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Abstract The present note aims to focus on certain topological and analytical
invariants of complex normal surface singularities and wishes to analyse their
interferences. The first preliminary part introduces the needed notations, definitions
and terminologies: e.g. resolutions, universal abelian coverings, natural line bundles
on resolutions, links, spin® structures on the links. Here we also recall certain
vanishing theorems and statements connected with Serre’s and Laufer’s dualities.
The next part presents two multivariable series, a topological one (associated
with a dual resolution graph) and an analytic one (associated with the divisorial
filtration), then we compare them. Then we introduce several topological invariants,
as the Casson and Casson—Walker invariants, Turaev’s torsion, the Seiberg—Witten
invariant. By the ‘Seiberg—Witten Invariant Conjecture’ they are compared with
the cohomology of the natural line bundles. In this discussion certain ‘additivity
formulae’ will also be crucial. After a preparation (introduction of the weighted
cubes) we continue with the presentation of the (topological) lattice cohomology
and of the (topological) graded roots associated with rational homology sphere
singularity links. They are exemplified by links of superisolated singularities, when
the theory is also connected with the classification of irreducible rational cuspidal
projective plane curves.
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4.1 Introduction

Let (X, 0) be a complex analytic normal surface singularity. The main motif of the
present work is the following: what are the ties between analytic and topological
invariants of (X, 0)? Historically this program was started by Mumford, Artin and
Laufer. Mumford realized the link as plumbed 3—-manifold and proved that if the
fundamental group of the link is trivial then the germ is (analytically) smooth [64].
Artin and Laufer characterized topologically the rational and minimally elliptic
singularities (respectively), and computed several analytic invariants for them from
the resolution graph [5, 6, 49, 50].

Let us exemplify a few pairs of analytic/topological objects, which play a central
role in the text.

On the analytic side our fundamental objects are the dimensions of the sheaf
cohomologies of line bundles on a resolution (including e.g. the geometric genus)
and the multivariable Poincaré series of the divisorial filtration associated with a
resolution. If the link of (X, 0) is a rational homology sphere then we consider
the universal abelian covering (X,, 0) — (X, 0) too and the above listed analytic
invariants associated with (X, o). These, reinterpreted at the level of (X, o) (and
its resolutions) can be related with cohomological properties of the ‘natural line
bundles’ on the resolution spaces X of (X, o).

On the topological side, the link, as an oriented 3-manifold, carries the Casson
invariant whenever the link is an integral homology sphere. In the rational homology
sphere case, it carries Casson—Walker invariant, the (refined) Turaev torsion, the
Seiberg—Witten invariants, the lattice (co)homology and the graded roots.

Then, the Seiberg—Witten invariant (which agrees with the Euler characteristic
of the lattice cohomology) will be compared with the ranks of cohomologies of
line bundles (formulated by the Casson Invariant Conjecture of Neumann and
Wahl whenever the link is an integral homology sphere, or by the Seiberg—Witten
Invariant Conjecture of Nicolaescu and the author in the rational homology sphere
case). Moreover, a topological multivariable Poincaré series (a ‘zeta’ function,
associated with the dual graph) will be compared with its analytic counterpart
provided by the divisorial filtration (as extensions of Campillo-Delgado—Gusein-
Zade identity). The parallelism will be emphasized by several surgery and additivity
formulae of a very similar shape present in both analytic and topological sides. (For
more on such parallelisms see [77] as well.)

Regarding the topological invariants, the research of the author was greatly influ-
enced by the work of Ozsvath and Szab6 on Heegaard Floer theory of 3-manifolds.
However, the techniques developed by the author to create a bridge between
singularities and the low dimensional topology differ from those used in Heegaard
Floer theory. The effort to create such a bridge had as a fruit and culminated in the
lattice cohomology. It is defined combinatorially from the graph. Conjecturally it
coincides with the Heegaard Floer cohomology. However, its definition and several
of its properties resemble sheaf cohomology long exact sequences. Indeed, behind
certain definitions and techniques in lattice cohomology theory one experiences
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certain generalizations of ideas of Laufer regarding computation sequences, used
in sheaf cohomological arguments. In the new context these sequences appear
as discrete ‘homotopy deformation retracts’. Our presentation emphasises this
continuity with Laufer’s work.

The theory is exemplified by cyclic quotient, weighted homogeneous and
superisolated singularities.

The presentation follows rather closely [66]. However, the present work concen-
trates mostly on the main statements and different connections and ideas behind the
results, and basically we omit most of the proofs. The interested reader is invited to
consult [66] for more information.

4.2 Resolution of Surface Singularities

4.2.1 Local Resolutions

Definition 4.2.1 Consider the germ (X, o) of a normal complex analytic surface
singularity with singular points 0 € X. Let ¢ : X > Xbea proper analytic map,
where X is a sufficiently small representative of (X, 0). We also set E := ¢_1 (0).
We say that ¢ is a local modification of (X, o) if the restriction of ¢ induces an
isomorphism X \ E — X\ o. Additionally, if X is smooth then we say that ¢ is a
resolution.

Given two modifications ¢; : )?i — X; (i = 1,2) of (X, 0), we say that ¢
dominates ¢ if after replacing both representatives X; of (X, o) by some smaller
representative X, there exists an analytic map ¥ : X 1 — X 2 such that ¢ o ¥ = ¢1.

A resolution is called good if all the irreducible components of E (with reduced
structure) are smooth (in particular, they have no self-intersections), and intersect
each other transversally.

A resolution is called minimal if it does not dominate (with ¢ non-isomorphism)
any other resolution. One defines similarly the minimal good resolutions as well.

Lemma 4.2.2 (Zariski’s Main Theorem, see [120], [34, p. 280] for the Algebraic
and [29, 30] for the analytic case) Assume that (X, o) is a germ of a normal
surface singularity and fix a resolution ¢ : X — X, which is not an isomorphism.
Then E = d)_l(o) is connected, compact and one-dimensional.
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Definition 4.2.3 Let (X, 0) be a normal surface singularity and ¢ a resolution.

(a) The analytic (reduced) curve E is called the exceptional set (or curve) of ¢.
We write {E,};_; (or, {Ey}yey) for the irreducible components of E and g, =
g(E,) denotes the geometric genus of (the normalization of) E,.

(b) Thg intersection matrix / of ¢ consists of the intersection numbers (E,, Ey )y,
in X.

(¢) Let f : (X,0) — (C,0) be the germ of a holomorphic function. Then the
divisor div(f o ¢) on X decomposes into divg (f o ¢) + S(f o ¢), abbreviated
as dive (f) + S(f), where divg (f) is the part supported on E, while S(f) is
the strict transform of the divisor of f.

Example 4.2.4 Assume that (X, o) is smooth. Then by blowing up o we get a
modification with an exceptional curve E ~ P! and E 2=1.

In general, if C is a curve on a smooth surface X with C ~ P! and C? = —1
then C is called a (—1)-curve on X. By Castelnuovo’s Contractibility Criterion any
(—1)-curve appears as a blow up of a smooth point.

Assume that X is a smooth surface and C is an irreducible curve on it with
(C,C) < 0, with genus g(C), and the sum of the delta-invariants of its points is
8(C). Then by the adjunction formula (K%, C) +(C, C) = —2+2g(C) +25(C) >
—2. Therefore, C is a (—1)-curve if and only if (K5, C) < 0.

The next statement guarantees the existence of a resolution, cf. [7, 35, 40, 43, 48,
57,118, 119].

Theorem 4.2.5 Let (X, 0) be a normal surface singularity germ. Then the follow-
ing facts hold.

1. A good resolution exists.

2. There is a unique minimal resolution and a unique minimal good resolution.

3. A resolution is minimal if and only if none of the curves E, is a (—1)-curve.

4. A good resolution is minimal good if and only if any (—1)-curve intersects at
least three other components.

Remark 4.2.6 Since (X, 0) is normal, X \ {0} is smooth. Above, in the definition of
the resolution, X was an open representative. However, (in topological discussions)
we can assume additionally that X is contractible to 0 € X and it is closed with a
compact and C* boundary, cf. subsection 4.2.2. In particular, X has the homotopy
type of E and it also has a C* boundary X,

Proposition 4.2.7 (Du Val [16], see also [5,48,64]) Let (X, 0) be a normal surface
singularity and ¢ a resolution. Then the intersection matrix I := (Ey, Ey)} ,_, is
negative definite.

Remark 4.2.8 The converse of Proposition 4.2.7 is also true. By a famous theorem
of Grauert [28], any connected collection of (compact) curves on a smooth surface
with negative definite intersection form can analytically be contracted to a normal
singular point, hence it appears as the exceptional curve of a resolution of some
normal surface singularity.
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4.2.9 The Lattice Associated with a Resolution Let (X, 0) be a complex normal
surface singularity and let ¢ : X — X be a resolution. Here we take X sufficiently
small and contractible (see 4.2.20).

Set L := Hy(X,Z). Since X has the homotopy type of E, L is freely generated
by the classes of {E,}, (still denoted by the same symbol EU) and it becomes a
lattice with the intersection form I. Define also L’ := H2(X X, 7Z).Itis dual to L.
If for each v € V one takes a transversal disc D, to E, (at a generic point of E,),
then their classes form a basis of L’. Furthermore, the homological map L — L’ in
the bases {E,} and {D,} is exactly the matrix /. Since I is non-degenerate, L — L’
is injective. We write H := L’/L. Clearly, |H| = |coker(I)| = | det(])|.

We extend the intersection form / of L to L ® Q. By the perfect pairing between
L and L', L’ is identified with Hom(L, Z). On the other hand, Hom(L, Z) is also
identified with those elements I’ of L ® Q for which (I’,1) € Z forany ! € L. In
the sequel we will think about L’ in this way, as a sublattice of L ® Q, and as an
overlattice of L, endowed with the (rational) intersection form 7.

Effective classes | = ) ryE, € L’ with all r, € Qx are denoted by L’ ,, and
Lso := L., N L. There is a natural partial ordering in L ® Q associated with the
bases {Ey},: we say that [; > [ if [ — I is effective. We write 1 > L if [} > I,
and [ # [». The cycle min{l1, [} is the largest [ with 1,1, > [.Ifl' = )" ryE, is
a rational cycle, its support |I'| is Uy ., 0 Ey. Moreover, we set [I'] := )" [ry]Ey,
and {I'} =1 —|I'].

4.2.10 The Pontrjagin Dual of H We denote the Pontrjagin dual Hom(H, S 1y of
Hby H.Let6 : H— H be the isomorphism [['] > 27! of H with H.

4.2.11 Lipman’s Cones Associated with the Resolution [56] We prefer to
replace the classes [D,] € H» (i , X , Z), reinterpreted in L', by their ‘opposites’,
denoted by E. Thatis, E € L' C L @ Q satisfies (E}, E,y) = —1 forv = w, and
0 otherwise. In particular, the vectors E, written in the base {E,},, are exactly the
columns of the matrix —I !, and (I~ 1)vw = (E}, E}).

LetSg :=={' e L®Q : (I',Ey) < 0forallv € V} be the anti-nef rational
cone, 8’ :=Sg N L and S := Sg N L. § is generated over Z> by the elements
E}.

The definition of the cone S is motivated by the following fact:

Lemma 4.2.12 Let f : (X, 0) — (C, 0) be a holomorphic function, and ¢ a good
resolution of (X, 0). Then divg(f) € S\ {0}.

The divisor divg (f) = Zwe(Vmew satisfies m,, > 0 for all w. This is a general
fact of all the elements of S’ by the next corollary. In particular, S’ is in the first
quadrant. (This motivates the sign modification in the definition of E?}.)

Corollary 4.2.13

(a) Assume thatl = Zv roEy withry, € Q1 #0,and (I, Ey) < O0forallv e V.
Then ry, > O for all v € V. In particular, all the entries of E are strictly
positive.

(b) Foranyfixedl' € L' the set{I' € S, I' # I} is finite.
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4.2.14 The Resolution Graph Let (X, o) be a normal surface singularity and let
¢ : X > Xbea good resolution. Denote by E the exceptional curve of ¢ with
irreducible decomposition {E, }, . We construct a graph I' as follows. Its vertices
V correspond to the irreducible exceptional components. If two irreducible divisors
corresponding to vy, v2 € V have k intersection points then we connect v and
vy by k edges in I'. The graph I' is decorated as follows. Any vertex v € V is
decorated with the self-intersection e, := FE 3 and genus g, of E, (denoted as [g,]).
The valency (number of adjacent edges) of a vertex is denoted by «.

Remark 4.2.15

(a) The graph I is connected by Lemma 4.2.2.

(b) The resolution is not unique, e.g. one can blow up a point of the exceptional
divisor of a resolution. Accordingly, the graph I depends on the choice of
¢. However, dual resolution graphs associated with different resolutions are
connected by a sequence of blow ups and blow downs of vertices associated
with (—1)-curves (well-defined modifications at the level of graphs).

Definition 4.2.16 A vertex of a graph with positive genus decoration, or adjacent
to at least three edges, is called a node. A string is a ‘linear’ (sub)graph (with all
genus-decorations zero) of type

-by -b —by

P P PY

Strings can be characterized by continued fractions.

Definition 4.2.17 To any two relative prime positive numbers n and g we associate
the following (Hirzebruch, or negative) continued fraction:

1
nz[blabZa'-'abS]:Zbl_ ’ blzla b27-'-7bS22' (41)
1 b
 —

by

The entries (b1, ..., bs) characterize a string graph with decorations —by, ..., —b;.
For any pair n and g we also consider the Dedekind sum

s(q,n) = g ((,i)) ((il))

where ((x)) is the Dedekind symbol (and {-} is the ‘fractional part’):

(x}—1/2 ifxeR\Z

((x))z{ 0 if x € Z.
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Example 4.2.18 ([7, 35, 48, 105, 106]) For a normal surface singularity, the fol-
lowing conditions are equivalent. If (X, o) satisfies any of them, then it is called
Hirzebruch—Jung or cyclic quotient singularity.

1. (X, o) is isomorphic with one of the ‘model spaces’ {X}, 4}x,4, Where X, , is the
normalization of ({xy"~7 = z"},0), where 0 < g < n, (n,q) = 1.

2. There is an analytic covering p : (X, 0) — (C2, 0) such that the reduced branch

locus of p is {uv = 0} in some local coordinates (i, v) of (CZ, 0).

. The resolution graph I'x is a string (with g, = 0 for any v € V).

4. (X, o) is the quotient singularity (C2, 0)/Z, of the cyclic group Z, = {€ € C :
&" = 1} of order n, where the action is & * (z1,z2) = (£z1, E9z2) for some
0 < g <nwith (g,n) =1.

W

4.2.2 The Link

4.2.19 Let (X, 0) be the germ of a normal complex analytic surface singularity
and U a neighborhood of 0. We fix a real analytic function p : U — [0, oo) with
p~1(0) = {o}. In the sequel we write Xg for p~1(S) for different subsets S of
[0, 00). The next theorem characterizes the local homeomorphism type of (X, o)
showing its conic structure. For different levels of generality see [14, 18, 32, 54, 58,
59, 63].

Theorem 4.2.20 There exists a sufficiently small €y > 0 such that for any 0 < € <
€0 the inverse image X(¢) := p~Y(€) is a C>® manifold of dimension three. Its C™®
type is independent of the choice of € and p.

Moreover; the homeomorphism type of (X|0,e], X{e}) is independent of the choice
of € and p, and it is the same as the homeomorphism type of (real cone(X(¢}), X(e}),
where the vertex corresponds to o.

As Xjo.e1 \ {0} is a C*° manifold with a canonical orientation (induced by the
complex structure), its boundary X} inherits a canonical orientation too.

Definition 4.2.21 The oriented diffeomorphism type of X |, is called the link of X
at o. It is denoted by L(X, o).

Example 4.2.22

(a) Assume that X is a normal affine surface, which admits a good C* action (cf.
4.2.3). Then L(X, 0) is a Seifert 3-manifold.

(b) Consider the situation of Example 4.2.18(4). Set S* = {|z1|*>+ |z2|> = €}. Then
the Z,-action preserves S 3 where it acts freely. Hence the link L(X,, 4, 0) is the
lens space L(n,q) = S3/Z,,. Moreover, L(n, q) and L(m, p) are orientation
preserving diffeomorphic if and only if m = n and p € {q, ¢}, where 0 < ¢’ <
n and gq’ = 1 modulo n.
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4.2.23 Links as Plumbed 3-Manifolds To any normal surface singularity (X, o)
we associated its link L(X, o) and its resolution graph I' (well-defined up to blow
up/down of (—1)-curves). The point is that they determine each other. Indeed,
L(X, o) is recovered from I" via the plumbing construction, by considering I' as a
plumbing graph. For more details, see [37, 64, 87]. Note also that different plumbing
graphs might produce diffeomorphic 3-manifold (via orientation preserving diffeo-
morphisms). However, if we restrict the plumbing construction to graphs which are
connected and have negative definite intersection matrix then M (I'1) and M (')
are diffeomorphic if and only if the graphs are related by a sequence of (—1) blow
ups and/or their inverses.

4.2.24 Homological Properties of the Link Let X = ¢~ (,0’1([0 €])) as above
with0 < € <« 1.Sincei : L = H2(X Z) - L = HQ(X aX, Z) is injective
(see 4.2.9), the exact sequence of (X X ) reads as

0 — HyX) —> Hy(X,9X) — Hy(Lx) — H\(E) — 0. 4.2)

Set g(T") := )" < gv and let c(I") be the number of independent cycles in T".
Proposition 4.2.25 ([37, 64,107]) L’/L = coker(I) = Tors(H(Lx, Z)), and

Hi(Lx,Z) = coker (I) ® H\(E, Z) = coker (1) @ 7>+,

Hence, Ly is a rational homology sphere if and only if T is a tree with all g, = 0,
and Ly is an integral homology sphere when additionally det(—1) = 1.

4.2.3 Example: Weighted Homogeneous Singularities

4.2.26 Definitions[99, 100] Fix some positive integers (w1, . .., wy,). One defines
the action of C* on C" with weights (wy,...,w,) by ¢ - (x1,...,x,) =
@"'x1,...,t"x,). A polynomial f € C[x] is called weighted homogeneous
of degree ¢ with respect to the weights (wy, ..., wy,) if f(t-x) = t¢ f(x), where
le Zz().

Let us fix an affine algebraic variety X C C". X is called weighted homogeneous
with weights {w;}; if it is stable with respect to the above action of C*. Since the
weight are all positive the action on X is good, that is, the origin is contained in
the closure of any orbit. If additionally we assume that ged;{w;} = 1 and X &
Ui{x; = 0} then the action is effective too, thatis, if t - x = x forall x € X
then + = 1. If X is weighted homogeneous then its defining ideal is generated
by weighted homogeneous polynomials. In particular, its affine coordinate ring is
Z=o-graded: R = @¢>0Ry. In fact, all finitely generated Zxo-graded C-algebras
correspond to affine varieties with good C*-action. However, note that the normality
of R = @¢>0Ry is not automatically guaranteed.
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A normal analytic surface singularity (X, 0) is called weighted homogeneous if
there exists a normal affine surface X, which admits a good C* action (with w; > 0
and ged;{w;} = 1) and a singular point 0 € X such that (X,,, 0) is analytically
isomorphic with the (induced analytic germ) (X, o).

4.2.27 The Resolution [99] The dual graph of the minimal good resolution X ofa
weighted homogeneous germ is star-shaped.

A connected graph I' is called star-shaped if it has a central vertex vy, and I" \ vg
consists of v > 0 strings. Each string is connected to vy by an edge at one of the
end-vertices of the string. In some cases, for a fixed I', the choice of the central
vertex is not unique; e.g. if I" itself is a string then any vertex can be central.

Next we recall some of the combinatorial properties of the star-shaped graphs.

We use the following notations: vy has self—intersection (Euler) number —b¢ and
genus g > 0. The Euler numbers of the vertices v;; of the jth string (1 < j < v)
are —bjiy, ..., —bjsj, with bj; > 2, determined by the continued fraction o /w; =
[bj1, ...,bjsj], where ged(atj, wj) =1, 0 < wj < «;. For each j, vg is connected
with v;; by one edge. Set alsonj;/q;; = [bji, .. .,bjsj] with ged{nj;, qji} = 1.

In such a case the plumbed 3-manifold M (I") is a Seifert fibered 3-manifold,
which means that M (I") is foliated by circles such that any circle has a compact
orientable saturated neighbourhood [38, 39, 87, 89, 108]. M (I") and the foliation is
characterized by the collection (by, g; {(atj, w;)};), called the Seifert invariants.

If either g > O or v > 3 then the choice of the central vertex is unique. In the
sequel we assume this fact. The virtual (or orbifold) Euler number e and the virtual
Euler characteristic x are defined by

€= —bo+zwj/aj, X::Z—Zg—Z(aj—l)/(Xj. (4.3)
j j

Note that for general star—shaped plumbing graphs e < 0 if and only if the
intersection matrix / = I (I") is negative definite.
Assume that g = 0 and let /2; denote the class [E;.‘Sj] (j=1,...,v)and hg the

class [Ej]l in H = L'/L. Then H is generated by {hj}‘]’.:O with relations bohgy =
Zj’:lehj andajhj = ho (j =1,...,v). Moreover, if o be the order of hg in H
and o := lem{eyq, ..., o)} then (cf. [88]) |H| = o1 - - - oy |e| and 0 = «]e].

4.2.28 The Dolgachev-Pinkham-Demazure Formulae [103] Fix X normal, and
let R = @¢>0R; be the graded algebra of X, and Px(t) = Z£>O dim Ry - ¢ the
corresponding Poincaré series. Let p, = h! (O3) be the geometr{c genus of (X, 0)
Assume next that Ly is a rational homology sphere, that is g = 0, and set

N(0) = thy — Y _ [tw;/e;]. (4.4)
j
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Since e < 0 one has limy_, o N(£) = co. Moreover, the following formulae hold:

Px(t) = Zmax{O, N + 1)1, and pe(X,0) = Zmax{O, —N®) — D)}
>0 £>0
(4.5)

In particular, Px and p, are topological.

4.2.4 Example: Superisolated Singularities

4.2.29 Hypersurface superisolated singularities connect in a tautological way the
theory of complex projective plane curves with normal surface singularities. They
were introduced by I. Luengo [60]. For different applications see [3, 4, 60-62].
Before we start the definition of superisolated germs we review some basic facts
and notations about plane curve singularities.

4.2.30 Invariants of Irreducible Plane Curve Singularities Let us fix first an
irreducible plane curve singularity (C,0) C ((Cz, 0). We write {(p;, gi)}; for its
Newton pairs, A(t) for the characteristic polynomial (of the first homology of the
Milnor fiber), u = degA(¢) for the Milnor number. Furthermore, its delta-invariant
8(C) is the codimension of n*Oc¢,, C Oc,, = C{t}, where n is the normalization of
(C, 0). By Jung/Milnor’s formula u(C, 0) = 26(C) [41, 63].

The semigroup Sc,, C N of (C, 0) is the set of all the possible intersection
multiplicities (k, C),, where h € OC2,0~ The delta-invariant §(C) appears also as
the cardinality of the finite set N \ S¢ ,. The largest element of N\ Sc, is u — 1,
and for 0 < k < p — 1 one has the following ‘gap-symmetry’: k € Sc, if and only
if u — 1 —k & Sc,,. Moreover, by Campillo et al. [15]

A@)/(1—1) = Z . (4.6)

keS

Since A(1) = 1 and A’(1) = 8, one gets A(r) = 1 +8(¢ — 1) + (¢ — 1)?. (1)
for some polynomial o =>* _02 a;t' with integral coefficients. In fact, all the
coefficients {oz,}“ o are strict positive, and § = a9 > o > -+ > oy = 1.
Indeed, by the above identity (4.6),one has 6 + (r — 1) Q(¢) = ZWS t*, or o) =

Zkgs(tk_l + .-+ + ¢+ 1). This shows that
o =#k &S : k>i). 4.7)

4.2.31 Definition of Superisolated Singularities [60] A hypersurface singularity
(X,0) C (C3,0) is called superisolated if the modification X of (X, 0), induced by
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the blow up 0 € C3, is smooth. The definition guarantees that (X, o) is isolated. In
fact, if X is not smooth, this X is exactly the minimal resolution of X.

Assume that (X, o) is the zero set of f : ((C3, 0)— (C,0,f=fa+ far1+---,
where f; is homogeneous of degree j, fs # 0. Then (X, o) is superisolated if and
only if the projective plane curve C := {f; = 0} C P? is reduced with (isolated)
singularities { p; };, and these points are not situated on the projective curve { fy+1 =
0}. In this case the embedded topological type (and the equisingularity type) of f
does not depend on the choice of f;’s for j > d, as long as f;41 satisfies the above
requirement. Therefore, those invariants of (X, o), which are stable with respect to
equisingular deformations, depend only on C.

In the sequel we will assume that C is irreducible. In such a case the minimal
resolution X has only one irreducible exceptional divisor, which is isomorphic to
C, and C? in X is —d. Hence, the link of (X, 0) is a rational homology sphere if
and only if C is rational and all the plane curve singularities (C, p;) C (P2, p;)
are irreducible. (We use the terminology cusp for them.) Such a curve C is called
rational cuspidal plane curve. We denote by pu; and A; (with the choice A;(1) =
1) the Milnor number and the characteristic polynomial of the local plane curve
singularities (C, p;) C (]P’z, pi). Then Zi wi =(d—1)d - 2).

The minimal good resolution is obtained from X by resolving the plane curve
singularities (C, p;) C (X, pi). Note that the embedded topological types (C, p;) C
()?, pi) and (C, p;) C (]P’z, pi) agree. Hence, under the condition that C is
irreducible and the link Ly is a rational homology sphere, the minimal good
resolution graph I' of (X, o) is the surgery graph described in 4.2.32. That is, the
link of (X, o) is the oriented surgery 3-manifold s3 4#iK;), where (K; C $3 ) are
the local knots of (C, p;) C (P2, pi).

4.2.32 The Plumbing Graph of the Surgery Manifold S J#iK;) with K;
Algebraic and d Arbitrary We fix an integer d and a collection of algebraic
knots {K;};_, in $3 (determined by irreducible plane curve singularities (C;, 0) C
((CZ, 0)). Set the connected sum K = K #---#K, C S3 of the knots K;. Then
s3 4(K) is a plumbed 3-manifold whose plumbing graph is constructed as follows.
First, let I'; be the minimal good embedded resolution graph of (C;, 0) C (C2,0)
with a unique —1 vertex v; which supports the strict transform. One also considers
the cycle Z; = divgr,)(fi) € L(I;) given by the local reduced equation f; of
(C;, 0); let m; be the multiplicity in Z; of the —1 curve of I';. Then, in order to
get the graph of §2 4(K) from the disjoint union L; I';, one introduces a new vertex
v4, which is glued to each graph I'; via a new edge connecting v and v;, and one
inserts the Euler decoration —d — Zi m; on vy. The Euler decorations of {I';};
stay unmodified. The resulting graph is negative definite if and only if d > 0.
Furthermore, | det(/)| = |d|.

4.2.33 A Restrictions Satisfied by the Combinatorial Type Consider a superiso-
lated singularity. Let Sc,,, be a semigroup of the local singularities (C, p;). Fix an
integer 0 </ < d. In [24] is proved (via Bézout theorem) the following Semigroup
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Distribution Inequality:

i #Sc.,. N[0, ji)} > (L + D +2)/2.
mZ{ )=+ Da+2)

Moreover, in [24] the authors conjectured under the name Semigroup Distribution
Property, that in the above inequality one has equality in any unicuspidal case. The
general proof for any cusps was obtained by Borodzik and Livingston based on the
d-invariant of Heegaard Floer theory [9]. That is, with the previous notations,

i #HSc., N0, jD=U+D(I+2)/2
it bietd 1 4 Z {Se.p N0} =+ DE+2)/

for any rational cuspidal curve. In the unicuspidal case this reads as

#HScpN((—N1d,ld]}=min{l +1,d} (>0).

4.2.5 Local Divisor Class Group

4.2.34 Sheaf Cohomological Properties of X Let us start this subsection with the
following observations.

Let (X, o) be a complex normal surface singularity and let ¢ : X > Xbea good
resolution. In cohomological considerations, e.g. in the computation of H* ()N( ,Z) or
H*()?, F), we might take for X the space ¢_1 (,0_1 ([0, €])), ct.4.2.20. Therefore,
for an analytic coherent sheaf and ¢ > 1, HY ()N( ,F) agrees with (R1¢F), =
lim_,y H1(¢~'(U), F), where U runs over opensets o € U C X.

By ‘Theorem of formal functions’, (RY¢¥F), = limez HI(Z,F oy 0z),
where Z runs over (larger and larger) effective cycles supported on E. In fact for
a line bundle ¥ we have H>2(X F) =0and H! (X F) = HYZ,F ® 0y) for
Z > 0, hence dim H'! (X , ?') < oo. Furthermore, by Serre duality, for a locally
free sheaf ¥, H, ()? F)=H ()? FVRQL )* Note that for a divisor D supported

on E and a locally free sheaf ¥ on X we have HO(X \E,F (D))= HO(X \ E, F)
and HO(X \ E, ?')/HO(X F) is finite dimensional since it embeds into H (X F)
[49].

4.2.35 The Picard Group Let Pic(X) = H'(X, 0%) denote the Picard group of

X, the group of isomorphism classes of analytic line bundles on X. Recall also that
the geometric genus of (X, 0) is p,y := h! (3?, Oz). (It is independent of the choice
of the resolution.)

By duality, L' is isomorphic to H 2()? , Z)), hence it is the target of the first Chern
class c1 : Pic(f) — Hz(i, Z). This morphism is part of the following exact
sequence induced by the exponential exact sequence of sheaves 0 — Zy — Oz —
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O} — 0:
0— H'(X,7) — H'(X,035) - Pic(X) <> H*(X,7Z) — 0. (4.8)
Set
Pic’(X) := ker(c1) ~ H'(X,03)/H" (X, Z) ~ CP¢s JH'(E, 7).

Since H'! (X 7Z) = lim_y H! (U Z) and H' (X O3) = lim_.y HY(U,Oy), E C
U, from (4.8) we also have H!(X, O*) = lim_y H'(U, OF 17). Furthermore, by
Mumford [64], for any line bundle L e H' (X , O;‘() there exists E C U C X
sufficiently small such that L|;; admits a meromorphic section over U. In particular,
Pic(X) can be identified with the group CI(X) of local analytic divisors near E
modulo linear equivalence. More precisely, by a local analytic divisor we mean
asum ) ; n; D; of irreducible analytic divisors defined in a neighbourhood of E.
Such a divisor is locally linear equivalent to zero if there exists a neighbourhood
U of E, where all D; are defined, and a meromorphic function on U such that
div(f) =) ;ni(D; N U).

The lattice L embeds into both L' = H*(X,Z) and Pic(X). For L' see 4.2.9,
into PIC(X) by I — Ox(l). Similarly to the group L'/L = Tors(Hz(X \ {0}, Z))
(cf. 4.2), PIC(X )/L is also independent of the choice of the resolution X. Indeed, the
sequence

0 — L — Pic(X) — CI(X,0) — 0

is exact (cf. [64]), where CI(X, o) denotes the local divisor class group of (X, o).

This is the class group of local Weil divisors of (X, o) modulo local Cartier divisors.

If D is alocal irreducible analytic divisor on X, then its restriction to X \ E canbe

mapped to X \ {0} by ¢, and the class of its closure is #(Og(D)). [This is exactly

the definition of the natural map ¢, : CI(X ) — CI(X, 0), a reinterpretation of r.]
Hence we obtain the exact sequence

0— H'(Ly,Z) — CPs — CI(X, 0) 5 Tors(H3(Ly, Z)) — 0. (4.9)

The Chern class morphism c;—in the language of divisors and homology—has the
form ¢} : CI(X,0) — Tors(H{(Lx, Z)), where ¢ assigns to a Weil divisor the
homological class of its intersection with the link.

CI(X, o) coincides with the group of isomorphism classes of divisorial sheaves
on (X, 0). [If F is a divisorial sheaf, then £ = (¢*(¥))"" is locally free on X,
such that Lz, g = F [x\(o}. By the above discussion L has the form O (D), hence
F = r(O3(D)), thatis, ¥ is associated with a Weil divisor ¢ (D).]

Example 4.2.36 1f j : X \ {o} = X is the inclusion, then wx := j,(Q%(X \ {o}))
is a divisorial sheaf. One can also write it in the form Ox (Kx) for a certain Weil
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divisor Kx. If K3 is a canonical divisor on X , then Ky can be takes as ¢.(K5) (or,
r(Q%)).
X

Definition 4.2.37 A Weil divisor of (X, 0) (or its class) is called Q-Cartier, if its
class in CI(X, 0) has finite order. Its order is called its index.

4.2.6 Canonical Coverings

4.2.38 The germ of an analytic finite map 7 : (¥, 0) — (X, o) (where (¥, 0) and
(X, 0) are normal and 7~ (0) = 0) is called o—ramified if the restriction Y \ 0 —
X \ o is a regular (topological, unbranched) covering. An o—ramified covering is
called G—covering if ¥ \ 0 — X \ o is Galois with deck transformations G. If
m: (Y,0) - (X, o) is o-ramified, then there is a morphism Y — X at the level of
(convenient) resolutions, and the pullback Pic(}~( ) — Pic(?) induces a well-defined
morphism ¢* : CI(X, 0) — CI(Y, o).

4.2.39 Let us recall a possibility how one can construct a cyclic o—ramified
covering topologically. Let (X, 0) be as above and let 71 (L(X,0)) — G be an
epimorphism. Then, by Stein [110] it determines an o-ramified G—covering. E.g.,
if L(X,0) is a QHS? link (that is, H;(Lx,Z) = H = L'/L) and we fix a
character @ € H , then it determines an epimorphism 71 (L(X,0)) - H — Zy
(for some N) and a Galois cyclic o—covering. In particular, if L(X, 0) isa QH S3,
and we start with a cycle I’ € L/, such that the order of [I'] € H is N, and we
considered the character o := 9([I']) € H , then we get a o—ramified Zy-covering
(Xy,0) = (X,0).

4.2.40 Next we associate a cyclic o-ramified covering (Xp, 0) — (X, o) to any
Q-Cartier divisor D (in this case Ly is not necessarily a QH S).

Proposition 4.2.41 Let D be a Q-Cartier divisor of index N of (X, 0). Then it
determines a uniquely defined o-ramified Galois Zy-covering ¢ : (Xp,0) —
(X, 0), where (X p, 0) is a normal surface singularity, and c*(D) = 0 in CI(X p, 0).
The covering c : (Xp, 0) — (X, 0) depends only on the class of D in CI(X, o).

(In fact, the kernel of ¢c* : CI(X, 0) — Cl(Xp, o) is cyclic of order N and it is
generated by the class of D.)

Indeed, adding a principal divisors to D we can assume that D is effective. Then
N - D is an effective principal divisor of (X, 0). Hence N - D = div(f) for some
holomorphic germ f : (X, 0) — (C, 0). Then define X v as the normalization of
{(x,2) € (X x C,(0,0)), f(x) = z"}. Then a local computation shows that the
natural projection ¢ : (X¢,n, (0,0)) — (X, 0) is o-ramified. The second statement
claims that div(f oc)/N is an integral principal divisor of (X p, 0). But, indeed, this
is exactly div(z).

Note also that the added principal divisors do not alter the isomorphism class of
X s~ Indeed, (the normalized) X ,~v y and X,y are isomorphic.
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4.2.42 The above facts can be used to define (in an analytic way) a covering
associated with any I’ € L’. The construction depends on a choice, but it has no
ambiguity whenever the link is a rational homology sphere. First, we associate to [’
a Q-Cartier divisor as follows. For parts (a)—(b) see [96, 112, 113].

Proposition 4.2.43

(a) Fix a resolution ¢ : X > X, I' e L, and let N _be the order of its class in
L'/L. Then there exists a divisor D = D(l") on X such that one has a linear
equivalence N - D ~ N - 1" and c10%(D) = I’ (where NI’ is identified with
an integral divisor supported on E). In particular, ¢(D) has finite order N in
CI(X, o).

(b) If H'(X,Z) = 0 then D is unique up to a linear equivalence. Hence, in this
case, the correspondence I' — Oz (D(l")) is a section of the exact sequence
(4.8).

(c) IfH! (X, 7Z) = 0 then the covering associated with I’ defined in 4.2.41 via D(I")
agrees with the covering associated with I’ defined in 4.2.39 via the character

ol'D.

Proof (a) Since c; is onto, there exists a divisor D on X with clOX(Dl) =1/.
Hence OX(ND1 — div(N1")) has the form (L) for some L € PICO(X) =
CPs/H! (X, 7). Define D5 so that QX(DQ) = 1{,£ € PICO(X). Then D := D1 —D;
works. For (b) use the fact that Pic(X) is torsion free. For (c¢) use the definitions. 0O

Definition 4.2.44

(a) Write Q% = O%(Ky) and assume that Ky is Q-Cartier. Then the cyclic
covering associated with Ky (as in 4.2.41) is called the analytic canonical
covering of (X, o).

(b) Assume that the link of (X, o) is a rational homology sphere. The well-defined
cyclic covering associated with ¢1 (O (K)), constructed in 4.2.39 is called the
topological canonical covering of (X, o).

If both assumptions are satisfied then the analytic and topological canonical
coverings agree. However, if H{(dX,Q) = 0, then the fopological canonical
covering is well-defined even if Kx is not Q-Cartier.

4.2.7 Natural Line Bundles

4245 Let ¢ : ()?, E) — (X, o) be a good resolution and assume that L(X, o)
is a QH S°. In the next discussion we identify the homology classes / € L and the
integral divisors supported on E.

In the exact sequence (4.8) ¢ admits a natural group section s, over the integral
cycles L C L’. Indeed, for any /[ € L we can take Oz(l) € Pic()?). Clearly
c1(Ox()) = I. In the sequel we extend sz in a unique way to a natural group
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section s : L’ — Pic(X). Its existence is guaranteed by the facts that H = L'/L is
finite, while Pic? (X) =~ CPs is torsion free. In fact, we present several constructions
of s, which emphasize its different geometrical aspects.

4.2.46 The Construction of s via CI(X, o) [96]

For any I’ € L' consider the divisor D(!') provided by Lemma 4.2.43. Since
H'(X,Z) = 0, D(I') is unique with the required properties of 4.2.43. Therefore one
has a well-defined map I’ — s(I') = Ox(D(l")). By the uniqueness D (I} + 15) ~
D(1}) + D(l}), hence s is a homomorphism and a section of (4.8) as well.

Definition 4.2.47 The line bundles s(/’), indexed by I’ € L’, and denoted also by
Oz (') := s(I"), will be called natural line bundles.

Corollary 4.2.48

(a) A line bundle L € Pic()?) is natural if and only if some power of it has the form
Ox (1) (in its usual classical sense) for an integral cycle | € L. Equivalently, L
is natural if and only if its projection by Pic()?) — Pic(i)/L = CI(X, 0)) has
finite order (i.e., if it is Q-Cartier).

(b) One has a natural isomorphism Pic()?) — Pico(f) @ L givenby L~ (L
s(c1.L)™Y, e1.L). This induces a natural isomorphism C1(X, 0) — Pico()?)@H.

In particular (since Pico()?) is torsion free), under this identification H is
isomorphic with the group of Q-Cartier divisor classes of (X, 0).

4.2.49 The Universal Abelian Covering Let ¢ : (X,;,0) — (X, 0) be the
universal abelian covering of (X, o). It is the Galois o—covering associated with
m(Lx) = Hi(Lx,Z) = L'/L (cf. [110]).

Let & : Z — X be the normalized pullback of ¢ via ¢. The (reduced) branch
locus of ¢'is included in E, and the Galois action of H extends to Z as well. Since
E is a normal crossing divisor, the only singularities what Z might have are cyclic
quotient singularities, cf.4.2.18. Let r : Z — Z be a resolution of these singular
points such that (¢ o r)~Y(E) is a normal crossing divisor. Set p :=Cor.

7 7% (X, 0)
JC (4.10)

N

% -2 (X.0)

4.2.50 The Construction of s via p* : Pic(X) — Pic(Z) [71] One has the
following commutative diagram:

L e .11)
L,
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where the vertical arrows are pullbacks associated with p = € o r (e.g., p* is the
cohomology morphism H 2()? ,Z) — H 2(2 , Z) and the first arrow is the relative
cohomology morphism), and the bottom line is the ‘lattice exacts sequence’ (4.2)
associated with the resolution Z — X, of (X,, 0). We claim that:

pf=o0. (4.12)

In particular, p*(I") € L, for any I’ € L', hence considering p* (') as an integral
divisor, the element Oz (p*(I")) € Pic(Z) is well-defined.

Theorem 4.2.51 The line bundle Oz (p* (1)) is a pullback of a unique element L Cof
Plc(X) This line bundle L will be denoted by O3 (). Moreover, s : L' — Plc(X)
defined by I' — Ox ('), is a group section of ci in (4.8), which extends sy .

Furthermore, the definition of Ox(l') is independent of the choice of the
resolutionr : Z — Z.

Proof Using the two exponential exact sequences one verifies that p* : Pic(X) —
Pic(Z) is injective and its image is the subgroup of invariants (Pic(Z))”. On the
other hand, Oz (p*(l')) is H-invariant. ]

4.2.52 The Construction of s via c*();ﬁﬂ,o [42,71, 96, 97]

Associated with the resolution ¢ : X — X we consider the ‘unit closed-open
cube’ Q := {I' € L' : [I'’] = 0}. Obviously, for any & € H there is a unique
element r, € Q, whose class is &. It is the minimal representative of / in the cone
L’>0.

Theorem 4.2.53 ([71 96, 97] (for the cyclic case see also [20—22])) Assume, as
above, that H' (X Z) = 0. Consider the finite covering ¢ : Z — X. Then ¢,07 is
a vector bundle and its H -eigensheaf decomposition has the form:

707 ~ ®, .5 La: (4.13)

where Loxy = Oz (—ry) for any h € H. In particular, ¢,O7 >~ ®pcoOx(=1).
More generally, for anyl’” € L' one has

¢:0z(=c*(I) =~ @henOx (=rn + Lrn = 1')). (4.14)

Corollary 4.2.54 The set of natural line bundles on X coincides with the set of line
bundles of type L @ O(l), where L is an eigensheaf of ¢,Oz andl € L. Or, via
(4.14), the set of natural line bundles coincides with the set of eigensheaf of bundles
of type ¢.Oz(—=c*('), ' e L.
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4.2.8 The Canonical Cycle

4.2.55 Fix any resolution X.LetK % be a canonical divisor (defined up to a linear
equivalence), O3 (K3) = Q%, and let K = —Zg be cl(Q%) € L', the canonical
cycle of the resolution ¢. The cycle Zk can be determined combinatorially from
(L', (,)) via the adjunction formula, namely (—Zx + E,, Ey) +2 - (1 — g(E,) —
6(Ey)) =O0forall v € V. (Here §(E,) is the sum of delta invariants of singularities
of Ey.) In particular, Zg = 0 if and only if g(E,) = 6(E,) = 0 and Eg = —2 for
al v. In such a case (X, o) is an ADE singularity.

By Laufer [53], if the resolution is minimal, and Zg # 0, then all the coefficients
of Zg are positive. Moreover, if X is a minimal good resolution and (X, o) is not of
type ADE, then all the coefficients of Zg are still positive.

Theorem 4.2.56 (Riemann-Roch Formula) Fix a line bundle £ € Pic()?) and
setci (L) =1 € L' andk := —Zg — 2I'. For anyl € L-( we consider the sheaf
L ® O; onl. Then its analytic Euler characteristic satisfies

X(L®O)=—(1+k)/2 (4.15)

We denote the combinatorial term from the right hand side of (4.15) by xx(/), or
just by x (/) if k = —Zk. This expression motivates the following.

Definition 4.2.57 The set of characteristic elements are defined as
Char = Char(L) = {k e L' : (I,1 +k) € 2Z forany!l € L}. (4.16)

Note that —Z is a characteristic element and Char = —Zg + 2L’.
The expression (4.15) can be extended to L', that is, for any k € Char one defines
xk: L' — Q by yi(l"):=—,I'+k)/2.1f k = —Zk then we write x := x.

4.2.58 The expression Z%( + |V] of the link behaves like a characteristic class in
many index formulae. It is independent of the resolution. We have the following
general formula for it.

Proposition 4.2.59 ([78]) Z%( + |V| in terms of the graph has the expression

Zx 41V =2-2b1(Lx)+ Y (Ef43)+) | Qx(Ep) =) QX (Ew)—rw)(E}. E}).

Example 4.2.60 ([36]) For the cyclic quotient singularity X, , we have

Z% 4+ |V| =2(n — 1)/n — 12-s(q, n).
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Example 4.2.61 ([79]) For a star-shaped graph, with v := x /e, we have

v
Zi +|VI=e +e+5-12-) sw). o).
j=1

Example 4.2.62 Assume that Ly = Sid (#iK;) (cf.4.2.32),withu/2 =8=73,8;
(the sum of delta-invariants of K;) and arbitrary d > 0. Then K 2+ V) =1—(d—-
24 w)?/d. If u = (d — 1)(d — 2) (as in the superisolated case), then K%+ |V =
1 —d(d —2)>.

4.2.63 Splice Formula Assume that L(X, o) is an integral homology sphere and
let & be the splice diagram associated with the plumbing graph I' [19]. Assume that
& is obtained by splicing the diagrams &1 and &, along the knots K1 C M (&),
K> C M(®3). Let I'; be the plumbing graphs, which correspond to &;. Recall also
that K; C M (®;) determines an open book decomposition, let u; be the first Betti
number (Milnor number) of its fiber. Then one has the following.

Theorem 4.2.64 ([92])
(Z% +1VID) = (ZE + V)T + (Z% + V) (T2) =2 - 1 - pa.

Definition 4.2.65 The normal singularity (X, o) is called Gorenstein if Q%(\{o} is
a holomorphically trivial line bundle, equivalently, if Zx € L and one can choose
for K5 the divisor —Zg. Analogously, (X, o) is called numerically Gorenstein if
ng\ (o} is a topologically trivial complex line bundle.

Though Gorenstein (local) rings can be defined even without normality assumption,
see e.g. [13], (e.g. complete intersections are Gorenstein even if they are not
normal), here we discuss the Gorenstein property only for normal germs.

Lemma 4.2.66 ([17]) (X, o) is numerically Gorenstein if and only if Zx € L.

4.2.67 Q-Gorenstein Singularities Let Kx be the canonical divisor of (X, 0),
cf.4.2.36. Note that (X, o) is Gorenstein if and only if Ky is Cartier (invertible) at
o € X, thatis, Ky is zero in CI(X, o). Furthermore, if (X, 0) is Gorenstein then any
o-ramified covering (X', 0) of (X, 0) is Gorenstein. More generally, (X, o) is called
Q-Gorenstein, if there exists a positive integer r such that r Ky is a Cartier divisor at
o (equivalently, if Ky has finite order in C1(X, 0)). Again, if (X, 0) is Q—Gorenstein
then any o-ramified covering (X', 0) of (X, 0) is Q-Gorenstein. If L(X, 0) is QH §3
then any numerically Gorenstein, Q-Gorenstein singularity is Gorenstein.

4.2.68 Vanishing Theorems Fix a resolution and £ € Pic(i ). Then for l1,1> €
Lo with I > [} the morphisms HY(X, L) - H(L® 0;,) and HY (L ® 0O;,) —
H'(L® Oy,) are onto, and by the ‘Theorem of formal functions’ H 1(§ L) =
lim H'(L ® Op).
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Theorem 4.2.69 Generalized Grauert—Riemenschneider Theorem [31, 49, 104]
Consider a line bundle L € Pic(}?) such that c1(L(—Kg)) € A — Sg for some
A € L' with |A| = 0. Then for any | € L~q one has the vanishing h'(l, L|;) = 0.
In particular, h! (}?, L)y=0.

Corollary 4.2.70 Write |Zg ] as |Zkx ]+ — | Zk]- with |Zg |+, |Zk]- € Lxo
and without common components. If | Zx |+ = 0 then pg = 0. If | Zg |+ > 0 then
forany Z > | Zk 14+, Z € L, pg = h'(O2).

For certain cycles the Grauert-Riemenschneider Theorem 4.2.69 can be
improved.

Proposition 4.2.71 (Lipman’s Vanigling Theorem [56, Theorem 11.1]) Take!l €
Loo with h'(O)) = 0 and £ € Pic(X) for which (c1 L, Ey) > 0 for any E, in the
support of 1. Then h'(l, £) = 0.

4.2.9 The Role of the Monoids S and S’

4.2.72 The monoids S and S’ are combinatorially associated with a fixed resolu-
tion graph I, cf. 4.2.11.

Lemma 4.2.73 Forany fixedh € H set L), :={l' e L' : [I'] = h}.

(a) If1},1 € L) then !’ := min{l}, I’} € L} too.
(b) If1},1, € 8’ N L), then min{l}, I}} € S' N L}, too.

(Forl},1} € L' it can happen that min{l, I}}, defined in L ® Q, is notin L'.)
Proposition 4.2.74 Let X — X be a resolution of (X, o) as above.

(a) Foranyl € L' there exists a unique minimal element e(I') € L>o with s(l') :=
I'+el)eS.

(b) e(l') can be found by the following (generalized Laufer’s) algorithm. One
constructs a ‘computation sequence’ 20,21, ...,% € L>o with zo = 0 and
Zit1 = Zi + Ey(), where the index v(i) is determined by the following principle.
Assume that z; is already constructed. Then, if ' + z; € S', then one stops, and
t = i. Otherwise, there exists at least one v € V with (I' + z;, E,) > 0. Take
forv(i) one of these v’s. Then this algorithm stops after finitely many steps, and
z=e(l).

Corollary 4.2.75 For any L € Pic(f) take c¢1 := c1(L) and e := e(—c1). Then
c1(L(—e)) = —s(—c1) € =S and

RN (L(=e)) — h' (L) = x(Oe(c1)) = x(e — c1) — x(—c1) <O.

In particular, the computation of any h' (L) can be reduced, modulo the combina-
torics of L, to the computation of some h' (L") with c1(L) € —S.
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Example 4.2.76 If L = Oz (—!') for some !’ € L’ then 4.2.75 reads as

h Oz (=s'))) = B Oz (—1)) = X Oery(—1)) = x(s(") — x(I') < 0.

The next consequence of Proposition 4.2.74 is the existence of the fundamental
cycle.

Corollary 4.2.77

(a) [5, 6] S\ {0} has a unique minimal element Z ;.

(b) [49] Zin can be found by the following (Laufer’s) algorithm. One constructs
a computation sequence 271, ..., z: with z1 = Ey, (arbitrarily chosen), and
Zit+1 = Zi + Ey@), where the index v(i) is determined as follows. Assume
that z; is already constructed. Then, if z; € S, then one stops, and t = i.
Otherwise, there exists at least one v € V with (z;, E,) > 0. Take for v(i) one
of these v’s. Then this algorithm stops after finitely many steps, and z; = Zpin
(independently of all the choices).

The cycle Z,,in € L~ has several names in the literature: minimal, fundamental, or
Artin cycle. The sequence from (b) is called the Laufer’s computation sequence for
Zmin-

4.2.78 The Representatives r;, and s, Recall that for any h € H, r, € L' is
the minimal representative of / in the cone L. ,. Replacing the cone L. , by &,
by 4.2.73 we obtain the following. B -

Corollary 4.2.79 For any h € H consider all the representativesl’ + L C L’ of h.
Then (I' + L) NS’ has a unique minimal element sy,.

Clearly sop = 0, and s, > ry,. Strict inequality might appear (take e.g. the lens space
L(8,5)).sp =rpifand only if r, € S, otherwise s, = s(rp,) in the sense of 4.2.74.
Using 4.2.76 we obtain

x(sn) < x(rn). (4.17)

Even at Euler-characteristic level, strict inequality can appear, see 4.2.89.

4.2.10 The Equivariant Geometric Genus and Laufer’s Duality

4.2.80 The p,—Formula of Laufer Let us discuss a different realizations of the
geometric genus p, = h'(X, Oz), where X — X is any resolution.
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By Serre duality Hl(i, Ox)* ~ HC1 ()?, Q%). In the exact sequence
(> 2 0,y 2 0,y 2 1,y 2 1,y 2
H) (X, Q)N() — H" (X, Q)N() — H' (X \ E, Q)?) — H. (X, SZ)?) — H (X, SZ)?)

HO(X, Q%) = 0 while H(X, Q%) = 0 by 4.2.69. Hence,
Proposition 4.2.81 ([49])

H'(X,0%)* ~H(XQ)_H°(X\EQ)/H°(XQ) (4.18)

where the last vector space is the space of global holomorphic 2-forms on X \ E up
to those which can be extended holomorphically across X.

Above, the set of poles can be bounded. Indeed, for any Z € L. consider the
exact sequence of sheaves

0— Q% — Q}(2) > 0z(Z + Kz) — 0.
Since h'! (Q%) =0 (cf. 4.2.69) we get that
H(X, Q%(2))/H (X, Q%) = H*(0z(Z + K3)) = H'(02)*. (4.19)
Assume that pg # 0. Then from 4.2.70(a) h' (O|z4,) = pg. hence
pg = dim (HO(X, Q% (1Zx 1))/ H (X, @%)). (4.20)

This holds if p; = 0 too. Since H'(X, Q%) C HO(X, Q%(LZk 1) C HOX \
E, Q%), by (4.18) and (4.20) we get that HO(X, Q%(LZKJJF)) = HY(X \E, Q%).
Hence, the poles of forms from H 0()~( \ E, Q% ) are bounded by | Zx | .

If (X, o) is numerically Gorenstein and Zg > 0 then y (Zx) = Oand hO(OzK) =
hl(OzK) = pg. Hence, from the vanishing hl(X O(—Zk)) = 0 we obtain

pe =dim (H°(X, 03)/H*(X, 03 (~Zk))). 4.21)

If (X, 0) is Gorenstein and Zx > 0, via the isomorphism Q% = Ox(—Zg) the Dg
formulae from (4.20) and (4.21) agree.

4.2.82 The Geometric Genus of the Universal Abelian Covering Assume that
L(X,0)isaQHS>.

Let (X,,0) — (X, o) be the universal abelian covering of (X, o), and consider
the notations of the diagram (4.10). By definition, the geometric genus p,(Xq, 0)
of (X4,0) is hl(Z O03). Recall that r : : 7 — Z is the resolution of the cyclic
quotient singularities of Z. Note that 7,(Oz) = Oz (by the normality of Z), and
er*(()z) = 0 since cyclic quotient singularities are rational (have geometric
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genus zero). Therefore, by Leray spectral sequence py(Xy4,0) = h'(Oz). Since
¢ is finite h'(Oz) equals h'(C,0z), and it has an eigenspace decomposition
@heHHl(F*OZ)g(h). By Theorem 4.2.53 the dimension of the 6 (h)-eigenspace is

Pe(Xa, 0)ony = dim H'(E07)gmy = h' (X, Og(—rn)).

By summation:

Pe(Xa,0) = Y h'(X, O (—rn)).
heH

Clearly, for h = 0 we get pg(X4, 0)o(0) = pg(X, 0).

Definition 4.2.83 If Hi(Lx, Q) = 0 we define the equivariant geometric genus of
(X, 0) associated with i € H by pg(Xa, 0)ony = h' (X, Oz (—rn)).

Via Proposition 4.2.75 it can also be expressed by sp:
Pg(Xa, 0)am = h' (X, Oz (=si) + x () — x (sn)- (4.22)

4.2.84 Laufer’s formula (4.18) has the following generalization.

Proposition 4.2.85 Assume that the link of (X, 0) is a rational homology sphere
andfixh € H. Let 1;1 be either ry, or sy,. Then

H' (X, 0x(—l))* ~ HN(X, Q%)) = HOX \ E, Q%(1})/H* (X, Q%))
Remark 4.2.86 Since HO(X \ E, Q% () = HYX\ E, Q% (s1)), 4.2.85 gives
h'(Ox (=) — h' (Ox (=sp)) = dim H°(Q%(sn))/H (Q% (rn)).

Write s, — r, = A. Then from the proof of 4.2.85 one has Hl(f, Q% (rp) =
HY(X, Q%(sh)) = Hl(Q%(shﬂ A) = 0. Hence, the right hand side of the above
identity is x (Q% (sn)la) = x(rp) — x (sp), compatibly with (4.22).

4.2.87 In concrete computations it is always easier to find global sections than to
determine higher cohomologies. This is one of the main advantages of the identity

from 4.2.85. In several cases one can identify concrete basis for the vector space
HY(X \ E, Q%(ZL))/HO(X, Q%(z,;)), for I; = ry or sp.

Example 4.2.88 hl(f ,O%(=rp)) for weighted homogeneous singularities,
g=0.
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Assume that r in the dual basis is written as r, = agEj + Z ; dji E *.. Define
also aj := Y, njipraji (1< j < v)and Ny, (6) = bol +ag— Y P)f‘f]ﬂ Then

W' (Og (=) =Y max{0, —N,, (¢) — 1}. (4.23)
£>0

Example 4.2.89 hl(i , O3 (—=sp)) for weighted homogeneous singularities, g =
0.
Set s;, := aoEj +Z a],E anda; :==) ;njit1a;; (1 < j <v). Then

W' Og(=sw) = Y max{0, =Ny, (¢) — 1}, (4.24)
>0

where Ny, () = bol + o — ¥, [‘“/ﬁl] “f] Set A := s, — rj and let Ag € Z= be

the Eo-coefficient of A. Then Ny, (£) = N, (€ + Ag), hence

h' Og(=sm) = Y max{0, —Ny, (6) — 1}. (4.25)

>Ag

In particular,

R Oz (—rm)) = h' Oz (=sn)) = x(ra) = x(sn) = Y max{0, =Ny, (£) — 1}.

0<l<Ay
This expression can be non-zero. Take e.g. the graph with by = 2, and three
legs all with invariants («j, w;) = (3, 1). Then s, = Zj VE% . rn = si — Eo,
X(sp) = ' (Og(=sn)) = 0,and x () = h' g (=r)) = 1.

Example 4.2.90 For a cyclic quotient germ h'(Og(—rp)) = h'(Og(—sp)) = 0.
(Use 4.2.53 and 4.2.71.)

isj’

4.2.11 Spin® Structures

4.2.91 In the next discussion M is a link L(X, o), which is a rational homology
sphere.

M admits a spin® structure. In fact, the set of spin® structures Spin“(M) is an
H*(M, 7) torsor. Furthermore, the restriction R : Spln (X) — Spin“(M) is onto,
where Spin® (X ) denotes the set of spin® structures on X. The natural cohomological
morphism H%*(X,Z) — H*(M,7) is the factorization L' — L’ /L, + [I']. This
projects Char onto Char/L. Then ¢ : Spinc(f() — Char C L’ induces a map
¢ : Spin°(M) — Char/L C L'/L such that ¢(R(6)) = [c1(5)].
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Moreover, c([I'l * o) = 2[I'] + ¢(o) forany [I'] € L'/L and o € Spin“(M).

While c; is injective, ¢ in general is not. Its fibers are H 1 (M, Zy) torsors;
¢ 10) ~ Spin(M). These facts will be explained next.

We consider the action of L on Char defined by [k := k+2I. Let Char/2L be its
orbit space. Then Char/2L isan L'/ L torsor by the action induced by I’ xk = k+21'.

Moreover, the composition R o cfl : Char — Spin‘(X) — Spin®(M) factorizes
to Char/2L — Spin®(M). This map is a bijection of L’/L torsors. In the sequel we
identify Spin®(M) by this bijection. Then ¢ : Spin°(M) — Char/L transforms into
¢ : Char/2L — Char/L. Its fibers are {{' € L’ : 2I' € L}/L ~ H'(M, Z») torsors.
The trivial element 0 of L’/L is in Char/L, and

¢ 1(0) = (CharN L)/2L ~ Spin(M),

where Spin(M) denotes the set of spin structures of M. (Itis an H (M, Z,) torsor.)

Definition 4.2.92 Let M = L(X, o) be a singularity link. For any k € Char we
write o (k) for that spin® structure of X for which c1((k)) = k. Similarly, let
o[k] € Spin°(M) be the restriction of o (k) to M. The spin® structure ocq, Of X
with ¢;(6) = K will be called the canonical spin® structure of X. Its restriction
Ocan € Spin®(M) will be called the canonical spin® structure of the link.

Lemma 4.2.93 There is an involution o + o of Spin®(M) which satisfies: c(o) =
—c(0), [I'l *o = [-1'] % 0, and Spin(M) = {0 € Spin°(M) : 0 = o}.

In algebraic geometry, by convention, the first Chern class of the ‘canonical’ line
bundle is K. Nevertheless, in simplectic geometry and differential topology, in
the presence of an (almost) complex structure, the ‘canonical’ spin® structure is
usually defined via —Ky. However, in this note we adopt the definition from
Definition 4.2.92.

4.2.94 Definition of k, Assume that the link is a rational homology sphere. Then
Spin© (i ) is identified with the set of characteristic elements k on L’, and if k and k’
induces the same Spin® structure on the link, then ¥’ = k + 2[ for a certain [ € L.
In this case xp(x — 1) = xx(x) — xx(l) for any x € L, hence the two functions
Xk and xx can be easily compared, and they have identical qualitative properties.
Therefore, for each class [k] = k + 2L (that is, for each Spin® structure o [k] of Lx),
we choose a representive of [k]. Since the set of classes is indexed by H; we define
the set of representatives by k, := K + 2s;, for each h € H. Since so = 0, for the
trivial class & = 0 we get xx, = X.

Since for any x € L one has yy, (x) = x (sn+x)— x (s1), the function i, defined
on the integral lattice L (up to an additive constant y (s;)) can be identified with x
acting on the (rationally) shifted lattice s, + L = {I' € L" : [I'] = h}.
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4.3 Multivariable Series

4.3.1 The Divisorial Filtration

4.3.1 Let (X, o) be a normal surface singularity, and let ¢ : ()~( ,E) = (X,0) be
an arbitrary fixed resolution of (X, 0). We will define an L-filtration of the local
ring of (X, 0) and a compatible H-equivariant L'—filtration of the local ring of
(X4, 0) (Where H = L’/L). In the whole discussion regarding the universal abelian
covering (X, 0) and the L'—filtration of its local ring we will assume that the link
of (X, o) is a rational homology sphere. At the level of the L—filtration of the Ox ,
this assumption is not needed.

4.3.2 The Module Z[[L’]] Once a resolution is fixed, hence the natural basis
{Ey}y of L is fixed too, Z[[L]] is identified with Z[t*'] = Z[[rF, ..., 7))

It is contained in the larger module Z[[tXV/4]] = zZ[[r;™/*, ..., 5"/"]), the

module of formal (Laurent) power series in variables tf Y d, where d = |H|.
ZI[L']] C Z[[t*'/9]] consists of the Z-linear combinations of monomials of type

i

t' = ti' -~-t£;' where!’ =" I' E, € L'. Z[[L']] also admits several Z-submodules
corresponding to different cones of L; e.g. Z[[L’,]] and Z[[S']], generated by
monomials t with I/ € L., orl" e 8 respectively. Both Z[[L’ ;]] and Z[[S']]
have natural ring structure. B

Z[[S']] is a usual formal power series ring in variables {tE3 }v: its elements are

D)) = FAET, .. t5), where f(x1,...,xs) € Z[[X]] = Z[[x1, . .., xs]].
(4.26)

Any series S(t) = ) art!’ € Z[[L']] decomposes in a unique way as

S= S where S =Y apt". (4.27)
heH ['1=h

Sy, is called the h-component of S. E.g., if S(t) := ®(f)(t) for some f € Z[[x]] as
in (4.26) then

1 * X
SO = - > o FUEDEE, . p(LEIDE). (4.28)
oeH

4.3.2 The Analytic Series H (t) and P (t)

Consider the diagram and the notations regarding the universal abelian covering
from 4.2.49.Set ¢, = Y,orand p=Cor.
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Recall that by (4.12) p*(I") is an integral cycle forany I’ € L'.
Definition 4.3.3 The L’ filtration on the local ring of holomorphic functions Ox, ,
is defined as follows. For any I’ € L', we set

F ') == {f € Ox,0 | div(f 0 ¢a) = p*(I)}. (4.29)

Notice that the natural action of H on (X,, 0) induces an action on Oy, ,, Which
keeps F (I') invariant. Therefore, H acts on Ox, ,/F (I') as well. For any I’ € L’,
let h(1’) be the dimension of the 0([I'])-eigenspace (Ox,,o/F (I'))or7)- Then one
defines the Hilbert series H (t) by

H(t):= Y (") -t e Z[[L']]. (4.30)
el
Example 4.3.4 The 0-component of H (t) is
Ho(t) = " dim (Ox.0/{f € Oxo : dive(f o) > 1}) -t
leL

This is the Hilbert series of Oy, associated with the divisorial filtration L > [
Foll) = {f € Ox.,o : dive(f o ¢) > I} of all irreducible exceptional divisors of ¢.

4.3.5 Next, we define the Poincaré series P(t) = Zl’e s p(l’ )tl, associated with
the filtration {F (")}, .

PO =-H®-[[(a -1, or pth= D D0 +En, (Er=) E.
v Ic{l,...,s} vel

(4.31)

It turns out that the series P(t) is supported in S, and the following ‘inversion
identities’ hold:

hiy= > pl +1). (4.32)

IeL, %0

Proposition 4.3.6 Ler Po(t) = > ;. p(Dt be the 0-component of P(t). Then for
lelL

WOz (=D)== Y p0)+xD) + p. (4.33)
leL, T#1

If1 <0, then the sum on the right hand side is empty.
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Ifl € (—K5 + 8') N L then by the vanishing Theorem 4.2.69

> p( =xU) + pe. (4.34)

leL, T#

That is, the counting function of the coefficients of Py(t), associated with the special
truncation {l~ eSS, ] 2 1}, evaluated in the chamber —K + S', equals the quadratic
polynomial x(I) + py.

In particular, Py(t) determines completely p, and the functions | — x (), | >
h'©Oz) (1€ L)

4.3.7 The Equivariant Version of Proposition 4.3.6 Next, we assume that the

link of (X, 0) is a rational homology sphere. In particular, the universal abelian cov-

ering is well defined with its H-action. Recall that the geometric genus of (X, 0) is

the sum ), W' (O(=rp)) (of the equivariant genera of (X, o)) corresponding to the

eigenspace decomposition of H'(0z). Let I be either ry, or sp,. Then for any fixed

h the equivariant analogues of the formulae from Example 4.3.6 are the following.
For L =Ox(=l'), where!" € L',I' =1 +1; withl € L,

RO == > pd)+ xgro O +h'(O1))
=11, T2
) (4.35)
=— > p)+xI)+hO1)) = x 1.
=1, ¢

In particular, when !’ € —K +8',I" =1 +1; withl € L,

Yo o) =xxa O+ RO
=01, I'Ar (4.36)

=x(I") + R O1})) — x 1))

Therefore, P(t) determines completely each 2! (O ) ' e L.

Remark 4.3.8 The following comment is appropriate. In the above formulae (e.g.
in 4.3.6 and 4.3.7) the term consisting of the sum of the coefficients of P can
be replaced (via (4.32)) by the corresponding coefficient of the Hilbert series
H(t). E.g., (4.34), under the same assumption, reads as h(/) = x () + pg. The
corresponding versions in terms of the Hilbert series are simpler (and from the
analytic point of view even more conceptual). The reason why we prefer above
the summation expressions is the following. Later we will introduce the topological
analogues of the above identities. The point is that P(t) will have a topological
analogue, namely Z(t) (see subsection 4.3.3), however, the analogue of H (t) will
be defined (‘merely’) as the inversion of Z(t), that is, by the summation of its
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coefficients. Hence, later we will hunt in the topological side for sum—expressions
as above, where the coefficients of P will be replaced by those of Z.

4.3.3 The Topological Series Z(t)

4.3.9 We assume that L is a QH S and we fix a good resolution as above.

Definition 4.3.10 We define the rational function Z(t) in variables x,, = t&v by

Z(t) := ®(z)(t), where z(x) := l_[(l —xv)"”_z. 4.37)
veV

Hence Z(t) =[], (1 — tE:)"U_Z. By (4.28), its h-component for any h € H is

1 * Kyp—
Zu® = > p07 T = pQEDED" . (4.38)

|H| —
peH veV

In the sequel we identify the rational function Z(t) with its Taylor expansion at
the origin, as an element of Z[[S']] (cf. 4.26).

Example 4.3.11 (Splice Quotient Singularities) Splice quotient singularities were
introduced by Neumann and Wahl in [91]. From any fixed graph I" (for which M (T")
is a QH S3 and I' has some additional special arithmetical properties too, see below)
one constructs a family of singularities with common equisingularity type, such that
any member admits a distinguished resolution, whose dual graph is exactly I". The
construction suggests that the analytic properties of the singularities constructed in
this way are strongly linked with the fixed resolution and with its graph I'. (Hence,
the expectation is that certain analytic invariants might be computable from I".)

There are three different approaches how one can define the splice quotient
singularities; they are based on different geometric properties: (a) the ‘original’
construction of Neumann—Wahl [91] (where I' satisfies the additional semigroup
and the congruence conditions), (b) the ‘modified’ version by Okuma [97] (where
I' satisfies the monomial condition), and (c) considering resolution of singularities
satisfying the end-curve condition [93, 98]. It turns out that all these approaches
provide the same family of singularities.

Rational singularities (where ¢ is an arbitrary resolution), minimally elliptic
singularities, (where ¢ is a resolution in which the support of the minimal elliptic
cycle is E), and weighted homogeneous singularities (where ¢ is the minimal good
resolution) are splice quotient singularities.

Theorem 4.3.12 ([75]) Assume t@at (X, 0) admits a resolution ¢, which satisfies
the end curve condition, and H (X, Z) = 0. Then P(t) = Z(t).
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Conversely, assume that the singularity (X, o) satisfies Hl()?, Z)y = 0, and we
fix one of its good resolutions ¢. If associated with ¢ one has P(t) = Z(t), then the
‘end curve condition’ for ¢ is also satisfied.

Corollary 4.3.13 Assume that (X, 0) admits a resolution ¢, which satisfies the end
curve condition, and H' (X, Z) = 0. Then h! (Ox (") is topological for any l' € L'.

Indeed, write Z(t) = ) g 3(UNE. Then, after the identification P(t) = Z(t),
the formulae from 4.3.7 read as follows:

1. Forl'! e =K + &

Yo 30 = xxgan, ' — ) + 1 Ox (=) (4.39)
(=11, A

2. More generally, for L = Oz (—=1") with arbitraryl’ € L',

ROz (=) == Y 30+ xkgran, ' —ra) +h' Oz (=ra)).
[Z’/]:”/]’ Z'/;él/
(4.40)

4.3.4 Reductions of Variables in the Series P (t) and Z(t)

For any fixed resolution ¢, in the definition of the series P(t) and Z(t) one takes
a variable 7, for each exceptional divisor E, of ¢. In most of the situations we
strongly suspect that some of the variables are superfluous. E.g., if the resolution is
not minimal, the non-essential exceptional components carry less information; the
same is valid even for some of the exceptional curves of the minimal resolution, e.g.
those with k,, = 2. Moreover, certain exceptional divisors might have some intrinsic
geometric meaning, and sometimes we wish to concentrate only on them.

4.3.14 We fix (X, 0) asin 4.3.1 and the resolution ¢. Let 7 be a non-empty subset
of V. Associated with it we consider formal series in variables {#,},c7, denoted by
t7, and the projection 77 : L' — L ® Q, w7 (Y eyl Ev) = D er Iy Ev. We write

I Ly _ 4
I =mr), and ty =[] 8 =t |21 foran ver-
vel

Here a word of warning is necessary. In the original case 7 = YV, from a
series S(t) = ) al/tl, we can recover its A-components Sj. Indeed, the monomial
apt!’ belongs to Sy, if and only if [I'] = h. However, this property will be lost
when we reduce the variable: from the information carried by 77 (I’) one cannot
recover [I']. Therefore, the reduced h-components of a series S(t) are defined as the
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reductions of the original h-components Sy (t) (and they cannot be recovered from
the reduced S).

Definition 4.3.15 The reduced series of Z is defined as Zjy(ty)

= Z(t)|;,=1 for all ver- Similarly, forany h € H, Zj 7(t7) := Zp(t)|;,=1 for all vel-
Equivalently,

* KU—Z
e [T a-pUEDE) (4.41)

peﬁ veV

1
Zp1(ty) ==
|H|
The substitutions {r, = 1},¢7 are well-defined since Z(t) is supported on S’, which
has the special finiteness property 4.2.13.

4.3.16 Reducing Variables in Series P(t) In the case of the analytic series P(t)
we can proceed, a priori, in two different ways. By the first one we reduce P(t)
‘blindly’, as we did with Z(t) in 4.3.15, via substitutions #, = 1 for all v ¢ 7.
Again, this step is well-defined since P too is supported on S'.

On the other hand, we can also repeat the original geometric definition of P(t),
as the multivariable Poincaré series associated with the divisorial filtration as in
(4.31), however, at this time we will use the ‘reduced set of divisors’ indexed by 7.
However, it turns out that the two approaches lead to the same object.

Corollary 4.3.17 Assume that for a resolution ¢ and an element h € H the identity
Pn(t) = Zn(t) is valid. Then for the same ¢ and h and for any non-empty I C V
the ‘reduced identity’ Zj, 7(t;) = P 7(tz) (in Zl[ * " v e 1)) is valid too.

In Sects. 4.3.5 and 4.3.6 we exemplify cases when J contains only one element. Our
goal is to compare the analytic reduced series Py _r with the topological series Zj, 1.

4.3.5 Example: P and Z for Weighted Homogeneous Germs

Assume that (X, 0) is weighted homogeneous and its minimal good resolution is
star-shaped with v > 3. We set 7 = {central vertex vp}.

Our plan is to compare three filtrations and to show that they agree.

Firstly, the Ep-divisorial filtration coincides with the filtration given by the C*
action.

Assume next that g = 0, hence the universal abelian covering is well-defined,
it is a Brieskorn isolated complete intersection singularity. Therefore, one has three
equivariant Zfiltrations of Oy, ,: the divisorial filtration #7 associated with the
central divisor Ey, the filtration/grading associated with the C*-action, and the
monomial filtration G associated with vg.

The monomial filtration is determined by the following grading. If we denote the
variables of the Brieskorn equations by {z;};_,, then their degrees are deg(z;) =
deg(Ejfi) = (a; |e|)_1 (1 < i < v). The degree of the Brieskorn equations of the
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universal abelian covering are |¢|~! (hence the Brieskorn exponent of z; is «;). This
coincides exactly with the weights of the C*-action on (X,, 0). In particular, the
monomial filtration and the filtration induced by the C*-action agree. Similarly as
above, the filtration induced by the C*-action and the divisorial filtrations agree too.

The (common) Poincaré series of the above filtrations agree with the topological
series Zj r(¢) (the variable ¢ corresponds to vg). This fact can be seen in many
different ways (see e.g. [79, 88, 103]). E.g.:

(1) The identity P = Z was proved for any singularity which satisfies the end
curve condition. Then the identity P, 7 = Z;, 7 follows from 4.3.17 (since the
minimal good resolution of a weighted homogeneous germ satisfies the end
curve condition).

(ii) If & = O then the Poincaré series of the graded Ox , was computed analytically
via the Dolgachev—Pinkham—Demazure technique, the output is identical with
Zh’[(t), cf. 4.2.28.

For any fixed 7 € H,letl; € L’ be one of its representatives. If [, = apE} +
ik aikEf ., thenll  :=aoEf + 3 a,'kn;;H . E;ks,- is still a representative, and

1 a; 1
a:=n7") =nr(lly) = —(ES, 1) = el (a0 + § :a/_) € OZ.
; J
J

The rational number a modulo Z is independent of the choice of the represen-
tative /; , it depends only on % (and any integral shift can be realized by different
choices). In particular, 77 (L +r;) = a + Z.

The common Poincaré series is given by

Prrty= max{o,1+a0+zb—zva’f_“f“.ﬂ+a.

o
LeZ, £>—a J J

With the choice [, = r, one has a € [0, 1).

This expression can also be compared with another expression obtained via a
rather different construction, namely via the universal cycles x(£) and their t-
function, cf. 4.7.22.

4.3.6 Example: Py and Z for Superisolated Singularities

Next, we compute the one-variable {v, }-reduced series Py and Z for superisolated
singularities associated with an irreducible curve C, and we formulate geometric
properties and conjectures about their difference. Such properties might serve as
combinatorial criteria for the existence of the rational cuspidal curve C with given
topology.
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4.3.18 Assume that (X, o) is a superisolated singularity with C irreducible and
with a rational homology sphere link, cf. subsection4.2.4. Let ¢ be its minimal
good resolution described in 4.2.31 and 4.2.32. We set 7 = {v4} (the vertex
corresponding to the curve) and 4 = 0.

Set A(t) := []; Ai. Then A(1) = 1 and dA/dt(1) = &, where § = ) ;& =
(3= mi)/2 = (d—1)(d—2)/2is the sum of delta-invariants. Hence, A can be written
as A(1) = 1+(t—1)8+(t—1)2Q(r) for an integral polynomial Q(¢) = 23‘3:62 ocjtj
(see 4.2.30). For v = 1 one has Q(¢) = ZSgSC,pl (141441, hence

aj =#s&Scp s>j} (fv=1). (4.42)
Since s & Sc,p, if and only if 26 — 1 — 5 € Sc,p,, we get
o(d—3—j)d = #{s € SC,p] s <jd} (Gfv=1,0<j<d-3). (4.43)

4.3.19 We wish to compare Py r(t) and Zy 7 (t). Firstly, Py 7(t) = (1 — td)/(l —
1)3.

By the definition of Zj 7, and from A’Campo’s formula (and using the fact that
H = Z, is generated by [E_ ]), we obtain

1 ALY
Zor) = 2. | _gpap
§‘1=1

Lemma 4.3.20 The difference

A(grl/d) 1 -4

(1 =&/ (1= 1)? (49

1
N@):=2Zpz7(t) — Por(t) = d Z
gd=1

has the following properties:

(a) N() =0, and N(t) is a symmetric polynomial: N(t) = 43 N(1/t).
(b)

d-3 N .
N0 = Y (wamsopa— T T
j=0
Assume that v = 1. Then 4.3.20(b) combined with (4.43) says that the
Semigroup Distribution Property guarantees the vanishing of N(¢). However, for
v > 2, N(t) # 0 might appear (see [24]). Several examples computed in [loc. cit.]
supported the following (hasty) conjecture.

Conjecture 4.3.21 ([24]) All the coefficients of N(¢) are non-positive for any
rational cuspidal curve.
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If v = 1 then the conjecture is true since N(#) = 0. If v = 2 then the
Conjecture is true again, it follows from the Semigroup Distribution Property and
certain lattice cohomology formulae of the link of superisolated singularities; the
method even provides a conceptual meaning of the coefficients of — N (¢) in terms of
ranks of certain first lattice cohomology groups. See subsection 4.9.2 for a detailed
discussion.

However, the conjecture fails for certain curves with v = 3 [8].

A ‘weaker’ version of Conjecture 4.3.21 was formulated in [8], it is a numerical
inequality (instead of a polynomial one); in fact, it is more in the spirit of the
motivation of the original Conjecture 4.3.21, since it is a reformulation of an
inequality between the geometric genus of a superisolated singularity and the
normalized Seiberg—Witten invariant of the link (see again subsection 4.9.2 for the
complete discussion).

Conjecture 4.3.22 ([8]) N(1) < 0 for any rational cuspidal curve.
Note that by Lemma 4.3.20(b) one has:

d-3 d-3
dd—1)d -2
N() =Y a3 jpa— ( ¢ - —pg+ Y a3 j)d- (4.45)

6
j=0 j=0

Clearly, Conjecture 4.3.21 implies this second one, hence by the above discussion
Conjecture 4.3.22 for v < 2 is also true. Moreover, in [8] a case-by-case verification
provides its validity for all the ‘known’ curves (which, conjecturally, provide all the
possible combinatorial types with v > 3).

4.3.7 The Periodic Constant of One-Variable Series

Definition 4.3.23 ([82, 3.9], [97]) Let F(¢) = ) ;-0 a;t' be a formal power series.
Suppose that there exist a positive integer p and a polynomial B p(t) such that
2 0<i<pn@i = Pp(n) for every n € Z.o. We call the constant term *B,(0) the
periodic constant of F and we denote it by pc(F). The integer p is called the
‘period’. Furthermore, we extend the above definition to expressions of type ¢ - F (¢)
via pc(t”" F(t)) := pc(F(¢)), where F is a power series as above and r € QN [0, 1).

If the periodic constant exists then it is independent of the choice of the period p.

If F| and F, admit periodic constants, then the same is true for the series F; + F3,
cF| (where ¢ € C), F1(t") (Where m € Z-q). Moreover, pc(F1 + F>) = pc(Fy) +
pe(F2), pe(cFy) = ¢ - pe(F), pe(Fi (™)) = pe(Fi ().

If F(¢) is a finite sum (i.e. it is a polynomial), then pc(F') exists and equals F'(1).

For certain rational functions, one has the following equivalent description.
(Here, we identify a rational function R with its Taylor expansion at the origin.)
Clearly, any rational function can be written in a unique way as R = Rt + R,
where R™ is a polynomial and R~ is a rational function of negative degree.
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Lemma 4.3.24 Let R be a rational function having poles only at infinity or at
certain roots of unity. Then R admits a periodic constant and pc(R) = R™(1).

Example 4.3.25 Recall that for cyclic quotients (with s > 1) Z(t) = (1 —
tEH)~1(1 — t5)~1, which equals also P(t). We fix 7 = {v;} and h = e?7ia/n
(0 < a < n). Then Z 7 equals t4/" - 3" _ (1 + |(a + nm)/q|)t™.

For the period it is convenient to take ¢, and one can check that pc(Z n1)=0.

Example 4.3.26 Fix a weighted homogeneous germ with g = 0 and the represen-
tative rj,. Take 7 consisting of the central vertex Eg. Then, with the above notations
(where a € [0, 1) stays for —(ry, Ej)))

Pyr(t) = Zpz(t) =) max{0, 1 + Ny, ()}
£>0

By a computation Z; /(1) = 3" y=omax{0, —1 — N, (£)}s*+*. Thus, by (4.23),

pe(Pp,1(1)) = pe(Zp,1(1) = ZmaX{O, —1 = Ny, (0} = h' Oz (=rn)).
=

4.3.8 Okuma’s Additivity Formula

4.3.27 The Setup Consider a normal surface singularity (X, o) and fix one of its
resolutions ¢ : X — X.We fix a vertex v € V. Let U jesI'j be the connected
components of the graph obtained from I' by deleting v and its adjacent edges.
Assume that v is connected to each I'j by exactly one edge. Let X " be the space
obtained from X by contracting (via 'L’) all irreducible exceptional curves to normal
points except E,. It has |J| normal singular points {0} ;, which are the images of
the connected components of E'\ E,. Let X ; be a small Stein neighbourhood of o
in X', and X =1 1(X ;) its pre-image via the contraction 7 : X — X'. We denote
the local smgularmes by (X, 0j). They are resolved by X with dual graphs I

Set T(E) = E’ C X'. The resolution ¢ : X — X and the contract1on r:X > X’
induce an analytic modification ¢’ : X’ — X with (irreducible) exceptional curve
E'.

We say that the Assumption (C) is satisfied if

) nE’" C X' is a Cartier divisor for a certain n > 0.

Theorem 4.3.28 (Additivity for Oy [97]) If Assumption (C) is satisfied then
Py, 7(t) admits a periodic constant and

Pe(X,0) =pc(Por()) + ) pe(Xj,0)).
J
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4.3.29 Additivity for Natural Line Bundles Assume that H'(X, Z) = 0.
Theorem 4.3.30 Set I = {v} and fix h € H. Under the Assumption (C)

h'(X, Ox(=rw)) = pe(Phpuy (1) + Y h'(X;, 05 (=rw)lg,)-
J

4.4 The Seiberg—Witten Invariant Conjecture

4.4.1 The Casson Invariant

4.4.1 The Setup Let M be an oriented integral homology 3—sphere. The original
definition of the Casson invariant A(M) given by Casson is based on a Heegaard
splitting of M, and on the study of the space of conjugacy classes of SU;-
representations of different fundamental groups of the splitting [2, 26].

Here we will adopt a specific surgery formula of A(M) as starting definition,
valid for any plumbed manifold M (I"). It was proved in the PhD thesis of A. Ratiu
(Paris VII), and it follows also from the surgery formulae from Lescop’s book [55].

Definition 4.4.2 Assume that M is the plumbed manifold of a connected negative
definite graph I". Then

—24 (M) = Y (E2+3)+ > 2 — k) (E]. ED. (4.46)
veV veV

We extend the definition of A by the same expression for non-connected graphs
as well, (i.e., for connected sums of negative definite plumbed 3-manifolds). One
verifies that the expression from the right hand side depends only on M (T"), i.e., it
is stable to the plumbing calculus of negative definite plumbing graphs.

By a computation A3 =0and A(2(2,3,5) = A(2(2,3,7)) = —1.

Example 4.4.3 If M is a Seifert 3-manifold, then

1 "1 s
—24-A(Ly) = e(z v+ 2; O[?) +e+3— 12~2}s(a)j,(xj). (4.47)
J= J=

In this case (X, o) is a Brieskorn—Hamm complete intersection

{(zl,...,zv) : Zaijz‘;j =0 for 151’5\1—2}
J

with (a;;) of full rank. Hence L(X,0) = M = X(«a1, ..., a,). Furthermore, the
integers {oy )i are pairwise relatively prime, and the integers w;’s are determined
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from {oy }x by

w; - (]_[ak)/aj = —1 (mod ;).
k

Hence
S(a)j, Otj) = —S((l_[ak)/ajv O‘j)-
k

In this case one also has e~! = — [, a. Note also that

AZE(@y, o) =A@, .o, o) F A (o g, o, e, @),
(4.48)

In particular, the computation of A(X (¢q, . . ., ¢,,)) can be reduced to the case v = 3.
On the other hand, if M = ¥ («ay, ap, «3), then one also has

AMM) = —5 - {number of irreducible SU,-representations of 7 (M) up to conjugation}.
(4.49)

Additionally, in [11, 27] is proved that the Casson invariant is additive with respect
to the splice decomposition. In particular, A(L(X, 0)) equals the sum of Casson
invariants of the splice components of L(X, 0). Since all of them are of type
(g, ...,ay), we obtain that for any singularity link A(L(X,0)) < 0, and
A(L(X, 0)) = 0if and only if L(X, 0) = S°.

4.4.2 The Casson Invariant Conjecture of Neumann—Wahl

Based on a result of Fintushel and Stern [26], valid for ¥ = X (ay, a2, @3), which
identifies the irreducible SU,-representations of 71 (%) with Brieskorn formula for
the signature of the Milnor fiber (cf.4.49), Neumann and Wahl formulated the
following conjecture.

Conjecture 4.4.4 (Casson Invariant Conjecture (CIC) [90]) Assume that (X, o) is
an isolated complete intersection singularity of dimension two, whose link L (X, o)
is an integral homology sphere. Let o (F) be the signature of its Milnor fiber F.
Then A(L(X,0)) = o(F)/8. (Since the intersection form on the Milnor fiber is
even, and the intersection form is unimodular, the signature is multiple of 8 by Serre
[109, p. 53].)

The conjecture would imply (via formulae of Durfee o (F)+8pg + Z%( +|V|I=0
[17] and Laufer u = 12p, + Z% + |V| — rank(H; (L (X, 0)))) [51] that the Milnor
number u and the geometric genus p, can also be computed from the abstract link.
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Neumann and Wahl supported their conjecture by its verification for Brieskorn—
Hamm complete intersection singularities and (hypersurface) suspensions [90].
More generally, the CIC was proved for any splice (complete intersection) singu-
larity in [82].

4.4.3 The Casson—Walker Invariant

The Casson invariant defined for integral homology spheres has an extension to
rational homology spheres given by Walker [116]. Similarly to the Casson invariant
we adopt a working definition, valid for negative definite plumbed 3-manifolds,
based on a surgery formula of [55].

Definition 4.4.5 Assume that H = H;{ (M (I"), Z) is finite. We define

=2 = Y E;+3)+ ) Q2 —r)(E} E)). (4.50)

|H|
veV veV

Again, a direct verification shows that the right hand side depends only on M and it
is independent of the choice of the negative definite graph I'.

Example 4.4.6 If M is a Seifert 3-manifold with v > 3 then

24 1 | i
~ & SAM) = e(Z—v—l—;a?)~|—e~|—3—12-j2=;s(wj,(xj). (4.51)

Example 4.4.7 For a lens space one has A(L(n, q)) =n -s(q,n)/2.

Remark 4.4.8 The CIC identity A(Lx) = o(F)/8, expected in the case H = 0,
does not extend in the same form to hypersurfaces with rational homology sphere
links. For example, in the case of A,_; germs, one has A(L(X,0)) = A(L(n,n —
1)) =—n—-1){n—2)/24, whileo/8 = —(n — 1)/8.

4.4.4 Additivity Formulae for ). and K* + |V|

In the rational homology sphere case there is no natural splice decomposition, hence
there is no analogues for the Casson—Walker invariant of the splice formula valid
for integral homology spheres. However, we present another type of ‘additivity
formula’, more in the spirit of Okuma’s analytic additivity formulae 4.3.28. We
start with some notations.
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For v, w € V we define m,,, := —(E}, E}) = —(I™Yyw € Q-0, and let k, be
the valency of v in I' as usual. Then for any fixed v € V we set

oy = Z (kw — 2)myuw, By = Z (kew — 2)m%w' (4.52)

weV weV

4.4.9 For a fixed vertex v of I', we denote the connected components of I' \ v by
{I";};. We indicate by a subscript i when we consider an invariantin I';, instead of I.
We regard L; as a sublattice of L and let R; : L' — L; be the natural cohomological
restriction, that is, R;(E}) = E:ZJ. if w € V;, and R;(E}) = 0 otherwise. By
projection formula (R; (x), xi)L§ = (x,x;)r forany x € L' and x; € L. Then R;
maps Char(I") into Char(I';), and the canonical characteristic element K of Char(I")
into the canonical characteristic element K; of Char(I';).

Theorem 4.4.10 Foranyl' =Y ryE, € L’

_ 2
(K + 21/)2 + V) — Z((Kl + 2R,(l/))2 +ViD=1- (ay + 1 —2ry) 7

; Myy
(4.53)
24 24 1 -8y
- =3+ . (454
|H| Z \H| Moy

i

Example 4.4.11 Consider the surgery 3-manifold M = 3 J#iK;) as in 4.2.32
with d > 0 and K; algebraic with Alexander polynomial A;. Let A(¢) = ]_[i A (1)
and =) ; u; = 28 as in 4.3.6. By a computation

24-h=(d—1)(d—2)+3uu—2)—12-A"(1).

If u = (d — 1)(d — 2) then this transforms into 24\ = u(3u —5) — 12- A”(1).

4.4.5 The Reidemeister—Turaev Torsion: Generalities

For the general definition of the sign-refined torsion associated with spin®—structures
see the books of Turaev and work of Nicolaescu and Ranicki, see [94, 114, 115] and
the references therein.

4.4.12 The Case of 3-Manifolds Assume that M is a closed connected 3-manifold
without boundary with a fixed orientation. We assume that H = Hj(M, Z) is finite.
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Theorem 4.4.13 ([115]) The ‘universal abelian sign-refined torsion’

7:Spin“(M) > QIH]: o> 15 =Y To(Wh (To(h) € Q) (4.55)
h

has the following properties:

(a) Duality: Consider the involution QI H] — Q[H], given by x = Y, a(h)h —
X:=Y,amh™". Then 1, = 15, or To(h™1) = To ().

(b) H-equivariance: tp,; = ht,; that is, for any g,h € H one has Tgs(gh) =
To (h). In particular, for fixed oo € Spin®(M) the coefficients {T s, (h)}, or, for
fixed ho € H, the coefficients {T; (ho)}s, determine the whole t.

(c) Augmentation: Let aug : Q[H] — Q be the augmentation ), a(h)h >
> _pa(h). Then, for any o one has aug(ts) = 0. Equivalently,

Z‘J’U (h) =0 for any h.

4.4.14 The Fourier Transform We wish to have a dual description of the torsion

in terms of Fourier transform. First we recall the definition of the Fourier transform.
Let H be a finite abelian group and let H= Hom(H, S') be its Pontryagin dual

(the group of characters). If x € H then X denotes its conjugate: x (h) = yx (h).
The Fourier transform f: H — C of a function [ H — C satisfies

-~ 1 -~
Foo = fxm, fiy= > Foox.
heH | | Xeﬁ

Example 4.4.15 Forany o set f(h) := T, (h). Then f(l) = ﬁ(l) = aug(ts) =0.
Example 4.4.16 By 4.4.13(a)—(b) for any o, x, h one has

@ ToOO) =To(x), ) To(x) = x(h) - Tno (x). (4.56)

4.4.6 The Reidemeister—Turaev Torsion of Graph 3-Manifolds

Let M be an oriented rational homology sphere 3-manifold associated with a
connected negative definite plumbing graph I'.

In 4.4.22 we provide a combinatorial expression in terms of I" for the refined
Reidemeister—Turaev torsion. The equivalence of this expression with the original
definition of the refined torsion is proved in [78].

4.4.17 The Fourier Transform of Z; 7(t) Assume that 7 = {u} C Visa
distinguished vertex, and for each 1 € H we consider the reduced series Zj r(¢),
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where ¢ is the variable corresponding to u. Set m,,, := —(E}, E;¥) > 0. From (4.38)

1 Ky—
Zn,uy(t) = H Z x(m)~- l_[ (1= x((EZDE™ )™ g

x€eH veV

This shows that the Fourier transform of the map & +— Zjp, (4 (¢) is

Zuw®G) = [ (1 = xAE; D)2, (4.57)
veV

4.4.18 Character Values on I' Since {[E}']}, generate H, any character x € H is
completely characterized by the values &, := x([E}]), v € V. These are roots
of unity. When we wish to identify the character x, we put its values {&,}, as
decorations on the vertices of the graph I'. The collection {x ([E}])}»,, is a more
subtle information than the abstract group H itself: it shows the ‘distribution along
I'” of the corresponding values of the characters as well. Since for any v € YV one
has e, [E} ]+ Z(u’v) edge[E:] =[—Ey] =0in H (where ¢, = Eg), for each x one
has

g ] a=1 (4.58)
(u,v) edge

Conversely, any collection of complex numbers {&,},cy, & € S!, which satisfy
(4.58) for any v, determines a character x defined by x ((E}]) = &,.

Furthermore, for any x € H \ {1}, define the ‘extended support’ supp®(x) of x
as the set of those vertices v € V for which either x ([E};]) # 1, or v has an adjacent
vertex w such that x ([E}]) # 1.

Lemma 4.4.19 Fix a character x € ﬁ\ {1}.

(a) For an arbitrary vertex u the limit lim;_, | m(x) exists and it is finite.
(b) This limit is independent of u whenever u € supp®(x).

Remark 4.4.20 For x = 1, the Laurent expansion at 1 of the series ZET(Z‘)(I) hasa
non-trivial principal part, hence lim, .| Z{,(¢)(1) is not finite.

4.421 Inthe sequel, the torsion o € Spin“(M) — T5,To =), To(h)h € Q[H]
is defined via the Fourier transform of & — T, (k) in the following way.

Definition 4.4.22

(a) For the trivial character ﬁ(l) =0.
(b) If x ([E}]) # 1 for every v with k, # 2, then we set

To(0) = (xhe)™ - [T = xUE;D 2, 0 = heolK].
veV
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(c) If x # 1, but the assumption from (b) does not hold, then the formula from (b)
is regularised as follows:

To (0 = (o) ™" lim [T (1= x B2 = (o)) ™" lim Zu O
veV

for certain (any) u = u, € supp®(x).
Theorem 4.4.23

(a) o +— Ty defined in 4.4.22 and the refined Reidemeister—Turaev torsion 4.4.12
coincide.
(b) T defined in 4.4.22 is independent of the choice of the resolution.

Remark 4.4.24

(a) By Fourier inversion

1 - . —
ToW = e 2 X0 Gelho)™ - lim Zjuy i, ) (R).
xeH\{1}

One verifies that the Properties (4.56) are valid, hence {J, (1)}, satisfy the
duality and H -equivariance properties. Hence

Jo(1) =To(1), and T5(1) = Th,o(x1(1) = To[k)(—ho). (4.59)

In particular, Tk (h)h € Q[H] contains the same information as {JT5 (1)}, .
(b) From part (a),

1 _ . —
To( = > o)™+ lim Zg ) (t,) ().
H| £ oy 1
x€H\{1}

Usually, for different characters y one needs different regularization vertices
uy. However, if Ny 1supp®(x) # @, then any u € N, x1supp®(x) might serve
as a common regularization vertex (with a common variable ¢ = t,). In such a

case, via m)(l) = Zuy (1),

. 1

w2 (T Zg @) = lim (Za ) -

xeH\{1)

1

\H] . Z{u}(t)>.

We rewrite {Z, ,j(t)}; equivariantly as Zy (,)(t) := D> ey Znuy(h €
QIIN[H], and we set N := >, h € Q[H]. Then, via T (1) = Ty(x1(—ho),

N

Tot-x1 = Totx1 = im ( Zi®) = Zm @+

) c QLH]. (4.60)
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The identity (4.60) is not true in general, i.e. when N, 2 1supp®(x) = 9.

The above formula already shows in this special case that the principal (pole)
part of the Laurent series at t = 1 of Z, (,)(¢) is independent of 7 € H. This
statement is true in general, even without the restriction Ny 1supp®(x) # 9.

(c) If T is star-shaped then the central vertex is an element of N, _;supp®(x).
Similarly, if H is cyclic, then again Ny ;supp®(x) # 9.

Example 4.4.25 (The Torsion of a Lens Space) We fix 0 = hyo[K] € Spin®(Ly).
Then for x # 1

To OO = x(ho) ™" - (1 = xAESD) ' = xAET) L
Assume that i, = a[E]] for some 0 < a < n. Set& := x([E¥]). Then,

g*(l

T 0= _eya —e9

1 ga
€#D, and T, (1) = - :
n gn;# (1= §)(1 -9

(4.61)

4.4.7 Additivity Formula for the Torsion

We fix a graph I such that M (I") is a rational homology sphere. For a vertex v € V
of I let {I";}; be the connected components of I" \ v. For any o € Spin“(M(I")) we
define its restrictions o; € Spin®(M (I';)) as follows.

Choose I" = ), rwEy € L' such that r, € [0, 1) so that [I'] = h, satisfies
o =o[2l' + K] = hyo[K] € Spin“(M(I")). Then we set 0; = o[R; (2" + K)] =
[R;(I")]o[K;] € Spin“(M (T;)). (For R; see paragraph 4.4.9.)

Theorem 4.4.26 ([12]) Set!’ =", ryEw, ry € [0, 1), [I'] = ho as above. Recall
also the notations from (4.52)

oy = Z (kw = 2mypw, By = Z (kw — 2)m121w

weV weV

Then

=By (ay+1-2r)

‘Ta(l)(M(F))—ZTa,-(l)(M(Fi)) = pc(Zn, ) (t) + 2dmy, 8

1

Corollary 4.4.27 T, (1)(M (")) is a rational number.
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4.4.8 The Seiberg—Witten Invariant

In this section we fix a plumbed rational homology sphere 3-manifold M associated
with a connected negative definite plumbing graph I'. The Seiberg—Witten invariant
of M, stv, associates to each spin® structure o € Spin“(M) of M a rational number
st . Here, based on [95], we ‘define’ it as the refined Turaev torsion modified by
the Casson—Walker invariant. Based on the formulae of the previous sections, this
provides stv combinatorially from TI'.

Definition 4.4.28 We define stvo : Spin°(M) — Q, o > sto, by
sty =T (1) — A/|H].

Example 4.4.29 1f H = 0 then Spin°(M) has only one element, and the corre-
sponding Seiberg—Witten invariant is —A(M) (the negative of the Casson invariant).

4.4.30 Additivity Formula for the Seiberg—Witten Invariant The previous addi-
tivity formulae imply the following formula.

Theorem 4.4.31 ([12]) Set!’ =", I, Ew, I, € [0, 1), as in Theorem 4.4.26. Let
o € Spin“(M (")) be defined as [I'lo[K] = o [K +21'], and take also its restrictions
o;i :=[R;(I"N]o[K;i] = o[R; (K+2l)] too. Set hy = [I']. Then one has the following
identities:

1 v+ 1—=2r)?
5105 (M(T)) = 3 6105, (M (T')) = pe(Zn, (1) (1) + ¢ — (@ +1-2r)

8myy
1
and
K +20)% + |V K+ 2R ()2 + [V
@mAM@»—( ; ")—}j@mmwun»_(l ,;» |,U
i
= pc(Zp, (v} ().
Proof Combine Theorems 4.4.10 and 4.4.26 and use pc(S(t4)) = pc(S(t)). O

This additivity formula should be compared with its ‘analytic counterpart’, namely
with Okuma’s additivity formula 4.3.30.

4.4.9 The Seiberg—Witten Invariant and the Series Z(t)

We prove two key formulae for the Seiberg—Witten invariant of a rational homology
sphere link. One of them identifies it with a weighted Euler characteristic of (shifted)
weighted cubes in a large rectangle of L ® R, the other one with the constant term of
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the counting function of the coefficients of Z(t). The proofs are based on additivity
formulae of the compared invariants.

The similarities with the analytic counterpart (the series P (t) and the equivariant
genera) are emphasized.

4.4.32 In the next discussion we will use the weighted cubes, see also 4.6.3. Let
us fix an element 4 of H and write L, = {I" € L’ : [I'] = h}. Recall that the set of
‘combinatorial” g—cubes (associated with ) consists of pairs (I, I) € Lj x P(V),
[I| = q (g € Z=o). (I', I) will be identified with the vertices {I’ + >, ;s Ev}rcr
of an ‘Euclidean’ cube in L ® R. One defines the weight function w : L' —
Q, w() := x(I"), and also the a weight of the g—cubes

w(@, ) =max{w(l’ + 3 £, }.

vel’

Assume that a set A C L ® R has the following property: if an Euclidean cube (as
above) is in A then any face of any dimension of that cube is in A. For such a set A
one defines the ‘weighted Euler characteristic’

Euy(A):= Y (=DM lw(@, n).

(', eA

Such a set A might appear as follows. For the fixed class 4 € L’/L one takes two
representatives /|, [}, € L) with [, <[|. Then R, = Ry, (I}, I}) consists of the union
of all combinatorial cubes (I’, I), of any dimension, such that [[’] = & and any
vertex I’ + 3" o Ey of (I', 1) satisfies I, < 1"+ )" ., Ey < [}. Accordingly to
the above identification, Ry, (I}, I5) will also denote the real rectangle {x € L @ R :
lé <x < l/l}, or the union of all Euclidean cubes (with all vertices having class [/])
in this real rectangle.

Remark 4.4.33 For a fixed h € H, we can consider two types of rectangles and
weighted g—cubes, depending on the geometric situation. First, in the context of
lattice cohomology (see e.g.4.6.3, and in its preparation 4.5.2) we take integral
lattice points and rectangles R(l»,[;) and cubes with vertices in the lattice L, but
we twist the weight function: we take xx (which generates wy) with k = K + 21},
for some representative [, of k.

Second, when we wish to relate the cubes with the coefficients of Z(t) (as in the
previous paragraph), we take shifted rectangles R, := Ry (I}, 1) ([l}] = h) with
cubes (I, I) of type [I'] = h in them, together with the usual untwisted Riemann—
Roch-function xy = xx.

The two approaches can be compared easily (see also 4.6.3). Indeed, if k =
K + 215, (1,1 = h, then for [ € L we have x (I +1;) = xx(I) + x(I},). In particular,
with the notation l} = 1; +1, (I; € L), we have R,(I5,1}) = I, + R(I2, 1) as
rectangles, and

Euy(Ru(l3, 1)) = Euy (R(l2, 1) — x (1)
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4.4.34 Via the two incarnations of the weighted cubes (cf.4.4.33) the next result
is the ‘pair’ of Lemma 4.5.8.

Lemma 4.4.35 Fix a class h and take a representative I of h in —K + S
(a) Foranyl e L', [I'l = h, I > I, there exists an E, in the support of I — I
such that w(l' — Ey) < w(l’).
(b) There exists a computation sequence {{;}i>o0, £i € L, with £y = 0, and ;1 =
L + Ey) for some v(i) € V wheni > 0, satisfying:
(i) The coefficients of £; tend to infinity, that is lim; oo (£;, —E}}) = oo for all
v.
(ii) Foranyi > 0 one has w(lj + €;) < w(l{j+ €i11).
(c) Foranyl' < 0, with [l'] = h, there exists Ey, € |l'| such thatw(l'+Ey) < w(l).
(d) For any representatives Iy, ) of h, such that 1y > Iy > 0 > 1), Euy (R (I}, 1}))
is independent of the choice of I and ;. In particular, with such choices, h
Euy (Ry(l}, 1)) is a numerical invariant of h € H = L'/L.
Definition 4.4.36 The invariant provided by 4.4.35(d) will be denoted by sj,.

4437 LetZ(t) =) ;cp 5(1’)tl/ be the combinatorial series defined in Sect. 4.3.3.
Since Z is supported on &', the next sum in (4.62) is finite by 4.2.13.

Theorem 4.4.38 Fixh € H. Foranyl’ € —K + 8 with [l'] = h, the expression

—xU+ Y s +D (4.62)

lIeL,1£0

depends only on the class h of I', and, in fact, it equals sy, defined in 4.4.36.

Theorem 4.4.39 ([73]) ForanyT and[K +2!'] € Char one has 5wk +211(M(T))
= sy + (K* + [V])/8, o,

Euy (Ry(5, 1)) = spn = swgpx (M (D)) — (K2 + [V])/8. (4.63)

The proof is based on the ‘additivity formula’ 4.4.31 and a similar formula valid for
Sh.
Therefore, Theorem 4.4.38 reads as follows.

Theorem 4.4.40 Assume thatl' € —K + 8" and Let Z(t) = ) ;p 3([’)tl, be the
combinatorial series defined in Sect. 4.3.3. Then

(K + 212 4+ |V

g (4.64)

Z 3" = sw, k2 —
(=1, 2
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Ifwe write I’ = ry, +1 (where h = [I'] and 1 € L), then (4.64) transforms into

(K +2rp)? + |V

5 (4.65)

D 30 = xk2n (D) + 5ok 420 —
=1, 2

In particular, in the chamberl’ =1 +ry, € —K + 8/, the sum from the left hand side
of the above identities is a multivariable quadratic function in | with constant term
5ok 2ry] — (K + 2r)> + [V])/8.

These formulae should be compared with those from (4.36) valid for the
coefficients of the series P. The fact that in (4.36) (associated with the series P) the
constant terms are the equivariant geometric genera, is rather natural. However, the
fact that the constant terms in the above Theorem 4.4.40 (associated with Z, a rather
‘simple’ series) is the Seiberg—Witten invariant, is rather surprising. Nevertheless,
the above identity provides a very natural, direct and conceptual explanation, how
the Seiberg—Witten invariant might appear in the theory of singularity links.

Example 4.4.41 If T is numerically Gorenstein and # = 0 then (4.65) reads as

K>+ |V
a0 = sk — sl ) (4.66)
leL, I#Zk

4.4.10 The Seiberg—Witten Invariant Conjecture/Coincidence

In this section we treat a set of potential identities connecting the analytic invariants
with the topological ones, namely, the equivariant geometric genera with the
Seiberg—Witten invariants of the link. Whenever these identities are valid they
provide a topological description of the equivariant geometric genera. The identities
are generalizations of the expectation of the Casson Invariant Conjecture to the case
of singularities with rational homology sphere links.

Superisolated singularities in general do not satisfy SWIC, their case will be
discussed in subsection 4.4.11.

4.4.42 Seiberg—Witten Invariant Conjecture/Coincidence (SWIC) [73, 75, 78]
In this section we assume that the link of (X, o) is a rational homology sphere, and
we fix a resolution X — X, and we keep all the notations associated with it. We say
that (X, o) satisfies SWIC(ry,) for a certain & € H if the following identity holds

(K +2ry)? + |V

1 (X, O(=rh)) = sWo(K-+2r,) - g

(4.67)

We say that (X, o) satisfies the equivariant SWIC if (4.67) holds forevery h € H.
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We say that (X, o) satisfies the SWIC if it satisfies SWIC(0), that is, if

K% + |V

. (4.68)

pe(X, 0) = stq(k] —
The identity SWIC was formulated as a conjecture in [78] (while the equivariant
case in [71]): the expectation was that it holds for any Q-Gorenstein singularity.
Although the conjecture can be verified for several subfamilies of singularities, since
[61] we know that it is not true for the large class of (Q-Gorenstein singularities (see
also 4.4.11 for the treatment of superisolated singularities, a family which produces
several counterexamples). But even in the case of families when it fails, it still
indicates interesting ‘virtual’ properties (e.g., in the superisolated case it has lead
to the Semigroup Distribution Property). The limits of the validity of the SWIC
are not clarified at this moment. Having in mind the existence of cases when the
identities do not hold, one might say that its name as SWI ‘Conjecture’ is not totally
justified, although this was its name in the literature. Hence, the reader might read
the abbreviation SWIC as SWI ‘Coincidence’ too.

Example 4.4.43 Assume that (X, o) is Gorenstein and it admits a smoothing with
smooth nearby (Milnor) fiber F. Then the signature satisfies o (F') + 8p, + K 4
|V| = 0, hence the SWIC (for & = 0) reads as

—O‘(F)/8=5mg[1(]. (4.69)

In this case, usually, o (F)/8 is not an integer, see the germ A,,.

Example 4.4.44 Assume that (X, 0) is a complete intersection with integral homol-
ogy sphere link. Then T,k (1) = 0, hence the SWIC reduces to the CIC (see 4.4.2):

o(F)/8 = AM(L(X, 0)).

Example 4.4.45 The identity P(t) = Z(t) (that is, the topological description via Z
of the Poincaré series associated with the divisorial filtration) implies the equivariant
SWIC. In particular, the identity Py(t) = Zo(t) implies SWIC. Indeed, for any
I'e =K+ 8 withl’ =1+ r, (I € L), from (4.36) one has

Yo p@) = k120, + B O(=rh). (4.70)
[i/]:”/]’ i//)fl/

On the other hand, from (4.65),

(K +2rp)% + |V

; .71

D7 3 = xkt2n (D) + 5ok 420 —
=11, T2
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For!’ € —K + 8 and I’ = [ + ry, we can regard the evaluation at [ = 0 of
the counting function Z[ l=q), T2 coeff(l’) as an operator. It associates with any
multivariable series its ‘multivariable periodic constant’, cf. [45, 46]. In this sense,
the above identities say that the periodic constant of Py, is Y (O(—rp)), while of Z;,
is sto[K 4271 — (K + 2r)* +VI)/8.

Hence, if Py, (t) = Z;,(t) then the SWIC(r;,) automatically holds as well.

In fact, in order to have the SWIC(r;) we need the validity of the above identities
for a certain I’ € —K + 8" ([I'l = h) only. Indeed, if a certain [j € —K + &,
[[)] = h, has the property that P, (t) — Z(t) is supported on (7> Iy}, then
by the above identities applied for this [, we obtain SWIC(r,). In such a case, again
by the identities (4.70)—(4.71), even if Py (t) # Zj(t), their counting functions I’ >
Z[ =i, T2 coeff(!’) in the whole chamber !’ € —K + &' coincide (independently
of the position of /j in this chamber).

For a fixed h, the identity P, = Zj is much stronger than the SWIC(ry):
examples when P, # Zj, but the SWIC(r;,) holds can be constructed.

4.4.46 Extension to the Other Natural Line Bundles

Recall that in 4.2.74 we proved that for any I’ € L’ there exists a unique
minimal s(!’) € S’ such that s(I’) — I' € L. We wish to compare h'(O(—1"))
and h' (O(—s(1'))) via the SWIC property.

We say that I’ € L’ satisfies the SWIC identity, denoted by SWIC(!'), if

(K 4202 + |V

SWICI): WX, 0(~1") = sWg(k42r) — ,

4.72)

If this holds, then it obviously provides a topological description for /! (X,0(=1").
By 4.2.76 one has

W (X, 0(=s('))) — h'(X,0(=1) = x(s')) — x(I).

A computation shows that the right hand side of (4.72) behaves similarly. Hence

Proposition 4.4.47 The SWIC(l') is valid if and only if SWIC(s(l")) is valid. In
particular, SWIC(ry,) is valid if and only if SWIC(sy,) holds.

This shows that the validity of SWIC(r;,) implies the validity of SWIC(!’) for all
I" € Lj with s(I') = sy). This covers exactly those cycles I’ € L) with I’ < sy
(including all cycles I’ = )", I E,, with [}, < 1 for any v).

This topological characterization SWIC(I") of h 1(O(~1")) (modulo the validity of
SWIC) in this ‘negative’ region {I’ : I” < sy} can be compared with the vanishing
h'(O(=I")) = 0 in the ‘opposite positive’ region {I’ : I’ € —K + S'}.

It is natural to ask the following question: what can one say in the case of an
arbitrary [/, which sits outside of these two regions.
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Proposition 4.4.48 If SWIC(r,) holds then for anyl' € L},

(K 4212 + |V

q 4.73)

RO == Y pl +a) + 5ok 2 —
ael, a}fO

Additionally, if P, = Zj, (or, at least their counting functions coincide), then one
has the following topological characterization of h' (O(=1")):

(K 4 20)% +|V|

RO == Y 30 +a) + 5ok 2] — g

ael, a;fO

4.74)

Remark 4.4.49 Assume that the equivariant SWIC is true for (X, 0). Then, taking
the sum of the identities SWIC(r;,) from (4.67), and using ) T, (1) = 0, we get
the following expression for the geometric genus of the universal abelian covering
(X4, 0) in terms of the graph I'":

K%+ V|
pg(Xaq,0) =—A(M(T)) — |H| - g +];1x(rh)-

Example 4.4.50 (SWIC is True for Cyclic Quotients) In this case the linkis L(n, g),
H = Zj, and the spin® structures are indexed by 0 = o[K + 2aE}], where a € Z
and0 < a < n. Setalso h = a[E}] € H. Then

Ty (1) = —s(q, n) + né;l - zan —f((i,f )

i=1

Since A/n = s(gq, n)/2, cf.4.4.7, we also have
3 n—1 a iq
5mg——2-s(q,n)+ 4n _Zn_z(n))'

On the other hand, (K + 2r,)> + |'V])/8 = (K2 + |'V])/8 — x(r;) can also be
computed explicitly. From 4.2.60 one has (K> +|V|)/8 = (n —1)/4n —3s(q, n)/2.

Furthermore, from 4.2.76 we have h' (O(—sp,)) — h' (O(—=rp)) = x (sp) — x (rp).
But 1! (O(—s;,)) = 0 by the vanishing 4.2.71, while 2! (O(—r1)) = pg(Xa, 0)on) =
0 (cf. 4.2.82) since the universal abelian covering (X, o) is smooth. Hence y (r;) =
X (sn), and its expression is
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In particular, the right hand side of SWIC(r,) is zero, and the same is true for the
left hand side because of the vanishing already mentioned.

Example 4.4.51 The equivariant SWIC is true for splice quotient singularities. In
particular, it is true for rational, minimally elliptic and weighted homogeneous
singularities (with QH $3 link). The SWIC(0) is valid for all elliptic singularities
and suspensions {z” + f(x, y) = 0}, where f is irreducible (and with QH S3 link).

4.4.11 SWIC and Superisolated Singularities

We assume that (X, o) is a superisolated singularity associated with the irreducible
projective rational cuspidal curve C of degree d.

Though in many cases (e.g. for weighted homogeneous singularities) we discuss
the SWIC together with equivariant SWIC, this is not the case for the superisolated
germs. The main obstruction is that in the superisolated case (though p¢ (X, 0) and
Py, (v, (t) are extremely simple), usually we have very little information about the
analytic properties of the universal abelian covering, e.g. about its geometric genus
pg(Xq,0) (see e.g. [111]). Therefore, in this subsection we focus merely on the
SWIC (for h = 0).

It turns out that for a superisolated singularity the SWIC is valid if and only if
N(1) = 0, a property which is not always true, cf. subsection 4.3.6. Let us list first
the involved invariants.

4.4.52 From Example 4.4.11 we have K2 + |V| = —d(d — 2)* 4+ 1 and 242 =

wBu—75)—12-A"(1) (n = 28). Moreover, the divisorial filtration associated with

I = {C} = {v4} agrees with the filtration associated with weights (1, 1, 1), hence

Por(t) = (1 — t)/(1 — 1)3. Since in the good resolution I" \ v4 supports only

smooth germs, by 4.3.30 p, (X, 0) = pc(Po,7(t)), whichis d(d — 1)(d — 2)/6.
The definition of Z7(¢) compared with A’Campo formula [1] gives

1 INGEL' A1)
ZO,I(t) = d dX: a- %-tl/d)2 and  Zp(1) = (1— tl/d)2'
Ea=1

Since H is generated by [E7], the vertex vy (corresponding to C) is a
regularization vertex for any character. Therefore, from 4.4.24

. 1 1 A®)
Toxi(D) = lim (Zo1(0) = Z1(0) = Sd;ﬁ A — £y

Following 4.3.6 we also consider

INGIALD) 1—14

1
N(t) :==Zop r(t) — Py r(t) = d Z (1—&rl/dy2 (1 —p)3"

=
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Then

LA@) 1=
lim N (1) = To(x)(1) + lim (d (1 —1/ay2 (1 _t)3)'

If we write A(f) = 1 +8(tr — 1) + Q(1)(r — 1)? as in 4.3.6, then the limit can be
computed in terms of d and Q(1) = A”’(1)/2. The computation provides

Proposition 4.4.53

K%+ |V
N(1) = stos[k] — g — Dg-

This combined with (4.45) gives (with Q(t) = Z 0 Ot] 7)
K? + [V
SWs[K] — = Za]d

Corollary 4.4.54

(a) SWIC for h = 0 is equivalent to N(1) = 0.
(b) The Conjecture 4.3.22 (which predicts that N(1) < 0 for any superisolated
2
singularity) is equivalent to st4 (k] — K ng(w < pg.

Corollary 4.4.54 has the following consequences (for some of the arguments see
the paragraphs after 4.3.21): via the ‘Semigroup Distribution Property’ 4.2.33, the
SWIC (for h = 0) is valid whenever v = 1. In fact, in this case not only N(1) = 0,
buteven N(t) = 0,1i.e. Zy 7(t) = Py 7(1).

If v = 2 then the coefficients of N(¢) are non-positive, however, it can happen
that N(¢) # 0, see. e.g. several examples in [61]. Hence, if v = 2 and N(t) # O

then the SWIC fails and stos(x] — Kzglq/‘ < pg. (The difference will be interpreted
in terms of lattice cohomology in 4.9.2.)

Remark 4.4.55 Though till now we tried to convince the reader that the SWIC,
for certain analytic types, is a ‘natural’ reality, the superisolated case suggests the
opposite. Indeed, for such germs, p, depends only on d, but the topological side
depends in a subtle way on the local singularity types of C (see above the formulae
of A and T,[x](1)). Having in mind this subtle sensitivity to the local singularity
data of C, the validity of SWIC (when it holds) is a true marvel.

Example 4.4.56 Let us analyse a particular case with more details. Assume d = 5,
v = 2, and the two singularities have multiplicity sequence [3] and [23]. The graph I
is presented below, and N (t) = —2t, hence SWIC fails: p, = 10, while —A = 21/2
and T, k(1) = 2/5, hence sto, (k] — (K> + [V])/8 = 8.
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In fact, we can consider two analytic structures supported on this topological
type (given by the graph). They are rather different, though both are very natural.
The first is a superisolated hypersurface singularity, as analysed above. On the other
hand, this topological type supports also a splice quotient singularity which satisfies
SWIC, hence it has p, = 8.

4.5 Weighted Cubes and the Spaces S ,

4.5.1 Weighted Cubes and Generalized Computation
Sequences

To any good resolution graph I' and characteristic element k € Char, we consider
the weight function xx : L — Z, and a natural cubical decomposition of R*
associated with the embedding L ~ Z° — Z° @ R = R®, where s = |V| and
the identification L ~ Z° is given by the base vectors {E,},c. Then, for each
n > minjer {xx(/)}, we define the topological space Sk ,, as the union of all cubes,
which have all vertices of weight < n. We show that the homotopy type of the tower
{Sk.n}n depends only on the 3-manifold M (I") and on the spin® structure associated
with k. The tower {Sk .}, carries an extremely deep information about M (I"); the
final goal is to determine their homotopy types. Via the spaces {Sk ,}, this section
prepares the theory of graded roots and lattice cohomology.

4.5.1 Cubes in L ® R and the Spaces {S; .}, [72] Fix a connected plumbing
graph I' with negative definite intersection form, and we assume that the plumbed
3-manifold M (I") is a rational homology sphere.

We use the standard notations for the lattice L, which has the distinguished base
elements {E, },c. Using this basis, one identifies L with Z°® with its fixed standard
basis, still denoted by {E}ye.

7Z* ® R >~ R’ has a natural decomposition into cubes given by the inclusion
7° — R’. The zero-dimensional cubes are exactly the lattice points Z*. Any [ € Z°
and subset I C V of cardinality g defines a g-dimensional cube [J; = (/, 1), which
has its vertices in the lattice points (/ + ) _, ey Ev) 1, where 1 " runs over all subsets
of I.

Next, we fix a characteristic element k € Char and we consider the Riemann—
Roch function x; : L — Z, x¢(1) = —(,] 4+ k)/2. Here we regard yx; as
a weight function on the set of cubes: the weights of zero-dimensional cubes
are defined by wo(l) = xx(/), while, in general, wy((/, I)) := max{xx(v)

v is a vertex of ([, I)}.
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Definition 4.5.2 For every n € Z, define S, C R as the union of all the cubes [,
of any dimension, with w(C,;) < n (with induced topology of R*). Clearly, S, # ¢
exactly when n > my, where my = minjezs xx(l). If we wish to emphasize the
k-dependence we write Sk ;.

One has the natural inclusions S, C ... C Sy C Syu41 C .... It turns out
that the topology of the spaces {S;},>m, might be rather interesting. The tower
has a finiteness property: only finitely many S, have nontrivial topology (are non-
contractible), but an S, with n ‘small’ might have rather complicated homology
groups. In general it is rather hard to solve the corresponding Diophantine equations
and to analyse the adjacent positions of the solutions (in order to get the cubes
which build up the topological space S,). However, this combinatorial/artihmetical
structure can be extremely rich covering a big amount of deep information.

Example 4.5.3 ([72]) Consider the following graph:

A computation shows that x > —1. S_ consists of two contractible connected
components. The space Sp has three connected components, two of them con-
tractible, and the third has the homotopy type of the circle. The spaces S, forn > 1
are contractible.

4.5.4 Assume that k and k' determine the same Spin‘—structure of M(T),
cf.4.2.94, hence k¥’ = k + 2] for some [ € L. Then xp(x — 1) = xr(x) — xx(1)
for any x € L. This means that the transformation x +> x’ := x — [ realizes an
identification of the ‘S,-spaces’ associated with k and k": S , = S’ ,—y, (). Hence,
fixing a representative k from each class [k] € Spin“(M(I")) we can speak about
the tower of spaces {Sk. . }», indexed by [k] € Spin“ (M (I")).

Proposition 4.5.5 ([72]) The tower of spaces {Skn}n, indexed by [k] €
Spin (M (TI")), up to homotopy equivalence, depends only on M = M(T), it is
independent of the choice of the negative definite plumbing graph T, which provides
M.

Remark 4.5.6 A possible generalization of the set of weighted cubes and spaces S,
is provided via a set of compatible weight functions. Let Q, denote the set of g—
cubes. A set of functions w, : Q; — Z (0 < g < |V|) is called a set of compatible
weight functions if the following hold:

(a) for any integer n € Z, the set wal ((—o0, 1)) is finite;
(b) for any 00, € Q and for any of its faces [, 1 € Q,_1 one has w,(CJy) >
wq—l(Dq—l)-

Then one can define S, as U,{d € Q; : wy(Ly) < n}.
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4.5.2 The Topology of the Spaces {Si,n}n

In order to analyse the topology of the space S, = S, it is convenient to introduce
the set of finite rectangles indexed by pairs /1, [, € L with [} < I;.

Definition 4.5.7 For any such pair /| <l set R(l1,l2) :={x e R® : [} <x < b}.
Define also R(l;, o0) :={x € R® : [} < x}.

The point in the next lemma is that y-monotone (non-increasing) computation
sequences provide strong deformation retracts for the spaces Sk ;.

Lemma 4.5.8 Fix k € Char and write S, = Sk n.

(I) There existly € L and an increasing infinite sequence of cycles {l;}i>o (I € L)
with ly = 4, such that

(a) foranyi > 0one hasliy1 =1; + E,) for some v(i) € V,
(b) ifl; =), miyEy, then lim;_,oc m; , = o0 for all v,
() xxli+1) = xx(di).

Similarly, there exists |_ € L and an increasing infinite sequence of cycles
{yitizo, satisfying yo = I, the analogs of (a)—(b), and (c) xk(=yi+1) =
Xk (=Yi).
(Il) Take l_ and 14 as in (I). Without loss of generality we can assume that —[_ <
L. Then the inclusion R(—I_,00) NS, C S, and R(—I_,14) NS, C S, are
homotopy equivalences for any n € Z.

Corollary 4.5.9 For any k € Char the space S, is contractible for any n > 0.

Proof Fix I_ < I as in Lemma 4.5.8(I). Let n be so large that R(—I_,[+) C Sj.
Then, by Lemma 4.5.8(1I) S, has the same homotopy type as R(—I_, [). O

4.5.10 Distinguished Representatives and Their Spaces S, As we already said
in4.54,if k' = k+ 2l forsome! € L then S, = Sk’ n—xe (1)- Hence, it is natural to
choose one representative from each spin® structure. For several results the choice
is irrelevant, however, certain choices have certain advantages. Our preferred choice
is the distinguished representative, or distinguished characteristic element k, :=
K +2sp, cf. 4.2.94, where s, € L' is the smallest representative of 4 in S, cf. 4.2.78.

A possible motivation for the choice of k. is the following. Recall that the
rationality criterion for graphs is x (/) > 0 for any [ € L., hence it is decided
in the ‘first quadrant’ L>( of L. More generally, for arbitrary graphs, the essential
properties of x : L — Z are already coded in the restriction x|Lx>¢. The choice
k; = K + 2s, guarantees that the essential properties of xx, : L — Z are
coded again in L (or, equivalently, for a fixed &, the essential information of
xol{l" € L' : [I'] = h}is coded in xglsy + Lx>o.
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Lemma 4.5.11 Fix h € H and k, = K + 2sp, as above. Then the following facts
hold.

(a) In Lemma 4.5.8 one may take | = 0. This means that R(0, 00) N Sk, » C Sk, .n
is a homotopy equivalence for any n. In particular, by Lemma 4.5.8, there exists
I+ > 0 such that R(0, 1) N Sk, .n C Sk, n is a homotopy equivalence for any n.

(b) Assume that Zx > 0 (e.g., as in the minimal good resolution). Then one can
take |y = | Zk]. Hence, Sk, n has the homotopy type of R(0, | Zk]) N Sk, n.

(c) Foranyx > 0one has xi, (x) > xk(x). Therefore, min x;, > min xg.

(d) Sk.n (i.e. when h = 0 and s, = 0) is connected for all n > 1.

Example 4.5.12 (Characterization of Rational Graphs via the Spaces S, [70]) Let
I" be a connected, negative definite plumbing graph whose plumbed 3-manifold is
a rational homology sphere. Recall that I' is rational if x(/) > O forany/ € L-y.
(In this case py(X, 0) = 0 for any analytic type supported on the topological type
determined by I'.) Then the following facts are equivalent:

(a) T isrational,

(b) Sk.n is contractible for every n > min x;

(b") Sk.n is connected for every n > min y;

(¢) Sk,n is contractible for all k € Char and n > min .

Additionally, if I is rational and k, = K + 2sj, then min xx, = 0.

Example 4.5.13 (Characterization of Elliptic Graphs via the Spaces Sk, [70])
Assume again that M(I") is a QH S3. Recall that T is elliptic if min x = 0 and
I' is not rational. Then I' is elliptic if and only if Sk , is empty for n < 0 and Sk o
is not connected.

4.5.3 ‘Bad’ Vertices, Almost Rational Graphs and Lattice
Fibrations

We measure how far an arbitrary graph (tree) I" is from being rational. Recall that
decreasing all the self-intersection numbers of a tree, with all the vertices decorated
by gy = 0, we obtain a rational graph. The next definition aims to identify those
vertices where such a decrease is really necessary. [Such a subset of V was already
considered in different articles like [70, 72, 74, 102], mostly under the name ‘bad
vertices’. Since the definition of the ‘badness’ was not uniform here we use the
notation SR for them, for several other families see [66].]

Definition 4.5.14 Let I" be a negative definite connected tree with M (I") a QH S3.

A subset of vertices V = {v1, ..., v,} C V is called SR—set, if by replacing the
Euler numbers e, = E,% indexed by v € V by some more negative integers e}, < e,
we get a rational graph. A graph is called AR-graph (‘almost rational graph’) if it
admits an SR—set of cardinality < 1.
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Example 4.5.15

(a) A possible SR—set can be chosen in many different ways, it is not determined
uniquely even if it is minimal with this property.

(b) Usually we allow non-minimal SR—sets as well.

(c) Any rational graph is AR; for rational graphs the empty set is an SR—set. The
class of AR graphs is closed while taking subgraphs or/and decreasing the Euler
numbers.

(d) The set of nodes is an SR—set. Hence any star-shaped graph (with g = 0) is AR
with V = {vo}.

(e) Any elliptic graph with H1(Lx, Q) = 0is AR.

(f) Consider the graph I" of s3 4(K) (ford > 0and K C s3 algebraic knot). Then
I' is AR: if we modify the —1 decoration of v; into —2, we get a sandwiched
(hence rational) graph.

(g) Let {K;}]_, be algebraic knots and set K = #;K;. For d > 0 the negative
definite graph I" of § 4(K) is givenin 4.2.32. Then the smallest SR—set consists
of the set of (—1)-vertices (their number is v).

4.5.16 Lattice Fibrations: Universal Cycles in the Fibers Let us give some
intuition for the next construction.

If T is rational, then O is a yi,—minimal lattice point, and 0 < S, ,
(n > 0) admits a strong deformation retraction: there is a xx, —non-increasing
(combinatorial) flow contracting any S, , (and L @ R) to 0.

In general, let us start with the lattice L and a representative k = K + 21;. Then
(dictated by some ‘badness properties’ of some of the vertices, indexed by V) we
will write the set of vertices V as a disjoint union V U V*, such that any sublattice
of type [+ L(V*) (where [ = > cy tvEy € L(V)) behaves as a rational lattice,
that is, it can be contracted to one of its lattice points via a yx,—non-increasing flow.
(In other words, ‘L, or the spaces S, project to L (V) with contractible fibers’.) On
the other hand, the x;—minimal point of  + L(V*), where [ + L(V*) contracts,
depends essentially on /; it is a crucial universal point xp () of I + L(V*). The
aim of different reduction theorems is to recover different invariants of the weighted
lattice (L, xx) from {Xk(xz,; (l))}ZeL(q/)' i

In this subsection we define and analyse the points Xy (). If I, = s, then some
additional “positivity’ properties hold for them.

4.5.17 The Definition of the Lattice Points x (/) Let us fix a resolution of a germ
(whose link is not necessarily a rational homology sphere). Suppose we have a
family of distinguished vertices V := {vi};_; € V (usually chosen by a certain
geometric property). Then we split the set of vertices V into the disjoint union
V u V*. Let {my(x)}, denote the coefficients of a cycle x € L ® Q, that is
X =) peqymu(X)E,.

We use the notation [ := ZUGWEUEU € L(V), and we fix h € H and a
representative /; € L’ with [1;] = h. Then the cycles x (/) are defined as follows.
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Proposition 4.5.18_([70, Lemma 7.6], [47]) For any I € L(V) there exists
a unique cycle x(I) € L (depending on the choice of ) satisfying the next
properties:

(@) my(x (D)) = €, for any distinguished vertex v € V;
(b) (x() +1,, Ey) <0 forevery ‘non-distinguished vertex’ v € V*;
(c) x(l_) is minimal with the two previous properties (with respect to <).

Furthermore, the cycle x (1) automatically satisfies
x()+1 <x(+1y) foranyly = 0,1} € L(V). 4.75)

If we wish to emphasize the dependence on [, we write Xy 0.

The cycles x (1) satisfy the following universal property as well.

Lemma 4.5.19 Assume that a certain x € L satisfies my(x) = my(x(1)) for all
veV, andx < x(l_).

Then there is a generalized Laufer’s computation sequence connecting x with
x(I). The sequence {zi}§:O is constructed as follows. Set zo = x. Assume that z;
is already constructed. If for some v € V™ one has (z; + sp, Ey) > 0 then take
Zi+1 = i + Eyqy, where v(i) is such an index. If z; satisfies 4.5.18(b), then stop
and set t = i. Then this procedure stops after finite steps and z; is exactly x (I).

Along the computation sequence xx(zi+1) < xk(zi) for any 0 <i < t. Equality
holds if (z; + l;z’ Ev(,‘)) =1.

In the case of an SR—set we have the following statement.

Proposition 4.5.20 Let V be an SR-set. Choose I; and set k = K + 21;. Then
[+ LV* ={x €L : myx) =myx()) forallv € VY contracts to x(I) such
that along the contraction xy is non-increasing. In particular, xx(x) > xx, (x 1)) for
any x € [ + L(V*).

4.5.4 Concatenated Computation Sequences of AR Graphs [70]

Assume that I' is an AR resolution graph, let {vp} be an SR—set. In particular M (I")
is a rational homology sphere.

Theorem 4.5.21 If T" is AR, then for any k € Char and n > my; = min xix any
connected component of Si  is contractible.

Note that the statement is independent of the choice of & in its class, cf. 4.5.10. In
the sequel we will choose the distinguished representative k., and we write S, for
Sk, .n- We also write V = VUV*, where V = {vg}. For each £ € Z we consider the
cycles! := LE,, € L(V) and x (/) € L from 4.5.16. We abridge x (LE,,) as x (£).
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In order to prove the theorem we construct an increasing path y = {l;};>0 in L
(with ;41 = £; + Ey(;) for all i), which determines the 1-chain C), := U;>oll;, [i 1]
of 1-cubes in L ® R (without any loop), such that C, N S, <> S, is a homotopy
equivalence. The construction and the statement of the theorem constitute the
prototype of the more general Reduction Theorem 4.8.2 and also this was the
original intuitive motivation and starting point in the definition of the graded roots,
cf.4.7 and 4.7.2.

The construction start as follows. By Lemma 4.5.11(a) the inclusion R(0, co) N
S, C S, admits a strong deformation retract. Hence we can restrict ourself to the
intersection with the first quadrant. The path y = {l;};>¢ is defined as a series
of concatenated computation sequences. It contains, as intermediate terms, all the
universal cycles {x(£)}¢>0 in an increasing order. The first term is /o = x(0) = 0.
The part of the sequence starting from x (¢) and ending with x (€4 1) starts with x (£)
and the next term is x(¢) 4+ E,,. Then, the continuation is generalized Laufer-type
computation sequence connecting x (£) 4+ E,, with x (€ + 1). Indeed, the multiplicity
of Eqp in both x(¢) + E,, and x(£ 4+ 1) is £ 4+ 1, and by (4.75) x(£ + 1) > x(£) +
E,,. Hence Lemma 4.5.19 gives a computation sequence y e = {ll.(Hl)},-, which
connects them. Then we proceed inductively.

Define 7(£) := xx, (x(£)). Let o be the order of £} in L'/L and p = my,(0E}).

vo
Lemma 4.5.22

(a) The path {l;}; is increasing: l; 11 = l; + Ey(;).

(b) For any E,-coefficient one has limy_, oo my(x(£)) = oo (where v € V).
(c) (Quasiperiodicity) x(£ 4+ tp) = x(£) + toE,’jO.

(d) xk, along each part (subsequence) y© is constant.

(e) T(€+1)=1()+1— (x(£) + sn, Eyy).

(f) There exists £o such that T(£ + 1) > ©(£) for £ > {.

Theorem 4.5.23 Consider the I-chain C, := Ui>oll;,li+1] in L ® R as above.
Then for any n the inclusion C, NS, C Sy is a homotopy equivalence. In particular,
since each connected component of C, NS, is contractible, Theorem 4.5.21 follows.

Remark 4.5.24 In general, it is not easy to find the cycles x(¢). Fortunately, in
several applications (see e.g.4.7.3) one does not need all the coefficients of these
cycles, only the values t(£) = xx, (x(£)). In most of the cases they are computed
inductively using 4.5.22(e), hence basically one needs only to know (x(£), Ey,) for
any £.

Example 4.5.25 For the determination of the universal cycles {x(£)}; and the
corresponding t-function in the case of star-shaped graphs and surgery manifolds
see 4.7.22,4.7.4 and Sect. 4.9.
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4.6 Lattice Cohomology

We provide two equivalent definitions for the lattice cohomology {H?},>0 associ-
ated with a free Z-module endowed with a fixed basis and with a set of ‘compatible
weight functions’. The first definition is based on the construction of a cochain
complex. The second one involves the spaces {S,}, introduced in 4.5.2. Once T’
is fixed, any characteristic element k € Char determines a set of weights (via the
RR expression yy), hence the lattice cohomology H*(T', k). It turns out that they
depend only on M(T") and [k] € Spin®(M(I")). In 4.6.3 we show that the Euler
characteristic of H*(T', k) is the normalized Seiberg—Witten invariant of M (T").
For more details see e.g. [71-73].

4.6.1 The Lattice Cohomology Associated with a System of
Weights

We consider a free Z-module, with a fixed basis { £, },<, denoted by Z°. It is also
convenient to fix a total ordering of the index set V, which in the sequel will be
denoted by {1, ..., s}. Our goal is to define a graded Z[U ]-module associated with
the pair (Z°, {Ey}y) and a set of weights. First we set some notations regarding
Z[U ]-modules.

4.6.1 Z[U]-Modules Consider the graded Z[U]-module 7 := Z[U, U~'], and
(following [102]) denote by 7.0+ its quotient by the submodule U - Z[U]. This
has a grading in such a way that deg(U~¢) = 2d (d > 0). Similarly, for any
n > 1, the quotient of Uu-=b . 7[U] by U - Z[U] (with the same grading) defines
the graded module 7¢(n). Hence, To(n), as a Z-module, is freely generated by
1,U~Y, ..., U~®D and has finite Z-rank n.

More generally, for any graded Z[U ]-module P with d-homogeneous elements
P, and for any r € QQ, we denote by P[r] the same module graded (by Q) in such
a way that P[r]y+, = P4. Then set ‘Tr+ = ‘TOJ“[r] and 7, (n) := To(n)[r]. Hence,
form € Z, T, =Z{U™, U1, ...) as a Z-module.

4.6.2 The Cochain Complex Z° ® R has a natural cellular decomposition into
cubes (see also 4.5.1). The set of zero-dimensional cubes is provided by the lattice
points Z*. Any [ € Z° and subset I C V of cardinality g defines a g-dimensional
cube, which has its vertices in the lattice points (! + )", ., E,) 7, where I’ runs over
all subsets of /. On each such cube we fix an orientation. This can be determined,
e.g., by the order (E,,, ...,qu), where v; < --- < vy, of the involved base
elements {E,},e7. The set of oriented g-dimensional cubes defined in this way is
denoted by @, (0 < g <').
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Let C;, be the free Z-module generated by oriented cubes [, € Q. Clearly, for
each [J; € @, the oriented boundary d[]; (of ‘classical’ cubical homology) has the
form Zk &k D];—l for some & € {—1, +1}. These are the faces of L. It is clear that
d0d = 0. But, obviously, the homology of the chain complex (Cy, ) (or, of the dual
cochain complex (Homgz(Cy, Z), §)) is not very interesting: it is the (co)homology
of R*. A more interesting (co)homology can be constructed as follows. For this,
we consider a set of compatible weight functions {wq}4 as in 4.5.6. In the sequel
sometimes we will omit the index g of wy.

4.6.3 In the presence of any fixed set of compatible weight functions {w,}, we
define ¥ as the set of morphisms Homz(Cy, 7’0+ ) with finite support on Q.

Notice that 7 is a Z[U]-module by (p * ¢)(y) := p(¢([y)) (p € Z[U)).
Moreover, 4 has a Z-grading: ¢ € ¥ is homogeneous of degree deg(¢) =d € Z
if for each O, € Q, with ¢(0,) # 0, ¢ () is a homogeneous element of 7" of
degree d —2-w(U,). (In fact, the grading is 2Z-valued; hence, the reader interested
only in the present construction may divide all the degrees by two. Nevertheless, we
prefer to keep the present form in our presentation because of its resonance with the
Heegaard Floer homology of the link.)

Next, we define 8, : F4 — F4H1. For this, fix ¢ € F9 and we show how §,,¢
acts on a cube (41 € Q1. First write 30,41 = Y, ek, then set

Gud)(Tga) = Y e U O =000 g b,
k

Lemma 4.6.4 5, 068, =0, i.e. (F*,8y) is a cochain complex.

4.6.5 In fact, (¥*, 6,) has a natural augmentation too. Indeed, set m,, :=
min;czs wo(l) and choose I, € Z° such that wg(l,,) = my,. Then one defines the
Z[U]-linear map

w: T3, — F°
such that €, (U 5)(l) is the class of U "w+wod)=s jp 7,0+ forany [ € L and
s> 0.
Lemma 4.6.6 ¢, is injective, and 8, o €,, = 0.

One verifies that both €, and §, are morphisms of Z[U]-modules and are
homogeneous of degree zero.

Definition 4.6.7 The homology of the cochain complex (¥%*,§,,) is called the
lattice cohomology of the pair (R*, w), and it is denoted by H*(R®, w). The
homology of the augmented cochain complex

€w Sw Sw
0— T3, —> F0 =5 Fh =5
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is called the reduced lattice cohomology of the pair (R®, w), and it is denoted by
HY, ,(R¥, w).

If the pair (R*, w) is clear from the context, we omit it from the notation.

For any ¢ > 0 fixed, the Z-grading of ¥ induces a Z-grading on H? and er a5
the homogeneous part of degree d is denoted by HZ, or Hz ed.q- Moreover, both
H? and H;’ ¢ admit an induced graded Z[U ]-module structure and HY = H;’ g TOr
q > 0.

It is easy to see that H*(R®, w) depends essentially on the choice of w.
Lemma 4.6.8 One has a graded Z[U |-module isomorphism H® = Tz—tﬂw @ ngd'

4.6.9 Next, we present another realization of the modules H*. In 4.5.2 for each
n € Z we defined S, = S,(w) C R’ as the union of all the cubes [, (of any
dimension) with w(l,;) < n. Clearly, S, = @, whenevern < my,. For any g > 0,
set

N (Rs, w) = @nzmw Hq(S}’lv Z)

Then $7 is Z (in fact, 27Z)-graded, the d = 2n-homogeneous elements SZ consist
of HI(S,,Z). Also, $7 is a Z[U]-module; the U-action is given by the restriction
map ry41 : H4(Sy+1,Z) — HI(S,, Z). Moreover, for g = 0, the fixed base-point
l, € S, provides an augmentation (splitting) H%(S,,Z) = Z & H(S,, Z), hence
an augmentation of the graded Z[U ]-modules

SO =75 @Sy = (BnzmyZ) & (®nzm, H(Sn, ).

Theorem 4.6.10 There exists a graded Z[U]-module isomorphism, compatible
with the augmentations:

H*(R®, w) = S*(R*, w).

4.6.11 Restrictions Assume that 7 C R’ is a subspace of R® consisting of a union
of some cubes (from Q). Let C,(T) be the free Z-module generated by g-cubes
of T, #9(T) be the restriction of 9 to C,(T). Then (F*(T), é,) is a complex,
whose homology will be denoted by H*(7', w). It has a natural graded Z[U ]-module
structure. The restriction map induces a natural graded Z[U ]-module homogeneous
homomorphism (of degree zero)

r* (RS, w) — H*(T, w).
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4.6.2 The Lattice Cohomology Associated with a Plumbing
Graph

4.6.12 We consider a connected negative definite plumbing graph I' and we
assume that M(I") is a QH S3. We write s := |V|. We also fix a characteristic
element k € Char.

Note that I" automatically and naturally provides a free Z-module L = Z* with a
fixed bases {E\},, cf. 4.2.9 and 4.5.1. Using I" and k, we define a set of compatible
weight functions w as in 4.5.1: w (L) = max{x(v) : v is a vertex of [ }.

Definition 4.6.13 The Z[U]-modules H*(R*, w) and H,,(R*, w) obtained by
these weight functions are called the lattice cohomologies associated with the pair
(T, k) and are denoted by H*(T", k), respectively H, (T, k).

Proposition 4.6.14
(a) HY,, (T, k) is finitely generated over Z.
(b) H?ed,d(r’ K) = 0 for the canonical characteristic element K and d > 0.
Remark 4.6.15 There is a symmetry present in the picture. Indeed, the involution
x > —x (x € L') induces identities x_;(—{) = xx (1), hence isomorphisms

H*(T, k) = H*(I', —k) and H,,(T, k) = H,, (T, —k).
The involution [k] +— [—k] corresponds to the natural involution of Spin®(M),
cf.4.2.93.

4.6.16 Assume that [k] = [k'], hence kK’ = k+2I forsome! € L. Then yp (x—I) =
Xk (x) — xx (1) forany x € L. Therefore, the transformation x +> x’ := x —I realizes
the following identification:

Lemma 4.6.17 If ¥ = k + 2l for some | € L, then: H*(T, k') =
H*(T, ) [—2xk (D]

4.6.18 In fact, there is an easy way to choose one module from the multitude
{H*(T", k) }kefx)- Indeed, set my = minjer, xx (/) as above. Since (k + 202 = k% —
8xk (), we get

8my = k> — lgl;[l]i(](k/)z <0. (4.76)

Set My = {k € [k] : my = 0}. Hence, if ko and ko + 2/ € M), then —xi, (1) = 0.
In particular, for any fixed orbit [k], any choice of kg € M[i) provides the same
module H*(T, kg), in the sequel denoted by H*(T", [k]). Hence, for any k € [k]

H*(T, k) = H*(T, [k])[2mx]. 4.77)
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Proposition 4.6.19 For each fixed [k] € Spin®(M (")), H*(T', [k]) depends only on
M (") and is independent of the choice of the graph T, which provides M (T").

Next, consider the distinguished characteristic element k., cf. 4.5.10. The follow-
ing statement follows from Lemma 4.5.11.

Proposition 4.6.20 The restriction H*(I", k,) — H*((Rx>0)*, k») induced by the
inclusion (R>g)* < R® is an isomorphism of graded Z[U] modules.

Remark 4.6.21 Assume that I is either rational or elliptic, in particular, min(x) =
0. Then by 4.5.11 min(xx,) > 0. Hence, by (4.76), in fact, min(xx,) = 0.

Example 4.6.22 (Rational Graphs) Theorem 4.5.12 transforms into the following
statement. The following facts are equivalent:

(a) T isrational,

(b) Hy,,(I', K) =0;

(b)) H),, (I K) = 0;

(c) H,, (I, k) = 0 for every k € Char.
Additionally, by Remark 4.6.21, if T is rational then H(T', k,) = 7 for any ;.
Example 4.6.23 (Elliptic Graphs) Theorem 4.5.13 and Remark 4.6.21 transform
into the following statement: I is elliptic if and only if HO(T, K) = 7 0+ @
HO, (T, K) with H° (I, K) # 0. (In fact, if I is elliptic then H?, (T, K) =

red red
To(1)¢, where £ > 0 is the length of the elliptic sequence in the sense of Laufer

and Yau).

Example 4.6.24 (Almost Rational Graphs) By 4.5.21, if I" is almost rational,
H9(T, k) = 0 for any ¢ > 1 and k € Char. (For HO(T, k) see 4.7.3.)

Remark 4.6.25 The author knows no example when H*(T", k) has a non-zero Z-
torsion element. It is a challenge to prove that this cannot occur indeed.

4.6.3 The Lattice Cohomology and the Seiberg—Witten
Invariant

Fix I" and k as above. Our goal is to identify the ‘Euler characteristic’ of the lattice
cohomology H*(T', k). Recall that by 4.6.14 rankz (H* (T, k)) < oco.

red

Definition 4.6.26 The Euler characteristic of H* (T, k) is defined as

eu(H (I, k) i= —mp + Y (= 1)frank z (H, (T, £)).
q

For motivation of the —my term see 4.7.6 and the computations from below.
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4.6.27 Fix [_ and [} and the rectangle R = R(—I[_,/}) as in Lemma 4.5.8. We
define

Eug(R) = Y (=Dl wp@y) and Eul'@):= > (~17q" ) e 20q,471),
O,CcRr O,CcRr

In particular, if we write Eub?' (q)/(1 — q) as > pom, @nq" then

an= Y (DT =xup(Si N R),
DqCR,wk(Dq)Sn

where x;,p is the topological Euler characteristic. But, by 4.5.8, S, " R < S, isa
homotopy equivalence, hence a, = X;0p(Sy). This by 4.6.10 reads as

Eu%)l(Q) —q" _

- D (@ —Da"= Y (Y (=Dirankg(HY,, ,, (T, 0))) q".

nzmy nzmg  g>0

In particular, this expression is independent of the choice of R. Finally, by taking
the limit limg—. 1 we get

Euy (R) +my =Y _(=1)7rankg (HL,, (I, k))),
q=0

or
Euy, (R) = eu(H* (T, k)). (4.78)

The above identity is a generalization to the level of weighted cubes of the
classical fact that the Euler characteristic computed at the level of cubes equals
the homological Euler characteristic.

4.6.28 Recall from 4.6.2 that if ¥ = k + 2[,] € L, then H*T, k) =

H*(T", k)[—2xx ()], hence the lattice cohomologies associated with different

k’s with the same class [k] are equal up to a shift. This has no effect on

Zq(—l)‘f rank Z(erd(r, k)), however it has on my. This can be remedied either

by choosing k from M (cf.4.6.18), or by taking k, (cf.4.6.16). Next we present
another way to eliminate the above shift.

Let us replace the weight function wy (Oy) := {xx(v) : v is a vertex of (], } by

2 2

wi (Oy) := we(Oy) + 0k, where 9 := —k —;H/' + K —g i =X (k 2K> ,

and denote the corresponding lattice cohomologies by H*(I‘, k). Then
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Lemma 4.6.29 H*(F, k) = H*(T, k)[0] is independent of the choice of k from
[k].

Remark 4.6.30 1In the spirit of 4.4.33, and with the notation k = K +2//, H* (', k) is
the lattice cohomology of the cubes of [, 4+ L, where the weight function is generated
by the restriction of x on this shifted lattice /; + L. (Indeed, for/ € L, x(I +1;) =
Xe() +0r.)

In particular, Theorem 4.4.39 combined with (4.78) give
Theorem 4.6.31 ([73])

K2+ |V

eu(H*(T", k)) = stog (M (') — g

4.6.32 The SWIC Revisited For any 7 € H assume that the representative /) is
either ry or s;,. Then via the extension 4.4.47 of the SWIC combined with 4.6.31
from above, the SWIC(h) is equivalent to

(SWIC(h))  h'(X,0(~1}))) = eu(H*(T', K + 21})). (4.79)

We wish to emphasize that to some extent this conjectured identity lead to the
definition of graded roots and lattice cohomology (at least, of HY), see e.g. [70].
Indeed, for several singularities with AR graphs (e.g. for the weighted homogeneous
germs) the left hand side was computed by a concatenated Laufer computations
sequence, and its y-fluctuation was reformulated as the key topological object at
the right hand side too (cf.4.5.4 and 4.7.3).

4.7 Graded Roots and Their Cohomologies

We introduce abstract graded roots (R, x) and we define their cohomology Z[U ]-
module H(R, x). We provide several constructions, which provide graded roots.
One of them (cf. 4.7.2) associates a graded root (R, x)r x with a plumbing graph
" and a characteristic element k. It turns out that HO(I', k) = H((R, X)r.k). In
particular, for any (I, k), the associated graded root is a geometrical/topological
enhancement of HO(T", k).

4.7.1 The Definition of Graded Roots and Their Cohomologies

In this subsection we follow [70, 71].
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Definition 4.7.1 Let R be an infinite tree with vertices V and edges &. We denote
by [u, v] the edge with end-vertices u and v. We say that R is a graded root with
grading x : V — Z if

(@) x(u) — x(v) = £1 for any [u, v] € &;
(b) x(u) > min{x (v), x (w)} for any [u, v], [u, w] € E, v # w;
(c) x is bounded below, x ! (k) is finite for any k € Z, and |x ' (k)| = 1 if k > 0.

An isomorphism of graded roots is a graph isomorphism, which preserves the
gradings.

If (R, x) is a graded root, and r € Z, then (R, x)[r] denotes the same R with the
new grading x[r](v) := x(v) +r.

Example 4.7.2

(1) For any integer n € Z, let R(,) be the tree with V = {vk}kz,, and & =
{[v¥, v*T11}x>,. The grading is x (V%) = k.

(2) Let I be a finite index set. For eachi € [ fix an integer n; € Z; and for each pair
i, j € Ifixn;; =nj; € Zwiththe nextproperties: n;; = n;,n;; > max{n;,n;},
and nj; < max{n;;, n;j}foranyi, j, k € I.

For any i € I consider R; := R(,,) with vertices {vl’.‘} and edges {[vl’?, vf‘“]},
(k > n;). In the disjoint union L; R;, for any pair (i, j), identify vl’.‘ and vf.,
k1

J
vl’f. Then L; R; /~ is a graded root with X(ﬁf) = k. It will be denoted by R =
R({ni}, {nij}).

(3) Anymap t : {0, 1, ..., To} — Z produces a starting data for construction (2).
Indeed, set I = {0,..., To},n; :==t(i) (0 € I),andn;; :=max{n; : i <k <
j}fori < j. Then U;R;/~ constructed in (2) using this data will be denoted by
(Rz, X7)-

For example, for Tp = 4, take for the values of 7: —3, —1,—2,0 and —2
(respectively —3, 0, —2, —1 and —2). Then the two graded roots are:

resp. [vf, vf“] and [vl/‘., V.7 ], whenever k > n;;. Write ﬁl’.‘ for the class of

A adtay
o
I
[\

This construction can be extended to the case of amap t : N — Z, whenever t
has the property that there exists some ky > 0 such that t(k + 1) > t(k) for any
k > ko. In this case one can take any Ty > ko and construct the root associated
with the restriction of t to {0, ..., Tp}. It is independent of the choice of Ty. By
definition, this is the root associated with t.

Definition 4.7.3 (The (cohomology) Z[U]-Modules Associated with a Graded
Root) For any graded root (R, x), let H(R, x) (briefly H(R)) be the set of
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functions ¢ : V — 7T, 0+ with the following property: whenever [v, w] € &
with x(v) < x(w), then U - ¢(v) = ¢(w). Clearly H(R) is a Z[U]-module via
Up)(v) = U - ¢(v). Moreover, H(R) has a Z-grading: the element ¢ € H(R) is
homogeneous of degree d € Z if for each v € V with ¢ (v) # 0, ¢p(v) € 7-0+ is
homogeneous of degree d — 2 x (v). Since 2 (v) + deg o (v) = 2x(w) + deg ¢ (w),
d is well-defined.

Note also that any ¢ as above is automatically finitely supported.

Remark 4.7.4 By the definitions H((R, x)[r]) = H(R, x)[2r] for any r € Z.
Example 4.7.5

(a) H(Ry) =T,

(b) The graded roots R 'and R? constructed in 4.7.2(3) are not isomorphic but their
Z[U]-modules are isomorphic. Hence, in general, a graded root carries more
information than its Z[U ]-module.

One has a natural graded Z[U] module isomorphism H(R, x) = 7’2*,;1 ®
H,eq(R, x), such that the Z[U ]-module H,.;(R) has finite Z-rank.

Proposition 4.7.6 Let (R, x;) be a graded root associated with some function
T :N = Z, ¢f 4.7.2(3). Then

rank zHyea (Re., xr) = —7(0) + minz(i) + ) max{r(i) — (i + 1), 0}.

i=0

The summand 7’2+m of H(R:, x¢) has index m = min;>o T (i) = min, x¢(v).

4.7.2 The Graded Root Associated with a Plumbing Graph

4.7.7 The Graded Root Associated with a System of Weigh Functions Fix a
free Z-module and a system of weights {w, },. Consider the sequence of topological
spaces (finite cubical complexes) {S;}u>m, With S, C Sp41. Let mo(Sp) =
{C,ll, ..., CI"} be the set of connected components of S,,.

Then we define the graded graph (R, x) as follows. The vertex set V(R,,) is
Unezmo(Sy). The grading x,, : V(Ry) — Zis xw(C}) = n, that is, Xwlmo(s,) = n-

Furthermore, if Cil C C;i 41 for some n, i and j, then we introduce an edge

[c, Cﬁﬂ]. All the edges of R, are obtained in this way.

n

Lemma 4.7.8 (R, xw) satisfies all the required properties of the definition of a
graded root, except maybe the last one: | x,, Y(n)| = 1 whenevern > 0.

4.7.9 The Graded Roots Associated with a Plumbing Graph Fix a graph and
k € Char, their compatible weight functions and the graded cubes as in 4.6.12. The
graded graph associated with this system of weight functions (cf.4.7.7 and 4.7.8) is
denoted by (Rk, xk)-
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For the system of weight functions induced by yy the sequence of spaces {Sy},
have a finiteness property: only finitely many S, are not contractible, cf.4.5.9.

Corollary 4.7.10

(a) (Ry, xx) is a graded root.
(b) H(Rk, xx) is a finitely generated Z[U |-module, and H,.q(Rk, xx) is a finitely
generated Z-module.

Remark 4.7.11 There are several natural symmetries in the picture.

(a) The Spin‘-involution. The involution I’ + —I’ (I’ € L’) induces the identity
X—k(—1) = xx(), hence an isomorphism of the graded roots (R, xx) =
(R—k, x=k)- ([k] = [—k] is the natural involution of Spin“(M (I")), cf.4.2.93.)

(b) The Gorenstein symmetry. If I' is numerically Gorenstein then g is stable
with respect to the transformation L — L, x +— Zg — x. This shows that
(Rk, xx) has a Z,-symmetry.

More generally, if & € L (that is, k is spin) then x + —k — x induces a Z,-
symmetry of (Rg, xk)-

Theorem 4.7.12 Let (R, xx) be the graded root associated with T and k. Then
H(Rk, xx) = HO(T", k).

Example 4.7.13 Consider the example from 4.5.3. Those computations show that
the graded root (R, xx) is

Then H'T', K) = sz ® T_2(1) ® To(l) ® To(1), HY(T, K) = To(1) and
H4(T, K) = 0 forq > 2.

4.7.14 Next, with the notations from 4.6.16, we have the analogues of 4.6.17,
4.77,4.6.19:

Proposition 4.7.15

(a) Ifk' =k + 2l for somel € L, then: (R, xx') = (R, xi)[—2xx(D].

(b) (R, xx) = (Rukys Xk [2mi]

(c) The set (Rik], X[k]), indexed by [k] € Spin®(M(I")), depends only on M =
M (') and is independent of the choice of the plumbing graph T which provides
M.

Example 4.7.16 (Rational Graphs) The following facts are equivalent:

(a) T is rational,
(b) Rk = Ro);
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(¢) Rx = Ry for some m € Z;
(d) For all characteristic elements k € Char, Ry = Ry, for some my € Z;

Recall from 4.6.21 that min xx, = O for rational I'". In particular, if I

Example 4.7.17 (Elliptic Graphs) T is elliptic; if and only if (Rg, xx) =
R({n;}, {ni;}) for some index set I, |[I| = £ + 1 > 2, such that n; = 0 for
anyi € I and n;; = 1 for any pairi # j.

4.7.18 The following tasks appear very naturally.

Problem Determine all the possible canonical (R, xx) (and non-canonical
(Rk, xx) ) graded roots.

The possible resolution graphs are characterized by Grauert Theorem, namely
they are connected and negative definite. For each negative definite graph (tree) we
construct a canonical graded root in a direct combinatorial way. The problem is to
find a combinatorial characterization of all of them.

Problem Determine all the possible graded Z|U |-modules, which might appear as
H*(T, k) for some (T, k).

4.7.3 Graded Roots of Almost Rational Graphs

4.7.19 Assume that I" is an AR graph, with SR-set {vp}. We fix a distinguished
characteristic element k, = K 4 2s;, and we consider the universal cycles {x(€)}¢>0
associated with (T, k), and their t-function T : Z>9 — Z defined as t(£) :=
Xk, (x(€)), cf.4.5.4. Associated with this t-function we consider its graded root
(Rz, x¢) as well, cf. 4.7.2(3).

Theorem 4.7.20 Assume that U is AR, and set k, = K + 2sy, for some h € H.
Then

(a) HI(T, k) =0 forq > 1;
(b) HO(T, k) = H(Rx, , X, )

(C) (er7 Xkr) = (R‘Ev X‘[);
(d) x(0)=0,7(0) =0, t(1) =1 — (sn, Evg) = 1, my, = ming>o{t(¥)} and

eu(H* (T, ky)) = —min{r(6)) + rankz,(HO, , (I, k) = Y max{z(¢) — 7(¢ +1),0}.
>0
fe) () —t(l+1)=—14 (x() + sn, Eyy)-
Remark 4.7.21

(a) The above theorem shows that for almost rational graphs, any graded tree
(Rk, xx) is completely determined by the values of x; along a very natural
(universal) infinite computation sequence (depending on k), which contains
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the elements {x(£)}¢>0. (For the construction of the sequence see 4.5.4.) In
particular, all the important vertices of Ry can be represented by some special
cycles in L, which can be arranged in an increasing linear order (with respect to
<).

(b) The set {x(£)}; usually is not very economical: only some of the x(£)’s
carry substantial information, which will survive in (R;, x;). The others are
intermediate steps in some monotone paths. E.g., for rational singularities,
X(x (€ + 1)) = x(x(£)), hence only the information x (x(0)) = 0 is preserved
in R;.

Example 4.7.22 (Star-Shaped Graphs) Assume that I is star-shaped with v strings.

In the sequel we will use the notations from 4.2.3. We also fix [, = aoEj +

> Z:’: 1 ajiE%,. The coefficients of /j also determine the integers ajx :=

thk ”{+1,s,-a/f for1 <k <s;. We also writea; = a;.

F_is AR, where its SR-set consists of the central vertex, cf.4.5.15(f). H_ence, for
any | = £E (and for the fixed /, and k := K + 2/;) we have a cycle x(/), which
will be denoted simply by x(€) (¢ € Z). The next expression describes the cycles

x (£) in terms of the Seifert invariants and the coefficients of l;r
Define the integers {v;i} (1 < j < v, 1 <k <s;) inductively by

j = ‘ J G
{Iiw/ —aj—‘ {ans,‘ —ajl—l (vfﬁkflnkJrl,sJ- —a]k_‘ Gk <5
v = = - D Vg = . <k <s;).
g a; J Jk J J

n n
1Sj ij

Then x(£) = LEg + Zj,k Vi Ejk.
Assume next that g = 0 and l,/l =sp,and set T(€) := x, (x(£)) (£ = 0).If£ =0
then x (0) = 0, hence 7(0) = 0 too. For £ > 0 from 4.5.22 one gets

lwj—aj
T+ D= T(0) = 1= (OFs, Eo) = Lao+ebo— Y [ Y] @480
i J
J
In particular,

-1

z(ﬁ):Z(1+ao+kbo—Z[kwff“f]). 4.81)

o
k=0 j J

This can be compared with several similar expressions based on different other
studies of weighted homogeneous germs or Seifert 3—manifolds.

4.7.4 Example: The Surgery Manifold Si (K [69,71]

4.7.23 The Surgery Manifold M (I') = §3 4(K) Fixd € Z and an irreducible
plane curve singularity (C,o0) with local algebraic knot (K; C S§°). Several
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invariants of (C, o) are listed in 4.2.30. For the shape and structure of the
surgery 3-manifold §3 (K1) see 4.2.32. If it appears as the link of a superisolated
surface singularity associated with an irreducible rational unicuspidal curve (C, o)
(cf.4.2.31) then necessarily (d — 1)(d — 2) = u(C, o). However, in the discussion
below we will not assume this additional restriction (in particular, d can be any
d € Z-o). We use the following schematic diagram for I'":

-1 -d-m
T I S le—F—»
Vi Vi

The basis elements in L = L(I") corresponding to vy and v are denoted by E; and
E_ . The lattice associated with 'y is Ly, its dual is L/l. The elements {E,} -y, of
L are identified with the basis elements of L.

Recall that I" is an AR graph with V = {v1}, cf. 4.5.15(f). In the sequel we follow
[69, 71, 84].

Assume that (C, o) is determined by the function f; denote by Z that part of
its divisor which is supported on compact curves. Set m for the Ej-multiplicity of
Z.Then, Z = E’f (I'1), hence —(Z, Z)1, = m. This combined with a determinant
computation gives det(I") = d. Since det(I'y) = 1 the coefficient of E_ in Ei
is 1/d. Hence [E’} ] has order d in H, and H = Z4. We abridge Sa[E¥ ] by s, for
a=0,1,...,d -1

Lemma 4.7.24 s, = an*Ir foranya=0,1,...,d — 1.

4.7.25 Our goal is to determine {x, (£)}¢>0 for I and for any spin® structure. If
ky = K + 2aE? for a certain a then we abridge xi, (€) as x,(£), where 0 < a < d.

Let us write x,(£) as y,(£) + naE4, where n, € Z>¢ and y,(£) € L;. The
inequality (x,(¢) + aE*, E4) < O reads as ny,(m + d) > ¢ — a. Hence n, =
[ —a)/(m+d)].

On the other hand, for all other vertices v € V \ {v4, v1} we have (x,(£) +
ak’, Ey) = (ya(£), Ey), hence y,(¢) is independent of a; let us denote it by y(£).
It satisfies the universal property (a)-(b)-(c) from 4.5.18 for the graph I'y, vertex v;
and /; = 0. Namely, y(¢) is minimal with (a) m, (y(£)) = £ and (b) (y(£), E,) <0
for any v # v;. For example, y(0) = 0.

Proposition 4.7.26 Let Z = divgr,)(f) = EJ(I"1) be the cycle as above. Then

(a) ift =tm+Lowitht > 0and0 < €y < m, then y(£) =tZ + y({y);
(b) for any £ < m one has

L if £¢Sc.o;

(y(5)1E1)={0 if £eSco
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Corollary 4.7.27 Fix 0 < a < d and write £ = tm + £o for some t > 0 and
0<4tly <m. Then

e_
xa(z)zt-z+y(zo)+[m+‘;]E+.

In particular,

t—a
a0 En == +] "]+ (ko). En.

Furthermore, xi, (x4(0)) = 0 and for any £ > 0 one has

. |
(e 1), @) = 1= 120 DT ESes )

4.7.28 The t-Function 7, According to 4.5.4 we set 7,(£) := xx, (x4(£)). Then in
(4.82) one has
{—a

<t+1,
m+d —

hence t,(£ + 1) — 1,(£) > —1 for any ¢, and = —1 only if

tm+ 4Ly —a

mtd >t and {9 & Sco- (4.83)

In order to analyze the cases when this holds, we will consider sequences Seq (¢) :=
{tm+£p : 0 < £y < m} for fixed r > 0. In such a sequence, notice that the very last
element of N\ Sc,, namely u — 1 = 25 — 1, is strictly smaller than m — 1, hence
the complete set N \ Sc, sits in {0, ..., m — 1}. Therefore, in Seq(¢) there exists
an £ satisfying (4.83) if and only if

tm+25—1—a
> f.
m+d

This is equivalentto t < t,, for¢, := [ (26 —2 —a)/d]. In other words, if £ > Ty :=
(ty + 1)m, then 7, (£ + 1) > 7,(£), hence those values of 7, provide no contribution
in the graded root. Moreover, fort € {0, ..., 7}, in Seq(¢) one has:

0 if €y <td+a, and £y & Sc.o;
1 if¢p <td+a, and £y € Sc.o;
—1 if€p > td +a, and &y & Sc.o;
0 if€p > td +a, and £y € Sc,.

Ay) =t,(tm+Lo+ 1) —1,(tm +Ly) =



4 Surface Singularities, Seiberg—Witten Invariants of Their Links and Lattice. . . 277

In particular, A(£p) > 0 for any £o with 0 < £y < td + a, and A(£p) > O takes the
value +1 exactly

Ay =#{s e€Sco:s <td+a)

times, otherwise it is zero. Furthermore, A(£p) < 0 for any £p > td + a and it takes
value —1 exactly

By :=#{s €Sco:s >td+ a}

times, otherwise it is zero. Recall that in 4.2.30 we rewrote A(t) as 1 +8(t — 1) +
(t — 1)2Q(t), where Q(t) = Zf;oz a;t’. The above B; compared with (4.7) reads
as By = asg4q-

Notice that both A; and B; are strictly positive (since 0 € Sc,, respectively
26 —1 ¢ Scoand 286 — 1 > td + a). This shows that

M, := max t,(tm+ £y) = t,(tm) + A; = 7,((t + 1)m) + B; (4.84)

0<ly<m
and
M, > max{t,(tm), t,(tm +m) }.

Therefore, the graded root associated with the values {7,(£)}o<¢<(s,+1)m 1S the
same as the graded root associated with the values

Ta(o), MOa Ta(m), Mla Ta(zm), M25 MR Ta(tam)a Mlaa Ta(tam + m)-

Finally, since #{s & Sc,} = §,onehas § — B, = #{s € Sc., : s < td + a}, hence
8 — B, + A; =td + a + 1. Thus, by (4.84),

T2 ((t + Dm) — ta(tm) = td +a + 1 — 6.

Since 7,(0) = 0, this gives 7, (¢tm) inductively.

Clearly, the graded root associated with 7, is the same as the graded root
associated with 7, : {0,1,2,...,2t, + 2} — Z, where 7,(2t) := 7,(tm) and
7,2t + 1) := M;.

The above discussion gives the following statement.
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Theorem 4.7.29 For each fixed a = 0,1,...,d — 1,—corresponding to the d
different spin-structures of M—one defines the following objects :

o 1, = Lza_f_aj, (t, > —1 automatically) ;

e afunctiont, : {0,1,...,2t, +2} —> Z by
w2 =d-""V —t6—1-a), (¢=0,....1+1);

T2t + 1) = 1,2t +2) + Argya, (E=0,...,28).

* and the graded root (R, xz,) associated with t,.

Then (Ry,, Xz,) is the graded root of M associated with (I', k).
Note also that min 1, = 7,(2[t,/27).

Remark 4.7.30

(a) Sinceforanyt € {0, ..., %}, (2t + 1) > max{r,(2¢), 7,(2t + 2)}, the above
representation of the graded root is the most ‘economical’: all the values are
essential. This also shows that (R:,, x¢,) has exactly #, + 2 local minimum
points, and they correspond to the values 7,(2t), t =0, 1,...,1, + 1.

(b) The values 7,(2t), t =0,1,...,t, + 1 depend only on ¢, d and 4§, that is, for
these values no other information is needed from the semigroup Sc .

Corollary 4.7.31
(a) eu(* (T, kr)) = > 1" dta

_9_ 2
(b) $10g1, ) (M(D)) = Y10 gy + §(1 — @H2 27207,

Proof Use 4.7.6 for (a) and 4.6.31 and the identity k,2 +VI=1-Wd+25§—-2—
2a)?/d for (b). O

Example 4.7.32 Assume d = 1. In this case M is an integral homology sphere;
a=0andty = 28 —2 = u — 2. Moreover, —(K2 + |'V|)/4 = 8§( — 1) and
70(2t) = t(t — 25 + 1)/2. The reader is invited to draw the graded root and verify
that

§—1
HO(, K) = (T3 @ Toles—1) & @ Tign(cio145)®)[=8(5 — D],
i=1

4.7.5 Superisolated Singularities with One Cusp

4.7.33 In the sequel we will consider a superisolated singularity as in 4.2.31. For
different invariants see 4.2.4, whose notations we will adopt. We will assume that
C is a rational unicuspidal curve. We invite the reader to review the ‘Semigroup
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Distribution Inequality’ from 4.2.33 and the ‘Semigroup Distribution Property’
from 4.2.33. The reinterpretations in terms of reduced Poincaré series can be found
in 4.3.6, and the connection with the Seiberg—Witten Invariant Conjecture (as the
basic motivation and source of the Semigroup Distribution Property) is presented
in 4.4.11. Here we present further connections with the graded roots. We follow
[25].

4.7.34 In this part we will compare the invariants of the link M = §> 4(K) of the
superisolated singularity with the corresponding invariants of the Seifert 3-manifold
¥(d, d, d+1), the link of the hypersurface Brieskorn singularity x4 +y¢+z¢+1 = 0.
Before we state the next theorem, we recall that the plumbing graph of S 4(K)
contains complete information about the embedded link K C S3. Moreover, by the
statements of 4.7.29, the graded root or lattice cohomology still preserves essential
data about the Alexander polynomial. However, the Seifert 3-manifold X (d, d, d +
1) has information only about the degree i of A via (d — 1)(d — 2) = u. The
point is that the algebraic realizability of C (that is, the existence of an analytic
superisolated singularity with link S 4(K)) imposes the following very surprising
necessary topological obstructions.

Theorem 4.7.35 ([25]) The following facts are equivalent:

(a) The Seiberg—Witten Invariant Conjecture is true for the superisolated germ.
(b) The Semigroup Distribution Property is true.

(c) The canonical graded roots ofSid(K) and X(d,d,d + 1) are the same.

(d) The canonical lattice homologies ofSid(K) and X(d,d,d + 1) are the same.
(e)

K2 +#V

K2 +#V ) ‘
8 M=%(d,d,d+1)

I

(5ma[K](M)—

Recall that, in fact, the Semigroup Distribution Property is true by Borodzik
and Livingston [9] (cf.4.2.33), hence all the statements of 4.7.35 are true as well.
However, we formulated above a weaker statement, only the equivalence of the
above statements, whose proof is independent of the Heegaard Floer theory based
proof of [9].

The proof of 4.7.35 is given in several steps. The starting point is that both 3-
manifolds $3 4(K) and X%(d,d,d + 1) are almost rational. In particular, in both
cases, the canonical graded root can be determined via the T-function, cf. 4.7.3. In
the first case this is done explicitly in 4.7.29, while for the second case see 4.7.22.

Fact1 Letusrewrite 4.7.29 for S° 4(K) and for the canonical spin® structure a = 0.
Set¢; :=a-3-5)q¢ and define 7 : {0, 1,...,2d — 4} — Z by

t2l) = i ; Dy I6—=1, tQ+1)=1Ql+2)+cs_3-1. (4.85)

Then (Rean, Xcan) = (Rz, Xt).
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Fact2 Consider next the Seifert manifold ¥ (d, d, d 4 1). Its canonical graded root
is the following. For any 0 </ < d — 3 write ¢/ := (I + 1)(I +2)/2, and 26 :=
(d—1)(d —2)and define t* : {0, 1,...,2d — 4} — Z by

421 _ 1 ;’1)d-—1(5-1), QI+ 1) =" QI+2) + Y 5, (4.86)

Then (Rean, Xcan) = (Rgu, xgu).

Next we compare 4.85 and 4.86: the graded roots associated with S 4(K)

and X(d,d,d + 1) coincide exactly when ¢; = c}‘ for every /. However, by
the Semigroup Distribution Inequality (a consequence of the Bézout’s Theorem,
cf.4.2.33) ¢, > ¢} for every [. Hence ¢; = ¢} for every [ if and only if

Y, = )¢/ But this is exactly the vanishing of N(1), cf. (4.3.20)(b), hence
4.4.54 applies.

Example 4.7.36 Assume that d = 5 and C is unicuspidal and its singular point has
only one Puiseux pair (a, b) with a < b. Then by the genus formula the possible
values of (a, b) are (4,5), (3,7) and (2, 13). It turns out that the first and the third
cases can be realized, while the second case not. This fact is compatible with the
above Theorem 4.7.35. Indeed, the corresponding canonical graded roots (together
with the root of X (5, 5, 6)) are shown in the next picture.

S (To13). $7(Tys) §3(T3,7)
(5.5,6)

Remark 4.7.37 As we already mentioned in 4.2.33, the Semigroup Distribution
Property (in the unicuspidal case) was partially verified in [24] and proved in [9].
The first approach is based on a case-by-case verification of the families of cuspidal
rational projective curves which appear in the classification theorems. The second
approach is based on the Heegaard Floer theory. The discussion from 4.7.39 traces
a possible third approach, which would lead to a different proof, and would open a
new chapter in the deformation theory of surface singularities.

Corollary 4.7.38 The Seiberg—Witten Invariant Conjecture is true for superiso-
lated germs associated with rational unicuspidal curves.

4.7.39 Why X(d,d,d + 1)? At the first glance the pairing of s3 4(K) with
¥(d,d,d + 1) in Theorem 4.7.35 looks very unmotivated. In the next paragraphs
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we wish to convince the reader that this is not the case, and conjecturally a very
deep structure might exist behind the scene.

Assume that the rational unicuspidal curve is given by f;(x,y,z) = 0 in P?
(for notations see 4.2.31). We can fix the homogeneous coordinates in P2 in such
a way that z = O intersects C generically. A possible choice for the superisolated
singularity f : (C3,0) — (C,0)is f = fy+2z¢t!. Write f; as Z?:o ga—i(x, V7.
Then g4 is a product of d linear factors corresponding to the points C N {z = 0},
hence the germ gy : (C2,0) — (C, 0) is equisingular with (x, y) > x?¢ 4 y.

Next, consider the following deformation f; : (C3,0) — (C,0) of
isolated hypersurface germs, given by fi(x,y,z) = fs(x,y,t2) + 74+l =
> i 8a—ilx, y)zit! + 7%t For t # 0 the deformation is u-constant, the embedded
topological type stays constant, and it is equivalent (up to such equivalences) to
the type of f. However, for ¢+ = 0 it is equivalent (in similar sense) to the germ
x4 yd 4 7041,

Along this deformation not only does the embedded topological type jump (e.g.
the Milnor number), but even the (non-embedded abstract) link as well: for ¢ £ 0 it
is §2 ,(K), while fort = 0itis ©(d,d,d + 1).

However, both graphs are AR and several key invariants stay stable. For example,
in both cases p;, = d(d — 1)(d — 2)/6. On the other hand, if we compute the
(resolution independent) invariant K 2 4 |'V| we realize that they are different.
However, if we denote by K 31 i, the self-intersection of K in the minimal resolution,
then it turns out that in both cases it is —d(d — 2)%. Hence we are dealing
with a Gorenstein Kr%lm-constant deformation. By a result of Laufer [52] such
deformations admit a very weak simultaneous resolution (possible after a finite
base change). This gives the possibility to compare the lattices associated with
their minimal resolutions. Indeed, S> 4(K) and X(d, d,d + 1) admit certain non-
minimal resolution graphs with lattices L;»o and L,—¢ and a homological map
t: Lyzo — L;—o, which preserves the intersection matrices, the canonical classes,
the x-expression.

We formulate the next conjecture, whose positive answer would produce an
extremely strong test for the existence of certain analytic deformations.

Conjecture 4.7.40 Along a K,fu.n-constant deformation X; of Gorenstein surface
singularities, such that the links of X;—9 and X, are both rational homology
spheres, the graded roots associated with the canonical spin® structure of X,—o and
of X, are the same.

Note that along a deformation as in 4.7.40 we cannot expect the stability of
the whole module {IH},. Indeed, for the deformation described in 4.7.39 valid for
superisolated germs, for 7 = 0 we have an AR case with H=! = 0. However, for
t # 0, for certain superisolated germs with v > 2 we might have H=" # 0. In fact,
for any superisolated germ which produced a counterexample for the SWIC, along
the above deformation the canonical Seiberg—Witten invariant is non-constant too.
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4.8 The Reduction Theorem

4.8.1 Reduction Theorem for Lattice Cohomology

We consider a graph I' as in 4.6.2. We also fix a distinguished class k. €
Char and the corresponding lattice cohomology H*(T', k). Recall that there is an
isomorphism of graded Z[U]-modules H* (T, k,) ~ H*((R>0)’, k»), where the
second module is generated by weighted cubes in (R>¢)*, cf. 4.6.20. Here s := |V/|.

This Z[U]-module was drastically simplified in the case of AR graphs, basically
the cubes from (R>()* were replaced by 0 and 1 dimensional cubes along an infinite
increasing path (starting with O € L), cf. Theorem 4.7.20. Here the AR-assumption
is really necessary: such a reduction to a 1-dimensional path (simplicial complex)
cannot be done for any graph (e.g. when H' # 0). In this subsection we discuss the
analogue of this statement for an arbitrary graph.

Recall that the definition of an SR-set does not involve any k € Char, hence such
a set can be uniformly used for any k. In this section we fix such an SR-set V C V
as in 4.5.14, and any k, € Char. Then, for each I = ZvevaEv € L(V), with
every £, > 0, we define the universal cycle x(l_) associated with I and s;, (where
k, = K + 2sp,) as in 4.5.18. For several properties of the cycles x (/) and of the
values xy, (x (1)) see 4.5.16. Let § be the cardinality of V. In the next paragraphs we
follow [47].

4.8.1 Preparation for the Lattice Reduction Our goal is to replace the cubes of
the lattice R* (or from (R>0)*) with cubes from (R>)*. In order to run the theory
we need to define the new weights. Define the function wo : (Z>0)® — Z by

wo(l) == xr, (x(D)). (4.87)

Then wq defines a set {wq}j;:() of compatible weight functions by wy(J) =
max{wp(v) : v isa vertex of 1}, similarly as in 4.6.12. This system is denoted
by wlk,].

Here some comments are appropriate. We wish to emphasize that in the definition
of the lattice cohomology the /attice (that is, the linear) structure in not used, it is
not essential. The important structure consists of the weight-levels of the lattice
points in some regions (e.g. quadrants, rectangles) and their neighboring properties.
Note that in the new situation we do not use the linear structure of Z° either, and
we do not even define the weights of the lattice points outside the first quadrant.
Furthermore, [ > Xk, (x () is a complicated arithmetical function (definitely not
quadratic or polynomial).

Let us denote the associated lattice cohomology by H* ((Rzo)g‘ , wlk,]).

Theorem 4.8.2 (Reduction Theorem [47]) There exists a graded Z[U]-module
isomorphism

H*(R0)*, kr) = H*(R=0)*, wik,1). (4.88)
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Corollary 4.8.3 Fix an arbitrary graph T. If it admits an SR-set of cardinality s
then HY (T, k) = 0 for any q > 5 and k € Char.

This vanishing can be proved by surgery exact sequences of lattice cohomology
as well, see [74].

4.8.2 Reduction Theorem for Z(t)

The Reduction Theorem has its effect on the relation of the lattice cohomology with
the counting function of the coefficients of topological Poincaré series Z(t) as well.
Let us consider first the series Z(t) written in terms of weighted cubes (cf. 4.4.33
and 4.4.40).

Theorem 4.8.4 Fix h, s, and k, = K + 2s;, as above. Let w = w(k; ] be the system
of weight associated with k,. Then the following facts hold.

(1)
zi =Y (=D, ) ¢,

leL ICV

(2) Fix somel € L withl+ s, € —K + S'. Then

D 30+ sn) =, (1) + eu(H (T, k).
xeL,x#1

4.8.5 The Reduced Series Let us return to the SR-set V, write V as V U V*,
andlet 7 : L' — L(V) ® Q be the projection to the V-coordinates. As usual, we

also write ty = {tv}ve,v for the variables of L(V), and ti} = ]_[UE,V tf” forl =

ZUE(VKUEU € L(V) ® Q. Forany h € H set Zh,q/(tq/) = Zh(Ols,=1 for all vev*-
It is supported on the projection of 8’ N (s, + L). Write

_ ~ I+ (sp)
Zh’rv(tfv) - Z 5l+ﬂ(sh)tq/ ’
IeL(V)

Theorem 4.8.6 ([47]) With the above notations (and w = wlk,])
(1)

Zyyty) = ) (Z(—l)'”“w((i, I)))tz;r”(‘h)_

leL(V) ICV
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(2) There exists Iy € 7(S) such that for any [ ely+m(S)

> stinin = wD) + eu(@ (R=0)°, w)).
k>

Example 4.8.7 Consider the following graph I'

It is the minimal good resolution graph of the hypersurface singularity x!3 +
y13 4+ x%2y% + 72 = 0. In particular, Zg is integral.

In the sequel we will calculate the lattice cohomology of M (I") associated with
k, = K. We choose the two nodes as an SR-set. Then Reduction Theorem 4.8.2
implies that H*(T", K) = H*((Rx0)?, w), where w(i, j) = x(x(i, j)) for any
@i, j) e (Zzo)z. It turns out that

w(i +1, j) —w, j) =1+ —[(53i + j)/3517 = [i/2] — [i/3]
w(, j+1) —w@, j)=1+j—[G+53/)/3511 = [j/21 = Tj/31.

Since w(Zx) = (14,14), the projection of the rectangle R(0, Zg) is
w(R(0,Zk)) = R((0,0), (14, 14)). Hence by Lemma 4.5.11(b) the rectangle
R((0,0), (14,14)) = {(G, j) € (IRE())2 1 (i, j) < (14, 14)} contains all the needed
information. The values w(i, j) are given in the next diagram. ((0, 0) is at the lower
left corner.)

1100 0001 00 00 0 110]
1 1.0 0 0 0 0 1 .0 0 0 0 0 1 1
0 O[-1 =1 =1 =1 —1] 0[-1 =1 =1 =1 =1] 0 0
0 0/-1 -1 =1 =1 =1| 0|1 =1 =1 =1 =1[ 0 ©
0 0/-1 =1 =1 =1 =1| 0|1 =1 =1 =1 =1[ 0 ©
0 0[-1 =1 =1 =1 =1| 0|=1 =1 =1 =1 =1 0 0
0 0[=1 =1 =1 =1 =1] 0]=1 =1 =1 =1 =1] 0 0
1 1_0 00 00(1)0o 000 0 1 1
0 O[-1 =1 =1 =1 1] 0]-1 =1 =1 =1 =1] 0 0
0 0[-1 =1 =1 =1 =1| 0]=1 =1 =1 =1 =1 0 0
0 0/-1 =1 =1 =1 =1| 0|1 =1 =1 =1 =1[ 0 ©
0 0[-1 =1 =1 =1 =1| 0|-1 =1 =1 =1 =1 0 0
0 0[=1 =1 =1 =1 =1] 0|=1 =1 =1 =1 =1] 0 0
1 1.0 0000100000 1 1
[0J]1. 0 0 0001 00 0 0 0 1 1
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The large frames illustrate the generators of H 0(S_l, Z), the small ones the
generators of H 0(So, Z) in degree 0 and the circle shows the generator of H 1 (8o, Z).
Hence,

H K) =T HeT2,(h@T3(1) and H'(I,K) =To(1) and eu(H*(T, K)) =5.

For several concrete formulae and other explicit examples when I' has two nodes,
and V = N, see [44].

4.9 H* of the Surgery Manifold S J#iKi)

4.9.1 Invariants of M(T') = Sid (#;K;) for Any d > 0 and for
All Spin® Structures [84]

4.9.1 Consider the notations of 4.2.32, or of 4.4.11 with d > 0. Here we do not
assume that u = (d — 1)(d — 2) (as in the superisolated link case 4.2.4 or 4.3.6). In
this subsection we follow [84]. By 4.2.32

-1

=Tr(d): I, ::.\
Vy

Vi
>‘ —d =2 m

-1

I ::‘/
Vi

The group H is Z4 and it is generated by the class of the dual of £, := Ey, .
Furthermore, as in Lemma 4.7.24 one has SlaE%] = an"|r foranya =0,1,...,d—1.
We will use the notations & := [aE*}] € H and k, := K + 2aE’} € Char. With
7 = {v4} one has (cf.4.4.11)

A([l/d)
(1— tl/d)z

NG

Zr(t) = 1 — grl/dy2

1
and Z),7(0) = - > g—“( (4.89)

gd=1
Using A(t) = 14+ —1)5+(t— 1)2Q(r) and Q(1) = fo:_g a,t", by acomputation

g+ D+t d —a—1) §-19/4
( ) ( )~|— 4 Z

e,
t —1)2 r—1 on

Zp (1) =
n=a (mod d)
(4.90)
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Since the polynomial part Z;; 7(t) of this expressionis 3, _, (nod a) ant™?, we get

pe(Zy 1)) =pe(Znst) = D an (4.91)

n=a (mod d)

Next we apply the surgery formula from Theorem 4.4.31 forv = vy and !’ = aE7..
Then ll’}+ = a/d € [0, 1). Furthermore, R; (aEi) = 0, hence all the contributions
51041k, (MT3)) — (Kl.2 + |Vi|)/8 vanish (since SWIC is valid for smooth germs).
Therefore, from 4.4.31,

K2+ |V
s (M) =" 0 = > o (4.92)
n=a (mod d)

This combined with Theorem 4.6.31 give

eu(H*(T, k,)) = Z . (4.93)

n=a (mod d)

4.9.2 The Lattice Reduction In the next pages we follow closely [84].

The set V := {vy,...,v,} of the (—1)-vertices form an SR-set, cf.4.5.15(1).
Set Eq, ..., E, for the corresponding elements of L. Next we apply the Reduction
Theorem from Sect. 4.8, whose notations we will adopt. Write [ = Y}, (;E; €
L(V) = L, and let xy, (l_) be the universal cycle associated with k. and [ as
in 4.5.18 and Sect. 4.8. Set w(l_) = Xk (x (l_)) as in (4.87). Then, by the Reduction
Theorem 4.8.2 one has a graded Z[U ]-module isomorphism:

H*(T, k) = H*((R>0)", w). (4.94)

For each ¢; > 0 consider the cycle y;(¢;) determined in the graph I'; as in 4.7.25
and 4.7.26. Set ¥m =), m; and X/ = Yot (and, in general, Xx := > i xi for
x € RY). Then the E -coefficient of x4, ({) is m(I) = [(X£ —a)/(Em + d)] and

X (D= yill) +[ EZ:;;‘; W E,. (4.95)

Write ¢; = pim; + €£; 0 with p; € Z>p and 0 < ¢; 0 < m,. Let Z; be the cycle
diver,)(fi) = E?‘(Fi). Then y;(¢;) = piZ;i + yi(£i0) (cf.4.7.26). Furthermore,
ifforanyi = 1,...,vwetake I; = (0,...,0,1,0,...,0) (1 at entry i) then
w(0) = 0, and

w(1'+1,~)—w(l_)=p,~+1—[

50— it ¢ .
t—a “ _{1 if £io0dS; (4.96)

Ym+d 0 if €io€edS;.

Here S; is the abbreviation for the semigroup Sc p, .
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Next, we reduce (Rx>()" to a finite multi-rectangle. We write m for the vector

(my,...,my),and R(l_l, l_z) denotes the rectangle {x € R : l_l <x < l_z}, as usual.
Setalso R, := R(pm, (p + 1)m).
Lemma 4.9.3

(a) Set po:=[(u—a—1)/d]. Then
H*((R=0)", w) = H*(R(0, pom), w) = H*(Up<p<j, Rp. w).

(b) w(pm) = p(l +a—28)+dp(p—1)/2forany0 < p < po.
(c) Fix 0 < p < po. Then, foranyl € R, N L, {; = pm; + £, with £L <
p(X¥m +d) +a + 1 one has:

w(l) — w(pm) = Z #seSi s <liog—1} (4.97)

i

(d) Fix0 < p < po. Then, for any [ € Ry, N L, £; = pm; + £, with ££ >
p(Em +d) + a + 1 one has:

wd) —w((p+DHm) =) #s ¢St 5= o). (4.98)

1

Consider the notation

T, ={xe®0)" : (Ex—a—1D/Em+d) =p-1}.

From the above facts we obtain the following.
Theorem 4.9.4 Set py := [(uw—a — 1)/d] as above and for any 0 < p < po
consider

minT[;rl s=min{w() : [ € T;:+1 NR,NL}

Then the following facts hold:

(a) w(pm) 5 min Tp_+1’_ w((p + 1) m) < min Tp_+1'
(b) my, :=min xg, = ming<,<p,{ w(pm)}.

(c) Let pmin be the smallest integer satisfying w(pminm) = my,. Then
HY, (T k)= €D Taw(pm(min T, —w(pm))
0<p<pmin

& P Towrym(minT, | —w((p+1Hm).

Pmin=<P<Po
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(d) rank ZH(r)ed (T, k) equals

Z (minT,,, —w(pm))+ Z (minT,,, —w((p+ 1)my)),

0<p<pmin Pmin<p<po

or

—my, + rank zHC, (T, k) = Z (min T, —wp+1D) m)).
0<p<po

(e) For anyq > 0 one has

HY(T, k) = @ HY (R, w).
0<p<po

4.9.5 The Structure of H=!(R,,, w) The cohomology H=!(R,, w) depends only
on the w-values at p m, at (p+ 1) m and along Tp_+1. Indeed, for any n € Z consider
Sp as in 4.5.2. Then for n < min T[;H the space S, N R, has the same homotopy
type as the intersection of S, with the two-element set {p m, (p + 1) m}; while for
n > min T[: 41 it has the homotopy type of the suspension of S, N T[;H . In particular,
all the nontrivial homogeneous elements of H=! (Rp, w) have degree > min Tp_+1,
and one has the graded Z[U ]-module isomorphism

H (R, w) = ij;,‘(Tp—H, w) forg > 0. (4.99)

4.9.6 The Structure of ]HI*(TI: 41> w). The Modules H*(T,’, W) In most of the
notations above, we have omitted the symbol a codifying the characteristic element
ky. In fact, forany p > 0Oanda € {0, ...,d — 1}, T[;H is

Tpa'= {1t = pmi+Lio; Zﬁi,o =pd+a+1}.

1

Note that when p runs over Z>p anda € {0, ...,d — 1}, theintegern = pd +a
runs over Zx(. This motivates to consider for any n € Zxq

Ty = {(€1.0, ... £0.0) € [0.m1] x -+ x [0,my] : Y Lig=n+1}.  (4.100)
i

Then, for d and a fixed, Tp7+l,a = Tpa4a + pm. If p < po then pd +a <

@ — 2, hence the relevant index set of the hyperplanes is 0 < n < p — 2 (this
can be compared with the index set {oen}ﬁf ~2 of the coefficients of Q(1)). The form

T pa+a + p m shows also how they intersect the small rectangles: when we run a, an
element of the set {T,, + [n/d |m}o<,<, > intersects R, if and only if |n/d] = p.
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Up to the shift w(p m), which is constant on each T),, but otherwise depends on
p = |n/d], the weights on T,, N Z" are given by the right hand side of (4.97). Or,
up to a shift w((p 4+ 1) m), the weights are given by (4.98). Following this second
version we set the following weights for any T),:

W10 0,0) = > #s €Si 15> Lo (4.101)

i

That is, W|r, (I — pm) = w(l) — w((p + 1) m), where p = |n/d].

The weight function W restricted on all the level sets {T,},>0 of (Z>¢)" mea-
sures the very subtle distribution properties of the semigroups {S;};. Furthermore,
up to a well-identified shift in degrees, the collection (T, W) provides all the lattice
cohomologies H*(I"(d), k,) for all the possible values d and a. Here, and in the next
discussion, we denote the dependence of I" on d by I'(d).

More precisely, forany d anda € {0, ...,d — 1} and g > O one has:

HY(I'(d), K +2aE*) = &y HY (T, W)lsnal, (4.102)
n=a (mod d), 0<n<p-—2

where s, 4 is the value of the shift 2w ((p+1)m) =2(p+1)(1+a—-8)+d(p+1)p
(with p = |n/d]). Moreover, the values {min W |T,}, and s, 4 determine all the
cohomology groups HO(I'(d), k) too. The second identity of (4.9.4)(d) together
with (4.98) reads as:

—my, + rank HY,,(C(d), K + 2aE*) = > min{W|r, }.
n=a (mod d), 0<n<p-—-2
(4.103)
In particular, for any fixedd > Oanda € {0, ...,d — 1} one has:
eu(H(T(d), K +2aE*)) = > min{W|r,},
n=a (mod d), 0<n<u-2
(4.104)

eu(H*(N(d), K +2aE¥)) = > —eu(H*(T,, W)).

n=a (mod d), 0<n<p—2

Example 4.9.7 For any d > 0 and ¢ > 0 the summation of (4.102) over a gives

d—1
HY(N(d)) = PHI (T (@), K +2aE5) = P HL, (Tn, Wlsnal.
a=0 0<n<pu-2

(4.105)

On the right hand side of (4.105) the numbers s, 4 depend on d, but the rank of the
right hand side is independent of d. In particular, up to shifts of different direct sum
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blocks, ®y=0H(I'(d), k,) is independent of the choice of the integer d. (This can
also be deduced from the surgery exact sequences from [74].)

Example 4.9.8

(a) Assume that for a certain d and a one gets pp = 0. Then HY, (T, k) = 0, and
HOT, k) =T,

(b) Assume that for a certain d and a one gets pp = 1. Then H*(I', k) =
H*(Rp, w), hence everything is determined by T, - Indeed,

min 7}, =min { > #seS; :s<t;—1}, where Y ¢ =a+1}
- -

1

=min{ Y #s¢S; :s>¢;} where Y ¢ =a+1}+1+a-3,
- -

1

my, = min{0, 1 +a — 8}, H® (T, k) is generated by one element of degree

r red
2 max{0, 1+a—§}, rank H?ed(r‘, k;) = min Tlfa—max{O, 14+a—4}, and finally
for g > 0 one has HY (T, k,) = HY, (T}, w) = HY ' (Tq, W)[2(1 +a — §)],
(T, = Ta +m).

(c) fd>pu—1then pyg=1fora <u—1,and po =0fora > u — 1.

Remark 4.9.9 Assume that we know all the cohomology groups {H*(I'(d), k) }x,
for some specific d withd > p — 1. Then using them, and also the values w(pm) =
p(l 4+a —46)+dp(p — 1)/2 for all p,a and d, we can recover all the lattice
cohomologies {H*(I'(d), k) }«, for any d > 0. [For this, use Example 4.9.8 and
(4.102).]

Corollary 4.9.10 For any n > 0 the coefficients of Q(t) = Y, ant” satisfy
an = —eu (H*(T,, W)). (4.106)

Proof Use the identities (4.93) and (4.104) for d > 0, cf. 4.9.9. |

Remark 4.9.11 Above we reduced several computations to the weight function
Wir,. It was connected with the weight function provided by the reduction
formula via W|r,( — pm) = w() — w((p + 1)m), where p = |[n/d].
Since each w(pm) is computable from d, a, 8, cf.4.9.3(b), the lattice coho-
mology HO(Sid(#,-K,')) is computable from d, a, § and {W]T,},. On the other

hand, by (4.101) W((£1,0,...,£v,0)) equals Zi #s € Si s > Lo} =

Y6 —#si €Sitsi <lio}) = 2 ;8 — Lio) + Y #si € Si s < Lioh
Hence

min{Wip, ) =8 —n—1+ min #s €S s < lio). (4.107)
Zi Lio=n+1
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This motivates the replacement of the semigroup S; with an equivalent object of it,
with its ‘counting function’ j — H;(j),

Hi(j)=#se S :s5<j) (4.108)

From analytic point of view, H; () is the coefficient of #/ in the Hilbert function of
the local singularity (C, p;), associated with the filtration given by its normalization.
The above min-expression can be reformulated formally as follows. Consider
any two functions H; and H defined on integers and bounded from below. Then
we define their ‘minimum convolution’ (cf. [9, 5.3]), denoted by H; ¢ H as (H; ¢
H)(j) = minj, 1 j=; {H1(j1) + H2(j2)}-
Then from the counting functions { H;}}_, associated with {S;}’_, we construct

H:=H ¢cHyo---¢ H,. (4.109)

Since the operator ¢ is associative and commutative, the function H is well-defined.
From the above discussion HO(SE 4#i K;)) is computable from d, a, § and H.

Remark 4.9.12 In the above discussion (e.g. in 4.9.5-4.9.6), the space T,—
intersection of a simplex with a rectangle—can be replaced by the supporting
simplex. Indeed, set

S = {010+ £00) € Rx0)' > Lig=n+1}. (4.110)

1

A verification shows that H}, ,(T,, W) is isomorphic with H ,(%,, W) for
every n > 0. Furthermore, if n > pu — 2 then Hr*e (T, W) = 0 automatically,
hence in several formulae above (e.g. in the summations from (4.102) and (4.105))

the restrictions n < p — 2 can be safely neglected.

4.9.2 Superisolated Singularities with More Cusps

In this subsection we consider a superisolated singularity associated with an
irreducible rational cuspidal curve. For different notations and statements regarding
the analytic and topological type see Sects.4.2.4, 4.3.6, 4.4.11, 4.7.4, and 4.9. In
this subsection we follow [8].

Our goal is to discuss Conjectures 4.3.21 and 4.3.22 from the point of view of
lattice cohomology. Let us recall the two statements. Set (cf. 4.3.20(b))

d-3

I+D(I+2 .
N(t) = E (Of(d73fl)d— ¢+ )2( * ))td_3_/. 4.111)
1=0
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* Conjecture 4.3.21: all the coefficients of N (¢) are non-positive. We will refer to
this as ‘Conjecture C’ (‘Conjecture regarding the coefficients of N(¢)’).

* Conjecture 4.3.22: N(1) is non-positive. We will refer to this as the ‘Conjecture
I’ (we regard N (1) as an ‘index type invariant’).

Clearly Conjecture C implies Conjecture 1.

We will compare these statements with the Semigroup Distribution Property
based on the properties of counting function H; of the semigroups and also on a
subtle connection with lattice cohomology.

We consider the counting functions H; of the semigroups S; (cf. (4.108))
and their minimum convolution H as in (4.109). Recall also (cf.4.2.33) that the
Semigroup Distribution Property (SDP) reads as H(ld + 1) = (I + 1)(I + 2)/2 for
any/ =0,1,...d — 3.

Example 4.9.13 (The case v = 1) Inthis case o; = #{s € S1 : s > j}, cf. (4.42).
From (4.43) 52— j = Hi(j + 1) for j =0, ...,25 — 2. Hence, the a-coefficient
needed in (4.111) is a@—3-ng = #s € S1 : s < ld} = Hi(ld + 1). Recall
that 4.2.33 (Bézout’s Theorem) implies a(g—3-1¢ = Hi(ld +1) > ( + 1D +
2)/2. This inequality and (4.111) show that for v = 1 Conjecture C is equivalent
to N(¢) = 0. But, they are also equivalent to Conjecture I, since if N(1) < O then
necessarily N (t) = 0. Finally, the validity of all these statements follow from SDP.

However, for v > 2 the relationships are more subtle.
Theorem 4.9.14 ([8]) With the above notations one has:

1. Ifv=2thenqy—2j < H(j+1) forany j =0,1,...28 — 2. Therefore, for
bicuspidal curves the SDP implies Conjecture C (hence Conjecture I too).

2. If v > 3, then the inequality qas > j < H(j + 1) does not hold in general, not

evenforj =1d (1 =0,1,...,d—3), needed for Conjectures C and 1. Moreover,

Conjecture C is not true in general, and Conjecture I behaves independently from

SDP. (Conjecture I remains as a conjecture, though its validity is verified directly

for all ‘known’ curves.)
For a direct elementary proof of part (1) see [65].

4.9.15 Combinatorial Reformulations The next discussion aims to clarify the
similarities and differences between the polynomial Q and the function H.

Let us start with v semigroups {S;}}_, associated with local irreducible plane
curve singularities. However, in the next discussion we will not require their realiz-
ability as singularities of a projective rational curve. [Regarding the realizability, we
use the following terminology. If the sum § of delta-invariants of the local singularity
types is of form 26 = (d — 1)(d — 2) for some integer d, then we say that these
v local topological types are combinatorial candidates for the v singularities of a
rational cuspidal plane curve of degree d. If such a curve really exists then (SDP) is
valid for the corresponding local data and d.],
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The semigroups determine their counting functions H; by (4.108) and the
minimal convolution H of the functions {H;}; by (4.109). For convenience, define
also the sequences {h?)}?ozo by hg.’) =H;(j+1).

For any sequence a = {a j}j‘;o denote by da its difference sequence, i.e.
(da); = a;j — aj_1 with the convention a_; = 0. Similarly, we will denote by
Xa the sequence of partial sums, i.e. (Xa); = ap + ---+aj. Of course, Xda = a
and dXa = a for any sequence a.

By (4.108) and A;(1) = (1 — 1) - Y s, 1° (cf. (4.6) the coefficient c;” of t/ in
A;(t) can be written as = (33hD) j- The coefficient sequence of a polynomial
product is the usual convolution of coefficient sequences of the factors. Hence, the
coefficient ¢; of t/in A(t) = [LAi@®isc; = Zj1+---+jl,:j cﬁ.ll) e cx). Denoting
the convolution of two sequences a = {aj}?io and b = {bj}?io by a * b, i.e.

(a*b); = Z;ﬁ;o axbj_k, we getcj = (39hW % - % 39h™) ;. Let us define:
F(j) = (2@ x---x00n™My) ;. (4.112)

Before we identify F, let us recall some symmetry properties. From the symmetry
of A=1+(t— 18+ (t—1)*Q(t) (and from 8§ = 3, §;)

s 2 j=aj+j+1—5 for 0<j<25—2. (4.113)

This (or the symmetry of each semigroup) implies also H;(j;) = H;(28; — ji) +
Ji — 8;, from which one also obtains

H25—-2—-j+1)=H({(+1)—j—1+468 foreveryjeZ. (4.114)

Next, if A(1) = ), ajt/ and B(t) = > bjt/ satisfy A(t) = A(1) + (t — DB(),
then (Xa); = A(1) — b;. This applied twice for A gives (X¥X¢); = j+1-58+a;.
Hence, then the definition of Q and (4.113) provide

@p-2—j = (ZX@hVx---%x30h™)); = F(j) for 0< j <28-2. (4.115)

In other words, the H-values are obtained from {h?}; by minimal convolution
(shifted by one), while the F-coefficients (or «-coefficient in opposite order) are
obtained by the composition of 99, the usual convolution, and the £ X operator.

Then one has the following reinterpretations in terms of F and H.

Let C C CP? be a rational cuspidal curve of degree d with v cusps of given
topological types (in particular, d(d — 3) = 28 — 2). Set F(j) := (EX(39hV x
ceek 88/1(”)))]-, where h;’) = H;(j + 1), and H; is the semigroup counting function
of the i-th singularity. Set H := Hy o --- o H,. Then

I+ 1D(I+2
(Conjecture C)  F(ld) < ¢+ )2(+ ) foralll =0,1,...,d—-3. (4.116)
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d-3 -3
(1+1)(l+2) d(d—l)(d 2)
(Conjecture I) ;F(Zd 52 . . @117
(SDP) H(ld~|—1)=(l+1)2(1+2) foralll =0,1,...,d —3.  (4.118)

Let us summarize the combinatorial situation. Starting from the semigroups of v
local singularities we define H and F.

If v =1 (since ¥XX00(h) = h) then F(j) = H(j + 1) foreach j € Zx¢
(independently of realizability, hence not just for j € d - Z>0).

On the other hand, for v > 1 the values F(j) and H(j 4+ 1) become different.
Nevertheless, cf. Theorem 4.9.14(1) F(j) < H(j + 1) remains true for v = 2
and every integer j > 0, again by combinatorial (lattice cohomology) argument
(independently of realizability and d).

With these facts in mind, it is tempting to conjecture that maybe the inequality
F(j) < H(j + 1) is always true—as a property of local singularity types—, which
would make Conjecture C a combinatorial corollary of SDP. But, for v > 3 there is
no such relation between the local functions F' and H.

4.9.16 Lattice Cohomological Reinterpretation Consider the combinatorial situ-
ation from 4.9.15. The semigroups S; determine links K; C S of the corresponding
(topological types) of plane curve singularities. Consider an arbitrary d > 0 and the
surgery 3-manifold Sid (#;K;) as in Sect. 4.9.

The next statements show a remarkable common feature of the functions F and
H.

Theorem 4.9.17 Foranyd > 0 and 0 < a < d the following facts hold:

eu(HO(S K, K +2aE* )) > HGED 1)),

=a(mod d)
O§j§25—2

Z HQ28—2—j+1);
Jj=a(mod d)
0<j<28—2

(4.119)

(H*(S3d(#K) K + 2aE* )) > F(H+s—1-))

=a(mod d)
O§j§25—2

Z F2§—2— ).

j=a(mod d)
0<j<25-2

(4.120)

Proof We will use the identities from (4.104). In the first one, note that by (4.101),
(4.100), and (4.107) min(W|r;) is § — j — 1 + H(j + 1) and (4.119) follows (for
its second identity use (4.114)).
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For the second identity, note that —eu(H*(T;, W) equals «; by (4.106), which
is F (26 —2 — j) by (4.115). Then use again the symmetry (4.113). |

Remark 4.9.18 1In fact, by Theorem 4.9.4, the integer d, the sum of delta-invariants
8 and the function H completely determine the whole HP as a graded Z[U ]-module
(and not just its Euler characteristic).

Corollary 4.9.19 Assume that d(d — 3) = 28 — 2 (that is, d and {S;}; constitute a
package of combinatorial candidates for algebraic realizability). Then

eu (HOS2,hiKp), K +2aED)) = Y H(+1D),

j=—a(mod d)
0<j<25-2

eu (H*(Sid(#,»K,»), K +2aE% ) = Y Fo).
j=—a(mod d)
0<j<25—2

This for a = 0 reads as

e (HO(Sid(#iKi), K)) = 0<l§_3 H(d + 1),

eu (H*(Si LKD), K)) = 0<§_3 Fd).

Sinceby 4.2.33 H(ld+1) > (I+1)(I+2)/2forany! =0, ...,d—3, Zld:_(f H((d+

1) = ;1;03 (I4+1)(1+2) /2 is equivalent to SDP for every [ (cf. (4.118)). In particular,
in the presence of the algebraic realization, the valid SDP reads as:

(SDP) eu (HO(Sid(#,- ;). K)) — d(d —1)(d —2)/6. 4.121)
Furthermore, under the same realizability assumption, Conjecture I reads as:
eu (H*(Sid(#,-K,-), K)) <d(d—1)(d—-2)/6. (4.122)
They combined:

(Conjecture 1) eu (H*(Sid(#,»K,»), K)) < eu (Ho(sid(#,-K,»), K)). (4.123)
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4.9.20 Proof of Conjecture I for v = 2 (via SDP)

First note that H‘f(Sid(#,- Ki), k) = 0 for any ¢ > v and any k, (cf.4.8.3).
Then, for v = 2, one has eu (H*(S? ;(#;K;), K)) = eu (HO(S® ,#K;), K)) —
rankzH' (S? ,(#;K;), K), hence (4.123) follows.

For v > 3 the similar argument does not work. From this point of view, it is even
more surprising that in all the known cases Conjecture I still holds, cf.4.9.14.

4.10 Lattice Cohomology and Heegaard Floer Homology

The Seiberg—Witten invariant is the (normalized) Euler-characteristic of
the Seiberg—Witten monopole Floer homology of Kronheimer—-Mrowka, or
equivalently, of the Heegaard Floer homology of Ozsvith and Szabd. These theories
had an extreme influence on the modern mathematics, solving (or disproving)
a long list of old conjectures (e.g. Thom Conjecture, or conjectures regarding
classification of 4-manifolds, or famous old problems in knot theory); see the
long list of distinguished articles of Kronheimer—Mrowka or Ozsvdth—Szabé. In
[102] Ozsvath and Szabd provided a computation of the Heegaard Floer homology
for some special plumbed 3-manifolds. This computation resonated incredibly
with the theory of computation sequences used in Artin—Laufer program (see e.g.
[50, 67, 68]). These two facts influenced considerably the definition of the lattice
cohomology.

4.10.1 The Conjecture Connecting Lattice Cohomology and
Heegaard Floer Theory

4.10.1 Short Review of Heegaard Floer Homology H F™ (M) We assume that
M is an oriented rational homology 3—sphere, and we restrict ourselves to the
+—theory of Ozsvédth and SzabS. The Heegaard Floer homology HF'T(M) is a
Z[U]-module with a Q—grading compatible with the Z[U ]-action, where deg(U) =
—2. Additionally, H F™ (M) has another Z;—grading; H F*(M)eyen, respectively
H FT(M),q4 denote the graded parts. Moreover, H F+(M) has a natural direct sum
decomposition of Z[U]-modules (compatible with all the gradings): HF* (M) =
®, H Ft(M, o) indexed by the spin® structures o of M. For any o € Spin‘(M) one
has

HFY(M,0) =T} . ®HF (M, 0),
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a graded Z[U]-module isomorphism, and H Fj; (M, o) has finite Z—rank and an
induced Z,—grading. One also considers

x(HFT (M, o)) :=ranky HF'

red,even

(M, o) —rankg HF}, ,,,(M,0).

e

Then the Seiberg—Witten invariant of (M, o) equals y(HFT(M,o)) —
dM,o)/2.

By changing the orientation we have x (HFT™(M,0)) = —x(HF*(—M, o))
andd(M,o0) = —d(—M, o).

4.10.2 The Predicted Connection In [72] the author formulated the following

Conjecture 4.10.3 For any plumbed rational homology sphere associated with a
connected negative definite graph I', and for any k € Char, one has

. K+ V| K+ |V

d(M, kD = max T L =2 min
Furthermore,
H E, g even M 1D = €D HY (D kD[],
p even
and

HE pqa(—M, [K]) = @ HL, (T, [kD[—d].
p odd

Both parts of the Conjecture were verified for almost rational graphs in [72], for two
bad vertices in [101], see [72, 8.4] too. Otherwise, the Conjecture is still open.
Note that (conjecturally) H* has a richer structure: its g—filtration H* = @, HY
collapses at the level of H F™ to a Z; odd/even filtration.
The fact that both theories have the same Euler characteristic support the above
conjecture as well. Another supporting evidence is the following fact.

4.10.4 Coincidence of the Vanishing of the Reduced Theories By 4.6.22 the
graph I' is rational if and only if HY, (I') = 0. On the other hand, following
Ozsvéath and Szabd, by definition, M is an L—space if and only if H Fr‘: 4 = 0. Their
equivalence is predicted by Conjecture 4.10.3. This ‘tip of the iceberg’ statement
was proved in [76]:

Theorem 4.10.5 The following facts are equivalent for a connected negative
definite graph I':

(i) T is a rational graph,
(ii) M = M(T") is an L—space.
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(i) = (ii) follows from lattice cohomology theory [70, 72], while (ii) = (i) uses
partly the following equivalence (ii) < (iii), where (iii) means that (M) is not
a left-orderable group. [A non trivial group G is said to be left-orderable if there
exist a total order < on G such thatif @ < b then ga < gb for every g € G.] The
equivalence (ii) < (iii) was proved in [33] for any graph—manifold. For arbitrary
3—manifolds it was conjectured by Boyer, Gordon and Watson [10], for different
developments and other references see [33, 76].

Problem 4.10.6 Characterize elliptic singularities (or other non-rational families of
singularities) by a certain property of the fundamental group of the link.

Acknowledgments The author was supported by the NKFIH Grant KKP 126683.
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