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Abstract The present note aims to focus on certain topological and analytical
invariants of complex normal surface singularities and wishes to analyse their
interferences. The first preliminary part introduces the needed notations, definitions
and terminologies: e.g. resolutions, universal abelian coverings, natural line bundles
on resolutions, links, spinc structures on the links. Here we also recall certain
vanishing theorems and statements connected with Serre’s and Laufer’s dualities.
The next part presents two multivariable series, a topological one (associated
with a dual resolution graph) and an analytic one (associated with the divisorial
filtration), then we compare them. Then we introduce several topological invariants,
as the Casson and Casson–Walker invariants, Turaev’s torsion, the Seiberg–Witten
invariant. By the ‘Seiberg–Witten Invariant Conjecture’ they are compared with
the cohomology of the natural line bundles. In this discussion certain ‘additivity
formulae’ will also be crucial. After a preparation (introduction of the weighted
cubes) we continue with the presentation of the (topological) lattice cohomology
and of the (topological) graded roots associated with rational homology sphere
singularity links. They are exemplified by links of superisolated singularities, when
the theory is also connected with the classification of irreducible rational cuspidal
projective plane curves.
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4.1 Introduction

Let (X, o) be a complex analytic normal surface singularity. The main motif of the
present work is the following: what are the ties between analytic and topological
invariants of (X, o)? Historically this program was started by Mumford, Artin and
Laufer. Mumford realized the link as plumbed 3–manifold and proved that if the
fundamental group of the link is trivial then the germ is (analytically) smooth [64].
Artin and Laufer characterized topologically the rational and minimally elliptic
singularities (respectively), and computed several analytic invariants for them from
the resolution graph [5, 6, 49, 50].

Let us exemplify a few pairs of analytic/topological objects, which play a central
role in the text.

On the analytic side our fundamental objects are the dimensions of the sheaf
cohomologies of line bundles on a resolution (including e.g. the geometric genus)
and the multivariable Poincaré series of the divisorial filtration associated with a
resolution. If the link of (X, o) is a rational homology sphere then we consider
the universal abelian covering (Xa, o) → (X, o) too and the above listed analytic
invariants associated with (Xa, o). These, reinterpreted at the level of (X, o) (and
its resolutions) can be related with cohomological properties of the ‘natural line
bundles’ on the resolution spaces ˜X of (X, o).

On the topological side, the link, as an oriented 3-manifold, carries the Casson
invariant whenever the link is an integral homology sphere. In the rational homology
sphere case, it carries Casson–Walker invariant, the (refined) Turaev torsion, the
Seiberg–Witten invariants, the lattice (co)homology and the graded roots.

Then, the Seiberg–Witten invariant (which agrees with the Euler characteristic
of the lattice cohomology) will be compared with the ranks of cohomologies of
line bundles (formulated by the Casson Invariant Conjecture of Neumann and
Wahl whenever the link is an integral homology sphere, or by the Seiberg–Witten
Invariant Conjecture of Nicolaescu and the author in the rational homology sphere
case). Moreover, a topological multivariable Poincaré series (a ‘zeta’ function,
associated with the dual graph) will be compared with its analytic counterpart
provided by the divisorial filtration (as extensions of Campillo–Delgado–Gusein-
Zade identity). The parallelism will be emphasized by several surgery and additivity
formulae of a very similar shape present in both analytic and topological sides. (For
more on such parallelisms see [77] as well.)

Regarding the topological invariants, the research of the author was greatly influ-
enced by the work of Ozsváth and Szabó on Heegaard Floer theory of 3-manifolds.
However, the techniques developed by the author to create a bridge between
singularities and the low dimensional topology differ from those used in Heegaard
Floer theory. The effort to create such a bridge had as a fruit and culminated in the
lattice cohomology. It is defined combinatorially from the graph. Conjecturally it
coincides with the Heegaard Floer cohomology. However, its definition and several
of its properties resemble sheaf cohomology long exact sequences. Indeed, behind
certain definitions and techniques in lattice cohomology theory one experiences
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certain generalizations of ideas of Laufer regarding computation sequences, used
in sheaf cohomological arguments. In the new context these sequences appear
as discrete ‘homotopy deformation retracts’. Our presentation emphasises this
continuity with Laufer’s work.

The theory is exemplified by cyclic quotient, weighted homogeneous and
superisolated singularities.

The presentation follows rather closely [66]. However, the present work concen-
trates mostly on the main statements and different connections and ideas behind the
results, and basically we omit most of the proofs. The interested reader is invited to
consult [66] for more information.

4.2 Resolution of Surface Singularities

4.2.1 Local Resolutions

Definition 4.2.1 Consider the germ (X, o) of a normal complex analytic surface
singularity with singular points o ∈ X. Let φ : ˜X → X be a proper analytic map,
where X is a sufficiently small representative of (X, o). We also set E := φ−1(o).
We say that φ is a local modification of (X, o) if the restriction of φ induces an
isomorphism ˜X \ E → X \ o. Additionally, if ˜X is smooth then we say that φ is a
resolution.

Given two modifications φi : ˜Xi → Xi (i = 1, 2) of (X, o), we say that φ1
dominates φ2 if after replacing both representatives Xi of (X, o) by some smaller
representative X, there exists an analytic map ψ : ˜X1 → ˜X2 such that φ2 ◦ψ = φ1.

A resolution is called good if all the irreducible components of E (with reduced
structure) are smooth (in particular, they have no self-intersections), and intersect
each other transversally.

A resolution is called minimal if it does not dominate (with ψ non-isomorphism)
any other resolution. One defines similarly the minimal good resolutions as well.

Lemma 4.2.2 (Zariski’s Main Theorem, see [120], [34, p. 280] for the Algebraic
and [29, 30] for the analytic case) Assume that (X, o) is a germ of a normal
surface singularity and fix a resolution φ : ˜X → X, which is not an isomorphism.
Then E = φ−1(o) is connected, compact and one-dimensional.
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Definition 4.2.3 Let (X, o) be a normal surface singularity and φ a resolution.

(a) The analytic (reduced) curve E is called the exceptional set (or curve) of φ.
We write {Ev}sv=1 (or, {Ev}v∈V) for the irreducible components of E and gv =
g(Ev) denotes the geometric genus of (the normalization of) Ev .

(b) The intersection matrix I of φ consists of the intersection numbers (Ev,Eu)v,u

in ˜X.
(c) Let f : (X, o) → (C, 0) be the germ of a holomorphic function. Then the

divisor div(f ◦ φ) on ˜X decomposes into divE(f ◦ φ) + S(f ◦ φ), abbreviated
as divE(f ) + S(f ), where divE(f ) is the part supported on E, while S(f ) is
the strict transform of the divisor of f .

Example 4.2.4 Assume that (X, o) is smooth. Then by blowing up o we get a
modification with an exceptional curve E � P

1 and E2 = −1.
In general, if C is a curve on a smooth surface ˜X with C � P

1 and C2 = −1
then C is called a (−1)-curve on ˜X. By Castelnuovo’s Contractibility Criterion any
(−1)-curve appears as a blow up of a smooth point.

Assume that ˜X is a smooth surface and C is an irreducible curve on it with
(C,C) < 0, with genus g(C), and the sum of the delta-invariants of its points is
δ(C). Then by the adjunction formula (K

˜X,C)+ (C,C) = −2+2g(C)+2δ(C) ≥
−2. Therefore, C is a (−1)-curve if and only if (K

˜X,C) < 0.

The next statement guarantees the existence of a resolution, cf. [7, 35, 40, 43, 48,
57, 118, 119].

Theorem 4.2.5 Let (X, o) be a normal surface singularity germ. Then the follow-
ing facts hold.

1. A good resolution exists.
2. There is a unique minimal resolution and a unique minimal good resolution.
3. A resolution is minimal if and only if none of the curves Ev is a (−1)-curve.
4. A good resolution is minimal good if and only if any (−1)-curve intersects at

least three other components.

Remark 4.2.6 Since (X, o) is normal, X \ {o} is smooth. Above, in the definition of
the resolution, X was an open representative. However, (in topological discussions)
we can assume additionally that X is contractible to o ∈ X and it is closed with a
compact and C∞ boundary, cf. subsection 4.2.2. In particular, ˜X has the homotopy
type of E and it also has a C∞ boundary ∂˜X.

Proposition 4.2.7 (Du Val [16], see also [5, 48, 64]) Let (X, o) be a normal surface
singularity and φ a resolution. Then the intersection matrix I := (Ev,Eu)sv,u=1 is
negative definite.

Remark 4.2.8 The converse of Proposition 4.2.7 is also true. By a famous theorem
of Grauert [28], any connected collection of (compact) curves on a smooth surface
with negative definite intersection form can analytically be contracted to a normal
singular point, hence it appears as the exceptional curve of a resolution of some
normal surface singularity.
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4.2.9 The Lattice Associated with a Resolution Let (X, o) be a complex normal
surface singularity and let φ : ˜X → X be a resolution. Here we take X sufficiently
small and contractible (see 4.2.20).

Set L := H2(˜X,Z). Since ˜X has the homotopy type of E, L is freely generated
by the classes of {Ev}v (still denoted by the same symbol Ev), and it becomes a
lattice with the intersection form I . Define also L′ := H2(˜X, ∂˜X,Z). It is dual to L.
If for each v ∈ V one takes a transversal disc Dv to Ev (at a generic point of Ev),
then their classes form a basis of L′. Furthermore, the homological map L → L′ in
the bases {Ev} and {Dv} is exactly the matrix I . Since I is non-degenerate, L → L′
is injective. We write H := L′/L. Clearly, |H | = |coker(I)| = | det(I)|.

We extend the intersection form I of L to L⊗Q. By the perfect pairing between
L and L′, L′ is identified with Hom(L,Z). On the other hand, Hom(L,Z) is also
identified with those elements l′ of L ⊗ Q for which (l′, l) ∈ Z for any l ∈ L. In
the sequel we will think about L′ in this way, as a sublattice of L ⊗ Q, and as an
overlattice of L, endowed with the (rational) intersection form I .

Effective classes l = ∑

rvEv ∈ L′ with all rv ∈ Q≥0 are denoted by L′≥0, and
L≥0 := L′≥0 ∩ L. There is a natural partial ordering in L ⊗ Q associated with the
bases {Ev}v: we say that l1 ≥ l2 if l1 − l2 is effective. We write l1 > l2 if l1 ≥ l2
and l1 �= l2. The cycle min{l1, l2} is the largest l with l1, l2 ≥ l. If l′ = ∑

v rvEv is
a rational cycle, its support |l′| is ∪v : rv �=0 Ev . Moreover, we set �l′� := ∑

v�rv�Ev ,
and {l′} := l′ − �l′�.

4.2.10 The Pontrjagin Dual of H We denote the Pontrjagin dual Hom(H, S1) of
H by ̂H . Let θ : H → ̂H be the isomorphism [l′] �→ e2πi(l′,·) of H with ̂H .

4.2.11 Lipman’s Cones Associated with the Resolution [56] We prefer to
replace the classes [Dv] ∈ H2(˜X, ∂˜X,Z), reinterpreted in L′, by their ‘opposites’,
denoted by E∗

v . That is, E∗
v ∈ L′ ⊂ L ⊗Q satisfies (E∗

v , Ew) = −1 for v = w, and
0 otherwise. In particular, the vectors E∗

v , written in the base {Ev}v , are exactly the
columns of the matrix −I−1, and (I−1)vw = (E∗

v , E∗
w).

Let SQ := {l′ ∈ L ⊗ Q : (l′, Ev) ≤ 0 for all v ∈ V} be the anti-nef rational
cone, S′ := SQ ∩ L′ and S := SQ ∩ L. S′ is generated over Z≥0 by the elements
E∗

v .
The definition of the cone S is motivated by the following fact:

Lemma 4.2.12 Let f : (X, o) → (C, 0) be a holomorphic function, and φ a good
resolution of (X, o). Then divE(f ) ∈ S \ {0}.
The divisor divE(f ) = ∑

w∈V mwEw satisfies mw > 0 for all w. This is a general
fact of all the elements of S′ by the next corollary. In particular, S′ is in the first
quadrant. (This motivates the sign modification in the definition of E∗

v .)

Corollary 4.2.13

(a) Assume that l = ∑

v rvEv with rv ∈ Q, l �= 0, and (l, Ev) ≤ 0 for all v ∈ V.
Then rv > 0 for all v ∈ V. In particular, all the entries of E∗

v are strictly
positive.

(b) For any fixed l′ ∈ L′ the set {l̃′ ∈ S′, l̃′ �≥ l′} is finite.
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4.2.14 The Resolution Graph Let (X, o) be a normal surface singularity and let
φ : ˜X → X be a good resolution. Denote by E the exceptional curve of φ with
irreducible decomposition {Ev}v∈V. We construct a graph � as follows. Its vertices
V correspond to the irreducible exceptional components. If two irreducible divisors
corresponding to v1, v2 ∈ V have k intersection points then we connect v1 and
v2 by k edges in �. The graph � is decorated as follows. Any vertex v ∈ V is
decorated with the self-intersection ev := E2

v and genus gv of Ev (denoted as [gv]).
The valency (number of adjacent edges) of a vertex is denoted by κv .

Remark 4.2.15

(a) The graph � is connected by Lemma 4.2.2.
(b) The resolution is not unique, e.g. one can blow up a point of the exceptional

divisor of a resolution. Accordingly, the graph � depends on the choice of
φ. However, dual resolution graphs associated with different resolutions are
connected by a sequence of blow ups and blow downs of vertices associated
with (−1)-curves (well–defined modifications at the level of graphs).

Definition 4.2.16 A vertex of a graph with positive genus decoration, or adjacent
to at least three edges, is called a node. A string is a ‘linear’ (sub)graph (with all
genus-decorations zero) of type

Strings can be characterized by continued fractions.

Definition 4.2.17 To any two relative prime positive numbers n and q we associate
the following (Hirzebruch, or negative) continued fraction:

n

q
= [b1, b2, . . . , bs] := b1 − 1

b2 − 1

. . . − 1

bs

, b1 ≥ 1, b2, . . . , bs ≥ 2. (4.1)

The entries (b1, . . . , bs) characterize a string graph with decorations −b1, . . . ,−bs .
For any pair n and q we also consider the Dedekind sum

s(q, n) =
n−1
∑

l=0

(( l

n

))((ql

n

))

,

where ((x )) is the Dedekind symbol (and {·} is the ‘fractional part’):

((x )) =
{ {x} − 1/2 if x ∈ R \ Z

0 if x ∈ Z.
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Example 4.2.18 ([7, 35, 48, 105, 106]) For a normal surface singularity, the fol-
lowing conditions are equivalent. If (X, o) satisfies any of them, then it is called
Hirzebruch–Jung or cyclic quotient singularity.

1. (X, o) is isomorphic with one of the ‘model spaces’ {Xn,q}n,q , where Xn,q is the
normalization of ({xyn−q = zn}, 0), where 0 < q < n, (n, q) = 1.

2. There is an analytic covering p : (X, o) → (C2, 0) such that the reduced branch
locus of p is {uv = 0} in some local coordinates (u, v) of (C2, 0).

3. The resolution graph �X is a string (with gv = 0 for any v ∈ V).
4. (X, o) is the quotient singularity (C2, 0)/Zn of the cyclic group Zn = {ξ ∈ C :

ξn = 1} of order n, where the action is ξ ∗ (z1, z2) = (ξz1, ξ
qz2) for some

0 < q < n with (q, n) = 1.

4.2.2 The Link

4.2.19 Let (X, o) be the germ of a normal complex analytic surface singularity
and U a neighborhood of o. We fix a real analytic function ρ : U → [0,∞) with
ρ−1(0) = {o}. In the sequel we write XS for ρ−1(S) for different subsets S of
[0,∞). The next theorem characterizes the local homeomorphism type of (X, o)

showing its conic structure. For different levels of generality see [14, 18, 32, 54, 58,
59, 63].

Theorem 4.2.20 There exists a sufficiently small ε0 > 0 such that for any 0 < ε ≤
ε0 the inverse image X{ε} := ρ−1(ε) is a C∞ manifold of dimension three. Its C∞
type is independent of the choice of ε and ρ.

Moreover, the homeomorphism type of (X[0,ε],X{ε}) is independent of the choice
of ε and ρ, and it is the same as the homeomorphism type of (real cone(X{ε}),X{ε}),
where the vertex corresponds to o.

As X[0,ε] \ {o} is a C∞ manifold with a canonical orientation (induced by the
complex structure), its boundary X{ε} inherits a canonical orientation too.

Definition 4.2.21 The oriented diffeomorphism type of X{ε} is called the link of X

at o. It is denoted by L(X, o).

Example 4.2.22

(a) Assume that X is a normal affine surface, which admits a good C
∗ action (cf.

4.2.3). Then L(X, 0) is a Seifert 3-manifold.
(b) Consider the situation of Example 4.2.18(4). Set S3 = {|z1|2 +|z2|2 = ε}. Then

the Zn-action preserves S3, where it acts freely. Hence the link L(Xn,q , o) is the
lens space L(n, q) = S3/Zn. Moreover, L(n, q) and L(m,p) are orientation
preserving diffeomorphic if and only if m = n and p ∈ {q, q ′}, where 0 < q ′ <

n and qq ′ ≡ 1 modulo n.
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4.2.23 Links as Plumbed 3-Manifolds To any normal surface singularity (X, o)

we associated its link L(X, o) and its resolution graph � (well-defined up to blow
up/down of (−1)-curves). The point is that they determine each other. Indeed,
L(X, o) is recovered from � via the plumbing construction, by considering � as a
plumbing graph. For more details, see [37, 64, 87]. Note also that different plumbing
graphs might produce diffeomorphic 3-manifold (via orientation preserving diffeo-
morphisms). However, if we restrict the plumbing construction to graphs which are
connected and have negative definite intersection matrix then M(�1) and M(�2)

are diffeomorphic if and only if the graphs are related by a sequence of (−1) blow
ups and/or their inverses.

4.2.24 Homological Properties of the Link Let ˜X = φ−1(ρ−1([0, ε])) as above
with 0 < ε � 1. Since i : L = H2(˜X,Z) → L′ = H2(˜X, ∂˜X,Z) is injective
(see 4.2.9), the exact sequence of (˜X, ∂˜X) reads as

0 → H2(˜X)
i−→ H2(˜X, ∂˜X) → H1(LX) → H1(E) → 0. (4.2)

Set g(�) := ∑

v∈V gv and let c(�) be the number of independent cycles in �.

Proposition 4.2.25 ([37, 64, 107]) L′/L = coker(I) = Tors(H1(LX,Z)), and

H1(LX,Z) = coker (I) ⊕ H1(E,Z) = coker (I) ⊕ Z
2g(�)+c(�).

Hence, LX is a rational homology sphere if and only if � is a tree with all gv = 0,
and LX is an integral homology sphere when additionally det(−I) = 1.

4.2.3 Example: Weighted Homogeneous Singularities

4.2.26 Definitions[99, 100] Fix some positive integers (w1, . . . , wn). One defines
the action of C

∗ on C
n with weights (w1, . . . , wn) by t · (x1, . . . , xn) =

(tw1x1, . . . , t
wnxn). A polynomial f ∈ C[x] is called weighted homogeneous

of degree � with respect to the weights (w1, . . . , wn) if f (t · x) = t�f (x), where
� ∈ Z≥0.

Let us fix an affine algebraic variety X ⊂ C
n. X is called weighted homogeneous

with weights {wi}i if it is stable with respect to the above action of C∗. Since the
weight are all positive the action on X is good, that is, the origin is contained in
the closure of any orbit. If additionally we assume that gcdi{wi} = 1 and X �

∪i{xi = 0} then the action is effective too, that is, if t · x = x for all x ∈ X

then t = 1. If X is weighted homogeneous then its defining ideal is generated
by weighted homogeneous polynomials. In particular, its affine coordinate ring is
Z≥0-graded: R = ⊕�≥0R�. In fact, all finitely generated Z≥0-graded C-algebras
correspond to affine varieties with good C

∗-action. However, note that the normality
of R = ⊕�≥0R� is not automatically guaranteed.
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A normal analytic surface singularity (Xan, o) is called weighted homogeneous if
there exists a normal affine surface X, which admits a good C

∗ action (with wi > 0
and gcdi{wi} = 1) and a singular point o ∈ X such that (Xan, o) is analytically
isomorphic with the (induced analytic germ) (X, o).

4.2.27 The Resolution [99] The dual graph of the minimal good resolution ˜X of a
weighted homogeneous germ is star-shaped.

A connected graph � is called star-shaped if it has a central vertex v0, and � \v0
consists of ν ≥ 0 strings. Each string is connected to v0 by an edge at one of the
end-vertices of the string. In some cases, for a fixed �, the choice of the central
vertex is not unique; e.g. if � itself is a string then any vertex can be central.

Next we recall some of the combinatorial properties of the star-shaped graphs.
We use the following notations: v0 has self–intersection (Euler) number −b0 and

genus g ≥ 0. The Euler numbers of the vertices vji of the j th string (1 ≤ j ≤ ν)

are −bj1, . . . ,−bjsj , with bji ≥ 2, determined by the continued fraction αj/ωj =
[bj1, . . . , bjsj ], where gcd(αj , ωj ) = 1, 0 < ωj < αj . For each j , v0 is connected
with vj1 by one edge. Set also nj,i/qj,i := [bji, . . . , bjsj ] with gcd{nj,i, qj,i} = 1.

In such a case the plumbed 3-manifold M(�) is a Seifert fibered 3-manifold,
which means that M(�) is foliated by circles such that any circle has a compact
orientable saturated neighbourhood [38, 39, 87, 89, 108]. M(�) and the foliation is
characterized by the collection (b0, g; {(αj , ωj )}j ), called the Seifert invariants.

If either g > 0 or ν ≥ 3 then the choice of the central vertex is unique. In the
sequel we assume this fact. The virtual (or orbifold) Euler number e and the virtual
Euler characteristic χ are defined by

e := −b0 +
∑

j

ωj /αj , χ := 2 − 2g −
∑

j

(αj − 1)/αj . (4.3)

Note that for general star–shaped plumbing graphs e < 0 if and only if the
intersection matrix I = I (�) is negative definite.

Assume that g = 0 and let hj denote the class [E∗
jsj

] (j = 1, . . . , ν) and h0 the

class [E∗
0 ] in H = L′/L. Then H is generated by {hj }νj=0 with relations b0h0 =

∑ν
j=1ωjhj and αjhj = h0 (j = 1, . . . , ν). Moreover, if o be the order of h0 in H

and α := lcm{α1, . . . , αν} then (cf. [88]) |H | = α1 · · ·αν |e| and o = α|e|.
4.2.28 The Dolgachev–Pinkham–Demazure Formulae [103] Fix X normal, and
let R = ⊕�≥0R� be the graded algebra of X, and PX(t) = ∑

�≥0 dim R� · t� the
corresponding Poincaré series. Let pg = h1(O

˜X) be the geometric genus of (X, o)

Assume next that LX is a rational homology sphere, that is g = 0, and set

N(�) = �b0 −
∑

j

⌈

�ωj/αj

⌉

. (4.4)
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Since e < 0 one has lim�→∞ N(�) = ∞. Moreover, the following formulae hold:

PX(t) =
∑

�≥0

max{0, N(�) + 1} t�, and pg(X, o) =
∑

�≥0

max{0,−N(�) − 1)}.

(4.5)

In particular, PX and pg are topological.

4.2.4 Example: Superisolated Singularities

4.2.29 Hypersurface superisolated singularities connect in a tautological way the
theory of complex projective plane curves with normal surface singularities. They
were introduced by I. Luengo [60]. For different applications see [3, 4, 60–62].
Before we start the definition of superisolated germs we review some basic facts
and notations about plane curve singularities.

4.2.30 Invariants of Irreducible Plane Curve Singularities Let us fix first an
irreducible plane curve singularity (C, o) ⊂ (C2, 0). We write {(pi, qi)}i for its
Newton pairs, �(t) for the characteristic polynomial (of the first homology of the
Milnor fiber), μ = deg�(t) for the Milnor number. Furthermore, its delta-invariant
δ(C) is the codimension of n∗OC,o ⊂ OC,o = C{t}, where n is the normalization of
(C, o). By Jung/Milnor’s formula μ(C, o) = 2δ(C) [41, 63].

The semigroup SC,o ⊂ N of (C, o) is the set of all the possible intersection
multiplicities (h,C)o , where h ∈ OC2,0. The delta-invariant δ(C) appears also as
the cardinality of the finite set N \ SC,o. The largest element of N \ SC,o is μ − 1,
and for 0 ≤ k ≤ μ − 1 one has the following ‘gap-symmetry’: k ∈ SC,o if and only
if μ − 1 − k �∈ SC,o. Moreover, by Campillo et al. [15]

�(t)/(1 − t) =
∑

k∈S
tk . (4.6)

Since �(1) = 1 and �′(1) = δ, one gets �(t) = 1 + δ(t − 1) + (t − 1)2 · Q(t)

for some polynomial Q(t) = ∑μ−2
i=0 αi t

i with integral coefficients. In fact, all the

coefficients {αi}μ−2
i=0 are strict positive, and δ = α0 ≥ α1 ≥ · · · ≥ αμ−2 = 1.

Indeed, by the above identity (4.6), one has δ + (t − 1)Q(t) = ∑

k �∈S tk , or Q(t) =
∑

k �∈S(tk−1 + · · · + t + 1). This shows that

αi = #{k �∈ S : k > i}. (4.7)

4.2.31 Definition of Superisolated Singularities [60] A hypersurface singularity
(X, o) ⊂ (C3, 0) is called superisolated if the modification ˜X of (X, o), induced by



214 A. Némethi

the blow up 0 ∈ C
3, is smooth. The definition guarantees that (X, o) is isolated. In

fact, if X is not smooth, this ˜X is exactly the minimal resolution of X.
Assume that (X, o) is the zero set of f : (C3, 0) → (C, 0), f = fd +fd+1+· · · ,

where fj is homogeneous of degree j , fd �≡ 0. Then (X, o) is superisolated if and
only if the projective plane curve C := {fd = 0} ⊂ P

2 is reduced with (isolated)
singularities {pi}i , and these points are not situated on the projective curve {fd+1 =
0}. In this case the embedded topological type (and the equisingularity type) of f

does not depend on the choice of fj ’s for j > d , as long as fd+1 satisfies the above
requirement. Therefore, those invariants of (X, o), which are stable with respect to
equisingular deformations, depend only on C.

In the sequel we will assume that C is irreducible. In such a case the minimal
resolution ˜X has only one irreducible exceptional divisor, which is isomorphic to
C, and C2 in ˜X is −d . Hence, the link of (X, o) is a rational homology sphere if
and only if C is rational and all the plane curve singularities (C, pi) ⊂ (P2, pi)

are irreducible. (We use the terminology cusp for them.) Such a curve C is called
rational cuspidal plane curve. We denote by μi and �i (with the choice �i(1) =
1) the Milnor number and the characteristic polynomial of the local plane curve
singularities (C, pi) ⊂ (P2, pi). Then

∑

i μi = (d − 1)(d − 2).
The minimal good resolution is obtained from ˜X by resolving the plane curve

singularities (C, pi) ⊂ (˜X,pi). Note that the embedded topological types (C, pi) ⊂
(˜X,pi) and (C, pi) ⊂ (P2, pi) agree. Hence, under the condition that C is
irreducible and the link LX is a rational homology sphere, the minimal good
resolution graph � of (X, o) is the surgery graph described in 4.2.32. That is, the
link of (X, o) is the oriented surgery 3-manifold S3

−d (#iKi), where (Ki ⊂ S3) are
the local knots of (C, pi) ⊂ (P2, pi).

4.2.32 The Plumbing Graph of the Surgery Manifold S3−d (#iKi) with Ki

Algebraic and d Arbitrary We fix an integer d and a collection of algebraic
knots {Ki}νi=1 in S3 (determined by irreducible plane curve singularities (Ci, 0) ⊂
(C2, 0)). Set the connected sum K = K1# · · · #Kν ⊂ S3 of the knots Ki . Then
S3−d (K) is a plumbed 3-manifold whose plumbing graph is constructed as follows.
First, let �i be the minimal good embedded resolution graph of (Ci, 0) ⊂ (C2, 0)

with a unique −1 vertex vi which supports the strict transform. One also considers
the cycle Zi = divE(�i)(fi) ∈ L(�i) given by the local reduced equation fi of
(Ci, 0); let mi be the multiplicity in Zi of the −1 curve of �i . Then, in order to
get the graph of S3−d (K) from the disjoint union �i�i , one introduces a new vertex
v+, which is glued to each graph �i via a new edge connecting v+ and vi , and one
inserts the Euler decoration −d − ∑

i mi on v+. The Euler decorations of {�i}i
stay unmodified. The resulting graph is negative definite if and only if d > 0.
Furthermore, | det(I)| = |d|.
4.2.33 A Restrictions Satisfied by the Combinatorial Type Consider a superiso-
lated singularity. Let SC,pi be a semigroup of the local singularities (C, pi). Fix an
integer 0 ≤ l < d . In [24] is proved (via Bézout theorem) the following Semigroup
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Distribution Inequality:

min
j1+···+jν=ld+1

ν
∑

i=1

#{SC,pi ∩ [0, ji) } ≥ (l + 1)(l + 2)/2.

Moreover, in [24] the authors conjectured under the name Semigroup Distribution
Property, that in the above inequality one has equality in any unicuspidal case. The
general proof for any cusps was obtained by Borodzik and Livingston based on the
d-invariant of Heegaard Floer theory [9]. That is, with the previous notations,

min
j1+···+jν=ld+1

ν
∑

i=1

#{SC,pi ∩ [0, ji) } = (l + 1)(l + 2)/2

for any rational cuspidal curve. In the unicuspidal case this reads as

#{SC,p ∩ ( (l − 1)d, ld ] } = min{l + 1, d} (l ≥ 0).

4.2.5 Local Divisor Class Group

4.2.34 Sheaf Cohomological Properties of ˜X Let us start this subsection with the
following observations.

Let (X, o) be a complex normal surface singularity and let φ : ˜X → X be a good
resolution. In cohomological considerations, e.g. in the computation of H ∗(˜X,Z) or
H ∗(˜X,F ), we might take for ˜X the space φ−1(ρ−1([0, ε])), cf. 4.2.20. Therefore,
for an analytic coherent sheaf and q ≥ 1, Hq(˜X,F ) agrees with (RqφF )o =
lim→U Hq(φ−1(U),F ), where U runs over open sets o ∈ U ⊂ X.

By ‘Theorem of formal functions’, (RqφF )o = lim←Z Hq(Z,F ⊗O
˜X
OZ),

where Z runs over (larger and larger) effective cycles supported on E. In fact, for
a line bundle F we have H≥2(˜X,F ) = 0 and H 1(˜X,F ) = H 1(Z,F ⊗ OZ) for
Z � 0, hence dim H 1(˜X,F ) < ∞. Furthermore, by Serre duality, for a locally
free sheaf F , H 1

c (˜X,F ) = H 1(˜X,F ∨ ⊗�2
˜X
)∗. Note that for a divisor D supported

on E and a locally free sheaf F on ˜X we have H 0(˜X \ E,F (D)) = H 0(˜X \ E,F )

and H 0(˜X \ E,F )/H 0(˜X,F ) is finite dimensional since it embeds into H 1
c (˜X,F )

[49].

4.2.35 The Picard Group Let Pic(˜X) = H 1(˜X,O∗̃
X
) denote the Picard group of

˜X, the group of isomorphism classes of analytic line bundles on ˜X. Recall also that
the geometric genus of (X, o) is pg := h1(˜X,O

˜X). (It is independent of the choice
of the resolution.)

By duality, L′ is isomorphic to H 2(˜X,Z), hence it is the target of the first Chern
class c1 : Pic(˜X) → H 2(˜X,Z). This morphism is part of the following exact
sequence induced by the exponential exact sequence of sheaves 0 → Z

˜X → O
˜X →
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O∗̃
X

→ 0:

0 → H 1(˜X,Z) −→ H 1(˜X,O
˜X)

ε−→ Pic(˜X)
c1−→ H 2(˜X,Z) → 0. (4.8)

Set

Pic0(˜X) := ker(c1) � H 1(˜X,O
˜X)/H 1(˜X,Z) � C

pg/H 1(E,Z).

Since H 1(˜X,Z) = lim→U H 1(U,Z) and H 1(˜X,O
˜X) = lim→U H 1(U,OU), E ⊂

U , from (4.8) we also have H 1(˜X,O∗̃
X
) = lim→U H 1(U,O∗

U). Furthermore, by

Mumford [64], for any line bundle L ∈ H 1(˜X,O∗̃
X
) there exists E ⊂ U ⊂ ˜X

sufficiently small such that L|U admits a meromorphic section over U . In particular,
Pic(˜X) can be identified with the group Cl(˜X) of local analytic divisors near E

modulo linear equivalence. More precisely, by a local analytic divisor we mean
a sum

∑

i niDi of irreducible analytic divisors defined in a neighbourhood of E.
Such a divisor is locally linear equivalent to zero if there exists a neighbourhood
U of E, where all Di are defined, and a meromorphic function on U such that
div(f ) = ∑

i ni (Di ∩ U).
The lattice L embeds into both L′ = H 2(˜X,Z) and Pic(˜X). For L′ see 4.2.9,

into Pic(˜X) by l �→ O
˜X(l). Similarly to the group L′/L = Tors(H 2(X \ {o},Z))

(cf. 4.2), Pic(˜X)/L is also independent of the choice of the resolution ˜X. Indeed, the
sequence

0 → L → Pic(˜X)
r−→ Cl(X, o) → 0

is exact (cf. [64]), where Cl(X, o) denotes the local divisor class group of (X, o).
This is the class group of local Weil divisors of (X, o) modulo local Cartier divisors.
If D is a local irreducible analytic divisor on ˜X, then its restriction to ˜X \ E can be
mapped to X \ {o} by φ, and the class of its closure is r(O

˜X(D)). [This is exactly
the definition of the natural map φ∗ : Cl(˜X) → Cl(X, o), a reinterpretation of r .]

Hence we obtain the exact sequence

0 → H 1(LX,Z) → C
pg → Cl(X, o)

c̄1−→ Tors(H 2(LX,Z)) → 0. (4.9)

The Chern class morphism c̄1—in the language of divisors and homology—has the
form c̄′

1 : Cl(X, o) → Tors(H1(LX,Z)), where c̄′
1 assigns to a Weil divisor the

homological class of its intersection with the link.
Cl(X, o) coincides with the group of isomorphism classes of divisorial sheaves

on (X, o). [If F is a divisorial sheaf, then L = (φ∗(F ))∨∨ is locally free on ˜X,
such that L|

˜X\E = F |X\{o}. By the above discussion L has the form O
˜X(D), hence

F = r(O
˜X(D)), that is, F is associated with a Weil divisor φ∗(D).]

Example 4.2.36 If j : X \ {o} ↪→ X is the inclusion, then ωX := j∗(�2(X \ {o}))
is a divisorial sheaf. One can also write it in the form OX(KX) for a certain Weil
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divisor KX. If K
˜X is a canonical divisor on ˜X, then KX can be takes as φ∗(K˜X) (or,

r(�2
˜X
)).

Definition 4.2.37 A Weil divisor of (X, o) (or its class) is called Q-Cartier, if its
class in Cl(X, o) has finite order. Its order is called its index.

4.2.6 Canonical Coverings

4.2.38 The germ of an analytic finite map π : (Y, o) → (X, o) (where (Y, o) and
(X, o) are normal and π−1(o) = o) is called o–ramified if the restriction Y \ o →
X \ o is a regular (topological, unbranched) covering. An o–ramified covering is
called G–covering if Y \ o → X \ o is Galois with deck transformations G. If
π : (Y, o) → (X, o) is o–ramified, then there is a morphism ˜Y → ˜X at the level of
(convenient) resolutions, and the pullback Pic(˜X) → Pic(˜Y ) induces a well–defined
morphism c∗ : Cl(X, o) → Cl(Y, o).

4.2.39 Let us recall a possibility how one can construct a cyclic o–ramified
covering topologically. Let (X, o) be as above and let π1(L(X, o)) → G be an
epimorphism. Then, by Stein [110] it determines an o–ramified G–covering. E.g.,
if L(X, o) is a QHS3 link (that is, H1(LX,Z) = H = L′/L) and we fix a
character α ∈ ̂H , then it determines an epimorphism π1(L(X, o)) → H → ZN

(for some N) and a Galois cyclic o–covering. In particular, if L(X, o) is a QHS3,
and we start with a cycle l′ ∈ L′, such that the order of [l′] ∈ H is N , and we
considered the character α := θ([l′]) ∈ ̂H , then we get a o–ramified ZN -covering
(Xα, o) → (X, o).

4.2.40 Next we associate a cyclic o–ramified covering (XD, o) → (X, o) to any
Q-Cartier divisor D (in this case LX is not necessarily a QHS3).

Proposition 4.2.41 Let D be a Q-Cartier divisor of index N of (X, o). Then it
determines a uniquely defined o-ramified Galois ZN -covering c : (XD, o) →
(X, o), where (XD, o) is a normal surface singularity, and c∗(D) = 0 in Cl(XD, o).
The covering c : (XD, o) → (X, o) depends only on the class of D in Cl(X, o).

(In fact, the kernel of c∗ : Cl(X, o) → Cl(XD, o) is cyclic of order N and it is
generated by the class of D.)

Indeed, adding a principal divisors to D we can assume that D is effective. Then
N · D is an effective principal divisor of (X, o). Hence N · D = div(f ) for some
holomorphic germ f : (X, o) → (C, 0). Then define Xf,N as the normalization of
{(x, z) ∈ (X × C, (o, 0)), f (x) = zN }. Then a local computation shows that the
natural projection c : (Xf,N , (o, 0)) → (X, o) is o–ramified. The second statement
claims that div(f ◦c)/N is an integral principal divisor of (XD, o). But, indeed, this
is exactly div(z).

Note also that the added principal divisors do not alter the isomorphism class of
Xf,N . Indeed, (the normalized) XfgN ,N and Xf,N are isomorphic.



218 A. Némethi

4.2.42 The above facts can be used to define (in an analytic way) a covering
associated with any l′ ∈ L′. The construction depends on a choice, but it has no
ambiguity whenever the link is a rational homology sphere. First, we associate to l′
a Q-Cartier divisor as follows. For parts (a)–(b) see [96, 112, 113].

Proposition 4.2.43

(a) Fix a resolution φ : ˜X → X, l′ ∈ L′, and let N be the order of its class in
L′/L. Then there exists a divisor D = D(l′) on ˜X such that one has a linear
equivalence N · D ∼ N · l′ and c1O˜X(D) = l′ (where Nl′ is identified with
an integral divisor supported on E). In particular, φ∗(D) has finite order N in
Cl(X, o).

(b) If H 1(˜X,Z) = 0 then D is unique up to a linear equivalence. Hence, in this
case, the correspondence l′ �→ O

˜X(D(l′)) is a section of the exact sequence
(4.8).

(c) If H 1(˜X,Z) = 0 then the covering associated with l′ defined in 4.2.41 via D(l′)
agrees with the covering associated with l′ defined in 4.2.39 via the character
θ([l′]).

Proof (a) Since c1 is onto, there exists a divisor D1 on ˜X with c1O˜X(D1) = l′.
Hence O

˜X(ND1 − div(Nl′)) has the form ε(L) for some L ∈ Pic0(˜X) =
C

pg/H 1(˜X,Z). Define D2 so that O
˜X(D2) := 1

N
L ∈ Pic0(˜X). Then D := D1−D2

works. For (b) use the fact that Pic(˜X) is torsion free. For (c) use the definitions. ��
Definition 4.2.44

(a) Write �2
˜X

= O
˜X(K

˜X) and assume that KX is Q-Cartier. Then the cyclic
covering associated with KX (as in 4.2.41) is called the analytic canonical
covering of (X, o).

(b) Assume that the link of (X, o) is a rational homology sphere. The well-defined
cyclic covering associated with c1(O˜X(K

˜X)), constructed in 4.2.39 is called the
topological canonical covering of (X, o).

If both assumptions are satisfied then the analytic and topological canonical
coverings agree. However, if H1(∂˜X,Q) = 0, then the topological canonical
covering is well-defined even if KX is not Q-Cartier.

4.2.7 Natural Line Bundles

4.2.45 Let φ : (˜X,E) → (X, o) be a good resolution and assume that L(X, o)

is a QHS3. In the next discussion we identify the homology classes l ∈ L and the
integral divisors supported on E.

In the exact sequence (4.8) c1 admits a natural group section sL over the integral
cycles L ⊂ L′. Indeed, for any l ∈ L we can take O

˜X(l) ∈ Pic(˜X). Clearly
c1(O˜X(l)) = l. In the sequel we extend sL in a unique way to a natural group



4 Surface Singularities, Seiberg–Witten Invariants of Their Links and Lattice. . . 219

section s : L′ → Pic(˜X). Its existence is guaranteed by the facts that H = L′/L is
finite, while Pic0(˜X) � C

pg is torsion free. In fact, we present several constructions
of s, which emphasize its different geometrical aspects.

4.2.46 The Construction of s via Cl(X, o) [96]
For any l′ ∈ L′ consider the divisor D(l′) provided by Lemma 4.2.43. Since

H 1(˜X,Z) = 0, D(l′) is unique with the required properties of 4.2.43. Therefore one
has a well-defined map l′ �→ s(l′) = O

˜X(D(l′)). By the uniqueness D(l′1 + l′2) ∼
D(l′1) + D(l′2), hence s is a homomorphism and a section of (4.8) as well.

Definition 4.2.47 The line bundles s(l′), indexed by l′ ∈ L′, and denoted also by
O
˜X(l′) := s(l′), will be called natural line bundles.

Corollary 4.2.48

(a) A line bundleL ∈ Pic(˜X) is natural if and only if some power of it has the form
O
˜X(l) (in its usual classical sense) for an integral cycle l ∈ L. Equivalently, L

is natural if and only if its projection by Pic(˜X) → Pic(˜X)/L = Cl(X, o)) has
finite order (i.e., if it is Q-Cartier).

(b) One has a natural isomorphism Pic(˜X) → Pic0(˜X) ⊕ L′ given by L �→ (L ⊗
s(c1L)−1, c1L). This induces a natural isomorphism Cl(X, o) → Pic0(˜X)⊕H .

In particular (since Pic0(˜X) is torsion free), under this identification H is
isomorphic with the group of Q-Cartier divisor classes of (X, o).

4.2.49 The Universal Abelian Covering Let c : (Xa, o) → (X, o) be the
universal abelian covering of (X, o). It is the Galois o–covering associated with
π1(LX) → H1(LX,Z) = L′/L (cf. [110]).

Let c̃ : Z → ˜X be the normalized pullback of c via φ. The (reduced) branch
locus of c̃ is included in E, and the Galois action of H extends to Z as well. Since
E is a normal crossing divisor, the only singularities what Z might have are cyclic
quotient singularities, cf. 4.2.18. Let r : ˜Z → Z be a resolution of these singular
points such that (̃c ◦ r)−1(E) is a normal crossing divisor. Set p := c̃ ◦ r .

˜Z
r−→ Z

ψa−→ (Xa, o)
⏐

⏐

�c̃

⏐

⏐

�
c

˜X
φ−→ (X, o)

(4.10)

4.2.50 The Construction of s via p∗ : Pic(˜X) → Pic(˜Z) [71] One has the
following commutative diagram:

0 → L → L′ → H → 0
⏐

⏐

�

⏐

⏐

�
p∗

⏐

⏐

�pH

0 → La → L′
a → Ha → 0

(4.11)
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where the vertical arrows are pullbacks associated with p = c̃ ◦ r (e.g., p∗ is the
cohomology morphism H 2(˜X,Z) → H 2(˜Z,Z) and the first arrow is the relative
cohomology morphism), and the bottom line is the ‘lattice exacts sequence’ (4.2)
associated with the resolution ˜Z → Xa of (Xa, o). We claim that:

pH = 0. (4.12)

In particular, p∗(l′) ∈ La for any l′ ∈ L′, hence considering p∗(l′) as an integral
divisor, the element O

˜Z(p∗(l′)) ∈ Pic(˜Z) is well-defined.

Theorem 4.2.51 The line bundleO
˜Z(p∗(l′)) is a pullback of a unique elementL of

Pic(˜X). This line bundle L will be denoted by O
˜X(l′). Moreover, s : L′ → Pic(˜X),

defined by l′ �→ O
˜X(l′), is a group section of c1 in (4.8), which extends sL.

Furthermore, the definition of O
˜X(l′) is independent of the choice of the

resolution r : ˜Z → Z.

Proof Using the two exponential exact sequences one verifies that p∗ : Pic(˜X) →
Pic(˜Z) is injective and its image is the subgroup of invariants (Pic(˜Z))H . On the
other hand, O

˜Z(p∗(l′)) is H -invariant. ��
4.2.52 The Construction of s via c∗OXa,o [42, 71, 96, 97]

Associated with the resolution φ : ˜X → X we consider the ‘unit closed-open
cube’ Q := {l′ ∈ L′ : �l′� = 0}. Obviously, for any h ∈ H there is a unique
element rh ∈ Q, whose class is h. It is the minimal representative of h in the cone
L′≥0.

Theorem 4.2.53 ([71, 96, 97] (for the cyclic case see also [20–22])) Assume, as
above, that H 1(˜X,Z) = 0. Consider the finite covering c̃ : Z → ˜X. Then c̃∗OZ is
a vector bundle and its H -eigensheaf decomposition has the form:

c̃∗OZ � ⊕α∈̂HLα, (4.13)

where Lθ(h) = O
˜X(−rh) for any h ∈ H . In particular, c̃∗OZ � ⊕l′∈QO

˜X(−l′).
More generally, for any l′ ∈ L′ one has

c̃∗OZ(−c̃∗(l′)) � ⊕h∈HO
˜X(−rh + �rh − l′�). (4.14)

Corollary 4.2.54 The set of natural line bundles on ˜X coincides with the set of line
bundles of type L ⊗ O(l), where L is an eigensheaf of c̃∗OZ and l ∈ L. Or, via
(4.14), the set of natural line bundles coincides with the set of eigensheaf of bundles
of type c̃∗OZ(−c̃∗(l′)), l′ ∈ L′.
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4.2.8 The Canonical Cycle

4.2.55 Fix any resolution ˜X. Let K
˜X be a canonical divisor (defined up to a linear

equivalence), O
˜X(K

˜X) = �2
˜X

, and let K = −ZK be c1(�
2
˜X
) ∈ L′, the canonical

cycle of the resolution φ. The cycle ZK can be determined combinatorially from
(L′, ( , )) via the adjunction formula, namely (−ZK + Ev,Ev) + 2 · (1 − g(Ev) −
δ(Ev)) = 0 for all v ∈ V. (Here δ(Ev) is the sum of delta invariants of singularities
of Ev .) In particular, ZK = 0 if and only if g(Ev) = δ(Ev) = 0 and E2

v = −2 for
al v. In such a case (X, o) is an ADE singularity.

By Laufer [53], if the resolution is minimal, and ZK �= 0, then all the coefficients
of ZK are positive. Moreover, if ˜X is a minimal good resolution and (X, o) is not of
type ADE, then all the coefficients of ZK are still positive.

Theorem 4.2.56 (Riemann–Roch Formula) Fix a line bundle L ∈ Pic(˜X) and
set c1(L) = l′ ∈ L′ and k := −ZK − 2l′. For any l ∈ L>0 we consider the sheaf
L⊗ Ol on l. Then its analytic Euler characteristic satisfies

χ(L⊗ Ol ) = −(l, l + k)/2. (4.15)

We denote the combinatorial term from the right hand side of (4.15) by χk(l), or
just by χ(l) if k = −ZK . This expression motivates the following.

Definition 4.2.57 The set of characteristic elements are defined as

Char = Char(L) = {k ∈ L′ : (l, l + k) ∈ 2Z for any l ∈ L}. (4.16)

Note that −ZK is a characteristic element and Char = −ZK + 2L′.
The expression (4.15) can be extended to L′, that is, for any k ∈ Char one defines

χk : L′ → Q by χk(l
′) := −(l′, l′ + k)/2. If k = −ZK then we write χ := χk .

4.2.58 The expression Z2
K + |V| of the link behaves like a characteristic class in

many index formulae. It is independent of the resolution. We have the following
general formula for it.

Proposition 4.2.59 ([78]) Z2
K + |V| in terms of the graph has the expression

Z2
K+|V| = 2−2b1(LX)+

∑

v

(E2
v+3)+

∑

v,w

(2χ(Ev)−κv)(2χ(Ew)−κw)(E∗
v , E∗

w).

Example 4.2.60 ([36]) For the cyclic quotient singularity Xn,q we have

Z2
K + |V| = 2(n − 1)/n − 12 · s(q, n).
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Example 4.2.61 ([79]) For a star-shaped graph, with r := χ/e, we have

Z2
K + |V| = er2 + e + 5 − 12 ·

ν
∑

j=1

s(ωj , αj ).

Example 4.2.62 Assume that LX = S3−d (#iKi) (cf. 4.2.32), with μ/2 = δ = ∑

i δi

(the sum of delta-invariants of Ki) and arbitrary d > 0. Then K2 + |V| = 1 − (d −
2 + μ)2/d . If μ = (d − 1)(d − 2) (as in the superisolated case), then K2 + |V| =
1 − d(d − 2)2.

4.2.63 Splice Formula Assume that L(X, o) is an integral homology sphere and
let G be the splice diagram associated with the plumbing graph � [19]. Assume that
G is obtained by splicing the diagrams G1 and G2 along the knots K1 ⊂ M(G1),
K2 ⊂ M(G2). Let �i be the plumbing graphs, which correspond to Gi . Recall also
that Ki ⊂ M(Gi ) determines an open book decomposition, let μi be the first Betti
number (Milnor number) of its fiber. Then one has the following.

Theorem 4.2.64 ([92])

(

Z2
K + |V|)(�) = (

Z2
K + |V|)(�1) + (

Z2
K + |V|)(�2) − 2 · μ1 · μ2.

Definition 4.2.65 The normal singularity (X, o) is called Gorenstein if �2
X\{o} is

a holomorphically trivial line bundle, equivalently, if ZK ∈ L and one can choose
for K

˜X the divisor −ZK . Analogously, (X, o) is called numerically Gorenstein if
�2

X\{o} is a topologically trivial complex line bundle.

Though Gorenstein (local) rings can be defined even without normality assumption,
see e.g. [13], (e.g. complete intersections are Gorenstein even if they are not
normal), here we discuss the Gorenstein property only for normal germs.

Lemma 4.2.66 ([17]) (X, o) is numerically Gorenstein if and only if ZK ∈ L.

4.2.67 Q-Gorenstein Singularities Let KX be the canonical divisor of (X, o),
cf. 4.2.36. Note that (X, o) is Gorenstein if and only if KX is Cartier (invertible) at
o ∈ X, that is, KX is zero in Cl(X, o). Furthermore, if (X, o) is Gorenstein then any
o-ramified covering (X′, o) of (X, o) is Gorenstein. More generally, (X, o) is called
Q-Gorenstein, if there exists a positive integer r such that rKX is a Cartier divisor at
o (equivalently, if KX has finite order in Cl(X, o)). Again, if (X, o) is Q–Gorenstein
then any o-ramified covering (X′, o) of (X, o) is Q-Gorenstein. If L(X, o) is QHS3

then any numerically Gorenstein, Q-Gorenstein singularity is Gorenstein.

4.2.68 Vanishing Theorems Fix a resolution and L ∈ Pic(˜X). Then for l1, l2 ∈
L>0 with l2 > l1 the morphisms H 1(˜X,L) → H 1(L ⊗ Ol2) and H 1(L ⊗ Ol2) →
H 1(L ⊗ Ol1) are onto, and by the ‘Theorem of formal functions’ H 1(˜X,L) =
lim←− H 1(L ⊗ Ol ).
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Theorem 4.2.69 Generalized Grauert–Riemenschneider Theorem [31, 49, 104]
Consider a line bundle L ∈ Pic(˜X) such that c1(L(−K

˜X)) ∈ � − SQ for some
� ∈ L′ with ��� = 0. Then for any l ∈ L>0 one has the vanishing h1(l,L|l ) = 0.
In particular, h1(˜X,L) = 0.

Corollary 4.2.70 Write �ZK� as �ZK�+ − �ZK�− with �ZK�+, �ZK�− ∈ L≥0
and without common components. If �ZK�+ = 0 then pg = 0. If �ZK�+ > 0 then
for any Z ≥ �ZK�+, Z ∈ L, pg = h1(OZ).

For certain cycles the Grauert-Riemenschneider Theorem 4.2.69 can be
improved.

Proposition 4.2.71 (Lipman’s Vanishing Theorem [56, Theorem 11.1]) Take l ∈
L>0 with h1(Ol ) = 0 and L ∈ Pic(˜X) for which (c1L, Ev) ≥ 0 for any Ev in the
support of l. Then h1(l,L) = 0.

4.2.9 The Role of the Monoids S and S′

4.2.72 The monoids S and S′ are combinatorially associated with a fixed resolu-
tion graph �, cf. 4.2.11.

Lemma 4.2.73 For any fixed h ∈ H set L′
h := {l′ ∈ L′ : [l′] = h}.

(a) If l′1, l′2 ∈ L′
h then l′ := min{l′1, l′2} ∈ L′

h too.
(b) If l′1, l′2 ∈ S′ ∩ L′

h then min{l′1, l′2} ∈ S′ ∩ L′
h too.

(For l′1, l′2 ∈ L′ it can happen that min{l′1, l′2}, defined in L ⊗ Q, is not in L′.)

Proposition 4.2.74 Let ˜X → X be a resolution of (X, o) as above.

(a) For any l′ ∈ L′ there exists a unique minimal element e(l′) ∈ L≥0 with s(l′) :=
l′ + e(l′) ∈ S′.

(b) e(l′) can be found by the following (generalized Laufer’s) algorithm. One
constructs a ‘computation sequence’ z0, z1, . . . , zt ∈ L≥0 with z0 = 0 and
zi+1 = zi +Ev(i), where the index v(i) is determined by the following principle.
Assume that zi is already constructed. Then, if l′ + zi ∈ S′, then one stops, and
t = i. Otherwise, there exists at least one v ∈ V with (l′ + zi, Ev) > 0. Take
for v(i) one of these v’s. Then this algorithm stops after finitely many steps, and
zt = e(l′).

Corollary 4.2.75 For any L ∈ Pic(˜X) take c1 := c1(L) and e := e(−c1). Then
c1(L(−e)) = −s(−c1) ∈ −S′ and

h1(L(−e)) − h1(L) = χ(Oe(c1)) = χ(e − c1) − χ(−c1) ≤ 0.

In particular, the computation of any h1(L) can be reduced, modulo the combina-
torics of L, to the computation of some h1(L′) with c1(L′) ∈ −S′.
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Example 4.2.76 If L = O
˜X(−l′) for some l′ ∈ L′ then 4.2.75 reads as

h1(O
˜X(−s(l′))) − h1(O

˜X(−l′)) = χ(Oe(l′)(−l′)) = χ(s(l′)) − χ(l′) ≤ 0.

The next consequence of Proposition 4.2.74 is the existence of the fundamental
cycle.

Corollary 4.2.77

(a) [5, 6] S \ {0} has a unique minimal element Zmin.
(b) [49] Zmin can be found by the following (Laufer’s) algorithm. One constructs

a computation sequence z1, . . . , zt with z1 = Ew (arbitrarily chosen), and
zi+1 = zi + Ev(i), where the index v(i) is determined as follows. Assume
that zi is already constructed. Then, if zi ∈ S, then one stops, and t = i.
Otherwise, there exists at least one v ∈ V with (zi, Ev) > 0. Take for v(i) one
of these v’s. Then this algorithm stops after finitely many steps, and zt = Zmin

(independently of all the choices).

The cycle Zmin ∈ L>0 has several names in the literature: minimal, fundamental, or
Artin cycle. The sequence from (b) is called the Laufer’s computation sequence for
Zmin.

4.2.78 The Representatives rh and sh Recall that for any h ∈ H , rh ∈ L′ is
the minimal representative of h in the cone L′≥0. Replacing the cone L′≥0 by S′,
by 4.2.73 we obtain the following.

Corollary 4.2.79 For any h ∈ H consider all the representatives l′ + L ⊂ L′ of h.
Then (l′ + L) ∩ S′ has a unique minimal element sh.

Clearly s0 = 0, and sh ≥ rh. Strict inequality might appear (take e.g. the lens space
L(8, 5)). sh = rh if and only if rh ∈ S′, otherwise sh = s(rh) in the sense of 4.2.74.
Using 4.2.76 we obtain

χ(sh) ≤ χ(rh). (4.17)

Even at Euler-characteristic level, strict inequality can appear, see 4.2.89.

4.2.10 The Equivariant Geometric Genus and Laufer’s Duality

4.2.80 The pg–Formula of Laufer Let us discuss a different realizations of the
geometric genus pg = h1(˜X,O

˜X), where ˜X → X is any resolution.
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By Serre duality H 1(˜X,O
˜X)∗ � H 1

c (˜X,�2
˜X
). In the exact sequence

H 0
c (˜X,�2

˜X
) → H 0(˜X,�2

˜X
) → H 0(˜X \ E,�2

˜X
) → H 1

c (˜X,�2
˜X
) → H 1(˜X,�2

˜X
)

H 0
c (˜X,�2

˜X
) = 0 while H 1(˜X,�2

˜X
) = 0 by 4.2.69. Hence,

Proposition 4.2.81 ([49])

H 1(˜X,O
˜X)∗ � H 1

c (˜X,�2
˜X
) = H 0(˜X \ E,�2

˜X
)/H 0(˜X,�2

˜X
), (4.18)

where the last vector space is the space of global holomorphic 2-forms on ˜X \ E up
to those which can be extended holomorphically across ˜X.

Above, the set of poles can be bounded. Indeed, for any Z ∈ L>0 consider the
exact sequence of sheaves

0 → �2
˜X

→ �2
˜X
(Z) → OZ(Z + K

˜X) → 0.

Since h1(�2
˜X
) = 0 (cf. 4.2.69) we get that

H 0(˜X,�2
˜X
(Z))/H 0(˜X,�2

˜X
) = H 0(OZ(Z + K

˜X)) = H 1(OZ)∗. (4.19)

Assume that pg �= 0. Then from 4.2.70(a) h1(O�ZK �+) = pg, hence

pg = dim (H 0(˜X,�2
˜X
(�ZK�+))/H 0(˜X,�2

˜X
)). (4.20)

This holds if pg = 0 too. Since H 0(˜X,�2
˜X
) ⊂ H 0(˜X,�2

˜X
(�ZK�+)) ⊂ H 0(˜X \

E,�2
˜X
), by (4.18) and (4.20) we get that H 0(˜X,�2

˜X
(�ZK�+)) = H 0(˜X \ E,�2

˜X
).

Hence, the poles of forms from H 0(˜X \ E,�2
˜X
) are bounded by �ZK�+.

If (X, o) is numerically Gorenstein and ZK > 0 then χ(ZK) = 0 and h0(OZK ) =
h1(OZK ) = pg . Hence, from the vanishing h1(˜X,O(−ZK)) = 0 we obtain

pg = dim
(

H 0(˜X,O
˜X)/H 0(˜X,O

˜X(−ZK))
)

. (4.21)

If (X, o) is Gorenstein and ZK ≥ 0, via the isomorphism �2
˜X

= O
˜X(−ZK) the pg

formulae from (4.20) and (4.21) agree.

4.2.82 The Geometric Genus of the Universal Abelian Covering Assume that
L(X, o) is a QHS3.

Let (Xa, o) → (X, o) be the universal abelian covering of (X, o), and consider
the notations of the diagram (4.10). By definition, the geometric genus pg(Xa, o)

of (Xa, o) is h1(˜Z,O
˜Z). Recall that r : ˜Z → Z is the resolution of the cyclic

quotient singularities of Z. Note that r∗(O˜Z) = OZ (by the normality of Z), and
R1r∗(O˜Z) = 0 since cyclic quotient singularities are rational (have geometric
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genus zero). Therefore, by Leray spectral sequence pg(Xa, o) = h1(OZ). Since
c̃ is finite h1(OZ) equals h1(̃c∗OZ), and it has an eigenspace decomposition
⊕h∈HH 1(̃c∗OZ)θ(h). By Theorem 4.2.53 the dimension of the θ(h)-eigenspace is

pg(Xa, o)θ(h) := dim H 1(̃c∗OZ)θ(h) = h1(˜X,O
˜X(−rh)).

By summation:

pg(Xa, o) =
∑

h∈H

h1(˜X,O
˜X(−rh)).

Clearly, for h = 0 we get pg(Xa, o)θ(0) = pg(X, o).

Definition 4.2.83 If H1(LX,Q) = 0 we define the equivariant geometric genus of
(X, o) associated with h ∈ H by pg(Xa, o)θ(h) = h1(˜X,O

˜X(−rh)).

Via Proposition 4.2.75 it can also be expressed by sh:

pg(Xa, o)θ(h) = h1(˜X,O
˜X(−sh)) + χ(rh) − χ(sh). (4.22)

4.2.84 Laufer’s formula (4.18) has the following generalization.

Proposition 4.2.85 Assume that the link of (X, o) is a rational homology sphere
and fix h ∈ H . Let l′h be either rh or sh. Then

H 1(˜X,O
˜X(−l′h))∗ � H 1

c (˜X,�2
˜X
(l′h)) = H 0(˜X \ E,�2

˜X
(l′h))/H 0(˜X,�2

˜X
(l′h)).

Remark 4.2.86 Since H 0(˜X \ E,�2
˜X
(rh)) = H 0(˜X \ E,�2

˜X
(sh)), 4.2.85 gives

h1(O
˜X(−rh)) − h1(O

˜X(−sh)) = dim H 0(�2
˜X
(sh))/H 0(�2

˜X
(rh)).

Write sh − rh = �. Then from the proof of 4.2.85 one has H 1(˜X,�2
˜X
(rh)) =

H 1(˜X,�2
˜X
(sh)) = H 1(�2

˜X
(sh)|�) = 0. Hence, the right hand side of the above

identity is χ(�2
˜X
(sh)|�) = χ(rh) − χ(sh), compatibly with (4.22).

4.2.87 In concrete computations it is always easier to find global sections than to
determine higher cohomologies. This is one of the main advantages of the identity
from 4.2.85. In several cases one can identify concrete basis for the vector space
H 0(˜X \ E,�2

˜X
(l′h))/H 0(˜X,�2

˜X
(l′h)), for l′h = rh or sh.

Example 4.2.88 h1(˜X,O
˜X(−rh)) for weighted homogeneous singularities,

g = 0.
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Assume that rh in the dual basis is written as rh = a0E
∗
0 + ∑

j,i ajiE
∗
ji . Define

also aj := ∑

i nj,i+1aji (1 ≤ j ≤ ν) and Nrh(�) = b0�+a0 −∑

j

⌈

ωj �−aj

αj

⌉

. Then

h1(O
˜X(−rh)) =

∑

�≥0

max{0,−Nrh(�) − 1}. (4.23)

Example 4.2.89 h1(˜X,O
˜X(−sh)) for weighted homogeneous singularities, g =

0.
Set sh := ā0E

∗
0 +∑

j,i āj iE
∗
ji and āj := ∑

i nj,i+1āj i (1 ≤ j ≤ ν). Then

h1(O
˜X(−sh)) =

∑

�≥0

max{0,−Nsh(�) − 1}, (4.24)

where Nsh(�) = b0� + ā0 − ∑

j

⌈

ωj �−āj

αj

⌉

. Set � := sh − rh and let �0 ∈ Z≥0 be

the E0-coefficient of �. Then Nsh(�) = Nrh(� + �0), hence

h1(O
˜X(−sh)) =

∑

�≥�0

max{0,−Nrh(�) − 1}. (4.25)

In particular,

h1(O
˜X(−rh)) − h1(O

˜X(−sh)) = χ(rh) − χ(sh) =
∑

0≤�<�0

max{0,−Nrh(�) − 1}.

This expression can be non-zero. Take e.g. the graph with b0 = 2, and three
legs all with invariants (αj , ωj ) = (3, 1). Then sh = ∑3

j=1 E∗
jsj

, rh = sh − E0,

χ(sh) = h1(O
˜X(−sh)) = 0, and χ(rh) = h1(O

˜X(−rh)) = 1.

Example 4.2.90 For a cyclic quotient germ h1(O
˜X(−rh)) = h1(O

˜X(−sh)) = 0.
(Use 4.2.53 and 4.2.71.)

4.2.11 Spinc Structures

4.2.91 In the next discussion M is a link L(X, o), which is a rational homology
sphere.

M admits a spinc structure. In fact, the set of spinc structures Spinc(M) is an
H 2(M,Z) torsor. Furthermore, the restriction R : Spinc(˜X) → Spinc(M) is onto,
where Spinc(˜X) denotes the set of spinc structures on ˜X. The natural cohomological
morphism H 2(˜X,Z) → H 2(M,Z) is the factorization L′ → L′/L, l′ �→ [l′]. This
projects Char onto Char/L. Then c1 : Spinc(˜X) � Char ⊂ L′ induces a map
c : Spinc(M) � Char/L ⊂ L′/L such that c(R(σ̃ )) = [c1(σ̃ )].
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Moreover, c([l′] ∗ σ) = 2[l′] + c(σ ) for any [l′] ∈ L′/L and σ ∈ Spinc(M).
While c1 is injective, c in general is not. Its fibers are H 1(M,Z2) torsors;

c−1(0) � Spin(M). These facts will be explained next.
We consider the action of L on Char defined by l∗k := k+2l. Let Char/2L be its

orbit space. Then Char/2L is an L′/L torsor by the action induced by l′∗k = k+2l′.
Moreover, the composition R ◦ c−1

1 : Char → Spinc(˜X) → Spinc(M) factorizes
to Char/2L → Spinc(M). This map is a bijection of L′/L torsors. In the sequel we
identify Spinc(M) by this bijection. Then c : Spinc(M) → Char/L transforms into
c : Char/2L → Char/L. Its fibers are {l′ ∈ L′ : 2l′ ∈ L}/L � H 1(M,Z2) torsors.
The trivial element 0 of L′/L is in Char/L, and

c−1(0) = (Char ∩ L)/2L � Spin(M),

where Spin(M) denotes the set of spin structures of M . (It is an H 1(M,Z2) torsor.)

Definition 4.2.92 Let M = L(X, o) be a singularity link. For any k ∈ Char we
write σ̃ (k) for that spinc structure of ˜X for which c1(̃σ (k)) = k. Similarly, let
σ [k] ∈ Spinc(M) be the restriction of σ̃ (k) to M . The spinc structure σ̃can of ˜X
with c1(̃σ ) = K will be called the canonical spinc structure of ˜X. Its restriction
σcan ∈ Spinc(M) will be called the canonical spinc structure of the link.

Lemma 4.2.93 There is an involution σ �→ σ of Spinc(M) which satisfies: c(σ ) =
−c(σ ), [l′] ∗ σ = [−l′] ∗ σ , and Spin(M) = {σ ∈ Spinc(M) : σ = σ }.
In algebraic geometry, by convention, the first Chern class of the ‘canonical’ line
bundle is K

˜X. Nevertheless, in simplectic geometry and differential topology, in
the presence of an (almost) complex structure, the ‘canonical’ spinc structure is
usually defined via −K

˜X. However, in this note we adopt the definition from
Definition 4.2.92.

4.2.94 Definition of kr Assume that the link is a rational homology sphere. Then
Spinc(˜X) is identified with the set of characteristic elements k on L′, and if k and k′
induces the same Spinc structure on the link, then k′ = k + 2l for a certain l ∈ L.
In this case χk′(x − l) = χk(x) − χk(l) for any x ∈ L, hence the two functions
χk and χk′ can be easily compared, and they have identical qualitative properties.
Therefore, for each class [k] = k+2L (that is, for each Spinc structure σ [k] of LX),
we choose a representive of [k]. Since the set of classes is indexed by H ; we define
the set of representatives by kr := K + 2sh, for each h ∈ H . Since s0 = 0, for the
trivial class h = 0 we get χkr = χ .

Since for any x ∈ L one has χkr (x) = χ(sh+x)−χ(sh), the function χkr defined
on the integral lattice L (up to an additive constant χ(sh)) can be identified with χ

acting on the (rationally) shifted lattice sh + L = {l′ ∈ L′ : [l′] = h}.
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4.3 Multivariable Series

4.3.1 The Divisorial Filtration

4.3.1 Let (X, o) be a normal surface singularity, and let φ : (˜X,E) → (X, o) be
an arbitrary fixed resolution of (X, o). We will define an L–filtration of the local
ring of (X, o) and a compatible H -equivariant L′–filtration of the local ring of
(Xa, o) (where H = L′/L). In the whole discussion regarding the universal abelian
covering (Xa, o) and the L′–filtration of its local ring we will assume that the link
of (X, o) is a rational homology sphere. At the level of the L–filtration of the OX,o

this assumption is not needed.

4.3.2 The Module Z[[L′]] Once a resolution is fixed, hence the natural basis
{Ev}v of L is fixed too, Z[[L]] is identified with Z[t±1] = Z[[t±1

1 , . . . , t±1
s ]].

It is contained in the larger module Z[[t±1/d]] = Z[[t±1/d

1 , . . . , t
±1/d
s ]], the

module of formal (Laurent) power series in variables t
±1/d
v , where d := |H |.

Z[[L′]] ⊂ Z[[t±1/d]] consists of the Z-linear combinations of monomials of type

tl
′ = t

l′1
1 · · · t l′ss where l′ = ∑

v l′vEv ∈ L′. Z[[L′]] also admits several Z-submodules
corresponding to different cones of L′; e.g. Z[[L′≥0]] and Z[[S′]], generated by

monomials tl
′

with l′ ∈ L′≥0, or l′ ∈ S′ respectively. Both Z[[L′≥0]] and Z[[S′]]
have natural ring structure.

Z[[S′]] is a usual formal power series ring in variables {tE∗
v }v: its elements are

�(f )(t) := f (tE
∗
1 , . . . , tE

∗
s ), where f (x1, . . . , xs) ∈ Z[[x]] = Z[[x1, . . . , xs]].

(4.26)

Any series S(t) = ∑

l′ al′tl
′ ∈ Z[[L′]] decomposes in a unique way as

S =
∑

h∈H

Sh, where Sh =
∑

[l′]=h

al′t
l′ . (4.27)

Sh is called the h-component of S. E.g., if S(t) := �(f )(t) for some f ∈ Z[[x]] as
in (4.26) then

Sh(t) = 1

|H | ·
∑

ρ∈̂H

ρ(h)−1 · f (ρ([E∗
1 ])tE

∗
1 , . . . , ρ([E∗

s ])tE
∗
s ). (4.28)

4.3.2 The Analytic Series H(t) and P(t)

Consider the diagram and the notations regarding the universal abelian covering
from 4.2.49. Set φa = ψa ◦ r and p = c̃ ◦ r .
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Recall that by (4.12) p∗(l′) is an integral cycle for any l′ ∈ L′.

Definition 4.3.3 The L′–filtration on the local ring of holomorphic functions OXa,o

is defined as follows. For any l′ ∈ L′, we set

F (l′) := {f ∈ OXa,o | div(f ◦ φa) ≥ p∗(l′)}. (4.29)

Notice that the natural action of H on (Xa, o) induces an action on OXa,o, which
keeps F (l′) invariant. Therefore, H acts on OXa,o/F (l′) as well. For any l′ ∈ L′,
let h(l′) be the dimension of the θ([l′])-eigenspace (OXa,o/F (l′))θ([l′]). Then one
defines the Hilbert series H(t) by

H(t) :=
∑

l′∈L′
h(l′) · tl

′ ∈ Z[[L′]]. (4.30)

Example 4.3.4 The 0-component of H(t) is

H0(t) =
∑

l∈L

dim
(

OX,o / {f ∈ OX,o : divE(f ◦ φ) ≥ l} ) · tl .

This is the Hilbert series of OX,o associated with the divisorial filtration L � l �→
F0(l) = {f ∈ OX,o : divE(f ◦ φ) ≥ l} of all irreducible exceptional divisors of φ.

4.3.5 Next, we define the Poincaré series P(t) = ∑

l′∈S′ p(l′)tl′ associated with
the filtration {F (l′)}l′ .

P (t) = −H(t) ·
∏

v

(1 − t−1
v ), or p(l′) =

∑

I⊂{1,...,s}
(−1)|I |+1h(l′ + EI ), (EI =

∑

v∈I

Ev).

(4.31)

It turns out that the series P(t) is supported in S′, and the following ‘inversion
identities’ hold:

h(l′) =
∑

l∈L, l �≥0

p(l′ + l). (4.32)

Proposition 4.3.6 Let P0(t) = ∑

l∈S p(l)tl be the 0-component of P(t). Then for
l ∈ L

h1(O
˜X(−l)) = −

∑

l̃∈L, l̃�l

p(l̃) + χ(l) + pg. (4.33)

If l ≤ 0, then the sum on the right hand side is empty.
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If l ∈ (−K
˜X + S′) ∩ L then by the vanishing Theorem 4.2.69

∑

l̃∈L, l̃�l

p(l̃) = χ(l) + pg. (4.34)

That is, the counting function of the coefficients of P0(t), associated with the special
truncation {l̃ ∈ S, l̃ � l}, evaluated in the chamber−K +S′, equals the quadratic
polynomial χ(l) + pg .

In particular, P0(t) determines completely pg and the functions l �→ χ(l), l �→
h1(O

˜X(l)) (l ∈ L).

4.3.7 The Equivariant Version of Proposition 4.3.6 Next, we assume that the
link of (X, o) is a rational homology sphere. In particular, the universal abelian cov-
ering is well defined with its H -action. Recall that the geometric genus of (Xa, o) is
the sum

∑

h h1(O(−rh)) (of the equivariant genera of (X, o)) corresponding to the
eigenspace decomposition of H 1(OZ). Let l′h be either rh or sh. Then for any fixed
h the equivariant analogues of the formulae from Example 4.3.6 are the following.

For L = O
˜X(−l′), where l′ ∈ L′, l′ = l + l′h with l ∈ L,

h1(O(−l′)) = −
∑

[l̃′]=[l′], l̃′�l′
p(l̃′) + χK+2l′h(l) + h1(O(−l′h))

= −
∑

[l̃′]=[l′], l̃′�l′
p(l̃′) + χ(l′) + h1(O(−l′h)) − χ(l′h).

(4.35)

In particular, when l′ ∈ −K + S′, l′ = l + l′h with l ∈ L,

∑

[l̃′]=[l′], l̃′�l′
p(l̃′) =χK+2l′h(l) + h1(O(−l′h))

=χ(l′) + h1(O(−l′h)) − χ(l′h).

(4.36)

Therefore, P(t) determines completely each h1(O
˜X(l′)) (l′ ∈ L′).

Remark 4.3.8 The following comment is appropriate. In the above formulae (e.g.
in 4.3.6 and 4.3.7) the term consisting of the sum of the coefficients of P can
be replaced (via (4.32)) by the corresponding coefficient of the Hilbert series
H(t). E.g., (4.34), under the same assumption, reads as h(l) = χ(l) + pg . The
corresponding versions in terms of the Hilbert series are simpler (and from the
analytic point of view even more conceptual). The reason why we prefer above
the summation expressions is the following. Later we will introduce the topological
analogues of the above identities. The point is that P(t) will have a topological
analogue, namely Z(t) (see subsection 4.3.3), however, the analogue of H(t) will
be defined (‘merely’) as the inversion of Z(t), that is, by the summation of its
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coefficients. Hence, later we will hunt in the topological side for sum–expressions
as above, where the coefficients of P will be replaced by those of Z.

4.3.3 The Topological Series Z(t)

4.3.9 We assume that LX is a QHS3 and we fix a good resolution as above.

Definition 4.3.10 We define the rational function Z(t) in variables xv = tE
∗
v by

Z(t) := �(z)(t), where z(x) :=
∏

v∈V
(1 − xv)

κv−2. (4.37)

Hence Z(t) = ∏

v(1 − tE
∗
v )κv−2. By (4.28), its h-component for any h ∈ H is

Zh(t) := 1

|H | ·
∑

ρ∈̂H

ρ(h)−1 ·
∏

v∈V
(1 − ρ([E∗

v ])tE
∗
v )

κv−2
. (4.38)

In the sequel we identify the rational function Z(t) with its Taylor expansion at
the origin, as an element of Z[[S′]] (cf. 4.26).

Example 4.3.11 (Splice Quotient Singularities) Splice quotient singularities were
introduced by Neumann and Wahl in [91]. From any fixed graph � (for which M(�)

is a QHS3 and � has some additional special arithmetical properties too, see below)
one constructs a family of singularities with common equisingularity type, such that
any member admits a distinguished resolution, whose dual graph is exactly �. The
construction suggests that the analytic properties of the singularities constructed in
this way are strongly linked with the fixed resolution and with its graph �. (Hence,
the expectation is that certain analytic invariants might be computable from �.)

There are three different approaches how one can define the splice quotient
singularities; they are based on different geometric properties: (a) the ‘original’
construction of Neumann–Wahl [91] (where � satisfies the additional semigroup
and the congruence conditions), (b) the ‘modified’ version by Okuma [97] (where
� satisfies the monomial condition), and (c) considering resolution of singularities
satisfying the end-curve condition [93, 98]. It turns out that all these approaches
provide the same family of singularities.

Rational singularities (where φ is an arbitrary resolution), minimally elliptic
singularities, (where φ is a resolution in which the support of the minimal elliptic
cycle is E), and weighted homogeneous singularities (where φ is the minimal good
resolution) are splice quotient singularities.

Theorem 4.3.12 ([75]) Assume that (X, o) admits a resolution φ, which satisfies
the end curve condition, and H 1(˜X,Z) = 0. Then P(t) = Z(t).
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Conversely, assume that the singularity (X, o) satisfies H 1(˜X,Z) = 0, and we
fix one of its good resolutions φ. If associated with φ one has P(t) = Z(t), then the
‘end curve condition’ for φ is also satisfied.

Corollary 4.3.13 Assume that (X, o) admits a resolution φ, which satisfies the end
curve condition, and H 1(˜X,Z) = 0. Then h1(O

˜X(l′)) is topological for any l′ ∈ L′.
Indeed, write Z(t) = ∑

l′∈S′ z(l′)tl′ . Then, after the identification P(t) = Z(t),
the formulae from 4.3.7 read as follows:

1. For l′ ∈ −K + S′

∑

[l̃′]=[l′], l̃′�l′
z(l̃′) = χK+2rh(l

′ − rh) + h1(O
˜X(−rh)); (4.39)

2. More generally, for L = O
˜X(−l′) with arbitrary l′ ∈ L′,

h1(O
˜X(−l′)) = −

∑

[l̃′]=[l′], l̃′�l′
z(l̃′) + χK

˜X+2rh(l
′ − rh) + h1(O

˜X(−rh)).

(4.40)

4.3.4 Reductions of Variables in the Series P(t) and Z(t)

For any fixed resolution φ, in the definition of the series P(t) and Z(t) one takes
a variable tv for each exceptional divisor Ev of φ. In most of the situations we
strongly suspect that some of the variables are superfluous. E.g., if the resolution is
not minimal, the non-essential exceptional components carry less information; the
same is valid even for some of the exceptional curves of the minimal resolution, e.g.
those with κv = 2. Moreover, certain exceptional divisors might have some intrinsic
geometric meaning, and sometimes we wish to concentrate only on them.

4.3.14 We fix (X, o) as in 4.3.1 and the resolution φ. Let I be a non-empty subset
of V. Associated with it we consider formal series in variables {tv}v∈I, denoted by
tI, and the projection πI : L′ → L ⊗ Q, πI(

∑

v∈V l′vEv) = ∑

v∈I l′vEv . We write

l′I := πI(l′), and tl
′
I =

∏

v∈I
t
l′v
v = tl

′ |tv=1 for all v �∈I.

Here a word of warning is necessary. In the original case I = V, from a
series S(t) = ∑

l′ al′tl
′

we can recover its h-components Sh. Indeed, the monomial
al′tl

′
belongs to Sh if and only if [l′] = h. However, this property will be lost

when we reduce the variable: from the information carried by πI(l′) one cannot
recover [l′]. Therefore, the reduced h-components of a series S(t) are defined as the



234 A. Némethi

reductions of the original h-components Sh(t) (and they cannot be recovered from
the reduced S).

Definition 4.3.15 The reduced series of Z is defined as ZI(tI)

:= Z(t)|tv=1 for all v �∈I. Similarly, for any h ∈ H , Zh,I(tI) := Zh(t)|tv=1 for all v �∈I.
Equivalently,

Zh,I(tI) := 1

|H | ·
∑

ρ∈̂H

ρ(h)−1 ·
∏

v∈V
(1 − ρ([E∗

v ])tE
∗
v

I )
κv−2

. (4.41)

The substitutions {tv = 1}v �∈I are well-defined since Z(t) is supported on S′, which
has the special finiteness property 4.2.13.

4.3.16 Reducing Variables in Series P(t) In the case of the analytic series P(t)
we can proceed, a priori, in two different ways. By the first one we reduce P(t)
‘blindly’, as we did with Z(t) in 4.3.15, via substitutions tv = 1 for all v �∈ I.
Again, this step is well-defined since P too is supported on S′.

On the other hand, we can also repeat the original geometric definition of P(t),
as the multivariable Poincaré series associated with the divisorial filtration as in
(4.31), however, at this time we will use the ‘reduced set of divisors’ indexed by I.
However, it turns out that the two approaches lead to the same object.

Corollary 4.3.17 Assume that for a resolution φ and an element h ∈ H the identity
Ph(t) = Zh(t) is valid. Then for the same φ and h and for any non-empty I ⊂ V
the ‘reduced identity’ Zh,I(tI) = Ph,I(tI) (in Z[[t1/ det(I )

v , v ∈ I]]) is valid too.
In Sects. 4.3.5 and 4.3.6 we exemplify cases when I contains only one element. Our
goal is to compare the analytic reduced series Ph,I with the topological series Zh,I.

4.3.5 Example: P and Z for Weighted Homogeneous Germs

Assume that (X, o) is weighted homogeneous and its minimal good resolution is
star-shaped with ν ≥ 3. We set I = {central vertex v0}.

Our plan is to compare three filtrations and to show that they agree.
Firstly, the E0-divisorial filtration coincides with the filtration given by the C

∗
action.

Assume next that g = 0, hence the universal abelian covering is well-defined,
it is a Brieskorn isolated complete intersection singularity. Therefore, one has three
equivariant Z–filtrations of OXa,o: the divisorial filtration FI associated with the
central divisor E0, the filtration/grading associated with the C

∗-action, and the
monomial filtration GI associated with v0.

The monomial filtration is determined by the following grading. If we denote the
variables of the Brieskorn equations by {zi}νi=1, then their degrees are deg(zi) =
deg(E∗

si
) = (αi |e|)−1 (1 ≤ i ≤ ν). The degree of the Brieskorn equations of the
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universal abelian covering are |e|−1 (hence the Brieskorn exponent of zi is αi). This
coincides exactly with the weights of the C

∗-action on (Xa, o). In particular, the
monomial filtration and the filtration induced by the C

∗-action agree. Similarly as
above, the filtration induced by the C∗-action and the divisorial filtrations agree too.

The (common) Poincaré series of the above filtrations agree with the topological
series Zh,I(t) (the variable t corresponds to v0). This fact can be seen in many
different ways (see e.g. [79, 88, 103]). E.g.:

(i) The identity P = Z was proved for any singularity which satisfies the end
curve condition. Then the identity Ph,I = Zh,I follows from 4.3.17 (since the
minimal good resolution of a weighted homogeneous germ satisfies the end
curve condition).

(ii) If h = 0 then the Poincaré series of the graded OX,o was computed analytically
via the Dolgachev–Pinkham–Demazure technique, the output is identical with
Zh,I(t), cf. 4.2.28.

For any fixed h ∈ H , let l′h ∈ L′ be one of its representatives. If l′h = a0E
∗
0 +

∑

ik aikE
∗
ik , then l′red := a0E

∗
0 +∑

ik aikn
i
k+1,si

E∗
isi

is still a representative, and

a := πI(l′) = πI(l′red) = −(E∗
0 , l′) = 1

|e| · (a0 +
∑

j

aj

αj

) ∈ 1

o
Z.

The rational number a modulo Z is independent of the choice of the represen-
tative l′h, it depends only on h (and any integral shift can be realized by different
choices). In particular, πI(L + rh) = a + Z.

The common Poincaré series is given by

Ph,I(t) =
∑

�∈Z, �≥−a

max
{

0 , 1 + a0 + �b −
∑

j

⌈�ωj − aj

αj

⌉ }

· t�+a.

With the choice l′h = rh one has a ∈ [0, 1).
This expression can also be compared with another expression obtained via a

rather different construction, namely via the universal cycles x(�) and their τ -
function, cf. 4.7.22.

4.3.6 Example: P0 and Z0 for Superisolated Singularities

Next, we compute the one-variable {v+}–reduced series P0 and Z0 for superisolated
singularities associated with an irreducible curve C, and we formulate geometric
properties and conjectures about their difference. Such properties might serve as
combinatorial criteria for the existence of the rational cuspidal curve C with given
topology.
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4.3.18 Assume that (X, o) is a superisolated singularity with C irreducible and
with a rational homology sphere link, cf. subsection 4.2.4. Let φ be its minimal
good resolution described in 4.2.31 and 4.2.32. We set I = {v+} (the vertex
corresponding to the curve) and h = 0.

Set �(t) := ∏

i �i . Then �(1) = 1 and d�/dt (1) = δ, where δ = ∑

i δi =
(
∑

i μi)/2 = (d−1)(d−2)/2 is the sum of delta-invariants. Hence, � can be written
as �(t) = 1+(t−1)δ+(t−1)2Q(t) for an integral polynomial Q(t) = ∑2δ−2

j=0 αj t
j

(see 4.2.30). For ν = 1 one has Q(t) = ∑

s �∈SC,p1
(1 + t + · · · + ts−1), hence

αj = #{s �∈ SC,p1 : s > j } (if ν = 1). (4.42)

Since s �∈ SC,p1 if and only if 2δ − 1 − s ∈ SC,p1 , we get

α(d−3−j)d = #{s ∈ SC,p1 : s ≤ jd} (if ν = 1, 0 ≤ j ≤ d − 3). (4.43)

4.3.19 We wish to compare P0,I(t) and Z0,I(t). Firstly, P0,I(t) = (1 − td )/(1 −
t)3.

By the definition of Z0,I, and from A’Campo’s formula (and using the fact that
H = Zd is generated by [E+]), we obtain

Z0,I(t) = 1

d

∑

ξd=1

�(ξt1/d )

(1 − ξt1/d )2 .

Lemma 4.3.20 The difference

N(t) := Z0,I(t) − P0,I(t) = 1

d

∑

ξd=1

�(ξt1/d)

(1 − ξt1/d )2
− 1 − td

(1 − t)3
(4.44)

has the following properties:

(a) N(0) = 0, and N(t) is a symmetric polynomial: N(t) = td−3 · N(1/t).
(b)

N(t) =
d−3
∑

j=0

(

α(d−3−j)d − (j + 1)(j + 2)

2

)

td−3−j .

Assume that ν = 1. Then 4.3.20(b) combined with (4.43) says that the
Semigroup Distribution Property guarantees the vanishing of N(t). However, for
ν ≥ 2, N(t) �= 0 might appear (see [24]). Several examples computed in [loc. cit.]
supported the following (hasty) conjecture.

Conjecture 4.3.21 ([24]) All the coefficients of N(t) are non-positive for any
rational cuspidal curve.
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If ν = 1 then the conjecture is true since N(t) ≡ 0. If ν = 2 then the
Conjecture is true again, it follows from the Semigroup Distribution Property and
certain lattice cohomology formulae of the link of superisolated singularities; the
method even provides a conceptual meaning of the coefficients of −N(t) in terms of
ranks of certain first lattice cohomology groups. See subsection 4.9.2 for a detailed
discussion.

However, the conjecture fails for certain curves with ν = 3 [8].
A ‘weaker’ version of Conjecture 4.3.21 was formulated in [8], it is a numerical

inequality (instead of a polynomial one); in fact, it is more in the spirit of the
motivation of the original Conjecture 4.3.21, since it is a reformulation of an
inequality between the geometric genus of a superisolated singularity and the
normalized Seiberg–Witten invariant of the link (see again subsection 4.9.2 for the
complete discussion).

Conjecture 4.3.22 ([8]) N(1) ≤ 0 for any rational cuspidal curve.

Note that by Lemma 4.3.20(b) one has:

N(1) =
d−3
∑

j=0

α(d−3−j)d − d(d − 1)(d − 2)

6
= −pg +

d−3
∑

j=0

α(d−3−j)d. (4.45)

Clearly, Conjecture 4.3.21 implies this second one, hence by the above discussion
Conjecture 4.3.22 for ν ≤ 2 is also true. Moreover, in [8] a case-by-case verification
provides its validity for all the ‘known’ curves (which, conjecturally, provide all the
possible combinatorial types with ν ≥ 3).

4.3.7 The Periodic Constant of One-Variable Series

Definition 4.3.23 ([82, 3.9], [97]) Let F(t) = ∑

i≥0 ait
i be a formal power series.

Suppose that there exist a positive integer p and a polynomial Pp(t) such that
∑

0≤i<pn ai = Pp(n) for every n ∈ Z>0. We call the constant term Pp(0) the
periodic constant of F and we denote it by pc(F ). The integer p is called the
‘period’. Furthermore, we extend the above definition to expressions of type tr ·F(t)

via pc(trF (t)) := pc(F (t)), where F is a power series as above and r ∈ Q∩ [0, 1).

If the periodic constant exists then it is independent of the choice of the period p.
If F1 and F2 admit periodic constants, then the same is true for the series F1+F2,

cF1 (where c ∈ C), F1(t
m) (where m ∈ Z>0). Moreover, pc(F1 + F2) = pc(F1) +

pc(F2), pc(cF1) = c · pc(F ), pc(F1(t
m)) = pc(F1(t)).

If F(t) is a finite sum (i.e. it is a polynomial), then pc(F ) exists and equals F(1).
For certain rational functions, one has the following equivalent description.

(Here, we identify a rational function R with its Taylor expansion at the origin.)
Clearly, any rational function can be written in a unique way as R = R+ + R−,
where R+ is a polynomial and R− is a rational function of negative degree.
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Lemma 4.3.24 Let R be a rational function having poles only at infinity or at
certain roots of unity. Then R admits a periodic constant and pc(R) = R+(1).

Example 4.3.25 Recall that for cyclic quotients (with s > 1) Z(t) = (1 −
tE

∗
1 )−1(1 − tE

∗
s )−1, which equals also P(t). We fix I = {v1} and h = e2πia/n

(0 ≤ a < n). Then Zh,I equals ta/n ·∑m≥0(1 + �(a + nm)/q�)tm.
For the period it is convenient to take q , and one can check that pc(Zh,I) = 0.

Example 4.3.26 Fix a weighted homogeneous germ with g = 0 and the represen-
tative rh. Take I consisting of the central vertex E0. Then, with the above notations
(where a ∈ [0, 1) stays for −(rh,E

∗
0 ))

Ph,I(t) = Zh,I(t) =
∑

�≥0

max{0, 1 + Nrh(�)}t�+a.

By a computation Z+
h,I(t) = ∑

�≥0 max{0,−1 − Nrh(�)}t�+a. Thus, by (4.23),

pc(Ph,I(t)) = pc(Zh,I(t)) =
∑

�≥0

max{0,−1 − Nrh(�)} = h1(O
˜X(−rh)).

4.3.8 Okuma’s Additivity Formula

4.3.27 The Setup Consider a normal surface singularity (X, o) and fix one of its
resolutions φ : ˜X → X. We fix a vertex v ∈ V. Let ∪j∈J �j be the connected
components of the graph obtained from � by deleting v and its adjacent edges.
Assume that v is connected to each �j by exactly one edge. Let X′ be the space
obtained from ˜X by contracting (via τ ) all irreducible exceptional curves to normal
points except Ev . It has |J | normal singular points {oj }j , which are the images of
the connected components of E \ Ev . Let Xj be a small Stein neighbourhood of oj

in X′, and ˜Xj = τ−1(Xj ) its pre-image via the contraction τ : ˜X → X′. We denote
the local singularities by (Xj , oj ). They are resolved by ˜Xj with dual graphs �j .
Set τ (E) = E′ ⊂ X′. The resolution φ : ˜X → X and the contraction τ : ˜X → X′
induce an analytic modification φ′ : X′ → X with (irreducible) exceptional curve
E′.

We say that the Assumption (C) is satisfied if

(C) nE′ ⊂ X′ is a Cartier divisor for a certain n > 0.

Theorem 4.3.28 (Additivity for O
˜X [97]) If Assumption (C) is satisfied then

P0,I(t) admits a periodic constant and

pg(X, o) = pc(P0,I(t)) +
∑

j

pg(Xj , oj ).
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4.3.29 Additivity for Natural Line Bundles Assume that H 1(˜X,Z) = 0.

Theorem 4.3.30 Set I = {v} and fix h ∈ H . Under the Assumption (C)

h1(˜X,O
˜X(−rh)) = pc(Ph,{v}(t)) +

∑

j

h1(˜Xj ,O˜X(−rh)|
˜Xj

).

4.4 The Seiberg–Witten Invariant Conjecture

4.4.1 The Casson Invariant

4.4.1 The Setup Let M be an oriented integral homology 3–sphere. The original
definition of the Casson invariant λ(M) given by Casson is based on a Heegaard
splitting of M , and on the study of the space of conjugacy classes of SU2-
representations of different fundamental groups of the splitting [2, 26].

Here we will adopt a specific surgery formula of λ(M) as starting definition,
valid for any plumbed manifold M(�). It was proved in the PhD thesis of A. Ratiu
(Paris VII), and it follows also from the surgery formulae from Lescop’s book [55].

Definition 4.4.2 Assume that M is the plumbed manifold of a connected negative
definite graph �. Then

− 24 · λ(M) =
∑

v∈V
(E2

v + 3) +
∑

v∈V
(2 − κv)(E

∗
v , E∗

v ). (4.46)

We extend the definition of λ by the same expression for non-connected graphs
as well, (i.e., for connected sums of negative definite plumbed 3-manifolds). One
verifies that the expression from the right hand side depends only on M(�), i.e., it
is stable to the plumbing calculus of negative definite plumbing graphs.

By a computation λ(S3) = 0 and λ(�(2, 3, 5)) = λ(�(2, 3, 7)) = −1.

Example 4.4.3 If M is a Seifert 3-manifold, then

− 24 · λ(LX) = 1

e

(

2 − ν +
ν
∑

j=1

1

α2
j

)

+ e + 3 − 12 ·
ν
∑

j=1

s(ωj , αj ). (4.47)

In this case (X, o) is a Brieskorn–Hamm complete intersection

{

(z1, . . . , zν) :
∑

j

aij z
αj

j = 0 for 1 ≤ i ≤ ν − 2
}

with (aij ) of full rank. Hence L(X, o) = M = �(α1, . . . , αν). Furthermore, the
integers {αk}k are pairwise relatively prime, and the integers ωj ’s are determined
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from {αk}k by

ωj · (
∏

k

αk)/αj ≡ −1 (mod αj ).

Hence

s(ωj , αj ) = −s((
∏

k

αk)/αj , αj ).

In this case one also has e−1 = −∏

k αk . Note also that

λ(�(α1, . . . , αν)) = λ(�(α1, . . . , αj , αj+1 · · ·αν)) + λ(�(α1 · · ·αj , αj+1, . . . , αν)).

(4.48)

In particular, the computation of λ(�(α1, . . . , αν)) can be reduced to the case ν = 3.
On the other hand, if M = �(α1, α2, α3), then one also has

λ(M) = − 1
2 · {number of irreducible SU2-representations of π1(M) up to conjugation}.

(4.49)

Additionally, in [11, 27] is proved that the Casson invariant is additive with respect
to the splice decomposition. In particular, λ(L(X, o)) equals the sum of Casson
invariants of the splice components of L(X, o). Since all of them are of type
�(α1, . . . , αν), we obtain that for any singularity link λ(L(X, o)) ≤ 0, and
λ(L(X, o)) = 0 if and only if L(X, o) = S3.

4.4.2 The Casson Invariant Conjecture of Neumann–Wahl

Based on a result of Fintushel and Stern [26], valid for � = �(α1, α2, α3), which
identifies the irreducible SU2-representations of π1(�) with Brieskorn formula for
the signature of the Milnor fiber (cf. 4.49), Neumann and Wahl formulated the
following conjecture.

Conjecture 4.4.4 (Casson Invariant Conjecture (CIC) [90]) Assume that (X, o) is
an isolated complete intersection singularity of dimension two, whose link L(X, o)

is an integral homology sphere. Let σ(F ) be the signature of its Milnor fiber F .
Then λ(L(X, o)) = σ(F )/8. (Since the intersection form on the Milnor fiber is
even, and the intersection form is unimodular, the signature is multiple of 8 by Serre
[109, p. 53].)

The conjecture would imply (via formulae of Durfee σ(F )+8pg+Z2
K+|V| = 0

[17] and Laufer μ = 12pg + Z2
K + |V| − rank(H1(L(X, o)))) [51] that the Milnor

number μ and the geometric genus pg can also be computed from the abstract link.
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Neumann and Wahl supported their conjecture by its verification for Brieskorn–
Hamm complete intersection singularities and (hypersurface) suspensions [90].
More generally, the CIC was proved for any splice (complete intersection) singu-
larity in [82].

4.4.3 The Casson–Walker Invariant

The Casson invariant defined for integral homology spheres has an extension to
rational homology spheres given by Walker [116]. Similarly to the Casson invariant
we adopt a working definition, valid for negative definite plumbed 3-manifolds,
based on a surgery formula of [55].

Definition 4.4.5 Assume that H = H1(M(�),Z) is finite. We define

− 24

|H | · λ(M) =
∑

v∈V
(E2

v + 3) +
∑

v∈V
(2 − κv)(E

∗
v , E∗

v ). (4.50)

Again, a direct verification shows that the right hand side depends only on M and it
is independent of the choice of the negative definite graph �.

Example 4.4.6 If M is a Seifert 3-manifold with ν ≥ 3 then

− 24

|H | · λ(M) = 1

e

(

2 − ν +
ν
∑

j=1

1

α2
j

)

+ e + 3 − 12 ·
ν
∑

j=1

s(ωj , αj ). (4.51)

Example 4.4.7 For a lens space one has λ(L(n, q)) = n · s(q, n)/2.

Remark 4.4.8 The CIC identity λ(LX) = σ(F )/8, expected in the case H = 0,
does not extend in the same form to hypersurfaces with rational homology sphere
links. For example, in the case of An−1 germs, one has λ(L(X, o)) = λ(L(n, n −
1)) = −(n − 1)(n − 2)/24, while σ/8 = −(n − 1)/8.

4.4.4 Additivity Formulae for λ and K2 + |V|

In the rational homology sphere case there is no natural splice decomposition, hence
there is no analogues for the Casson–Walker invariant of the splice formula valid
for integral homology spheres. However, we present another type of ‘additivity
formula’, more in the spirit of Okuma’s analytic additivity formulae 4.3.28. We
start with some notations.
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For v,w ∈ V we define mvw := −(E∗
v , E∗

w) = −(I−1)vw ∈ Q>0, and let κv be
the valency of v in � as usual. Then for any fixed v ∈ V we set

αv :=
∑

w∈V
(κw − 2)mvw, βv :=

∑

w∈V
(κw − 2)m2

vw. (4.52)

4.4.9 For a fixed vertex v of �, we denote the connected components of � \ v by
{�i}i . We indicate by a subscript i when we consider an invariant in �i , instead of �.
We regard Li as a sublattice of L and let Ri : L′ → L′

i be the natural cohomological
restriction, that is, Ri(E

∗
w) = E∗

w,i if w ∈ Vi , and Ri(E
∗
w) = 0 otherwise. By

projection formula (Ri(x), xi)L′
i
= (x, xi)L′ for any x ∈ L′ and xi ∈ L′

i . Then Ri

maps Char(�) into Char(�i), and the canonical characteristic element K of Char(�)

into the canonical characteristic element Ki of Char(�i).

Theorem 4.4.10 For any l′ = ∑

w rwEw ∈ L′

((K + 2l′)2 + |V|) −
∑

i

((Ki + 2Ri(l
′))2 + |Vi |) = 1 − (αv + 1 − 2rv)

2

mvv

,

(4.53)

24

|H | · λ −
∑

i

24

|Hi | · λi = −3 + 1 − βv

mvv

. (4.54)

Example 4.4.11 Consider the surgery 3-manifold M = S3−d (#iKi) as in 4.2.32
with d > 0 and Ki algebraic with Alexander polynomial �i . Let �(t) = ∏

i �i(t)

and μ = ∑

i μi = 2δ as in 4.3.6. By a computation

24 · λ = (d − 1)(d − 2) + 3μ(μ − 2) − 12 · �′′(1).

If μ = (d − 1)(d − 2) then this transforms into 24λ = μ(3μ − 5) − 12 · �′′(1).

4.4.5 The Reidemeister–Turaev Torsion: Generalities

For the general definition of the sign-refined torsion associated with spinc–structures
see the books of Turaev and work of Nicolaescu and Ranicki, see [94, 114, 115] and
the references therein.

4.4.12 The Case of 3-Manifolds Assume that M is a closed connected 3-manifold
without boundary with a fixed orientation. We assume that H = H1(M,Z) is finite.
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Theorem 4.4.13 ([115]) The ‘universal abelian sign-refined torsion’

τ : Spinc(M) → Q[H ]; σ �→ τσ =
∑

h

Tσ (h)h (Tσ (h) ∈ Q) (4.55)

has the following properties:

(a) Duality: Consider the involution Q[H ] → Q[H ], given by x = ∑

h a(h)h �→
x̄ := ∑

h a(h)h−1. Then τσ = τσ , or Tσ (h−1) = Tσ (h).
(b) H -equivariance: τhσ = hτσ ; that is, for any g, h ∈ H one has Tgσ (gh) =

Tσ (h). In particular, for fixed σ0 ∈ Spinc(M) the coefficients {Tσ0(h)}h, or, for
fixed h0 ∈ H , the coefficients {Tσ (h0)}σ , determine the whole τ .

(c) Augmentation: Let aug : Q[H ] → Q be the augmentation
∑

h a(h)h �→
∑

h a(h). Then, for any σ one has aug(τσ ) = 0. Equivalently,

∑

σ

Tσ (h) = 0 for any h.

4.4.14 The Fourier Transform We wish to have a dual description of the torsion
in terms of Fourier transform. First we recall the definition of the Fourier transform.

Let H be a finite abelian group and let ̂H = Hom(H, S1) be its Pontryagin dual
(the group of characters). If χ ∈ ̂H then χ̄ denotes its conjugate: χ̄(h) = χ(h).

The Fourier transform ̂f : ̂H → C of a function f : H → C satisfies

̂f (χ) =
∑

h∈H

f (h)χ̄(h), f (h) = 1

|H |
∑

χ∈̂H

̂f (χ)χ(h).

Example 4.4.15 For any σ set f (h) := Tσ (h). Then ̂f (1) = ̂Tσ (1) = aug(τσ ) = 0.

Example 4.4.16 By 4.4.13(a)–(b) for any σ, χ, h one has

(a) ̂Tσ (χ) = ̂Tσ (χ), (b) ̂Tσ (χ) = χ(h) · ̂Thσ (χ). (4.56)

4.4.6 The Reidemeister–Turaev Torsion of Graph 3-Manifolds

Let M be an oriented rational homology sphere 3-manifold associated with a
connected negative definite plumbing graph �.

In 4.4.22 we provide a combinatorial expression in terms of � for the refined
Reidemeister–Turaev torsion. The equivalence of this expression with the original
definition of the refined torsion is proved in [78].

4.4.17 The Fourier Transform of Zh,I(t) Assume that I = {u} ⊂ V is a
distinguished vertex, and for each h ∈ H we consider the reduced series Zh,I(t),
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where t is the variable corresponding to u. Set mvu := −(E∗
v , E∗

u) > 0. From (4.38)

Zh,{u}(t) = 1

|H | ·
∑

χ∈̂H

χ(h)−1 ·
∏

v∈V

(

1 − χ([E∗
v ])tmvu

)κv−2
.

This shows that the Fourier transform of the map h �→ Zh,{u}(t) is

Ẑ{u}(t)(χ̄) =
∏

v∈V

(

1 − χ([E∗
v ])tmvu

)κv−2
. (4.57)

4.4.18 Character Values on � Since {[E∗
v ]}v generate H , any character χ ∈ ̂H is

completely characterized by the values ξv := χ([E∗
v ]), v ∈ V. These are roots

of unity. When we wish to identify the character χ , we put its values {ξv}v as
decorations on the vertices of the graph �. The collection {χ([E∗

v ])}v,χ is a more
subtle information than the abstract group ̂H itself: it shows the ‘distribution along
�’ of the corresponding values of the characters as well. Since for any v ∈ V one
has ev[E∗

v ] +
∑

(u,v) edge[E∗
u] = [−Ev] = 0 in H (where ev = E2

v), for each χ one
has

ξev
v ·

∏

(u,v) edge

ξu = 1. (4.58)

Conversely, any collection of complex numbers {ξv}v∈V, ξv ∈ S1, which satisfy
(4.58) for any v, determines a character χ defined by χ([E∗

v ]) = ξv .
Furthermore, for any χ ∈ ̂H \ {1}, define the ‘extended support’ suppe(χ) of χ

as the set of those vertices v ∈ V for which either χ([E∗
v ]) �= 1, or v has an adjacent

vertex w such that χ([E∗
w]) �= 1.

Lemma 4.4.19 Fix a character χ ∈ ̂H \ {1}.
(a) For an arbitrary vertex u the limit limt→1 Ẑ{u}(t)(χ) exists and it is finite.
(b) This limit is independent of u whenever u ∈ suppe(χ).

Remark 4.4.20 For χ = 1, the Laurent expansion at 1 of the series Ẑ{u}(t)(1) has a

non-trivial principal part, hence limt→1 Ẑ{u}(t)(1) is not finite.

4.4.21 In the sequel, the torsion σ ∈ Spinc(M) �→ Tσ , Tσ = ∑

h Tσ (h)h ∈ Q[H ]
is defined via the Fourier transform of h �→ Tσ (h) in the following way.

Definition 4.4.22

(a) For the trivial character ̂Tσ (1) = 0.
(b) If χ([E∗

v ]) �= 1 for every v with κv �= 2, then we set

̂Tσ (χ) = (χ(hσ ))−1 ·
∏

v∈V
(1 − χ([E∗

v ]))κv−2, σ = hσ σ [K].
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(c) If χ �= 1, but the assumption from (b) does not hold, then the formula from (b)
is regularised as follows:

̂Tσ (χ) = (χ(hσ ))−1 · lim
t→1

∏

v∈V
(1 −χ([E∗

v ]tmvu))κv−2 = (χ(hσ ))−1 · lim
t→1

Ẑ{u}(t)(χ̄),

for certain (any) u = uχ ∈ suppe(χ).

Theorem 4.4.23

(a) σ �→ Tσ defined in 4.4.22 and the refined Reidemeister–Turaev torsion 4.4.12
coincide.

(b) T defined in 4.4.22 is independent of the choice of the resolution.

Remark 4.4.24

(a) By Fourier inversion

Tσ (h) = 1

|H | ·
∑

χ∈̂H\{1}
χ(h) · (χ(hσ ))−1 · lim

tuχ →1
̂Z{uχ }(tuχ )(χ̄).

One verifies that the Properties (4.56) are valid, hence {Tσ (h)}σ,h satisfy the
duality and H -equivariance properties. Hence

Tσ (1) = Tσ (1), and Tσ (1) = Thσ σ [K](1) = Tσ [K](−hσ ). (4.59)

In particular, Tσ [K](h)h ∈ Q[H ] contains the same information as {Tσ (1)}σ .
(b) From part (a),

Tσ (1) = 1

|H | ·
∑

χ∈̂H\{1}
(χ(hσ ))−1 · lim

tuχ →1
̂Z{uχ }(tuχ )(χ̄).

Usually, for different characters χ one needs different regularization vertices
uχ . However, if ∩χ �=1suppe(χ) �= ∅, then any u ∈ ∩χ �=1suppe(χ) might serve
as a common regularization vertex (with a common variable t = tu). In such a
case, via Ẑ{u}(t)(1) = Z{u}(t),

Tσ (1) = lim
t→1

( 1

|H | ·
∑

χ∈̂H\{1}
(χ(hσ ))−1 · Ẑ{u}(t)(χ̄ )

)

= lim
t→1

(

Zhσ ,{u}(t) − 1

|H | · Z{u}(t)
)

.

We rewrite {Zh,{u}(t)}h equivariantly as ZH,{u}(t) := ∑

h∈H Zh,{u}(t)h ∈
Q[[t]][H ], and we set N := ∑

h h ∈ Q[H ]. Then, via Tσ (1) = Tσ [K](−hσ ),

Tσ [−K] = Tσ [K] = lim
t→1

(

ZH,{u}(t) − Z{u}(t) · N

|H |
)

∈ Q[H ]. (4.60)
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The identity (4.60) is not true in general, i.e. when ∩χ �=1suppe(χ) = ∅.
The above formula already shows in this special case that the principal (pole)

part of the Laurent series at t = 1 of Zh,{u}(t) is independent of h ∈ H . This
statement is true in general, even without the restriction ∩χ �=1suppe(χ) �= ∅.

(c) If � is star-shaped then the central vertex is an element of ∩χ �=1suppe(χ).
Similarly, if H is cyclic, then again ∩χ �=1suppe(χ) �= ∅.

Example 4.4.25 (The Torsion of a Lens Space) We fix σ = hσ σ [K] ∈ Spinc(LX).
Then for χ �= 1

̂Tσ (χ) = χ(hσ )−1 · (1 − χ([E∗
s ]))−1(1 − χ([E∗

1 ]))−1.

Assume that hσ = a[E∗
s ] for some 0 ≤ a < n. Set ξ := χ([E∗

s ]). Then,

̂Tσ (χ) = ξ−a

(1 − ξ)(1 − ξq)
(ξ �= 1), and Tσ (1) = 1

n
·

∑

ξn=1 �=ξ

ξ−a

(1 − ξ)(1 − ξq)
.

(4.61)

4.4.7 Additivity Formula for the Torsion

We fix a graph � such that M(�) is a rational homology sphere. For a vertex v ∈ V
of � let {�i}i be the connected components of � \ v. For any σ ∈ Spinc(M(�)) we
define its restrictions σi ∈ Spinc(M(�i)) as follows.

Choose l′ = ∑

w rwEw ∈ L′ such that rv ∈ [0, 1) so that [l′] = hσ satisfies
σ = σ [2l′ + K] = hσ σ [K] ∈ Spinc(M(�)). Then we set σi = σ [Ri(2l′ + K)] =
[Ri(l

′)]σ [Ki] ∈ Spinc(M(�i)). (For Ri see paragraph 4.4.9.)

Theorem 4.4.26 ([12]) Set l′ = ∑

w rwEw, rv ∈ [0, 1), [l′] = hσ as above. Recall
also the notations from (4.52)

αv :=
∑

w∈V
(κw − 2)mvw, βv :=

∑

w∈V
(κw − 2)m2

vw.

Then

Tσ (1)(M(�))−
∑

i

Tσi (1)(M(�i)) = pc(Zhσ ,{v}(td ))+ 1 − βv

24mvv

− (αv + 1 − 2rv)
2

8mvv

.

Corollary 4.4.27 Tσ (1)(M(�)) is a rational number.
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4.4.8 The Seiberg–Witten Invariant

In this section we fix a plumbed rational homology sphere 3-manifold M associated
with a connected negative definite plumbing graph �. The Seiberg–Witten invariant
of M , sw, associates to each spinc structure σ ∈ Spinc(M) of M a rational number
swσ . Here, based on [95], we ‘define’ it as the refined Turaev torsion modified by
the Casson–Walker invariant. Based on the formulae of the previous sections, this
provides sw combinatorially from �.

Definition 4.4.28 We define sw : Spinc(M) → Q, σ �→ swσ by

swσ := Tσ (1) − λ/|H |.

Example 4.4.29 If H = 0 then Spinc(M) has only one element, and the corre-
sponding Seiberg–Witten invariant is −λ(M) (the negative of the Casson invariant).

4.4.30 Additivity Formula for the Seiberg–Witten Invariant The previous addi-
tivity formulae imply the following formula.

Theorem 4.4.31 ([12]) Set l′ = ∑

w l′wEw , l′v ∈ [0, 1), as in Theorem 4.4.26. Let
σ ∈ Spinc(M(�)) be defined as [l′]σ [K] = σ [K+2l′], and take also its restrictions
σi := [Ri(l

′)]σ [Ki] = σ [Ri(K+2l′)] too. Set hσ = [l′]. Then one has the following
identities:

swσ (M(�)) −
∑

i

swσi (M(�i)) = pc(Zhσ ,{v}(t)) + 1

8
− (αv + 1 − 2rv)

2

8mvv
.

and

(

swσ (M(�)) − (K + 2l′)2 + |V|
8

)

−
∑

i

(

swσi (M(�i)) − (Ki + 2Ri(l
′))2 + |Vi |

8

)

= pc(Zhσ ,{v}(t)).

Proof Combine Theorems 4.4.10 and 4.4.26 and use pc(S(td )) = pc(S(t)). ��
This additivity formula should be compared with its ‘analytic counterpart’, namely
with Okuma’s additivity formula 4.3.30.

4.4.9 The Seiberg–Witten Invariant and the Series Z(t)

We prove two key formulae for the Seiberg–Witten invariant of a rational homology
sphere link. One of them identifies it with a weighted Euler characteristic of (shifted)
weighted cubes in a large rectangle of L⊗R, the other one with the constant term of
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the counting function of the coefficients of Z(t). The proofs are based on additivity
formulae of the compared invariants.

The similarities with the analytic counterpart (the series P(t) and the equivariant
genera) are emphasized.

4.4.32 In the next discussion we will use the weighted cubes, see also 4.6.3. Let
us fix an element h of H and write L′

h = {l′ ∈ L′ : [l′] = h}. Recall that the set of
‘combinatorial’ q–cubes (associated with h) consists of pairs (l′, I ) ∈ L′

h × P(V),
|I | = q (q ∈ Z≥0). (l′, I ) will be identified with the vertices {l′ + ∑

v∈I ′ Ev}I ′⊂I

of an ‘Euclidean’ cube in L ⊗ R. One defines the weight function w : L′ →
Q, w(l′) := χ(l′), and also the a weight of the q–cubes

w((l′, I )) = max
I ′⊂I

{

w(l′ +
∑

v∈I ′
Ev)

}

.

Assume that a set A ⊂ L ⊗ R has the following property: if an Euclidean cube (as
above) is in A then any face of any dimension of that cube is in A. For such a set A

one defines the ‘weighted Euler characteristic’

Euχ(A) :=
∑

(l′,I )∈A

(−1)|I |+1w((l′, I )).

Such a set A might appear as follows. For the fixed class h ∈ L′/L one takes two
representatives l′1, l′2 ∈ L′

h with l′2 ≤ l′1. Then Rh = Rh(l
′
2, l

′
1) consists of the union

of all combinatorial cubes (l′, I ), of any dimension, such that [l′] = h and any
vertex l′ + ∑

v∈I ′ Ev of (l′, I ) satisfies l′2 ≤ l′ + ∑

v∈I ′ Ev ≤ l′1. Accordingly to
the above identification, Rh(l′1, l′2) will also denote the real rectangle {x ∈ L ⊗ R :
l′2 ≤ x ≤ l′1}, or the union of all Euclidean cubes (with all vertices having class [h])
in this real rectangle.

Remark 4.4.33 For a fixed h ∈ H , we can consider two types of rectangles and
weighted q–cubes, depending on the geometric situation. First, in the context of
lattice cohomology (see e.g. 4.6.3, and in its preparation 4.5.2) we take integral
lattice points and rectangles R(l2, l1) and cubes with vertices in the lattice L, but
we twist the weight function: we take χk (which generates wk) with k = K + 2l′h,
for some representative l′h of h.

Second, when we wish to relate the cubes with the coefficients of Z(t) (as in the
previous paragraph), we take shifted rectangles Rh := Rh(l′2, l′1) ([l′j ] = h) with
cubes (l′, I ) of type [l′] = h in them, together with the usual untwisted Riemann–
Roch-function χ = χK .

The two approaches can be compared easily (see also 4.6.3). Indeed, if k =
K + 2l′h, [l′h] = h, then for l ∈ L we have χ(l + l′h) = χk(l) + χ(l′h). In particular,
with the notation l′j = lj + l′h (lj ∈ L), we have Rh(l

′
2, l

′
1) = l′h + R(l2, l1) as

rectangles, and

Euχ(Rh(l
′
2, l

′
1)) = Euχk (R(l2, l1)) − χ(l′h).
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4.4.34 Via the two incarnations of the weighted cubes (cf. 4.4.33) the next result
is the ‘pair’ of Lemma 4.5.8.

Lemma 4.4.35 Fix a class h and take a representative l′0 of h in −K + S′.

(a) For any l′ ∈ L′, [l′] = h, l′ > l′0, there exists an Ev in the support of l′ − l′0
such that w(l′ − Ev) ≤ w(l′).

(b) There exists a computation sequence {�i}i≥0, �i ∈ L, with �0 = 0, and �i+1 =
�i + Ev(i) for some v(i) ∈ V when i ≥ 0, satisfying:

(i) The coefficients of �i tend to infinity, that is limi→∞(�i,−E∗
v ) = ∞ for all

v.
(ii) For any i ≥ 0 one has w(l′0 + �i) ≤ w(l′0 + �i+1).

(c) For any l′ < 0, with [l′] = h, there exists Ev ∈ |l′| such thatw(l′+Ev) ≤ w(l′).
(d) For any representatives l′1, l′2 of h, such that l′1 ≥ l′0 > 0 ≥ l′2, Euχ(Rh(l′2, l′1))

is independent of the choice of l′1 and l′2. In particular, with such choices, h �→
Euχ(Rh(l

′
2, l

′
1)) is a numerical invariant of h ∈ H = L′/L.

Definition 4.4.36 The invariant provided by 4.4.35(d) will be denoted by sh.

4.4.37 Let Z(t) = ∑

l′∈L′ z(l′)tl
′
be the combinatorial series defined in Sect. 4.3.3.

Since Z is supported on S′, the next sum in (4.62) is finite by 4.2.13.

Theorem 4.4.38 Fix h ∈ H . For any l′ ∈ −K + S′ with [l′] = h, the expression

− χ(l′) +
∑

l∈L, l�0

z(l′ + l) (4.62)

depends only on the class h of l′, and, in fact, it equals sh defined in 4.4.36.

Theorem 4.4.39 ([73]) For any� and [K+2l′] ∈ Char one has swσ [K+2l′](M(�))

= s[l′] + (K2 + |V|)/8, or,

Euχ(Rh(l′2, l′1)) = s[l′] = swσ [K+2l′](M(�)) − (K2 + |V|)/8. (4.63)

The proof is based on the ‘additivity formula’ 4.4.31 and a similar formula valid for
sh.

Therefore, Theorem 4.4.38 reads as follows.

Theorem 4.4.40 Assume that l′ ∈ −K + S′ and Let Z(t) = ∑

l′∈L′ z(l′)tl
′
be the

combinatorial series defined in Sect. 4.3.3. Then

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = swσ [K+2l′] − (K + 2l′)2 + |V|

8
. (4.64)
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If we write l′ = rh + l (where h = [l′] and l ∈ L), then (4.64) transforms into

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = χK+2rh(l) + swσ [K+2rh] − (K + 2rh)

2 + |V|
8

. (4.65)

In particular, in the chamber l′ = l + rh ∈ −K +S′, the sum from the left hand side
of the above identities is a multivariable quadratic function in l with constant term
swσ [K+2rh] − ((K + 2rh)

2 + |V|)/8.

These formulae should be compared with those from (4.36) valid for the
coefficients of the series P . The fact that in (4.36) (associated with the series P ) the
constant terms are the equivariant geometric genera, is rather natural. However, the
fact that the constant terms in the above Theorem 4.4.40 (associated with Z, a rather
‘simple’ series) is the Seiberg–Witten invariant, is rather surprising. Nevertheless,
the above identity provides a very natural, direct and conceptual explanation, how
the Seiberg–Witten invariant might appear in the theory of singularity links.

Example 4.4.41 If � is numerically Gorenstein and h = 0 then (4.65) reads as

∑

l∈L, l �≥ZK

z(l) = swσ [K] − K2 + |V|
8

. (4.66)

4.4.10 The Seiberg–Witten Invariant Conjecture/Coincidence

In this section we treat a set of potential identities connecting the analytic invariants
with the topological ones, namely, the equivariant geometric genera with the
Seiberg–Witten invariants of the link. Whenever these identities are valid they
provide a topological description of the equivariant geometric genera. The identities
are generalizations of the expectation of the Casson Invariant Conjecture to the case
of singularities with rational homology sphere links.

Superisolated singularities in general do not satisfy SWIC, their case will be
discussed in subsection 4.4.11.

4.4.42 Seiberg–Witten Invariant Conjecture/Coincidence (SWIC) [73, 75, 78]
In this section we assume that the link of (X, o) is a rational homology sphere, and
we fix a resolution ˜X → X, and we keep all the notations associated with it. We say
that (X, o) satisfies SWIC(rh) for a certain h ∈ H if the following identity holds

h1(˜X,O(−rh)) = swσ [K+2rh] −
(K + 2rh)

2 + |V|
8

. (4.67)

We say that (X, o) satisfies the equivariant SWIC if (4.67) holds for every h ∈ H .
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We say that (X, o) satisfies the SWIC if it satisfies SWIC(0), that is, if

pg(X, o) = swσ [K] − K2 + |V|
8

. (4.68)

The identity SWIC was formulated as a conjecture in [78] (while the equivariant
case in [71]): the expectation was that it holds for any Q-Gorenstein singularity.
Although the conjecture can be verified for several subfamilies of singularities, since
[61] we know that it is not true for the large class of Q-Gorenstein singularities (see
also 4.4.11 for the treatment of superisolated singularities, a family which produces
several counterexamples). But even in the case of families when it fails, it still
indicates interesting ‘virtual’ properties (e.g., in the superisolated case it has lead
to the Semigroup Distribution Property). The limits of the validity of the SWIC
are not clarified at this moment. Having in mind the existence of cases when the
identities do not hold, one might say that its name as SWI ‘Conjecture’ is not totally
justified, although this was its name in the literature. Hence, the reader might read
the abbreviation SWIC as SWI ‘Coincidence’ too.

Example 4.4.43 Assume that (X, o) is Gorenstein and it admits a smoothing with
smooth nearby (Milnor) fiber F . Then the signature satisfies σ(F ) + 8pg + K2 +
|V| = 0, hence the SWIC (for h = 0) reads as

− σ(F )/8 = swσ [K]. (4.69)

In this case, usually, σ(F )/8 is not an integer, see the germ An.

Example 4.4.44 Assume that (X, o) is a complete intersection with integral homol-
ogy sphere link. Then Tσ [K](1) = 0, hence the SWIC reduces to the CIC (see 4.4.2):

σ(F )/8 = λ(L(X, o)).

Example 4.4.45 The identity P(t) = Z(t) (that is, the topological description via Z

of the Poincaré series associated with the divisorial filtration) implies the equivariant
SWIC. In particular, the identity P0(t) = Z0(t) implies SWIC. Indeed, for any
l′ ∈ −K + S′ with l′ = l + rh (l ∈ L), from (4.36) one has

∑

[l̃′]=[l′], l̃′�l′
p(l̃′) = χK+2rh(l) + h1(O(−rh)). (4.70)

On the other hand, from (4.65),

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = χK+2rh(l) + swσ [K+2rh] − (K + 2rh)

2 + |V|
8

. (4.71)
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For l′ ∈ −K + S′ and l′ = l + rh, we can regard the evaluation at l = 0 of
the counting function

∑

[l̃′]=[l′], l̃′ �≥l′ coeff(l̃′) as an operator. It associates with any
multivariable series its ‘multivariable periodic constant’, cf. [45, 46]. In this sense,
the above identities say that the periodic constant of Ph is h1(O(−rh)), while of Zh

is sw[K+2rh] − ((K + 2rh)
2 + |V|)/8.

Hence, if Ph(t) = Zh(t) then the SWIC(rh) automatically holds as well.
In fact, in order to have the SWIC(rh) we need the validity of the above identities

for a certain l′ ∈ −K + S′ ([l′] = h) only. Indeed, if a certain l′0 ∈ −K + S′,
[l′0] = h, has the property that Ph(t) − Zh(t) is supported on {l̃′ : l̃′ ≥ l′0}, then
by the above identities applied for this l′0 we obtain SWIC(rh). In such a case, again
by the identities (4.70)–(4.71), even if Ph(t) �= Zh(t), their counting functions l′ �→
∑

[l̃′]=[l′], l̃′ �≥l′ coeff(l̃′) in the whole chamber l′ ∈ −K +S′ coincide (independently
of the position of l′0 in this chamber).

For a fixed h, the identity Ph = Zh is much stronger than the SWIC(rh):
examples when Ph �= Zh but the SWIC(rh) holds can be constructed.

4.4.46 Extension to the Other Natural Line Bundles
Recall that in 4.2.74 we proved that for any l′ ∈ L′ there exists a unique

minimal s(l′) ∈ S′ such that s(l′) − l′ ∈ L≥0. We wish to compare h1(O(−l′))
and h1(O(−s(l′))) via the SWIC property.

We say that l′ ∈ L′ satisfies the SWIC identity, denoted by SWIC(l′), if

SWIC(l′) : h1(˜X,O(−l′)) = swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.72)

If this holds, then it obviously provides a topological description for h1(˜X,O(−l′)).
By 4.2.76 one has

h1(˜X,O(−s(l′))) − h1(˜X,O(−l′)) = χ(s(l′)) − χ(l′).

A computation shows that the right hand side of (4.72) behaves similarly. Hence

Proposition 4.4.47 The SWIC(l′) is valid if and only if SWIC(s(l′)) is valid. In
particular, SWIC(rh) is valid if and only if SWIC(sh) holds.

This shows that the validity of SWIC(rh) implies the validity of SWIC(l′) for all
l′ ∈ L′

h with s(l′) = s[l′]. This covers exactly those cycles l′ ∈ L′
h with l′ ≤ s[l′]

(including all cycles l′ = ∑

v l′vEv with l′v < 1 for any v).
This topological characterization SWIC(l′) of h1(O(−l′)) (modulo the validity of

SWIC) in this ‘negative’ region {l′ : l′ ≤ s[l′]} can be compared with the vanishing
h1(O(−l′)) = 0 in the ‘opposite positive’ region {l′ : l′ ∈ −K + S′}.

It is natural to ask the following question: what can one say in the case of an
arbitrary l′, which sits outside of these two regions.
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Proposition 4.4.48 If SWIC(rh) holds then for any l′ ∈ L′
h

h1(O(−l′)) = −
∑

a∈L, a�0

p(l′ + a) + swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.73)

Additionally, if Ph = Zh (or, at least their counting functions coincide), then one
has the following topological characterization of h1(O(−l′)):

h1(O(−l′)) = −
∑

a∈L, a�0

z(l′ + a) + swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.74)

Remark 4.4.49 Assume that the equivariant SWIC is true for (X, o). Then, taking
the sum of the identities SWIC(rh) from (4.67), and using

∑

σ Tσ (1) = 0, we get
the following expression for the geometric genus of the universal abelian covering
(Xa, o) in terms of the graph �:

pg(Xa, o) = −λ(M(�)) − |H | · K2 + |V|
8

+
∑

h∈H

χ(rh).

Example 4.4.50 (SWIC is True for Cyclic Quotients) In this case the link is L(n, q),
H = Zn and the spinc structures are indexed by σ = σ [K + 2aE∗

s ], where a ∈ Z

and 0 ≤ a < n. Set also h = a[E∗
s ] ∈ H . Then

Tσ (1) = −s(q, n) + n − 1

4n
− a

2n
−

a
∑

i=1

(( iq ′

n

))

.

Since λ/n = s(q, n)/2, cf. 4.4.7, we also have

swσ = −3

2
· s(q, n) + n − 1

4n
− a

2n
−

a
∑

i=1

(( iq ′

n

))

.

On the other hand, (K + 2rh)
2 + |V|)/8 = (K2 + |V|)/8 − χ(rh) can also be

computed explicitly. From 4.2.60 one has (K2 +|V|)/8 = (n−1)/4n−3s(q, n)/2.
Furthermore, from 4.2.76 we have h1(O(−sh)) − h1(O(−rh)) = χ(sh) − χ(rh).

But h1(O(−sh)) = 0 by the vanishing 4.2.71, while h1(O(−rh)) = pg(Xa, o)θ(h) =
0 (cf. 4.2.82) since the universal abelian covering (Xa, o) is smooth. Hence χ(rh) =
χ(sh), and its expression is

χ(rh) = a

2n
+

a
∑

i=1

(( iq ′

n

))

.
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In particular, the right hand side of SWIC(rh) is zero, and the same is true for the
left hand side because of the vanishing already mentioned.

Example 4.4.51 The equivariant SWIC is true for splice quotient singularities. In
particular, it is true for rational, minimally elliptic and weighted homogeneous
singularities (with QHS3 link). The SWIC(0) is valid for all elliptic singularities
and suspensions {zn + f (x, y) = 0}, where f is irreducible (and with QHS3 link).

4.4.11 SWIC and Superisolated Singularities

We assume that (X, o) is a superisolated singularity associated with the irreducible
projective rational cuspidal curve C of degree d .

Though in many cases (e.g. for weighted homogeneous singularities) we discuss
the SWIC together with equivariant SWIC, this is not the case for the superisolated
germs. The main obstruction is that in the superisolated case (though pg(X, o) and
P0,{v+}(t) are extremely simple), usually we have very little information about the
analytic properties of the universal abelian covering, e.g. about its geometric genus
pg(Xa, o) (see e.g. [111]). Therefore, in this subsection we focus merely on the
SWIC (for h = 0).

It turns out that for a superisolated singularity the SWIC is valid if and only if
N(1) = 0, a property which is not always true, cf. subsection 4.3.6. Let us list first
the involved invariants.

4.4.52 From Example 4.4.11 we have K2 + |V| = −d(d − 2)2 + 1 and 24λ =
μ(3μ−5)−12 ·�′′(1) (μ = 2δ). Moreover, the divisorial filtration associated with
I = {C} = {v+} agrees with the filtration associated with weights (1, 1, 1), hence
P0,I(t) = (1 − td )/(1 − t)3. Since in the good resolution Γ \ v+ supports only
smooth germs, by 4.3.30 pg(X, o) = pc(P0,I(t)), which is d(d − 1)(d − 2)/6.

The definition of ZI(t) compared with A’Campo formula [1] gives

Z0,I(t) = 1

d

∑

ξd=1

�(ξt1/d)

(1 − ξt1/d )2 and ZI(t) = �(t1/d)

(1 − t1/d)2 .

Since H is generated by [E∗+], the vertex v+ (corresponding to C) is a
regularization vertex for any character. Therefore, from 4.4.24

Tσ [K](1) = lim
t→1

(

Z0,I(t) − 1

d
ZI(t)

)

= 1

d

∑

ξd=1 �=ξ

�(ξ)

(1 − ξ)2 .

Following 4.3.6 we also consider

N(t) := Z0,I(t) − P0,I(t) = 1

d

∑

ξd=1

�(ξt1/d )

(1 − ξt1/d )2 − 1 − td

(1 − t)3 .
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Then

lim
t→1

N(t) = Tσ [K](1) + lim
t→1

( 1

d
· �(t1/d)

(1 − t1/d )2 − 1 − td

(1 − t)3

)

.

If we write �(t) = 1 + δ(t − 1) + Q(t)(t − 1)2 as in 4.3.6, then the limit can be
computed in terms of d and Q(1) = �′′(1)/2. The computation provides

Proposition 4.4.53

N(1) = swσ [K] − K2 + |V|
8

− pg.

This combined with (4.45) gives (with Q(t) = ∑μ−2
j=0 αj t

j )

swσ [K] − K2 + |V|
8

=
d−3
∑

j=0

αjd .

Corollary 4.4.54

(a) SWIC for h = 0 is equivalent to N(1) = 0.
(b) The Conjecture 4.3.22 (which predicts that N(1) ≤ 0 for any superisolated

singularity) is equivalent to swσ [K] − K2+|V|
8 ≤ pg.

Corollary 4.4.54 has the following consequences (for some of the arguments see
the paragraphs after 4.3.21): via the ‘Semigroup Distribution Property’ 4.2.33, the
SWIC (for h = 0) is valid whenever ν = 1. In fact, in this case not only N(1) = 0,
but even N(t) ≡ 0, i.e. Z0,I(t) ≡ P0,I(t).

If ν = 2 then the coefficients of N(t) are non-positive, however, it can happen
that N(t) �= 0, see. e.g. several examples in [61]. Hence, if ν = 2 and N(t) �= 0

then the SWIC fails and swσ [K] − K2+|V|
8 < pg. (The difference will be interpreted

in terms of lattice cohomology in 4.9.2.)

Remark 4.4.55 Though till now we tried to convince the reader that the SWIC,
for certain analytic types, is a ‘natural’ reality, the superisolated case suggests the
opposite. Indeed, for such germs, pg depends only on d , but the topological side
depends in a subtle way on the local singularity types of C (see above the formulae
of λ and Tσ [K](1)). Having in mind this subtle sensitivity to the local singularity
data of C, the validity of SWIC (when it holds) is a true marvel.

Example 4.4.56 Let us analyse a particular case with more details. Assume d = 5,
ν = 2, and the two singularities have multiplicity sequence [3] and [23]. The graph �

is presented below, and N(t) = −2t , hence SWIC fails: pg = 10, while −λ = 21/2
and Tσ [K](1) = 2/5, hence swσ [K] − (K2 + |V|)/8 = 8.
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In fact, we can consider two analytic structures supported on this topological
type (given by the graph). They are rather different, though both are very natural.
The first is a superisolated hypersurface singularity, as analysed above. On the other
hand, this topological type supports also a splice quotient singularity which satisfies
SWIC, hence it has pg = 8.

4.5 Weighted Cubes and the Spaces Sk,n

4.5.1 Weighted Cubes and Generalized Computation
Sequences

To any good resolution graph � and characteristic element k ∈ Char, we consider
the weight function χk : L → Z, and a natural cubical decomposition of R

s

associated with the embedding L � Z
s ↪→ Z

s ⊗ R = R
s , where s = |V| and

the identification L � Z
s is given by the base vectors {Ev}v∈V. Then, for each

n ≥ minl∈L{χk(l)}, we define the topological space Sk,n, as the union of all cubes,
which have all vertices of weight ≤ n. We show that the homotopy type of the tower
{Sk,n}n depends only on the 3-manifold M(�) and on the spinc structure associated
with k. The tower {Sk,n}n carries an extremely deep information about M(�); the
final goal is to determine their homotopy types. Via the spaces {Sk,n}n this section
prepares the theory of graded roots and lattice cohomology.

4.5.1 Cubes in L ⊗ R and the Spaces {Sk,n}n [72] Fix a connected plumbing
graph � with negative definite intersection form, and we assume that the plumbed
3-manifold M(�) is a rational homology sphere.

We use the standard notations for the lattice L, which has the distinguished base
elements {Ev}v∈V. Using this basis, one identifies L with Z

s with its fixed standard
basis, still denoted by {Ev}v∈V.

Z
s ⊗ R � R

s has a natural decomposition into cubes given by the inclusion
Z

s ↪→ R
s . The zero-dimensional cubes are exactly the lattice points Zs . Any l ∈ Z

s

and subset I ⊂ V of cardinality q defines a q-dimensional cube �q = (l, I ), which
has its vertices in the lattice points (l +∑

v∈I ′ Ev)I ′ , where I ′ runs over all subsets
of I .

Next, we fix a characteristic element k ∈ Char and we consider the Riemann–
Roch function χk : L → Z, χk(l) = −(l, l + k)/2. Here we regard χk as
a weight function on the set of cubes: the weights of zero-dimensional cubes
are defined by w0(l) = χk(l), while, in general, wq((l, I )) := max{χk(v) :
v is a vertex of (l, I )}.
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Definition 4.5.2 For every n ∈ Z, define Sn ⊂ R
s as the union of all the cubes �q ,

of any dimension, with w(�q) ≤ n (with induced topology of Rs). Clearly, Sn �= ∅
exactly when n ≥ mk , where mk := minl∈Zs χk(l). If we wish to emphasize the
k-dependence we write Sk,n.

One has the natural inclusions Smk ⊂ . . . ⊂ Sn ⊂ Sn+1 ⊂ . . .. It turns out
that the topology of the spaces {Sn}n≥mk might be rather interesting. The tower
has a finiteness property: only finitely many Sn have nontrivial topology (are non-
contractible), but an Sn with n ‘small’ might have rather complicated homology
groups. In general it is rather hard to solve the corresponding Diophantine equations
and to analyse the adjacent positions of the solutions (in order to get the cubes
which build up the topological space Sn). However, this combinatorial/artihmetical
structure can be extremely rich covering a big amount of deep information.

Example 4.5.3 ([72]) Consider the following graph:

A computation shows that χ ≥ −1. S−1 consists of two contractible connected
components. The space S0 has three connected components, two of them con-
tractible, and the third has the homotopy type of the circle. The spaces Sn for n ≥ 1
are contractible.

4.5.4 Assume that k and k′ determine the same Spinc–structure of M(�),
cf. 4.2.94, hence k′ = k + 2l for some l ∈ L. Then χk′(x − l) = χk(x) − χk(l)

for any x ∈ L. This means that the transformation x �→ x ′ := x − l realizes an
identification of the ‘Sn-spaces’ associated with k and k′: Sk,n = Sk′,n−χk(l). Hence,
fixing a representative k from each class [k] ∈ Spinc(M(�)) we can speak about
the tower of spaces {Sk,n}n, indexed by [k] ∈ Spinc(M(�)).

Proposition 4.5.5 ([72]) The tower of spaces {Sk,n}n, indexed by [k] ∈
Spinc(M(�)), up to homotopy equivalence, depends only on M = M(�), it is
independent of the choice of the negative definite plumbing graph �, which provides
M .

Remark 4.5.6 A possible generalization of the set of weighted cubes and spaces Sn

is provided via a set of compatible weight functions. Let Qq denote the set of q–
cubes. A set of functions wq : Qq → Z (0 ≤ q ≤ |V|) is called a set of compatible
weight functions if the following hold:

(a) for any integer n ∈ Z, the set w−1
0 ( (−∞, n] ) is finite;

(b) for any �q ∈ Qq and for any of its faces �q−1 ∈ Qq−1 one has wq(�q) ≥
wq−1(�q−1).

Then one can define Sn as ∪q{� ∈ Qq : wq(�q) ≤ n}.
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4.5.2 The Topology of the Spaces {Sk,n}n
In order to analyse the topology of the space Sn = Sn,k it is convenient to introduce
the set of finite rectangles indexed by pairs l1, l2 ∈ L with l1 ≤ l2.

Definition 4.5.7 For any such pair l1 ≤ l2 set R(l1, l2) := {x ∈ R
s : l1 ≤ x ≤ l2}.

Define also R(l1,∞) := {x ∈ R
s : l1 ≤ x}.

The point in the next lemma is that χ-monotone (non-increasing) computation
sequences provide strong deformation retracts for the spaces Sk,n.

Lemma 4.5.8 Fix k ∈ Char and write Sn = Sk,n.

(I) There exist l+ ∈ L and an increasing infinite sequence of cycles {li}i≥0 (li ∈ L)
with l0 = l+, such that

(a) for any i ≥ 0 one has li+1 = li + Ev(i) for some v(i) ∈ V,
(b) if li = ∑

v mi,vEv , then limi→∞ mi,v = ∞ for all v,
(c) χk(li+1) ≥ χk(li).

Similarly, there exists l− ∈ L and an increasing infinite sequence of cycles
{yi}i≥0, satisfying y0 = l−, the analogs of (a)–(b), and (c) χk(−yi+1) ≥
χk(−yi).

(II) Take l− and l+ as in (I). Without loss of generality we can assume that −l− ≤
l+. Then the inclusion R(−l−,∞) ∩ Sn ⊂ Sn and R(−l−, l+) ∩ Sn ⊂ Sn are
homotopy equivalences for any n ∈ Z.

Corollary 4.5.9 For any k ∈ Char the space Sn is contractible for any n � 0.

Proof Fix l− ≤ l+ as in Lemma 4.5.8(I). Let n be so large that R(−l−, l+) ⊂ Sn.
Then, by Lemma 4.5.8(II) Sn has the same homotopy type as R(−l−, l+). ��
4.5.10 Distinguished Representatives and Their Spaces Sn As we already said
in 4.5.4, if k′ = k + 2l for some l ∈ L then Sk,n = Sk′,n−χk(l). Hence, it is natural to
choose one representative from each spinc structure. For several results the choice
is irrelevant, however, certain choices have certain advantages. Our preferred choice
is the distinguished representative, or distinguished characteristic element kr :=
K+2sh, cf. 4.2.94, where sh ∈ L′ is the smallest representative of h in S′, cf. 4.2.78.

A possible motivation for the choice of kr is the following. Recall that the
rationality criterion for graphs is χ(l) > 0 for any l ∈ L>0, hence it is decided
in the ‘first quadrant’ L≥0 of L. More generally, for arbitrary graphs, the essential
properties of χ : L → Z are already coded in the restriction χ |L≥0. The choice
kr = K + 2sh guarantees that the essential properties of χkr : L → Z are
coded again in L≥0 (or, equivalently, for a fixed h, the essential information of
χQ|{l′ ∈ L′ : [l′] = h} is coded in χQ|sh + L≥0.
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Lemma 4.5.11 Fix h ∈ H and kr = K + 2sh as above. Then the following facts
hold.

(a) In Lemma 4.5.8 one may take l− = 0. This means that R(0,∞) ∩ Skr ,n ⊂ Skr ,n

is a homotopy equivalence for any n. In particular, by Lemma 4.5.8, there exists
l+ ≥ 0 such that R(0, l+) ∩ Skr ,n ⊂ Skr ,n is a homotopy equivalence for any n.

(b) Assume that ZK ≥ 0 (e.g., as in the minimal good resolution). Then one can
take l+ = �ZK�. Hence, Skr ,n has the homotopy type of R(0, �ZK�) ∩ Skr ,n.

(c) For any x ≥ 0 one has χkr (x) ≥ χK(x). Therefore, min χkr ≥ min χK .
(d) SK,n (i.e. when h = 0 and sh = 0) is connected for all n ≥ 1.

Example 4.5.12 (Characterization of Rational Graphs via the Spaces Sn [70]) Let
� be a connected, negative definite plumbing graph whose plumbed 3-manifold is
a rational homology sphere. Recall that � is rational if χ(l) > 0 for any l ∈ L>0.
(In this case pg(X, o) = 0 for any analytic type supported on the topological type
determined by �.) Then the following facts are equivalent:

(a) � is rational;
(b) SK,n is contractible for every n ≥ min χ ;

(b′) SK,n is connected for every n ≥ min χ ;
(c) Sk,n is contractible for all k ∈ Char and n ≥ min χk.

Additionally, if � is rational and kr = K + 2sh, then min χkr = 0.

Example 4.5.13 (Characterization of Elliptic Graphs via the Spaces SK,n [70])
Assume again that M(�) is a QHS3. Recall that � is elliptic if min χ = 0 and
� is not rational. Then � is elliptic if and only if SK,n is empty for n < 0 and SK,0
is not connected.

4.5.3 ‘Bad’ Vertices, Almost Rational Graphs and Lattice
Fibrations

We measure how far an arbitrary graph (tree) � is from being rational. Recall that
decreasing all the self-intersection numbers of a tree, with all the vertices decorated
by gv = 0, we obtain a rational graph. The next definition aims to identify those
vertices where such a decrease is really necessary. [Such a subset of V was already
considered in different articles like [70, 72, 74, 102], mostly under the name ‘bad
vertices’. Since the definition of the ‘badness’ was not uniform here we use the
notation SR for them, for several other families see [66].]

Definition 4.5.14 Let � be a negative definite connected tree with M(�) a QHS3.
A subset of vertices V = {v1, . . . , vν} ⊂ V is called SR–set, if by replacing the

Euler numbers ev = E2
v indexed by v ∈ V by some more negative integers e′

v ≤ ev

we get a rational graph. A graph is called AR-graph (‘almost rational graph’) if it
admits an SR–set of cardinality ≤ 1.
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Example 4.5.15

(a) A possible SR–set can be chosen in many different ways, it is not determined
uniquely even if it is minimal with this property.

(b) Usually we allow non-minimal SR–sets as well.
(c) Any rational graph is AR; for rational graphs the empty set is an SR–set. The

class of AR graphs is closed while taking subgraphs or/and decreasing the Euler
numbers.

(d) The set of nodes is an SR–set. Hence any star-shaped graph (with g = 0) is AR
with V = {v0}.

(e) Any elliptic graph with H1(LX,Q) = 0 is AR.
(f) Consider the graph � of S3−d (K) (for d > 0 and K ⊂ S3 algebraic knot). Then

� is AR: if we modify the −1 decoration of v1 into −2, we get a sandwiched
(hence rational) graph.

(g) Let {Ki}νi=1 be algebraic knots and set K = #iKi . For d > 0 the negative
definite graph � of S3−d (K) is given in 4.2.32. Then the smallest SR–set consists
of the set of (−1)-vertices (their number is ν).

4.5.16 Lattice Fibrations: Universal Cycles in the Fibers Let us give some
intuition for the next construction.

If � is rational, then 0 is a χkr –minimal lattice point, and 0 ↪→ Skr ,n

(n ≥ 0) admits a strong deformation retraction: there is a χkr –non-increasing
(combinatorial) flow contracting any Skr ,n (and L ⊗R) to 0.

In general, let us start with the lattice L and a representative k = K + 2l′h. Then
(dictated by some ‘badness properties’ of some of the vertices, indexed by V) we
will write the set of vertices V as a disjoint union V � V∗, such that any sublattice
of type l̄ + L(V∗) (where l̄ = ∑

v∈V �vEv ∈ L(V)) behaves as a rational lattice,
that is, it can be contracted to one of its lattice points via a χk–non-increasing flow.
(In other words, ‘L, or the spaces Sn, project to L(V) with contractible fibers’.) On
the other hand, the χk–minimal point of l̄ + L(V∗), where l̄ + L(V∗) contracts,
depends essentially on l̄; it is a crucial universal point xl′h(l̄) of l̄ + L(V∗). The
aim of different reduction theorems is to recover different invariants of the weighted
lattice (L, χk) from {χk(xl′h(l̄))}l̄∈L(V).

In this subsection we define and analyse the points xl′h(l̄). If l′h = sh then some
additional ‘positivity’ properties hold for them.

4.5.17 The Definition of the Lattice Points x(l̄) Let us fix a resolution of a germ
(whose link is not necessarily a rational homology sphere). Suppose we have a
family of distinguished vertices V := {vk}νk=1 ⊆ V (usually chosen by a certain
geometric property). Then we split the set of vertices V into the disjoint union
V � V∗. Let {mv(x)}v denote the coefficients of a cycle x ∈ L ⊗ Q, that is
x = ∑

v∈V mv(x)Ev .
We use the notation l̄ := ∑

v∈V �vEv ∈ L(V), and we fix h ∈ H and a
representative l′h ∈ L′ with [l′h] = h. Then the cycles x(l̄) are defined as follows.
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Proposition 4.5.18 ([70, Lemma 7.6], [47]) For any l̄ ∈ L(V) there exists
a unique cycle x(l̄) ∈ L (depending on the choice of l′h) satisfying the next
properties:

(a) mv(x(l̄)) = �v for any distinguished vertex v ∈ V;
(b) (x(l̄) + l′h,Ev) ≤ 0 for every ‘non-distinguished vertex’ v ∈ V∗;
(c) x(l̄) is minimal with the two previous properties (with respect to ≤).

Furthermore, the cycle x(l̄) automatically satisfies

x(l̄) + l̄1 ≤ x(l̄ + l̄1) for any l̄1 ≥ 0, l̄1 ∈ L(V). (4.75)

If we wish to emphasize the dependence on l′h we write xl′h(l̄).

The cycles x(l̄) satisfy the following universal property as well.

Lemma 4.5.19 Assume that a certain x ∈ L satisfies mv(x) = mv(x(l̄)) for all
v ∈ V, and x ≤ x(l̄).

Then there is a generalized Laufer’s computation sequence connecting x with
x(l̄). The sequence {zi}ti=0 is constructed as follows. Set z0 = x. Assume that zi

is already constructed. If for some v ∈ V∗ one has (zi + sh,Ev) > 0 then take
zi+1 = zi + Ev(i), where v(i) is such an index. If zi satisfies 4.5.18(b), then stop
and set t = i. Then this procedure stops after finite steps and zt is exactly x(l̄).

Along the computation sequence χk(zi+1) ≤ χk(zi) for any 0 ≤ i < t . Equality
holds if (zi + l′h,Ev(i)) = 1.

In the case of an SR–set we have the following statement.

Proposition 4.5.20 Let V be an SR–set. Choose l′h and set k = K + 2l′h. Then
l̄ + L(V∗) = {x ∈ L : mv(x) = mv(x(l̄)) for all v ∈ V} contracts to x(l̄) such
that along the contraction χk is non-increasing. In particular, χk(x) ≥ χkr (x(l̄)) for
any x ∈ l̄ + L(V∗).

4.5.4 Concatenated Computation Sequences of AR Graphs [70]

Assume that � is an AR resolution graph, let {v0} be an SR–set. In particular M(�)

is a rational homology sphere.

Theorem 4.5.21 If � is AR, then for any k ∈ Char and n ≥ mk = min χk any
connected component of Sk,n is contractible.

Note that the statement is independent of the choice of k in its class, cf. 4.5.10. In
the sequel we will choose the distinguished representative kr , and we write Sn for
Skr ,n. We also write V = V�V∗, where V = {v0}. For each � ∈ Z we consider the
cycles l̄ := �Ev0 ∈ L(V) and x(l̄) ∈ L from 4.5.16. We abridge x(�Ev0) as x(�).
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In order to prove the theorem we construct an increasing path γ = {li}i≥0 in L

(with �i+1 = �i +Ev(i) for all i), which determines the 1-chain Cγ := ∪i≥0[li , li+1]
of 1-cubes in L ⊗ R (without any loop), such that Cγ ∩ Sn ↪→ Sn is a homotopy
equivalence. The construction and the statement of the theorem constitute the
prototype of the more general Reduction Theorem 4.8.2 and also this was the
original intuitive motivation and starting point in the definition of the graded roots,
cf. 4.7 and 4.7.2.

The construction start as follows. By Lemma 4.5.11(a) the inclusion R(0,∞) ∩
Sn ⊂ Sn admits a strong deformation retract. Hence we can restrict ourself to the
intersection with the first quadrant. The path γ = {li}i≥0 is defined as a series
of concatenated computation sequences. It contains, as intermediate terms, all the
universal cycles {x(�)}�≥0 in an increasing order. The first term is l0 = x(0) = 0.
The part of the sequence starting from x(�) and ending with x(�+1) starts with x(�)

and the next term is x(�) + Ev0 . Then, the continuation is generalized Laufer-type
computation sequence connecting x(�)+Ev0 with x(�+1). Indeed, the multiplicity
of E0 in both x(�) + Ev0 and x(� + 1) is � + 1, and by (4.75) x(� + 1) ≥ x(�) +
Ev0 . Hence Lemma 4.5.19 gives a computation sequence γ (�+1) = {l(�+1)

i }i , which
connects them. Then we proceed inductively.

Define τ (�) := χkr (x(�)). Let o be the order of E∗
v0

in L′/L and p = mv0(oE∗
v0

).

Lemma 4.5.22

(a) The path {li}i is increasing: li+1 = li + Ev(i).
(b) For any Ev-coefficient one has lim�→∞ mv(x(�)) = ∞ (where v ∈ V).
(c) (Quasiperiodicity) x(� + tp) = x(�) + toE∗

v0
.

(d) χkr along each part (subsequence) γ (�) is constant.
(e) τ (� + 1) = τ (�) + 1 − (x(�) + sh,Ev0).
(f) There exists �0 such that τ (� + 1) ≥ τ (�) for � ≥ �0.

Theorem 4.5.23 Consider the 1-chain Cγ := ∪i≥0[li , li+1] in L ⊗ R as above.
Then for any n the inclusion Cγ ∩Sn ⊂ Sn is a homotopy equivalence. In particular,
since each connected component of Cγ ∩Sn is contractible, Theorem 4.5.21 follows.

Remark 4.5.24 In general, it is not easy to find the cycles x(�). Fortunately, in
several applications (see e.g. 4.7.3) one does not need all the coefficients of these
cycles, only the values τ (�) = χkr (x(�)). In most of the cases they are computed
inductively using 4.5.22(e), hence basically one needs only to know (x(�),Ev0) for
any �.

Example 4.5.25 For the determination of the universal cycles {x(�)}� and the
corresponding τ -function in the case of star-shaped graphs and surgery manifolds
see 4.7.22, 4.7.4 and Sect. 4.9.
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4.6 Lattice Cohomology

We provide two equivalent definitions for the lattice cohomology {Hq}q≥0 associ-
ated with a free Z-module endowed with a fixed basis and with a set of ‘compatible
weight functions’. The first definition is based on the construction of a cochain
complex. The second one involves the spaces {Sn}n introduced in 4.5.2. Once �

is fixed, any characteristic element k ∈ Char determines a set of weights (via the
RR expression χk), hence the lattice cohomology H

∗(�, k). It turns out that they
depend only on M(�) and [k] ∈ Spinc(M(�)). In 4.6.3 we show that the Euler
characteristic of H∗(�, k) is the normalized Seiberg–Witten invariant of M(�).

For more details see e.g. [71–73].

4.6.1 The Lattice Cohomology Associated with a System of
Weights

We consider a free Z-module, with a fixed basis {Ev}v∈V, denoted by Z
s . It is also

convenient to fix a total ordering of the index set V, which in the sequel will be
denoted by {1, . . . , s}. Our goal is to define a graded Z[U ]-module associated with
the pair (Zs, {Ev}v) and a set of weights. First we set some notations regarding
Z[U ]-modules.

4.6.1 Z[U ]-Modules Consider the graded Z[U ]-module T := Z[U,U−1], and
(following [102]) denote by T+

0 its quotient by the submodule U · Z[U ]. This
has a grading in such a way that deg(U−d) = 2d (d ≥ 0). Similarly, for any
n ≥ 1, the quotient of U−(n−1) · Z[U ] by U · Z[U ] (with the same grading) defines
the graded module T0(n). Hence, T0(n), as a Z-module, is freely generated by
1, U−1, . . . , U−(n−1), and has finite Z-rank n.

More generally, for any graded Z[U ]-module P with d-homogeneous elements
Pd , and for any r ∈ Q, we denote by P [r] the same module graded (by Q) in such
a way that P [r]d+r = Pd . Then set T+

r := T+
0 [r] and Tr (n) := T0(n)[r]. Hence,

for m ∈ Z, T+
2m = Z〈U−m,U−m−1, . . .〉 as a Z-module.

4.6.2 The Cochain Complex Z
s ⊗ R has a natural cellular decomposition into

cubes (see also 4.5.1). The set of zero-dimensional cubes is provided by the lattice
points Zs . Any l ∈ Z

s and subset I ⊂ V of cardinality q defines a q-dimensional
cube, which has its vertices in the lattice points (l+∑

v∈I ′ Ev)I ′ , where I ′ runs over
all subsets of I . On each such cube we fix an orientation. This can be determined,
e.g., by the order (Ev1, . . . , Evq ), where v1 < · · · < vq , of the involved base
elements {Ev}v∈I . The set of oriented q-dimensional cubes defined in this way is
denoted by Qq (0 ≤ q ≤ s).
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Let Cq be the free Z-module generated by oriented cubes �q ∈ Qq . Clearly, for
each �q ∈ Qq , the oriented boundary ∂�q (of ‘classical’ cubical homology) has the
form

∑

k εk �k
q−1 for some εk ∈ {−1,+1}. These are the faces of �q . It is clear that

∂ ◦∂ = 0. But, obviously, the homology of the chain complex (C∗, ∂) (or, of the dual
cochain complex (HomZ(C∗,Z), δ)) is not very interesting: it is the (co)homology
of Rs . A more interesting (co)homology can be constructed as follows. For this,
we consider a set of compatible weight functions {wq}q as in 4.5.6. In the sequel
sometimes we will omit the index q of wq .

4.6.3 In the presence of any fixed set of compatible weight functions {wq}q we
define F q as the set of morphisms HomZ(Cq,T+

0 ) with finite support on Qq .
Notice that F q is a Z[U ]-module by (p ∗ φ)(�q) := p(φ(�q)) (p ∈ Z[U ]).

Moreover,F q has a Z-grading: φ ∈ F q is homogeneous of degree deg(φ) = d ∈ Z

if for each �q ∈ Qq with φ(�q) �= 0, φ(�q) is a homogeneous element of T+
0 of

degree d −2 ·w(�q). (In fact, the grading is 2Z-valued; hence, the reader interested
only in the present construction may divide all the degrees by two. Nevertheless, we
prefer to keep the present form in our presentation because of its resonance with the
Heegaard Floer homology of the link.)

Next, we define δw : F q → F q+1. For this, fix φ ∈ F q and we show how δwφ

acts on a cube �q+1 ∈ Qq+1. First write ∂�q+1 = ∑

k εk�k
q , then set

(δwφ)(�q+1) :=
∑

k

εk Uw(�q+1)−w(�k
q) φ(�k

q).

Lemma 4.6.4 δw ◦ δw = 0, i.e. (F ∗, δw) is a cochain complex.

4.6.5 In fact, (F ∗, δw) has a natural augmentation too. Indeed, set mw :=
minl∈Zs w0(l) and choose lw ∈ Z

s such that w0(lw) = mw. Then one defines the
Z[U ]-linear map

εw : T+
2mw

−→ F 0

such that εw(U−mw−s )(l) is the class of U−mw+w0(l)−s in T+
0 for any l ∈ L and

s ≥ 0.

Lemma 4.6.6 εw is injective, and δw ◦ εw = 0.

One verifies that both εw and δw are morphisms of Z[U ]-modules and are
homogeneous of degree zero.

Definition 4.6.7 The homology of the cochain complex (F ∗, δw) is called the
lattice cohomology of the pair (Rs, w), and it is denoted by H

∗(Rs, w). The
homology of the augmented cochain complex

0 −→ T+
2mw

εw−→ F 0 δw−→ F 1 δw−→ . . .
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is called the reduced lattice cohomology of the pair (Rs, w), and it is denoted by
H

∗
red(Rs, w).

If the pair (Rs, w) is clear from the context, we omit it from the notation.
For any q ≥ 0 fixed, the Z-grading of F q induces a Z-grading on H

q and H
q

red ;
the homogeneous part of degree d is denoted by H

q

d , or H
q

red,d . Moreover, both

H
q and H

q
red admit an induced graded Z[U ]-module structure and H

q = H
q
red for

q > 0.
It is easy to see that H∗(Rs , w) depends essentially on the choice of w.

Lemma 4.6.8 One has a graded Z[U ]-module isomorphism H
0 = T+

2mw
⊕ H

0
red .

4.6.9 Next, we present another realization of the modules H
∗. In 4.5.2 for each

n ∈ Z we defined Sn = Sn(w) ⊂ R
s as the union of all the cubes �q (of any

dimension) with w(�q) ≤ n. Clearly, Sn = ∅, whenever n < mw. For any q ≥ 0,
set

S
q(Rs , w) := ⊕n≥mw Hq(Sn,Z).

Then S
q is Z (in fact, 2Z)-graded, the d = 2n-homogeneous elements Sq

d consist
of Hq(Sn,Z). Also, Sq is a Z[U ]-module; the U -action is given by the restriction
map rn+1 : Hq(Sn+1,Z) → Hq(Sn,Z). Moreover, for q = 0, the fixed base-point
lw ∈ Sn provides an augmentation (splitting) H 0(Sn,Z) = Z ⊕ H̃ 0(Sn,Z), hence
an augmentation of the graded Z[U ]-modules

S
0 = T+

2mw
⊕ S

0
red = (⊕n≥mwZ) ⊕ (⊕n≥mwH̃ 0(Sn,Z)).

Theorem 4.6.10 There exists a graded Z[U ]-module isomorphism, compatible
with the augmentations:

H
∗(Rs, w) = S

∗(Rs , w).

4.6.11 Restrictions Assume that T ⊂ R
s is a subspace of Rs consisting of a union

of some cubes (from Q∗). Let Cq(T ) be the free Z-module generated by q-cubes
of T , F q(T ) be the restriction of F q to Cq(T ). Then (F ∗(T ), δw) is a complex,
whose homology will be denoted by H

∗(T ,w). It has a natural graded Z[U ]-module
structure. The restriction map induces a natural graded Z[U ]-module homogeneous
homomorphism (of degree zero)

r∗ : H∗(Rs, w) → H
∗(T ,w).
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4.6.2 The Lattice Cohomology Associated with a Plumbing
Graph

4.6.12 We consider a connected negative definite plumbing graph � and we
assume that M(�) is a QHS3. We write s := |V|. We also fix a characteristic
element k ∈ Char.

Note that � automatically and naturally provides a free Z-module L = Z
s with a

fixed bases {Ev}v , cf. 4.2.9 and 4.5.1. Using � and k, we define a set of compatible
weight functions w as in 4.5.1: wk(�q) = max{χk(v) : v is a vertex of �q}.
Definition 4.6.13 The Z[U ]-modules H

∗(Rs, w) and H
∗
red(Rs, w) obtained by

these weight functions are called the lattice cohomologies associated with the pair
(�, k) and are denoted by H

∗(�, k), respectively H
∗
red(�, k).

Proposition 4.6.14

(a) H
∗
red(�, k) is finitely generated over Z.

(b) H
0
red,d(�,K) = 0 for the canonical characteristic element K and d > 0.

Remark 4.6.15 There is a symmetry present in the picture. Indeed, the involution
x �→ −x (x ∈ L′) induces identities χ−k(−l) = χk(l), hence isomorphisms

H
∗(�, k) = H

∗(�,−k) and H
∗
red(�, k) = H

∗
red(�,−k).

The involution [k] �→ [−k] corresponds to the natural involution of Spinc(M),
cf. 4.2.93.

4.6.16 Assume that [k] = [k′], hence k′ = k+2l for some l ∈ L. Then χk′(x−l) =
χk(x)−χk(l) for any x ∈ L. Therefore, the transformation x �→ x ′ := x− l realizes
the following identification:

Lemma 4.6.17 If k′ = k + 2l for some l ∈ L, then: H
∗(�, k′) =

H
∗(�, k)[−2χk(l)].

4.6.18 In fact, there is an easy way to choose one module from the multitude
{H∗(�, k)}k∈[k]. Indeed, set mk = minl∈L χk(l) as above. Since (k + 2l)2 = k2 −
8χk(l), we get

8mk = k2 − max
k′∈[k]

(k′)2 ≤ 0. (4.76)

Set M[k] := {k ∈ [k] : mk = 0}. Hence, if k0 and k0 + 2l ∈ M[k], then −χk0(l) = 0.
In particular, for any fixed orbit [k], any choice of k0 ∈ M[k] provides the same
module H∗(�, k0), in the sequel denoted by H

∗(�, [k]). Hence, for any k ∈ [k]

H
∗(�, k) = H

∗(�, [k])[2mk]. (4.77)
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Proposition 4.6.19 For each fixed [k] ∈ Spinc(M(�)),H∗(�, [k]) depends only on
M(�) and is independent of the choice of the graph �, which provides M(�).

Next, consider the distinguished characteristic element kr , cf. 4.5.10. The follow-
ing statement follows from Lemma 4.5.11.

Proposition 4.6.20 The restriction H
∗(�, kr ) → H

∗((R≥0)
s, kr ) induced by the

inclusion (R≥0)
s ↪→ R

s is an isomorphism of graded Z[U ] modules.
Remark 4.6.21 Assume that � is either rational or elliptic, in particular, min(χ) =
0. Then by 4.5.11 min(χkr ) ≥ 0. Hence, by (4.76), in fact, min(χkr ) = 0.

Example 4.6.22 (Rational Graphs) Theorem 4.5.12 transforms into the following
statement. The following facts are equivalent:

(a) � is rational;
(b) H

∗
red(�,K) = 0;

(b’) H
0
red(�,K) = 0;

(c) H
∗
red(�, k) = 0 for every k ∈ Char.

Additionally, by Remark 4.6.21, if � is rational then H
0(�, kr) = T+

0 for any kr .

Example 4.6.23 (Elliptic Graphs) Theorem 4.5.13 and Remark 4.6.21 transform
into the following statement: � is elliptic if and only if H

0(�,K) = T+
0 ⊕

H
0
red(�,K) with H

0
red(�,K) �= 0. (In fact, if � is elliptic then H

0
red(�,K) =

T0(1)�, where � > 0 is the length of the elliptic sequence in the sense of Laufer
and Yau).

Example 4.6.24 (Almost Rational Graphs) By 4.5.21, if � is almost rational,
H

q(�, k) = 0 for any q ≥ 1 and k ∈ Char. (For H0(�, k) see 4.7.3.)

Remark 4.6.25 The author knows no example when H
∗(�, k) has a non-zero Z-

torsion element. It is a challenge to prove that this cannot occur indeed.

4.6.3 The Lattice Cohomology and the Seiberg–Witten
Invariant

Fix � and k as above. Our goal is to identify the ‘Euler characteristic’ of the lattice
cohomology H

∗(�, k). Recall that by 4.6.14 rankZ(H∗
red(�, k)) < ∞.

Definition 4.6.26 The Euler characteristic of H∗(�, k) is defined as

eu(H∗(�, k)) := −mk +
∑

q

(−1)qrankZ(H
q
red(�, k)).

For motivation of the −mk term see 4.7.6 and the computations from below.
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4.6.27 Fix l− and l+ and the rectangle R = R(−l−, l+) as in Lemma 4.5.8. We
define

Euχk (R) :=
∑

�q⊂R

(−1)q+1wk(�q) and Eu
pol
χk

(q) :=
∑

�q⊂R

(−1)qqwk(�q) ∈ Z[q, q−1].

In particular, if we write Eu
pol
wk

(q)/(1 − q) as
∑

n≥mk
anq

n then

an =
∑

�q⊂R, wk(�q)≤n

(−1)q = χtop(Sn ∩ R),

where χtop is the topological Euler characteristic. But, by 4.5.8, Sn ∩ R ↪→ Sn is a
homotopy equivalence, hence an = χtop(Sn). This by 4.6.10 reads as

Eu
pol
χk (q) − qmk

1 − q
=

∑

n≥mk

(an − 1)qn =
∑

n≥mk

(
∑

q≥0

(−1)qrankZ(H
q
red,2n(�, k)) ) qn.

In particular, this expression is independent of the choice of R. Finally, by taking
the limit limq→1 we get

Euχk (R) + mk =
∑

q≥0

(−1)q rankZ(H
q
red(�, k)) ),

or

Euχk (R) = eu(H∗(�, k)). (4.78)

The above identity is a generalization to the level of weighted cubes of the
classical fact that the Euler characteristic computed at the level of cubes equals
the homological Euler characteristic.

4.6.28 Recall from 4.6.2 that if k′ = k + 2l, l ∈ L, then H
∗(�, k′) =

H
∗(�, k)[−2χk(l)], hence the lattice cohomologies associated with different

k’s with the same class [k] are equal up to a shift. This has no effect on
∑

q(−1)qrankZ(H
q
red(�, k)), however it has on mk . This can be remedied either

by choosing k from M[k] (cf. 4.6.18), or by taking kr (cf. 4.6.16). Next we present
another way to eliminate the above shift.

Let us replace the weight function wk(�q) := {χk(v) : v is a vertex of �q} by

wk(�q) := wk(�q) + dk, where dk := −k2 + |V|
8

+ K2 + |V|
8

= χ

(

k − K

2

)

,

and denote the corresponding lattice cohomologies by H
∗
(�, k). Then
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Lemma 4.6.29 H
∗
(�, k) = H

∗(�, k)[dk] is independent of the choice of k from
[k].
Remark 4.6.30 In the spirit of 4.4.33, and with the notation k = K+2l′h,H

∗
(�, k) is

the lattice cohomology of the cubes of l′h+L, where the weight function is generated
by the restriction of χ on this shifted lattice l′h + L. (Indeed, for l ∈ L, χ(l + l′h) =
χk(l) + dk .)

In particular, Theorem 4.4.39 combined with (4.78) give

Theorem 4.6.31 ([73])

eu(H∗(�, k)) = swσ [k](M(�)) − k2 + |V|
8

.

4.6.32 The SWIC Revisited For any h ∈ H assume that the representative l′h is
either rh or sh. Then via the extension 4.4.47 of the SWIC combined with 4.6.31
from above, the SWIC(h) is equivalent to

(SWIC(h)) h1(˜X,O(−l′h)) = eu(H∗(�,K + 2l′h)). (4.79)

We wish to emphasize that to some extent this conjectured identity lead to the
definition of graded roots and lattice cohomology (at least, of H0), see e.g. [70].
Indeed, for several singularities with AR graphs (e.g. for the weighted homogeneous
germs) the left hand side was computed by a concatenated Laufer computations
sequence, and its χ-fluctuation was reformulated as the key topological object at
the right hand side too (cf. 4.5.4 and 4.7.3).

4.7 Graded Roots and Their Cohomologies

We introduce abstract graded roots (R, χ) and we define their cohomology Z[U ]-
module H(R, χ). We provide several constructions, which provide graded roots.
One of them (cf. 4.7.2) associates a graded root (R, χ)�,k with a plumbing graph
� and a characteristic element k. It turns out that H0(�, k) = H((R, χ)�,k). In
particular, for any (�, k), the associated graded root is a geometrical/topological
enhancement of H0(�, k).

4.7.1 The Definition of Graded Roots and Their Cohomologies

In this subsection we follow [70, 71].
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Definition 4.7.1 Let R be an infinite tree with vertices V and edges E. We denote
by [u, v] the edge with end-vertices u and v. We say that R is a graded root with
grading χ : V → Z if

(a) χ(u) − χ(v) = ±1 for any [u, v] ∈ E;
(b) χ(u) > min{χ(v), χ(w)} for any [u, v], [u,w] ∈ E, v �= w;
(c) χ is bounded below, χ−1(k) is finite for any k ∈ Z, and |χ−1(k)| = 1 if k � 0.

An isomorphism of graded roots is a graph isomorphism, which preserves the
gradings.

If (R, χ) is a graded root, and r ∈ Z, then (R, χ)[r] denotes the same R with the
new grading χ[r](v) := χ(v) + r .

Example 4.7.2

(1) For any integer n ∈ Z, let R(n) be the tree with V = {vk}k≥n and E =
{[vk, vk+1]}k≥n. The grading is χ(vk) = k.

(2) Let I be a finite index set. For each i ∈ I fix an integer ni ∈ Z; and for each pair
i, j ∈ I fix nij = nji ∈ Z with the next properties: nii = ni , nij ≥ max{ni, nj },
and njk ≤ max{nij , nik} for any i, j, k ∈ I .
For any i ∈ I consider Ri := R(ni ) with vertices {vk

i } and edges {[vk
i , v

k+1
i ]},

(k ≥ ni). In the disjoint union �iRi , for any pair (i, j), identify vk
i and vk

j ,

resp. [vk
i , v

k+1
i ] and [vk

j , v
k+1
j ], whenever k ≥ nij . Write v̄k

i for the class of

vk
i . Then �iRi/∼ is a graded root with χ(v̄k

i ) = k. It will be denoted by R =
R({ni}, {nij }).

(3) Any map τ : {0, 1, . . . , T0} → Z produces a starting data for construction (2).
Indeed, set I = {0, . . . , T0}, ni := τ (i) (i ∈ I ), and nij := max{nk : i ≤ k ≤
j } for i ≤ j . Then �iRi/∼ constructed in (2) using this data will be denoted by
(Rτ , χτ ).

For example, for T0 = 4, take for the values of τ : −3,−1,−2, 0 and −2
(respectively −3, 0,−2,−1 and −2). Then the two graded roots are:

This construction can be extended to the case of a map τ : N → Z, whenever τ

has the property that there exists some k0 ≥ 0 such that τ (k + 1) ≥ τ (k) for any
k ≥ k0. In this case one can take any T0 ≥ k0 and construct the root associated
with the restriction of τ to {0, . . . , T0}. It is independent of the choice of T0. By
definition, this is the root associated with τ .

Definition 4.7.3 (The (cohomology) Z[U ]-Modules Associated with a Graded
Root) For any graded root (R, χ), let H(R, χ) (briefly H(R)) be the set of
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functions φ : V → T+
0 with the following property: whenever [v,w] ∈ E

with χ(v) < χ(w), then U · φ(v) = φ(w). Clearly H(R) is a Z[U ]-module via
(Uφ)(v) = U · φ(v). Moreover, H(R) has a Z-grading: the element φ ∈ H(R) is
homogeneous of degree d ∈ Z if for each v ∈ V with φ(v) �= 0, φ(v) ∈ T+

0 is
homogeneous of degree d − 2χ(v). Since 2χ(v) + deg φ(v) = 2χ(w) + deg φ(w),
d is well-defined.

Note also that any φ as above is automatically finitely supported.

Remark 4.7.4 By the definitions H((R, χ)[r]) = H(R, χ)[2r] for any r ∈ Z.

Example 4.7.5

(a) H(Rn) = T+
2n.

(b) The graded roots R1 and R2 constructed in 4.7.2(3) are not isomorphic but their
Z[U ]-modules are isomorphic. Hence, in general, a graded root carries more
information than its Z[U ]-module.

One has a natural graded Z[U ] module isomorphism H(R, χ) = T+
2m ⊕

Hred(R, χ), such that the Z[U ]-module Hred(R) has finite Z-rank.

Proposition 4.7.6 Let (Rτ , χτ ) be a graded root associated with some function
τ : N → Z, cf. 4.7.2(3). Then

rankZHred(Rτ , χτ ) = −τ (0) + min
i≥0

τ (i) +
∑

i≥0

max{τ (i) − τ (i + 1), 0}.

The summand T+
2m of H(Rτ , χτ ) has index m = mini≥0 τ (i) = minv χτ (v).

4.7.2 The Graded Root Associated with a Plumbing Graph

4.7.7 The Graded Root Associated with a System of Weigh Functions Fix a
free Z-module and a system of weights {wq}q . Consider the sequence of topological
spaces (finite cubical complexes) {Sn}n≥mw with Sn ⊂ Sn+1. Let π0(Sn) =
{C1

n, . . . ,C
pn
n } be the set of connected components of Sn.

Then we define the graded graph (Rw, χw) as follows. The vertex set V(Rw) is
�n∈Zπ0(Sn). The grading χw : V(Rw) → Z is χw(Cj

n) = n, that is, χw|π0(Sn) = n.

Furthermore, if Ci
n ⊂ Cj

n+1 for some n, i and j , then we introduce an edge

[Ci
n,C

j

n+1]. All the edges of Rw are obtained in this way.

Lemma 4.7.8 (Rw, χw) satisfies all the required properties of the definition of a
graded root, except maybe the last one: |χ−1

w (n)| = 1 whenever n � 0.

4.7.9 The Graded Roots Associated with a Plumbing Graph Fix a graph and
k ∈ Char, their compatible weight functions and the graded cubes as in 4.6.12. The
graded graph associated with this system of weight functions (cf. 4.7.7 and 4.7.8) is
denoted by (Rk, χk).
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For the system of weight functions induced by χk the sequence of spaces {Sn}n
have a finiteness property: only finitely many Sn are not contractible, cf. 4.5.9.

Corollary 4.7.10

(a) (Rk, χk) is a graded root.
(b) H(Rk, χk) is a finitely generated Z[U ]-module, and Hred(Rk, χk) is a finitely

generated Z-module.

Remark 4.7.11 There are several natural symmetries in the picture.

(a) The Spinc-involution. The involution l′ �→ −l′ (l′ ∈ L′) induces the identity
χ−k(−l) = χk(l), hence an isomorphism of the graded roots (Rk, χk) �
(R−k, χ−k). ([k] �→ [−k] is the natural involution of Spinc(M(�)), cf. 4.2.93.)

(b) The Gorenstein symmetry. If � is numerically Gorenstein then χK is stable
with respect to the transformation L → L, x �→ ZK − x. This shows that
(RK, χK) has a Z2-symmetry.

More generally, if k ∈ L (that is, k is spin) then x �→ −k − x induces a Z2-
symmetry of (Rk, χk).

Theorem 4.7.12 Let (Rk, χk) be the graded root associated with � and k. Then
H(Rk, χk) = H

0(�, k).

Example 4.7.13 Consider the example from 4.5.3. Those computations show that
the graded root (RK, χK) is

Then H
0�,K) = T+

−2 ⊕ T−2(1) ⊕ T0(1) ⊕ T0(1), H1(�,K) = T0(1) and
H

q(�,K) = 0 for q ≥ 2.

4.7.14 Next, with the notations from 4.6.16, we have the analogues of 4.6.17,
4.77, 4.6.19:

Proposition 4.7.15

(a) If k′ = k + 2l for some l ∈ L, then: (Rk′ , χk′) = (Rk, χk)[−2χk(l)].
(b) (Rk, χk) = (R[k], χ[k])[2mk]
(c) The set (R[k], χ[k]), indexed by [k] ∈ Spinc(M(�)), depends only on M =

M(�) and is independent of the choice of the plumbing graph � which provides
M .

Example 4.7.16 (Rational Graphs) The following facts are equivalent:

(a) � is rational;
(b) RK = R(0);
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(c) RK = R(m) for some m ∈ Z;
(d) For all characteristic elements k ∈ Char, Rk = R(mk) for some mk ∈ Z;

Recall from 4.6.21 that min χkr = 0 for rational �. In particular, if �

Example 4.7.17 (Elliptic Graphs) � is elliptic; if and only if (RK, χK) =
R({ni}, {nij }) for some index set I , |I | = � + 1 ≥ 2, such that ni = 0 for
any i ∈ I and nij = 1 for any pair i �= j .

4.7.18 The following tasks appear very naturally.

Problem Determine all the possible canonical (RK, χK) (and non-canonical
(Rk, χk) ) graded roots.

The possible resolution graphs are characterized by Grauert Theorem, namely
they are connected and negative definite. For each negative definite graph (tree) we
construct a canonical graded root in a direct combinatorial way. The problem is to
find a combinatorial characterization of all of them.

Problem Determine all the possible graded Z[U ]-modules, which might appear as
H

∗(�, k) for some (�, k).

4.7.3 Graded Roots of Almost Rational Graphs

4.7.19 Assume that � is an AR graph, with SR-set {v0}. We fix a distinguished
characteristic element kr = K +2sh and we consider the universal cycles {x(�)}�≥0
associated with (�, kr ), and their τ -function τ : Z≥0 → Z defined as τ (�) :=
χkr (x(�)), cf. 4.5.4. Associated with this τ -function we consider its graded root
(Rτ , χτ ) as well, cf. 4.7.2(3).

Theorem 4.7.20 Assume that � is AR, and set kr = K + 2sh for some h ∈ H .
Then

(a) H
q(�, kr ) = 0 for q ≥ 1;

(b) H
0(�, kr) = H(Rkr , χkr );

(c) (Rkr , χkr ) = (Rτ , χτ );
(d) x(0) = 0, τ (0) = 0, τ (1) = 1 − (sh,Ev0) ≥ 1, mkr = min�≥0{τ (�)} and

eu(H∗(�, kr)) = − min
�

{τ(�)} + rankZ(H0
red (�, kr)) =

∑

�≥0

max{ τ(�) − τ(� + 1), 0 }.

(e) τ (�) − τ (� + 1) = −1 + (x(�) + sh,Ev0).

Remark 4.7.21

(a) The above theorem shows that for almost rational graphs, any graded tree
(Rk, χk) is completely determined by the values of χk along a very natural
(universal) infinite computation sequence (depending on k), which contains



274 A. Némethi

the elements {x(�)}�≥0. (For the construction of the sequence see 4.5.4.) In
particular, all the important vertices of Rk can be represented by some special
cycles in L, which can be arranged in an increasing linear order (with respect to
≤).

(b) The set {x(�)}� usually is not very economical: only some of the x(�)’s
carry substantial information, which will survive in (Rτ , χτ ). The others are
intermediate steps in some monotone paths. E.g., for rational singularities,
χ(x(� + 1)) ≥ χ(x(�)), hence only the information χ(x(0)) = 0 is preserved
in Rτ .

Example 4.7.22 (Star-ShapedGraphs) Assume that � is star-shaped with ν strings.
In the sequel we will use the notations from 4.2.3. We also fix l′h = a0E

∗
0 +

∑ν
j=1

∑sj
t=1 ajtE

∗
j t . The coefficients of l′h also determine the integers ãjk :=

∑

t≥k n
j
t+1,sj

ajt for 1 ≤ k ≤ sj . We also write aj = ãj1.
� is AR, where its SR-set consists of the central vertex, cf. 4.5.15(f). Hence, for

any l̄ = �E0 (and for the fixed l′h and k := K + 2l′h) we have a cycle x(l̄), which
will be denoted simply by x(�) (� ∈ Z). The next expression describes the cycles
x(�) in terms of the Seifert invariants and the coefficients of l′h.

Define the integers {vjk} (1 ≤ j ≤ ν, 1 ≤ k ≤ sj ) inductively by

vj1 :=
⌈�ωj − aj

αj

⌉

=
⌈�n

j
2sj

− ãj1

n
j
1sj

⌉

; vjk :=
⌈vj,k−1n

j
k+1,sj

− ãjk

n
j
ksj

⌉

(1 < k ≤ sj ).

Then x(�) = �E0 +∑

j,k vjkEjk .
Assume next that g = 0 and l′h = sh, and set τ (�) := χkr (x(�)) (� ≥ 0). If � = 0

then x(0) = 0, hence τ (0) = 0 too. For � ≥ 0 from 4.5.22 one gets

τ (�+1)−τ (�) = 1−(x(�)+sh,E0) = 1+a0+�b0−
∑

j

⌈�ωj − aj

αj

⌉

. (4.80)

In particular,

τ (�) =
�−1
∑

k=0

(

1 + a0 + kb0 −
∑

j

⌈kωj − aj

αj

⌉)

. (4.81)

This can be compared with several similar expressions based on different other
studies of weighted homogeneous germs or Seifert 3–manifolds.

4.7.4 Example: The Surgery Manifold S3
−d

(K) [69, 71]

4.7.23 The Surgery Manifold M(�) = S3−d (K) Fix d ∈ Z>0 and an irreducible
plane curve singularity (C, o) with local algebraic knot (K1 ⊂ S3). Several
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invariants of (C, o) are listed in 4.2.30. For the shape and structure of the
surgery 3-manifold S3−d (K1) see 4.2.32. If it appears as the link of a superisolated
surface singularity associated with an irreducible rational unicuspidal curve (C, o)

(cf. 4.2.31) then necessarily (d − 1)(d − 2) = μ(C, o). However, in the discussion
below we will not assume this additional restriction (in particular, d can be any
d ∈ Z>0). We use the following schematic diagram for �:

The basis elements in L = L(�) corresponding to v1 and v+ are denoted by E1 and
E+. The lattice associated with �1 is L1, its dual is L′

1. The elements {Ev}v �=v+ of
L are identified with the basis elements of L1.

Recall that � is an AR graph with V = {v1}, cf. 4.5.15(f). In the sequel we follow
[69, 71, 84].

Assume that (C, o) is determined by the function f ; denote by Z that part of
its divisor which is supported on compact curves. Set m for the E1-multiplicity of
Z. Then, Z = E∗

1 (�1), hence −(Z,Z)L1 = m. This combined with a determinant
computation gives det(�) = d . Since det(�1) = 1 the coefficient of E+ in E∗+
is 1/d . Hence [E∗+] has order d in H , and H = Zd . We abridge sa[E∗+] by sa for
a = 0, 1, . . . , d − 1.

Lemma 4.7.24 sa = aE∗+ for any a = 0, 1, . . . , d − 1.

4.7.25 Our goal is to determine {xkr (�)}�≥0 for � and for any spinc structure. If
kr = K + 2aE∗+ for a certain a then we abridge xkr (�) as xa(�), where 0 ≤ a < d .

Let us write xa(�) as ya(�) + naE+, where na ∈ Z≥0 and ya(�) ∈ L1. The
inequality (xa(�) + aE∗+, E+) ≤ 0 reads as na(m + d) ≥ � − a. Hence na =
"(l − a)/(m + d)#.

On the other hand, for all other vertices v ∈ V \ {v+, v1} we have (xa(�) +
aE∗+, Ev) = (ya(�),Ev), hence ya(�) is independent of a; let us denote it by y(�).
It satisfies the universal property (a)-(b)-(c) from 4.5.18 for the graph �1, vertex v1
and l′h = 0. Namely, y(�) is minimal with (a) mv1(y(�)) = � and (b) (y(�),Ev) ≤ 0
for any v �= v1. For example, y(0) = 0.

Proposition 4.7.26 Let Z = divE(�1)(f ) = E∗
1 (�1) be the cycle as above. Then

(a) if � = tm + �0 with t ≥ 0 and 0 ≤ �0 < m, then y(�) = tZ + y(�0);
(b) for any � < m one has

(y(�),E1) =
{

1 if � �∈ SC,o;
0 if � ∈ SC,o.
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Corollary 4.7.27 Fix 0 ≤ a < d and write � = tm + �0 for some t ≥ 0 and
0 ≤ �0 < m. Then

xa(�) = t · Z + y(�0) +
⌈ � − a

m + d

⌉

E+.

In particular,

(xa(�),E1) = −t +
⌈ � − a

m + d

⌉

+ (y(�0), E1).

Furthermore, χkr (xa(0)) = 0 and for any � ≥ 0 one has

χkr ( xa(�+1) )−χkr ( xa(�) ) = t+1−
⌈ � − a

m + d

⌉

−
{

1 if �0 �∈ SC,o

0 if �0 ∈ SC.o.
(4.82)

4.7.28 The τ -Function τa According to 4.5.4 we set τa(�) := χkr (xa(�)). Then in
(4.82) one has

� − a

m + d
≤ t + 1,

hence τa(� + 1) − τa(�) ≥ −1 for any �, and = −1 only if

tm + �0 − a

m + d
> t and �0 �∈ SC,o. (4.83)

In order to analyze the cases when this holds, we will consider sequences Seq(t) :=
{tm+ �0 : 0 ≤ �0 < m} for fixed t ≥ 0. In such a sequence, notice that the very last
element of N \ SC,o, namely μ − 1 = 2δ − 1, is strictly smaller than m − 1, hence
the complete set N \ SC,o sits in {0, . . . ,m − 1}. Therefore, in Seq(t) there exists
an �0 satisfying (4.83) if and only if

tm + 2δ − 1 − a

m + d
> t.

This is equivalent to t ≤ ta , for ta := �(2δ−2−a)/d�. In other words, if � ≥ T0 :=
(ta + 1)m, then τa(�+ 1) ≥ τa(�), hence those values of τa provide no contribution
in the graded root. Moreover, for t ∈ {0, . . . , ta}, in Seq(t) one has:

�(�0) := τa(tm+ �0 +1)− τa(tm+ �0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if �0 ≤ td + a, and �0 �∈ SC,o;
+1 if �0 ≤ td + a, and �0 ∈ SC,o;
−1 if �0 > td + a, and �0 �∈ SC,o;

0 if �0 > td + a, and �0 ∈ SC,o.
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In particular, �(�0) ≥ 0 for any �0 with 0 ≤ �0 ≤ td + a, and �(�0) ≥ 0 takes the
value +1 exactly

At := #{s ∈ SC,o : s ≤ td + a}

times, otherwise it is zero. Furthermore, �(�0) ≤ 0 for any �0 > td + a and it takes
value −1 exactly

Bt := #{s �∈ SC,o : s > td + a}

times, otherwise it is zero. Recall that in 4.2.30 we rewrote �(t) as 1 + δ(t − 1) +
(t − 1)2Q(t), where Q(t) = ∑μ−2

i=0 αit
i . The above Bt compared with (4.7) reads

as Bt = αtd+a .
Notice that both At and Bt are strictly positive (since 0 ∈ SC,o, respectively

2δ − 1 �∈ SC,o and 2δ − 1 > td + a). This shows that

Mt := max
0≤�0<m

τa(tm + �0) = τa(tm) + At = τa((t + 1)m) + Bt (4.84)

and

Mt > max{ τa(tm), τa(tm + m) }.

Therefore, the graded root associated with the values {τa(�)}0≤�≤(ta+1)m is the
same as the graded root associated with the values

τa(0),M0, τa(m),M1, τa(2m),M2, . . . , τa(tam),Mta , τa(tam + m).

Finally, since #{s �∈ SC,o} = δ, one has δ − Bt = #{s �∈ SC,o : s ≤ td + a}, hence
δ − Bt + At = td + a + 1. Thus, by (4.84),

τa((t + 1)m) − τa(tm) = td + a + 1 − δ.

Since τa(0) = 0, this gives τa(tm) inductively.
Clearly, the graded root associated with τa is the same as the graded root

associated with τ̃a : {0, 1, 2, . . . , 2ta + 2} → Z, where τ̃a(2t) := τa(tm) and
τ̃a(2t + 1) := Mt .

The above discussion gives the following statement.
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Theorem 4.7.29 For each fixed a = 0, 1, . . . , d − 1,—corresponding to the d

different spinc-structures of M—one defines the following objects :

• ta :=
⌊

2δ−2−a
d

⌋

, ( ta ≥ −1 automatically) ;

• a function τa : {0, 1, . . . , 2ta + 2} → Z by

⎧

⎨

⎩

τa(2t) = d · t (t−1)
2 − t (δ − 1 − a), (t = 0, . . . , ta + 1);

τa(2t + 1) = τa(2t + 2) + αtd+a, (t = 0, . . . , ta).

• and the graded root (Rτa , χτa ) associated with τa .

Then (Rτa , χτa ) is the graded root of M associated with (�, kr).
Note also that min τa = τa( 2"ta/2# ).

Remark 4.7.30

(a) Since for any t ∈ {0, . . . , ta}, τa(2t + 1) > max{τa(2t), τa(2t + 2)}, the above
representation of the graded root is the most ‘economical’: all the values are
essential. This also shows that (Rτa , χτa ) has exactly ta + 2 local minimum
points, and they correspond to the values τa(2t), t = 0, 1, . . . , ta + 1.

(b) The values τa(2t), t = 0, 1, . . . , ta + 1 depend only on t , d and δ, that is, for
these values no other information is needed from the semigroup SC,o.

Corollary 4.7.31

(a) eu(H∗(�, kr )) = ∑ta
t=0 αtd+a

(b) swσ [kr ](M(�)) = ∑ta
t=0 αtd+a + 1

8 (1 − (d+2δ−2−2a)2

d
).

Proof Use 4.7.6 for (a) and 4.6.31 and the identity k2
r + |V| = 1 − (d + 2δ − 2 −

2a)2/d for (b). ��
Example 4.7.32 Assume d = 1. In this case M is an integral homology sphere;
a = 0 and t0 = 2δ − 2 = μ − 2. Moreover, −(K2 + |V|)/4 = δ(δ − 1) and
τ0(2t) = t (t − 2δ + 1)/2. The reader is invited to draw the graded root and verify
that

H
0(�,K) = (

T+
0 ⊕ T0(αδ−1) ⊕

δ−1
⊕

i=1

Ti(i+1)( αi−1+δ )⊕2 )[−δ(δ − 1)].

4.7.5 Superisolated Singularities with One Cusp

4.7.33 In the sequel we will consider a superisolated singularity as in 4.2.31. For
different invariants see 4.2.4, whose notations we will adopt. We will assume that
C is a rational unicuspidal curve. We invite the reader to review the ‘Semigroup
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Distribution Inequality’ from 4.2.33 and the ‘Semigroup Distribution Property’
from 4.2.33. The reinterpretations in terms of reduced Poincaré series can be found
in 4.3.6, and the connection with the Seiberg–Witten Invariant Conjecture (as the
basic motivation and source of the Semigroup Distribution Property) is presented
in 4.4.11. Here we present further connections with the graded roots. We follow
[25].

4.7.34 In this part we will compare the invariants of the link M = S3−d (K) of the
superisolated singularity with the corresponding invariants of the Seifert 3-manifold
�(d, d, d+1), the link of the hypersurface Brieskorn singularity xd+yd+zd+1 = 0.
Before we state the next theorem, we recall that the plumbing graph of S3−d (K)

contains complete information about the embedded link K ⊂ S3. Moreover, by the
statements of 4.7.29, the graded root or lattice cohomology still preserves essential
data about the Alexander polynomial. However, the Seifert 3-manifold �(d, d, d +
1) has information only about the degree μ of � via (d − 1)(d − 2) = μ. The
point is that the algebraic realizability of C (that is, the existence of an analytic
superisolated singularity with link S3−d (K)) imposes the following very surprising
necessary topological obstructions.

Theorem 4.7.35 ([25]) The following facts are equivalent:

(a) The Seiberg–Witten Invariant Conjecture is true for the superisolated germ.
(b) The Semigroup Distribution Property is true.
(c) The canonical graded roots of S3−d (K) and �(d, d, d + 1) are the same.
(d) The canonical lattice homologies of S3−d (K) and �(d, d, d + 1) are the same.
(e)

(

swσ [K](M)−K2 + #V
8

) ∣

∣

∣

M=S3−d (K)
=
(

swσ [K](M)−K2 + #V
8

) ∣

∣

∣

M=�(d,d,d+1)
.

Recall that, in fact, the Semigroup Distribution Property is true by Borodzik
and Livingston [9] (cf. 4.2.33), hence all the statements of 4.7.35 are true as well.
However, we formulated above a weaker statement, only the equivalence of the
above statements, whose proof is independent of the Heegaard Floer theory based
proof of [9].

The proof of 4.7.35 is given in several steps. The starting point is that both 3-
manifolds S3−d (K) and �(d, d, d + 1) are almost rational. In particular, in both
cases, the canonical graded root can be determined via the τ -function, cf. 4.7.3. In
the first case this is done explicitly in 4.7.29, while for the second case see 4.7.22.

Fact 1 Let us rewrite 4.7.29 for S3−d (K) and for the canonical spinc structure a = 0.
Set cl := α(d−3−l)d and define τ : {0, 1, . . . , 2d − 4} → Z by

τ (2l) = l(l − 1)

2
d − l(δ − 1), τ (2l + 1) = τ (2l + 2) + cd−3−l . (4.85)

Then (Rcan, χcan) = (Rτ , χτ ).
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Fact 2 Consider next the Seifert manifold �(d, d, d +1). Its canonical graded root
is the following. For any 0 ≤ l ≤ d − 3 write cu

l := (l + 1)(l + 2)/2, and 2δ :=
(d − 1)(d − 2) and define τu : {0, 1, . . . , 2d − 4} → Z by

τu(2l) = l(l − 1)

2
d − l(δ − 1), τu(2l + 1) = τu(2l + 2) + cu

d−3−l . (4.86)

Then (Rcan, χcan) = (Rτu, χτu).

Next we compare 4.85 and 4.86: the graded roots associated with S3−d (K)

and �(d, d, d + 1) coincide exactly when cl = cu
l for every l. However, by

the Semigroup Distribution Inequality (a consequence of the Bézout’s Theorem,
cf. 4.2.33) cl ≥ cu

l for every l. Hence cl = cu
l for every l if and only if

∑

l cl = ∑

l c
u
l . But this is exactly the vanishing of N(1), cf. (4.3.20)(b), hence

4.4.54 applies.

Example 4.7.36 Assume that d = 5 and C is unicuspidal and its singular point has
only one Puiseux pair (a, b) with a < b. Then by the genus formula the possible
values of (a, b) are (4, 5), (3, 7) and (2, 13). It turns out that the first and the third
cases can be realized, while the second case not. This fact is compatible with the
above Theorem 4.7.35. Indeed, the corresponding canonical graded roots (together
with the root of �(5, 5, 6)) are shown in the next picture.

Remark 4.7.37 As we already mentioned in 4.2.33, the Semigroup Distribution
Property (in the unicuspidal case) was partially verified in [24] and proved in [9].
The first approach is based on a case-by-case verification of the families of cuspidal
rational projective curves which appear in the classification theorems. The second
approach is based on the Heegaard Floer theory. The discussion from 4.7.39 traces
a possible third approach, which would lead to a different proof, and would open a
new chapter in the deformation theory of surface singularities.

Corollary 4.7.38 The Seiberg–Witten Invariant Conjecture is true for superiso-
lated germs associated with rational unicuspidal curves.

4.7.39 Why �(d, d, d + 1)? At the first glance the pairing of S3−d (K) with
�(d, d, d + 1) in Theorem 4.7.35 looks very unmotivated. In the next paragraphs
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we wish to convince the reader that this is not the case, and conjecturally a very
deep structure might exist behind the scene.

Assume that the rational unicuspidal curve is given by fd(x, y, z) = 0 in P
2

(for notations see 4.2.31). We can fix the homogeneous coordinates in P
2 in such

a way that z = 0 intersects C generically. A possible choice for the superisolated
singularity f : (C3, 0) → (C, 0) is f = fd + zd+1. Write fd as

∑d
i=0 gd−i (x, y)zi .

Then gd is a product of d linear factors corresponding to the points C ∩ {z = 0},
hence the germ gd : (C2, 0) → (C, 0) is equisingular with (x, y) �→ xd + yd .

Next, consider the following deformation ft : (C3, 0) → (C, 0) of
isolated hypersurface germs, given by ft (x, y, z) = fd(x, y, tz) + zd+1 =
∑

i gd−i (x, y)zit i + zd+1. For t �= 0 the deformation is μ-constant, the embedded
topological type stays constant, and it is equivalent (up to such equivalences) to
the type of f . However, for t = 0 it is equivalent (in similar sense) to the germ
xd + yd + zd+1.

Along this deformation not only does the embedded topological type jump (e.g.
the Milnor number), but even the (non-embedded abstract) link as well: for t �= 0 it
is S3−d (K), while for t = 0 it is �(d, d, d + 1).

However, both graphs are AR and several key invariants stay stable. For example,
in both cases pg = d(d − 1)(d − 2)/6. On the other hand, if we compute the
(resolution independent) invariant K2 + |V| we realize that they are different.
However, if we denote by K2

min the self-intersection of K in the minimal resolution,
then it turns out that in both cases it is −d(d − 2)2. Hence we are dealing
with a Gorenstein K2

min-constant deformation. By a result of Laufer [52] such
deformations admit a very weak simultaneous resolution (possible after a finite
base change). This gives the possibility to compare the lattices associated with
their minimal resolutions. Indeed, S3−d (K) and �(d, d, d + 1) admit certain non-
minimal resolution graphs with lattices Lt �=0 and Lt=0 and a homological map
ι : Lt �=0 → Lt=0, which preserves the intersection matrices, the canonical classes,
the χ-expression.

We formulate the next conjecture, whose positive answer would produce an
extremely strong test for the existence of certain analytic deformations.

Conjecture 4.7.40 Along a K2
min-constant deformation Xt of Gorenstein surface

singularities, such that the links of Xt=0 and Xt �=0 are both rational homology
spheres, the graded roots associated with the canonical spinc structure of Xt=0 and
of Xt �=0 are the same.

Note that along a deformation as in 4.7.40 we cannot expect the stability of
the whole module {Hq}q . Indeed, for the deformation described in 4.7.39 valid for
superisolated germs, for t = 0 we have an AR case with H

≥1 = 0. However, for
t �= 0, for certain superisolated germs with ν ≥ 2 we might have H

≥1 �= 0. In fact,
for any superisolated germ which produced a counterexample for the SWIC, along
the above deformation the canonical Seiberg–Witten invariant is non-constant too.
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4.8 The Reduction Theorem

4.8.1 Reduction Theorem for Lattice Cohomology

We consider a graph � as in 4.6.2. We also fix a distinguished class kr ∈
Char and the corresponding lattice cohomology H

∗(�, kr). Recall that there is an
isomorphism of graded Z[U ]-modules H

∗(�, kr) � H
∗((R≥0)

s, kr ), where the
second module is generated by weighted cubes in (R≥0)

s , cf. 4.6.20. Here s := |V|.
This Z[U ]-module was drastically simplified in the case of AR graphs, basically

the cubes from (R≥0)
s were replaced by 0 and 1 dimensional cubes along an infinite

increasing path (starting with 0 ∈ L), cf. Theorem 4.7.20. Here the AR-assumption
is really necessary: such a reduction to a 1-dimensional path (simplicial complex)
cannot be done for any graph (e.g. when H

1 �= 0). In this subsection we discuss the
analogue of this statement for an arbitrary graph.

Recall that the definition of an SR-set does not involve any k ∈ Char, hence such
a set can be uniformly used for any kr . In this section we fix such an SR-set V ⊂ V
as in 4.5.14, and any kr ∈ Char. Then, for each l̄ = ∑

v∈V �vEv ∈ L(V), with
every �v ≥ 0, we define the universal cycle x(l̄) associated with l̄ and sh (where
kr = K + 2sh) as in 4.5.18. For several properties of the cycles x(l̄) and of the
values χkr (x(l̄)) see 4.5.16. Let s̄ be the cardinality of V. In the next paragraphs we
follow [47].

4.8.1 Preparation for the Lattice Reduction Our goal is to replace the cubes of
the lattice R

s (or from (R≥0)
s) with cubes from (R≥0)

s̄ . In order to run the theory
we need to define the new weights. Define the function w0 : (Z≥0)

s̄ → Z by

w0(l̄) := χkr (x(l̄)). (4.87)

Then w0 defines a set {wq}s̄q=0 of compatible weight functions by wq(�) =
max{w0(v) : v is a vertex of �}, similarly as in 4.6.12. This system is denoted
by w[kr ].

Here some comments are appropriate. We wish to emphasize that in the definition
of the lattice cohomology the lattice (that is, the linear) structure in not used, it is
not essential. The important structure consists of the weight-levels of the lattice
points in some regions (e.g. quadrants, rectangles) and their neighboring properties.
Note that in the new situation we do not use the linear structure of Zs̄ either, and
we do not even define the weights of the lattice points outside the first quadrant.
Furthermore, l̄ �→ χkr (x(l̄)) is a complicated arithmetical function (definitely not
quadratic or polynomial).

Let us denote the associated lattice cohomology by H
∗((R≥0)

s̄ , w[kr ]).
Theorem 4.8.2 (Reduction Theorem [47]) There exists a graded Z[U ]-module
isomorphism

H
∗((R≥0)

s , kr) ∼= H
∗((R≥0)

s̄ , w[kr ]). (4.88)
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Corollary 4.8.3 Fix an arbitrary graph �. If it admits an SR-set of cardinality s̄

then Hq(�, k) = 0 for any q ≥ s̄ and k ∈ Char.

This vanishing can be proved by surgery exact sequences of lattice cohomology
as well, see [74].

4.8.2 Reduction Theorem for Z(t)

The Reduction Theorem has its effect on the relation of the lattice cohomology with
the counting function of the coefficients of topological Poincaré series Z(t) as well.
Let us consider first the series Z(t) written in terms of weighted cubes (cf. 4.4.33
and 4.4.40).

Theorem 4.8.4 Fix h, sh and kr = K + 2sh as above. Let w = w[kr ] be the system
of weight associated with kr . Then the following facts hold.

(1)

Zh(t) =
∑

l∈L

(
∑

I⊆V
(−1)|I |+1w((l, I ))

)

tl+sh.

(2) Fix some l ∈ L with l + sh ∈ −K + S′. Then
∑

x∈L, x �≥l

z(x + sh) = χkr (l) + eu(H∗(�, kr )).

4.8.5 The Reduced Series Let us return to the SR-set V, write V as V � V∗,
and let π : L′ → L(V) ⊗ Q be the projection to the V-coordinates. As usual, we
also write tV = {tv}v∈V for the variables of L(V), and tl̄V = ∏

v∈V t
�v
v for l̄ =

∑

v∈V �vEv ∈ L(V) ⊗ Q. For any h ∈ H set Zh,V(tV) = Zh(t)|tv=1 for all v∈V∗ .
It is supported on the projection of S′ ∩ (sh + L). Write

Zh,V(tV) =
∑

l̄∈L(V)

zl̄+π(sh)
tl̄+π(sh)

V
.

Theorem 4.8.6 ([47]) With the above notations (and w = w[kr ])
(1)

Zh,V(tV) =
∑

l̄∈L(V)

(
∑

I⊆V

(−1)|I |+1w((l̄, I ))
)

tl̄+π(sh)

V
.
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(2) There exists l̄0 ∈ π(S) such that for any l̄ ∈ l̄0 + π(S)

∑

x̄�l̄

zx̄+π(sh)
= w(l̄) + eu(H∗((R≥0)

s̄ , w)).

Example 4.8.7 Consider the following graph �

It is the minimal good resolution graph of the hypersurface singularity x13 +
y13 + x2y2 + z3 = 0. In particular, ZK is integral.

In the sequel we will calculate the lattice cohomology of M(�) associated with
kr = K . We choose the two nodes as an SR-set. Then Reduction Theorem 4.8.2
implies that H∗(�,K) ∼= H

∗((R≥0)
2, w), where w(i, j) := χ(x(i, j)) for any

(i, j) ∈ (Z≥0)
2. It turns out that

w(i + 1, j) − w(i, j) = 1 + i − "(53i + j)/351# − "i/2# − "i/3#

w(i, j + 1) − w(i, j) = 1 + j − "(i + 53j)/351#− "j/2# − "j/3#.

Since π(ZK) = (14, 14), the projection of the rectangle R(0, ZK) is
π(R(0, ZK)) = R((0, 0), (14, 14)). Hence by Lemma 4.5.11(b) the rectangle
R((0, 0), (14, 14)) = {(i, j) ∈ (R≥0)

2 : (i, j) ≤ (14, 14)} contains all the needed
information. The values w(i, j) are given in the next diagram. ((0, 0) is at the lower
left corner.)
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The large frames illustrate the generators of H 0(S−1,Z), the small ones the
generators of H 0(S0,Z) in degree 0 and the circle shows the generator of H 1(S0,Z).
Hence,

H
0(�,K) = T+

−2 ⊕T 3−2(1) ⊕T 2
0 (1) and H

1(�,K) = T0(1) and eu(H∗(�,K)) = 5.

For several concrete formulae and other explicit examples when � has two nodes,
and V = N , see [44].

4.9 H
∗ of the Surgery Manifold S3

−d
(#iKi)

4.9.1 Invariants of M(�) = S3
−d

(#iKi) for Any d > 0 and for
All Spinc Structures [84]

4.9.1 Consider the notations of 4.2.32, or of 4.4.11 with d > 0. Here we do not
assume that μ = (d − 1)(d − 2) (as in the superisolated link case 4.2.4 or 4.3.6). In
this subsection we follow [84]. By 4.2.32

The group H is Zd and it is generated by the class of the dual of E+ := Ev+ .
Furthermore, as in Lemma 4.7.24 one has s[aE∗+] = aE∗+ for any a = 0, 1, . . . , d−1.
We will use the notations h := [aE∗+] ∈ H and kr := K + 2aE∗+ ∈ Char. With
I = {v+} one has (cf. 4.4.11)

ZI(t) = �(t1/d)

(1 − t1/d)2
and Zh,I(t) = 1

d
·
∑

ξd=1

ξ−a �(ξt1/d )

(1 − ξt1/d )2
. (4.89)

Using �(t) = 1+(t−1)δ+(t−1)2Q(t) and Q(t) = ∑μ−2
n=0 αnt

n, by a computation

Zh,I(t) = ta/d(a + 1) + t1+a/d(d − a − 1)

(t − 1)2 + δ · ta/d

t − 1
+

∑

n≡a (mod d)

αnt
n/d .

(4.90)
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Since the polynomial part Z+
h,I(t) of this expression is

∑

n≡a (mod d) αnt
n/d , we get

pc(Zh,I(t)) = pc(Zh,I(td )) =
∑

n≡a (mod d)

αn. (4.91)

Next we apply the surgery formula from Theorem 4.4.31 for v = v+ and l′ = aE∗+.
Then l′v+ = a/d ∈ [0, 1). Furthermore, Ri(aE∗+) = 0, hence all the contributions

swσ [Ki ](M(�i)) − (K2
i + |Vi |)/8 vanish (since SWIC is valid for smooth germs).

Therefore, from 4.4.31,

swσ [kr ](M(�)) − k2
r + |V|

8
=

∑

n≡a (mod d)

αn. (4.92)

This combined with Theorem 4.6.31 give

eu(H∗(�, kr)) =
∑

n≡a (mod d)

αn. (4.93)

4.9.2 The Lattice Reduction In the next pages we follow closely [84].
The set V := {v1, . . . , vν} of the (−1)-vertices form an SR-set, cf. 4.5.15(i).

Set E1, . . . , Eν for the corresponding elements of L. Next we apply the Reduction
Theorem from Sect. 4.8, whose notations we will adopt. Write l̄ = ∑ν

i=1 �iEi ∈
L(V) = L, and let xkr (l̄) be the universal cycle associated with kr and l̄ as
in 4.5.18 and Sect. 4.8. Set w(l̄) := χkr (x(l̄)) as in (4.87). Then, by the Reduction
Theorem 4.8.2 one has a graded Z[U ]-module isomorphism:

H
∗(�, kr ) ∼= H

∗((R≥0)
ν, w). (4.94)

For each �i ≥ 0 consider the cycle yi(�i) determined in the graph �i as in 4.7.25
and 4.7.26. Set �m := ∑

i mi and �� := ∑

i �i (and, in general, �x := ∑

i xi for
x ∈ R

ν). Then the E+-coefficient of xkr (l̄) is m+(l̄) = "(�� − a)/(�m + d)# and

xkr (l̄) =
∑

i

yi(�i) +
⌈ �� − a

�m + d

⌉

· E+. (4.95)

Write �i = pimi + �i,0 with pi ∈ Z≥0 and 0 ≤ �i,0 < mi . Let Zi be the cycle
divE(�i)(fi) = E∗

i (�i). Then yi(�i) = piZi + yi(�i,0) (cf. 4.7.26). Furthermore,
if for any i = 1, . . . , ν we take 1i = (0, . . . , 0, 1, 0, . . . , 0) (1 at entry i) then
w(0) = 0, and

w(l̄ + 1i ) − w(l̄) = pi + 1 −
⌈ �� − a

�m + d

⌉

−
{

1 if �i,0 �∈ Si

0 if �i,0 ∈ Si .
(4.96)

Here Si is the abbreviation for the semigroup SC,pi .
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Next, we reduce (R≥0)
ν to a finite multi-rectangle. We write m for the vector

(m1, . . . ,mν), and R(l̄1, l̄2) denotes the rectangle {x ∈ R
ν : l̄1 ≤ x ≤ l̄2}, as usual.

Set also Rp := R(pm, (p + 1)m).

Lemma 4.9.3

(a) Set p̃0 := "(μ − a − 1)/d#. Then

H
∗((R≥0)

ν, w
) ∼= H

∗(R(0, p̃0 m),w
) ∼= H

∗( ∪0≤p<p̃0 Rp,w
)

.

(b) w(p m) = p(1 + a − δ) + dp(p − 1)/2 for any 0 ≤ p ≤ p̃0.
(c) Fix 0 ≤ p < p̃0. Then, for any l̄ ∈ Rp ∩ L, �i = pmi + �i,0, with �� ≤

p(�m + d) + a + 1 one has:

w(l̄) − w(p m) =
∑

i

#{s ∈ Si : s ≤ �i,0 − 1}. (4.97)

(d) Fix 0 ≤ p < p̃0. Then, for any l̄ ∈ Rp ∩ L, �i = pmi + �i,0, with �� ≥
p(�m + d) + a + 1 one has:

w(l̄) − w((p + 1) m) =
∑

i

#{s �∈ Si : s ≥ �i,0}. (4.98)

Consider the notation

T −
p := {

x ∈ (R≥0)
ν : (�x − a − 1)/(�m + d) = p − 1

}

.

From the above facts we obtain the following.

Theorem 4.9.4 Set p̃0 := "(μ − a − 1)/d# as above and for any 0 ≤ p < p̃0
consider

min T −
p+1 := min { w(l̄) : l̄ ∈ T −

p+1 ∩ Rp ∩ L}.

Then the following facts hold:

(a) w(p m) ≤ min T −
p+1, w((p + 1) m) ≤ min T −

p+1.
(b) mkr := min χkr = min0≤p≤p̃0{w(p m) }.
(c) Let pmin be the smallest integer satisfying w(pminm) = mkr . Then

H
0
red(�, kr) =

⊕

0≤p<pmin

T2w(p m)

(

min T −
p+1 − w(p m)

)

⊕
⊕

pmin≤p<p̃0

T2w((p+1) m)

(

min T −
p+1 − w((p + 1) m)

)

.
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(d) rank ZH
0
red(�, kr) equals

∑

0≤p<pmin

(

min T −
p+1 − w(p m)

)+
∑

pmin≤p<p̃0

(

min T −
p+1 − w((p + 1) m)

)

,

or

−mkr + rankZH
0
red(�, kr ) =

∑

0≤p<p̃0

(

min T −
p+1 − w((p + 1) m)

)

.

(e) For any q > 0 one has

H
q(�, kr ) =

⊕

0≤p<p̃0

H
q(Rp,w).

4.9.5 The Structure of H≥1(Rp,w) The cohomology H
≥1(Rp,w) depends only

on the w-values at p m, at (p+1) m and along T −
p+1. Indeed, for any n ∈ Z consider

Sn as in 4.5.2. Then for n < min T −
p+1 the space Sn ∩ Rp has the same homotopy

type as the intersection of Sn with the two-element set {p m, (p + 1) m}; while for
n ≥ min T −

p+1 it has the homotopy type of the suspension of Sn∩T −
p+1. In particular,

all the nontrivial homogeneous elements of H≥1(Rp,w) have degree ≥ min T −
p+1,

and one has the graded Z[U ]-module isomorphism

H
q(Rp,w) = H

q−1
red (T −

p+1, w) for q > 0. (4.99)

4.9.6 The Structure of H∗(T −
p+1, w). The Modules H

∗(T−
n ,W) In most of the

notations above, we have omitted the symbol a codifying the characteristic element
kr . In fact, for any p ≥ 0 and a ∈ {0, . . . , d − 1}, T −

p+1 is

T −
p+1,a := { l̄ : �i = pmi + �i,0;

∑

i

�i,0 = pd + a + 1}.

Note that when p runs over Z≥0 and a ∈ {0, . . . , d − 1}, the integer n = pd + a

runs over Z≥0. This motivates to consider for any n ∈ Z≥0

Tn := {(�1,0, . . . , �ν,0) ∈ [0,m1] × · · · × [0,mν] :
∑

i

�i,0 = n + 1}. (4.100)

Then, for d and a fixed, T −
p+1,a = Tpd+a + p m. If p < p̃0 then pd + a ≤

μ − 2, hence the relevant index set of the hyperplanes is 0 ≤ n ≤ μ − 2 (this
can be compared with the index set {αn}μ−2

n=0 of the coefficients of Q(t)). The form
Tpd+a +p m shows also how they intersect the small rectangles: when we run a, an
element of the set {Tn + �n/d�m}0≤n≤μ−2 intersects Rp if and only if �n/d� = p.
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Up to the shift w(p m), which is constant on each Tn, but otherwise depends on
p = �n/d�, the weights on Tn ∩ Z

ν are given by the right hand side of (4.97). Or,
up to a shift w((p + 1) m), the weights are given by (4.98). Following this second
version we set the following weights for any Tn:

W((�1,0, . . . , �ν,0)) =
∑

i

#{s �∈ Si : s ≥ �i,0}. (4.101)

That is, W |Tn(l̄ − p m) = w(l̄) − w((p + 1) m), where p = �n/d�.
The weight function W restricted on all the level sets {Tn}n≥0 of (Z≥0)

ν mea-
sures the very subtle distribution properties of the semigroups {Si}i . Furthermore,
up to a well-identified shift in degrees, the collection (Tn,W) provides all the lattice
cohomologiesH∗(�(d), kr ) for all the possible values d and a. Here, and in the next
discussion, we denote the dependence of � on d by �(d).

More precisely, for any d and a ∈ {0, . . . , d − 1} and q > 0 one has:

H
q(�(d),K + 2aE∗+) =

⊕

n≡a (mod d), 0≤n≤μ−2

H
q−1
red (Tn,W)[sn,d ], (4.102)

where sn,d is the value of the shift 2w((p+1) m) = 2(p+1)(1+a−δ)+d(p+1)p

(with p = �n/d�). Moreover, the values {min W |Tn}n and sn,d determine all the
cohomology groups H

0(�(d), kr) too. The second identity of (4.9.4)(d) together
with (4.98) reads as:

−mkr + rank H
0
red(�(d),K + 2aE∗+) =

∑

n≡a (mod d), 0≤n≤μ−2

min{W |Tn}.

(4.103)

In particular, for any fixed d > 0 and a ∈ {0, . . . , d − 1} one has:

eu(H0(�(d),K + 2aE∗+)) =
∑

n≡a (mod d), 0≤n≤μ−2

min{W |Tn},

eu(H∗(�(d),K + 2aE∗+)) =
∑

n≡a (mod d), 0≤n≤μ−2

−eu(H∗(Tn,W)).

(4.104)

Example 4.9.7 For any d > 0 and q > 0 the summation of (4.102) over a gives

H
q(�(d)) =

d−1
⊕

a=0

H
q(�(d),K + 2aE∗+) =

⊕

0≤n≤μ−2

H
q−1
red (Tn,W)[sn,d ].

(4.105)

On the right hand side of (4.105) the numbers sn,d depend on d , but the rank of the
right hand side is independent of d . In particular, up to shifts of different direct sum
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blocks, ⊕q>0H
q(�(d), kr ) is independent of the choice of the integer d . (This can

also be deduced from the surgery exact sequences from [74].)

Example 4.9.8

(a) Assume that for a certain d and a one gets p̃0 = 0. Then H
∗
red(�, kr ) = 0, and

H
0(�, kr ) = T+

0 .
(b) Assume that for a certain d and a one gets p̃0 = 1. Then H

∗(�, kr ) =
H

∗(R0, w), hence everything is determined by T −
1,a . Indeed,

min T −
1,a

= min
{
∑

i

#{s ∈ Si : s ≤ �i − 1}, where
∑

i

�i = a + 1
}

= min
{
∑

i

#{s �∈ Si : s ≥ �i}, where
∑

i

�i = a + 1
}+ 1 + a − δ,

mkr = min{0, 1 + a − δ}, H0
red(�, kr ) is generated by one element of degree

2 max{0, 1+a−δ}, rank H
0
red(�, kr) = min T −

1,a−max{0, 1+a−δ}, and finally

for q > 0 one has Hq(�, kr) = H
q−1
red (T −

1,a, w) = H
q−1
red (Ta,W)[2(1 + a − δ)],

(T −
1,a = Ta + m).

(c) If d ≥ μ − 1 then p̃0 = 1 for a < μ − 1, and p̃0 = 0 for a ≥ μ − 1.

Remark 4.9.9 Assume that we know all the cohomology groups {H∗(�(d), kr )}kr

for some specific d with d ≥ μ−1. Then using them, and also the values w(pm) =
p(1 + a − δ) + dp(p − 1)/2 for all p, a and d , we can recover all the lattice
cohomologies {H∗(�(d), kr )}kr for any d > 0. [For this, use Example 4.9.8 and
(4.102).]

Corollary 4.9.10 For any n ≥ 0 the coefficients of Q(t) = ∑

n αnt
n satisfy

αn = −eu (H∗(Tn,W)). (4.106)

Proof Use the identities (4.93) and (4.104) for d � 0, cf. 4.9.9. ��
Remark 4.9.11 Above we reduced several computations to the weight function
W |Tn . It was connected with the weight function provided by the reduction
formula via W |Tn(l̄ − p m) = w(l̄) − w((p + 1) m), where p = �n/d�.
Since each w(p m) is computable from d , a, δ, cf. 4.9.3(b), the lattice coho-
mology H

0(S3−d (#iKi)) is computable from d , a, δ and {W |Tn}n. On the other

hand, by (4.101) W((�1,0, . . . , �ν,0)) equals
∑

i #{s �∈ Si : s ≥ �i,0} =
∑

i

(

δi − #{si �∈ Si : si < �i,0}
) = ∑

i (δi − �i,0) + ∑

i #{si ∈ Si : si < �i,0}.
Hence

min{W |Tn} = δ − n − 1 + min
∑

i �i,0=n+1
#{si ∈ Si : si < �i,0}. (4.107)
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This motivates the replacement of the semigroup Si with an equivalent object of it,
with its ‘counting function’ j �→ Hi(j),

Hi(j) := #{s ∈ Si : s < j }. (4.108)

From analytic point of view, Hi(j) is the coefficient of tj in the Hilbert function of
the local singularity (C, pi), associated with the filtration given by its normalization.

The above min-expression can be reformulated formally as follows. Consider
any two functions H1 and H2 defined on integers and bounded from below. Then
we define their ‘minimum convolution’ (cf. [9, 5.3]), denoted by H1 $ H2 as (H1 $
H2)(j) = minj1+j2=j {H1(j1) + H2(j2)}.

Then from the counting functions {Hi}νi=1 associated with {Si}νi=1 we construct

H := H1 $ H2 $ · · · $ Hν. (4.109)

Since the operator $ is associative and commutative, the function H is well-defined.
From the above discussion H

0(S3−d (#iKi)) is computable from d , a, δ and H .

Remark 4.9.12 In the above discussion (e.g. in 4.9.5–4.9.6), the space Tn—
intersection of a simplex with a rectangle—can be replaced by the supporting
simplex. Indeed, set

�n := {(�1,0, . . . , �ν,0) ∈ (R≥0)
ν :

∑

i

�i,0 = n + 1}. (4.110)

A verification shows that H ∗
red(Tn,W) is isomorphic with H ∗

red(�n,W) for
every n ≥ 0. Furthermore, if n > μ − 2 then H ∗

red(Tn,W) = 0 automatically,
hence in several formulae above (e.g. in the summations from (4.102) and (4.105))
the restrictions n ≤ μ − 2 can be safely neglected.

4.9.2 Superisolated Singularities with More Cusps

In this subsection we consider a superisolated singularity associated with an
irreducible rational cuspidal curve. For different notations and statements regarding
the analytic and topological type see Sects. 4.2.4, 4.3.6, 4.4.11, 4.7.4, and 4.9. In
this subsection we follow [8].

Our goal is to discuss Conjectures 4.3.21 and 4.3.22 from the point of view of
lattice cohomology. Let us recall the two statements. Set (cf. 4.3.20(b))

N(t) =
d−3
∑

l=0

(

α(d−3−l)d − (l + 1)(l + 2)

2

)

td−3−j . (4.111)
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• Conjecture 4.3.21: all the coefficients of N(t) are non-positive. We will refer to
this as ‘Conjecture C’ (‘Conjecture regarding the coefficients of N(t)’).

• Conjecture 4.3.22: N(1) is non-positive. We will refer to this as the ‘Conjecture
I’ (we regard N(1) as an ‘index type invariant’).

Clearly Conjecture C implies Conjecture I.
We will compare these statements with the Semigroup Distribution Property

based on the properties of counting function Hi of the semigroups and also on a
subtle connection with lattice cohomology.

We consider the counting functions Hi of the semigroups Si (cf. (4.108))
and their minimum convolution H as in (4.109). Recall also (cf. 4.2.33) that the
Semigroup Distribution Property (SDP) reads as H(ld + 1) = (l + 1)(l + 2)/2 for
any l = 0, 1, . . . d − 3.

Example 4.9.13 (The case ν = 1) In this case αj = #{s �∈ S1 : s > j }, cf. (4.42).
From (4.43) α2δ−2−j = H1(j + 1) for j = 0, . . . , 2δ − 2. Hence, the α-coefficient
needed in (4.111) is α(d−3−l)d = #{s ∈ S1 : s ≤ ld} = H1(ld + 1). Recall
that 4.2.33 (Bézout’s Theorem) implies α(d−3−l)d = H1(ld + 1) ≥ (l + 1)(l +
2)/2. This inequality and (4.111) show that for ν = 1 Conjecture C is equivalent
to N(t) ≡ 0. But, they are also equivalent to Conjecture I, since if N(1) ≤ 0 then
necessarily N(t) ≡ 0. Finally, the validity of all these statements follow from SDP.

However, for ν ≥ 2 the relationships are more subtle.

Theorem 4.9.14 ([8]) With the above notations one has:

1. If ν = 2, then q2δ−2−j ≤ H(j + 1) for any j = 0, 1, . . . 2δ − 2. Therefore, for
bicuspidal curves the SDP implies Conjecture C (hence Conjecture I too).

2. If ν ≥ 3, then the inequality q2δ−2−j ≤ H(j + 1) does not hold in general, not
even for j = ld (l = 0, 1, . . . , d −3), needed for Conjectures C and I. Moreover,
Conjecture C is not true in general, and Conjecture I behaves independently from
SDP. (Conjecture I remains as a conjecture, though its validity is verified directly
for all ‘known’ curves.)

For a direct elementary proof of part (1) see [65].

4.9.15 Combinatorial Reformulations The next discussion aims to clarify the
similarities and differences between the polynomial Q and the function H .

Let us start with ν semigroups {Si}νi=1 associated with local irreducible plane
curve singularities. However, in the next discussion we will not require their realiz-
ability as singularities of a projective rational curve. [Regarding the realizability, we
use the following terminology. If the sum δ of delta-invariants of the local singularity
types is of form 2δ = (d − 1)(d − 2) for some integer d , then we say that these
ν local topological types are combinatorial candidates for the ν singularities of a
rational cuspidal plane curve of degree d . If such a curve really exists then (SDP) is
valid for the corresponding local data and d .],
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The semigroups determine their counting functions Hi by (4.108) and the
minimal convolution H of the functions {Hi}i by (4.109). For convenience, define
also the sequences {h(i)

j }∞j=0 by h
(i)
j := Hi(j + 1).

For any sequence a = {aj }∞j=0 denote by ∂a its difference sequence, i.e.
(∂a)j = aj − aj−1 with the convention a−1 = 0. Similarly, we will denote by
�a the sequence of partial sums, i.e. (�a)j = a0 + · · · + aj . Of course, �∂a = a

and ∂�a = a for any sequence a.
By (4.108) and �i(t) = (1 − t) · ∑s∈Si

t s (cf. (4.6) the coefficient c
(i)
j of tj in

�i(t) can be written as c
(i)
j = (∂∂h(i))j . The coefficient sequence of a polynomial

product is the usual convolution of coefficient sequences of the factors. Hence, the
coefficient cj of tj in �(t) = ∏

i �i(t) is cj = ∑

j1+···+jν=j c
(1)
j1

· · · c(ν)
jν

. Denoting
the convolution of two sequences a = {aj }∞j=0 and b = {bj }∞j=0 by a ∗ b, i.e.

(a ∗ b)j = ∑j

k=0 akbj−k , we get cj = (∂∂h(1) ∗ · · · ∗ ∂∂h(ν))j . Let us define:

F(j) := (��(∂∂h(1) ∗ · · · ∗ ∂∂h(ν)))j . (4.112)

Before we identify F , let us recall some symmetry properties. From the symmetry
of � = 1 + (t − 1)δ + (t − 1)2Q(t) (and from δ = ∑

i δi)

α2δ−2−j = αj + j + 1 − δ for 0 ≤ j ≤ 2δ − 2. (4.113)

This (or the symmetry of each semigroup) implies also Hi(ji) = Hi(2δi − ji) +
ji − δi , from which one also obtains

H(2δ − 2 − j + 1) = H(j + 1) − j − 1 + δ for every j ∈ Z. (4.114)

Next, if A(t) = ∑

j aj t
j and B(t) = ∑

j bj t
j satisfy A(t) = A(1) + (t − 1)B(t),

then (�a)j = A(1)−bj . This applied twice for � gives (��c)j = j +1− δ +αj .
Hence, then the definition of Q and (4.113) provide

α2δ−2−j = (��(∂∂h(1)∗· · ·∗∂∂h(ν)))j = F(j) for 0 ≤ j ≤ 2δ−2. (4.115)

In other words, the H -values are obtained from {h(i)}i by minimal convolution
(shifted by one), while the F -coefficients (or α-coefficient in opposite order) are
obtained by the composition of ∂∂ , the usual convolution, and the �� operator.

Then one has the following reinterpretations in terms of F and H .
Let C ⊂ CP 2 be a rational cuspidal curve of degree d with ν cusps of given

topological types (in particular, d(d − 3) = 2δ − 2). Set F(j) := (��(∂∂h(1) ∗
· · · ∗ ∂∂h(ν)))j , where h

(i)
j = Hi(j + 1), and Hi is the semigroup counting function

of the i-th singularity. Set H := H1 $ · · · $ Hν . Then

(Conjecture C) F(ld) ≤ (l + 1)(l + 2)

2
for all l = 0, 1, . . . , d − 3. (4.116)
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(Conjecture I)
d−3
∑

l=0

F(ld) ≤
d−3
∑

l=0

(l + 1)(l + 2)

2
= d(d − 1)(d − 2)

6
. (4.117)

(SDP) H(ld + 1) = (l + 1)(l + 2)

2
for all l = 0, 1, . . . , d − 3. (4.118)

Let us summarize the combinatorial situation. Starting from the semigroups of ν

local singularities we define H and F .
If ν = 1 (since ��∂∂(h) = h) then F(j) = H(j + 1) for each j ∈ Z≥0

(independently of realizability, hence not just for j ∈ d · Z≥0).
On the other hand, for ν > 1 the values F(j) and H(j + 1) become different.

Nevertheless, cf. Theorem 4.9.14(1) F(j) ≤ H(j + 1) remains true for ν = 2
and every integer j ≥ 0, again by combinatorial (lattice cohomology) argument
(independently of realizability and d).

With these facts in mind, it is tempting to conjecture that maybe the inequality
F(j) ≤ H(j + 1) is always true—as a property of local singularity types—, which
would make Conjecture C a combinatorial corollary of SDP. But, for ν ≥ 3 there is
no such relation between the local functions F and H .

4.9.16 Lattice Cohomological Reinterpretation Consider the combinatorial situ-
ation from 4.9.15. The semigroupsSi determine links Ki ⊂ S3 of the corresponding
(topological types) of plane curve singularities. Consider an arbitrary d > 0 and the
surgery 3-manifold S3−d (#iKi) as in Sect. 4.9.

The next statements show a remarkable common feature of the functions F and
H .

Theorem 4.9.17 For any d > 0 and 0 ≤ a < d the following facts hold:

eu
(

H
0(S3

−d (#iKi),K + 2aE∗+)
)

=
∑

j≡a(mod d)
0≤j≤2δ−2

(H(j + 1) + δ − 1 − j) ,

=
∑

j≡a(mod d)
0≤j≤2δ−2

H(2δ − 2 − j + 1);

(4.119)

eu
(

H
∗(S3−d (#iKi),K + 2aE∗+)

)

=
∑

j≡a(mod d)
0≤j≤2δ−2

(F (j) + δ − 1 − j)

=
∑

j≡a(mod d)
0≤j≤2δ−2

F(2δ − 2 − j).

(4.120)

Proof We will use the identities from (4.104). In the first one, note that by (4.101),
(4.100), and (4.107) min(W |Tj

) is δ − j − 1 + H(j + 1) and (4.119) follows (for
its second identity use (4.114)).
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For the second identity, note that −eu(H∗(Tj ,W) equals αj by (4.106), which
is F(2δ − 2 − j) by (4.115). Then use again the symmetry (4.113). ��
Remark 4.9.18 In fact, by Theorem 4.9.4, the integer d , the sum of delta-invariants
δ and the function H completely determine the whole H0 as a graded Z[U ]-module
(and not just its Euler characteristic).

Corollary 4.9.19 Assume that d(d − 3) = 2δ − 2 (that is, d and {Si}i constitute a
package of combinatorial candidates for algebraic realizability). Then

eu
(

H
0(S3

−d (#iKi),K + 2aE∗+)
)

=
∑

j≡−a(mod d)
0≤j≤2δ−2

H(j + 1),

eu
(

H
∗(S3−d (#iKi),K + 2aE∗+)

)

=
∑

j≡−a(mod d)
0≤j≤2δ−2

F(j).

This for a = 0 reads as

eu
(

H
0(S3−d (#iKi),K)

)

=
∑

0≤l≤d−3

H(ld + 1),

eu
(

H
∗(S3−d (#iKi),K)

)

=
∑

0≤l≤d−3

F(ld).

Since by 4.2.33 H(ld+1) ≥ (l+1)(l+2)/2 for any l = 0, . . . , d−3,
∑d−3

l=0 H(ld+
1) = ∑d−3

l=0 (l+1)(l+2)/2 is equivalent to SDP for every l (cf. (4.118)). In particular,
in the presence of the algebraic realization, the valid SDP reads as:

(SDP) eu
(

H
0(S3

−d (#iKi),K)
)

= d(d − 1)(d − 2)/6. (4.121)

Furthermore, under the same realizability assumption, Conjecture I reads as:

eu
(

H
∗(S3−d (#iKi),K)

)

≤ d(d − 1)(d − 2)/6. (4.122)

They combined:

(Conjecture I) eu
(

H
∗(S3−d (#iKi),K)

)

≤ eu
(

H
0(S3−d (#iKi),K)

)

. (4.123)
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4.9.20 Proof of Conjecture I for ν = 2 (via SDP)
First note that Hq(S3−d (#iKi), kr) = 0 for any q ≥ ν and any kr (cf. 4.8.3).

Then, for ν = 2, one has eu
(

H
∗(S3−d (#iKi),K)

) = eu
(

H
0(S3−d (#iKi),K)

) −
rankZH1(S3

−d (#iKi),K), hence (4.123) follows.
For ν ≥ 3 the similar argument does not work. From this point of view, it is even

more surprising that in all the known cases Conjecture I still holds, cf. 4.9.14.

4.10 Lattice Cohomology and Heegaard Floer Homology

The Seiberg–Witten invariant is the (normalized) Euler-characteristic of
the Seiberg–Witten monopole Floer homology of Kronheimer–Mrowka, or
equivalently, of the Heegaard Floer homology of Ozsváth and Szabó. These theories
had an extreme influence on the modern mathematics, solving (or disproving)
a long list of old conjectures (e.g. Thom Conjecture, or conjectures regarding
classification of 4-manifolds, or famous old problems in knot theory); see the
long list of distinguished articles of Kronheimer–Mrowka or Ozsváth–Szabó. In
[102] Ozsváth and Szabó provided a computation of the Heegaard Floer homology
for some special plumbed 3-manifolds. This computation resonated incredibly
with the theory of computation sequences used in Artin–Laufer program (see e.g.
[50, 67, 68]). These two facts influenced considerably the definition of the lattice
cohomology.

4.10.1 The Conjecture Connecting Lattice Cohomology and
Heegaard Floer Theory

4.10.1 Short Review of Heegaard Floer Homology HF+(M) We assume that
M is an oriented rational homology 3–sphere, and we restrict ourselves to the
+–theory of Ozsváth and Szabó. The Heegaard Floer homology HF+(M) is a
Z[U ]–module with a Q–grading compatible with the Z[U ]–action, where deg(U) =
−2. Additionally, HF+(M) has another Z2–grading; HF+(M)even, respectively
HF+(M)odd denote the graded parts. Moreover, HF+(M) has a natural direct sum
decomposition of Z[U ]–modules (compatible with all the gradings): HF+(M) =
⊕σ HF+(M, σ) indexed by the spinc structures σ of M . For any σ ∈ Spinc(M) one
has

HF+(M, σ) = T+
d(M,σ) ⊕ HF+

red(M, σ),
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a graded Z[U ]–module isomorphism, and HF+
red(M, σ) has finite Z–rank and an

induced Z2–grading. One also considers

χ(HF+(M, σ)) := rankZ HF+
red,even(M, σ) − rankZ HF+

red,odd(M, σ).

Then the Seiberg–Witten invariant of (M, σ) equals χ(HF+(M, σ)) −
d(M, σ)/2.

By changing the orientation we have χ(HF+(M, σ)) = −χ(HF+(−M,σ))

and d(M, σ) = −d(−M,σ).

4.10.2 The Predicted Connection In [72] the author formulated the following

Conjecture 4.10.3 For any plumbed rational homology sphere associated with a
connected negative definite graph �, and for any k ∈ Char, one has

d(M, [k]) = max
k′∈[k]

(k′)2 + |V|
4

= k2 + |V|
4

− 2 · min χk.

Furthermore,

HF+
red,even(−M, [k]) =

⊕

p even

H
p
red(�, [k])[−d],

and

HF+
red,odd(−M, [k]) =

⊕

p odd

H
p
red(�, [k])[−d].

Both parts of the Conjecture were verified for almost rational graphs in [72], for two
bad vertices in [101], see [72, 8.4] too. Otherwise, the Conjecture is still open.

Note that (conjecturally) H∗ has a richer structure: its q–filtration H
∗ = ⊕q H

q

collapses at the level of HF+ to a Z2 odd/even filtration.
The fact that both theories have the same Euler characteristic support the above

conjecture as well. Another supporting evidence is the following fact.

4.10.4 Coincidence of the Vanishing of the Reduced Theories By 4.6.22 the
graph � is rational if and only if H

∗
red(�) = 0. On the other hand, following

Ozsváth and Szabó, by definition, M is an L–space if and only if HF+
red = 0. Their

equivalence is predicted by Conjecture 4.10.3. This ‘tip of the iceberg’ statement
was proved in [76]:

Theorem 4.10.5 The following facts are equivalent for a connected negative
definite graph �:

(i) � is a rational graph,
(ii) M = M(�) is an L–space.
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(i) ⇒ (ii) follows from lattice cohomology theory [70, 72], while (ii) ⇒ (i) uses
partly the following equivalence (ii) ⇔ (iii), where (iii) means that π1(M) is not
a left-orderable group. [A non trivial group G is said to be left-orderable if there
exist a total order < on G such that if a < b then ga < gb for every g ∈ G.] The
equivalence (ii) ⇔ (iii) was proved in [33] for any graph–manifold. For arbitrary
3–manifolds it was conjectured by Boyer, Gordon and Watson [10], for different
developments and other references see [33, 76].

Problem 4.10.6 Characterize elliptic singularities (or other non-rational families of
singularities) by a certain property of the fundamental group of the link.

Acknowledgments The author was supported by the NKFIH Grant KKP 126683.
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54. Dũng Tráng Lê. Singularités isolées des intersections complètes. Travaux en Cours. Hermann,
1997.

55. Christine Lescop. Global Surgery Formula for the Casson–Walker Invariant. Annals of
Mathematics Studies. Princeton University Press, 1996.

56. Joseph Lipman. Rational singularities, with applications to algebraic surfaces and unique
factorization. Publ. Math. de l’IHÉS, 36, 1969.

57. Joseph Lipman. Introduction to resolution of singularities. Proc. of Symposia in Pure
Mathematics. American Mathematical Society, 1975.

58. Stanisław Łojasiewicz. Triangulation of semi-analytic sets. Ann. della Scuola Norm. Sup. di
Pisa, Classe di Sci., 18, 1964.

59. Eduard Jacob Neven Looijenga. Isolated Singular Points on Complete Intersections. London
Math. Soc. Lecture Note Series. Cambridge University Press, 1984.

60. Ignacio Luengo. The μ-constant stratum is not smooth. Inventiones mathematicae, 90, 1987.
61. Ignacio Luengo, Alejandro Melle-Hernández, and András Némethi. Links and analytic

invariants of superisolated singularities. Journal of Algebraic Geometry, 14, 2005.
62. Alejandro Melle-Hernández. Milnor numbers for surface singularities. Israel Journal of

Mathematics, 115, 2000.
63. John Milnor. Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies.

Princeton University Press, 1969.
64. David Mumford. The topology of normal surface singularities of an algebraic surface and a

criterion of simplicity. Publ. Math. de l’IHÉS, 9, 1961.
65. Piotr Nayar and Barbara Piłat. A note on the rational cuspidal curves. Bulletin of the Polish

Acad. of Sci. Math., 62, 2014.
66. András Némethi. Normal surface singularities, (book in preparation). To appear in Springer

series Ergebnisse der Mathematik und ihrer Grenzgebiete.
67. András Némethi. Five Lectures on Normal Surface Singularities. Bolyai Society Mathemati-

cal Studies. János Bolyai Mathematical Society, 1999.
68. András Némethi. Invariants of normal surface singularities. Contemporary Mathematics.

American Mathematical Society, 2004.



4 Surface Singularities, Seiberg–Witten Invariants of Their Links and Lattice. . . 301

69. András Némethi. On the Heegaard Floer homology of S3
−d (K) and unicuspidal rational

plane curves. Fields Institute Communications. American Mathematical Society, 2005.
70. András Némethi. On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds.

Geometry & Topology, 9, 2005.
71. András Némethi. Graded roots and singularities. World Scientific, 2007.
72. András Némethi. Lattice cohomology of normal surface singularities. Publ. of the Res. Inst.

for Math. Sci., 44, 2008.
73. András Némethi. The Seiberg–Witten invariants of negative definite plumbed 3-manifolds.

Journal of the Eur. Math. Soc., 13, 2011.
74. András Némethi. Two exact sequences for lattice cohomology. Contemporary Mathematics.

American Mathematical Society, 2011.
75. András Némethi. The cohomology of line bundles of splice-quotient singularities. Advances

in Mathematics, 229, 2012.
76. András Némethi. Links of rational singularities, L-spaces and lo fundamental groups.

Inventiones mathematicae, 210, 2017.
77. András Némethi. Pairs of invariants of surface singularities. Proc. Int. Cong. of Math., Rio de

Janeiro, 1, 2018.
78. András Némethi and Liviu I. Nicolaescu. Seiberg–Witten invariants and surface singularities.

Geometry & Topology, 6, 2002.
79. András Némethi and Liviu I. Nicolaescu. Seiberg–Witten invariants and surface singularities

ii: Singularities with good C
∗-action. Journal of the London Math. Soc., 69, 2004.

80. András Némethi and Liviu I. Nicolaescu. Seiberg–Witten invariants and surface singularities:
splicings and cyclic covers. Selecta Mathematica, New Series, 11, 2006.

81. András Némethi and Tomohiro Okuma. The Seiberg–Witten invariant conjecture for splice-
quotients. Journal of the London Math. Soc., 78, 2008.

82. András Némethi and Tomohiro Okuma. On the Casson invariant conjecture of Neumann–
Wahl. Journal of Algebraic Geometry, 18, 2009.

83. András Némethi and Tomohiro Okuma. The embedding dimension of weighted homogeneous
surface singularities. Journal of Topology, 3, 2010.

84. András Némethi and Fernando Román. The lattice cohomology of S3−d (K). Contemporary
Mathematics. American Mathematical Society, 2012.

85. András Némethi and Baldur Sigurðsson. The geometric genus of hypersurface singularities.
Journal of the Eur. Math. Soc., 18, 2016.

86. András Némethi and Baldur Sigurðsson. Local Newton nondegenerate Weil divisors in toric
varieties. 2021.

87. Walter David Neumann. A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves. Transactions of the Amer. Math. Soc., 268,
1981.

88. Walter David Neumann. Abelian covers of quasihomogeneous surface singularities. Proc. of
Symposia in Pure Mathematics. American Mathematical Society, 1983.

89. Walter David Neumann and Frank Raymond. Seifert manifolds, plumbing, μ-invariant and
orientation reserving maps. Lecture Notes in Mathematics. Springer-Verlag, 1978.

90. Walter David Neumann and Jonathan Wahl. Casson invariants of links of singularities.
Commentarii Mathematici Helvetici, 65, 1990.

91. Walter David Neumann and Jonathan Wahl. Complete intersection singularities of splice type
as universal abelian covers. Geometry & Topology, 9, 2005.

92. Walter David Neumann and Jonathan Wahl. Complex surface singularities with integral
homology sphere links. Geometry & Topology, 9, 2005.

93. Walter David Neumann and Jonathan Wahl. The end curve theorem for normal complex
surface singularities. Journal of the Eur. Math. Soc., 12, 2010.

94. Liviu I. Nicolaescu. The Reidemeister Torsion of 3-Manifolds. De Gruyter Studies in
Mathematics. De Gruyter, 2003.

95. Liviu I. Nicolaescu. Seiberg–Witten invariants of rational homology 3-spheres. Communica-
tions in Contemp. Math., 6, 2004.



302 A. Némethi

96. Tomohiro Okuma. Universal abelian covers of rational surface singularities. Journal of the
London Math. Soc., 70, 2004.

97. Tomohiro Okuma. The geometric genus of splice-quotient singularities. Transactions of the
Amer. Math. Soc., 360, 2008.

98. Tomohiro Okuma. Another proof of the end curve theorem for normal surface singularities.
Journal of the Math. Soc. of Japan, 62, 2010.

99. Peter Orlik and Philip Wagreich. Isolated singularities of algebraic surfaces with C
∗-action.

Annals of Mathematics, 93, 1971.
100. Peter Orlik and Philip Wagreich. Singularities of algebraic surfaces with C

∗-action. Mathe-
matische Annalen, 193, 1971.

101. Peter Ozsváth, András I. Stipsicz, and Zoltán Szabó. A spectral sequence on lattice cohomol-
ogy. Quantum Topology, 5.

102. Peter Ozsváth and Zoltán Szabó. On the Floer homology of plumbed three-manifolds.
Geometry & Topology, 7, 2003.

103. Henry Charles Pinkham. Normal surface singularities with C
∗-action. Mathematische

Annalen, 227, 1977.
104. Chakravarthi Padmanabhan Ramanujam. Remarks on the Kodaira vanishing theorem. Journal

of the Indian Math. Soc., 36, 1972.
105. Oswald Riemenschneider. Deformationen von Quotientensingularitäten (nach zyklischen

Gruppen). Mathematische Annalen, 209, 1974.
106. Oswald Riemenschneider. Zweidimensionale Quotientensingularitäten: Gleichungen und

Syzygien. Archiv der Mathematik, 37, 1981.
107. Alois Scharf. Zur Faserung von Graphenmannigfaltigkeiten. Mathematische Annalen, 215,

1975.
108. Herbert Seifert. Topologie dreidimensionaler gefaserter Räume. Acta Mathematica, 60,

1933.
109. Jean-Pierre Serre. A Course in Arithmetic. Graduate Texts in Mathematics. Springer-Verlag,

1973.
110. Karl Stein. Analytische Zerlegungen komplexer Räume. Mathematische Annalen, 132, 1956.
111. Jan Stevens. Universal abelian covers of superisolated singularities. Mathematische

Nachrichten, 282, 2009.
112. Masataka Tomari and Keiichi Watanabe. Normal Zr -graded rings and normal cyclic covers.

Manuscripta Mathematica, 76, 1992.
113. Masataka Tomari and Keiichi Watanabe. Cyclic covers of normal graded rings. Kodai

Mathematical Journal, 24, 2001.
114. Vladimir Turaev. Introduction to Combinatorial Torsions. Lectures in Mathematics ETH

Zürich. Birkhäuser, 2001.
115. Vladimir Turaev. Torsions of 3-Dimensional Manifolds. Progress in Mathematics. Birkhäuser,

2002.
116. Kevin Walker. An Extension of Casson’s Invariant. Annals of Mathematics Studies. Princeton

University Press, 1992.
117. Edward Witten. Monopoles and four-manifolds. Mathematical Research Letters, 1, 1994.
118. Oscar Zariski. The reduction of the singularities of an algebraic surface. Annals of Mathemat-

ics, 40, 1939.
119. Oscar Zariski. A simplified proof for the resolution of singularities of an algebraic surface.

Annals of Mathematics, 43, 1942.
120. Oscar Zariski. Foundations of a general theory of birational correspondences. Transactions of

the Amer. Math. Soc., 53, 1943.


	4 Surface Singularities, Seiberg–Witten Invariants of Their Links and Lattice Cohomology
	Contents
	4.1 Introduction
	4.2 Resolution of Surface Singularities
	4.2.1 Local Resolutions
	4.2.2 The Link
	4.2.3 Example: Weighted Homogeneous Singularities
	4.2.4 Example: Superisolated Singularities
	4.2.5 Local Divisor Class Group
	4.2.6 Canonical Coverings
	4.2.7 Natural Line Bundles
	4.2.8 The Canonical Cycle
	4.2.9 The Role of the Monoids S and S'
	4.2.10 The Equivariant Geometric Genus and Laufer's Duality
	4.2.11 Spinc Structures

	4.3 Multivariable Series 
	4.3.1 The Divisorial Filtration
	4.3.2 The Analytic Series H(t) and P(t)
	4.3.3 The Topological Series Z(t)
	4.3.4 Reductions of Variables in the Series P(t) and Z(t)
	4.3.5 Example: P and Z for Weighted Homogeneous Germs
	4.3.6 Example: P0 and Z0 for Superisolated Singularities
	4.3.7 The Periodic Constant of One-Variable Series
	4.3.8 Okuma's Additivity Formula

	4.4 The Seiberg–Witten Invariant Conjecture
	4.4.1 The Casson Invariant
	4.4.2 The Casson Invariant Conjecture of Neumann–Wahl
	4.4.3 The Casson–Walker Invariant
	4.4.4 Additivity Formulae for λ and K2+|V|
	4.4.5 The Reidemeister–Turaev Torsion: Generalities
	4.4.6 The Reidemeister–Turaev Torsion of Graph 3-Manifolds
	4.4.7 Additivity Formula for the Torsion
	4.4.8 The Seiberg–Witten Invariant
	4.4.9 The Seiberg–Witten Invariant and the Series Z(t)
	4.4.10 The Seiberg–Witten Invariant Conjecture/Coincidence
	4.4.11 SWIC and Superisolated Singularities

	4.5 Weighted Cubes and the Spaces Sk,n
	4.5.1 Weighted Cubes and Generalized Computation Sequences
	4.5.2 The Topology of the Spaces {Sk,n}n
	4.5.3 `Bad' Vertices, Almost Rational Graphs and Lattice Fibrations
	4.5.4 Concatenated Computation Sequences of AR Graphs NOSz

	4.6 Lattice Cohomology
	4.6.1 The Lattice Cohomology Associated with a System of Weights
	4.6.2 The Lattice Cohomology Associated with a Plumbing Graph
	4.6.3 The Lattice Cohomology and the Seiberg–Witten Invariant

	4.7 Graded Roots and Their Cohomologies
	4.7.1 The Definition of Graded Roots and Their Cohomologies
	4.7.2 The Graded Root Associated with a Plumbing Graph
	4.7.3 Graded Roots of Almost Rational Graphs
	4.7.4 Example: The Surgery Manifold S3-d(K) NSurgd,NGr
	4.7.5 Superisolated Singularities with One Cusp

	4.8 The Reduction Theorem
	4.8.1 Reduction Theorem for Lattice Cohomology
	4.8.2 Reduction Theorem for Z(t)

	4.9 H* of the Surgery Manifold S3-d(#iKi)
	4.9.1 Invariants of M()=S3-d(#iKi) for Any d>0 and for All Spinc Structures NSurgd2
	4.9.2 Superisolated Singularities with More Cusps

	4.10 Lattice Cohomology and Heegaard Floer Homology
	4.10.1 The Conjecture Connecting Lattice Cohomology and Heegaard Floer Theory

	References


