then AA−1 = I3. Write
⎡
⎣
1 1 1
1 −1 1
2 0 2

⎤
⎦A−1 =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ .

Starting with the first row, eliminate all other elements in the first column with the follow-
ing operations: −1(1) + (2); −2(1) + (3) ⇒

1 1 1
0 −2 0
0 −2 0

⇔
1 0 0

−1 1 0
−2 0 1

The second and third rows on the left side being identical, the left-hand side matrix is
singular, which means that A is singular. Thus, the inverse of A does not exist in this case.

1.3. Determinants of Partitioned Matrices

Consider a matrix A written in the following format:

A =
[
A11 A12

A21 A22

]
where A11, A12, A21, A22 are submatrices.
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For example,

A =
⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

[
A11 A12

A21 A22

]
, A11 = [a11], A12 = [a12 a13], A21 =

[
a21
a31

]

and A22 =
[
a22 a23
a32 a33

]
. The above is a 2 × 2 partitioning or a partitioning into two sub-

matrices by two sub-matrices. But a 2×2 partitioning is not unique. We may also consider

A11 =
[
a11 a12
a21 a22

]
, A22 = [a33], A12 =

[
a13
a23

]
, A21 = [a31 a32],

which is another 2×2 partitioning of A. We can also have a 1×2 or 2×1 partitioning into
sub-matrices. We may observe one interesting property. Consider a block diagonal matrix.
Let

A =
[
A11 O

O A22

]
⇒ |A| =

∣∣∣∣
A11 O

O A22

∣∣∣∣ ,
where A11 is r × r , A22 is s × s, r + s = n and O indicates a null matrix. Observe
that when we evaluate the determinant, all the operations on the first r rows will produce
the determinant of A11 as a coefficient, without affecting A22, leaving an r × r identity
matrix in the place of A11. Similarly, all the operations on the last s rows will produce the
determinant of A22 as a coefficient, leaving an s × s identity matrix in place of A22. In
other words, for a diagonal block matrix whose diagonal blocks are A11 and A22,

|A| = |A11| × |A22|. (1.3.1)

Given a triangular block matrix, be it lower or upper triangular, then its determinant is also
the product of the determinants of the diagonal blocks. For example, consider

A =
[
A11 A12

O A22

]
⇒ |A| =

∣∣∣∣
A11 A12

O A22

∣∣∣∣ .

By using A22, we can eliminate A12 without affecting A11 and hence, we can reduce the
matrix of the determinant to a diagonal block form without affecting the value of the
determinant. Accordingly, the determinant of an upper or lower triangular block matrix
whose diagonal blocks are A11 and A22, is

|A| = |A11| |A22|. (1.3.2)

Partitioning is done to accommodate further operations such as matrix multiplication.
Let A and B be two matrices whose product AB is defined. Suppose that we consider a
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2× 2 partitioning of A and B into sub-matrices; if the multiplication is performed treating
the sub-matrices as if they were scalar quantities, the following format is obtained:

AB =
[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
.

If all the products of sub-matrices on the right-hand side are defined, then we say that A

and B are conformably partitioned for the product AB. Let A be a n × n matrix whose
determinant is defined. Let us consider the 2 × 2 partitioning

A =
[
A11 A12

A21 A22

]
where A11 is r × r, A22 is s × s, r + s = n.

Then, A12 is r × s and A21 is s × r . In this case, the first row block is [A11 A12] and
the second row block is [A21 A22]. When evaluating a determinant, we can add linear
functions of rows to any other row or linear functions of rows to other blocks of rows
without affecting the value of the determinant. What sort of a linear function of the first
row block could be added to the second row block so that a null matrix O appears in the
position of A21? It is −A21A

−1
11 times the first row block. Then, we have

|A| =
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ =
∣∣∣∣
A11 A12

O A22 − A21A
−1
11 A12

∣∣∣∣ .

This is a triangular block matrix and hence its determinant is the product of the determi-
nants of the diagonal blocks. That is,

|A| = |A11| |A22 − A21A
−1
11 A12|, |A11| �= 0.

From symmetry, it follows that

|A| = |A22| |A11 − A12A
−1
22 A21|, |A22| �= 0. (1.3.3)

Let us now examine the inverses of partitioned matrices. Let A and A−1 be conformably
partitioned for the product AA−1. Consider a 2 × 2 partitioning of both A and A−1. Let

A =
[
A11 A12

A21 A22

]
and A−1 =

[
A11 A12

A21 A22

]
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where A11 and A11 are r × r and A22 and A22 are s × s with r + s = n, A is n × n and
nonsingular. AA−1 = I gives the following:

[
A11 A12

A21 A22

] [
A11 A12

A21 A22

]
=
[
Ir O

O Is

]
.

That is,

A11A
11 + A12A

21 = Ir (i)

A11A
12 + A12A

22 = O (ii)

A21A
11 + A22A

21 = O (iii)

A21A
12 + A22A

22 = Is. (iv)

From (ii), A12 = −A−1
11 A12A

22. Substituting in (iv),

A21[−A−1
11 A12A

22] + A22A
22 = Is ⇒ [A22 − A21A

−1
11 A12]A22 = Is.

That is,
A22 = (A22 − A21A

−1
11 A12)

−1, |A11| �= 0, (1.3.4)

and, from symmetry, it follows that

A11 = (A11 − A12A
−1
22 A21)

−1, |A22| �= 0 (1.3.5)

A11 = (A11 − A12(A22)−1A21)−1, |A22| �= 0 (1.3.6)

A22 = (A22 − A21(A11)−1A12)−1, |A11| �= 0. (1.3.7)

The rectangular components A12, A21, A
12, A21 can also be evaluated in terms of the sub-

matrices by making use of Eqs. (i)–(iv).

1.4. Eigenvalues and Eigenvectors

Let A be n × n matrix, X be an n × 1 vector, and λ be a scalar quantity. Consider the
equation

AX = λX ⇒ (A − λI)X = O.

Observe that X = O is always a solution. If this equation has a non-null vector X as a
solution, then the determinant of the coefficient matrix must be zero because this matrix
must be singular. If the matrix (A − λI) were nonsingular, its inverse (A − λI)−1 would
exist and then, on pre-multiplying (A− I )X = O by (A−λI)−1, we would have X = O,
which is inadmissible since X �= O. That is,

|A − λI | = 0, λ being a scalar quantity. (1.4.1)
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Since the matrix A is n × n, equation (1.4.1) has n roots, which will be denoted by
λ1, . . . , λn. Then

|A − λI | = (λ1 − λ)(λ2 − λ) · · · (λn − λ), AXj = λjXj .

Then, λ1, . . . , λn are called the eigenvalues of A and Xj �= O, an eigenvector corre-
sponding to the eigenvalue λj .

Example 1.4.1. Compute the eigenvalues and eigenvectors of the matrix A =
[
1 1
1 2

]
.

Solution 1.4.1. Consider the equation

|A − λI | = 0 ⇒
∣∣∣∣
[
1 1
1 2

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0 ⇒
∣∣∣∣
1 − λ 1
1 2 − λ

∣∣∣∣ = 0 ⇒ (1 − λ)(2 − λ) − 1 = 0 ⇒ λ2 − 3λ + 1 = 0 ⇒

λ = 3 ± √
(9 − 4)

2
⇒ λ1 = 3

2
+

√
5

2
, λ2 = 3

2
−

√
5

2
.

An eigenvector X1 corresponding to λ1 = 3
2 +

√
5
2 is given by AX1 = λ1X1 or (A −

λ1I )X1 = O. That is,[
1 − (32 +

√
5
2 ) 1

1 2 − (32 +
√
5
2 )

][
x1
x2

]
=
[
0
0

]
⇒

(
− 1

2
−

√
5

2

)
x1 + x2 = 0 , (i)

x1 +
(1
2

−
√
5

2

)
x2 = 0. (ii)

Since A − λ1I is singular, both (i) and (ii) must give the same solution. Letting x2 = 1 in

(ii), x1 = −1
2 +

√
5
2 . Thus, one solution X1 is

X1 =
[
−1

2 +
√
5
2

1

]
.

Any nonzero constant multiple of X1 is also a solution to (A − λ1I )X1 = O. An eigen-
vector X2 corresponding to the eigenvalue λ2 is given by (A − λ2I )X2 = O. That is,

(
− 1

2
+

√
5

2

)
x1 + x2 = 0, (iii)

x1 +
(1
2

+
√
5

2

)
x2 = 0. (iv)
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Hence, one solution is

X2 =
[
−1

2 −
√
5
2

1

]
.

Any nonzero constant multiple of X2 is also an eigenvector corresponding to λ2.

Even if all elements of a matrix A are real, its eigenvalues can be real, positive,
negative, zero, irrational or complex. Complex and irrational roots appear in pairs. If
a + ib, i = √

(−1), and a, b real, is an eigenvalue, then a − ib is also an eigenvalue
of the same matrix. The following properties can be deduced from the definition:

(1): The eigenvalues of a diagonal matrix are its diagonal elements;

(2): The eigenvalues of a triangular (lower or upper) matrix are its diagonal elements;

(3): If any eigenvalue is zero, then the matrix is singular and its determinant is zero;

(4): If λ is an eigenvalue of A and if A is nonsingular, then 1
λ
is an eigenvalue of A−1;

(5): If λ is an eigenvalue of A, then λk is an eigenvalue of Ak, k = 1, 2, . . ., their associ-
ated eigenvector being the same;

(7): The eigenvalues of an identity matrix are unities; however, the converse need not be
true;

(8): The eigenvalues of a scalar matrix with diagonal elements a, a, . . . , a are a repeated
n times when the order of A is n; however, the converse need not be true;

(9): The eigenvalues of an orthonormal matrix, AA′ = I, A′A = I , are ±1; however, the
converse need not be true;

(10): The eigenvalues of an idempotent matrix, A = A2, are ones and zeros; however, the
converse need not be true. The only nonsingular idempotent matrix is the identity matrix;

(11): At least one of the eigenvalues of a nilpotent matrix of order r , that is, A �=
O, . . . , Ar−1 �= O, Ar = O, is null;

(12): For an n × n matrix, both A and A′ have the same eigenvalues;
(13): The eigenvalues of a symmetric matrix are real;

(14): The eigenvalues of a skew symmetric matrix can only be zeros and purely imaginary
numbers;

(15): The determinant of A is the product of its eigenvalues: |A| = λ1λ2 · · · λn ;

(16): The trace of a square matrix is equal to the sum of its eigenvalues;

(17): If A = A′ (symmetric), then the eigenvectors corresponding to distinct eigenvalues
are orthogonal;

(18): If A = A′ and A is n × n, then there exists a full set of n eigenvectors which are
linearly independent, even if some eigenvalues are repeated.
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Result (16) requires some explanation. We have already derived the following two
results:

|A| =
∑
i1

· · ·
∑
in

(−1)ρa1i1a2i2 · · · anin (v)

and
|A − λI | = (λ1 − λ)(λ2 − λ) · · · (λn − λ). (vi)

Equation (vi) yields a polynomial of degree n in λ where λ is a variable. When λ = 0,
we have |A| = λ1λ2 · · · λn, the product of the eigenvalues. The term containing (−1)nλn,
when writing |A − λI | in the format of equation (v), can only come from the term (a11 −
λ)(a22 − λ) · · · (ann − λ) (refer to the explicit form for the 3 × 3 case discussed earlier).
Two factors containing λ will be missing in the next term with the highest power of λ.
Hence, (−1)nλn and (−1)n−1λn−1 can only come from the term (a11−λ) · · · (ann −λ), as
can be seen from the expansion in the 3 × 3 case discussed in detail earlier. From (v) the
coefficient of (−1)n−1λn−1 is a11 + a22 + · · · + ann = tr(A) and from (vi), the coefficient
of (−1)n−1λn−1 is λ1 + · · · + λn. Hence tr(A) = λ1 + · + λn = sum of the eigenvalues of
A. This does not mean that λ1 = a11, λ2 = a22, . . . , λn = ann, only that the sums will be
equal.

Matrices in the Complex Domain When the elements in A = (aij ) can also be complex
quantities, then a typical element in A will be of the form a + ib, i = √

(−1), and a, b

real. The complex conjugate of A will be denoted by Ā and the conjugate transpose will
be denoted by A∗. Then, for example,

A =
⎡
⎣
1 + i 2i 3 − i

4i 5 1 + i

2 − i i 3 + i

⎤
⎦ ⇒ Ā =

⎡
⎣
1 − i −2i 3 + i

−4i 5 1 − i

2 + i −i 3 − i

⎤
⎦ , A∗ =

⎡
⎣
1 − i −4i 2 + i

−2i 5 −i

3 + i 1 − i 3 − i

⎤
⎦ .

Thus, we can also write A∗ = (Ā)′ = ¯(A′). When a matrix A is in the complex domain,
we may write it as A = A1 + iA2 where A1 and A2 are real matrices. Then Ā = A1 − iA2

and A∗ = A′
1 − iA′

2. In the above example,

A =
⎡
⎣
1 0 3
0 5 1
2 0 3

⎤
⎦+ i

⎡
⎣

1 2 −1
4 0 1

−1 1 1

⎤
⎦ ⇒

A1 =
⎡
⎣
1 0 3
0 5 1
2 0 3

⎤
⎦ , A2 =

⎡
⎣

1 2 −1
4 0 1

−1 1 1

⎤
⎦ .

A Hermitian Matrix If A = A∗, then A is called a Hermitian matrix. In the representation
A = A1 + iA2, if A = A∗, then A1 = A′

1 or A1 is real symmetric, and A2 = −A′
2 or A2

is real skew symmetric. Note that when X is an n × 1 vector, X∗X is real. Let



Mathematical Preliminaries 35

X =
⎡
⎣

2
3 + i

2i

⎤
⎦ ⇒ X̄ =

⎡
⎣

2
3 − i

−2i

⎤
⎦ , X∗ = [2 3 − i − 2i],

X∗X = [2 3 − i − 2i]
⎡
⎣

2
3 + i

2i

⎤
⎦ = (22 + 02) + (32 + 12) + (02 + (−2)2) = 18.

Consider the eigenvalues of a Hermitian matrix A, which are the solutions of |A−λI | = 0.
As in the real case, λ may be real, positive, negative, zero, irrational or complex. Then, for
X �= O,

AX = λX ⇒ (i)

X∗A∗ = λ̄X∗ (ii)

by taking the conjugate transpose. Since λ is scalar, its conjugate transpose is λ̄. Pre-
multiply (i) by X∗ and post-multiply (ii) by X. Then for X �= O, we have

X∗AX = λX∗X (iii)

X∗A∗X = λ̄X∗X. (iv)

When A is Hermitian, A = A∗, and so, the left-hand sides of (iii) and (iv) are the same.
On subtracting (iv) from (iii), we have 0 = (λ − λ̄)X∗X where X∗X is real and positive,
and hence λ− λ̄ = 0, which means that the imaginary part is zero or λ is real. If A is skew
Hermitian, then we end up with λ + λ̄ = 0 ⇒ λ is zero or purely imaginary. The above
procedure also holds for matrices in the real domain. Thus, in addition to properties (13)
and (14), we have the following properties:

(19) The eigenvalues of a Hermitian matrix are real; however, the converse need not be
true;
(20) The eigenvalues of a skew Hermitian matrix are zero or purely imaginary; however,
the converse need not be true.

1.5. Definiteness of Matrices, Quadratic and Hermitian Forms

Let X be an n × 1 vector of real scalar variables x1, . . . , xn so that X′ = (x1, . . . , xn).
Let A = (aij ) be a real n × n matrix. Then, all the elements of the quadratic form,
u = X′AX, are of degree 2. One can always write A as an equivalent symmetric matrix
when A is the matrix in a quadratic form. Hence, without any loss of generality, we may
assume A = A′ (symmetric) when A appears in a quadratic form u = X′AX.
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Definiteness of a quadratic form and definiteness of a matrix are only defined for A = A′
(symmetric) in the real domain and for A = A∗ (Hermitian) in the complex domain.
Hence, the basic starting condition is that either A = A′ or A = A∗. If for all non-null
X, that is, X �= O, X′AX > 0, A = A′, then A is said to be a positive definite
matrix and X′AX > 0 is called a positive definite quadratic form. If for all non-null X,
X∗AX > 0, A = A∗, then A is referred to as a Hermitian positive definite matrix and the
corresponding Hermitian form X∗AX > 0, as Hermitian positive definite. Similarly, if
for all non-null X, X′AX ≥ 0, X∗AX ≥ 0, then A is positive semi-definite or Hermitian
positive semi-definite. If for all non-null X, X′AX < 0, X∗AX < 0, then A is negative
definite and if X′AX ≤ 0, X∗AX ≤ 0, then A is negative semi-definite. The standard
notations being utilized are as follows:

A > O (A and X′AX > 0 are real positive definite; (O is a capital o and not zero)
A ≥ O (A and X′AX ≥ 0 are positive semi-definite)
A < O (A and X′AX < 0 are negative definite)
A ≤ O (A and X′AX ≤ 0 are negative semi-definite).

All other matrices, which do no belong to any of those four categories, are called indefinite
matrices. That is, for example, A is such that for some X, X′AX > 0, and for some other
X, X′AX < 0, then A is an indefinite matrix. The corresponding Hermitian cases are:

A > O, X∗AX > 0 (Hermitian positive definite)

A ≥ O, X∗AX ≥ 0 (Hermitian positive semi-definite)

A < O, X∗AX < 0 (Hermitian negative definite)

A ≤ O, X∗AX ≤ 0 (Hermitian negative semi-definite). (1.5.1)

In all other cases, the matrix A and the Hermitian form X∗AX are indefinite. Certain
conditions for the definiteness of A = A′ or A = A∗ are the following:
(1) All the eigenvalues of A are positive ⇔ A > O; all eigenvalues are greater than or
equal to zero ⇔ A ≥ O; all eigenvalues are negative ⇔ A < O; all eigenvalues are ≤ 0
⇔ A ≤ O; all other matrices A = A′ or A = A∗ for which some eigenvalues are positive
and some others are negative are indefinite.
(2) A = A′ or A = A∗ and all the leading minors of A are positive (leading minors are
determinants of the leading sub-matrices, the r-th leading sub-matrix being obtained by
deleting all rows and columns from the (r + 1)-th onward), then A > O; if the leading
minors are ≥ 0, then A ≥ O; if all the odd order minors are negative and all the even
order minors are positive, then A < O; if the odd order minors are ≤ 0 and the even order



Mathematical Preliminaries 37

minors are ≥ 0, then A ≤ O; all other matrices are indefinite. If A �= A′ or A �= A∗, then
no definiteness can be defined in terms of the eigenvalues or leading minors. Let

A =
[
2 0
0 5

]
.

Note that A is real symmetric as well as Hermitian. Since X′AX = 2x2
1 + 5x2

2 > 0 for
all real x1 and x2 as long as both x1 and x2 are not both equal to zero, A > O (positive

definite). X∗AX = 2|x1|2 + 5|x2|2 = 2[
√

(x2
11 + x2

12)]2 + 5[
√

(x2
21 + x2

22)]2 > 0 for all
x11, x12, x21, x22, as long as all are not simultaneously equal to zero, where x1 = x11 +
ix12, x2 = x21 + ix22 with x11, x12, x21, x22 being real and i = √

(−1). Consider

B =
[−1 0

0 −4

]
, C =

[
2 0
0 −6

]
.

Then, B < O and C is indefinite. Consider the following symmetric matrices:

A1 =
[
5 2
2 4

]
, A2 =

[
2 2
2 1

]
, A3 =

[−2 1
1 −5

]
.

The leading minors of A1 are 5 > 0,

∣∣∣∣
5 2
2 4

∣∣∣∣ = 16 > 0. The leading minors of A2 are

2 > 0,

∣∣∣∣
2 2
2 1

∣∣∣∣ = −2 < 0. The leading minors of A3 are −2 < 0,

∣∣∣∣
−2 1
1 −5

∣∣∣∣ = 9 > 0.

Hence A1 > O, A3 < O and A2 is indefinite. The following results will be useful when
reducing a quadratic form or Hermitian form to its canonical form.
(3) For every real A = A′ (symmetric), there exists an orthonormal matrix Q, QQ′ =
I, Q′Q = I such that Q′AQ = diag(λ1, . . . , λn) where λ1, . . . , λn are the eigenvalues of
the n × n matrix A and diag(. . .) denotes a diagonal matrix. In this case, a real quadratic
form will reduce to the following linear combination:

X′AX = Y ′Q′AQY = Y ′diag(λ1, . . . , λn)Y = λ1y
2
1 + · · · + λny

2
n, Y = Q′X. (1.5.2)

(4): For every Hermitian matrix A = A∗, there exists a unitary matrix U , U∗U =
I, UU∗ = I such that

X∗AX = Y ∗diag(λ1, . . . , λn)Y = λ1|y1|2 + · · · + λn|yn|2, Y = U∗X. (1.5.3)

When A > O (real positive definite or Hermitian positive definite) then all the λj ’s are
real and positive. Then, X′AX and X∗AX are strictly positive.
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Let A and B be n × n matrices. If AB = BA, in which case we say that A and B

commute, then both A and B can be simultaneously reduced to their canonical forms (di-
agonal forms with the diagonal elements being the eigenvalues) with the same orthonormal
or unitary matrix P , PP ′ = I, P ′P = I if P is real and PP ∗ = I, P ∗P = I if complex,
such that P ′AP = diag(λ1, . . . , λn) and P ′BP = diag(μ1, . . . , μn) where λ1, . . . , λn

are the eigenvalues of A and μ1, . . . , μn are the eigenvalues of B. In the complex case,
P ∗AP = diag(λ1, . . . , λn) and P ∗BP = diag(μ1, . . . , μn). Observe that the eigenvalues
of Hermitian matrices are real.

1.5.1. Singular value decomposition

For an n × n symmetric matrix A = A′, we have stated that there exists an n × n

orthonormal matrix P , PP ′ = In, P ′P = In such that P ′AP = D = diag(λ1, . . . , λn),
where λ1, . . . , λn are the eigenvalues of A. If a square matrix A is not symmetric, there
exists a nonsingular matrix Q such that Q−1AQ = D = diag(λ1, . . . , λn) when the rank
of A is n. If the rank is less than n, then we may be able to obtain a nonsingular Q such
that the above representation holds; however, this is not always possible. If A is a p × q

rectangular matrix for p �= q or if p = q and A �= A′, then can we find two orthonormal

matrices U and V such that A = U

[
Λ O

O O

]
V ′ where Λ = diag(λ1, . . . , λk), UU ′ =

Ip, U ′U = Ip, V V ′ = Iq, V ′V = Iq and k is the rank of A. This representation is
equivalent to the following:

A = U

[
Λ O

O O

]
V ′ = U(1)ΛV ′

(1) (i)

where U(1) = [U1, . . . , Uk], V(1) = [V1, . . . , Vk], Uj being the normalized eigenvector
of AA′ corresponding to the eigenvalue λ2j and Vj , the normalized eigenvector of A′A
corresponding to the eigenvalue λ2j . The representation given in (i) is known as the singular
value decomposition of A and λ1 > 0, . . . , λk > 0 are called the singular values of A.
Then, we have

AA′ = U

[
Λ2 O

O O

]
U ′ = U(1)Λ

2U ′
(1), A′A = V

[
Λ2 O

O O

]
V ′ = V(1)Λ

2V ′
(1). (ii)

Thus, the procedure is the following: If p ≤ q, compute the nonzero eigenvalues of AA′,
otherwise compute the nonzero eigenvalues of A′A. Denote them by λ21, . . . , λ

2
k where k is

the rank ofA. Construct the following normalized eigenvectorsU1, . . . , Uk fromAA′. This
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gives U(1) = [U1, . . . , Uk]. Then, by using the same eigenvalues λ2j , j = 1, . . . , k, deter-
mine the normalized eigenvectors, V1, . . . , Vk, from A′A, and let V(1) = [V1, . . . , Vk]. Let
us verify the above statements with the help of an example. Let

A =
[
1 −1 1
1 1 0

]
.

Then,

AA′ =
[
3 0
0 2

]
, A′A =

⎡
⎣
2 0 1
0 2 −1
1 −1 1

⎤
⎦ .

The eigenvalues of AA′ are λ21 = 3 and λ22 = 2. The corresponding normalized eigenvec-
tors of AA′ are U1 and U2, where

U1 =
[
1
0

]
, U2 =

[
0
1

]
, so that U(1) = [U1, U2] =

[
1 0
0 1

]
.

Now, by using λ21 = 3 and λ22 = 2, compute the normalized eigenvectors from A′A. They
are:

V1 = 1√
3

⎡
⎣

1
−1
1

⎤
⎦ , V2 = 1√

2

⎡
⎣
1
1
0

⎤
⎦ , so that V ′

(1) =
[

1√
3

− 1√
3

1√
3

1√
2

1√
2

0

]
.

Then Λ = diag(
√
3,

√
2). Also,

U(1)ΛV ′
(1) =

[
1 0
0 1

] [√
3 0
0

√
2

][ 1√
3

− 1√
3

1√
3

1√
2

1√
2

0

]
=
[
1 −1 1
1 1 0

]
= A.

This establishes the result. Observe that

AA′ = [U(1)ΛV ′
(1)][U(1)ΛV ′

(1)]′ = U(1)Λ
2U ′

(1)

A′A = [U(1)ΛV ′
(1)]′[U(1)ΛV ′

(1)] = V(1)Λ
2V ′

(1)

Λ2 = diag(λ21, λ
2
2).

1.6. Wedge Product of Differentials and Jacobians

If y = f (x) is an explicit function of x, where x and y are real scalar variables, then
we refer to x as the independent variable and to y as the dependent variable. In the present
context, “independent” means that values for x are preassigned and the corresponding
values of y are evaluated from the formula y = f (x). The standard notations for small
increment in x and the corresponding increment in y are Δx and Δy, respectively. By



40 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

convention, Δx > 0 and Δy can be positive, negative or zero depending upon the function
f . If Δx goes to zero, then the limit is zero. However, if Δx goes to zero in the presence
of the ratio Δy

Δx
, then we have a different situation. Consider the identity

Δy ≡
(Δy

Δx

)
Δx ⇒ dy = A dx, A = dy

dx
. (1.6.1)

This identity can always be written due to our convention Δx > 0. Consider Δx → 0. If
Δy
Δx

attains a limit at some stage as Δx → 0, let us denote it by A = limΔx→0
Δy
Δx

, then the
value of Δx at that stage is the differential of x, namely dx, and the corresponding Δy is
dy and A is the ratio of the differentials A = dy

dx . If x1, . . . , xk are independent variables
and if y = f (x1, . . . , xk), then by convention Δx1 > 0, . . . , Δxk > 0. Thus, in light of
(1.6.1), we have

dy = ∂f

∂x1
dx1 + · · · + ∂f

∂xk

dxk (1.6.2)

where ∂f
∂xj

is the partial derivative of f with respect to xj or the derivative of f with respect
to xj , keeping all other variables fixed.

Wedge Product of Differentials Let dx and dy be differentials of the real scalar variables
x and y. Then the wedge product or skew symmetric product of dx and dy is denoted by
dx ∧ dy and is defined as

dx ∧ dy = −dy ∧ dx ⇒ dx ∧ dx = 0 and dy ∧ dy = 0. (1.6.3)

This definition indicates that higher order wedge products involving the same differential
are equal to zero. Letting

y1 = f1(x1, x2) and y2 = f2(x1, x2),

it follows from the basic definitions that

dy1 = ∂f1

∂x1
dx1 + ∂f1

∂x2
dx2 and dy2 = ∂f2

∂x1
dx1 + ∂f2

∂x2
dx2.

By taking the wedge product and using the properties specified in (1.6.3), that is, dx1 ∧
dx1 = 0, dx2 ∧ dx2 = 0, dx2 ∧ dx1 = −dx1 ∧ dx2, we have

dy1 ∧ dy2 =
[ ∂f1

∂x1

∂f2

∂x2
− ∂f1

∂x2

∂f2

∂x1

]
dx1 ∧ dx2

=
∣∣∣∣∣
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

∣∣∣∣∣ dx1 ∧ dx2 .
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In the general case we have the following corresponding result:

dy1 ∧ . . . ∧ dyk =

∣∣∣∣∣∣∣

∂f1
∂x1

. . .
∂f1
∂xk

...
. . .

...
∂fk

∂x1
. . .

∂fk

∂xk

∣∣∣∣∣∣∣
dx1 ∧ . . . ∧ dxk (1.6.4)

dY = J dX ⇒ dX = 1

J
dY if J �= 0

where dX = dx1 ∧ . . . ∧ dxk, dY = dy1 ∧ . . . ∧ dyk and J = |( ∂fi

∂xj
)| = the determinant of

the matrix of partial derivatives where the (i, j)-th element is the partial derivative of fi

with respect to xj . In dX and dY, the individual real scalar variables can be taken in any
order to start with. However, for each interchange of variables, the result is to be multiplied
by −1.

Example 1.6.1. Consider the transformation x1 = r cos2 θ, x2 = r sin2 θ, 0 ≤ r <

∞, 0 ≤ θ ≤ π
2 , x1 ≥ 0, x2 ≥ 0. Determine the relationship between dx1 ∧ dx2 and

dr ∧ dθ .

Solution 1.6.1. Taking partial derivatives, we have

∂x1

∂r
= cos2 θ,

∂x1

∂θ
= −2r cos θ sin θ,

∂x2

∂r
= sin2 θ,

∂x2

∂θ
= 2r cos θ sin θ.

Then, the determinant of the matrix of partial derivatives is given by
∣∣∣∣
∂x1
∂r

∂x1
∂θ

∂x2
∂r

∂x2
∂θ

∣∣∣∣ =
∣∣∣∣
cos2 θ −2r cos θ sin θ

sin2 θ 2r cos θ sin θ

∣∣∣∣ = 2r cos θ sin θ

since cos2 θ + sin2 θ = 1. Hence,

dx1 ∧ dx2 = 2r cos θ sin θ dr ∧ dθ, J = 2r cos θ sin θ.

We may also establish this result by direct evaluation.

dx1 = ∂x1

∂r
dr + ∂x1

∂θ
dθ = cos2 θ dr − 2r cos θ sin θ dθ,

dx2 = ∂x2

∂r
dr + ∂x2

∂θ
dθ = sin2 θ dr + 2r cos θ sin θ dθ,
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dx1 ∧ dx2 = cos2 θ sin2 θ dr ∧ dr + cos2 θ(2r cos θ sin θ) dr ∧ dθ

− sin2 θ(2r cos θ sin θ) dθ ∧ dr − (2r cos θ sin θ)2dθ ∧ dθ

= 2r cos θ sin θ [cos2 θ dr ∧ dθ − sin2 θ dθ ∧ dr], [dr ∧ dr = 0, dθ ∧ dθ = 0]
= 2r cos θ sin θ [cos2 θ + sin2 θ] dr ∧ dθ, [dθ ∧ dr = −dr ∧ dθ]
= 2r cos θ sin θ dr ∧ dθ.

Linear Transformation Consider the linear transformation Y = AX where

Y =
⎡
⎢⎣

y1
...

yp

⎤
⎥⎦ , X =

⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ , A =

⎡
⎢⎣

a11 . . . a1p
...

. . .
...

ap1 . . . app

⎤
⎥⎦ .

Then, ∂yi

∂xj
= aij ⇒ (

∂yi

∂xj
) = (aij ) = A. Then dY = |A| dX or J = |A|. Hence, the

following result:

Theorem 1.6.1. Let X and Y be p × 1 vectors of distinct real variables and A = (aij )

be a constant nonsingular matrix. Then, the transformation Y = AX is one to one and

Y = AX, |A| �= 0 ⇒ dY = |A| dX. (1.6.5)

Let us consider the complex case. Let X̃ = X1 + iX2 where a tilde indicates that the
matrix is in the complex domain, X1 and X2 are real p × 1 vectors if X̃ is p × 1, and
i = √

(−1). Then, the wedge product dX̃ is defined as dX̃ = dX1 ∧ dX2. This is the
general definition in the complex case whatever be the order of the matrix. If Z̃ is m × n

and if Z̃ = Z1 + iZ2 where Z1 and Z2 are m × n and real, then dZ̃ = dZ1 ∧ dZ2. Letting
the constant p × p matrix A = A1 + iA2 where A1 and A2 are real and p × p, and letting
Ỹ = Y1 + iY2 be p × 1 where Y1 and Y2 are real and p × 1, we have

Ỹ = AX̃ ⇒ Y1 + iY2 = [A1 + iA2][X1 + iX2]
= [A1X1 − A2X2] + i[A1X2 + A2X1] ⇒

Y1 = A1X1 − A2X2, Y2 = A1X2 + A2X1 ⇒[
Y1

Y2

]
=
[
A1 −A2

A2 A1

] [
X1

X2

]
. (i)

Now, applying Result 1.6.1 on (i), it follows that

dY1 ∧ dY2 = det

[
A1 −A2

A2 A1

]
dX1 ∧ dX2. (ii)
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That is,

dỸ = det

[
A1 −A2

A2 A1

]
dX̃ ⇒ dỸ = J dX̃ (iii)

where the Jacobian can be shown to be the absolute value of the determinant of A. If
the determinant of A is denoted by det(A) and its absolute value, by |det(A)|, and if
det(A) = a + ib with a, b real and i = √

(−1) then the absolute value of the determinant
is +√

(a + ib)(a − ib) = +√(a2 + b2) = +√[det(A)][det(A∗)] = +√[det(AA∗)]. It
can be easily seen that the above Jacobian is given by

J = det

[
A1 −A2

A2 A1

]
= det

[
A1 −iA2

−iA2 A1

]

(multiplying the second row block by −i and second column block by i)

= det

[
A1 − iA2 A1 − iA2

−iA2 A1

]
(adding the second row block to the first row block)

= det(A1 − iA2) det

[
I I

−iA2 A1

]
= det(A1 − iA2)det(A1 + iA2)

(adding (−1) times the first p columns to the last p columns)

= [det(A)] [det(A∗)] = [det(AA∗)] = |det(A)|2.

Then, we have the following companion result of Theorem 1.6.1.

Theorem 1.6a.1. Let X̃ and Ỹ be p × 1 vectors in the complex domain, and let A be a
p × p nonsingular constant matrix that may or may not be in the complex domain. If C is
a constant p × 1 vector, then

Ỹ = AX̃ + C, det(A) �= 0 ⇒ dỸ = |det(A)|2dX̃ = |det(AA∗)| dX̃. (1.6a.1)

For the results that follow, the complex case can be handled in a similar way and hence,
only the final results will be stated. For details, the reader may refer to Mathai (1997). A
more general result is the following:

Theorem 1.6.2. Let X and Y be real m × n matrices with distinct real variables as
elements. Let A be a m × m nonsingular constant matrix and C be a m × n constant
matrix. Then

Y = AX + C, det(A) �= 0 ⇒ dY = |A|ndX. (1.6.6)

The companion result is stated in the next theorem.
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Theorem 1.6a.2. Let X̃ and Ỹ be m × n matrices in the complex domain. Let A be a
constant m×m nonsingular matrix that may or may not be in the complex domain, and C

be a m × n constant matrix. Then

Ỹ = AX̃ + C, det(A) �= 0 ⇒ dỸ = |det(AA∗)|ndX̃. (1.6a.2)

For proving the Theorems 1.6.2 and 1.6a.2, consider the columns of Y and X. Then apply
Theorems 1.6.1 and 1.6a.1 to establish the results. If X, X̃, Y, Ỹ are as defined in Theo-
rems 1.6.2 and 1.6a.2 and if B is a n × n nonsingular constant matrix, then we have the
following results:

Theorems 1.6.3 and 1.6a.3. Let X, X̃, Y, Ỹ and C be m × n matrices with distinct
elements as previously defined, C be a constant matrix and B be a n × n nonsingular
constant matrix. Then

Y = XB + C, det(B) �= 0 ⇒ dY = |B|mdX (1.6.7)

and
Ỹ = X̃B + C, det(B) �= 0 ⇒ dỸ = |det(BB∗)|mdX̃. (1.6a.3)

For proving these results, consider the rows of Y, Ỹ , X, X̃ and then apply Theo-
rems 1.6.1,1.6a.1 to establish the results. Combining Theorems 1.6.2 and 1.6.3, as well
as Theorems 1.6a.2 and 1.6a.3, we have the following results:

Theorems 1.6.4 and 1.6a.4. Let X, X̃, Y, Ỹ be m × n matrices as previously defined,
and let A be m × m and B be n × n nonsingular constant matrices. Then

Y = AXB, det(A) �= 0, det(B) �= 0 ⇒ dY = |A|n|B|mdX (1.6.8)

and

Ỹ = AX̃B, det(A) �= 0, det(B) �= 0 ⇒ dỸ = |det(AA∗)|n|det(BB∗)|mdX̃. (1.6a.4)

We now consider the case of linear transformations involving symmetric and Hermitian
matrices.

Theorems 1.6.5 and 1.6a.5. Let X = X′, Y = Y ′ be real symmetric p×p matrices and
let X̃ = X̃∗, Ỹ = Ỹ ∗ be p × p Hermitian matrices. If A is a p × p nonsingular constant
matrix, then

Y = AXA′, Y = Y ′, X = X′, det(A) �= 0 ⇒ dY = |A|p+1dX (1.6.9)

and
Ỹ = AX̃A∗, det(A) �= 0 ⇒ dỸ = |det(AA∗)|pdX̃ (1.6a.5)

for X̃ = X̃∗ or X̃ = −X̃∗.
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The proof involves some properties of elementary matrices and elementary transforma-
tions. Elementary matrices were introduced in Sect. 1.2.1. There are two types of basic
elementary matrices, the E and F types where the E type is obtained by multiplying any
row (column) of an identity matrix by a nonzero scalar and the F type is obtained by
adding any row to any other row of an identity matrix. A combination of E and F type
matrices results in a G type matrix where a constant multiple of one row of an identity
matrix is added to any other row. The G type is not a basic elementary matrix. By per-
forming successive pre-multiplication with E, F and G type matrices, one can reduce a
nonsingular matrix to a product of the basic elementary matrices of the E and F types, ob-
serving that the E and F type elementary matrices are nonsingular. This result is needed
to establish Theorems 1.6.5 and 1.6a.5. Let A = E1E2F1 · · · ErFs for some E1, . . . , Er

and F1, . . . , Fs . Then

AXA′ = E1E2F1 · · · ErFsXF ′
sE

′
r · · · E′

2E
′
1.

Let Y1 = FsXF ′
s in which case the connection between dX and dY1 can be determined

from Fs . Now, letting Y2 = ErY1E
′
r , the connection between dY2 and dY1 can be similarly

determined from Er . Continuing in this manner, we finally obtain the connection between
dY and dX, which will give the Jacobian as |A|p+1 for the real case. In the complex case,
the procedure is parallel.

We now consider two basic nonlinear transformations. In the first case, X is a p × p

nonsingular matrix going to its inverse, that is, Y = X−1.

Theorems 1.6.6 and 1.6a.6. Let X and X̃ be p × p real and complex nonsingular ma-
trices, respectively. Let the regular inverses be denoted by Y = X−1 and Ỹ = X̃−1,

respectively. Then, ignoring the sign,

Y = X−1 ⇒ dY =

⎧⎪⎨
⎪⎩

|X|−2pdX for a general X

|X|−(p+1)dX for X = X′

|X|−(p−1)dX for X = −X′
(1.6.10)

and

Ỹ = X̃−1 ⇒ dỸ =
{

|det(X̃X̃∗)|−2p for a generalX̃

|det(X̃X̃∗)|−p for X̃ = X̃∗ or X̃ = −X̃∗.
(1.6a.6)

The proof is based on the following observations: In the real case XX−1 = Ip ⇒
(dX)X−1 + X(dX−1) = O where (dX) represents the matrix of differentials in X. This
means that

(dX−1) = −X−1(dX)X−1.
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The differentials are appearing only in the matrices of differentials. Hence this situation
is equivalent to the general linear transformation considered in Theorems 1.6.4 and 1.6.5
where X and X−1 act as constants. The result is obtained upon taking the wedge product
of differentials. The complex case is parallel.

The next results involve real positive definite matrices or Hermitian positive definite
matrices that are expressible in terms of triangular matrices and the corresponding con-
nection between the wedge product of differentials. Let X and X̃ be complex p × p real
positive definite and Hermitian positive definite matrices, respectively. Let T = (tij ) be a
real lower triangular matrix with tij = 0, i < j, tjj > 0, j = 1, . . . , p, and the tij ’s,
i ≥ j, be distinct real variables. Let T̃ = (t̃ij ) be a lower triangular matrix with t̃ij = 0, for
i < j , the t̃ij ’s, i > j, be distinct complex variables, and t̃jj , j = 1, . . . , p, be positive
real variables. Then, the transformations X = T T ′ in the real case and X̃ = T̃ T̃ ∗ in the
complex case can be shown to be one-to-one, which enables us to write dX in terms of dT
and vice versa, uniquely, and dX̃ in terms of dT̃ , uniquely. We first consider the real case.
When p = 2,

[
x11 x12
x12 x22

]
, x11 > 0, x22 > 0, x21 = x12, x11x22 − x2

12 > 0

due to positive definiteness of X, and

X = T T ′ =
[
t11 0
t21 t22

] [
t11 t21
0 t22

]
=
[

t211 t21t11
t21t11 t221 + t222

]
⇒

∂x11

∂t11
= 2t11,

∂x11

∂t21
= 0,

∂x11

∂t22
= 0

∂x22

∂t11
= 0,

∂x22

∂t21
= 2t21,

∂x22

∂t22
= 2t22

∂x12

∂t11
= t21,

∂x12

∂t21
= t11,

∂x12

∂t22
= 0.

Taking the xij ’s in the order x11, x12, x22 and the tij ’s in the order t11, t21, t22, we form the
following matrix of partial derivatives:

t11 t12 t22

x11 2t11 0 0
x21 ∗ t11 0
x22 ∗ ∗ 2t22

where an asterisk indicates that an element may be present in that position; however, its
value is irrelevant since the matrix is triangular and its determinant will simply be the
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product of its diagonal elements. It can be observed from this pattern that for a general p,

a diagonal element will be multiplied by 2 whenever xjj is differentiated with respect to
tjj , j = 1, . . . , p. Then t11 will appear p times, t22 will appear p−1 times, and so on, and
tpp will appear once along the diagonal. Hence the product of the diagonal elements will

be 2p t
p

11 t
p−1
22 · · · tpp = 2p{∏p

j=1 t
p+1−j

jj }. A parallel procedure will yield the Jacobian in
the complex case. Hence, the following results:

Theorems 1.6.7 and 1.6a.7. Let X, X̃, T and T̃ be p × p matrices where X is real pos-
itive definite, X̃ is Hermitian positive definite, and T and T̃ are lower triangular matrices
whose diagonal elements are real and positive as described above. Then the transforma-
tions X = T T ′ and X̃ = T̃ T̃ ∗ are one-to-one, and

dX = 2p{
p∏

j=1

t
p+1−j

jj } dT (1.6.11)

and

dX̃ = 2p{
p∏

j=1

t
2(p−j)+1
jj } dT̃ . (1.6a.7)

Given these introductory materials, we will explore multivariate statistical analysis
from the perspective of Special Functions. As far as possible, the material in this chapter
is self-contained. A few more Jacobians will be required when tackling transformations
involving rectangular matrices or eigenvalue problems. These will be discussed in the
respective chapters later on.

Example 1.6.2. Evaluate the following integrals: (1):
∫
X
e−X′AXdX where A > O (real

positive definite) is 3 × 3 and X is a 3 × 1 vector of distinct real scalar variables; (2):∫
X
e−tr(AXBX′)dX where X is a 2 × 3 matrix of distinct real scalar variables, A > O

(real positive definite), is 2× 2 and B > O (real positive definite) is 3× 3, A and B being
constant matrices; (3):

∫
X>O

e−tr(X)dX where X = X′ > O is a 2×2 real positive definite
matrix of distinct real scalar variables.

Solution 1.6.2.
(1) Let X′ = (x1, x2, x3), A > O. Since A > O, we can uniquely define A

1
2 = (A

1
2 )′.

Then, write X′AX = X′A 1
2A

1
2X = Y ′Y, Y = A

1
2X. It follows from Theorem 1.6.1 that

dX = |A|− 1
2 dY , and letting Y ′ = (y1, y2, y3), we have∫
X

e−X′AXdX = |A|− 1
2

∫
Y

e−(Y ′Y )dY

= |A|− 1
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−(y21+y22+y23 )dy1 ∧ dy2 ∧ dy3.
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Since ∫ ∞

−∞
e−y2j dyj = √

π, j = 1, 2, 3,

∫
X

e−X′AXdX = |A|− 1
2 (

√
π)3.

(2) Since A is a 2 × 2 positive definite matrix, there exists a 2 × 2 matrix A
1
2 that is

symmetric and positive definite. Similarly, there exists a 3×3 matrix B
1
2 that is symmetric

and positive definite. Let Y = A
1
2XB

1
2 ⇒ dY = |A| 32 |B| 22 dX or dX = |A|− 3

2 |B|−1dY
by Theorem 1.6.4. Moreover, given two matrices A1 and A2, tr(A1A2) = tr(A2A1) even
if A1A2 �= A2A1, as long as the products are defined. By making use of this property, we
may write

tr(AXBX′) = tr(A
1
2A

1
2XB

1
2B

1
2X′) = tr(A

1
2XB

1
2B

1
2X′A

1
2 )

= tr[(A 1
2XB

1
2 )(A

1
2XB

1
2 )′] = tr(YY ′)

where Y = A
1
2XB

1
2 and dY is given above. However, for any real matrix Y , whether

square or rectangular, tr(YY ′) = tr(Y ′Y ) = the sum of the squares of all the elements of
Y . Thus, we have

∫
X

e−tr(AXBX′)dX = |A|− 3
2 |B|−1

∫
Y

e−tr(YY ′)dY.

Observe that since tr(YY ′) is the sum of squares of 6 real scalar variables, the integral
over Y reduces to a multiple integral involving six integrals where each variable is over
the entire real line. Hence,

∫
Y

e−tr(YY ′)dY =
6∏

j=1

∫ ∞

−∞
e−y2j dyj =

6∏
j=1

(
√

π) = (
√

π)6.

Note that we have denoted the sum of the six y2
ij as y2

1 + · · · + y2
6 for convenience. Thus,

∫
X

e−tr(AXBX′)dX = |A|− 3
2 |B|−1(

√
π)6.

(3) In this case, X is a 2 × 2 real positive definite matrix. Let X = T T ′ where T is lower
triangular with positive diagonal elements. Then,

T =
[
t11 0
t21 t22

]
, t11 > 0, t22 > 0, T T ′ =

[
t11 0
t21 t22

] [
t11 t21
0 t22

]
=
[

t211 t11t21
t11t21 t221 + t222

]
,
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and tr(T T ′) = t211 + (t221 + t222), t11 > 0, t22 > 0, −∞ < t21 < ∞. From Theorem 1.6.7,
the Jacobian is

dX = 2p{
p∏

j=1

t
p+1−j

jj }dT = 22(t211t22) dt11 ∧ dt21 ∧ dt22.

Therefore∫
X>O

e−tr(X)dX =
∫

T

e−tr(T T ′)[22(t211t22)]dT

=
( ∫ ∞

−∞
e−t221dt21

)( ∫ ∞

0
2t211e

−t211dt11
)( ∫ ∞

0
2t22e

−t222dt22
)

= [√π ] [Γ (
3

2
))] [Γ (1)] = π

2
.

Example 1.6.3. Let A = A∗ > O be a constant 2×2 Hermitian positive definite matrix.
Let X̃ be a 2 × 1 vector in the complex domain and X̃2 > O be a 2 × 2 Hermitian
positive definite matrix. Then, evaluate the following integrals: (1):

∫
X̃
e−(X̃∗AX̃)dX̃; (2):∫

X̃2>O
e−tr(X̃2)dX̃2.

Solution 1.6.3.
(1): Since A = A∗ > O, there exists a unique Hermitian positive definite square root A

1
2 .

Then,

X̃∗AX̃ = X̃∗A
1
2A

1
2 X̃ = Ỹ ∗Ỹ ,

Ỹ = A
1
2 X̃ ⇒ dX̃ = |det(A)|−1dỸ

by Theorem 1.6a.1. But Ỹ ∗Ỹ = |ỹ1|2+|ỹ2|2 since Ỹ ∗ = (ỹ∗
1 , ỹ

∗
2 ). Since the ỹj ’s are scalar

in this case, an asterisk means only the complex conjugate, the transpose being itself.
However, ∫

ỹj

e−|ỹj |2dỹj =
∫ ∞

−∞

∫ ∞

−∞
e−(y2j1+y2j2)dyj1 ∧ dyj2 = (

√
π)2 = π

where ỹj = yj1 + iyj2, i = √
(−1), yj1 and yj2 being real. Hence

∫
X̃

e−(X̃∗AX̃)dX̃ = |det(A)|−1
∫

Ỹ

e−(|ỹ1|2+|ỹ2|2)dỹ1 ∧ dỹ2

= |det(A)|−1
( 2∏

j=1

∫
Ỹj

e−|ỹj |2dỹj

)
= |det(A)|−1

2∏
j=1

π

= |det(A)|−1π2.
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(2): Make the transformation X̃2 = T̃ T̃ ∗ where T̃ is lower triangular with its diagonal
elements being real and positive. That is,

T̃ =
[
t11 0
t̃21 t22

]
, T̃ T̃ ∗ =

[
t211 t11 t̃21

t11 t̃21 |t̃21|2 + t222

]

and the Jacobian is dX̃2 = 2p{∏p

j=1 t
2(p−j)+1
jj }dT̃ = 22t311t22 dT̃ by Theorem 1.6a.7.

Hence,

∫
X̃2>O

e−tr(X̃2)dX̃2 =
∫

T̃

22t311t22e
−(t211+t222+|t̃21|2)dt11 ∧ dt22 ∧ dt̃21.

But

2
∫

t11>0
t311e

−t211 dt11 =
∫ ∞

u=0
u e−udu = 1,

2
∫

t22>0
t22e

−t222dt22 =
∫ ∞

v=0
e−vdv = 1,

∫
t̃21

e−|t̃21|2dt̃21 =
∫ ∞

−∞

∫ ∞

−∞
e−(t2211+t2212)dt211 ∧ dt212

=
( ∫ ∞

−∞
e−t2211dt211

)( ∫ ∞

−∞
e−t2212dt212

)

= √
π

√
π = π,

where t̃21 = t211 + it212, i = √
(−1) and t211, t212 real. Thus

∫
X̃2>O

e−tr(X̃2)dX̃2 = π.

1.7. Differential Operators

Let

X =
⎡
⎢⎣

x1
...

xp

⎤
⎥⎦ ,

∂

∂X
=
⎡
⎢⎣

∂
∂x1
...
∂

∂xp

⎤
⎥⎦ ,

∂

∂X′ =
[ ∂

∂x1
, . . . ,

∂

∂xp

]
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where x1, . . . , xp are distinct real scalar variables, ∂
∂X

is the partial differential operator
and ∂

∂X′ is the transpose operator. Then, ∂
∂X

∂
∂X′ is the configuration of all second order

partial differential operators given by

∂

∂X

∂

∂X′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2

∂x21

∂2

∂x1∂x2
· · · ∂2

∂x1∂xp

∂2

∂x2∂x1

∂2

∂x22
· · · ∂2

∂x2∂xp

...
...

. . .
...

∂2

∂xp∂x1

∂2

∂xp∂x2
· · · ∂2

∂x2p

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let f (X) be a real-valued scalar function of X. Then, this operator, operating on f will
be defined as

∂

∂X
f =

⎡
⎢⎢⎣

∂f
∂x1
...

∂f
∂xp

⎤
⎥⎥⎦ .

For example, if f = x2
1 + x1x2 + x3

2 , then
∂f
∂x1

= 2x1 + x2,
∂f
∂x2

= x1 + 3x2
2 , and

∂f

∂X
=
[
2x1 + x2
x1 + 3x2

2

]
.

Let f = a1x1 +a2x2 +· · ·+apxp = A′X = X′A, A′ = (a1, . . . , ap), X′ = (x1, . . . , xp)

where a1, . . . , ap are real constants and x1, . . . , xp are distinct real scalar variables. Then
∂f
∂xj

= aj and we have the following result:

Theorem 1.7.1. Let A, X and f be as defined above where f = a1x1 + · + apxp is a
linear function of X, then

∂

∂X
f = A.

Letting f = X′X = x2
1 + · · · + x2

p,
∂f
∂xj

= 2xj , and we have the following result.

Theorem 1.7.2. Let X be a p × 1 vector of real scalar variables so that X′X = x2
1 +

· · · + x2
p. Then

∂f

∂X
= 2X.
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Now, let us consider a general quadratic form f = X′AX, A = A′, where X is a
p × 1 vector whose components are real scalar variables and A is a constant matrix. Then
∂f
∂xj

= (aj1x1 + · · · + ajpxp) + (a1j x1 + a2j x2 + · · · + apjxp) for j = 1, . . . , p. Hence
we have the following result:

Theorem 1.7.3. Let f = X′AX be a real quadratic form where X is a p × 1 real vector
whose components are distinct real scalar variables and A is a constant matrix. Then

∂f

∂X
=
{

(A + A′)X for a general A

2AX when A = A′ .

1.7.1. Some basic applications of the vector differential operator

Let X be a p × 1 vector with real scalar elements x1, . . . , xp. Let A = (aij ) = A′ be a
constant matrix. Consider the problem of optimizing the real quadratic form u = X′AX.
There is no unrestricted maximum or minimum. If A = A′ > O (positive definite), u can
tend to +∞ and similarly, if A = A′ < O, u can go to −∞. However, if we confine
ourselves to the surface of a unit hypersphere or equivalently require that X′X = 1, then
we can have a finite maximum and a finite minimum. Let u1 = X′AX−λ(X′X−1) so that
we have added zero to u and hence u1 is the same as u, where λ is an arbitrary constant
or a Lagrangian multiplier. Then, differentiating u1 with respect to x1, . . . , xp, equating
the resulting expressions to zero, and thereafter solving for critical points, is equivalent to
solving the equation ∂u1

∂X
= O (null) and solving this single equation. That is,

∂u1

∂X
= O ⇒ 2AX − 2λX = O ⇒ (A − λI)X = O. (i)

For (i) to have a non-null solution for X, the coefficient matrix A − λI has to be singular
or its determinant must be zero. That is, |A−λI | = 0 and AX = λX or λ is an eigenvalue
of A and X is the corresponding eigenvector. But

AX = λX ⇒ X′AX = λX′X = λ since X′X = 1. (ii)

Hence the maximum value of X′AX corresponds to the largest eigenvalue of A and the
minimum value of X′AX, to the smallest eigenvalue of A. Observe that when A = A′ the
eigenvalues are real. Hence we have the following result:

Theorem 1.7.4. Let u = X′AX, A = A′, X be a p × 1 vector of real scalar variables
as its elements. Letting X′X = 1, then

max
X′X=1

[X′AX] = λ1 = the largest eigenvalue of A

min
X′X=1

[X′AX] = λp = the smallest eigenvalue of A.
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Principal Component Analysis where it is assumed that A > O relies on this result.
This will be elaborated upon in later chapters. Now, we consider the optimization of u =
X′AX, A = A′ subject to the condition X′BX = 1, B = B ′. Take λ as the Lagrangian
multiplier and consider u1 = X′AX − λ(X′BX − 1). Then

∂u1

∂X
= O ⇒ AX = λBX ⇒ |A − λB| = 0. (iii)

Note that X′AX = λX′BX = λ from (i). Hence, the maximum of X′AX is the largest
value of λ satisfying (i) and the minimum of X′AX is the smallest value of λ satisfying
(i). Note that when B is nonsingular, |A − λB| = 0 ⇒ |AB−1 − λI | = 0 or λ is an
eigenvalue of AB−1. Thus, this case can also be treated as an eigenvalue problem. Hence,
the following result:

Theorem 1.7.5. Let u = X′AX, A = A′ where the elements ofX are distinct real scalar
variables. Consider the problem of optimizing X′AX subject to the condition X′BX =
1, B = B ′, where A and B are constant matrices, then

max
X′BX=1

[X′AX] = λ1 = largest eigenvalue of AB−1, |B| �= 0

= the largest root of |A − λB| = 0;
min

X′BX=1
[X′AX] = λp = smallest eigenvalue of AB−1, |B| �= 0

= the smallest root of |A − λB| = 0.

Now, consider the optimization of a real quadratic form subject to a linear constraint.
Let u = X′AX, A = A′ be a quadratic form where X is p × 1. Let B ′X = X′B = 1
be a constraint where B ′ = (b1, . . . , bp), X′ = (x1, . . . , xp) with b1, . . . , bp being real
constants and x1, . . . , xp being real distinct scalar variables. Take 2λ as the Lagrangian
multiplier and consider u1 = X′AX − 2λ(X′B − 1). The critical points are available from
the following equation

∂

∂X
u1 = O ⇒ 2AX − 2λB = O ⇒ X = λA−1B, for |A| �= 0

⇒ B ′X = λB ′A−1B ⇒ λ = 1

B ′A−1B
.

In this problem, observe that the quadratic form is unbounded even under the restriction
B ′X = 1 and hence there is no maximum. The only critical point corresponds to a min-
imum. From AX = λB, we have X′AX = λX′B = λ. Hence the minimum value is
λ = [B ′A−1B]−1 where it is assumed that A is nonsingular. Thus following result:
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Theorem 1.7.6. Let u = X′AX, A = A′, |A| �= 0. Let B ′X = 1 where B ′ =
(b1, . . . , bp) be a constant vector and X is p × 1 vector of real distinct scalar variables.
Then, the minimum of the quadratic form u, under the restriction B ′X = 1 where B is a
constant vector, is given by

min
B ′X=1

[X′AX] = 1

B ′A−1B
.

Such problems arise for instance in regression analysis and model building situations.
We could have eliminated one of the variables with the linear constraint; however, the op-
timization would still involve all other variables, and thus not much simplification would
be achieved by eliminating one variable. Hence, operating with the vector differential op-
erator is the most convenient procedure in this case.

We will now consider the mathematical part of a general problem in prediction analysis
where some variables are predicted from another set of variables. This topic is related to
Canonical Correlation Analysis. We will consider the optimization part of the problem in
this section. The problem consists in optimizing a bilinear form subject to quadratic con-
straints. Let X be a p×1 vector of real scalar variables x1, . . . , xp, and Y be a q ×1 vector
of real scalar variables y1, . . . , yq, where q need not be equal to p. Consider the bilinear
form u = X′AY whereA is a p×q rectangular constant matrix. We would like to optimize
this bilinear form subject to the quadratic constraints X′BX = 1, Y ′CY = 1, B = B ′ and
C = C′ where B and C are constant matrices. In Canonical Correlation Analysis, B and
C are constant real positive definite matrices. Take λ1 and λ2 as Lagrangian multipliers
and let u1 = X′AY − λ1

2 (X′BX − 1) − λ2
2 (Y ′CY − 1). Then

∂

∂X
u1 = O ⇒ AY − λ1BX = O ⇒ AY = λ1BX

⇒ X′AY = λ1X
′BX = λ1; (i)

∂

∂Y
u1 = O ⇒ A′X − λ2CY = O ⇒ A′X = λ2CY

⇒ Y ′A′X = λ2Y
′CY = λ2. (ii)

It follows from (i) and (ii) that λ1 = λ2 = λ, say. Observe that X′AY is 1 × 1 so that
X′AY = Y ′A′X. After substituting λ to λ1 and λ2, we can combine equations (i) and (ii)
in a single matrix equation as follows:

[−λB A

A′ −λC

] [
X

Y

]
= O ⇒

∣∣∣∣
−λB A

A′ −λC

∣∣∣∣ = 0. (iii)
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Opening up the determinant by making use of a result on partitioned matrices from
Sect. 1.3, we have

| − λB| | − λC − A′(−λB)−1A| = 0, |B| �= 0 ⇒
|A′B−1A − λ2C| = 0. (iv)

Then ν = λ2 is a root obtained from Eq. (iv). We can also obtain a parallel result by
opening up the determinant in (iii) as

| − λC| | − λB − A(−λC)−1A′| = 0 ⇒ |AC−1A′ − λ2B| = 0, |C| �= 0. (v)

Hence we have the following result.

Theorem 1.7.7. Let X and Y be respectively p × 1 and q × 1 real vectors whose com-
ponents are distinct scalar variables. Consider the bilinear form X′AY and the quadratic
forms X′BX and Y ′CY where B = B ′, C = C′, and B and C are nonsingular constant
matrices. Then,

max
X′BX=1,Y ′CY=1

[X′AY ] = |λ1|
min

X′BX=1,Y ′CY=1
[X′AY ] = |λp|

where λ21 is the largest root resulting from equation (iv) or (v) and λ2p is the smallest root
resulting from equation (iv) or (v).

Observe that if p < q, we may utilize equation (v) to solve for λ2 and if q < p,
then we may use equation (iv) to solve for λ2, and both will lead to the same solution. In
the above derivation, we assumed that B and C are nonsingular. In Canonical Correlation
Analysis, both B and C are real positive definite matrices corresponding to the variances
X′BX and Y ′CY of the linear forms and then, X′AY corresponds to covariance between
these linear forms.

Note 1.7.1. We have confined ourselves to results in the real domain in this subsection
since only real cases are discussed in connection with the applications that are consid-
ered in later chapters, such as Principal Component Analysis and Canonical Correlation
Analysis. The corresponding complex cases do not appear to have practical applications.
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Accordingly, optimizations of Hermitian forms will not be discussed. However, parallel
results to Theorems 1.7.1–1.7.7 could similarly be worked out in the complex domain.
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