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Preface

This is the third volume of the Handbook of the Geometry and Topology of
Singularities, a subject which is ubiquitous in mathematics, appearing naturally in a
wide range of different areas of knowledge. The scope of singularity theory is vast,
its purpose is multifold. This is a meeting point where many areas of mathematics,
and science in general, come together.

Let us reminisce Bernard Teissier’s words in his foreword to Volume I of the
Handbook:

I claim that Singularity Theory sits inside Mathematics much as Mathematics sits inside
the general scientific culture. The general mathematical culture knows about the existence
of Morse theory, parametrizations of curves, Bézout’s theorem for plane projective curves,
zeroes of vector fields and the Poincaré-Hopf theorem, catastrophe theory, sometimes a
version of resolution of singularities, the existence of an entire world of commutative
algebra, etc. But again, for the singularist, these and many others are lineaments of a single
landscape and she or he is aware of its connectedness. Moreover, just as Mathematics
does with science in general, singularity theory interacts energetically with the rest of
Mathematics, if only because the closures of non singular varieties in some ambient space
or their projections to smaller dimensional spaces tend to present singularities, smooth
functions on a compact manifold must have critical points, etc. But singularity theory is
also, again in a role played by Mathematics in general science, a crucible where different
types of mathematical problems interact and surprising connections are born.

The Handbook has the intention of covering a wide scope of singularity theory,
presenting articles on various aspects of the theory and its interactions with other
areas of mathematics in a reader-friendly way. The authors are world experts; the
various articles deal with both classical material and modern developments.

The first Volume I of this collection gathered ten articles concerning foundational
aspects of the theory. This includes:

– The combinatorics and topology of plane curves and surface singularities
– An introduction to four of the classical methods for studying the topology and

geometry of singular spaces, namely resolution of singularities, deformation
theory, Stratifications, and slicing the spaces à la Lefschetz

– Milnor fibrations and their monodromy

v
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– Morse theory for stratified spaces and constructible sheaves
– Simple Lie algebras and simple singularities

Volume II also consists of ten articles. These cover foundational aspects of the
theory as well as some important relations with other areas of mathematics. They
include:

– The analytic classification of plane curve singularities and the existence of
complex and real algebraic curves in the plane with prescribed singularities

– An introduction on the limits of tangents to a complex analytic surface, a subject
that originates in Whitney’s work

– Introductions to Zariski’s equisingularity and intersection homology, which are
two of the main current viewpoints for studying singularities

– An overview of Milnor’s fibration theorem for real and complex singularities, as
well as an introduction to Massey’s theory of Lê cycles

– A discussion of mixed singularities, which are real analytic singularities with a
rich structure that allows their study via complex geometry

– The study of intersections of concentric ellipsoids in R
n and its relation with

several areas of mathematics, from holomorphic vector fields to singularity
theory, toric varieties, and moment-angle manifolds

– A review of the topology of quasi-projective varieties and generalizations about
the complements of plane curves and hypersurfaces in projective space

This Volume III also consists of ten chapters. Some of these complement topics
explored previously in Volumes I and II, while other chapters bring in important
new subjects. Let us say a few words about the content of this volume, though
each chapter has its own abstract, introduction and a large bibliography for further
reading. There is also a global index of terms at the end.

Chapters 1 and 2 have as common thread the much celebrated Thom-Mather
theory. In 1944, Whitney studied mappings R

n → R
2n−1, the first pair of

dimensions not covered by his immersion theorem, showing that in these setting
singularities cannot be avoided in general. He then introduced the concept of stable
mappings and characterized the stable mappings from R

n to R
p with p ≥ 2n − 1,

and also those from the plane into itself, showing that in all these cases the stable
mappings form a dense set in the space of smooth proper mappings. Whitney
conjectured that the density of stable mappings would hold for any pair (n, p).
However, René Thom showed that this is not the case by giving a counterexample.
Thom then conjectured that the topologically stable maps are always dense and
gave an outline of the proof. The complete proof was given by John Mather, who,
from 1965 to 1975, solved almost completely the program drawn by Thom for the
stability problem. This is known as Thom-Mather theory.

Chapter 3 is about Zariski’s equisingularity, previously envisaged in Parusiński’s
chapter in Volume II. Among the various notions of equivalence of singularities,
topological equisingularity is one of the oldest and easiest to define, but it is far
from being well understood. Several challenging questions remain open. In this
chapter, the author surveys developments in topological equisingularity, some of its
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relations with other equisingularity notions, and hints on new possible approaches
to old questions based in algebro-geometric methods, Floer theory, and Lipschitz
geometry. Topological equisingularity questions were crucial motivation sources for
the development of the Computer Algebra program SINGULAR; this is explained in
an appendix by G.-M. Greuel and G. Pfister.

Chapter 4 somehow fits within the classical interplay between normal singu-
larities in complex surfaces and 3-manifold theory, which has been studied for
decades and was discussed from a topological perspective in F. Michel’s chapter
in Volume I. Now the author looks at the subject from another perspective, bringing
in subtle structures. Given a complex analytic normal surface singularity (X, 0) we
know that its topology is fully determined by its link LX , a 3-manifold which
is the intersection of X with a sufficiently small sphere in the ambient space,
centered at 0. The main motif of this chapter is studying the ties between analytic
and topological invariants of (X, 0). Historically, this program was started by
Artin and Laufer, which characterized topologically the rational and minimally
elliptic singularities (respectively), and computed several analytic invariants from
the resolution graph. This question brings us into the theory of the Casson and
Casson-Walker invariant, the (refined) Turaev torsion, Seiberg-Witten invariants,
lattice (co)homology, Heegaard-Floer theory, and other important invariants of 3-
manifolds. This chapter starts from well-known elementary facts about surface
singularities and brings us to the depths of this rich and interesting theory.

Chapters 5–7 discuss different aspects of the theory of Chern classes for singular
varieties. For complex manifolds, their Chern classes are by definition those of
its tangent bundle. These are important invariants that encode deep geometric and
topological information. When we consider singular varieties, there is not a unique
way of extending this concept. This somehow depends on which properties of Chern
classes we are interested in, or how we extend the notion of the tangent bundle over
the singular set. In these chapters, the authors introduce in elementary ways the
various notions of Chern classes for singular varieties and their relations with other
invariants of singular varieties. Chapter 5 gives a thorough account of the subject,
from the birth of the theory of Chern classes up to the modern theories of motivic,
bivariant, and Hirzebruch characteristic classes. Chapter 6 has Segre classes as its
core. These classes are an important ingredient in Fulton-MacPherson intersection
theory and provide a powerful mean for studying Chern classes of vector bundles
in the algebraic setting. Several important invariants of algebraic varieties may be
expressed in terms of Segre classes. The goal of that chapter is to survey several
invariants specifically arising in singularity theory which may be defined or recast in
terms of Segre classes. Chapter 7 looks at the subject from a topological viewpoint,
focusing on the relations between local and global invariants, particularly indices
of vector fields, the Milnor number, and Lê cycles. It includes for completeness an
introduction to the Hirzebruch-Riemann-Roch theorem and its generalizations to
singular varieties that give rise to several of the recent developments in the subject.

Chapter 8 studies the residues in complex analytic varieties that arise from the
localization of characteristic classes via Alexander duality. A paradigm for this
theory is the classical theorem of Poincaré-Hopf that can be understood as providing



viii Preface

a localization of the top Chern class of a complex manifold at the singularities
of a vector field. This was beautifully extended by Baum and Bott for singular
holomorphic foliations on complex manifolds, providing expressions for certain
Chern numbers in terms of residues localized at the singular set of the foliation.
The theory that the author presents in this chapter starts with the study of residues of
singular holomorphic foliations, later transferred to the index theory of holomorphic
self-maps. The philosophy behind is rather simple. Namely, once we have some
kind of vanishing theorem on the non-singular part of a geometric object such as a
foliation, certain characteristic classes are localized at the set of singular points, and
the localization gives rise to residues via the Alexander duality. The author explains
how the relative Čech-de Rham theorem allows us to deal with the problem from
both the topological and differential geometric viewpoints, and the comparison of
the two yields various interesting expressions of the residues and applications.

Chapter 9 surveys applications of mixed Hodge theory to the study of iso-
lated singularities. Hodge theory deals with the cohomology of smooth complex
projective varieties, or more generally, compact Kähler manifolds. A choice of a
Riemannian metric enables one to define the Laplace operator � on differential
forms, and each de Rham cohomology class contains exactly one closed form ω

with �ω = 0, the harmonic representative. One has the Hodge decomposition of
cohomology classes via their harmonic representatives:

Hk(X,C) =
⊕

p+q=k
Hp,q(X)

where Hp,q(X) is the subspace of Hk(X,C) consisting of classes of forms
containing harmonic forms of type (p, q). Using Leray’s theory of sheaves and
resolution of singularities, Grothendieck defined the de Rham cohomology of
complex algebraic varieties in purely algebraic terms. A generalization of Hodge
theory to arbitrary complex algebraic varieties was then developed by Deligne.
He showed that the cohomology of a complex algebraic variety carries a slightly
more general structure, which presents Hk(X,C) as a successive extension of
Hodge structures of decreasing weights. This generalization is called a mixed Hodge
structure.

We close this volume with Chap. 10, a detailed introduction of the theory of
constructible sheaf complexes in the complex algebraic and analytic settings. All
concepts are illustrated by many interesting examples and relevant applications,
while some important results are presented with complete proofs. This chapter is
intended as a broadly accessible user’s guide to those topics, providing the readers
not only with a presentation of the subject but also with concrete examples and
applications that motivate the general theory. The authors introduce the main results
of stratified Morse theory in the framework of constructible sheaves, a subject
discussed also in Goresky’s chapter in Volume I of this Handbook. Constructible
sheaf complexes and especially perverse sheaves have become indispensable tools
for studying complex algebraic and analytic varieties. They have seen spectacular
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applications in geometry and topology, and several of these are discussed in this
chapter.

This handbook is addressed to graduate students and newcomers to the theory,
as well as to specialists who can use it as a guidebook. It provides an accessible
account of the state of the art in several aspects of the subject, its frontiers, and
its interactions with other areas of research. This will continue with a Volume IV,
which will cover other aspects of singularity theory, and a Volume V, which will
focus on holomorphic foliations, a remarkably important subject on its own that has
close connections with singularity theory.

We thank Bernard Teissier for allowing us to use his words above and for valuable
and inspiring comments.

Cuernavaca, Mexico José Luis Cisneros Molina
Marseille, France Lê Dũng Tráng
Mexico City, Mexico José Seade
October 2021
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8.3.2 Čech-de Rham Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
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8.9.5 Thom Class in Relative Čech-de Rham Cohomology . . . . 620
8.9.6 Thom Class of a Complex Vector Bundle . . . . . . . . . . . . . . . . . 623
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Chapter 1
Old and New Results on Density of Stable
Mappings

Maria Aparecida Soares Ruas

The analysis of the conditions for a map-germ to be finitely
determined and of the degree of determinacy involves the most
important of the local aspects of singularity theory.

C. T. C. Wall [108]
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Abstract Density of stable maps is the common thread of this paper. We review
Whitney’s contribution to singularities of differentiable mappings and Thom-
Mather theories on C∞ and C0-stability. Infinitesimal and algebraic methods are
presented in order to prove Theorems A and B on density of proper stable and
topologically stable mappings f : Nn → Pp. Theorem A states that the set of
proper stable maps is dense in the set of all proper maps from N to P , if and
only if the pair (n, p) is in nice dimensions, while Theorem B shows that density
of topologically stable maps holds for any pair (n, p). A short review of results
by du Plessis and Wall on the range in which proper smooth mappings are C1-
stable is given. A Thom-Mather map is a topologically stable map f : N → P

whose associated k-jet map jkf : N → P is transverse to the Thom-Mather
stratification in J k(N, P ). We give a detailed description of Thom-Mather maps
for pairs (n, p) in the boundary of the nice dimensions. The main open question
on density of stable mappings is to determine the pairs (n, p) for which Lipschitz
stable mappings are dense. We discuss recent results by Nguyen, Ruas and Trivedi
on this subject, formulating conjectures for the density of Lipschitz stable mappings
in the boundary of the nice dimensions. At the final section, Damon’s results relating
A-classification of map-germs and KV classification of sections of the discriminant
V = �(F) of a stable unfolding of f are reviewed and open problems are discussed.

1.1 Introduction

Although Riemann, Klein, Poincaré and other great mathematicians of the nine-
teenth century already used deep topological concepts in their work, the birth of
algebraic and differential topology as formal sub-areas of Mathematics occurred in
the first half of the twentieth century.

After previous works of Whitehead, Veblen and others, the American mathemati-
cian Hassler Whitney introduced fundamental concepts and proved strong results in
differential topology such as the well known strong Whitney embedding theorem
and weak Whitney embedding theorem. The first one states that any smooth real
m-dimensional manifold can be smoothly embedded in R

2m, while the latter says
that any continuous mapping of an n-dimensional manifold to an m-dimensional
manifold may be approximated by a smooth embedding provided that m > 2n.
Furthermore, replacing embedding by immersion in this last statement the result
holds for all m ≥ 2n. His survey paper Topological properties of differentiable
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manifolds published in 1937 [111] contains many contributions he made in those
early years of differential topology.

In 1944, Whitney [113] studied the first pair of dimensions not covered by
his immersion theorem. For mappings f from R

n to R
2n−1 Whitney proved

that singularities cannot be avoided in general. He introduced the semi regular
mappings as proper mappings f : Rn → R

2n−1 whose only singularities are the
generalized cross-caps (Whitney umbrellas) points. Away from singular points, f
is an immersion with transverse double points, and when n = 2, a finite number
of triple points may also appear in the image of f. These are the only stable
singularities in these dimensions. However, only later, Whitney introduced the
notion of stable mappings.

Abstract spaces and their topological properties were known by then, so that
the notion of stability of systems and mappings appeared naturally. It appeared
first in dynamical systems, introduced by A. Andronov and L. Pontryagin [1] for a
class of autonomous differential systems on the plane, under the name of “systèmes
grossiers”. The term “structural stability” appears in the english language edition of
the book by Andronov and Chaikin, edited under the direction of Solomon Lefschetz
in 1949 [2] (see also [91]). It also appears in other pioneering papers on the subject,
among them the paper On structural stability by Mauricio Peixoto [78], published
in 1959.

The notion of stable mappings was formulated by Whitney in [115] around the
middle of last century. He characterized stable mappings from R

n to R
p with p ≥

2n−1 in [112] and stable mappings from the plane into the plane in [114], showing
in these cases that stable mappings form a dense set in the space of smooth proper
mappings.

The article Whitney [114] published in 1955 is a landmark, considered by many
to be the cornerstone of the theory of singularities. The stable singularities of
mappings of the plane into the plane are folds and cusps and any proper smooth
mapping f : R

2 → R
2 can be approximated by a stable mapping. Whitney

conjectured that density of stable mappings would hold for any pair (n, p). However
René Thom showed, in his 1959 lecture at Bonn, that this is not the case by given
an example of a map f : R9 → R

9 that appears generically in a 1-parameter family
of maps.

Thom conjectured that the topologically stable maps are always dense and gave
an outline of the proof. The complete proof was given by John Mather, who from
1965 to 1975, solved almost completely the program drawn by René Thom for the
problem of stability.

Mather found several characterizations of stability and proved that the set
S∞(N, P ) of stable mappings is dense in the set C∞pr(N, P ) of smooth proper
mappings, from the n-dimensional manifoldN to the p-dimensional manifold P, if
and only if (n, p) is in the nice dimensions, which he completely characterized in
[63]. Based on Thom’s ideas, he also proved in [65, 66] that the set of topologically
stable mappings S0(N, P ) in C∞pr (N, P ) is residual for all pairs (n, p).
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The 1970s was blooming period for singularity theory. Along with Mather’s
work, René Thom’s book on catastrophe theory [94] and Arnold’s seminal clas-
sification of simple singularities of functions [3] also had a great impact. These
works paved the intense development of the theory of the following decades. The
deep understanding of stable mappings, versal unfoldings and finite determinacy
transformed singularity theory into an organizing center for several areas of
mathematics and sciences.

The common thread of these notes is the question of density of stable mappings
in C∞pr (N, P ). We outline the solutions of the various formulations of this problem:

C∞, C0 and Cl, 1 ≤ l <∞ stability. The remaining open problem in this setting is
density of Lipschitz stable mappings. Recent progress in the solution of this problem
appear in [75, 88].

We give an account of tools for the proofs of the main theorems including
the notion of infinitesimal stability, the generalized Malgrange’s theorem, Thom’s
transversality theorem, mappings of finite singularity type and finite determinacy
of Mather’s groups. Whitney and Thom’s results on stratified sets and maps are
fundamental pieces of the theory. For an account of these topics we refer to David
Trotman’s article in Volume 1 of this Handbook.

In these notes we concentrate on the discussion of real singularities. The
infinitesimal methods discussed here also hold true for holomorphic mappings. For
an account on Mather’s theory of A-equivalence and the description of the topology
of stable perturbations of A-finitely determined holomorphic germs the reader may
consult the notes by David Mond and Juan José Nuño-Ballesteros in this Handbook
[70].

Related topics to those discussed in these notes, as well as new developments
of the theory, are given in the subsections Notes at the end of each section. The
final section includes a discussion of open problems in the theory of singularities of
smooth mappings.

1.2 Setting the Problem

Let C∞(N, P ) = {f : N → P, f ∈ C∞} be the set of smooth mappings from N
to P, where N and P are smooth manifolds of dimension n and p respectively. The
topology on C∞(N, P ) is the C∞-Whitney topology.

We review here the contributions of singularity theory to solve the following
problem.

Problem 1.2.1 Find an open and dense set S in C∞(N, P ) and describe all
singularities of mappings f ∈ S.

The relevant equivalence is A-equivalence.
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Definition 1.2.2 Two smooth maps f, g : N → P are A-equivalent if there exist
C∞ diffeomorphisms h : N → N and k : P → P such that the following diagram
commutes

Definition 1.2.3 The map f : N → P is stable (A-stable) if there exists a
neighborhoodW of f in C∞(N, P ), such that g∼

A
f for every g ∈ W.

Replacing C∞-diffeomorphisms by homeomorphisms,Cl-diffeomorphisms, l >
0 or bi-Lipschitz homeomorphisms in Definitions 1.2.2 and 1.2.3 we get respec-
tively the definitions of C0-A, Cl-A (l > 0), bi-Lipschitz-A equivalences and of
topological stability, Cl-stability, or Lipschitz stability of maps in C∞(N, P ).

Before starting the discussion of Problem 1.2.1, we review some notation and
definitions.

The Whitney C∞− topology in C∞(N, P ) was defined by John Mather in
[57]. We review it here (more details can be found in the book of Golubitsky and
Guillemin [40]).

For x ∈ N, y ∈ P and for a non-negative integer k, we denote by J k(N, P )x,y
the set of k-jets of map-germs (N, x) → (P, y). When N = R

n, P = R
p, we

denote J k(n, p) the set of polynomial mappings f : Rn → R
p of degree≤ k, such

that f (0) = 0.
The set J k(N, P ) =⋃x∈N,y∈P J k(N, P )x,y is the k-jet space of mappings from

N to P. The set J k(N, P ) is a smooth manifold (theorem 2.7 in [40]). Moreover, it
has the structure of a fibre bundle with basis N × P.

Let U be an open set in J k(N, P ) and

M(U) = {f ∈ C∞(N, P )| jkf (N) ⊂ U}.

The family of sets {M(U)} where U is an open set of J k(N, P ) is a basis for a
topology in C∞(N, P ) (note that M(U) ∩M(V ) = M(U ∩ V )). This topology is
called the Whitney Ck-topology.

Denote byWk the set of open subsets of C∞(N, P ) in the Whitney Ck-topology.
The Whitney C∞-topology is the topology whose basis isW = ∪∞k=0Wk.

Given a metric d on J k(N, P ), compatible with its topology and a nonnegative
continuous function δ : N → R we can define a basic neighborhood of f ∈
C∞(N, P ) as follows

Bδ(f ) = {g ∈ C∞(N, P )| d(jkf (x), jkg(x)) < δ(x),∀x ∈ N}.
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When N is compact, fn converges to f in the Whitney Ck-topology if and only
if jkfn converges uniformly to jkf. On noncompact manifolds fn converges to f
in the Whitney Ck-topology if and only there exists a compact K ⊂ N, such jkfn
converges to jkf uniformly in K, and there exists n0 such that fn ≡ f in N \ K
for any n ≥ n0 (for details see the book by Golubitsky and Guillemin [40]).

Thus we can see that there is a great difference in the Whitney topology
depending on whether or not the domain N is a compact manifold.

When N is not compact, the Whitney Ck-topology is a very fine topology, with
many open sets. As a consequence, dense sets in C∞(N, P ) are very large sets, and
theorems characterizing these sets in C∞(N, P ) are strong results.

1.2.1 The work of Hassler Whitney: from 1944 to 1958

The foundations of the theory were Whitney’s work, in which he formulated
the problem of classifying singularities that can not be eliminated by small
perturbations, and completely succeeded in solving it for maps from R

n to R
p with

p ≥ 2n− 1 in Whitney [112] and from R
2 to R

2 in Whitney [114].
The article [114] published in 1955 is a magnificent work dedicated to maps

from the plane into the plane. In the introduction to the article, Whitney presents
a complete review of the existing results and future perspectives of the theory.
We reproduce it here: “Let f0 be a mapping of an open set R in n-space En

into m-space Em. Let us consider, along with f0, all the mappings f which are
sufficiently good approximations to f0. By the Weierstrass Approximation Theorem,
there are such mappings f which are analytic; in fact, (see [110, Lemma1]) we may
make f approximate to fs throughout R arbitrarily well, and if f0 is r-smooth,
(i.e., has continuous partial derivatives of order ≤ r), we may make corresponding
derivatives of f approximate those of f0.

Supposing f is smooth, (i.e., 1-smooth), the Jacobian matrix J (f ) of f is
defined (using fixed coordinate systems); we say the point p ∈ R is a regular
point or singular point of f, according as J (f ) is of maximal rank (i.e., of rank
min(n,m)) or lesser rank. In general we cannot expect f to be free of singular
points. A fundamental problem is to determine what sort of singularities any good
approximations f to f0 must have; what sort of sets they occupy, what f is like near
such points, what topological properties hold with references to them, etc.

Some special cases of this problem have been studied as follows:

(a) For m = 1, we have a real valued function in R. It was shown by M. Morse
in Theorem 1.6 of [73], that f may be chosen so that the singular points
(called critical points here) are isolated, the “Hessian” being non-zero at each.”
“Moreover, each critical point may be assigned a “type number”; topological
relations among these were given by Morse [72].

(b) If m ≥ 2n,we may find an f with no singular points; see (a) and (b) of Theorem
2 in [110].
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Fig. 1.1 Folds and cusps

(c) If m = 2n − 1, we may obtain an f with singular points: see [112].
For each such point p ∈ R, coordinate systems (x1, x2, . . . , xn) in En and
(u1, u2, . . . , um) in Em may be chosen, in which f, near p, has the form

u1 = x2
1 , ui = xi, un+i−1 = x1xi, (i = 2, . . . , n).

The singularities are studied from a topological point of view in [113].
(d) Some beginnings have been made for the other pairs of values (n.m) by N.

Wolfsohn, [120], but no complete classification of the singularities exist in these
cases. Thus the smallest pair of values for which the problem is open is the pair
(2, 2), i.e for mappings of the plane into the plane; it is this case that we treat
here. In this case, there can be “folds” lying along curves and isolated “cusps”
on the folds ” (Fig. 1.1).

We review Whitney’s results in this section.
Let f : U → R

2 be a smooth mapping defined on the open set U ⊂ R
2. With

coordinates systems (x, y) in U and (u, v) in the target, the Jacobian of f is given
by

J (f ) = uxvy − uyvx.

A point p ∈ U is regular or singular according as J (f )(p) �= 0 or J (f )(p) = 0.A
singular point (x0, y0) is good if the derivatives ∂J (f )

∂x
(x0, y0) and ∂J (f )

∂y
(x0, y0) do

not vanish simultaneously. We say that f is good if every singular point of f is good.
This condition implies that the set S(f ) of singular points of f is a regular curve.
If f is good and p is a singular point, let φ : (−ε, ε)→ R

2 be a parametrization of
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the singular set S(f ) in a neighborhood of p ∈ S(f ) such that φ(0) = p. Then, we
define

(i) If (f ◦ φ)′(0) �= 0, we say p is fold point of f.
(ii) (f ◦ φ)′(0) = 0 and (f ◦ φ)′′(0) �= 0, we say p is a cusp point of f.

These definitions are independent of the parametrization chosen for S(f ) in a
neighborhood of p.

One can easily see that at a fold point, the restriction of f to its singular set is
non singular, while a cusp point is a singular point of this restriction.

It follows from the definition that cusp points are isolated.

Definition 1.2.4 (Whitney [114], p. 379) Let f be a good map. We say that p is
an excellent point of f if it is a regular, fold or cusp point of f. If each point p ∈ U
is excellent we say f is excellent.

Any smooth map can be approximated in the Cr -Whitney topology, r ≥ 3, by
an excellent map.

Theorem 1.2.5 (Whitney [114], Theorem 13A ) Let f0 be a mapping from U ⊂
R

2 to R
2, whereU is an open set in R

2. Then arbitrarily near f0 there is an excellent
mapping f. If f0 is r-smooth and ε is a positive continuous function in U, we make
f an (r, ε)-approximation of f.

Prior to Thom’s transversality theorem [92], Whitney introduced the method of
characterizing in the jet space the set of jets with degenerate singularities, the so
called “bad set”.

In addition, methods of producing generic Cr -perturbations of any given map
were also introduced by him. The goal was to find sufficiently close perturbations
that would avoid the bad set.

For polynomial maps from the plane into plane, the bad set are the polynomial
maps admitting singularities more degenerate than folds and cusps.

Folds and cusps have simple normal forms.

Theorem 1.2.6 (Whitney [114], Theorems 15A and 15B )

1. Let p be a fold point of the r-smooth mapping f of R2 into R
2, with r ≥ 3. Then

(r−3)-smooth coordinate systems (x, y), (u, v) may be introduced about p and
f (p) respectively, in terms of which f takes the form

u = x2 , v = y (1.1)

2. Let p be a cusp point of the r-smooth mapping f of R2 into R
2, with r ≥ 12.

Then ( r2 − 5)-smooth coordinate systems (x, y), (u, v) may be introduced about
p and f (p) respectively, in terms of which f takes the form

u = xy − x3 , v = y (1.2)
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While the proof of (1) is not hard, Whitney’s proof of the normal form in a
neighborhood of a cusp point p follows by an ingenious sequence of changes of
coordinates in the source and target. The tool is essentially the implicit function
theorem.

Today, there are simpler proofs of this result, based on current tools of singularity
theory: see for instance, Theorem 2.4, Chapter VI in Golubitsky and Guillemin’s
book [40] or Example 3.6 in Mond and Ballesteros [69].

The notion of stable mappings is due to Whitney. In order to characterize them,
in addition to the local behavior of stable singularities, it is necessary to explain the
behavior of multiple points. For maps from the plane into the plane the following
holds.

Theorem 1.2.7 Let f : N2 → P 2 be a smooth map, N and P 2-dimensional
manifolds,N compact. Then f is C∞- stable if and only if the following conditions
hold.

1. f is excellent and hence S(f ) is a regular curve, with at most a finite number of
cusp points.

2. If p1 and p2 are singular points of f, f (p1) = f (p2), then p1 and p2 are not
cusp points. Moreover the fold lines intersect transversaly at f (p1) = f (p2).

3. The restriction of f to S(f ) has no triple points.

Whitney formulated in [115] a general approach to defining a stratification in jet
space and to define locally generic mappings as those whose r-jets were transversal
to the strata of the stratification, for every r ∈ N

∗. The article contains an explicit
description of generic singularities for pairs (n, p) such that n, p ≤ 5.

He asked the question whether for any pair of dimensions (n, p), the stable maps
could be characterized by transversality to a finite collection of submanifolds in jet
space, so that one could apply Thom’s transversality theorem to prove that a smooth
map could be always approximated by stable maps.

However, in a course taught at the University of Bonn in 1959, René Thom
showed with an example that it is not always possible to approximate a given
map by C∞ stable mappings (See Sect. 1.6, on Thom’s example). In fact, in the
notes Singularity of differentiable mappings I, written by Harold Levine [96], Thom
sketched the proof that C2-stable mappings do not form an open set in C∞(N, P ),
when n = p = 9 and he formulated conjectures that promoted a great development
in the theory in the following decades. In particular, Thom conjectured the density
of topologically stable mappings, proved by John Mather in 1971. We discuss René
Thom and John Mather’s contributions in the next section.

1.2.2 René Thom and John Mather: from 1958 to 1970

We start by reviewing the subjects covered by R. Thom in his course at the
University of Bonn. H. Levine’s notes are divided into three chapters.
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Chapter I, named “Jets” introduces the notion of jet spaces, the action of the
group A in jet space and Ar -invariant manifolds, denominated, in the notes, critical
varieties in J r(n, p). The set Sk of 1−jets of corank k and its topological closure
Sk in J 1(n, p) were defined.

In Chapter II, entitled “Singularities of mappings”, Thom’s transversality theo-
rem was stated and proved. We remark however that the topology in the space of
mappings in Thom’s proof was the weakest topology making the mapping

j r : C∞(N, P )→ C∞(N, J r (N, P ))

f → j rf

continuous. The topology in the second space was the compact open topology. The
transversality theorem in [96] was stated as follows: For s > r ≥ 0, let W be a
codimension q, Cs−r submanifold of J r(N, P ), s − r > dimN − q. Then the
set of mappings f ∈ C∞(N, P ), such that j rf � W is dense in C∞(N, P ). The
notion of second order singularities Sh,k in J 2(n, p) was introduced. These sets
are connected to the singular points Sh ⊂ J 1(n, p) by the relation: if j1f � Sk,
then (j2f )−1(Sk,h) = Sh(Sk(f )). The general definition of the singular varieties
Sk1,...,kr ⊂ J r(N, P ), introduced in [96] was better formulated by J.M. Boardman,
in 1967, in [11]. Mather’s account in [64] is the clearest.

Remark 1.2.8 In the following sections the sets Sk and Sk,h will be denoted by �k

and �k,h, respectively.

In Chapter III, “Equivalence and stability”, Thom formulated the problem of
characterizing singularities determined by their jet of some order. The name finitely
determined germs, was later given by John Mather [58], who also gave necessary
and sufficient conditions for finite determinacy. The notion of Cs-stable mappings
and the example illustrating that C2 stable mappings are not dense when n = p = 9
were discussed in that chapter.

The notion of homotopic stability was also introduced. A mapping f : N → P

is homotopically stable if for every homotopy F : N × I → P of f, there exist t0
and homotopies of diffeomorphisms φt : N → N, 0 ≤ t ≤ t0, ψt : P → P, of 1N
and 1P such that Ft = ψt ◦ f ◦ φt , t < t0.

The program for the theory of stable mappings originated from the contributions
of Whitney and Thom consisted of finding pairs of dimensions (n, p), for which
there exists a set of mappings S ⊂ C∞(Nn, Pp), with the following properties:

1. S is a residual set in C∞(Nn, Pp),
2. The maps f ∈ S are C∞-stable,
3. There exists a finite number of polynomial normal forms such that every singular

point of f ∈ S is equivalent to a normal form in this list.

In a memorable series of six articles from 1968 to 1971, John Mather found
several characterizations of stability and provided theorems answering almost
completely the question of density of stable maps.
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The main results on density of stable mappings are stated below. The proofs are
based on ideas of René Thom developed by Mather in the sequence of papers, on
Stability of C∞-mappings, I to VI, [56–58, 60–63, 65, 66]. In these notes we review
the main steps leading to the proofs of Theorems A and B.

Let C∞pr (N, P ) be the set of proper smooth mappings f : N → P.

Theorem A (Density of Stable Mappings in the Nice Dimensions, Mather
[61, 63]) The set S∞(N, P ) of proper stable mappings f : N → P is dense
in C∞pr (N, P ) if and only if (n, p) is in the nice dimensions.

See Sect. 1.5 for the definition of the nice dimensions.

Theorem B (Density of Topologically Stable Mappings, Mather [65, 66]) The
set S0(N, P ) of proper topologically stable mappings is dense in C∞pr (N, P ).

The main tools in the proofs of Theorems A and B are the notion of infinitesimal
stability, Thom’s transversality theorem, the generalized Malgrange theorem, the
notions of mappings of finite singularity type and contact equivalence, finite
determinacy and unfoldings of Mather’s groups, properties of Whitney stratified
sets and Thom’s isotopy theorems. Such notions and results form the framework of
the theory of singularities of differentiable mappings.

We organize the contents of the next sections as follows.
In Sect. 1.3 we introduce infinitesimally stable and transverse stable mappings.

The main goal of the section is to discuss Theorem 1.3.11 which establishes the
equivalence between these notions and stable mappings.

Section 1.4 gives a short presentation of the infinitesimal machinery of singular-
ity theory. We introduce the contact group K defined by Mather as a tool to classify
stable singularities. For Mather’s groups G = R,L,A,C and K we define G-
finitely determined germs and prove the Infinitesimal Criterion for G-determinacy.
We finish the section with a discussion of maps of finite singularity type (FST),
a global version of K-finitely determined germs, which plays a central role in the
proof of Theorem B.

In Sect. 1.5 we define the nice dimensions and give an outline of the proof of
Theorem A.

Section 1.6 gives a detailed presentation of Thom’s example, illustrating that the
set of stable maps in C∞pr(R9,R9) is not dense.

Section 1.7 is dedicated to the proof of density of topologically stable mappings
f : N → P, when N is compact manifold. The general lines of the proof are
discussed, although the details are omitted.

Section 1.8 gives a systematic presentation of the topologically stable singular-
ities in the boundary of the nice dimensions. Much of the section is well known
to experts, however the organized presentation of the Thom-Mather stratification in
jet space and the discussion of properties of topologically stable mappings in these
dimensions do not appear in the literature.

The question of the density of Lipschitz stable mappings is still open. We report
in Sect. 1.9 some recent results of Ruas and Trivedi [88] and Nguyen, Ruas and
Trivedi [75] on this subject.
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In Sect. 1.10, Damon’s results relating A-classification of map-germs and KV
classification of sections of the discriminant V = �(F) of a stable unfolding of f
are reviewed and open problems are discussed.

1.3 Equivalent Notions of Stability

Mather defined infinitesimally stable mappings in [57], in order to introduce
infinitesimal deformations of a map as a tool to study stability. The main goal in
this section is to review Mather’s result that, for proper mappings, stability and
infinitesimal stability are equivalent notions.

First, we introduce some notation. Let C∞(N) = {λ : N → R} be the ring of
smooth functions defined on the smooth manifold N.

We denote by�f theC∞(N)-module of vector fields along f, defined as follows

�f = {σ : N → T P | π2 ◦ σ = f }

where π2 : T P → P is the projection of the tangent bundle T P into P.
Let f ∗(T P ) denote the pull-back bundle over N via f. Then the module �f is

the set of sections of this bundle.
Similarly,

�N = {ξ : N → T N | π1 ◦ ξ = IN }

is the set of sections of the tangent bundle of N, and

�P = {η : P → T P | π2 ◦ η = IP },

the set of sections of the tangent bundle of P, where IN and IP are the identities.,
The set �N is a C∞(N)-module, while �P is a module over the ring C∞(P ).
We have the following diagram and homomorphisms

tf : �N → �f

ξ �→ tf (ξ)
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where tf (ξ)(x) = dfx(ξ(x)),

ωf : �P → �f

η �→ ωf (η) = η ◦ f

The map tf is a homomorphism of C∞(N)-modules. The map f : N → P

induces a ring homomorphism

f ∗ : C∞(P )→ C∞(N)

φ �→ f ∗(φ) = φ ◦ f.

We say that the map ωf is a homomorphism over f ∗(C∞(P )) (or alternatively
a C∞(P )-module homomorphism via f ).

Notice that ωf (η1 + η2) = (η1 + η2) ◦ f = ωf (η1) + ωf (η2) and ωf (αη) =
(α ◦ f )(η ◦ f ) = (α ◦ f )ωf (η), for any α ∈ C∞(P ) and any η1, η2 ∈ �p.
Definition 1.3.1 The map f : N → P is infinitesimally stable if for any σ ∈ �f ,
there are sections ξ ∈ �N and η ∈ �P such that σ = tf (ξ) + η ◦ f. Equivalently,
we can say that �f = tf (�N)+ ωf (�P ).
Example 1.3.2 If N is compact, 1 − 1 immersions and submersions f : N → P

are infinitesimally stable.

Infinitesimal stability has a local counterpart that we define now. Recall that two
maps f, g : Nn → Pp define the same germ at x = a if they agree in some
neighborhood of a. The point x = a is the source of the germ and b = f (a) is
its target. The analogues of the above notations for a germ f : (N, a) → (P, b)

can be obtained replacing N by (N, a) and P by (P, b) in the previous notation.
However to simplify notation, we take local coordinates such that a = 0 ∈ R

n and
f (a) = 0 ∈ R

p, denoting the germ f : (Rn, 0)→ (Rp, 0). In this case, we use the
usual notation:

En = {λ : (Rn, 0)→ R} is the local ring of C∞ function germs at the origin. Its
unique maximal ideal is Mn = {λ ∈ En| λ(0) = 0}.

Epn = {f : (Rn, 0)→ R
p} is a free En-module of rank p, also denoted by En,p.

The local version of the previous diagram is

The set

�f = {σ : (Rn, 0)→ (TRp, 0)| π2 ◦ σ = f }
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is the En-module of rank p consisting of germs of vector fields along f.When f is
the identity in R

n, respectively in R
p, we obtain

�n = {ξ : (Rn, 0)→ (TRn, 0)| π1 ◦ ξ = idRn}
and

�p = {η : (Rp, 0)→ (TRp, 0)| π2 ◦ η = idRp }
We now define the groups acting on EPn .

Definition 1.3.3 Let

R = {h : (Rn, 0)→ (Rn, 0), germs of C∞ − diffeomorphisms in (Rn, 0)},
L = {k : (Rp, 0)→ (Rp, 0), germs of C∞ − diffeomorphisms in (Rp, 0)},

and A = R× L.

The actions of the groups R,L and A are as follows

R × Epn → Epn L× Epn → Epn A× Epn → Epn

(h, f ) �→ f ◦ h−1, (k, f ) �→ k ◦ f, ((h, k), f ) �→ k ◦ f ◦ h−1.

These notions extend to multigerms. Let S = {x1, x2, . . . xs} be a finite subset of
R
n.

Definition 1.3.4 A multigerm at S = {x1, . . . , xs} is the germ of a smooth map

f = {f1, f2, . . . fs} : (Rn, S)→ (Rp, y), fi(xi) = y, i = 1, . . . , s.

By a local change of coordinates at each xi ∈ S,we can take fi : (Rn, 0)→ (Rp, 0)
and we let MSEpn,S be the vector space of these map-germs, and call fi, i = 1, . . . , s
a branch of f.

The previous notations for monogerms extend naturally to multigerms. As before
�f and �n,S are En,S-modules. The map tf : �n,S → �f is an En,S-module
homomorphism defined by tf (ξ)(x) = dfx(ξ(x)).

The map-germ f : (Rn, S)→ (Rp, 0) induces the ring homomorphism

f ∗ : Ep → En,S
γ �→ f ∗(γ ) = γ ◦ f,

and we say that the map

ωf : �p → �f .

η �→ ωf (η) = η ◦ f
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is a homomorphism over f ∗(Ep) (or alternatively, an Ep-module homomorphism
via f ).

Definition 1.3.5 Two germs f, g : (Rn, S) → (Rp, 0) are A-equivalent (f ∼
A
g)

if there exist h : (Rn, S) → (Rn, S) and k : (Rp, 0) → (Rp, 0) such that g =
k ◦ f ◦ h−1.

Definition 1.3.6 The germ f : (Rn, S)→ (Rp, 0) is infinitesimally stable if

tf (�n,S)+ ωf (�p) = �f
Remark 1.3.7 When we refer to an infinitesimally stable multigerm f : (N, S)→
(P, y), we use the notation

tf (�(N,S))+ ωf (�(P,y)) = �f .

Definition 1.3.8 For the groups G = R,L,A, and any multigerm f : (Rn, S) →
(Rp, 0), we define the tangent space TGf and the extended tangent space TGef as
follows:

TRf = tf (Mn�n,S) TRef = tf (�n,S)
TLf = ωf (Mp�p) TLef = ωf (�p)
TAf = tf (MS�n,S)+ ωf (Mp�p) TAef = tf (�n,S)+ ωf (�p)

One can give a heuristic justification for the definition of the tangent space for
the groupsG in the above definition. They can be seen as the set of “tangent vectors”
at the origin, to “paths” ft , such that f0 = f, and ft is contained in the G−orbit of
f. A careful calculation in the case G = A, beginning with ft = ψt ◦ ft ◦ φt and
differentiating with respect to t, is done on pages 60–61 of the book of Mond and
Nuño-Ballesteros [69].

For any group G acting on En,S the G-codimension and the Ge-codimension to
the G-orbit of f, are given by

G-codf = dimR

MS�f

TGf
and Ge − cod f = dimR

�f

TGef
.

Note that a map-germ f ∈ En,S is infinitesimally stable if and only if Ae-
cod f = 0.

Definition 1.3.9 A mapping f : N → P is locally infinitesimally stable at S =
{x1, . . . , xs} ⊂ N if the germ of f at S is infinitesimally stable.

The next theorem shows that for proper mappings infinitesimal stability is locally
a condition of finite order. That is, if the equations can be solved locally to order
p = dimP, then they can be solved globally.
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Theorem 1.3.10 (Theorem 1.6, Chapter 5, [40]) Let f : N → P be a smooth
and proper C∞ mapping. Then f is infinitesimally stable if and only if for every
y ∈ P and every finite set S ⊂ f−1(y), with no more than (p + 1) points, we have

�f = tf (�(N,S))+ ωf (�(P,y))+Mp+1
S �f .

The proof of the necessity in Theorem 1.3.10 is obvious. To prove the sufficiency,
the main tool is the generalized Malgrange Preparation Theorem proved by Mather
in [57]. See Proposition 1.4.21 and Corollary 1.4.23. A complete proof of this
theorem is given in Chapter 5, section 1 of [40].

Our main goal in this section is to discuss the following theorem.

Theorem 1.3.11 (Mather [62], Theorem 4.1) The following conditions are equiv-
alent in C∞pr (N, P ) for a proper mapping f : N → P.

1. f is stable,
2. f is infinitesimally stable.
3. f is transverse stable.

We present the main steps of the proof of Theorem 1.3.11. Initially we discuss
the notion of transverse stability.

1.3.1 Transverse Stability and the Proof of 2. ⇔ 3.

The idea of transverse stability consists in defining a stratification in jet space, such
that the strata of this stratification are invariant by the action of the group A in
jet space. A map is transverse stable if its k-jet is transversal to this stratification.
To make this notion more precise, we introduce the r-fold k-jet bundle, following
Mather [62].

Let N and P be manifolds. Let N(r) = {(x1, x2, . . . , xr ) ∈ Nr | xi �= xj if i �=
j }. Let πN : J k(N, P ) → N denote the projection where J k(N, P ) is the bundle
of k-jets. We define rJ k(N, P ) = (πrN)−1(N(r)) where πrN : J k(N, P )r → Nr is
the projection.

It follows that

rJ
k(N, P ) = {(z1, . . . , zr ) ∈ J k(N, P )r , such that πN(zi) �= πN(zj ), if i �= j }.

The set rJ k(N, P ) is a fibre bundle overN(r)×P r , and we call it the r fold k-jet
bundle of mappings of N into P.

If f : N → P is a C∞ mapping, we define

r j
kf : N(r)→ rJ

k(N, P )

by

r j
kf (x1, . . . , xr ) = (jkf (x1), . . . , j

kf (xr))
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The action of the group A in rJ
k(N, P ) is defined as follows. If (h, h′) ∈

A, z = (z1, . . . , zr ) ∈ rJ
k(N, P ), xi = πNzi, and jkfi(xi) = zi , then

(h, h′)z = (z′1, . . . , z′r ) where z′i = jk(h′ ◦ fi ◦ h−1)h(xi). We denote by Ak the
group of k-jets of elements in A.

Proposition 1.3.12 (Mather [62], Proposition 1.4) An Ak orbit W in rJ k(N, P )
is a submanifold.

Definition 1.3.13 f : N → P is transverse stable if r j kf : N(r) → rJ
k(N, P ) is

transverse to every Ak orbitW in rJ k(N, P ).

An important remark is that in order to understand the local structure of the orbits
in rJ

k(N, P ) it is sufficient to understand the structure of the orbits in πrP (�r),
where �r ⊂ P r is the diagonal (see Mather [62] for details). In other words, it
suffices to take jets with sources S = {x1, . . . , xr } for which f (x1) = · · · = f (xr).

The next proposition gives a characterization of transversality of r j kf to W ; it
is an important step in the proof of Theorem 1.3.11.

Proposition 1.3.14 (Mather [62], Proposition 2.6) r j
kf is transverse to W at x

if and only if,

tf (�(N,S))+ ωf (�(P,y))+Mk+1
S �f = �f ,

where y = f (x), S = f−1(y) = {x1, . . . , xr }.
From Proposition 1.3.14 and Theorem 1.3.10 we obtain the proof of 2. ⇐⇒ 3.

in Theorem 1.3.11.
That 1. implies 3. in Theorem 1.3.11 follows from a general fact, and it is not

hard to show.
In fact, let f : N → P be a stable mapping. It follows from the transversality

theorem that f can be well approximated by a mapping g : N → P, such that g is
transverse stable and g∼

A
f. That is, there is (h, k) ∈ A such that g = k ◦ f ◦ h−1.

Now, transversality is preserved by A-equivalence, hence f is transverse stable as
well, as we wanted to show.

We have proved 1.⇒ 2.⇔ 3..
Mather proved in [60], Theorem 1 that if f is proper and infinitesimally stable

then it is stable, that is 2.⇒ 1..
His proof follows from the following result.

Theorem 1.3.15 (Mather [60], Theorem 2) If f is proper and infinitesimally
stable, then there exists a neighborhood U of f in C∞(N, P ) and continuous
mappings H1 : U → Diff∞(N) and H2 : U → Diff∞(P ) such that H1(f ) = 1N,
H2(f ) = 1P and g = H2(g) ◦ f ◦H1(g), for g ∈ U.

Du Plessis and Wall [82] introduced the notion of W-strongly stable mappings as
stable mappings F : N → P admitting a neighborhoodU in C∞(N, P ) satisfying
the conditions stated in Theorem 1.3.15.
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The main difficult to prove that stable mappings are W -strongly stable is that in
the WhitneyC∞ topology, the composition of mappings is not continuous. However
continuity holds when one restricts to proper mappings. The strong stability of non
proper functions was recently discussed by Kenta Hayano in [42].

It follows that the result 2.⇒ 1. is an easy consequence of Theorem 1.3.15.
The hypothesis that f is proper cannot be omitted, as we see in the following

example.

Example 1.3.16 ([60], pp. 267) Let N = (−1, 1) ∪ (1, 2), P = (−1, 1), and

f |(−1,1) : (−1, 1)→ (−1, 1) f |(1,2) : (1, 2)→ (−1, 1)

x �→ x2 x �→ 2− x

We can verify that f is infinitesimally stable, as the restrictions to (−1, 1) and
(1, 2) are.

However, f is not stable since it has the following non-stable property: for any
a ∈ P, f−1(a) contains either 0, 1 or 3 points.

The reader can find in [62] the discussion of which implications in Theo-
rem 1.3.11 depend on the hypothesis that f is proper.

In the next example we illustrate the role of the Whitney C∞-topology in the
characterization of stable mappings.

Example 1.3.17 The cusp map

F : R2 → R
2

(x, y) �→ F(x, y) = (x, y3 + xy)

is a stable mapping when the topology in C∞pr(R2,R2) is the Whitney topology. This
follows from Whitney’s theorem as we discussed in Sect. 1.2.1. We can also apply
Mather’s result: the map F is proper and infinitesimally stable, hence it is stable

Let Fn(x, y) = (x, y3 + xy + x2

n
y). The singular set of Fn is the set �n defined

by 3y2 + x + x2

n
= 0. For each n, Fn has two cusp points: (0, 0) and (−n, 0).

We can easily see that Fn → F in C∞pr (R2,R2) with the topology of uniform
convergence on compact sets. Hence F is not stable when one considers this
topology in C∞pr (R2,R2).

1.3.2 Notes

The definitions and properties of infinitesimally stable mappings also hold for real
and complex analytic germs. However, care is necessary to characterize stable maps
f : N → P, when f is a holomorphic map between complex manifolds N and
P. In fact,Thom’s transversality theorem does not hold in general in this case.
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See discussion by F. Forstnerič, [34] and examples given by S. Kaliman and M.
Zaı̆denberg in [46]. In a recent paper, S. Trivedi [99] proves that the set of maps
between Stein manifolds and Oka manifolds, transverse to a countable collection of
submanifolds in the target is dense in the space of holomorphic maps with the weak
topology. The results hold, in particular, for holomorphic maps f : Cn → C

p, as
the complex spaces satisfy the hypothesis of the theorem.

A related problem is the characterization of topologically stable polynomial
mappings f : C

n → C
p. M. Farnick, Z. Jeloneck and M.A. S. Ruas [32],

characterize topologically stable polynomial mappings F : C2 → C
2 in the space

�
C

2(d1, d2) of polynomial mappings of degree bounded by (d1, d2). Locally stable
singularities are folds and cusps, but the behavior of generic polynomial mappings
at infinity imposes new restrictions. The number of cusps of a topological stable
F ∈ �

C
2(d1, d2) is given by c(F ) = d2

1 +d2
2 +3d1d2−6d1−6d2+7. In particular,

when d1 = 1 and d2 = 3, c(F ) = 2.

1.4 Finite Determinacy of Mather’s Groups

Mather’s groups are the groups G = R,L,A,K and C.
The contact group K, defined by Mather in [58] plays a fundamental role in the

classification of stable singularities. In Sects. 1.4.1 and 1.4.3 we define the groupK,
discuss properties of K-equivalence and their role in the study of stable mappings.

The problem of classification of stable singularities motivated the introduction
of the notion of G-finitely determined germs [58]. For the groups G = R or K,
finite determinacy was studied by J. Tougeron in [97] and chapter II of [98]. When
G = A or L, the first results are due to Mather’s in [58]. Infinitesimal criteria
of finite determinacy for G = A and L depend on the Preparation Theorem. We
discuss the infinitesimal criterion for Mather’s group in Sect. 1.4.2. In Sect. 1.4.4 we
introduce the basic properties of maps of finite singularity type.

1.4.1 The Contact Group

Definition 1.4.1 The contact group K is the set of pairs of germs of diffeomor-
phisms (h,H), where h : (Rn, 0)→ (Rn, 0), H : (Rn × R

p, 0) → (Rn × R
p, 0)

such that π1 ◦H = h, (π2 ◦H)(x, 0) = 0 where π1 and π2 are the projections into
R
n and R

p, respectively.

Notice that H(x, y) = (h(x),H2(x, y)), H2(x, 0) = 0.
The set of pairs (h,H) ∈ K, such that h is the identity IRn form a subgroup of

K, usually denoted by C.

Definition 1.4.2 Let f, g ∈ Epn . We say that f and g are contact equivalent, f ∼
K

g, if there is a pair (h,H) ∈ K such that H(x, f (x)) = (h(x), g(h(x)).
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IRp

IRn

h(x)x x

(x,f(x))

(h(x),g(h(x)))

(x,f(x))

y

(x,g(x))

Fig. 1.2 Contact equivalence

Remark 1.4.3 Notice that if f ∼
K
g, then the diffeomorphismH : (Rn×R

p, 0)→
(Rn×R

p, 0) sends graph(f ) into graph(g), leaving R
n×{0} invariant (see Fig. 1.2).

This geometric viewpoint of contact equivalence was extended by Montaldi [71] as
follows: two pairs of germs of submanifolds of Rm have the same contact type if
there is a germ of diffeomorphism of Rm taking one pair to the other. Moreover, he
proved in [71], that the contact type of a pair of germs of manifolds is completely
characterized by the K-equivalence class of a convenient map. This result is one the
fundamental pieces of the applications of singularity theory to differential geometry
(see Bruce and Giblin [13] and Izumiya, Romero-Fuster, Ruas and Tari, [45]).

The tangent space and the extended tangent space of K-equivalence are, respec-
tively

TKf = tf (Mn�n)+ f ∗(Mp)�f

TKef = tf (�n)+ f ∗(Mp)�f

We also define K-codf = dimR

Mn�f
TKf and Ke-cod f = dimR

�f
TKef .

The following result was first proved by Mather in [61].

Proposition 1.4.4 (Gibson [38], Proposition 2.2, Mond and Nuño-Ballesteros
[69], Section 4.4)

The following statements are equivalent.

(1) Two map-germs f, g ∈ Epn are K-equivalent.
(2) There exists a germ of diffeomorphism h : (Rn, 0)→ (Rn, 0) such that

h∗f (Mp)En = g∗(Mp)En.



1 Results on Density of Stable Mappings 21

The local algebra we introduce now is an useful invariant of K-equivalence. For
a given map-germ f : (Rn, 0)→ (Rp, 0) we define the local algebra of f as

Q(f ) = En
f ∗(Mp)En

.

It follows from the previous proposition that the isomorphism class ofQ(f ) is a
K- invariant. Furthermore, it is a complete invariant of K-equivalence for germs f
with finite K-codimension. More precisely, we have

Theorem 1.4.5 If f and g are map-germs with finite K-codimension it follows that

f ∼
K
g if and only if the local algebrasQ(f ) andQ(g) are isomorphic.

Remark 1.4.6 For complex analytic germs the hypothesis of K−determinacy in
Theorem 1.4.5 is not needed.

Example 1.4.7 Let F : (Rn, 0) → (Rp, 0) be a germ of rank r. Then, up to A-
equivalence, we can take F in the normal form F(x, y) = (x, f (x, y)), x ∈ R

r , y ∈
R
n−r , with f : (Rn, 0) → (Rp−r , 0) and j1f (0, 0) ≡ 0. Let f0 : (Rn−r , 0) →
(Rp−r , 0) be the rank zero germ f0(y) = f (0, y). ThenQ(F) = Q(f0).

If K-codf0 < ∞ and Q(F) ∼= Q(f0) it follows that F is K-equivalent to the
suspension F0(x, y) = (x, f0(y)) of f0.

As we shall see in the next section, germs f ∈ Epn of finite K-codimension
are finitely K-determined, and in this case K(f ) = K(z), where z = jkf (0) for
some k.

Now, for each positive integer k, we set

Qk(f ) = En
f ∗(Mp)En +Mk+1

n

.

Qk(f ) is the local algebra of z = jkf (0).We can also writeQk(f ) = Q(z).
It is not hard to show that z∼

Kk
z′ if and only ifQk(z) andQk(z′) are isomorphic.

This definition can be extended to k-jets of a multigerm f : (Rn, S) →
(Rp, 0) S = {x1, x2, . . . , xs}. By a contact class in J k(N, P ) we mean an
equivalence class of sJ k(N, P ) under the relation of Kk-equivalence.

1.4.2 Finitely Determined Germs

Let G be a group acting in the space of germs f : (Rn, 0) → (Rp, 0). We say
that f is finitely G-determined if there exists a positive integer k such that for all
g : (Rn, 0)→ (Rp, 0)with jkg(0) = jkf (0), it follows that f ∼

G
g.We say that f
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is G-finitely determined if f is k-determined for some k. The denomination G-finite
germs is also widely used.

Finite determinacy has been an important subject in singularity theory for many
decades and the bibliography in this topic is extensive.

With regard to results on necessary and sufficient conditions of finite determinacy
and estimates of the order of determinacy we refer to Mather [58], Gaffney [36, 37],
du Plessis [79], Damon [24] and Du Plessis, Bruce and Wall [14]. The survey article
by Terry Wall [108] is a complete account of the theory of finite determinacy for
Mather’s groups G = A,R,L,K and C until 1981. See also the clear presentation
(with examples) in Chapter 6 of the book of Mond and Nuño-Ballesteros [69].

An important advance appeared in [24] in which J. Damon defined the geometric
subgroups of K, a large class of subgroups for which the theory of finite
determinacy can be formulated as for Mather’s group.

The following theorem, known as infinitesimal criterion gives necessary and
sufficient conditions for finite determinacy. The original result is due to Mather
[58]. We give here an improved version due to Gaffney [37] and du Plessis [79].
The statement and proof of Theorem 1.4.8 are slight modifications of T. Wall [108,
Theorem 1.2]. The reader can also compare with Theorem 2.2.12 of the article of
Mond and Nuño-Ballesteros in this Handbook [70].

Theorem 1.4.8 For each f ∈ Epn , G = R,L,A,C,K the following conditions are
equivalent

(1) f is finitely G-determined,
(2) for some r, TGf ⊃Mr

n�f ,

(3) G-cod f <∞,
(4) Ge-cod f <∞.
More precisely, if we set ε = 1 for G = R,C or K and ε = 2 for G = L,A,

(i) If f is k-G-determined then TGf ⊃Mk+1
n �f ,

(ii) If TGf ⊃Mk+1
n �f , then f is (εk + 1)-G-determined.

(iii) If TGf +Mεk+2
n �f ⊃Mk+1

n �f , then TGf ⊃Mk+1
n �f .

This section is mainly devoted to describe this result. Although the theory
applies to multigerms, for simplicity we restrict our discussion to monogerms
f : (Rn, 0)→ (Rp, 0).

The successful approach to finite determinacy was inspired by the action of a Lie
group on finite dimensional manifolds. The following lemma is due to Mather.

Lemma 1.4.9 (Mather [61], Lemma 3.1) LetG be a Lie group,M a C∞ manifold
and α : G×M → M a C∞ action. Let V be a connected C∞-submanifold of M.
Then V is contained in an orbit of α if and only if

(a) For all v ∈ V, TvG · v ⊇ TvV, and
(b) dimTv(G · v) is the same for all v ∈ V.
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Our groups are not Lie groups, and our function spaces are not Banach manifolds.
But, the solution to the problem of finding sufficient conditions for a germ f ∈ Epn to
be finitely determined, consists in reducing our infinitesimal approach to jet spaces.

Suppose f is k-G-determined. Then, given g ∈ Epn, jkg(0) = jkf (0), the
one-parameter family

f̄ : (Rn × R, 0× R)→ (Rp × R, 0)

(x, t) �→ f̄ (x, t) = (1− t)f (x)+ tg(x)

has a constant k-jet jkf̄t (0) = jkf (0)+ tj k(g − f )(0) = jkf (0).
We will identify f̄ with a “line” Lt in Epn . Our problem is to show that Lt is

contained in a unique orbit.
A sufficient condition is to find a 1-parameter family ht of elements in G such

that h0 = 1 ∈ G, ht (0) = 0, ht · ft = f, for any t ∈ R. These conditions say
that the family f̄ is G-trivial. As in the case of stable singularities, the next step
is to search for an infinitesimal condition, giving an equivalent characterization of
triviality in terms of vector fields.

This step, in principle, is not hard: the equation ht · ft = f implies that ∂
∂t
(ht ·

ft ) = 0 leading to the desired infinitesimal condition. The converse follows from
integration of vector fields.

For any group G acting on Epn, we call this result “the Thom-Levine lemma.” We
now specialize to G = A, as this case includes all difficulties of the proof of the
infinitesimal criterion.

Definition 1.4.10 A 1-parameter family f̄ : (Rn × R, 0) → (Rp, 0), f̄ (x, 0) =
f (x) is A-trivial if there is a pair (h, k) of 1-parameter families of germs of
diffeomorphisms

h : (Rn × R, 0)→ (Rn, 0) k : (Rp × R, 0)→ (Rp, 0)

(x, t) �→ h(x, t) (y, t) �→ k(y, t)

such that h(x, 0) = x, k(y, 0) = y, ht (0) = 0, kt (0) = 0 and

kt ◦ ft ◦ ht = f.

Remark 1.4.11 We also use the notation F(x, t) = (f̄ (x, t), t), H(x, t) =
(h(x, t), t) andK(y, t) = (k(y, t), t) for the corresponding 1-parameter unfoldings.
In this notation F is A-trivial if K ◦ F ◦ H = f × IdR. We denote by ∂ · F
the vector field in (Rn × R, 0) with zero component in the ∂

∂t
direction, that is

dF( ∂
∂t
) = (∂ · F, 1).

The next result is known as the Thom-Levine lemma (see [58, 69, 79]).

Proposition 1.4.12 Let f ∈ Epn and F : (Rn × R, 0) → (Rp × R, 0), F (x, t) =
(f̄ (x, t), t), f̄ (0, t) = 0, f̄ (x, 0) = f (x), the germ at 0 of a 1-parameter
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unfolding of F. Then F is A-trivial if and only there exist vector fields V :
(Rn×R, 0)→ (Rn×R, 0) with V (x, t) = v(x, t)+ ∂

∂t
, v(x, t) =∑n

i=1 vi(x, t)
∂
∂xi
,

vi (0, t) = 0 for i = 1, . . . , n andW : (Rp × R, 0)→ (Rp × R, 0) with W(y, t) =
w(y, t) + ∂

∂t
, w(y, t) = ∑p

j=1 wj(y, t)
∂
∂yj
, wj (0, t) = 0 for j = 1, . . . , p. such

that

∂ · F(x, t) =
n∑

i=1

∂f̄

∂xi
(x, t) · vi(x, t)+ w ◦ F(x, t). (1.3)

Proof We give here an idea of the proof. The reader may consult, for instance,
Mather [58, p. 144], du Plessis [79, p. 174], or Mond and Nuño-Ballesteros [69,
p. 37] for a complete proof.

If F is a trivial unfolding of f, K ◦F ◦H = f ×1R and then ∂ · (K ◦F ◦H) = 0
and we apply the chain rule to get (1.3).

Conversely, if condition (1.3) holds, we consider the systems of differential
equations in (Rn × R, 0) and (Rp × R, 0), respectively:

{
ẋ = v(x, t)
v(0, t) = 0

{
ẏ = w(y, t)
w(0, t) = 0

(1.4)

We can integrate these vector fields to obtain 1−parameter families ht and kt of
diffeomorphisms of (Rn × R, 0) and (Rp × R, 0), respectively, such that h0(x) =
x, ht (0) = 0; k0(y) = y, kt (0) = 0 and kt ◦ f̄t ◦ ht = f.

��
Condition (1.3) in Proposition 1.4.12 admits an useful algebraic formulation.

First, we introduce some notation.
Given the 1-parameter unfolding F : (Rn × R, 0) → (Rp × R, 0), F (x, t) =

(f̄ (x, t), t) with f̄ (x, 0) = f (x), as before,�F denotes the En+1 module of vector
fields along F. However, here it will be more convenient to consider the submodule
of �F defined as:

�F = {σ ∈ �F | the R-component of σ is zero}.

Similarly, �n+1 and �p+1 denote vector fields in (Rn × R, 0) and (Rp × R, 0)
respectively, with zero R-components.

The restrictions of the homomorphisms tF and ωF give respectively the En+1-
homomorphism tF : �n+1 → �F and the Ep+1-homomorphism via F ∗, ωF :
�p+1 → �F .

With this notation, we can see that (1.3) holds if and only if

∂ · F ∈ tF (Mn�n+1)+ ωF(Mp�p+1) (1.5)

holds.
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We call TAun(F ) = tF (Mn�n+1) + ωF(Mp�p+1), the A-tangent space of
the unfolding F. Similarly TKun(F ) = tF (Mn�n+1) + F ∗(Mp+1)�p+1 is the
K−tangent space of F.

We now turn to the algebraic tools we need in the proof of Theorem 1.4.8.
In the cases G = R, C or K the proof of the infinitesimal criterion of G-

determinacy will follow from the following elementary result.

Lemma 1.4.13 (Nakayama’s Lemma) Let R be a commutative ring, M an ideal
such that for x ∈ M, (1 + x) is invertible. Let C be a finitely generated R-module,
A a submodule, then

(i) if A+M · C = C, then A = C,
(ii) if R is a k-algebra, and dimk( C

A+Md+1C
) ≤ d thenMd · C ⊆ A.

An equivalent formulation of condition (i) in Lemma 1.4.13 is the following

(i’) IfMC = C, then C = 0.

When G = L or A, we need a fairly deep result, the generalized Malgrange
preparation theorem (see Golubitsky and Guillemin [40], Martinet [54, 55], Wall
[108]).

Theorem 1.4.14 (Preparation Theorem) Let f : (Rn, 0) → (Rp, 0) be a C∞
map-germ, E a finitely generated En-module. If dimR(

E
f ∗(Mp)·E ) < ∞, then E is

finitely generated as Ep-module (via f ).

The next proposition is a consequence of the Preparation theorem. It is an useful
tool to study A-finite determinacy.

Proposition 1.4.15 (Bruce, du Plessis and Wall [14], Lemma 2.6) Let C be a
finitely generated En-module, B ⊂ C a finitely generated En-submodule, A ⊂
f ∗(Mp)C a finitely generated Ep-submodule (via f ), and M a proper, finitely
generated ideal in En. If

MC ⊂ A+ B +M(f ∗(Mp)+M)C

thenMC ⊂ A+ B.
We are now ready to prove Theorem 1.4.8.

Proof of Theorem 1.4.8 First we notice that (i) and (ii) give respectively the
implications (1) ⇒ (2) and (2) ⇒ (1). The implication (2) ⇒ (3) is trivial since
Mk
n�f has finite codimension.
It is easy to prove the equivalence between (3) and (4). The implication (3) ⇒

(2) will follow from (iii), as we now explain.
For any G = R,C,K,L,A let

ck = dimK

Mn�f

TGf +Mk
n�f

, k ≥ 1.
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Since G-codf <∞, the sequence

0 = c1 ≤ c2 ≤ · · · ≤ G-cod f

is finite.
Then, there exists s such that ck = cs for all k ≥ s + 1. It follows that TGf +

Ms
n�f = TGf +Mk

n�f for all k ≥ s+ 1. In particular Ms
n�f ⊆ TGf +Mk

n�f
for all k ≥ s + 1. Taking k = s + 1, when G = R,C,K and k = 2s, when
G = A,L, we obtain the statement in (iii) from which the result follows.

It suffices to prove (i), (ii) and (iii). For a clearer presentation, we first prove (iii).
If G = R,C,K, the result follows easily by Nakayama’s Lemma. If G = A (the

argument for G = L is similar) we apply Proposition 1.4.15 taking C = �f , M =
Mk+1
n , B = tf (Mn�n) and A = ωf (Mp�p).

We leave the details as an exercise to the reader.

(i) Necessary condition for finite determinacy.

This is not hard. A map-germ f : (Rn, 0) → (Rp, 0) is k-G-determined if Gf
contains all germs g ∈ Epn, such that jkg(0) = jkf (0). Let us denote this set by W.

Let

πl : Epn → J l(n, p)

g→ j lg(0).

As Gf ⊃ W, then πl(Gf ) ⊃ πl(W). Thus we also get that

the tangent space of πl(Gf ) ⊃ the tangent space of πl(W). (1.6)

Notice that for all l > k, the set πl(W) is the affine subspace of J l(n, p)
consisting of all l-jets whose k-jet is jkf (0). Hence we can rewrite (1.6) as

TGf +Ml+1
n �f ⊃Mk+1

n �f , l > k.

The result now follows from (iii) taking l = k + 1 for G = R, C or K and
l = 2k + 1 when G = A or L.

(ii) Sufficient condition for finite determinacy.

Let f, g ∈ Epn , j εk+1f (0) = jεk+1g(0), ε = 1 or 2, F (x, t) = (f̄ (x, t), t),

where f̄ (x, t) = (1− t)f (x)+ tg(x), t ∈ [0, 1].
(I) G = R, C or K .

In these cases the hypothesis

TGf ⊃Mk+1
n �f (1.7)
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implies

TGun(F )+Mk+2
n+1�F ⊇Mk+1

n �F . (1.8)

The proof that (1.7) implies (1.8) is not hard, but we omit it (the reader may
consult Wall [108] or du Plessis [79]).

The tangent spaces TGun(F ), G = R,C or K, are finitely generated En+1-
modules, so we can apply Nakayama’s lemma to (1.8) with C = TGun(F ) +
Mk+1
n �F , A = TGun(F ) andM =Mn+1 to get TGun(F ) ⊇Mk+1

n �F .

Now, ∂ · F = g − f ∈ Mk+2
n �F , and we can apply the Thom-Levine

lemma to prove that F is G-trivial in some neighborhood of t = 0. For a proof
of the Thom-Levine lemma for G = K see du Plessis et al. [39]. Notice that
jk+1f̄t (0) = jk+1f (0), and the hypothesis (ii) holds for f̄a, for any a ∈ [0, 1],
so that the arguments of the proof also hold to prove that F is G-trivial in a small
neighborhood of t = a for any a ∈ [0, 1]. Hence f is (k + 1)-G-determined,
G = R, C or K .

(II) G = L or A.

In these cases, TGun(F ) is not an En+1-module in general. Let G = A ( the case
G = L follows as a particular case).

T Aun(F ) = tF (Mn�n+1)+ ωF(Mp�p+1),

F (x, t) = (f̄ (x, t), t), f̄ (x, t) = (1− t)f (x)+ tg(x),

and j2k+1f (0) = j2k+1g(0)
First notice that if F0(x, t) = (f (x), t) is the suspension of f, the hypothesis

Mk+1
n �f ⊆ tf (Mn�n)+ ωf (Mp�p) implies that

Mk+1
n �F0 ⊆ tF0(Mn�n+1)+ ωF0(Mp�p+1)+ (tMk+1

n +M2k+2
n )�F0 .

Notice that Mk+1
n �F0 ⊂Mk+1

n �f + tMk+1
n �F0 .

The next step is to verify that similar inclusion holds replacing F0 by
F, j2k+1f̄t (0) = j2k+1f (0), that is

Mk+1
n �F ⊂ tF (Mn�n+1)+ ωF(Mp�p+1)+ (tMk+1

n +M2k+2
n )�F (1.9)

(see sublemma 2.2 in du Plessis [79]).
If we can show that the term (tMk+1

n +M2k+2
n )�F can be eliminated in (1.9)

then the Thom-Levine lemma can be applied to prove that F is A-trivial.
To achieve this goal Malgrange’s preparation theorem will be the fundamental

tool.
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Multiplying (1.9) by Mk+1
n and since Mk+1

n ωF(Mp�p+1) ⊂ F ∗(Mp)

Mk+1
n �F , we get

M2k+2
n �F ⊂ tF (Mk+2

n �n+1)+ F ∗(Mp)Mk+1
n �F + (t +Mk+1

n )M2k+2
n �F .

(1.10)

The En+1-module

E = tF (M
k+2
n �n+1)+ F ∗(Mp)Mk+1

n �F +M2k+2
n �F .

tF (Mk+2
n �n+1)+ F ∗(Mp)Mk+1

n �F

is finitely generated, since it is a quotient of finitely generated modules. Moreover,
from (1.10) we get that E = (t +Mk+1

n )E, and by Nakayama’s lemma it follows
that E = 0. Then, we get

M2k+2
n �F ⊂ tF (Mk+2

n �n+1)+ F ∗(Mp)Mk+1
n �F . (1.11)

Using (1.11) to replace part of the remainder term in (1.9), we get

Mk+1
n �F ⊂ tF (Mn�n+1)+ωF(Mp�p+1)+ (t+F ∗(Mp))Mk+1

n �F . (1.12)

Let E′ be the F ∗(Ep+1)-module

E′ = tF (Mn�n+1)+ ωF(Mp�p+1)+Mk+1
n �F

tF (Mn�n+1)+ ωF(Mp�p+1)
.

Using (1.12), it follows that E′ = (t + F ∗(Mp))E
′. Notice that the ideal 〈t〉 +

F ∗(Mp) is contained in F ∗(Mp+1), so it follows that E′ = F ∗(Mp+1)E
′.

To apply Nakayama’s lemma, one has to show that E′ is a F ∗(Ep+1)-module
finitely generated. For this, let the finitely generated En+1-module

E′′ = tF (Mn�n+1)+Mk+1
n �F

tF (Mn�n+1)
.

Notice that the inclusion

tF (Mn�n+1)+Mk+1
n �F ⊂ tF (Mn�n+1)+ ωF(Mp�p+1)+Mk+1

n �F

induces an epimorphism of F ∗(En+1)-modules E′′ → E′ so that if E′′ is a finitely
generated F ∗(Ep+1)-module, then E′ also is.

From Malgrange preparation theorem, E′′ is a finitely generated F ∗(Ep+1)-
module if and only if

dimR

E′′

F ∗(Mp+1)E′′
<∞. (1.13)
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Now

E′′

F ∗(Mp+1)E′′
� tF (Mn�n+1)+Mk+1

n �F

tF (Mn�n+1)+ F ∗(Mp+1)Mk+1
n �F

It follows from (1.11) that

tF (Mk+2
n �n+1)+ F ∗(Mp+1)Mk+1

n �F ⊃M2k+2
n �F .

As t ∈ F ∗(Mp+1), we also get that

tF (Mk+2
n �n+1)+ F ∗(Mp+1)Mk+1

n �F ⊃Mk+1
n+1M

k+1
n �F ,

so that,

dimR

E′′

F ∗(Mp+1)E′′
≤ dimR

Mk+1
n �F

Mk+1
n+1M

k+1
n �F

<∞

Then we can apply Nakayama’s lemma to (1.12) to get that E′ = 0, so that
Mk+1
n �F ⊂ tF (Mn�n+1)+ ωF(Mp�p+1).

To conclude we proceed as in part (I). ��
The following result follows from Theorem 1.4.8 and Mather’s lemma.

Proposition 1.4.16 Let f ∈ Epn, ε = 1 when G = R,C or K and ε = 2 when
G = L,A. Then f is k-G-determined if and only if Mk+1

n �g ⊂ TGg+Mε(k+1)
n �g

for all g ∈ Epn such that jkg(0) = jkf (0).
We see in the next example that the converse of condition (i) in Theorem 1.4.8

does not hold, that is, the condition TGf ⊇ Mk+1
n �f does not imply in general

that f is k-G-determined.

Example 1.4.17 Let f : (R2, 0)→ (R, 0), f (x, y) = x3 + y3, and G = R. Then

TRf = 〈∂f
∂x
,
∂f

∂y
〉M2 =M3

2

but f is not 2-R-determined as j2f (0) ≡ 0.

A successful approach to a necessary and sufficient condition for finite deter-
minacy appears in [14] where J. Bruce, A. du Plessis and C.T.C. Wall prove this
condition for unipotent subgroups of G = R, C, K, L or A.

Let Gs = {h ∈ G| j sh(0) = j s1G} where 1G is the identity of G, and J sG the
Lie group of s-jets of elements of G. The sets Gs, s ≥ 1 are unipotent subgroups of
G. A special case of the main result in [14] is the following:

Theorem 1.4.18 (Bruce, du Plessis, Wall [14]) A C∞ map-germ f : (Rn, 0) →
(Rp, 0) is r-Gs-determined (s ≥ 1) if and only if Mr+1

n �f ⊂ TGs (f ).
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1.4.3 Classification of Stable Singularities

We consider here the problem of classification of stable germs with respect to A-
equivalence. The main result is the following

Theorem 1.4.19 (Mather [61]) If f, g are stable germs then f ∼
A
g if and only if

the algebrasQ(f ) andQ(g) are isomorphic.

The proof of this theorem follows from the following property holding for
infinitesimally stable germs: Ap+1z = Kp+1z ∩ Stp+1, where z = jp+1f (0),
and Stp+1 is the set of all stable jets in Jp+1(n, p). We omit the complete proof,
however the main steps leading to the proof are given.

Example 1.4.20 The hypothesis that f and g are stable is essential. For instance,
let f (x, y) = (x, y3 + xy) and g(x, y) = (x, y3). Both algebras Q(f ) and Q(g)
are isomorphic to E1

(y3)
, but f and g are not A-equivalent. In fact, f is stable and g

is not.

The condition that f ∈ Epn is infinitesimally stable is determined by its p+1-jet.
In fact the following holds:

Proposition 1.4.21 (Mather [61], Proposition I.I) The map-germ f : (Rn, S)→
(Rp, 0) is stable if and only if

tf (�(n,S))+ ωf (�p)+ (f ∗(Mp)+Mp+1
S )�f = �f . (1.14)

Proof We need to show that (1.14) implies

tf (�(n,S))+ ωf (�p) = �f .

The proof is similar to the proof of Proposition 1.4.15 but simpler.
Let D = tf (�(n,S))+ f ∗(Mp)�f . Note that

ωf (Mp�p) ⊂ f ∗(Mp)�f ⊂ D.

Then

dimR

�f

Mp+1
S �f +D

≤ dimR

ωf (�p)

ωf (Mp�p)
≤ p.

The result then follows by Lemma 1.4.13 (ii). ��
Remark 1.4.22 Mather gives in [61], Proposition (I.6), a simple geometric charac-
terization of a stable multigerm f : (Rn, S) → (Rp, 0), S = {x1, x2, . . . , xr }.
Recall that if V is a vector space and H1, . . . , Hr are subspaces of V, then
H1, . . . , Hr are in general position if for every sequence of integers i1, . . . , il with
1 ≤ i1 ≤ · · · ≤ il ≤ r , we have cod(Hi1 ∩ · · · ∩Hil ) = cod(Hi1)+ · · · + cod(Hil ).
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Let fi : Ui → R
p, i = 1, . . . , r be a representative of the germ fi : (Rn, xi)→

(Rp, 0). Denote by Xi = {x ∈ Ui | (fi, x) ∼
A
(fi, xi)} where (fi , x) denotes the

germ fi : (Rn, x) → (Rp, 0), i = 1, . . . , r. Since f is infinitesimally stable, the
setsXi are submanifolds. Mather’s result states that the multigerm f is stable if and
only if each branch fi : (Rn, xi)→ (Rp, 0), i = 1 . . . r is infinitesimally stable and
the images fi(Xi), i = 1, . . . , r are in general position.

Corollary 1.4.23 An infinitesimally stable germ f : (Rn, 0)→ (Rp, 0) is (p + 1)-
A-determined.

Proof Notice that Proposition 1.4.21 implies that if jp+1g(0) = jp+1f (0), then g
is also infinitesimally stable.

It is also clear that every such g is A-finitely determined, say l-A-determined.
Then, we can apply Proposition 1.4.16 to get the result. ��
As the local algebra is a complete invariant for the classification of stable germs, we
can ask:

– Can we provide a normal form of a stable germ whose local algebra is a given
algebraQ?

The answer was given by Mather [61] and we review it here (see also section 1.2.5
of the Mond and Nuño-Ballesteros in this Handbook [70]).

We start with a rank zero K-finitely determined f : (Rn, 0) → (Rp, 0), f =
(f1, f2, . . . , fp). Let

Q(f ) = En
f ∗(Mp)En

= En
〈f1, . . . , fp〉En .

Since f is K-finitely determined, the quotient

Nf = �f

tf (�n)+ f ∗(Mp)�f + ωf (�p) (1.15)

is a finite dimensional R-vector space of dimension r and we can choose σi ∈
Epn, i = 1, . . . , r such that

Nf = R{σ1, . . . , σr }, (1.16)

For practical purposes, note that the vector space Nf admits the following simpler
characterization:

Nf � Mn�f

tf (�n)+ f ∗Mp�f
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Let F : (Rn × R
r , 0)→ (Rp × R

r , 0) be the linear r-parameter unfolding of f
defined by

F(x, u) = (f (x)+
n∑

i=1

uiσi(x), u). (1.17)

Then F is infinitesimally stable. In fact, from (1.16) we get

�f = tf (�n)+ ωf (�p)+ f ∗(Mp)�f + R{σ1, . . . , σr },

which implies that

�F = tF (�n+r )+ ωF(�p+r )+ F ∗(Mp+r )�F + Er{σ1, . . . , σr }, (1.18)

where Er {σ1, . . . , σr } denotes the Er -module generated by {σ1, . . . , σr }.Notice that
F ∗(Mp)En+r ⊃ 〈u1, . . . , ur 〉En+r . Then, it follows from that

�F = tF (�n+r )+ ωF(�p+r )+ F ∗(Mp+r )�F ,

and it follows from Proposition 1.4.21 that F is infinitesimally stable.

Example 1.4.24

(a) Ak singularities
Let f : (R, 0) → (R, 0), f (x) = xk+1. Then Nf = R{1, x, . . . , xk−1}.

From the above construction, we obtain that

F : R× R
k−1 → R× R

k−1

(x, u) �→ F(x, u) = (xk+1 +
k−1∑

i=1

uix
i, u),

is infinitesimally stable.
(b) �2,0 singularities B±2,2 = (x2 ± y2, xy)

(We use here du Plessis and Wall notation [82]. They are denoted I2,2 =
(x2 + y2, xy) and II2,2 = (x2 − y2, xy) by Mather [61].)

Normal forms for infinitesimally stable singularities whose local algebra are
B±2,2 are

F : (R2 × R
2, 0)→ (R2 × R

2, 0)

(x, y, u, v) �→ F(x, y, u, v) = (x2 ± y2 + ux + vy, xy, u, v).

As a consequence of the results of this section we can state the following
addendum to Theorem 1.3.11.
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Theorem 1.4.25 (Mather [62], Addendum to Theorem 4.1) Let r ≤ p + 1 and
k ≥ p. Let f : N → P be a proper C∞ mapping. Then the following conditions
are equivalent

(a) f is stable.
(b) r j

kf is transversal to every contact class in rj k(N, P ).
(c) For every subset S of N having r or fewer points, such that f (S) is a single

point y ∈ P, we have

tf (�(N,S))+ ωf (�(P,y))+Mk+1
S �f = �f

1.4.4 Maps of Finite Singularity Type

Another fundamental notion introduced by Mather in [65] was the notion of
mappings of finite singularity type, denoted by FST. Properties of such mappings
are also discussed in [39].

A mapping f : N → P will be said of finite singularity type if E = �f
tf (�N)

is a
finite module over C∞(P ) via f.

We can also define similarly the notion of FST for multigerms f : (Rn, S) →
(Rp, 0).

Local properties of mappings of finite singularity type follow from our previous
discussion. The critical set of f is the set �(f ) of non-submersive points of f.

Let F : (Rn×R
r , 0)→ (Rp×R

r , 0)with F(x, u) = (f̄ (x, u), u) and f̄ (x, 0) =
f (x). If F is a stable germ, we say that F is a parametrized stable unfolding of f.

Theorem 1.4.26 Let f : (Rn, S)→ (Rp, 0). The following are equivalent.

(1) f is of FST.
(2) f is K-finitely determined.
(3) f admits a stable parametrized unfolding.

Moreover, these conditions imply

(4) for every sufficiently small representative f : U → V, f |�(f ) : �(f )→ V is
proper and has finite fibers.

Remark 1.4.27 We say that f : X → Y has finite fibers (or, is finite-to-one) if for
every y ∈ Y, f−1(y) has a finite number of points.

Proof The equivalence (1) ⇔ (2) follows from the Preparation Theorem. In fact
E = �f

tf (�(n,S))
is a finitely generated f ∗(Ep)-module if and only if Ke-codf =

dimR

�f
tf (�(n,S))+f ∗(Mp)�f

<∞.
We saw in Sect. 1.4.3 that a K-finitely determined germ has a stable unfolding;

so that (2)⇒ (3).We saw in Example 1.4.7 thatQ(f ) = Q(f0), so that (3)⇒ (2).
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It is sufficient to prove (4) for infinitesimally stable germs. In this case, the
general position condition implies that for any y ∈ V, f−1(y) ∩ �(f ) has at most
p points (see Remark 1.4.22). ��

We shall need some extra conditions to formulate the theory of FST mappings
f : N → P. The condition that f has a parametrized stable unfolding is fairly
easily computable, but it does not always have a global version (see Mather [65] for
counter examples).

Definition 1.4.28 Let f : N → P be smooth. We say that {F,N ′, P ′, i, j } is an
unfolding of f if we have a commutative diagram

where N ′, P ′ are smooth manifolds, F is a smooth mapping, i, j are closed smooth
embeddings, i(N) = F−1(j (P )) and F is transverse to j.

Theorem 1.4.29 (Mather [66], Proposition 7.2)
Let f : N → P be smooth and N compact. Then f is of finite singularity type if

and only if there exists an unfolding {F,N ′, P ′, i, j } of f such that F is proper and
infinitesimally stable.

1.4.5 Notes

All the results in this section remain true if we replace smooth germs by real analytic
or complex analytic germs. In particular, the notion of G-finite determinacy for G =
R,L,A,C and K is independent of whether we consider f as a real analytic, C∞
or complex analytic map-germ. The Infinitesimal Criterion of G-finite determinacy
holds with essentially the same proof replacing Malgrange Preparation Theorem by
Weirstrass Preparation Theorem. We use the same notation On for the local rings of
real analytic or complex analytic map-germs at the origin. The maximal ideal in both
cases is also denoted by Mn. The set Opn denotes the On-module of real or complex
analytic map-germs from (Kn, 0) → (Kp, 0), K = R or C. The following result
explains the relation among finite determined germs in these different modules.

Proposition 1.4.30 Let f : (Rn, 0) → (Rp, 0) be a real analytic map-germ. The
following are equivalent

(i) f is k-G-determined in the space of real analytic map-germs Opn .
(ii) f is k-G-determined in Epn .

(iii) The complexification of f , fC : (Cn, 0)→ (Cp, 0), is k-G-determined in the
space Opn of holomorphic map-germs.
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In the complex case there are useful geometric characterization of G-finite
determinacy. The main result characterizes G-finite determined germs as map-
germs with isolated instability. The case G = A was stated by Mather and proved
by Gaffney. For a complete account we refer to Wall [108] or Mond and Nuño-
Ballesteros [69]. See also Mond and Nuño-Ballesteros article in this Handbook [70]

Theorem 1.4.31 (Geometric Criterion of Finite Determinacy) A holomorphic
map-germ f : (Cn, 0)→ (Cp, 0), is A-finite if and only if there is a neighborhood
U of 0 in C

n such that for every finite subset S ⊂ U \ {0}, the multigerm of f at S
is A-stable.

The geometric condition of this theorem (isolated instability) holds for any real
A-finite map-germ. However, the converse statement does not hold. For a simple
example, let f (x, y) = (x2 + y2)2. As �(f ) = {0}, the origin is an isolated
instability, but f is not A-finitely determined.

1.5 The Nice Dimensions

We discuss in this section the main steps in the proof of theorem A. Mather proved in
[61] that for a pair of positive integers (n, p), there exists a smallest Zariski closed
Kk-invariant set �k(n, p) in the set J k(n, p) such that J k(n, p) \ �k(n, p) is the
union of finitely many Kk-orbits. The set �k(n, p) is the “bad set.” It is in fact the
set of k-jets in J k(n, p) of “modality” ( K-modality) greater than or equal to 1 (see
Sect. 1.8.1 for the definition of modality).

We review Mather’s construction of �k(n, p). For each r, k ∈ N we define
Wk
r (n, p) as the set of z ∈ J k(n, p) such that Kk-cod z ≥ r. This set is a closed

algebraic subset of J k(n, p). Let Wk
r (n, p)

∗ denote the union of all irreducible
components of Wk

r (n, p) whose codimension is less than r. We let �k(n, p) =
∪r≥0W

k
r (n, p)

∗. The following properties hold:

• �k(n, p) is a closed algebraic subset of J k(n, p).
• Let πk : J k+1(n, p) → J k(n, p) be the projection. It follows that
π−1
k (�

k(n, p)) ⊂ �k+1(n, p), hence cod�k+1(n, p) ≤ cod�k(n, p).
• There exists a k big enough for which the codimension of �k(n, p) attains its

minimum. For this k, cod�k(n, p) is denoted σ(n, p).
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6p � 7n � 8

n � p

p

36

30

6p � 7n � 9

9
8
7
6

98 27 32

p � 7

n

nice dimensions

10

Fig. 1.3 Boundary of nice dimensions

Mather calculated σ(n, p) in [63] and the result is as follows (Fig. 1.3):
Case 1: n ≤ p

σ(n, p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

6(p − n)+ 8 if p − n ≥ 4 and n ≥ 4

6(p − n)+ 9 if 3 ≥ p − n ≥ 0 and n ≥ 4 or if n = 3

7(p − n)+ 10 if n = 2

∞ if n = 1

Case 2: n > p

σ(n, p) =

⎧
⎪⎪⎨

⎪⎪⎩

9 if n = p + 1

8 if n = p + 2

n− p + 7 if n ≥ p + 3

Definition 1.5.1 A pair (n, p) is in the nice dimensions if n < σ(n, p).

Suppose k has the property that cod�k(n, p) = σ(n, p). If (n, p) is in the
nice dimensions, then there exists an analytically trivial stratification Sk(n, p) of
J k(n, p) \ �k(n, p) such that the strata are a finite number of K-orbits. To get
a stratification of the whole jet space J k(N, P ), we add to Sk(n, p) a Whitney
regular stratification of�k(n, p) (it exists since �k(n, p) is an algebraic closed set
of J k(n, p)).
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Table 1.1 K-orbits of stable germs n = p ≤ 8

Type Name Normal form Conditions K-cod ≤ n
�1 Aj (xj+1) 1 ≤ j ≤ n j

�2,0 B±p,q (xy, xp ± yq) 2 ≤ p, q ≤ n− 2 p + q
�2,0 B∗p,p (x2 + y2, xp) 3 ≤ p ≤ 4 2p

�2,1 C2k−1 (x2 + y3, y3) 7

�2,1 C2k (x2 + y3, xy2) 8

This stratification of J k(n, p) induces a partition of J k(N, P ) by K-orbit
bundles whose restriction to J k(N, P ) \�k(N,P ) is denoted by Sk(N,P ).

As we saw in Theorem 1.4.25, stable mappings can be characterized by
transversality of the k-jet extension jkf : N → J k(N, P ) to the Kk-orbits.

When σ(n, p) > n, transversality to the strata of the stratification J k(N, P ),
implies that jkf (N) ∩ �k(N,P ) = ∅. Hence Theorem A follows from Thom’s
transversality theorem.

Example 1.5.2 (Stable Singularities When n = p ≤ 8) We refer to [69] for the list
of stable singularities in the nice dimensions.

When n = p, σ(n, p) = 9, then (n, n) is a nice pair of dimensions if and
only if n ≤ 8. The set �k(n, n) ⊂ J k(n, n), k ≥ n + 1, n ≤ 8 is the closure
of all Kk-orbits of Kk-codimension greater than or equal to n + 1. In particular,
�3(n, n) ⊂ �k(n, n),where n ≤ 8 since cod�3 = 9. The strata of the stratification
Sk(n, n), k ≥ n+ 1, n ≤ 8 are presented in Table 1.1:

Remark 1.5.3 Classification of stable singularities in the nice dimensions. Mather
classified the stable germs in the nice dimensions as an application of results and
arguments in [63]. He gave complete proofs of the classification of the local algebras
of singularities of type �1 and �2,0 and outlined the classification of �2,1 and
�n−p+1 singularities. Further classification of simple and unimodular algebras were
performed by Arnold [4], Wall [109], Dimca and Gibson [27–29] and Damon [18–
20].

A remarkable property of stable map-germs in the nice dimensions is that, with
respect to suitable coordinates, all singularities are weighted homogeneous. For
many years, this property was considered to be true but there was no reference of a
written proof.

This result was recently proved by Mond and Nuño-Ballesteros [69, theo-
rem 7.6]. Their proof is based on Mather’s classification of local algebras of stable
germs in the nice dimensions and on the direct construction of the normal forms of
their minimal stable unfoldings. This property of the nice dimensions plays a crucial
role in the proof of Damon and Mond [26] that the Ae-codimension is less than or
equal to the rank of the vanishing homology of the discriminant (the discriminant
Milnor number) for map germs (Cn, 0) → (Cp, 0) with n ≥ p and (n, p) nice
dimensions.
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1.5.1 Notes

Non Proper Stable Mappings C∞ non-proper stable mappings were discussed by
du Plessis and Vosegaard [81] and more recently by Kenta Hayano [42].

For proper maps f : N → P, Mather proves that stability, strong stability,
infinitesimal stability an local infinitesimal stability are equivalent notions. In [81],
du Plessis and Vosegaard prove that these notions are equivalent when f is a quasi-
proper map with closed discriminant.

The purpose of Hayano’s paper, [42], is to give a sufficient condition for strong
stability of non-proper smooth functions f : N → R. He introduces the notion
of end-triviality of smooth mappings, which controls the behavior of f around the
ends of the source manifold N. He shows that a Morse function is stable if it is
end-trivial at any point in its discriminant.

The extra-nice dimensions. When the pair (n, p) is in the nice dimensions and
the source N is compact, an important problem in the applications of singularity
theory to topology of manifolds is the characterization of generic singularities of 1-
parameter paths between two stable maps; they are also known as pseudo-isotopies.
A 1-parameter family F : N × [0, 1] → P connecting two non equivalent stable
maps always intersects the set of non stable maps at a finite number of values of the
parameter, the bifurcation points. The classification of singularities of bifurcation
points in generic families of maps is an important step in results on elimination of
singularities (see for instance [7, 50]) and on results about the topology of the space
of smooth maps such as [16, 44, 104].

We say that a family F : N×[0, 1] → P is a locally stable family if Ft : N → P

is stable for all t ∈ [0, 1] except possibly a finite number of values {t1, . . . , tk} and
the non stable singularities of Ft are a finite number of points xj at which Ae-
cod(Fti ) = 1.

In [6] Oset Sinha, Ruas and Wik Atique obtain a result parallel to Mather’s
characterization of the nice dimensions. They define the extra-nice dimensions and
(see Fig. 1.4) prove that the subset of stable 1-parameter families in C∞(N ×
[0, 1], P ) is dense if and only (n, p) is in the extra-nice dimensions.

In Sect. 1.10 we relate the condition that (n, p) is in the extra-nice dimensions
to the geometry of sections of the discriminant of stable maps in dimensions (n +
1, p + 1).

1.6 Thom’s Example

If a pair of dimensions (n, p) is not in the nice range of dimensions, then there
exists an open non void subset U of C∞(N, P ), such that U is the union of an
uncountable number of Ae-orbits. This property was first proved by René Thom
when n = p = 9. We review Thom’s example [96] here. The pair n = p = 9
is in the boundary of the nice dimensions, which consists of pairs (n, p) such that
σ(n, p) = n.
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5
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p

n

(7,5)
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Fig. 1.4 Extra-nice dimensions

The construction of Thom’s example was based on the following

1. The set of mappings F : N → P, dimN = dimP = n, such that jkF �
�r(N,P ), where �r(N,P ) = {σ ∈ J k(N, P )| corank σ = r}, 0 ≤ r ≤ n is a
residual set of C∞(N, P ).

2. codJ k(N,P ) �
r(N, P ) = r2.

3. When r = 3, n = 9, there exists a 1-parameter family of non K-equivalent
mappings Fλ : R9 → R

9, such that jk1F : R × R
9 → J k(R9,R9) is transversal

to �3(R9,R9), where jk1F denotes the k−jet with respect do the variable x.

The sets �r are the first order Boardman symbols and it is an easy exercise to
prove that they are codimension r2 submanifolds of J k(N, P ) when dim(N) =
dim(P ). Hence (1) follows from Thom’s transversality theorem.

It is sufficient to verify (3) for map-germs F : (R9, 0) → (R9, 0), such
that corank F(0) = 3. By changing coordinates in source and target, it follows
that F can be written in the form F(x, u) = (f (x, u), u), x = (x1, x2, x3),

u = (u1, . . . , u6), f0(x) = f (x, 0), where f0 : (R3, 0)→ (R3, 0) has zero rank.
The local algebrasQ(F) andQ(f0) are isomorphic. As we saw in Example 1.4.7,

F is K-equivalent to a suspension of f0. The 2-jet j2f0 is a quadratic polynomial
mapping q : R3 → R

3,which determines a net of real quadrics. Non degenerate nets
of quadrics over the complex numbers were classified by C. T. C. Wall in [107]. Over
the reals, the classification was given by Wall and Edwards in [30]. The complete
classification of real nets of quadrics can be found in [82, chapter 8, table 8.21].
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For our purpose here, it suffices to remark that the set�3,3 has a Zariski open set,
denoted byW2, defined by the union of the J 2K-orbits of the unimodular family:

(f0)λ :(R3, 0)→ (R3, 0) (1.19)

(x1, x2, x3)→ (x2
1 + λx2x3, x

2
2 + λx1x3, x

2
3 + λx2x3)

with λ(λ3 + 8)(λ3 − 1) �= 0.
For each λ, (f0)λ is a homogeneous polynomial map of degree 2, hence the

J 2K-action inW2 coincides with the action of the linear groupG = GL(3)×GL(3)
inW2.Notice that the dimension of the linear groupG is 18, as well as the dimension
ofW2.

However G contains a one dimensional subgroup which acts trivially on W2,

namely {(cI
R

3, 1
c2 IR3)}, c a non zero number. Hence the orbits have codimension at

least 1 inW2.

We can prove that the family (1.19) is 2-determined with respect to K-
equivalence. It follows thatW2 determines the K-invariant setsWk

2 = (πk2 )−1(W2),

where πk2 : J k(9, 9)→ J 2(9, 9).Moreover, codJ k(9,9) W2 = 9, and K-cod(f0)λ =
10.

In other words, σ(9, 9) = codW2 = 9, so that the unimodular stratumW2 cannot
be avoided by a generic set of proper mappings F : R9 → R

9. As a consequence,
stable mappings are not dense when n = p = 9.

For each λ /∈ {0,−2, 1}, (f0)λ admits the topologically stable unfolding

Fλ :(R9, 0)→ (R9, 0) (1.20)

(x, u) �→ (fλ(x, u), u)

where fλ(x, u) = (x2
1 + λx2x3 + u1x2 + u2x3, x

2
2 + λx1x3 + u3x1 + u4x3, x

2
3 +

λx1x2 + u5x1 + u6x2).

We will discuss the topological stability of Fλ in Sect. 1.8.

1.7 Density of Topologically Stable Mappings

From the previous example, it becomes clear that outside the nice dimensions,
one has to loosen the formulation of Problem 1.2.1 to obtain a solution. Mather
considered in [64] two possible ways.

One might hope that the space of mappings f whose germ fx at each point
x ∈ N is A-finitely determined is an open and dense subset inC∞pr (N, P ). However,
Mather gave in [59] an example which shows that this set is not always dense.
In [80] du Plessis defined the semi-nice dimensions as the pairs (n, p) for which
finite determinacy holds in general (see Definition 1.7.6). The complement of the
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semi-nice dimensions is essentially made of pairs (n, p) where singularities of K-
modality greater than or equal to 2 occur generically (see [80], [109]).

The second way to try to solve the problem is based on ideas due to Thom, and
led to Theorem B on density of C0stable mappings in C∞pr(N, P ).

In his article Local topological properties of differentiable mappings [93], Thom
describes the topological structure of differentiable mappings, outlining the proof of
the topological stability theorem.

Theorem 1.7.1 (Theorem 4, [93]) Let z be any jet in J r(n, p). Then, there exists
a positive integer s depending only on r, n and p, and a proper algebraic variety �
in π−1

s (z) ⊂ J r+s(n, p) such that any jet in π−1
s (z) outside � is C0-A-finitely

determined. Moreover, any two mappings realizing such jet are locally weakly
stratified and isotopic.

A complete proof of this theorem follows from the proof of the Main Theorem
in A. Varchenko’s article with the same title, Local topological properties of
differentiable mappings [103] (see also [101, 102]). He also proves in [103] a
stratification theorem, although he states in the paper he does not know whether
Mather’s density theorem follows from his stratification theorem, or whether the
stratification theorem can be proved by Mather’s methods.

Mather gave in 1970, an outline of a complete proof of Theorem B. His proof
was published in the Proceedings of the Symposium of Dynamical Systems, held
in Salvador, Bahia [64]. As remarked by him, he expected to publish a book in
which the details of the proof would appear. In the Spring 1970, he gave a series
of lectures and the notes appeared as a booklet published in the same year by
the Harvard Printing Office. The notes also discuss the Thom-Whitney theory of
stratified sets and stratified mappings. They were recently republished in the Bulletin
of the American Mathematical Society [56].

Complete proofs of Theorem B were given in 1976, independently, by Gibson,
Wirthmüller, du Plessis and Looijenga in [39] and by Mather in [66]. Both proofs
are based on Thom’s ideas and Mather’s outline [64]. In what follows we refer to
Theorem B as the Thom-Mather theorem.

The book [39] comprises the notes of a seminar on Topological Stability of
Smooth Mappings held at the Department of Pure Mathematics in the University of
Liverpool, during the academic year 1974–75. The main objective was to organize
a complete proof of the Topological Stability Theorem, for which no published
complete account existed. The book has become a fundamental reference on the
subject.

The proof in [39] and [66] are similar and they rely on the following ingredi-
ents:

(1) Properties of Whitney regular stratifications
(2) Łojasiewicz theorem, giving the existence of Whitney regular stratification of

semialgebraic sets.
(3) Properties of stable mappings and mappings of finite singularity type (FST). A

fundamental property of mappings of FST is the existence of a stable unfolding.
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(4) Thom’s second isotopy theorem, applied to show that families of mappings
transverse to the Thom-Mather stratification are topologically trivial.

For a review of stratification theory and Thom’s isotopy theorems in the
differentiable category, we also refer to the paper by David Trotman, in Volume
I of this Handbook. We only make a brief presentation of basic concepts and results.

Let V be a subset of a smooth manifold N of class Ck. A Ck-stratification of V
is a filtration by closed subsets

V = Vd ⊃ Vd−1 ⊇ · · · ⊇ V1 ⊇ V0

such that each difference Vi \Vi−1 is Ck-manifold of dimension i, or is empty. Each
connected component of Vi \ Vi−1 is a stratum of dimension i. It follows that V is
disjoint union of strata {Xα}α∈A, and we say that V is a stratified set.

For the purposes of these notes we assume that the stratified sets V = ∪α∈AXα
are locally finite and satisfy the frontier condition (see Gibson et al. book [39] or
Trotman [100] for the definition).

Let V be a subset of R
n and {Xα}α∈A a stratification of V. Whitney defined

regularity conditions (a) and (b), seeking for stratifications topologically trivial
along strata.

Definition 1.7.2 (Whitney’s Conditions (a) and (b)) Let X and Y be strata of
{Xα}α∈A, such that Y ⊂ X \X.
(a) The pair (X, Y ) satisfies Whitney’s condition (a) at y ∈ Y if: for all sequences

(xm) ∈ X with xm → y, such that TxmX converges to a subspace T ⊂ R
n ( in

Grassmannian of dimX- planes in R
n), then T ⊃ TyY.

(b) The pair (X, Y ) satisfies Whitney’s condition (b) at y ∈ Y if: for all sequences
(xm) ∈ X and (ym) ∈ Y, with xm → y, ym → y, such that {TxmX} converges
to T and the lines xmym converges to a line � one has � ∈ T .

It was pointed out by Mather in his notes on topological stability that Whitney (b)
implies Whitney (a). The reader may verify this as an exercise. We say that the
stratification is Whitney regular if every pair of strata (Xα,Xβ) satisfies (b) ( hence
also satisfies (a)) at every point in Xβ.

These regularity conditions are local and can be easily extended to stratified sets
of a manifold N.

Whitney [116, 117] proved in 1965 that any analytic variety in R
n or Cn admits

a regular stratification whose strata are analytic. This result was extended to semi-
analytic sets by Łojasiewicz [49], also in 1965. For the purposes of this section, the
relevant result is the existence theorem for semialgebraic sets. We refer to Thom
[95] and Wall [105] for accessible proofs.

Definition 1.7.3 Let f : N → P be a smooth mapping and A ⊆ N,B ⊆ P sets
with f (A) ⊂ B. A stratification of f : A → B is a pair (X,X′), such that X is a
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Whitney stratification of A, X′ is a Whitney stratification of B, and the following
conditions hold

• f maps strata to strata.
• If X ∈ X, X′ ∈ X′, f (X) ⊂ X′ then f : X→ X′ is a submersion.

Definition 1.7.4 Let f : N → P and X and X′ as in Definition 1.7.3. Given
Xα,Xβ strata of X, x ∈ Xβ we say that Xα is Thom regular over Xβ at x ∈ Xβ
relative to f when the following holds: for every sequence (xi) ∈ Xα, xi → x

such that ker (dxi (f |Xα)) converges to T in the appropriate Grasmannian, then
ker dx(f |Xβ ) ⊆ T .We say thatXα is Thom regular over Xβ relative to f when this
condition hold for all x ∈ Xβ.The pair (X,X′) is a Thom stratification for f when
Thom’s regularity condition holds for all pair of strata (Xα,Xβ) with Xβ ⊂ Xα.

The triple (f,X,X′) with f a smooth mapping and (X,X′) a Thom stratification
for f is called a Thom stratified mapping.

1.7.1 How to Stratify Mappings and Jet Spaces

We first discuss the Thom-Mather stratification in jet space and how to stratify stable
mappings and mappings of finite singularity type. Then, we discuss why mappings
transverse to the Thom-Mather stratification are topologically stable.

The idea of the proof is to construct a stratification Al (N, P ), of a big open
subset of J l(N, P ), with the following property: if l is sufficiently large, then for
any mapping f : N → P which is multitransverse to Al (N, P ), then the locally
finite manifold partition B = ((j lf )−1Al (N, P )) is a Whitney stratification which
extends to a Thom stratification (B,B′) of f.

Let z ∈ J l(n, p) and let f : (Rn, 0)→ (Rp, 0) such that j lf (0) = z.
Following Gibson et al. [39], we let

χz = dimR

�f

tf (�n)+ (f ∗(Mp)+Ml
n)�f

We define Wl(n, p) = {z ∈ J l(n, p) |χz ≥ l}. Wl(n, p) is the bad set, and the
following hold

(a) If z ∈ J l(n, p) \ Wl(n, p), then any f ∈ Epn such that j lf (0) = z is l-K-
determined.

(b) Wl(n, p) is K-invariant.
(c) Wl(n, p) is a real algebraic variety in J l(n, p).

To verify (a) notice that, if χz ≤ l − 1, then

tf (�n)+ (f ∗(Mp)+Ml
n)�f ⊃Ml−1

n �f . (1.21)

Then we can multiply (1.21) by Mn and the result follows from Theorem 1.4.8.
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It follows from (a) that map-germs f ∈ Epn such that z = j lf (0) satisfy χz ≤
l − 1 are of finite singularity type. In the following proposition we prove that the
property of FST holds in general.

Proposition 1.7.5 (Gibson et al. [39], Theorem 7.2) The following conditions
hold:

(i) codWl+1(n, p) ≥ codWl(n, p).

(ii) liml→∞ codWl(n, p) = ∞.
(iii) There is a subbundleWl(N,P ) ⊂ J l(N, P ) naturally associated toWl(n, p).

Moreover, when N is compact, mappings f : N → P such that j lf (N) ∩
Wl(N,P ) = ∅ are of finite singularity type.

Definition 1.7.6 We say that a propertyP of map-germs holds in general if the sets
Wl

P(n, p) = {z ∈ J l(n, p)| z does not satisfy P}, satisfy (i) and (ii) (see [108]).

While condition (i) in Proposition 1.7.5 can be easily verified, we can prove (ii) as
follows.

Given z ∈ Wl(n, p), find z′ ∈ Wl+q(n, p), πl(z′) = z, where πl :
Wl+q (n, p) → Wl(n, p) is the projection, such that z′ /∈ Wl+q (n, p) (see Bruce,
Ruas and Saia [15], for a simpler proof of this result).

As Wl(n, p) is a real algebraic variety, it follows from Łojasiewicz’s result
[49] that it has a Whitney stratification with semialgebraic strata. Condition (iii) is
immediate. Notice that conditions (i) and (ii) imply that we can choose sufficiently
high l for which codWl(n, p) > n. Then, the mappings f : N → P which are
multitransverse to Al (N, P ) satisfy the condition j lf (N) ∩Wl(N,P ) = ∅.

Our problem now is to construct a stratification Al (n, p) of J l(n, p) \Wl(n, p)

whose members are K-invariant sets Sj = {z ∈ J l(n, p) \Wl(n, p)| cod z = j },
for j = 0, 1, 2, . . . . The definition of cod z will be given in the sequel.

We shall see that K l-equivalent jets z and z′ have the same codimension, i.e.,
cod z = cod z′. This number does not coincide with the K l-codimension.

Although we know that contact classes are smooth submanifolds of the jet
spaces, it is not clear at this point that the collection Sj defines a stratification of
J l(n, p) \Wl(n, p). To define cod z and to understand the structure of the strata Sj
in Al (n, p), we first discuss shortly how to stratify infinitesimally stable mappings
and mappings of FST. Recall that for any smooth map f : N → P, the critical set
of f is �(f ) = {x ∈ N | dfx : TxN → Tf (x) is not surjective} and the discriminant
of f is �(f ) = f (�(f )).

We saw in Sect. 1.4 that if f : N → P is infinitesimally stable, the restriction
f |�(f ) : �(f ) → P is proper and uniformly finite-to-one. In fact for any y ∈ P ,
#(f−1(y) ∩ �(f )) ≤ p. Moreover, if f−1(y) ∩ �(f ) = {x1, x2, . . . , xs} the
multigerm f : (N, S) → (P, y) has a representative equivalent to a polynomial
mapping f : U ⊂ R

n → V ⊂ R
p, where U and V are open sets in R

n and R
p

respectively. In other words f is a semialgebraic map defined on semialgebraic
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subsets. Then we can apply the basic theorems of Whitney and Lojasiewicz to
construct Whitney stratifications S of N and S′ of P with the following properties

1. For each stratum X of S, there is a stratum Y of S′ such that f (X) ⊂ Y.
2. For each stratum Y of S′, it follows that f−1(Y ) \�(f ) is a stratum of S.
3. For each stratumX of S, such that X ⊂ �(f ), we have that dimX = dimY and
f : X→ Y is an immersion, where Y is the stratum of S′ which contains f (X).

Notice that from 2. it follows that N \�(f ) is a union of strata. Hence, �(f ) is
also a union of strata.

Now, if f : (N, x0) → (P, y0) is a stable germ, for any small representative
that we also denote by f, the stratum X ∈ S which contains x0 is connected and its
codimension is strictly greater than the codimension of any other stratum of S. This
number depends only of f.We call it the codimension of f, and we write cod f. A
germ f has codimension zero if and only if it is of maximal rank.

This notion generalizes to map-germs of finite singularity type.

Definition 1.7.7 Let f : (Rn, 0)→ (Rp, 0) be a map of finite singularity type. We
define cod f at x = 0 as the codimension of a stable unfolding of f.

Notice that this number is well defined. In fact, if F : (Rn × R
s, 0) → (Rp ×

R
s , 0) and F ′ : (Rn ×R

r , 0)→ (Rp ×R
r , 0) are stable unfoldings of f and if, say,

r = s+k, then it follows thatF×Id is equivalent toF ′,where Id is the identity map
in R

k. Then cod (F × Id) = codF ′, and it easy to see that codF = cod (F × Id).
Now the following result follows easily.

Proposition 1.7.8 If f ∼
K
f ′ then codf = codf ′.

The properties of the stratification Al (N, P ) can be summarized in the following
results.

Proposition 1.7.9 Let f : (N, x0) → (P, y0) be a smooth map-germ with an
unfolding F : (N ′, x ′0)→ (P ′, y ′0), as in the diagram

Then the following conditions are equivalent

(i) j lf /∈ Wl(N,P ) and j lf is transverse to Al (N, P ).
(ii) j lF /∈ Wl(N ′, P ′) and j lF is transverse to Al (N ′, P ′), and in addition if

X ∈ (j lF )−1Al (N ′, P ′) contains x ′0, then i is transverse to N ′.

Proposition 1.7.10 (Gibson et al., [39], Proposition 3.3, Chapter 4) Let f :
N → P be a proper smooth mapping multi-transverse to Al (N, P ) and such that
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j lf (N) ∩ Wl(N,P ) = ∅. Let S = (j lf )−1Al (N, P ) and S′ = {f (X) |X ∈
S} ∪ {P \ f (N)}. Then (S,S′) is a Thom stratification of f.

Remark 1.7.11 The pair (S,S′) in Proposition 1.7.10 has a minimality property
which uniquely characterizes it among all possible pairs. We refer to Gibson et al.,
[39] or Mather [66] for details.

1.7.2 Proof that Topologically Stable Mappings are Dense
(Mather, [66], §8)

Initially, we state the Thom-Mather topological stability theorem, whose proof
we outline in this section. Theorem B will follow from this result and Thom’s
transversality theorem.

Theorem 1.7.12 If f : N → P is proper and for some (and hence for all) k ≥
p + 1, j kf is multitransverse to the Thom-Mather stratification of J k(N, P ), then
f is strongly C∞-stable.

Given f : N → P, we will show that we can approximate it by a topologically
stable mapping. First, we approximate f by a mapping f1 : N → P of
finite singularity type (Proposition 1.7.5). Then, we can choose an unfolding
(F,N ′, P ′, i, j) of f1 such that F is proper and infinitesimally stable. Let S′

N ′ and
S′
P ′ be stratifications of N ′ and P ′, respectively satisfying conditions (1)–(3) in

Sect. 1.7.1.
By Thom’s transversality theorem, we can approximate j by j2 : P → P ′ such

that j2 is transverse to the strata of S′
P ′ . Moreover we may suppose j2 = j outside

a compact neighborhood of f (N).
Since F is transverse to j, it follows that F is transverse to j2 for j2 sufficiently

close to j.
The set N2 = F−1(j2(P )) is a smooth manifold. One can show that there is a

diffeomorphism i2 : N → N2 close to i : N → N ′.
We let f2 : j−1

2 ◦ F ◦ i2 : N → P. It follows from construction that f2 is close
to f in the C∞ topology. We claim that f2 is topologically stable.

The proof is based on the following facts from the construction we have made:

(i) (F,N ′, P ′, i2, j2) is an unfolding of f2;
(ii) F is proper and infinitesimally stable;

(iii) j2 is transverse to the stratification S′
P ′ of P ′.

Let g be a small perturbation of f2, so that we can suppose f2 and g are
connected by a small arc gt in C∞(N, P ), t ∈ [0, 1], g0 = f2, g1 = g. We can
lift gt to an arc Gt in C∞(N ′, P ′) such that G0 = F and (Gt ,N ′, P ′, i, j) is an
unfolding of gt . Moreover, we may suppose that Gt = F outside of a sufficiently
small compact neighborhood of i(N).
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From Theorem 1.3.15, it follows that there exist one parameter families of
diffeomorphisms (Ht,Kt ) ∈ A, H0 = IdN ′ , K0 = IdP ′ , such that F =
Kt ◦Gt ◦H−1

t , for all t ∈ [0, 1].
Now consider the commutative diagram

Since (Gt ,N ′, P ′, i, j) is an unfolding of gt , it follows that (F,N ′, P ′,Ht ◦
i,Kt ◦ j) is also an unfolding of gt . LetG(x, t) = (gt (x), t), H̃ (x, t) = Ht(x) and
K̃(y, t) = Kt(y). Then we have the following commutative diagram

So,we have that the triple (F,S′
N ′ ,S

′
P ′ ) is a Thom stratified map, and i and j are

transverse respectively to S′
N ′ and S′

P ′ . Then taking g sufficiently close to f2,Ht ◦ i
andKt ◦ j are also transverse to S′

N ′ and S′
P ′ , respectively.

It follows that these stratifications pull back to the Whitney’s stratifications
H̃ ∗(SN ′ ) and K̃∗(S′

P ′) in N × I and P × I, respectively.

Moreover, each N × {t}, P × {t} is transverse to H̃ ∗(SN ′ ) and K̃∗(S′
P ′), and

conditions (1)–(3) are satisfied.
Then, we may apply the Thom’s second isotopy lemma (Gibson et al., [39,

theorem 5.8, Chapter II]) and conclude that f2 = g0 is topologically equivalent
to g = g1.

1.7.3 The Geometry of Topological Stability

WhetherC0-stability andC∞-stability are equivalent notions in the nice dimensions
is a question not answered by the Thom-Mather theory. The first steps towards
such result appear in Robert May’s thesis [67, 68]. Mays’s results were followed
by a series of papers by Damon [19–21], who proved in [21] that C∞-stability is
equivalent to a stronger notion of C0-stability.

Some of the ideas introduced in these papers form part of the basis for Andrew
du Plessis and Terry Wall’s book on topological stability. The book, The geometry of
topological stability, [82] published in 1995, is a deep contribution to the subject of
topological stability of smooth mappings. They are motivated by the problems left
unanswered in the Thom-Mather theory. One such problem is that it is very difficult
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to determine explicitly the Thom-Mather stratification Ak(n, p) in the complement
of the nice dimensions and its boundary. Another problem is that the transversality to
the Thom-Mather stratification is not a necessary condition for topological stability.
In fact, this follows from a combination of results of Looijenga [51] and Bruce [12]
as we see in Examples 1.7.15 and 1.7.16 below. Du Plessis and Wall give partial
answers to the following two conjectures:

Conjecture (i) (Conjecture 1.3 in [82]) The smooth map f : N → P is W -strongly
C0-stable if and only if it is quasi-proper and locally C0-stable.
Following [82], we say that a map f is quasi-proper if there is a neighborhood
V of the discriminant �(f ) in P such that the restriction of f to f−1(V ), f :
f−1(V )→ V , is a proper map.

Conjecture (ii) If N is compact, f : N → P is C0-stable if and only if it is locally
C0-stable.

Conjecture (iii) (Conjecture 1.4 in [82]) There exist a K-invariant semi-algebraic
stratification Bk(n, p) of J k(n, p) \Wk(n, p) such that a smooth map f : N →
P is locally C0-stable if and only if, for k such that codWk(n, p) > n, jkf

avoidsWk(n, p) and is multitransverse to Bk(n, p).

We summarize now the main results of [82].

Theorem 1.7.13 (Theorem 1.5, [82])

(i) If f : N → P is W -strongly C0-stable, then it is quasi-proper and locally
C0-stable.

(ii) If f : N → P is quasi-proper, of a finite singularity type over a neighborhood
of its discriminant, and locally tamely P -C0-stable, then it is W -strongly C0-
stable.

The local P -C0-stability is a very strong form of local C0-stability. We refer to
[82, p. 113], for the definition of tame P -C0-stability.

Theorem 1.7.14 (Theorem 1.6, [82]) There exist K-invariant algebraic subsets
Y k(n, k) in J k(n, k) with Wk(n, k) ⊆ Y k(n, k), and a K-invariant stratification
Bk(n, p) of J k(n, k) \ Y k(n, k) with the following properties:

(a) If f : N → P is locally C0-stable, or if N is compact and f is C0-stable, then
jkf is multitransverse to Bk(N, P ); moreover, if codim Y k(n, p) ≥ n, then
jkf avoids Y k(N,P ).

(b) If f : N → P is such that jkf avoids Y k(N,P ) and is multitransverse to
Bk(N, P ), then f is locally tamely C0-stable.

In the range of dimensions n < codim Y k(n, p), the results imply that
Conjectures (i) and (ii), withWk replaced by Y k, hold (see [82, pg. 8]).

We finish this section with two examples illustrating two rather delicate questions
in the theory of C0-stability.
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Example 1.7.15 (The Simple Elliptic Singularity Ẽ8) The simple elliptic singular-
ities Ẽ8 in K

3, K = R or C, is the K-unimodular family of hypersurfaces with
isolated singularities defined by

Ẽ8 : fλ(x0, x1, x2) = x2
0 + x3

1 + x6
2 + λx0x1x2.

The family fλ is weighted homogeneous of type (3, 2, 1; 6), then the Milnor
number μ(fλ) is constant and equal to 10. When K = C, it was shown by
Looijenga [51] that the stable unfolding of fλ is topologically trivial along the
moduli parameter λ.

From Sect. 1.4.3, (1.17), it follows that the stable unfolding of fλ can be given as

F : (C3 × C
8 × C, 0)→ (C× C

8 × C, 0)

(x, u, λ) �→ (f̃ (x, u, λ), u, λ)

with x = (x0, x1, x2), u = (u1, . . . , u8), f̃λ(x, u) = f̃ (x, u, λ), f̃λ(x, 0) = fλ(x),
and

f̃ (x, u, λ) = x2
0 + x3

1 + x6
2 + λx0x1x2 + u1x1 + u2x2 + u3x1x2

+ u4x
2
2 + u5x1x

2
2 + u6x

3
2 + u7x1x

3
2 + u8x

4
2 .

For all λ sufficiently small, including λ = 0, Fλ : (C11, 0) → (C9, 0) is
topologically stable. See Looijenga [51] and Bruce [12].

On the other hand, the construction of the Thom-Mather stratification Ak(n, p)
in J k(n, p) \ Wk(n, p) as discussed in Sects. 1.7.2 and 1.7.3 reduces to the
problem of finding a minimal Whitney stratification of jets of finite singularity type.
However, Bruce proved that at λ = 0 the Whitney condition (b) fails (see [12],
Proposition 2 and Example 3(a)). The failure of condition (b) can be geometrically
detected as follows: the number of cusps (A2-singularities) of the intersection of
the discriminant�(F) with a family of 2-planes transversal to�(F) jumps from 12
to 13 at λ = 0. This number is an invariant of the Thom-Mather stratification [12,
Proposition 2].

If follows that the germ F0 : (C11, 0)→ (C9, 0) is topologically stable, but jkF0
is not transverse to the Thom-Mather stratification.

Example 1.7.16 (May [67] and du Plessis and Wall [82], Section 4.1 )
Lef f : R → R be the proper map whose graph is illustrated in Fig. 1.5. Its

singular set �(f ) is Z ⊂ R, and the critical values are F(0) = 0, f (n) = n + 1,
for n > 0 and odd, and f (n) = n− 1 for n > 0 and even; while f (−x) = −f (x).
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Fig. 1.5 C0-stable non
transversal map

For example, we may define, as in du Plessis and Wall [82],

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x3 x ∈ [−1
4 ,

1
4 ],

n+ 1− (x − n)2 x ∈ [n− 1
4 , n+ 1

4 ], n ∈ N, n odd

n− 1+ (x − n)2 x ∈ [n− 1
4 , n+ 1

4 ], n ∈ N, n even

with f defined on the remaining intervals so that it is monotone (with f ′ �= 0) on
each interval and C∞ everywhere.

One can see that f is C0-stable. However it is not transverse to the Boardman
manifold �1 at the origin. In fact, f cannot be transverse to any invariant
stratification of jet space. Thus C0-stability of proper maps f : R → R cannot
be characterized by multitransversality to any stratification.

Notice that f is not locally C0-stable, then it follows from Theorem 1.7.13(i)
that f is not strongly stable.

1.7.4 Notes

In the recent paper On the smooth Whitney fibering conjecture [74] Murolo, du
Plessis and Trotman give a remarkable improvement of the first Thom-Mather
isotopy theorem for Whitney stratified sets. The result follows from their proof,
in the same paper, of the smooth version of the Whitney fibering conjecture for
Bekka (c)-regular stratifications. The original conjecture made by Whitney in [116]
in the real and complex, local analytic and global algebraic cases, was proved by
Parusinski and Paunescu [77] in 2014.

As an application of the results, in Sect. 1.9 of the paper, the authors give a
sufficient condition for a smooth map between two smooth manifolds to be strongly
topologically stable [74, Theorem 13].

This result in turn, implies the long-awaited improvements of Mather’s topolog-
ical stability theorem, which we state below.
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Corollary 1.7.17 (Corollary 11, [74]) Lef f : N → P be a quasi-proper smooth
map of finite singularity type whose l-jet avoids Wl(N,P ) and is multi-transverse
to Al (N, P ). Then f is strongly topologically stable.

Corolllary 1.7.17 has the following immediate consequence.

Corollary 1.7.18 (Corollary 12, [74]) The space of strong topologically stable
maps is dense in the space of quasi-proper maps between two smooth manifolds.

1.8 The Boundary of the Nice Dimensions

In this section we give a systematic presentation of the Thom-Mather singularities
in the boundary of the nice dimensions (BND). Much of the material presented
here is well known to experts. However, it seems that the organized presentation
of the construction of the Thom-Mather stratification of J k(n, p) when (n, p) is a
pair in BND combined with the discussion of the properties of topologically stable
mappings in these dimensions do not appear in the literature. The results come from
Mather [61, 63], Damon [22, 23], du Plessis and Wall [82] and Ruas [90] and recent
results by Ruas and Trivedi [88].

We only give an outline of most of the proofs but we present the full details in
the case n = p = 9.

We also review du Plessis and Wall main result in [83] that C1-stable mappings
are dense if and only if (n, p) is in the nice dimensions.

1.8.1 A Candidate for the Thom-Mather Stratification in BND

The main reference for this section is Ruas and Trivedi [88]. We saw that a pair
(n, p) is in the boundary of nice dimensions if σ(n, p) = n, where σ(n, p) =
codπk(n, p), k ≥ p + 1, and πk(n, p) is the smallest Zariski closed Kk-invariant
set in J k(n, p) such that its complement in J k(n, p) is the union of finitely many
Kk-orbits.

In the nice dimensions σ(n, p) > n, so it follows that the strata of the
stratification of J k(n, p)\πk(n, p) are the simple Kk-orbits of K-codimension≤ n.
However, at the BND, there are strata of codimension n in πk(n, p); these strata
cannot be avoided by transversal maps.We shall see that for all pairs (n, p) in BND
with the exception of the pair (10, 7) these strata are unimodular strata consisting
of the union of a one-parameter family of K-orbits. When (n, p) = (10, 7),
surprisingly, the Thom-Mather stratification also has a bimodal strata which is the
union of a two parameter family of K-orbits. We call the pair (10, 7) the exceptional
pair in BND.

We recall here the notion of modality (or modularity). This notion can be defined
for any geometric subgroup of K, but here we refer to modularity for group K .
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Let z ∈ J k(n, p) and denote byK∗(z) the union of all Kk-orbits of codimension
equal to the codimension of Kk(z) in J k(n, p). Suppose K∗(z) is the connected
component ofK∗(z) in which z lies. Then we say that z ∈ J k(n, p) is r-modular if

codK∗(z) = codKk · z− r.

We say that 1-modular jets are unimodular, 2-modular jets are bimodular and so on.
Also, if the union of unimodular jets is a submanifold of J k(n, p), as it happens in
our case, we call this union a unimodular stratum.

The bad set �̃k(n, p) in this case is a proper Zariski closed subset of �k(n, p)
such that cod �̃k(n, p) ≥ n+1 and�k(n, p)\�̃k(n, p) is the union of the connected
components of a unique unimodular family, while for the pair (10, 7) this set is the
union of the unimodular and the bimodular families.

We stratify J k(n, p) \ �̃k(n, p) by taking as strata the K-orbits of the stable
maps and the modular strata. We call this stratification �kbnd(n, p) (see [88]).

In the global setting we have the following situation. Let N,P and J k(N, P )
as before. Denote by �̃(N, P ) the subbundle of J k(N, P ) with fibers �̃(n, p).
Then the codimension of J k(N, P ) \ �̃(N, P ) is equal to the codimension of
�̃(n, p) in J k(n.p). Moreover, the stratification �kbnd(n, p) induces a stratification
on J k(N, P ) \ �̃(N, P ), denoted by �kbnd(N, P ).

The following result appears in [88].

Theorem 1.8.1 (Ruas and Trivedi, [88], Theorem 3.1) The set of maps f : N →
P such that jkf (N) ∩ �̃(N, P ) = ∅ and jkf is transverse to the strata of
�kbnd(N, P ) is open in C∞(N, P ) with the Whitney topology.

The (a) regularity of �kbnd(N, P ) follows from the above result and the Main
Theorem in Trotman [100].

Corollary 1.8.2 The stratification �kbnd(n, p) is (a)-regular.

We prove in Theorem 1.8.4 that maps transverse to �kbnd(N, P ) are Thom-
Mather maps for any pair (n, p) in BND.

1.8.2 The Unimodular Strata in BND

The results in this section are local and hold for map-germs f : (Kn, 0)→ (Kp, 0)
for K = R or C, f ∈ Epn or f ∈ Opn . From Mather’s calculations in [63], it follows
that the following pairs lie in the boundary of the nice dimensions:

(i) n ≤ p :
(1) The case σ(n, p) = 6(p − n)+ 9 for 3 ≥ p − n ≥ 0 and n ≥ 4 or n = 3,

gives (n, p) ∈ {(9, 9), (15, 16), (21, 23), (27, 30)}.
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(2) The case σ(n, p) = 6(p − n) + 8 for p − n ≥ 4 and n ≥ 4, gives
(n, p) ∈ {(6t + 2, 7t + 1); t ≥ 5}.

(ii) n > p :
(1) The case σ(n, p) = 9 for n = p + 1, gives (n, p) = (9, 8).
(2) The case σ(n, p) = 8 for n = p + 2, gives (n, p) = (8, 6).
(3) The case σ(n, p) = n− p + 7 for n ≥ p + 3 gives (n, p) ∈ {(10+ k, 7) :

k ≥ 0}.
The strategy to find the strata of �bnd(n, p) has the following steps:

(1) inspecting the classification of the local algebrasQ(z), z ∈ J k(n, p), such that
K-cod(z) ≤ n. By Mather’s results these algebras are simple and for each
such algebra Q(z) there exists a stable germ f : (Kn, 0)→ (Kp, 0), such that
Q(f ) � Q(z);

(2) listing the unimodular algebras of K-codimension n + 1, whose union makes
the unimodular strata of the stratification;

(3) Excluding the existence of bimodular strata of codimension n for pairs (n, p)
in BND except (10, 7). For (n, p) = (10, 7) we include the classification of the
bimodular strata.

A detailed discussion of simple and unimodular algebras appears in Chapter 8
of the book of du Plessis and Wall [82]. For the convenience of the reader we give
the precise references of the classifications. First a word about the notation. We use
mainly Thom’s notation, and the relevant here are the first and second order Thom-
Boardman symbols �r and �r,s , respectively, r = 1, 2, 3, 4. Mather’s adaptation
�r(s) also appears, as it is useful for 2-jet classification. A germ f in �r may be
regarded as an unfolding of a germ f0 with rank zero and source dimension r.When
we look at the second degree terms, the notation s in �r(s) indicates how many
independent components the 2-jet of f0 has.

We first describe the unimodular strata in the boundary of the nice dimensions,
based on the presentation in Ruas and Trivedi [88],

1.8.2.1 Case 1: n ≤ p

(1) (n,p) = (9, 9)
The first unimodular family in this case is the one parameter family of type �3,0

( �3(3) in Mather’s notation) introduced in Sect. 1.6:

fλ : (K3, 0)→ (K3, 0) (1.22)

(x, y, z) �→ (x2 + λyz, y2 + λxz, z2 + λxy)

with λ �= 0,−2, 1.
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Calculating the K-tangent space of fλ we find that K-cod(fλ) = 10, for
λ �= 0,−2, 1. The sets (−∞, 0), (0,−2), (−2, 1), (1,∞) parametrize orbits in the
connected components of the unimodular strata of codimension 9.

(2) (n,p) = (15, 16)
The unimodular stratum in these dimensions is related to the moduli stratum

in dimensions (9, 9) in the following way. From a result of Serre and Berger (see
Eisenbud [31, Proposition 2]) it follows that for analytic map-germs f : (Kn, 0)→
(Kn, 0) the class of the Jacobian J (f ) is a non-zero element in the local algebra
Q(f ).Moreover, the ideal generated by J (f ) in this algebra is the unique minimal
non-zero ideal in Q(f ). It also follows that the residue class of J 2(f ) in Q(f ) is
zero.

The unimodular family here is

f1λ : (K3, 0)→ (K4, 0), f1λ(x, y, z) = (fλ(x, y, z), J (fλ)(x, y, z)), (1.23)

where fλ is the map given in (1.22) and J (fλ)(x, y, z) = xyz. The following holds

K- cod(f1λ) = K- cod(fλ)+ (δ(fλ)− 2) = 16

where δ(fλ) = dimKQ(fλ) = 8. The unimodular stratum in J k(15, 16), k ≥ 3 is
the union of all corank 3 k-jets z ∈ J k(15, 16), K-equivalent to a suspension of
f1λ.

(3) (n,p) = (21, 23)
In this case the unimodular family is

f2λ : (K3, 0)→ (K5, 0), f2λ(x, y, z) = (f1λ(x, y, z), 0). (1.24)

(4) (n,p) = (27, 30)
The unimodular family here is

f3λ : (K3, 0)→ (K6, 0), f3λ(x, y, z) = (f2λ(x, y, z), 0). (1.25)

Remark 1.8.3 The following formula holds (du Plessis and Wall [82], Chapter 8)

K- cod(fiλ) = K- cod(fλ)+ (p − n)(dimRQ(fλ)− 2),

for i = 1, 2, 3, p = n+ i.
(5) (n,p) = (6t+ 2, 7t+ 1) for t ≥ 5

When t = 5 the unimodular stratum is defined by

fλ : (K4, 0)→ (K8, 0), fλ(x, y, z,w) = (u1, u2, . . . , u8)
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where

u1 = x2 + y2 + z2 u2 = y2 + λz2 +w2 u3 = xy u4 = xz
u5 = xw u6 = yz u7 = yw u8 = zw

1.8.2.2 Case 2: n > p

(6) (n,p) = (8, 6)
The smallest pair (n, p) with n > p in the boundary of the nice dimensions is

(8, 6). The unimodular stratum is given by the following one-parameter family of
maps

fλ : (K4, 0)→ (K2, 0),

fλ(x, y, z,w) = (x2 + y2 + z2, y2 + λz2 +w2), λ �= 0, 1.

(7) (n,p) = (9, 8)
The unimodular family here is

fλ : (K2, 0)→ (K, 0),

fλ(x, y) = x4 + y4 + λx2y2, λ �= ±2.

(8) (n,p) = (10+ k, 7) for k ≥ 0

In this case, the unimodular family is

fλ : (K4+k, 0)→ (K, 0),

fλ(x, y, z,w0, . . . , wk) = x3 + y3 + z3 + λxyz+
k∑

i=0

δiw
2
i ,

for δ = ±1, i = 0, . . . , k, λ3 �= −1.
The pair (n, p) = (10, 7) is the exceptional pair in BND. It follows from

Wall [109] that the following two parameter moduli family of �5 singularities has
codimension n = 10, providing for this pair of dimensions a new relevant strata.

fλ : (K5, 0)→ (K2, 0),

fλ(x) = (
5∑

i=1

aix
2
i ,

5∑

i=1

bix
2
i ), aibj − ajbi �= 0, i �= j.

(1.26)
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Theorem 1.8.4 For each pair (n, p) in the boundary of the nice dimensions the
following hold:

(a) If (n, p) �= (10, 7) the strata of �kbnd(n, p) are the Kk-orbits of the stable
germs of K-codimension ≤ n and the unimodular strata of codimension n
defined by the connected components of the unimodular families described
in Sects. 1.8.2.1 and 1.8.2.2. If (n, p) = (10, 7), besides the unimodular
strata defined in 1.8.2.2(8), there is an exceptional bimodular strata as defined
in (1.26).

(b) Maps f : N → P such that jkf is transverse to the strata of �kbnd(n, p) are
Thom-Mather maps for any pair (n, p) in BND.

Proof The proof consists on a careful inspection of the tables of simple and
unimodular singularities in order to list the relevant strata and to verify that the
codimension of the set �̃k(n, p), k ≥ p + 1 is greater than or equal to n + 1. We
give an outline of the proof.

I. n ≤ p

For (n, p) ∈ {(9, 9), (15, 16), (21, 23), (27, 30)} the relevant Boardman types
are �1,�2,0,�2,1 and �3.We first analyze the pair (9, 9).

Case (1) (n,p) = (9, 9)
All singularities of type �1 and �2,0 are simple. A complete list of strata of type
�2,1 has been given by Dimca and Gibson [28]. See also Table 8.4 in du Plessis and
Wall [82].

The first unimodular family of type �2,1 is

I2,3 : (x2 − ηy4, xy3 + cy5), c2 �= 0, η. (1.27)

It follows that the K-codimension of each orbit is 12, the unimodular stratum has
codimension 11, so that this family does not appear generically when n = p = 9.
As a consequence, the relevant �2,1 strata in this case are simple K-orbits. Notice
that cod�2,2(9, 9) ≥ 10 and then the �2,2 singularities do not appear generically
in J k(9, 9).

The next Boardman symbol is �3, and as we saw in Sect. 1.8.2.1, the relevant
strata are the connected components of the unimodular family (1).

We list all the strata in Table 1.2.
The set �̃k(9, 9) is the finite union of the following Zariski closed sets of

codimension≥ 10 in J k(9, 9), k ≥ 10 :

�̃k(9, 9) = �̃k1 ∪ �̃k2 ∪ �̃kj≥3
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Table 1.2 (n, p) = (9, 9)
Type Name Normal form Conditions K-cod ≤ 9

�1 Aj (xj+1) 1 ≤ j ≤ 9 j ≤ 9

�2,0 B±p,q (xy, xp ± yq) 2 ≤ p ≤ q ≤ 8 4 ≤ p + q ≤ 9

�2,0 B∗p,p (x2 + y2, xp) p = 3, 4 5 ≤ 2p ≤ 9

�2,1 C2k−1 (x2 + y3, yk+2) k = 1, 2 2k + 5 ≤ 9

�2,1 C2k (x2 + y3, xyk+1) k = 1 2k + 6 ≤ 9

�3,0 (x2 + λyz, y2 + λxz, z2 + λxy) λ �= −2, 0, 1 10

where

�̃k1 = {σ ∈ J k(9, 9), σ ∈ �1, Kk-cod(σ ) ≥ 10}
�̃k2 = {σ ∈ J k(9, 9), σ ∈ �2, Kk-cod(σ ) ≥ 10}

�̃kj≥3 = {σ ∈ J k(9, 9), σ ∈ �j , j ≥ 3,Kk-cod(σ ) ≥ 11}

��

Cases (2) (15, 16); (3) (21, 23); (4) (27, 30)
The singularities of type �1 and �2,0 are simple. The classification of the
singularities of type �2,1 and their invariants in these cases can be found in Tables
8.7, 8.8 and 8.9 of [82]. The first unimodular family of type �2,1, when n < p, is
D3,5 (also denoted by J 2,3,5,5 in [82]).

The normal forms are

f1λ(x, y) = (x2 ± y4, xy3 + cy5, y6)

f2λ(x, y) = (x2 ± y4, xy3 + cy5, y6, 0)

f3λ(x, y) = (x2 ± y4, xy3 + cy5, y6, 0, 0)

From (1.27), we get

K-cod(fiλ) = K-cod(fλ)++i(dimRQ(fλ)− 2),

for i = 1, 2, 3 where

fλ(x, y) = (x2 ± y4, xy3 + cy5). (1.28)

Then K-cod(fiλ) = 12 + i(10 − 2), i = 1, 2, 3 and these singularities do
not appear generically in BND. As in Case (1), for n = 9 + 6i, i = 1, 2, 3
with the help of Tables 8.7, 8.9, 8.9 and 8.11 in [82] we can verify that the strata
of type �1,�2,0,�2,1 and �2,2 are K-orbits of K-codimension ≤ 9 + 6i, i =
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1, 2, 3 and the unimodular strata defined in (1.23), (1.24), and (1.25). Moreover,
cod �̃k(n, p) ≥ n+ 1.

Cases (5) (6t+ 2, 7t+ 1), t ≥ 5
The relevant Boardman types here are �1,�2,0,�2,1,�2,2,�3 and �4. As before
�1,�2,0 are simple, and the moduli strata of type �2,1 has normal form f3λ :
(K2, 0)→ (Kt+1, 0), t ≥ 5,

f3λ(x, y) = (x2 ± y4, xy3 + cy5, y6, 0, . . . , 0︸ ︷︷ ︸
t-1

),

where fλ(x, y) = (x2±y4, xy3+cy5). Since K-cod(fλ) = 12, then K-cod(f3λ) ≥
12+ (t−1)(10−2) = 4+8t > 6t+2, and it follows that this family is not generic
when (n, p) = (6t + 2, 7t + 1), t ≥ 5.

The �2,2 germs of order 3 appear in du Plessis and Wall [82, Section 8.5, Tables
8.10 and 8.11]. The type�2,2 is subdivided (see [82]) into types�2,2(j), where j is
the rank of the kernel of the third intrinsic derivative. It follows that codim�2,2(j) =
6e+ 10+ j (e+ j − 2), where e = p− n.With a simple calculation we get that the
relevant are j = 0, 1.Based on Table 8.10 of [82] we can verify that �̃(6t+2, 7t+1)
contains the closure of the K-orbit (x3 ± xy2, x2y, y3, 0, 0, 0) (type E-QI4).

Germs of type �n, n = 3, 4 are classified in [82], Section 8.6.
For n = 3, the more delicate analysis is that of singularities of type�3(2). Based

on Tables 8.15, 8.17 and 8.20 in [82], it follows that the moduli does not occur in
strata of codimension≤ 6t−2, t ≥ 5. It follows then that �̃(6t +2, 7t+1)∩�3(2)

is the closure of K-orbits of codimensions> 6t + 2.
For the singularities of type�3(3), the best algebra of this type is the unimodular

family whose normal form is f4λ = (f3λ, 0), where f3λ is as in Sect. 1.8.2.1 (4).
We know that K-cod(f3λ) = 28 and δ(f3λ) = 7, so that K-cod(f4λ) = 28+6 =

34 > 32. As the family is 1-modal it follows that the codimension of the stratum is
33, then this singularity does not occur generically in (32, 26). It is easy to extend
this argument to all pairs (6t + 2, 7t + 1), t > 5.

The first singularity of type �4 in (32, 36) is the unimodular family Sect. 1.8.2.1
(5). The K-cod (fλ) is 33 and the codimension of the stratum is 32.

It follows from our description that cod �̃(6t + 2, 7t + 1) > 6t + 2.

Cases (6) (8, 6); (7) (10+ k, 7) k > 0
These cases are simpler, since the deformations of the algebras have to be a simple
function singularity, i.e., a singularity from Arnold’s list of simple singularities of
functions [3]. We can obtain the complete list from the adjacencies of simple and
unimodular singularities from Arnold’s [5].

The exceptional pair (10, 7) has two modular strata

(i) The unimodular family fλ(x, y, z,w) = x3 + y3 + z3 + λxyz + w2 with K-
cod(fλ) = 11 and codimension of the stratum equal to 10.
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(ii) The bimodular family fλ(x) = (
∑5
i=1 aix

2
i ,
∑5
j=1 bjx

2
j ), aibj − ajbi �=

0, 1 ≤ i, j ≤ 5, i �= j.

1.8.3 Topological Triviality of Unimodular Families

Results on C0-A-triviality of the unimodular families of mappings appeared few
years after Mather’s theorem, due mainly to Eduard Looijenga [51, 52] and Jim
Damon [22, 23].

In the 1977 paper Looijenga obtained explicit examples of topologically stable
map-germs which are not analytically stable. He studied the simple elliptic singu-
larities:

Ẽ6 : f (z0, . . . , zn) = z1(z1 − z0)(z1 − λz0)+ z0z
2
2 +Q(z3, . . . , zn), (n ≥ 2);

Ẽ7 : f (z0, . . . , zn) = z1z0(z1 − z0)(z1 − λz0)+Q(z2, . . . , zn), (n ≥ 1);
Ẽ8 : f (z0, . . . , zn) = z1(z1 − z2

0)(z1 − λz2
0)+Q(z2, . . . , zn), (n ≥ 1).

where Q is any nondegenerate quadratic form. He proved that two simple-elliptic
singularities in the same family have topologically equivalent semi-universal defor-
mations. As a consequence he obtained the C0-A-triviality of the stable unfolding
of these singularities along the moduli parameter.

Remark 1.8.5 The family Ẽ6 is analytically equivalent to the family 1.8.2.2 (8) and
Ẽ7 is analytically equivalent to the family 1.8.2.2 (7). The family Ẽ8 does not occur
generically in BND.

Looijenga’s approach to this problem is based on the weighted homogeneity of
the germs together with algebraic calculations to solve a localized form of equation
for infinitesimal C∞ or analytic triviality.

Wirthmüller [119] extended Looijenga’s results proving the topological triviality
of the versal unfolding of non-simple hypersurfaces germs along the Hessian
deformation parameter. These results were further extended by J. Damon [22, 23]
for unfoldings F of “non-negative weight” of a weighted homogeneous polynomial
germ f : (Kn, 0)→ (Kp, 0). His main result applies to a large class of unimodular
families, which includes all unimodular families in the boundary of the nice
dimensions.

Theorem 1.8.6 (Damon, [22]) If f is a weighted homogeneous A-finitely deter-
mined germ, then any polynomial unfolding of f of non-negative weight is
topologically trivial

Damon’s result apply to weighted homogeneous A-finitely determined germs f
of type (w1, . . . , wn; d1, d2, . . . , dp) and their unfoldings of weighted degree equal
to or higher than the weighted degree of f.
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The unimodular families in the boundary of the nice dimensions satisfy an even
stronger condition: up to the addition of a quadratic form, the K-orbits K(fλ) in
Sects. 1.8.2.1 and 1.8.2.2 have a homogeneous normal form; in other words we can
take weights w1 = w2 = · · · = wn = 1, and if we write fλ : (Rs, 0) → (Rt , 0),
fλ = (f1λ, f2λ, . . . , ftλ), then fiλ is homogeneous of degree di, i = 1, . . . , t. As
in Sect. 1.4.3 let

N(fλ) � �(fλ)

T Ke(fλ)+ ωfλ(�t) .

Notice that since fλ has rank 0, it follows that N(fλ) � Ms�(fλ)
TKe(fλ)

.

Let J (fλ) be the ideal generated by the t × t minors of fλ and let I (fλ) =
J (fλ)+ f ∗λ (Mp). Notice that when s < t, I (fλ) = f ∗λ (Mp).

Lemma 1.8.7

(a) If

I 1
λ = 〈x2 + λyz, y2 + λxz, z2 + λxy, xyz〉, λ �= −2, 0, 1

and

I 2
λ =〈x2 + y2 + z2, y2 + λz2 + w2, xy, xz, xw, yz, yw〉, λ �= 0, 1

then I iλ ⊇M3, i = 1, 2.
(b) For each normal form (1) to (5) in Sect. 1.8.2.1 and (6) in Sect. 1.8.2.2,

TKe(fλ) ⊇M3�(fλ).

(c) For the normal form (8) in 1.8.2.2, J (fλ) ⊇M4.

(d) For the normal form (7) in 1.8.2.2, J (fλ) ⊇M5.

Proof (a), (c) and (d) follows from easy calculations, using the corresponding
normal forms.

To prove (b) notice that if I (fλ) = J (fλ) + f ∗λ (Mt ), it follows that
I (fλ)�(fλ) ⊂ TKe(fλ), and the result follows from (a). ��

With the help of the above Lemma it is an easy task to find, for each normal form,
(1) to (5) in Sect. 1.8.2.1 and (6) to (8) in Sect. 1.8.2.2, a monomial basis for the
normal space N(fλ), so that we can write

N(fλ) ∼= K{σ1, σ2, . . . σr , σm}

where the r generators σj = (σ1j , σ2j , . . . , σtj ) ∈ θ(fλ), j = 1, . . . , r have the
following property: each coordinate σij , i = 1, . . . , t of σj satisfies the following
condition

degreeσij < degreefiλ i = 1, . . . , t, j = 1, . . . , r.
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The generator σm = (σ1m, σ2m, . . . , σtm) is the direction of the modulus and the
degreeσim = degreefiλ for i = 1, . . . , t.

For each λ = λ0, the stable unfolding of fλ0 is the map-germ

F : (Ks ×K
r × K, 0)→ (Kt ×K

r ×K, 0) (1.29)

(x, u, λ) �→ (f̃ (x, u, λ), u, λ),

x = (x1, . . . , xs),, u = (u1, . . . , ur ), and

f̃ (x, u, λ) = f (x, λ0)+
r∑

j=1

ujσj (x)+ λσm(x).

For each λ0, with the exception of a finite number of exceptional values, we
obtain the normal form of the unimodular topologically stable singularity:

Fλ0 : (Kn, 0)→ (Kp, 0),

with

Fλ0(x, u) = (f̃λ0(x, u), u), (1.30)

where

f̃λ0(x, u) = f (x, λ0)+
r∑

j=1

ujσj (x). (1.31)

and n = s + r, p = t + r.
Remark 1.8.8 Notice that Fλ0 is unfolding of fλ0(x) by terms σj of smaller degree.
Damon’s in [22] refers to Fλ0 as unfolding of negative weight of fλ0 ( see section 2
in Damon [23]).

A similar construction can be made for the exceptional pair (n, p) = (10, 7).
The bimodal family fλ = (K5, 0)→ (K2, 0), λ = λ1, λ2 has a normal space

N(fλ) � R{σ1, . . . , σr , σ
1
m, σ

2
m},

where {σ 1
m, σ

2
m} generates the bimodal plane and degreeσ im = degreefλ = 2, i =

1, 2. The normal form of the topologically stable singularity is given by (1.30).
We display these normal forms in Tables 1.3, 1.4, 1.5, and 1.6. To simplify

notation we denote the canonical basis in (Rt , 0) by {ei, i = 1, . . . , t}, so that an
element g ∈ Ets can be written as g(x) =∑r

i=1 gi(x)ei .

We remark that, with convenient choices of weights for the variables u1, . . . , ur ,

each normal form Fλ0 is a weighted homogeneous germ. To apply Damon’s result
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Table 1.3 6(p − n)+ 9 = n, 3 ≤ p − n ≤ 0

(n, p) f = (f1, . . . , ft ) Unfolding monomials < m r σm

(9, 9) fλ =
(x2+λyz, y2+λxz, z2+λxy)

{y, z}e1, {x, z}e2, 6 yze1 + xze2 + xye3

λ �= −2, 0, 1 {x, y}e3

(15, 16) f1λ = (fλ, Jfλ), Jfλ = xyz {y, z}e1, {x, z}e2, 12 yze1 + xze2 + xye3

{x, y}e3, {x, y, z}e4,

{yz, xz, xy}e4,

(21, 23) f2λ = (f1λ, 0) {y, z}e1, {x, z}e2, 18 yze1 + xze2 + xye3

{x, y}e3, {x, y, z}e4

{yz, xz, xy}e4

{x, y, z}e5, {yz, xz, xy}e5

(27, 30) f3λ = (f2λ, 0) {y, z}e1, {x, z}e2, 24 yze1 + xze2 + xye3

{x, y}e3, {x, y, z}e4

{yz, xz, xy}e4

{x, y, z}e5, {yz, xz, xy}e5

{x, y, z}e6, {yz, xz, xy}e6

Table 1.4 6(p − n) + 8, p − n ≥ 4, n ≥ 4

(n, p) f = (f1, . . . , ft ) Unfolding monomials < m r σm

(6s + 2, 7s + 1) fλ := (x2+y2+z2, y2+λz2+w2, {x, y}e1, {z, x}e2 6s − 2 z2e2

xy, xz, xw, yz, yw, zw, 0, . . . , 0︸ ︷︷ ︸) {x, y, z,w}e3+i s ≥ 5

s − 5

s ≥ 5 t = s + 3, s ≥ 5 0 ≤ i ≤ s, s ≥ 5

Table 1.5 n > p

(n, p) f = (f1, . . . , ft ) Unfolding monomials < m r σm

(8, 6) (x2 + y2 + z2, y2 + λz2 +
w2), λ �= 1

{y,w}e1, {x, z}e2 4 z2e2

(10 + k, 7), k ≥ 0 x3 + y3 + z3 + λxyz+∑k
i=1 δiw

2
i ,

{x, y, z, yz, xz, xy}e1 6 xyze1

δi = ±1, λ3 �= −1

(9, 8) x4 + y4 + λx2y2, λ �= ±2 {x, y, x2, xy, y2, x2y, xy2}e1 7 x2y2e1

Table 1.6 Bimodular strata

Exceptional pair Complex normal form Unfolding monomials < m, m = 2 r σ 1
m, σ

2
m

(10, 7) fλ1λ2 = (p(x), q(x)) {x2, x3, x4, x5}e1 5 {x2
3 , x

2
4 }e2

p(x) =∑4
i=1 x

2
i {x1}e2

q(x) =
x2

2 + λ1x
2
3 + λ2x

2
4 + x2

5

λi �= 0, 1 i = 1, 2
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(Theorem 1.8.6) we need to show that Fλ0 is A-finitely determined. The relevant
property of Fλ0 is that the A-orbit is open in the K-orbit, as we now explain.

Definition 1.8.9 Let f : (Rn, 0)→ (Rp, 0) be a A-finitely determined map-germ.
The A-orbit of f is open in the K-orbit of f if TA(f ) = TK(f ).
Given a pair (n, p) and a Kk-orbit in J k(n, p), if this Kk-orbit does not contain
an infinitesimally stable map-germ f : (Kn, 0)→ (Kp, 0), j kf (0) ∈ Kk, we can
ask whether there exist f such that Ak(f ) is open in Kk(f ). This was introduced
by Ruas [90] as an approach to the A-classification problem. The non existence
of f with such property implies that all map-germs f ∈ Kk are non-simple. The
following necessary and sufficient condition for the existence of an open orbit in
K(f ) was given in [90] (see also Rieger and Ruas [85]).

Proposition 1.8.10 (Ruas, [90], Theorem 5.1, Rieger and Ruas, [85], Prop.4.6)
Let f : (Kn, 0) → (Kp, 0) be a K-finitely determined germ and denote by
{v1, v2, . . . , vr } a basis for N = θf

TAef+f ∗Mpθf
. The A-orbit of f is open in the

K-orbit of f if fivj ∈ TAf, mod(f ∗M2
pθf ) for i = 1, . . . , p, j = 1, . . . , r.

To apply proposition 1.8.10 to the unimodular singularities at BND we introduce
the following notation, where Fλ is as in Eq. (1.30).

Let

TFλ = F ∗λ (Mp){σ1, σ2, . . . , σr } + tFλ(Ms+n�s+r )+ ωFλ(Mt+r�t+r ).

This is a F ∗λ (Et+r )-submodule of �Fλ consisting of elements of TA(Fλ) with zero
components in the Rr direction (see Sect. 1.4.2).

Corollary 1.8.11 Let Fλ as in (1.30). Then A(Fλ) is open in K(Fλ) is and only
if

(i) (f̃λ)i · σm ∈ TFλ + F ∗(M2
p)�Fλ, i = 1, . . . , t.

(ii) uj · σm ∈ TFλ + F ∗(M2
p)�Fλ, i = 1, . . . , r.

Remark 1.8.12 Taking the quotient
TFλ

MuTFλ
in condition (i) of Corollary 1.8.11, we

get

(i0) (fλ)i · σm ∈ TFλ

MuTFλ
� f ∗(mt){σ1, . . . σr } + tfλ(ms�s)+ ωfλ(Mt�t .

(1.32)

The f ∗(θt )-module
TFλ

MuTFλ
is im(z0) in Damon’s notation (see definition of z0 in

section 1 of Damon [23]).
Condition (i0) is a necessary condition for the property TA(Fλ) = TK(Fλ) to

hold.

We collect in the following proposition the relevant properties of Fλ0 .
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Theorem 1.8.13 Let (n, p) be a pair in BND and Fλ0 : (Kn, 0) → (Kp, 0) the
unimodular map-germ as in (1.30). Then for all λ0 ∈ K, except a finite number of
exceptional values the following hold:

(a) Fλ0 is A-finitely determined.
(b) Ae-codFλ0 = 1.
(c) The A-orbit of Fλ0 is open in K(Fλ0).

Proof First notice that (c) ⇔ (b) ⇒ (a). In fact if (c) holds, TA(Fλ0) =
TK(Fλ0). We saw that K-cod(Fλ0) = n + 1. Now, for any A-finitely determined
f : (Rn, S) → (Rp, 0), S = {x1, . . . , xs}, the following formula due to L. Wilson
[118] holds (see Rieger [84] for a proof):

Ae-cod(f ) = A-cod(f )+ s(p − n)− p.

Applying this formula with s = 1, it follows that Ae-cod(Fλ0) = 1 ⇔ A-
cod(f ) = n + 1 and the equivalence (c) ⇔ (b) follows from this. It is also clear
that (b)⇒ (a).

We now want to verify (c) (or equivalently (b)). for each normal form Fλ :
(Kn, 0)→ (Kp, 0), with Fλ(x, u) = (f̃λ(x, u), u), f̃λ(x, u) = fλ(x)+∑r

j=1 uj ·
σj (x), degree(σj ) < degree(fλ), j = 1, . . . , r.

To verify (c), we verify condition (i) and (ii) in Corollary 1.8.11 to Fλ. We do
it case by case, collecting calculations that appeared previously in the literature.

(1) Cases (n, p) = {(9, 9), (15, 16), (21, 23), (27, 30)}.
These were solved by Damon in Example 2 and Proposition 8.2, §8 in [23].
Notice that Damon uses Wall’s normal form for the �3,0 unimodular family

fλ = (2xz+ y2, 2yz, x2 + 3gy2 − cz2), c �= 0, c + 9g2 �= 0.

Here c is fixed and g is the modulus. ��
(2) Cases (n, p) = (8, 6) and (n, p) = (32, 36).

We first consider (n, p) = (8, 6).
Fλ : (K8, 0)→ (K6, 0), Fλ = (f̃λ, u), where

f̃λ(x, y, z,w, u) = (x2 + y2 + z2 + u1y + u2w, y
2 + λz2 +w2 + u3x + u4z).

It follows from Lemma 1.8.7 that Fλ is 2-determined with respect to the group
K, if λ �= 0, 1. The following follow from simple calculations

(i) J (fλ)+ f ∗λ (M2) contains the mixed monomials xy, xz, xw, yz, yw, zw.
(ii) If α = x4, y4, z4, w4, then αei ∈ TAfλ i = 1, 2(modJ (fλ)�(fλ)).

Using (i) and (ii) it follows that the conditions of Corollary 1.8.11 hold, and
A(Fλ) is open in K(Fλ).
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We leave the calculations of the pair (n, p) = (32, 36) as an exercise for the
reader.

(3) Cases (n, p) = (9, 8) and (n, p) = (10+ k, 7), k ≥ 0.

These cases follows from Looijenga [52], Lemma 2.2.

Remark 1.8.14 A similar result holds for the bimodular strata in the pair (10, 7)
replacing Ae-cod(Fλ) = 1 by Ae-cod(Fλ) = 2.

We summarize the discussion of this section stating the following results.

Corollary 1.8.15 Let (n, p) be a pair in BND and Fλ0 : (Kn, 0) → (Kp, 0) the
unimodular map-germ as in (1.30). Then for all λ0 ∈ K, except for a finite number
of exceptional values, the one parameter unfolding F : (Kn×K, 0)→ (Kp×K, 0)
of Fλ0, as in (1.29), is A-topologically trivial.

Proof The proof follows from Theorem 1.8.13 and Damon’s result (Theorem 1.8.6).
��

Corollary 1.8.16 Let (n, p) be a pair in BND. Then a Thom-Mather map f :
Nn → Pp has at most a finite set of points S = {x1, . . . , xr } such that for all
xi ∈ S, jkf (xi) ∈ AM, jkf � AM, where AM is any of the modal stratum of
Ak(N, P ). Moreover, if f (xi) = yi, i = 1, . . . r then f−1(yi)∩�(f ) = {xi}, i =
1, . . . , r. The restriction of f to N \ S is an infinitesimally stable map.

1.8.4 Notes

Density of C1 Stable Mappings In [83], du Plessis and Wall determine the precise
range of dimensions where C1-stable maps are dense. This property holds if and
only if the pair (n, p) is in the nice dimensions.

A parallel result is also obtained when C1-stability is replaced by ∞-C1-
determinacy. We say that a map-germ f ∈ Epn is ∞-determined with respect to
C1-A-equivalence if the C1-A-orbit of f contains all g ∈ Epn such that j∞g(0) =
j∞f (0).We can also denote the group C1-A by A(1).

The paper [83] appeared in 1989. In contrast with the C0 and C∞ cases much
less was known in the C1 case. Wall [106] sketched in 1980 the proof that C1-stable
maps are not dense when n = 8 and p = 6 and Mather [59] proved that finite
A(1)determinacy does not hold in general for map-germs (Rn, 0) → (Rn+1, 0),
with n ≥ 15.

The main result of [83] is the following theorem: (A) if (n, p) is in complement of
the nice dimensions, then for any smooth manifoldsN,P there is a nonempty open
subset U ⊂ C∞(N, P ) containing no C1-stable mapping. (B) If (n, p) is in the
complement of semi-nice dimensions (see [80, 109] for details) with the exception
of the pairs (14.14), (15, 15), (16, 16), (12, 11), (14, 12) and (15, 13), then for
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any pair of smooth manifolds N,P there is a nonempty open subset U ⊂ C∞
containing no map all of whose point-germs are∞-A1-determined.

The proof of this theorem follows the line of the proof of the correspondingC∞
result. It is shown that C1stability implies transversality and ∞-A(1)-determinacy
implies transversality off the base-point to the fibres of a K-invariant fibred subman-
ifold of J r(n, p) in the complement of the setWr(n, p) of r-jets with K r -modality
≥ 1. This follows from the property that stability an determinacy conditions imply
a weak form of transversality (the preimage is a C1-submanifold). To strengthen
this to actual transversality the use of unfolding theory and a perturbation lemma of
R.D. May [67] were the important tools.

Several notions of C1-invariance of submanifolds of jet space are discussed in
[82]. In particular, the C1-invariance of the Thom-Boardman varieties and, in some
cases, of K r -orbits within them are obtained.

1.9 Density of Lipschitz Stable Mappings

We discuss here the problem of density of Lipschitz stable mappings, which is still
widely open.

In [76] Nguyen, Ruas and Trivedi introduced the Lipschitz nice dimensions
(LND) as the pairs (n, p) for which the set SLip(N, P ) of Lipschitz stable mappings
is dense in C∞pr (Nn, Pp).

When N is compact, it is clear that the LND contains Mather’s nice dimensions,
since every C∞ stable mapping is Lipschitz stable. The main purpose in Nguyen,
Ruas and Trivedi [76] is to give an answer for the following conjectures.

Conjecture 1.9.1 The Lipschitz nice dimensions contains Mather’s nice dimensions
and its boundary.

Conjecture 1.9.2 The result in Conjecture 1.9.1 is sharp, that is, if (n, p) is in the
complement of the nice dimensions or its boundary then SLip(N, P ) is not a dense
set in C∞(N, P ).

The following result is proved by Ruas and Trivedi [88].

Theorem 1.9.3 (Section 6, [88]) The unimodular strata in the boundary of the nice
dimensions are bi-Lipschitz K-trivial.

Remark 1.9.4 The exceptional unimodular strata when (n, p) = (10, 7) also
safisfies bi-Lipschitz K-triviality condition.

We first review the notions of K-equivalence and K-triviality of r-parameter
deformations.

Definition 1.9.5 A bi-Lipschitz K-equivalence of r-parameter deformations is a
pair (H,K) of bi-Lipschitz germs H : (Rr × R

n, 0) → (Rr × R
n, 0) and K :

(Rr × R
n × R

p, 0) → (Rr × R
n × R

p, 0) with H an r-parameter unfolding at 0
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of the germ of the identity map of Rn, and K an r-parameter unfolding at 0 of the
germ of the identity in R

n × R
p such that the following diagram commutes

Here i is the canonical inclusion and π is the canonical projection. Two r-
parameter deformations� and� of f are bi-Lipschitz K-equivalent if there exist a
bi-Lipschitz K-equivalence (H,K) as above such that

K ◦ (id,Φ) = (id,�) ◦H.

If (H,K) has the special property that H is the germ of the identity on R
n,

then (H,K) is said to be a C-equivalence and Φ and � are said to be C-equivalent
deformations.

Definition 1.9.6 An r-parameter deformation � of a germ f : (Rn, 0) →
(Rp, 0) is bi-Lipschitz K-trivial (resp. bi-Lipschitz C-trivial) if it is bi-Lipschitz K-
equivalent (resp. bi-Lipschitz C-equivalent) to the deformation� : (Rr ×R

n, 0)→
(Rp, 0), given by �(u, x) = f (x).

A sufficient condition for bi-Lipschitz K-triviality is the following Thom-Levine
type lemma.

Lemma 1.9.7 Let F : (Rn × R, 0)→ (Rp, 0) be a one parameter deformation of
f : (Rr , 0)→ (Rp, 0). If there exist a p×p matrix (aij ) (not necessarily invertible)
with entries germs of Lipschitz functions (Rn×R, 0) and a germ of a Lipschitz vector
field X of the form

X = ∂

∂t
+

n∑

i=1

Xi(x, t)
∂

∂xi

with Xi(0, t) = 0 such that

X ·
⎡

⎢⎣
F1
...

Fp

⎤

⎥⎦ =
⎡

⎢⎣
a11 . . . a1p
... . . .

...

ap1 . . . app

⎤

⎥⎦

⎡

⎢⎣
F1
...

Fp

⎤

⎥⎦ (1.33)

Then, F is a bi-Lipschitz K-trivial deformation.

The proof follows from the fact the integration of a Lipschitz vector field gives
a bi-Lipschitz flow. In fact, the bi-Lipschitz trivialization in source is given by
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integrating the vector field X and that in the product is given by integration of the
vector fieldW, where

W(x, y, t) = ∂

∂t
+

p∑

i=1

Wi(x, y, t)
∂

∂yi

whereWi(x, y, t) =∑p

j=1 aij yj
The converse of the above lemma is not known and so we say that a one parameter

deformation is strongly bi-Lipschitz K-trivial if the conditions of the above lemma
hold.

If Xi(x, t) ≡ 0, i = 1, . . . , n, condition (1.33) implies that F is C-trivial.
A case by case proof of the bi-Lipschitz K-triviality of the unimodular strata

Sect. 1.8.2.1 and 1.8.2.2 is given in Ruas and Trivedi [88]. The cases n ≤ p and
n > p are treated separately.

When n ≤ p, the modal families are families of finite maps. For them, K-
determinacy holds if and only if C-determinacy holds (see Wall [108], Prop. 2.4). In
this case, we can apply the Lipschitz Thom-Levine lemma to prove the bi-Lipschitz
C-triviality of these families.

We discuss here the case n = p = 9.

Lemma 1.9.8 (Ruas and Trivedi, [88], Lemma 6.1) The unimodular fam-
ily Sect. 1.8.2.1 (1)

F(x, y, z, λ) = (x2 + λyz, y2 + λxz, z2 + λxy),

λ �= −2, 0, 1, is strongly bi-Lipschitz C-trivial.

Proof Let I be the E4-ideal generated by the components of F, i.e.,

I = 〈x2 + λyz, y2 + λxz, z2 + λxy〉.

We can prove that I ⊃M4
3E4, where M3 is the ideal generated by x, y, z.More

precisely

I ·M2
3E4 =M4

3E4 (1.34)

Consider the following control function ρ(x, y, z, λ) =
√
F 2

1 + F 2
2 + F 2

3 . Since
Fλ is C-finitely determined and homogeneous of degree 2 for all λ �= −2, 0, 1, there
exist constants c and c′, (see Ruas [86]), such that

c′||(x, y, z)||2 ≤ ρ(x, y, z, λ) ≤ c||(x, y, z)||2
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From (1.34) it follows that there exists a 3× 3 matrix (aij ) with entries in M4
3E4

such that

ρ2(x, y, z, λ)

⎡

⎣
∂F1
∂λ
∂F2
∂λ
∂F3
∂λ

⎤

⎦ =
⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎡

⎣
F1

F2

F3

⎤

⎦

��
Now consider the germ of the vector field V on (R3 × R

3 × R, 0) defined by

V = ∂

∂λ
+ 1

ρ2

⎧
⎨

⎩

3∑

j=1

a1jYj
∂

∂Y1
+

3∑

j=1

a2jYj
∂

∂Y2
+

3∑

j=1

a3jYj
∂

∂Y3

⎫
⎬

⎭

where (Y1, Y2, Y3) = Y are the target coordinates. Notice that
aij Yj

ρ2 are continuous

in a neighborhood of the origin in (R3 × R
3 × R, 0), but the derivative with respect

to x, y, z are not bounded, so that V is not Lipschitz. However we can modify V
to get a Lipschitz vector field V ′ = pV where p : (R3 × R

3 × R, 0) → (R, 0) is
defined as follows.

Let D1 = {||Y || ≤ c1||(x, y, z, λ)||} and D2 = {||Y || ≥ c2||(x, y, z, λ)||} be
cones in (R3 × R

3 × R) with c1 < c2 and let p be defined by

p(x, y, z, λ, Y ) =
{

1 if (x, y, z, λ, Y ) ∈ D1

0 if (x, y, z, λ, Y ) ∈ D2

and 0 < p(x, y, z, λ, Y ) < 1 if c1||(x, y, z, λ)|| < |Y | < c2||(x, y, z, λ)||, such
that the derivative of p(x, y, z, λ, Y ) with respect to any coordinate is bounded by
a real numberK (see Ruas [86] for details).

The integration of V ′ will give a bi-Lipschitz C-trivialization of F by the Thom-
Levine criterion. This completes the proof.

Remark 1.9.9 For any fixed λ = λ0 �= −2, 0, 1, the deformation F(x, y, z, λ)
in Lemma 1.9.8 is semialgebraic and satisfies the condition |Fλ(x,y,z)|

|Fλ0 (x,y,z)| is bounded

for any (x, y, z, λ) in (R3 × R, 0). Then we can also apply Theorem 3.1 of Ruas
and Valette [89] to prove that Fλ is semialgebraically bi-Lipschitz K-trivial. Notice
however that the conclusion in Lemma 1.9.8 is stronger, as we prove that the family
Fλ is strongly bi-Lipschitz K-trivial.

The bi-Lipschitz K-triviality of the Thom-Mather stratification along the uni-
modular strata in the boundary of the nice dimensions suggest that mappings
transverse to this stratification are bi-Lipschitz stable.

A natural approach to prove Conjecture 1.9.1 is to follow the proof of Theo-
rem 1.8.6, taking into account that the pair (n, p) is in the boundary of the nice
dimensions.
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We saw in Corollary 1.8.16 that a Thom-Mather map f : Nn → Pp, (n, p)

in the boundary of the nice dimensions has at most a finite set of points S =
{x1, . . . , x�} such that for all xi ∈ S, jkf (xi) ∈ AM, jkf � AM, where AM
is the modal stratum. Moreover by multi-transversality, if f (xi) = yi, i = 1, . . . �
then

f−1(yi) ∩�(f ) = {xi}, i = 1, . . . , �.

Clearly, f is an infinitesimally stable mapping in the complement of S.
To prove that f is Lipschitz stable it would be sufficient to prove that each

unimodular family Fλ (see Sect. 1.8.3), and also the bimodular family when
(n, p) = (10, 7), is bi-Lipschitz A-trivial.

Let

F(x, u, λ) = (f̄ (x, u, λ), u, λ)

be the (weighted homogeneous) normal form of a unimodular family in BND as in
(1.29), where x = (x1, . . . , xs), u = (u1, . . . , ur ), s+r = n and f̄ = (f̄1, . . . , f̄t ).

Following the proof of Theorem 1.8.6, we can find weighted homogeneous vector
fields V andW in source and target respectively, given by:

V (x, u, λ) =
s∑

j=1

vj (x, u, λ)
∂

∂xj
+

r∑

i=1

vi(f̃ , u, λ)
∂

∂ui
+ ∂

∂λ

where x = (x1, . . . , xs), u = (u1, u2, . . . , ur ) and ṽi(0, 0, λ) = vj (0, 0, λ) = 0,

W(X,U, λ) =
t∑

j=1

wj(X,U, λ)
∂

∂Xj
+

r∑

i=1

wi(X,U, λ)
∂

∂Ui
+ ∂

∂λ

where X = (X1, . . . , Xt ), U = (U1, . . . , Ur), and wi(0, 0, λ) = wj (0, 0, λ) = 0,
(capital letters denote the coordinates in the target), and a weighted homogeneous
control function ρ(X,U, λ) such that

(ρ ◦ F)(x, u, λ)∂f̃
∂λ

= −
3∑

j=1

∂f̃

∂xj
vj (x, u, λ)−

6∑

i=1

∂f̃

∂ui
vi(f̃ , u, λ) + W̃ (f̃ , u, λ)

(1.35)
where W̃ = (w1, . . . , wt ).

It follows from (1.35) that the vector fields X(x, u, λ) = 1
(ρ◦F)(x,u,λ)V (x, u, λ)

and Y(X,U, λ) = 1
ρ(X,U,λ)

W(X,U, λ) satisfy the equation DF(X) = Y ◦ F.
Moreover, they are continuous and can be integrated to give the topological A-
triviality of F along the moduli space.
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If we can prove that X and Y are Lipschitz vector fields in the source and target,
respectively, the bi-Lipschitz A-triviality of F would follow from the Lipschitz
version of the Thom-Levine lemma.

1.10 Sections of Discriminant of Stable Germs: Open
Problems

An important consequence of Theorems A and B is that we can approximate any
map f : U ⊂ K

n → K
p, K = R or C, by a stable mapping if (n, p) is in the

nice dimensions or else by a topologically stable map if (n, p) is not in the nice
dimensions.

For a map-germ of finite singularity type f : (Kn, 0) → (Kp, 0), a stable
perturbation can be realized as the generic member of a 1-parameter unfolding
f̄ (x, t) = (ft (x), t) of f. More precisely, f̄ is a stabilization of f if there exists a
representative f̄ : U → V × T such that ft : U ∩ (Kn × {t})→ V is stable for all
t �= 0.

When K = C, the stable perturbation of f is uniquely determined up to A-
equivalence when (n, p) is in the nice dimensions and up to C0-A-equivalence
otherwise. When K = R, there may exists a finite number of nonequivalent
stabilizations of f. On the reals, in general t > 0 and t < 0 give non-equivalent
perturbations of f (see Mond and Nuño-Ballesteros in this Handbook or [69] for
details).

The geometry of the stable perturbations f̄ are associated to invariants of the
germ f .

We discuss here this important tool in singularity theory.
Let f : (Kn, 0) → (Kp, 0), K = R or C be a germ of a finite singularity type

and F its stable unfolding:

(1.36)

where g is the germ of an immersion transverse to F.
Let V = �(F) be the discriminant of F (recall that when n < p the discriminant

is the image F(Kn).) Damon in [25] described a relation between A-equivalence
and properties of the discriminant V. This relation is valid for all pairs (n, p) and
directly relates Ae-codimension of f with a codimension of the germ at 0 of g(Kp)
as a section of the discriminant. The idea of using sections of the discriminant to
determine A-determinacy properties of f appears in [53, 54] (see also du Plessis
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[80]). However, the precise relation between an equivalence relation for germs of
immersions g and the A-equivalence of f was derived in [25].

Given the germ of a variety (V , 0) ⊂ (Kp′, 0) Damon defined the group KV of
contact equivalences preserving V which acts on the set of germs g : (Kp, 0) →
(Kp

′
, 0) (the map-germs g are in Ep

′
p when K = R or in Op

′
p when K = C.)

The contact group KV is defined as follows:

KV = {(h,H) ∈ K |H(Kp × V ) ⊆ K
p × V }

(see Definition 1.4.1).

The action of KV on Ep
′
p or Op

′
p is defined as in Definition 1.4.1. We can also

define the similar notions for unfoldings.The group KV is a geometric subgroup
of the contact group, so that the machinery of singularity theory applies to
KV -equivalence. In particular the infinitesimal and the geometric criteria for KV -
determinacy.

We can define

TKV · g = tg(Mp�p)+ εp{ηi ◦ g, i = 1, . . . ,m}
TKVe · g = tg(�p)+ εp{ηi ◦ g, i = 1, . . . ,m}

where ηi, i = 1, . . . ,m are the generators of �V , the εp′-module of vector fields

in K
p′ tangent to the variety V at its smooth points. Equivalently, �V is the εp′

module of derivations of �p′ which preserve the ideal defining V. The notation
Der(-log V) proposed by Saito for the module of these vector fields as well the
notation g∗(Der(-log V)) for the εp-module εp{ηi◦g, i = 1, . . . ,m} are also widely
used. See section 2.9 of the article of Nuño-Ballesteros and David Mond in this
Handbook [70].
TKV g and TKVeg are Op-modules when K = C and Ep-modules when K = R.

With the notations as in (1.36) we can state the main results in [25] as follows.

1. g has finite KV -codimension if and only if f has finite A-codimension.
2. If NAef and NKVeg denote the normal spaces to Aef and KVeg, respectively,

then

NAef ∼= NKVeg.

3. Ae-codimension(f ) = KVe -codimension(g).
4. Conditions 1. to 3. hold for multigerms f : (Kn, S)→ (Kp, 0).

The geometric characterization of KV -equivalence holds only for holomorphic
map-germs f ∈ Opn , namely: f : (Cn, 0) → (Cp, 0) is A- finitely determined if
and only if g is transverse to the strata of V away from the origin. For real germs,
the geometric condition is a necessary condition for KV finite determinacy, but the
converse does not hold.
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Damon’s theory builds a solid bridge between singularity theory of mappings
and topology of singular varieties. This connection has been used successfully for
the past three decades. We follow this approach to formulate some open problems
in singularity theory, related to the subject discussed in this paper.

1.10.1 Geometry of Sections of Discriminant of Stable
Mappings in the Nice Dimensions

Let (n + 1, p + 1) be a nice pair of dimensions and F : (Kn+1, 0)→ (Kp+1, 0) a
minimal stable map-germ. Minimal here means that {0} ∈ K

n+1 is a stratum of the
stratification of F by stable types. A hyperplane section H = g(Kp) transversal to
the discriminant V = �(F) ⊂ K

p+1 away from the origin pulls back by F to an
A-finite map-germ f : (Kn, 0)→ (Kp, 0).

From Damon’s result 3. above, it follows that if (n, p) is in the semi-nice
dimensions (see Sect. 1.7.1) there exists an open and dense set I of immersions
g : (Kp, 0)→ (Kp+1, 0) such that the pull back of g by F is an A-finite map germ
f : (Kn, 0)→ (Kp, 0) whose Ae-codimension is minimal, that is,

Ae−cod f ≤ Ae−codf ′, for all f ′ ∼
K
f.

As F is a minimal stable unfolding of f we may ask: is there a map-germ f :
(Kn, 0) → (Kp, 0), Q(f ) ∼= Q(F) such that Ae−codf = 1, which in this case
implies that A-orbit of f is open in its K-orbit?

It follows form Proposition 1.8.10 that this condition holds if and only if it holds
for a general linear hyperplane section (see [41] for the case (n, n + 1)). Notice
however that sections of �(F) minimizing Ae-codimension are not necessarily
linear (see section 3.1 in [6]). The complete answer to the question above appears
in [6].

Theorem 1.10.1 ([6], Theorem 4.6) If the pair (n, p) is in the extra-nice dimen-
sions, then every stable germ F : (Kn+1, 0) → (Kp+1, 0) admits a section of
Ae-codimension 1 f : (Kn, 0)→ (Kp, 0). The converse is true if (n+ 1, p + 1) is
in the nice dimensions.

Corollary 1.10.2 If K = C and (n, p) is in the extra-nice dimensions any two
generic hyperplane sections g and g′ of the discriminant�(F) of a stable germ F :
(Kn+1, 0) → (Kp+1, 0) pull back by F to A-equivalent germs f, f ′ : (Kn, 0) →
(Kp, 0).Moreover Ae−codf = Ae−codf ′.

Remark 1.10.3 When K = C, p ≤ n + 1 and (n, p) is in the nice dimensions, the
topology of the stabilization of holomorphicAe-codimension 1, corank 1 germs and
multigerms is well understood. See [17] where T. Cooper, D. Mond and Wik-Atique
classify these singularities and study the topology of their stabilizations.
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Problem 1. To study the geometry of generic hyperplane sections of the discriminant
of stable mappings in (n+ 1, p+ 1) when (n, p) is in extra-nice dimensions and its
boundary.
Problem 2. To study equisingularity of families of generic hyperplane sections
gt (C

p) of the discriminant �(F) of stable map-germs F : (Cn+1, 0)→ (Cp+1, 0)
where gt : (Cp, 0) → (Cp+1, 0) are germs of immersions, when (n, p) is in the
boundary of extra-nice dimensions. These pair of extra-nice dimensions have been
calculated in [6].

(i) n ≤ p, 4p = 5n− 5, p ≥ 5.
(ii) n > p, (n, p) = {(5, 4), (7, 5), (9+ k, 6), k ≥ 0}.

Observe that these families are always topologically trivial. However the Whit-
ney equisingularity and the bi-Lipschitz triviality of these families are open
questions.

Conjecture 1.10.4 At the boundary of the extra-nice dimensions any two generic
immersions g, g′ : (Cp, 0) → (Cp+1, 0) are bi-Lipschitz KV -equivalent and they
define bi-Lipschitz A-equivalent germs f, f ′ : (Cn, 0)→ (Cp, 0).

Problem 3. Apply the geometric approach discussed in this section to study the bi-
LipschitzG-classification of analytic map-germs f ∈ Opn whereG = R,C,K,L,A
or more generally, any geometric subgroup of K . The Lipschitz theory of singularity
is an almost completely open problem. See [87] for an account on bi-Lipschitz G-
classification of function germs G = R,C,K and references therein [8–10, 33, 35,
43, 47, 48, 75, 89].
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Abstract We summarise some of the basic theory of A -equivalence (right-left
equivalence) of germs of maps due to John Mather and others, and then go on
to explain how to calculate some of the key invariants: the Ae-codimension, the
determinacy degree, and a minimal versal unfolding, introducing a new technique
which lead to easily implementable computer algorithms. We then describe the
topology of stable perturbations of A -finite germs, and in particular the image
and discriminant Milnor number for germs (Cn, 0) → (Cp, 0) with n + 1 ≥ p.
We give a new formula for the discriminant Milnor number which, once again,
can be implemented in a computer algorithm. The survey continues with a brief
introduction to multiple point spaces and the image computing spectral sequence,
and to the study of the Fitting ideals. We end with a number of open problems.

2.1 Introduction

The part of the theory of singularities of mappings we are concerned with is the local
theory: the study and classification of (multi- or mono-) germs of smooth or analytic
maps (Fn, S) → (Fp, 0), where F = R or C, under the action of the group A of
right-left equivalence—i.e. pairs of germs of diffeomorphisms1 ϕ in the source and
ψ in the target, acting by (ϕ,ψ) · f = ψ ◦ f ◦ ϕ−1. The article by Maria Aparecida
Ruas in this volume surveys the global theory of singularities, with an emphasis on
the density of the set of stable mappings.

In this brief survey we look at its key ideas and techniques, with an emphasis on
calculation, much of it through the study of a couple of examples, and with only
occasional proofs. We will consistently refer to our recently published monograph
[48] for proofs and a more detailed account. However, we do introduce and prove
here some extensions of earlier results, which serve to make some of the basic
notions more easily calculable—see Theorems 2.2.23 and 2.3.9.

In the first part of the article, Sect. 2.2, we deal simultaneously with the germs
of real C∞ maps and complex analytic maps. The theorems and calculations for
the C∞ and analytic cases are the same,2 even though the rings of germs of C∞
functions at 0 ∈ R

n, En, and of germs of analytic functions at 0 in C
n, On, are very

different. We refer to both R and C as F, to both real C∞ and complex analytic
functions as “smooth”, and to both En and On as On.

1 We use this term for biholomorphisms in the complex analytic case as well as for invertible
smooth germs in the C∞ case.
2 See e.g. [48, Proposition 3.8].
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The second part of the article, Sects. 2.3–2.5, is concerned with the notion of
a stable perturbation of an unstable map-germ, which plays a rôle in the theory
rather analogous to the rôle of the Milnor fibre in the theory of isolated complete
intersection singularities (ICIS). In particular we are concerned with the relation
between the rank of the vanishing homology in the discriminant or image of a stable
perturbation, and the Ae-codimension of the germ, when p ≤ n + 1. This relation
bears a striking resemblance to the μ ≥ τ relation familiar from the case of an ICIS.
The vanishing homology of the image can be calculated by Morse theory when
p ≤ n + 1, and described with the help of the so-called image-computing spectral
sequence when p ≥ n + 1. The two cases are considered in Sects. 2.3 and 2.4
respectively.

The article by Maria Aparecida Ruas in this volume explores the global theory
in the real C∞ case.

2.2 Thom-Mather Theory

Finding pairs of germs of diffeomorphisms directly and explicitly is impractical;
they are generally constructed by integrating pairs of vector fields. Thus, we are
naturally led to infinitesimal methods, in which we begin to understand a germ by
calculating its “tangent space” for A -equivalence, TA f , which we will shortly
define. In fact the codimension of TA f , and of the closely associated space TAef ,
in the space of all infinitesimal deformations, θ(f ), give the most evident A -
invariant of a map-germ, and provide a natural hierarchy of complexity with which
to structure their classification.

From TA f and the “extended” tangent space TAef , in Sect. 2.2.2 we derive
information about the possible deformations of f , via the notion of versal unfolding
defined below, and also about the extent to which f is determined, up to A -
equivalence, by a finite segment of its power series expansion.

In Sect. 2.2.3 we discuss the notion of finite determinacy: a germ f is k-
determined (for A -equivalence) if any other germ with the same Taylor series up to
degree k is A -equivalent to it, and finitely determined if this holds for some finite k.
It was proved by Mather in [44] that finite determinacy is equivalent to having finite
A -codimension.

In most of this section we consider only the case of “monogerms”, when |S| = 1.
Sect. 2.2.4 extends some of the results and calculations to the case of multi-germs.
One should not ignore these: they form an integral and essential part of the theory
(see e.g. [66], and the examples of codimension 1 singularities in Sect. 2.3 below).

Most progress in relating the geometric behaviour of a germ f : (Cn, S) →
(Cp, 0) to the algebraic properties of TAef has been made in the two cases where
the set D(f ) of critical values is a hypersurface, namely where n ≥ p, and where
p = n+1, whereD(f ) is simply the image of f . If f is A -finite, and ft is a stable
perturbation of f , then because D(f ) is a hypersurface, and f is unstable only at
0, D(ft ) has the homotopy type of a wedge of spheres of dimension p − 1. The
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number of spheres in the wedge provides the most important discrete geometrical
invariant, which we study in some detail in Sect. 2.3.

2.2.1 The Ae and A Tangent Space

Throughout this article we work with germs. Most of the notions have global
versions, which can be found in the article of Maria Aparecida Ruas in this volume.
Let f : (Fn, 0)→ (Fp, 0) be a smooth germ. First, θ(f ) is the space of infinitesimal
deformations,

{
dft

dt

∣∣∣∣
t=0

: ft is a 1-parameter deformation of f

}
;

its members determine sections x �→ (dft /dt)t=0 ∈ Tf (x)F
p of f ∗(T Fp). It

is a free On-module; coordinates Y1, . . ., Yp on F
p provide it with the basis

∂/∂Y1, . . ., ∂/∂Yp .
Then TA f is its subspace

{
d(ψt ◦ f ◦ ϕt)

dt

∣∣∣∣
t=0

: ψt and ϕt are 1-parameter deformations of idFp and idFn ,

both fixing 0
}
,

consisting of A -trivial infinitesimal deformations. The slightly larger space TAef
omits the requirement that ψt and ϕt should fix 0. A calculation shows that

d(ψt ◦ f ◦ ϕt)
dt

∣∣∣∣
t=0

= df ◦
(
dϕt

dt

∣∣∣∣
t=0

)
+
(
dψt

dt

∣∣∣∣
t=0

)
◦ f. (2.1)

As indicated above, dϕt
dt

∣∣∣
t=0

and dψt
dt

∣∣∣
t=0

belong to θn := θ(idFn) and θp :=
θ(idFp )—which means they are germs of vector fields at 0 in F

n and F
p respec-

tively. Both θn and θp are free modules, over On and Op respectively, with
bases ∂/∂x1, . . ., ∂/∂xn and ∂/∂Y1, . . ., ∂/∂Yp once coordinates are chosen. The

requirement that ϕt(0) = 0 and ψt (0) = 0 means that dϕt
dt

∣∣∣
t=0

and dψt
dt

∣∣∣
t=0

vanish

at 0, and so lie in mnθn and mpθp, where mk is the maximal ideal of Ok . Every
vector field integrates to a flow, so by (2.1),

TA f = {df ◦ ξ + η ◦ f : ξ ∈ mnθn, η ∈ mpθp}

and

TAef = {df ◦ ξ + η ◦ f : ξ ∈ θn, η ∈ θp}.
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It is customary to write df ◦ ξ as tf (ξ) and η ◦ f as ωf (η), emphasising the rôle
of the homomorphism tf : θn→ θ(f ) sending ξ to df ◦ ξ and the homomorphism
ωf : θp → θ(f ) sending η to η ◦ f . So

TA f = tf (mnθn)+ ωf (mpθp)

and

TAef = tf (θn)+ ωf (θp).

Note that tf is On-linear, while ωf is Op-linear, with respect to the Op-module
structure on θ(f ) coming from composition with f .

We will sometimes use the term T 1
Ae
f to denote the quotient Op-module

θ(f )/TAef .
All of the modules and homomorphisms can be understood with the help of the

following basic commutative diagram.

(2.2)

Here members of θ(f ) are represented by the dashed diagonal arrow, and the dashed
arrows ξ and η represent vector fields on source and target.

The germ f is stable if for every deformation ft there exist deformations ϕt and
ψt of idFn and idFp such that ft = ψt ◦ g ◦ ϕt . Here ϕt and ψt are not required to
fix 0. It follows that stability implies the condition of “infinitesimal stability”: that
TAef = θ(f ). The converse is a theorem of J. Mather:

Theorem 2.2.1 (J.Mather, [45]) Infinitesimal stability implies stability.

Proof [48, Section 3.5] ��
See also the article of Maria Aparecida Ruas in this volume for a discussion of the
various notions of stability.

Slightly greater precision is needed.

Definition 2.2.2

1. Let f : (Fn, 0) → (Fp, 0) be a germ. A d-parameter unfolding of f is a germ
F : (Fn × F

d , (0, 0)) → (Fp × F
d , (0, 0)) of the form F(x, u) = (fu(x), u),

such that f0 = f .
2. The d-parameter unfoldings F and G of f are equivalent if there exist d-

parameter unfoldings� of idFn and � of idFp such that � ◦ F ◦� = G.
3. The d-parameter unfolding F is trivial if F is equivalent to the constant

unfolding f × id
F
d , and f is stable if every unfolding is trivial (note that this

adds precision to the heuristic definition of stability given above).
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4. The k-parameter unfolding G of f is induced from the d-parameter unfolding
F by the base-change map h : (Fk, 0)→ (Fd, 0) if G(x, v) = (fh(v)(x), v).

5. The unfoldingF of f is Ae-versal if every unfolding is equivalent to one induced
from F .

6. The germ f is called A -finite if dimF θ(f )/TA f < ∞ (or, equivalently, if
dimF θ(f )/TAef <∞).

Example 2.2.3

1. H. Whitney showed that up to A -equivalence, the only stable germs (F2, 0)→
(F2, 0) are the identity map, the fold f (x, y) = (x, y2) and the cusp f (x, y) =
(x, y3 + xy).
(i) Let us see that the unfoldingF(x, y, u) = (x, y3+xy+uy, u) of f (x, y) =
(x, y3+ xy) is trivial. This is easy: the substitutions x̄ = x + u, X̄ = X+ u
transform F to f × idF. In other words, taking �(x, y, u) = (x + u, y, u)
and �(X, Y, u) = (X + u, Y, u), we have � ◦ F = (f × idF) ◦�.

(ii) For the unfolding F(x, y) = (x, y3 + xy + uy2, u), setting ϕu(x, y) =
(x − u2

3 , y + u
3 ) we have

f ◦ ϕu(x, y) =
(
x − u

2

3
, y3 + xy + uy2 + u

3
x − 2u3

27

)

and so taking � = (ϕu, u) and �(X, Y, u) = (X + u2

3 , Y + u
3X − 2u3

27 ) we
have

� ◦ F = (f × idF) ◦�

Let us check infinitesimal stability of f modulom4
2θ(f ). We work in the category

of formal power series: for A -finite germs, Theorem 2.2.6 below ensures that this
is enough. In general we will write the members of θp and θ(f ) as column vectors
with p components, and the members of θn as column vectors with n components.
Of course in this example n and p are the same, so we write θS and θT (“S” and “T ”
for “source” and “target”) in place of θn and θp.

• Terms of degree 3 For every monomial p of degree 3,

(
p

0

)
= tf

(
p

0

)
and

hence TAef + m4
2θ(f ) ⊃

(
m3
S

0

)
. Moreover

tf

(− 1
3x

1
3y

)
+ ωf

( 1
3X

0

)
=
(

0
y3

)
, tf

(
0

1
3x

)
− ωf

(
0
X2

)
=
(

0
xy2

)

tf

(
x2

0

)
− ωf

(
X2

0

)
=
(

0
x2y

)
, ωf

(
0
X3

)
=
(

0
x3

)
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so TAef +m4
2θ(f ) ⊇

(
0
m3
S

)
also.

• Terms of degree < 3 We leave the remaining calculations to the reader.

2. The unfolding F(u, y) = (y3+ uy, u) of f (y) = y3 is not trivial. This can be
seen in two ways: first, for u �= 0, fu has two critical points and two critical values,
whereas f has only one of each; second, one checks easily that y /∈ TAef .

Exercise 2.2.4

1. Complete the calculation begun in the example.
2. Check infinitesimal stability of the Whitney cusp modulo m5

S .
3. Use similar methods to show that the parameterisation of the Whitney umbrella,

f (x, y) = (x, y2, xy)

is infinitesimally stable, modulom4
2.

4. Show that the 1-dimensional cusp map f : x �→ (x2, x3) has Ae-codimension 1,
and find a basis for the quotient space θ(f )/TAef .

5. Show that the map germs b : (x, y) �→ (x, xy) and c : (x, y) �→ (x, y2, x2y) are
not A -finite.

Note that in the examples with the Whitney cusp here, if we write � and � as
(ϕu, u) and (ψu, u) then for u �= 0, both ϕu and ψu move 0. From the point of
view of deformation theory, Ae-equivalence of unfoldings is more natural than A -
equivalence. On the other hand, for classification evidently it is A -equivalence that
is required—“Ae” is not a group.

Computing TAef precisely requires some more advanced techniques than we
have described up to now. The approximations calculated in Example 2.2.3 and
Exercise 2.2.4 can be shown to lead directly to the correct answer using a theorem
due to Terry Gaffney which involves the auxiliary module TKef defined as

TKef = tf (θn)+ f ∗mpθ(f ). (2.3)

This is in fact the extended tangent space for K -equivalence, or contact equiv-
alence, but we do not need this fact at the moment.3 Unlike TAef , it is an
On-module, and evidently finitely generated. Denote by Jf the critical ideal of
f , generated by the p × p minors of the matrix of df , and by �f the set
of critical points, V (Jf ), where dxf is not surjective. Cramer’s rule shows that
tf (θn) ⊇ Jf θ(f ); this proves the harder direction in part 1 of Proposition 2.2.16,
which characterizes K -finiteness in terms of the ideal Jf + f ∗mp.

Example 2.2.5 It follows from Nakayama’s Lemma that if f : (Fn, 0) → (Fp, 0)
has multiplicity k (i.e. dimF (On/f ∗mpOn) = k—this can happen only when n ≤ p)
then TKef ⊃ mknθ(f ).

3 See Sect. 4.4 in the article of Ruas in this volume for the definition of the group K .
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Theorem 2.2.6 (Terry Gaffney) Let C be an Op-submodule of θ(f ), and suppose
that

1. C ⊇ mknθ(f )
2. TKef ⊇ m�nθ(f ).

Then

C ⊆ TAef ⇐⇒ C ⊆ TAef + mk+�n θ(f )+ f ∗mpC.

Exercise 2.2.7

1. Use Theorem 2.2.6 to complete the proof that the Whitney cusp and the
parameterised Whitney umbrella are infinitesimally stable.

2. Use Theorem 2.2.6 to derive a statement for TAef from your formal calculation
in Exercise 2.2.4(4).

3. Let f (x, y) = (x, y2, y3 + x3y). Use Theorem 2.2.6 to show that

TAef =
⎛

⎝
O2

O2

O2�{y, xy}

⎞

⎠

Here the last row means the subspace of the ring of smooth germs whose Taylor
series has no y nor xy term.

The proof of Theorem 2.2.6, and indeed of most of the theorems in this section,
uses the Preparation Theorem, due to Weierstrass in the complex analytic case and
to Malgrange in the C∞ case. We state it in the form given it by John Mather in
[43]:

Theorem 2.2.8 Let f : (Fn, 0)→ (Fp, 0) be a smooth map-germ, andM a finitely
generated On-module. Then

M is finitely generated over Op via f ∗ ⇐⇒ dimF M/f
∗mpM <∞.

Proof See e.g. [42]. ��

2.2.2 Versal Unfoldings

There is an infinitesimal criterion for the versality of an unfolding:

Theorem 2.2.9 (J. Martinet, [41]) The unfolding F : (Fn × F
d , (0, 0))→ (Fp ×

F
d, (0, 0)) of f : (Fn, 0)→ (Fp, 0), with F(x, u) = (fu(x), u), is Ae-versal if and

only if

TAef + SpF

{
∂fu

∂u1

∣∣∣∣
u=0

, · · ·, ∂fu
∂ud

∣∣∣∣
u=0

}
= θ(f ). (2.4)
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Proof [48, Theorem 5.1]. ��
Disentangling the terminology here, one sees that the theorem is in effect the
statement that versality of F is equivalent to transversality of the relative jet
extension map

jk(F/Fd) : (Fn × F
d , (0, 0))→ J k(Fn,Fp), (x, u) �→ jkfu(x)

to the A -orbit of jkf (0) in a suitably high jet space (see [48, Theorem 5.2]). Here
the notation jk(F/Fd ) is used to distinguish the relative version from the usual jet
extension map jkF—it ignores partial derivatives with respect to u. Some indication
of just how high k needs to be is given in the next subsection.

Example 2.2.10 By Theorem 2.2.9,F(x, u) = (x2, x3+ux, u) is a versal unfolding
of the germ x �→ (x2, x3). Placing in sequence the images of fu for u < 0, u = 0
and u > 0, we recognise the first Reidemeister move of knot theory. Of course, this
is not a coincidence.

2.2.3 Finite Determinacy

Definition 2.2.11 The germ f is k-determined (for A -equivalence) if any other
germ g with the same k-jet as f (i.e. with the same partial derivatives of degree≤ k
at 0) is A -equivalent to f , and is finitely determined if it is k-determined for some
finite k.

Theorem 2.2.12 f is finitely determined if and only if it is A -finite. In fact

f is A -finite ⇐⇒ TA f ⊇ mknθ(f ) for some k <∞
f is k-determined  ⇒ TA f ⊇ mk+1

n θ(f )

TA f ⊇ mknθ(f )  ⇒ f is 2k+1-determined

A -codimf = d  ⇒ m
(p+d)2
n θ(f ) ⊂ TA f

Proof [48, Chapter 6]. ��
The second and third implications here are known as the infinitesimal criteria for
finite determinacy. See Theorem 4.7 in the paper of Ruas in this volume for a slightly
different presentation of this result and an overview of the proof.

This theorem, coupled with Theorem 2.2.6, leads to the following useful estimate
of the determinacy degree, due to Terry Gaffney.

Theorem 2.2.13 ([15, page 127]) If TAef ⊃ mknθ(f ) and TKef ⊃ m�nθ(f ) then
f is k + �-determined for A -equivalence.
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One of the useful consequences of the fact that A -finiteness implies finite
determinacy is that one can replace an A -finite C∞ germ f by a polynomial
germ f1 which is A -equivalent to it, and then complexify, to obtain an A -finite
germ (Cn, 0) → (Cp, 0) whose real part is f1, A -equivalent to f . By this
means, arguments involving the complexification can be used to deduce geometrical
consequences for f1 and thus for f . In Sect. 2.2.6 we take this approach, and focus
on the complex case.

Since the work of Gaffney and du Plessis in the 1980s, improving on Mather’s
original estimates for the determinacy degree, the subject has essentially been put
to bed by the paper [1] of Bruce, du Plessis and Wall on unipotent group actions.
There is no space here to explain the results of this paper. We point out only that
for unipotent actions, such as the action of the group A (1) consisting of pairs of
germs of diffeomorphisms whose 1-jet coincides with that of the identity, the orbits
in jet space are Zariski closed. This leads easily to the conclusion that the necessary
condition for k-determinacy, that mk+1

n ⊆ TA (1)f , is also sufficient (see [48, §6.3]
for a slightly more elementary take than in the original paper [1]). This very often
leads to optimal estimates of the A -determinacy degree.

2.2.4 Multi-Germs

For reasons which we encourage the reader to ponder, the three Reidemeister moves
R1, R2, R3 of knot theory are, in fact, versal unfoldings of the three Ae-codimension
1 singularities of maps F → F

2. In Exercise 2.2.4 and 2.2.7 we suggested the
calculation that the singularity at the centre of R1, namely the 1-dimensional cusp
x �→ (x2, x3), has Ae-codimension 1 (see Fig. 2.1). The remaining two moves may
be parameterised as

R2

{
x1 �→ (x1, x

2
1 )

x2 �→ (x2, 0)
R3

⎧
⎨

⎩

x1 �→ (x1, 0)
x2 �→ (0, x2)

x3 �→ (x3, x3)

(2.5)

We need to set some notational conventions. For a multigerm f : (Fn, S) →
(Fp, 0) with S = {a(1), . . ., a(r)}, we denote by f (i) : (Fn, a(i))→ (Fp, 0) the i’th
constituent monogerm. Then θ(f ) =⊕r

i=1 θ(f
(i)) and the space of germs at S of

sections of T Fn is a direct sum of the space of germs of sections at the points a(i).
Up to now we have used the notation θn to indicate the space of germs of sections
of T Fn at 0; to deal with the added complexity of a multi-germ, we denote space of
germs at a(i) by θn,a(i) and their direct sum by θn,S . We represent elements of θ(f )
by p × r matrices, whose i’th column represents elements of θ(f (i)). Similarly,
elements of θn,S are represented by n × r matrices, whose i’th column represents
elements of θn,a(i) . Thus, everything concerning the monogerm at a(i) takes place
in the i’th column. For this reason,we can safely dispense with the use of different
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Fig. 2.1 The three Reidemeister moves

labels for the local coordinates around the different points of S. We can represent
R2 simply as

f :
{
x �→ (x, x2)

x �→ (x, 0)

We find a basis for T 1
Ae
f in this case. Working cumulatively and slightly abusing

notation,

tf

(
0 h
0 0

)
=
(

0 h
0 0

)
so that TAef ⊃

(
0 O1

0 0

)

ωf

(
h(Y1)

0

)
=
(
h h

0 0

)
so that TAef ⊃

(
O1 0
0 0

)

tf

(
r 0
0 0

)
=
(
r 0

2xr 0

)
so that TAef ⊃

(
0 0
m1 0

)

ωf

(
0

h(Y1)

)
=
(

0 0
h h

)
so that T 1

Ae
f = SpF

{(
0 0
0 1

)}

(2.6)
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We note that the versality theorem 2.2.9 holds, without modification, in the case of
multigerms.

Exercise 2.2.14

1. Find a basis for T 1
Ae
f for the parameterisation of R3 above.

2. Let f be the bigerm F
n→ F

n+1 given by
{
x �→ (x, 0)
x �→ (x, h(x))

where h ∈ mn has isolated singularity. Show that T 1
Ae
f � T 1

Ke
h.

3. Let f be the tri-germ of map F
2 → F

4 consisting of three immersions meeting
two-by-two transversely. Parameterise f and calculate a basis for T 1

Ae
f .

2.2.5 Construction of Stable Map-Germs as Ke-versal
Unfoldings
of Rank 0 Germs

There is a general procedure for finding all stable monogerms as unfoldings of
lower-dimensional K -finite germs of rank zero, due to Mather in [46].

1. Given f : (Fn, 0)→ (Fp, 0) of rank 0, calculate TKef . Because f0 has rank 0
at 0, TKef0 ⊂ mnθ(f0).

2. Find a basis for the quotient mnθ(f )/TKef .
3. If g1, . . ., gd ∈ θ(f ) project to this basis, then the unfolding F : (Fn ×

F
d, (0, 0))→ (Fp × F

d , (0, 0)) defined by

F(x, u1, . . ., ud) = (f (x)+
∑

j

ujgj (x), u1, . . ., ud) (2.7)

is stable, and is minimal in the sense that it is not a trivial unfolding of a lower-
dimensional stable germ.

Mather’s construction is explained in [48, Chapter 7], and in Section 4.3 of the paper
of Ruas in this volume.

Example 2.2.15 We believe the following example is self-explanatory.
Let f0 : (F2, 0)→ (F3, 0) be given by f (x, y) = (x2, y3, xy). We show how to

use SINGULAR [11] to find a stable unfolding following the recipe explained. Our
script is deliberately pedestrian—it is of course possible to combine many of the
steps into one.

Step 1 We find an F- basis for T := θ(f )/TKef .

ring S=0,(x,y),ds;
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ideal i= x2,y3,xy;

module J=jacob(i);

module A=freemodule(3)*i;

module B=J+A;

ideal m=x,y;

module C=freemodule(3)*m;

module T=modulo(C,B);

matrix b=kbase(std(T));

matrix bb=C*b;

print(bb);

The last command returns the matrix

⎛

⎝
x y2 y 0 0 0
0 0 0 x y2 y

0 0 0 0 0 0

⎞

⎠

Step 2 The columns of the matrix bb give the unfolding monomials;

F(x, y, u1, . . ., u6) = (x2+u1x+u2y
2+u3y, y

3+u4x+u5y
2+u6y, xy, u1, . . ., u6)

is a minimal stable unfolding of f .

Mather showed that given n and p, a stable map-germ (Fn, S) → (Fp, 0) is
determined, up to A -equivalence, by its local algebra On,S/F ∗mpOn,S ([46], [48,
Chapter 7]). All germs, whether stable or not, are determined up to K -equivalence
by their local algebra, so the procedure described here gives the unique stable map-
germ for each algebra type of finite singularity type and each dimension-pair in
which it can occur.

2.2.6 Geometrical Criterion for A -Finiteness

A well known geometrical criterion due to Mather and Gaffney says that a holomor-
phic germ f : (Cn, S)→ (Cp, 0) is A -finite (i.e. has finite A -codimension) if and
only if it has “isolated instability”. In the real case this is not true in general and the
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“isolated instability” is only a necessary condition. We will give a precise statement
of this criterion as well as some details of the proof. There is an analogous result for
K -equivalence which we will show first in the next proposition.

Let f : (Fn, S) → (Fp, 0) be a smooth germ. For simplicity in the notation, we
will omit the subindex S whenever there is no risk of confusion, that is:

• On = OF
n,S = the ring of smooth function germs g : (Fn, S)→ F,

• mn = mF
n,S = the ideal of On of functions g such that g(S) = {0}.

• θn = θFn,S = the On-module of germs of vector fields on (Fn, S).

Proposition 2.2.16 Let f : (Fn, S)→ (Fp, 0) be a smooth germ.

1. f is K -finite if and only if dimF On/(Jf + f ∗mp) <∞.
2. When F = C, f is K -finite if and only if it is finite-to-one on its critical set �.

When F = R, only the implication  ⇒ holds.
3. A -finiteness implies K -finiteness.

Proof The proof of item 1, which involves little more than Cramer’s rule, can be
found in [48, Proposition 4.3]. Now by item 1 and Nakayama’s Lemma, f is K -
finite if and only if mkn ⊂ Jf + f ∗mp, for some k ∈ N. If mkn ⊂ Jf + f ∗mp,
then

V (Jf + f ∗mp) ⊂ V (mkn) = S, (2.8)

where V (I) is the zero locus of the ideal I ⊂ On. Since V (Jf + f ∗mp) = � ∩
f−1(0), (2.8) implies that f is finite-to-one on �.

When F = C, we also have the converse. In fact, if f is finite-to-one on �, then
V (Jf +f ∗mp) ⊂ S = V (mn). By the Rückert Nullstellensatz [28, Theorem 3.4.4],

mn ⊂
√
Jf + f ∗mp,

where
√
I is the radical of I . Hence, mkn ⊂ Jf + f ∗mp, for some k ∈ N.

Let us see item 3. If f is A -finite, then

TAef + SpF{h1, . . . , hr } = θ(f ),

for some h1, . . . , hr ∈ θ(f ). Sinceωf (θp) ⊂ f ∗mpθ(f )+SpF{∂/∂Y1, . . . , ∂/∂Yp},

TKef + Sp
F
{h1, . . . , hr , ∂/∂Y1, . . . , ∂/∂Yp} = θ(f ),

so f is K -finite. ��
Map germs f which are K -finite (i.e. such that dimF On/(Jf + f ∗mp) < ∞)

are usually called map germs of finite singularity type.

Example 2.2.17 Consider the function f : (R2, 0) → (R, 0) given by f (x, y) =
(x2 + y2)2. We have �f = {0}, so obviously f is finite-to-one on �f . However, its
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complexification fC : (C2, 0) → (C, 0) is not K -finite, since in this case both the
critical set �fC and f−1

C
(0) are equal to the union of the two lines x − iy = 0 and

x + iy = 0.
If f was K -finite over R, then mk2 ⊂ Jf + (f ) in E2, for some k ∈ N. That is,

for each i = 0, . . . , k we would have

xiyk−i = ai ∂f
∂x
+ bi ∂f

∂x
+ cif,

for some ai, bi, ci ∈ E2. Passing to their classes modulo mk+1
2 ,

xiyk−i +mk+1
2 = āi ∂f

∂x
+ b̄i ∂f

∂x
+ c̄if +mk+1

2 ,

where now āi , b̄i , c̄i are polynomials of degree ≤ k. But these relations can be
considered also over C, which would give the inclusion in O2:

m̂k2 ⊂ JfC + (fC)+ m̂k+1
2 ,

where m̂2 is the maximal ideal of O2. By Nakayama’s lemma, m̂k2 ⊂ JfC + (fC) and
hence, fC should be also K -finite, giving a contradiction.

Let f : (Fn, S) → (Fp, 0) be a smooth multi-germ, with S = {a1, . . . , ar }. A
natural question is how the stability of f is related to the stability of each branch
f (i) : (Fn, ai)→ (Fp, 0). To answer this question we associate a vector subspace of
T0F

p as follows:

τ (f ) = ev((ωf )−1(TKef )),

where ev : θp → T0F
p is the evaluation map η �→ η(0). The following theorem is

due to Mather:

Theorem 2.2.18 f is stable if and only each branch f (i) : (Fn, si ) → (Fp, 0) is
stable and τ (f (1)), . . . , τ (f (r)) meet in general position in T0F

p.

Proof See [48, Theorem 3.3]. ��
By using this theorem, it is easy to prove that f is stable if and only if its

restriction f : (Fn, S ∩ �) → (Fp, 0) is stable, where � is the critical set of f .
Thus, it makes sense to say that a smooth mapping f : X → Y between smooth
manifolds is locally stable if it is finite-to-one on its singular set� and for all y ∈ Y ,
the multi-germ f : (X, f−1(y) ∩�)→ (Y, y) is stable.

Now we make precise the notion of “isolated instability” and the statement of the
Mather-Gaffney criterion.
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Definition 2.2.19 We say that a smooth germ f : (Fn, S) → (Fp, 0) has isolated
instability if it there exists a representative f : X → Y such that f−1(0) ∩ � = S
and the restriction f : X�f−1(0)→ Y�{0} is a locally stable mapping.

Theorem 2.2.20 (Mather-Gaffney Criterion) An analytic germ f : (Cn, S) →
(Cp, 0) is A -finite if and only if it has isolated instability.

Proof In both cases, when f is A -finite (by Proposition 2.2.16) or when f
has isolated singularity, f is finite-to-one on its singular set �. We choose a
representative f : X→ Y such that f−1(0)∩� = S and the restriction f : �→ Y

is a finite mapping (i.e., it is finite-to-one and closed).
We denote by θX and θ(f ) the sheaves of OX-modules of vector fields on X

and of vector fields along f , respectively. Both are locally free of finite rank and
hence coherent. We also have a morphism tf : θX → θ(f ) given by tf (ξ) = df ◦ ξ
whose cokernel, θ(f )/tf (θX), is also a coherent sheaf on X. Moreover, the support
of θ(f )/tf (θX) is � and since f : � → Y is finite, the sheaf f∗(θ(f )/tf (θX)) is a
coherent sheaf of OY -modules, by the finite mapping theorem (see for instance [20,
I.3.3]).

As in the case ofX, the sheaf θY of vector fields on Y is also coherent. We have a
morphism ωf : θY → f∗(θ(f )) given by ω(η) = η ◦ f , which induces a morphism
of coherent sheaves θY → f∗(θ(f )/tf (θX)). Its cokernel

T 1
Ae
f := θ(f )

tf (θX)+ ωf (θY )

is a coherent sheaf on Y . Because of the coherence, the stalk (T 1
Ae
f )y at each point

y ∈ Y is precisely T 1
Ae
fy , where fy is the multi-germ f : (X, f−1(y) ∩ �) →

(Y, y). Hence, the support of T 1
Ae
f is the set of points y ∈ Y such that fy is

not stable. The equivalence between the A -finiteness and the isolated instability
condition follows from the following consequence of the Rückert Nullstelensatz:

dimC(T 1
Ae
f )0 <∞⇐⇒ 0 is an isolated point of supp(T 1

Ae
f ).

(see for instance [48, Theorem E.3]). ��
The Mather-Gaffney criterion is necessary, but not sufficient, in the real case.

The function in Example 2.2.17 has isolated instability (in fact, it has isolated
singularity) but it is not A -finite since it is not K -finite. To prove necessity, we
need the following statement.

Proposition 2.2.21 Let f : (Rn, S) → (Rp, 0) be analytic and let fC : (Cn, S) →
(Cp, 0) be its complexification. Then, f is A -finite if and only if fC is A -finite.
Moreover, if f is A -finite,

codimAe (f ) = codimAe (fC).
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Proof See [48, Proposition 3.8]. ��
Corollary 2.2.22 Any smooth A -finite germ f : (Rn, S) → (Rp, 0) has isolated
instability.

Proof By the Finite Determinacy Theorem 2.2.12, we can assume that f is a
polynomial whose complexification fC is also A -finite by Proposition 2.2.21.
Hence, fC has isolated instability and there exists a representative fC : X̂ → Ŷ

such that f−1
C
(0) ∩�fC = S and fC : X̂�f−1

C
(0)→ Ŷ�{0} is locally stable.

Let X and Y be the projections of X̂ and Ŷ on R
n and R

p, respectively, and
consider the representative f : X → Y . For y = 0, we get f−1(0) ∩ �f = S.
For y �= 0, the complexification of the germ f : (Rn, f−1(y) ∩ �f ) → (Rp, y)

is obtained as the restriction of fC : (Cn, f−1
C
(y) ∩ �fC) → (Cp, y) to the

branches with real base-point. Since the restriction of a stable germ is also stable,
f : (Rn, f−1(y) ∩ �f ) → (Rp, y) is stable, again by Proposition 2.2.21. Hence,
f : X�f−1(0)→ Y�{0} is locally stable. ��

2.2.7 Techniques for Calculating T 1
Ae

f when n + 1 ≥ p

It is easy to make definitions; to compute any of the terms involved may be more
difficult. Here this is due in large part to the fact that two rings, On and Op, are
involved in the definition of TAef . Although θ(f ) is a finite module (i.e. finitely
generated) over On, if n > p then it is not finite over Op . Finiteness plays a
crucial role in calculation, because it allows us to use Nakayama’s Lemma, by
which approximate equalities, valid modulo some power of the maximal ideal, can
be turned into precise equalities. The double structure complicates life, because we
have to work simultaneously over two rings, and the effect of this additional layer
of difficulty can be seen in the relative slowness of the development of the theory,
and the paucity of raw material in the form of the classification of map-germs. For
this reason, we look for ways of embedding T 1

Aef
into the algebra of functions on

the target Fp . This can be done most easily when n+ 1 ≥ p.
In this subsection, we work with F = C, unless otherwise specified. This allows

us use results from commutative algebra and complex analytic geometry. Because of
Proposition 2.2.21, all the conclusions about T 1

Ae
f also hold when F = R and f is

analytic: we take the complexification fC. By the finite determinacy theorem 2.2.12,
they also apply to the C∞ case.

Let D be the discriminant of f , D = f (�). When n < p, �f = C
n and D is

the image of f . By Proposition 2.2.16, if f is A -finite then it is finite on its critical
set, and hence D is a germ of analytic subset of the target Cp. When n ≥ p, a
fundamental theorem of Buchsbaum and Rim ([4, Corollary 2.7]) establishes that
dim θ(f )/tf (θn) ≥ p − 1, and that when equality is achieved then θ(f )/tf (θn)
is a Cohen-Macaulay On-module. A similar theorem of Eagon and Hochster ([24])
gives the same conclusions for On/Jf : �f is a “determinantal variety”. From this,
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and the fact that f is finite on its critical set, it follows that D also has dimension
p− 1—so it is an analytic hypersurface, and thus defined by a single equation. This
makes it possible to use a homomorphism originally suggested by Theo de Jong
and Duco van Straten for the case of germs of maps C

n → C
n+1 (see [49]). The

following theorem was proved for the case p = n + 1 in [49]; its extension to the
case n ≥ p is new.

Theorem 2.2.23 Let f : (Cn, 0)→ (Cp, 0) be A -finite, with n + 1 ≥ p ≥ 2 (but
excluding the case (n, p) = (1, 2)), and let g be a reduced defining equation forD.
Then the map f ∗(tg) : θ(f )→ JgOn, sending

∑
i αi∂/∂Yi to

∑
i αi(∂g/∂Yi ◦ f ),

passes to the quotient to give isomorphisms

θ(f )

tf (θn)
→ JgO� (2.9)

θ(f )

TAef
→ JgO�
JgOD

(2.10)

Remark 2.2.24 The quotient JgO�/JgOD can be viewed in two ways. First,
composition with f induces a monomorphism f ∗ : OD → O� , and thus JgOD
may be thought of as a subset (though not an ideal) of O� , evidently contained in
the ideal generated in O� by the composed partials (∂g/∂Yi) ◦ f , which is what we
mean by JgO� . But, crucially for the practical value of the proposition, JgO� can
also be thought of as an ideal of OD—or, more precisely, as the image under f ∗ of
an ideal in OD—so that the right hand side in (2.10) is isomorphic to a quotient of
two ideals ofOp. This makes computing with it easier than calculating θ(f )/TAef .
We explain this after the proof of the proposition.

Proof of 2.2.23 First, when n ≥ p then fold points, where f is equivalent to

x �→ (x1, . . ., xn−1,±x2
n ± · · · ± x2

p),

are dense in � ([39, §4A]). A local calculation shows that if x is a fold point
then � is smooth at x and f |� is an immersion, so that D is smooth at f (x),
and dxf (TxCn) = Tf (x)D. When n + 1 = p, replace � by C

n and “fold”
by “immersion” and the same conclusions become obvious. Now let ξ ∈ θn.
Then tf (ξ) is tangent to D whenever x is a fold point (or immersive point when
n+ 1 = p), and it follows by continuity that f ∗(tg)(tf (ξ)) = t (g ◦ f )(ξ) vanishes
on�. Thus f ∗(tg) : θ(f )→ JgOn passes to the quotient to define an epimorphism
θ(f )/tf (θn)→ JgO� .

We claim that to show θ(f )/tf (θn) → JgO� is injective, it suffices to see that
its kernelK is supported only at 0. In fact, we have an exact sequence
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where θn and θ(f ) are free On-modules of rank n and p respectively. When n ≥ p,
θ(f )/tf (θn) has dimension p − 1 and hence is Cohen-Macaulay, by a theorem of
Buchsbaum-Rim [4]. So, it has depth p − 1 > 0. When p = n + 1, f is a finite
mapping which implies that tf is injective. Thus,

is exact in this case and by the depth lemma, see e.g. [28, Lemma 6.5.18] or
[48, Exercise C.4.5], θ(f )/tf (θn) must have depth ≥ n − 1 > 0. In both cases,
θ(f )/tf (θn) has depth > 0, so it has no submodules which are supported only at
the origin.

To show that K is supported only at 0, we use the geometrical criterion for A -
finiteness, that f must be stable outside 0. So consider the case where f is stable.
We have a commutative diagram

(2.11)

Here Der(− logD) is, by definition, the Op-submodule of θp consisting of germs of
vector fields tangent to D at its smooth points. It is easy to show that that

Der(− logD) = {η ∈ θp : tg(η) ∈ (g)},

which proves exactness of the second row at θp. That Der(− logD) is the kernel of
ωf is just the statement that η ∈ θp is liftable via f (i.e. there exists ξ ∈ θn such
that tf (ξ) = ωf (η)) if and only if η ∈ Der(− logD). This is well known (see e.g.
[48, Proposition 8.8]).

Because the diagram commutes, the snake lemma tells us that the kernel and
cokernel of f ∗(tg) are equal to 0. This completes the proof that (2.9) is an
isomorphism. That (2.10) is also an isomorphism follows, since the image of tg
in JgO� is JgOD . ��

The proposition will make it possible for us to calculate

1. the Ae-codimension of f ,
2. a miniversal unfolding of f , and
3. an estimate of the determinacy degree of f ,

by easy algorithms. To understand them, and in particular to justify the statement
that the right hand side in (2.10) is a quotient of two ideals of Op, we first need to
know more about the ring extension

OD ↪→ O�
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induced by composition with f . The conductor of the extension, which we denote
by C , is the annihilator AnnOD (O�/OD), i.e. the set

{h ∈ OD : hO� ⊆ OD}.

Evidently this is an ideal of OD . It follows immediately from its definition that,
viewing OD as a subring of O� , C is also an ideal of O�—though it is important to
note that a set of O�- generators of C will not in general generate it over OD , even
though they lie in OD .

Lemma 2.2.25 Let f : (�, 0) → (Cp, 0) be finite and generically 1-to-1,
where � is a p − 1-dimensional Cohen-Macaulay space. Then the matrix of a
minimal presentation is square. Moreover, for any square presentation matrix  
(not necessarily minimal),

1. g := det is a reduced equation forD.
2. If the list of Op generators of O� begins with 1, and all of the remaining

generators lie in the maximal ideal of O� , then AnnOp (O�/OD) is equal to the
ideal of maximal minors of the matrix  ′ obtained by deleting the first row of .

3. The first Fitting ideal of O� as Op-module, Fitt
Op
1 (O�), (i.e. the ideal generated

by all of the submaximal minors of  ) is equal to the ideal generated by the
maximal minors of  ′, i.e. to AnnOp (O�/OD).

4. C = Fitt
Op
1 (O�)OD .

5. Jg ⊆ Fitt
Op
1 (O�), so that JgOD ⊂ C , and JgO� ⊂ OD .

Proof

1. As f |� is finite, O� is also Cohen-Macaulay over Op, of the same dimension.
Hence by the Auslander-Buchsbaum theorem [21], that for a module over a local
Cohen-Macaulay ring R,

depth+ projective dimension = dim R,

the projective dimension of O� as Op-module is 1—i.e. it has a free resolution
of length 1. Let

be one such. Tensoring with the field Kp of meromorphic functions on C
p, we

obtain the exact sequence , so that j must equal k.
2. The support of any module with square presentation is equal to the zero locus

of det . In our case, a local calculation at a fold point (or immersive point of
f |� ) shows that det is a reduced equation.
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3.  ′ presents O�/OD; by a theorem of Buchsbaum and Eisenbud ([3]), the
maximal minors of  ′ generate AnnOp (O�), which is the conductor ideal.

4. See [48, Prop. 11.11].
5. follows from 3 and 4.
6. Let det be the determinant function on the space of k×k matrices. For each entry
λij let mij denote the corresponding signed cofactor. Then ∂ det /∂λij = mij .
Hence

∂g/∂Y� =
∑

i,j

(∂ det /∂λij )(∂λij /∂Y�) =
∑

i,j

mij ∂λij /∂Y� ∈ Fitt1(O�).

��
Remark 2.2.26 In the case of A -finite germs (Cn, 0) → (Cn+1, 0), one can
understand the fact that Jg is contained in the conductor ideal geometrically. The
key idea is that in order for a function s ∈ On to be a composite r ◦f , it is necessary
and sufficient that s(x) = s(x ′) whenever f (x) = f (x ′). The necessity of this
condition is obvious. That it is also sufficient is deeper. Let D be the image of f .
If x and x ′ are immersive points of f and no other point has the same image, then
by the A -finiteness of f , at f (x), D is a normal crossing of two embedded copies
of C

n. It is evident that a pair of functions, one on each of the two sheets, give
rise to a well defined analytic function on their union if and only if they agree on
the intersection. So our condition at least guarantees the existence of the function r
away from the triple points and the image of non-immersive points of f . But since
these have codimension at least 2 in X, the function r extends to all of D, by a
variant of the Hartogs theorem which is valid for Cohen-Macaulay spaces, and in
particular for hypersurfaces.

Now the conductor C is the set of functions h ∈ On such that for every s, hs is
a composite r ◦ f . The only way to guarantee that (hs)(x) = (hs)(x ′) for every s,
whenever f (x) = f (x ′), is for h(x) = h(x ′) = 0. So C is the ideal of On consisting
of functions which vanish on the preimage of the double locus of D. In the case of
maps C

n → C
n+1, the double locus is dense in the singular locus, and hence C

consists of functions vanishing on the preimage in C
n of the singular set of X. This

set evidently contains Jg.
For the case n ≥ p, the statement is more subtle. A local calculation at cusp

points is also necessary, and shows that C is equal to the ideal of functions vanishing
both at double points in �, and at points where f |� is not an immersion.

Remark 2.2.27 Is there any way we can adapt the homomorphism f ∗(tg) to allow
us to express θ(f )/TA (1)f as a quotient of ideals of OD? If we could use this
procedure to find the lowest k such that mk+1

n θ(f ) ⊂ TA (1)f , then we could get
sharp determinacy estimates very quickly, for since A (1) is unipotent, this condition
is necessary and sufficient for k-A (1)-determinacy. The problem here is that f ∗(dg)
kills all of tf (θn). How can it be modified so that it kills only tf (m2

nθn)?
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For the sake of future calculations, we describe here a procedure for finding an
On-generator of the conductor when f : (Cn, 0)→ (Cn+1, 0) is A -finite

Proposition 2.2.28 In this situation, let g be a reduced equation for the image of
f , and let

mi := ∂(f1, . . ., f̂i , . . ., fn+1)

∂(x1, . . ., xn)

Then the quotient

c := (∂g/∂Yi) ◦ f
mi

is, up to sign, independent of i, and is an On-generator of C .

The proposition was proved by Ragni Piene in [56] without the hypothesis of A -
finiteness, using Grothendieck local duality. An elementary proof in the present
case, using a local calculation, was given by Bruce and Marar in [2].

Now we can give the algorithms listed after the proof of 2.2.23. We give them
in the language of SINGULAR. Translating them to other computer algebra systems
which support local rings is straightforward.

Algorithm 1 The Ae codimension of f is the vector space dimension of
θ(f )/TAef , and thus, by Lemma 2.2.23, of JgOn/JgOD . This expression implic-
itly views OD as a subring of O� , which it becomes via the monomorphism f ∗;
but by Lemma 2.2.25, JgO� is the isomorphic image under f ∗ of an ideal of
OD , and thus JgO�/JgOD can be viewed as a quotient of two ideals of OD . This
is a crucial advantage when it comes to algorithmics—it circumvents the “mixed
module” structure of TAef and θ(f )/TAef . This observation appears first in [13].

2.2.8 Implementation of the Algorithms in SINGULAR

The three algorithms of the previous subsection can easily be implemented in
SINGULAR. SINGULAR has the advantage over MACAULAY2 that all of its pro-
cedures function in local rings, which is essential when the germ is not weighted
homogeneous.

Example 2.2.29 Consider the germ at 0 of the map f : C2 → C
3 defined by

f (x, y) = (x2, y2, xy + x3 + y3).
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This expression is not weighted homogeneous. In fact it can be shown, using
Theorem 2.3.8, that f is not weighted homogeneous in any coordinate system. The
code for Algorithm 1 begins with the ring declarations:

ring T = 0, (X,Y,Z),ds;
ring S = 0, (x,y),ds;

The choices for the rings in the source and target are S = Q[x, y](x,y) and
T = Q[X,Y,Z](X,Y,Z), respectively. These are the localisations of Q[x, y] and
Q[X,Y,Z] with respect to their maximal ideals at the origin (x, y) and (X, Y,Z),
respectively. They are considered as subrings of the convergent power series C{x, y}
and C{X,Y,Z}, respectively. The command ds at the end of the ring declarations
means that we are considering the “negative degree reverse lexicographical” local
ordering, but any other local ordering could be used instead. Then

map f = T,x2,y2,xy+ x3+ y3;
ideal zero = 0;
setring T;
ideal I = preimage(S,f,zero);
poly g = I[1];

returns an expression for the generator g of the ideal defining the image of f ,

g = X6−2X3Y 3+Y 6−2X4Y−2XY 4−8X2Y 2Z−2Y 3Z2+X2Y 2−2XYZ2+Z4

The “preimage” operator gives the preimage under f ∗ : T = O3 → O2 = S of
an ideal in O2. Here preimage(S,f,zero) is just ker f ∗.

In what follows, the expression f (J ) means the ideal in O2 generated by
f ∗(J )—what we have referred to above as JgOn. The commands

ideal J = jacob(g);
setring S;
ideal fJ = f(J);
setring T;
ideal JJ = preimage(S,f,fJ);
module M = modulo(JJ,J+ I);
matrix b = kbase(std(M));
print(b);



104 D. Mond and J. J. Nuño-Ballesteros

Then return the matrix

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 Z 1 0 0
0 0 0 0 Z 1

showing that the Ae-codimension of f is 6. The seven rows of this matrix
correspond to the seven generators that SINGULAR finds for the ideal JJ.

The code for Algorithm 2 is:

ideal B = matrix(JJ) ∗ b;
setring S;
ideal A = f(B);
matrix H = lift(fJ,A);
print(H);

Here the comand lift(fJ,A) is used to divide A by f (J ). This returns the
following 3× 6 matrix whose columns provide a basis for θ(f )/TAef :

0 − 1
4y 0 0 − 1

2y
5 − 1

2y
2

−x 0 − 1
2x

5 − 1
2x

2 0 0

0 0 1
4x

2y + 1
2x

4 + 3
4xy

3 1
4x + 1

2y
2 1

4xy
2 + 3

4x
3y + 1

2y
4 1

4y + 1
2x

2

+ 3
2x

3y2 + 1
2y

5 + 3
4x

2y4 + 1
2x

5 + 3
2x

2y3 + 3
4x

4y2

This expression contains many redundant terms. We discuss how to remove them
below, with the help of the output of Algorithm 3.

The code for Algorithm 3 is:

ideal fJ4 = fJ ∗ maxideal(4);
setring T;
ideal JJ4 = preimage(S,f,fJ4);
module M4 = modulo(JJ4,J+ I);
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matrix b4 = kbase(std(M4));
print(b4);
setring S;
matrix H3 = jet(H,3);
print(H3);

The output of b4 has given the empty matrix, meaning that m4
nθ(f ) ⊂ TAef .

Applying the same steps with 3 in place of 4 returns a non-empty matrix, so
m3
nθ(f ) �⊂ TAef . Because m4

nθ(f ) ⊂ TAef , we use the command jet(H,3) to
obtain the 3-jet of the matrix H (that is, we remove all monomials of degree ≥ 4 in
H ). The resulting matrix is now:

0 − 1
4y 0 0 0 − 1

2y
2

−x 0 0 − 1
2x

2 0 0

0 0 1
4x

2y 1
4x + 1

2y
2 1

4xy
2 1

4y + 1
2x

2

We can perform additional simplifications by hand. Using

ωf

(
X
∂

∂X

)
, ωf

(
X
∂

∂Y

)
, ωf

(
X
∂

∂Z

)
, ωf

(
Y
∂

∂X

)
, ωf

(
Y
∂

∂Y

)
, ωf

(
Y
∂

∂Z

)
,

allows us to remove the monomials x2 and y2 from all entries of the matrix. After
eliminating also the superfluous coefficients, the final basis for θ(f )/TAef is very
simple and symmetric:

0 y 0 0 0 0

x 0 0 0 0 0

0 0 x2y x xy2 y

The versal unfolding F : (C2 × C
6, 0)→ (C3 × C

6, 0) constructed with this basis
is

F(x, y, a1, . . . , a6) = (x2+a1y, y
2+a2x, xy+x3+y3+a3x+a4y+a5x

2y+a6xy
2, a1, . . . , a6).
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Example 2.2.30 The following SINGULAR calculation finds the Ae-codimension
and discriminant Milnor number μ� (see Sect. 2.3.1 below) of the germ f :
(C3, 0)→ (C2, 0) defined by

f (x, y, z) = (x2 − y2 + z2 + xyz, xy − yz+ zx).

We work modulo a large prime to speed up the computation, and initially work with
global monomial orderings in the rings.

ring T = 32003, (X,Y),dp;
ring S = 32003, (x,y,z),dp;
ideal ff = x2− y2+ z2+ xyz,xy− yz+ xz;
map f = T,ff;
ideal C = minor(jacob(ff),2);
setring T;
ideal I = preimage(S,f,C);
poly g = I[1];
ideal J = jacob(g);
setring S;
qring SC = std(C);
map f = imap(S,f);
ideal fJ = f(J);
setring T;
ideal JJ = preimage(SC,f,fJ);

Now we change to the local monomial ordering “ds”; the “preimage” commands
run more quickly with the global ordering “dp”, but we need a local ordering to
compute the correct dimension.

ring Ts = 32003, (X,Y),ds;
ideal JJ = imap(T,JJ);
JJ = std(JJ);
ideal I = imap(T,I);
ideal J = imap(T,J);
module M = modulo(JJ,J+ I);
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vdim(std(M));
3

module N = modulo(JJ,J);
vdim(std(N));
5

So Ae − codim(f ) = 3 and μ�(f ) = 5.

Exercise 2.2.31

1. Use the algorithms of this section to find the Ae-codimension for the following
germs of maps. (i) f (x, y) = (x2, y2, x(x2+y2)+y(x2−y2)) (ii) f (x, y, z) =
(x, y2+ xz+ x2y, yz, z2+ y3) (iii) f (x, y, u, v,w) = (x2+ ux + vy, xy, y2+
wx+uy, u, v,w) (iv) f (w, x, y, z) = (w, x2+y2+z2+xy−2xz+3yz,w(x+
y + z)+ x3 + y3 + z3 + xyz)

2. Find a basis for θ(f )/TAef for germs (i)-(iii) in the previous exercise.
3. What is the least power of mn such that mknθ(f ) ⊂ TAef in each case?
4. Use the procedure of Sect. 2.2.5 to show that the simplest corank 2 stable map-

germ (Cn, 0 → (Cn+1, 0) (i.e. with the smallest value of n) is

F(x, y, a, b, c, d) = (x2 + ay, xy + bx + cy, y2 + dx, a, b, c, d).

5. Exercise 1(iii) above gives a germ with the same local algebra, one dimension
lower, from C

5 to C
6. What is the lowest possible Ae codimension for a germ

(C4, 0)→ C
5, 0) of corank 2? At least guess an answer!

5. Apply algorithms 2 and 3 to the germ of Example 2.2.30, to find the lowest k
such that mk3θ(f ) ⊆ TAef , and to find a versal unfolding.

2.2.9 Damon’s Theory of Sections of Images
and Discriminants

In [9], Jim Damon introduced what turned out to be an extremely fruitful way of
viewing the deformation theory of map germs. If f : (Cn, 0)→ (Cp, 0) is K -finite
then following the procedure of Sect. 2.2.5, it has a stable unfolding – that is, an
unfolding which is a stable map in its own right. Such an unfolding, F , gives rise to
a fibre square

(2.12)
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in which i and j are standard inclusions. Note that as F is an unfolding on parameter
space (Cd , 0), i andF are transverse to one another. Given any fibre product diagram

(2.13)

in which i � F , we say that f is induced from F by the transverse base change
i, and sometimes write i∗(F ) in place of f . The diagram (2.12) shows that every
K -finite germ f is induced from a stable germ F by such a transverse fibre product.

Given a diagram (2.13), letDF be the discriminant of F . The logarithmic tangent
space to DF at the point z is the subspace T log

z DF := {ξ(z) : ξ ∈ Der(− logDF )z}
of TzCq . We say that i is logarithmically transverse to DF at y ∈ C

p if

dyi(TyC
p)+ T log

i(y)DF = Ti(y)Cq . (2.14)

By the use of Nakayama’s Lemma, this condition can be restated in terms of Op-
modules: (2.14) holds if and only if

ti(θp)+ i∗(Der(− logDF )) = θ(i).

Theorem 2.2.32 (J.N. Damon, [9]) If f is induced from the stable map F by
transverse base change i, then

θ(f )

TAef
� θ(i)

ti(θp)+ i∗(Der(− logDF ))
. �

(2.15)

In particular, i∗(F ) is stable if and only if i is logarithmically transverse to DF .
Briefer proofs than Damon’s can be found in [65] and [48, Theorem 8.7].

The denominator on the right hand side in (2.15) is the extended tangent space
for the group KD(F), which is a subgroup of the contact group K , introduced
by Damon in [8], but which we will not use here. Just as in Theorem 2.2.23, the
isomorphism (2.15) expresses T 1

Ae
f as a quotient of finitely generated Op-modules.

However, its great virtue is that it allows the comparison of T 1
Ae
f to a module which,

when n ≥ p, computes the discriminant Milnor number of f , as we will see in
Sect. 2.3.2.

Exercise 2.2.33 Find a natural homomorphism from the module in the right hand
side of (2.15) to the quotient of ideals on the right hand side of (2.10).
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2.3 Vanishing Homology in the Image and Discriminant
when n + 1 ≥ p

In the theory of complex hypersurface singularities (X, 0) in C
n+1, a key role is

played by the Milnor fibre and the Milnor number (whenX has isolated singularity).
We refer to [38] for a recent survey on the topology of the Milnor fibration. From
the topological viewpoint, a small representative X can be chosen so that X is
contractible. In fact, we start by taking any representative X as a closed analytic
subset of an open neighbourhoodY of the origin and we fix a finite analytic Whitney
stratification of X. By the curve selection lemma (see [47]), there exists ε > 0 such
that for all ε′ with 0 < ε′ ≤ ε, the sphere Sε′ of radius ε′ and centered at the origin
is transverse to all the strata of X. Because of the transversality, if Bε is the closed
ball, X ∩ Bε is homeomorphic to the cone in its boundary X ∩ Sε . The ball Bε is
called a Milnor ball for (X, 0).

Next, we deform X in the “best possible way”, which means that it becomes a
smooth manifold. In the hypersurface case, this can be done easily: assume thatX =
f−1(0), where f : Y → C is a reduced holomorphic function. Again by the curve
selection lemma, f has isolated critical value at the origin in C, so there exists η > 0
such that for any t ∈ C, with 0 < |t| < η, t is a regular value of f , which implies
that Xt = f−1(t) is a closed smooth submanifold of Y . Moreover, by reducing
η if necessary, we can assume that Xt is also transverse to Sε , so Ft := Xt ∩ Bε
is a compact manifold with boundary. The version of the Ehresmann Lemma for
manifolds with boundary (see e.g. [38]) implies that the restriction

f : Bε ∩ f−1(B̊∗η )→ B̊∗η

is a locally trivial fibration, where B̊η is the open disk of radius η centered at the
origin in C and B̊∗η = B̊η�{0}. Since B̊∗η is connected, the fibre Ft is independent, up

to diffeomorphism, of the choice of t ∈ B̊∗η and is called the Milnor fibre of (X, 0).
It is well known that the Milnor fibre is also independent of the choice of ε, η, the
defining equation f and the smoothing ofX (that is, the way in which we deform the
equation to obtain a smooth manifold). In general, Ft is no longer contractible and
it presents some non trivial homology known as the vanishing homology of (X, 0).

When (X, 0) has isolated singularity, Milnor showed that Ft has the homotopy
type of a wedge of spheres of real dimension n; the number of such spheres
μ(X, 0) is called the Milnor number of (X, 0). The reduced homology H̃∗(Ft ;Z) is
concentrated in the middle dimension n. In fact, Hn(Ft ;Z) is free of rank μ(X, 0)
and its generators are known as vanishing cycles. The Milnor number can be
computed algebraically easily as

μ(X, 0) = dimC

On+1

Jf
.
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2.3.1 The Homotopy Type of the Discriminant of a Stable
Perturbation: Discriminant and Image Milnor Number

Here we explain how to adapt the above construction for A -finite map-germs
f : (Cn, S) → (Cp, 0) with n + 1 ≥ p. We denote by � the critical locus of
f and D = f (�) its discriminant . As we saw at the start of Sect. 2.2.7, D is a
hypersurface in (Cp, 0).

By the Mather-Gaffney criterion 2.2.20, f has isolated instability. We take a
representative f : X→ Y such that f−1(0)∩� = S and 0 ∈ Y is the only unstable
point of f . It is also convenient to assume that f : � → Y is a finite mapping, so
that D is a closed analytic subset of Y . This is always possible by shrinking the
neighbourhoodsX and Y is necessary.

We assume from now on in this section that (n, p) are nice dimensions in
Mather’s sense, or that f has kernel rank one. In both cases, D has a natural finite
analytic Whitney stratification whose strata are the stable types. This means that
two points y, y ′ in D belong to the same stratum if and only if the multi-germs
f : (Cn, f−1(y) ∩ �) → (Cp, y) and f : (Cn, f−1(y ′) ∩ �) → (Cp, y ′) are A -
equivalent. We refer to [48, Section 7.3] for the proof that the stratification by stable
types is finite, analytic and Whitney regular. We fix a Milnor ballBε forD as before.

The next step is to deformD in “the best possible way”, given that the deformed
space is always the discriminant of a mapping. This forces that some singularities of
D must be preserved in the deformation, namely, those which correspond to stable
points of f . In fact, these are the “rigid” points in our deformation theory.

We say that a 1-parameter unfolding F(x, t) = (ft (x), t) is a stabilisation of f ,
if there exists a representative F : X→ Y × T such that ft is locally stable for all
t ∈ T ∗ = T�{0}. Here, X and T are open neighbourhoods of S×{0} and the origin
in C

n × C and C respectively, The mapping ft , for t ∈ T ∗ will be called a stable
perturbation of f . The existence of a stabilisation of f is always guaranteed when
(n, p) are nice dimensions or f has kernel rank one (see [48, Section 5.4]).

Since F is also finite-to-one on its critical set, its discriminant D is a closed
analytic subset of Y × T (after shrinking the neighbourhoods if necessary). The
projection onto the parameter space π : D → T is a holomorphic mapping whose
fibreDt = π−1(t) is the discriminant of ft , for all t ∈ T . The stratification by stable
types is also well defined on D and on each Dt .

Proposition 2.3.1 There exists η > 0 such that

1. The multi-germ of ft at any y ∈ Sε is stable, for all t ∈ B̊η.
2. Dt is transverse to Sε , for all t ∈ B̊η.
3. The restriction

π : D ∩ (Bε × B̊∗η )→ B̊∗η

is a locally C0-trivial fibration.
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Proof See [48, Proposition 8.2]. ��
A difference with the previous case is that here D is not a smooth manifold, but

a stratified space. Instead of the Ehresmann lemma, the proof is based on Thom’s
first isotopy lemma [17] and this is the reason that we get local C0-triviality instead
of local C∞-triviality. As before, the fibre Dt ∩ Bε , for t ∈ B̊∗η is independent, up

to homeomorphism, of the choice of t ∈ B̊∗η . Moreover, it can be shown that it is
also independent of the choice of ε, η and the stabilisation F . We call Dt ∩ Bε the
disentanglement of f . Item 1 and 2 of the proposition are also important, since they
ensure that the origin is the only critical point, in the stratified sense, of the mapping

π : D ∩ (Bε × B̊η)→ B̊η.

Suppose now that p ≤ n+1, so D is a hypersurface in Y ×T . LetG : Y ×T →
C be a reduced holomorphic function such that D = G−1(0). For each t ∈ T ,
gt : Y → C is the function gt (y) = G(y, t) andDt = g−1

t (0).

Theorem 2.3.2 (D. Siersma, [61]) Under these circumstances, for each t ∈ B̊∗η ,
Dt ∩ Bε has the homotopy type of a wedge of spheres of dimension p − 1 in which
the number of spheres is equal to the sum of the Milnor numbers of the critical
points of gt in Bε�Dt .

Two different proofs of this theorem can be found in [48, Section 8.3] following
arguments of Lê [36] and Siersma [61]. The number of spheres in Dt ∩ Bε is called
the discriminant Milnor number , and denoted by μ�(f ) when n ≥ p, or the
image Milnor number, and denoted by μI (f ), when p = n + 1. As in the case
of isolated hypersurface singularities, the reduced homology is concentrated in the
middle dimension p − 1 and the generators of Hp−1(Dt ∩ Bε;Z) are also called
vanishing cycles of f . The algebraic computation of μ�(f ) or μI(f ) is not so easy
as in the case of an isolated hypersurface singularity and requires more sophisticated
techniques that we will discuss later.

Example 2.3.3 Let f : (C, 0) → (C2, 0) be the germ f (x) = (x2, x3) which
parameterises the cusp D with equation X3 − Y 2 = 0 in the plane. A simple
computation shows that μ(D) = 2, which means that its Milnor fibre Ft , obtained
as X3 − Y 2 = t , for t �= 0, is a compact orientable surface with one boundary
component and genus 1. A stable perturbation is given by ft (x) = (x2, x3 − tx),
with t �= 0. The imageDt has defining equation gt (X, Y ) = −t2X+2tX2−X3+Y 2,
which has two non degenerate critical points at (t/3, 0) and (t, 0). Since (t/3, 0) /∈
Dt and (t, 0) ∈ Dt , we see that μI (f ) = 1. In fact, Dt is a compact orientable
surface with one boundary component and genus 0 and with a singular point of
Morse type. We show in Fig. 2.2 pictures for D (left), the Milnor fibre Ft (center)
and the disentanglementDt (right).
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Fig. 2.2 Milnor fibre and disentanglement of the cusp

The topology of Dt ∩ Bε is more complicated when p ≥ n + 2, as can be seen
from the first item in Corollary 2.4.9, since it may present homology in several
dimensions. Some striking results on the homotopy type in this situation have been
obtained by Houston in [25].

In the real case, if f : (Rn, S) → (Rp, 0) is A -finite we can assume it is
polynomial by the Finite Determinacy Theorem 2.2.12. Then, some of the results
of this subsection are still valid, although we find two differences. The first one
is that the discriminant D is no longer analytic, but semialgebraic in (Rp, 0).
Anyway, all the arguments from stratification theory apply for semialgebraic sets
and mappings, so Proposition 2.3.1 holds word by word also in the real case (see
[48, Proposition 8.2]).

The second and more substantial difference is that B̊∗η has two connected
components, so the fibreDt ∩Bε can be different whenever t > 0 or t < 0. But this
also implies that the topological type of Dt ∩ Bε depends on the stabilisation of f .
In general we must consider a versal d-parameter unfolding F(x, u) = (fu(x), u)
and look at its bifurcation set B(F ), that is, the subset of parameters u in a
neighbourhoodU of the origin in R

d such that the mapping fu is not locally stable.
In generalB(F ) disconnectsU in several connected components and each one these
components can give a different topological type for the disentanglement and hence,
for the stable perturbation .

Nevertheless, in low dimensional examples it is possible to make drawings of the
images and discriminant s of stable perturbations of real A -finite map germs. In
some simple cases, by judicious choice of values for the unfolding parameters it is
possible to arrange that the real image or discriminant is a deformation retract of the
image or discriminant of a stable perturbation of the complexified germ. This is the
case for germs (R2, S) → (R3, 0) of Ae-codimension 1, whose stable images are
shown in Figs. 2.3 and 2.4.

Example 2.3.4 Figure 2.5 shows the discriminant of a stable perturbation of the
Ae-codimension 1 bi-germ

{
(x, y, z) �→ (x, y, z3 − xz),
(x, y, z) �→ (x, y3 + xy, z).

In the unperturbed germ, each component monogerm is a trivial unfolding of the
Whitney cusp, and therefore stable; the bigerm is nevertheless unstable, because the
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crosscaps

on image

f

points of fu
Non−immersive

u

Fig. 2.3 Stable perturbation of (x, y) �→ (x, y2, y3 + x2y)

Fig. 2.4 Images of stable perturbations of codimension 1 germs of maps from the plane to 3-space

Fig. 2.5 Discriminant of the bi-germ of Example 2.3.4 (after [7])
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two analytic strata (the cuspidal edges in the discriminant s of the two monogerms)
both pass through 0 ∈ F

3, and therefore do not intersect transversely in 3-space (see
Theorem 2.2.18 above). The picture shows, with a dotted line, the discriminant s of
the two component mono-germs after they have been perturbed. Each is isomorphic
to the product of a first-order cusp {(u, v) : u2 = v3} and a line. Their intersection,
and their cuspidal edges, are drawn with a continuous line. Their union carries a non-
trivial 2-cycle, which appears in the drawing as the curvilinear tetrahedron whose
edges are made up of the intersection of the two discriminant s, together with their
cuspidal edges.

2.3.2 Calculating the Image and Discriminant Milnor
Numbers

For map-germs (Cn, S)→ (Cp, 0) with n ≥ p, there is a striking “Milnor-Tjurina”
relation between discriminant Milnor number and Ae-codimension, which we state
and prove below (the result first appeared in [10]). For germs (Cn, S)→ (Cn+1, 0),
a similar relation holds for n = 1 and 2, but the general case remains obstinately
conjectural, despite many examples. The difference between the cases n ≥ p and
n = p − 1 resides in the fact that when n ≥ p, the discriminant s of stable germs
are free divisors.

Definition 2.3.5 (K.Saito,[58]) The hypersurface D is a free divisor if the Op-
module Der(− logD) is free.

Theorem 2.3.6 ([39, Theorem 6.13]) If f : (Fn, S) → (Fp, 0), n ≥ p, is stable,
then its discriminant is a free divisor.

We encourage the reader to use Theorem 2.2.18 to deduce the multi-germ version
of this (when |S| > 1) from the monogerm version proved by Loooijenga.

Theorem 2.3.7 (Damon-Mond,[10]) If f : (Cn, S) → (Cp, 0), n ≥ p, is A -
finite, and (n, p) are in Mather’s range of nice dimensions, then

μ�(f ) ≥ Ae−codimension(f ) (2.16)

with equality if f is weighted homogeneous.

We prove this by a new argument below, which has the advantage over the argument
in [10] that it gives a means of calculating μ�(f ) using only the equation of the
discriminant of f and the homomorphism f ∗ : Op → On. The calculation of μ�
in [10] requires explicitly finding F and i as in the diagram (2.12) and then finding
generators for Der(− logDF ).
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Theorem 2.3.8 If f : (Cn, S)→ (Cn+1, 0) is A -finite, and n = 1 or 2, then

μI (f ) ≥ Ae−codimension(f ). (2.17)

with equality if f is weighted homogeneous.

This was proved by de Jong and van Straten for n = 2 in [30], and by the first author
for n = 1 in [49]. Proofs can also be found in [48, Chapter 11]. All efforts to prove
it in greater generality have so far failed.

For the proof of 2.3.7, we introduce a variant of Der(− logD), namely its
submodule Der(− logG) (whereG is a reduced equation for D), defined by

Der(− logG)y = {ξ ∈ θp,y : tG(ξ) = 0}. (2.18)

Whereas Der(− logD)y consists of those germs at y of ambient vector fields tangent
to D at its smooth points, sections of Der(− logG) are tangent to all of the level
sets of G. As we will see, this difference allows detection of the critical points of
the defining equation of the discriminant of a stabilisation of f which move off the
0-level, whose rôle in the calculation of μ�(f ) is shown in Theorem 2.3.2.

Evidently Der(− logG) is a submodule of Der(− logD). For the purposes of the
proof of Theorem 2.3.7, we need it to be a direct summand (with D = DF ), and
this can be arranged by a suitable choice of stable unfolding F . We say that G is a
good defining equation for the discriminantDF if there exists a vector field χ such
that dG(χ) = G. Any weighted homogeneous defining equation is good; when G
is not weighted homogeneous, we can replace F by the trivial unfolding F × idC
and G by etG, where t is the extra parameter, and take χ = ∂/∂t . Once we have a
good defining equation, Der(− logDF ) splits as a direct sum of Der(− logG) and
the submodule generated by χ .

Let f : (Cn, 0) → (Cp, 0) be A -finite, with n ≥ p and (n, p) nice
dimensions, and let g be a reduced defining equation of the discriminant Df . Let
F : (Cn × C

d, (0, 0) → (Cp × C
d, (0, 0)) be a stable unfolding of f , and let G

be a good defining equation for DF , which restricts to g on C
p × {0}. To reduce

clutter, we write (Cn, 0) asX, (Cp, 0) as Y , and (Cd, 0) as U . Recall from the proof
of Theorem 2.2.23 and Lemma 2.2.25 that we can think of JGO�F as an ideal of
ODF , since JG|DF is contained in the conductor of O�F into ODF . Let IG be the
preimage in OY×U of JGO�F under the quotient projection OY×U → ODF . We
define the ideal Ig ⊂ OY analogously, with g in place ofG, and the relative module
I rel
G as the preimage in OY×U of J rel

G O�F , where J rel
G is the relative jacobian ideal of

G, J rel
G =

(
∂G

∂Y1
, . . .,

∂G

∂Yp

)
.

Theorem 2.3.9 In these circumstances, μ�(f ) = dimC

Ig

Jg
.
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Theorem 2.3.7 follows directly, because by Theorem 2.2.23, the Ae-codimension of
f is the dimension of the restriction Ig+ (g)/(Jg+ (g)). If g ∈ Jg, and in particular
if f is weighted homogeneous, then dim Ig + (g)/(Jg + (g)) = dim Ig/Jg.

We will use “conservation of multiplicity”: we show that I rel
G /J

rel
G is a Cohen-

Macaulay module over OY×U , of dimension d , and from this deduce that its push-
forward to U , π∗(I rel

G /J
rel
G ), is free over OU .

The Cohen-Macaulay property will follow from the following lemma.

Lemma 2.3.10 There is an OY×U–isomorphism

θ(π)

tπ(Der(− logG))
� I rel

G

J rel
G

,

where π is the projection Y × U → U .

Proof

Step 1 We claim that

JGO�F = J rel
G O�F . (2.19)

To see this, recall that in the proof of Theorem 2.2.23, we showed that dG◦dF =
0 on �F . Differentiating with respect to ui , at points of �F we therefore have

0 = ∂(G ◦ F)
∂ui

=
p∑

j=1

∂G

∂Yj
◦ F + ∂G

∂uj
◦ F,

showing that
∂G

∂ui
◦ F ∈ J rel

G O�F and thus proving (2.19).

Step 2 Since F is stable we have

0 = JGO�F
JGODF

by Theorem 2.2.23, and so IG = JG + (G). This implies

I rel
G = (F ∗)−1(J rel

G OX×U ) = (F ∗)−1(JGOX×U ) = JG + (G).

And as G is a good defining equation, I rel
G = JG. Thus,

I rel
G

J rel
G

= JG

J rel
G

.
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By the exactness of

it follows that

is also exact, showing that

I rel
G

J rel
G

= JG

J rel
G

� θY×U
OY×U { ∂∂Y1

, . . . , ∂
∂Yn+1

} + Der(− logG)
� θ(π)

tπ(Der(− logG))
.

��
Lemma 2.3.11 Provided (n, p) are nice dimensions,

θ(π)

tπ(Der(− logG))
is Cohen-

Macaulay of dimension d .

Proof Since G is a good defining equation for DF , Der(− logG) is free of rank
p + d − 1. The presentation

shows that
θ(π)

tπ(Der(− logG))
is Cohen Macaulay, by the Buchsbaum-Rim theorem,

provided the codimension of its support takes the maximum value possible, namely
p. To show that it takes this value, it is enough that the intersection of this support
with Y × {0} consists only of {(0, 0)}. For this we invoke the hypothesis that
(n, p) are nice dimensions. We know that outside 0, f is stable, by the geometrical
criterion for A -finiteness. In the nice dimensions, all stable germs are weighted
homogeneous, with respect to suitable coordinates ([48, §7.4]). Now

(
supp

θ(π)

tπ(Der(− logG))

)
∩ (Y × {0}) = supp

θ(π)

tπ(Der(− logG))+mU,0θ(π)

and

θ(π)

tπ(Der(− logG))+ mU,0θ(π)
� θ(i)

ti(θY )+ i∗Der(− logG)
.

At a point y where f is weighted homogeneous, this latter module coincides with the

stalk at y of the sheaf
θ(i)

ti(θY )+ i∗Der(− logDF )
, and hence, by Damon’s theorem,
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2.2.32, with T 1
Ae
fy . Outside 0, each germ of f is stable, so T 1

Ae
f = 0. And, as

(n, p) are nice dimensions, each stable germ is weighted homogeneous, in suitable

coordinates. This proves that the intersection of the support of
θ(π)

tπ(Der(− logG))
with Y × {0} is just the single point {(0, 0)}, and thus that the codimension of this
support is at least p. ��
Proof of Theorem 2.3.9

1. Now that we have shown that I rel
G /J

rel
G is Cohen Macaulay of dimension d , it

follows that π∗(I rel
G /J

rel
G ) is a free OU -module, for the restriction of π to the

support of I rel
G /J

rel
G is just {(0, 0)}. From this it follows that for u in a suitable

neighbourhood of 0,

∑

y

dimC

(
Igu

Jgu

)

y

= dimC

Ig

Jg
. (2.20)

The sum on the left hand side can be split into two parts: the sum at points
y where gu = 0, and the sum at points where gu �= 0. As (n, p) are
nice dimensions, the first sum vanishes, by the argument involving weighted
homogeneity used in the proof of Lemma 2.3.11. At a point y where gu �= 0,

we have Igu,y = OYy and so dimC

(
Igu

Jgu

)

y

is just the Milnor number of the

critical point of gu. By Siersma’s theorem,2.3.2, this sum is equal to μ�(f ).
��

It would be interesting to prove a counterpart of the theorems of K. Saito in [57]
and of H.Vosegaard in [64], and show that, in the nice dimensions at least, weighted
homogeneity in some system of coordinates is a necessary condition for the equality
of Ae-codimension of f and μ�(f ). This would give, as a special case, the curious
empirically observed fact that in the nice dimensions every stable germ is weighted
homogeneous in suitable coordinates.

Example 2.3.12 It gives the authors some pleasure to observe that one can see the
equality of Theorem 2.3.7 in something we all learned about at school, namely the
appearance of a local maximum and local minimum when the function f (x) = x3

is perturbed to ft (x) = x3− tx. Here the discriminant of ft consists just of the pair
max,min of critical values, and its vanishing homology is generated by the 0-cycle
[max] − [min]. The Ae codimension of f here is equal to 1.

Remark 2.3.13 The argument given here, with the exception of the conservation
of multiplicity (2.20), applies equally to the case of germs of maps (Cn, S) →
(Cn+1, 0). We do not know that we always have (2.20) in that case, because
the discriminant (i.e. the image) of a stable germ in this case is not in general
a free divisor—one can check this easily in the case of the Whitney umbrella.
Nevertheless, in all cases we know, (2.20) does hold because the relative module
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I rel
G /J

rel
G turns out, post hoc, to be Cohen Macaulay. We do not know why this is.

In fact the argument given above was first given in the case of germs (Cn, 0) →
(Cn+1, 0), in [13], with conservation of multiplicity (i.e. Cohen-Macaulayness of the
quotient I rel

G /J
rel
G ) as an explicit assumption. Our argument here, for the case n ≥ p,

essentially combines the proof in [13] with a proof of conservation of multiplicity
which closely follows the argument in [10]. Using the formula in this case, we have
been able to compute image Milnor numbers for germs (Cn, 0)→ (Cn+1, 0), n > 1,
using the formula

μI = dimC

Ig

Jg
(2.21)

where now g is an equation for the image of f and Ig is the ideal f ∗(JgOn) of
On+1, after checking that the quotient I rel

G /J
rel
G is Cohen Macaulay. A proof that

this formula is always valid would immediately prove the conjectured relation μI ≥
Ae − codimension with equality if f is weighted homogeneous.

Example 2.3.14 We consider again the germ f (x, y) = (x2, y2, xy + x3 + y3) of
Example 2.2.29. The Singular procedure for computing the Ae codimension of f
needs only to be altered in one particular to calculate μI (f ): instead of

module M=modulo(JJ,J+I);
we set
module N=modulo(JJ,J);
and then
matrix bb=kbase(std(N));
print(bb);
then shows that μI (F ) = 7.

We leave the reader to check that in this case the relative module is Cohen-Macaulay.

2.4 Multiple Points in the Source

For map-germs (Cn, S)→ (Cp, 0) with p > n+ 1, the Morse theory used to define
and compute image and discriminant Milnor numbers is not available. The image
of an A -finite non-immersive germ in these dimensions is never Cohen-Macaulay,
and certainly not a complete intersection. A different technique for calculating the
homology of the image of a stable perturbation , the image computing spectral
sequence (ICSS) was introduced in [18], and further developed in [19, 25], and [6].
The difference between the topology of the image and of the domain of a finite
surjective map f : X → Y is accounted for by the identifications which take
place—the gluing. The gluing data is encoded in the multiple point spacesDk(f ) for
k ≥ 2, defined (with one slight wrinkle) as the closure, in Xk , of the set of pairwise
distinct ordered k-tuples of points sharing the same image. The homological content
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of this information is decoded by the ICSS, which has as its E1 page the array
AHj(D

k(f )) of alternating homology groups of the spaces Dk(f ), defined below,
with differential induced by the projection Dk(f ) → Dk−1(f ) which forgets the
last copy of X. Even in the case where we already know the homology of the
image, or discriminant,D, when dimX+ 1 ≥ dimY , the ICSS gives more detailed
information, in the sense of a natural filtration of the homology H∗(D) whose k’th
successive quotient is precisely the alternating homology AH∗−k+1(D

k(f )).
We begin with some definitions. In order that when F is an unfolding of f on

parameter space U , the natural projectionDk(F)→ U should be a deformation of
Dk(f ), our definition of Dk(f ) has an extra step, suggested by Terry Gaffney in
[16], which can lead to a minor difference from the approximate definition above
when f is not stable. Since we are most interested in applying the ICSS to describe
the image or discriminant of a stable perturbation , this extra complication can often
be ignored.

Definition 2.4.1 If f : X→ Y is a finite map of topological spaces, then

1. Dkcl(f ) is the closure, in Xk , of the set of ordered k-tuples of pairwise distinct
points (x1, . . ., xk) such that f (x1) = · · · = f (xk);

2. εk : Dkcl(f )→ Dk−1
cl (f ) is the projection forgetting the last component

3. For a K -finite germ f , following Gaffney in [16], we defineDk(f ) (without the
suffix) by the fibre diagram

where F is a stable unfolding of f and Dkcl(F ) is given its reduced structure.
4. Dk� (f ) is the image of Dk(f ) in D�(f ) under the composite ε�+1 ◦ · · · ◦ εk .
The spaces whose closure we take in this definition are constructible, so the
analytic (Zariski) closure is the same as the closure in the Euclidean topology.
The definition is independent of the choice of stable unfolding, and the two spaces
Dkcl(f ) and Dk(f ) differ only in the case where Dk consists of an isolated point
([48, Prop. 9.4]). The extra step in the definition ensures, for example, that the point
(0, 0) lies in D2(f ) when f : F→ F

2 is the cusp map f (x) = (x2, x3).
For an A -finite germ, the dimension of Dk(f ) is always p − k(p − n), or 0

when this number is negative provided it is not empty, since most k-tuple points in
the target will be normal crossings of k immersed sheets. We say that this is the
expected dimension of Dk(f ) in general.

The paper [40] (see also [48, Section 9.5]) provides explicit generators for the
ideal defining Dk(f ), suggested originally by Mark Roberts, when f has corank 1
and is in the linearly adapted form f (x) = (x1, . . ., xn−1, fn(x), . . ., fp(x)). They
make use of the evident fact that in this caseDk(f ) embeds in C

n−1×C
k , and, with
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respect to coordinates u1, . . ., un−1, x1, . . ., xk , are given by

∣∣∣∣∣∣∣

1 x1 · · · xi−1
1 fj (u, x1) x

i+1
1 · · · xk−1

1
...
...
...

...
...

...
...

...

1 x1 · · · xi−1
k fj (u, xk) x

i+1
k · · · xk−1

k

∣∣∣∣∣∣∣

VDM
, j = n, . . ., p, i = 1, . . ., k − 1

(2.22)

where VDM is the Vandermonde determinant of x1, . . ., xk .
For map-germs of corank 1, the Dk(f ) provide a simple criterion for stability

and for A -finiteness.

Theorem 2.4.2 ([40]) Let f : (Cn, S) → (Cp, 0) (n ≤ p) be a map-germ of
corank 1.

1. f is stable if and only if for each k, Dk(f ) is smooth of the expected dimension
provided this number is positive, and empty otherwise.

2. f is A -finite if and only if for each k Dk(f ) is an ICIS (i.e. isolated complete
intersection singularity) of the expected dimension provided this number is
positive, and 0-dimensional otherwise.

The reader will note that without the extra (Gaffney) step in the definition ofDk(f ),
statement 1 here would be false, as is shown by the example of the cusp x �→
(x2, x3).

For germs of higher corank, much less is known. We only have a recipe for
defining equations for Dk(f ) in terms of f alone in the case k = 2. Here the
recipe is as follows: in the ring of the product space C

n × C
n with coordinates

x ′ = (x ′1, . . ., x ′n) and x ′′ = (x ′′1 , . . ., x ′′n), we factorise the p-tuple (f1(x
′) −

f1(x
′′), . . ., fp(x ′)− fp(x ′′)) as

(
x ′1 − x ′′1 · · · x ′n − x ′′n

)
⎛

⎜⎝
α11 · · · α1p
...
...

...

αn1 · · · αnp

⎞

⎟⎠ (2.23)

where αij = αij (x ′, x ′′), and take I2(f ) to be the ideal in O2n generated by f1(x
′)−

f1(x
′′), . . ., fp(x ′) − fp(x ′′) and by the n × n minors of the n × p matrix (αij )

in (2.23).

Theorem 2.4.3 Let f : (Cn, S)→ (Cp, 0) (n ≤ p) be any germ. If D2(f ) has the
expected dimension, 2n− p, then it is Cohen-Macaulay.

The proof uses a theorem on the variety of complexes proved by G. Kempf—see
[48, §9.4] or [54].
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2.4.1 Alternating Homology

The symmetric group Sk acts on Dk(f ), permuting the copies of X, and this action
is crucial in what follows. It will be useful to regardX as D1(f ).

Definition 2.4.4 LetDk be any space on which Sk acts. Then

1. CAlt
j (D

k) is the subgroup of the usual singular chain group (with integer coeffi-

cients) Cj (Dk) consisting of chains c such that σ#(c) = sign(σ )c for all σ ∈ Sk.
2. AHj(Dk) is the j ’th homology of the resulting chain complex CAlt• (Dk)

We refer to the chains in CAlt
j (D

k) as alternating chains and to the homology of

the complex CAlt• (Dk) as the alternating homology of Dk . For CW complexes,
alternating homology can also be calculated using the alternating subcomplex of
the cellular chain complex, provided the cellular structure is respected by the group
action.

Exercise 2.4.5 Let the symmetric group S2 act on the circle S1 by reflection in a
diameter. Compute the alternating homologyAH∗(S1) using the CW structure with
0-cells a and b and 1-cells α and β.

2.4.2 The Image Computing Spectral Sequence

The following lemma is proved by an elementary argument—see e.g. [48, Sec-
tion 10.1].

Lemma 2.4.6 Let f : X → Y be any continuous map of topological spaces.
Then

1. εk#(C
Alt
j (D

k(f ))) ⊆ CAlt
j (D

k−1(f ))

2. εk−1
# ◦εk# : CAlt

j (D
k(f ))→ CAlt

j (D
k−2(f )) and f# ◦ε2

# : CAlt
j (D

2(f ))→ Cj (Y )

are both equal to 0. Hence,
3. the double array {CAlt

j (D
k(f ))}j,k , with horizontal differential

∂ : CAlt
j (D

k(f ))→ CAlt
j−1(D

k(f ))
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and vertical differential

(−1)jεk# : CAlt
j (D

k(f ))→ CAlt
j (D

k−1(f ))

is a double complex.

Comparison of the spectral sequences arising from the two standard filtrations on
this double complex leads to the following theorem.

Theorem 2.4.7 If f : X→ Y is a surjective finite triangulable map then there is a
spectral sequence with E1

p,q = AHp(Dq−1(f )) and d1 : E1
p,q → E1

p,q−1 equal to

(−1)pεq∗ , converging to Hp+q(Y ).

Finite subanalytic maps are triangulable (by a theorem of Hardt in [23]) so the
theorem applies, for example, to stable perturbation s of finite real or complex
analytic map-germs.

The ICSS was first constructed in [18] for homology with rational coefficients,
whenAH∗(Dk) coincides with the part of the ordinary homologyH∗(Dk) on which
Sk acts by its sign representation. The alternating chain complex was introduced
by Goryunov in [19]; he showed that the ICSS converges to H∗(Y ) by relating
it to the chain complex of a geometric realisation of the semi-simplicial object
D•(f ). The statement given here is from [6]. Triangulability allows us to replace
singular homology with simplicial homology, which makes possible a “classical”
proof of Theorem 2.4.7. For replacing f with a simplicial map, one obtains easily a
triangulation of each space Dk(f ), from which it follows, in a straightforward way,
that for each fixed n, the sequence of alternating simplicial chain groups

· · · → CAlt
n (D

k(f ))
εk#,n−−→ · · · ε

3
#−→ CAlt

n (D
2(f ))

ε2
#−→ Cn(X)

f#−→ Cn(Y )→ 0
(2.24)

is exact. This means that the spectral sequence of the first filtration of the double
complex C of Lemma 2.4.6 collapses onto the p-axis at E1, so that

E2
n,0 � Hn(Tot(C)) � Hn(Y ).

([6, Proposition 2.1]). The ICSS is the spectral sequence associated to the second
filtration of the double complexC, and since both spectral sequences converge to the
homology of the total complex Tot(C), and we have seen thatH∗(Tot(C)) = H∗(Y ),
the theorem is proved.

In the context of the initial construction of the ICSS, for rational homology,
AH∗(Dk(f );Q) is isomorphic to a subspace of H∗(Dk(f );Q). Thus, vanishing
theorems on Hj(Dk(f );Q) imply vanishing of AHj(Dk(f );Q). When ft is a
stable perturbation of a germ f0 : (Cn, S)→ (Cp, 0) (n ≤ p) of corank 1, then this
is exactly what happens, because Dk(f0) is an ICIS, of dimension p − k(p − n),
and Dk(ft ) is a Milnor fibre , and thus is homotopy-equivalent to a wedge of
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p − k(p− n)-dimensional spheres. The fact that AH∗(Dk(ft )) is concentrated in a
single dimension then means that the ICSS collapses at E1, giving rise to some
rather striking formulas for the filtration on the homology of Y , which we will
come to shortly. This conclusion, however, has been significantly strengthened by
subsequent work. In [19], Goryunov showed that if Dk is an Sk-invariant ICIS then
AH∗(Dk) is isomorphic to a subgroup of H∗(Dk) even with integer coefficients, so
that the formulas just alluded to hold also overZ, but still only for stable perturbation
s of germs of corank 1. Even more strikingly, in [25], Kevin Houston showed that
this last condition can be dispensed with.

Theorem 2.4.8 (K.Houston, [25]) If ft is a stable perturbation of an A -finite
germ f0 : (Cn, 0)→ (Cp, 0), n < p, then AHj(Dk(ft )) = 0 for j �= dimDk(ft ).

TheDk(ft )may have homology in other dimensions ([51]). It is only the alternating
homology that is concentrated in middle dimension. Houston’s underlying heuristic
here is that away from the diagonals, where two or more of the xj making up a point
(x1, . . ., xk) ofDk(f ) are equal,Dk(f ) coincides with the k-fold fibre product ofX
over Y , which is defined by the naive equations fα(xi) = fα(xj ) for 1 ≤ i < j ≤ k
and 1 ≤ α ≤ p. Thus, at such points Dk(f ) is a complete intersection. Alternating
homology is the homology of a sheaf supported away from the diagonals—one can
show easily that an alternating j -chain can contain no simplex contained in any
diagonal {xi = xj } ([48, Lemma 10.8]). So in some way, the fact that Dk(f )
is a complete intersection at the points of the support of the sheaf of alternating
chains leads to the familiar conclusion that the alternating homology of Dk(ft ) is
concentrated in middle dimension.

From the ICSS, together with Houston’s theorem, we derive

Corollary 2.4.9 Suppose that ft : Xt �� �� Yt is a stable perturbation of an

A -finite map germ f : (Cn, 0)→ (Cn+�, 0).

1. If � ≥ 2, then

Hq(Yt ) =
⎧
⎨

⎩

AHn−(k−1)�(D
k(ft )) if q = n− (k − 1)(�− 1) for some k

Z if q = 0
0 otherwise

2. If � = 1, then Hq(Yt ) = 0 if q �= 0, n, and there is an increasing filtration Fk ,
0 ≤ k ≤ n+ 1 on Hn(Yt ) with F0 = F1 = 0 (see below) and

Fk/Fk−1 � AHn−k+1(D
k(ft )).

The term F1 in the filtration here corresponds to the image of Hn(Xt) in Hn(Yt ),
which is 0 because Xt is the contractible domain of a stable perturbation of f .

A dual statement holds for cohomology.
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The corollary can be appreciated with the help of a diagram chase. We place our-
selves in the situation of Houston’s theorem, so that AH∗(Dk(ft )) is concentrated
in the (complex) dimension of Dk(ft ).

1. Suppose that z3,� ∈ CAlt
� (D

3(f )) represents a homology class in AH�(D3(ft )),
where � = dimD3(ft ). Since dimD3(ft ) < dimD2(ft ), AH�(D2(ft )) =
0, so ε3

#(z3,�) is an alternating boundary in D2(ft )—there exists c2,�+1 ∈
CAlt
�+1(D

2(ft ))) such that ∂c2,�+1 = ε3
#(z3,�).

2. Now

∂ε2
#(c2,�+1) = ε2

#(∂c2,�+1) = ε2
#(ε

3
#(z3,�) = 0,

because ε2
# ◦ ε3

# = 0 on alternating chains. As H�+1(Xt ) = 0, ε2
#(c2,�+1) is

a boundary in Xt , and there exists c1,�+2 ∈ C�+2(X) such that ∂c1,�+2 =
ε2

#(c2,�+1).
3. Similarly, because f# ◦ ε2

# = 0 on alternating chains, f#(c1,�+2) is a cycle in Yt .

The argument is summarised by the following diagram, which should be read from
top to bottom.

Here, our construction has led from an �-dimensional alternating homology class
on D3(ft ) to a � + 2-dimensional class in Yt . There are choices on the way,
of course: different choices of c2,�+1 differ by an alternating cycle on D2(ft ),
so the homology class we end up with in Yt is only well defined modulo the
subgroup of Hn(Yt ) consisting of classes originating in AH�+1(D

2(ft )). Thus, the
apparent homomorphism AH�(D

3(ft )) → H�+2(Yt ) is really a homomorphism
into the quotient F3/F2. Note that because Xt is contractible, the choice of
c1,�+2 has not created additional imprecision. There really is a homomorphism
AH�+1(D

2(ft )) → H�+2(Yt ), defined by the same diagram chasing construction
given here.

Example 2.4.10 We continue with the germ of f (x, y) = (x2, y2, xy + x3 + y3)

discussed in Examples 2.2.29 and 2.3.14.
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• We use the recipe in Sect. 2.4 to find I2(f ). Computing its primary decompo-
sition, we find that D2(f ) has five irreducible components, each of which is a
nonsingular curve. It is clear from the calculation (which we urge the reader to
undertake) that under the involution σ : D2(f )→ D2(f ) interchanging x ′ and
x ′′, each branch is mapped to itself. This can also be seen by calculating the
primary decomposition of the first Fitting ideal Fitt1(f∗O2) from the matrix of a
presentation—again there are five components (see Examples 2.5.10 and 2.5.15
below).

• An O2-generator for the conductor ideal, which defines the image D2
1(f ) of

D2(f ) under the projection ε2, may be found by the procedure of Proposi-
tion 2.2.28, or by pulling back the principal minor of the presentation—see
Corollary 2.5.14 below. It has Milnor number 16.

• If ft is a stable perturbation of f , then D2
1(ft ) is a smoothing of D2

1(f ), except
for the presence of 3T nodes, preimages of the T triple points in the image. In this
case (see the calculation in Example 2.5.19 below) T = 1. Hence h1(D

2
1(ft )) =

μ(D2
1(f )− 3) = 13.

• InD2(ft ) the three nodes are separated—D2(ft ) is the normalisation ofD2
1(ft ).

Thus h1(D
2(ft )) = 10. Since D2(ft ) has five ends, corresponding to the five

branches ofD2
1(f ), and since for any smooth complex curve C (with at least one

end)

h1(C) = 2 genus(C)+ #ends− 1,

it follows that the genus of D2(ft ) is 3.
• ft has three non-immersive points. For dimC O2/minors(2, df ) = 3, and this

multiplicity is conserved in a perturbation, by a standard Cohen-Macaulay
argument. Thus the involution σ has three non-degenerate fixed points. By the
Lefschetz fixed point theorem,

3 = Lefschetz number(σ ) = Trace
(
(σ∗|H0(D2(ft ))

)− Trace
(
σ∗|H1(D2(ft ))

)

from which it follows that

Trace
(
σ∗|H1(D

2(ft ))

) = −2. (2.25)

• Let σ̄ be the extension of σ to the compact genus 3 surface� obtained by capping
the ends of D2(ft ) with discs. The homology classes of the cycles around the
ends of D2(ft ) are mapped to themselves by σ∗, since σ maps each end to
itself, and σ preserves orientation on D2(ft ), and hence boundary orientation
on ∂D2(ft ). A calculation with Mayer Vietoris, using (2.25), then shows that on
H1(�), σ̄∗ is multiplication by -1. It follows that σ̄ is conjugate to the rotation
through π of the standard embedded genus 3 surface about an axis passing as a
diameter through each of the generating 1-cycles. The diagram below illustrates
the corresponding involution on D2(ft ).
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β ´
1 β ´

3β2

α´
1

α´´
1

α´
2

α´´
2

α´
3

α´´
3

Fig. 2.6 Alternating cycles generating AH1(D
2(ft )); β ′′1 and β ′′2 are hidden by the surface and not

shown

The three fixed points lie on the axis of rotation; the five ends circle it. We surmise
that the picture is as shown in Fig. 2.6, though other configurations of the ends and
fixed points are possible.

Here the five ends are represented by black holes in the surface, and the three
fixed points by red discs. The involution is rotation through π about the dashed
axis.

In this picture, AH1(D
2(ft )) has rank 6, and is freely generated by αi := α′1 +

α′′i , i = 1, 2, 3, βi = β ′i + β ′′i , i = 1, 3 and β2 (the cycles β ′′1 and β ′′3 are on the
back of the surface, directly behind β ′1 and β ′3). With the arrangement of the ends
shown here, some of the generators ofH1(�) have to be doubled to give alternating
cycles on D2(ft ). Only β1 is a member of a basis for H1(D

2(ft )). It seems that no
matter which arrangement of ends is postulated, the cokernel of AH1(D

2(ft )) →
AH1(�) is a non-trivial torsion group. Nevertheless, the natural homomorphism
fromAH1(D

2(ft )) to the alternating part ofH1(D
2(ft )) is an isomorphism. In [19,

Theorem 2.1.2], Goryunov showed that the corresponding homomorphism is always
an isomorphism when D2(f ) is an ICIS (which it is not in this case).

Exercise 2.4.11 The diagram in Fig. 2.7 shows the tower of multiple point spaces
over the stable perturbation of the germ f0(x, y) = (x, y3, xy + y5) of type H2.
This is one of rather few germs (R2, 0) → (R3, 0) whose disentanglement can be
faithfully drawn over R. A picture of the image, due to Victor Goryunov, is shown
on [48, page 254].

1. Find equations for D2(f ) and D3(f ) using the schema shown just before
Theorem 2.4.2, and determine the rank of AH1(D

2(ft ) and AH0(D
3(ft )) for

a stable perturbation ft of f .
2. The alternating 0-cycle z3,0 = (P,Q,R)−(P,R,Q)+(Q,R,P )−(Q,P,R)+
(R, P,Q) − (R,Q,P ) generates AH0(D

3(ft )).

(i) Find an alternating 1-chain in c2,1 ∈ C1(D
2(ft ) such that ∂c2,1 = ε3

#(z3,0),
and

(ii) a 2-chain c1,2 in Ut such that ∂c1,2 = ε2
#(c2,1).

(iii) Find a non-trivial alternating 1-cycle z2,1 ∈ D2(ft ), and a 2-chain c′1,2 in

Ut such that ∂c′1,2 = ε2
#(z2,1).
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(S, S )

(T, T )

S T

P Q R

(P, Q )

(P, R )

(R, Q )

(R, P )

(Q, P )

(Q, R )

(P, Q, R ) (R, P, Q )

(P, R, Q ) (R, Q, P )

(Q, R, P )

(Q, P, R )

D2
1( ft) ÌUt

D3
2( ft) Ì D2( ft)

D3( ft)

Fig. 2.7 Tower of multiple point spaces of the stable perturbation of H2

2.4.3 Further Developments

The ICSS was the basis for a plethora of results on the local topology of germs
(Cn, 0) → (Cn+k, 0) for k > 1 and the homotopy type of the image of a stable
perturbation , proved by Kevin Houston in [25] and [26].

2.5 Multiple Points in the Target: Fitting Ideals

The kth multiple point in the target Mk(f ) is the set of points y ∈ Y such that
f−1(y) has at least k preimages, counting multiplicity. It is important to give these
spaces an analytic structure which behaves well under deformation. We do this using
Fitting ideals. We will see that for k ≤ 3,Mk(f ) is Cohen-Macaulay when it has the
expected dimension. If Mk(f ) is zero dimensional, then the non reduced structure
will predict the number of “genuine” k-tuple points that appear in a stabilisation of
f . The construction of Mk(f ) based on Fitting ideals appeared in [62] and [52].
Here we give brief account of the main results.
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We recall that if R is a ring andM is an R-module with a presentation

then the k’th Fitting ideal Fittk(M) is minq−k λ, the ideal in R generated by the
q − k-minors of the matrix λ (here we take the convention that min� λ = 0 when
� ≤ 0 or min� λ = R when � > min{p, q}). This ideal is independent of the choice
of presentation. A presentation always exists whenR is Noetherian andM is finitely
generated over R. We refer to [21] for basic properties of Fitting ideals.

Definition 2.5.1 Let f : (X, S)→ (Y, y0) be a finite morphism of complex space-
germs. By the preparation theorem, OX,S is finitely generated over OY,y0 via
f ∗ : OY,y0 → OX,S . The k’th Fitting ideal is the ideal in OY,y0 defined as

Fk(f ) := Fittk(OX,S).

The k’th target multiple point spaceMk(f ) is defined by

Mk(f ) := V (Fk−1(f )), OMk(f ) :=
OY,y0

Fk−1(f )
.

The following proposition gives the precise statement that, set-theoretically,
Mk(f ) is the set of points y ∈ Y such that f−1(y) has at least k preimages, counting
multiplicity.

Proposition 2.5.2 Let f : (X, S)→ (Y, y0) be a finite morphism of complex space-
germs. Take a representative f : X → Y which is a finite mapping. As a set-germ,
Mk(f ) is the germ at y0 of the set of points y ∈ Y such that

∑

f (x)=y
dimC

OX,x
f ∗mY,y

≥ k.

In particular,M1(f ) is the image of f .

Proof See [48, Corollary 11.2]. ��
Also the precise statement that target multiple point spaces behave well under

deformations is as follows:

Proposition 2.5.3 Suppose we have a fibre-product diagram of complex space-
germs

(2.26)



130 D. Mond and J. J. Nuño-Ballesteros

where F is finite. Then:

1. f is also finite.
2. For each matrix presentation of OX,S over OY,y0

there is an induced matrix presentation of OX×Y Z,S0 over OZ,z0

3. Mk(f ) = i−1(Mk(F )) as complex space-germs.

Proof See [48, Proposition 11.6]. ��
Example 2.5.4 Let f : (C, 0) → (C2, 0) be the plane curve f (x) = (x3, x4). The
classes of 1, x, x2 give a basis over C of O1/(x

3, x4). By the preparation theorem,
1, x, x2 is a minimal set of generators of O1 over O2. For a presentation, we need
generators for the relations of 1, x, x2 over O2. If X,Y are coordinates in C

2, the
following relations are evident:

Y · 1 = y4 = X · y, Y · y = y5 = X · y2, Y · y2 = y6 = X2 · 1.

It will become clear that these three generate all the relations of 1, x, x2 over O2.
This implies that a matrix presentation of O1 over O2 is

⎛

⎝
−Y 0 X2

X −Y 0
0 X Y

⎞

⎠ .

The non trivial Fitting ideals are F0(f ) = (X3 − Y 4), F1(f ) = (X2,XY, Y 2)

and F2(f ) = (X, Y ). We see that M1(f ) is nothing but the image of f with
reduced structure. But M2(f ) is the origin with non reduced structure. We have
dimC O2/F1(f ) = 3, which coincides with δ, the number of double points that
appear in a stabilisation of f .

Example 2.5.5 Let f : (C, 0) → (C3, 0) be the space curve f (x) = (x3, x4, x5).
Using SINGULAR , it is not difficult to see that F0(f ) has a primary component of
dimension 0, soM1(f ) is neither reduced nor Cohen-Macaulay.
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2.5.1 Finding a Presentation

From now on we restrict ourselves to finite map-germs f : (X, S) → (Cn+1, 0),
where (X, S) is a Cohen-Macaulay complex space-germ of dimension n. In practice,
we want to use our results in the case that either X = C

n or X = �, the critical
locus of an A -finite map-germ f : (Cn, 0)→ (Cp, 0), with n ≥ p and in both cases
we have Cohen-Maculayness. Moreover, if S = {x1, . . . , xr} and λi is a matrix
presentation of each OX,xi over On+1, then a matrix presentation of OX,S over On+1
is obtained as the block diagonal matrix⊕ri=1λi . So, it suffices to consider the mono-
germ case f : (X, x0)→ (Cn+1, 0). Our purpose now is to describe an algorithm to
compute a presentation:

(2.27)

In Lemma 2.2.25, we showed that in a minimal presentation, p = q .
To find a matrix λ, one can use the following procedure:

1. Choose a projection π : C
n+1 → C

n such that π ◦ f is finite. Such a
projection always exists by the Noether normalization theorem (see [28]). After
a linear coordinate change in C

n+1 we can assume without loss of generality that
π(y1, . . ., yn+1) = (y1, . . ., yn), so π ◦f is given by the first n components of f .

2. By the Auslander-Buchsbaum formula (see e.g. [21]), OX,x0 is free as an On-
module via (π ◦ f )∗. Let g0, . . ., gm be a basis. By Nakayama’s Lemma it is
sufficient that the gi form a C-vector-space basis for OX,x0/(π ◦ f )∗mn. One of
the gi at least must be a unit in OX,x0; we take g0 = 1.

3. Find the unique λij ∈ On such that

fn+1 = λ0
0g0 + · · · + λm0 gm

g1fn+1 = λ0
1g0 + · · · + λm1 gm

· · · = · · · · · · · · · · · · · · ·

gmfn+1 = λ0
mg0 + · · · + λmmgm

(2.28)

Since fn+1 = yn+1 ◦ f , (2.28) can be rewritten as

0 = (λ0
0 − yn+1)g0 + · · · + · · · + λm0 gm

0 = λ0
1g0 + (λ1

1 − yn+1)g1 + · · · + λm1 gm

· · · = · · · · · · · · · · · · · · · · · · · · ·

0 = λ0
mg0 + · · · + · · · + (λmm − yn+1)gm

(2.29)
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Thus the columns of the matrix

⎛

⎜⎜⎝

λ0
0 − yn+1 λ0

1 · · · λ0
m

λ1
0 λ1

1 − yn+1 · · · λ1
m

· · · · · · · · · · · ·
λm0 λm1 · · · λmm − yn+1

⎞

⎟⎟⎠ (2.30)

are relations between the gi .

Proposition 2.5.6 (2.30) is the matrix of a presentation of OX,x0 over On+1. In
other words, the columns of (2.30) generate all the relations among the gi over
On+1.

Proof See [48, Proposition 11.1]. ��
The matrix presentation in Example 2.5.4 is the one obtained with this procedure.

Here we present one more example:

Example 2.5.7 Let f : (C2, 0) → (C3, 0) be the germ of Example 2.2.29,
f (x, y) = (x2, y2, xy + x3 + y3). Take π(X, Y,Z) = (X, Y ); then O2 (source) is
generated over O2 (target) by 1, x, y, xy. We have

f3 = xy + x3 + y3 = 01 + Xx + Yy + 1xy
xf3 = x2y + x4 + xy3 = X21 + 0x + Xy + Yxy
yf3 = xy2 + x3y + y4 = Y 21 + Yx + 0y + Xxy
xyf3 = x2y2 + x4y + xy4 = XY1 + Y 2x + X2y + 0xy

so as matrix of the presentation we obtain

λ =

⎛

⎜⎜⎝

−Z X2 Y 2 XY

X −Z Y Y 2

Y X −Z X2

1 Y X −Z

⎞

⎟⎟⎠ .

The first column shows that the generator xy is a linear combination of the others.
Clearing entries 2,3 and 4 from the last row by column operations and deleting
column 1, we obtain the minimal presentation

λ0 =
⎛

⎝
X2 + YZ Y 2 + XZ XY − Z2

−(XY + Z) Y −X2 Y 2 + XZ
X − Y 2 −(XY + Z) X2 + YZ

⎞

⎠



2 Singularities of Mappings 133

2.5.2 Double and Triple Points in the Target

We give here a more detailed description of how to compute double and triple
points in the target. In particular, we will show that M2(f ) and M3(f ) are Cohen-
Macaulay, provided that they have the expected dimension. Moreover, we will prove
some of the statements of Lemma 2.2.25 in a more general setting. Unless otherwise
specified, we will assume that f : (X, x0)→ (Cn+1, 0) is a finite morphism, where
(X, x0) is Cohen-Macaulay of dimension n and reduced. We start with a result with
describes the spaceM1(f ).

Proposition 2.5.8 Assume (X, x0) is irreducible and f : (X, x0)→ (Cn+1, 0) has
degree k onto its image. Then F0(f ) is generated by hk , where h ∈ On+1 is a
reduced equation for the image of f .

Proof See [48, Proposition 11.7]. ��
The case where (X, x0) is not irreducible can be adapted easily: denote by

(X1, x0), . . . , (Xr , x0) the irreducible components of (X, x0) and assume f |(Xi,x0)

has degree ki onto its image. Then F0(f ) is generated by hk1
1 . . . h

kr
r , where hi ∈

On+1 is a reduced equation for (f (Xi), 0). As a consequence, M1(f ) is always a
hypersurface, so it is Cohen-Macaulay. Moreover, M1(f ) is reduced if and only if
f is generically one-to-one.

Lemma 2.2.25(3) says that when the first of the generators of OX over On+1
is 1, then F1(f ) is generated by the maximal minors of the matrix obtained by
deleting the first row of λ. This simplifies the computation of F1(f ). Moreover,
since M2(f ) is defined by m × m minors of a matrix of size m × (m + 1), then
it always has dimension ≥ n − 1. When M2(f ) has dimension equal to n − 1,
then M2(f ) is a determinantal variety and hence Cohen-Macaulay, by the Hilbert-
Burch theorem (see for instance [12]). But dimM2(f ) = n − 1 if and only if f is
generically one-to-one. Thus we have:

Corollary 2.5.9 Assume f : (X, x0) → (Cn+1, 0) is generically one-to-one. Then
M2(f ) is a determinantal variety of dimension n− 1, and hence Cohen-Macaulay.

These results can be used when we consider an A -finite germ f : (Cn, S) →
(Cp, 0), with 2 ≤ p ≤ n + 1. We recall that the critical locus � is the set of non
submersive points of f , so � = (Cn, 0) when p = n + 1. We saw in Sect. 2.2.7
that dim� = p − 1 and the restriction f |� : � → (Cp, 0) is finite. Since � is
defined by the p × p minors of the Jacobian matrix, it is determinantal and hence
Cohen-Macaulay. Moreover, by the Mather-Gaffney criterion 2.2.20, f has isolated
instability which implies that � is generically smooth, so � must be reduced, by
Serre’s conditions R0 and S1. All the results of this subsection apply to f |� : �→
(Cp, 0).

Again by the Mather-Gaffney criterion we see that f |� is generically one-to-one,
thusM1(f |�) is nothing but the discriminantD = f (�) with reduced structure and
M2(f |�) is Cohen-Macaulay of dimension p − 2. If p ≥ 3 and y ∈ M2(f |�) is a
generic point, then it is not difficult to see that it has exactly two preimages x1, x2 ∈
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� and the multi-germ f : (�, {x1, x2}) → (Cp, y) is an immersion with normal
crossings. It follows that M2(f |�) is smooth at y. Again by Serre’s conditions R0
and S1,M2(f |�) must be reduced.

Example 2.5.10 Consider the presentation λ of Example 2.5.7. Then det(λ) is a
reduced equation for the image of f . It coincides with the equation obtained
in 2.2.29:

X6−2X4Y−2X3Y 3−2X3Z2−8X2Y 2Z+X2Y 2−2XY 4−2XYZ2+Y 6−2Y 3Z2+Z4.

The ideal F1(f ) is generated by the 3 × 3-minors of the matrix λ′ obtained from
λ by deleting its first row. In fact we need only those containing the first column.
They are

XY − Z2 − X3 − Y 3 − 2XYZ,

X2Z + YZ2 +X3Y +XY 2Z,

Y 2Z +XZ2 +XY 3 +X2YZ.

This ideal defines the curveM2(f ) in (C3, 0) which is equal to the singular locus of
the imageM1(f ), with reduced structure. A primary decomposition of F1(f ) gives
five smooth branches: (Y −X2, Z +XY), (Z+ Y 3,X− Y 2), (Y +Z,X+Z) and
two more smooth branches coming from the ideal (Y 2 − YZ + Z2,X + Y − Z).
We have seen in Lemma 2.2.25 that if λ is the presentation matrix of a finite map
germ f : (X, x0) → (Cn+1, 0) with respect to generators g0 = 1, g1, . . ., gm, then
it has the property that minm(λ) = minm(λ′), where λ′ is the matrix obtained
from λ by deleting its first row. This property is called the rank condition (RC)
in [5] and [52], and the ring condition (RC) in [29]. Surprisingly, the rank condition
characterises all the presentation matrices obtained in this way.

Definition 2.5.11 Let λ be an (m+ 1)× (m+ 1)-matrix with entries in On+1 and
λ′ the matrix obtained from λ by deleting its first row. If minm(λ) = minm(λ′), then
we say that λ satisfies the rank condition (RC).

The next theorem appears in [52], based on arguments by de Jong and van
Straten, who also gave a clearer proof in [29].

Theorem 2.5.12 Suppose λ is an (m + 1) × (m + 1)-matrix with entries in On+1
satisfying RC, and such that det λ �= 0 and On+1/minm λ has codimension 2. There
exists a multi-germ of Cohen-Macaulay complex space (X, S) of dimension n and
a finite map f : (X, S) → (Cn+1, 0) such that λ is the matrix of a presentation of
OX,S over On+1.

Proof See [48, Corollary 11.7]. ��
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2.5.3 Triple Points

Cohen-Macaulayness of M3(f ) is proved in [52] under the additional assumption
that (X, x0) is Gorenstein. In this case, f admits a symmetric matrix presentation
([5, 52])—see [48, Theorem 11.8].

The case where (X, x0) is a complete intersection (and in particular, when (X, x0)

is smooth) has the advantage that we can use the results of Scheja and Storch
in [59] to find the symmetric matrix λ explicitly. Suppose π ◦ f is finite, where
π(y1, . . . , yn+1) = (y1, . . . , yn), as in Proposition 2.5.6. Instead of f : (X, x0) →
(Cn+1, 0) we consider F : (X × C, (x0, 0))→ (Cn+1, 0) given by

F(x, t) = (f1(x), . . . , fn(x), fn+1(x)− t).

Since (X, x0) is a complete intersection of dimension n, S := (X × C, (x0, 0)) is a
complete intersection of dimension n + 1. Assume that S is embedded in some
(CN, 0) and that OS = ON/(G1, . . . ,GN−n+1). Let J ∈ ON be the Jacobian
determinant of (F,G) and consider the morphism η : OS → On+1 given by
η(a) = Tr(a/J ), the trace of the On+1-linear endomorphism of the field of fractions
of OS given by multiplication by a/J . Then η(a) is in fact an element of On+1, η
is On+1-linear and η(J ) is a unit in On+1. Moreover, η induces a symmetric On+1-
bilinear map

〈·|·〉 : OS × OS → On+1.

given by 〈a|b〉 = η(ab), which turns out ([59]) to be a perfect pairing.
For each basis G := {g0, . . ., gm} for OS as On+1-module there is a dual basis

Ǧ := {ǧ0, . . ., ǧm} with the property that 〈ǧi |gj 〉 = δij . Let λ := [t]ǦG denote the

matrix of multiplication by t with respect to Ǧ in the source and G in the target.
Then λ is the symmetric matrix presentation of OX,x0 over On+1 whose existence
was claimed above (see [48, Section 11.7] for more details).

Example 2.5.13 Let f (x, y) = (x2, y2, xy + x3 + y3) as in Example 2.5.7. The
presentation matrix obtained there was not symmetric. But we can use the above
procedure to find a symmetric one. We take {1, x, y, xy} as a basis of OS over O3.
With respect to this basis, multiplication by 1, x, y and xy have matrices

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 X 0 0
1 0 0 0
0 0 0 X
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 Y 0
0 0 0 Y
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 XY
0 0 Y 0
0 X 0 0
1 0 0 0

⎞
⎟⎟⎠ ,



136 D. Mond and J. J. Nuño-Ballesteros

respectively. The Jacobian determinant is J = xy (up to a constant factor) and the
matrix of multiplication by J−1 is the inverse of the last matrix in the above list:

⎛

⎜⎜⎝

0 0 0 1
0 0 1

X
0

0 1
Y

0 0
1
XY

0 0 0

⎞

⎟⎟⎠ .

This gives η(1) = η(x) = η(y) = 0 and η(xy) = 4. The matrix of the pairing 〈·|·〉
with respect to this basis is

⎛

⎜⎜⎝

0 0 0 4
0 0 4 0
0 4 0 0
4 0 0 0

⎞

⎟⎟⎠

and the basis dual to {1, x, y, xy} is {xy, y, x, 1} (up a to a constant factor). The
corresponding symmetric presentation matrix is

λs =

⎛

⎜⎜⎝

XY Y 2 X2 −Z
Y 2 Y −Z X

X2 −Z X Y

−Z X Y 1

⎞

⎟⎟⎠ .

In Example 2.5.7, we replaced the matrix λ by a minimal presentation λ0 by
means of column operations. In the same way, we can obtain a symmetric minimal
presentation by applying simultaneous column and row operations to the matrix
λs we have obtained here. It is also straightforward to symmetrise λ0 directly by
column operations.

A first consequence of the existence of a symmetric presentation is that the
conductor ideal C is principal in OX,x0 . This was also shown by Piene in [56].

Corollary 2.5.14 Let f : (X, x0)→ (Cn+1, 0) be finite and generically 1-1, where
(X, x0) is an n-dimensional Gorenstein space-germ. Then C is a principal ideal in
OX,x0 .

Proof Choose a symmetric presentation λ, with respect to generators g0 =
1, . . ., gm. Then by Lemma 2.2.25, F1(f ) is generated by (m0

0, . . .,m
0
m), where mij

the minor of λ obtained by deleting row i and column j . So f ∗F1(f ) is generated
by f ∗(m0

0), . . ., f
∗(m0

m). A simple argument using Cramer’s rule (see [52]) shows
that in OX.x0 , mij = m0

j gi and it follows, by the symmetry of λ, that f ∗F1(f ) is

generated by f ∗(m0
0). ��

We refer to m0
0 as the principal minor of the symmetric presentation matrix λ.



2 Singularities of Mappings 137

Example 2.5.15 Consider the symmetric presentation λ obtained in Example 2.5.13
for f (x, y) = (x2, y2, xy + x3 + y3). The principal minor is

(x + y)
(
x2 + y

) (
x + y2

) (
x2 − xy + y2

)
.

This is the equation for the double point curve D2
1(f ). We see it has five smooth

branches and Milnor number 16. Since M2(f ) has also five smooth branches, this
shows that the involution σ : D2(f ) → D2(f ) sends each branch to itself (see
Example 2.4.10).

The second consequence is the following theorem from [52].

Theorem 2.5.16 Let f : (X, x0) → (Cn+1, 0) be finite and generically one-to-
one, where (X, x0) is an n-dimensional Gorenstein germ. Let λ be a symmetric
presentation of OX,x0 over On+1, with respect to generators g0 = 1, g1, . . ., gm.
Then F2(f ) is generated by the (m−1)× (m−1) minors of the matrix λ′′ obtained
from λ by deleting its first row and column.

Proof [48, Theorem 11.9] gives the proof of Kleiman and Ulrich in [33]. ��
Kleiman and Ulrich go on to show that also for k < m − 1, the radicals of the
ideals min(λ, k) and min(λ′′, k) are equal. Calculations with examples support the
conjecture that these ideals themselves are equal.

By a theorem of Kutz [34] (but see also [31]), the variety of zeros of the ideal of
submaximal minors of a symmetricm×m matrix can have codimension no greater
than 3, and if the codimension is 3 then the variety in question is Cohen Macaulay.
Thus

Corollary 2.5.17 In the circumstances of Theorem 2.5.16, codimM3(f ) ≤ 3.
Moreover, if codimM3(f ) = 3, thenM3(f ) is Cohen-Macaulay.

By applying 2.5.17 to a stabilisation of f , we deduce the following corollary
from the conservation of multiplicity for Cohen-Macaulay spaces.

Corollary 2.5.18 Let f : (C2, S) → (C3, 0) be finite and generically 1-to-1. If
M3(f ) = {0}, then the number of triple points in the image of a stable perturbation
of f is equal to dimC O3/F2(f ).

Example 2.5.19 Consider again the symmetric presentation λ of Example 2.5.13
for f (x, y) = (x2, y2, xy + x3 + y3). The ideal F2(f ) is defined by the 2 × 2-
minors of the matrix λ′′ obtained from λ by deleting its first row and column. This
gives F2(f ) = (X, Y,Z). By Corollary 2.5.18, the number of triple points in a
stabilisation of f is 1. This was used in Example 2.4.10.
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2.6 Open Problems

2.6.1 The μ ≥ τ -Conjecture

Conjecture 2.6.1 Assume f : (Cn, S)→ (Cn+1, 0) is A -finite and either (n, n+1)
are nice dimensions or f has corank one. Then

μI (f ) ≥ Ae-codimension(f ) (2.31)

with equality if f is weighted homogeneous.

The statement is analogous to that of Theorem 2.3.7 for n ≥ p andμ�(f ) instead
of μI (f ). This conjecture is known to be true for n = 1, 2 but it still remains open
for n ≥ 3. The case n = 2 was solved in [30], and a second proof given in [49]. A
proof for n = 1 can be found in [50]. A proof of the conjecture in the particular case
of map-germs of fold type (i.e. multiplicity two) has been also obtained by Houston
in [27].

There is plentiful evidence. In particular, the recent example of Sharland in
[60], of a weighted homogeneous germ (C3, 0) → (C4, 0) of corank 3, has
μI = Ae − codimension = 18, 967. Sharland found the codimension using
the algorithm described here, and calculated μI using a remarkable formula for
weighted homogeneous germs due to Toru Ohmoto in [55].

As we explained in Sect. 2.3.2, the conjecture is true if one can show that
μI (f ) = dimC Ig/Jg, where g ∈ On+1 is a reduced defining equation of the image
of f and Ig = (f ∗)−1(JgOn). And the equality μI (f ) = dimC Ig/Jg follows if
the relative version of the quotient, I rel

G /J
rel
G , is Cohen Macaulay of dimension d .

HereG ∈ On+1+d is a good defining equation for the image of a stable d-parameter
unfolding F , J rel

G is the ideal generated by the partial derivatives of G with respect
only to the variables in C

n+1 and I rel
G = (F ∗)−1(J rel

G On+d ).

2.6.2 Does μ = τ Imply Weighted Homogeneity?

A natural question related to Theorem 2.3.7 and the μ ≥ τ -conjecture 2.6.1
is whether the equality in (2.16) or in (2.31) respectively implies that f is
A -equivalent to a weighted homogeneous map-germ. In the theory of isolated
hypersurfaces singularities (X, 0), a well known theorem of K. Saito in [57] states
that ifμ(X, 0) = τ (X, 0), then we can choose coordinates in the ambient space such
that (X, 0) is weighted homogeneous. Later, H.Vosegaard proved the corresponding
result for ICIS’s, in [64]. Thus, our question can be seen as a natural counterpart of
these theorems, for singularities of mappings with isolated instability.

Assume f : (Cn, S) → (Cp, 0) is A -finite with p ≤ n + 1, and g ∈ Op is
a reduced equation for the discriminant of f (or the image when p = n + 1). It
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follows from Theorem 2.2.23 that the Ae-codimension is equal to dimC Ig/(Jg +
(g)). Hence, the equality

dimC Ig/(Jg + (g)) = dimC Ig/Jg

holds if and only if g ∈ Jg. So, it is seems natural to state the conjecture in the
following way:

Conjecture 2.6.2 Assume f : (Cn, S) → (Cp, 0) is A -finite with p ≤ n + 1 and
let g ∈ Op be a reduced equation for the discriminant of f . If g ∈ Jg , then f is
A -equivalent to a weighted homogeneous map-germ.

2.6.3 μ-Constant Families

A celebrated theorem by Lê and Ramanujam [37] states that if {(Xt , 0)} is an
analytic family of isolated hypersurface singularities of dimension n �= 2 such
that μ(Xt , 0) is constant, then {(Xt , 0)} has constant topological type. This was
improved later by Timourian [63] to show that the family is in fact topologically
trivial. The restriction n �= 2 is due to the use of the h-cobordism theorem in the
proof and the case n = 2 is still open.

It is natural to ask for a Lê-Ramanujam type theorem for analytic families of
map germs {ft : (Cn, S)→ (Cp, 0)} with isolated instability and p ≤ n+ 1. By an
analytic family we mean that we can embed it into an unfoldingF(x, t) = (ft (x), t)
which is origin preserving, that is, ft (S) = 0, for all t . We say that the family is μ-
constant if μ�(ft ) is constant when n ≥ p or if μI (ft ) is constant when p = n+1.

Conjecture 2.6.3 Any μ-constant family of map-germs as above is topologically
trivial.

The case of families of plane curves {ft : (C, S) → (C2, 0)} is not difficult: we
have μI(ft ) = δ(Xt , 0) − |S| + 1, where δ(Xt , 0) is the δ-invariant of the image
(Xt , 0). Therefore if μI is constant then so is μ(Xt , 0), by Milnor’s formula relating
μ and δ, and {(Xt , 0)} is topologically trivial. A simple argument shows now that
{ft : (C, S)→ (C2, 0)} is also topologically trivial as a family of map-germs.

For families {ft : (C2, 0) → (C3, 0)} the conjecture is also true, and follows
from the results of [14]: the authors show that the family is topologically trivial if
μ(D2

1(ft )) is constant. It follows from [40] that

μI(ft ) = Ct + Tt + μ(D2(ft )/S2)− 1, (2.32)

whereCt and Tt are the numbers of Whitney umbrellas and triple points respectively
which appear in a stable perturbation of ft andD2(ft )/S2 is the quotient ofD2(ft )

under the S2-action. The upper semicontinuity of the invariants implies that the three
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numbersCt , Tt and μ(D2(ft )/S2)must be constant when μI (ft ) is constant. Again
by (2.32),

μ(D2
1(ft )) = 2μ(D2(ft )/S2)+ Ct + 6Tt − 1

is also constant.

2.6.4 Defining Equations and Cohen-Macaulayness
of Multiple Point Spaces

The multiple point spaces Dk(f ) have been introduced in Definition 2.4.1 for any
K -finite map germ f . But the definition is based on the existence of a stable
unfolding F of f . In practice, this stable unfolding can have a huge number of
parameters and this makes the explicit computation of Dk(f ) a hard task. It would
be interesting to find explicit defining equations forDk(f ) just in terms of f instead
of F .

For k = 2, this is solved by the ideal I2(f ) described in (2.23) which gives a
simple way to compute D2(f ). Also when f has corank one we have an explicit
construction of all the spaces Dk(f ) given by the “divided differences” (2.22). But
the general case for k ≥ 3 and corank ≥ 2 is a difficult and mysterious problem
which is still open. In the same vein, we know that D2(f ), and Dk(f ) when
f has corank one, are Cohen-Macaulay spaces, provided they have the expected
dimension. As we have seen, this is a nice property when looking at deformations of
f . We hope that an explicit description of the spacesDk(f ) in the general case could
lead to a proof that there too they are Cohen-Macaulay. Once again, calculations
with stable maps of low multiplicity support this conjecture.

A different approach to multiple point spaces is due to Kleiman in [32] and
Laksov in [35]. Kleiman’s construction is done for general mappings f : X → Y ,
where X and Y are schemes (possibly with singularities) and is based on the
principle of iteration: the double point space K2(f ) is defined as the residual
scheme of X ×Y X along the diagonal �X; then K3(f ) is the double point space
of the projection K2(f ) → X, K4(f ) is the double point space of the projection
K3(f )→ K2(f ) and so on. The definition is very clean from the categorical point
of view but again is difficult to find explicit equations ofKk(f ) in a particular case.
It is not difficult to see thatKk(f ) coincides withDk(f ) when X and Y are smooth
and f has corank one, but for higher corank,Kk(f ) andDk(f ) are different spaces,
indeedKk(f ) is not finite over X when f has corank ≥ 2.

In a recent paper [53] (see also [48, Section 9.8]), the authors give an alternative
construction of Kk(f ) when X are Y smooth, by embedding it into a smooth space
and finding explicit equations which generalise the divided differences. It follows
thatKk(f ) are local complete intersections when they have the expected dimension.
Another interesting property is that the spacesKk(f ) provide a desingularisation of
Dk(f ) when k = 2, 3 and f is stable.
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2.6.5 Fitting Ideals

It is also still unknown whether for k > 3 the spaces Mk(f ) defined by the Fitting
ideals Fk−1(f ) are Cohen-Macaulay when they have the expected dimension.
Gruson and Peskine proved in [22] that it is true for germs of corank 1 (see also
[48, §11.6]), and calculations show that it is true for all germs f : (Cn, 0) →
(Cn+1, 0) of multiplicity≤5—see [48, Subsection 11.2.1]. For germs of muliplicity
≤ 5, the strong version of the theorem of Kleiman and Ulrich referred to after
Theorem 2.5.16, that min(λ, k) = min(λ′′, k), also holds. Does this too hold in
general?
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examples are Zariski multiplicity conjecture and the charaterization of topological
triviality of families of isolated and non-isolated singularities. In this chapter we
survey developments in topological equisingularity, some of its relations with other
equisingularity notions, and hint new possible approaches to old questions based
in algebro-geometric methods, Floer theory and Lipschitz geometry. Topological
equsingularity questions, were crucial motivation sources for the development of
the Computer Algebra program SINGULAR; this is explained in an appendix by G.-
M. Greuel and G. Pfister.

3.1 Introduction

Smooth algebraic and analytic varieties are locally diffeomorphic to Euclidean
spaces. On the other hand, the geometry at singular points can be arbitrarily
complicated. This motivated the question of defining equivalence relations which
say when two singularities are “essentially the same”. By a singularity we mean a
germ (X,O) of algebraic or analytic varieties. We will deal with complex varieties.
Although in several equisingularity questions one compares two germs of varieties,
it is more common to study flat families σ : X → T parametrized over a base,
together with a section s : T → X, and to compare the germs (Xt , s(t)) for
different values of t ∈ T . The origin of equisingularity theories goes back to
Zariski and Whitney, and the list of contributors is huge (Teissier, Lê, Gaffney,
Ramanujam, King, Perron, Wall, Briançon, Speder, Henry, Massey, Villamayor,
Luengo, Trotman, Parusiński...). There are several equisingularity notions (Zariski,
Whitney, Topological Equisingularity, several versions of equiresolution), and many
relations between the notions are established. A quite complete picture have been
achieved concerning characterizations of Zariski and Whitney equisingularity in
terms of algebraic invariants, and the relations between them. On the other hand
no complete algebraic characterization of topological equisingularity have been
achieved and many old and classical questions have resisted, already for several
decades, the different approaches that the community has tried, and remain open.
One of the most important ones is Zariski’s multiplicity question.

In this paper we do not aim to summarize the history of the subject, or to give
a comprehensive exposition of some of its main results. Rather we are going to
focus in a few classical open questions, chosen by the personal taste of the author,
highlight some of the approaches, results and methods motivated by them and
propose new possible ideas, problems and connections with newer methods (arc and
jet spaces, Floer theories, Lipschitz geometry...) that could lead to some answers.
The approaches described in this paper lead to several new open problems and
conjectures, from several researchers including the author, whose study may foster
more beautiful developments. We carefully describe the motivation and state this
questions.

As it is not surprising, several of the topological questions concerning the
topology of singularities reach its maximal difficulty in complex dimension 2, since
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this corresponds to the 4-dimensional topology (and 3-dimensional topology of the
link). This is the case in the classical question of whether a μ-constant family
of hypersurfaces is topologically trivial, which only remains open in the surface
case. Beyond hypersurfaces with isolated singularities the algebraic characterization
of topological equisingularity is completely open, and we devote much effort in
explaining the available results and a conjectural program.

In topological equisingularity the analysis of examples is crucial, and manipu-
lating interesting ones by hand is almost impossible. In fact it was in connection
with Zariski’s multiplicity question that the computer algebra program SINGULAR

was developed. The last section of this paper is an appendix by Greuel and Pfister
explaining how this happened. I am very thankful to them for agreeing to contribute
with this section.

By looking at the table of contents above the reader may get an idea of what to
expect.

I would like to thank the referees, A. Nemethi and G.-M. Greuel for useful
remarks, to G.-M. Greuel and G. Pfister for kindly agreeing to write the Appendix,
and to J. L. Cisneros Molina for help concerning presentation.

3.2 A Fast Review on Topology of Hypersurface Singularities
and their Milnor Fibration

We will briefly recall a collection of classical results and methods that are needed
for our discussion. The literature and the set of results available in this direction is so
vast that we can not aim for any kind of completeness. However we have not resisted
to mention, in passing, some results that are not strictly needed in what follows, but
that are close enough to those we need.

Definition 3.2.1 Two complex analytic germs (X1,O), (X2,O) have the same
abstract topological type if there is a homeomorphism ϕ : (X1,O) → (X2,O).
If ϕ extend to the ambient space we say that (X1,O), (X2,O) have the same
embedded topological type. Two holomorphic function germs fi : (Cn,O) → C

are topologicallyR-equivalent if there exist a homeomorphism germ ϕ : (Cn,O)→
(Cn,O) such that f1◦ϕ = f2. If there are homeomorphism germs ϕ : (Cn,O)→
(Cn,O), ψ : (C,O)→ (C,O) such that ψ◦f1◦ϕ = f2 we say that f1 and f2 are
topologically RL-equivalent.

We have the obvious implications for functions and their zero sets: “topologically
R-equivalence”  ⇒ “topologically RL-equivalence”  ⇒ “same embedded
topological type”  ⇒ “same abstract topological type”.

Milnor’s Conical Structure Theorem (Theorem 2.10 of [83]), implies that the
abstract topological type of X is determined by the topological type of the
intersection LX := X ∩ Sε , where Sε denotes the sphere of sufficiently small
radius ε. Likewise, the embedded topological type of a germ (X,O) ⊂ (Cn,O)

is determined by the topological type of the pair (Sε, LX). We call LX the abstract
link of X and (Sε , LX) the embedded link of X.
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The notion of embedded link is most meaningful and studied for hypersurface
singularities. In this case the implication “same embedded link up to homeomor-
phism”  ⇒ “topologically RL-equivalence” was proved by King for n �= 3
(Theorem 3 of [57]), and by Perron [108] for n = 3. Saeki proved conversely
in [114] that having the same abstract or embedded topological type implies having
homeomorphic abstract or embedded links; the case n = 3 is special in his proof and
non-trivial arguments from Perron [108] are used. Putting all these results together
we obtain that the notions “same embedded link up to homeomorphism”, “same
embedded topological type” and “topologically RL-equivalence” are equivalent.

Perhaps the most fundamental source of invariants of hypersurface germs is its
Milnor fibration. In [83], Milnor proved that, given a holomorphic function germ
f : (Cn,O)→ (C, 0) for a sufficiently small radius ε, the mapping

f/|f | : Sε \ V (f )→ S
1

is a locally trivial fibration. Such a fibration shows that the embedded link of a
hypersurface singularity is in fact a fibered link. The typical fibre is called the Milnor
fibre, and its monodromy the Milnor monodromy.

At this point a link characterization of topological R-equivalence can also be
described. Two holomorphic function germs f1 and f2 are called strongly link
equivalent if they have the same embedded link up to homeomorphism, by a
homeomorphism transforming the Milnor fibration of f1 into a fibration homotopic
to the Milnor fibration of f2. King [57] (n �= 3) and Perron [108] (n = 3) proved
that “topological R-equivalence” is equivalent to “strong link equivalence”.

Milnor proved in [83] that if ε > 0 is small enough and δ is positive and smaller
than εN for sufficiently highN (that is δ is small enough in comparison with ε) then
Minor’s fibration is equivalent to

f |Bε∩f−1(∂Dδ)
: Bε ∩ f−1(∂Dδ)→ ∂Dδ,

whereBε andDδ denote the ball inCn and disc in C of radius ε and δ, centered at the
origin. This fibration is sometimes called the monodromy fibration. The action on
the monodromy on the (co)-homology of the Milnor fibre and the homology of the
Milnor fibre together with its intersection and Seifert form are prominent invariants
in the topological setting.

The Milnor fibration can be studied by several methods:

1. Morse theory,
2. polar methods,
3. the resolution approach,
4. the Morsification-deformation method,
5. spaces of arcs and motivic integration.
6. logarithmic geometry.
7. sheaf theoretic, Mixed Hodge theory and D-modules theory and microlocal

methods,

which are complementary to each other.



3 Topological Equisingularity and Related Topics 149

We will not touch the last two items. Some bibliography on log-geometry
methods is [18, 19, 56]. The last item condensates in just one line a massive amount
of work, from different but related methods, which do not fall within the scope of
the present survey. A reasonable account of them would take a much longer article
than the present one.

Morse theory was the method employed originally by Milnor in [83], where in
particular the following result was proved. Define the Milnor number μ(f ) :=
dimC(OCn,O/J (f )), where J (f ) is the jacobian ideal generated by the partial
derivatives of f .

Theorem 3.2.2 (Milnor) Let f : (Cn,O) → C be a holomorphic function germ.
Then

• the link L := f−1(0) ∩ Sε is (n− 2)-connected,
• the Milnor fibre of f is a parallelizable manifold which has the homotopy type of

a finite CW-complex of dimension at most n− 1. If f has an isolated singularity
at the origin, then the Milnor fibre has the homotopy type of a bouquet of μ(f )
spheres of dimension (n− 1).

The polar method consists in considering a generic linear function l : Cn → C

and studying the map (f, l) : (Cn,O)→ C
2. Its discrimimant is a plane curve, and

based on the well known structure of the embedded topology of plane curves, the so-
called Carrousel Method, introduced by Lê [67], yields very precise information on
the Milnor fibration by induction on the dimension (which is achieved by restricting
to the slices V (l − t)). It yields the following improvement of the result above:

Theorem 3.2.3 (Lê-Perron [69]) Let f : (Cn,O)→ C be a holomorphic function
germ with an isolated singularity at the origin. Then the Milnor fibre is a 2(n − 1)
ball with μ(f ) (n− 1)-handles attached.

The polar method has many other applications, for example it was used to
construct monodromy diffeomorphisms without fixed points in [68], and yields a
proof the Monodromy Theorem [67], which states that the eigenvalues of the action
of the monodromy on the homology of the Milnor fibre are roots of unity, and the
size of the Jordan blocks is at most n. The monodromy theorem is one of the most
central results in the theory and admits proofs using very different methods. The
polar method proof has the virtue of producing a generalization of the monodromy
theorem for isolated complete intersection singularities, a class of singularities to
which a good portion of the theory for hypersurfaces extends (see [74] for a quite
complete account).

The resolution method uses an embedded resolution π : X → C
n of f−1(0)

which does not modify away from the singular set, and studies the composition
f ◦π . It was used by A’Campo in order to study the Lefschetz number and the
zeta function of the monodromy [1, 2], and also yields a proof of the monodromy
theorem (see [6], for example).

The Morsification method works primarily for isolated singularities, although it
has been extended to special classes of non-isolated ones (see later in this paper). A
complete exposition of the method for isolated singularities, including all the results
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mentioned below can be found in [6] . The idea of the method is to consider a generic
deformation fs of f ; then for small s �= 0 the isolated singularity of f splits into
finitely many ordinary quadratic points (Morse points); such a deformation is called
a Morsification. One gains information on the Milnor fibration of f via the function
fs , which have several simpler singularities (Morse points) by means of the map
F : Cn × C → C × C defined by F(x, s) := (fs(x), s), whose discriminant is
a plane curve as in Carrousel Method [6]. For example, each Morsification yields
a basis of the homology of the Milnor fibre generated by one embedded sphere of
dimension (n − 1) for each of the Morse points. Such spheres are called vanishing
cycles. Picard-Lefschetz theory allows to reconstruct the algebraic monodromy (that
is, the action of the monodromy in homology) in terms of the intersection matrix
associated with a basis of vanishing cycles. Morsifications also allow to define the
monodromy group of a singularity, a subgroup of the mapping class group of the
Milnor fibre generated by the Dehn twits associated to a basis of vanishing cycles.
Characterizing when a sphere embedded in the Milnor fibre is a vanishing cycle,
and giving an intrinsic description of the monodromy group as a subgroup of the
mapping class group of the Milnor fibre are hard problems that has been solved
only for curves and very recently [112].

Even more precise properties on the Milnor fibration can be gained studying,
instead of F , the whole versal deformation of f . For instance, exploiting the irre-
ducibility of the discriminant of the versal deformation the following can be proved.
To a basis of vanishing cycles associated to a Morsification we attach a Dynkin
diagram as follows: draw a vertex for each vanishing cycle, and connect two vertices
with an edge if the intersection number between the two corresponding vanishing
cycles is non-zero. The following two results are usually called “irreducibility of the
monodromy” (see [6], Section 3.2):

Theorem 3.2.4 (Gabrielov [40], Lazzeri [65]) Let f : (Cn,O) → C be a
holomorphic function germ with an isolated singularity at the origin. The Dynkin
diagram of the basis of vanishing cycles of any Morsification is connected.

The following result proved independently by Gabrielov, Lazzeri and Lê can be
deduced as a corollary:

Theorem 3.2.5 (Gabrielov, Lazzeri, Lê) Let ft be a deformation of a function
germ f0 having an isolated singularity. If for every t the function ft has only one
critical value, then the function ft has only one critical point.

Several aspects of the Milnor fibration are invariant by topological equivalence.
In particular the following result is due to Teissier in the case of isolated singularities
and by Lê in general:

Theorem 3.2.6 (Lê [66], Teissier [132]) If f and g are function germs having the
same embedded topological type then their Milnor fibres are homotopy equivalent,
in particular they have the same Betti numbers.

Even if the result stated in the references above is restricted to Betti numbers, their
proofs yield the claimed homotopy equivalence.
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The theorem above implies the following previous result of A’Campo [1] and
Lê [66]:

Theorem 3.2.7 (A’Campo, Lê) If f : (Cn,O)→ (C, 0) has the same embedded
topological type than a smooth germ, then f is smooth.

The Theorem above should be compared with the analogous situation for
the abstract topological type (see Mumford’s theorem 3.3.4 and the existence of
hypersurface singularities with topological sphere links below).

A very recent development by A’Campo, Pe Pereira, Portilla, Sigurðsson and
the author express monodromy of curve singularities as a generalized Dehn twist
(a so called tête-à-tête twist) around a 1-dimensional skeleton which is a strong
deformation retract of the Milnor fibre. (see [3, 111]).

3.3 Open Problems in Topological Equisingularity

3.3.1 Zariski’s Conjectures

In his influential paper [154] Zariski posed 8 questions that served as an inspiration
for the later development of the subject. In this paper we are mainly interested in
Questions A and B, which are of topological nature. In order to formulate them let
us recall that the multiplicity m of a function is the degree of the lowest non-zero
terms in its series expansion f = fm + fm+1 + ... in homogeneous forms, and that
the projectivized tangent cone is the projective hypersurface V (fm) ⊂ P

n−1
C

.

Question 3.3.1 (Zariski, [154]) Let V (f ) and V (g) be hypersurface germs in
(Cn,O) having the same embedded topological type.

(A) Are the multiplicities of f and g the same?
(B) Are the projectivized tangent cones of V (f ) and V (g) homeomorphic?

Question B was answered in the negative, as it will be explained in detail
below. Question A is still open, and is to the present date one of the major open
problems in Singularity Theory. If one of the hypersurfaces is smooth the conjecture
follows from Theorem 3.2.7. We would like to single out also the partial result
of Ephraim [25] (independently Trotman [136]), who proves the conjecture under
the hypothesis that the homeomorphism is C1. Conjecture A was also proved by
Zariski [153] for plane curve singularities, if one of the germs is smooth (see
Theorem 3.2.7), if n = 3 and one of the germs has multiplicity 2 (see Navarro-
Aznar [87]), if n = 3 and f and g are quasihomogeneous with an isolated critical
point at the origin (Xu-Yau [149, 150]), if n = 3, f and g have an isolated critical
point at 0 and the arithmetic genus of V (f ) is at most 2 (Yau [151]) and for
suspensions of irreducible plane curve singularities (Mendris-Némethi [82]). If f
and g are topologically right-left equivalent by bilipschitz homeomorphisms Risler-
Trotman [113] proved that they have the same multiplicity. See Sect. 3.6 for further
information on the Lipschitz version of multiplicty’s conjecture.
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The reader may consult Eyral’s survey [26] and book [27] for further information
on Zariski’s multiplicity conjecture.

One may ask to what extent the abstract topology determines either the embedded
topology, or analytic invariants like the multiplicity. In dimension 1 having the same
abstract topological type is the same that having the same number of irreducible
components, since the abstract link is a disjoint union of circles, one for each
irreducible components. On the other hand the embedded link is an iterated torus
link, and in its topology all the information on Puiseux exponents and contact order
between branches is codified. So, in dimension 1 the abstract topology is too simple
to determine the embedded one, or to determine the multiplicity.

For the surface case the abstract topology contains already substantial infor-
mation. For example, in the surface case the topology of the embedding of the
exceptional divisor in the minimal resolution of singularities is equivalent to the
abstract topology of the link [90], but even in this case this information is not enough
to determine the embedded topology or the multiplicity:

Example 3.3.2 (Némethi [91]) The surface singularities x3 + y7 + z21 = 0 and
x4 + y5 + z20 = 0 have isomorphic abstract links but different embedded topology.
In fact their Milnor numbers are 240 and 228 respectively.

It is remarkable that in [82] the authors not only recovered the multiplicity from
the embedded topology. In fact they study functions of the form f (x, y)+ zN , for f
irreducible, and recover the whole set of Puiseux pairs and N from the topology of
the abstract link of V (f (x, y)+ zN) when the abstract link is a rational homology
sphere. If the abstract link is not a rational homology sphere, in special cases there
are pairs of suspensions with the same link but different Puiseux data and N .
However, in these cases too, the link together with the Milnor number determines
the Puiseux pairs of f and the integer N .

They proposed the following daring conjecture:

Conjecture 3.3.3 (Mendris, Némethi) Assume that V (f ) ⊂ C
3 is an isolated

hypersurface singularity with rational homology sphere abstract link. Then the
topology of the abstract link characterizes completely the embedded topological
type, the geometric genus and the multiplicity.

The following theorem due to Mumford [86] allows to characterize, among
normal surface singularities, the smooth ones in terms of the abstract topology (that
is, the abstract topology characterizes when the multiplicity of a normal surface
singularity is equal to 1).

Theorem 3.3.4 A normal surface germ (X,O) is smooth if and only if its abstract
link has trivial fundamental group.

In higher dimension isolated hypersurface germs (X,O) which are non-smooth,
but whose link is homeomorphic to a sphere were discovered by Brieskorn, Hirze-
bruch and Milnor. Even more interestingly, the link of some of such hypersurfaces
carries Milnor’s exotic differentiable structures (see [14] and [83]). This rules out
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the chance of recovering the multiplicity (even charaterizing multiplicity= 1) from
abstract topological information in the higher dimensional case.

This behavior should be compared with the situation concerning the different
notions of topological triviality for families, see next section and Remark 3.3.9.

3.3.2 Topological Triviality Conjectures

The conjectures above have a very important special case: the family versions of
these questions. Now we will introduce these questions and relate them with other
classical questions as well.

For the kind of problems we are dealing with it is enough to work with
families depending holomorphically over a disc. A family of holomorphic functions
deforming a germ f : (Cn,O) → (C, 0) is a holomorphic function F : U → C

defined in an open neighborhood U of (O, 0) in C
n × T such that f (x) =

F(x, 0). Here T denotes a disc in C containing 0. We denote by ft the restriction
F |U∩(Cn×{t}). Often it will be needed to consider the map F̄ :U→ C×C defined
by F̄ (x, t) := (F (x, t), t). Let X be an analytic space. A deformation of X over a
base (T , 0) is a flat morphism X→ T together with an isomorphism θ : X → X0,
where Xt denotes the fibre over t . The notion of deformations of an embedded
analytic space X ⊂ C

n is defined analogously. A deformation F of a function f
induces a deformation F−1(0) → T of f−1(0), in fact it induces an embedded
deformation.

Definition 3.3.5 A family of holomorphic functions is R-trivial if there exists
a homeomorphism � : U → U (perhaps after shrinking U to a smaller
neighborhood of (O, 0)), such that � is of the form �(x, t) = (φt (x), t) and
ft◦φt = f0 for all t ∈ T .

A deformation X → T is topologically trivial if there exists a homeomorphism
� : X → X0 × T which commutes with both projections to T ; that is, for any
t ∈ T , there is an induced homeomorphism φt : Xt → X0, and the family
of homeomorphisms is continuous in t . The notion of topological triviality for
embedded deformations is defined analogously.

Topological RL-triviality can also be defined, but we will not focus on it in
this paper. Let F be a family of holomorphic functions deforming a germ f . Then
X := F−1(0) → T is a deformation of X := f−1(0), and topological R-triviality
of F obviously implies topological triviality of X → T . In the situations we are
dealing with, when we are able to prove topological triviality of X → T , then we
can deduce topological R-triviality of F . This is the reason why we do not consider
the intermediate relations “topological” RL-triviality or “embedded topological
triviality”.

The critical values of any complex analytic function are isolated (this is an easy
consequence of Curve Selection Lemma). So, given a family of functions we can
assume, after shrinking the domain, that 0 is the only critical value of f0. Then, if
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the family is topologically R-trivial, using Theorem 3.2.7 we conclude that for any
t ∈ T the function ft has a single critical value. Without loosing generality we can
assume that 0 is the only critical value of ft for any t , that is that f−1

t (0) is the only
singular fibre of ft . Working with families of functions with isolated singularities
we get a much more precise condition:

Lemma 3.3.6 If a family F is topologically R-trivial, then (after shrinking the
domain U)

1. we may assume that 0 is the only critical value of ft for all t ∈ T . In other words,
the discriminant of F̄ is {0} × T .

2. if f0 has an isolated singularity at the origin we may assume that ft also has an
isolated singularity at the origin and that μ(ft ) does not depend on t .

Proof The first assertion has been proved above. The second is a consequence
on the invariance of the Betti numbers of the Milnor fibre for topologically R-
equivalent functions (Theorem 3.2.6) and the fact that the middle dimension Betti
number is the Milnor number. The second assertion can be deduced also from the
first as follows: by the first assertion all singular points of ft are in f−1

t (0). Since the
Milnor number is the intersection number of the partial derivatives, by conservation
of intersection number by deformation of the equations we have that μ(f0) equals
the sum of the Milnor numbers of ft at all singular points. We conclude using
Theorem 3.2.5. ��

A remarkable result of Lê and Ramanujam [70], combined with work by
Timourian and King [58] provides a converse except in the surface case:

Theorem 3.3.7 (Lê-Ramanujam, King, Timourian) Let ft : (Cn,O) × C be a
family of isolated singularities with constant Minor number at the origin. If n �= 3
then

1. For any t we have that (Cn, f−1
0 (0)) and (Cn, f−1

t (0)) have the same embedded
topological type.

2. Furthermore, the family is topologically R-equivalent.

Proof (Main Steps of the Proof) Lê and Ramanujam proved the first part of the
Theorem. They compare the Milnor fibres of ft and f0 as follows: fix t �= 0 and
let εt < ε0 be radii of the Milnor fibrations of ft and f0 respectively. Let δ > 0
be sufficiently small so that it serves as a radius for the Milnor disc both for f0 and
ft . They prove using an easy argument based on Ehresmann Fibration Theorem that
f−1
t (δ) ∩Bε0 is diffeomorphic to the Milnor fibre of f0. Then we have an inclusion

f−1
t (δ) ∩ Bεt ⊂ f−1

t (δ) ∩ Bε0
of the Milnor fibre of ft into the Milnor fibre of f0. Define the cobordism

Wt,δ := f−1
t (δ) ∩ Bε0 \ B̊εt (3.1)
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to be the difference of the two Milnor fibres. Using (with some care) that both Milnor
fibres have the homotopy type of a bouquet of μ(ft ) = μ(f0) spheres, and that
the links are 1-connected by Theorem 3.2.2 they deduce that the cobordism Wt,δ
is homotopically trivial (a h-cobordism). Now, by the dimension assumption the
hypotheses of Smale’s h-cobordism Theorem are satisfied, and one concludes that
the cobordismWt,δ is trivial. This allows to show that the Milnor fibration associated
with f0 is smoothly equivalent to the Milnor fibration associated with ft . This is
a very important intermediate step in the proof. For n = 2 the cobordism is 2-
dimensional, and easy to analyze.

They conclude the proof of the first assertion using that the mapping

ft |Bε0\B̊εt∩f−1(Dδ)
: Bε0 \ B̊εt ∩ f−1(Dδ)→ Dδ (3.2)

is a trivial fibration. This is another easy consequence of Ehresmann Fibration
Theorem, but uses in a crucial way that ft has an isolated singularity at the origin
and that μ(ft ) is constant. ��

After this, King [58] and Timourian [135] proved the second part in an
independent way. I would like to highlight some steps in King’s approach. King
works in larger generality, and his proof applies to classes of real singularities. As
explained above, a μ-constant family ft satisfies that the origin is the only critical
point of ft . This is in King’s terminology a family with no coalescing critical points.
Given a μ-constant family for each t sufficiently close to the origin we assign a
cobordism as follows. Let ε0 be a Milnor radius for f0. Since the intersection of
Sε0 with f−1

0 (0) is transversal, the same happens for the intersection of Sε0 with
f−1
t (0) for t sufficiently small. Let εt < ε0 be a Milnor radius for ft . The absence

of critical points outside the origin show that the following space is a cobordism
between Sεt ∩ f−1

t (0) and Sε0 ∩ f−1
t (0):

Wt := f−1
t (0) ∩ Bε0 \ B̊εt . (3.3)

In fact, because of the triviality of the map (3.2) we have that Wt is diffeomorphic
toWt,δ .

With these notations King’s result implies the following in our setting:

Theorem 3.3.8 (King) Let ft : (Cn,O) × C be a family of isolated singularities
with constant Minor number at the origin. Then:

1. The cobordismWt is homologically trivial.
2. If the cobordismWt is invertible then f0 is topologically R-equivalent to ft .
3. The family is topologically R-trivial if and only ifWt is invertible for all t .

Proof The first assertion was proved already by Lê and Ramanujam in [70] as we
have just explained. For the last assertion it is worth to remark that it is enough to
prove that Wt is invertible for a single t �= 0 which is sufficiently small. We refer
to [58] for a complete proof. ��
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Remark 3.3.9 Notice that if f−1
t (0) and f−1

0 (0) are homeomorphic then it is easy
to prove that the cobordismWt is invertible. We conclude that in the case of families
ft with isolated singularities, constant abstract topological type implies topological
R-equivalence. This gives an indication that when dealing with families one needs
less hypotheses to conclude triviality statements. Indeed, abstract equisingularity
does not imply embedded one even in the curve case when comparing germs
that are not in family. However, in case that the germs are in a family abstract
equisingularity implies topological R-triviality, which is the strongest possible
topological equisingularity notion.

In the case of isolated singularities, a result of Siersma [126] implies that if ε0 and
εt are Milnor radii for f0 and ft , for sufficiently small t the intersection f−1

t (0)∩Bε0
has the homotopy type of a bouquet of μ(f0)− μ(ft ) spheres. Since f−1

0 (0) ∩ Bε0
is contractible by the Conical Structure Theorem, we have

Remark 3.3.10 The Milnor number must be constant when the cobordism Wt is
homologically trivial.

The combination of Zariski multiplicity question with the above discussion leads
to the following important open questions:

Question 3.3.11 Let ft : (Cn,O) → C be a μ-constant family of isolated
singularities:

1. Is ft topologically R-trivial?
2. Is the multiplicity of ft constant.

One could formulate also the family version of Zariski’s Question B, but as we
will see below it has a negative answer.

The first question was conjectured by Hironaka, according to Teissier [131], and
is open only for n = 3 due to Theorem 3.3.7. The reason are low-dimensional
topology difficulties that make the analysis of the cobordismWt very hard.

The second question is open for any n > 2. It can be formulated for families of
functions defined over every field, since both the hypothesis and the conclusion are
of an algebraic nature. For the curve case (n = 2), it is worth to notice that there
exists no purely algebraic proof. The only proof over the complex numbers consists
in proving that a μ-constant family is topologically trivial, and then applying the
affirmative answer known for Zariski Multiplicity Question for n = 2. For families
of functions defined over a field of characteristic 0, an application of Lefschetz’s
Principle gives the same conclusion. Gabrielov and Kushnirenko [41] answered
Question 3.3.11 affirmatively for f0 homogeneous. Greuel [45] and O’Shea [102]
proved it for μ-constant deformations of functions f0, with the only hypothesis that
f0 is quasi-homogeneous.

Remark 3.3.12 An interesting historical remark is that Question 3.3.11 (2) was one
of the main driving motivations for the computer algebra program SINGULAR. An
appendix of this paper by Greuel and Pfister summarizes the origin of SINGULAR.
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3.3.2.1 Other Results Related to Topological Triviality Questions

Let ft : C
n → C be a family of functions holomorphically depending on a

parameter t such that f0 has an isolated singularity at the origin. Let X ⊂ C
n × C

be defined by (x, t) ∈ X if and only if ft (x) = 0. As it has been explained above if
X is topologically trivial as a family then μ(ft ) is constant. Topological triviality
is the weakest equisingularity notion for families of analytic spaces. Stronger
notions are Zariski’s equisingularity for systems of generic projections and Whitney
equisingularity (see Parusiński and Trotman contributions to this Handbook for
surveys of these equisingularity conditions). In fact the following sequence of
implications holds:

Theorem 3.3.13 “Zariski’s equisingularity for systems of generic projections” ⇒
“Whitney equisingularity”⇒ “topological triviality”.

The first implication is due to Speder [129] and the second is Thom’s famous
“first isotopy lemma” . The fact that the first assertion implies the third was proved
in a stronger form by Varchenko (he did not need to use generic projections,
see [140–143] for this and related results). So both Zariski’s equisingularity for
systems of generic projections and Whitney equisingularity should imply constancy
of multiplicity if we want that Question 3.3.11 (2) has a positive answer. In fact these
two implications have been confirmed in the literature. For Zariski’s equisingularity,
even without genericity assumption, it has been shown already by Zariski in [155].
For Whitney equisingularity it was proved by Hironaka in [53]. Briançon and
Speder [12] gave counterexamples to both converse implications.

The implication “Whitney equisingularity” ⇒ “constant multiplicity is also a
particular case of the following beautiful characterization of Whitney equisingular
families of hypersurfaces (which was proved later). Given a function germ f :
(Cn, 0) → C, its μ∗(f ) sequence is the sequence of Milnor numbers of the
restrictions of f to the generic linear sections of any dimension through 0 in C

n.

Theorem 3.3.14 (Teissier, Briançon-Speder) Let {F(x, t) = 0} be a family of
isolated hypersurface singularities at the origin, depending holomorphically on a
parameter t . Then {F(x, t) = 0} is Whitney equisingular along the t-axis if and
only if μ∗(ft ) is independent of t .

Teissier [131] proved the ”if“ part and Briançon and Speder [13] the converse.
The Milnor number of the restriction of f to a generic line equals the multiplicity
minus 1. So, Teissier result implies the invariance of multiplicity under Whitney
equisingularity. Another important consequence is that in order to find possible
conuterexamples for Question 3.3.11 (1), one should find μ constant families that
are not μ∗-constant. This is not extremely hard, but already takes a bit of effort.

Families which are linear in the parameter (of the form f0 + tf1 for f0, f1 ∈
OCn,O and t the parameter of T ) are easier to handle with respect to Question 3.3.11.
In fact Parusiński gave an affirmative answer to Question 3.3.11, (1) in [104], and
Trotman answered Question 3.3.11, (2) in [136].
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An important ingredient in Parusiński’s proof is the following characterization
due to Lê and Saito [71]:

Theorem 3.3.15 (Lê-Saito) Let ft : (Cn, 0) → C be a family of function germs
with an isolated singularity at the origin, depending holomorphically on t , with
t ∈ D a disc. Denote by F : Cn × C → C the function F(x, t) := ft (x). The
following are equivalent

(i) the Milnor number μ(ft ) is independent of t for t close to the origin.
(ii) Thom Af condition is satisfied: for any sequence of points {(xk, tk)}k∈N

converging to (0, 0) and with xk �= O , the limit of the tangent spaces
T(xk,tk)F

−1(F (xk, tk)) (assume the limit exists and otherwise take a subse-
quence) is a hyperplane containing the axis {O} × C.

(iii) for any sequence of points {(xk, tk)}k∈N converging to (0, 0) and with xk �= O
the limit

lim
k→∞ |∂F/∂t (xk, tk)|/sup{|∂F/∂zi(xk, tk)| : 1 ≤ i ≤ n} = 0,

where (z1, . . . , zn) is a coordinate system of Cn.

This criterion was used by Greuel in his proof of constancy of multiplicity for
μ-constant families of quasi-homogeneous germs [45].

The last two conditions are easy reformulations of each other. The point of listing
the condition (iii) is to compare it with the following result due to Teissier [131].

Theorem 3.3.16 (Teissier) Let ft : (Cn, 0) → C be a family of function germs
with an isolated singularity at the origin, depending holomorphically on t , with
t ∈ D a disc. Denote by F : Cn × C → C the function F(x, t) := ft (x). The
following are equivalent

(i) {F(x, t) = 0} is Whitney equisingular along the t-axis (equivalently the μ∗
sequence is constant).

(ii) ∂F/∂t belongs to the integral closure of the ideal (z1, . . . , zn) � (∂F/∂z1, . . . ,

∂F/∂zn).
(iii) There exists a positive constant C such that

|∂F/∂t| ≤ C|z|sup(|∂F/∂zj | : j ∈ {1, . . . , n}).

The second and third conditions are equivalent, and the third condition is obvi-
ously stronger then the third condition in Theorem 3.3.15. Teissier’s characterization
of Whitney equisingularity in terms of integral closure was greatly generalized
by Gaffney to a theory of equisingularity in higher codimension, which we will
not touch here since it goes away from the main topic of our paper. The reader
may consult Wall’s survey [148] instead. Also, a characterization of Whitney
equisingularity in terms of the conormal space was obtained by Henry, Merle and
Sabbah (see [50, 51]).
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A consequence of Parusiński and Trotman papers is that finding possible
counterexamples for Question 3.3.11 becomes harder: a μ-constant family ft =
f0 + tf1 + t2f2 + ... is essentially non linear if the linear interpolation between
a generic member ft0 for a fixed values t0 �= 0 generic and f0 is not μ constant.
If the family is not essentially non-linear then Parusiński and Trotman Theorems,
combined with Theorem 3.3.8 show that the family is topologically R-trivial and
equimultiple. On the other hand finding examples of essentially non-linear μ-
constant families, which are not μ∗-constant families is not so easy. All known
examples have high Milnor numbers, and checking that a candidate family is in fact
μ-constant can be computationally very expensive. In fact the computer program
SINGULAR was born in the attempt of finding counter-examples to Question 3.3.11
(2). This is explained in detail in an appendix to this paper by Greuel and Pfister.

An important class of functions are those Newton non-degenerate with respect
to their Newton polyhedron. Kushnirenko [60] provided a formula for the Milnor
number for this kind of functions only in terms of the Newton polyhedron. Oka [99]
and Damon-Gaffney [20] proved that families of Newton non-degenerate functions
with constant Newton polyhedron are topologically trivial. Oka’s method consists
in proving the existence of a uniform Milnor radius (see next section). Very recently
Leyton, Mourtada and Spivakovsky [73] have posted a preprint in arXiv where μ-
constant families of Newton non-degenerate functions are proven to be topologically
trivial; their method is to prove simultaneous embedded resolution, a much stronger
result (see Sect. 3.3.6).

3.3.3 Vanishing Folds

Given a μ-constant family, if there exists a uniform Milnor radius for ft for t
sufficiently small then the cobordism Wt is automatically trivial, and hence the
family is topologically R-trivial by Theorem 3.3.8. This happens for example for
quasi-homogeneous μ-constant families. It is remarkable that, given a μ-constant
family, it is unknown whether there exists a Hermitian form in C

n such that there is
a uniform radius for the Milnor ball (for the distance associated with that Hermitian
metric). This is the viewpoint taken by O’Shea in [101]. Fixed a Hermitian metric
H in C

n let us denote by dH the distance function to the origin. An H -vanishing
fold is a real analytic curve α : (0, t0)→ C

n×T of the form α(t) = (α1(t), t) such
that for any t ∈ (0, s) the restriction of the function dH to f−1

t (0) has a critical point
in α1(t), and such that limt→0 α(t) = 0. By Curve Selection Lemma a vanishing
fold exists if there is no uniform Milnor radius for the distance function dH . O’Shea
formulates the following conjecture, which remains open and implies an affirmative
answer to Question 3.3.11, (1).

Conjecture 3.3.17 (O’Shea) If ft is a family of isolated singularities at the origin,
and for any Hermitian metricH the family ft has anH -vanishing fold thenμ(ft ) <
μ(f0) for t �= 0 sufficiently small.
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One may interpret the approach of O’Shea as the attempt to show that the
cobordismsWt are trivial by finding a function without critical points in them.

The only result I know in this direction is Oka’s paper [99] where uniform
Milnor radius is proven for Newton non-degenerate functions with constant Newton
polyhedron.

3.3.4 The Low Dimensional Topology Approach

Another tempting approach is to try to exploit that the 3-manifolds that can be the
links of surface singularities (which are the boundaries of the cobordismWt ) are of
a very particular kind: negative-definite plumbing 3-manifolds. These manifolds are
simple in the sense that they have no hyperbolic hyperbolic/atoroidal pieces in their
geometric/JSJ decomposition, and moreover can be constructed from a negative
definite decorated graph via Neumann’s plumbing construction. Building on work
of Waldhausen [145], Neumann [97] provided a plumbing calculus that completely
codifies the topology of such manifolds in terms of graphs, and the operations that
can be performed in a graph while keeping the same topology. Plumbing manifolds
are also called graph manifolds.

This viewpoint has been pursued by Perron and Shalen [109]. In page 3 of their
paper they state:

Remark 3.3.18 “It can be proved that the Lê-Ramanujan theorem is true if the links
of f0 and ft are homeomorphic. This is a well-known consequence of an argument
due to Levine [72]”

Later we will see that the same statement is also a consequence of Laufer work
(with algebraic geometry methods).

Exploiting the fact that the links are graph manifolds Perron and Shalen proved
the following:

Proposition 3.3.19 (Perron-Shalen) Let M , N be two compact, connected,
closed, irreducible graph manifolds with infinite fundamental group and suppose
there exists a cobordismW betweenM and N such that:

(i) π1(N)→ π1(W) is surjective;
(ii) W is obtained from N by adding handles of index 2;

(iii) the inclusionsM → W and N → W are Z-homology-equivalences.

ThenM and N are homeomorphic.

Conditions (ii) and (iii) are satisfied in the cobordisms appearing in μ-constant
families. The second is because f−1

f (0) is Stein and the distance function is
strictly pluri-subharmonic, and the third was proved by Lê and Ramanujam. So
the above proposition reduces Question 3.3.11 (1) to the proof of condition (i) of
Proposition 3.3.19.
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The previous theorem and the following remark hint a possible approach to
Question 3.3.11 (1) based on the study of fundamental groups of 3-manifolds.

Remark 3.3.20 Except in the case of cyclic quotient and cusp surface singularities,
the links of normal surface singularities are sufficiently large in the sense of Wald-
hausen, and therefore their homeomorphism type is determined by the fundamental
group [144]. So, except for a well-known list of classes, that should be possible to
handle by different methods, in order to answer Question 3.3.11 (1) one is reduced
to study whether the fundamental groups of the links are isomorphic or not. This is
still a hard question.

3.3.5 The Topological Counter-Example of Borodzik
and Friedl

If ft is a μ-constant family of surface singularities the associated cobordism Wt
satisfies the following properties (see the explanations given above and [10]):

(a) Wt and L0 and Lt are compact oriented, and L0, Lt are plumbed 3-manifolds.
(b) The image of π1(Lt ) in π1(Wt ) normally generates π1(Wt).
(c) Wt can be built from Lt × [0, 1] by adding handles of indices 0, 1, and 2.
(d) The maps H∗(L0;Z)→ H∗(Wt ;Z) and H∗(Lt ;Z) → H∗(Wt ;Z) induced by

inclusions are isomorphisms.

Notice that Property (b) is a slight weakening of Condition (i) in Proposi-
tion 3.3.19. As a measure of the difficulty of proving Lê-Ramanujam conjecture
for surfaces by purely topological statements we would like to point out that in [10],
the authors construct a non-trivial cobordism satisfying Properties (a)-(d) above.
Therefore it does not satisfy Condition (i). No example is known with (a) replaced
by the following stronger condition:

• Wt andL0 andLt are compact oriented, andL0,Lt are negative-definite plumbed
3-manifolds.

So, it appears that the negative-definite condition is an essential one. In [10] the
authors point out two further conditions thatWt must satisfy when it comes from the
Lê-Ramanujam conjecture situation, but that their counter-example does not satisfy:
Wt is Stein and symplectic, with one concave and one convex boundaries.

3.3.6 Simultaneous Resolutions

Equiresolution of families of algebraic varieties, and its relation with equisingularity
conditions has been studied by many authors from several points of view. I will
only present those developments in connection with the possible approach to



162 J. F. de Bobadilla

Question 3.3.11 (1) that is described below. Throughout this section we will assume
basic knowledge on the theory of normal surface singularities. The reader may use
Némethi’s [90] as a reference.

In [133] Teissier introduced the following simultaneous resolution notions, and
posed the problem of relating them with equisingularity criteria. Let σ : X→ T be
a family of Gorenstein normal surface singularities. A proper modification

� : Y→ X

from a smooth 3-fold Y is called a very weak simultaneous resolution if

(a) Y is flat over T ,
(b) Yt is a resolution of Xt for every t ∈ T .

Let s : T → X be a section of σ and assume that the singular set of Xt is the point
s(t), and that � is an isomorphism over X \ s(T ). Denote by E := �−1(s(T )) the
exceptional divisor with its non-reduced structure, and by (E)red the exceptional
divisor reduced structure. The map � is a weak simultaneous resolution of the
family of germs (Xt , s(t)) if it is a very weak simultaneous resolution and, in
addition,

(c) the restriction σ◦�|(E)red : (E)red → T is a locally trivial fibration.

The map � is a strong simultaneous resolution of the family of germs (Xt , s(t)) if
it is a very weak simultaneous resolution and, in addition,

(c’) the restriction σ◦�|E : E→ T is simple,

where simple is a version of locally trivial which takes into account the non-reduced
structure (see [133]) for details.

After work of Laufer [63, 64], Vaquié [139], Kollár and Shepherd-Barron [59] the
following characterizations were found. Given a normal surface germ let X̃min → X

be its minimal resolution, and E be its exceptional divisor. The canonical divisor
KX̃min

is numerically equivalent to a Q-divisor with support in E, and hence the

intersection numberK2
X := K2

X̃min
is well defined. When X is a Stein surface which

has several singularities K2
X is the sum of the contributions of each singular point;

observe that, even if X0 has a single isolated singularity, this singularity may split
in several singular points when deforming it..

Theorem 3.3.21 (Laufer) Let σ : X → T be a family of Gorenstein normal
surface singularities. Then K2

Xt is constant if and only if σ : X → T admits a
very weak simultaneous resolution after pull-back by a finite base change T ′ → T .

In fact this result is a combination of a result of Brieskorn [15] asserting that
σ : X → T admits a simultaneous rational double point resolution if and only if it
admits a very weak simultaneous resolution after pull-back by a finite base change,
with the result of Laufer that a simultaneous rational double point resolution exists
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if and only if K2
Xt is constant. We do not introduce simultaneous rational double

point resolution because it is not needed for our discussion.
The theorem above is false without the Gorenstein condition (see for exam-

ple [59], 2.8). Kollár and Shepherd-Barron used the Minimal Model Program to
prove a version of the result above, avoiding the Gorenstein condition, at the expense
of imposing projectivity for σ and using the global self-intersectionK2 defined for
a projective surface. We do not give more details here since we are concerned with
the local case only.

Theorem 3.3.22 (Laufer [63]) A family σ : X→ T of Gorenstein normal surface
singularities together with a section s has a weak simultaneous resolution after a
finite base change if and only if all the links of the germs (Xt , s(t)) for t ∈ T are
homeomorphic.

Theorem 3.3.23 (Laufer [64], Teissier [131]) A family σ : X→ T of Gorenstein
normal surface singularities together with a section s : T → X has a strong
simultaneous resolution after a finite base change if and only if the family is Whitney
equisingular.

Teissier proved the “only if ” part and Laufer the converse.
Now we can provide an alternative argument proving Remark 3.3.18:

Proof (Proof of Remark 3.3.18) If F : Cn × T → C defines a μ constant family
of singularities at the origin of Cn, then the family X := V (F) with the section
s(t) = (O, t) satisfies the hypothesis of Theorem 3.3.22 if and only if the topology
of the abstract link is independent of t . In case that this happens there exists a weak
simultaneous resolution� : Y→ X, and the mapping

σ◦� : (Y,E)→ T

is a locally trivial fibration of pairs (this is deduced easily from the local triviality of
E→ T ). Now since X is obtained from Y by collapsing each fibre E to a point, we
obtain that the projection

X→ T

is also locally trivial. Thus we obtain that the abstract topological type of the family
is constant, and by Theorem 3.3.8 and Remark 3.3.9, the family is topologically R-
trivial. ��

Let us turn the discussion to Theorem 3.3.21. The quantityK2 can be computed
from the resolution graph of the minimal good resolution, and the information that
resolution graph contains is equivalent to the topological type of the abstract link.
Therefore if a family σ : X → T together with a section s is topologically trivial
then K2

t is independent of t . Therefore Question 3.3.11 (1) splits in the following
two questions, which hint an algebraic geometry approach to the Lê-Ramanujam
problem.
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Question 3.3.24 Let ft be a μ-constant family of isolated surface singularities.

1. Is it true that K2
t is independent of t?

2. If ft is in addition K2
t -constant, is the topology of the abstract link independent

of t? (hence the family would be topologically R-trivial.

Laufer [62] proved the following formula relating several invariants of normal
surface singularities. Let X be a smoothing of a Gorenstein normal surface
singularity X0 (a deformation of X0 such that Xt is smooth). Denote by μ(X) the
second Betti number of Xt (this is consistent with definition of μ for hypersurfaces).
Then we have

μ(X) = 12pg +K2
X0
+ ν(X0)− b1(LX0), (3.4)

where ν denotes the number of irreducible components of the exceptional divisor of
the minimal resolution of X0, b1(LX0) is the first Betti number of the link of X0 and
pg := dimC(R

1π∗OY0) (where π : Y0 → X0 is a resolution of singularities) is the
geometric genus.

All the invariants appearing in the formula except K2 and ν are constant in μ-
constant families of hypersurfaces: the case of the first Betti number of the link is
clear by the homological triviality of the cobordism Wt . For pg a possible proof
follows realizing pg as a certain sum of spectral numbers and invoking a proof by
M. Saito that the spectrum is constant in μ-constant deformations. Therefore the
sum K2

Xt + ν(Xt ) is constant in a μ-constant family.

Remark 3.3.25 By the above arguments the constancy of K2
Xt in a μ-constant

family is equivalent to the constancy of ν(Xt ). Observe that, since the topology
of X is equivalent to the topology of the embedding of the exceptional divisor in
the minimal resolution, the quantity νt has a straightforward topological meaning,
which is certainly much weaker than the whole topology of the link. So, in order to
prove the existence of a very weak simultaneous resolution, only weak topological
information of the link must be preserved. However, it is still a hard open question
how to control ν(Xt ) in μ-constant families

The previous remark motivates at least two different new lines of research that in
my opinion have independent interest.

3.3.6.1 JSJ Decompositions for Groups

Except in the case of cyclic quotient and cusp surface singularities the whole
topology, and hence ν is determined by the fundamental group of the link [144],
however it is widely open how to read this information in the group. The only
development I know pointing to this direction is the JSJ -decomposition for
groups due to Scott and Swarup [119, 120], where at least the topological JSJ
decomposition of the link is obtained purely algebraically from the fundamental
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group. It would be very interesting if this trend could be continued to know exactly
which information on the fundamental group has to be preserved to deduce that ν is
constant, and to determine if this happens in a μ-constant family.

3.3.6.2 Arc Spaces

Due to the positive solution to Nash Conjecture for surfaces [39], given a normal
surface singularity (X,O), the number ν coincides with the number of irreducible
components of the space of arcs L(X,O) centered at the singularity. This motivates
the following general equisingularity question, which is also being considered by
M. Leyton:

Question 3.3.26 Let ft be a family of functions with an isolated singularity
at the origin that satisfies an equisingularity condition (Zariski, Whitney or μ-
constant. Let Xt := V (ft ). Which information is preserved in the associated family
L(Xt ,O)?

Nearly nothing seems to be known on this question. Of course under Zariski or
Whitney Equisingularity it is known that the number of irreducible components
of the exceptional divisor of the minimal resolution remains constant, but the
proof uses the topological triviality, that is known in those cases, and the positive
solution to Nash conjecture. I would be very interesting to have a direct proof of
the constancy of ν under these equisingularity conditions, in order to build some
knowledge for the study of the harder question for μ-constant families.

3.3.7 Connection with the Artin-Laufer Program,
Heegaard-Floer and Lattice Homology

The inspiration for the ideas contained in this section come from the connection
of developments of very different origin: algebraic geometry of normal surface
singularities, and gauge and Floer theoretic invariants invariants of 3-manifolds.
As the reader may expect at this stage the connecting point is the abstract link
of a normal surface singularity. The purpose of this section is to propose a new
conjecture on deformations of surface singularities, and trace back some of its
historical roots.

As explained in Sect. 3.3.4, the link LX of a normal surface singularity X is a
negative definite graph manifold. In fact (see [90]) the graph codifying the topology
of the link coincides with the graph codifying the embedded topology of the
exceptional divisor of a normal crossings resolution X̃ → X. For a fixed topology
(i.e. a fixed graph or embedded topology of the exceptional divisor) there is in most
of the cases a whole non-discrete family of possible analytic structures on X (and
hence in X̃). One of the most important directions in the study of normal surface
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singularities is the Artin-Laufer program. It can be broadly interpreted as the attempt
of understanding the interplay between topological invariants and analytic ones,
and how they guide the classification of normal surface singularities. Under certain
topological and analytic hypotheses, like having a rational homology sphere link, or
being Gorenstein, a priori analytically defined invariants turn out to be topological,
or at least bounded by topological invariants. Besides the multiplicity, the analytic
invariant that is the most important for our discussion is the geometric genus pg(X),
which seems to be a good measure of the complexity of a normal surface singularity.
The reader may consult [90, 91] for an explanation of the program and the involved
analytic and topological invariants.

A crucial question is if pg(X) can be estimated, and in some cases calculated
in terms of topological invariants of the link. In this direction Némethi and
Nicolaescu [95] conjectured the following inequality.

Conjecture 3.3.27 (Némethi-Nicolaescu) Assume that X is a normal surface singu-
larity with rational homology sphere link. Then

sw0
LX
(σcan)− (K2 + ν)/8 ≥ pg, (3.5)

with equality if X is Gorenstein. Here sw0
LX
(σcan) is the modified Seiberg-Witten

invariant of the link associated with the canonical Spinc structure (defined in [95]),
K2 is the self intersection of the canonical cycle at a resolution and ν the number of
irreducible components of the same exceptional divisor of the same resolution.

The quantity K2 + ν is independent of the resolution, and the left hand side of
the inequality only depends on the topology of LX.

The conjecture was proved in several important cases [95, 96] but finally
disproved by Luengo, Melle and Némethi [76]. Interestingly, the counterexamples
belong to the class of super-isolated singularities, introduced by I. Luengo in his
proof that the μ-constant stratum is not necessarily smooth [75]. A super-isolated
singularity is a surface singularity (X,O) ⊂ C

3 defined by fd + ld+1, where
{fd = 0} ⊂ P

2
C

is a plane curve with isolated singularities and l = 0 is a
line in P

2
C

not meeting the singularities of {fd = 0}. By their definition super-
isolated singularities bridge the theory of projective plane curves with the theory
of normal surface singularities, that allows to transfer questions between these
subjects. A super-isolated singularity has a rational homology sphere link if and
only if {fd = 0} ⊂ P

2
C

is a rational cuspidal curve, that is, a curve homeomorphic to
P

1
C

. The counter-examples found in [76] are super-isolated singularities associated
with rational cuspidal curves having more than 1 singularity. However, no counter-
example was found among the class of rational unicuspidal plane curves (with just
1 singular point). This motivated the formulation of a purely algebraic conjecture
for rational unicuspidal plane curves {fd = 0} (Semigroup Condition Conjecture)
by Luengo, Melle Némethi and the author [35] by translating Némethi’s Seiberg-
Witten conjecture for the super-isolated singularity {fd + ld+1 = 0} to a relation
between the degree d and the semigroup of the only singularity of {fd = 0}.
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The above mentioned counterexamples also forced to re-think Némethi-
Nicolaescu’s conjecture, and a relation with Ozsváth and Szabó’s recent theory
of Heegaard-Floer homology for 3-manifolds was found by Némethi. Heegaard-
Floer homology is a topological invariant for 3-manifolds of Floer theoretic nature
introduced by Ozsváth and Szabó [103], which was created with the purpose of
providing a more topological description of Seiberg-Witten theory for 3-manifolds.
There are several versions of Heegaard-Floer homology. In our case we will be
interested in HF+. Let L be a orientable 3-manifold and σ a Spinc structure on L
(see Turavev [138] for the formulation of Spinc structures used in Heegaard-Floer
theory). Then HF+(L, σ ) is a Z2-graded Z[U ]-module, and the Seiberg-Witten
invariant sw0

LX
(σ ) can be computed as a “normalized Euler characteristic” of

HF+(L, σ ). Némethi sought for a definition of Heegaard-Floer homology for
3-manifolds which are links of singularities, which is closer to the methods of
singularity theory, and in his attempt he created Lattice Homology [92]. Let LX be
a singularity link and σ a Spinc structure on it. The Lattice Homology H(Lx, σ )

is a Z-graded Z[U ]-module which can be constructed entirely in terms of the
combinatorial data contained in the plumbing graph. If LX is a rational homology
sphere the mod 2-graded version of H(Lx, σ ) conjecturally coincides with
HF+(L, σ ), beyond that case the coincidence of the two invariants is not so clear.
As a supporting evidence for this conjecture Némethi proved that the “normalized
Euler characteristic” of H(Lx, σ ) also coincides with sw0

LX
(σ ) [93], and proved

the coincidence to be true in several cases together with T. László [61]. In fact the
authors define the number of bad vertices of a plumbing graph defining a rational
homology sphere as the minimal number of vertices whose self-intersections have
to be decreased in order to obtain a rational graph (that is, the plumbing graph of
a rational surface singularity), and confirm the conjecture for the case up to 2 bad
vertices.

Heegaard-Floer and Lattice homologies have had very interesting applications
bridging singularity theory with low dimensional topology (see [94] for example),
but at this survey we will concentrate only in their conjectural links with equisingu-
larity and simultaneous resolution.

The point is that the Semigroup Condition Conjecture can be re-formulated as
follows: let {fd = 0} ⊂ P

2
C

define a unicuspidal rational plane curve, defined by
a homogenous polynomial of degree d , and let X = {fd + ld+1} be its associated
super-isolated singularity (here l is a generic linear function), let {gd = 0} ⊂ P

2
C

be
a union of d lines meeting in a point, and Y = {gd + ld+1} be the associated super-
isolated singularity. Then Némethi noticed that the Semigroup Condition Conjecture
is equivalent to each of the following equalities

HF+(LX, σcan) = HF+(LY , σcan),

H(LX, σcan) = H(LY , σcan),

where σcan is the canonical Spinc structure.
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The point now is that X and Y sit in the same K2-constant deformation. This
motivated Némethi to formulate the following conjecture, which would imply the
Semigroup Condition Conjecture:

Conjecture 3.3.28 Let X→ T be aK2 constant deformation of Gorenstein normal
surface singularities with Q-homology sphere links. Then we have the equality

H
0(LX0, σcan) = H

0(LXt , σcan).

While the conjecture above remains open, Borodzik and Livinston [11] proved
the Semigroup Condition Conjecture by Heegaard-Floer theoretic methods.

The connection point with equisingularity theory is via the following question,
which is a converse to the previous conjecture, and if answered positively would
mean that Lattice homology is precisely the right topological invariant to control
K2 in flat deformations:

Question 3.3.29 Let X → T be a deformation of Gorenstein normal surface
singularities with Q-homology sphere links such that H∗(LXt , σcan) is constant.
Is it K2-constant?

It would be very interesting to find formulations not requiring the Q-homology
sphere link hypothesis.

3.3.8 On Topological Triviality of μ and K2-Constant Families

Above we have focused in analyzing problems which are motivated by Ques-
tion 3.3.24 (1). Now let us concentrate in Question 3.3.24 (2).

3.3.8.1 A Problem of Combinatorial/Arithmetic Nature

In order to study Question 3.3.24 (2) let us consider ft : C3 → C a μ and K2-
constant family holomorphically dependent on t . Define F(x, t) := ft (x), let X :=
V (F) ⊂ C

n × T and let s(t) := (O, t) the constant section at the origin. By
Theorem 3.3.22 there exists a very weak simultaneous resolution

(Y,E)→ (X, s(T ))

after a finite base change. We assume that the base change has been performed,
and that the weak simultaneous resolution exists. Choosing a representative of
X ⊂ Bε × T , for ε and T small, Ehresmann Fibration Theorem yields that Y is
smoothly locally trivial over T . We have proved that in order to establish topological
R-triviality it is enough to show that the projection E→ T is locally trivial.
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Consider the decompositions in irreducible components E0 = ∪Ni=1E0,i and
Et = ∪Ni=1Et,i for t �= 0. HereN = ν0 = νt , where the second equality is known by
Eq. 3.4 and the remarks following it, sinceK2

t is constant. By choosing a sufficiently
small representative we may assume that H2(Y0,Z) is free and generated by the
homology classes {[E0,i]}Ni=1. Since Y→ T is topologically trivial, we may regard
the family Yt as the same smooth manifolds with a varying family of complex
structures Jt . Therefore we can see [Et,i] as a homology class in H2(Y0,Z).
Therefore we have an expression [Et,i] = ∑N

j=1mi,j [E0,j ]. The divisor Et may be
thought as degenerating into E0, and the number mi,j is the number of intersection
points, counted with multiplicity of Et,i with a holomorphic disc in X0 which is
transversal to E0,j at a generic point. Since Jt specializes to J0 we conclude that
all the intersection points are positive and that the numbers mi,j are all of them
non-negative.

For t �= 0 we denote by Zt a small tubular neighborhood of Et in Yt = Y0. Then
the cobordism Wt coincides with the difference Y0 \ Z̊t . Since the cobordism has
been proved homologically trivial by the μ-constant condition in [70], we conclude
that the collection of classes {[Et,i]}Ni=1 provides another basis of H2(Y0,Z). This
implies thatM = (mi,j ) is uni-modular (the modulus of its determinant equals 1). .

Denote byAt the intersection matrixAt = (at,ij ), where at,ij := Et,i �Et,j . Then
we have the matrix equality

At = MtA0M.

The family is topologicallyR-trivial if and only if the projectionE→ T is locally
trivial, but this happens precisely when the matrixM is a permutation matrix. This
motivates the following problem of a combinatorial/arithmetic nature:

Problem 3.3.30 LetM be a uni-modular matrix with non-negative integral entries.
Let At andA0 be negative definite symmetric matrices with integral entries and that
A0 have no −1’s in the diagonal. If we have the equality At = MtA0M thenM is a
permutation matrix.

We have been able to solve this problem when A0 is the resolution graph of
a minimal singularity (which are characterized by the fact that the valency of a
vertex of the good resolution graph is bounded by the absolute value of its self-
intersection). Beyond that case the problem seems quite difficult. The closer is A0
to be non-definite the harder it gets.

A positive solution to the previous problem would show that any μ and K2-
constant family not having divisors with self-intersection −1 at the minimal
resolution is topologically R-trivial. Self-intersection−1 components of the excep-
tional divisor have to be handled in a different way, since the above problem has
easy counter-examples without this assumption.
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3.3.8.2 Okuma’s Work on (−P 2)-Constant Deformations

Wahl defined in [137] a characteristic number for the link of a normal surface
singularity X as follows. A characteristic number defined for closed oriented 3-
manifolds, is, according to Thurston, a real number λ(M) associated to each such
manifold M such that it is a topological invariant and λ(N) = kλ(M) for a k-
sheeted covering N → M . Let X̃ → X be a resolution with a strict normal
crossings exceptional divisor E. Consider the Zariski decomposition (see [117] for
a definition)KX̃ + E = P +N . Wahl [137] proved, among other results

Theorem 3.3.31 (Wahl) (−P 2) is a characteristic number for links of normal
surface singularities. It only depends on the fundamental group of the link; in
particular it does not depend on the resolution. (−P 2) vanishes for a singularity
if and only if it is log-canonical.

Okuma [100] studied the behavior of (−P 2)-constant deformations of Goren-
stein normal surface singularities. He proved

Theorem 3.3.32 (Okuma) Let σ : X → T be a (−P 2)-constant family of
Gorenstein normal surface singularities which are not log-canonical. After a finite
base change there exists a section s : T → X such that s(t) is a non log-
canonical point in Xt , and a simultaneous resolution� : X̃→ X with the following
properties

1. For any t ∈ T the map X̃t → Xt is the minimal resolution with normal crossings
divisor.

2. Let E be the divisor of�−1(s(T )) with reduced structure. There exists a reduced
divisor S ≤ E such that�|S is a locally trivial deformation and St is the sum of
all maximal strings of rational curves at the ends of Et for any t ∈ T .

The singularities of Xt outside s(t) are rational double points of type An.

The strong aspect of this theorem is that it not only produces a simultaneous
resolution, but it also imposes restrictions on the variation of the topology of the
exceptional divisor along the family. For example the following Corollary is stated
in [100]:

Corollary 3.3.33 Assume that (−P 2) is constant and that X0 has a star shaped
resolution graph. Then σ is an equisingular deformation (it is topologically trivial).

This motivates the analogue of Question 3.3.11, but replacingK2 by (−P 2).

3.3.9 Newton Non-degenerate Embeddings

A much stronger notion of simultaneous resolution is the following
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Definition 3.3.34 (Leyton, Mourtada, Spivakovsky [73]) Let ft : C
n → C,

t ∈ T be a family of isolated singularities with T smooth. Define F(x, t) := ft (x),
let X := V (F) ⊂ C

n × T . A simultaneous embedded resolution of X is a proper
modification � : Y → C

n × T such that the strict transform of X is a very weak
simultaneous resolution of X, and the total transform of X is normal crossings
relative to T .

Normal crossings relative to T means essentially that each fibre over t is
normal crossings in a locally trivial way over T (see [73] for a precise statement).
The important point is that simultaneous embedded resolution implies topological
triviality of the family.

A result related to the question above is contained in a very recent preprint:

Theorem 3.3.35 (Leyton, Mourtada, Spivakovsky [73]) Assume that ft is a
deformation such that for ft is Newton non-degenerate. Then the deformation μ-
constant if and only if it admits a simultaneous embedded resolution. In that case it
is topologically trivial.

For the definition of Newton non-degenerate we refer to [73]. Newton non-
degenerate hypersurface singularities form a special but very important class of
singularities. The theorem above is relevant for two reasons: first it brings hope
to the program of resolving the Lê-Ramanujam problem by resolution techniques.
The second reason is philosophically more important: as conjectured by Teissier
within its program of toric resolution of singularities in arbitrary characteristic after
adequate re-embedding, Tevelev [134] proved that any singularity defined over a
field of characteristic 0 can be re-embedded in such a way that the existence of toric
resolution is guaranteed (this is the effect of the Newton non-degenerate condition
for hypersurfaces). So, a natural open question is to

Problem 3.3.36 Generalize Leyton, Mourtada, Spivakovsky to appropriately re-
embedded μ-constant families.

3.4 Topological Triviality for Families of Non-isolated
Singularities

3.4.1 The Structure of Milnor Fibre of Non-isolated
Hypersurface Singularities and Topological Triviality

A natural question is to find a numerical invariant of a holomorphic function germ
with non-isolated singularities whose constancy for a family ft implies, at least
conjecturally, topological R-triviality, or constant embedded topological type. In
this direction D. Massey introduced the Lê cycles and Lê numbers in [78–80]. All
the results due to Massey that I will summarize below were published originally
at [78, 79], but the book [80] is an excellent account of all of them.
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Let f : (Cn,O)→ C be a holomorphic germ. Denote by�f be the critical set of
f . For a coordinate system z = (z1, . . . , zn) we define the relative polar variety �kf,z
to be the closure V (∂f/∂zk+1, . . . , ∂f/∂zn) \�f . Notice that in Massey’s notation
at [78–80], he considers functions from C

n+1 to C and numbers the variables as
z0, . . . , zn, unlike in this paper that are numbered by z1, . . . , zn. This produces an
index shifting in our formulae with respect to his.

Given a variety X we denote by [X] the cycle associated with it. We define the
k-th Lê cycle associated with f and z to be the difference

 kf,z := [�k+1
f,z ∩ V (∂f/∂zk+1)] − [�kf,z].

Massey proved that  kf,z is supported in the critical set �f for any k, and that for

what we called prepolar coordinate system the cycle kf,z is k-dimensional. Massey
proved that prepolar coordinate systems are generic (a generic linear change of
coordinates yields a prepolar coordinate system). For a prepolar coordinate system
we define the k-th Lê number as the intersection number

λkf,z :=  kf,z � [V (z1, . . . , zk)].

The following properties are important:

1. The Lê numbers depend on the choice of prepolar coordinate system. However
there is a Zariski open subset of generic coordinate systems for which the Lê
numbers coincide.

2. If dim(�f ) = s then λkf,z = 0 if k ≥ s.
3. If f has an isolated singularity at the origin then the only non-zero Lê number

is λ0
f,z = μ(f ), so Lê numbers reduce to the Milnor number for any isolated

hypersurface singularity.

D. Massey succeeded to prove the following generalization of Lê-Ramanujam
Theorem (see 3.3.7, part (1) above):

Theorem 3.4.1 (Massey) Let ft be a family of holomorphic germs depending
holomorphically on a parameter t , Let s be the dimension of the critical set of f0.
If there is a coordinate system z which is prepolar for any t , such that the all Lê
numbers λkft ,z are constant, then all the Milnor fibrations of ft are homologically
equivalent (the integral homology of the Milnor fibres together with the monodromy
action are conjugate). If n > s+3 then the Milnor fibrations are smoothly equivalent
(conjugate by a diffeomorphism preserving the projection to the base circle).

In order to understand why the theorem above generalizes Lê-Ramanujam
result an explanation is needed: in the sketch of the proof of the Lê-Ramanujam
Theorem 3.3.7 we noticed that a very important intermediate step was the proof
of the equivalence of Milnor fibrations. In fact this is what Massey shows. The
dimension restriction is the needed one in order that the cobordism (3.1) is an h-
cobordism. The direct attempt to generalize Lê-Ramanujam proof of the fact that f0
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and ft have the same topological type breaks down because the map (3.2) is not a
trivial fibration in this case, because of the non-isolated singularities of the 0-fibre.

In fact it is false that constant Lê numbers imply constant topological type in
general. Before we explain the counter-examples we will disgress on the structure
of the Milnor fibre for non-isolated singularities.

On the positive side we have the connectivity result of Kato and Matsumoto [55]:

Theorem 3.4.2 (Kato, Matsumoto) Let f : (Cn,O) → C be a homolomorphic
function germ with s-dimensional critical set. Then the Milnor fibre is (n− 2− s)-
connected. The bound is sharp.

A proof can be achieved easily by polar methods, yielding an induction based on
restriction to successive hyperplane sections. Massey improved the last result with
the following handle structure theorem, which generalizes Theorem 3.2.3.

Theorem 3.4.3 (Massey) Let f : (Cn,O) → C be a homolomorphic function
germ with s-dimensional critical set (s < n − 1), and z be a prepolar coordinate
system. Then the Milnor fibre is a 2(n− 1)-dimensional ball with λkf,z (n− 1− k)-
handles attached for k = 0, . . . , s.

Despite these two positive results the homotopy type of the Milnor fibre can be
arbitrarily complicated (see [32]):

Theorem 3.4.4 For any germ (Z,O) ⊂ (CN,O) of complex analytic subset there
exists a function germ f whose Milnor fibre has the local homotopy type of CN \ Z
at O . In particular there exist simply connected non-formal Milnor fibres.

In the theorem above, if we have Z = V (F1, . . . , Fk), then we can choose
f = ∑k

i=1 Fiyi : CN × C
k → C, where (y1, . . . , yk) is a coordinate system

for C
k . The second assertion can be deduced from the first given Denham and

Suciu’s construction of simply connected non-formal complements [24]. Previously
Zuber provided the first example of a non-formal, non-simply connected Milnor
fibre in [156].

Finding classes of non-isolated singularities where one can find a reasonably
complete understanding of the Milnor fibre is not an easy task. A succesful program
in this direction was pioneered by Siersma [123, 124, 126–128] and developed by
de Jong [23], Zaharia [152], Némethi [88, 89], Shubladze [122], Marco-Buzunariz
and the author [28, 29, 37].

We summarize the method very briefly:
Let f : (Cn,O) → C, consider a deformation fs of f , and take the mapping

F : Cn × C → C × C defined by F(x, s) := (fs(x), s). Let ε > 0, δ > 0 be the
radii for the Milnor ball and disc of f respectively. Denote by � be the critical set
and by � the discriminant of the map F (the image of its critical set). We say that
the deformation fs is admissible if there exists η > 0 such that the restriction

F | : (Bε ×Dη) ∩ F−1(Dδ ×Dη \�)→ Dδ ×Dη \� (3.6)
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is a locally trivial fibration. In this case the Milnor fibration of f can be studied in
terms of the restriction fs |Bε∩f−1

s (Dδ)
. The critical set of this function equals �s :=

�∩Bε×{s} and the discriminant equals�s := �∩Dδ×{s}. The critical set �s splits
as a dijoint union of the singular set�s of f−1

s (0), which is non-isolated, and finitely
many isolated points, which are of Morse type for a well chosen deformation fs .
Then Sierma’s “homology splitting” is satisfied: denote by ν the number of Morse
points appearing in the critical set of fs and let Ts be a (small enough) tubular
neighborhood of �s , the homology of the Milnor fibre splits as follows

Hn−1(f
−1(δ);Z) ∼= Hn(Ts, f−1

s (δ) ∩ Ts);Z)⊕ Z
ν,

Hk(f
−1(δ);Z) ∼= Hk+1(Ts, f

−1
s (δ) ∩ Ts);Z)

for k < n − 1. Usually the critical set �s admits a stratification by “transversal
singularity types”, which have relatively simple Milnor fibres, the topology of the
stratification can be understood, and formulae for the Betti numbers of the pair
((Ts, f

−1
s (δ) ∩ Ts) in terms of the stratification and of the transversal singularity

types can be deduced.
For the purpose of this survey we are interested in a particular situation where

the method described above has been successful. Let g1, . . . , gn−k be a collection
of function germs in OCn,O defining a k-dimensional isolated complete intersection
singularity (i.c.i.s.) in C

n. The map g := (g1, . . . , gk) : (Cn,O)→ C
k has a Milnor

fibration, and the Milnor fibre, as in the hypersurface case, is homotopy equivalent to
a bouquet of spheres of dimension (k−1) (see [74] for a proof and a comprehensive
account of i.c.i.s. theory). We denote by μ(g) the number of spheres. Denote by
I the ideal generated by g1, . . . , gn−k . Denote by �I,e the submodule of vector
fields tangent to the i.c.i.s. V (g1, . . . , gn−k). A function f ∈ I 2 is called of finite
dimension with respect to I if the number

cI,e(f ) := dimC(I
2/�I,e(f ))

is finite. Notice that �I,e(f )) is a sort of “Jacobian ideal relative to the i.c.i.s.”, and
in this sense the number above is a generalization of the Milnor number.

Given f ∈ I 2 we express f as

f = (g1, . . . , gn−k)(hi,j )(g1, . . . , gn−k)t ,

where (hi,j ) is a k × k symmetric matrix of function germs. If cI,e(f ) is finite any
deformation fs of the form

f = (g1,s, . . . , gn−k,s )(hi,j,s )(g1,s, . . . , gn−k,s )t ,

where g1,s, . . . , gn−k,s and hi,j,s are arbitrary deformations of the corresponding
functions, is admissible. Taking the deformations g1,s, . . . , gn−k,s and hi,j,s generic
(here generic means that for a certain k the k-th Taylor expansion of the functions
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g1,s, . . . , gn−k,s and hi,j,s are outside a Zariski open subset of the corresponding
space of jets) we achieved the situation where �s coincides with the Milnor fibre of
the i.c.i.s., the stratification by transversal type in�s coincides with the stratification
by rank of the matrix (hi,j ), and the transversal singularities are of type D(k, p),
which has the following normal form (see [106]):

∑

1≤i≤j≤p
xi,j yiyj +

∑

p+1≤i≤n−k
y2
i = 0,

where {xi,j }1≤i≤j≤p⋃{yi}1≤i≤n−k is an independent system of linear forms in
C
n. This was proved for i.c.i.s. of dimension at most two by Siersma [124],

Zaharia [152] and Némethi [88], and in general in [28, 29].
The deformation above gives a way to study the homology and the homotopy

type of the Milnor fibre of f . This was archived by Siersma [124] in dimension 1,
by Némethi [88] and Zaharia [152] in dimension 2, and by Marco-Buzunariz and
the author [37] in dimension 3. In all these cases it is proved that the Milnor fibre
is a bouquet of spheres of different dimensions (in contrast with the very general
homotopy type that the Milnor fibre of a non-isolated singularity can have (see
Theorem 3.4.4) Here we only quote the result for dimension 3, and only in the
cases that have impact in equisingularity questions (the reader may consult [37] for
complete statements):

Theorem 3.4.5 Let μ0 and μ1 be the Milnor numbers of the i.c.i.s. (g1, . . . , gn−3)

and (det(hi,j ), g1, . . . , gn−3). Denote by a the number of points x ∈ �s such that
corank(hi,j,s(x) ≥ 2. The homology of the Milnor fibre is the following:

• If corank(hi,j (0)) ≥ 3:

Hn−1(Ff ;Z) ∼= Z
μ0+2μ1−4a+1+#A1,

Hk(Ff ;Z) = 0

if 1 ≤ k ≤ n− 2,

H0(Ff ;Z) ∼= Z.

• If corank(hi,j (0)) = 2:

Hn−1(Ff ;Z) ∼= Z
μ0+2μ1−4a+2+#A1,

Hn−2(Ff ;Z) ∼= Z,

Hk(Ff ;Z) = 0
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if 1 ≤ k ≤ n− 3,

H0(Ff ;Z) ∼= Z.

Remark 3.4.6 The formula computing the top Betti number has a “−” sign. So
in principle “different geometries” in the central fibre could lead to Milnor fibres
with the same Betti numbers. If such a behavior could be exhibited in a family
of hypersurface singularities then it could lead to a family with the same Milnor
fibration, but not topologically equisingular. With a bit of luck such a family could
have constant Lê numbers.

The idea expressed in the remark above was the starting points to the series of
counter-examples described in [30] and that we explain now. Choose l < k and
consider the family of function germs

ft := y2
1x3 + y1y2x2 + y2

2 (x
k
1 + txl2 + x3) : (C5,O)→ C. (3.7)

Define I := (y1, y2). For any t the number cI,e(ft ) is finite. On the other hand, with
the notation of the previous theorem μ0(ft ) = 0 for any t , μ1(ft ) = 2l for t �= 0,
μ1(f0) = 2k, a(ft ) = l for t �= 0 and a(f0) = k. So according with the previous
theorem the Betti numbers of the Milnor fibre are constant in the family. On the other
hand if one looks at the geometry of the family of determinants x3(x3+xk1+txl1)+x2
one sees a deformation from the Ak to the Al singularity, which is not topologically
trivial. A similar family is given by

ft = y2
1x3 + y1y2x2 + y2

2(tx1 + x3), (3.8)

in this case f0 is not finite-dimensional with respect to I , but one may think this
family as a “degenerate case” of the previous family. Using the remarks above,
in [30] it is proved:

Example 3.4.7 The families (3.7) and (3.8) above have constant generic Lê num-
bers, the generic Lê numbers of the restrictions to generic linear sections in any
dimension are constant, the family is linear in the parameter t , the Milnor fibration
for t = 0 is smoothly equivalent to the Milnor fibration for t �= 0, but V (f0) and
V (ft ) (for t �= 0) are not homeomorphic.

The above counterexamples do not satisfy the condition n > dim(�)+3, but taking
suspensions one obtains counterexamples for which the condition hold. Although
the formulae of Theorem 3.4.5 were proved later than the counterexamples above,
they were conjecturally known to the author by the moment of finding the
counterexamples.

On the other hand, on the positive side in [30] it is proved:

Theorem 3.4.8 Suppose n ≥ 4. Let ft : (Cn,O)→ C, let z be a prepolar system
for any t . Suppose that the Lê numbers λkft ,z are independent of t . Then the homotopy
type of the abstract link of ft is independent of t .
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Combining two results above for the family ft = y2
1x3+ y1y2x2+ y2

2(tx1+ x3),
which is homogeneous one obtains examples of homotopically trivial families
of real algebraic varieties (the abstract link for a fixed radius) which are not
topologically trivial.

Now, notice that the projective hypersurface in P
n−1 defined by a homogeneous

polynomial f in n variables is the quotient of the abstract link V (f ) ∩ Sε by a free
S

1 action. Exploiting this observation one proves (with some work) that for ft as in
formula (3.8) the family of projective hypersurfaces V (ft ) ⊂ P

4 is homotopically
trivial but not topologically trivial. The projective hypersurfaces appearing in this
family are not normal. Considerations arising from the study of universal covers
of projective varieties motivated the search of normal counterexamples. J. Kollár
and the author provided in [36] the following family of homogeneous cubic
polynomials:

Example 3.4.9

ft (x1, x2, x3, y1, y2, y3) := (y1, y2, y3) ·
⎛

⎝
tx1 x2 x3

x2 tx3 x1

x3 x1 tx2

⎞

⎠ ·
⎛

⎝
y1

y2

y3

⎞

⎠ .

The induced family of projective hypersurfaces is homotopically trivial around any
t ∈ Ct \ {0,−2,−2ξ,−2ξ2} where ξ is a third root of unity. On the other hand it is
not is not topologically locally trivial in any neighborhood of t if ξ ′t3−3t+2ξ ′ = 0
for some third root of unity ξ ′ (for example t = 1 is one such value).

Another indication that the Lê numbers are not so linked to the topology of a
hypersurface as the Milnor number in the isolated case is the fact that they are
not topological invariants. The first counterexample was found by Gaffney and the
author in [34].

Example 3.4.10 The family

ft (x, y, z) := (x15 + y10 + z6)2 − (xy + tz)12

is topologically R-trivial, but the generic Lê numbers are not constant in the family.

The idea to construct the example above was: start with the μ-constant family of
i.c.i.s. V (x15+y10+ z6, xy+ tz), discovered by Henry (appearing in [16]), that has
non-constant multiplicity. Combine the functions to create a function germ which is
singular at the i.c.i.s. with prescribed transversal type A5 outside the origin. Then it
is easy to see that the top generic Lê number, which equals the transversal Milnor
number times the multiplicity of the singular set, is not constant. The topological
R-triviality is shown by ad-hoc arguments.
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3.4.2 Equisingularity at the Critical Set

While in the case of isolated singularities the Milnor fibration determine completely
the embedded topological type, in the case of non-isolated ones the examples
above show that the connection between the Milnor fibration and even the abstract
topological type is weak. We propose here a new approach in order to characterize
topological equisingularity. This approach stems from [31].

Let f : (C,O) → C be a holomorphic function germ with critical set �.
Let R be a coefficient ring (usually we take R = Z,Q). Denote by φf,R the
vanishing cycles with coefficients in R. This is a cohomologically constructible
complex supported in the critical set �; it may be endowed with the monodromy
action. At any point x ∈ � the cohomology of the stalk (φf,R)x coincides with
the cohomology of the local Milnor fibration of the germ of f at x. We stratify
�f according with the cohomology of the stalks as follows: let H be a Z-graded
R-module. Define

�Hf := {x ∈ �f : H ∗((φf,R)x) ∼= H }.

This induces a finite partition of � and it is natural to expect that �Hf is locally
closed in �f .

Given a family of function germs fs : (C,O)→ C, we define the function

F : Cn × C→ C×C

byF(x, s) := (fs(x), s). The intersection of the critical set�F with the slice C×{s}
is the critical set �s of the function fs .

Definition 3.4.11 The family fs is equisingular at the critical set for the coefficient
ring R if there is a homeomorphism germ

� : (�f0 × C, (O, 0))→ (�F , (O, 0))

such that for any Z-gradedR-moduleH we have the equality� : (�Hf0
×{s}) = �Hfs .

Obviously, topological R-triviality implies equisingularity at the critical set for
any coefficient ring. The examples 3.4.7, 3.4.9 are not equisingular at the singular
set. I conjecture the following:

Conjecture 3.4.12 (Topological Equisingularity Conjecture) A family of function
germs fs holomorphically dependent on a parameter is topologically R-trivial if
and only if it is equisingular at the critical set for the coefficient ring R = Z.

The version of the above conjecture for coefficient ring Q is also open and very
interesting in my opinion.

The whole picture would look better if, in addition, the following natural (and
probably too optimistic) conjecture holds:
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Conjecture 3.4.13 (Smoothness Conjecture) Choose R = Z,Q Let f be a function
germ andH a graded R-module. Then �Hf is a smooth locally closed subset of �f .

The smoothness conjecture has proved to be very hard even assuming that �f is
irreducible and 1-dimensional. For partial results towards its solution, see [49, 81].

The Topological Equisingularity Conjecture for critical set of dimension 1 has
been studied in [31]:

Theorem 3.4.14 Let fs : (Cn,O)→ C be a family of function germs holomorphi-
cally dependent on a parameter s, such that dim(�f0) = 1, n ≥ 5, and such that
there exists a homeomorphism germ

� : (�f0 × C, (O, 0))→ (�F , (O, 0))

with the following properties

1. it preserves the origin of the germ, that is �(O, s) = (O, s),
2. �fs is smooth away from the origin for any s,
3. for any x ∈ �f0 \ {O} and for any s the Milnor number of the restriction of
f0 to a generic hyperplane section through x equals the Milnor number of the
restriction of fs to a generic hyperplane section through�(x, s).

Then the family fs is topologicallyR-trivial. Moreover the restrictions of trivializing
homeomorphism at the complement of the critical set and at the critical set minus
the origin, can be chosen to be smooth.

The hypothesis n ≥ 5 comes from the use of h-cobordism theorem. A
consequence of this result is that, if the critical set is of dimension 1 then
the Smoothness Conjecture implies the Topological Equisingularity Conjecture.
Another consequence is that when the critical set is of dimension 1 Massey’s
expectation that constant Lê numbers imply topological R-triviality becomes true
(see [31]):

Theorem 3.4.15 Let fs : (Cn,O) → C be a family of function germs holomor-
phically dependent on a parameter s, such that dim(�f0) = 1, n ≥ 5. If one of the
following conditions hold

1. there is a prepolar coordinate system z such that the Lê numbers at the origin of
ft with respect to Z are independent of t ,

2. the generic Lê numbers at the origin of ft are independent of t ,

then the family fs is topologically R-trivial. The trivializing homeomorphism can
be assumed to have the same smoothness properties than in the previous theorem.

It is worth to mention that for the proof of the two theorems above a new
trivializing device, called Cuts is introduced. It allows to prove results slightly
stronger that those stated above, in the sense that the trivializing homeomorphims
are global in the space of parameters of the family fs , as long as it is contractible.
See [31] for details. The technique of cuts was extended, in collaboration with M. Pe
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Pereira [38] to prove the following topological triviality result for hypersurfaces in
C

3 with “topologically constant normalization”. The interest of this result relies on
the facts that in the surface case the h-cobordism or s-cobordism theorems are not
available, and that controlling the variation of the fundamental group of the link in
a family is very hard. So the condition “topologically constant normalization” may
be seen as a convenient replacement for the lack of enough topological techniques.

Let fs : (C3,O) → C be a family of holomorphic function germs depending
holomorphically on a parameter s ∈ S. Let X = V (F), where F(x, s) : fs(x). Let
n : X̂ → X be the normalization, and let �̂F := n−1(�F ), Ŝ := n−1({O} × S).
The family fs : (C3,O) → C is equisingular at the normalisation if there is a
homeomorphism

α : (X̂, �̂F , Ŝ)→ (X̂0, (�̂F )0, Ŝ0)× S

such that we have the equality α(X̂s , (�̂F )s , Ŝs = (X̂0, (�̂F )0, Ŝ0) × {s} for any
s. It is easy to show that topological R-triviality implies equisingularity at the
normalization. The following converse is the main result of [38]:

Theorem 3.4.16 Equisingularity at the normalisation and equisingularity at the
critical set implies topological R-triviality.

In [38] the reader can find further consequences of this result, in particular in
connection with topological triviality for families of maps

ϕs : (C2,O)→ (C3,O).

In the following example, published originally in [31], we show a topologically
R-trivial family whose critical set undergoes drastic analytic changes (it deforms
non flatly and gets smoothed). It seems to be an indication that a purely numerical
characterization of topological R-triviality is unlikely to exist, or at least hard to
find.

Consider the following deformation of a parametrisation in C
3 (with deformation

parameter t):

x = s3 y = s4 z = ts. (3.9)

The following equations in C{t, x, y, z} define the image Z ⊂ C×C
3 of the family

as a set:

ty − xz = 0 tx3 − y2z = 0 y3 − x4 = 0 t3x − z3 = 0. (3.10)

Example 3.4.17 The family

ft := (ty − xz)9 + (tx3 − y2z)4 + (y3 − x4)3 + (t3x − z3)12 (3.11)
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is equisingular at the critical set and has the following remarkable properties:

• For any t its critical set is the image of the parametrisation (3.9). Therefore, in this
example the family of reduced critical sets is not flat (the fibre of π : �res → C

at 0 has an embedded component at the origin).
• The critical set (�t )red is smooth for t �= 0 and singular (of multiplicity 3) for
t = 0.

• The transversal Milnor number is 6 and, hence the first Lê number with respect
to a generic coordinate system is 6 for t �= 0 and 18 for t = 0.

Taking suspensions and applying Theorem 3.4.14 we obtain topologically R-trivial
families whose critical set has the same properties.

3.4.3 Series of Singularities

A phenomenon that was discovered by Arnol’d [4, 5] while working in his
classification of low Milnor number singularities, is that isolated hypersurface
singularities are naturally grouped into series of singularities, which are families
of increasing Milnor number, but that tend to share similar geometric properties. At
the limit of a series usually one finds a non-isolated singularity, which governs the
geometric behavior of the series.

The Lê-Yomdin series associated with a non-isolated singularity with 1 dimen-
sional critical set is an example of this phenomenon. Let f : (Cn,O) → C be a
holomorphic function germ with a 1 dimensional critical set �. Let l : Cn → C be
a linear function vanishing at the origin, but not vanishing identically at�. Then for
k >> 0 the function

fk := f + tlk

has an isolated singularity for t small enough, and its Milnor number is independent
of t . The sequence of functions fk (or rather the sequence of μ-constant strata),
is the Lê-Yomdin series associated with f . The Milnor number, homology of the
Milnor fibre, monodromy, and even deeper invariants like the spectrum of fk or
motivic invariants can be recovered from those of f and k, see [42, 116, 125, 130].

The idea of Lê-Yomdin series was extended by Massey to singularities f with
critical set of arbitrary dimension [80]

Theorem 3.4.18 (Massey) Let f : (Cn,O)→ C be a holomorphic function germ
with a k-dimensional critical set �. Let z = {z1, . . . , zn} be a prepolar coordinate
system. Consider the coordinate system z′ = {z2, . . . , zn, z1}. There is k0 ≥ 0 such
that if k > k0 and t > 0, then f + tzk1 has critical set of dimension s − 1, the
coordinate system z′ is prepolar for f + tzk1 and the Lê numbers of f and f + tzk1
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are related by the following formulae:

λ0
f+tzk1,z′

= λ0
f,z + (k − 1)λ1

f,z,

λi
f+tzk1,z′

= λi+1
f,z

for 1 ≤ i ≤ s − 1.

An immediate application of the last theorem allows to produce μ-contant
families by adding sufficiently high powers of variables to a family with constant
Lê numbers. It turns out that often, even if the power of the variable is not bigger
than the k0 predicted in the Theorem above, the predicted equality of Lê numbers
still holds for t small enough. This motivated us to consider the following family
in [30]:

Example 3.4.19 The family

gt := y2
1x3 + y1y2x2 + y2

2(tx1 + x3)+ x4
1 + x4

2 + x4
3

is μ∗-constant, but the projectivized tangent cones for t = 0 is not homeomorphic
to the projectivized tangent cone for t �= 0. So gt is a counterexample to Zariski’s
Question B (see Question 3.3.1, (B)).

The counterexamples above are of high dimension. Lower dimensional coun-
terxamples were found by Artal, Luengo, Melle and the author in [7], as a
consequence of an study of the Milnor number weighted Lê-Yomdin singularities,
which represents another generalization of Lê-Yomdin series:

Example 3.4.20 The families

ht := z12 + zy3x + ty2x3 + x6 + y5,

ht +w5

are μ-constant, topologically equisingular, but the projectivized tangent cones for
t = 0 is not homeomorphic to the projectivized tangent cone for t �= 0. So ht
and ht +w5 are 2 and 3-dimensional counterexamples to Zariski’s Question B (see
Question 3.3.1, (B)).

The philosophy underlying the construction of the examples above is: produce a
family of function germs fs with non-isolated singularities with constant Lê number
and some exotic behavior. Then adding convenient powers of linear functions one
may obtain a μ-constant family that inherits some exotic behavior as well. This
can be used for example as a method to produce μ-constant families that are not
μ∗-constant (therefore they are not Whitney equisingular). The first example of
this behavior was discovered long ago by Briançon and Speder, and one can see
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that indeed fits in the scheme just described. Some examples found following this
inspiration, and checked using the computer program SINGULAR, follow below (the
bold-face monomial plays the role of the power of the linear function):

Example 3.4.21 (Briançon-Speder)

z5 + ty6z+ y7x + x15 = 0

The following example was found by Luengo and Melle together with the author:

Example 3.4.22

z7 + y7 + ty5x3 + x10 = 0

The following examples, again due to Luengo and Melle and the author are
essentially non-linear in the parameter:

Example 3.4.23

(x3 + txy3 + y4z+ zA)2 + xyB + xC = 0

Here we checked (A,B,C) ∈ {(9, 9, 6), (9, 8, 6), (9, 8, 7), (10, 8, 6), (11, 8, 6),
(11, 8, 7)}. Surely many more values work. For each of the values above the
sequence of numbers (μ,μ(1)t=0, μ(1)t �=0) is

(761, 45, 42), (707, 43, 41), (782, 43, 42), (785, 43, 41), (863, 43, 41), (960, 43, 42)

respectively.

Arnol’d observed the phenomenon of series of singularities, and although it
was not possible to give a precise definition of what a series of singularities is, it
became clear that series are associated with singularities of infinite codimension
(non-isolated singularities). Inspired by Arnol’d remark C.T.C Wall formulated a
conjecture (see the Conjecture at the introduction of [146], p. 463), or rather, a
guiding principle for classification of singularities. Later D. Mond [84] introduced
the idea of singularity stem, as a first step to understand the notion of series of
singularities in the context of mappings from C

2 to C
3 (the idea is that a singularity

stem is a non-isolated singularity which lies in the limit of a series of singularities).
Following a suggestion of Montaldi, Pellikaan [107] defined inductively the notion
of stem of degree d , characterized stems of degree 1 as functions with irreducible
1-dimensional critical set and transversal type A1, and proved that any stem of
finite degree is a function with 1-dimensional critical set. They were also able to
give bounds on the degree of the stem depending on the number of irreducible
components of the critical set of the function and the transversal Milnor number.
In [31] we modified the concept of stem and define topological stem as follows:
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Definition 3.4.24 Let d be a positive integer. We define topological stems of degree
d inductively as follows:

• A holomorphic function germ f : (Cn,O)→ C, is a topological stem of degree
1 if there exists a positive integer N such that for any g ∈ mN , and t ∈ C

sufficiently small, either f + tg has an isolated singularity at the origin, or it is
topologically R-equisingular to f .

• A holomorphic function germ f : (Cn,O)→ C is a topological stem of degree
d if there exists a positive integer N such that for any g ∈ mN , and t ∈ C

sufficiently small, either f + tg is a stem of degree strictly smaller than d , or it
is topologicallyR-equisingular to f .

With this notion we proved in [31]:

Theorem 3.4.25 A holomorphic function germ f : (Cn,O) → C, n ≥ 5, is a
topological stem of positive finite degree if and only if its critical set is 1-dimensional
at the origin. Moreover the degree of the stem is bounded above by the generic first
Lê number at the origin of f .

Our modification of the definition of stem consists essentially in replacing
differentiable R-equivalence in Pellikaan definition by topological R-equivalence.
This is natural since series in Arnol’d classification of singularities are in fact
topological series (series of μ-classes), and thus it is therefore reasonable that the
object to find at the limit of the series admits a topological definition as well. It is
interesting to notice that Theorem 3.4.25 uses crucially in its proof Theorem 3.4.15.

3.5 Floer Homology of the Milnor Fibration

Consider in C
n the canonical symplectic structure ω given by the imaginary part

of the standard inner product h(z, z′) := ∑n
i=1 zi z̄i . Let f : (Cn,O) → C

be a function germ with an isolated singularity. The Milnor fibre f−1(δ) ∩ Bε
is a symplectic manifold whose symplectic form is the restriction of ω. It is,
furthermore, a Liouville domain: there is a 1-form αf such that the dual vector
field of the restriction of αf to the Milnor fibre with respect to the symplectic
form ω|f−1(δ)∩Bε points outwards the Milnor fibre near the boundary. There is a
monodromy

ϕ : f−1(δ) ∩ Bε → f−1(δ) ∩ Bε
such that

(a) ϕ is a exact symplectomorphism, that is ϕ∗αf = αf + dFϕ , for Fϕ : f−1(δ) ∩
Bε → R smooth,

(b) ϕ restricts to the identity at the boundary of the Milnor fibre.
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In this conditions the Floer cohomology groups HF ∗(ϕm,+) of any iterate of ϕ
are defined [121]. The chain complex defining Floer cohomology is generated by
the fixed points of a suitable perturbation of ϕm. As in usual Floer theory, the Floer
cohomology groups refine the count of fixed points provided by easier algebro-
topological invariants like the Lefschetz number. Indeed, the Euler characteristic of
HF ∗(ϕm,+) coincides with the Lefschetz number (ϕm).

One should notice at this point a related result of Denef and Loeser. For each
m ≥ 0, the m-th jet scheme Lm(Cn) is the variety parametrizing morphisms

γ : Spec(C[t]/(tm+1)→ C
n

of schemes over C. We denote by γ (0) the center of a jet γ , that is, the image in C
n

of the closed point of Spec(C[t]/(tm+1). For a jet γ ∈ Lm(Cn) we denote by f (γ )
the truncated power series given by the composition f ◦ γ . The m-th (restricted)
contact locus of f at O is defined to be

Xm(f,O) := {γ ∈ Lm(Cn) | γ (0) = O and f (γ ) ≡ tm (mod tm+1)}.

Denef and Loeser proved in [22] that the Euler characteristic of Xm(f,O) coin-
cides with the Lefschetz number  (ϕm) (a second proof avoiding resolution of
singularities and based on Hrushovski-Kazhdan motivic integration was provided
recently by Hrushovski and Loeser [54]). This motivated the question of Seidel of
finding a relation between the cohomology of Xm(f,O) and the Floer cohomology
HF ∗(ϕm,+).

A crucial step in this direction is McLean’s paper [77]. Let us introduce some
notation before we explain his result.

Let h : Y → C
n be an embedded resolution of the pair (V (f ),O), that is, a

proper morphism from a smooth variety Y such that E = h−1(V (f )) and h−1(O)

are divisors with simple normal crossings and the restriction h : Y \ h−1(O) →
X\{O} is an isomorphism. We denote byEi with i in S, the irreducible components
of E. We define

mi = ordfEi and νi = ordKY/CnEi + 1,

whereKY/Cn is the relative canonical divisor defined by the vanishing of det dh.
We assume that h is m-separating. This means, by definition, that mi +mj > m

if Ei ∩ Ej �= ∅ for all i �= j ∈ S. An m-separating resolution exists for any m (see
for example [17]). We set

A := {i ∈ S | h(Ei) ⊂ �},

Sm := {i ∈ A | mi divides m},
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and

ki := m/mi
for each i ∈ Sm. Fix a tuple of integers w = (wi)i∈S with wi ≥ 0 such that the
divisor

W = −
∑

i∈S
wiEi

is relatively very ample for h. Assume thatwi = 0 ifEi is not an exceptional divisor.
For an integer p, we let

Sm,p := {i ∈ Sm | wiki = −p}.

Let E◦i = Ei \ ∪j �=iEj . Then there exists an unramified cyclic cover Ẽ◦i → E◦i of
degreemi , given locally in a neighborhoodU in Y of a point in E◦i by

{(z, P ) ∈ C× (E◦i ∩ U) | zmi = u(P )−1},

where f ◦ h = u · ymii with yi a local equation for Ei and u an invertible regular
function on U .

McLean [77, Theorem 1.2] proved:

Theorem 3.5.1 Let f : (Cn,O) → C, h : Y → C be as above. There exists a
spectral sequence

′Ep,q1 =
⊕

i∈Sm,p
Hd−1−2kiνi−(p+q)(Ẽ◦i ,Z) ⇒ HF ∗(φm,+) (3.12)

converging to the Floer cohomology of the m-th iterate of the monodromy φ on the
Milnor fiber of f .

In particular he obtains that the multiplicity is the lowest integer m such that
HF ∗(φm,+) does not vanish. This gives a symplectic interpretation of multiplicity,
which represents a very promising step towards the solution of Zariski’s Ques-
tion 3.3.1 (A). In fact Zariski’s question has a positive answer if any two germs
with the same embedded topological type have the same Floer cohomology for any
iterate of the monodromy. A interpretation of the log-canonical threshold in terms
of Floer cohomology also can be found in [77]. We do not describe it here since it
is further away from the main topic of this paper.

N. Budur, Honc Duc Nguyen, Lê Quy Thuong and the author [17] proved the
following analogue statement concerning the cohomology of contact loci:
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Theorem 3.5.2 Let f : (Cn,O) → C, h : Y → C be as above. There is a
cohomological spectral sequence

E
p,q
1 =

⊕

i∈Sm,p
H2(d(m+1)−kiνi−1)−(p+q)(Ẽ◦i ,Z) ⇒ H

p+q
c (Xm(f,O),Z)

converging to the cohomology with compact support of the m-th contact locus of f .

We note that E1 in this case differs from ′E1 by a (2dm + d − 1)-shift in the
total degree p + q , hence up to relabelling, the two pages are the same. The proof
of the following conjecture, by N. Budur, Honc Duc Nguyen, Lê Quy Thuong
and the author, would lead to the sought identification of Floer cohomologies and
cohomologies of contact loci:

Conjecture 3.5.3 The two spectral sequences {Er, dr}r≥1 and {′Er,′dr }r≥1 are
isomorphic, and

HF ∗(φm,+) ∼= H ∗+2dm+d−1
c (Xm(f,O),Z) .

The conjecture is true if m is the multiplicity of f at the singularity [17] .

Proposition 3.5.4 Let

f = fm + fm+1 + . . .

be a polynomial in d variables vanishing and with an isolated singularity the origin,
where fi are the homogeneous components of degree i, andm > 0 is the multiplicity
of f at the origin. Then,

H ∗c (Xm(f,O),Z) ∼= H2(dm−1)−∗(F,Z),

where F � {fm = 1} is the Milnor fiber at the origin of the initial form fm of f .
Moreover we have

HF ∗−2dm−d+1(φm,+, ) ∼= H2(dm−1)−∗(F,Z).

The first assertion is proved by easy geometric considerations, and the second
holds because both spectral sequences above degenerate for the at the first page if
m is the multiplicity.

Now, if the assertion that any two germs with the same embedded topological
type have the same Floer cohomology for any iterate of the monodromy is true, then
the first assertion of the following conjecture of N. Budur, Honc Duc Nguyen, Lê
Quy Thuong and the author would also be true:

Conjecture 3.5.5 (Corrected Zariski’s Question (B)) Let f, g : (Cn,O)→ (C,O)

be two germs of holomorphic functions. If f and g are embedded topologically
equivalent, then the Milnor fibers of their initial forms have the same homology. We
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also conjecture the stronger statement that the Milnor fibers of their initial forms
have the same homotopy type.

The last conjecture can be seen as a corrected Zariski’s Question 3.3.1 (B), since
we replace the statement about the zero set of the initial form, by an statement about
its Milnor fibre. In fact a more optimistic question would be the following

Question 3.5.6 Let ft : (Cn,O) → C be a family of function germs depending
holomorphically on a parameter. If the Milnor fibration along the family is constant
(that is the Milnor fibrations of f0 and ft are smoothly equivalent for any t �= 0
small enough), is it true that the Milnor fibres of the initial forms of f0 and ft are
homotopy/homology equivalent?

A positive answer to this question would strength the implications of the fact of
having constant Lê numbers.

3.6 Lipschitz Equisingularity

One of the most promising modern directions in the geometric study of singularities
deals with Lipschitz geometry. It is a vast and rapidly developing subject, and a
complete summary is out of the scope of the present survey. Since in this Handbook
there will be other surveys touching Lipschitz Geometry here we will limit ourselves
to mention a few selected developments that are very connected with the topological
equisingularity questions that we have been discussing up to now.

Consider in C
n the standard Euclidean distance. Given a subset X ⊂ C

n we
consider in X the distance obtained restricting the euclidean distance to X. This is
usually called the outer metric, and is the one that we are considering here. The other
metric that is very commonly used in Lipschitz geometry is the inner one, based
on measuring lengths of paths inside X. Since it has less applications concerning
equisingularity we will not discuss it here.

Studying singularities up to Lipschitz equivalence is interesting since Lipschitz
equivalence is in between the topological and analytic equivalence relations. To
be precise, a bi-Lipschitz homeomorphism germ φ : (X,O) → (Y,O) is a
homeomorphism germ that is Lipschitz and that has a Lipschitz inverse with
respect to the metric. Given a function germ or a germ of analytic subset in C

n,
the notions of same abstract/embedded outer Lipschitz type and outer Lipschitz
R/RL-equivalence are defined analogously to Definition 3.2.1. Given a family of
function germs fs or a deformation X of an analytic subgerm of Cn, the notions of
abstract/embedded outer Lipschitz triviality and outer Lipschitz R/RL-equivalence
are defined analogously to Definition 3.3.5.

As it is obvious, the Lipschitz equivalence relations preserve more that the
topological ones. Which analytic invariants are preserved by the different Lipschitz
equivalent relations is an active research area nowadays. In this line a very
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interesting recent result of Birbrair, Fernandes, Lê and Sampaio is the Lipschitz
version of Mumford’s Theorem 3.3.4, which is valid for any dimension:

Theorem 3.6.1 (Birbrair, Fernandes, Lê, Sampaio [8]) If a complex algebraic
germ (X,O) is abstract outer Lipschitz equivalent to a smooth germ, then X is
smooth at O .

Remarkably, Sampaio [118] also proved that the abstract outer Lipschitz version
of Zariski’s Question 3.3.1 (B) is true in much greater generality:

Theorem 3.6.2 (Sampaio) Let (X,O) and (Y,O) be subanalytic germs with the
outer distance. If (X,O) and (Y,O) are abstract outer Lipschitz equivalent then
their tangent cones are abstract outer Lipschitz equivalent as well.

However, when turning to the abstract outer Lipschitz version of Zariski’s
Question 3.3.1 (A) the answer is positive for surfaces and negative in higher
dimension.

Theorem 3.6.3 Let (X,O) and (Y,O) be outer Lipschitz equivalent complex
analytic germs of dimension at most 2, then their multiplicities coincide. There
exists pairs (X,O) and (Y,O) of 3-dimensional outer Lipschitz equivalent complex
analytic germs with different multiplicity.

The positive assertion for surfaces was proved by Neumann and Pichon [98] for
families of hypersurfaces with isolated singularities, and in general by Fernandes,
Sampaio and the author in [33], and the counterexamples in higher dimension were
found by Birbrair, Fernandes, Sampaio and Verbitsky in [9].

Concerning Neumann and Pichon result for families of hypersurfaces with
isolated singularities, we should remark that their result is a shadow of a stronger
result: a family of hypersurfaces of dimension 2 is outer Lipschitz trivial if it
is Zariski equisingular. In fact Parusiński and Paunescu [105] obtained recently
an even stronger version of this result by different methods: they improved the
Lipschitz triviality and constructed a Lipschitz trivialization from the integration
of a Lipschitz vector field.

However the embedded Lipschitz version of Zariski’s Question 3.3.1 (A) is open
in general:

Question 3.6.4 If two complex hypersurface germs are embedded Lipschitz equiv-
alent, do they necessarily have the same multiplicity?

It is worth to remark that, unlike in the topological case, Lipschitz R-equivalence
is a very restrictive equivalence relation. This is demonstrated by the following
facts:

1. While the embedded Lipschitz version of Zariski’s Question 3.3.1 (A) is open, we
have already mentioned that the Lipschitz RL-equivalence version of Zariski’s
multiplicity question was proven affirmatively by Risler and Trotman [113].

2. While Lipschitz classification is a tame one (this is true by Mostowski result
on existence of Lipschitz stratifications [85]), the classification of function
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germs under Lipschitz R-equivalence presents moduli. The first example was
discovered by Henry and Parusiński [52]: the following family of function germs

fs(x, y) = x3 − 3t2xy4 + y6

satisfies that for any sufficiently generic s, s′ the germs fs and fs ′ are not
Lipschitz R-equivalent.

3.7 An Appendix by Gert-Martin Greuel and Gerhard
Pfister: History of Singular and Its Relation to Zariski’s
Multiplicty Conjecture

When you call SINGULAR [21], local on your computer or online, the following
heading appears:

SINGULAR
A Computer Algebra System for Polynomial Computations
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
FB Mathematik der Universitaet, D-67653 Kaiserslautern

In fact, SINGULAR is nowadays a widely used computer algebra system for
polynomial computations with special emphasis on the needs of commutative
algebra, algebraic geometry, and singularity theory. However, at the beginning this
was never planned, we just wanted to solve mathematical problems. Only later when
we had been (partially) successful, we decided to create a system also to be used by
others. The development of SINGULAR has been strongly motivated and was for a
long period mainly driven by mathematical problems in singularity theory. Even its
appreciated computational speed is a consequence of problems in singularity theory,
which are theoretically as well as computationally very hard. It is perhaps of interest
to the singularities community to see how this all came about.

It started at a time, when symbolic computations was just beginning to emerge
and algorithms, in particular for local computations, were practically not existent.
Moreover, our cooperation within two Germanies was anything but easy because
a visit from East Germany to West Germany was not possible. Anyway, we could
meet in East Berlin and we started a cooperation around 1984.

The birth of SINGULAR goes back to our efforts to generalize Kyoji Saito’s well
known result for hypersurface singularities (cf. [115]):

Theorem 3.7.1 (K. Saito, 1971) Let (X, 0) be the germ of an isolated complex
hypersurface singularity. The following conditions are equivalent:

1. (X, 0) is quasi-homogeneous (that is, has a good C
∗-action).

2. μ(X, 0) = τ (X, 0).
3. The Poincaré complex of (X, 0) is exact.
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Pfister (left) and Greuel at
Humboldt University Berlin,
1984

If (X, 0) is given by f ∈ C{x1, . . . , xn} then μ(X, 0) = dimCC{x1, . . . , xn}/
j (f ) is the Milnor number and τ (X, 0) = dimC C{x1, . . . , xn}/〈f, j (f )〉 the
Tjurina number, with j (f ) = 〈∂f /∂x1, . . . , ∂f /∂xn〉.

Based on results in [43] and [44] we proved in [46] the following generalization
of Saito’s result to isolated complete intersection curve singularities (the result in
[46] was more general for reduced Gorenstein curve singularities, with the Tjurina
number replaced by the Deligne number).

Theorem 3.7.2 (G.-M. Greuel, B. Martin, G. Pfister, 1985) If (X, 0) is a reduced
complete intersection curve singularity, then

(X, 0) quasi-homogeneous ⇐⇒ μ(X, 0) = τ (X, 0) .

So we asked ourselves in [46, Problem 1] whether (X, 0) is quasi-homogeneous
if the Poincaré complex of (X, 0) is exact (the other direction is clear). At the
beginning we actually conjectured that the answer should be positive. However,
we did not succeed in proving it and so we started to look for possible counter
examples. But the computations by hand were very time consuming and with the
small examples at hand we were unable to find any counter example. Nevertheless,
we started not to believe in the conjecture.

To compute potential counter examples with a help of a computer, two main
problems appeared: First, we needed Teo Mora’s tangent cone algorithm (a variation
of Buchberger’s algorithm for local rings) to compute standard bases for OX,0-
modules. However, no package for this existed at that time, not even for ideals.
The second problem was more of a theoretical nature. We needed to compute the
kernel of the exterior derivation in the Poincaré complex, which is only C-linear
but not OX-linear and hence not directly tractable by standard bases computations.
Fortunately, using a result of Reiffen (see below) we had been able in [46] to
reformulate the exactness of the Poincaré complex as a question of computing
submodule membership and dimensions of OX,0-modules.

The first problem was more serious. There was no computer algebra system
available which could compute this kind of examples. In 1984 Neuendorf and Pfister
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(during vacations at the Baltic sea) started an implementation of Buchberger’s
Gröbner basis algorithm in Basic on a ZX-Spectrum (an 8 bit home PC from Sinclair
UK, 1982). It took Pfister and his student Hans Schönemann two more years of
development to obtain a Modula-2 implementation of a package, called Buchmora
at that time (Buchberger’s and Mora’s algorithm) for Atari computers. Using this
implementation the following counter examples were found (cf. [110]).

Theorem 3.7.3 (G. Pfister, H. Schönemann, 1989) Let (Xlk, 0) be the germ of
the unimodal space curve singularity FTk,l of the classification of C.T.C. Wall (cf.
[147]) defined by the equations

xy + zl−1 = xz+ yz2 + yk−1 = 0 , (4 ≤ l ≤ k, 5 ≤ k) .

Then the Poincaré complex

0 −→ C −→ OXlk,0 −→ �1
Xlk,0 −→ �2

Xlk,0 −→ �3
Xlk,0 −→ 0

is exact, but (Xlk, 0) is not quasi-homogeneous.

Proof To show that (Xlk, 0) is not quasi-homogeneous, it suffices to show

μ(Xlk, 0) = τ (Xlk, 0)+ 1 = k + l + 2

by the following formulas. Let (X, 0) ⊂ (C3, 0) be the space curve singularity
defined by f = g = 0, with f, g ∈ C{x, y, z}. Then

• μ(X, 0) = dimC(�
1
X,0/dOX,0) = dimC C{x, y, z}/〈f,M1,M2,M3〉

− dimC C{x, y, z}/〈 ∂f
∂x
,
∂f
∂y
,
∂f
∂z
〉,

• τ (X, 0) = dimCC{x, y, z}/〈f, g,M1,M2,M3〉,

withM1,M2,M3 the 2-minors of the Jacobian matrix

(
∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

)
.

On the other hand, a result of Reiffen says:

• The Poincaré complex is exact iff

1. 〈f, g〉 ·�3
C3,0

⊂ d(〈f, g〉 ·�2
C3,0
), and

2. μ(X, 0) = dimC(�
2
X,0)− dimC(�

3
X,0).

All these statements could be checked with the Buchmora algorithm. ��
Encouraged by this success and having a computer algebra system that was able

to compute in local rings, we tried to find a counter example to Zariski’s multiplicity
conjecture (Zariski had posed this as a question, which he supposed to have quick
answer by topologists, cf. [154]).

Conjecture 3.7.4 (O. Zariski [154]) Two hypersurface singularities (given by con-
vergent power series) with the same topological type have the same multiplicity.
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The weaker family-version of this conjecture says:
In a μ–constant deformation of an isolated hypersurface singularity the multiplicity
is constant.

The conjecture was already known for reduced plane curve singularities and the
weaker conjecture for isolated quasi-homogeneous hypersurface singularities (cf.
[45]). The methods of [45] are in principal applicable to any isolated hypersurface
singularity, but we failed to prove the weak Zariski’s conjecture in general. Due to
the many unsuccessful efforts by us and others we were (and are still) convinced
that Zariski’s conjecture might not be true.

Hence, we tried to find a counterexample. The main problem is the difficulty to
construct examples of μ-constant deformations. Since Zariski’s conjecture is true in
the semi quasi-homogeneous case and for plane curve singularities, the examples to
test should be somewhat complicated. We used the Newton diagram to construct
families of surface singularities where the multiplicity drops and with Newton
diagram becoming degenerate but with rather small degeneracy area, hoping that the
Milnor number would stay constant. Among others we tried a series of examples of
the following form:

The multiplicity can be read of from the equation, but for the Milnor number
we had to use a computer and the package Buchmora. However, this and other
examples took hours to compute. Whenever we met, in East Germany (often in
Pfister’s dacha close to Berlin) or at conferences outside West Germany, we tried to
improve the algorithm by checking different local orderings and trying to optimize
the selection strategies during the standard basis computation (producing huge
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tables with timings1). The selection strategies for different orderings, which we
finally preferred, are still in use in the present version of SINGULAR.

The place where everything
started: Pfister’s dacha in the
GDR

Among the above series of examples there was unfortunately no counter
example. We found e.g. for (a, b, c) = (40, 30, 8):

m(F0) = 17, m(Ft ) = 16, μ(F0) = 10661, μ(Ft ) = 10655.

The computations for μ took many hours (today within a few seconds), but smaller
Milnor numbers could be excluded by heuristical arguments. A significant speed up
of the computation of standard bases for local orderings was needed and we decided
to make a further step towards a more professional development of a computer
algebra package.

In 1989 Buchmora was renamed to SINGULAR. It was jointly developed by
groups from Berlin (Pfister) and Kaiserslautern (Greuel) within a DFG priority
program 1990–1996. Within this program we could hire Hans Schönemann, who
moved to Kaiserslautern in 1990, right after the unification of Germany. SINGULAR

was ported to Unix (still in Modula-2) and a first user manual was released.
In 1993 Pfister moved to Kaiserslautern and we decided to rewrite the code in
C/C++, carried out mainly by Schönemann. Within the DFG priority program
the SINGULAR programming language was developed and many libraries had been
established. Around 1996 Olaf Bachmann joined the team in Kaiserslautern and
with his help it was possible to improve the code of SINGULAR significantly, mainly
by adapting the data structures and the memory management, which increased the
speed drastically.

1 The following anecdotes illustrate our involvement. During a conference at Mount Holyoke
College we were so absorbed in the tests that we were startled by a sudden fire alarm. Only after
some time we realized that the alarm was just triggered by our pipe smoke (we were both pipe
smokers at the time). Fortunately, the alarm bell stopped after a while and nothing happened.
To check correctness was also difficult at that time. Pfister wanted to compare a Gröbner bases
computed by Buchberger with our own implementation. He managed to do this only with the help
of his wife by checking the two (many pages) print-outs by hand.
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In spite of these improvements, no counter example was found! But by analyzing
the above examples a partial solution to Zariski’s conjecture was published in [48],
including the first publication of a standard basis algorithm for arbitrary mixed
monomial orderings (implemented in Singular since 1993):

Proposition 3.7.5 (G.-M. Greuel, G. Pfister [48]) Let

Ft (x1, . . . , xn) = Gt(x1, . . . , xn−1)+ x2
nHt(x1, . . . , xn)

be a family of isolated hypersurface singularities. LetG0 be semiquasihomogeneous
or let n = 3. If the family has constant Milnor number and the multiplicity of Gt is
smaller or equal to the multiplicity of Ht + 2 then the multiplicity of Ft is constant.

To conclude, let us remark, that the failure to find a counter example to Zariski’s
conjecture was the most important reason for the development of SINGULAR as
it is now. First of all, for many years it was the main motivation to improve its
speed, since the possible counter examples were complicated to compute. Secondly,
it was a very good theoretical problem that convinced the referees to support the
development of SINGULAR for many years.

SINGULAR—Some History

• 1984 Neuendorf/Pfister: Implementation of the Gröbner basis algorithm in Basic
on a ZX-Spectrum.

• 1990 Schönemeann moved to KL, porting to Unix
• 1993 Pfister moved to KL, C/C++ version.
• 1996 Bachmann joined the team, improvement of code and speed.
• 1996–2000 Greuel/Pfister: symbolic/numerical algorithms in SINGULAR, joint

with electrical engineers and a Mathematic package ”Analog Insydes”.
• 1997/1998 Singular release 1.0–1.2, with multivariate polynomial factorization,

gcd, syzygies, free resolutions, communication links, primary decomposition and
normalization.

• 2002 Book: A SINGULAR Introduction to Commutative Algebra [47].
By G.-M. Greuel and G. Pfister, with contributions by O. Bachmann, C.

Lossen and H. Schönemann.
• 2004 First Richard D. Jenks Memorial Prize for Excellence in Software Engi-

neering awarded to SINGULAR at ISSAC in Santander.
• 2004 Greuel/Levandovsky: The subsystem PLURAL for non-commutative poly-

nomial algebras is included in SINGULAR.
• 2008 interface to the computer algebra system ”Sage”.
• 2009 Decker moves to KL, with Greuel/Pfister/Schönemann one of the leaders

of the SINGULAR development.
• 2016 The “Oscar” system includes a Julia package for the Singular library.
• SINGULAR has been supported by Deutsche Forschungsgemeinschaft (DFG),

Stiftung Rheinland-Pfalz für Innovation, and Volkswagen Stiftung.
• SINGULAR is free software, available at https://www.singular.uni-kl.de/

https://www.singular.uni-kl.de/
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SINGULAR-team with Pfister, Schönemann, Lossen, Decker, Greuel, ...
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Abstract The present note aims to focus on certain topological and analytical
invariants of complex normal surface singularities and wishes to analyse their
interferences. The first preliminary part introduces the needed notations, definitions
and terminologies: e.g. resolutions, universal abelian coverings, natural line bundles
on resolutions, links, spinc structures on the links. Here we also recall certain
vanishing theorems and statements connected with Serre’s and Laufer’s dualities.
The next part presents two multivariable series, a topological one (associated
with a dual resolution graph) and an analytic one (associated with the divisorial
filtration), then we compare them. Then we introduce several topological invariants,
as the Casson and Casson–Walker invariants, Turaev’s torsion, the Seiberg–Witten
invariant. By the ‘Seiberg–Witten Invariant Conjecture’ they are compared with
the cohomology of the natural line bundles. In this discussion certain ‘additivity
formulae’ will also be crucial. After a preparation (introduction of the weighted
cubes) we continue with the presentation of the (topological) lattice cohomology
and of the (topological) graded roots associated with rational homology sphere
singularity links. They are exemplified by links of superisolated singularities, when
the theory is also connected with the classification of irreducible rational cuspidal
projective plane curves.
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4.1 Introduction

Let (X, o) be a complex analytic normal surface singularity. The main motif of the
present work is the following: what are the ties between analytic and topological
invariants of (X, o)? Historically this program was started by Mumford, Artin and
Laufer. Mumford realized the link as plumbed 3–manifold and proved that if the
fundamental group of the link is trivial then the germ is (analytically) smooth [64].
Artin and Laufer characterized topologically the rational and minimally elliptic
singularities (respectively), and computed several analytic invariants for them from
the resolution graph [5, 6, 49, 50].

Let us exemplify a few pairs of analytic/topological objects, which play a central
role in the text.

On the analytic side our fundamental objects are the dimensions of the sheaf
cohomologies of line bundles on a resolution (including e.g. the geometric genus)
and the multivariable Poincaré series of the divisorial filtration associated with a
resolution. If the link of (X, o) is a rational homology sphere then we consider
the universal abelian covering (Xa, o) → (X, o) too and the above listed analytic
invariants associated with (Xa, o). These, reinterpreted at the level of (X, o) (and
its resolutions) can be related with cohomological properties of the ‘natural line
bundles’ on the resolution spaces X̃ of (X, o).

On the topological side, the link, as an oriented 3-manifold, carries the Casson
invariant whenever the link is an integral homology sphere. In the rational homology
sphere case, it carries Casson–Walker invariant, the (refined) Turaev torsion, the
Seiberg–Witten invariants, the lattice (co)homology and the graded roots.

Then, the Seiberg–Witten invariant (which agrees with the Euler characteristic
of the lattice cohomology) will be compared with the ranks of cohomologies of
line bundles (formulated by the Casson Invariant Conjecture of Neumann and
Wahl whenever the link is an integral homology sphere, or by the Seiberg–Witten
Invariant Conjecture of Nicolaescu and the author in the rational homology sphere
case). Moreover, a topological multivariable Poincaré series (a ‘zeta’ function,
associated with the dual graph) will be compared with its analytic counterpart
provided by the divisorial filtration (as extensions of Campillo–Delgado–Gusein-
Zade identity). The parallelism will be emphasized by several surgery and additivity
formulae of a very similar shape present in both analytic and topological sides. (For
more on such parallelisms see [77] as well.)

Regarding the topological invariants, the research of the author was greatly influ-
enced by the work of Ozsváth and Szabó on Heegaard Floer theory of 3-manifolds.
However, the techniques developed by the author to create a bridge between
singularities and the low dimensional topology differ from those used in Heegaard
Floer theory. The effort to create such a bridge had as a fruit and culminated in the
lattice cohomology. It is defined combinatorially from the graph. Conjecturally it
coincides with the Heegaard Floer cohomology. However, its definition and several
of its properties resemble sheaf cohomology long exact sequences. Indeed, behind
certain definitions and techniques in lattice cohomology theory one experiences
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certain generalizations of ideas of Laufer regarding computation sequences, used
in sheaf cohomological arguments. In the new context these sequences appear
as discrete ‘homotopy deformation retracts’. Our presentation emphasises this
continuity with Laufer’s work.

The theory is exemplified by cyclic quotient, weighted homogeneous and
superisolated singularities.

The presentation follows rather closely [66]. However, the present work concen-
trates mostly on the main statements and different connections and ideas behind the
results, and basically we omit most of the proofs. The interested reader is invited to
consult [66] for more information.

4.2 Resolution of Surface Singularities

4.2.1 Local Resolutions

Definition 4.2.1 Consider the germ (X, o) of a normal complex analytic surface
singularity with singular points o ∈ X. Let φ : X̃ → X be a proper analytic map,
where X is a sufficiently small representative of (X, o). We also set E := φ−1(o).
We say that φ is a local modification of (X, o) if the restriction of φ induces an
isomorphism X̃ \ E → X \ o. Additionally, if X̃ is smooth then we say that φ is a
resolution.

Given two modifications φi : X̃i → Xi (i = 1, 2) of (X, o), we say that φ1
dominates φ2 if after replacing both representatives Xi of (X, o) by some smaller
representativeX, there exists an analytic map ψ : X̃1 → X̃2 such that φ2 ◦ψ = φ1.

A resolution is called good if all the irreducible components of E (with reduced
structure) are smooth (in particular, they have no self-intersections), and intersect
each other transversally.

A resolution is called minimal if it does not dominate (with ψ non-isomorphism)
any other resolution. One defines similarly the minimal good resolutions as well.

Lemma 4.2.2 (Zariski’s Main Theorem, see [120], [34, p. 280] for the Algebraic
and [29, 30] for the analytic case) Assume that (X, o) is a germ of a normal
surface singularity and fix a resolution φ : X̃ → X, which is not an isomorphism.
Then E = φ−1(o) is connected, compact and one-dimensional.
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Definition 4.2.3 Let (X, o) be a normal surface singularity and φ a resolution.

(a) The analytic (reduced) curve E is called the exceptional set (or curve) of φ.
We write {Ev}sv=1 (or, {Ev}v∈V) for the irreducible components of E and gv =
g(Ev) denotes the geometric genus of (the normalization of) Ev .

(b) The intersection matrix I of φ consists of the intersection numbers (Ev,Eu)v,u
in X̃.

(c) Let f : (X, o) → (C, 0) be the germ of a holomorphic function. Then the
divisor div(f ◦ φ) on X̃ decomposes into divE(f ◦ φ)+ S(f ◦ φ), abbreviated
as divE(f ) + S(f ), where divE(f ) is the part supported on E, while S(f ) is
the strict transform of the divisor of f .

Example 4.2.4 Assume that (X, o) is smooth. Then by blowing up o we get a
modification with an exceptional curve E � P

1 and E2 = −1.
In general, if C is a curve on a smooth surface X̃ with C � P

1 and C2 = −1
then C is called a (−1)-curve on X̃. By Castelnuovo’s Contractibility Criterion any
(−1)-curve appears as a blow up of a smooth point.

Assume that X̃ is a smooth surface and C is an irreducible curve on it with
(C,C) < 0, with genus g(C), and the sum of the delta-invariants of its points is
δ(C). Then by the adjunction formula (KX̃, C)+ (C,C) = −2+2g(C)+2δ(C) ≥
−2. Therefore, C is a (−1)-curve if and only if (KX̃, C) < 0.

The next statement guarantees the existence of a resolution, cf. [7, 35, 40, 43, 48,
57, 118, 119].

Theorem 4.2.5 Let (X, o) be a normal surface singularity germ. Then the follow-
ing facts hold.

1. A good resolution exists.
2. There is a unique minimal resolution and a unique minimal good resolution.
3. A resolution is minimal if and only if none of the curves Ev is a (−1)-curve.
4. A good resolution is minimal good if and only if any (−1)-curve intersects at

least three other components.

Remark 4.2.6 Since (X, o) is normal,X \ {o} is smooth. Above, in the definition of
the resolution,X was an open representative. However, (in topological discussions)
we can assume additionally that X is contractible to o ∈ X and it is closed with a
compact and C∞ boundary, cf. subsection 4.2.2. In particular, X̃ has the homotopy
type of E and it also has a C∞ boundary ∂X̃.

Proposition 4.2.7 (DuVal [16], see also [5, 48, 64]) Let (X, o) be a normal surface
singularity and φ a resolution. Then the intersection matrix I := (Ev,Eu)sv,u=1 is
negative definite.

Remark 4.2.8 The converse of Proposition 4.2.7 is also true. By a famous theorem
of Grauert [28], any connected collection of (compact) curves on a smooth surface
with negative definite intersection form can analytically be contracted to a normal
singular point, hence it appears as the exceptional curve of a resolution of some
normal surface singularity.
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4.2.9 The Lattice Associated with a Resolution Let (X, o) be a complex normal
surface singularity and let φ : X̃ → X be a resolution. Here we take X sufficiently
small and contractible (see 4.2.20).

Set L := H2(X̃,Z). Since X̃ has the homotopy type of E, L is freely generated
by the classes of {Ev}v (still denoted by the same symbol Ev), and it becomes a
lattice with the intersection form I . Define also L′ := H2(X̃, ∂X̃,Z). It is dual to L.
If for each v ∈ V one takes a transversal disc Dv to Ev (at a generic point of Ev),
then their classes form a basis of L′. Furthermore, the homological map L→ L′ in
the bases {Ev} and {Dv} is exactly the matrix I . Since I is non-degenerate,L→ L′
is injective. We write H := L′/L. Clearly, |H | = |coker(I)| = | det(I)|.

We extend the intersection form I of L to L⊗Q. By the perfect pairing between
L and L′, L′ is identified with Hom(L,Z). On the other hand, Hom(L,Z) is also
identified with those elements l′ of L ⊗ Q for which (l′, l) ∈ Z for any l ∈ L. In
the sequel we will think about L′ in this way, as a sublattice of L ⊗ Q, and as an
overlattice of L, endowed with the (rational) intersection form I .

Effective classes l = ∑ rvEv ∈ L′ with all rv ∈ Q≥0 are denoted by L′≥0, and
L≥0 := L′≥0 ∩ L. There is a natural partial ordering in L ⊗ Q associated with the
bases {Ev}v: we say that l1 ≥ l2 if l1 − l2 is effective. We write l1 > l2 if l1 ≥ l2
and l1 �= l2. The cycle min{l1, l2} is the largest l with l1, l2 ≥ l. If l′ =∑v rvEv is
a rational cycle, its support |l′| is ∪v : rv �=0 Ev . Moreover, we set &l′' :=∑v&rv'Ev ,
and {l′} := l′ − &l′'.

4.2.10 The Pontrjagin Dual of H We denote the Pontrjagin dual Hom(H, S1) of
H by Ĥ . Let θ : H → Ĥ be the isomorphism [l′] �→ e2πi(l′,·) of H with Ĥ .

4.2.11 Lipman’s Cones Associated with the Resolution [56] We prefer to
replace the classes [Dv] ∈ H2(X̃, ∂X̃,Z), reinterpreted in L′, by their ‘opposites’,
denoted by E∗v . That is, E∗v ∈ L′ ⊂ L⊗Q satisfies (E∗v , Ew) = −1 for v = w, and
0 otherwise. In particular, the vectors E∗v , written in the base {Ev}v , are exactly the
columns of the matrix −I−1, and (I−1)vw = (E∗v , E∗w).

Let SQ := {l′ ∈ L ⊗ Q : (l′, Ev) ≤ 0 for all v ∈ V} be the anti-nef rational
cone, S′ := SQ ∩ L′ and S := SQ ∩ L. S′ is generated over Z≥0 by the elements
E∗v .

The definition of the cone S is motivated by the following fact:

Lemma 4.2.12 Let f : (X, o)→ (C, 0) be a holomorphic function, and φ a good
resolution of (X, o). Then divE(f ) ∈ S \ {0}.
The divisor divE(f ) =∑w∈VmwEw satisfies mw > 0 for all w. This is a general
fact of all the elements of S′ by the next corollary. In particular, S′ is in the first
quadrant. (This motivates the sign modification in the definition of E∗v .)

Corollary 4.2.13

(a) Assume that l = ∑v rvEv with rv ∈ Q, l �= 0, and (l, Ev) ≤ 0 for all v ∈ V.
Then rv > 0 for all v ∈ V. In particular, all the entries of E∗v are strictly
positive.

(b) For any fixed l′ ∈ L′ the set {l̃′ ∈ S′, l̃′ �≥ l′} is finite.
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4.2.14 The Resolution Graph Let (X, o) be a normal surface singularity and let
φ : X̃ → X be a good resolution. Denote by E the exceptional curve of φ with
irreducible decomposition {Ev}v∈V. We construct a graph � as follows. Its vertices
V correspond to the irreducible exceptional components. If two irreducible divisors
corresponding to v1, v2 ∈ V have k intersection points then we connect v1 and
v2 by k edges in �. The graph � is decorated as follows. Any vertex v ∈ V is
decorated with the self-intersection ev := E2

v and genus gv of Ev (denoted as [gv]).
The valency (number of adjacent edges) of a vertex is denoted by κv .

Remark 4.2.15

(a) The graph � is connected by Lemma 4.2.2.
(b) The resolution is not unique, e.g. one can blow up a point of the exceptional

divisor of a resolution. Accordingly, the graph � depends on the choice of
φ. However, dual resolution graphs associated with different resolutions are
connected by a sequence of blow ups and blow downs of vertices associated
with (−1)-curves (well–defined modifications at the level of graphs).

Definition 4.2.16 A vertex of a graph with positive genus decoration, or adjacent
to at least three edges, is called a node. A string is a ‘linear’ (sub)graph (with all
genus-decorations zero) of type

Strings can be characterized by continued fractions.

Definition 4.2.17 To any two relative prime positive numbers n and q we associate
the following (Hirzebruch, or negative) continued fraction:

n

q
= [b1, b2, . . . , bs] := b1− 1

b2 − 1

. . . − 1

bs

, b1 ≥ 1, b2, . . . , bs ≥ 2. (4.1)

The entries (b1, . . . , bs) characterize a string graph with decorations−b1, . . . ,−bs .
For any pair n and q we also consider the Dedekind sum

s(q, n) =
n−1∑

l=0

(( l
n

))((ql
n

))
,

where ((x )) is the Dedekind symbol (and {·} is the ‘fractional part’):

((x )) =
{ {x} − 1/2 if x ∈ R \ Z

0 if x ∈ Z.
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Example 4.2.18 ([7, 35, 48, 105, 106]) For a normal surface singularity, the fol-
lowing conditions are equivalent. If (X, o) satisfies any of them, then it is called
Hirzebruch–Jung or cyclic quotient singularity.

1. (X, o) is isomorphic with one of the ‘model spaces’ {Xn,q}n,q , whereXn,q is the
normalization of ({xyn−q = zn}, 0), where 0 < q < n, (n, q) = 1.

2. There is an analytic covering p : (X, o)→ (C2, 0) such that the reduced branch
locus of p is {uv = 0} in some local coordinates (u, v) of (C2, 0).

3. The resolution graph �X is a string (with gv = 0 for any v ∈ V).
4. (X, o) is the quotient singularity (C2, 0)/Zn of the cyclic group Zn = {ξ ∈ C :
ξn = 1} of order n, where the action is ξ ∗ (z1, z2) = (ξz1, ξ

qz2) for some
0 < q < n with (q, n) = 1.

4.2.2 The Link

4.2.19 Let (X, o) be the germ of a normal complex analytic surface singularity
and U a neighborhood of o. We fix a real analytic function ρ : U → [0,∞) with
ρ−1(0) = {o}. In the sequel we write XS for ρ−1(S) for different subsets S of
[0,∞). The next theorem characterizes the local homeomorphism type of (X, o)
showing its conic structure. For different levels of generality see [14, 18, 32, 54, 58,
59, 63].

Theorem 4.2.20 There exists a sufficiently small ε0 > 0 such that for any 0 < ε ≤
ε0 the inverse image X{ε} := ρ−1(ε) is a C∞ manifold of dimension three. Its C∞
type is independent of the choice of ε and ρ.

Moreover, the homeomorphism type of (X[0,ε],X{ε}) is independent of the choice
of ε and ρ, and it is the same as the homeomorphism type of (real cone(X{ε}),X{ε}),
where the vertex corresponds to o.

As X[0,ε] \ {o} is a C∞ manifold with a canonical orientation (induced by the
complex structure), its boundaryX{ε} inherits a canonical orientation too.

Definition 4.2.21 The oriented diffeomorphism type of X{ε} is called the link of X
at o. It is denoted by L(X, o).

Example 4.2.22

(a) Assume that X is a normal affine surface, which admits a good C
∗ action (cf.

4.2.3). Then L(X, 0) is a Seifert 3-manifold.
(b) Consider the situation of Example 4.2.18(4). Set S3 = {|z1|2+|z2|2 = ε}. Then

the Zn-action preserves S3, where it acts freely. Hence the link L(Xn,q , o) is the
lens space L(n, q) = S3/Zn. Moreover, L(n, q) and L(m,p) are orientation
preserving diffeomorphic if and only ifm = n and p ∈ {q, q ′}, where 0 < q ′ <
n and qq ′ ≡ 1 modulo n.
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4.2.23 Links as Plumbed 3-Manifolds To any normal surface singularity (X, o)
we associated its link L(X, o) and its resolution graph � (well-defined up to blow
up/down of (−1)-curves). The point is that they determine each other. Indeed,
L(X, o) is recovered from � via the plumbing construction, by considering � as a
plumbing graph. For more details, see [37, 64, 87]. Note also that different plumbing
graphs might produce diffeomorphic 3-manifold (via orientation preserving diffeo-
morphisms). However, if we restrict the plumbing construction to graphs which are
connected and have negative definite intersection matrix then M(�1) and M(�2)

are diffeomorphic if and only if the graphs are related by a sequence of (−1) blow
ups and/or their inverses.

4.2.24 Homological Properties of the Link Let X̃ = φ−1(ρ−1([0, ε])) as above
with 0 < ε ( 1. Since i : L = H2(X̃,Z) → L′ = H2(X̃, ∂X̃,Z) is injective
(see 4.2.9), the exact sequence of (X̃, ∂X̃) reads as

0 → H2(X̃)
i−→ H2(X̃, ∂X̃)→ H1(LX)→ H1(E)→ 0. (4.2)

Set g(�) :=∑v∈V gv and let c(�) be the number of independent cycles in �.

Proposition 4.2.25 ([37, 64, 107]) L′/L = coker(I) = Tors(H1(LX,Z)), and

H1(LX,Z) = coker (I)⊕H1(E,Z) = coker (I)⊕ Z
2g(�)+c(�).

Hence, LX is a rational homology sphere if and only if � is a tree with all gv = 0,
and LX is an integral homology sphere when additionally det(−I) = 1.

4.2.3 Example: Weighted Homogeneous Singularities

4.2.26 Definitions[99, 100] Fix some positive integers (w1, . . . , wn). One defines
the action of C

∗ on C
n with weights (w1, . . . , wn) by t · (x1, . . . , xn) =

(tw1x1, . . . , t
wnxn). A polynomial f ∈ C[x] is called weighted homogeneous

of degree � with respect to the weights (w1, . . . , wn) if f (t · x) = t�f (x), where
� ∈ Z≥0.

Let us fix an affine algebraic varietyX ⊂ C
n.X is called weighted homogeneous

with weights {wi}i if it is stable with respect to the above action of C∗. Since the
weight are all positive the action on X is good, that is, the origin is contained in
the closure of any orbit. If additionally we assume that gcdi{wi} = 1 and X �

∪i{xi = 0} then the action is effective too, that is, if t · x = x for all x ∈ X
then t = 1. If X is weighted homogeneous then its defining ideal is generated
by weighted homogeneous polynomials. In particular, its affine coordinate ring is
Z≥0-graded: R = ⊕�≥0R�. In fact, all finitely generated Z≥0-graded C-algebras
correspond to affine varieties with good C

∗-action. However, note that the normality
of R = ⊕�≥0R� is not automatically guaranteed.
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A normal analytic surface singularity (Xan, o) is called weighted homogeneous if
there exists a normal affine surfaceX, which admits a good C

∗ action (with wi > 0
and gcdi{wi} = 1) and a singular point o ∈ X such that (Xan, o) is analytically
isomorphic with the (induced analytic germ) (X, o).

4.2.27 The Resolution [99] The dual graph of the minimal good resolution X̃ of a
weighted homogeneous germ is star-shaped.

A connected graph � is called star-shaped if it has a central vertex v0, and � \v0
consists of ν ≥ 0 strings. Each string is connected to v0 by an edge at one of the
end-vertices of the string. In some cases, for a fixed �, the choice of the central
vertex is not unique; e.g. if � itself is a string then any vertex can be central.

Next we recall some of the combinatorial properties of the star-shaped graphs.
We use the following notations: v0 has self–intersection (Euler) number−b0 and

genus g ≥ 0. The Euler numbers of the vertices vji of the j th string (1 ≤ j ≤ ν)
are −bj1, . . . ,−bjsj , with bji ≥ 2, determined by the continued fraction αj/ωj =
[bj1, . . . , bjsj ], where gcd(αj , ωj ) = 1, 0 < ωj < αj . For each j , v0 is connected
with vj1 by one edge. Set also nj,i/qj,i := [bji, . . . , bjsj ] with gcd{nj,i, qj,i} = 1.

In such a case the plumbed 3-manifold M(�) is a Seifert fibered 3-manifold,
which means that M(�) is foliated by circles such that any circle has a compact
orientable saturated neighbourhood [38, 39, 87, 89, 108].M(�) and the foliation is
characterized by the collection (b0, g; {(αj , ωj )}j ), called the Seifert invariants.

If either g > 0 or ν ≥ 3 then the choice of the central vertex is unique. In the
sequel we assume this fact. The virtual (or orbifold) Euler number e and the virtual
Euler characteristic χ are defined by

e := −b0 +
∑

j

ωj /αj , χ := 2− 2g −
∑

j

(αj − 1)/αj . (4.3)

Note that for general star–shaped plumbing graphs e < 0 if and only if the
intersection matrix I = I (�) is negative definite.

Assume that g = 0 and let hj denote the class [E∗jsj ] (j = 1, . . . , ν) and h0 the

class [E∗0 ] in H = L′/L. Then H is generated by {hj }νj=0 with relations b0h0 =∑ν
j=1ωjhj and αjhj = h0 (j = 1, . . . , ν). Moreover, if o be the order of h0 in H

and α := lcm{α1, . . . , αν} then (cf. [88]) |H | = α1 · · ·αν |e| and o = α|e|.
4.2.28 The Dolgachev–Pinkham–Demazure Formulae [103] Fix X normal, and
let R = ⊕�≥0R� be the graded algebra of X, and PX(t) = ∑

�≥0 dimR� · t� the
corresponding Poincaré series. Let pg = h1(OX̃) be the geometric genus of (X, o)
Assume next that LX is a rational homology sphere, that is g = 0, and set

N(�) = �b0 −
∑

j

⌈
�ωj/αj

⌉
. (4.4)
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Since e < 0 one has lim�→∞N(�) = ∞. Moreover, the following formulae hold:

PX(t) =
∑

�≥0

max{0, N(�)+ 1} t�, and pg(X, o) =
∑

�≥0

max{0,−N(�)− 1)}.

(4.5)

In particular, PX and pg are topological.

4.2.4 Example: Superisolated Singularities

4.2.29 Hypersurface superisolated singularities connect in a tautological way the
theory of complex projective plane curves with normal surface singularities. They
were introduced by I. Luengo [60]. For different applications see [3, 4, 60–62].
Before we start the definition of superisolated germs we review some basic facts
and notations about plane curve singularities.

4.2.30 Invariants of Irreducible Plane Curve Singularities Let us fix first an
irreducible plane curve singularity (C, o) ⊂ (C2, 0). We write {(pi, qi)}i for its
Newton pairs, �(t) for the characteristic polynomial (of the first homology of the
Milnor fiber), μ = deg�(t) for the Milnor number. Furthermore, its delta-invariant
δ(C) is the codimension of n∗OC,o ⊂ OC,o = C{t}, where n is the normalization of
(C, o). By Jung/Milnor’s formula μ(C, o) = 2δ(C) [41, 63].

The semigroup SC,o ⊂ N of (C, o) is the set of all the possible intersection
multiplicities (h,C)o , where h ∈ OC2,0. The delta-invariant δ(C) appears also as
the cardinality of the finite set N \ SC,o. The largest element of N \ SC,o is μ − 1,
and for 0 ≤ k ≤ μ− 1 one has the following ‘gap-symmetry’: k ∈ SC,o if and only
if μ− 1− k �∈ SC,o. Moreover, by Campillo et al. [15]

�(t)/(1− t) =
∑

k∈S
tk . (4.6)

Since �(1) = 1 and �′(1) = δ, one gets �(t) = 1 + δ(t − 1) + (t − 1)2 · Q(t)
for some polynomial Q(t) = ∑μ−2

i=0 αi t
i with integral coefficients. In fact, all the

coefficients {αi}μ−2
i=0 are strict positive, and δ = α0 ≥ α1 ≥ · · · ≥ αμ−2 = 1.

Indeed, by the above identity (4.6), one has δ + (t − 1)Q(t) =∑k �∈S tk , orQ(t) =∑
k �∈S(tk−1 + · · · + t + 1). This shows that

αi = #{k �∈ S : k > i}. (4.7)

4.2.31 Definition of Superisolated Singularities [60] A hypersurface singularity
(X, o) ⊂ (C3, 0) is called superisolated if the modification X̃ of (X, o), induced by
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the blow up 0 ∈ C
3, is smooth. The definition guarantees that (X, o) is isolated. In

fact, if X is not smooth, this X̃ is exactly the minimal resolution of X.
Assume that (X, o) is the zero set of f : (C3, 0)→ (C, 0), f = fd+fd+1+· · · ,

where fj is homogeneous of degree j , fd �≡ 0. Then (X, o) is superisolated if and
only if the projective plane curve C := {fd = 0} ⊂ P

2 is reduced with (isolated)
singularities {pi}i , and these points are not situated on the projective curve {fd+1 =
0}. In this case the embedded topological type (and the equisingularity type) of f
does not depend on the choice of fj ’s for j > d , as long as fd+1 satisfies the above
requirement. Therefore, those invariants of (X, o), which are stable with respect to
equisingular deformations, depend only on C.

In the sequel we will assume that C is irreducible. In such a case the minimal
resolution X̃ has only one irreducible exceptional divisor, which is isomorphic to
C, and C2 in X̃ is −d . Hence, the link of (X, o) is a rational homology sphere if
and only if C is rational and all the plane curve singularities (C, pi) ⊂ (P2, pi)

are irreducible. (We use the terminology cusp for them.) Such a curve C is called
rational cuspidal plane curve. We denote by μi and �i (with the choice �i(1) =
1) the Milnor number and the characteristic polynomial of the local plane curve
singularities (C, pi) ⊂ (P2, pi). Then

∑
i μi = (d − 1)(d − 2).

The minimal good resolution is obtained from X̃ by resolving the plane curve
singularities (C, pi) ⊂ (X̃, pi). Note that the embedded topological types (C, pi) ⊂
(X̃, pi) and (C, pi) ⊂ (P2, pi) agree. Hence, under the condition that C is
irreducible and the link LX is a rational homology sphere, the minimal good
resolution graph � of (X, o) is the surgery graph described in 4.2.32. That is, the
link of (X, o) is the oriented surgery 3-manifold S3

−d (#iKi), where (Ki ⊂ S3) are
the local knots of (C, pi) ⊂ (P2, pi).

4.2.32 The Plumbing Graph of the Surgery Manifold S3−d (#iKi) with Ki
Algebraic and d Arbitrary We fix an integer d and a collection of algebraic
knots {Ki}νi=1 in S3 (determined by irreducible plane curve singularities (Ci, 0) ⊂
(C2, 0)). Set the connected sum K = K1# · · · #Kν ⊂ S3 of the knots Ki . Then
S3−d (K) is a plumbed 3-manifold whose plumbing graph is constructed as follows.
First, let �i be the minimal good embedded resolution graph of (Ci, 0) ⊂ (C2, 0)
with a unique −1 vertex vi which supports the strict transform. One also considers
the cycle Zi = divE(�i)(fi) ∈ L(�i) given by the local reduced equation fi of
(Ci, 0); let mi be the multiplicity in Zi of the −1 curve of �i . Then, in order to
get the graph of S3−d (K) from the disjoint union �i�i , one introduces a new vertex
v+, which is glued to each graph �i via a new edge connecting v+ and vi , and one
inserts the Euler decoration −d −∑i mi on v+. The Euler decorations of {�i}i
stay unmodified. The resulting graph is negative definite if and only if d > 0.
Furthermore, | det(I)| = |d|.
4.2.33 A Restrictions Satisfied by the Combinatorial Type Consider a superiso-
lated singularity. Let SC,pi be a semigroup of the local singularities (C, pi). Fix an
integer 0 ≤ l < d . In [24] is proved (via Bézout theorem) the following Semigroup
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Distribution Inequality:

min
j1+···+jν=ld+1

ν∑

i=1

#{SC,pi ∩ [0, ji) } ≥ (l + 1)(l + 2)/2.

Moreover, in [24] the authors conjectured under the name Semigroup Distribution
Property, that in the above inequality one has equality in any unicuspidal case. The
general proof for any cusps was obtained by Borodzik and Livingston based on the
d-invariant of Heegaard Floer theory [9]. That is, with the previous notations,

min
j1+···+jν=ld+1

ν∑

i=1

#{SC,pi ∩ [0, ji) } = (l + 1)(l + 2)/2

for any rational cuspidal curve. In the unicuspidal case this reads as

#{SC,p ∩ ( (l − 1)d, ld ] } = min{l + 1, d} (l ≥ 0).

4.2.5 Local Divisor Class Group

4.2.34 Sheaf Cohomological Properties of X̃ Let us start this subsection with the
following observations.

Let (X, o) be a complex normal surface singularity and let φ : X̃→ X be a good
resolution. In cohomological considerations, e.g. in the computation ofH ∗(X̃,Z) or
H ∗(X̃,F ), we might take for X̃ the space φ−1(ρ−1([0, ε])), cf. 4.2.20. Therefore,
for an analytic coherent sheaf and q ≥ 1, Hq(X̃,F ) agrees with (RqφF )o =
lim→U Hq(φ−1(U),F ), where U runs over open sets o ∈ U ⊂ X.

By ‘Theorem of formal functions’, (RqφF )o = lim←Z Hq(Z,F ⊗OX̃ OZ),
where Z runs over (larger and larger) effective cycles supported on E. In fact, for
a line bundle F we have H≥2(X̃,F ) = 0 and H 1(X̃,F ) = H 1(Z,F ⊗ OZ) for
Z * 0, hence dim H 1(X̃,F ) < ∞. Furthermore, by Serre duality, for a locally
free sheaf F ,H 1

c (X̃,F ) = H 1(X̃,F ∨ ⊗�2
X̃
)∗. Note that for a divisorD supported

on E and a locally free sheaf F on X̃ we haveH 0(X̃ \E,F (D)) = H 0(X̃ \E,F )
and H 0(X̃ \E,F )/H 0(X̃,F ) is finite dimensional since it embeds into H 1

c (X̃,F )
[49].

4.2.35 The Picard Group Let Pic(X̃) = H 1(X̃,O∗̃
X
) denote the Picard group of

X̃, the group of isomorphism classes of analytic line bundles on X̃. Recall also that
the geometric genus of (X, o) is pg := h1(X̃,OX̃). (It is independent of the choice
of the resolution.)

By duality, L′ is isomorphic to H 2(X̃,Z), hence it is the target of the first Chern
class c1 : Pic(X̃) → H 2(X̃,Z). This morphism is part of the following exact
sequence induced by the exponential exact sequence of sheaves 0 → ZX̃ → OX̃ →
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O∗̃
X
→ 0:

0 → H 1(X̃,Z) −→ H 1(X̃,OX̃)
ε−→ Pic(X̃)

c1−→ H 2(X̃,Z)→ 0. (4.8)

Set

Pic0(X̃) := ker(c1) � H 1(X̃,OX̃)/H
1(X̃,Z) � C

pg/H 1(E,Z).

Since H 1(X̃,Z) = lim→U H 1(U,Z) and H 1(X̃,OX̃) = lim→U H 1(U,OU), E ⊂
U , from (4.8) we also have H 1(X̃,O∗̃

X
) = lim→U H 1(U,O∗U). Furthermore, by

Mumford [64], for any line bundle L ∈ H 1(X̃,O∗̃
X
) there exists E ⊂ U ⊂ X̃

sufficiently small such that L|U admits a meromorphic section overU . In particular,
Pic(X̃) can be identified with the group Cl(X̃) of local analytic divisors near E
modulo linear equivalence. More precisely, by a local analytic divisor we mean
a sum

∑
i niDi of irreducible analytic divisors defined in a neighbourhood of E.

Such a divisor is locally linear equivalent to zero if there exists a neighbourhood
U of E, where all Di are defined, and a meromorphic function on U such that
div(f ) =∑i ni (Di ∩ U).

The lattice L embeds into both L′ = H 2(X̃,Z) and Pic(X̃). For L′ see 4.2.9,
into Pic(X̃) by l �→ OX̃(l). Similarly to the group L′/L = Tors(H 2(X \ {o},Z))
(cf. 4.2), Pic(X̃)/L is also independent of the choice of the resolution X̃. Indeed, the
sequence

0 → L→ Pic(X̃)
r−→ Cl(X, o)→ 0

is exact (cf. [64]), where Cl(X, o) denotes the local divisor class group of (X, o).
This is the class group of local Weil divisors of (X, o)modulo local Cartier divisors.
If D is a local irreducible analytic divisor on X̃, then its restriction to X̃ \ E can be
mapped to X \ {o} by φ, and the class of its closure is r(OX̃(D)). [This is exactly
the definition of the natural map φ∗ : Cl(X̃)→ Cl(X, o), a reinterpretation of r .]

Hence we obtain the exact sequence

0 → H 1(LX,Z)→ C
pg → Cl(X, o)

c̄1−→ Tors(H 2(LX,Z))→ 0. (4.9)

The Chern class morphism c̄1—in the language of divisors and homology—has the
form c̄′1 : Cl(X, o) → Tors(H1(LX,Z)), where c̄′1 assigns to a Weil divisor the
homological class of its intersection with the link.

Cl(X, o) coincides with the group of isomorphism classes of divisorial sheaves
on (X, o). [If F is a divisorial sheaf, then L = (φ∗(F ))∨∨ is locally free on X̃,
such that L|X̃\E = F |X\{o}. By the above discussion L has the form OX̃(D), hence
F = r(OX̃(D)), that is, F is associated with a Weil divisor φ∗(D).]

Example 4.2.36 If j : X \ {o} ↪→ X is the inclusion, then ωX := j∗(�2(X \ {o}))
is a divisorial sheaf. One can also write it in the form OX(KX) for a certain Weil



4 Surface Singularities, Seiberg–Witten Invariants of Their Links and Lattice. . . 217

divisorKX. IfKX̃ is a canonical divisor on X̃, thenKX can be takes as φ∗(KX̃) (or,
r(�2

X̃
)).

Definition 4.2.37 A Weil divisor of (X, o) (or its class) is called Q-Cartier, if its
class in Cl(X, o) has finite order. Its order is called its index.

4.2.6 Canonical Coverings

4.2.38 The germ of an analytic finite map π : (Y, o)→ (X, o) (where (Y, o) and
(X, o) are normal and π−1(o) = o) is called o–ramified if the restriction Y \ o →
X \ o is a regular (topological, unbranched) covering. An o–ramified covering is
called G–covering if Y \ o → X \ o is Galois with deck transformations G. If
π : (Y, o)→ (X, o) is o–ramified, then there is a morphism Ỹ → X̃ at the level of
(convenient) resolutions, and the pullback Pic(X̃)→ Pic(Ỹ ) induces a well–defined
morphism c∗ : Cl(X, o)→ Cl(Y, o).

4.2.39 Let us recall a possibility how one can construct a cyclic o–ramified
covering topologically. Let (X, o) be as above and let π1(L(X, o)) → G be an
epimorphism. Then, by Stein [110] it determines an o–ramified G–covering. E.g.,
if L(X, o) is a QHS3 link (that is, H1(LX,Z) = H = L′/L) and we fix a
character α ∈ Ĥ , then it determines an epimorphism π1(L(X, o)) → H → ZN

(for some N) and a Galois cyclic o–covering. In particular, if L(X, o) is a QHS3,
and we start with a cycle l′ ∈ L′, such that the order of [l′] ∈ H is N , and we
considered the character α := θ([l′]) ∈ Ĥ , then we get a o–ramified ZN -covering
(Xα, o)→ (X, o).

4.2.40 Next we associate a cyclic o–ramified covering (XD, o) → (X, o) to any
Q-Cartier divisor D (in this case LX is not necessarily a QHS3).

Proposition 4.2.41 Let D be a Q-Cartier divisor of index N of (X, o). Then it
determines a uniquely defined o-ramified Galois ZN -covering c : (XD, o) →
(X, o), where (XD, o) is a normal surface singularity, and c∗(D) = 0 in Cl(XD, o).
The covering c : (XD, o)→ (X, o) depends only on the class ofD in Cl(X, o).

(In fact, the kernel of c∗ : Cl(X, o) → Cl(XD, o) is cyclic of order N and it is
generated by the class ofD.)

Indeed, adding a principal divisors toD we can assume thatD is effective. Then
N · D is an effective principal divisor of (X, o). Hence N · D = div(f ) for some
holomorphic germ f : (X, o)→ (C, 0). Then define Xf,N as the normalization of
{(x, z) ∈ (X × C, (o, 0)), f (x) = zN }. Then a local computation shows that the
natural projection c : (Xf,N , (o, 0))→ (X, o) is o–ramified. The second statement
claims that div(f ◦c)/N is an integral principal divisor of (XD, o). But, indeed, this
is exactly div(z).

Note also that the added principal divisors do not alter the isomorphism class of
Xf,N . Indeed, (the normalized)XfgN ,N and Xf,N are isomorphic.
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4.2.42 The above facts can be used to define (in an analytic way) a covering
associated with any l′ ∈ L′. The construction depends on a choice, but it has no
ambiguity whenever the link is a rational homology sphere. First, we associate to l′
a Q-Cartier divisor as follows. For parts (a)–(b) see [96, 112, 113].

Proposition 4.2.43

(a) Fix a resolution φ : X̃ → X, l′ ∈ L′, and let N be the order of its class in
L′/L. Then there exists a divisor D = D(l′) on X̃ such that one has a linear
equivalence N · D ∼ N · l′ and c1OX̃(D) = l′ (where Nl′ is identified with
an integral divisor supported on E). In particular, φ∗(D) has finite order N in
Cl(X, o).

(b) If H 1(X̃,Z) = 0 then D is unique up to a linear equivalence. Hence, in this
case, the correspondence l′ �→ OX̃(D(l′)) is a section of the exact sequence
(4.8).

(c) IfH 1(X̃,Z) = 0 then the covering associated with l′ defined in 4.2.41 viaD(l′)
agrees with the covering associated with l′ defined in 4.2.39 via the character
θ([l′]).

Proof (a) Since c1 is onto, there exists a divisor D1 on X̃ with c1OX̃(D1) = l′.
Hence OX̃(ND1 − div(Nl′)) has the form ε(L) for some L ∈ Pic0(X̃) =
C
pg/H 1(X̃,Z). DefineD2 so that OX̃(D2) := 1

N
L ∈ Pic0(X̃). ThenD := D1−D2

works. For (b) use the fact that Pic(X̃) is torsion free. For (c) use the definitions. ��
Definition 4.2.44

(a) Write �2
X̃
= OX̃(KX̃) and assume that KX is Q-Cartier. Then the cyclic

covering associated with KX (as in 4.2.41) is called the analytic canonical
covering of (X, o).

(b) Assume that the link of (X, o) is a rational homology sphere. The well-defined
cyclic covering associated with c1(OX̃(KX̃)), constructed in 4.2.39 is called the
topological canonical covering of (X, o).

If both assumptions are satisfied then the analytic and topological canonical
coverings agree. However, if H1(∂X̃,Q) = 0, then the topological canonical
covering is well-defined even if KX is not Q-Cartier.

4.2.7 Natural Line Bundles

4.2.45 Let φ : (X̃, E) → (X, o) be a good resolution and assume that L(X, o)
is a QHS3. In the next discussion we identify the homology classes l ∈ L and the
integral divisors supported on E.

In the exact sequence (4.8) c1 admits a natural group section sL over the integral
cycles L ⊂ L′. Indeed, for any l ∈ L we can take OX̃(l) ∈ Pic(X̃). Clearly
c1(OX̃(l)) = l. In the sequel we extend sL in a unique way to a natural group
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section s : L′ → Pic(X̃). Its existence is guaranteed by the facts that H = L′/L is
finite, while Pic0(X̃) � C

pg is torsion free. In fact, we present several constructions
of s, which emphasize its different geometrical aspects.

4.2.46 The Construction of s via Cl(X, o) [96]
For any l′ ∈ L′ consider the divisor D(l′) provided by Lemma 4.2.43. Since

H 1(X̃,Z) = 0,D(l′) is unique with the required properties of 4.2.43. Therefore one
has a well-defined map l′ �→ s(l′) = OX̃(D(l′)). By the uniqueness D(l′1 + l′2) ∼
D(l′1)+D(l′2), hence s is a homomorphism and a section of (4.8) as well.

Definition 4.2.47 The line bundles s(l′), indexed by l′ ∈ L′, and denoted also by
OX̃(l′) := s(l′), will be called natural line bundles.

Corollary 4.2.48

(a) A line bundle L ∈ Pic(X̃) is natural if and only if some power of it has the form
OX̃(l) (in its usual classical sense) for an integral cycle l ∈ L. Equivalently, L
is natural if and only if its projection by Pic(X̃)→ Pic(X̃)/L = Cl(X, o)) has
finite order (i.e., if it is Q-Cartier).

(b) One has a natural isomorphism Pic(X̃)→ Pic0(X̃)⊕ L′ given by L �→ (L⊗
s(c1L)−1, c1L). This induces a natural isomorphism Cl(X, o)→ Pic0(X̃)⊕H .

In particular (since Pic0(X̃) is torsion free), under this identification H is
isomorphic with the group of Q-Cartier divisor classes of (X, o).

4.2.49 The Universal Abelian Covering Let c : (Xa, o) → (X, o) be the
universal abelian covering of (X, o). It is the Galois o–covering associated with
π1(LX)→ H1(LX,Z) = L′/L (cf. [110]).

Let c̃ : Z → X̃ be the normalized pullback of c via φ. The (reduced) branch
locus of c̃ is included in E, and the Galois action of H extends to Z as well. Since
E is a normal crossing divisor, the only singularities what Z might have are cyclic
quotient singularities, cf. 4.2.18. Let r : Z̃ → Z be a resolution of these singular
points such that (̃c ◦ r)−1(E) is a normal crossing divisor. Set p := c̃ ◦ r .

Z̃
r−→ Z

ψa−→ (Xa, o)⏐⏐2c̃
⏐⏐2c

X̃
φ−→ (X, o)

(4.10)

4.2.50 The Construction of s via p∗ : Pic(X̃) → Pic(Z̃) [71] One has the
following commutative diagram:

0 → L → L′ → H → 0⏐⏐2
⏐⏐2p∗

⏐⏐2pH

0 → La → L′a → Ha → 0

(4.11)
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where the vertical arrows are pullbacks associated with p = c̃ ◦ r (e.g., p∗ is the
cohomology morphism H 2(X̃,Z) → H 2(Z̃,Z) and the first arrow is the relative
cohomology morphism), and the bottom line is the ‘lattice exacts sequence’ (4.2)
associated with the resolution Z̃→ Xa of (Xa, o). We claim that:

pH = 0. (4.12)

In particular, p∗(l′) ∈ La for any l′ ∈ L′, hence considering p∗(l′) as an integral
divisor, the element OZ̃(p∗(l′)) ∈ Pic(Z̃) is well-defined.

Theorem 4.2.51 The line bundle OZ̃(p∗(l′)) is a pullback of a unique element L of
Pic(X̃). This line bundle L will be denoted by OX̃(l′). Moreover, s : L′ → Pic(X̃),
defined by l′ �→ OX̃(l′), is a group section of c1 in (4.8), which extends sL.

Furthermore, the definition of OX̃(l′) is independent of the choice of the
resolution r : Z̃→ Z.

Proof Using the two exponential exact sequences one verifies that p∗ : Pic(X̃)→
Pic(Z̃) is injective and its image is the subgroup of invariants (Pic(Z̃))H . On the
other hand, OZ̃(p∗(l′)) is H -invariant. ��
4.2.52 The Construction of s via c∗OXa,o [42, 71, 96, 97]

Associated with the resolution φ : X̃ → X we consider the ‘unit closed-open
cube’ Q := {l′ ∈ L′ : &l′' = 0}. Obviously, for any h ∈ H there is a unique
element rh ∈ Q, whose class is h. It is the minimal representative of h in the cone
L′≥0.

Theorem 4.2.53 ([71, 96, 97] (for the cyclic case see also [20–22])) Assume, as
above, that H 1(X̃,Z) = 0. Consider the finite covering c̃ : Z → X̃. Then c̃∗OZ is
a vector bundle and its H -eigensheaf decomposition has the form:

c̃∗OZ � ⊕α∈ĤLα, (4.13)

where Lθ(h) = OX̃(−rh) for any h ∈ H . In particular, c̃∗OZ � ⊕l′∈QOX̃(−l′).
More generally, for any l′ ∈ L′ one has

c̃∗OZ(−c̃∗(l′)) � ⊕h∈HOX̃(−rh + &rh − l′'). (4.14)

Corollary 4.2.54 The set of natural line bundles on X̃ coincides with the set of line
bundles of type L ⊗ O(l), where L is an eigensheaf of c̃∗OZ and l ∈ L. Or, via
(4.14), the set of natural line bundles coincides with the set of eigensheaf of bundles
of type c̃∗OZ(−c̃∗(l′)), l′ ∈ L′.
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4.2.8 The Canonical Cycle

4.2.55 Fix any resolution X̃. LetKX̃ be a canonical divisor (defined up to a linear
equivalence), OX̃(KX̃) = �2

X̃
, and let K = −ZK be c1(�

2
X̃
) ∈ L′, the canonical

cycle of the resolution φ. The cycle ZK can be determined combinatorially from
(L′, ( , )) via the adjunction formula, namely (−ZK + Ev,Ev)+ 2 · (1− g(Ev)−
δ(Ev)) = 0 for all v ∈ V. (Here δ(Ev) is the sum of delta invariants of singularities
of Ev .) In particular, ZK = 0 if and only if g(Ev) = δ(Ev) = 0 and E2

v = −2 for
al v. In such a case (X, o) is an ADE singularity.

By Laufer [53], if the resolution is minimal, and ZK �= 0, then all the coefficients
of ZK are positive. Moreover, if X̃ is a minimal good resolution and (X, o) is not of
type ADE, then all the coefficients of ZK are still positive.

Theorem 4.2.56 (Riemann–Roch Formula) Fix a line bundle L ∈ Pic(X̃) and
set c1(L) = l′ ∈ L′ and k := −ZK − 2l′. For any l ∈ L>0 we consider the sheaf
L⊗ Ol on l. Then its analytic Euler characteristic satisfies

χ(L⊗ Ol ) = −(l, l + k)/2. (4.15)

We denote the combinatorial term from the right hand side of (4.15) by χk(l), or
just by χ(l) if k = −ZK . This expression motivates the following.

Definition 4.2.57 The set of characteristic elements are defined as

Char = Char(L) = {k ∈ L′ : (l, l + k) ∈ 2Z for any l ∈ L}. (4.16)

Note that −ZK is a characteristic element and Char = −ZK + 2L′.
The expression (4.15) can be extended to L′, that is, for any k ∈ Char one defines

χk : L′ → Q by χk(l
′) := −(l′, l′ + k)/2. If k = −ZK then we write χ := χk .

4.2.58 The expression Z2
K + |V| of the link behaves like a characteristic class in

many index formulae. It is independent of the resolution. We have the following
general formula for it.

Proposition 4.2.59 ([78]) Z2
K + |V| in terms of the graph has the expression

Z2
K+|V| = 2−2b1(LX)+

∑

v

(E2
v+3)+

∑

v,w

(2χ(Ev)−κv)(2χ(Ew)−κw)(E∗v , E∗w).

Example 4.2.60 ([36]) For the cyclic quotient singularity Xn,q we have

Z2
K + |V| = 2(n− 1)/n− 12 · s(q, n).
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Example 4.2.61 ([79]) For a star-shaped graph, with r := χ/e, we have

Z2
K + |V| = er2 + e+ 5− 12 ·

ν∑

j=1

s(ωj , αj ).

Example 4.2.62 Assume that LX = S3−d (#iKi) (cf. 4.2.32), with μ/2 = δ =∑i δi

(the sum of delta-invariants ofKi) and arbitrary d > 0. ThenK2+ |V| = 1− (d −
2+ μ)2/d . If μ = (d − 1)(d − 2) (as in the superisolated case), then K2 + |V| =
1− d(d − 2)2.

4.2.63 Splice Formula Assume that L(X, o) is an integral homology sphere and
let G be the splice diagram associated with the plumbing graph � [19]. Assume that
G is obtained by splicing the diagrams G1 and G2 along the knots K1 ⊂ M(G1),
K2 ⊂ M(G2). Let �i be the plumbing graphs, which correspond to Gi . Recall also
that Ki ⊂ M(Gi ) determines an open book decomposition, let μi be the first Betti
number (Milnor number) of its fiber. Then one has the following.

Theorem 4.2.64 ([92])

(
Z2
K + |V|

)
(�) = (Z2

K + |V|
)
(�1)+

(
Z2
K + |V|

)
(�2)− 2 · μ1 · μ2.

Definition 4.2.65 The normal singularity (X, o) is called Gorenstein if �2
X\{o} is

a holomorphically trivial line bundle, equivalently, if ZK ∈ L and one can choose
for KX̃ the divisor −ZK . Analogously, (X, o) is called numerically Gorenstein if
�2
X\{o} is a topologically trivial complex line bundle.

Though Gorenstein (local) rings can be defined even without normality assumption,
see e.g. [13], (e.g. complete intersections are Gorenstein even if they are not
normal), here we discuss the Gorenstein property only for normal germs.

Lemma 4.2.66 ([17]) (X, o) is numerically Gorenstein if and only if ZK ∈ L.

4.2.67 Q-Gorenstein Singularities Let KX be the canonical divisor of (X, o),
cf. 4.2.36. Note that (X, o) is Gorenstein if and only if KX is Cartier (invertible) at
o ∈ X, that is,KX is zero in Cl(X, o). Furthermore, if (X, o) is Gorenstein then any
o-ramified covering (X′, o) of (X, o) is Gorenstein. More generally, (X, o) is called
Q-Gorenstein, if there exists a positive integer r such that rKX is a Cartier divisor at
o (equivalently, ifKX has finite order in Cl(X, o)). Again, if (X, o) is Q–Gorenstein
then any o-ramified covering (X′, o) of (X, o) is Q-Gorenstein. If L(X, o) is QHS3

then any numerically Gorenstein, Q-Gorenstein singularity is Gorenstein.

4.2.68 Vanishing Theorems Fix a resolution and L ∈ Pic(X̃). Then for l1, l2 ∈
L>0 with l2 > l1 the morphisms H 1(X̃,L)→ H 1(L⊗ Ol2) and H 1(L⊗ Ol2)→
H 1(L ⊗ Ol1) are onto, and by the ‘Theorem of formal functions’ H 1(X̃,L) =
lim←−H

1(L⊗ Ol ).
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Theorem 4.2.69 Generalized Grauert–Riemenschneider Theorem [31, 49, 104]
Consider a line bundle L ∈ Pic(X̃) such that c1(L(−KX̃)) ∈ � − SQ for some
� ∈ L′ with &�' = 0. Then for any l ∈ L>0 one has the vanishing h1(l,L|l ) = 0.
In particular, h1(X̃,L) = 0.

Corollary 4.2.70 Write &ZK' as &ZK'+ − &ZK'− with &ZK'+, &ZK'− ∈ L≥0
and without common components. If &ZK'+ = 0 then pg = 0. If &ZK'+ > 0 then
for any Z ≥ &ZK'+, Z ∈ L, pg = h1(OZ).

For certain cycles the Grauert-Riemenschneider Theorem 4.2.69 can be
improved.

Proposition 4.2.71 (Lipman’s Vanishing Theorem [56, Theorem 11.1]) Take l ∈
L>0 with h1(Ol ) = 0 and L ∈ Pic(X̃) for which (c1L, Ev) ≥ 0 for any Ev in the
support of l. Then h1(l,L) = 0.

4.2.9 The Role of the Monoids S and S′

4.2.72 The monoids S and S′ are combinatorially associated with a fixed resolu-
tion graph �, cf. 4.2.11.

Lemma 4.2.73 For any fixed h ∈ H set L′h := {l′ ∈ L′ : [l′] = h}.
(a) If l′1, l′2 ∈ L′h then l′ := min{l′1, l′2} ∈ L′h too.
(b) If l′1, l′2 ∈ S′ ∩ L′h then min{l′1, l′2} ∈ S′ ∩ L′h too.

(For l′1, l′2 ∈ L′ it can happen that min{l′1, l′2}, defined in L⊗Q, is not in L′.)

Proposition 4.2.74 Let X̃→ X be a resolution of (X, o) as above.

(a) For any l′ ∈ L′ there exists a unique minimal element e(l′) ∈ L≥0 with s(l′) :=
l′ + e(l′) ∈ S′.

(b) e(l′) can be found by the following (generalized Laufer’s) algorithm. One
constructs a ‘computation sequence’ z0, z1, . . . , zt ∈ L≥0 with z0 = 0 and
zi+1 = zi+Ev(i), where the index v(i) is determined by the following principle.
Assume that zi is already constructed. Then, if l′ + zi ∈ S′, then one stops, and
t = i. Otherwise, there exists at least one v ∈ V with (l′ + zi, Ev) > 0. Take
for v(i) one of these v’s. Then this algorithm stops after finitely many steps, and
zt = e(l′).

Corollary 4.2.75 For any L ∈ Pic(X̃) take c1 := c1(L) and e := e(−c1). Then
c1(L(−e)) = −s(−c1) ∈ −S′ and

h1(L(−e))− h1(L) = χ(Oe(c1)) = χ(e − c1)− χ(−c1) ≤ 0.

In particular, the computation of any h1(L) can be reduced, modulo the combina-
torics of L, to the computation of some h1(L′) with c1(L′) ∈ −S′.
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Example 4.2.76 If L = OX̃(−l′) for some l′ ∈ L′ then 4.2.75 reads as

h1(OX̃(−s(l′)))− h1(OX̃(−l′)) = χ(Oe(l′)(−l′)) = χ(s(l′))− χ(l′) ≤ 0.

The next consequence of Proposition 4.2.74 is the existence of the fundamental
cycle.

Corollary 4.2.77

(a) [5, 6] S \ {0} has a unique minimal element Zmin.
(b) [49] Zmin can be found by the following (Laufer’s) algorithm. One constructs

a computation sequence z1, . . . , zt with z1 = Ew (arbitrarily chosen), and
zi+1 = zi + Ev(i), where the index v(i) is determined as follows. Assume
that zi is already constructed. Then, if zi ∈ S, then one stops, and t = i.
Otherwise, there exists at least one v ∈ V with (zi, Ev) > 0. Take for v(i) one
of these v’s. Then this algorithm stops after finitely many steps, and zt = Zmin
(independently of all the choices).

The cycle Zmin ∈ L>0 has several names in the literature: minimal, fundamental, or
Artin cycle. The sequence from (b) is called the Laufer’s computation sequence for
Zmin.

4.2.78 The Representatives rh and sh Recall that for any h ∈ H , rh ∈ L′ is
the minimal representative of h in the cone L′≥0. Replacing the cone L′≥0 by S′,
by 4.2.73 we obtain the following.

Corollary 4.2.79 For any h ∈ H consider all the representatives l′ + L ⊂ L′ of h.
Then (l′ + L) ∩ S′ has a unique minimal element sh.

Clearly s0 = 0, and sh ≥ rh. Strict inequality might appear (take e.g. the lens space
L(8, 5)). sh = rh if and only if rh ∈ S′, otherwise sh = s(rh) in the sense of 4.2.74.
Using 4.2.76 we obtain

χ(sh) ≤ χ(rh). (4.17)

Even at Euler-characteristic level, strict inequality can appear, see 4.2.89.

4.2.10 The Equivariant Geometric Genus and Laufer’s Duality

4.2.80 The pg–Formula of Laufer Let us discuss a different realizations of the
geometric genus pg = h1(X̃,OX̃), where X̃→ X is any resolution.
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By Serre duality H 1(X̃,OX̃)∗ � H 1
c (X̃,�

2
X̃
). In the exact sequence

H 0
c (X̃,�

2
X̃
)→ H 0(X̃,�2

X̃
)→ H 0(X̃ \ E,�2

X̃
)→ H 1

c (X̃,�
2
X̃
)→ H 1(X̃,�2

X̃
)

H 0
c (X̃,�

2
X̃
) = 0 while H 1(X̃,�2

X̃
) = 0 by 4.2.69. Hence,

Proposition 4.2.81 ([49])

H 1(X̃,OX̃)
∗ � H 1

c (X̃,�
2
X̃
) = H 0(X̃ \ E,�2

X̃
)/H 0(X̃,�2

X̃
), (4.18)

where the last vector space is the space of global holomorphic 2-forms on X̃ \E up
to those which can be extended holomorphically across X̃.

Above, the set of poles can be bounded. Indeed, for any Z ∈ L>0 consider the
exact sequence of sheaves

0 → �2
X̃
→ �2

X̃
(Z)→ OZ(Z +KX̃)→ 0.

Since h1(�2
X̃
) = 0 (cf. 4.2.69) we get that

H 0(X̃,�2
X̃
(Z))/H 0(X̃,�2

X̃
) = H 0(OZ(Z +KX̃)) = H 1(OZ)∗. (4.19)

Assume that pg �= 0. Then from 4.2.70(a) h1(O&ZK '+) = pg, hence

pg = dim (H 0(X̃,�2
X̃
(&ZK'+))/H 0(X̃,�2

X̃
)). (4.20)

This holds if pg = 0 too. Since H 0(X̃,�2
X̃
) ⊂ H 0(X̃,�2

X̃
(&ZK'+)) ⊂ H 0(X̃ \

E,�2
X̃
), by (4.18) and (4.20) we get that H 0(X̃,�2

X̃
(&ZK'+)) = H 0(X̃ \ E,�2

X̃
).

Hence, the poles of forms from H 0(X̃ \ E,�2
X̃
) are bounded by &ZK'+.

If (X, o) is numerically Gorenstein andZK > 0 then χ(ZK) = 0 and h0(OZK ) =
h1(OZK ) = pg . Hence, from the vanishing h1(X̃,O(−ZK)) = 0 we obtain

pg = dim
(
H 0(X̃,OX̃)/H

0(X̃,OX̃(−ZK))
)
. (4.21)

If (X, o) is Gorenstein and ZK ≥ 0, via the isomorphism �2
X̃
= OX̃(−ZK) the pg

formulae from (4.20) and (4.21) agree.

4.2.82 The Geometric Genus of the Universal Abelian Covering Assume that
L(X, o) is a QHS3.

Let (Xa, o) → (X, o) be the universal abelian covering of (X, o), and consider
the notations of the diagram (4.10). By definition, the geometric genus pg(Xa, o)
of (Xa, o) is h1(Z̃,OZ̃). Recall that r : Z̃ → Z is the resolution of the cyclic
quotient singularities of Z. Note that r∗(OZ̃) = OZ (by the normality of Z), and
R1r∗(OZ̃) = 0 since cyclic quotient singularities are rational (have geometric
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genus zero). Therefore, by Leray spectral sequence pg(Xa, o) = h1(OZ). Since
c̃ is finite h1(OZ) equals h1(̃c∗OZ), and it has an eigenspace decomposition
⊕h∈HH 1(̃c∗OZ)θ(h). By Theorem 4.2.53 the dimension of the θ(h)-eigenspace is

pg(Xa, o)θ(h) := dim H 1(̃c∗OZ)θ(h) = h1(X̃,OX̃(−rh)).

By summation:

pg(Xa, o) =
∑

h∈H
h1(X̃,OX̃(−rh)).

Clearly, for h = 0 we get pg(Xa, o)θ(0) = pg(X, o).
Definition 4.2.83 If H1(LX,Q) = 0 we define the equivariant geometric genus of
(X, o) associated with h ∈ H by pg(Xa, o)θ(h) = h1(X̃,OX̃(−rh)).

Via Proposition 4.2.75 it can also be expressed by sh:

pg(Xa, o)θ(h) = h1(X̃,OX̃(−sh))+ χ(rh)− χ(sh). (4.22)

4.2.84 Laufer’s formula (4.18) has the following generalization.

Proposition 4.2.85 Assume that the link of (X, o) is a rational homology sphere
and fix h ∈ H . Let l′h be either rh or sh. Then

H 1(X̃,OX̃(−l′h))∗ � H 1
c (X̃,�

2
X̃
(l′h)) = H 0(X̃ \ E,�2

X̃
(l′h))/H 0(X̃,�2

X̃
(l′h)).

Remark 4.2.86 Since H 0(X̃ \ E,�2
X̃
(rh)) = H 0(X̃ \ E,�2

X̃
(sh)), 4.2.85 gives

h1(OX̃(−rh))− h1(OX̃(−sh)) = dim H 0(�2
X̃
(sh))/H

0(�2
X̃
(rh)).

Write sh − rh = �. Then from the proof of 4.2.85 one has H 1(X̃,�2
X̃
(rh)) =

H 1(X̃,�2
X̃
(sh)) = H 1(�2

X̃
(sh)|�) = 0. Hence, the right hand side of the above

identity is χ(�2
X̃
(sh)|�) = χ(rh)− χ(sh), compatibly with (4.22).

4.2.87 In concrete computations it is always easier to find global sections than to
determine higher cohomologies. This is one of the main advantages of the identity
from 4.2.85. In several cases one can identify concrete basis for the vector space
H 0(X̃ \ E,�2

X̃
(l′h))/H 0(X̃,�2

X̃
(l′h)), for l′h = rh or sh.

Example 4.2.88 h1(X̃,OX̃(−rh)) for weighted homogeneous singularities,
g = 0.
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Assume that rh in the dual basis is written as rh = a0E
∗
0 +

∑
j,i ajiE

∗
ji . Define

also aj :=∑i nj,i+1aji (1 ≤ j ≤ ν) andNrh(�) = b0�+a0−∑j

⌈
ωj �−aj
αj

⌉
. Then

h1(OX̃(−rh)) =
∑

�≥0

max{0,−Nrh(�)− 1}. (4.23)

Example 4.2.89 h1(X̃,OX̃(−sh)) for weighted homogeneous singularities, g =
0.

Set sh := ā0E
∗
0 +

∑
j,i āj iE

∗
ji and āj :=∑i nj,i+1āj i (1 ≤ j ≤ ν). Then

h1(OX̃(−sh)) =
∑

�≥0

max{0,−Nsh(�)− 1}, (4.24)

where Nsh(�) = b0�+ ā0 −∑j

⌈
ωj �−āj
αj

⌉
. Set � := sh − rh and let �0 ∈ Z≥0 be

the E0-coefficient of �. Then Nsh(�) = Nrh(�+�0), hence

h1(OX̃(−sh)) =
∑

�≥�0

max{0,−Nrh(�)− 1}. (4.25)

In particular,

h1(OX̃(−rh))− h1(OX̃(−sh)) = χ(rh)− χ(sh) =
∑

0≤�<�0

max{0,−Nrh(�)− 1}.

This expression can be non-zero. Take e.g. the graph with b0 = 2, and three
legs all with invariants (αj , ωj ) = (3, 1). Then sh = ∑3

j=1 E
∗
jsj

, rh = sh − E0,

χ(sh) = h1(OX̃(−sh)) = 0, and χ(rh) = h1(OX̃(−rh)) = 1.

Example 4.2.90 For a cyclic quotient germ h1(OX̃(−rh)) = h1(OX̃(−sh)) = 0.
(Use 4.2.53 and 4.2.71.)

4.2.11 Spinc Structures

4.2.91 In the next discussion M is a link L(X, o), which is a rational homology
sphere.
M admits a spinc structure. In fact, the set of spinc structures Spinc(M) is an

H 2(M,Z) torsor. Furthermore, the restriction R : Spinc(X̃) → Spinc(M) is onto,
where Spinc(X̃) denotes the set of spinc structures on X̃. The natural cohomological
morphism H 2(X̃,Z)→ H 2(M,Z) is the factorization L′ → L′/L, l′ �→ [l′]. This
projects Char onto Char/L. Then c1 : Spinc(X̃) � Char ⊂ L′ induces a map
c : Spinc(M)� Char/L ⊂ L′/L such that c(R(σ̃ )) = [c1(σ̃ )].
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Moreover, c([l′] ∗ σ) = 2[l′] + c(σ ) for any [l′] ∈ L′/L and σ ∈ Spinc(M).
While c1 is injective, c in general is not. Its fibers are H 1(M,Z2) torsors;

c−1(0) � Spin(M). These facts will be explained next.
We consider the action ofL on Char defined by l∗k := k+2l. Let Char/2L be its

orbit space. Then Char/2L is anL′/L torsor by the action induced by l′∗k = k+2l′.
Moreover, the compositionR ◦ c−1

1 : Char → Spinc(X̃)→ Spinc(M) factorizes
to Char/2L→ Spinc(M). This map is a bijection of L′/L torsors. In the sequel we
identify Spinc(M) by this bijection. Then c : Spinc(M)→ Char/L transforms into
c : Char/2L→ Char/L. Its fibers are {l′ ∈ L′ : 2l′ ∈ L}/L � H 1(M,Z2) torsors.
The trivial element 0 of L′/L is in Char/L, and

c−1(0) = (Char ∩ L)/2L � Spin(M),

where Spin(M) denotes the set of spin structures ofM . (It is an H 1(M,Z2) torsor.)

Definition 4.2.92 Let M = L(X, o) be a singularity link. For any k ∈ Char we
write σ̃ (k) for that spinc structure of X̃ for which c1(̃σ (k)) = k. Similarly, let
σ [k] ∈ Spinc(M) be the restriction of σ̃ (k) to M . The spinc structure σ̃can of X̃
with c1(̃σ ) = K will be called the canonical spinc structure of X̃. Its restriction
σcan ∈ Spinc(M) will be called the canonical spinc structure of the link.

Lemma 4.2.93 There is an involution σ �→ σ of Spinc(M) which satisfies: c(σ ) =
−c(σ ), [l′] ∗ σ = [−l′] ∗ σ , and Spin(M) = {σ ∈ Spinc(M) : σ = σ }.
In algebraic geometry, by convention, the first Chern class of the ‘canonical’ line
bundle is KX̃. Nevertheless, in simplectic geometry and differential topology, in
the presence of an (almost) complex structure, the ‘canonical’ spinc structure is
usually defined via −KX̃. However, in this note we adopt the definition from
Definition 4.2.92.

4.2.94 Definition of kr Assume that the link is a rational homology sphere. Then
Spinc(X̃) is identified with the set of characteristic elements k on L′, and if k and k′
induces the same Spinc structure on the link, then k′ = k + 2l for a certain l ∈ L.
In this case χk′(x − l) = χk(x) − χk(l) for any x ∈ L, hence the two functions
χk and χk′ can be easily compared, and they have identical qualitative properties.
Therefore, for each class [k] = k+2L (that is, for each Spinc structure σ [k] of LX),
we choose a representive of [k]. Since the set of classes is indexed by H ; we define
the set of representatives by kr := K + 2sh, for each h ∈ H . Since s0 = 0, for the
trivial class h = 0 we get χkr = χ .

Since for any x ∈ L one has χkr (x) = χ(sh+x)−χ(sh), the function χkr defined
on the integral lattice L (up to an additive constant χ(sh)) can be identified with χ
acting on the (rationally) shifted lattice sh + L = {l′ ∈ L′ : [l′] = h}.
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4.3 Multivariable Series

4.3.1 The Divisorial Filtration

4.3.1 Let (X, o) be a normal surface singularity, and let φ : (X̃, E)→ (X, o) be
an arbitrary fixed resolution of (X, o). We will define an L–filtration of the local
ring of (X, o) and a compatible H -equivariant L′–filtration of the local ring of
(Xa, o) (whereH = L′/L). In the whole discussion regarding the universal abelian
covering (Xa, o) and the L′–filtration of its local ring we will assume that the link
of (X, o) is a rational homology sphere. At the level of the L–filtration of the OX,o
this assumption is not needed.

4.3.2 The Module Z[[L′]] Once a resolution is fixed, hence the natural basis
{Ev}v of L is fixed too, Z[[L]] is identified with Z[t±1] = Z[[t±1

1 , . . . , t±1
s ]].

It is contained in the larger module Z[[t±1/d]] = Z[[t±1/d
1 , . . . , t

±1/d
s ]], the

module of formal (Laurent) power series in variables t±1/d
v , where d := |H |.

Z[[L′]] ⊂ Z[[t±1/d]] consists of the Z-linear combinations of monomials of type

tl
′ = t l′11 · · · t l

′
s
s where l′ =∑v l

′
vEv ∈ L′. Z[[L′]] also admits several Z-submodules

corresponding to different cones of L′; e.g. Z[[L′≥0]] and Z[[S′]], generated by

monomials tl
′

with l′ ∈ L′≥0, or l′ ∈ S′ respectively. Both Z[[L′≥0]] and Z[[S′]]
have natural ring structure.

Z[[S′]] is a usual formal power series ring in variables {tE∗v }v: its elements are

�(f )(t) := f (tE∗1 , . . . , tE∗s ), where f (x1, . . . , xs) ∈ Z[[x]] = Z[[x1, . . . , xs]].
(4.26)

Any series S(t) =∑l′ al′t
l′ ∈ Z[[L′]] decomposes in a unique way as

S =
∑

h∈H
Sh, where Sh =

∑

[l′]=h
al′t

l′ . (4.27)

Sh is called the h-component of S. E.g., if S(t) := �(f )(t) for some f ∈ Z[[x]] as
in (4.26) then

Sh(t) = 1

|H | ·
∑

ρ∈Ĥ
ρ(h)−1 · f (ρ([E∗1 ])tE

∗
1 , . . . , ρ([E∗s ])tE

∗
s ). (4.28)

4.3.2 The Analytic Series H(t) and P(t)

Consider the diagram and the notations regarding the universal abelian covering
from 4.2.49. Set φa = ψa ◦ r and p = c̃ ◦ r .
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Recall that by (4.12) p∗(l′) is an integral cycle for any l′ ∈ L′.
Definition 4.3.3 TheL′–filtration on the local ring of holomorphic functions OXa,o
is defined as follows. For any l′ ∈ L′, we set

F (l′) := {f ∈ OXa,o | div(f ◦ φa) ≥ p∗(l′)}. (4.29)

Notice that the natural action of H on (Xa, o) induces an action on OXa,o, which
keeps F (l′) invariant. Therefore, H acts on OXa,o/F (l′) as well. For any l′ ∈ L′,
let h(l′) be the dimension of the θ([l′])-eigenspace (OXa,o/F (l′))θ([l′]). Then one
defines the Hilbert series H(t) by

H(t) :=
∑

l′∈L′
h(l′) · tl′ ∈ Z[[L′]]. (4.30)

Example 4.3.4 The 0-component of H(t) is

H0(t) =
∑

l∈L
dim

(
OX,o / {f ∈ OX,o : divE(f ◦ φ) ≥ l}

) · tl .

This is the Hilbert series of OX,o associated with the divisorial filtration L - l �→
F0(l) = {f ∈ OX,o : divE(f ◦ φ) ≥ l} of all irreducible exceptional divisors of φ.

4.3.5 Next, we define the Poincaré series P(t) = ∑l′∈S′ p(l′)tl
′

associated with
the filtration {F (l′)}l′ .

P (t) = −H(t) ·
∏

v

(1− t−1
v ), or p(l′) =

∑

I⊂{1,...,s}
(−1)|I |+1h(l′ + EI ), (EI =

∑

v∈I
Ev).

(4.31)

It turns out that the series P(t) is supported in S′, and the following ‘inversion
identities’ hold:

h(l′) =
∑

l∈L, l �≥0

p(l′ + l). (4.32)

Proposition 4.3.6 Let P0(t) = ∑l∈S p(l)tl be the 0-component of P(t). Then for
l ∈ L

h1(OX̃(−l)) = −
∑

l̃∈L, l̃�l
p(l̃)+ χ(l)+ pg. (4.33)

If l ≤ 0, then the sum on the right hand side is empty.
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If l ∈ (−KX̃ + S′) ∩ L then by the vanishing Theorem 4.2.69

∑

l̃∈L, l̃�l
p(l̃) = χ(l)+ pg. (4.34)

That is, the counting function of the coefficients of P0(t), associated with the special
truncation {l̃ ∈ S, l̃ � l}, evaluated in the chamber−K +S′, equals the quadratic
polynomial χ(l)+ pg .

In particular, P0(t) determines completely pg and the functions l �→ χ(l), l �→
h1(OX̃(l)) (l ∈ L).

4.3.7 The Equivariant Version of Proposition 4.3.6 Next, we assume that the
link of (X, o) is a rational homology sphere. In particular, the universal abelian cov-
ering is well defined with its H -action. Recall that the geometric genus of (Xa, o) is
the sum

∑
h h

1(O(−rh)) (of the equivariant genera of (X, o)) corresponding to the
eigenspace decomposition of H 1(OZ). Let l′h be either rh or sh. Then for any fixed
h the equivariant analogues of the formulae from Example 4.3.6 are the following.

For L = OX̃(−l′), where l′ ∈ L′, l′ = l + l′h with l ∈ L,

h1(O(−l′)) =−
∑

[l̃′]=[l′], l̃′�l′
p(l̃′)+ χK+2l′h(l)+ h1(O(−l′h))

=−
∑

[l̃′]=[l′], l̃′�l′
p(l̃′)+ χ(l′)+ h1(O(−l′h))− χ(l′h).

(4.35)

In particular, when l′ ∈ −K + S′, l′ = l + l′h with l ∈ L,

∑

[l̃′]=[l′], l̃′�l′
p(l̃′) =χK+2l′h(l)+ h1(O(−l′h))

=χ(l′)+ h1(O(−l′h))− χ(l′h).
(4.36)

Therefore, P(t) determines completely each h1(OX̃(l′)) (l′ ∈ L′).
Remark 4.3.8 The following comment is appropriate. In the above formulae (e.g.
in 4.3.6 and 4.3.7) the term consisting of the sum of the coefficients of P can
be replaced (via (4.32)) by the corresponding coefficient of the Hilbert series
H(t). E.g., (4.34), under the same assumption, reads as h(l) = χ(l) + pg . The
corresponding versions in terms of the Hilbert series are simpler (and from the
analytic point of view even more conceptual). The reason why we prefer above
the summation expressions is the following. Later we will introduce the topological
analogues of the above identities. The point is that P(t) will have a topological
analogue, namely Z(t) (see subsection 4.3.3), however, the analogue of H(t) will
be defined (‘merely’) as the inversion of Z(t), that is, by the summation of its
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coefficients. Hence, later we will hunt in the topological side for sum–expressions
as above, where the coefficients of P will be replaced by those of Z.

4.3.3 The Topological Series Z(t)

4.3.9 We assume that LX is a QHS3 and we fix a good resolution as above.

Definition 4.3.10 We define the rational function Z(t) in variables xv = tE
∗
v by

Z(t) := �(z)(t), where z(x) :=
∏

v∈V
(1− xv)κv−2. (4.37)

Hence Z(t) =∏v(1− tE
∗
v )κv−2. By (4.28), its h-component for any h ∈ H is

Zh(t) := 1

|H | ·
∑

ρ∈Ĥ
ρ(h)−1 ·

∏

v∈V
(1− ρ([E∗v ])tE

∗
v )
κv−2

. (4.38)

In the sequel we identify the rational function Z(t) with its Taylor expansion at
the origin, as an element of Z[[S′]] (cf. 4.26).

Example 4.3.11 (Splice Quotient Singularities) Splice quotient singularities were
introduced by Neumann and Wahl in [91]. From any fixed graph � (for whichM(�)
is a QHS3 and � has some additional special arithmetical properties too, see below)
one constructs a family of singularities with common equisingularity type, such that
any member admits a distinguished resolution, whose dual graph is exactly �. The
construction suggests that the analytic properties of the singularities constructed in
this way are strongly linked with the fixed resolution and with its graph �. (Hence,
the expectation is that certain analytic invariants might be computable from �.)

There are three different approaches how one can define the splice quotient
singularities; they are based on different geometric properties: (a) the ‘original’
construction of Neumann–Wahl [91] (where � satisfies the additional semigroup
and the congruence conditions), (b) the ‘modified’ version by Okuma [97] (where
� satisfies the monomial condition), and (c) considering resolution of singularities
satisfying the end-curve condition [93, 98]. It turns out that all these approaches
provide the same family of singularities.

Rational singularities (where φ is an arbitrary resolution), minimally elliptic
singularities, (where φ is a resolution in which the support of the minimal elliptic
cycle is E), and weighted homogeneous singularities (where φ is the minimal good
resolution) are splice quotient singularities.

Theorem 4.3.12 ([75]) Assume that (X, o) admits a resolution φ, which satisfies
the end curve condition, and H 1(X̃,Z) = 0. Then P(t) = Z(t).
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Conversely, assume that the singularity (X, o) satisfies H 1(X̃,Z) = 0, and we
fix one of its good resolutions φ. If associated with φ one has P(t) = Z(t), then the
‘end curve condition’ for φ is also satisfied.

Corollary 4.3.13 Assume that (X, o) admits a resolution φ, which satisfies the end
curve condition, andH 1(X̃,Z) = 0. Then h1(OX̃(l′)) is topological for any l′ ∈ L′.

Indeed, write Z(t) = ∑l′∈S′ z(l′)tl
′
. Then, after the identification P(t) = Z(t),

the formulae from 4.3.7 read as follows:

1. For l′ ∈ −K + S′

∑

[l̃′]=[l′], l̃′�l′
z(l̃′) = χK+2rh(l

′ − rh)+ h1(OX̃(−rh)); (4.39)

2. More generally, for L = OX̃(−l′) with arbitrary l′ ∈ L′,

h1(OX̃(−l′)) = −
∑

[l̃′]=[l′], l̃′�l′
z(l̃′)+ χKX̃+2rh(l

′ − rh)+ h1(OX̃(−rh)).

(4.40)

4.3.4 Reductions of Variables in the Series P(t) and Z(t)

For any fixed resolution φ, in the definition of the series P(t) and Z(t) one takes
a variable tv for each exceptional divisor Ev of φ. In most of the situations we
strongly suspect that some of the variables are superfluous. E.g., if the resolution is
not minimal, the non-essential exceptional components carry less information; the
same is valid even for some of the exceptional curves of the minimal resolution, e.g.
those with κv = 2. Moreover, certain exceptional divisors might have some intrinsic
geometric meaning, and sometimes we wish to concentrate only on them.

4.3.14 We fix (X, o) as in 4.3.1 and the resolution φ. Let I be a non-empty subset
of V. Associated with it we consider formal series in variables {tv}v∈I, denoted by
tI, and the projection πI : L′ → L⊗Q, πI(

∑
v∈V l′vEv) =

∑
v∈I l′vEv . We write

l′I := πI(l′), and tl
′
I =

∏

v∈I
t
l′v
v = tl

′ |tv=1 for all v �∈I.

Here a word of warning is necessary. In the original case I = V, from a
series S(t) =∑l′ al′t

l′ we can recover its h-components Sh. Indeed, the monomial
al′tl

′
belongs to Sh if and only if [l′] = h. However, this property will be lost

when we reduce the variable: from the information carried by πI(l′) one cannot
recover [l′]. Therefore, the reduced h-components of a series S(t) are defined as the
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reductions of the original h-components Sh(t) (and they cannot be recovered from
the reduced S).

Definition 4.3.15 The reduced series of Z is defined as ZI(tI)
:= Z(t)|tv=1 for all v �∈I. Similarly, for any h ∈ H , Zh,I(tI) := Zh(t)|tv=1 for all v �∈I.
Equivalently,

Zh,I(tI) := 1

|H | ·
∑

ρ∈Ĥ
ρ(h)−1 ·

∏

v∈V
(1− ρ([E∗v ])tE

∗
v

I )
κv−2

. (4.41)

The substitutions {tv = 1}v �∈I are well-defined since Z(t) is supported on S′, which
has the special finiteness property 4.2.13.

4.3.16 Reducing Variables in Series P(t) In the case of the analytic series P(t)
we can proceed, a priori, in two different ways. By the first one we reduce P(t)
‘blindly’, as we did with Z(t) in 4.3.15, via substitutions tv = 1 for all v �∈ I.
Again, this step is well-defined since P too is supported on S′.

On the other hand, we can also repeat the original geometric definition of P(t),
as the multivariable Poincaré series associated with the divisorial filtration as in
(4.31), however, at this time we will use the ‘reduced set of divisors’ indexed by I.
However, it turns out that the two approaches lead to the same object.

Corollary 4.3.17 Assume that for a resolution φ and an element h ∈ H the identity
Ph(t) = Zh(t) is valid. Then for the same φ and h and for any non-empty I ⊂ V
the ‘reduced identity’ Zh,I(tI) = Ph,I(tI) (in Z[[t1/ det(I )

v , v ∈ I]]) is valid too.

In Sects. 4.3.5 and 4.3.6 we exemplify cases when I contains only one element. Our
goal is to compare the analytic reduced series Ph,I with the topological series Zh,I.

4.3.5 Example: P and Z for Weighted Homogeneous Germs

Assume that (X, o) is weighted homogeneous and its minimal good resolution is
star-shaped with ν ≥ 3. We set I = {central vertex v0}.

Our plan is to compare three filtrations and to show that they agree.
Firstly, the E0-divisorial filtration coincides with the filtration given by the C

∗
action.

Assume next that g = 0, hence the universal abelian covering is well-defined,
it is a Brieskorn isolated complete intersection singularity. Therefore, one has three
equivariant Z–filtrations of OXa,o: the divisorial filtration FI associated with the
central divisor E0, the filtration/grading associated with the C

∗-action, and the
monomial filtration GI associated with v0.

The monomial filtration is determined by the following grading. If we denote the
variables of the Brieskorn equations by {zi}νi=1, then their degrees are deg(zi) =
deg(E∗si ) = (αi |e|)−1 (1 ≤ i ≤ ν). The degree of the Brieskorn equations of the
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universal abelian covering are |e|−1 (hence the Brieskorn exponent of zi is αi). This
coincides exactly with the weights of the C

∗-action on (Xa, o). In particular, the
monomial filtration and the filtration induced by the C

∗-action agree. Similarly as
above, the filtration induced by the C∗-action and the divisorial filtrations agree too.

The (common) Poincaré series of the above filtrations agree with the topological
series Zh,I(t) (the variable t corresponds to v0). This fact can be seen in many
different ways (see e.g. [79, 88, 103]). E.g.:

(i) The identity P = Z was proved for any singularity which satisfies the end
curve condition. Then the identity Ph,I = Zh,I follows from 4.3.17 (since the
minimal good resolution of a weighted homogeneous germ satisfies the end
curve condition).

(ii) If h = 0 then the Poincaré series of the graded OX,o was computed analytically
via the Dolgachev–Pinkham–Demazure technique, the output is identical with
Zh,I(t), cf. 4.2.28.

For any fixed h ∈ H , let l′h ∈ L′ be one of its representatives. If l′h = a0E
∗
0 +∑

ik aikE
∗
ik , then l′red := a0E

∗
0 +

∑
ik aikn

i
k+1,si

E∗isi is still a representative, and

a := πI(l′) = πI(l′red) = −(E∗0 , l′) =
1

|e| ·
(
a0 +

∑

j

aj

αj

) ∈ 1

o
Z.

The rational number a modulo Z is independent of the choice of the represen-
tative l′h, it depends only on h (and any integral shift can be realized by different
choices). In particular, πI(L+ rh) = a+ Z.

The common Poincaré series is given by

Ph,I(t) =
∑

�∈Z, �≥−a
max

{
0 , 1+ a0 + �b −

∑

j

⌈�ωj − aj
αj

⌉ }
· t�+a.

With the choice l′h = rh one has a ∈ [0, 1).
This expression can also be compared with another expression obtained via a

rather different construction, namely via the universal cycles x(�) and their τ -
function, cf. 4.7.22.

4.3.6 Example: P0 and Z0 for Superisolated Singularities

Next, we compute the one-variable {v+}–reduced series P0 and Z0 for superisolated
singularities associated with an irreducible curve C, and we formulate geometric
properties and conjectures about their difference. Such properties might serve as
combinatorial criteria for the existence of the rational cuspidal curve C with given
topology.
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4.3.18 Assume that (X, o) is a superisolated singularity with C irreducible and
with a rational homology sphere link, cf. subsection 4.2.4. Let φ be its minimal
good resolution described in 4.2.31 and 4.2.32. We set I = {v+} (the vertex
corresponding to the curve) and h = 0.

Set �(t) := ∏i �i . Then �(1) = 1 and d�/dt (1) = δ, where δ = ∑i δi =
(
∑
i μi)/2 = (d−1)(d−2)/2 is the sum of delta-invariants. Hence,� can be written

as�(t) = 1+(t−1)δ+(t−1)2Q(t) for an integral polynomialQ(t) =∑2δ−2
j=0 αj t

j

(see 4.2.30). For ν = 1 one hasQ(t) =∑s �∈SC,p1
(1+ t + · · · + ts−1), hence

αj = #{s �∈ SC,p1 : s > j } (if ν = 1). (4.42)

Since s �∈ SC,p1 if and only if 2δ − 1− s ∈ SC,p1 , we get

α(d−3−j)d = #{s ∈ SC,p1 : s ≤ jd} (if ν = 1, 0 ≤ j ≤ d − 3). (4.43)

4.3.19 We wish to compare P0,I(t) and Z0,I(t). Firstly, P0,I(t) = (1− td )/(1−
t)3.

By the definition of Z0,I, and from A’Campo’s formula (and using the fact that
H = Zd is generated by [E+]), we obtain

Z0,I(t) = 1

d

∑

ξd=1

�(ξt1/d )

(1− ξt1/d )2 .

Lemma 4.3.20 The difference

N(t) := Z0,I(t)− P0,I(t) = 1

d

∑

ξd=1

�(ξt1/d)

(1− ξt1/d )2 −
1− td
(1− t)3 (4.44)

has the following properties:

(a) N(0) = 0, and N(t) is a symmetric polynomial:N(t) = td−3 · N(1/t).
(b)

N(t) =
d−3∑

j=0

(
α(d−3−j)d − (j + 1)(j + 2)

2

)
td−3−j .

Assume that ν = 1. Then 4.3.20(b) combined with (4.43) says that the
Semigroup Distribution Property guarantees the vanishing of N(t). However, for
ν ≥ 2, N(t) �= 0 might appear (see [24]). Several examples computed in [loc. cit.]
supported the following (hasty) conjecture.

Conjecture 4.3.21 ([24]) All the coefficients of N(t) are non-positive for any
rational cuspidal curve.
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If ν = 1 then the conjecture is true since N(t) ≡ 0. If ν = 2 then the
Conjecture is true again, it follows from the Semigroup Distribution Property and
certain lattice cohomology formulae of the link of superisolated singularities; the
method even provides a conceptual meaning of the coefficients of−N(t) in terms of
ranks of certain first lattice cohomology groups. See subsection 4.9.2 for a detailed
discussion.

However, the conjecture fails for certain curves with ν = 3 [8].
A ‘weaker’ version of Conjecture 4.3.21 was formulated in [8], it is a numerical

inequality (instead of a polynomial one); in fact, it is more in the spirit of the
motivation of the original Conjecture 4.3.21, since it is a reformulation of an
inequality between the geometric genus of a superisolated singularity and the
normalized Seiberg–Witten invariant of the link (see again subsection 4.9.2 for the
complete discussion).

Conjecture 4.3.22 ([8]) N(1) ≤ 0 for any rational cuspidal curve.

Note that by Lemma 4.3.20(b) one has:

N(1) =
d−3∑

j=0

α(d−3−j)d − d(d − 1)(d − 2)

6
= −pg +

d−3∑

j=0

α(d−3−j)d. (4.45)

Clearly, Conjecture 4.3.21 implies this second one, hence by the above discussion
Conjecture 4.3.22 for ν ≤ 2 is also true. Moreover, in [8] a case-by-case verification
provides its validity for all the ‘known’ curves (which, conjecturally, provide all the
possible combinatorial types with ν ≥ 3).

4.3.7 The Periodic Constant of One-Variable Series

Definition 4.3.23 ([82, 3.9], [97]) Let F(t) =∑i≥0 ait
i be a formal power series.

Suppose that there exist a positive integer p and a polynomial Pp(t) such that∑
0≤i<pn ai = Pp(n) for every n ∈ Z>0. We call the constant term Pp(0) the

periodic constant of F and we denote it by pc(F ). The integer p is called the
‘period’. Furthermore, we extend the above definition to expressions of type tr ·F(t)
via pc(trF (t)) := pc(F (t)), where F is a power series as above and r ∈ Q∩ [0, 1).
If the periodic constant exists then it is independent of the choice of the period p.

If F1 and F2 admit periodic constants, then the same is true for the series F1+F2,
cF1 (where c ∈ C), F1(t

m) (where m ∈ Z>0). Moreover, pc(F1 + F2) = pc(F1)+
pc(F2), pc(cF1) = c · pc(F ), pc(F1(t

m)) = pc(F1(t)).
If F(t) is a finite sum (i.e. it is a polynomial), then pc(F ) exists and equals F(1).
For certain rational functions, one has the following equivalent description.

(Here, we identify a rational function R with its Taylor expansion at the origin.)
Clearly, any rational function can be written in a unique way as R = R+ + R−,
where R+ is a polynomial and R− is a rational function of negative degree.
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Lemma 4.3.24 Let R be a rational function having poles only at infinity or at
certain roots of unity. Then R admits a periodic constant and pc(R) = R+(1).
Example 4.3.25 Recall that for cyclic quotients (with s > 1) Z(t) = (1 −
tE
∗
1 )−1(1 − tE

∗
s )−1, which equals also P(t). We fix I = {v1} and h = e2πia/n

(0 ≤ a < n). Then Zh,I equals ta/n ·∑m≥0(1+ &(a + nm)/q')tm.
For the period it is convenient to take q , and one can check that pc(Zh,I) = 0.

Example 4.3.26 Fix a weighted homogeneous germ with g = 0 and the represen-
tative rh. Take I consisting of the central vertex E0. Then, with the above notations
(where a ∈ [0, 1) stays for −(rh,E∗0 ))

Ph,I(t) = Zh,I(t) =
∑

�≥0

max{0, 1+Nrh(�)}t�+a.

By a computation Z+
h,I(t) =

∑
�≥0 max{0,−1− Nrh(�)}t�+a. Thus, by (4.23),

pc(Ph,I(t)) = pc(Zh,I(t)) =
∑

�≥0

max{0,−1−Nrh(�)} = h1(OX̃(−rh)).

4.3.8 Okuma’s Additivity Formula

4.3.27 The Setup Consider a normal surface singularity (X, o) and fix one of its
resolutions φ : X̃ → X. We fix a vertex v ∈ V. Let ∪j∈J�j be the connected
components of the graph obtained from � by deleting v and its adjacent edges.
Assume that v is connected to each �j by exactly one edge. Let X′ be the space
obtained from X̃ by contracting (via τ ) all irreducible exceptional curves to normal
points except Ev . It has |J | normal singular points {oj }j , which are the images of
the connected components of E \Ev . Let Xj be a small Stein neighbourhood of oj
in X′, and X̃j = τ−1(Xj ) its pre-image via the contraction τ : X̃→ X′. We denote
the local singularities by (Xj , oj ). They are resolved by X̃j with dual graphs �j .
Set τ (E) = E′ ⊂ X′. The resolution φ : X̃ → X and the contraction τ : X̃ → X′
induce an analytic modification φ′ : X′ → X with (irreducible) exceptional curve
E′.

We say that the Assumption (C) is satisfied if

(C) nE′ ⊂ X′ is a Cartier divisor for a certain n > 0.

Theorem 4.3.28 (Additivity for OX̃ [97]) If Assumption (C) is satisfied then
P0,I(t) admits a periodic constant and

pg(X, o) = pc(P0,I(t))+
∑

j

pg(Xj , oj ).
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4.3.29 Additivity for Natural Line Bundles Assume that H 1(X̃,Z) = 0.

Theorem 4.3.30 Set I = {v} and fix h ∈ H . Under the Assumption (C)

h1(X̃,OX̃(−rh)) = pc(Ph,{v}(t))+
∑

j

h1(X̃j ,OX̃(−rh)|X̃j ).

4.4 The Seiberg–Witten Invariant Conjecture

4.4.1 The Casson Invariant

4.4.1 The Setup Let M be an oriented integral homology 3–sphere. The original
definition of the Casson invariant λ(M) given by Casson is based on a Heegaard
splitting of M , and on the study of the space of conjugacy classes of SU2-
representations of different fundamental groups of the splitting [2, 26].

Here we will adopt a specific surgery formula of λ(M) as starting definition,
valid for any plumbed manifoldM(�). It was proved in the PhD thesis of A. Ratiu
(Paris VII), and it follows also from the surgery formulae from Lescop’s book [55].

Definition 4.4.2 Assume that M is the plumbed manifold of a connected negative
definite graph �. Then

− 24 · λ(M) =
∑

v∈V
(E2
v + 3)+

∑

v∈V
(2− κv)(E∗v , E∗v ). (4.46)

We extend the definition of λ by the same expression for non-connected graphs
as well, (i.e., for connected sums of negative definite plumbed 3-manifolds). One
verifies that the expression from the right hand side depends only on M(�), i.e., it
is stable to the plumbing calculus of negative definite plumbing graphs.

By a computation λ(S3) = 0 and λ(�(2, 3, 5)) = λ(�(2, 3, 7)) = −1.

Example 4.4.3 IfM is a Seifert 3-manifold, then

− 24 · λ(LX) = 1

e

(
2− ν +

ν∑

j=1

1

α2
j

)
+ e + 3− 12 ·

ν∑

j=1

s(ωj , αj ). (4.47)

In this case (X, o) is a Brieskorn–Hamm complete intersection

{
(z1, . . . , zν) :

∑

j

aij z
αj
j = 0 for 1 ≤ i ≤ ν − 2

}

with (aij ) of full rank. Hence L(X, o) = M = �(α1, . . . , αν). Furthermore, the
integers {αk}k are pairwise relatively prime, and the integers ωj ’s are determined
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from {αk}k by

ωj · (
∏

k

αk)/αj ≡ −1 (mod αj ).

Hence

s(ωj , αj ) = −s((
∏

k

αk)/αj , αj ).

In this case one also has e−1 = −∏k αk . Note also that

λ(�(α1, . . . , αν)) = λ(�(α1, . . . , αj , αj+1 · · ·αν)) + λ(�(α1 · · ·αj , αj+1, . . . , αν)).

(4.48)

In particular, the computation of λ(�(α1, . . . , αν)) can be reduced to the case ν = 3.
On the other hand, ifM = �(α1, α2, α3), then one also has

λ(M) = − 1
2 · {number of irreducible SU2-representations of π1(M) up to conjugation}.

(4.49)

Additionally, in [11, 27] is proved that the Casson invariant is additive with respect
to the splice decomposition. In particular, λ(L(X, o)) equals the sum of Casson
invariants of the splice components of L(X, o). Since all of them are of type
�(α1, . . . , αν), we obtain that for any singularity link λ(L(X, o)) ≤ 0, and
λ(L(X, o)) = 0 if and only if L(X, o) = S3.

4.4.2 The Casson Invariant Conjecture of Neumann–Wahl

Based on a result of Fintushel and Stern [26], valid for � = �(α1, α2, α3), which
identifies the irreducible SU2-representations of π1(�) with Brieskorn formula for
the signature of the Milnor fiber (cf. 4.49), Neumann and Wahl formulated the
following conjecture.

Conjecture 4.4.4 (Casson Invariant Conjecture (CIC) [90]) Assume that (X, o) is
an isolated complete intersection singularity of dimension two, whose link L(X, o)
is an integral homology sphere. Let σ(F ) be the signature of its Milnor fiber F .
Then λ(L(X, o)) = σ(F )/8. (Since the intersection form on the Milnor fiber is
even, and the intersection form is unimodular, the signature is multiple of 8 by Serre
[109, p. 53].)

The conjecture would imply (via formulae of Durfee σ(F )+8pg+Z2
K+|V| = 0

[17] and Laufer μ = 12pg +Z2
K + |V| − rank(H1(L(X, o)))) [51] that the Milnor

number μ and the geometric genus pg can also be computed from the abstract link.
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Neumann and Wahl supported their conjecture by its verification for Brieskorn–
Hamm complete intersection singularities and (hypersurface) suspensions [90].
More generally, the CIC was proved for any splice (complete intersection) singu-
larity in [82].

4.4.3 The Casson–Walker Invariant

The Casson invariant defined for integral homology spheres has an extension to
rational homology spheres given by Walker [116]. Similarly to the Casson invariant
we adopt a working definition, valid for negative definite plumbed 3-manifolds,
based on a surgery formula of [55].

Definition 4.4.5 Assume that H = H1(M(�),Z) is finite. We define

− 24

|H | · λ(M) =
∑

v∈V
(E2
v + 3)+

∑

v∈V
(2− κv)(E∗v , E∗v ). (4.50)

Again, a direct verification shows that the right hand side depends only onM and it
is independent of the choice of the negative definite graph �.

Example 4.4.6 IfM is a Seifert 3-manifold with ν ≥ 3 then

− 24

|H | · λ(M) =
1

e

(
2− ν +

ν∑

j=1

1

α2
j

)
+ e + 3− 12 ·

ν∑

j=1

s(ωj , αj ). (4.51)

Example 4.4.7 For a lens space one has λ(L(n, q)) = n · s(q, n)/2.

Remark 4.4.8 The CIC identity λ(LX) = σ(F )/8, expected in the case H = 0,
does not extend in the same form to hypersurfaces with rational homology sphere
links. For example, in the case of An−1 germs, one has λ(L(X, o)) = λ(L(n, n −
1)) = −(n− 1)(n− 2)/24, while σ/8 = −(n− 1)/8.

4.4.4 Additivity Formulae for λ and K2 + |V|

In the rational homology sphere case there is no natural splice decomposition, hence
there is no analogues for the Casson–Walker invariant of the splice formula valid
for integral homology spheres. However, we present another type of ‘additivity
formula’, more in the spirit of Okuma’s analytic additivity formulae 4.3.28. We
start with some notations.
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For v,w ∈ V we define mvw := −(E∗v , E∗w) = −(I−1)vw ∈ Q>0, and let κv be
the valency of v in � as usual. Then for any fixed v ∈ V we set

αv :=
∑

w∈V
(κw − 2)mvw, βv :=

∑

w∈V
(κw − 2)m2

vw. (4.52)

4.4.9 For a fixed vertex v of �, we denote the connected components of � \ v by
{�i}i . We indicate by a subscript i when we consider an invariant in �i , instead of �.
We regardLi as a sublattice of L and let Ri : L′ → L′i be the natural cohomological
restriction, that is, Ri(E∗w) = E∗w,i if w ∈ Vi , and Ri(E∗w) = 0 otherwise. By
projection formula (Ri(x), xi)L′i = (x, xi)L′ for any x ∈ L′ and xi ∈ L′i . Then Ri
maps Char(�) into Char(�i), and the canonical characteristic elementK of Char(�)
into the canonical characteristic element Ki of Char(�i).

Theorem 4.4.10 For any l′ =∑w rwEw ∈ L′

((K + 2l′)2 + |V|)−
∑

i

((Ki + 2Ri(l
′))2 + |Vi |) = 1− (αv + 1− 2rv)2

mvv
,

(4.53)

24

|H | · λ−
∑

i

24

|Hi | · λi = −3+ 1− βv
mvv

. (4.54)

Example 4.4.11 Consider the surgery 3-manifold M = S3−d (#iKi) as in 4.2.32
with d > 0 and Ki algebraic with Alexander polynomial�i . Let �(t) = ∏i �i(t)
and μ =∑i μi = 2δ as in 4.3.6. By a computation

24 · λ = (d − 1)(d − 2)+ 3μ(μ− 2)− 12 ·�′′(1).

If μ = (d − 1)(d − 2) then this transforms into 24λ = μ(3μ− 5)− 12 ·�′′(1).

4.4.5 The Reidemeister–Turaev Torsion: Generalities

For the general definition of the sign-refined torsion associated with spinc–structures
see the books of Turaev and work of Nicolaescu and Ranicki, see [94, 114, 115] and
the references therein.

4.4.12 The Case of 3-Manifolds Assume thatM is a closed connected 3-manifold
without boundary with a fixed orientation. We assume that H = H1(M,Z) is finite.
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Theorem 4.4.13 ([115]) The ‘universal abelian sign-refined torsion’

τ : Spinc(M)→ Q[H ]; σ �→ τσ =
∑

h

Tσ (h)h (Tσ (h) ∈ Q) (4.55)

has the following properties:

(a) Duality: Consider the involution Q[H ] → Q[H ], given by x = ∑h a(h)h �→
x̄ :=∑h a(h)h

−1. Then τσ = τσ , or Tσ (h−1) = Tσ (h).
(b) H -equivariance: τhσ = hτσ ; that is, for any g, h ∈ H one has Tgσ (gh) =

Tσ (h). In particular, for fixed σ0 ∈ Spinc(M) the coefficients {Tσ0(h)}h, or, for
fixed h0 ∈ H , the coefficients {Tσ (h0)}σ , determine the whole τ .

(c) Augmentation: Let aug : Q[H ] → Q be the augmentation
∑
h a(h)h �→∑

h a(h). Then, for any σ one has aug(τσ ) = 0. Equivalently,

∑

σ

Tσ (h) = 0 for any h.

4.4.14 The Fourier Transform We wish to have a dual description of the torsion
in terms of Fourier transform. First we recall the definition of the Fourier transform.

Let H be a finite abelian group and let Ĥ = Hom(H, S1) be its Pontryagin dual
(the group of characters). If χ ∈ Ĥ then χ̄ denotes its conjugate: χ̄(h) = χ(h).

The Fourier transform f̂ : Ĥ → C of a function f : H → C satisfies

f̂ (χ) =
∑

h∈H
f (h)χ̄(h), f (h) = 1

|H |
∑

χ∈Ĥ
f̂ (χ)χ(h).

Example 4.4.15 For any σ set f (h) := Tσ (h). Then f̂ (1) = T̂σ (1) = aug(τσ ) = 0.

Example 4.4.16 By 4.4.13(a)–(b) for any σ, χ, h one has

(a) T̂σ (χ) = T̂σ (χ), (b) T̂σ (χ) = χ(h) · T̂hσ (χ). (4.56)

4.4.6 The Reidemeister–Turaev Torsion of Graph 3-Manifolds

Let M be an oriented rational homology sphere 3-manifold associated with a
connected negative definite plumbing graph �.

In 4.4.22 we provide a combinatorial expression in terms of � for the refined
Reidemeister–Turaev torsion. The equivalence of this expression with the original
definition of the refined torsion is proved in [78].

4.4.17 The Fourier Transform of Zh,I(t) Assume that I = {u} ⊂ V is a
distinguished vertex, and for each h ∈ H we consider the reduced series Zh,I(t),
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where t is the variable corresponding to u. Setmvu := −(E∗v , E∗u) > 0. From (4.38)

Zh,{u}(t) = 1

|H | ·
∑

χ∈Ĥ
χ(h)−1 ·

∏

v∈V

(
1− χ([E∗v ])tmvu

)κv−2
.

This shows that the Fourier transform of the map h �→ Zh,{u}(t) is

Ẑ{u}(t)(χ̄) =
∏

v∈V

(
1− χ([E∗v ])tmvu

)κv−2
. (4.57)

4.4.18 Character Values on � Since {[E∗v ]}v generateH , any character χ ∈ Ĥ is
completely characterized by the values ξv := χ([E∗v ]), v ∈ V. These are roots
of unity. When we wish to identify the character χ , we put its values {ξv}v as
decorations on the vertices of the graph �. The collection {χ([E∗v ])}v,χ is a more
subtle information than the abstract group Ĥ itself: it shows the ‘distribution along
�’ of the corresponding values of the characters as well. Since for any v ∈ V one
has ev[E∗v ] +

∑
(u,v) edge[E∗u] = [−Ev] = 0 in H (where ev = E2

v), for each χ one
has

ξevv ·
∏

(u,v) edge

ξu = 1. (4.58)

Conversely, any collection of complex numbers {ξv}v∈V, ξv ∈ S1, which satisfy
(4.58) for any v, determines a character χ defined by χ([E∗v ]) = ξv .

Furthermore, for any χ ∈ Ĥ \ {1}, define the ‘extended support’ suppe(χ) of χ
as the set of those vertices v ∈ V for which either χ([E∗v ]) �= 1, or v has an adjacent
vertex w such that χ([E∗w]) �= 1.

Lemma 4.4.19 Fix a character χ ∈ Ĥ \ {1}.
(a) For an arbitrary vertex u the limit limt→1 Ẑ{u}(t)(χ) exists and it is finite.
(b) This limit is independent of u whenever u ∈ suppe(χ).

Remark 4.4.20 For χ = 1, the Laurent expansion at 1 of the series Ẑ{u}(t)(1) has a

non-trivial principal part, hence limt→1 Ẑ{u}(t)(1) is not finite.

4.4.21 In the sequel, the torsion σ ∈ Spinc(M) �→ Tσ , Tσ =∑h Tσ (h)h ∈ Q[H ]
is defined via the Fourier transform of h �→ Tσ (h) in the following way.

Definition 4.4.22

(a) For the trivial character T̂σ (1) = 0.
(b) If χ([E∗v ]) �= 1 for every v with κv �= 2, then we set

T̂σ (χ) = (χ(hσ ))−1 ·
∏

v∈V
(1− χ([E∗v ]))κv−2, σ = hσσ [K].
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(c) If χ �= 1, but the assumption from (b) does not hold, then the formula from (b)
is regularised as follows:

T̂σ (χ) = (χ(hσ ))−1 · lim
t→1

∏

v∈V
(1−χ([E∗v ]tmvu))κv−2 = (χ(hσ ))−1 · lim

t→1
Ẑ{u}(t)(χ̄),

for certain (any) u = uχ ∈ suppe(χ).

Theorem 4.4.23

(a) σ �→ Tσ defined in 4.4.22 and the refined Reidemeister–Turaev torsion 4.4.12
coincide.

(b) T defined in 4.4.22 is independent of the choice of the resolution.

Remark 4.4.24

(a) By Fourier inversion

Tσ (h) = 1

|H | ·
∑

χ∈Ĥ\{1}
χ(h) · (χ(hσ ))−1 · lim

tuχ→1
̂Z{uχ }(tuχ )(χ̄).

One verifies that the Properties (4.56) are valid, hence {Tσ (h)}σ,h satisfy the
duality and H -equivariance properties. Hence

Tσ (1) = Tσ (1), and Tσ (1) = Thσ σ [K](1) = Tσ [K](−hσ ). (4.59)

In particular, Tσ [K](h)h ∈ Q[H ] contains the same information as {Tσ (1)}σ .
(b) From part (a),

Tσ (1) = 1

|H | ·
∑

χ∈Ĥ\{1}
(χ(hσ ))

−1 · lim
tuχ→1

̂Z{uχ }(tuχ )(χ̄).

Usually, for different characters χ one needs different regularization vertices
uχ . However, if ∩χ �=1suppe(χ) �= ∅, then any u ∈ ∩χ �=1suppe(χ) might serve
as a common regularization vertex (with a common variable t = tu). In such a
case, via Ẑ{u}(t)(1) = Z{u}(t),

Tσ (1) = lim
t→1

( 1

|H | ·
∑

χ∈Ĥ\{1}
(χ(hσ ))

−1 · Ẑ{u}(t)(χ̄ )
)
= lim
t→1

(
Zhσ ,{u}(t) −

1

|H | · Z{u}(t)
)
.

We rewrite {Zh,{u}(t)}h equivariantly as ZH,{u}(t) := ∑
h∈H Zh,{u}(t)h ∈

Q[[t]][H ], and we set N :=∑h h ∈ Q[H ]. Then, via Tσ (1) = Tσ [K](−hσ ),

Tσ [−K] = Tσ [K] = lim
t→1

(
ZH,{u}(t)− Z{u}(t) · N|H |

)
∈ Q[H ]. (4.60)



246 A. Némethi

The identity (4.60) is not true in general, i.e. when ∩χ �=1suppe(χ) = ∅.
The above formula already shows in this special case that the principal (pole)

part of the Laurent series at t = 1 of Zh,{u}(t) is independent of h ∈ H . This
statement is true in general, even without the restriction ∩χ �=1suppe(χ) �= ∅.

(c) If � is star-shaped then the central vertex is an element of ∩χ �=1suppe(χ).
Similarly, if H is cyclic, then again ∩χ �=1suppe(χ) �= ∅.

Example 4.4.25 (The Torsion of a Lens Space) We fix σ = hσσ [K] ∈ Spinc(LX).
Then for χ �= 1

T̂σ (χ) = χ(hσ )−1 · (1− χ([E∗s ]))−1(1− χ([E∗1 ]))−1.

Assume that hσ = a[E∗s ] for some 0 ≤ a < n. Set ξ := χ([E∗s ]). Then,

T̂σ (χ) = ξ−a

(1− ξ)(1 − ξq) (ξ �= 1), and Tσ (1) = 1

n
·
∑

ξn=1 �=ξ

ξ−a

(1− ξ)(1− ξq) .
(4.61)

4.4.7 Additivity Formula for the Torsion

We fix a graph � such thatM(�) is a rational homology sphere. For a vertex v ∈ V
of � let {�i}i be the connected components of � \ v. For any σ ∈ Spinc(M(�)) we
define its restrictions σi ∈ Spinc(M(�i)) as follows.

Choose l′ = ∑
w rwEw ∈ L′ such that rv ∈ [0, 1) so that [l′] = hσ satisfies

σ = σ [2l′ +K] = hσ σ [K] ∈ Spinc(M(�)). Then we set σi = σ [Ri(2l′ +K)] =
[Ri(l′)]σ [Ki] ∈ Spinc(M(�i)). (For Ri see paragraph 4.4.9.)

Theorem 4.4.26 ([12]) Set l′ =∑w rwEw, rv ∈ [0, 1), [l′] = hσ as above. Recall
also the notations from (4.52)

αv :=
∑

w∈V
(κw − 2)mvw, βv :=

∑

w∈V
(κw − 2)m2

vw.

Then

Tσ (1)(M(�))−
∑

i

Tσi (1)(M(�i)) = pc(Zhσ ,{v}(td ))+
1− βv
24mvv

− (αv + 1− 2rv)2

8mvv
.

Corollary 4.4.27 Tσ (1)(M(�)) is a rational number.
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4.4.8 The Seiberg–Witten Invariant

In this section we fix a plumbed rational homology sphere 3-manifoldM associated
with a connected negative definite plumbing graph �. The Seiberg–Witten invariant
ofM , sw, associates to each spinc structure σ ∈ Spinc(M) ofM a rational number
swσ . Here, based on [95], we ‘define’ it as the refined Turaev torsion modified by
the Casson–Walker invariant. Based on the formulae of the previous sections, this
provides sw combinatorially from �.

Definition 4.4.28 We define sw : Spinc(M)→ Q, σ �→ swσ by

swσ := Tσ (1)− λ/|H |.

Example 4.4.29 If H = 0 then Spinc(M) has only one element, and the corre-
sponding Seiberg–Witten invariant is−λ(M) (the negative of the Casson invariant).

4.4.30 Additivity Formula for the Seiberg–Witten Invariant The previous addi-
tivity formulae imply the following formula.

Theorem 4.4.31 ([12]) Set l′ = ∑w l
′
wEw , l′v ∈ [0, 1), as in Theorem 4.4.26. Let

σ ∈ Spinc(M(�)) be defined as [l′]σ [K] = σ [K+2l′], and take also its restrictions
σi := [Ri(l′)]σ [Ki] = σ [Ri(K+2l′)] too. Set hσ = [l′]. Then one has the following
identities:

swσ (M(�))−
∑

i

swσi (M(�i)) = pc(Zhσ ,{v}(t))+
1

8
− (αv + 1− 2rv)2

8mvv
.

and

(
swσ (M(�))− (K + 2l′)2 + |V|

8

)
−
∑

i

(
swσi (M(�i))−

(Ki + 2Ri(l
′))2 + |Vi |

8

)

= pc(Zhσ ,{v}(t)).

Proof Combine Theorems 4.4.10 and 4.4.26 and use pc(S(td )) = pc(S(t)). ��
This additivity formula should be compared with its ‘analytic counterpart’, namely
with Okuma’s additivity formula 4.3.30.

4.4.9 The Seiberg–Witten Invariant and the Series Z(t)

We prove two key formulae for the Seiberg–Witten invariant of a rational homology
sphere link. One of them identifies it with a weighted Euler characteristic of (shifted)
weighted cubes in a large rectangle of L⊗R, the other one with the constant term of
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the counting function of the coefficients of Z(t). The proofs are based on additivity
formulae of the compared invariants.

The similarities with the analytic counterpart (the series P(t) and the equivariant
genera) are emphasized.

4.4.32 In the next discussion we will use the weighted cubes, see also 4.6.3. Let
us fix an element h of H and write L′h = {l′ ∈ L′ : [l′] = h}. Recall that the set of
‘combinatorial’ q–cubes (associated with h) consists of pairs (l′, I ) ∈ L′h × P(V),
|I | = q (q ∈ Z≥0). (l′, I ) will be identified with the vertices {l′ +∑v∈I ′ Ev}I ′⊂I
of an ‘Euclidean’ cube in L ⊗ R. One defines the weight function w : L′ →
Q, w(l′) := χ(l′), and also the a weight of the q–cubes

w((l′, I )) = max
I ′⊂I

{
w(l′ +

∑

v∈I ′
Ev)

}
.

Assume that a set A ⊂ L⊗ R has the following property: if an Euclidean cube (as
above) is in A then any face of any dimension of that cube is in A. For such a set A
one defines the ‘weighted Euler characteristic’

Euχ(A) :=
∑

(l′,I )∈A
(−1)|I |+1w((l′, I )).

Such a set A might appear as follows. For the fixed class h ∈ L′/L one takes two
representatives l′1, l′2 ∈ L′h with l′2 ≤ l′1. Then Rh = Rh(l′2, l′1) consists of the union
of all combinatorial cubes (l′, I ), of any dimension, such that [l′] = h and any
vertex l′ +∑v∈I ′ Ev of (l′, I ) satisfies l′2 ≤ l′ +

∑
v∈I ′ Ev ≤ l′1. Accordingly to

the above identification, Rh(l′1, l′2) will also denote the real rectangle {x ∈ L⊗ R :
l′2 ≤ x ≤ l′1}, or the union of all Euclidean cubes (with all vertices having class [h])
in this real rectangle.

Remark 4.4.33 For a fixed h ∈ H , we can consider two types of rectangles and
weighted q–cubes, depending on the geometric situation. First, in the context of
lattice cohomology (see e.g. 4.6.3, and in its preparation 4.5.2) we take integral
lattice points and rectangles R(l2, l1) and cubes with vertices in the lattice L, but
we twist the weight function: we take χk (which generates wk) with k = K + 2l′h,
for some representative l′h of h.

Second, when we wish to relate the cubes with the coefficients of Z(t) (as in the
previous paragraph), we take shifted rectangles Rh := Rh(l

′
2, l

′
1) ([l′j ] = h) with

cubes (l′, I ) of type [l′] = h in them, together with the usual untwisted Riemann–
Roch-function χ = χK .

The two approaches can be compared easily (see also 4.6.3). Indeed, if k =
K + 2l′h, [l′h] = h, then for l ∈ L we have χ(l + l′h) = χk(l)+ χ(l′h). In particular,
with the notation l′j = lj + l′h (lj ∈ L), we have Rh(l′2, l′1) = l′h + R(l2, l1) as
rectangles, and

Euχ(Rh(l
′
2, l

′
1)) = Euχk (R(l2, l1))− χ(l′h).
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4.4.34 Via the two incarnations of the weighted cubes (cf. 4.4.33) the next result
is the ‘pair’ of Lemma 4.5.8.

Lemma 4.4.35 Fix a class h and take a representative l′0 of h in −K + S′.

(a) For any l′ ∈ L′, [l′] = h, l′ > l′0, there exists an Ev in the support of l′ − l′0
such that w(l′ − Ev) ≤ w(l′).

(b) There exists a computation sequence {�i}i≥0, �i ∈ L, with �0 = 0, and �i+1 =
�i + Ev(i) for some v(i) ∈ V when i ≥ 0, satisfying:

(i) The coefficients of �i tend to infinity, that is limi→∞(�i,−E∗v ) = ∞ for all
v.

(ii) For any i ≥ 0 one has w(l′0 + �i) ≤ w(l′0 + �i+1).

(c) For any l′ < 0, with [l′] = h, there existsEv ∈ |l′| such thatw(l′+Ev) ≤ w(l′).
(d) For any representatives l′1, l′2 of h, such that l′1 ≥ l′0 > 0 ≥ l′2, Euχ(Rh(l′2, l′1))

is independent of the choice of l′1 and l′2. In particular, with such choices, h �→
Euχ(Rh(l

′
2, l

′
1)) is a numerical invariant of h ∈ H = L′/L.

Definition 4.4.36 The invariant provided by 4.4.35(d) will be denoted by sh.

4.4.37 LetZ(t) =∑l′∈L′ z(l′)tl
′
be the combinatorial series defined in Sect. 4.3.3.

Since Z is supported on S′, the next sum in (4.62) is finite by 4.2.13.

Theorem 4.4.38 Fix h ∈ H . For any l′ ∈ −K + S′ with [l′] = h, the expression

− χ(l′)+
∑

l∈L, l�0

z(l′ + l) (4.62)

depends only on the class h of l′, and, in fact, it equals sh defined in 4.4.36.

Theorem 4.4.39 ([73]) For any� and [K+2l′] ∈ Char one has swσ [K+2l′](M(�))
= s[l′] + (K2 + |V|)/8, or,

Euχ(Rh(l
′
2, l

′
1)) = s[l′] = swσ [K+2l′](M(�))− (K2 + |V|)/8. (4.63)

The proof is based on the ‘additivity formula’ 4.4.31 and a similar formula valid for
sh.

Therefore, Theorem 4.4.38 reads as follows.

Theorem 4.4.40 Assume that l′ ∈ −K + S′ and Let Z(t) = ∑l′∈L′ z(l′)tl
′

be the
combinatorial series defined in Sect. 4.3.3. Then

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = swσ [K+2l′] − (K + 2l′)2 + |V|

8
. (4.64)
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If we write l′ = rh + l (where h = [l′] and l ∈ L), then (4.64) transforms into

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = χK+2rh(l)+ swσ [K+2rh] −

(K + 2rh)2 + |V|
8

. (4.65)

In particular, in the chamber l′ = l+ rh ∈ −K+S′, the sum from the left hand side
of the above identities is a multivariable quadratic function in l with constant term
swσ [K+2rh] − ((K + 2rh)2 + |V|)/8.

These formulae should be compared with those from (4.36) valid for the
coefficients of the series P . The fact that in (4.36) (associated with the series P ) the
constant terms are the equivariant geometric genera, is rather natural. However, the
fact that the constant terms in the above Theorem 4.4.40 (associated with Z, a rather
‘simple’ series) is the Seiberg–Witten invariant, is rather surprising. Nevertheless,
the above identity provides a very natural, direct and conceptual explanation, how
the Seiberg–Witten invariant might appear in the theory of singularity links.

Example 4.4.41 If � is numerically Gorenstein and h = 0 then (4.65) reads as

∑

l∈L, l �≥ZK
z(l) = swσ [K] − K

2 + |V|
8

. (4.66)

4.4.10 The Seiberg–Witten Invariant Conjecture/Coincidence

In this section we treat a set of potential identities connecting the analytic invariants
with the topological ones, namely, the equivariant geometric genera with the
Seiberg–Witten invariants of the link. Whenever these identities are valid they
provide a topological description of the equivariant geometric genera. The identities
are generalizations of the expectation of the Casson Invariant Conjecture to the case
of singularities with rational homology sphere links.

Superisolated singularities in general do not satisfy SWIC, their case will be
discussed in subsection 4.4.11.

4.4.42 Seiberg–Witten Invariant Conjecture/Coincidence (SWIC) [73, 75, 78]
In this section we assume that the link of (X, o) is a rational homology sphere, and
we fix a resolution X̃→ X, and we keep all the notations associated with it. We say
that (X, o) satisfies SWIC(rh) for a certain h ∈ H if the following identity holds

h1(X̃,O(−rh)) = swσ [K+2rh] −
(K + 2rh)2 + |V|

8
. (4.67)

We say that (X, o) satisfies the equivariant SWIC if (4.67) holds for every h ∈ H .
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We say that (X, o) satisfies the SWIC if it satisfies SWIC(0), that is, if

pg(X, o) = swσ [K] − K
2 + |V|

8
. (4.68)

The identity SWIC was formulated as a conjecture in [78] (while the equivariant
case in [71]): the expectation was that it holds for any Q-Gorenstein singularity.
Although the conjecture can be verified for several subfamilies of singularities, since
[61] we know that it is not true for the large class of Q-Gorenstein singularities (see
also 4.4.11 for the treatment of superisolated singularities, a family which produces
several counterexamples). But even in the case of families when it fails, it still
indicates interesting ‘virtual’ properties (e.g., in the superisolated case it has lead
to the Semigroup Distribution Property). The limits of the validity of the SWIC
are not clarified at this moment. Having in mind the existence of cases when the
identities do not hold, one might say that its name as SWI ‘Conjecture’ is not totally
justified, although this was its name in the literature. Hence, the reader might read
the abbreviation SWIC as SWI ‘Coincidence’ too.

Example 4.4.43 Assume that (X, o) is Gorenstein and it admits a smoothing with
smooth nearby (Milnor) fiber F . Then the signature satisfies σ(F ) + 8pg + K2 +
|V| = 0, hence the SWIC (for h = 0) reads as

− σ(F )/8 = swσ [K]. (4.69)

In this case, usually, σ(F )/8 is not an integer, see the germ An.

Example 4.4.44 Assume that (X, o) is a complete intersection with integral homol-
ogy sphere link. Then Tσ [K](1) = 0, hence the SWIC reduces to the CIC (see 4.4.2):

σ(F )/8 = λ(L(X, o)).

Example 4.4.45 The identity P(t) = Z(t) (that is, the topological description via Z
of the Poincaré series associated with the divisorial filtration) implies the equivariant
SWIC. In particular, the identity P0(t) = Z0(t) implies SWIC. Indeed, for any
l′ ∈ −K + S′ with l′ = l + rh (l ∈ L), from (4.36) one has

∑

[l̃′]=[l′], l̃′�l′
p(l̃′) = χK+2rh(l)+ h1(O(−rh)). (4.70)

On the other hand, from (4.65),

∑

[l̃′]=[l′], l̃′ �≥l′
z(l̃′) = χK+2rh(l)+ swσ [K+2rh] −

(K + 2rh)2 + |V|
8

. (4.71)
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For l′ ∈ −K + S′ and l′ = l + rh, we can regard the evaluation at l = 0 of
the counting function

∑
[l̃′]=[l′], l̃′ �≥l′ coeff(l̃′) as an operator. It associates with any

multivariable series its ‘multivariable periodic constant’, cf. [45, 46]. In this sense,
the above identities say that the periodic constant of Ph is h1(O(−rh)), while of Zh
is sw[K+2rh] − ((K + 2rh)2 + |V|)/8.

Hence, if Ph(t) = Zh(t) then the SWIC(rh) automatically holds as well.
In fact, in order to have the SWIC(rh) we need the validity of the above identities

for a certain l′ ∈ −K + S′ ([l′] = h) only. Indeed, if a certain l′0 ∈ −K + S′,
[l′0] = h, has the property that Ph(t) − Zh(t) is supported on {l̃′ : l̃′ ≥ l′0}, then
by the above identities applied for this l′0 we obtain SWIC(rh). In such a case, again
by the identities (4.70)–(4.71), even if Ph(t) �= Zh(t), their counting functions l′ �→∑
[l̃′]=[l′], l̃′ �≥l′ coeff(l̃′) in the whole chamber l′ ∈ −K+S′ coincide (independently

of the position of l′0 in this chamber).
For a fixed h, the identity Ph = Zh is much stronger than the SWIC(rh):

examples when Ph �= Zh but the SWIC(rh) holds can be constructed.

4.4.46 Extension to the Other Natural Line Bundles
Recall that in 4.2.74 we proved that for any l′ ∈ L′ there exists a unique

minimal s(l′) ∈ S′ such that s(l′) − l′ ∈ L≥0. We wish to compare h1(O(−l′))
and h1(O(−s(l′))) via the SWIC property.

We say that l′ ∈ L′ satisfies the SWIC identity, denoted by SWIC(l′), if

SWIC(l′) : h1(X̃,O(−l′)) = swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.72)

If this holds, then it obviously provides a topological description for h1(X̃,O(−l′)).
By 4.2.76 one has

h1(X̃,O(−s(l′)))− h1(X̃,O(−l′)) = χ(s(l′))− χ(l′).

A computation shows that the right hand side of (4.72) behaves similarly. Hence

Proposition 4.4.47 The SWIC(l′) is valid if and only if SWIC(s(l′)) is valid. In
particular, SWIC(rh) is valid if and only if SWIC(sh) holds.

This shows that the validity of SWIC(rh) implies the validity of SWIC(l′) for all
l′ ∈ L′h with s(l′) = s[l′]. This covers exactly those cycles l′ ∈ L′h with l′ ≤ s[l′]
(including all cycles l′ =∑v l

′
vEv with l′v < 1 for any v).

This topological characterization SWIC(l′) of h1(O(−l′)) (modulo the validity of
SWIC) in this ‘negative’ region {l′ : l′ ≤ s[l′]} can be compared with the vanishing
h1(O(−l′)) = 0 in the ‘opposite positive’ region {l′ : l′ ∈ −K + S′}.

It is natural to ask the following question: what can one say in the case of an
arbitrary l′, which sits outside of these two regions.
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Proposition 4.4.48 If SWIC(rh) holds then for any l′ ∈ L′h

h1(O(−l′)) = −
∑

a∈L, a�0

p(l′ + a)+ swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.73)

Additionally, if Ph = Zh (or, at least their counting functions coincide), then one
has the following topological characterization of h1(O(−l′)):

h1(O(−l′)) = −
∑

a∈L, a�0

z(l′ + a)+ swσ [K+2l′] − (K + 2l′)2 + |V|
8

. (4.74)

Remark 4.4.49 Assume that the equivariant SWIC is true for (X, o). Then, taking
the sum of the identities SWIC(rh) from (4.67), and using

∑
σ Tσ (1) = 0, we get

the following expression for the geometric genus of the universal abelian covering
(Xa, o) in terms of the graph �:

pg(Xa, o) = −λ(M(�))− |H | · K
2 + |V|

8
+
∑

h∈H
χ(rh).

Example 4.4.50 (SWIC is True for Cyclic Quotients) In this case the link isL(n, q),
H = Zn and the spinc structures are indexed by σ = σ [K + 2aE∗s ], where a ∈ Z

and 0 ≤ a < n. Set also h = a[E∗s ] ∈ H . Then

Tσ (1) = −s(q, n)+ n− 1

4n
− a

2n
−

a∑

i=1

(( iq ′

n

))
.

Since λ/n = s(q, n)/2, cf. 4.4.7, we also have

swσ = −3

2
· s(q, n)+ n− 1

4n
− a

2n
−

a∑

i=1

(( iq ′

n

))
.

On the other hand, (K + 2rh)2 + |V|)/8 = (K2 + |V|)/8 − χ(rh) can also be
computed explicitly. From 4.2.60 one has (K2+|V|)/8 = (n−1)/4n−3s(q, n)/2.

Furthermore, from 4.2.76 we have h1(O(−sh))− h1(O(−rh)) = χ(sh)− χ(rh).
But h1(O(−sh)) = 0 by the vanishing 4.2.71, while h1(O(−rh)) = pg(Xa, o)θ(h) =
0 (cf. 4.2.82) since the universal abelian covering (Xa, o) is smooth. Hence χ(rh) =
χ(sh), and its expression is

χ(rh) = a

2n
+

a∑

i=1

(( iq ′

n

))
.
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In particular, the right hand side of SWIC(rh) is zero, and the same is true for the
left hand side because of the vanishing already mentioned.

Example 4.4.51 The equivariant SWIC is true for splice quotient singularities. In
particular, it is true for rational, minimally elliptic and weighted homogeneous
singularities (with QHS3 link). The SWIC(0) is valid for all elliptic singularities
and suspensions {zn + f (x, y) = 0}, where f is irreducible (and with QHS3 link).

4.4.11 SWIC and Superisolated Singularities

We assume that (X, o) is a superisolated singularity associated with the irreducible
projective rational cuspidal curve C of degree d .

Though in many cases (e.g. for weighted homogeneous singularities) we discuss
the SWIC together with equivariant SWIC, this is not the case for the superisolated
germs. The main obstruction is that in the superisolated case (though pg(X, o) and
P0,{v+}(t) are extremely simple), usually we have very little information about the
analytic properties of the universal abelian covering, e.g. about its geometric genus
pg(Xa, o) (see e.g. [111]). Therefore, in this subsection we focus merely on the
SWIC (for h = 0).

It turns out that for a superisolated singularity the SWIC is valid if and only if
N(1) = 0, a property which is not always true, cf. subsection 4.3.6. Let us list first
the involved invariants.

4.4.52 From Example 4.4.11 we have K2 + |V| = −d(d − 2)2 + 1 and 24λ =
μ(3μ−5)−12 ·�′′(1) (μ = 2δ). Moreover, the divisorial filtration associated with
I = {C} = {v+} agrees with the filtration associated with weights (1, 1, 1), hence
P0,I(t) = (1 − td )/(1 − t)3. Since in the good resolution Γ \ v+ supports only
smooth germs, by 4.3.30 pg(X, o) = pc(P0,I(t)), which is d(d − 1)(d − 2)/6.

The definition of ZI(t) compared with A’Campo formula [1] gives

Z0,I(t) = 1

d

∑

ξd=1

�(ξt1/d)

(1− ξt1/d )2 and ZI(t) = �(t1/d)

(1− t1/d)2 .

Since H is generated by [E∗+], the vertex v+ (corresponding to C) is a
regularization vertex for any character. Therefore, from 4.4.24

Tσ [K](1) = lim
t→1

(
Z0,I(t)− 1

d
ZI(t)

)
= 1

d

∑

ξd=1 �=ξ

�(ξ)

(1− ξ)2 .

Following 4.3.6 we also consider

N(t) := Z0,I(t)− P0,I(t) = 1

d

∑

ξd=1

�(ξt1/d )

(1− ξt1/d )2 −
1− td
(1− t)3 .
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Then

lim
t→1

N(t) = Tσ [K](1)+ lim
t→1

( 1

d
· �(t1/d)

(1− t1/d )2 −
1− td
(1− t)3

)
.

If we write�(t) = 1+ δ(t − 1)+Q(t)(t − 1)2 as in 4.3.6, then the limit can be
computed in terms of d andQ(1) = �′′(1)/2. The computation provides

Proposition 4.4.53

N(1) = swσ [K] − K
2 + |V|

8
− pg.

This combined with (4.45) gives (with Q(t) =∑μ−2
j=0 αj t

j )

swσ [K] − K
2 + |V|

8
=
d−3∑

j=0

αjd .

Corollary 4.4.54

(a) SWIC for h = 0 is equivalent to N(1) = 0.
(b) The Conjecture 4.3.22 (which predicts that N(1) ≤ 0 for any superisolated

singularity) is equivalent to swσ [K] − K2+|V|
8 ≤ pg.

Corollary 4.4.54 has the following consequences (for some of the arguments see
the paragraphs after 4.3.21): via the ‘Semigroup Distribution Property’ 4.2.33, the
SWIC (for h = 0) is valid whenever ν = 1. In fact, in this case not only N(1) = 0,
but even N(t) ≡ 0, i.e. Z0,I(t) ≡ P0,I(t).

If ν = 2 then the coefficients of N(t) are non-positive, however, it can happen
that N(t) �= 0, see. e.g. several examples in [61]. Hence, if ν = 2 and N(t) �= 0

then the SWIC fails and swσ [K] − K2+|V|
8 < pg. (The difference will be interpreted

in terms of lattice cohomology in 4.9.2.)

Remark 4.4.55 Though till now we tried to convince the reader that the SWIC,
for certain analytic types, is a ‘natural’ reality, the superisolated case suggests the
opposite. Indeed, for such germs, pg depends only on d , but the topological side
depends in a subtle way on the local singularity types of C (see above the formulae
of λ and Tσ [K](1)). Having in mind this subtle sensitivity to the local singularity
data of C, the validity of SWIC (when it holds) is a true marvel.

Example 4.4.56 Let us analyse a particular case with more details. Assume d = 5,
ν = 2, and the two singularities have multiplicity sequence [3] and [23]. The graph�
is presented below, andN(t) = −2t , hence SWIC fails: pg = 10, while−λ = 21/2
and Tσ [K](1) = 2/5, hence swσ [K] − (K2 + |V|)/8 = 8.
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In fact, we can consider two analytic structures supported on this topological
type (given by the graph). They are rather different, though both are very natural.
The first is a superisolated hypersurface singularity, as analysed above. On the other
hand, this topological type supports also a splice quotient singularity which satisfies
SWIC, hence it has pg = 8.

4.5 Weighted Cubes and the Spaces Sk,n

4.5.1 Weighted Cubes and Generalized Computation
Sequences

To any good resolution graph � and characteristic element k ∈ Char, we consider
the weight function χk : L → Z, and a natural cubical decomposition of R

s

associated with the embedding L � Z
s ↪→ Z

s ⊗ R = R
s , where s = |V| and

the identification L � Z
s is given by the base vectors {Ev}v∈V. Then, for each

n ≥ minl∈L{χk(l)}, we define the topological space Sk,n, as the union of all cubes,
which have all vertices of weight≤ n. We show that the homotopy type of the tower
{Sk,n}n depends only on the 3-manifoldM(�) and on the spinc structure associated
with k. The tower {Sk,n}n carries an extremely deep information about M(�); the
final goal is to determine their homotopy types. Via the spaces {Sk,n}n this section
prepares the theory of graded roots and lattice cohomology.

4.5.1 Cubes in L ⊗ R and the Spaces {Sk,n}n [72] Fix a connected plumbing
graph � with negative definite intersection form, and we assume that the plumbed
3-manifoldM(�) is a rational homology sphere.

We use the standard notations for the lattice L, which has the distinguished base
elements {Ev}v∈V. Using this basis, one identifies L with Z

s with its fixed standard
basis, still denoted by {Ev}v∈V.

Z
s ⊗ R � R

s has a natural decomposition into cubes given by the inclusion
Z
s ↪→ R

s . The zero-dimensional cubes are exactly the lattice points Zs . Any l ∈ Z
s

and subset I ⊂ V of cardinality q defines a q-dimensional cube �q = (l, I ), which
has its vertices in the lattice points (l +∑v∈I ′ Ev)I ′ , where I ′ runs over all subsets
of I .

Next, we fix a characteristic element k ∈ Char and we consider the Riemann–
Roch function χk : L → Z, χk(l) = −(l, l + k)/2. Here we regard χk as
a weight function on the set of cubes: the weights of zero-dimensional cubes
are defined by w0(l) = χk(l), while, in general, wq((l, I )) := max{χk(v) :
v is a vertex of (l, I )}.
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Definition 4.5.2 For every n ∈ Z, define Sn ⊂ R
s as the union of all the cubes �q ,

of any dimension, with w(�q) ≤ n (with induced topology of Rs). Clearly, Sn �= ∅
exactly when n ≥ mk , where mk := minl∈Zs χk(l). If we wish to emphasize the
k-dependence we write Sk,n.

One has the natural inclusions Smk ⊂ . . . ⊂ Sn ⊂ Sn+1 ⊂ . . .. It turns out
that the topology of the spaces {Sn}n≥mk might be rather interesting. The tower
has a finiteness property: only finitely many Sn have nontrivial topology (are non-
contractible), but an Sn with n ‘small’ might have rather complicated homology
groups. In general it is rather hard to solve the corresponding Diophantine equations
and to analyse the adjacent positions of the solutions (in order to get the cubes
which build up the topological space Sn). However, this combinatorial/artihmetical
structure can be extremely rich covering a big amount of deep information.

Example 4.5.3 ([72]) Consider the following graph:

A computation shows that χ ≥ −1. S−1 consists of two contractible connected
components. The space S0 has three connected components, two of them con-
tractible, and the third has the homotopy type of the circle. The spaces Sn for n ≥ 1
are contractible.

4.5.4 Assume that k and k′ determine the same Spinc–structure of M(�),
cf. 4.2.94, hence k′ = k + 2l for some l ∈ L. Then χk′(x − l) = χk(x) − χk(l)
for any x ∈ L. This means that the transformation x �→ x ′ := x − l realizes an
identification of the ‘Sn-spaces’ associated with k and k′: Sk,n = Sk′,n−χk(l). Hence,
fixing a representative k from each class [k] ∈ Spinc(M(�)) we can speak about
the tower of spaces {Sk,n}n, indexed by [k] ∈ Spinc(M(�)).

Proposition 4.5.5 ([72]) The tower of spaces {Sk,n}n, indexed by [k] ∈
Spinc(M(�)), up to homotopy equivalence, depends only on M = M(�), it is
independent of the choice of the negative definite plumbing graph �, which provides
M .

Remark 4.5.6 A possible generalization of the set of weighted cubes and spaces Sn
is provided via a set of compatible weight functions. Let Qq denote the set of q–
cubes. A set of functions wq : Qq → Z (0 ≤ q ≤ |V|) is called a set of compatible
weight functions if the following hold:

(a) for any integer n ∈ Z, the set w−1
0 ( (−∞, n] ) is finite;

(b) for any �q ∈ Qq and for any of its faces �q−1 ∈ Qq−1 one has wq(�q) ≥
wq−1(�q−1).

Then one can define Sn as ∪q{� ∈ Qq : wq(�q) ≤ n}.
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4.5.2 The Topology of the Spaces {Sk,n}n
In order to analyse the topology of the space Sn = Sn,k it is convenient to introduce
the set of finite rectangles indexed by pairs l1, l2 ∈ L with l1 ≤ l2.

Definition 4.5.7 For any such pair l1 ≤ l2 set R(l1, l2) := {x ∈ R
s : l1 ≤ x ≤ l2}.

Define also R(l1,∞) := {x ∈ R
s : l1 ≤ x}.

The point in the next lemma is that χ-monotone (non-increasing) computation
sequences provide strong deformation retracts for the spaces Sk,n.

Lemma 4.5.8 Fix k ∈ Char and write Sn = Sk,n.

(I) There exist l+ ∈ L and an increasing infinite sequence of cycles {li}i≥0 (li ∈ L)
with l0 = l+, such that

(a) for any i ≥ 0 one has li+1 = li + Ev(i) for some v(i) ∈ V,
(b) if li =∑v mi,vEv , then limi→∞mi,v = ∞ for all v,
(c) χk(li+1) ≥ χk(li).

Similarly, there exists l− ∈ L and an increasing infinite sequence of cycles
{yi}i≥0, satisfying y0 = l−, the analogs of (a)–(b), and (c) χk(−yi+1) ≥
χk(−yi).

(II) Take l− and l+ as in (I). Without loss of generality we can assume that −l− ≤
l+. Then the inclusion R(−l−,∞) ∩ Sn ⊂ Sn and R(−l−, l+) ∩ Sn ⊂ Sn are
homotopy equivalences for any n ∈ Z.

Corollary 4.5.9 For any k ∈ Char the space Sn is contractible for any n* 0.

Proof Fix l− ≤ l+ as in Lemma 4.5.8(I). Let n be so large that R(−l−, l+) ⊂ Sn.
Then, by Lemma 4.5.8(II) Sn has the same homotopy type as R(−l−, l+). ��
4.5.10 Distinguished Representatives and Their Spaces Sn As we already said
in 4.5.4, if k′ = k+ 2l for some l ∈ L then Sk,n = Sk′,n−χk(l). Hence, it is natural to
choose one representative from each spinc structure. For several results the choice
is irrelevant, however, certain choices have certain advantages. Our preferred choice
is the distinguished representative, or distinguished characteristic element kr :=
K+2sh, cf. 4.2.94, where sh ∈ L′ is the smallest representative of h in S′, cf. 4.2.78.

A possible motivation for the choice of kr is the following. Recall that the
rationality criterion for graphs is χ(l) > 0 for any l ∈ L>0, hence it is decided
in the ‘first quadrant’ L≥0 of L. More generally, for arbitrary graphs, the essential
properties of χ : L → Z are already coded in the restriction χ |L≥0. The choice
kr = K + 2sh guarantees that the essential properties of χkr : L → Z are
coded again in L≥0 (or, equivalently, for a fixed h, the essential information of
χQ|{l′ ∈ L′ : [l′] = h} is coded in χQ|sh + L≥0.
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Lemma 4.5.11 Fix h ∈ H and kr = K + 2sh as above. Then the following facts
hold.

(a) In Lemma 4.5.8 one may take l− = 0. This means that R(0,∞)∩ Skr ,n ⊂ Skr ,n
is a homotopy equivalence for any n. In particular, by Lemma 4.5.8, there exists
l+ ≥ 0 such that R(0, l+) ∩ Skr ,n ⊂ Skr ,n is a homotopy equivalence for any n.

(b) Assume that ZK ≥ 0 (e.g., as in the minimal good resolution). Then one can
take l+ = &ZK'. Hence, Skr ,n has the homotopy type of R(0, &ZK') ∩ Skr ,n.

(c) For any x ≥ 0 one has χkr (x) ≥ χK(x). Therefore, minχkr ≥ minχK .
(d) SK,n (i.e. when h = 0 and sh = 0) is connected for all n ≥ 1.

Example 4.5.12 (Characterization of Rational Graphs via the Spaces Sn [70]) Let
� be a connected, negative definite plumbing graph whose plumbed 3-manifold is
a rational homology sphere. Recall that � is rational if χ(l) > 0 for any l ∈ L>0.
(In this case pg(X, o) = 0 for any analytic type supported on the topological type
determined by �.) Then the following facts are equivalent:

(a) � is rational;
(b) SK,n is contractible for every n ≥ minχ ;

(b′) SK,n is connected for every n ≥ minχ ;
(c) Sk,n is contractible for all k ∈ Char and n ≥ minχk.

Additionally, if � is rational and kr = K + 2sh, then minχkr = 0.

Example 4.5.13 (Characterization of Elliptic Graphs via the Spaces SK,n [70])
Assume again that M(�) is a QHS3. Recall that � is elliptic if minχ = 0 and
� is not rational. Then � is elliptic if and only if SK,n is empty for n < 0 and SK,0
is not connected.

4.5.3 ‘Bad’ Vertices, Almost Rational Graphs and Lattice
Fibrations

We measure how far an arbitrary graph (tree) � is from being rational. Recall that
decreasing all the self-intersection numbers of a tree, with all the vertices decorated
by gv = 0, we obtain a rational graph. The next definition aims to identify those
vertices where such a decrease is really necessary. [Such a subset of V was already
considered in different articles like [70, 72, 74, 102], mostly under the name ‘bad
vertices’. Since the definition of the ‘badness’ was not uniform here we use the
notation SR for them, for several other families see [66].]

Definition 4.5.14 Let � be a negative definite connected tree withM(�) a QHS3.
A subset of vertices V = {v1, . . . , vν} ⊂ V is called SR–set, if by replacing the

Euler numbers ev = E2
v indexed by v ∈ V by some more negative integers e′v ≤ ev

we get a rational graph. A graph is called AR-graph (‘almost rational graph’) if it
admits an SR–set of cardinality ≤ 1.
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Example 4.5.15

(a) A possible SR–set can be chosen in many different ways, it is not determined
uniquely even if it is minimal with this property.

(b) Usually we allow non-minimal SR–sets as well.
(c) Any rational graph is AR; for rational graphs the empty set is an SR–set. The

class of AR graphs is closed while taking subgraphs or/and decreasing the Euler
numbers.

(d) The set of nodes is an SR–set. Hence any star-shaped graph (with g = 0) is AR
with V = {v0}.

(e) Any elliptic graph with H1(LX,Q) = 0 is AR.
(f) Consider the graph � of S3−d (K) (for d > 0 and K ⊂ S3 algebraic knot). Then
� is AR: if we modify the −1 decoration of v1 into −2, we get a sandwiched
(hence rational) graph.

(g) Let {Ki}νi=1 be algebraic knots and set K = #iKi . For d > 0 the negative
definite graph� of S3−d (K) is given in 4.2.32. Then the smallest SR–set consists
of the set of (−1)-vertices (their number is ν).

4.5.16 Lattice Fibrations: Universal Cycles in the Fibers Let us give some
intuition for the next construction.

If � is rational, then 0 is a χkr –minimal lattice point, and 0 ↪→ Skr ,n
(n ≥ 0) admits a strong deformation retraction: there is a χkr –non-increasing
(combinatorial) flow contracting any Skr ,n (and L⊗R) to 0.

In general, let us start with the lattice L and a representative k = K + 2l′h. Then
(dictated by some ‘badness properties’ of some of the vertices, indexed by V) we
will write the set of vertices V as a disjoint union V �V∗, such that any sublattice
of type l̄ + L(V∗) (where l̄ = ∑v∈V �vEv ∈ L(V)) behaves as a rational lattice,
that is, it can be contracted to one of its lattice points via a χk–non-increasing flow.
(In other words, ‘L, or the spaces Sn, project to L(V) with contractible fibers’.) On
the other hand, the χk–minimal point of l̄ + L(V∗), where l̄ + L(V∗) contracts,
depends essentially on l̄; it is a crucial universal point xl′h(l̄) of l̄ + L(V∗). The
aim of different reduction theorems is to recover different invariants of the weighted
lattice (L, χk) from {χk(xl′h(l̄))}l̄∈L(V).

In this subsection we define and analyse the points xl′h(l̄). If l′h = sh then some
additional ‘positivity’ properties hold for them.

4.5.17 The Definition of the Lattice Points x(l̄) Let us fix a resolution of a germ
(whose link is not necessarily a rational homology sphere). Suppose we have a
family of distinguished vertices V := {vk}νk=1 ⊆ V (usually chosen by a certain
geometric property). Then we split the set of vertices V into the disjoint union
V � V∗. Let {mv(x)}v denote the coefficients of a cycle x ∈ L ⊗ Q, that is
x =∑v∈Vmv(x)Ev .

We use the notation l̄ := ∑
v∈V �vEv ∈ L(V), and we fix h ∈ H and a

representative l′h ∈ L′ with [l′h] = h. Then the cycles x(l̄) are defined as follows.
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Proposition 4.5.18 ([70, Lemma 7.6], [47]) For any l̄ ∈ L(V) there exists
a unique cycle x(l̄) ∈ L (depending on the choice of l′h) satisfying the next
properties:

(a) mv(x(l̄)) = �v for any distinguished vertex v ∈ V;
(b) (x(l̄)+ l′h,Ev) ≤ 0 for every ‘non-distinguished vertex’ v ∈ V∗;
(c) x(l̄) is minimal with the two previous properties (with respect to ≤).

Furthermore, the cycle x(l̄) automatically satisfies

x(l̄)+ l̄1 ≤ x(l̄ + l̄1) for any l̄1 ≥ 0, l̄1 ∈ L(V). (4.75)

If we wish to emphasize the dependence on l′h we write xl′h(l̄).

The cycles x(l̄) satisfy the following universal property as well.

Lemma 4.5.19 Assume that a certain x ∈ L satisfies mv(x) = mv(x(l̄)) for all
v ∈ V, and x ≤ x(l̄).

Then there is a generalized Laufer’s computation sequence connecting x with
x(l̄). The sequence {zi}ti=0 is constructed as follows. Set z0 = x. Assume that zi
is already constructed. If for some v ∈ V∗ one has (zi + sh,Ev) > 0 then take
zi+1 = zi + Ev(i), where v(i) is such an index. If zi satisfies 4.5.18(b), then stop
and set t = i. Then this procedure stops after finite steps and zt is exactly x(l̄).

Along the computation sequence χk(zi+1) ≤ χk(zi) for any 0 ≤ i < t . Equality
holds if (zi + l′h,Ev(i)) = 1.

In the case of an SR–set we have the following statement.

Proposition 4.5.20 Let V be an SR–set. Choose l′h and set k = K + 2l′h. Then
l̄ + L(V∗) = {x ∈ L : mv(x) = mv(x(l̄)) for all v ∈ V} contracts to x(l̄) such
that along the contraction χk is non-increasing. In particular, χk(x) ≥ χkr (x(l̄)) for
any x ∈ l̄ + L(V∗).

4.5.4 Concatenated Computation Sequences of AR Graphs [70]

Assume that � is an AR resolution graph, let {v0} be an SR–set. In particularM(�)
is a rational homology sphere.

Theorem 4.5.21 If � is AR, then for any k ∈ Char and n ≥ mk = minχk any
connected component of Sk,n is contractible.

Note that the statement is independent of the choice of k in its class, cf. 4.5.10. In
the sequel we will choose the distinguished representative kr , and we write Sn for
Skr ,n. We also write V = V�V∗, where V = {v0}. For each � ∈ Z we consider the
cycles l̄ := �Ev0 ∈ L(V) and x(l̄) ∈ L from 4.5.16. We abridge x(�Ev0) as x(�).
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In order to prove the theorem we construct an increasing path γ = {li}i≥0 in L
(with �i+1 = �i+Ev(i) for all i), which determines the 1-chainCγ := ∪i≥0[li , li+1]
of 1-cubes in L ⊗ R (without any loop), such that Cγ ∩ Sn ↪→ Sn is a homotopy
equivalence. The construction and the statement of the theorem constitute the
prototype of the more general Reduction Theorem 4.8.2 and also this was the
original intuitive motivation and starting point in the definition of the graded roots,
cf. 4.7 and 4.7.2.

The construction start as follows. By Lemma 4.5.11(a) the inclusion R(0,∞) ∩
Sn ⊂ Sn admits a strong deformation retract. Hence we can restrict ourself to the
intersection with the first quadrant. The path γ = {li}i≥0 is defined as a series
of concatenated computation sequences. It contains, as intermediate terms, all the
universal cycles {x(�)}�≥0 in an increasing order. The first term is l0 = x(0) = 0.
The part of the sequence starting from x(�) and ending with x(�+1) starts with x(�)
and the next term is x(�) + Ev0 . Then, the continuation is generalized Laufer-type
computation sequence connecting x(�)+Ev0 with x(�+1). Indeed, the multiplicity
of E0 in both x(�) + Ev0 and x(� + 1) is � + 1, and by (4.75) x(� + 1) ≥ x(�) +
Ev0 . Hence Lemma 4.5.19 gives a computation sequence γ (�+1) = {l(�+1)

i }i , which
connects them. Then we proceed inductively.

Define τ (�) := χkr (x(�)). Let o be the order ofE∗v0
in L′/L and p = mv0(oE

∗
v0
).

Lemma 4.5.22

(a) The path {li}i is increasing: li+1 = li + Ev(i).
(b) For any Ev-coefficient one has lim�→∞mv(x(�)) = ∞ (where v ∈ V).
(c) (Quasiperiodicity) x(�+ tp) = x(�)+ toE∗v0

.

(d) χkr along each part (subsequence) γ (�) is constant.
(e) τ (�+ 1) = τ (�)+ 1− (x(�)+ sh,Ev0).
(f) There exists �0 such that τ (�+ 1) ≥ τ (�) for � ≥ �0.

Theorem 4.5.23 Consider the 1-chain Cγ := ∪i≥0[li , li+1] in L ⊗ R as above.
Then for any n the inclusion Cγ ∩Sn ⊂ Sn is a homotopy equivalence. In particular,
since each connected component of Cγ ∩Sn is contractible, Theorem 4.5.21 follows.

Remark 4.5.24 In general, it is not easy to find the cycles x(�). Fortunately, in
several applications (see e.g. 4.7.3) one does not need all the coefficients of these
cycles, only the values τ (�) = χkr (x(�)). In most of the cases they are computed
inductively using 4.5.22(e), hence basically one needs only to know (x(�),Ev0) for
any �.

Example 4.5.25 For the determination of the universal cycles {x(�)}� and the
corresponding τ -function in the case of star-shaped graphs and surgery manifolds
see 4.7.22, 4.7.4 and Sect. 4.9.
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4.6 Lattice Cohomology

We provide two equivalent definitions for the lattice cohomology {Hq}q≥0 associ-
ated with a free Z-module endowed with a fixed basis and with a set of ‘compatible
weight functions’. The first definition is based on the construction of a cochain
complex. The second one involves the spaces {Sn}n introduced in 4.5.2. Once �
is fixed, any characteristic element k ∈ Char determines a set of weights (via the
RR expression χk), hence the lattice cohomology H

∗(�, k). It turns out that they
depend only on M(�) and [k] ∈ Spinc(M(�)). In 4.6.3 we show that the Euler
characteristic of H∗(�, k) is the normalized Seiberg–Witten invariant ofM(�).

For more details see e.g. [71–73].

4.6.1 The Lattice Cohomology Associated with a System of
Weights

We consider a free Z-module, with a fixed basis {Ev}v∈V, denoted by Z
s . It is also

convenient to fix a total ordering of the index set V, which in the sequel will be
denoted by {1, . . . , s}. Our goal is to define a graded Z[U ]-module associated with
the pair (Zs, {Ev}v) and a set of weights. First we set some notations regarding
Z[U ]-modules.

4.6.1 Z[U ]-Modules Consider the graded Z[U ]-module T := Z[U,U−1], and
(following [102]) denote by T+0 its quotient by the submodule U · Z[U ]. This
has a grading in such a way that deg(U−d) = 2d (d ≥ 0). Similarly, for any
n ≥ 1, the quotient of U−(n−1) · Z[U ] by U · Z[U ] (with the same grading) defines
the graded module T0(n). Hence, T0(n), as a Z-module, is freely generated by
1, U−1, . . . , U−(n−1), and has finite Z-rank n.

More generally, for any graded Z[U ]-module P with d-homogeneous elements
Pd , and for any r ∈ Q, we denote by P [r] the same module graded (by Q) in such
a way that P [r]d+r = Pd . Then set T+r := T+0 [r] and Tr (n) := T0(n)[r]. Hence,
form ∈ Z, T+2m = Z〈U−m,U−m−1, . . .〉 as a Z-module.

4.6.2 The Cochain Complex Z
s ⊗ R has a natural cellular decomposition into

cubes (see also 4.5.1). The set of zero-dimensional cubes is provided by the lattice
points Zs . Any l ∈ Z

s and subset I ⊂ V of cardinality q defines a q-dimensional
cube, which has its vertices in the lattice points (l+∑v∈I ′ Ev)I ′ , where I ′ runs over
all subsets of I . On each such cube we fix an orientation. This can be determined,
e.g., by the order (Ev1, . . . , Evq ), where v1 < · · · < vq , of the involved base
elements {Ev}v∈I . The set of oriented q-dimensional cubes defined in this way is
denoted by Qq (0 ≤ q ≤ s).



264 A. Némethi

Let Cq be the free Z-module generated by oriented cubes �q ∈ Qq . Clearly, for
each �q ∈ Qq , the oriented boundary ∂�q (of ‘classical’ cubical homology) has the
form

∑
k εk �kq−1 for some εk ∈ {−1,+1}. These are the faces of �q . It is clear that

∂ ◦∂ = 0. But, obviously, the homology of the chain complex (C∗, ∂) (or, of the dual
cochain complex (HomZ(C∗,Z), δ)) is not very interesting: it is the (co)homology
of Rs . A more interesting (co)homology can be constructed as follows. For this,
we consider a set of compatible weight functions {wq}q as in 4.5.6. In the sequel
sometimes we will omit the index q of wq .

4.6.3 In the presence of any fixed set of compatible weight functions {wq}q we
define F q as the set of morphisms HomZ(Cq,T+0 ) with finite support on Qq .

Notice that F q is a Z[U ]-module by (p ∗ φ)(�q) := p(φ(�q)) (p ∈ Z[U ]).
Moreover,F q has a Z-grading: φ ∈ F q is homogeneous of degree deg(φ) = d ∈ Z

if for each �q ∈ Qq with φ(�q) �= 0, φ(�q) is a homogeneous element of T+0 of
degree d−2 ·w(�q). (In fact, the grading is 2Z-valued; hence, the reader interested
only in the present construction may divide all the degrees by two. Nevertheless, we
prefer to keep the present form in our presentation because of its resonance with the
Heegaard Floer homology of the link.)

Next, we define δw : F q → F q+1. For this, fix φ ∈ F q and we show how δwφ
acts on a cube �q+1 ∈ Qq+1. First write ∂�q+1 =∑k εk�kq , then set

(δwφ)(�q+1) :=
∑

k

εk U
w(�q+1)−w(�kq) φ(�kq).

Lemma 4.6.4 δw ◦ δw = 0, i.e. (F ∗, δw) is a cochain complex.

4.6.5 In fact, (F ∗, δw) has a natural augmentation too. Indeed, set mw :=
minl∈Zs w0(l) and choose lw ∈ Z

s such that w0(lw) = mw. Then one defines the
Z[U ]-linear map

εw : T+2mw −→ F 0

such that εw(U−mw−s )(l) is the class of U−mw+w0(l)−s in T+0 for any l ∈ L and
s ≥ 0.

Lemma 4.6.6 εw is injective, and δw ◦ εw = 0.

One verifies that both εw and δw are morphisms of Z[U ]-modules and are
homogeneous of degree zero.

Definition 4.6.7 The homology of the cochain complex (F ∗, δw) is called the
lattice cohomology of the pair (Rs, w), and it is denoted by H

∗(Rs, w). The
homology of the augmented cochain complex

0 −→ T+2mw
εw−→ F 0 δw−→ F 1 δw−→ . . .
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is called the reduced lattice cohomology of the pair (Rs, w), and it is denoted by
H
∗
red(R

s, w).

If the pair (Rs, w) is clear from the context, we omit it from the notation.
For any q ≥ 0 fixed, the Z-grading of F q induces a Z-grading on H

q and H
q

red ;
the homogeneous part of degree d is denoted by H

q

d , or H
q

red,d . Moreover, both

H
q and H

q
red admit an induced graded Z[U ]-module structure and H

q = H
q
red for

q > 0.
It is easy to see that H∗(Rs , w) depends essentially on the choice of w.

Lemma 4.6.8 One has a graded Z[U ]-module isomorphism H
0 = T+2mw ⊕H

0
red .

4.6.9 Next, we present another realization of the modules H
∗. In 4.5.2 for each

n ∈ Z we defined Sn = Sn(w) ⊂ R
s as the union of all the cubes �q (of any

dimension) with w(�q) ≤ n. Clearly, Sn = ∅, whenever n < mw. For any q ≥ 0,
set

S
q(Rs , w) := ⊕n≥mw Hq(Sn,Z).

Then S
q is Z (in fact, 2Z)-graded, the d = 2n-homogeneous elements Sqd consist

of Hq(Sn,Z). Also, Sq is a Z[U ]-module; the U -action is given by the restriction
map rn+1 : Hq(Sn+1,Z)→ Hq(Sn,Z). Moreover, for q = 0, the fixed base-point
lw ∈ Sn provides an augmentation (splitting) H 0(Sn,Z) = Z ⊕ H̃ 0(Sn,Z), hence
an augmentation of the graded Z[U ]-modules

S
0 = T+2mw ⊕ S

0
red = (⊕n≥mwZ)⊕ (⊕n≥mwH̃ 0(Sn,Z)).

Theorem 4.6.10 There exists a graded Z[U ]-module isomorphism, compatible
with the augmentations:

H
∗(Rs, w) = S

∗(Rs , w).

4.6.11 Restrictions Assume that T ⊂ R
s is a subspace of Rs consisting of a union

of some cubes (from Q∗). Let Cq(T ) be the free Z-module generated by q-cubes
of T , F q(T ) be the restriction of F q to Cq(T ). Then (F ∗(T ), δw) is a complex,
whose homology will be denoted by H

∗(T ,w). It has a natural graded Z[U ]-module
structure. The restriction map induces a natural graded Z[U ]-module homogeneous
homomorphism (of degree zero)

r∗ : H∗(Rs, w)→ H
∗(T ,w).
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4.6.2 The Lattice Cohomology Associated with a Plumbing
Graph

4.6.12 We consider a connected negative definite plumbing graph � and we
assume that M(�) is a QHS3. We write s := |V|. We also fix a characteristic
element k ∈ Char.

Note that � automatically and naturally provides a free Z-module L = Z
s with a

fixed bases {Ev}v , cf. 4.2.9 and 4.5.1. Using � and k, we define a set of compatible
weight functionsw as in 4.5.1: wk(�q) = max{χk(v) : v is a vertex of �q}.
Definition 4.6.13 The Z[U ]-modules H

∗(Rs, w) and H
∗
red(R

s, w) obtained by
these weight functions are called the lattice cohomologies associated with the pair
(�, k) and are denoted by H

∗(�, k), respectively H
∗
red(�, k).

Proposition 4.6.14

(a) H
∗
red(�, k) is finitely generated over Z.

(b) H
0
red,d(�,K) = 0 for the canonical characteristic element K and d > 0.

Remark 4.6.15 There is a symmetry present in the picture. Indeed, the involution
x �→ −x (x ∈ L′) induces identities χ−k(−l) = χk(l), hence isomorphisms

H
∗(�, k) = H

∗(�,−k) and H
∗
red(�, k) = H

∗
red(�,−k).

The involution [k] �→ [−k] corresponds to the natural involution of Spinc(M),
cf. 4.2.93.

4.6.16 Assume that [k] = [k′], hence k′ = k+2l for some l ∈ L. Then χk′(x−l) =
χk(x)−χk(l) for any x ∈ L. Therefore, the transformation x �→ x ′ := x− l realizes
the following identification:

Lemma 4.6.17 If k′ = k + 2l for some l ∈ L, then: H
∗(�, k′) =

H
∗(�, k)[−2χk(l)].

4.6.18 In fact, there is an easy way to choose one module from the multitude
{H∗(�, k)}k∈[k]. Indeed, set mk = minl∈L χk(l) as above. Since (k + 2l)2 = k2 −
8χk(l), we get

8mk = k2 − max
k′∈[k]

(k′)2 ≤ 0. (4.76)

SetM[k] := {k ∈ [k] : mk = 0}. Hence, if k0 and k0+ 2l ∈ M[k], then −χk0(l) = 0.
In particular, for any fixed orbit [k], any choice of k0 ∈ M[k] provides the same
module H∗(�, k0), in the sequel denoted by H

∗(�, [k]). Hence, for any k ∈ [k]

H
∗(�, k) = H

∗(�, [k])[2mk]. (4.77)
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Proposition 4.6.19 For each fixed [k] ∈ Spinc(M(�)), H∗(�, [k]) depends only on
M(�) and is independent of the choice of the graph �, which providesM(�).

Next, consider the distinguished characteristic element kr , cf. 4.5.10. The follow-
ing statement follows from Lemma 4.5.11.

Proposition 4.6.20 The restriction H
∗(�, kr ) → H

∗((R≥0)
s, kr ) induced by the

inclusion (R≥0)
s ↪→ R

s is an isomorphism of graded Z[U ] modules.

Remark 4.6.21 Assume that � is either rational or elliptic, in particular, min(χ) =
0. Then by 4.5.11 min(χkr ) ≥ 0. Hence, by (4.76), in fact, min(χkr ) = 0.

Example 4.6.22 (Rational Graphs) Theorem 4.5.12 transforms into the following
statement. The following facts are equivalent:

(a) � is rational;
(b) H

∗
red(�,K) = 0;

(b’) H
0
red(�,K) = 0;

(c) H
∗
red(�, k) = 0 for every k ∈ Char.

Additionally, by Remark 4.6.21, if � is rational then H
0(�, kr) = T+0 for any kr .

Example 4.6.23 (Elliptic Graphs) Theorem 4.5.13 and Remark 4.6.21 transform
into the following statement: � is elliptic if and only if H

0(�,K) = T+0 ⊕
H

0
red(�,K) with H

0
red(�,K) �= 0. (In fact, if � is elliptic then H

0
red(�,K) =

T0(1)�, where � > 0 is the length of the elliptic sequence in the sense of Laufer
and Yau).

Example 4.6.24 (Almost Rational Graphs) By 4.5.21, if � is almost rational,
H
q(�, k) = 0 for any q ≥ 1 and k ∈ Char. (For H0(�, k) see 4.7.3.)

Remark 4.6.25 The author knows no example when H
∗(�, k) has a non-zero Z-

torsion element. It is a challenge to prove that this cannot occur indeed.

4.6.3 The Lattice Cohomology and the Seiberg–Witten
Invariant

Fix � and k as above. Our goal is to identify the ‘Euler characteristic’ of the lattice
cohomology H

∗(�, k). Recall that by 4.6.14 rankZ(H∗red(�, k)) <∞.

Definition 4.6.26 The Euler characteristic of H∗(�, k) is defined as

eu(H∗(�, k)) := −mk +
∑

q

(−1)qrankZ(H
q
red(�, k)).

For motivation of the −mk term see 4.7.6 and the computations from below.
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4.6.27 Fix l− and l+ and the rectangle R = R(−l−, l+) as in Lemma 4.5.8. We
define

Euχk (R) :=
∑

�q⊂R
(−1)q+1wk(�q) and Eu

pol
χk (q) :=

∑

�q⊂R
(−1)qqwk(�q) ∈ Z[q, q−1].

In particular, if we write Eupolwk (q)/(1− q) as
∑
n≥mk anq

n then

an =
∑

�q⊂R,wk(�q)≤n
(−1)q = χtop(Sn ∩ R),

where χtop is the topological Euler characteristic. But, by 4.5.8, Sn ∩ R ↪→ Sn is a
homotopy equivalence, hence an = χtop(Sn). This by 4.6.10 reads as

Eu
pol
χk (q)− qmk

1− q
=
∑

n≥mk
(an − 1)qn =

∑

n≥mk
(
∑

q≥0

(−1)qrankZ(H
q
red,2n(�, k)) ) q

n.

In particular, this expression is independent of the choice of R. Finally, by taking
the limit limq→1 we get

Euχk (R)+mk =
∑

q≥0

(−1)q rankZ(H
q
red(�, k)) ),

or

Euχk (R) = eu(H∗(�, k)). (4.78)

The above identity is a generalization to the level of weighted cubes of the
classical fact that the Euler characteristic computed at the level of cubes equals
the homological Euler characteristic.

4.6.28 Recall from 4.6.2 that if k′ = k + 2l, l ∈ L, then H
∗(�, k′) =

H
∗(�, k)[−2χk(l)], hence the lattice cohomologies associated with different
k’s with the same class [k] are equal up to a shift. This has no effect on∑
q(−1)qrankZ(H

q
red(�, k)), however it has on mk . This can be remedied either

by choosing k from M[k] (cf. 4.6.18), or by taking kr (cf. 4.6.16). Next we present
another way to eliminate the above shift.

Let us replace the weight function wk(�q) := {χk(v) : v is a vertex of �q} by

wk(�q) := wk(�q)+ dk, where dk := −k
2 + |V|

8
+ K

2 + |V|
8

= χ
(
k −K

2

)
,

and denote the corresponding lattice cohomologies by H
∗
(�, k). Then
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Lemma 4.6.29 H
∗
(�, k) = H

∗(�, k)[dk] is independent of the choice of k from
[k].
Remark 4.6.30 In the spirit of 4.4.33, and with the notation k = K+2l′h,H

∗
(�, k) is

the lattice cohomology of the cubes of l′h+L, where the weight function is generated
by the restriction of χ on this shifted lattice l′h + L. (Indeed, for l ∈ L, χ(l + l′h) =
χk(l)+ dk .)

In particular, Theorem 4.4.39 combined with (4.78) give

Theorem 4.6.31 ([73])

eu(H∗(�, k)) = swσ [k](M(�))− k
2 + |V|

8
.

4.6.32 The SWIC Revisited For any h ∈ H assume that the representative l′h is
either rh or sh. Then via the extension 4.4.47 of the SWIC combined with 4.6.31
from above, the SWIC(h) is equivalent to

(SWIC(h)) h1(X̃,O(−l′h)) = eu(H∗(�,K + 2l′h)). (4.79)

We wish to emphasize that to some extent this conjectured identity lead to the
definition of graded roots and lattice cohomology (at least, of H0), see e.g. [70].
Indeed, for several singularities with AR graphs (e.g. for the weighted homogeneous
germs) the left hand side was computed by a concatenated Laufer computations
sequence, and its χ-fluctuation was reformulated as the key topological object at
the right hand side too (cf. 4.5.4 and 4.7.3).

4.7 Graded Roots and Their Cohomologies

We introduce abstract graded roots (R, χ) and we define their cohomology Z[U ]-
module H(R, χ). We provide several constructions, which provide graded roots.
One of them (cf. 4.7.2) associates a graded root (R, χ)�,k with a plumbing graph
� and a characteristic element k. It turns out that H0(�, k) = H((R, χ)�,k). In
particular, for any (�, k), the associated graded root is a geometrical/topological
enhancement of H0(�, k).

4.7.1 The Definition of Graded Roots and Their Cohomologies

In this subsection we follow [70, 71].
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Definition 4.7.1 Let R be an infinite tree with vertices V and edges E. We denote
by [u, v] the edge with end-vertices u and v. We say that R is a graded root with
grading χ : V→ Z if

(a) χ(u)− χ(v) = ±1 for any [u, v] ∈ E;
(b) χ(u) > min{χ(v), χ(w)} for any [u, v], [u,w] ∈ E, v �= w;
(c) χ is bounded below, χ−1(k) is finite for any k ∈ Z, and |χ−1(k)| = 1 if k * 0.

An isomorphism of graded roots is a graph isomorphism, which preserves the
gradings.

If (R, χ) is a graded root, and r ∈ Z, then (R, χ)[r] denotes the same R with the
new grading χ[r](v) := χ(v)+ r .
Example 4.7.2

(1) For any integer n ∈ Z, let R(n) be the tree with V = {vk}k≥n and E =
{[vk, vk+1]}k≥n. The grading is χ(vk) = k.

(2) Let I be a finite index set. For each i ∈ I fix an integer ni ∈ Z; and for each pair
i, j ∈ I fix nij = nji ∈ Z with the next properties: nii = ni , nij ≥ max{ni, nj },
and njk ≤ max{nij , nik} for any i, j, k ∈ I .
For any i ∈ I consider Ri := R(ni ) with vertices {vki } and edges {[vki , vk+1

i ]},
(k ≥ ni). In the disjoint union �iRi , for any pair (i, j), identify vki and vkj ,

resp. [vki , vk+1
i ] and [vkj , vk+1

j ], whenever k ≥ nij . Write v̄ki for the class of

vki . Then �iRi/∼ is a graded root with χ(v̄ki ) = k. It will be denoted by R =
R({ni}, {nij }).

(3) Any map τ : {0, 1, . . . , T0} → Z produces a starting data for construction (2).
Indeed, set I = {0, . . . , T0}, ni := τ (i) (i ∈ I ), and nij := max{nk : i ≤ k ≤
j } for i ≤ j . Then �iRi/∼ constructed in (2) using this data will be denoted by
(Rτ , χτ ).

For example, for T0 = 4, take for the values of τ : −3,−1,−2, 0 and −2
(respectively−3, 0,−2,−1 and −2). Then the two graded roots are:

This construction can be extended to the case of a map τ : N→ Z, whenever τ
has the property that there exists some k0 ≥ 0 such that τ (k + 1) ≥ τ (k) for any
k ≥ k0. In this case one can take any T0 ≥ k0 and construct the root associated
with the restriction of τ to {0, . . . , T0}. It is independent of the choice of T0. By
definition, this is the root associated with τ .

Definition 4.7.3 (The (cohomology) Z[U ]-Modules Associated with a Graded
Root) For any graded root (R, χ), let H(R, χ) (briefly H(R)) be the set of
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functions φ : V → T+0 with the following property: whenever [v,w] ∈ E
with χ(v) < χ(w), then U · φ(v) = φ(w). Clearly H(R) is a Z[U ]-module via
(Uφ)(v) = U · φ(v). Moreover, H(R) has a Z-grading: the element φ ∈ H(R) is
homogeneous of degree d ∈ Z if for each v ∈ V with φ(v) �= 0, φ(v) ∈ T+0 is
homogeneous of degree d − 2χ(v). Since 2χ(v)+ degφ(v) = 2χ(w)+ degφ(w),
d is well-defined.

Note also that any φ as above is automatically finitely supported.

Remark 4.7.4 By the definitions H((R, χ)[r]) = H(R, χ)[2r] for any r ∈ Z.

Example 4.7.5

(a) H(Rn) = T+2n.
(b) The graded roots R1 and R2 constructed in 4.7.2(3) are not isomorphic but their

Z[U ]-modules are isomorphic. Hence, in general, a graded root carries more
information than its Z[U ]-module.

One has a natural graded Z[U ] module isomorphism H(R, χ) = T+2m ⊕
Hred(R, χ), such that the Z[U ]-module Hred(R) has finite Z-rank.

Proposition 4.7.6 Let (Rτ , χτ ) be a graded root associated with some function
τ : N→ Z, cf. 4.7.2(3). Then

rankZHred(Rτ , χτ ) = −τ (0)+min
i≥0
τ (i)+

∑

i≥0

max{τ (i)− τ (i + 1), 0}.

The summand T+2m of H(Rτ , χτ ) has index m = mini≥0 τ (i) = minv χτ (v).

4.7.2 The Graded Root Associated with a Plumbing Graph

4.7.7 The Graded Root Associated with a System of Weigh Functions Fix a
free Z-module and a system of weights {wq}q . Consider the sequence of topological
spaces (finite cubical complexes) {Sn}n≥mw with Sn ⊂ Sn+1. Let π0(Sn) =
{C1
n, . . . ,C

pn
n } be the set of connected components of Sn.

Then we define the graded graph (Rw, χw) as follows. The vertex set V(Rw) is
�n∈Zπ0(Sn). The grading χw : V(Rw)→ Z is χw(Cjn) = n, that is, χw|π0(Sn) = n.

Furthermore, if Cin ⊂ Cjn+1 for some n, i and j , then we introduce an edge

[Cin,Cjn+1]. All the edges of Rw are obtained in this way.

Lemma 4.7.8 (Rw, χw) satisfies all the required properties of the definition of a
graded root, except maybe the last one: |χ−1

w (n)| = 1 whenever n* 0.

4.7.9 The Graded Roots Associated with a Plumbing Graph Fix a graph and
k ∈ Char, their compatible weight functions and the graded cubes as in 4.6.12. The
graded graph associated with this system of weight functions (cf. 4.7.7 and 4.7.8) is
denoted by (Rk, χk).



272 A. Némethi

For the system of weight functions induced by χk the sequence of spaces {Sn}n
have a finiteness property: only finitely many Sn are not contractible, cf. 4.5.9.

Corollary 4.7.10

(a) (Rk, χk) is a graded root.
(b) H(Rk, χk) is a finitely generated Z[U ]-module, and Hred(Rk, χk) is a finitely

generated Z-module.

Remark 4.7.11 There are several natural symmetries in the picture.

(a) The Spinc-involution. The involution l′ �→ −l′ (l′ ∈ L′) induces the identity
χ−k(−l) = χk(l), hence an isomorphism of the graded roots (Rk, χk) �
(R−k, χ−k). ([k] �→ [−k] is the natural involution of Spinc(M(�)), cf. 4.2.93.)

(b) The Gorenstein symmetry. If � is numerically Gorenstein then χK is stable
with respect to the transformation L → L, x �→ ZK − x. This shows that
(RK, χK) has a Z2-symmetry.

More generally, if k ∈ L (that is, k is spin) then x �→ −k − x induces a Z2-
symmetry of (Rk, χk).

Theorem 4.7.12 Let (Rk, χk) be the graded root associated with � and k. Then
H(Rk, χk) = H

0(�, k).

Example 4.7.13 Consider the example from 4.5.3. Those computations show that
the graded root (RK, χK) is

Then H
0�,K) = T+−2 ⊕ T−2(1) ⊕ T0(1) ⊕ T0(1), H1(�,K) = T0(1) and

H
q(�,K) = 0 for q ≥ 2.

4.7.14 Next, with the notations from 4.6.16, we have the analogues of 4.6.17,
4.77, 4.6.19:

Proposition 4.7.15

(a) If k′ = k + 2l for some l ∈ L, then: (Rk′ , χk′) = (Rk, χk)[−2χk(l)].
(b) (Rk, χk) = (R[k], χ[k])[2mk]
(c) The set (R[k], χ[k]), indexed by [k] ∈ Spinc(M(�)), depends only on M =

M(�) and is independent of the choice of the plumbing graph � which provides
M .

Example 4.7.16 (Rational Graphs) The following facts are equivalent:

(a) � is rational;
(b) RK = R(0);
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(c) RK = R(m) for some m ∈ Z;
(d) For all characteristic elements k ∈ Char, Rk = R(mk) for some mk ∈ Z;

Recall from 4.6.21 that minχkr = 0 for rational �. In particular, if �

Example 4.7.17 (Elliptic Graphs) � is elliptic; if and only if (RK, χK) =
R({ni}, {nij }) for some index set I , |I | = � + 1 ≥ 2, such that ni = 0 for
any i ∈ I and nij = 1 for any pair i �= j .

4.7.18 The following tasks appear very naturally.

Problem Determine all the possible canonical (RK, χK) (and non-canonical
(Rk, χk) ) graded roots.

The possible resolution graphs are characterized by Grauert Theorem, namely
they are connected and negative definite. For each negative definite graph (tree) we
construct a canonical graded root in a direct combinatorial way. The problem is to
find a combinatorial characterization of all of them.

Problem Determine all the possible graded Z[U ]-modules, which might appear as
H
∗(�, k) for some (�, k).

4.7.3 Graded Roots of Almost Rational Graphs

4.7.19 Assume that � is an AR graph, with SR-set {v0}. We fix a distinguished
characteristic element kr = K+2sh and we consider the universal cycles {x(�)}�≥0
associated with (�, kr ), and their τ -function τ : Z≥0 → Z defined as τ (�) :=
χkr (x(�)), cf. 4.5.4. Associated with this τ -function we consider its graded root
(Rτ , χτ ) as well, cf. 4.7.2(3).

Theorem 4.7.20 Assume that � is AR, and set kr = K + 2sh for some h ∈ H .
Then

(a) H
q(�, kr ) = 0 for q ≥ 1;

(b) H
0(�, kr) = H(Rkr , χkr );

(c) (Rkr , χkr ) = (Rτ , χτ );
(d) x(0) = 0, τ (0) = 0, τ (1) = 1− (sh,Ev0) ≥ 1, mkr = min�≥0{τ (�)} and

eu(H∗(�, kr)) = −min
�
{τ(�)} + rankZ(H

0
red (�, kr)) =

∑

�≥0

max{ τ(�)− τ(�+ 1), 0 }.

(e) τ (�)− τ (�+ 1) = −1+ (x(�)+ sh,Ev0).

Remark 4.7.21

(a) The above theorem shows that for almost rational graphs, any graded tree
(Rk, χk) is completely determined by the values of χk along a very natural
(universal) infinite computation sequence (depending on k), which contains
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the elements {x(�)}�≥0. (For the construction of the sequence see 4.5.4.) In
particular, all the important vertices of Rk can be represented by some special
cycles in L, which can be arranged in an increasing linear order (with respect to
≤).

(b) The set {x(�)}� usually is not very economical: only some of the x(�)’s
carry substantial information, which will survive in (Rτ , χτ ). The others are
intermediate steps in some monotone paths. E.g., for rational singularities,
χ(x(�+ 1)) ≥ χ(x(�)), hence only the information χ(x(0)) = 0 is preserved
in Rτ .

Example 4.7.22 (Star-Shaped Graphs) Assume that � is star-shaped with ν strings.
In the sequel we will use the notations from 4.2.3. We also fix l′h = a0E

∗
0 +∑ν

j=1
∑sj
t=1 ajtE

∗
j t . The coefficients of l′h also determine the integers ãjk :=

∑
t≥k n

j
t+1,sj

ajt for 1 ≤ k ≤ sj . We also write aj = ãj1.
� is AR, where its SR-set consists of the central vertex, cf. 4.5.15(f). Hence, for

any l̄ = �E0 (and for the fixed l′h and k := K + 2l′h) we have a cycle x(l̄), which
will be denoted simply by x(�) (� ∈ Z). The next expression describes the cycles
x(�) in terms of the Seifert invariants and the coefficients of l′h.

Define the integers {vjk} (1 ≤ j ≤ ν, 1 ≤ k ≤ sj ) inductively by

vj1 :=
⌈�ωj − aj

αj

⌉
=
⌈�nj2sj − ãj1

n
j
1sj

⌉
; vjk :=

⌈vj,k−1n
j
k+1,sj

− ãjk
n
j
ksj

⌉
(1 < k ≤ sj ).

Then x(�) = �E0 +∑j,k vjkEjk .
Assume next that g = 0 and l′h = sh, and set τ (�) := χkr (x(�)) (� ≥ 0). If � = 0

then x(0) = 0, hence τ (0) = 0 too. For � ≥ 0 from 4.5.22 one gets

τ (�+1)−τ (�) = 1−(x(�)+sh,E0) = 1+a0+�b0−
∑

j

⌈�ωj − aj
αj

⌉
. (4.80)

In particular,

τ (�) =
�−1∑

k=0

(
1+ a0 + kb0 −

∑

j

⌈kωj − aj
αj

⌉)
. (4.81)

This can be compared with several similar expressions based on different other
studies of weighted homogeneous germs or Seifert 3–manifolds.

4.7.4 Example: The Surgery Manifold S3
−d

(K) [69, 71]

4.7.23 The Surgery ManifoldM(�) = S3−d (K) Fix d ∈ Z>0 and an irreducible
plane curve singularity (C, o) with local algebraic knot (K1 ⊂ S3). Several
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invariants of (C, o) are listed in 4.2.30. For the shape and structure of the
surgery 3-manifold S3−d (K1) see 4.2.32. If it appears as the link of a superisolated
surface singularity associated with an irreducible rational unicuspidal curve (C, o)
(cf. 4.2.31) then necessarily (d − 1)(d − 2) = μ(C, o). However, in the discussion
below we will not assume this additional restriction (in particular, d can be any
d ∈ Z>0). We use the following schematic diagram for �:

The basis elements in L = L(�) corresponding to v1 and v+ are denoted by E1 and
E+. The lattice associated with �1 is L1, its dual is L′1. The elements {Ev}v �=v+ of
L are identified with the basis elements of L1.

Recall that � is an AR graph with V = {v1}, cf. 4.5.15(f). In the sequel we follow
[69, 71, 84].

Assume that (C, o) is determined by the function f ; denote by Z that part of
its divisor which is supported on compact curves. Set m for the E1-multiplicity of
Z. Then, Z = E∗1 (�1), hence −(Z,Z)L1 = m. This combined with a determinant
computation gives det(�) = d . Since det(�1) = 1 the coefficient of E+ in E∗+
is 1/d . Hence [E∗+] has order d in H , and H = Zd . We abridge sa[E∗+] by sa for
a = 0, 1, . . . , d − 1.

Lemma 4.7.24 sa = aE∗+ for any a = 0, 1, . . . , d − 1.

4.7.25 Our goal is to determine {xkr (�)}�≥0 for � and for any spinc structure. If
kr = K + 2aE∗+ for a certain a then we abridge xkr (�) as xa(�), where 0 ≤ a < d .

Let us write xa(�) as ya(�) + naE+, where na ∈ Z≥0 and ya(�) ∈ L1. The
inequality (xa(�) + aE∗+, E+) ≤ 0 reads as na(m + d) ≥ � − a. Hence na =
.(l − a)/(m+ d)/.

On the other hand, for all other vertices v ∈ V \ {v+, v1} we have (xa(�) +
aE∗+, Ev) = (ya(�),Ev), hence ya(�) is independent of a; let us denote it by y(�).
It satisfies the universal property (a)-(b)-(c) from 4.5.18 for the graph �1, vertex v1
and l′h = 0. Namely, y(�) is minimal with (a)mv1(y(�)) = � and (b) (y(�),Ev) ≤ 0
for any v �= v1. For example, y(0) = 0.

Proposition 4.7.26 Let Z = divE(�1)(f ) = E∗1 (�1) be the cycle as above. Then

(a) if � = tm+ �0 with t ≥ 0 and 0 ≤ �0 < m, then y(�) = tZ + y(�0);
(b) for any � < m one has

(y(�),E1) =
{

1 if � �∈ SC,o;
0 if � ∈ SC,o.
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Corollary 4.7.27 Fix 0 ≤ a < d and write � = tm + �0 for some t ≥ 0 and
0 ≤ �0 < m. Then

xa(�) = t · Z + y(�0)+
⌈ �− a
m+ d

⌉
E+.

In particular,

(xa(�),E1) = −t +
⌈ �− a
m+ d

⌉
+ (y(�0), E1).

Furthermore, χkr (xa(0)) = 0 and for any � ≥ 0 one has

χkr ( xa(�+1) )−χkr ( xa(�) ) = t+1−
⌈ �− a
m+ d

⌉
−
{

1 if �0 �∈ SC,o
0 if �0 ∈ SC.o.

(4.82)

4.7.28 The τ -Function τa According to 4.5.4 we set τa(�) := χkr (xa(�)). Then in
(4.82) one has

�− a
m+ d ≤ t + 1,

hence τa(�+ 1)− τa(�) ≥ −1 for any �, and = −1 only if

tm+ �0 − a
m+ d > t and �0 �∈ SC,o. (4.83)

In order to analyze the cases when this holds, we will consider sequences Seq(t) :=
{tm+ �0 : 0 ≤ �0 < m} for fixed t ≥ 0. In such a sequence, notice that the very last
element of N \ SC,o, namely μ− 1 = 2δ − 1, is strictly smaller than m− 1, hence
the complete set N \ SC,o sits in {0, . . . ,m − 1}. Therefore, in Seq(t) there exists
an �0 satisfying (4.83) if and only if

tm+ 2δ − 1− a
m+ d > t.

This is equivalent to t ≤ ta , for ta := &(2δ−2−a)/d'. In other words, if � ≥ T0 :=
(ta + 1)m, then τa(�+ 1) ≥ τa(�), hence those values of τa provide no contribution
in the graded root. Moreover, for t ∈ {0, . . . , ta}, in Seq(t) one has:

�(�0) := τa(tm+ �0+1)− τa(tm+ �0) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if �0 ≤ td + a, and �0 �∈ SC,o;
+1 if �0 ≤ td + a, and �0 ∈ SC,o;
−1 if �0 > td + a, and �0 �∈ SC,o;

0 if �0 > td + a, and �0 ∈ SC,o.
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In particular,�(�0) ≥ 0 for any �0 with 0 ≤ �0 ≤ td + a, and �(�0) ≥ 0 takes the
value+1 exactly

At := #{s ∈ SC,o : s ≤ td + a}

times, otherwise it is zero. Furthermore,�(�0) ≤ 0 for any �0 > td + a and it takes
value−1 exactly

Bt := #{s �∈ SC,o : s > td + a}

times, otherwise it is zero. Recall that in 4.2.30 we rewrote �(t) as 1 + δ(t − 1)+
(t − 1)2Q(t), where Q(t) = ∑μ−2

i=0 αit
i . The above Bt compared with (4.7) reads

as Bt = αtd+a .
Notice that both At and Bt are strictly positive (since 0 ∈ SC,o, respectively

2δ − 1 �∈ SC,o and 2δ − 1 > td + a). This shows that

Mt := max
0≤�0<m

τa(tm+ �0) = τa(tm)+ At = τa((t + 1)m)+ Bt (4.84)

and

Mt > max{ τa(tm), τa(tm+m) }.

Therefore, the graded root associated with the values {τa(�)}0≤�≤(ta+1)m is the
same as the graded root associated with the values

τa(0),M0, τa(m),M1, τa(2m),M2, . . . , τa(tam),Mta , τa(tam+m).

Finally, since #{s �∈ SC,o} = δ, one has δ − Bt = #{s �∈ SC,o : s ≤ td + a}, hence
δ − Bt + At = td + a + 1. Thus, by (4.84),

τa((t + 1)m)− τa(tm) = td + a + 1− δ.

Since τa(0) = 0, this gives τa(tm) inductively.
Clearly, the graded root associated with τa is the same as the graded root

associated with τ̃a : {0, 1, 2, . . . , 2ta + 2} → Z, where τ̃a(2t) := τa(tm) and
τ̃a(2t + 1) :=Mt .

The above discussion gives the following statement.
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Theorem 4.7.29 For each fixed a = 0, 1, . . . , d − 1,—corresponding to the d
different spinc-structures ofM—one defines the following objects :

• ta :=
⌊

2δ−2−a
d

⌋
, ( ta ≥ −1 automatically) ;

• a function τa : {0, 1, . . . , 2ta + 2} → Z by

⎧
⎨

⎩

τa(2t) = d · t (t−1)
2 − t (δ − 1− a), (t = 0, . . . , ta + 1);

τa(2t + 1) = τa(2t + 2)+ αtd+a, (t = 0, . . . , ta).

• and the graded root (Rτa , χτa ) associated with τa .

Then (Rτa , χτa ) is the graded root ofM associated with (�, kr).
Note also that min τa = τa( 2.ta/2/ ).

Remark 4.7.30

(a) Since for any t ∈ {0, . . . , ta}, τa(2t + 1) > max{τa(2t), τa(2t + 2)}, the above
representation of the graded root is the most ‘economical’: all the values are
essential. This also shows that (Rτa , χτa ) has exactly ta + 2 local minimum
points, and they correspond to the values τa(2t), t = 0, 1, . . . , ta + 1.

(b) The values τa(2t), t = 0, 1, . . . , ta + 1 depend only on t , d and δ, that is, for
these values no other information is needed from the semigroup SC,o.

Corollary 4.7.31

(a) eu(H∗(�, kr )) =∑ta
t=0 αtd+a

(b) swσ [kr ](M(�)) =
∑ta
t=0 αtd+a + 1

8 (1− (d+2δ−2−2a)2

d
).

Proof Use 4.7.6 for (a) and 4.6.31 and the identity k2
r + |V| = 1− (d + 2δ − 2 −

2a)2/d for (b). ��
Example 4.7.32 Assume d = 1. In this case M is an integral homology sphere;
a = 0 and t0 = 2δ − 2 = μ − 2. Moreover, −(K2 + |V|)/4 = δ(δ − 1) and
τ0(2t) = t (t − 2δ + 1)/2. The reader is invited to draw the graded root and verify
that

H
0(�,K) = (T+0 ⊕ T0(αδ−1)⊕

δ−1⊕

i=1

Ti(i+1)( αi−1+δ )⊕2 )[−δ(δ − 1)].

4.7.5 Superisolated Singularities with One Cusp

4.7.33 In the sequel we will consider a superisolated singularity as in 4.2.31. For
different invariants see 4.2.4, whose notations we will adopt. We will assume that
C is a rational unicuspidal curve. We invite the reader to review the ‘Semigroup
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Distribution Inequality’ from 4.2.33 and the ‘Semigroup Distribution Property’
from 4.2.33. The reinterpretations in terms of reduced Poincaré series can be found
in 4.3.6, and the connection with the Seiberg–Witten Invariant Conjecture (as the
basic motivation and source of the Semigroup Distribution Property) is presented
in 4.4.11. Here we present further connections with the graded roots. We follow
[25].

4.7.34 In this part we will compare the invariants of the linkM = S3−d (K) of the
superisolated singularity with the corresponding invariants of the Seifert 3-manifold
�(d, d, d+1), the link of the hypersurface Brieskorn singularity xd+yd+zd+1 = 0.
Before we state the next theorem, we recall that the plumbing graph of S3−d (K)
contains complete information about the embedded link K ⊂ S3. Moreover, by the
statements of 4.7.29, the graded root or lattice cohomology still preserves essential
data about the Alexander polynomial. However, the Seifert 3-manifold�(d, d, d +
1) has information only about the degree μ of � via (d − 1)(d − 2) = μ. The
point is that the algebraic realizability of C (that is, the existence of an analytic
superisolated singularity with link S3−d (K)) imposes the following very surprising
necessary topological obstructions.

Theorem 4.7.35 ([25]) The following facts are equivalent:

(a) The Seiberg–Witten Invariant Conjecture is true for the superisolated germ.
(b) The Semigroup Distribution Property is true.
(c) The canonical graded roots of S3−d (K) and �(d, d, d + 1) are the same.
(d) The canonical lattice homologies of S3−d (K) and �(d, d, d + 1) are the same.
(e)

(
swσ [K](M)−K

2 + #V
8

) ∣∣∣
M=S3−d (K)

=
(
swσ [K](M)−K

2 + #V
8

) ∣∣∣
M=�(d,d,d+1)

.

Recall that, in fact, the Semigroup Distribution Property is true by Borodzik
and Livingston [9] (cf. 4.2.33), hence all the statements of 4.7.35 are true as well.
However, we formulated above a weaker statement, only the equivalence of the
above statements, whose proof is independent of the Heegaard Floer theory based
proof of [9].

The proof of 4.7.35 is given in several steps. The starting point is that both 3-
manifolds S3−d (K) and �(d, d, d + 1) are almost rational. In particular, in both
cases, the canonical graded root can be determined via the τ -function, cf. 4.7.3. In
the first case this is done explicitly in 4.7.29, while for the second case see 4.7.22.

Fact 1 Let us rewrite 4.7.29 for S3−d (K) and for the canonical spinc structure a = 0.
Set cl := α(d−3−l)d and define τ : {0, 1, . . . , 2d − 4} → Z by

τ (2l) = l(l − 1)

2
d − l(δ − 1), τ (2l + 1) = τ (2l + 2)+ cd−3−l . (4.85)

Then (Rcan, χcan) = (Rτ , χτ ).
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Fact 2 Consider next the Seifert manifold�(d, d, d+1). Its canonical graded root
is the following. For any 0 ≤ l ≤ d − 3 write cul := (l + 1)(l + 2)/2, and 2δ :=
(d − 1)(d − 2) and define τu : {0, 1, . . . , 2d − 4} → Z by

τu(2l) = l(l − 1)

2
d − l(δ − 1), τu(2l + 1) = τu(2l + 2)+ cud−3−l . (4.86)

Then (Rcan, χcan) = (Rτu, χτu).
Next we compare 4.85 and 4.86: the graded roots associated with S3−d (K)

and �(d, d, d + 1) coincide exactly when cl = cul for every l. However, by
the Semigroup Distribution Inequality (a consequence of the Bézout’s Theorem,
cf. 4.2.33) cl ≥ cul for every l. Hence cl = cul for every l if and only if∑
l cl =

∑
l c
u
l . But this is exactly the vanishing of N(1), cf. (4.3.20)(b), hence

4.4.54 applies.

Example 4.7.36 Assume that d = 5 and C is unicuspidal and its singular point has
only one Puiseux pair (a, b) with a < b. Then by the genus formula the possible
values of (a, b) are (4, 5), (3, 7) and (2, 13). It turns out that the first and the third
cases can be realized, while the second case not. This fact is compatible with the
above Theorem 4.7.35. Indeed, the corresponding canonical graded roots (together
with the root of �(5, 5, 6)) are shown in the next picture.

Remark 4.7.37 As we already mentioned in 4.2.33, the Semigroup Distribution
Property (in the unicuspidal case) was partially verified in [24] and proved in [9].
The first approach is based on a case-by-case verification of the families of cuspidal
rational projective curves which appear in the classification theorems. The second
approach is based on the Heegaard Floer theory. The discussion from 4.7.39 traces
a possible third approach, which would lead to a different proof, and would open a
new chapter in the deformation theory of surface singularities.

Corollary 4.7.38 The Seiberg–Witten Invariant Conjecture is true for superiso-
lated germs associated with rational unicuspidal curves.

4.7.39 Why �(d, d, d + 1)? At the first glance the pairing of S3−d (K) with
�(d, d, d + 1) in Theorem 4.7.35 looks very unmotivated. In the next paragraphs
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we wish to convince the reader that this is not the case, and conjecturally a very
deep structure might exist behind the scene.

Assume that the rational unicuspidal curve is given by fd(x, y, z) = 0 in P
2

(for notations see 4.2.31). We can fix the homogeneous coordinates in P
2 in such

a way that z = 0 intersects C generically. A possible choice for the superisolated
singularity f : (C3, 0)→ (C, 0) is f = fd + zd+1. Write fd as

∑d
i=0 gd−i (x, y)zi .

Then gd is a product of d linear factors corresponding to the points C ∩ {z = 0},
hence the germ gd : (C2, 0)→ (C, 0) is equisingular with (x, y) �→ xd + yd .

Next, consider the following deformation ft : (C3, 0) → (C, 0) of
isolated hypersurface germs, given by ft (x, y, z) = fd(x, y, tz) + zd+1 =∑
i gd−i (x, y)zit i + zd+1. For t �= 0 the deformation is μ-constant, the embedded

topological type stays constant, and it is equivalent (up to such equivalences) to
the type of f . However, for t = 0 it is equivalent (in similar sense) to the germ
xd + yd + zd+1.

Along this deformation not only does the embedded topological type jump (e.g.
the Milnor number), but even the (non-embedded abstract) link as well: for t �= 0 it
is S3−d (K), while for t = 0 it is �(d, d, d + 1).

However, both graphs are AR and several key invariants stay stable. For example,
in both cases pg = d(d − 1)(d − 2)/6. On the other hand, if we compute the
(resolution independent) invariant K2 + |V| we realize that they are different.
However, if we denote byK2

min the self-intersection ofK in the minimal resolution,
then it turns out that in both cases it is −d(d − 2)2. Hence we are dealing
with a Gorenstein K2

min-constant deformation. By a result of Laufer [52] such
deformations admit a very weak simultaneous resolution (possible after a finite
base change). This gives the possibility to compare the lattices associated with
their minimal resolutions. Indeed, S3−d (K) and �(d, d, d + 1) admit certain non-
minimal resolution graphs with lattices Lt �=0 and Lt=0 and a homological map
ι : Lt �=0 → Lt=0, which preserves the intersection matrices, the canonical classes,
the χ-expression.

We formulate the next conjecture, whose positive answer would produce an
extremely strong test for the existence of certain analytic deformations.

Conjecture 4.7.40 Along a K2
min-constant deformation Xt of Gorenstein surface

singularities, such that the links of Xt=0 and Xt �=0 are both rational homology
spheres, the graded roots associated with the canonical spinc structure of Xt=0 and
of Xt �=0 are the same.

Note that along a deformation as in 4.7.40 we cannot expect the stability of
the whole module {Hq}q . Indeed, for the deformation described in 4.7.39 valid for
superisolated germs, for t = 0 we have an AR case with H

≥1 = 0. However, for
t �= 0, for certain superisolated germs with ν ≥ 2 we might have H

≥1 �= 0. In fact,
for any superisolated germ which produced a counterexample for the SWIC, along
the above deformation the canonical Seiberg–Witten invariant is non-constant too.
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4.8 The Reduction Theorem

4.8.1 Reduction Theorem for Lattice Cohomology

We consider a graph � as in 4.6.2. We also fix a distinguished class kr ∈
Char and the corresponding lattice cohomology H

∗(�, kr). Recall that there is an
isomorphism of graded Z[U ]-modules H

∗(�, kr) � H
∗((R≥0)

s, kr ), where the
second module is generated by weighted cubes in (R≥0)

s , cf. 4.6.20. Here s := |V|.
This Z[U ]-module was drastically simplified in the case of AR graphs, basically

the cubes from (R≥0)
s were replaced by 0 and 1 dimensional cubes along an infinite

increasing path (starting with 0 ∈ L), cf. Theorem 4.7.20. Here the AR-assumption
is really necessary: such a reduction to a 1-dimensional path (simplicial complex)
cannot be done for any graph (e.g. when H

1 �= 0). In this subsection we discuss the
analogue of this statement for an arbitrary graph.

Recall that the definition of an SR-set does not involve any k ∈ Char, hence such
a set can be uniformly used for any kr . In this section we fix such an SR-set V ⊂ V
as in 4.5.14, and any kr ∈ Char. Then, for each l̄ = ∑

v∈V �vEv ∈ L(V), with
every �v ≥ 0, we define the universal cycle x(l̄) associated with l̄ and sh (where
kr = K + 2sh) as in 4.5.18. For several properties of the cycles x(l̄) and of the
values χkr (x(l̄)) see 4.5.16. Let s̄ be the cardinality of V. In the next paragraphs we
follow [47].

4.8.1 Preparation for the Lattice Reduction Our goal is to replace the cubes of
the lattice R

s (or from (R≥0)
s) with cubes from (R≥0)

s̄ . In order to run the theory
we need to define the new weights. Define the function w0 : (Z≥0)

s̄ → Z by

w0(l̄) := χkr (x(l̄)). (4.87)

Then w0 defines a set {wq}s̄q=0 of compatible weight functions by wq(�) =
max{w0(v) : v is a vertex of �}, similarly as in 4.6.12. This system is denoted
by w[kr ].

Here some comments are appropriate. We wish to emphasize that in the definition
of the lattice cohomology the lattice (that is, the linear) structure in not used, it is
not essential. The important structure consists of the weight-levels of the lattice
points in some regions (e.g. quadrants, rectangles) and their neighboring properties.
Note that in the new situation we do not use the linear structure of Zs̄ either, and
we do not even define the weights of the lattice points outside the first quadrant.
Furthermore, l̄ �→ χkr (x(l̄)) is a complicated arithmetical function (definitely not
quadratic or polynomial).

Let us denote the associated lattice cohomology by H
∗((R≥0)

s̄ , w[kr ]).
Theorem 4.8.2 (Reduction Theorem [47]) There exists a graded Z[U ]-module
isomorphism

H
∗((R≥0)

s , kr) ∼= H
∗((R≥0)

s̄ , w[kr ]). (4.88)
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Corollary 4.8.3 Fix an arbitrary graph �. If it admits an SR-set of cardinality s̄
then H

q(�, k) = 0 for any q ≥ s̄ and k ∈ Char.

This vanishing can be proved by surgery exact sequences of lattice cohomology
as well, see [74].

4.8.2 Reduction Theorem for Z(t)

The Reduction Theorem has its effect on the relation of the lattice cohomology with
the counting function of the coefficients of topological Poincaré series Z(t) as well.
Let us consider first the series Z(t) written in terms of weighted cubes (cf. 4.4.33
and 4.4.40).

Theorem 4.8.4 Fix h, sh and kr = K + 2sh as above. Let w = w[kr ] be the system
of weight associated with kr . Then the following facts hold.

(1)

Zh(t) =
∑

l∈L

( ∑

I⊆V
(−1)|I |+1w((l, I ))

)
tl+sh.

(2) Fix some l ∈ L with l + sh ∈ −K + S′. Then

∑

x∈L, x �≥l
z(x + sh) = χkr (l)+ eu(H∗(�, kr )).

4.8.5 The Reduced Series Let us return to the SR-set V, write V as V � V∗,
and let π : L′ → L(V) ⊗ Q be the projection to the V-coordinates. As usual, we
also write tV = {tv}v∈V for the variables of L(V), and tl̄V = ∏

v∈V t
�v
v for l̄ =

∑
v∈V �vEv ∈ L(V) ⊗ Q. For any h ∈ H set Zh,V(tV) = Zh(t)|tv=1 for all v∈V∗ .

It is supported on the projection of S′ ∩ (sh + L). Write

Zh,V(tV) =
∑

l̄∈L(V)
zl̄+π(sh)t

l̄+π(sh)
V

.

Theorem 4.8.6 ([47]) With the above notations (and w = w[kr ])
(1)

Zh,V(tV) =
∑

l̄∈L(V)

( ∑

I⊆V
(−1)|I |+1w((l̄, I ))

)
tl̄+π(sh)
V

.
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(2) There exists l̄0 ∈ π(S) such that for any l̄ ∈ l̄0 + π(S)
∑

x̄�l̄

zx̄+π(sh) = w(l̄)+ eu(H∗((R≥0)
s̄ , w)).

Example 4.8.7 Consider the following graph �

It is the minimal good resolution graph of the hypersurface singularity x13 +
y13 + x2y2 + z3 = 0. In particular, ZK is integral.

In the sequel we will calculate the lattice cohomology of M(�) associated with
kr = K . We choose the two nodes as an SR-set. Then Reduction Theorem 4.8.2
implies that H∗(�,K) ∼= H

∗((R≥0)
2, w), where w(i, j) := χ(x(i, j)) for any

(i, j) ∈ (Z≥0)
2. It turns out that

w(i + 1, j)−w(i, j) = 1+ i − .(53i + j)/351/ − .i/2/ − .i/3/

w(i, j + 1)− w(i, j) = 1+ j − .(i + 53j)/351/− .j/2/ − .j/3/.

Since π(ZK) = (14, 14), the projection of the rectangle R(0, ZK) is
π(R(0, ZK)) = R((0, 0), (14, 14)). Hence by Lemma 4.5.11(b) the rectangle
R((0, 0), (14, 14)) = {(i, j) ∈ (R≥0)

2 : (i, j) ≤ (14, 14)} contains all the needed
information. The valuesw(i, j) are given in the next diagram. ((0, 0) is at the lower
left corner.)
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The large frames illustrate the generators of H 0(S−1,Z), the small ones the
generators ofH 0(S0,Z) in degree 0 and the circle shows the generator ofH 1(S0,Z).
Hence,

H
0(�,K) = T+−2⊕T 3−2(1)⊕T 2

0 (1) and H
1(�,K) = T0(1) and eu(H∗(�,K)) = 5.

For several concrete formulae and other explicit examples when � has two nodes,
and V = N , see [44].

4.9 H
∗ of the Surgery Manifold S3

−d
(#iKi)

4.9.1 Invariants of M(�) = S3
−d

(#iKi) for Any d > 0 and for
All Spinc Structures [84]

4.9.1 Consider the notations of 4.2.32, or of 4.4.11 with d > 0. Here we do not
assume that μ = (d − 1)(d − 2) (as in the superisolated link case 4.2.4 or 4.3.6). In
this subsection we follow [84]. By 4.2.32

The group H is Zd and it is generated by the class of the dual of E+ := Ev+ .
Furthermore, as in Lemma 4.7.24 one has s[aE∗+] = aE∗+ for any a = 0, 1, . . . , d−1.
We will use the notations h := [aE∗+] ∈ H and kr := K + 2aE∗+ ∈ Char. With
I = {v+} one has (cf. 4.4.11)

ZI(t) = �(t1/d)

(1− t1/d)2 and Zh,I(t) = 1

d
·
∑

ξd=1

ξ−a �(ξt1/d )

(1− ξt1/d )2 . (4.89)

Using�(t) = 1+(t−1)δ+(t−1)2Q(t) andQ(t) =∑μ−2
n=0 αnt

n, by a computation

Zh,I(t) = t
a/d(a + 1)+ t1+a/d(d − a − 1)

(t − 1)2
+ δ · t

a/d

t − 1
+

∑

n≡a (mod d)

αnt
n/d .

(4.90)
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Since the polynomial part Z+
h,I(t) of this expression is

∑
n≡a (mod d) αnt

n/d , we get

pc(Zh,I(t)) = pc(Zh,I(t
d )) =

∑

n≡a (mod d)

αn. (4.91)

Next we apply the surgery formula from Theorem 4.4.31 for v = v+ and l′ = aE∗+.
Then l′v+ = a/d ∈ [0, 1). Furthermore, Ri(aE∗+) = 0, hence all the contributions

swσ [Ki ](M(�i)) − (K2
i + |Vi |)/8 vanish (since SWIC is valid for smooth germs).

Therefore, from 4.4.31,

swσ [kr ](M(�))−
k2
r + |V|

8
=

∑

n≡a (mod d)

αn. (4.92)

This combined with Theorem 4.6.31 give

eu(H∗(�, kr)) =
∑

n≡a (mod d)

αn. (4.93)

4.9.2 The Lattice Reduction In the next pages we follow closely [84].
The set V := {v1, . . . , vν} of the (−1)-vertices form an SR-set, cf. 4.5.15(i).

Set E1, . . . , Eν for the corresponding elements of L. Next we apply the Reduction
Theorem from Sect. 4.8, whose notations we will adopt. Write l̄ = ∑ν

i=1 �iEi ∈
L(V) = L, and let xkr (l̄) be the universal cycle associated with kr and l̄ as
in 4.5.18 and Sect. 4.8. Set w(l̄) := χkr (x(l̄)) as in (4.87). Then, by the Reduction
Theorem 4.8.2 one has a graded Z[U ]-module isomorphism:

H
∗(�, kr ) ∼= H

∗((R≥0)
ν, w). (4.94)

For each �i ≥ 0 consider the cycle yi(�i) determined in the graph �i as in 4.7.25
and 4.7.26. Set �m :=∑i mi and �� :=∑i �i (and, in general, �x :=∑i xi for
x ∈ R

ν). Then the E+-coefficient of xkr (l̄) is m+(l̄) = .(��− a)/(�m+ d)/ and

xkr (l̄) =
∑

i

yi(�i)+
⌈ ��− a
�m+ d

⌉
·E+. (4.95)

Write �i = pimi + �i,0 with pi ∈ Z≥0 and 0 ≤ �i,0 < mi . Let Zi be the cycle
divE(�i)(fi) = E∗i (�i). Then yi(�i) = piZi + yi(�i,0) (cf. 4.7.26). Furthermore,
if for any i = 1, . . . , ν we take 1i = (0, . . . , 0, 1, 0, . . . , 0) (1 at entry i) then
w(0) = 0, and

w(l̄ + 1i )−w(l̄) = pi + 1−
⌈ ��− a
�m+ d

⌉
−
{

1 if �i,0 �∈ Si
0 if �i,0 ∈ Si .

(4.96)

Here Si is the abbreviation for the semigroup SC,pi .
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Next, we reduce (R≥0)
ν to a finite multi-rectangle. We write m for the vector

(m1, . . . ,mν), and R(l̄1, l̄2) denotes the rectangle {x ∈ R
ν : l̄1 ≤ x ≤ l̄2}, as usual.

Set also Rp := R(pm, (p + 1)m).

Lemma 4.9.3

(a) Set p̃0 := .(μ− a − 1)/d/. Then

H
∗((R≥0)

ν, w
) ∼= H

∗(R(0, p̃0 m),w
) ∼= H

∗( ∪0≤p<p̃0 Rp,w
)
.

(b) w(pm) = p(1 + a − δ)+ dp(p − 1)/2 for any 0 ≤ p ≤ p̃0.
(c) Fix 0 ≤ p < p̃0. Then, for any l̄ ∈ Rp ∩ L, �i = pmi + �i,0, with �� ≤

p(�m + d)+ a + 1 one has:

w(l̄)−w(pm) =
∑

i

#{s ∈ Si : s ≤ �i,0 − 1}. (4.97)

(d) Fix 0 ≤ p < p̃0. Then, for any l̄ ∈ Rp ∩ L, �i = pmi + �i,0, with �� ≥
p(�m + d)+ a + 1 one has:

w(l̄)−w((p + 1)m) =
∑

i

#{s �∈ Si : s ≥ �i,0}. (4.98)

Consider the notation

T −p :=
{
x ∈ (R≥0)

ν : (�x − a − 1)/(�m+ d) = p − 1
}
.

From the above facts we obtain the following.

Theorem 4.9.4 Set p̃0 := .(μ− a − 1)/d/ as above and for any 0 ≤ p < p̃0
consider

min T −p+1 := min { w(l̄) : l̄ ∈ T −p+1 ∩ Rp ∩ L}.

Then the following facts hold:

(a) w(pm) ≤ min T −p+1, w((p + 1)m) ≤ min T −p+1.
(b) mkr := minχkr = min0≤p≤p̃0{w(pm) }.
(c) Let pmin be the smallest integer satisfying w(pminm) = mkr . Then

H
0
red(�, kr) =

⊕

0≤p<pmin

T2w(pm)
(

min T −p+1 −w(pm)
)

⊕
⊕

pmin≤p<p̃0

T2w((p+1)m)
(

min T −p+1 −w((p + 1)m)
)
.
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(d) rank ZH
0
red(�, kr) equals

∑

0≤p<pmin

(
min T −p+1 −w(pm)

)+
∑

pmin≤p<p̃0

(
min T −p+1 − w((p + 1)m)

)
,

or

−mkr + rankZH
0
red(�, kr ) =

∑

0≤p<p̃0

(
min T −p+1 −w((p + 1)m)

)
.

(e) For any q > 0 one has

H
q(�, kr ) =

⊕

0≤p<p̃0

H
q(Rp,w).

4.9.5 The Structure of H≥1(Rp,w) The cohomology H
≥1(Rp,w) depends only

on thew-values at pm, at (p+1)m and along T −p+1. Indeed, for any n ∈ Z consider

Sn as in 4.5.2. Then for n < min T −p+1 the space Sn ∩ Rp has the same homotopy
type as the intersection of Sn with the two-element set {pm, (p + 1)m}; while for
n ≥ min T −p+1 it has the homotopy type of the suspension of Sn∩T −p+1. In particular,

all the nontrivial homogeneous elements of H≥1(Rp,w) have degree ≥ min T −p+1,
and one has the graded Z[U ]-module isomorphism

H
q(Rp,w) = H

q−1
red (T

−
p+1, w) for q > 0. (4.99)

4.9.6 The Structure of H∗(T −p+1, w). The Modules H∗(T−n ,W) In most of the
notations above, we have omitted the symbol a codifying the characteristic element
kr . In fact, for any p ≥ 0 and a ∈ {0, . . . , d − 1}, T −p+1 is

T −p+1,a := { l̄ : �i = pmi + �i,0;
∑

i

�i,0 = pd + a + 1}.

Note that when p runs over Z≥0 and a ∈ {0, . . . , d − 1}, the integer n = pd + a
runs over Z≥0. This motivates to consider for any n ∈ Z≥0

Tn := {(�1,0, . . . , �ν,0) ∈ [0,m1] × · · · × [0,mν] :
∑

i

�i,0 = n+ 1}. (4.100)

Then, for d and a fixed, T −p+1,a = Tpd+a + pm. If p < p̃0 then pd + a ≤
μ − 2, hence the relevant index set of the hyperplanes is 0 ≤ n ≤ μ − 2 (this
can be compared with the index set {αn}μ−2

n=0 of the coefficients of Q(t)). The form
Tpd+a+pm shows also how they intersect the small rectangles: when we run a, an
element of the set {Tn + &n/d'm}0≤n≤μ−2 intersects Rp if and only if &n/d' = p.
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Up to the shift w(pm), which is constant on each Tn, but otherwise depends on
p = &n/d', the weights on Tn ∩ Z

ν are given by the right hand side of (4.97). Or,
up to a shift w((p + 1)m), the weights are given by (4.98). Following this second
version we set the following weights for any Tn:

W((�1,0, . . . , �ν,0)) =
∑

i

#{s �∈ Si : s ≥ �i,0}. (4.101)

That is, W |Tn(l̄ − pm) = w(l̄)−w((p + 1)m), where p = &n/d'.
The weight function W restricted on all the level sets {Tn}n≥0 of (Z≥0)

ν mea-
sures the very subtle distribution properties of the semigroups {Si}i . Furthermore,
up to a well-identified shift in degrees, the collection (Tn,W) provides all the lattice
cohomologiesH∗(�(d), kr ) for all the possible values d and a. Here, and in the next
discussion, we denote the dependence of � on d by �(d).

More precisely, for any d and a ∈ {0, . . . , d − 1} and q > 0 one has:

H
q(�(d),K + 2aE∗+) =

⊕

n≡a (mod d), 0≤n≤μ−2

H
q−1
red (Tn,W)[sn,d ], (4.102)

where sn,d is the value of the shift 2w((p+1)m) = 2(p+1)(1+a−δ)+d(p+1)p
(with p = &n/d'). Moreover, the values {min W |Tn}n and sn,d determine all the
cohomology groups H

0(�(d), kr) too. The second identity of (4.9.4)(d) together
with (4.98) reads as:

−mkr + rank H
0
red(�(d),K + 2aE∗+) =

∑

n≡a (mod d), 0≤n≤μ−2

min{W |Tn}.

(4.103)

In particular, for any fixed d > 0 and a ∈ {0, . . . , d − 1} one has:

eu(H0(�(d),K + 2aE∗+)) =
∑

n≡a (mod d), 0≤n≤μ−2

min{W |Tn},

eu(H∗(�(d),K + 2aE∗+)) =
∑

n≡a (mod d), 0≤n≤μ−2

−eu(H∗(Tn,W)).
(4.104)

Example 4.9.7 For any d > 0 and q > 0 the summation of (4.102) over a gives

H
q(�(d)) =

d−1⊕

a=0

H
q(�(d),K + 2aE∗+) =

⊕

0≤n≤μ−2

H
q−1
red (Tn,W)[sn,d ].

(4.105)

On the right hand side of (4.105) the numbers sn,d depend on d , but the rank of the
right hand side is independent of d . In particular, up to shifts of different direct sum
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blocks, ⊕q>0H
q(�(d), kr ) is independent of the choice of the integer d . (This can

also be deduced from the surgery exact sequences from [74].)

Example 4.9.8

(a) Assume that for a certain d and a one gets p̃0 = 0. Then H
∗
red(�, kr ) = 0, and

H
0(�, kr ) = T+0 .

(b) Assume that for a certain d and a one gets p̃0 = 1. Then H
∗(�, kr ) =

H
∗(R0, w), hence everything is determined by T −1,a . Indeed,

min T−1,a =min
{ ∑

i

#{s ∈ Si : s ≤ �i − 1}, where
∑

i

�i = a + 1
}

=min
{ ∑

i

#{s �∈ Si : s ≥ �i}, where
∑

i

�i = a + 1
}+ 1+ a − δ,

mkr = min{0, 1 + a − δ}, H0
red(�, kr ) is generated by one element of degree

2 max{0, 1+a−δ}, rank H
0
red(�, kr) = min T −1,a−max{0, 1+a−δ}, and finally

for q > 0 one has Hq(�, kr) = H
q−1
red (T

−
1,a, w) = H

q−1
red (Ta,W)[2(1+ a − δ)],

(T −1,a = Ta +m).
(c) If d ≥ μ− 1 then p̃0 = 1 for a < μ− 1, and p̃0 = 0 for a ≥ μ− 1.

Remark 4.9.9 Assume that we know all the cohomology groups {H∗(�(d), kr )}kr
for some specific d with d ≥ μ−1. Then using them, and also the valuesw(pm) =
p(1 + a − δ) + dp(p − 1)/2 for all p, a and d , we can recover all the lattice
cohomologies {H∗(�(d), kr )}kr for any d > 0. [For this, use Example 4.9.8 and
(4.102).]

Corollary 4.9.10 For any n ≥ 0 the coefficients ofQ(t) =∑n αnt
n satisfy

αn = −eu (H∗(Tn,W)). (4.106)

Proof Use the identities (4.93) and (4.104) for d * 0, cf. 4.9.9. ��
Remark 4.9.11 Above we reduced several computations to the weight function
W |Tn . It was connected with the weight function provided by the reduction
formula via W |Tn(l̄ − pm) = w(l̄) − w((p + 1)m), where p = &n/d'.
Since each w(pm) is computable from d , a, δ, cf. 4.9.3(b), the lattice coho-
mology H

0(S3−d (#iKi)) is computable from d , a, δ and {W |Tn}n. On the other

hand, by (4.101) W((�1,0, . . . , �ν,0)) equals
∑
i #{s �∈ Si : s ≥ �i,0} =∑

i

(
δi − #{si �∈ Si : si < �i,0}

) = ∑
i (δi − �i,0) +

∑
i #{si ∈ Si : si < �i,0}.

Hence

min{W |Tn} = δ − n− 1+ min∑
i �i,0=n+1

#{si ∈ Si : si < �i,0}. (4.107)
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This motivates the replacement of the semigroup Si with an equivalent object of it,
with its ‘counting function’ j �→ Hi(j),

Hi(j) := #{s ∈ Si : s < j }. (4.108)

From analytic point of view, Hi(j) is the coefficient of tj in the Hilbert function of
the local singularity (C, pi), associated with the filtration given by its normalization.

The above min-expression can be reformulated formally as follows. Consider
any two functions H1 and H2 defined on integers and bounded from below. Then
we define their ‘minimum convolution’ (cf. [9, 5.3]), denoted by H1 0 H2 as (H1 0
H2)(j) = minj1+j2=j {H1(j1)+H2(j2)}.

Then from the counting functions {Hi}νi=1 associated with {Si}νi=1 we construct

H := H1 0H2 0 · · · 0Hν. (4.109)

Since the operator 0 is associative and commutative, the functionH is well-defined.
From the above discussion H

0(S3−d (#iKi)) is computable from d , a, δ and H .

Remark 4.9.12 In the above discussion (e.g. in 4.9.5–4.9.6), the space Tn—
intersection of a simplex with a rectangle—can be replaced by the supporting
simplex. Indeed, set

�n := {(�1,0, . . . , �ν,0) ∈ (R≥0)
ν :

∑

i

�i,0 = n+ 1}. (4.110)

A verification shows that H ∗red(Tn,W) is isomorphic with H ∗red(�n,W) for
every n ≥ 0. Furthermore, if n > μ − 2 then H ∗red(Tn,W) = 0 automatically,
hence in several formulae above (e.g. in the summations from (4.102) and (4.105))
the restrictions n ≤ μ− 2 can be safely neglected.

4.9.2 Superisolated Singularities with More Cusps

In this subsection we consider a superisolated singularity associated with an
irreducible rational cuspidal curve. For different notations and statements regarding
the analytic and topological type see Sects. 4.2.4, 4.3.6, 4.4.11, 4.7.4, and 4.9. In
this subsection we follow [8].

Our goal is to discuss Conjectures 4.3.21 and 4.3.22 from the point of view of
lattice cohomology. Let us recall the two statements. Set (cf. 4.3.20(b))

N(t) =
d−3∑

l=0

(
α(d−3−l)d − (l + 1)(l + 2)

2

)
td−3−j . (4.111)



292 A. Némethi

• Conjecture 4.3.21: all the coefficients of N(t) are non-positive. We will refer to
this as ‘Conjecture C’ (‘Conjecture regarding the coefficients of N(t)’).

• Conjecture 4.3.22:N(1) is non-positive. We will refer to this as the ‘Conjecture
I’ (we regardN(1) as an ‘index type invariant’).

Clearly Conjecture C implies Conjecture I.
We will compare these statements with the Semigroup Distribution Property

based on the properties of counting function Hi of the semigroups and also on a
subtle connection with lattice cohomology.

We consider the counting functions Hi of the semigroups Si (cf. (4.108))
and their minimum convolution H as in (4.109). Recall also (cf. 4.2.33) that the
Semigroup Distribution Property (SDP) reads as H(ld + 1) = (l + 1)(l + 2)/2 for
any l = 0, 1, . . . d − 3.

Example 4.9.13 (The case ν = 1) In this case αj = #{s �∈ S1 : s > j }, cf. (4.42).
From (4.43) α2δ−2−j = H1(j + 1) for j = 0, . . . , 2δ − 2. Hence, the α-coefficient
needed in (4.111) is α(d−3−l)d = #{s ∈ S1 : s ≤ ld} = H1(ld + 1). Recall
that 4.2.33 (Bézout’s Theorem) implies α(d−3−l)d = H1(ld + 1) ≥ (l + 1)(l +
2)/2. This inequality and (4.111) show that for ν = 1 Conjecture C is equivalent
to N(t) ≡ 0. But, they are also equivalent to Conjecture I, since if N(1) ≤ 0 then
necessarily N(t) ≡ 0. Finally, the validity of all these statements follow from SDP.

However, for ν ≥ 2 the relationships are more subtle.

Theorem 4.9.14 ([8]) With the above notations one has:

1. If ν = 2, then q2δ−2−j ≤ H(j + 1) for any j = 0, 1, . . .2δ − 2. Therefore, for
bicuspidal curves the SDP implies Conjecture C (hence Conjecture I too).

2. If ν ≥ 3, then the inequality q2δ−2−j ≤ H(j + 1) does not hold in general, not
even for j = ld (l = 0, 1, . . . , d−3), needed for Conjectures C and I. Moreover,
Conjecture C is not true in general, and Conjecture I behaves independently from
SDP. (Conjecture I remains as a conjecture, though its validity is verified directly
for all ‘known’ curves.)

For a direct elementary proof of part (1) see [65].

4.9.15 Combinatorial Reformulations The next discussion aims to clarify the
similarities and differences between the polynomialQ and the functionH .

Let us start with ν semigroups {Si}νi=1 associated with local irreducible plane
curve singularities. However, in the next discussion we will not require their realiz-
ability as singularities of a projective rational curve. [Regarding the realizability, we
use the following terminology. If the sum δ of delta-invariants of the local singularity
types is of form 2δ = (d − 1)(d − 2) for some integer d , then we say that these
ν local topological types are combinatorial candidates for the ν singularities of a
rational cuspidal plane curve of degree d . If such a curve really exists then (SDP) is
valid for the corresponding local data and d .],
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The semigroups determine their counting functions Hi by (4.108) and the
minimal convolution H of the functions {Hi}i by (4.109). For convenience, define
also the sequences {h(i)j }∞j=0 by h(i)j := Hi(j + 1).

For any sequence a = {aj }∞j=0 denote by ∂a its difference sequence, i.e.
(∂a)j = aj − aj−1 with the convention a−1 = 0. Similarly, we will denote by
�a the sequence of partial sums, i.e. (�a)j = a0 + · · · + aj . Of course, �∂a = a
and ∂�a = a for any sequence a.

By (4.108) and �i(t) = (1 − t) ·∑s∈Si t
s (cf. (4.6) the coefficient c(i)j of tj in

�i(t) can be written as c(i)j = (∂∂h(i))j . The coefficient sequence of a polynomial
product is the usual convolution of coefficient sequences of the factors. Hence, the
coefficient cj of tj in �(t) =∏i �i(t) is cj =∑j1+···+jν=j c

(1)
j1
· · · c(ν)jν . Denoting

the convolution of two sequences a = {aj }∞j=0 and b = {bj }∞j=0 by a ∗ b, i.e.

(a ∗ b)j =∑j

k=0 akbj−k , we get cj = (∂∂h(1) ∗ · · · ∗ ∂∂h(ν))j . Let us define:

F(j) := (��(∂∂h(1) ∗ · · · ∗ ∂∂h(ν)))j . (4.112)

Before we identify F , let us recall some symmetry properties. From the symmetry
of � = 1+ (t − 1)δ + (t − 1)2Q(t) (and from δ =∑i δi)

α2δ−2−j = αj + j + 1− δ for 0 ≤ j ≤ 2δ − 2. (4.113)

This (or the symmetry of each semigroup) implies also Hi(ji) = Hi(2δi − ji) +
ji − δi , from which one also obtains

H(2δ − 2− j + 1) = H(j + 1)− j − 1+ δ for every j ∈ Z. (4.114)

Next, if A(t) = ∑j aj t
j and B(t) =∑j bj t

j satisfy A(t) = A(1)+ (t − 1)B(t),
then (�a)j = A(1)−bj . This applied twice for� gives (��c)j = j +1− δ+αj .
Hence, then the definition ofQ and (4.113) provide

α2δ−2−j = (��(∂∂h(1)∗· · ·∗∂∂h(ν)))j = F(j) for 0 ≤ j ≤ 2δ−2. (4.115)

In other words, the H -values are obtained from {h(i)}i by minimal convolution
(shifted by one), while the F -coefficients (or α-coefficient in opposite order) are
obtained by the composition of ∂∂ , the usual convolution, and the �� operator.

Then one has the following reinterpretations in terms of F and H .
Let C ⊂ CP 2 be a rational cuspidal curve of degree d with ν cusps of given

topological types (in particular, d(d − 3) = 2δ − 2). Set F(j) := (��(∂∂h(1) ∗
· · · ∗ ∂∂h(ν)))j , where h(i)j = Hi(j + 1), and Hi is the semigroup counting function
of the i-th singularity. Set H := H1 0 · · · 0Hν . Then

(Conjecture C) F(ld) ≤ (l + 1)(l + 2)

2
for all l = 0, 1, . . . , d − 3. (4.116)
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(Conjecture I)
d−3∑

l=0

F(ld) ≤
d−3∑

l=0

(l + 1)(l + 2)

2
= d(d − 1)(d − 2)

6
. (4.117)

(SDP) H(ld + 1) = (l + 1)(l + 2)

2
for all l = 0, 1, . . . , d − 3. (4.118)

Let us summarize the combinatorial situation. Starting from the semigroups of ν
local singularities we define H and F .

If ν = 1 (since ��∂∂(h) = h) then F(j) = H(j + 1) for each j ∈ Z≥0
(independently of realizability, hence not just for j ∈ d · Z≥0).

On the other hand, for ν > 1 the values F(j) and H(j + 1) become different.
Nevertheless, cf. Theorem 4.9.14(1) F(j) ≤ H(j + 1) remains true for ν = 2
and every integer j ≥ 0, again by combinatorial (lattice cohomology) argument
(independently of realizability and d).

With these facts in mind, it is tempting to conjecture that maybe the inequality
F(j) ≤ H(j + 1) is always true—as a property of local singularity types—, which
would make Conjecture C a combinatorial corollary of SDP. But, for ν ≥ 3 there is
no such relation between the local functions F and H .

4.9.16 Lattice Cohomological Reinterpretation Consider the combinatorial situ-
ation from 4.9.15. The semigroupsSi determine linksKi ⊂ S3 of the corresponding
(topological types) of plane curve singularities. Consider an arbitrary d > 0 and the
surgery 3-manifold S3−d (#iKi) as in Sect. 4.9.

The next statements show a remarkable common feature of the functions F and
H .

Theorem 4.9.17 For any d > 0 and 0 ≤ a < d the following facts hold:

eu
(
H

0(S3
−d (#iKi),K + 2aE∗+)

)
=

∑

j≡a(mod d)
0≤j≤2δ−2

(H(j + 1)+ δ − 1− j) ,

=
∑

j≡a(mod d)
0≤j≤2δ−2

H(2δ − 2− j + 1);

(4.119)

eu
(
H
∗(S3−d (#iKi),K + 2aE∗+)

)
=

∑

j≡a(mod d)
0≤j≤2δ−2

(F (j)+ δ − 1− j)

=
∑

j≡a(mod d)
0≤j≤2δ−2

F(2δ − 2− j).
(4.120)

Proof We will use the identities from (4.104). In the first one, note that by (4.101),
(4.100), and (4.107) min(W |Tj ) is δ − j − 1 + H(j + 1) and (4.119) follows (for
its second identity use (4.114)).
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For the second identity, note that −eu(H∗(Tj ,W) equals αj by (4.106), which
is F(2δ − 2− j) by (4.115). Then use again the symmetry (4.113). ��
Remark 4.9.18 In fact, by Theorem 4.9.4, the integer d , the sum of delta-invariants
δ and the functionH completely determine the whole H0 as a graded Z[U ]-module
(and not just its Euler characteristic).

Corollary 4.9.19 Assume that d(d − 3) = 2δ − 2 (that is, d and {Si}i constitute a
package of combinatorial candidates for algebraic realizability). Then

eu
(
H

0(S3
−d (#iKi),K + 2aE∗+)

)
=

∑

j≡−a(mod d)
0≤j≤2δ−2

H(j + 1),

eu
(
H
∗(S3−d (#iKi),K + 2aE∗+)

)
=

∑

j≡−a(mod d)
0≤j≤2δ−2

F(j).

This for a = 0 reads as

eu
(
H

0(S3−d (#iKi),K)
)
=

∑

0≤l≤d−3

H(ld + 1),

eu
(
H
∗(S3−d (#iKi),K)

)
=

∑

0≤l≤d−3

F(ld).

Since by 4.2.33H(ld+1) ≥ (l+1)(l+2)/2 for any l = 0, . . . , d−3,
∑d−3
l=0 H(ld+

1) =∑d−3
l=0 (l+1)(l+2)/2 is equivalent to SDP for every l (cf. (4.118)). In particular,

in the presence of the algebraic realization, the valid SDP reads as:

(SDP) eu
(
H

0(S3
−d (#iKi),K)

)
= d(d − 1)(d − 2)/6. (4.121)

Furthermore, under the same realizability assumption, Conjecture I reads as:

eu
(
H
∗(S3−d (#iKi),K)

)
≤ d(d − 1)(d − 2)/6. (4.122)

They combined:

(Conjecture I) eu
(
H
∗(S3−d (#iKi),K)

)
≤ eu

(
H

0(S3−d (#iKi),K)
)
. (4.123)
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4.9.20 Proof of Conjecture I for ν = 2 (via SDP)
First note that Hq(S3−d (#iKi), kr) = 0 for any q ≥ ν and any kr (cf. 4.8.3).

Then, for ν = 2, one has eu
(
H
∗(S3−d (#iKi),K)

) = eu
(
H

0(S3−d (#iKi),K)
) −

rankZH1(S3
−d (#iKi),K), hence (4.123) follows.

For ν ≥ 3 the similar argument does not work. From this point of view, it is even
more surprising that in all the known cases Conjecture I still holds, cf. 4.9.14.

4.10 Lattice Cohomology and Heegaard Floer Homology

The Seiberg–Witten invariant is the (normalized) Euler-characteristic of
the Seiberg–Witten monopole Floer homology of Kronheimer–Mrowka, or
equivalently, of the Heegaard Floer homology of Ozsváth and Szabó. These theories
had an extreme influence on the modern mathematics, solving (or disproving)
a long list of old conjectures (e.g. Thom Conjecture, or conjectures regarding
classification of 4-manifolds, or famous old problems in knot theory); see the
long list of distinguished articles of Kronheimer–Mrowka or Ozsváth–Szabó. In
[102] Ozsváth and Szabó provided a computation of the Heegaard Floer homology
for some special plumbed 3-manifolds. This computation resonated incredibly
with the theory of computation sequences used in Artin–Laufer program (see e.g.
[50, 67, 68]). These two facts influenced considerably the definition of the lattice
cohomology.

4.10.1 The Conjecture Connecting Lattice Cohomology and
Heegaard Floer Theory

4.10.1 Short Review of Heegaard Floer Homology HF+(M) We assume that
M is an oriented rational homology 3–sphere, and we restrict ourselves to the
+–theory of Ozsváth and Szabó. The Heegaard Floer homology HF+(M) is a
Z[U ]–module with a Q–grading compatible with the Z[U ]–action, where deg(U) =
−2. Additionally, HF+(M) has another Z2–grading; HF+(M)even, respectively
HF+(M)odd denote the graded parts. Moreover,HF+(M) has a natural direct sum
decomposition of Z[U ]–modules (compatible with all the gradings): HF+(M) =
⊕σHF+(M, σ) indexed by the spinc structures σ ofM . For any σ ∈ Spinc(M) one
has

HF+(M, σ) = T+d(M,σ) ⊕HF+red(M, σ),



4 Surface Singularities, Seiberg–Witten Invariants of Their Links and Lattice. . . 297

a graded Z[U ]–module isomorphism, and HF+red(M, σ) has finite Z–rank and an
induced Z2–grading. One also considers

χ(HF+(M, σ)) := rankZHF
+
red,even(M, σ)− rankZHF

+
red,odd(M, σ).

Then the Seiberg–Witten invariant of (M, σ) equals χ(HF+(M, σ)) −
d(M, σ)/2.

By changing the orientation we have χ(HF+(M, σ)) = −χ(HF+(−M,σ))
and d(M, σ) = −d(−M,σ).
4.10.2 The Predicted Connection In [72] the author formulated the following

Conjecture 4.10.3 For any plumbed rational homology sphere associated with a
connected negative definite graph �, and for any k ∈ Char, one has

d(M, [k]) = max
k′∈[k]

(k′)2 + |V|
4

= k
2 + |V|

4
− 2 ·minχk.

Furthermore,

HF+red,even(−M, [k]) =
⊕

p even

H
p
red(�, [k])[−d],

and

HF+red,odd(−M, [k]) =
⊕

p odd

H
p
red(�, [k])[−d].

Both parts of the Conjecture were verified for almost rational graphs in [72], for two
bad vertices in [101], see [72, 8.4] too. Otherwise, the Conjecture is still open.

Note that (conjecturally) H∗ has a richer structure: its q–filtration H
∗ = ⊕q Hq

collapses at the level of HF+ to a Z2 odd/even filtration.
The fact that both theories have the same Euler characteristic support the above

conjecture as well. Another supporting evidence is the following fact.

4.10.4 Coincidence of the Vanishing of the Reduced Theories By 4.6.22 the
graph � is rational if and only if H

∗
red(�) = 0. On the other hand, following

Ozsváth and Szabó, by definition,M is an L–space if and only if HF+red = 0. Their
equivalence is predicted by Conjecture 4.10.3. This ‘tip of the iceberg’ statement
was proved in [76]:

Theorem 4.10.5 The following facts are equivalent for a connected negative
definite graph �:

(i) � is a rational graph,
(ii) M = M(�) is an L–space.
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(i) ⇒ (ii) follows from lattice cohomology theory [70, 72], while (ii) ⇒ (i) uses
partly the following equivalence (ii)⇔ (iii), where (iii) means that π1(M) is not
a left-orderable group. [A non trivial group G is said to be left-orderable if there
exist a total order < on G such that if a < b then ga < gb for every g ∈ G.] The
equivalence (ii) ⇔ (iii) was proved in [33] for any graph–manifold. For arbitrary
3–manifolds it was conjectured by Boyer, Gordon and Watson [10], for different
developments and other references see [33, 76].

Problem 4.10.6 Characterize elliptic singularities (or other non-rational families of
singularities) by a certain property of the fundamental group of the link.

Acknowledgments The author was supported by the NKFIH Grant KKP 126683.
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Abstract The theory of characteristic classes for singular varieties experiences
a huge development, in quantity and in quality, since the work of Marie-Hélène
Schwartz, Wu Wen-Tsün and Robert MacPherson. An impressive number of
researchers are extending the field of applications of characteristic classes and their
ingredients, including in applied mathematics and physics.

In 1537, in Messina, Francesco Maurolico observed, for the five Platonic
polyhedra, the formula that has been called later Euler formula. The Poincaré-Hopf
Theorem says that the Euler-Poincaré characteristic is the obstruction to the con-
struction of continuous non-vanishing vector fields tangent to a compact manifold.
That opened the door for the construction of characteristic classes by obstruction
theory: for manifolds, by Eduard Stiefel and Hassler Whitney in the real case and by
Shiing-shen Chern in the complex case, then, in the singular framework, by Marie-
Hélène Schwartz. The functorial definition by Robert MacPherson is the starting
point of a huge development of the theory and applications of Chern-Schwartz-
MacPherson classes and their ingredients: local Euler obstruction, Wu-Mather
classes, Milnor classes, Segre classes, bivariant theory, motivic characteristic
classes, etc.

This survey intentionally includes a brief history of the creation of characteristic
classes from their very beginning as well as the detailed definition, by obstruction
theory, of Schwartz classes giving rise to Chern-Schwartz-MacPherson classes.

5.1 Introduction

It is not easy to define the starting point of the notion of characteristic classes;
Is it Pythagoras of Samos who described the first three regular polyhedra? Is it
Theaetetus of Athens who described the two last ones? Is it Francesco Maurolico
who observed that for these five “Platonic” polyhedra, the number of faces added to
the one of vertices exceeds by two the number of edges? Is it René Descartes who
wrote his famous theorem concerning the sum of angles of a convex polyhedron? Is
it Leonhard Euler who sent a letter to his friend Goldbach with the now called “Euler
formula” ? Is it Henri Poincaré who wrote that, for compact smooth surfaces, the
Euler-Poincaré characteristic is a measure of the obstruction to the construction of
a tangent vector field? Is it Heinz Hopf who completed the result for any dimension
and recommended his student Eduard Stiefel to study the case of frames?

All of them, recognized or not, and many other, unknown (or forgotten), provided
a stone to the basis of the notion of characteristic classes as we know now.

Hopf recommended his student Stiefel to study obstruction for the construction
of r-frames tangent to a manifold. In 1935 and independently, Eduard Stiefel and
Hassler Whitney defined characteristic classes in cohomology for real manifolds.
In 1947, Lev Pontryagin defined another type of classes of a manifold M , by
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obstruction theory. Contribution of Wu Wen Tsün1 in the history of characteristic
classes is important. showing that the Stiefel-Whitney classes are the Steenrod
squares of the Wu (real) classes he defined in 1955. In 1948, independently, Chern
and Wu proved the product formula for Stiefel-Whitney classes.

In the complex situation, Shiing-shen Chern gave, in his fundamental 1946 paper,
several constructions of characteristic classes for Hermitian Manifolds. The paper
provides foundations for the relationship between obstruction theory, Schubert
varieties, differential forms and transgression. Wu proved the product formula for
Chern classes.

The Hirzebruch theory (Sect. 5.9) provides a way to unify, in the case of
manifolds, three theories of characteristic classes: the Chern class, the Todd class
and the Thom-Hirzebruch class. Using multiplicative series and Chern roots,
Hirzebruch defines the Todd-Hirzebruch classes which are, according to values
of the parameter y, the Chern classes (y = −1), the Todd classes (y = 0) and
the Thom-Hirzebruch L-classes (y = +1). Three theorems, namely Poincaré-Hopf
Theorem, Hirzebruch-Riemann-Roch Theorem and Hirzebruch signature Theorem
become particular cases of a “general Hirzebruch Riemann-Roch Theorem”.

The interested reader will find all wished references for characteristic classes
of manifolds in the books by Milnor, Steenrod, Hirzebruch, and for historical
viewpoint, by Dieudonné.

In the singular case, if there are various constructions, even combinatorial,
for Stiefel-Whitney classes of (real) singular varieties, it took a long time before
providing definition of characteristic Chern classes for complex singular varieties.
The problem is that in the case of singular varieties the tangent bundle is not defined
and the previous constructions of characteristic classes do not apply.

In the same year 1965, two constructions of Chern classes for complex singular
varieties were published. One was published by Marie-Hélène Schwartz, in French
[289], the other was published by Wu Wen-Tsün, in Chinese [342]. Apparently,
nobody (or at any rate, few people) noticed these publications.

In 1966, in an unpublished lecture of his seminar, Alexander Grothendieck con-
jectured the existence and uniqueness of Chern classes in the schematic framework,
in the Chow ring (see Sect. 5.15.2). The conjecture, outlined by Pierre Deligne to
Denis Sullivan [307], was proved by Robert MacPherson in the year 1973, under
the name of Deligne-Grothendieck conjecture [203]. MacPherson’s construction
is performed in the framework of algebraic complex varieties, and in homology.
One of its fundamental ingredients is the Mather class, defined using the Nash
transformation. The MacPherson class is a combination of Mather classes, with
coefficients defined by means of the Local Euler obstruction.

MacPherson classes are defined for constructible functions on the singular
variety. In 1979, Brasselet and Schwartz proved [59] that MacPherson classes (for

1 There are several ways to write Wu Wen-Tsün name in Latin characters. We use the one he used
to sign his articles during his French period, that is the one of main papers cited here.
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the constructible function with everywhere value 1) are the same as the previously
defined Schwartz classes via the Alexander isomorphism.

Jianyi Zhou [371] showed that the Nash transformation corresponds to the
previously described Wu transformation and that the Mather classes are equal to
the (complex) Wu classes.

There are in fact various definitions of characteristic classes for singular varieties.
In the real case of Stiefel-Whitney classes, there is a combinatorial definition, which
simplifies the construction. The (real) Wu classes were used by Goresky and Pardon,
for the study of cobordism theory in the case of singular spaces.

In the complex case, the situation is more complicated (and certainly more
interesting!), due to the fact that there is no combinatorial definition of Chern
classes. The obstruction theory point of view, in the smooth case, is based on the
existence of the tangent bundle. If one wants to use the obstruction theory point of
view in the singular case, one has to find a substitute to the tangent bundle. There are
various candidates to replace the tangent bundle and each of them leads to a different
definition of Chern class for singular varieties. Considering a singular variety X
embedded in a manifoldM , one has (at least) the following three possibilities.

1. the union EX of tangent spaces to the strata of a stratification of X. M.-H.
Schwartz considers the sections of TM whose images are in EX. She shows
that if one wants to use obstruction theory in the singular case, one has to use
special vector fields obtained by what she named radial extension.

2. the set of all possible limits of tangent spaces to sequences of points in the
regular part of X. That is the (Wu)-Nash transformation and the Nash bundle
on it, leading to the notion of (Wu)-Mather classes, one of the ingredients used
by MacPherson.

3. the virtual bundle. That is the viewpoint used by Fulton. If X is smooth, one has
an exact sequence

0 → TX→ TM|X → NXM → 0

whereNXM is the normal bundle ofX inM . In the case of a singular variety such
that the normal bundleNXM exists (for instance hypersurfaces or local complete
intersections), one can define the virtual bundle in the Grothendieck group as

τX = TM|X −NXM.

This last viewpoint was generalized by Fulton and Johnson, using Segre classes.

Various authors were interested in comparing the diverse viewpoints. The
Schwartz and MacPherson classes agree and are now called Chern-Schwartz-
MacPherson classes. When all defined, these classes differ from the Fulton (and
Fulton-Johnson) classes by classes named Milnor classes. That is the subject of
the Callejas-Bedregal, Morgado, and Seade article [74] in this volume, providing
several different definitions, applications and examples (also see [2]).
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A remarkable point is that the natural transformation c∗ defined by MacPherson
from constructible functions to homology, allows to express a number of classes
depending on the chosen constructible function (and on the situation). Besides the
classes of Chern-Schwartz-MacPherson, obtained for the constructible function 1,
that is also the case, in suitable situations (see Sect. 5.23), for the Mather classes,
Fulton classes, Milnor classes, and more specific classes such as the weighted
Chern-Mather classes and the stringy Chern classes.

Segre classes play an important role in the development of characteristic
classes: the local Euler obstruction is expressed in terms of Segre classes
(Gonzalez-Sprinberg and Verdier). The Chern-Mather classes, the Chern-Schwartz-
MacPherson classes, Fulton and Fulton-Johnson classes, and Milnor classes can be
written, with nice expressions, in terms of Segre classes depending on particular
cases. That is the subject of the article by Paolo Aluffi in this volume. showing how
Segre classes provide a powerful viewpoint and fruitful developments for all these
classes [13].

In the same way that the MacPherson Chern natural transformation generalizes
the Chern class, the Todd class and the Thom-Hirzebruch class were generalized
in the singular framework as natural transformations respectively by Baum-Fulton-
MacPherson and by Cappell-Shaneson. Brasselet, Schürmann and Yokura show that
the motivic framework allows to unify these three generalizations (Sect. 5.21). The
theory is the subject of many generalizations and applications bringing important
new developments. For a more complete description see Yokura [362].

Robert MacPherson and William Fulton developed the formalism of bivari-
ant theories. These are simultaneous generalizations of covariant group valued
“homology-like” theories and contravariant ring valued “cohomology-like” the-
ories. They showed existence and uniqueness of Stiefel-Whitney classes in this
formalism and conjectured the same for Chern classes. Several authors have
partially proved the conjecture, bringing important results related to the other
mentioned theories (Sect. 5.24.1). For a more complete description see Yokura
[362].

Characteristic classes appear in many aspects of mathematics and physics. The
present article does not intend to be complete and important topics are not present
or only briefly mentioned, for instance (the list of topics is far from complete as well
as the list of references):

– Chern-Weil theory and C̆ech-de Rham cohomology (see Suwa, in this volume
[312] and [310, 311], and see [67]),

– Development of Segre classes (see Aluffi [13] in this volume)
– Development of Milnor classes (see Callejas-Bedregal, Morgado, and Seade [74]

in this volume and [67])
– Lê cycles (see Massey [210] and Callejas-Bedregal, Morgado and Seade [72, 73])
– Developments of motivic and bivariant theories (see Schürmann and Yokura

[285] and Yokura to appear in volume IV [362])
– Positivity questions (see Aluffi, Mihalcea, Schürmann and Su [22, 23] and Jones

[175, §6])
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– The vast topic of characteristic classes of foliations (see for instance Feigin [123],
Pittie [255] Suwa [309], Corrêa and Soares [91]),

– Thom polynomials (see Ohmoto [236, 237, 239]).
– Chern characters (see Baum-Fulton-MacPherson [34], M.-H. Schwartz [290],

Kwieciński [189], Suwa [310] and [67, Chapter 13]).
– . . .

Some Indications
Although an effort has been made to recall the important concepts evoked in this sur-
vey, it is preferable that the reader has elementary knowledge of algebraic topology
and algebraic geometry. Thus, the basic ingredients used in the recipes which follow
are, in particular, the concepts of homology, cohomology, homotopy, Chow group,
manifolds, Grassmannian, fiber bundle, tangent vector fields, pseudomanifolds,
stratifications. But don’t be frightened by this “long list”, some of these notions
are recalled or a suitable reference is provided.

Complementary articles to this survey are the notes of two courses given by Paolo
Aluffi [10] and by Jörg Schürmann [278].

The First Part (Sects. 5.2 to 5.9) treats the smooth case; the Second Part
(Sect. 5.10 to the end) treats the singular case. We use an unusual notation, and
write upper indices for cohomology classes and lower indices for homology classes.
Hopefully that will be more convenient for the reader.

I thank José Luis Cisneros-Molina, Lê Dũng Tráng and José Seade, editors of the
Handbook of Geometry and Topology of Singularities for the invitation to write this
survey and for the help to juggle the TEX. I thank UNESP (São José do Rio Preto),
USP (São Carlos) and IMPA (Rio de Janeiro) for hospitality during previous work
on the subject.

A lot of thanks to all colleagues who supported me by their valuable comments,
in particular P. Aluffi, G. Barthel, K.-H. Fieseler, L. Kaup, Thủy Nguyễn T.B.,
M.A.S. Ruas, J. Schürmann, J. Seade, S. Yokura and a lot of thanks to the
anonymous referee for the precious, unvaluable and fantastic report.

5.2 First Part: The Smooth Case, From Pythagoras to Chern

The five convex regular polyhedra were discovered by Pythagoras of Samos (∼ 570–
495 B.C.) for the tetrahedron, hexahedron (cube) and octahedron and by Theaetetus
of Athens (∼415–365 B.C.) for the icosahedron and dodecahedron. Described by
Plato (∼428–348 B.C.) in his philosophical dialogue “Timaeus”, they are known as
the five Platonic poyhedra or the five Platonic solids.

The Euler-Poincaré characteristic is recognized as the first, if not the embryo of
the characteristic classes. This is not the place to enter into the priority controversy
of the so-called “Euler formula”. Let us only give here the facts corresponding to
known manuscripts (an extended history appears for instance in [45]).
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Francesco Maurolico (1494–1575), an Italian priest, who lived in Messina,
Sicily was interested in planar representations of the five Platonic poyhedra. In his
manuscript “Compaginationes solidorum regularium” (1537), Maurolico observed
the so-called “Euler formula” for Platonic solids (see the very documented thesis by
Claudia Addabbo [1, Pages 291 and 295]).

Formula (Maurolico, December 26, 1537) “Item manifestum est in unoquoque
regularium solidorum, numerum basium coniunctum cum numero cacuminum
conflare numerum, qui binario excedit numerum laterum.”
“In the same way it is evident that, in each regular solid, the number of faces added
to that of the vertices exceeds by two the number of edges,” i.e. Consider a Platonic
solid with V vertices, E edges and F faces, then

V − E + F = 2. (5.1)

Descartes died in Stockholm on February 11, 1650 without having published his
manuscript De solidorum elementis. The manuscript suffered many mishaps (see
[26]) and finally the original was lost. Fortunately Leibniz made a copy of it during
a stay in Paris (1672–1676) with the (unfinished) project of publishing the works of
Descartes.

In the year 1883, Foucher de Careil, France’s Ambassador to Austria-Hungary
and author of several articles on Descartes and Leibniz discovered in Hanover,
between Leibniz’s documents the copy of Descartes manuscript “under the ancient
dust that covered them”. The Descartes’ Theorem says:

Theorem 5.2.1 (Descartes) The sum of the angles of all faces of a convex polyhe-
dron is equal to 2(V − 2)π where V is the number of vertices.

The book by Pierre Costabel [92] provides a critical, annotated and documented
edition of the Descartes manuscript.

On November 14, 1750, in a letter to his friend Christian Goldbach, Leonhard
Euler mentioned his discovery:

Formula (Euler, 1750) In a convex polyhedron with V vertices, E edges and F
faces, one has

V − E + F = 2. (5.2)

The proof of the formula, given by Euler suffers a flaw (it was corrected
in Francese and Richeson [124]). Adrien-Marie Legendre (1752–1833) gave the
first correct proof using a projection of the polyhedron on a sphere [198]. In
1811, Augustin-Louis Cauchy provided the first combinatorial proof of the formula
[83, 84]. The Cauchy’s proof was criticized [192, 199]. A proof using tools known
at the Cauchy’s time is given in Brasselet and Thủy Nguyễn [57].

In fact, it is easy to see that Descartes’ Theorem is equivalent to Euler Formula
(see for instance [57]).
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In 1885, Poincaré generalized the Euler characteristic: For any finite CW-
complex (or triangulated space)X of dimension n, the Euler-Poincaré characteristic
is defined as the alternating sum

χ(X) = k0 − k1 + k2 + · · · + (−1)nkn

where ki is the number of i-dimensional cells (or simplexes). The sum is indepen-
dent of the cell decomposition (or of the triangulation) of X.

5.3 Poincaré-Hopf Theorem

In 1899 Henri Poincaré [256] for surfaces and in 1927, Heinz Hopf [167] for
higher dimensions, show that the Euler-Poincaré characteristic of a compact smooth
manifoldM is the obstruction to the construction of a vector field tangent to M .

Theorem 5.3.1 (Poincaré-Hopf) Let M be a compact manifold with boundary
∂M , and let v be a continuous vector field tangent toM with isolated singularities.
Denote by ai ∈ Sing(v) the singularities of v and I (v, ai ) their indices. Then, if v
is pointing outwards ofM along ∂M ,

χ(M) =
∑

ai∈Sing(v)
I (v, ai)

and if v is pointing inwards ofM along ∂M ,

χ(M)− χ(∂M) =
∑

ai∈Sing(v)
I (v, ai).

Many proofs of the Poincaré-Hopf Theorem appear in the literature. One will
mention the one in Milnor’s book [223], using non-degenerated singularities. This
proof can be slightly simplified (for any indices) using the method by Marie-Hélène
Schwartz (see Sect. 5.12.3 and Brasselet and Thủy Nguyễn [58]).

5.4 Poincaré and Alexander Duality Theorems

Poincaré and Alexander duality Theorems are useful in the generalization of
characteristic classes to singular varieties (Sect. 5.14.1). In particular the dual cell
decomposition used by Poincaré to prove his famous duality Theorem [256] will be
used in Sect. 5.12.1 (also see in this volume [312, §1.2.2 and 1.9.3]).
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5.4.1 Poincaré Duality Theorem

One denotes by (K) a triangulation of an n-dimensional triangulated manifold M .
A dual cell decomposition of M is obtained in the following way: Considering a
barycentric subdivision (K ′) of (K), the barycenter of a simplex σ ∈ K is denoted
by σ̂ . Every simplex in (K ′) can be written as

(̂σi1 , σ̂i2 , . . . , σ̂ip )

where σi1 < σi2 < · · · < σip , the symbol σ < σ ′ meaning that σ is a face of σ ′.
The dual cell of a simplex σ , denoted by d(σ), is the union of all (closed)

simplexes τ in (K ′) such that τ ∩ σ = {̂σ }. That is the union of (geometric)
simplexes on the form (̂σ , σ̂k1 , . . . , σ̂ki ) with σ < σk1 < · · · < σki .

In a manifold, the dual cells satisfy the nice properties (see for instance [231]).

Lemma 5.4.1

1. The dual cell of an i-simplex is an (n − i)-cell, homeomorphic to the unit ball
B
n−i ⊂ R

n−i and its boundary is homeomorphic to the corresponding sphere
S
n−i−1.

2. The set of dual cells provide a cell decomposition (D) of M , called dual cell
decomposition associated to the barycentric subdivision (K ′) of (K).

The unique intersection point σ̂ = d(σ) ∩ σ is the barycenter of d(σ). It is also
the barycenter of σ and will be denoted by

d̂ = d̂(σ ). (5.3)

The cellular decomposition (D) of the manifold M provides the manifold a
structure of CW-complex and allows to compute homology or cohomology.

Let us assume M = |K| oriented, that is all n-simplexes are given a compatible
orientation. Other simplexes are arbitrarily oriented. One gives to every cell d(σ) the
orientation such that orientation of d(σ) followed by orientation of σ is orientation
ofM (see Brasselet [40] and Suwa [309]).

• The elementary (D)-cochain whose value is 1 at the cell d(σ) and 0 at other cells
of (D) is denoted by d∗(σ )

• The groups of i-dimensional simplicial (K)-chains with integer coefficients are
denoted by C(K)i and the groups of k-dimensional simplicial (D)-cochains with
integer coefficients by Ck(D).

Let M be a compact oriented n-dimensional manifold, then one has, for every i,
a chain isomorphism:

D : Cn−i(D) (M;Z) −→ C
(K)
i (M;Z), (5.4)



5 Characteristic Classes 313

that is defined on the elementary elements as

d∗(σ ) �→ σ.

Let cp a p-dimensional (D)-cell, the coboundary of the elementary cochain cp is
the sum

δ(cp) =
∑
[cp, cp+1

i ] cp+1
i ,

where the sum is over the (p + 1) cells cp+1
i whose boundary contains the cell cp

and the incidence sign [cp, cp+1
i ] is +1 if cp appears in the boundary of cp+1

i with
orientation of the boundary and−1 otherwise.

The chain isomorphism 5.4 commutes with coboundary and boundary, and this
provides one of the possible forms of Poincaré duality:

Theorem 5.4.2 (Poincaré Isomorphism) [256] Let M be a compact oriented n-
dimensional manifold, the morphism (5.4) induces, for every i, 0 ≤ i ≤ n, an
isomorphism

Hn−i (M;Z) −→ Hi(M;Z) ,

which is the cap-product with the fundamental class [M] ∈ Hn(M;Z).

5.4.2 Alexander Duality Theorem

LetM be an n-dimensional triangulated manifold. We consider a triangulation (K)
ofM compatible with a compact subspace X.

Definition 5.4.3 A cellular tube T around X in M is the union of (closed) cells
(D) which are dual of (K)-simplexes situated in X.

This notion generalizes the concept of tubular neighbourhood of a submanifold
X. If X is a submanifold, then T is a bundle around X, whose fibers are discs. In
general (in the singular situation), that is not the case.

Remark 5.4.4 A cellular tube T aroundX has the following properties:

(i) T is a compact neighbourhood of X, containing X in its interior and its
boundary ∂T is a retract of T \X.

(ii) T is a regular neighbourhood of X, thus T retracts to X.

The Alexander isomorphism

Hn−i (M,M \X)→ Hi(X)
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is defined in the following way (see [40], also see [312]): By definition, T is the
union of all cells d(σ) which are duals of simplexes σ in X. The boundary ∂T of
T is the union of the dual cells d(τ) in T such that τ is not a simplex in X, that
implies d(τ) ∩X = ∅.

Elements of the relative group of cochains

Cn−i(D) (T , ∂T ) (5.5)

are linear combinations (with integer coefficients) of elementary (n−i)-dimensional
(D)-cochains d∗(σ ) whose value is 1 on the cell d(σ), and 0 on other cells.

The correspondence

Cn−i(D) (T , ∂T )→ C
(K)
i (X) (5.6)

which associates to an elementary (n − i)-dimensional (D)-cochain d∗(σ ) the i-
dimensionalK-chain σ is an isomorphim and induces the isomorphism

Hn−i (T , ∂T )→ Hi(X).

Considering the isomorphisms

Hn−i (T , ∂T ) ∼= Hn−i (T ,T \X) ∼= Hn−i (M,M \X) (5.7)

the first one obtained by retraction of T \X on ∂T and the second by excision, the
Alexander isomorphism is the resulting composition:

Hn−i (M,M \X) −→ Hi(X). (5.8)

5.5 Stiefel-Whitney Classes

5.5.1 Stiefel Manifolds

In the real case, the Stiefel manifold, denoted by Vr(Rn) is the set of r-frames in R
n,

that is the set of ordered r-uples (v1, . . . , vr ) of r linearly independent vectors in R
n.

(see Steenrod [304] where this manifold is denoted by V ′r,n). The Stiefel manifold
Vr(R

n) is homotopic to

Vr,n = O(n)/O(n− r).
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The natural map

Vr,n→ Gr(R
n) = O(n)/(O(n− r)×O(r))

is a principal fiber bundle.
The Grassmannian manifoldGr(Rn) is the set of r-dimensional linear subspaces

in R
n. The tautological bundle (also called canonical bundle) ηnr overGr(Rn) is the

set of all pairs {(P, v)} where P is an element of Gr(Rn) and v a vector in P . The
bundle

ηnr → Gr(R
n) (5.9)

is a vector bundle with rank r , associated to the bundle Vr,n → Gr(R
n), and with

fiber Rr . The bundle is also the universal bundle for vector bundles of rank r .
The bundle

η = η2
1 → G1R

2) = RP
1 ∼= S

1 (5.10)

is the tautological line bundle.
The bundle Vr(TM) of r-frames tangent to a n-differentiable manifold M , is

the set of all pairs (x, (v1, . . . , vr )) where x is a point of M and (v1, . . . , vr ) is a
r-frame in the fiber TxM over x. That is the fiber bundle over M whose fiber at x
is the manifold Vr(TxM) of all r-frames in TxM . The “typical” fiber is the Stiefel
manifold Vr(Rn). Its homotopy groups are [304, §25.6]:

πi(Vr(R
n)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for p < n− r + 1

Z for p = n− r + 1 odd or p = n if r = 1

Z2 for p = n− r + 1 even and r > 1.

(5.11)

5.5.1.1 Stiefel Manifolds in Engineering and Other Sciences

Stiefel manifolds are used in engineering, image and video-based recognition,
econometrics, statistical signal processing etc. The main problem studied in this
context consists of estimating the state of a stochastic differential equation in a
Stiefel manifold. A partial list of references is [85, 205, 206, 321, 326, 345].

5.5.2 Stiefel-Whitney Classes

The Stiefel-Whitney classes were defined in 1935, at the same time and indepen-
dently, using obstruction theory, by Stiefel [305] (see [304, §39]) and by Whitney
[329, 330] (see [304, §38]). Stiefel used the tangent bundle of a manifold and
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obtained important results, including the fact that a closed orientable manifold of
dimension 3 is parallelizable. Whitney used the same strategy as Stiefel, applying it
to arbitrary sphere bundles. The notion of sphere bundle, due to Whitney, leads to
algebraic operations on bundles (also see Wu [337, 339]). We follow the description
given by Steenrod ([304], part III).

The pth (cohomology) Stiefel-Whitney class of M , denoted by wp(M), is
defined as the obstruction to constructing a tangent r-frame overM , that is a section
of Vr(TM) with r = n− p + 1.

Using the result in formula (5.11) one can construct such an r-frame by choosing
any r-frame v(r) on the 0-skeleton of the cell decomposition (D), then extending
it without zeroes till the obstruction dimension p = n − r + 1. Then v(r) has no
singularity on the (p − 1)-skeleton and isolated singularities on the p-skeleton of
(D). Given the r-frame v(r) on the boundary of each p-cell d , one extend v(r) on d
with a singularity at the barycenter d̂ of index

I (v(r), d̂) = [(v(r))p−1|∂dp ] ∈ πp−1(Vr(R
n)).

Since πp−1(Vr(R
n)) is either infinite-cyclic or isomorphic to Z2, the coefficients

can be reduced modulo 2 obtaining I (v(r), d̂) ∈ Z2. For alternative definitions
of index, see [74, 113]. That defines a p-cochain

∑
I (v(r), d̂) d∗ in Cp(D,Z2),

by prescribing that its value on each p-cell d is I (v(r), d̂). According to general
obstruction theory [170, 304], the cochain is a cocycle and defines an element
wp(M) in Hp(M;Z2).

Definition 5.5.1 The p-th Stiefel-Whitney class of the differentiable manifold M ,
denoted by wp(M) ∈ Hp(M;Z2) is the class of the primary obstruction cocycle
corresponding to constructing an r-frame tangent toM .

By the general obstruction theory [170, 304], the resulting classes do not depend
on the choices made in the construction.

Interesting comments about Stiefel classes [304, §39] and Whitney classes [304,
§38] were provided by Steenrod, as well as comments on the contributions by Thom
and Wu.

In the particular case r = 1, one can use integer coefficients. The evaluation
of wn(M) ∈ Hn(M;Z) on the fundamental class [M] of M is the Euler-Poincaré
characteristic ofM .

5.5.3 Combinatorial Definition

A combinatorial definition of the Stiefel-Whitney classes was already conjectured
by E. Stiefel [305]. Then H. Whitney wrote a proof for a book which did not appear.
G. Cheeger (1968) provided a sketch of proof using different techniques [87] and
the complete proof appeared in a paper by Halperin and Toledo [162].
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Parts of the proof have been obtained independently by Sullivan [307] who uses
the results in a more general situation (also see [139, 140]).

Let M be a differentiable n-manifold without boundary and K a differentiable
triangulation of M . Let K ′ denote the first barycentric subdivision of K . Each K ′-
simplex τ is written in an unique way as τ = 〈̂σ0, · · · , σ̂k〉 where σ0 < · · · < σk ∈
K (see Sect. 5.4.1). Each simplex τ is given the orientation for which 〈̂σ0, · · · , σ̂k〉
is a positive ordering of the vertices.

An infinite integral simplicial k-chain on M is a formal infinite integral combi-
nation

∑
λσσ where the sum runs over the k-simplexes of K ′, oriented with the

previous order.

Theorem 5.5.2 [162] The infinite chain

wk(M) =
∑

σ0<···<σk
〈̂σ0, · · · , σ̂k〉 (5.12)

is a (mod 2)-cycle. It represents the kth (mod 2) Stiefel-Whitney homology class of
M .

In [129], J.H.G. Fu and C. McCrory give a new proof of the combinatorial
formula for Stiefel-Whitney classes.

5.5.4 Grassmannian and Schubert Cycles

Lev Pontryagin [257, 258, 341] introduced the idea of defining Stiefel-Whitney
classes as images of the cohomology classes of Grassmannian manifolds with coef-
ficients in Z2. He considered cellular decomposition of the “special” Grassmannian
G̃r,n of oriented vector subspaces of dimension r in R

n. The Pontryagin cellular
decomposition goes onto the one of Gr(Rn) constructed by Ehresmann [115].

The Ehresmann cellular decomposition uses the algebraic subvarieties of the
Grassmannian variety introduced by H. Schubert in 1889 [274] (see [102, Part 2,
Chapter V, §4 B ]). For every k < n a Schubert symbol (μ) of order k is a sequence
of k integers μi such that

1 ≤ μ1 < μ2 < · · · < μk ≤ n. (5.13)

Denoting by R
h the vector subspace of R

n spanned by the first h vectors of the
canonical basis, to each Schubert symbol (μ), one associates the subset e(μ) of
Gr(R

n) consisting of the r-dimensional vector subspaces L such that

dim(L ∩ R
μi ) = i, dim(L ∩ R

μi−1) = i − 1 for 1 ≤ i ≤ k.
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Ehresmann shows that the homology groups Hk(Gr(Rn);Z2) are free Z2-modules
whose basis consists of homology classes of the Schubert varieties e(μ), which are
the closure of the subsets e(μ) such that (μ1− 1)+ (μ2− 2)+ · · · + (μk − k) = k.

Wu Wen-Tsün, in his French thesis [338], presented in a simpler way the
Pontryagin construction. Dieudonné, in [102, Part 3, Chapter IV, §1 C ], provides a
nice account of the Wu Wen-Tsün construction. Wu provides also a computation of
Steenrod squares in Grassmannian varieties (Sect. 5.6.1, also see [43, 336, 340]).

Chern considered the tautological bundle ηnr with basisGr(Rn) (see formula 5.9).
Using differential forms, Chern determined in 1947 [89] the cohomology algebra
H ∗(Gr(Rn);Z2) and proved that the Stiefel-Whitney classes of the tautological
bundle ηnr form a system of generators for that algebra.

5.5.5 Axiomatic Definition

The Stiefel-Whitney classes of a manifold were defined as obstruction classes of
the tangent bundle E = TM and the associated bundles of frames Vr(TM). The
obstruction theory applies as well to any real vector bundle E over a triangulated
space X. Note that X does not need to be smooth and can be a CW -complex.

In the same way as for the tangent bundle of a manifold, we construct r
everywhere independent sections of the bundleE with n-dimensional fiber, without
obstruction on the (n − r)—skeleton of the given CW-structure of X and with
singularities of index I (v(r), d̂) ∈ πp−1(Vr(R

n)) on the p = n − r + 1 cells d .
The data

d �→ I (v(r), d̂)

define a cocycle in Cp(X;πp−1(Vr(R
n)). and a class ŵp(E) in the p-th simplicial

(or cellular) cohomology ofX with twisted coefficients, the coefficient system being
the homotopy group πp−1(Vr(R

n)).

ŵp(E) ∈
{
Hp(X;Z) if p is odd or p = n,

Hp(X;Z2) if p is even and p < n.

Whitney proved that ŵp(E) = 0 if and only if E, when restricted to the p-th
skeleton of X, admits r = (n− p + 1) linearly-independent sections.

Definition 5.5.3 The Stiefel-Whitney classes of the real vector bundle E with n-
dimensional fiber, on the triangulated (or CW) space X are the reduced classes
modulo 2 of ŵp(E),

wp(E) ∈ Hp(X;Z2).
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In his 1940 paper, Whitney states (for sphere bundles) the formula providing
classes wp(E ⊕ E′) of the sum of two bundles E and E′ over the same base space
B.

wp(E ⊕ E′) =
∑

i+j=p
wi(E) & wj (E′) (5.14)

Whitney writes that, for p ≥ 4, the proof is very hard, and gives little information
on the proof. He proved, in 1941, the formula for line bundles.

In 1948, Chern Shiing Shen and Wu Wen-Tsün published the first complete
proofs of the formula (5.14) for vector bundles, both in the same volume of Annals
of Mathematics [88, 334]. The Wu’s proof is very well summarized in Dieudonné
[102, p. 424].

The formula (5.14) is one of the axioms entering in the axiomatic definition of
Stiefel-Whitney classes (see [166, 224]).

Definition 5.5.4 Axiomatic definition of (cohomology) Stiefel-Whitney classes.
LetE be a real vector bundle of (finite) rank n over a (paracompact) spaceX. The

(total) Stiefel-Whitney characteristic class w(E) ∈ H ∗(X;Z2) of a finite rank real
vector bundle E is the unique class such that the following axioms are fulfilled.

1. One has w(E) = 1 + w1(E) + · · · + wn(E), where wi(E) ∈ Hi(X;Z2) and
wi(E) = 0 if i > n.

2. (Naturality) If f : Y → X is a continuous map, then f ∗(w(E)) = w(f ∗(E))
where f ∗(E) is the “pull-back” vector bundle on Y .

3. (Whitney-Wu sum) If E and E′ are two bundles over X, then

w(E ⊕ E′) = w(E) ∪ w(E′).
4. Let η (see formula 5.10) be the tautological line bundle over RP1 = S

1, then
w1(η) is the non zero element in H 1(S1;Z2).

Note that, by definition, w0(E) = 1.

5.5.6 Stiefel-Whitney Class and Thom Class

Let E be a rank-n-dimensional vector bundle over a paracompact space X with
projection map π : E → X. Let E∗ = E \ s0(X) be the complement of the zero
section in E. Then there exists a unique cohomology class uE ∈ Hn(E,E∗;Z2),
called the Thom class, such that uE |(Fx,Fx\{0}) �= 0 for all fibers Fx, (also see [312,
§1.9]).

The Thom isomorphism

� : Hi(X;Z2)→ Hi+n(E,E∗;Z2)

is defined by �(x) = π∗x ∪ uE . One has�(1) = uE .
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Let 1 ∈ H 0(X;Z2), then the i-th Stiefel-Whitney class wi(E) ∈ Hi(X;Z2) is
equal to

wi(E) = �−1Sqi�(1). (5.15)

where the Steenrod squares Sqi : Hk(A,B;Z2)→ Hk+i (A,B;Z2) are defined in
[303] (see [82, exp. 14 and 15]). That is

�(wi(E)) = π∗wi(E) ∪ uE = Sqi(uE).

5.5.6.1 Application: The Thom Theorem

Two manifolds M and N are called cobordant if there is a compact manifold W
whose boundary is the disjoint union ofM andN , i.e. ∂W = M �N . All manifolds
cobordant to a fixed given manifoldM form the cobordism class ofM . Cobordism
is a fundamental equivalence relation on the class of compact manifolds of the same
dimension.

The Stiefel-Whitney numbers of an (unoriented) closed n-dimensional manifold
M are defined as

〈
wi1 (M) ∪ · · · ∪ wik (M), [M]

〉
∈ Z2 (5.16)

for any collection (i1, · · · , ik) of integers such that i1 + · · · + ik = n.
These numbers are known to be cobordism invariants. It was proved by Lev

Pontryagin [258] that ifM is the boundary of a smooth compact (n+1)-dimensional
manifold, then the Stiefel-Whitney numbers ofM are all zero. Later on, the converse
was proved by René Thom [318].

Theorem 5.5.5 [318] A smooth compact manifold M is the boundary of some
smooth compact (unoriented) manifold if and only if all the Stiefel-Whitney numbers
ofM vanish.

Stong in [306] introduced and studied a notion of cobordism for maps f : X→
Y of closed smooth manifolds. He defined Stiefel-Whitney numbers for a map and
presented a formula using cohomology groups with Z2 coefficients to prove that
two maps are cobordant if and only if they have the same characteristic numbers.

5.6 (Real) Wu Classes

Let X be a topological space with fundamental class [X] ∈ Hn(X;Z2) and such
that one has a Poincaré isomorphism Hn−i (M;Z2) −→ Hi(M;Z2) given by z �→
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z ∩ [X]. That is the case of n-dimensional compact manifold and more generally
Z2-homology manifolds.

A Z2-homology manifold is a locally compact topological space X such that,
for all x ∈ X, the link2 of x has the same Z2 homology as an (n − 1)-sphere, or
equivalently,

Hp(X,X \ {x};Z2) =
{

0 if p �= n,
Z2 if p = n.

Via the Kronecker pairing

〈·, ·〉 : Hi(X;Z2)×Hi(X;Z2) −→ Z2,

there is an isomorphism

Hom(Hn−i (X;Z2),Z2) ∼= Hn−i (X;Z2) ∼= Hi(X;Z2).

Under this isomorphism, the homomorphism x �→ 〈Sqi(x), [X]〉 from
Hn−i (X;Z2) to Z2 corresponds to a well defined cohomology class vi(X) ∈
Hi(X;Z2), such that

Sqi(x) = vi(X) ∪ x, for any x ∈ Hn−ic (X;Z2) (5.17)

(cohomology with compact supports).
The class vi (X) is called the i-th Wu class of X. In the original papers by Wu

[333, 334] the class was denoted Ui (also see Milnor [224, §11]). One says that the
Wu class vi is the class that represents Sqi under the cup product.

According to a “result of Wu” (Wu wrote and confirmed to me that this result
comes from Cartan), in the case of an n-dimensional orientable manifold M , then
v2k+1(M) = 0 for all k.

5.6.1 Siefel-Whitney Classes and Wu Classes

Let X be an n-dimensional Z2-homology manifold, Wu defined the classes

w̃i (X) =
i∑

k=0

Sqk(vi−k(X)), for 0 ≤ i ≤ n. (5.18)

2 Given a triangulation of X for which x is a vertex, the link of x is the union of simplexes τ which
are faces of simplexes σ whose x is a vertex but such that x is not a vertex of τ .
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These classes are denoted by Wi and called W -classes in the original paper by Wu
[333].

Theorem 5.6.1 (Wu [333]) Let M be a compact n-dimensional manifold. Then
the classes w̃i (M) coincide with the Stiefel-Whitney classes wi(M) of the tangent
bundle toM . One has

wi(M) = w̃i (M).

Let X be an n-dimensional Z2-homology manifold, the Steenrod squares of
Stiefel-Whithey classes are given by the famous Wu’s formula [335]

Sqk(wi) =
k∑

t=0

(
i − k + t − 1

t

)
wk−t ∪ wi+t . (5.19)

Wu himself defined other characteristic classes for cohomology with coefficients
in Fp = Zp = Z/pZ for p an odd prime. These classes played an important role in
the developments of the theory of fibrations.

Atiyah and Hizebruch [25] (also see [185]) generalized the notion of Wu classes.
The Yoshida-Stong formulae [344] provide an expression of the “Universal Wu
class” vi in terms of the Stiefel-Whitney classes modulo an ideal.

5.6.2 Wu Classes in Mathematical Physics

The first mention of Wu classes in Mathematical Physics appears in the paper of
Hopkins and Singer [168] where Wu-structures are defined. Also see the paper by
Belov-Moore [36] where the authors extend the work of Witten [332] which uses the
fact that on eight-dimensional Spin varieties there is a degree 4 characteristic class
which lifts the Wu class in degree 4. However, Witten does not mention explicitly
the Wu class.

From there, the notion of Wu-structure has been defined in Mathematical Physics
by various authors (see [168, 230, 272]). Roughly speaking, the degree 2 Wu-
structures are spin structures on oriented manifolds. They often appear in Physics
but their generalization in higher degree is not so frequent.

In the work of Hisham Sati [272], the Wu classes and Wu structures appear in
string theory. In the work of Samuel Monnier [230], the Wu structures appear in
order to generalize the theories of Chern-Simons spin in high degree.

Wu classes and Wu structures relative to a local system are defined and studied
in [230]. The fact that on (8k + 2)-spaces, the Wu class v4k+2 always vanishes is
useful for the study of M5-branes as well as type IIB-string theory [273].
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5.7 Chern Classes

5.7.1 Complex Stiefel Manifolds

In the complex case, the complex Stiefel manifold, denoted by Vr(Cn) is the set of
r-frames in C

n, that is the set of ordered r-uples v(r) = (v1, . . . , vr ) of r linearly
independent vectors in C

n. The Stiefel manifold Vr(Cn) is homotopic to

Wr,n = U(n)/U(n− r).

The fiber bundle Wr,n → Gr(C
n) is a principal bundle with fiber and structural

group U(r).
The tautological bundle (also called canonical bundle) γ nr over the complex

Grassman manifold Gr(Cn) is the set of all pairs {(P, v)} where P is an r-plane
in C

n and v a vector in P . One has the bundle projection

γ nr → Gr(C
n).

If r = 1, thenG1(C
n) is the projective space CPn−1 and the tautological bundle is a

line bundle

γ n1 → CP
n−1, (5.20)

also denoted by O(−1).
In the complex case, one defines Vr(TM), the bundle of complex r-frames

tangent to the complex n-manifoldM , i.e. the set of all pairs (x, (v1, . . . , vr )) where
x is a point of M and v(r) = (v1, . . . , vr ) is a complex r-frame in the fiber TxM
over x. That is the fiber bundle whose fiber at x is the manifold Vr(TxM) consisting
of all complex r-frames in TxM . The “typical” fiber is the complex Stiefel manifold
Vr(C

n).

5.7.2 Chern Classes by Obstruction Theory

In his fundamental paper [88], Chern provides several equivalent definitions of
Chern classes for complex Hermitian manifolds, among them the definition by
obstruction theory. As Chern wrote, the definition of Chern classes by obstruction
theory in the complex case is similar to the real case, even simpler.

Let M denote an analytic complex manifold of (complex) dimension n and TM
the complex tangent bundle to M . The pth Chern class of M , denoted by cp(M),
is defined as the obstruction to constructing a complex r-frame over M , that is a
section of Vr(TM) or a set of r linearly independent complex vector fields tangent
toM , with p = n− r + 1.
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Using the computation of the homotopy groups of the Stiefel complex manifold
[304, §25.7],

πi(Vr(C
n)) =

{
0 for i < 2n− 2r + 1

Z for i = 2n− 2r + 1,
(5.21)

one can construct an r-frame by choosing any r-frame v(r) on the 0-skeleton of
the cell decomposition (D), then extending it without zeroes till the obstruction
dimension

2p = 2(n− r + 1). (5.22)

That means that v(r) has no singularity on the (2p − 1)-skeleton and isolated
singularities on the 2p-skeleton of (D). The r-frame v(r) defined on the boundary
of each 2p-cell d , can be extended on d with a singularity at the barycenter d̂ of
index

I (v(r), d̂) = [(v(r))2p−1|∂d2p ] ∈ π2p−1(Vr(C
n)) = Z.

For alternative definitions of index, see [74, 113, 312]. The generators of
π2p−1(Vr(C

n)) being consistent (see [304, §41.3]), one can define a 2p-cochain∑
I (v(r), d̂) d∗ in C2p(D,Z) whose value on each 2p-cell d is I (v(r), d̂). Accord-

ing to general obstruction theory, the cochain is a cocycle and defines an element
cp(M) in H 2p(M;Z).
Definition 5.7.1 The p-th Chern class of M , denoted by cp(M) ∈ H 2p(M;Z) is
the class of the obstruction cocycle corresponding to the construction of a complex
r-frame tangent toM .

By the general obstruction theory, the resulting classes do not depend on the
choices made in the construction.

In the particular case r = 1, the evaluation of cm(M) on the fundamental class
[M] ofM yields the Euler-Poincaré characteristic ofM .

If the cell decomposition (D) is obtained by duality of a triangulation (K) ofM ,
each 2p-cell d = d(σ) in (D) is dual of an 2(r − 1)-simplex σ in (K). By Poincaré
duality (Sect. 5.4.1),

H 2(n−r+1)(M;Z) −→ H2(r−1)(M;Z)

the image of d∗ is σ and image of cp(M) is the 2(r − 1)-homology Chern class,
denoted by cr−1(M). A cycle representing cr−1(M) is given by

∑

dimσ=2(r−1)

I (v(r), d̂(σ ))σ. (5.23)
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5.7.3 More Definitions

5.7.3.1 By Chern

In his fundamental article [88], Chern gave, in particular, the definitions of classes in
terms of Schubert cycles, differential forms, obstruction cocycles, differential forms
of transgression.

The context of his first definition is the one of the complex sphere bundle. The
context of his second definition is the one of fiber bundles in which Chern considers
sections which are ordered sets of r linearly independent complex vectors (our
context in Sect. 5.7.2). The context of the third definition is the one of sections
which are ordered sets of r mutually perpendicular vectors of the sphere. Chern’s
observation (see [88, p. 101 and 103]) is that the three contexts are equivalent for
the definition of characteristic classes of a complex manifold.

The first definition given by Chern uses two results, the first one is the construc-
tion of Charles Ehresmann (Chern’s Theorem 3) describing Schubert varieties as the
basis of cycles for complex Grassmannian manifolds. The second one (proved by
Chern in the Theorems 1 and 2) shows that the Grassmannian of suitable dimension
is a classifying space for (sphere) bundles of given rank.

Chern considers H(n,N) the Grassmannian manifold of complex n planes in
C
n+N which is therefore the one previously denoted by Gn(Cn+N).

Chern provides a first definition of classes (Chern’s Theorem 5), considering
suitable Schubert varietiesZr of dimension 2(Nn−n+r−1) to which he associates
invariant differential forms�r of degree 2p = 2(n− r + 1) such that, for any cycle
ζ of dimension 2p one has

KI(ζ,Zr) =
∫

ζ

�r (5.24)

where the Lefschetz’s notation KI means the intersection Kronecker index, for
transverse cycles of complementary dimensions.

LetM be a complex manifold of complex dimension n, if f : M → H(n,N) is
the classifying map (Chern’s Theorem 1), then the Chern classes of M are image,
by the map f ∗ : H 2p(H(n,N))→ H 2p(M), of the classes of the cocycles defined
by the invariant differential forms�r .

The second Chern’s definition [88, Theorem 7] is the one given in (§ 5.7.2, using
obstruction theory.

The third Chern’s definition [88, Theorem 8] introduces, for a bundle of complex
spheres S(n) over the complex manifoldM , the associated fiber bundles F (r)∗ over
M whose fiber at each point is the manifold U∗(n, r) of all ordered sets of r(1 ≤
r ≤ n) mutually perpendicular complex vectors of S(n).

Theorem 5.7.2 (Chern’s Theorem 8) Each of the cocycles γ of the Chern 2p =
2(n−r+1)-cohomology class ofM , has the following property. Under the projection
π : F (r)∗ → M , the cocycle γ ∗ = π∗(γ ) satisfy
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• there exists on F (r)∗ a (2n− 2r + 1)-cochain β∗, such that δβ∗ = γ ∗
• on each fiber of F (r)∗ over a point x ∈ M , one has, for each (2n− 2r + 1)-cycle
λ,

β∗(λ) = I (λ) (5.25)

where I (λ) is the index of the cycle λ in H2n−2r+1(F (r)∗|x) ∼= Z.

In Chap. 3, Sect. 3.3 of his article, Chern provides a version of the third definition
where γ ∗ and β∗ are explicit transgression differential forms. This property is very
useful in M.-H. Schwartz’s work.

5.7.3.2 By Gamkrelidze

In 1953, the Georgian mathematician Revaz Valerianovic Gamkrelidze, published,
in Russian, “Computation of Chern cycles of Algebraic Manifolds” mainly using
the Ehresmann decomposition of Grassmannian manifolds in terms of Ehresmann
cycles (see Sect. 5.5.4). The set

Gd,m = {(x, P )|x ∈ P,P is a d-plane in CP
m} (5.26)

is an algebraic manifold of dimension n = m+d(m−d). In [135, 136], Gamkrelidze
provides formulae for homological Chern classes of Gd,m in terms of Ehresmann
cycles

cn−k(Gd,m) =
k∑

i=0

(−1)i
(
n− i + 1
n− k + 1

)
[k − i/0, · · · , n− i, n− i + 2, · · · , n+ 1],

(5.27)

from which he deduces Chern cycles for algebraic manifolds (also see
Sects. 5.15.4.1 and 5.15.4.2).

5.7.4 Axiomatic Definition of Chern Classes

Let E be a complex vector bundle of (complex) rank n over a space X. In the same
way as in the real case, Chern classes cp(E) ∈ H 2p(X;Z), for p = 1, . . . , n can be
defined by obstruction theory. The total Chern class of E is denoted

c(E) = 1+ c1(E)+ · · · + cn(E).
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In his thesis, Wu Wen-Tsün extended the product formula (5.14) to Chern classes,

c(E ⊕E′) = c(E) & c(E′), (5.28)

The formula 5.28 is one of the axioms entering in the axiomatic definition of
Chern classes, due to Grothendieck [155, Theorem 1] (see also Hirzebruch [166]).

Definition 5.7.3 Axiomatic definition of Chern classes.
Let E be a complex vector bundle of rank n over a space X. There is a unique

class c(E) ∈ H ∗(X;Z) satisfying the following properties,

1. One has c(E) = 1 + c1(E) + · · · + cn(E), where ci(E) ∈ H 2i(X;Z) and
ci(E) = 0 if i > n.

2. (Naturality) If f : Y → X is a continuous map, then f ∗(c(E)) = c(f ∗(E))
where f ∗(E) is the “pull-back” complex vector bundle on Y .

3. (Whitney-Wu) If E and E′ are two bundles over X, then

c(E ⊕ E′) = c(E) ∪ c(E′).

4. Let γ be the tautological line bundle over CPn (cf 5.20). Then c1(γ ) = −[a].
Here, the class [a] ∈ H 2(CPn;Z) ∼= Z is the one whose image by Poincaré

isomorphism H 2(CPn) → H2n−2(CP
n) is the homology class of the hyperplane

CP
n−1 ⊂ CP

n oriented with the orientation induced from the complex structure.
The Chern classes of a complex analytic manifold M are Chern classes of the

tangent bundle TM . By the Poincaré isomorphism H ∗(M) → H2n−∗(M), one
obtains homology Chern classes c2n−∗(M) = c∗(M) ∩ [M].
Lemma 5.7.4 The Stiefel-Whitney homology classes of a complex analytic mani-
fold are the reduction modulo 2 of the homology Chern classes.

5.7.5 Definitions by C̆ech-de Rham and Chern-Weil Theories

Tatsuo Suwa provides in this volume [312, §1.5.2] the definition of Chern classes via
C̆ech-de Rham theory [312, §1.6.2] Chern-Weil theory adapted to C̆ech-de Rham
cohomology [312, §1.6]. and coincidence of definitions [312, Theorem 1.8.7].

5.7.6 Applications of Chern Classes in Mathematics
and Mathematical Physics

Chern classes have many applications in mathematics, for instance, in knot theory,
in Chern-Weil and Chern-Simons theories, theory of Calabi-Yau manifolds, and in
physics, for instance, in string theory, quantum field theory etc.
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The Chern-Weil theory considers topological invariants of vector bundles on a
smooth manifoldM in terms of connections and curvature. Characteristic classes are
represented in the de Rham cohomology ring ofM (see Suwa [311]). The powerful
theory leads to a proof of a Chern-Gauss-Bonnet theorem.

In theoretical physics, Chern classes appear mainly through the notion of Calabi-
Yau manifolds, important in particular in Hall effect, particle physics, superstring
theory, brane models, gauge theory, condensed matter physics, topological quantum
field theories, etc.

Chern-Simons theory [90] is applied in mathematics to knot invariants and three-
manifold invariants. In theoretical physics, the theory leads to a three-dimensional
topological quantum field theory mainly developed by Edward Witten [331]. The
Chern-Simons invariant is a secondary characteristic class induced by the second
Chern class of a principal bundle. This invariant allows to construct interesting
topological quantum fields in Mathematical Physics. On four-dimensional Spin
varieties, the second Chern class is necessarily even; this leads to the construction
of a “Spin” Chern-Simons invariant in dimension 3. This “Spin” Chern-Simons
invariant appears mainly in the modeling of the quantum Hall effect, in condensed
matter physics, and also in string theory. The generalization of the theory of Spin
Chern-Simons in higher degrees requires manifolds equipped with a Wu structure
of corresponding degree (see 5.6.2). These theories are defined on manifolds with
too high dimension for being relevant to condensed matter physics, but they appear
in String Theory [230, 272].

5.8 Pontryagin Classes

Pontryagin classes were defined in several ways, using obstruction theory (see
[258]), using Schubert cells decomposition (see [338, 341]), using relation with
Chern classes (see [224, section 15]).

The original Pontryagin definition [258] by obstruction theory was, on the n-
dimensional manifoldM to consider (n− 2i)+ 2 vector fields (sections) in general
position. The set of points a, where they span a subspace of dimension less or equal
to n − 2i in Ta(M), form a n − 4i-cycle. The cohomology dual class (by Poincaré
duality) is the Pontryagin class pi(M) ∈ H 4i(M;Z).

Note that, using different numbers of sections and dimensions, the Segre classes
can be defined in a similar way [116, Proposition 10.2].

The idea of considering characteristic classes defined by particular Schubert
varieties was introduced by Wu Wen Tsün in his thesis [338, 339]. Pontryagin con-
sidered the special Grassmannian manifold of oriented vector subspaces (see 5.5.4).
One can define Pontryagin classes pi of G̃n,r as classes of particular Schubert cycles
(see [102, Part III, Chap. IV, §1,C]), then for every vector bundle E overM which
is pullback of the Grassmannian vector bundle by g : M → G̃n,r , one defines the
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cohomology class

pi(E) = g∗(pi).

The definition of Pontryagin classes, given in Milnor [224, section 15] coincide
with the obstruction theory one, up to second order class. Considering the complex-
ification E ⊗ C of a real vector bundle E, one defines

pi(E) = (−1)ic2i(E ⊗ C) ∈ H 4i(M;Z).

The relation with Stiefel-Whitney classes is the following, if pi is the image of
pi by the natural homomorphism H 4i(M;Z) → H 4i (M;Z2), then [102, Part III,
Chap. IV, §1,C]

pi = w2i ∪w2i .

Chern-Weil theory provides a formula for the Pontryagin classes of a Riemannian
manifold, they are represented by differential forms that measure certain types of
curvature of the manifold. In [137] Gelfand and MacPherson provide a combinato-
rial formula for the Pontryagin classes of a triangulated manifold.

5.9 Hirzebruch Theory

The Hirzebruch theory provides a way to unify, in the case of manifolds, three
theories of characteristic classes, the Chern class, the Todd class and the Thom-
Hirzebruch class.

5.9.1 Arithmetic Genus

Let gi be the C-dimension of the space of holomorphic differential i-forms on the
n-dimensional complex algebraic manifoldM .

• g0 is the dimension of the space of holomorphic functions, i.e. the number of
connected components ofM ,

• gn is called geometric genus ofM ,
• g1 is called irregularity ofM ,

Definition 5.9.1 (Arithmetic Genus) [154, 166]. The arithmetic genus of M ,
denoted by χa(M) is defined as:

χa(M) =
n∑

i=0

(−1)igi
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Example 5.9.2 In the case of a complex algebraic curve, i.e. a compact (connected)
Riemann surface, thenM is homeomorphic to a sphere with g handles. Then g0 = 1
and g1 = gn = g. The arithmetic genus ofM is χa(X) = 1− g.

5.9.2 Todd Genus

The Todd genus τ (M) [166, 319] was defined (by Todd) in terms of Eger-Todd
fundamental classes (polar varieties—see 5.15.8), using results by Severi. The Eger-
Todd classes are homological Chern classes ofM .

Todd “proved” that

τ (M) = χa(M).

In fact, the Todd’s proof uses a lemma by Severi which was never completely
proved. The Todd result was proved by Hirzebruch, using other methods.

5.9.3 Signature

Definition 5.9.3 (Thom-Hirzebruch) Let M be a (real) compact oriented 4k-
dimensional manifold. Then the map

H 2k(M;R)×H 2k(M;R) −→ R, (x, y) �→ 〈x ∪ y, [M]〉 ∈ R

defines a symmetric bilinear form on the vector space H 2k(M;R), therefore, a
quadratic formQ.

The index (or signature) of M, [224] denoted by sign(M), is defined as the
index of Q, i.e. the number of positive eigenvalues minus the number of negative
eigenvalues.

René Thom (1954) showed that the signature of a manifold is a cobordism
invariant, and in particular is given by some linear combination of its Pontryagin
numbers [318]. Friedrich Hirzebruch (1954) found an explicit expression for this
linear combination as the L-genus of the manifold. Hirzebruch showed that the L
genus ofM in dimension 4k evaluated on the fundamental class [M] ofM is equal
to the signature sign(M) ofM .
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5.9.4 Hirzebruch Theory

The Hirzebruch theory (see [53]) uses multiplicative series and Chern roots.

Definition 5.9.4 The Hirzebruch multiplicative series) are defined, for y a parame-
ter, by

Qy(α) = α(1+ y)
1− e−α(1+y) − αy ∈ Q[y][[α]]

Three important cases are

• Q−1(α) = 1+ α y = −1
• Q0(α) = α

1− e−α y = 0

• Q1(α) = α
tanhα y = 1

Definition 5.9.5 [130, Remark 3.2.3] The Chern roots αi of the n-dimensional
complex manifoldM are formal indeterminates satisfying the relation

n∑

j=0

cj (M) tj =
n∏

i=1

(1+ αi t),

where cj (M) = cj (TM) ∈ H 2j (M;Z) are the Chern classes of the n-dimensional
complex manifoldM with (complex) tangent bundle TM .

Note that Fulton, in [130, Remark 3.2.3] provides several applications of the
use of Chern roots, in particular regarding Chern classes of the Whitney sum (see
formula 5.28 above) and of the tensor product of vector bundles.

Definition 5.9.6 The Todd-Hirzebruch classes

˜td(y)(TM) =
n∏

i=1

Qy(αi)

are defined for each value y of the parameter.
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In the three previous cases the Todd-Hirzebruch classes are

˜td(y)(TM) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗(TM) =
n∏

i=1

(1+ αi) y = −1

Chern class,

td∗(TM) =
n∏

i=1

( αi
1−e−αi ) y = 0

Todd class,

L∗(TM) =
n∏

i=1

( αi
tanhαi

) y = 1

Thom-HirzebruchL-class.

5.9.5 χy-Characteristic

Definition 5.9.7 For each value of the parameter y, the χy-characteristic of a
complex projective manifoldM is defined by

χy(M) =
∑

p≥0

⎛

⎝
∑

i≥0

(−1)i dimCH
i(M,

∧p
T ∗M

⎞

⎠ · yp.

In the three previous cases the χy -characteristics are

• y = −1 χ−1(M) = χ(M), Euler-Poincaré characteristic of M (by Hodge
theory),

• y = 0 χ0(M) = χa(M), arithmetic genus ofM (by definition)
• y = 1 χ1(M) = sign(M), signature ofM (by Hodge theory)

5.9.6 Hirzebruch Riemann-Roch Theorem

Theorem 5.9.8 (Hirzebruch Riemann-Roch Theorem) One has

χy(M) =
∫

X

˜td(y)(TM) ∩ [M] ∈ Q[y].
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In the three particular cases, the theorem specializes in

• χ(M) = ∫X c∗(TM) ∩ [M] y = −1
Euler—Poincaré characteristic ofM

Poincaré-Hopf Theorem
• χa(M) =

∫
X td

∗(TM) ∩ [M] y = 0
arithmetic genus ofM

Hirzebruch-Riemann-Roch Theorem
• sign(M) = ∫X L∗(TM) ∩ [M] y = 1

signature ofM
Hirzebruch signature Theorem

5.10 Second Part: Singular Varieties: To
Schwartz-MacPherson

In [220], M. Merle provides the main results as well as a historical survey at that
time (1983). The book by Jörg Schürmann [277] provides useful information on
singular spaces.

Definition 5.10.1 Let X be a topological space. We denote by X a filtration of X
by closed subsets

X ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−2 ⊂ Xn−1 ⊂ X = Xn (5.29)

A topological stratification of X is the data of a filtration X of X such that each
difference Vα = Xα − Xα−1 is either empty or a topological manifold of pure
dimension α. The connected components of the Vα are called the strata.

One refers to Trotman [320] for information on the different types of stratifica-
tions.

Definition 5.10.2 (See [315]) We says that the Whitney conditions are satisfied for
a stratification if, for any pair of strata (Vα, Vβ) such that Vα is in the closure of Vβ ,
one has

(a) if (xn) is a sequence of points in Vβ with limit y ∈ Vα and if the sequence of
tangent spaces Txn(Vβ) admits a limit T (in the suitable Grassmannian space)
when n goes to +∞, then Ty(Vα) is included in T .

(b) if (xn) is a sequence of points in Vβ with limit y ∈ Vα and if (yn) is a sequence
of points in Vα with limit y, such that the sequence of tangent spaces Txn(Vβ)
admits a limit T for n going to +∞ and such that the sequence of directions
xn yn admits a limit λ when n goes to +∞, then λ lies in T .
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5.11 Stiefel-Whitney Homology Classes

Let X be a locally compact n-dimensional polyhedron and K any triangulation of
X with first barycentric subdivision K ′. Sullivan and Akin [162, 307] showed that
the infinite simplicial chains (see 5.12)

wk(K
′) =

∑

σ0<···<σk
(−1)|σ0|+···+···|σk |〈̂σ0, · · · , σ̂k〉, 0 ≤ k ≤ n

where the sum runs over the k-simplexes of K ′, are mod 2-cycles if and only if
X is a Z2-Euler space, that is, for any point x ∈ X, the Euler number of the pair
(X,X \ {x}) satisfies

χ(X,X \ {x}) = 1 mod 2. (5.30)

For a subspace Z of a space Y , the Euler number of the pair (Y,Z) is defined by
χ(Y,Z) =∑k(−1)k dimHk(Y,Z;Q) whatever the sum makes sense.

The combinatorial expression of Stiefel-Whitney classes (5.12), is still valid for
Z2-Euler spaces (see [162, 307]).

J.H.G. Fu and C. McCrory ([126, 129]) provide a geometric (not involving
triangulations) definition of Stiefel-Whitney classes using a suitable definition
of the conormal cycle of an embedding of X in a smooth variety M (see the
Definition 5.16.4 given in Sect. 5.16.1). The resulting Stiefel-Whitney classes are
mod 2 reductions of the Chern-Schwartz-MacPherson classes (see 5.7.4 and 5.16).
Fu and McCrory show that the Stiefel-Whitney classes defined in this way satisfy
axioms similar to the Deligne-Grothendieck axioms for the Chern classes 5.15.11
(see the axioms in Theorem [203]).

In a series of articles A. Matsui [212–215] and A. Matsui and H. Sato [216, 217]
studied intensively generalizations and alternative descriptions of Stiefel-Whitney
homology classes.

5.12 Poincaré-Hopf for Singular Varieties – Marie-Hélène
Schwartz

The first proof of Poincaré-Hopf Theorem for singular varieties and the first
definition of Chern classes for singular varieties were given in 1964 by Marie-
Hélène Schwartz in the preprint [288] (Lille University), published in 1965 in two
“Notes aux CRAS” [289].

This section and the following one provide an extended survey on Marie-Hélène
Schwartz classes, their construction being less known but helpful in understanding
the meaning of the Chern classes of singular varieties. For a general overview see
[44] and for a complete exposition see [47].
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In the case of a stratified singular variety embedded in a manifold, the first notion
to consider is the one of stratified vector field. That is a vector field v such that
v(x) ∈ Tx(Vα) for every point x in a stratum Vα . The index of a stratified vector field
with isolated singularities can be defined by computing the index at a singular point
either in the stratum of the given point, or in the ambient manifold. Unfortunately,
in general, none of these definitions provide a Poincaré-Hopf Theorem. In the
following section, we will discuss explicit counterexamples. The main reason for
being a counterexample is that the index computed in the stratum and the index
computed in the ambient manifold are different.

5.12.1 The Use of Dual Cells Decomposition

Let M be an m-dimensional real analytic manifold equipped with a real semi-
analytic Whitney stratification {Vα} and X ⊂ M an n-dimensional real analytic
compact subset stratified by {Vα}. Denote by (K) a triangulation of M compatible
with the stratification, i.e. each open simplex is contained in a stratum (see
[201, 202]).

The first observation of Marie-Hélène Schwartz concerns the triangulations.
The obstruction dimension for the construction of a vector field tangent to M

is equal to m (5.22). In the same way, s is the obstruction dimension for the
construction of a vector field tangent to the s-dimensional strata. That means that if
one intends to construct a stratified vector field tangent to X using the triangulation
(K), then one will use simplexes of different dimensions according to the dimension
of the considered strata. An obstruction cocycle in that way will have different
dimensions according to the strata. That is an obstacle for the use of the triangulation
(K) in order to obtain a global Poincaré-Hopf Theorem.

The way M.-H. Schwartz used to overcome this obstacle is the following. Let
(D) be the dual cell decomposition of (K) associated to a barycentric subdivision
(K ′) (see Sect. 5.4). The triangulation (K) is compatible with the stratification, then
each (D)-cell is transverse to the strata. In particular, if d is an m-dimensional (D)-
cell and if Vα is a stratum of dimension s, then the dimension of the cell d ∩ Vα
is

dim(d ∩ Vα) = dim(Vα)

that is precisely the obstruction dimension for the construction of a vector field
tangent to Vα .

This observation leads naturally to the construction of a stratified vector field by
induction on the dimension of the strata, using the dual cell decomposition (D) and
not the triangulation (K).
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5.12.2 The Use of Radial Vector Fields

Example 5.12.1 below shows that the method explained in Sect. 5.12.1 is not
sufficient to obtain a Poincaré-Hopf Theorem. The second observation of M.-H.
Schwartz, based on that example and example 5.12.2, is that one has to consider
stratified vector fields which are radial in a sense to be made clear. That is precisely
M.-H. Schwartz’s construction of radial extensions of vector fields explained below.

Let v be a stratified vector field on M with isolated singularities. The index of
the stratified vector field v at a singular point a situated in the stratum Vα can be
defined as the index of the restriction I (v|Vα , a). The natural generalization of the
Poincaré-Hopf Theorem to singular varieties would be the following formula

χ(X) =?
∑

ak

I (v|Vα(ak ) , ak), (5.31)

where Vα(ak) is the stratum of X containing the singularity ak of v.
In general, the formula (5.31) is not true. Counterexamples are very useful in

order to understand the situation. The following counterexample has been given by
M.-H. Schwartz in [293, 6.2.1].

Example 5.12.1 As a first step, in R
2 with coordinates (x, y), one considers the

(closed) balls centered at the origin, B with radius 1 and B ′ with radius 2 (see
Fig. 5.1 (i)). We have χ(B ′) = +1.

Inside the ball B, one consider the continuous vector field v1(x, y) = (|x|, y).
One has v1(0) = 0, the point 0 is an isolated singularity of v1 with index
I (v1, 0) = 0.

Fig. 5.1 M.-H. Schwartz’s counter-example
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On the boundary ∂B ′, one consider the vector field v2(x, y) = (x, y) pointing
outwards. The vector field v2 can be extended inside B ′ as a continuous vector field
v which is v2 along ∂B ′, v1 inside B and which is tangent to the y-axis Y along Y .
For instance, consider (see Fig. 5.1 (i)).

v(x, y) =
⎧
⎨

⎩

(
2|x| − x + (x − |x|)√x2 + y2, y

)
on B ′ \ B

v1(x, y) = (|x|, y) inside B

The vector field v has an isolated singular point of index 0 at 0 and another
isolated singular point at a = (−3/2, 0) ∈ B ′ \ B. By the Poincaré-Hopf Theorem
with boundary (5.3.1), we have

χ(B ′) = +1 = I (v, 0) + I (v, a),

that implies I (v, a) = +1.
Remark that while I (v, 0) = 0, one has I (v|Y , 0) = +1.
In a second step, fold the picture along the y-axis, in order to obtain a singular

surface x2 − z3 = 0 in R
3 (see picture 5.1 (ii)). Then B ′ becomes a singular variety

X, with boundary and stratified by Y and X \ Y . The vector field v in B ′ defines a
stratified vector field, still denoted by v on X. It has two isolated singular points: 0
and a with indices I (v|Y , 0) = +1 and I (v, a) = +1. Then

χ(X) = +1 �= I (v, a)+ I (v|Y , 0) = 1+ 1 = 2.

So, the formula (5.31) is not true.
The vector field v is not “radial” at the singular point 0, in the sense that it is not

pointing outwards the unit ball centered at 0 in R
3.

The following example shows that formula (5.31) cannot be written by using the
indices in the ambient manifold and that one cannot take any vector field in order to
prove a Poincaré-Hopf Theorem for singular varieties.

Example 5.12.2 The pinched torus X in R
3 is obtained from the two-dimensional

torus T by collapsing a meridian Sa to the point a. The pinched point a is a singular
point of X, that is the singular set of the pinched torus.

A small ball B3(a) ⊂ R
3 centered at {a} intersects the pinched torus along two

meridians. The surface joining the two meridians, inside the ball, can be considered
either as a cylinder (in that case, we obtain the torus T ), or as a double cone, to
obtain the pinched torus.

The vector field v can be defined in the small ball B3(a) ⊂ R
3 with an isolated

singularity at {a} and such that its restriction to X \ {a} is tangent to X \ {a}. On the
one hand, such a vector field is non singular on the boundary ∂B3(a). On the other
hand, such a vector field can be obtained from a continuous vector field tangent to
the torus T .
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Let us consider two examples of such a vector field:

(a) Firstly, consider the unit vector field on the torus T , tangent to the parallels of
the torus, it has no singular point on the torus. This vector field can be extended
in a neighbourhood of the torus, by parallel extension, in order to be defined on
the boundary ∂B3(a) of the ball B3(a). The vectors v(x) for x ∈ ∂B3(a) are all
unit and “parallel” vectors, so the index I (v, a) is zero.

Now, pinch the torus along Sa . The vector field v does not change outside
the ball B3(a). Inside the ball, the length of the vector goes to zero with the
distance to the point a. We obtain a vector field on the pinched torus with only
one singular point with index I (v, a) = 0 (see Fig. 5.2 (i)).

In this case, the Poincaré-Hopf Theorem is not satisfied, indeed one has

χ(X) = 1 �= 0 = I (v, a).

(b) Consider now a radial vector field ρ, i.e. a vector field with an isolated
singularity at {a}, pointing outwards the ball B3(a) along ∂B3(a) and tangent
to the pinched torus X along the intersection X ∩ ∂B3(a). On the one hand,
the vector field ρ has index I (ρ, a) = +1 at a. On the other hand, ρ can
be extended on the pinched torus as a continuous vector field without other
singularities. Indeed, one can define an extension of ρ in X \ B3(a) such that
the angle of ρ(x) with the tangent line to the meridian containing x decreases
with the distance to a untill being 0 for the meridian opposed to a. This angle
is π/2 on X ∩ ∂B3(a) (see Fig. 5.2 (ii)). In that case, the formula given in the

Fig. 5.2 Vector fields on the pinched torus
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Poincaré-Hopf theorem still holds true.

χ(X) = 1 =
∑

ak∈Sing(ρ)

I (ρ, ak) = I (ρ, a)

The vector field ρ is the first example of M.H. Schwartz radial vector field.

5.12.3 Radial Vector Fields

The idea of the construction of radial vector fields is very simple. The construction
has to be made in suitable tubes, that makes M.-H. Schwartz’s proof delicate. The
details of the construction of the tubular neighbourhoods are provided in [293].

Theorem 5.12.3 Let M be a real analytic manifold equipped with a real semi-
analytic Whitney stratification {Vα} and X ⊂ M a real analytic compact subset
stratified by {Vα}. It is possible to construct on M stratified vector fields ṽ with
isolated singularities satisfying the following properties:

1. the vector fields ṽ are pointing outwards of small tubes T (X) along ∂T (X),
2. If a ∈ Vα is a singularity of ṽ, then the index of ṽ at a as a vector field tangent

to the stratum Vα is the same than the index of ṽ at a as a vector field tangent to
the ambient manifoldM:

I (v, a;Vα) = I (̃v, a;M). (5.32)

The construction of a radial vector field goes in two steps: the local (5.12.3.1)
and the global (5.12.3.2) construction. One obtains the Poincaré-Hopf Theorem for
singular varieties (Theorem 5.12.5).

5.12.3.1 Radial Vector Fields – Local Construction

Denote by Uα ⊂ Vα a neighbourhood of a point a in a stratum Vα and by v a vector
field tangent to Vα on Uα with possibly an isolated singularity at a. The local radial
extension of the vector field v is obtained as the sum of two vector fields defined
in a suitable tubular neighbourhood of Vα in the ambient manifold M: the parallel
extension and the transverse vector field. This construction has been developed at
the same time and independently by M.H. Schwartz for the proof of Poincaré-Hopf
Theorem for singular varieties, with any index and by Milnor [223] for smooth
manifold, and for non-degenerated vector fields.

In the case of a stratified singular variety, the construction must be made in such
a way as to obtain a stratified vector field section of TM . This is possible thanks to
the Whitney conditions (a) and (b).
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(a) The parallel extension of the vector field v in a neighbourhood of Uα in M is
defined in the following way. If y is a point on the fiber at x of a sufficiently
small tube Tε(Uα), of “ray” ε, then the Whitney condition (a) implies that the
vector vp(y) parallel to v(x) can be projected perpendicularly as a non-zero
vector ṽp(y) on the tangent space at y to the stratum containing the point y.
The vector field v is extended in that way inside the tube Tε(Uα) as a stratified
vector field “parallel” to v. Of course, if v admits (isolated) singular points, the
vector field ṽp will have “disks” of singular locus corresponding to singularities
of v ([288], §3, [293], Théorème 1.1).

(b) The transverse vector field ρ is defined in the following way. The vector ρ
gradient of the “distance to Vα” (relatively to a suitable metric) vanishes on
Vα, it is transverse to the boundary of every sufficiently small “geodesic” tube
T ′ε(Uα) composed of the geodesic rays in M normal to Vα. The Whitney
condition (b) guarantees that for every point y ∈ T ′ε(Uα), the vector ρ(y) can
be projected as a non-zero vector ρ̃(y) on the tangent space at y to the stratum
containing y, providing a stratified vector field in T ′ε(Uα) ([293], Théorème
2.3.1).

It is clear that the vector fields ṽp(y) and ρ̃(y) are not continuous, as vector
fields tangent toM . To overcome this drawback, Marie-Hélène Schwartz considers
“tapered” neighbourhoods of the strata in which she modifies the vector fields ṽp(y)
and ρ̃(y) so as to obtain vector fields tangent to the strata and also continuous.

In order to provide an idea of the construction, let us consider the case of the field
ρ̃(y) and the case where the stratum. Vα is a singleton {x}, the stratum Vβ is a curve
and the plane is a two-dimensional stratum Vγ (Fig. 5.3 (i)). The general case (for
higher dimensional strata) follows the same principle [293, §3], [294, §4].

Fig. 5.3 A “tapered” neighbourhood
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Consider a point y0 of Vβ , intersection of Vβ with a small sphere S centered at
x. In order to obtain a vector field tangent to Vβ , the vector ρ(y0) is replaced by its
projection ρ̃(y0) on Ty0(Vβ). Then the obtained vector field is not continuous: ρ̃(y0)

is not limit of the vectors ρ(y) as y approaches y0 along the curve Cγ = S ∩ Vγ .
The idea of Marie-Hélène Schwartz is to modify the vector field ρ(y) in a

“tapered” neighbourhood �β of the stratum Vβ , that is a tubular neighbourhood
inM whose the radius decreases when approaching to the strata Vα of the boundary
of Vβ (see Fig. 5.3 (ii)).

The “transverse” vector field, tangent to the strata and also continuous is built
as follows. Denote by λ ∈ [0, 1] a parameter of the portion of the curve Cγ going
from y0 to the point y1 intersection of the curve Cγ with the boundary of�β . At the
point y of the curve, of parameter λ, the field ρ̃(y) is the projection on Ty(Vγ ) of
the vector

λρ(y)+ (1− λ)ρ̃y(y0) (5.33)

where ρ̃y(y0) is the vector equipollent to ρ̃(y0) at the point y. (see Fig. 5.3 (ii)).
Similarly, in the “tapered” neighbourhoods of the strata, one build a “parallel”

vector field ṽp(y) tangent to the strata and also continuous, from the field vp(y).
While this construction is rather technical, it allows M.-H. Schwartz [293] to

consider a neighbourhood, Tε(Uα), the two systems of neighbourhoods Tε and T ′ε
defined above being equivalent. The (local) radial extension of the vector field v is
the vector field defined in Tε(Uα) by:

ṽ(y) = ṽp(y)+ ρ̃(y).

Proposition 5.12.4 (Local Radial Extension of a Vector Field) The local radial
extension ṽ = ṽp + ρ̃ satisfies the following properties:

1. the vector field ṽ is pointing outwards of the tube Tε(Uα) along ∂Tε(Uα) \
Tε(∂Uα),

2. If a ∈ Uα is an isolated singularity of v, it is also an isolated singularity of ṽ
and the index of ṽ at a as a vector field tangent to the ambient manifoldM is the
same than the index of v at a, computed as a vector field tangent to Vα:

I (v, a;Vα) = I (̃v, a;M). (5.34)

3. if two vector fields v1 and v2, tangent to Vα are homotopic as sections of T (Vα)
over Uα, then their extensions ṽ1 = ṽ1p+ ρ̃ and ṽ2 = ṽ2p + ρ̃ are homotopic as
sections of TM over Tε(Uα).
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5.12.3.2 Radial Vector Fields – Global Construction

The M.-H. Schwartz’s “global” construction of vector fields by radial extension goes
as follows. The stratification of X (see 5.29) is denoted by

∅ = X−1 ⊂ Xα0 = Vα0 ⊂ Xβ ⊂ Xγ ⊂ · · · ⊂ Xn−2 ⊂ Xn−1 ⊂ X = Xn
(5.35)

where the lowest dimensional stratum can be a zero-dimensional one or a stratum
Vα0 of dimension 2s > 0. If Vα0 is zero-dimensional, i.e. a set V0 of finitely many
points ai , then one considers a radial vector field v in balls Bε(ai) centered at
each of these points. If the lowest dimensional stratum is a stratum of dimension
2s > 0, then we construct a vector field v on Vα0 with finitely many isolated
singularities ai . The stratum Vα0 is a manifold and it has to be compact if X is
compact. In this case the total Poincaré-Hopf index of v on Vα0 is χ(Vα0). Denote
by ε(α0) = inf εi where Tεi (Uα0) is the local tubular neighbourhood we constructed
around the singular point ai . The vector field v is well defined by radial extension
in the tubular neighbourhoodTε(α0)(Vα0) of Vα0 with same singularities ai and their
indices satisfy the formula 5.34.

The radial vector field ṽ is defined in a tubular neighbourhood Tε(α0)(Vα0) of the
lowest dimensional stratum Vα0 and it is pointing outwards from Tε(α0)(Vα0).

The vector field ṽ is now extended in the next strata in Xβ \ Xα0 i.e. the lowest
dimensional strata Vβ such that Vα0 ⊂ ∂Vβ . The (finite) union of these strata is
denoted by Vβ and

Wβ = Vβ \ Tε(α0)(Vα0).

Then Wβ is a manifold such that the vector field ṽ is well defined and pointing
inwards of Wβ on the boundary ∂Wβ = Vβ ∩ ∂Tε(α0)(Vα0). The vector field ṽ can
be extended inside Vβ with finitely many isolated singular points bj . The Poincaré-
Hopf Theorem with boundary (Theorem 5.3.1) implies

χ(Wβ)− χ(∂Wβ) =
∑

bj∈Vβ
I (̃v, bj ),

where

χ(∂Wβ) =
∑

ai∈Vα0

I (̃v, ai).

Then:

χ(Xβ) =
∑

ai∈Vα0

I (̃v, ai)+
∑

bj∈Vβ
I (̃v, bj ).



5 Characteristic Classes 343

The strata Vβ admit a tubular neighbourhood Tε(β)(Vβ) in which a radial
extension of ṽ can be constructed.

The process continues by increasing dimension of the strata, knowing that, for
the next dimensional strata Vγ one has to consider

Wγ = Vγ \
(
Tε(α0)(Vα0) ∪ Tε(β)(Vβ)

)
.

At the end of the process, the construction provides a “tubular neighbourhood”

Tε(X) =
⋃

Tε(κ)(Vκ) (5.36)

where κ describes all indices of strata, and a radial vector field ṽ defined on Tε(X).
The radial vector field satisfies the Theorem 5.12.3. Then:

χ(X) =
∑

ak∈X
I (̃v, ak)

for all singularities ak of ṽ, with I (̃v, ak) = I (̃v, ak;Vα(ak)) = I (̃v, ak;M).

5.12.4 Poincaré-Hopf Theorem for Singular Varieties

Theorem 5.12.5 (Poincaré-Hopf for Singular Varieties) [293, Théorème 6.2.2]
Let X be an analytic subset of the analytic manifold M and {Vα} a Whitney
stratification of the pair (M,X). Let ṽ be a radial vector field (i.e. obtained by
radial extensions) defined on X. There is a finite number of zeroes ak of ṽ whose
index I (̃v, ak) is the same, computed in the stratum of ak or inM . Then:

χ(X) =
∑

ak∈X
I (̃v, ak) (5.37)

where, if dimVi(a) = 0, then by construction I (̃v|Vi(a) , a) = +1.

5.13 Poincaré-Hopf for Singular Varieties – Generalizations

Marie-Hélène Schwartz generalized the notion of radial vector field by the notion
of “preradial” vector fields [291, 292]. H. King and D. Trotman [181] extend
her theory for more general stratified vector fields on more general stratified sets
with boundary. Vector fields need not be going inwards or outwards, but may be
tangent to the boundary of the given set. They prove a corresponding Poincaré-Hopf
theorem, defining a virtual index for such vector fields and the Euler characteristic of
the set is shown to be the sum of the virtual indices. In [302], S. Simon gives another
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proof of a stratified Poincaré-Hopf formula, using a suitable definition of index. For
alternative definitions and complete descriptions of indices, including virtual, GSV,
see the R. Callejas-Bedregal, M.F.Z. Morgado, and J. Seade article in this volume
[74].

W. Ebeling and S. Gusein-Zade [110] compare notions of indices for vector fields
and differential forms. In particular, they define a notion of radial index for 1-forms
[109] (Sect. 5.17.6). N. G. Grulha Jr., M. S. Pereira and H. Santana [161] prove
a Poincaré-Hopf Theorem for Isolated Determinantal Singularities, in the vein of
Ebeling and Gusein-Zade.

5.14 Schwartz Classes

The construction of Schwartz classes follows the same general principle as that of
the construction of radial vector fields for the Poincaré-Hopf Theorem. However,
the context is now the complex situation and no longer real analytic varieties and
one considers complex r-frames and no longer vector fields.

Let X be an analytic subset of the analytic manifold M and {Vα} a Whitney
stratification of the pair (M,X). The complex dimensions of M and X will be
denoted by m and n.

As for the Poincaré-Hopf Theorem, the first idea of Marie-Hélène Schwartz is
to consider stratified (and now complex) vector fields for a (complex) Whitney
stratification. That means that, when X is a singular variety whose Vα are the strata,
she considers the space (no longer a bundle)

⋃

Vα⊂X
T (Vα) ⊂ T (M)

as a substitute to the tangent bundle to X.

5.14.1 Radial Extension of Frames

The main observation of Marie-Hélène Schwartz concerns the obstruction dimen-
sions (see Sect. 5.12.1).

On the one hand, the obstruction dimension to the construction of an r-frame
tangent to M is equal to 2p = 2(m − r + 1). The obstruction dimension to the
construction of an r-frame tangent to a stratum Vα of complex dimension s is equal
to 2q = 2(s − r + 1). As in Sect. 5.12.1, this property allows one to consider
the cell decomposition (D) dual of a triangulation (K) compatible with the given
stratification. In that case, the dimension of the intersection of a dual 2p-cell with
Vα is equal to the obstruction dimension for the construction of an r-frame tangent
to Vα , i.e. 2q = 2(s − r + 1).
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On the other hand, the obstruction dimension to the construction of an (r − 1)-
frame tangent toM is equal to 2p+2 = 2(m−r+2). This means that it is possible to
construct an (r − 1)-frame v(r−1) = (v1, v2, . . . , vr−1) without singularities on the
2p-cells in (D). In this case, the (r−1) vectors in v(r−1) are C-linearly independent
on the 2p-cells d2p

i . The singularities of an r-frame v(r) = (v(r−1), vr ) in a 2p-cell

d
2p
i will be isolated points at which the last vector vr either vanish or belongs to the
(r − 1) complex plane generated by the vectors in v(r−1).

More precisely, if Vα is a stratum of complex dimension s, the (r − 1)-frame
v(r−1) is constructed without singularities on the 2q-cells d2p

i ∩ Vα in (D)2p ∩ Vα ,

where d2p
i is dual of the (K)-simplex σ 2(r−1)

i ⊂ Vα . Then vr will be a vector field

not in the C-span of v(r−1), with an isolated singularity at the barycenter d̂2p
i which

is situated in d2p
i ∩ Vα and is also the barycenter of the (K)-simplex σ 2(r−1)

i . One
has 2m− 2p = 2s − 2q = 2(r − 1) (see formula (5.3)).

The intersection (D)2p ∩ Vα is a chain �2q
α relatively to the barycentric subdi-

vision (K ′) of (K) defining the dual decomposition (D). The (K ′)-cell d2p
i ∩ Vα ,

dual (in Vα) of the simplex σ 2(r−1)
i ⊂ Vα is denoted by δ2q

i .

5.14.1.1 Local Radial Extension of r-Frames

Let us consider a stratified r-frame v(r) = (v(r−1), vr ), section of Vr(TM) over the
2q-skeleton�2q ⊂ V 2s

α (with q = s − r + 1), with isolated singularities which are

zeroes of the last vector vr . The parallel extension (̃v(r−1)
p , (̃vr )p) of v(r), is defined

in the tube Tε(δ2q
i ) by the same method as in Sect. 5.12.3.1 and the transverse vector

field ρ̃ is defined as in Formula 5.33.

Proposition 5.14.1 (Local Radial Extension for a Frame) If ε is sufficiently
small, the radial extension of v(r), defined by ṽ(r) = (̃v

(r−1)
p , (̃vr )p + ρ̃) satisfies

the following conditions:

(i) the radial extension ṽr = (̃vr )p + ρ̃ of vr satisfies Proposition 5.12.4,

(ii) if the (r − 1)-frame v(r−1) has no singularities on δ2q
i = d2p

i ∩ V 2s
α and if v(r)

admits an isolated singularity at the barycenter a ∈ δ2q
i which is a zero of vr ,

then ṽ(r) = (̃v(r−1)
p , (̃vr )) satisfies the same properties in Tε(δ2q

i ).
In that case, if the (r − 1)-complex plane generated by v(r−1)(a) is lin-
early independent of the tangent plane Ta(�2q) in Ta(V 2s

α ), then the index
I (̃v(r), a;M) of the extension ṽ(r) at a, considered as an r-frame tangent to
M is equal to the index I (v(r), a;Vα) of v(r) at a considered as an r-frame
tangent to V 2s

α .
(iii) In the same hypothesis as in (ii), if q = 0 (i.e; s = r − 1), and if a is a zero of

vr , then the index of ṽ(r) in a is +1.

The index of ṽ(r) at the isolated singularity a is denoted by I (v(r), a).
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5.14.1.2 Global Radial Extension of r-Frames

As in the case of the Poincaré-Hopf Theorem, the r-field v(r) is constructed over the
subsets �2q

α = (D)2p ∩ V 2s
α , by increasing dimensions of the strata Vα. The r-field

v(r) is constructed over�α and a tube Tε(�α), neighbourhood of�α inD(2p−1).

(i) If V 2r−2
α is a stratum whose real dimension is 2r−2 = 2(m−p), the obstruction

dimension for the construction of a section of Vr(T Vα) is zero. One takes any
(r − 1)-frame v(r−1) tangent to V 2r−2

α at the vertices aj = �0
j of � located in

(D)2p ∩ V 2r−2
α and the last vector vr zero at these points.

The radial extension of the r-frame is constructed in tubes Tε(�0
j ) as an

r-frame still denoted by v(r). According to Proposition 5.14.1 (iii), one has
I (v(r), aj ) = +1.

(ii) If s > r − 1, assume that the construction has already been performed on all
strata Vα whose dimension is less than 2s. That means that the construction has
been performed on the sets �β and the tubes Tε(�β). The constructed r-frame
is pointing outwards of the 2p-skeleton of a tubular neighbourhood of V 2t

β for
all strata Vβ with dimension 2t < 2s.

Let Vβ be a 2s-dimensional stratum that contains a stratum V 2t
α in its closure.

The r-frame is constructed on a tubular neighbourhood of the boundary of Vβ . The

r-frame can be extended inside Vβ , more precisely on the 2q-skeleton of �2q
β , with

2q = 2(s − r + 1) and with isolated singularities at the barycenters of cells δ2q
i

which are zeroes of the last vector vr .
In summary, an r-frame already known on a neighbourhood of the boundary of

a stratum is extended with isolated singularities inside (a suitable skeleton) of the
stratum and then extended with property (ii) of the Proposition 5.14.1 to the 2p-
skeleton of a regular neighbourhood of this stratum.

The number of singularities of ṽ is finite. We consider a “sufficiently small”
triangulationK ofM compatible with the stratification and such that

(i) The singularities of ṽ are barycenters of simplexes of K ,
(ii) The cellular tube T around X, consisting of the (D)-cells which meet X, lies

in the tube Tε(X) (see 5.4.3).

The constructed r-frame satisfies:

Theorem 5.14.2 ([59, 289, 294]) Let X be an analytic subset of the analytic
manifoldM and {Vα} a Whitney stratification of the pair (M,X). We can construct,
on the 2p-skeleton (D)2p ofM , a stratified r-frame v(r), called radial frame, whose
singularities satisfy the following properties:

(i) v(r) has only isolated singular points, which are zeroes of the last vector vr . On
(D)2p−1, the r-frame v(r) has no singular point and on (D)2p the (r−1)-frame
v(r−1) has no singular point.

(ii) Let a ∈ Vα ∩ (D)2p be a singular point of v(r) in the 2s-dimensional stratum
Vα. If s > r−1, the index (inM) of v(r) at a, denoted by I (v(r), a), is the same
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as the index of the restriction of v(r) to Vα ∩ (D)2p considered as an r-frame
tangent to Vα . If s = r − 1, then I (v(r), a) = +1.

(iii) Inside a 2p-cell d which meets several strata, the only singularities of v(r) are
inside the lowest dimensional one (in fact located at the barycenter of d).

(iv) The r-frame v(r) is pointing outwards of a regular (cellular) neighbourhoodT
of X inM . It has no singularity on ∂T .

5.14.2 Schwartz Classes

Denoting by d∗ the elementary (D)-cochain whose value is 1 at d and 0 at all other
cells, the 2p-dimensional (D)-cochain

ĉ =
∑

d(σ )⊂T
dim d(σ )=2p

I (v(r), σ̂ ) d∗(σ ) . (5.38)

is defined in C2p
(D)(T , ∂T ) (see formula 5.5). This cochain actually is a cocycle

(obstruction cocycle [304, §32]) whose class cp(X) lies in

H 2p(T , ∂T ) ∼= H 2p(T ,T \X) ∼= H 2p(M,M \X),

where the first isomorphism is given by retraction along the rays of T and the second
by excision (byM \ T ) (see formula (5.7) in Sect. 5.4.2).

Definition 5.14.3 ([289, 294]) The p-th Schwartz class of X is the class cp(X)
denoted by

c
p
S (X) ∈ H 2p(M,M \X).

It was proved “by hand” [288] by M.H. Schwartz, that the Schwartz classes do not
depend of any of the choices: stratification, triangulation, r-frame. . . However, the
proof of independence is facilitated as soon as the coincidence of Schwartz classes
and MacPherson classes is established (Theorem 5.16.1).

5.15 MacPherson Classes and (Wu)-Mather Classes

MacPherson’s construction of classes [204] answers a conjecture that he named
“Deligne-Grothendieck” conjecture, which associates homology classes to con-
structible functions on algebraic complex varieties, satisfying suitable properties.

The key ingredients are the use, in the singular case, of the Nash bundle as a
substitute to the tangent bundle and local Euler obstruction.
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5.15.1 Constructible Sets and Functions

A constructible set in a complex algebraic variety X is a subset obtained by
finitely many unions, intersections and complements of subvarieties. A constructible
function ϕ : X → Z is a function such that ϕ−1(n) is a constructible set for all n.
The constructible functions on X form a group denoted by F (X). If A ⊂ X is a
subvariety, 1A is the characteristic function whose value is 1 overA and 0 elsewhere.

A complex algebraic variety X being triangulable [165], ϕ is a constructible
function if and only if there is a triangulation (K) of X such that ϕ is constant
on the interior of each simplex of (K). Such a triangulation ofX is called ϕ-adapted
[131, §6.1.1], [41, §2.1].

The correspondence F : X → F (X) defines a contravariant functor when
considering the usual pull-back f ∗ : F (Y )→ F (X) for a morphism f : X → Y .
It can be made also a covariant functor when considering the pushforward defined
on characteristic functions by:

f∗(1A)(y) = χ(f−1(y) ∩ A), y ∈ Y (5.39)

for a morphism f : X→ Y , and linearly extended to elements of F (X).

5.15.2 The “Deligne-Grothendieck” Conjecture

In his book “Récoltes et Semailles” Alexander Grothendieck explains (in French)
the genesis of the conjecture [156, Note (87)1].

Grothendieck writes that he gave his conjecture in the last lecture of his seminar
SGA 5, in 1966, “surely one of the most interesting. . . ” but unfortunately, this
last lecture is not published. In this note, Grothendieck presents and details the
conjecture as a “Riemann-Roch” Theorem type, in the schematic framework, “with
discrete coefficients instead of coherent coefficients.”

In [307] (1971), Dennis Sullivan provides an historical note in which he writes
that “[Deligne has] outlined a general conjectural theory of Chern classes for
singular varieties based on ideas of Grothendieck and this [Hironaka’s] resolution
idea.”

In his article published in 1974, Robert MacPherson named “Deligne-
Grothendieck conjecture” the following conjecture in the framework of algebraic
complex varieties.

Conjecture 5.15.1 Let F be the covariant functor of constructible functions and
let H∗( ;Z) be the usual covariant Z-homology functor. Then there exists a unique
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natural transformation

c∗ : F → H∗( ;Z)

satisfying c∗(1X) = c∗(X) ∩ [X] if X is a manifold.

Returning to the book “Récoltes et Semailles”, in the Note (87)1 (6 juin)–(7 juin),
Grothendieck writes that “in reading Mac Pherson’s paper. . . I find there, under the
name of “Deligne-Grothendieck” conjecture, one of the main conjectures that I
introduced in this [last 1966] talk. . . Compared to my initial conjecture, however, the
form presented and proven by MacPherson differs in two ways. One is a “minus”,
because it fits, not in Chow’s ring, but in . . . the homology group with integer
coefficients, transcendentally defined. The other is a “plus”—. . . That’s that for the
existence and uniqueness of a map3

cX/S : Cons(X)→ A(X)

we do not need to restrict ourselves to regular X schemes, provided that A(X) is
replaced by the whole homology group . . . ”

The interested reader on history of the conjecture will also see, in [156], the notes
(164) and (169)iii Episode 1.

5.15.3 Nash Transformation

Let M be a complex analytic manifold, of complex dimension m. Let X be an n-
dimensional semi-analytic complex variety, X ⊂ M . We denote by � = Xsing the
singular part of X and by Xreg = X \� its regular part.

The Grassmann bundle of n (complex) planes in TM is denoted by Gn(TM).
The fiber Gn(TxM) over x ∈ M is the set of n-planes in Tx(M) and is isomorphic
to Gn(Cm). An element of Gn(TM) is denoted by (x, P ) where x ∈ M and P ∈
Gn(TxM).

On the regular part of X, the Gauss map is defined by

γ : Xreg −→ Gn(TM) γ (x) = (x, Tx(Xreg)).

Definition 5.15.2 The Nash transformation X̃ [204] is defined as the closure of the
image of γ in Gn(TM).

3 The map is labelled by (6) in [156]. Here Cons(X) is the set of constructible functions, that we
denote by F (X).
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(5.40)

In general, X̃ is not smooth, nevertheless, it is an analytic variety and the
restriction ν : X̃→ X of the bundle projectionGn(TM)→ M is analytic.
Examples of Nash transformations.

Some examples are given in the survey by G. Gonzalez-Sprinberg [145]:

1. Let X be the union of two 2-planes in C
4 intersecting in only one point, which is

singular. Then the Nash blow-up simply separates the two planes, and the fiber
over the singular point is given by two points. This is an example of an algebraic
set that is not a complete intersection variety.

2. IfX is the affine cone over a smooth projective plane curveC, then the singularity
at the vertex is isolated, and the exceptional fiber in the Nash blow-up is the dual
curve of C.

3. LetX be the “Whitney-Cartan umbrella” defined by the equation x2 = y2z ∈ C
3

(see Fig. 5.4 and Sect. 5.17.3.2). The Nash transformation is a smooth surface
X̃. The Nash fiber over the origin is a smooth rational curve corresponding to
a pencil of planes with a common axis, and with an immersed point given by
the dual to the tangent cone, not reduced since it is a double plane. The fiber
over each other singular point of X has only two points corresponding to the two
planes of the tangent cone.

The tautological bundle over Gn(TM) is denoted by E. The fiber EP at a point
(x, P ) ∈ Gn(TM) is the set of the vectors v in the n-plane P ∈ Gn(TxM).

EP = {v(x) ∈ TxM : v(x) ∈ P }

Fig. 5.4 The figure is the
real part in R

3 of the Whitney
umbrella X ⊂ C

3 whose
equation is x2 − y2z = 0.
One has Eu0(X) =
1,Eua(X) = 2,Eub(X) = 1
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The restriction of E to X̃ is denoted by Ẽ = E|X̃ and called Nash bundle. One
has:

Ẽ = E ×Gn(TM) X̃ = {(v(x), x̃) ∈ E × X̃ : v(x) ∈ x̃}

where x̃ ∈ X̃ is an n-complex plane in Tx(M) and x = ν(x̃). On the inverse image
X̃reg = ν−1(Xreg) ∼= Xreg the restriction Ẽ|X̃reg

can be identified with T (Xreg).
One has a diagram:

An element in Ẽ is written (x, P, v) where x ∈ X, P is an n-plane in ν−1(x) and
v is a vector in P . If x ∈ Xreg, then P = Tx(Xreg).

5.15.3.1 Wu Transformation

In 1965, Wu Wen-Tsün defined, in [342, 343], a transformation X̂W in the projective
situation and using Ehresmann cycles [115]. Let X be a n-dimensional algebraic
complex projective variety in CP

m. Consider the algebraic manifold of (complex)
dimension k = m+ n(m− n) (see 5.26 in Sect. 5.7.3.2).

Gn,m = {(x, P )|x ∈ P,P is a n-plane in CP
m}.

The Wu transformation of X is the closed subvariety X̂W of Gn,m obtained as
the closure of the set of points (x, Tx(Xreg)).

Theorem 5.15.3 (Zhou) [371, 373] Let X be an n-dimensional algebraic complex
projective variety in CP

m. The Wu transformation and the Nash transformation are
isomorphic.

5.15.4 Mather Classes

Chern-Mather classes were defined by MacPherson in his fundamental article [204].
We provide the original definition, as well as formulations due to Wu and Piene.
Alternative definitions and applications are given in two articles in this volume, by
Aluffi [13] and by Callejas-Bedregal, Morgado and Seade [74].
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The first approach to the proof of the Deligne-Grothendieck’s conjecture is to
think to the Nash bundle as a substitute to the tangent bundle, in the case of singular
varieties. That approach leads to the construction of Mather classes. LetX a possibly
singular algebraic complex variety embedded in a smooth one M . We define the
Nash transformation X̃ of X, and the Nash bundle Ẽ on X̃ as in Sect. 5.15.3.

Definition 5.15.4 The (total) Chern-Mather class (or Mather class) of X is defined
[204] by:

cMa∗ (X) = ν∗(c∗(Ẽ) ∩ [X̃]) ∈ H∗(X) (5.41)

where c∗(Ẽ) denotes the usual (total) Chern class of the bundle Ẽ in H ∗(X̃) and
the cap-product with [X̃] is the Poincaré duality homomorphism (in general not an
isomorphism).

The Chern-Mather classes do not satisfy the Deligne-Grothendieck’s conjecture
(see [143, Contre-exemple, Page 11]).

5.15.4.1 Complex Wu Classes

In 1965, Wu constructed “Chern”-Wu classes. The paper [342], written in Chinese
did not have the success it deserved. Jianyi Zhou [371, 373] showed that the Mather
classes, defined by MacPherson [204] (Sect. 5.15.4) are the same as the Wu’s classes
(also see [43]).

Wu used the group A∗(X) of algebraic equivalence classes (Weil) of X and
morphisms [342] (also see [200, 371, 373]). Wu defined a composition of maps
Wk : Ak(Gn,m) −→ An−k(X) (see 5.15.3.1) that uses the Ehresmann cycles and
corresponds to the Piene expression (see (5.43)).

Definition 5.15.5 [342] The Wu classes are defined by:

cWn−k(X) =
k∑

i=0

(−1)i
(
n− i + 1
n− k + 1

)
Wk ([k − i/0, · · · , n− i, n− i + 2, · · · , n+ 1]) ,

(5.42)

where [a/b0, b1, · · · , bd ] denote the Ehresmann cycles.

Compare with the Gamkrelidze definition (for manifolds: 5.7.3.2) and the Piene
Definition 5.15.4.2, also see Aluffi [11].

Theorem 5.15.6 (Zhou) [200, 371, 373] The homology Wu classes and Mather
classes of an irreducible algebraic projective variety coincide.

Theorem 5.15.7 (Wu, Zhou) [342] Let X be a smooth n-dimensional algebraic
manifold in CP

m. The Wu classes are the homology Chern classes:

cWn−k(X) = PX(ck(X))
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where ck(X) are the classical Chern (cohomology) classes ofX and PX denotes the
Poincaré duality isomorphism (see 5.23).

5.15.4.2 Piene’s Expression

Ragni Piene [251–254] provides an expression of Mather classes of projective
varieties in terms of polar varieties (see Łê Dũng Tráng and Bernard Teissier [197]).

Definition 5.15.8 The k-th polar variety of X relative to a linear subspace Lk of
codimension n− k + 2 in CP

n is defined by

Mk = closure of {x ∈ Xreg| dim(Tx(Xreg) ∩ Lk) ≥ k − 1}.

For a linear subspace Lk in general position, Mk represents a class of rational
equivalence of codimension k in X, denoted by [Mk] and called polar class of X.

Theorem 5.15.9 [252, Théorème 3] Let us denote by L the restriction of the
hyperplane bundle OCP

n(1) to X, the Mather classes are equal to:

cMak (X) =
k∑

i=0

(−1)k−i
(
n+ 1− k + i

i

)
c1(L)i ∩ [Mk−i]. (5.43)

Reciprocally, the polar classes of X satisfy

[Mk] =
k∑

i=0

(−1)k−i
(
n+ 1− k + i

i

)
c1(L)i ∩ cMak−i (X). (5.44)

Mather classes have been computed in various situations, for instance in relation
with conormal spaces (Definition 5.16.4) of Schubert varieties by L. C. Mihalcea
and R. Singh [222].

Note that Martin Helmer wrote a package “ToricInvariants” [163], using
Macaulay2 by Dan Grayson and Mike Stillman [153], in order to compute the
Chern-Mather class of a projective toric variety X, pushedforward to the Chow ring
of the ambient projective space, without assuming that X is normal.

5.15.5 Weighted Chern-Mather Classes

The “weighted Chern-Mather” classes were defined by P. Aluffi in [3]. in order
to extend the notion of Chern-Mather classes to possibly nonreduced schemes Y ,
taking care of nilpotents. Weighted Chern-Mather classes are suitable weighted
sums of the classical Mather classes of subvarieties of Y . The subvarieties are the
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supports of the components of the (intrinsic) normal cone of Y , and the weights are
the lengths of the components of this cone.

If Y is a local complete intersection, then the weighted Chern-Mather classes
coincide with Chern-Mather classes.

One of the main applications of weighted Chern-Mather classes is to the compu-
tation of the difference between MacPherson’s class of a singular hypersurface (in a
manifold) and the class of its virtual tangent bundle. This difference is related to the
μ-class defined by Aluffi in the context of singularity subscheme of a hypersurface
[5, 6].

5.15.6 MacPherson Classes

MacPherson’s idea [204] is to give a different weight to the contribution of strata in
the Mather construction, depending on the local Euler obstruction. The construction
uses both the constructions of Mather classes and local Euler obstruction. Local
Euler obstruction has been the subject of many equivalent definitions, examples and
applications. It deserves an entire section of its own: the following Sect. 5.17 (see
Definition 5.17.1.1).

Using the properties of local Euler obstruction Eux , in particular that local Euler
obstruction is a constructible function (Proposition 5.17.5), MacPherson proves

Proposition 5.15.10 (MacPherson) [204, Lemma 2] There is an isomorphism T
between the groups of algebraic cycles on X and of constructible functions, given
by

T
(∑

niVi

)
(x) =

∑
niEux(Vi)

The ambient complex algebraic manifold M is equipped with a Whitney
stratification such that X is union of strata {Vα}. The proposition implies that there
are integers nα such that, for every point x ∈ X, we have:

∑

α

nαEux(Vα) = 1. (5.45)

MacPherson defines the natural transformation

c∗ : F → H∗( ;Z) by c∗(1X) =
∑

α

nα i∗cMa(Vα)

where i denotes the inclusion Vα ↪→ X, then, by linearity for all constructible
functionsϕ onX. He deduces the “Deligne-Grothendieck” conjecture (Sect. 5.15.2).



5 Characteristic Classes 355

Theorem 5.15.11 [203, 204] There exists a natural transformation from the
functor F to homology

c∗ : F → H∗( ;Z)

which, on a nonsingular varietyX, assigns to the constant function 1X the Poincaré
dual of the total Chern class of X.

In other words, to any constructible function ϕ on a compact complex algebraic
variety X, we can assign an element c∗(ϕ) satisfying the following three condi-
tions:

1. c∗(ϕ + ψ) = c∗(ϕ)+ c∗(ψ) for ϕ and ψ in F (X),
2. c∗(f∗ϕ) = f∗(c∗(ϕ)) for f : X → Y morphism of complex algebraic varieties

and ϕ ∈ F (X) (see formule (5.39)),
3. c∗(1X) = c∗(X) ∩ [X] if X is a manifold.

The total Chern-MacPherson class of any compact variety X is defined by

cM(X) = c∗(1X). (5.46)

MacPherson observes that the compactness restriction may be dropped with
minor modifications of his proof if all maps are taken to be proper and if Borel-
Moore homology (homology with locally finite supports) is used.

In the Sect. 5.23 we provide some examples of classes depending of the choice
of the constructible function, in particular Wu-Mather classes.

5.16 The Chern-Schwartz-MacPherson Classes

Returning to (Sect. 5.4.2), the Alexander isomorphism H 2p(M,M \ X) →
H2r−2(X) is induced by the isomorphism:

C
2p
(D)(T , ∂T ))→ C

(K)
2r−2(X)

which associates to a (D)-cochain (d2p
i )

∗ such that d2p
i ∩ X �= ∅ the (K)-chain

σ 2r−2
i such that d2p

i = d(σ 2r−2
i ).

Theorem 5.16.1 (Brasselet-Schwartz [59]) The MacPherson class cM(X) is the
image of the Schwartz class cS(X) by Alexander duality isomorphism (Sect. 5.4.2)

H 2(m−r+1)(M,M \X) ∼=−→ H2(r−1)(X).

We will denote by cSM(X) and call Chern-Schwartz-MacPherson classes the
defined (total) class in H∗(X). Many authors write cSM(X) this class however, our
upper notation allows to write explicitly the degree of classes.
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The proof given in [59] has been simplified in [16] by a new expression of notion
of functoriality of Chern classes obtained by P. Aluffi [11].

The following corollaries provide explicite cycles representing the Chern-
Schwartz-MacPherson classes (see formula 5.38).

Corollary 5.16.2 [59] Let (K) be a simplicial triangulation ofM compatible with
a Whitney stratification of the pair (M,X) and v(r) an r-radial frame defined on
the 2p-skeleton D(2p) of a cellular decomposition (D) dual of (K). The (r − 1)-st
homology Chern-Schwartz-MacPherson class cSMr−1(X) is represented by the cycle

∑

σ∈X
I (v(r), d̂(σ )) σ

with dim σ = 2(r − 1).

Corollary 5.16.3 [59] Let (K) be a simplicial triangulation ofM compatible with
a Whitney stratification of the pair (M,X) and adapted to a constructible function
ϕ on X. Let v(r) be an r-radial frame defined on the 2p-skeleton D(2p) of a
cellular decomposition (D) dual of (K). The (r − 1)-st MacPherson class cMr−1(ϕ)

is represented by the cycle

∑

σ∈X
ϕ(σ) I (v(r), d̂(σ )) σ,

with dim σ = 2(r − 1) and where ϕ(σ) is the value of ϕ on the interior of σ .

Various authors proposed alternative definition of the Chern-Schwartz-
MacPherson cycles for constructible functions, see in particular J. Schürmann
and M. Tibar [284].

5.16.1 Alternative Definitions of Chern-Schwartz-MacPherson
Classes

The extension from homology to Chow groups was given, in 1984, by Fulton in the
context of complex schemes [130, Example 19.1.7, page 355]. In 1990, using the
Chow functor instead of homology functor, G. Kennedy generalized the result of
MacPherson to algebraically closed fields of characteristic 0 [180].

In [11, 15], P. Aluffi observes that while both functors: constructible functions
and Chow are defined for all varieties, the Chow functor A∗ is only functorial with
respect to proper morphisms. For a varietyX, the author defines the pro-Chow group
Â∗ to be the limit of ordinary Chow groups over the inverse system of maps from
X to complete varieties. Then Â∗ is a functor on the category of (not necessary
complete) varieties, covariant with respect to arbitrary morphisms, and agreeing
with the ordinary Chow functor A∗ on complete varieties and proper maps. Aluffi
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defines a transformation F → Â∗ and illustrates his construction to provide short
proofs of two known results on Chern-Schwartz-MacPherson classes: Kwieciński’s
product formula [190, 191] and the Ehlers, Barthel-Brasselet-Fieseler computation
of Chern-Schwartz-MacPherson classes of toric varieties [28, 114].

Alternative definitions provide new insights on the Chern-Schwartz-MacPherson
classes. They are either using alternative definition of Chern-Mather classes, or
using alternative definition of local Euler obstruction (Sect. 5.17).

In particular, in [197, 317], Lê Dũng Tráng and Bernard Teissier define Chern-
Mather classes and local Euler obstruction in terms of polar varieties (see Defi-
nition 5.15.8 and Sect. 5.17.1.4). In [4], Paolo Aluffi uses differential forms with
logarithmic poles.

In [268], Claude Sabbah provides an alternative definition in terms of conormal
cycles and expression of the local Euler obstruction.

Definition 5.16.4 (Sabbah, [268]) Let M a complex analytic manifold and X an
irreducible closed analytic subset in M . Let Xreg = X0 the regular part of X and
T ∗
X0M the conormal bundle of X0 in T ∗M . The closure T ∗XM = T ∗

X0M ⊂ T ∗M

T ∗XM = Closure of {(x, ξ) ∈ T ∗X | x ∈ X0, ξ |TxX0 = 0}

is the conormal space ofX inM . The conormal cycle, called “classe fondamentale”
in [268], is defined by [T ∗XM].
The conormal space is a reduced analytic space, conic onX. The projectivized space
C(X,M) = P(T ∗XM) ⊂ P(T ∗M) is also named conormal space by some authors.

Linear combinations of the cycles [T ∗XM] form an abelian group (the group
of Lagrangian cycles) L(M). Using the Nash transformation (Sect. 5.15.3) and
the Gonzalez-Sprinberg–Verdier expression of the local Euler obstruction (for-
mula 5.47)

Eua(X) =
∫

ν−1(a)

c(Ẽ) ∩ s(ν−1(a), X̃),

one defines

Ch(Eu(X)) = (−1)dimX[T ∗XM].

The constructible functions Eu(X) span F (X), one obtains a homomorphism

Ch : F (X)→ L(X).

The cycle Ch(ϕ) corresponding to a constructible function ϕ is called characteristic
cycle. Note that Ch(1X) is a combination not only of [T ∗XM] but also of conormal
cycles to subvarieties of X, according to the singularities of X.
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In his article [268], Sabbah shows that operations on F (X) correspond to natural
operations on the group of homogeneous Lagrangian cycles of the cotangent bundle
T ∗M . Sabbah writes that “En particulier cela montre que la théorie des classes de
Chern de [M] se ramène à une théorie de Chow sur T ∗M , qui ne fait intervenir que
des classes fondamentales.”

Chern-Mather classes can be computed in terms of conormal cycles and A.
Parusiński and P. Pragacz [246, formula (12)] show that the MacPherson class of
the constructible function ϕ is

c∗(ϕ) = (−1)(dimM−1)c∗(TM) ∩ π∗(c(O(1)))−1 ∩ [PCh(ϕ)]).

where π is the projection PCh(ϕ)→ M and O(1) is the hyperplane bundle.
Using the Kashiwara expression of local Euler obstruction (Sect. 5.17.1.6), it

was shown by Brylinski, Dubson, and Kashiwara [70] that the MacPherson Chern
classes of a singular varietyX admit a simple expression involving the characteristic
cycle of X from the theory of D-modules (also see Ginsburg [138]). J.H.G. Fu
provides a geometric insight for the characteristic Kashiwara’s cycle [127]. In [128]
using this geometric meaning of the construction Fu provides an intuitively proof of
the Deligne-Grothendieck axioms (see Theorem 5.15.11).

In a series of lectures, [278], J. Schürmann discusses the calculus of characteristic
classes associated with constructible functions. The point of view of characteristic
classes of Lagrangian cycles is emphasized.

The relation between Stiefel-Whitney and Chern-Schwartz-MacPherson classes
is given by J. Schürmann in [282].

In [283], J. Schürmann compares different notions of transversality for possible
singular complex algebraic or analytic subsets of an ambient complex manifold and
proves a refined intersection formula for their Chern-Schwartz-MacPherson classes.
While the result is known for complex Whitney stratified sets (see [320]), the author
extend the result for splayed divisors. The result was conjectured (and proven in
some cases) by Aluffi and Faber [19]. The obtained transversality result is based
in particular on the multiplicativity of Chern-Schwartz-MacPherson classes with
respect to cross products (see Kwieciński and Kwieciński-Yokura product formula
[190, 191]).

5.16.2 Thom Polynomials

The definition and properties of Thom polynomials use basic ones regarding
singularities of mappings, such as stability, finite determinacy, versal unfoldings,
etc. Some of these are recalled. For a complete presentation we refer to the book
[227] by David Mond and Juan José Nuño-Ballesteros and their article in this
Handbook [228], see also the article by Maria Aparecida Soares Ruas [267] in the
same Handbook or Ohmoto [237], [239, Chapter 2]. Thom polynomials will be used
in Sect. 5.17.5.4 in relation with the image Milnor number.
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5.16.2.1 The Equivalence RelationsA and K [228, section 1.2] and [267,
section 2 and §4.1]

The group of biholomorphic germs (Cm, 0) → (Cm, 0) is denoted by Diff(Cm, 0).
The natural equivalence relation A classifies map-germs up to isomorphisms of
source and target as follows. The direct product A = Diff(Cm, 0)×Diff(Cn, 0) acts
on

E0(m, n) = {f : (Cm, 0)→ (Cn, 0)|f is holomorphic }

by (σ, τ ) · f = τ ◦ f ◦ σ−1

The natural equivalence relation K (contact equivalence). measures the tangency
of the graphs y = f (x) and y = 0 in C

m × C
n. The contact group K consists of

pairs (σ,�) where σ ∈ Diff(Cm, 0) and � : (Cm, 0) → GL(n,C), which acts on
E0(m, n) by ((σ,�) · f )(x) = �(x)f (σ(x)).
Example 5.16.5 f = (x3 + yx, y) and f = (x3, y) in E0(2, 2) are K–equivalent
but not A-equivalent.

5.16.2.2 Unfoldings [228, § 1.2.1] [267, Definition 4.10]

Let f : (Cm, S) → (Cn, 0) be a map-germ. A k-parameter unfolding of f is a
map-germ

F : (Cm × C
k, S × {0})→ (Cn × C

k, {0} × {0}) F (x, u) = (f̃ (x, u), u),

such that f̃ (x, 0) = f (x). We denote the map x �→ f̃ (x, u) by fu and call fu a
k-parameter deformation of f . Two unfoldings G,F of f with k parameters are
equivalent if there are unfoldings of identity maps idm of Cm and idn of Cn

� : (Cm × C
k, {0} × {0})→ (Cm × C

k, {0} × {0})
and � : (Cn × C

k, {0} × {0})→ (Cn × C
k, {0} × {0})

respectively, so that F ◦� = � ◦G. An unfolding of f is trivial if it is equivalent
to the product (f × idk)(x, u) = (f (x), u).

Given a map h : (C�, 0) → (Ck, 0), the induced unfolding h∗F from F via the
base-change h is defined by the unfolding h∗F(x, v) = (fh(v)(x), v).We say that F
is an Ae-versal unfolding of f if any unfolding of f is equivalent to some unfolding
induced from F .

A map-germ f : (Cm, S) → (Cn, 0) is stable if every unfolding of f is trivial,
i.e. is equivalent to the constant unfolding (x, u) �→ (f (x), u).

Two map-germs f : (Cm+k, 0) → (Cn+k, 0) and g : (Cm, 0) → (Cn, 0) are
stably A-equivalent if f is A-equivalent to the trivial unfolding g × id(Ck,0)
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We denote by η and call A-singularity type an equivalence class under relation
A.

Example 5.16.6 The A-class of f = (x3 + yx, y) is called an ordinary cusp or
stable A2-singularity.

5.16.2.3 Thom Polynomials

Given a stable singularity type η of holomorphic map-germs from C
m to C

n, we
denote

η(f ) = {x ∈ M | the germ f at x is stably A-equivalent to η}

and by η(f ) its closure, called the singular locus of f of type η.
For a holomorphic map f : M → N between complex manifolds, and a

singularity η, In [318], René Thom noticed that the cohomology class represented
by the set of points in M where the map has singularity η can be calculated by a
universal polynomial depending only on the singularity.

Theorem 5.16.7 [239, Theorem 4.1] –The Thom polynomial. –For a stable singu-
larity type η, there exists a unique polynomial tp(η) ∈ Z[c1, c2, . . .] so that for any
stable map f : M → N the singular locus of type η is expressed by the polynomial
evaluated by the quotient Chern class ci(f ) = ci(f ∗T N − TM):

Dual [η(f )] = tp(η)(c(f )) ∈ H 2 codim(η)M).

Example 5.16.8 The Thom polynomial for the A2-singularity is tp(A2) = c2
1 + c2.

A major problem is to determine the precise form of tp(η) for a given contact
type η (see the discussion in Toru Ohmoto [239, Remark 4.3]).

As an advanced version, the theory of Thom polynomials for stable multi-
singularities has been developed by M. Kazarian, [178, 179] that merges multiple
point formulas (developed by Kleiman) [183, 184] and the above Thom polynomials
for mono-singularities.

In the case that codimension of η is equal to dim(M), then tp(η) for f counts the
number of η-singular points.

5.16.2.4 Thom Polynomials and Chern-Schwartz-MacPherson Classes

Theorem 5.16.9 [239, p. 193] The higher (Chern-Schwartz-MacPherson) Thom
polynomial tpSM is introduced so that it universally expresses the Chern-Schwartz-
MacPherson class of the η-type singular point locus [η(f )]:

Dual cSM(η(f )) = c(TM) · tpSM(η)(η).
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Here tpSM(η)(η) is a power series in ci = ci(f ) whose leading term is the Thom
polynomial tp(η).

The Ohmoto strategy is to incorporate not only the Chern-Schwartz-MacPherson
classes, but also the Segre-Schwartz-MacPherson classes [13] of the closed embed-
ding ι : X ↪→ M

sSM(X,M) = c(ι∗TM)−1 ∩ cSM(X) ∈ H∗(X)

into the theory of Thom polynomials, see [239, Section 4.3] for effective computa-
tions, using methods developed by Richard Rimányi [261].

Theorem 5.16.10 [235], [239, Theorem 4.4] For a stable singularity type η, there
exists a unique power series tpSM(η) ∈ Z[[c1, c2, . . .]] so that for any stable map
f : M → N the singular locus of type η, one has

Dual sSM(η(f ),M) = tpSM(η)(c(f )) ∈ H ∗M).

In particular, ifM is compact, the Euler characteristic of the η-type singular locus is
given by the degree of c∗(1η(f )) (see formula 5.46), which has a universal expression

χ(η(f )) =
∫

M

c(TM) · tpSM(η)(c(f )).

5.16.3 Examples of Chern-Schwartz-MacPherson Classes

Chern-Schwartz-MacPherson classes have been studied and explicitly computed
by many authors, providing many examples and applications, for instance in the
following cases:

– Definition in terms of Chern-Weil and C̆ech-de Rham cohomology (see Suwa
[310–312] and Brasselet-Seade-Suwa [67]).

– Local complete intersections (Suwa [308] and Yokura [352]).
– Thom spaces (in particular Thom spaces associated to Segre and Veronese

embeddings) (Brasselet and Gonzalez-Sprinberg [49, 50]).
– Toric varieties (Barthel, Brasselet, Fieseler and Kaup [28, 30, 31], Ehlers [114],

Maxim and Schürmann [219], A. Weber [327]). ,
– Schubert varieties (Aluffi, Mihalcea, Schürmann and Su [22, 23], Jones [175,

§5.2], Kumar, Rimányi and Weber [188, 263]).
– Orbit stratifications (Fehér, Rimányi and Weber [121]).
– Determinantal varieties (Nuño Ballesteros, Oréfice-Okamoto and Tomazella

[233] and Zhang [363–365]).
– Hypersurfaces (Aluffi [2, 3, 6], Parusiński and Pragacz [246]).
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– Degeneracy loci (Parusiński and Pragacz [243–245], Fehér and Rimányi [120],
Promtapan and Rimányi [260]), see also [239, Theorem 3.13].

– Embeddable scheme (Aluffi [14]).
– Projective schemes (Aluffi [7]).
– Case ofDM-stacks (Jiang [173] also see [99]).
– Applications to Physics (Aluffi and Marcolli [20], Aluffi and Esole [17, 18]).
– Algorithmic expression (Helmer [164]).
– Relation with maximum likelihood degree (Rodriguez and Wang [265, 266]).
– etc. (The list is far from being exhaustive).

5.16.4 The Equivariant Case

Generalizing the study of equivariant characteristic classes in the case of manifolds,
equivariant Chern-Schwartz-MacPherson classes have been described by T. Ohmoto
[235], by Cappell, Maxim, Schürmann and Shaneson [76] and by Rimányi and
Varchenko [262]. In [235, 238] (see also [239, section 3.4]), Ohmoto uses an
equivariant version of Thom polynomials to describe equivariant Chern-Schwartz-
MacPherson classes.

Equivariant Chern-Schwartz-MacPherson classes of symmetric and of skew-
symmetric determinantal varieties were computed explicitly by means of the
Fehér-Rimányi method and in terms of Schur polynomials by Sutipoj Promtapan
[259].

An equivariant formula for Chern-Schwartz-MacPherson classes of hypersur-
faces of projective varieties is provided by Xiping Zhang [366].

5.17 Local Euler Obstruction

The local Euler obstruction, defined by MacPherson is one of the main ingredients
of the construction of the MacPherson natural transformation and classes. The
local Euler obstruction is the subject of several equivalent definitions as well as
of calculus in several special cases and many generalizations (see the surveys [42]
and [51] and the book [67]). This is the reason why it deserves a separate chapter.

Note: The notation of local Euler obstruction is, unfortunately, not uniformized.
For instance it can be Eua(X) as well as EuX(a) according to the authors. As there
is no risk of confusion, and so that the reader can find the same notation here and
in the references, it is the latter that we use in each case, even if it means not being
consistent.
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5.17.1 Definitions

5.17.1.1 MacPherson’s Original Definition

The local Euler obstruction was first defined by MacPherson [204] (also see [143])
using differential forms. MacPherson’s definition is the following.

Let z1, . . . , zm be local coordinates in M such that zi(a) = 0 and let ‖z‖ =√
z1z1 + · · · + zmzm. Since ‖z‖2 is a real-valued function, d‖z‖2 may be consid-

ered as a section of TM∗ where ∗ denotes the real dual bundle retaining only its
orientation from the complex structure. The section d‖z‖2 pulls back and restricts
to a section ρ of TX∗. Considering the Nash transformation ν : X̃ → X ( cf.
diagram 5.40), by Whitney condition (a) (see Definition 5.10.2), for small enough
ε, the section ρ is nonzero over ν−1(z) with 0 < ‖z‖ ≤ ε.

By the Bertini-Sard theorem, (see for instance [323]) the sphere Sε of radius
ε, boundary of the ball Bε, centered at 0 is transverse to the strata Vα if
ε is small enough. The obstruction to extending ρ as a nonzero section of
TX∗ from ν−1(Sε(0)) to ν−1(Bε(0)), denoted by Eu(T X∗, ρ) in [204], lies
in Hn(ν−1(Bε), ν

−1(Sε);Z). The local Euler obstruction of X at a is defined
as the evaluation of Eu(T X∗, ρ) on the orientation class Oν−1(Bε),ν−1(Sε)

in
Hn(ν

−1(Bε), ν
−1(Sε);Z), that is:

Eua(X) = 〈Eu(T X∗, ρ), Oν−1(Bε),ν−1(Sε)
〉.

5.17.1.2 Brasselet-Schwartz Definition

The equivalent dual definition given in [59] uses vector fields. Whitney condition
(a) (see Definition 5.10.2) implies that a stratified vector field v defined on A ⊂ X
admits a canonical lifting ṽ on ν−1(A) as a section of Ẽ [59, Proposition 9.1].

Consider a radial stratified vector field v in a neighbourhood of the point {0} ∈ X
so that there exists ε0 > 0 such that for all ε, 0 < ε < ε0, the vector v(x) is pointing
outwards of the ball Bε over the boundarySε = ∂Bε. If ε is small enough, the sphere
Sε is transverse to the strata Vα.

Theorem 5.17.1 [59] Let v be a stratified vector field pointing outwards Bε along
Sε and ṽ the lifting of v on ν−1(X ∩ Sε). The local Euler obstruction Eu0(X) is the
obstruction to extend ṽ as a nowhere zero section of Ẽ over ν−1(X∩Bε), evaluated
on the orientation class Oν−1(Bε),ν−1(Sε)

:

Eua(X) = Obs(ṽ, Ẽ, ν−1(X ∩ Bε)).
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5.17.1.3 Gonzalez-Sprinberg – Verdier Definition

The Gonzalez-Sprinberg–Verdier definition [143, 144] extends the MacPherson
definition to algebraically closed fields, using Segre classes.

The construction of local Euler obstruction being local, one can assume thatX ⊂
C
m and 0 ∈ X. Let X̃0 = ν−1(0) the fiber of the Nash transformation at 0. Let X̃′

be the blow-up of X̃0 in X̃. LetD be the exceptional divisor in X̃′, inverse image of
X̃0. On D there are two vector bundles: the restriction to D of the inverse image of
Ẽ, still denoted by Ẽ (denoted by T̃ in [143, §4.3]), and the normal bundle to D in
X̃′, denoted by ξ . One has the following diagram.

Theorem 5.17.2 [143, §4.3] The local Euler obstruction of X at a is equal to:

Eua(X) =
∫

D

cn−1(Ẽ − ξ) ∩ [D],

where dimD = dimX−1 = n−1, c(Ẽ−ξ) = c(Ẽ)/c(ξ) and ci(ξ) = 0 for i ≥ 2.

The Gonzalez-Sprinberg–Verdier’s formula can be written in terms of Segre class
[143]

Corollary 5.17.3 The local Euler obstruction of X at a is equal to:

Eua(X) =
∫

ν−1(a)

c(Ẽ) ∩ s(ν−1(a), X̃), (5.47)

where s is the (relative) Segre class of the normal cone of ν−1(a) (for a complete
statement see Aluffi [13] and Fulton [130]).

Note that, in [298], Marcos Sebastiani provides a simpler proof of the formula
than the one by Gonzalez-Sprinberg.

Recently, this viewpoint of the local Euler obstruction plays an important role in
Donaldson-Thomas theory by the work of Behrend [35] in the context of Deligne-
Mumford stacks. Following the method of Gonzalez-Sprinberg, Yunfend Jiang [173,
174] gives a similar formula as Corollary 5.17.3 in this framework.
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5.17.1.4 Lê-Teissier’s Definition

The Lê-Teissier definition uses the notion of polar varieties 5.15.8. We consider, in
C
m a flag of vector subspaces

(D) Dn ⊂ Dn−1 ⊂ · · · ⊂ D2 ⊂ D1 ⊂ D0 = C
m.

where i is the codimension of Di in C
m. The set

Sk(D) = {V ∈ G | dim(V ∩Dd−k+1 ≥ k}

is an irreducible algebraic subvariety of G with codimension k, called Schubert
variety associated to the flag (D) (see Sect. 5.5.4). It is denoted by ck(D) in [197,
315]) (also see [252, 253]).

Assuming X ⊂ C
m, the Nash transformation can be written in the following

way. Let G = Gn(Cm) be the Grassmannian manifold of n-planes in C
m. Let γ 0 :

Xreg → G be the analytic map x �→ Tx(Xreg). The restriction of the projection
pr1 : X × G → X to the closure X̃ in X × G of the graph of γ 0 is isomorphic
to the Nash transformation X̃ of X. The Gauss map γ : X̃ → G is defined as the
restriction to X̃ of the projection pr2 : X × G → G. Lê and Teissier deduce from
a theorem by Kleiman [182, 2. Theorem] that if (D) is a sufficiently general flag,
then γ−1(Sk(D)) is empty or has codimension k in X̃.

For a suitable Zariski open and dense subset in the space of flags (see [197,
(2.2.2)]) the reduced analytic subspace corresponding to ν(γ−1(Sk(D))) is well
defined, called the polar variety of X of codimension k and denoted by Pk(D) (see
Mk in the Sect. 5.15.4.2).

Theorem 5.17.4 (Lê-Teissier) [197, Corollaire 5.1.2] For every sufficiently gen-
eral flag D ∈ C

m, one has

Eua(X) =
n−1∑

i=0

(−1)n−1−im0(Pn−1−i (D)). (5.48)

where m0(C) is the multiplicity of C at 0 (see [197, Corollaire 4.1.9]).

The particular case of surfaces is described by Lê D. T. in [193].
In [71], R. Callejas-Bedregal, M.J. Saia, and J.N. Tomazella apply the Lê-Teissier

formula to compute the polar multiplicities of a germ at zero of an analytic variety
Y ⊂ C

p which is the image by a finite morphismf : Z→ Y of an isolated complete
intersection singularity, (ICIS) Z ⊂ C

n.
The Lê-Teissier method has been implemented for effective computation by

Tajima and Nabeshima [314].
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5.17.1.5 Sabbah’s Definition

We note that the idea to consider the (complex) dual Nash bundle was already
present in [269], where Sabbah introduces a local Euler obstruction defined by
EǔV (0) that satisfies EǔV (0) = (−1)dEuV (0). Also see [281, sec. 5.2].

Claude Sabbah provides a “dual” version in [268, 269], using the conormal
space (Sect. 5.16.1) and associating to each irreducible subanalytic space Z in the
manifold M the conormal space T ∗Z(M). Then, operations on F (X) (in particular
intersection and specialization) are translated into operations on homogeneous
Lagrangian cycles of the cotangent space T ∗M . Applications are provided by
Sabbah, in particular to characteristic cycles of holonomic differential systems
[268], also see Goresky [146, §5.10.2].

5.17.1.6 Kashiwara’s Definition

M. Kashiwara [176] introduced a local invariant of singular complex spaces in
relation to his famous local index theorem for holonomic D-modules. It was
later observed by Dubson to be the same as MacPherson’s local Euler obstruction
[70, 103, 104] (also see Ginsburg [138]).

5.17.1.7 Aluffi’s Definition

In [13, §1.3.2] provides various expressions of local Euler obstruction in terms of
Segre classes. In order not to repeat, we refer to that article in this volume.

5.17.1.8 Dutertre’s Definition

In [105], by applying a local Gauss-Bonnet formula for closed subanalytic sets to the
complex analytic case, N. Dutrertre obtains characterization of the local (and also
the global) Euler obstruction of a complex analytic germ in terms of the Lipschitz-
Killing curvatures and the Chern forms of its regular part.

5.17.2 Main Properties of the Local Euler Obstruction

The local Euler obstruction satisfies the following properties:

(i) Eux(X) = 1 if x is a regular point of X.
(ii) Constructibility:
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Proposition 5.17.5 ([59, 204], and Many Authors) The local Euler obstruction is
a constructible function, constant along the strata of a Whitney stratification of X.

iii) Proportionality Theorems ([59], Théorème 11.1):

Theorem 5.17.6 (Proportionality Theorem for Vector Fields) Let v be any
radial vector field with an isolated singularity at the point a ∈ Vα , with index
I (v, a) = I (v|Vα , a), and let Bε a small ball centered at a without other singularity
of v, then

Obs(ṽ, Ẽ, ν−1(Bε ∩X)) = Eua(X) · I (v, a) (5.49)

The bundle on X̃ associated to Ẽ whose fiber on the point x̃ is the set of r-frames
whose vectors belong to Ẽ |̃x is denoted by Ẽr .

Theorem 5.17.7 (Proportionality Theorem for Frames) Let v(r) be a radial r-
frame with isolated singularities on the 2p-cells d2p

i with index I (v(r), σ̂i ) at the

barycenter {σ̂i} = d2p
i ∩ σi (see Theorem 5.14.2 (ii)). Then the obstruction to the

extension of ṽ(r) as a section of Ẽr on ν−1(d
2p
i ∩X) is

Obs(ṽ(r), Ẽr , ν−1(d
2p
i ∩X)) = Euσ̂i (X) · I (v(r), σ̂i ). (5.50)

5.17.3 Some Examples of the Local Euler Obstruction

5.17.3.1 Curves

The local Euler obstruction of a curve X at a point x is the multiplicity of the curve
at that point ([204, 3.2], [143, §4.5 2], [252, §6, a)]).

5.17.3.2 The Whitney Umbrella

Gerardo Gonzalez-Sprinberg gives the example of local Euler obstruction at points
of the Whitney umbrella. [143, §4.5 3]. The computation can be made also using
the Lê-Teissier formula 5.48.

5.17.3.3 Singular Point in a Hypersurface

In [143, §5], G. Gonzalez-Sprinberg provides a general formula for two-dimensional
hypersurfaces.
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Ragni Piene [252] shows that if x ∈ X is an isolated point in a hypersurface, then
the local Euler obstruction at x is given by

Eux(X) = 1+ (−1)nμ(n−1)
x ,

where μ(n−1)
x is the Milnor number of a generic hyperplane section of X at x.

As an example, one recovers the MacPherson’s example of a cone X over a
smooth plane curve of degree d (see [204, 3.2], [143, §4.5 5]). The local Euler
obstruction at the vertex v of the cone is given by

Euv(X) = 2d − d2.

5.17.3.4 Toric Varieties

G. Gonzalez-Sprinberg in [142] and [143, §4.5] gives some examples of local Euler
obstruction. In particular for toric surfaces [142]. The local Euler obstruction at
0 of the toric surface Xσ associated to a cone σ = (e2, pe1 − qe2) in R

2 with
0 < q < p and p, q coprimes, is EuXσ (0) = 3 − k where k is the minimum
embedded dimension of Xσ .

The formula was generalized by Yutaka Matsui and Kiyoshi Takeuchi [218] for
normal toric varieties, using Newton’s polyhedra.

In the case of toric varieties, many authors contributed to provide explicit
formulae of local Euler obstruction. The formulae of Yutaka Matsui and Kiyoshi
Takeuchi have inspired in particular Ragni Piene [254] and Berndt Ivar Utstøl
Nødland [232]. Ragni Piene gives a new formulation equivalent to the one by of
Matsui and Takeuchi.

In [93, 94], Dalbelo and Grulha introduce the notion of multitoric surfaces, whose
irreducible components are toric surfaces. They generalize the Gonzalez-Sprinberg
result in this situation and provide interesting examples of explicit computations of
local Euler obstruction for some families of determinantal surfaces.

5.17.3.5 Determinantal Varieties

The case of codimension two determinantal varieties with isolated singularities
(IDS) is described in [250], relating the Milnor number to the Ebeling–Gusein-Sade
index (Sect. 5.17.6).

Definition 5.17.8 Let n, k, s ∈ Z, n ≥ 1, k ≥ 0 and let Mat(n,n+k)(C) be the set
of all n × (n + k) matrices with complex entries. The subset �s ⊂ Mat(n,n+k)(C)
formed by matrices that have rank less than s, with 1 ≤ s ≤ n is called generic
determinantal variety.
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In [112] (2009) Ebeling and Gusein–Zade introduced the notion of a determi-
nantal variety with an essentially isolated determinantal singularity (EIDS) ([112,
Section 1]), as a generalization of isolated singularity.

In [86] (2018) Nancy Chachapoyas–Siesquén computes the local Euler obstruc-
tion of EIDS. The author obtains explicit formulae to calculate the local Euler
obstruction for the determinantal varieties whose singular set is an isolated complete
intersection singularity (ICIS).

In [367] (2018) Xiping Zhang gives explicit formulae computing the Chern-
Mather class and the Chern-Schwartz-MacPherson class of generic determinantal
varieties. He also obtain formulae for the conormal cycles and the characteristic
cycles of these varieties (Sect. 5.16.1). For some small values of n, k and s, Zhang
uses Macaulay2 [153] to exhibit examples of the considered classes.

In [134] (2019) Terence Gaffney, Nivaldo G. Grulha Jr. and Maria A. S. Ruas
compute the local Euler obstruction of generic determinantal varieties and apply
this result to compute the Chern-Schwartz-MacPherson class of such varieties.
In a second part they compute the Euler characteristic of the stabilization of an
essentially isolated determinantal singularity (EIDS). The formula is given in terms
of the local Euler obstruction and Gaffney’smd multiplicity [132].

Theorem 5.17.9 [134] Let �s ⊂ Hom(Cn,Cn+k) be a generic determinantal
variety. The local Euler obstruction of �s at 0 is

Eu�s (0) =
(
n

s − 1

)
, for 1 ≤ s ≤ n. (5.51)

The authors provide explicit formulae, in different particular situations and, in
particular, they recover the Chachapoyas formula [86].

In [369] Xiping Zhang, using different methods and working over the general
framework of arbitrary algebraically closed fields of characteristic 0 shows that the
formula 5.51 also holds in this context

In [368], Xiping Zhang finds explicit formulae for Chern-Schwartz-MacPherson
classes and Chern-Mather classes of EIDS via Schubert calculus. As corollaries the
author obtains formulae for their generic sectional Euler characteristics, character-
istic cycles and polar classes.

In [27] Grazielle F. Barbosa, Nivaldo G. Grulha and Marcelo J. Saia apply the
theory developed by Gaffney which shows how to determine a Whitney stratification
of discriminants of any finitely determined holomorphic map germ in the nice
dimensions of Mather [211] [267, Section 5]. The authors compute the local Euler
obstruction at 0 in a class of discriminants of finitely determined map germs from
C
n+p to C

p with n ≥ 0 and with only Ak singularities.
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5.17.3.6 Ruled Surfaces

Ruled surfaces are also interesting objects: a germ of ruled surface in C
3 is image

of the application f : D × C→ C
3

f (t, u) = α(t) + uβ(t),

whereD ⊂ C is a disk centered at the origin and α and β are complex spatial curves
with β �≡ 0. We call α : D → C

3 the base curve and β : D → C
3 the steering

curve. In [160] N. Grulha, M. Escudeiro Hernandes and R. Martins compute the
local Euler obstruction of the ruled surface in terms of multiplicities of the pair
(α, β). As a consequence of this result, for any positive integer n, it is possible to
produce a germ of ruled surface (X, 0) such that EuX(0) = n.

5.17.4 Generalizations of Local Euler Obstruction

5.17.4.1 Local Euler Obstruction and Hyperplane Sections

The idea of studying the local Euler obstruction “à la” Lefschetz, using hyperplane
sections, appears in the work of Dubson [103] and Kato [177]. The approach in
Brasselet, Lê and Seade [53] is topological.

Theorem 5.17.10 [53] Let (X, 0) be a germ of an equidimensional complex
analytic space in C

m. Let Vα, α = 1, . . . , �, be the (connected) strata of a Whitney
stratification of a small representative X of (X, 0) such that 0 is in the closure of
every stratum. There is a non-empty Zariski open set � in the space of complex
linear forms on C

m such that, for each l ∈ � there is ε0 such that for any ε,
ε0 > ε > 0 and t0 �= 0 sufficiently small, the local Euler obstruction of (X, 0)
is equal to:

EuX(0) =
�∑

α=1

χ(Vα ∩ Bε ∩ l−1(t0)) · EuX(Vα), (5.52)

where χ denotes the Euler-Poincaré characteristic and EuX(Vα) is the value of the
Euler obstruction of X at any point of Vα, α = 1, . . . , �.

The result is a Lefschetz type formula for the local Euler obstruction and the proof
uses the M.-H. Schwartz technics developed in Sect. 5.12.The result shows that the
local Euler obstruction, as a constructible function, satisfies the Euler condition
relative to generic linear forms (see Definition 5.62).

Theorem 5.17.10 was proved in [53]. A (simpler) alternative proof is given by
Schürmann in [276]. Notice that the formula above is somehow in the spirit of the
formula by Lê-Teissier in [197].
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The theorem has some interesting consequences. The generic slice X ∩ Bε ∩
l−1(t0) in formula (5.52) is by definition (see [149]) the complex link of 0 in X. In
the case of an isolated singularity the complex link is smooth and there is only one
stratum appearing in the sum in Theorem 5.17.10. In this case the theorem gives:

Corollary 5.17.11 [53] Let X be an equidimensional complex analytic subspace
of Cm with an isolated singularity at 0. The Euler obstruction of X at 0 equals the
Gómez-Mont–Seade–Verjovsky index (GSV index) (see [141]) of the radial vector
field on a general hyperplane section X ∩H .

Corollary 5.17.12 [103, 197] LetX be an equidimensional complex analytic space
of dimension d in C

m whose singular set Sing(X) is one-dimensional at 0. Let l be
a general linear form defined on C

m and denote by Ft , the local Milnor fiber at 0
of the restriction of l to X. The singularities of Ft are the points Ft ∩ Sing(X) =
{x1, . . . , xk}. Then,

EuX(0) = χ(Ft )− k +
k∑

1

EuX(xi).

5.17.4.2 The Local Euler Obstruction of a Function

The local Euler obstruction of a function is defined by J.-P. Brasselet, D. Massey,
A. J. Parameswaran and J. Seade in [56], in order to measure how far the equality
given in Theorem 5.17.10 is from being true if we replace the generic linear form
l by some other function on X with at most an isolated stratified critical point at
0. Let (X, 0) be a complex analytic germ contained in an open subset U of C

m

and endowed with a complex analytic Whitney stratification {Vα} such that every
stratum contains 0 in its closure.

Using ideas of Thom and M.-H. Schwartz (see Sect. 5.12), it is possible to
construct a stratified vector field, taking, for each stratum Vα of X, the gradient
vector field of the restriction of f to Vα, and then, using the M.-H. Schwartz
techniques, gluing all these vector fields together, obtaining a stratified vector field
∇Xf (see [56, 209] for details).

Definition 5.17.13 Let ν : X̃ → X be the Nash transformation of X. The local
Euler obstruction of f on X at 0, denoted Euf,X(0), is the local Euler obstruction
Eu(∇Xf,X, 0) of the stratified vector field ∇Xf at 0 ∈ X.

These definitions and constructions also work when f is the restriction to X
of a real analytic function on the ambient space. For instance, if f is the function
distance to 0 on X, then ∇Xf is a radial vector field and the invariant Euf,X(0) is
the usual local Euler obstruction of X at 0.

The following result [56] compares the local Euler obstruction of the space X
with that of a function on X.
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Theorem 5.17.14 [56, 209] Let f : (X, 0) → (C, 0) have an isolated singularity
at 0 ∈ X. One has:

Euf,X(0) = EuX(0) −
(
∑

α

χ(Vα ∩ Bε ∩ f−1(t0)) · EuX(Vα)

)
. (5.53)

In other words, the invariant Euf,X(0) can be regarded as the “defect” for
the local Euler obstruction of X to satisfy the Euler condition with respect to
the function f . In this way one can generalize the definition of the local Euler
obstruction to functions with non-isolated singularities and one gets the Euler
defect introduced in [56]. This arises as a natural application of Massey’s work in
[207, 208] on derived categories and intersections of characteristic cycles.

The relative local Euler obstruction, defined in [56] was discussed, with equiv-
alent definitions, properties and interesting examples in [209]. Provided that p
is a “stratified isolated critical point” of f : X → C, D. Massey extends the
Definition 5.17.13 to possibly non-isolated critical points of functions on spaces
which need not be pure-dimensional [209].

In [107] Dutertre and Grulha present an alternative proof of the formula 5.53
using Ebeling and Gusein-Zade’s results on the radial index and the local Euler
obstruction of 1-forms (see Sect. 5.17.6 and Definition 5.17.23).

An example of computation of Euf,X(0) is given in [297, Example 4.1]. In
[24], Ament, Nuño-Ballesteros, Oréfice-Okamoto and Saia compute the local Euler
obstruction of a function on a determinantal variety and on a curve.

Stability of the local Euler obstruction of a function has been established by N.
Grulha in [159].

In Dalbelo, Grulha Jr. and Pereira ([95]), the authors compute the local Euler
obstruction of polynomials on a family of determinantal surfaces. In the same
direction, in [97] Dalbelo and Pereira give a formula to compute the local Euler
obstruction of a function f : (X, 0)→ (C, 0) where X is a multitoric surface.

5.17.4.3 Local Euler Obstruction of Map-Germs

The local Euler obstruction of map-germs was studied in relation with Whitney
equisingularity by V.H. Pérez and D. Levcovitz and M.J. Saia [247] (case C

n →
C
n), V.H.Pérez, E.C. Rizziolli and M.J. Saia [248] and E.C. Rizziolli and M.J. Saia

[264] (case C
n → C

3, with n > 3), V.H. Pérez and M. Saia [249] (case C
n → C

p,
with n < p).
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5.17.4.4 The Local Euler Obstruction via Morse Theory

The relation between local Euler obstruction of f and the number of Morse points
of a Morsification of f is described, for particular germs of singular varieties, in
[296] by J. Seade, M. Tibar and A. Verjovsky.

Stratified Morse theory (Goresky-MacPherson [149, p. 52] and Goresky [146])
yields a clear understanding of what the invariant Euf,X(x) is for arbitrary functions
with an isolated singularity. These results can also be deduced from Schürmann’s
[275], and also from the work of D. Massey [207, 208].

Definition 5.17.15 Let Vα be a Whitney stratification of X and let f : X → C be
the restriction to V of a holomorphic function F : Cm → C, with f (x) = 0. One
says that f : (X, x) → (C, 0) has a stratified Morse critical point at x ∈ X if the
dimension of the stratum Vα that contains x is ≥ 1, the restriction of f to Vα has a
Morse singularity (non degenerate critical point) at x and f is general with respect
to all other strata containing x in its closure, i.e., Ker dF(x) is transverse in C

m to
every limit of tangent spaces Txi (Vβ), for every stratum Vβ such that Vα ⊂ V β and
every sequence xi ∈ Vβ converging to x.

Every map-germ f on (X, 0) with an isolated singularity can be “morsified”, i.e.,
approximated by Morse singularities [195].

Theorem 5.17.16 [296] Let f be a holomorphic function germ on (X, 0) with an
isolated singularity (stratified critical point) at 0, restriction of a function F on an
open subset in C

m. Let Vα ⊂ X be the stratum that contains 0. Then:

1. If dimVα < dimX and Ker dF does not vanish on any generalized tangent space
of the regular stratum (in particular if f is Morse at 0), then Euf,X(0) = 0.

2. If f has a stratified Morse singularity at 0 ∈ Vα and dimVα = dimX = n, then
Euf,X(0) = (−1)n.

3. In general, the number of critical points of a Morsification of f in the regular
part of X is (−1)n+1Euf,X(0).

In [296], Seade, Tibar and Verjovsky show that the local Euler obstruction of f
is closely related to the number of Morse points of a Morsification of f .

Proposition 5.17.17 ([296] Proposition 2.3) Let f : X → C be the an analytic
function with isolated singularity at the origin. Then:

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points on Xreg in a stratified Morsification of f
lying in a small neighbourhood of 0.
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5.17.5 Comparison with Generalizations of Milnor Numbers

5.17.5.1 Milnor-Lê Number

In [196] Lê D. T. proposes a new notion of Milnor number, that is a generalization
of the Milnor number for analytic functions defined on singular analytic spaces such
that the rectified homotopical depth of X at 0, denoted rhd(X, 0) (see [194, 196])
satisfies rhd(X, 0) = dimC(X, 0).

Let X be a sufficiently small representative of the germ (X, 0). The Milnor fiber
of the complex analytic function f , defined on X, with an isolated singularity at 0
(in the stratified way), has the homotopy type of a bouquet of spheres. Lê’s Milnor
number, denoted by μL(f ), is defined as the number of spheres in the bouquet.

The relations between this invariant and the local Euler obstruction of f were
obtained by Seade, Tibar and Verjovsky [297]. In particular:

Theorem 5.17.18 Let X be a sufficiently small representative of the germ (X, 0) of
a complex analytic space. Consider a complex analytic function defined on X with
a stratified isolated singularity at 0. If rhd(X, 0) = dimC(X, 0), then

μL(f ) ≥ (−1)dimC(X,0)Euf,X(0).

The condition rhd(X, 0) = dim(X, 0) is satisfied for a complete intersection with
isolated singularity (ICIS). In this case the following holds (see [297, Formule (3)]):

Theorem 5.17.19 Let X be a sufficiently small representative of an ICIS germ
(X, 0), f an analytic function on X with stratified isolated singularity at 0, and
l a generic linear form. Then,

Euf,X(0) = (−1)dimC(X,0)[μL(f )− μL(l)].

5.17.5.2 Bruce and Roberts’ Milnor Number

Bruce and Roberts gave in [69] an alternative generalization for the notion of Milnor
number for a function on a singular variety. One of the main goals is to characterize
germs of diffeomorphisms preserving X. The technique is the integration of germs
of vector fields tangent to X. An important result is that Bruce and Roberts’s Milnor
number is a topological invariant for families of functions with isolated singularities
defined on hypersurfaces with isolated singularities [158].

Let� be an open subset of Cm containing the origin. We denote by O the sheaf of
germs of holomorphic germs of functions f : (Cm, 0)→ (C, 0) at 0 and by Der(O)
the sheaf of O-module of the vector fields germs on �. If X is a sufficiently small
representative of the germ (X, 0), the O-subsheaf of Der(O) of vector field germs
tangent to X is denoted by Der(X). The Saito’s logarithmic stratification {Xλ} of X
into connected manifoldsXλ such that the tangent space Tx(Xλ) coincides with the
subspace Derx(X) ⊂ Tx(�) and satisfying the frontier condition [270, §3].
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For a logarithmic stratification of X, the associated logarithmic characteristic
variety LC(X) is the union of the conormal spaces T ∗Xλ to the strata Xλ. They
are subspaces of T ∗0 (C

m) of vanishing forms on TXλ. The multiplicity of T ∗Xλ in
LC(X) is denoted by mλ.

In [158] N. Grulha proves the following result that relates the local Euler
obstruction and the Bruce-Roberts’ Milnor number.

Theorem 5.17.20 Let (X, 0) be the germ of a reduced equidimensional analytic
variety and f : (Cm, 0) → (C, 0) a function with an isolated singularity at the
origin such that f has also an isolated singularity in the stratified way. If LC(X) is
Cohen-Macaulay then,

μBR(f ) =
∑

λ

mλ(−1)dimC XλEuf,Xλ(0).

An important class of examples is the case of the discriminant X of an analytic
stable map-germ F : (Cn, 0)→ (Cp, 0), n ≥ p, with (n, p) are nice dimensions of
Mather [211] [267, Section 5]. N. Grulha obtains relations of constancy for families
fu between μBR(fu), μ(fu), μL(fu) and Eufu,X(0).

In [234], J.J. Nuño-Ballesteros, B. Oréfice and J.N. Tomazella consider a
weighted homogeneous germ of hypersurface (X, 0) ⊂ (Cn, 0) with isolated
singularity and f : (Cn, 0) → (C, 0) a germ of function finitely determined with
respect to X. They show that

μBR(f ) = μ(f )+ μ(X, f ),

where μ(f ) and μ(X, f ) denote the Milnor numbers of f and of the fiber
X ∩ f−1(0) respectively. They show that the logarithmic characteristic subvariety
LC(X) is Cohen-Macaulay and provide relations between the Bruce-Roberts
number and the local Euler obstruction.

5.17.5.3 Goryunov, Mond and van Straten Milnor Number

In [297], Seade, Tibar and Verjovsky compare Euf,X(0) with the generalization of
the Milnor number, due to V. Goryunov [152] and D. Mond and D. van Straten
[229], defined for functions on curve singularities, and generalized by T. Izawa and
T. Suwa [171] for functions defined on complete intersections in general. In the case
of curves, if the curve singularity (X, 0) is an ICIS, defined by some application g :
(CN, 0)→ (Cp, 0) on an open set in C

N , and F is an extension of f to the ambient
space, then μG(f ) counts the number of critical points (with their multiplicities) of
the restriction of F to a Milnor fiber of g.
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As noted in the introduction of [56] and in [171, 297], this definition makes sense
in any dimension. In [297, Formule (4)] it is proved that if (X, 0) is an ICIS, then:

μG(f ) = μL(f )+ μ(X, 0).

In this case, from Theorem 5.17.19, we get:

Euf,X(0) = (−1)dimX[μG(f )− μG(l)],

where l is a generic linear form.

5.17.5.4 Image Milnor Number

The image Milnor number is a generalization of Milnor number defined for stable
unfoldings by D. Mond (see [98, 225][228, Section 1.3]). The bridge between image
Milnor number and Thom polynomials and Chern-Schwartz-MacPherson classes
was provided by Toru Ohmoto in [239].

The definition and properties of image Milnor number use definition and
properties of singularities of mappings, see Sect. (5.16.2.2) and the book [227].

One considers germs with finite Ae-codimension, that is the minimal number of
parameters in a versal unfolding of f [225, 226].

The image Milnor number is defined in the framework of stable unfoldings.
A stabilization of f : (Cn, 0)→ (Cn+1, 0) is a 1-parameter unfoldingF(x, u) =

(fu(x), u) of f with the property that fu is a locally stable mapping for all u �= 0
close to the origin. The mapping fu is called a stable perturbation of f , its image
Xu is called the disentanglement of f [100, 225]. A stabilization of f always exists
when (n, n + 1) are Mather nice dimensions ([211] and the presentation by Maria
Aparecida Soares Ruas [267, Section 5] in the Handbook, vol. IV) or when f has
corank 1. Note that, outside the range of Mather’s dimensions, some germs do not
admit a stabilization.

Let us provide an example. Assume that M,N are compact complex manifolds
of dimension 2, 3, respectively, and f : M → N is a holomorphic map which
admits only stable singularities. Denote

A0 = the set of regular points of f, A1 = the set of critical points of f

A2
0 = {x ∈ A0| ∃x ′ ∈ A0, x

′ �= x, f (x) = f (x ′)}
A3

0 = {x ∈ A0| ∃x ′, x ′′ ∈ A0 ∩ f−1f (x), x, x ′, x ′′distinct.}

Toru Ohmoto proved that the formula obtained by Izumiya and Marar [172] in the
real case, is valid for the complex singularities as well. The constructible function,
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combination of characteristic functions

αimage = 1M − 1

2
1
A2

0
− 1

6
1A3

0
+ 1

2
1A1, (5.54)

satisfy

1f (M) = f∗(αimage). (5.55)

Extending the same procedure to more general case involving mono- and multi-
singularities, of higher codimension, Ohmoto obtains, for stable maps between
complex manifolds f : Mn→ Nn+1 (n ≥ 1), a constructible function αimage on the
source spaceM satisfying the formula (5.55). Taking the image by the MacPherson
transformation c∗ (Theorem 5.15.11), one has

Theorem 5.17.21 [239, Theorem 6.5] There is a polynomial tpSM(αimage) in the
quotient Chern classes ci = ci(f ∗T N−TM) and the Landweber-Noviknov classes
sI so that

Dual c∗(αimage) = c(TM) · tpSM(αimage) ∈ H ∗(M)

for any proper stable mapsf : Mn→ Nn+1, (1 ≤ n ≤ 5).

The Landweber-Noviknov class sI corresponding to the multi-index I =
(i1, i2, · · · ) is defined by sI (f ) = f ∗f∗(c1(f )

i1c2(f )
i2 · · · ).

An analytic map-germ f : (Cm, 0) → (Cn, 0), f = (f1, · · · , fn) is weighted
homogeneous if there are positive integers w1, w2, . . . , wm, the weights, and posi-
tive integers d1, d2, . . . , dn the degrees, such that, fi(λw1x1, λ

w2x2, . . . , λ
wmxm) =

λdifi(x) for all x ∈ C
m, λ ∈ C, i = 1, . . . , n.

Let f : (Cn, 0) → (Cn+1, 0) be an A-finitely determined weighted homo-
geneous map-germ which is not equivalent to any trivial unfolding of map-germ
of smaller dimensions. Using results of Lê [194] and Siersma [301], David Mond
[225] showed that the image (disentanglement) Xu of a stabilization of f has the
homotopy type of a wedge of n-spheres and that the number of such spheres is
independent of the stabilization. Mond called this number, denoted by μI (f ), the
image Milnor number by its analogy with the classical Milnor number μ(X, 0) of
a hypersurface (X, 0) with isolated singularity (see for instance the formula in [74,
page 34, line 2]).

Definition 5.17.22 [225] The image Milnor number of f is defined as

μI (f ) = (−1)n(χ(Im(fu)− 1). (5.56)

The image Milnor number μI (f )is well defined, that is, it is independent of the
choice of the parameter u, of the representatives and of the stable unfoldingF .
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In case of n = 1, 2, Mond proved that

Ae−codim (f ) ≤ μI (f )

and the equality holds if f is weighted homogeneous.
The original Mond’s Conjecture, [225], says that the same is true for any n for

which the pair (n, n + 1) is in Mather’s nice dimensions ([211] and [267, Section
5]).

This conjecture remains open for n ≥ 3.
The strategy used by Ohmoto provides a general formula [239, Theorem 6.20]

for χ(Im(fu)) in terms of tpSM(αimage) (or tpSM(1f (M) via formula 5.55)
Toru Ohmoto determined tpSM(αimage) and the image Minor number μI up to

degree three. In [239, Example 6.21]. Ohmoto obtains, for weighted homogeneous
map-germs (C2, 0)→ (C3, 0),

μI = −1+
[

1

w1w2
(1+ w1a)(1+ w2a) tpSM(αimage)(f )

]

2

where αimage is given by formula (5.54) and the notation in numerators [ω]2 means
the coefficient of a2 in ω ∈ Q[[a]]. Then Ohmoto recovers the formula for n = 2
due to Mond:

μI = 1

6w3
1w

3
2

[
d2

1 (d
2
2d

2
3 − w2

1w
2
2)− w2

1w
2
2{d2

2 + d2
3 + 5w2

1 + 9w1w2 + 5w2
2

− 6d3(w1 + w2)+ 3d2(d3 − 2(w1 + w2))} − 3d1w1w2{w1w2(d3 − 2(w1 + w2))

+ d2(w1w2 + d3(w1 + w2))}
]
.

Ohmoto provides the formula for n = 3 (with much more lines !) in [239] (also
see [169]). Irma PallarésTorres and Guillermo Peñafort Sanchis [240, 241] obtain
the formulae for n = 4 and n = 5. Now the formulae cover pages.

In the same way as image Milnor number, the discriminant Milnor number
defined by Damon and Mond [98] is described in [228, Section 1.3], see also [239,
Definition 6.23].

5.17.6 Local Chern Obstruction of Collections of 1-Forms

In various papers, W. Ebeling and S.M. Gusein-Zade developed MacPherson’s idea
to define local Euler obstruction using differential forms (see [110, 111]) also see
[67]. That notion is closely related to the one introduced by C. Sabbah in [269].

In [109] the definition of the local Euler obstruction of a function was adapted to
the case of a 1-form. Let (X, 0) ⊂ (Cm, 0) be the germ of a purely n-dimensional
reduced complex analytic variety at the origin and {Vα} a Whitney stratification of
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(X, 0). Let ω be a 1-form on a neighbourhood of the origin in C
m with an isolated

singular point on X at the origin. Let ε > 0 be small enough such that the 1-form
ω has no singular points on X \ {0} inside the ball Bε . The 1-form ω gives rise to
a section ω̃ of the dual Nash bundle T̃ ∗ over the Nash transform X̃ without zeros
outside of the preimage of the origin.

Definition 5.17.23 The local Euler obstruction EuX,0(ω) of the 1-form ω on X at
the origin is the obstruction to extend the non-zero section ω̃ from the preimage of a
neighbourhood of the sphere Sε = ∂Bε to the preimage of its interior, more precisely
its value, as an element of the cohomology groupH 2n(ν−1(X∩Bε), ν−1(X ∩ Sε)),
on the fundamental class of the pair (ν−1(X ∩ Bε), ν−1(X ∩ Sε)).

Just as for vector fields, (see [59]), one can define the Poincaré-Hopf index of
a 1-form at a singular point. In this situation, one has the proportionality theorem,
similar to Theorem 5.17.6.

Theorem 5.17.24 [67] Let Vα ⊂ X be the stratum containing 0, EuX(0) the local
Euler obstruction ofX at 0 and ω a (real or complex) 1-form on Vα with an isolated
singularity at 0. Then the local Euler obstruction of the radial extension ω′ of ω
and the Poincaré-Hopf index of ω at 0 are related by the following proportionality
formula:

EuX(ω′, 0) = EuX(0) · IndPH(ω, 0;X) .

where IndPH is the usual Poincaré-Hopf index.

In the same way that the Euler class corresponds to the obstruction to the
construction of a vector field, and the Chern classes to that of frames, collections
of vector fields, W. Ebeling and S.M. Gusein-Zade called “local Chern obstruction”
the generalization of local Euler obstruction to the case of collection of differential
forms [110, 111]. More precisely, the authors perform the following construction.

Let (Xn, 0) ⊂ (Cm, 0) be the germ of a purely n-dimensional reduced complex
analytic variety at the origin. Let {ω(i)j } be a collection of germs of 1-forms on
(Cm, 0) with s fixed, i = 1, · · · , s, ki are integers such that

∑
ki = n, j =

1, · · · , n − ki + 1. Let ε > 0 be small enough so that there is a representative
X of the germ (X, 0) and representatives {ω(i)j } of the germs of 1-forms inside the
ball Bε(0) ⊂ C

m.

Definition 5.17.25 [111] A point x ∈ X is called a special point of the collection
{ω(i)j } of 1-forms on the varietyX if there exists a sequence x� of points on the non-
singular part Xreg of the variety X such that the sequence Tx�Xreg of the tangent
spaces at the points x� has a limit L (in Gn(Cm)) and the restriction of the 1-forms
ω
(i)
1 , · · · , ω(i)n−ki+1 to the subspace L ⊂ TxCm are linearly dependent for each i =

1, · · · , s. The collection {ω(i)j } of 1-forms has an isolated special point on (X, 0) if
it has no special point on X in a punctured neighbourhood of the origin.
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In the discussion following [111, Corollary 3] in section 7, Ebeling and Gusein-
Zade consider the Nash transformation X̃ (they denote it by X̂) and define a fiber
bundle T̂ \ D̂ → X̂ adapted to the situation and similarly to the Nash bundle. On
the one hand the (2n − 1)-homology group of its fiber is isomorphic to Z. On the
other hand, the collection of forms {ω(i)j } defines a section ω̂ without singularity on
a neighbourhood of the sphere Sε . One can use obstruction theory and define.

Definition 5.17.26 [111] Let {0} be a special point of the collection {ω(i)j }. The

local Chern obstruction ChX,0{ω(i)j } of the collection of germs of 1-forms {ω(i)j }
on (X, 0) at the origin is the obstruction to extend the section ω̂ of the fiber bundle
T̂ \ D̂ from the preimage of a neighbourhood of the sphere Sε = ∂Bε to X̃. More
precisely it is the value of the obstruction cocycle (as an element of the cohomology
group H 2n(ν−1(X ∩ Bε), ν−1(X ∩ Sε),Z)) on the fundamental class of the pair
(ν−1(X ∩ Bε), ν−1(X ∩ Sε)).

The following result is one of the main results in [111].

Proposition 5.17.27 The local Chern obstructionChX,0{ω(i)j } of a collection {ω(i)j }
of germs of holomorphic 1-forms is equal to the number of special points on X of a
generic deformation of the collection.

The local Chern obstruction can be characterized as an intersection number. In
[133] T. Gaffney and N. Grulha compute the local Chern obstruction of a collection
of 1-forms on a variety with isolated singularity, not necessarily ICIS using the
Gaffney multiplicity polar theorem [132].

5.17.6.1 More Generalizations of the Local Euler Obstruction

The natural generalization of the notion of local Euler obstruction of a function is
the one of local Euler obstruction of a map f : (X, 0) → (Ck, 0), where (X, 0)
is a germ of an equidimensional complex analytic variety with dimension n ≥ k.
Such a notion can be defined using the local Euler obstruction associated to a k-
frame on an analytic variety, as defined and studied by J.-P. Brasselet, J. Seade and
T. Suwa in [66]. That is performed by N. Grulha in [157], where the notion of local
Euler obstruction for maps f : (X, 0) → (Ck, 0) defined on singular varieties is
introduced. The notion depends, a priori, on a particular choice of a cell σ ⊂ X, It
is denoted by Euf,X(σ ).

In [52], J.-P. Brasselet, N. Grulha and M. Ruas showed the link between the
Chern obstruction of Ebeling–Gusein-Zade [111] and the Grulha’s local Euler
obstruction for maps:

Theorem 5.17.28 [52] Let (X, 0) as above and f : (X, 0) → (Ck, 0) be a map-
germ defined on X. Then there exists a collection {ω(i)j } as in Sect. 5.17.6 such that

ChX,0{ω(i)j } = (−1)d−p+1Euf,X(σ ).
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As a consequence of the theorem, the local Euler obstruction of a map, defined
in [157] is in fact independent of a generic choice of the cell σ .

In the hypothesis of a good stratification of X relative to f (see [208], p.971),
Dutertre and Grulha define the Brasselet number as follows.

Definition 5.17.29 ([106], Definition 3.18) Let V be a good stratification of X
relative to f . We define Bf,X(0) by:

Bf,X(0) =
q∑

i=1

χ
(
Vi ∩ Bε(0) ∩ f−1(δ)

) · EuX(Vi)

where 0 < |δ| ( ε ( 1.

In [106] Dutertre and Grulha proved that the Brasselet number satisfies a Lê-
Greuel type formula, which relates this invariant with the number of Morse critical
points. The result has been generalized by H. Santana [271, Theorem 3.2].

In [107] Dutertre and Grulha present an alternative proof of the Brasselet,
Massey, Parameswaran and Seade formula [28] for the local Euler obstruction of
a function using Ebeling and Gusein-Zade’s results on the radial index and the local
Euler obstruction of 1-forms.

In [96] Dalbelo and Hartmann present a formula to compute the Brasselet number
of f : (Y, 0)→ (C, 0) where Y ⊂ X is a non-degenerate complete intersection in a
toric variety X. As application, in [96, Theorem 4.1] the authors provide sufficient
conditions to obtain invariance of the local Euler obstruction for explicit families of
ICIS.

In [158] N. Grulha uses the local Euler obstruction in order to investigate Saito
free divisors.

In [370] X. Zhang defines “reflective projective varieties” for which the Chern-
Schwartz-MacPherson classes of the strata determine the local Euler obstructions
and the polar degrees. The author proposes an algorithm to compute the local Euler
obstructions when such varieties are formed by group orbits.

5.17.7 Global Euler Obstruction

In [297], Seade, Tibăr and Verjovsky defined the global Euler obstruction: In the
same notations as above, let BR be a ball centered at origin and o sufficiently large
radius R.

Definition 5.17.30 ([297], Definition 2.3) Let ṽ be the lifting to a section of the
Nash bundle T̃ of a radial-at-infinity stratified vector field v over X \ BR . We call
global Euler obstruction ofX, and denote it by Eu(X), the obstruction for extending
ṽ as a nowhere zero section of T̃ within ν−1(X ∩ BR).
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The obstruction to extend ṽ as a nowhere zero section of T̃ within ν−1(X ∩ BR)
is in fact a relative cohomology class

o(ṽ) ∈ H 2n(ν−1(X ∩ BR), ν−1(X ∩ SR)) � H 2n
c (X̃).

The global Euler obstruction of X is the evaluation of o(ṽ) on the fundamental
class of the pair (ν−1(X ∩ BR), ν−1(X ∩ SR)). Thus Eu(X) is an integer and does
not depend on the radius of the sphere defining the link at infinity of X. Since two
radial-at-infinity vector fields are homotopic as stratified vector fields, it does not
depend on the choice of v either.

Remark 5.17.31 The global Euler obstruction has the following properties (see
[297] p. 396):

1. if X is non-singular, then Eu(X) = χ(X),
2. in general, Eu(X) = χ(X;EuX).

Here, the weighted Euler characteristic for the constructible function EuX is defined
by (see 5.63)

χ(X;EuX) =
∑

n∈Z
n · χ(Eu−1

X (n)). (5.57)

In [108], Dutertre and Grulha defined the global Brasselet number of f at a point
c and at infinity. They relate these numbers with the number of critical points of a
Morsification of a polynomial function f on an algebraic set X. When X = C

n,
similar formulas have already appeared in the literature in the work of many authors
such as Artal, Luengo, Melle, Tibar, Parusiński, Siersma, Suzuki and others.

Dutertre and Grulha prove in [108] a Brylinski-Dubson-Kashiwara type formula
for the global Brasselet number at infinity. In [271], Santana shows that the Brasselet
number of a function f with nonisolated singularities describes numerically the
topological information of its generalized Milnor fiber.

5.18 Characteristic Classes and Intersection Homology

5.18.1 Some Properties of Intersection Homology

For (compact)m-dimensional oriented manifolds, the Poincaré isomorphism

Hm−i (M) −→ Hi(M)

sends cohomology characteristic classes to homology ones and the cup-product of
cocycles corresponds to intersection product of cycles. It is then possible to define
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Stiefel-Whitney numbers and Chern numbers either in cohomology or homology
(see for instance formula (5.16) in Sect. 5.5.6.1).

In the case of singular varieties, there is a cup-product in cohomology but no
intersection product in homology. On the other hand, characteristic classes (Stiefel-
Whitney in the real case and Chern-Schwartz-MacPherson in the complex case)
live in homology, not in cohomology. They cannot be multiplied and, a priori, there
seems to be no hope to define characteristic numbers.

Fortunately, the intersection homology theory discovered by M. Goresky and
R. MacPherson [147, 148] provides a bridge between cohomology and homology,
bringing cup product to intersection product for suitable cycles (also see [46]).

Considering a stratification 5.29 of the singular variety such that Xn−2 = Xn−1,
(see pseudomanifolds [46, 1.1.2] in Handbook Volume II)

X ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−2 = Xn−1 ⊂ X = Xn (5.58)

If a chain ξ with support |ξ | meets transversely an element Xn−α of the filtration,
then one has

dim(|ξ | ∩Xn−α) = i − α.

The “intersection allowed” chains and cycles are those which meet each element
Xn−α of the filtration with a controlled and fixed transversality defect pα . This
defect, called the perversity, is an integer value function

p̄ : [0, dimX] ∩ Z→ N, pα := p̄(α)

such that p0 = p1 = p2 = 0 and pα ≤ pα+1 ≤ pα + 1 for α ≥ 2.

Example 5.18.1 Examples of perversities are

• the zero perversity 0̄ = (0, 0, . . . , 0),
• the maximal (or top) perversity t̄ = (0, 0, 0, 1, 2, . . . , n− 2),
• for n even, n ≥ 4, the upper middle n̄ = (0, 0, 0, 1, 1, 2, 2, . . . , n2 − 1, n2 − 1)

and the lower middle perversities m̄ = (0, 0, 0, 0, 1, 1, . . . , n2 − 2, n2 − 1).

Let p̄ = (p0, p1, p2, . . . , pn) be a perversity, the complementary perversity q̄ =
(q0, q1, q2, . . . , qn) is defined by pα + qα = tα for all α ≥ 2.

Definition 5.18.2 The intersection homology groups IH p̄∗ (X;G) are the homology
groups of the complex (ICp̄∗ (X;G), ∂∗) where

IC
p̄
i (X;G) =

⎧
⎨

⎩ξ ∈ Ci(X;G)
∣∣∣∣

dim(|ξ | ∩Xn−α) ≤ i − α + pα
∀α ≥ 2

dim(|∂ξ | ∩Xn−α) ≤ (i − 1)− α + pα

⎫
⎬

⎭

Here ∂ is the usual boundary andG can be Z,Z/2 or Q (even a local system).



384 J.-P. Brasselet

The condition means that the perversity is the maximum admissible defect of
transversality.

Main properties of intersection homology are:

Proposition 5.18.3 [147, §2.3] Let X a compact oriented pseudomanifold and let
p̄, q̄ and r̄ perversities such that p̄ + q̄ ≤ r̄ , one has canonical bilinear pairings

IH
p̄
i (X;G)× IH q̄j (X;G)→ IH r̄i+j−n(X;G).

In particular, Goresky and MacPherson prove the generalized Poincaré duality:

Theorem 5.18.4 [147, §3.3] Let X be a compact, oriented pseudomanifold and let
p̄ and q̄ be two complementary perversities, then the pairing

IH
p̄
i (X;Z)× IH q̄n−i (X;Z)→ IH t̄0(X;Z)

ε→ Z

followed by the evaluation map ε (which counts points with their multiplicity order)
is non-degenerate, when tensorised by the rationals Q.

Theorem 5.18.5 (Factorization of the Poincaré Homomorphism) [147, §1.4]
[46, §1.1.5]. One has, for each perversity p̄ a factorization of the Poincaré
homomorphism, cap-product by the fundamental class [X]:

(5.59)

It was then hoped that the characteristic classes could be lifted canonically from
homology (in Hk(X)) to intersection homology (in IH p̄k (X)) where their products
could be defined.

5.18.2 Stiefel-Whitney Classes, Wu Classes and Intersection
Homology

As pointed out by Goresky and Pardon, “this approach has (so far) failed completely,
except in the “extreme” cases where there is a single characteristic number. For
example, in Sullivan’s theory of mod 2 Euler spaces (formula (5.30) in Sect. 5.11)
where the Euler characteristic is the only cobordism invariant, or in P. Siegel’s theory
of mod 2 Witt spaces where the intersection homology Euler characteristic is the
only cobordism invariant.”
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The main property ofG-Witt spaces ([148, §5.6.1], [300]) is that the intersection
homology groups of the two middle perversities coincide:

IH m̄∗ (X;G) ∼= IH n̄∗ (X;G).

There was various work in this direction, in particular Friedman [125], Goresky
and Pardon [150], Siegel [300], Sullivan [307] and Szucs [313]. Siegel [300]
described the class of Q-Witt spaces and computed the cobordism groups of such
spaces, showing that in non trivial cases they are equal to the Witt groups. Pardon
[242] computed the cobordism groups of the “Poincaré duality spaces” defined by
Goresky and Siegel [151]. Friedman [125] follows Siegel by computing the bordism
groups of oriented K-Witt spaces for any coefficient field K as well as identifying
the resulting generalized homology theories.

Goresky and Pardon [150] exhibit four interesting classes of singular spaces
for which various (cobordism invariant) characteristic numbers can be constructed,
and for which these characteristic numbers completely determine the cobordism
groups. The authors construct characteristic numbers by lifting Wu classes to
intersection homology, and multiplying them, rather than lifting and multiplying
Stiefel-Whitney classes. C. McTague in [221] provide also Stiefel-Whitney numbers
for singular spaces.

In the same direction than Stong [306] (see Sect. 5.5.6.1), and using the Goresky-
Pardon’s lifting of Wu classes in intersection homology, J.-P. Brasselet, A. Libardi,
E. Rizziolli and M. Saia defined in [54, 55] Wu numbers associated to maps
and showed that, with suitable hypotheses, if a map is a coboundary, then the
corresponding Wu numbers vanish.

5.18.3 Chern-Schwartz-MacPherson Classes and Intersection
Homology

Alberto S. Dubson conjectured that the fundamental class (in homology) of an alge-
braic cycle in a complex algebraic variety X is the image of a middle intersection
class by ωX (see diagram (5.59)). In [347] Shoji Yokura gives a counterexample for
integral coefficients and proves the conjecture in the case when the variety has only
isolated singularities and for rational coefficients.

More counter-examples for integral coefficients, due to J.L. Verdier and M.
Goresky are provided in [49, 50]. They concern projective cones on the images
of Segre and Veronese embeddings. The idea to consider iterated projective cones,
i.e. cone over the cone. . . over a smooth projective variety, was already considered
by S. Yokura. In [48] J.-P. Brasselet, K.-H. Fieseler and L. Kaup show that if
X is a rational homology manifold, then the Chern-Schwartz-MacPherson classes
of iterated cones over X are in the image of intersection homology for rational
coefficients and for perversities p̄ ≥ m̄.
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More generally, G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber and L.
Kaup show in [29] that Chern-Schwartz-MacPherson classes of algebraic varieties
lift in intersection homology with rational coefficients and for the middle perversity.
However, the lifting is not unique so that (in general) it is not possible to define
Chern numbers.

5.19 Fulton Classes and Milnor Classes

The Schwartz classes use a generalization of the tangent bundle in the singular case,
it is the union of tangent bundles to the strata of a Whitney stratification (and no
longer a bundle). The Mather classes, introduced by MacPherson use the Nash
bundle. The Fulton method is another way to generalize the tangent bundle and
obtain characteristic classes in the singular situation.

The definition of Fulton classes (1984)

cF (X) = c(TM|X) ∩ s(X,M)

uses the Segre classes s(X,M) of the proper subvariety X of the manifoldM (see
[13, 130]). In the case of local complete intersections, the normal bundle of the
regular part Xreg canonically extends to X as a vector bundle NXM . The virtual
tangent bundle of X is then defined as τX = TM|X − NXM (defined in the
Grothendieck group of vector bundles on X) and one has

cF (X) = c(τX) ∩ [X].

The difference between the Schwartz-MacPherson classes and the Fulton classes
was (and continue to be) the subject of many papers.

The starting point is the Paolo Aluffi paper [2] which provides, for hypersurfaces,
a formula in the schematic framework and the context of Segre classes (also see the
documented article [13, Section 4]).

If W is a scheme supported on a Cartier divisor X of a nonsingular variety M ,
then the Segre class ofW in M can be written in terms of the Segre class of X and
the Segre class of the residual scheme J to X in W [130, Proposition 9.2] and [2,
§2].

Theorem 5.19.1 [2, Theorem 1] Let X be a section of a very ample line bundle on
a nonsingular complex varietyM , and let J be its singular subscheme. Then

cSM(X) = cF (X \ J )

The theorem means that Fulton’s class equals Schwartz-MacPherson’s after the
scheme is “corrected” for the presence of singularities. As written by Aluffi “At
the moment we take this corrected [term] purely as a formal object, although we
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wonder whether a more concrete geometric meaning can be attached to it.” Explicit
computation of an example is provided in [2].

A first approach to expression of the difference between Fulton’s class and
Schwartz-MacPherson’s class in terms of “Milnor class” is given in [2, Lemma 3].

Then Tatsuo Suwa [308] and José Seade and Tatsuo Suwa [295] proved that
if X is a compact local complete intersection with isolated singularities then the
difference

μ∗(X) = (−1)n(cF (X)− cSM(X)

is localized in degree 0 and is the sum of Milnor numbers at the singular points.
In general, the difference μ∗ between Schwartz-MacPherson class and Fulton

class has been called Milnor class of X and many authors studied this class
providing different characterizations and equivalent definitions, using different
notions of indices of vector fields at singular points, for example the GSV -index.
Among them: Paolo Aluffi, Jean-Paul Brasselet, Daniel Lehmann, Toru Ohmoto,
Adam Paruziński, Piotr Pragacz, José Seade, Tatsuo Suwa, Shoji Yokura. . . (see
[74]).

The R. Callejas-Bedregal, M.F.Z. Morgado, and J.Seade article in this volume
[74] provides a complete survey on Fulton, Fulton-Johnson and Milnor classes. We
refer to this article concerning these classes. More information is also provided in
the Yokura article [362] to appear in Volume IV.

5.20 Segre Classes

As we have seen, sometimes hidden, sometimes in broad daylight, Segre’s classes
play a very important role in the development of characteristic classes. The article by
Paolo Aluffi on Segre classes in this volume [13] shows importance and implication
of Segre classes not only for characteristic classes but for singularity theory in
general (also see [22]).

According to David Mumford, “The Italian school, and notably Severi, Todd,
Eger, and Segre developed a general theory of Chern classes in the algebraic case”
(in [68]) Bernard Teissier [317] shows the relation between polar classes and Segre
classes, roughly speaking, replacing tangents by secants. The relations between
polar classes and Segre classes for singular projective varieties have been also
described by S. Yokura in [346, 348].

For a general survey see the article by Aluffi [13].

5.21 Motivic and Hirzebruch Characteristic Classes

In [60, 63] Jean-Paul Brasselet, Jörg Schürmann and Shoji Yokura use motivic
theory to obtain a generalization of the result of Hirzebruch (see Sect. 5.9) to the
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case of singular varieties. They unify the theories of Chern-Schwartz-MacPherson
classes and generalizations of Todd classes and L∗ classes in the singular case. The
interested reader will find all information and details in the very good survey by Jörg
Schürmann and Shoji Yokura [285] and Shoji Yokura article [362] (also see [65]).

In particular generating series formulae have been generalized for twisted
characteristic classes of symmetric products of a singular complex quasi-projective
variety [77].

5.21.1 Motivic Chern Classes: Hirzebruch Theory for Singular
Varieties

In the same way as the MacPherson’s natural transformation generalises the Chern
class to singular varieties, the Todd class and the Thom-Hirzebruch class have been
generalized as natural transformations respectively by Baum-Fulton-MacPherson
[34] and by Cappell-Shaneson [80, 81, 299]. The motivic theory allows to unify the
three generalizations in the spirit of Hirzebruch (§ 5.9).

Definition 5.21.1 (Chern Transformation (MacPherson)) (Theorem 5.15.11 and
Formula 5.46)
There is a unique natural transformation

c∗ : F (X)→ H∗(X)

from the group of constructible functionsF (X) to homology, satisfying the Deligne
and Grothendieck conjecture. In particular for the constructible function 1X, one
defines cSM(X) := c∗(1X) the Chern-Schwartz-MacPherson class of X.

Definition 5.21.2 (Todd Transformation (Baum-Fulton-MacPherson)) [34]
There is a unique natural transformation

td∗ : G0(X)→ H∗(X)⊗ Q

from the Grothendieck group of coherent sheaves on X, satisfying suitable axioms.
In particular, for the structure sheaf OX on a smooth variety, td∗(OX) is the Todd
class of X. In general, one defines td∗(X) := td∗[OX] to be the Baum-Fulton-
MacPherson Todd class of X.

Definition 5.21.3 (L-Transformation (Cappell-Shaneson)) [80, 81, 349] There is
a unique natural transformation

L∗ : �(X)→ H2∗(X;Q)
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from the group of constructible self-dual sheaves on X, satisfying suitable axioms,
in particular, for the intersection sheaf ICX on a smooth variety, L∗[ICX] is the L-
class ofX. In general, one definesL∗(X) := L∗([ICX]) to be the Cappell-Shaneson
L-class of X.

Note that relation of L-classes with intersection homology (also see 5.18) was
studied by S.E. Cappell and J.L. Shaneson in [78, 79].

In short, one has the following table:

X manifold X singular variety

Number Cohomology classes Homology classes

χ(X) Chern Chern-Schwartz-MacPherson

χa(X) Todd Baum-Fulton-MacPherson

sign(X) Thom-Hirzebruch Cappell-Shaneson

The problem is that the three transformations are defined on different spaces:

F (X), G0(X) and �(X)

and one asks for the possibility of unifying them in the same way as the Hirzebruch
theory in the smooth case. The problem was solved by Brasselet, Schürmann and
Yokura [60, 63] using the motivic framework. Some ingredients will be useful:

Definition 5.21.4 Let X be an algebraic variety. The Grothendieck relative group
of algebraic varieties over X denoted by

K0(var/X)

is the quotient of the free abelian group of isomorphy classes of algebraic maps
Y −→ X, modulo the “additivity relation”:

[Y −→ X] = [Z −→ Y −→ X] + [Y \ Z −→ Y −→ X]

for closed algebraic subvarieties Z in Y .

In [63], the authors prove the following 4 theorems:

Theorem 5.21.5 The map

e : K0(var/X) −→ F (X) defined by e([f : Y → X]) := f∗(1Y )

(see (5.39 in Sect. 5.15.1)) is the unique group homomorphism which commutes with
direct images for proper maps and such that

e([idX]) = 1X for X smooth and pure dimensional.
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Theorem 5.21.6 There is a unique group homomorphism

mC : K0(var/X) −→ G0(X)

which commutes with direct images for proper maps and such that

mC([idX]) = [OX] for X smooth and pure dimensional.

Theorem 5.21.7 [63] There is a unique group homomorphism

sd : K0(var/X) −→ �(X)

which commutes with direct images for proper maps, such that

sd([f : Y → X]) := [Rf∗QY [dimC(Y )+ dimC(X)]]

for Y smooth pure-dimensional and f proper and such that

sd([idX]) = [QX[2 dimC(X)]] = [ICX] for X smooth and pure dimensional.

Theorem 5.21.8 [63] (Definition 5.9.7); There is a unique group homomorphism

Ty : K0(var/X) −→ H∗(X)⊗ Q[y]

which commutes with direct images for proper maps and such that

Ty([idX]) = ˜td(y)(T X) ∩ [X] for Xsmooth and pure dimensional.

In particular, one has: T−1([idX]) = c∗(X).
Remark 5.21.9 If a complex algebraic variety X has only rational singularities (for
example if X is a toric variety), then:

mC([idX]) = [OX] ∈ G0(X) and in this case T0([idX]) = td∗(X).

That is not true in general !

The main result is the following:
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Theorem 5.21.10 One has a commutative “tripode” diagram:

5.21.2 Verdier Riemann-Roch Formula

Theorem 5.21.11 Let f : X′ → X be a smooth morphism of constant relative
dimension, then one has

˜td(y)(Tf ) ∩ f ∗Ty([Z −→ X]) = Tyf ∗([Z −→ X]).

Here Tf is the bundle overX′ of tangent spaces to fibers of f .

Proposition 5.21.12 (Factorisation of Ty ) Defining

td(1+y)([F ]) =
<∞∑

i=0

t̃di([F ]) · (1+ y)−i ,

then one has:

Ty = td(1+y) ◦mC : K0(var/X) −→ H∗(X)⊗ Q[y].

Conjecture [63] The Hirzebruch homology class T1,∗ coincides with the Goresky-
MacPherson L∗-class for compact complex algebraic varieties that are rational
homology manifolds.

The conjecture has been proven by J. Fernández de Bobadilla and I. Pallarés
in the projective case [37] and, with a different proof, in the general case, by J.
Fernández de Bobadilla, I. Pallarés and M. Saito, [38].

The Saito theory of algebraic mixed Hodge modules allows also S.E. Cappell,
A. Libgober, L. Maxim and J.L. Shaneson to produce Hodge theoretic formulae
of Atiyah-Meyer type for genera and characteristic classes of complex algebraic
varieties [75].
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A classical result of Verdier [324] says that the MacPherson Chern class trans-
formation commutes with specialization, which for constructible functions means
the corresponding nearby cycles. In [280] J. Schürmann shows in particular that the
motivic Chern- and Hirzebruch class transformations defined above commute with
specialization defined in terms of nearby cycles.

The motivic Chern classes have been studied in various special cases (the list is
far from being complete):

– Motivic Chern classes of Schubert cells by P. Aluffi, L. C. Mihalcea, J.
Schürmann and C. Su [21],

– Motivic and derived motivic Hirzebruch classes by J.-P. Brasselet, J. Schürmann,
S. Yokura, [64], also see Yokura [362].

– Motivic Chern classes andK-theoretic stable envelope by L. Fehér, R. Rimányi,
and A. Weber [122],

– Motivic Chern classes of configuration spaces by J. Koncki [186],
– Twisted motivic Chern classes by J. Koncki and A. Weber [187],
– Specialization of motivic Hodge-Chern classes by J. Schürmann [279],
– Motivic bivariant characteristic classes by J. Schürmann and S. Yokura [286,

287],
– Motivic characteristic classes by S. Yokura [359, 361],
– Motivic Milnor classes by S. Yokura [360],
– Equivariant Hirzebruch classes by A. Weber [328].

In the list may be mentioned the stringy Chern classes, detailed in the following
section.

5.22 Stringy Chern Classes

The reader interested in stringy Chern classes will find a complete presentation in
the very informative introductions of articles by P. Aluffi [9, 12] and by T. de Fernex,
E. Lupercio, T. Nevins, and B. Uribe [99].

In [32], Batyrev showed that if two nonsingular varieties V andW are birational,
and their canonical bundles agree after pull-back to a resolution of indeterminacies
of a birational map between them, then the Betti numbers of V and W coincide. In
[8] P. Aluffi showed an analog of Victor Batyrev’s result, concerning the total Chern
class of the tangent bundle (in the Chow group of the variety). More precisely, Aluffi
states the

Theorem 5.22.1 [8, Theorem 1.1] Let ϕ : V ��� W be a birational morphism of
nonsingular algebraic varieties over an algebraically closed field of characteristic
0. Assume that there is a resolution of indeterminacies of ϕ,



5 Characteristic Classes 393

such that v and w are proper and birational, and the Jacobian ideals of v and w
coincide. Then there exists a class C ∈ (A∗Z)Q that

c∗(T V ) = v∗(C) and c∗(TW) = w∗(C)

in (A∗V )Q and (A∗W)Q respectively.

As a corollary, the push-forward of the total Chern class of a crepant resolution
of a singular variety is independent of the resolution (see [8]). The theorem [8,
Theorem 3.1] shows that the previous theorem is true for singular varieties and
Chern-Schwartz-MacPherson classes.

However, as shown by simple examples such as a surface with rational double
points, compared to its minimal resolution the push-forward of the Chern class of a
resolution is not necessarily the Chern-Schwartz-MacPherson class (see [99]).

In order to recover this property in the singular setting, independently and using
different methods, P. Aluffi in [12] and T. de Fernex, E. Lupercio, T. Nevins, and
B. Uribe in [99] defined stringy Chern classes in the Chow group of a variety X
(with at worst log-terminal singularities) whose degree is the Batyrev’s stringy Euler
number.

The two approaches have points of contact, and produce the same class. In their
introductions, both papers explain very well the respective methods they use (also
see the introduction in [9]).

De Fernex et al. make use of motivic integration, a fruitful framework for defining
and studying stringy invariants (see the surveys [101, 325]). They provide an explicit
formula for quotient varieties and show that the stringy Chern classes may also
be obtained by specializing formulas of Lev Borisov and Anatoly Libgober for
their orbifold elliptic class [39]. The motivic framework in [99] is close to the
one developed by Brasselet, Schürmann and Yokura in [63]. Restricting to the case
of normal varieties X with a Q-Cartier canonical divisor and having at most log-
terminal singularities (for instance, the singularities of the quotient of a smooth
variety by the action of a finite group) in general these varieties form a natural class
of singularities in birational geometry

De Fernex et al. encode information coming from resolution of singularities
into a (Q-valued) constructible function �X. By combining the (Q-version of)
MacPherson transformation with motivic integration (with its natural change-of-
variables formula), the authors obtain a direct construction of the cycle class c∗(�X)
with wished birational invariance properties. They define:

cstr(X) = c∗(�X) ∈ A∗(X)Q. (5.60)

and obtain:
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Theorem 5.22.2 Let V and W birational (possibly singular) varieties in the same
K-equivalence class and

a common resolution, then there exists a class C ∈ (A∗Z)Q such that

cstr(V ) = v∗(C) and cstr (W) = w∗(C)

for some C ∈ A∗(Z)Q.

In [9, 12], P. Aluffi developed a new very fruitful tool, the “celestial integrals”
with several applications. In particular, the celestial integrals may be used to
compare Chern classes of birational varieties: celestial integrals are formal integral
on the system of varieties mapping properly and birationally to a given one, with
value in an associated Chow group. The main property of the celestial integrals
is that they satisfy a change of variable formula with respect to proper birational
morphisms. Using the change-of-variable formula the corresponding theorem can
be proved and then stringy Chern classes are defined.

In some situations, the stringy classes coincide with the Wu-Mather classes, for
instance in the case of Schubert varieties (see [175]).

In [33], Batyrev and K. Schaller determine the stringy Chern classes of singular
toric varieties as an application of a formula expressing the total stringy Chern class
of a generic complete intersection in a normal projective Q-Gorenstein variety X
with at worst log-terminal singularities via the total stringy Chern class of X.

5.23 The Different Chern Classes in Terms of Constructible
Functions

The majority of the described “Chern type” classes can be defined as classes images
of the MacPherson’s natural transformation

c∗ : F (X)→ A∗(X)

for suitable constructible functions.

(a) The Chern-Schwartz-MacPherson class.
The Chern-Schwartz-MacPherson class of X is defined by

cSM(X) = c∗(1X)
(see formula (5.46)).
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(b) The Wu-Mather class.
The local Euler obstruction is a constructible function (Proposition 5.17.5).
According to the MacPherson’s construction, the Wu-Mather classes satisfy

cMa(X) = c∗(EuX).

(c) The Chern-Fulton class.
If X ⊂ M is a hypersurface defined by X = f−1(0) where f : M → D is
a holomorphic function defined into an open disk D around 0 in C. the Chern-
Fulton classes verify (see [67, Theorem 11.3.2]),

cF (X) = c∗(σX)

where σX is the constructible function whose value at x is the Euler-Poincaré
characteristic χ(Fx) of the local Milnor fiber, i.e., the intersection of a nearby
fiber of f with a small ball in M centered at x (see [74, p. 34] and the Verdier
specialization [324]).

(d) The Milnor class.
If X is an n-dimensional local complete intersection in a complex manifold
M , the Milnor classes have been considered by various authors, from different
viewpoints. (see § 5.19 and the article by R. Callejas-Bedregal, M.F.Z. Mor-
gado, and J. Seade article [74] in this volume). The corresponding constructible
function

μX = (−1)n−1(1X − σX)

was defined by ([244, 350], [67, Definition 12.1.1]).
(e) The weighted Chern-Mather class

In [35], K. Behrend considers the “Donaldson-Thomas” invariant, or “virtual
count” of stable sheaves on Calabi-Yau threefolds (see [35] for definition).
Behrend defines a constructible function νX on any scheme X over C. If X
is proper and embeddable, then the value of the Donaldson-Thomas invariant is
equal to χ(X; νX).
Here, the weighted Euler characteristic for the constructible function νX is
defined by (see formula (5.57) in 5.17.31)

χ(X; νX) =
∑

n∈Z
n · χ(ν−1

X (n)).

If X is the critical scheme of a regular function f on a smooth scheme M , i.e.
X = Z(df ), then the constructible function νX coincide with μX. The class

c∗(νX)

coincide (up to sign) with the Aluffi weighted Chern-Mather class (Sect. 5.15.5).
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(f) The stringy Chern class
In [99] (see formula (5.60) in Sect. 5.22) T. de Fernex, E. Lupercio, T. Nevins,
and B. Uribe define a constructible function �X such that the stringy Chern
class is equal to:

cstr(X) = c∗(�X) ∈ A∗(X)Q (5.61)

A stringy constructible function IX(0,CX) satisfying also (5.61) has been
defined by P. Aluffi [9, Definition 5.2] using the notion of modification system
CX that he introduced in [9, Definition 2.1 and Theorem 5.3].

5.24 Bivariant Classes

In 1981, Robert MacPherson and William Fulton [131] developed a formalism
called bivariant theories. These are simultaneous generalizations of covariant group
valued “homology-like” theories and contravariant ring valued “cohomology-like”
theories. The aim of bivariant theories is to define parametrized objects such as
characteristic classes: For instance, to a map f : X → Y associate a “class”
such as for each y ∈ Y , one has the class of f−1(y). MacPherson and Fulton
proved the existence and uniqueness of Stiefel-Whitney classes in this formalism
and conjectured the same for Chern classes.

More information is provided in the Yokura article in the volume IV of the
Handbook [362].

5.24.1 Bivariant Theories

Bivariant theories [131] are simultaneous generalizations of covariant (such as
homology) and contravariant (such as cohomology) theories.

A bivariant theoryB on a categoryC with values in the category of graded abelian

groups is an assignment to each morphism X
f−→ Y in the category C an abelian

group B(X
f−→ Y ), equipped with the following three basic operations:

• Product: For morphisms f : X → Y and g : Y → Z, one has the product
operation

• : B(X f−→ Y )⊗ B(Y
g−→ Z)→ B(X

gf−→ Z).

• Pushforward: For morphisms f : X → Y and g : Y → Z with f proper, one
has the pushforward operation

f∗ : B(X gf−→ Z)→ B(Y
g−→ Z).
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• Pullback: For a fiber square

one has the pullback operation

g∗ : B(X f−→ Y )→ B(X′ f ′−→ Y ′).

These three operations are required to satisfy seven axioms [131, Part I, §2.2]:
product is associative, pushforward and pullback are functorial, the three operations
commute two by two, and they commute with usual projection formula.

The data X �→ B∗(X) := B(X → pt) becomes a covariant functor and X �→
B∗(X) := B(X

id−→ X) becomes a contravariant functor.
Given two bivariant theories B and B′ on a category C, a Grothendieck

transformation from B to B′

G : B→ B′

is a collection of homomorphisms

B(X→ Y )→ B′(X→ Y )

one for each morphism X → Y in the category C, which commute with the above
three basic operations.

5.24.2 Bivariant Constructible Functions (Mod 2)

For A ⊂ X and α : X → Z2 a constructible function on X, the weighted Euler
characteristic of A is defined (see formula (5.57) in 5.17.31) as:

χ(A; α) = χ(A ∩ α−1(1)) =
∑

i

(−1)i rankHic(A ∩ α−1(1)) (mod 2).

If (K) is an α-adapted triangulation of X, and A is a subcomplex of (K), then
one has:

χ(A; α) =
∑

i

(−1)i
∑

σ∈Ai
α(σ ) (mod 2),



398 J.-P. Brasselet

where Ai is the set of i-simplexes in A and α(σ) is the value of α in the interior of
σ .

The open star of a simplex σ , union of the interior of all simplexes meeting the
interior of σ , is denoted by St◦(σ ).

Definition 5.24.1 ([41, 131, 269]) Let us consider triangulations (K) and (L) of
X and Y respectively such that (K) is α-adapted and f is a simplicial map. The
constructible function α ∈ F (X) satisfies the local Euler condition at x ∈ X,
relatively to f , if

α(x) = χ(St◦(σ ) ∩ f−1(y); α) (5.62)

for all y ∈ St◦(f (σ )), where σ is the simplex of (K) containing x in its interior.

The local Euler condition is independent of the choice of the triangulations (K)
and (L). It can be reformulated in the following way: for any local embedding
(X, x)→ (CN, 0), the following equality holds:

α(x) = χ(Bε ∩ f−1(y); α)

where Bε is a sufficiently small open ball of the origin with radius ε and y any point
close to f (x).

Definition 5.24.2 Let f : X → Y be a morphism of (algebraic varieties), the
group F (X→ Y ) of bivariant constructible functions is defined as the subgroup of
constructible functions α : X → Z2 satisfying the local Euler condition for each
point x ∈ X.

The group operations on F (X → Y ) are defined in an obvious way and satisfy
the axioms of a bivariant theory [131].

5.24.3 Bivariant Homology Theory

The bivariant homology groups are defined by Fulton and MacPherson [131, §1.1.3]
in the following way.

For a morphism f : X → Y of real (or complex) algebraic varieties choose
a factorization as a closed embedding � := (f, φ) : X → Y × M into Y × M
whereM is an oriented manifoldM of real dimension n, followed by the projection
pr1 : Y ×M → Y onto Y .
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The i-th bivariant homology group Hi(X
f−→ Y ) is defined by

Hi (X
f−→ Y ) := Hi+n(Y ×M, (Y ×M) \�(X)).

This definition does not depend of the choice of the factorization. In particular,

H(X
id→ X) is the cohomology of X and if Y is non singular, H(X → Y )

is isomorphic to the homology H∗(X) of X by Alexander duality isomorphism
(Sect. 5.4.2).

5.24.4 Bivariant Stiefel-Whitney Classes

Let us consider the bivariant homology theory H(X → Y ) with modulo 2
coefficients, Fulton and MacPherson proved the following result:

Theorem 5.24.3 There is one and only one Grothendieck transformation ω from
F to the bivariant homology theory with modulo 2 coefficients, such that if X is a
manifold, then

ω(1X) = w(TX) · [X]

where the product of the Stiefel-Whitney class w∗(T X) ∈ H(X → X) = H ∗(X)
with the fundamental class [X] ∈ H(X→ {pt}) = H∗(X) is the usual cap-product
giving ω(1X) ∈ H∗(X).
Definition 5.24.4 An Euler map f : X → Y is a map for which the constructible
function whose value is 1 on all ofX satisfies the local Euler condition for all x ∈ X.
One denotes by 1f that function.

As an example, the map X→ {pt} is an Euler map if and only if X is a modulo
2 Euler space [162] (see formula 5.30 in Sect. 5.11), that is a space such that for all
x ∈ X, one has

χ(X,X − x) ∼= 1 mod 2.

The fibers of an Euler map are all modulo 2 Euler spaces. Any fibration with
modulo 2 Euler spaces as fibers is an Euler map.

If f : X → Y is a proper Euler map, then χ(f−1(y)) is a locally constant
function on Y , modulo 2. The reason is that in the diagram

X −→ Y

f ↘ ↙ id
Y
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one has f∗(1f ) ∈ F (Y id→ Y ). The local Euler condition is precisely the right local
condition on X to guarantee this result. The following definition agrees with the
definition in [162, 307] (see also [117]) of the Whitney class of a modulo 2 Euler
space.

Definition 5.24.5 If X→ pt is an Euler map, one defines w∗(X) ∈ H(X→ pt) to
be ω(1X).

5.24.5 Bivariant Chern Classes

In the case of integer coefficients, the bivariant constructible functions are written
in the following way. Let α : X→ Z be a constructible function on X and A ⊂ X,
the weighted Euler characteristic of A is defined as:

χ(A; α) =
∑

n∈Z
n · χ(A ∩ α−1(n)). (5.63)

If (K) is an α-adapted triangulation of X, and A is a subcomplex of (K), then:

χ(A; α) =
∑

i

(−1)i
∑

σ∈Ai
α(σ ),

where Ai is the set of i-simplexes in A and α(σ) is the value of α in the interior of
σ .

Let f : X → Y a morphism (of algebraic complex varieties), the group
F (X→ Y ) of bivariant constructible functions is defined as the subgroup of F (X)
of functions satisfying the following local Euler condition for each point x ∈ X:

Definition 5.24.6 Considering triangulations (K) and (L) of X and Y respectively
such that (K) is α-adapted and f is a simplicial map. The constructible function
α ∈ F (X) satisfies the local Euler condition at x ∈ X, relatively to f , if

α(x) = χ(St◦(σ ) ∩ f−1y; α)

for all y ∈ St◦(f (σ )), where σ is the simplex of (K) containing x in its interior.

The bivariant homology theoryH and the bivariant constructible functions theory
F are defined in a similar way as in the real case, but with integer coefficients.
In [131] was conjectured the following result, about existence and uniqueness of
bivariant Chern classes:
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Conjecture There is one and only one Grothendieck transformation γ from F to
H such that if X is a manifold, then

γ (1X) = c(TX) · [X]
where [X] is the fundamental class of X.

The existence part of the conjecture was proved by Brasselet, in [41] in 1983,
in the framework of cellular maps using construction of relative radial r-frames,
following M.H. Schwartz methods. Any analytic map is conjecturally cellular and
no counterexample has been found so far. From a result of Teissier [316], an analytic
map to a smooth curve is cellular (see [372],[373, 2.2.5 Lemme]).

Another proof of existence was given by Claude Sabbah, in 1986, in [269], using
relative conormal space and relative bivariant cycles. Jianyi Zhou [373] proved that
the two definitions coincide when Y is a smooth curve.

The problem of uniqueness of the bivariant Chern classes is still open. The
approach by Yokura [351], considering a generalization of Schwartz-MacPherson
classes and extension to a Verdier-type Riemann-Roch theorem [322], gives hope to
solve the problem. Of course, one of the applications of the uniqueness of bivariant
Chern classes would be a bivariant Riemann-Roch theorem similar to the one proved
by W. Fulton and R. MacPherson in the real case. The specialization theorem was
already proved by J.L. Verdier [324].

It is showed by Shoji Yokura, in [355, 357] that in the case when the target variety
Y is non singular, the bivariant Chern class is uniquely determined. More precisely,
if there exists a bivariant Chern class γ : F → H, then for a morphism f : X→ Y

with Y non singular and for a bivariant constructible function α the following holds:

γ (α) = f ∗s(T Y ) ∩ c∗(α)
where s(T Y ) := c∗(T Y )−1 is the total Segre class of the tangent bundle T Y .

The result uses the Fulton-MacPherson’s notion of strong orientation [131].

Definition 5.24.7 An element θ ∈ B(X
f−→ Y ) is called a strong orientation for

the morphism f : X→ Y if, for all morphisms h : W → X, the homomorphism

B(W
h−→ X)

•θ−→ B(W
f ◦h−→ Y )

is an isomorphism.

Proposition 5.24.8 [62, Proposition 4.2] Let Y a possibly singular analytic variety
such that the morphism c : Y → pt has a strong orientation θ ∈ H(Y →
{pt}) = H∗(Y ) which is contained in the image of the Schwartz-MacPherson class
c∗ : F (Y )→ H∗(Y ). Then, for any morphism f : X→ Y a bivariant Chern class

γf : F (X f→ Y )→ H(X
f→ Y )

is uniquely determined.
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Theorem 5.24.9 [62, Theorem 4.4] Let Y be a complex analytic variety which is an
oriented A-homology manifold. If there exists a bivariant Chern class γ : F → H,
then for any morphism f : X→ Y the bivariant Chern class

γf : F (X f→ Y )⊗ A→ H(X
f→ Y )⊗ A

is uniquely determined and it is described as

γf (α) = f ∗c∗(Y )−1 ∩ c∗(α).

As applications of this theorem, there are in particular, a specialization of Chern
classes, following the Verdier results [324] and a “bivariant Riemann-Roch formula”
à la Verdier [322].

The interested reader will find more information in the complete and nice survey
by Jörg Schürmann and Shoji Yokura [285] see also Yokura [362].

Also see publications by Ernström and Yokura [118, 119] concerning Chern-
Schwartz-MacPherson classes with values in Chow groups, by Brasselet, Schür-
mann and Yokura [61], by Yokura [354, 356, 358] about Ginzburg’s bivariant Chern
Classes and concerning oriented bivariant theory, about bivariant theory and Milnor
classes [353], and. . .

The history of characteristic classes is not finished !
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We precede the main discussion with a review of relevant background notions in
algebraic geometry and intersection theory.

6.1 Introduction

Segre classes are an important ingredient in Fulton-MacPherson intersection theory:
the very definition of intersection product may be given in terms of these classes,
as we will recall below. It is therefore not surprising that important invariants of
algebraic varieties may be expressed in terms of Segre classes. The goal of this paper
is to survey several invariants specifically arising in singularity theory which may
be defined or recast in terms of Segre classes. Many if not all of these invariants first
arose in complex geometry; the fact that they can be expressed in purely algebraic
terms by means of Segre classes extends their definition to arbitrary algebraically
closed fields of characteristic zero. Tools specific to the theory of Segre classes yield
new information on these invariants, or clarify the relations between them. On the
whole, the language of Segre classes offers a powerful perspective in the study of
these invariants.

We will begin with a general introduction to Segre classes and their role in
intersection theory, in Sect. 6.2; a hurried reader can likely skim through this section
at first and come back to it as needed. The survey itself will focus on the following
themes:

• Numerical invariants (Sect. 6.3);
• Characteristic classes (Sect. 6.4);
• Lê cycles (Sect. 6.5).

One central result will be an expression for the Chern-Schwartz-MacPherson
class of a (possibly singular) subvariety of a fixed ambient nonsingular variety, in
terms of the Segre class of an associated scheme: see the discussion in Sect. 6.4.5
and especially Theorem 6.4.30. For example, the topological Euler characteristic of
a scheme embedded in a nonsingular compact complex variety may be computed
in terms of this Segre class. In the case of hypersurfaces, or more generally
local complete intersections, this result implies concrete formulas for (generalized)
Milnor numbers and classes. These formulas are explicit enough that they can
be effectively implemented in computer algebra systems such as Macaulay2 for
subschemes of e.g., projective space. Characteristic classes of singular varieties are
also treated in detail in other contributions to this ‘Handbook of Geometry and
Topology of Singularities’; see especially the papers by Jean-Paul Brasselet [21] and
by Roberto Callejas-Bedregal, Michelle Morgado, and José Seade [29]. The relation
between Segre classes and David Massey’s Lê cycles discussed in Sect. 6.5 is the
result of joint work with Massey. Lê cycles are the subject of Massey’s contribution
to this Handbook, [67].

The role of Segre classes in singularity theory is certainly more pervasive than
this survey can convey; because of limitations of space (and of our competence)
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we had to make a rather narrow selection, at the price of passing in silence many
important topics. Among these omissions, we mention:

• The careful study of multiplicities and Segre numbers by Rüdiger Achilles,
Mirella Manaresi, and collaborators, see e.g., [1];

• Work on the Buchbaum-Rim multiplicity, particularly by Steven Kleiman and
Anders Thorup, [61, 62];

• Work by Terry Gaffney and Robert Gassler on Segre numbers and cycles, [43],
briefly mentioned in Sect. 6.5;

• Seminal work by Ragni Piene on Segre classes and polar varieties, [81], also only
briefly mentioned;

• Alternative uses of Segre classes in defining characteristic classes of singular
varieties, as developed by Kent Johnson [57] and Shoji Yokura [96];

• Toru Ohmoto’s work on Segre-SM classes and higher Thom polynomials [76];
• Equivariant aspects and positivity questions, which have recently come to the

fore in the study of characteristic classes for Schubert varieties, see e.g., [17, 18].

Each of these topics would deserve a separate review article, and this list is in itself
incomplete.

6.2 Segre Classes

In this section we review the general definition of Segre class used in the rest of the
article, and place it in the context of Fulton-MacPherson intersection theory. The
reader can safely skim through this section, coming back to it as it is referenced later
in the survey. We also introduce a notion that will be frequently used in the rest, that
is, the ‘singularity subscheme’ of a hypersurface; Sect. 6.2.5 is an extended example
revolving around the Segre class of this subscheme for hyperplane arrangements.

We work over an algebraically closed field k; in later considerations, k will
be assumed to have characteristic 0. Schemes are assumed to be separated of
finite type over k. A variety is a reduced irreducible scheme; a subvariety of a
scheme is a closed subscheme that is a variety. By ‘point’ we will mean closed
point. An effective Cartier divisor (or, slightly abusing language, a hypersurface)
is a codimension-1 subscheme that is locally defined by a nonzero divisor. Cartier
divisors are zero-schemes of sections of line bundles. A cycle in a scheme is a formal
integer linear combination of subvarieties. Two cycles are rationally equivalent
if (loosely speaking) they are connected by families parametrized by P

1. The
Chow group of dimension-l cycles of a scheme X modulo rational equivalence
is denoted Al(X); the direct sum ⊕lAl(X) is denoted A∗(X). We recall that a
proper morphism f : X→ Y determines a covariant push-forward homomorphism
f∗ : A∗(X) → A∗(Y ) preserving dimension, while a flat or l.c.i. morphism f

determines a contravariant pull-back/Gysin homomorphism f ∗. If X is complete,
that is, the structure morphism X → Spec k is proper, then the push-forward of a
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class α via A∗(X) → A∗(Spec k) = Z is the degree of α, denoted
∫
α or

∫
X α.

Intuitively,
∫
α is the ‘number of points’ in the zero-dimensional component of

α. Vector bundles determine Chern classes, which act as operators on the Chow
group, and satisfy various compatibilities (such as the ‘projection formula’) with
morphisms. The Chern class ci(E) ∩ − of a vector bundle E on X defines group
homomorphismsAl(X) �→ Al−i (X). The ‘total’ Chern class of E is the operator

c(E) = 1+ c1(E)+ · · · + crkE(E) .

For i > rkE, ci(E) = 0. If O(D) is the line bundle corresponding to a Cartier
divisor D, the action of the operator c1(O(D)) amounts to ‘intersecting by D’: if
V ⊆ X is a variety not contained in D, c1(O(D)) ∩ [V ] is the class of the Cartier
divisor obtained by restricting D to V ; we write c1(O(D)) ∩ α = D · α. Every
vector bundle E → X determines an associated projective bundle ‘of lines’, which
we denote π : P(E) → X. This bundle is endowed with a tautological subbundle
OE(−1) of π∗E; its dual OE(1), which restricts to the line bundle of a hyperplane
in each fiber of π , plays a distinguished role in the theory.

Our reference for these notions is William Fulton’s text, [39]; Chapters 3–5 of
the survey [40] offer an efficient and well-motivated summary. A reader who is
more interested in topological aspects will not miss much by assuming throughout
that k = C and replacing the Chow group with homology. The constructions in
intersection theory are compatible with analogous constructions in this context, as
detailed in Chapter 19 of [39].

6.2.1 Segre Classes of Vector Bundles, Cones, and Subschemes

Let V ⊆ P
n be any subvariety. The degree of V may be expressed as the intersection

number of V with a general linear subspace of complementary dimension:

degV =
∫

Pn
Hn−dimV · V , (6.1)

where H = c1(O(1)) is the hyperplane class in P
n and, as recalled above,

∫
Pn
γ

denotes the degree of the zero-dimensional component of a rational equivalence
class γ ∈ A∗(Pn). In fact, by definition

∫
Pn
γ denotes the integerm such that π∗γ =

m[p], where π : Pn→ p = Spec k is the constant map to a point. With this in mind,
we can rewrite (6.1) as

(degV )[p] = π∗
⎛

⎝
∑

i≥0

c1(O(1))i ∩ [V ]
⎞

⎠ ∈ A∗(p) : (6.2)
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the only nonzero term on the right is obtained for i = n−dimV , for which it equals
(Hn−dimV · V )[p].

The right-hand side of (6.2) may be viewed as the prototype of a Segre class, for
the trivial projective bundle π : Pn→ p. More generally, let X be a scheme and let
E be a vector bundle over X. Denote by π : P(E) → X the projective bundle of
lines in E, i.e., let

P(E) = Proj(Sym∗OX(E
∨)) . (6.3)

where E ∨ is dual of the sheaf E of sections of E. Then for every class G ∈
A∗(P(E)) we may consider the class

SegreE(G) := π∗
⎛

⎝
∑

i≥0

c1(OE(1))i ∩G
⎞

⎠ ∈ A∗(X) ; (6.4)

this defines a homomorphism A∗(P(E)) → A∗(X), which we loosely call a Segre
operator. Even if G is pure-dimensional, SegreE(G) will in general consist of
components of several dimensions. As in the simple motivating example presented
above, however, its effect is to encode intersection-theoretic information on G in
terms of a class in A∗(X).

Example 6.2.1 Let X = P
m and let E = kn+1 ×X be a free bundle. Then P(E) ∼=

P
m × P

n, and the morphism π : Pm × P
n→ P

m is the projection on the first factor.
If G ∈ Am(Pm × P

n) is a class of dimensionm (to fix ideas), then

G =
m∑

i=0

giH
n−ihi ∩ [Pm+n] ,

where h, H denote the (pull-backs of the) hyperplane classes from P
m, P

n,
respectively, and gi ∈ Z are integers. Then H = c1(OE(1)), hence

SegreE(G) = π∗
⎛

⎝
∑

i≥0

c1(OE(1))i ∩G
⎞

⎠ =
m∑

i=0

gih
i ∩ [Pm]

recovers the information of the coefficients gi determining the class G. �
Applying SegreE to classes G = π∗(γ ) obtained as pull-backs of classes from

the base defines the total Segre class of E as an operator on A∗(X):

s(E) ∩ γ := SegreE(G) = π∗
⎛

⎝
∑

i≥0

c1(OE(1))i ∩ π∗(γ )
⎞

⎠ . (6.5)
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It is a fundamental observation that s(E) is inverse to the Chern class operator, in
the sense that

c(E) ∩ (s(E) ∩ γ ) = γ (6.6)

for all γ ∈ A∗(X). (Since the intersection product is commutative, it follows that
c(E), s(E) are two-sided inverses to each other.) Indeed, consider the tautological
sequence

0 �� OE(−1) �� π∗E �� Q �� 0 .

By the Whitney formula,

c(π∗E)c(OE(−1))−1 ∩ π∗γ = c(Q) ∩ π∗γ ;

by the projection formula,

c(E) ∩ π∗(c(OE(−1))−1 ∩ π∗γ ) = π∗(c(Q) ∩ π∗γ ) .

SinceQ has rank rkE − 1, that is, equal to the relative dimension of π ,

π∗(c(Q) ∩ π∗γ ) = mγ

for some integer m. Restricting to a fiber shows that m = 1, and (6.6) follows.
In fact, these considerations may be used to define Chern classes of vector

bundles: Chern classes of line bundles may be defined independently in terms of
their relation with Cartier divisors (as mentioned above); once Chern classes of line
bundles are available, (6.5) may be used to define Segre classes of vector bundles;
and then one may define the Chern class of a vector bundle E as the inverse of its
Segre class, and proceed to prove all standard properties of Chern classes. This is
the approach taken in [39], Chapters 2 and 3.

Other choices in (6.4) also lead to interesting notions: whenever a tautological
line bundle O(1) is defined, one may define a corresponding Segre class. For
example, we could apply the expression in (6.4) to

Proj(Sym∗OX(F ))

to define a Segre class for any coherent sheaf F ; one instance will appear below,
in Sect. 6.4.1. More generally, the definition may be applied to every projective cone.
A cone over X is a scheme

C = Spec(S ∗) = Spec(⊕k≥0S
k)
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where S ∗ is a sheaf of graded OX algebras and we assume (as is standard) that
there is a surjection S 0 � OX, S 1 is coherent, and S ∗ is generated by S 1 over
S 0. It is useful to enlarge cones by a trivial factor: with notation as above, we let

C ⊕ 11 := Spec(S ∗[t]) = Spec(⊕k≥0(⊕ki=0S
i tk−i )) , (6.7)

so that C may be viewed as a dense open subset of its ‘projective completion’
P(C ⊕ 11) = Proj(S ∗[t]); in fact, C is naturally identified with the complement
of P(C) = Proj(S ∗) in P(C ⊕ 11). Cones over X are endowed with a natural
projection π to X and with a tautological line bundle O(1), so we may defined the
Segre class of C in the style of (6.4):

s(C) := π∗
⎛

⎝
∑

i≥0

c1(OC⊕11(1))i ∩ [P(C ⊕ 11)]
⎞

⎠ ∈ A∗(X) .

If C is a subcone of a vector bundle E (as is typically the case), then

s(C) = SegreE⊕11([P(C ⊕ 11)]) . (6.8)

A case of particular interest is the cone associated with sheaf of OX algebras

⊕k≥0I
k/I k+1

where I is the ideal sheaf defining X as a closed subscheme of a scheme Y .
The corresponding cone Spec(⊕k≥0I

k/I k+1) is the normal cone of X in Y ,
denoted CXY .

Definition 6.2.2 Let X ⊆ Y be schemes. The Segre class of X in Y is the Segre
class of the normal cone of X in Y :

s(X, Y ) := s(CXY ) = π∗
⎛

⎝
∑

i≥0

c1(O(1))
i ∩ [P(CXY ⊕ 11)]

⎞

⎠ , (6.9)

an element of A∗(X). �
Remark 6.2.3 The addition of the trivial factor 11 is needed to account for the
possibility that e.g., P(C) may be empty. For instance, this is the case if X = Y ,
i.e., I = 0: then CXX = Spec(OX) = X, P(CXX ⊕ 11) = X, and s(X,X) = [X].

If X does not contain any irreducible component of Y , then

s(X, Y ) = π∗
⎛

⎝
∑

i≥0

c1(O(1))i ∩ [P(CXY )]
⎞

⎠ .

In general, it is easy to check that s(C) = s(C ⊕ 11); in particular, the notation is
compatible with the notation s(E) for vector bundles used above. �
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6.2.2 Properties

A closed embedding X ⊆ Y is regular, of codimension d , if the ideal I of X is
locally generated by a regular sequence of length d . In this case, one can verify that

⊕k≥0I
k/I k+1 ∼= Sym∗OX(I /I

2) ,

so that the normal cone CXY is a rank-d vector bundle, denoted NXY . From the
definitions reviewed in Sect. 6.2.1 it is then clear that the Segre class of X in Y
equals the inverse Chern class of its normal bundle:

s(X, Y ) = s(NXY ) ∩ [X] = c(NXY )−1 ∩ [X] .

Example 6.2.4 Let D ⊆ Y be an effective Cartier divisor. Then NDY is the line
bundle O(D), so that

s(D, Y ) = c(O(D))−1 ∩ [D] = (1+D)−1 ∩ [D] .

Abusing notation (writingD for [D]), we may write

s(D, Y ) = D

1+D = D −D2 +D3 − · · · .

For instance, if H is a hyperplane in P
n, then

s(H,Pn) = H −H 2 + · · · = [Pn−1] − [Pn−2] + [Pn−3] − · · · + (−1)n−1[P0]

viewed as a class on H = P
n−1.

More generally, if X = D1 ∩ · · · ∩ Dr is a complete intersection of r Cartier
divisors, then X ⊆ Y is a regular embedding, with NXY = O(D1)⊕ · · · ⊕ O(Dr),
and we may write

s(X, Y ) = [X]
(1+D1) · · · (1+Dr) ∈ A∗(X) .

Individual components of this Segre class may be written as symmetric polynomials
in the classes D1, . . . ,Dr . �

By definition, the blow-up of Y along X is B�XY := Proj(⊕kI k); the
exceptional divisor E of this blow-up is the inverse image of X, so it is defined
by the ideal

I ⊕I 2 ⊕I 3 ⊕ · · · ⊆ OY ⊕I ⊕I 2 ⊕ · · · . (6.10)
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it follows that

E = Proj(⊕kI k/I k+1) = P(CXY )
π→ X .

That is, the exceptional divisor is a concrete realization of the projective normal
cone of X in Y . Further, (6.10) shows that the ideal sheaf of E in B�XY is the
twisting sheaf O(1). It follows that c1(O(1)) = −E, and therefore

∑

i≥0

c1(O(1))i ∩ [P(CXY )] = E − E2 + E3 − · · · ∈ A∗(E) .

If X does not contain irreducible components of Y , it follows (cf. Remark 6.2.3)
that

s(X, Y ) = π∗(E − E2 + E3 − · · · ) . (6.11)

This observation (and various refinements and alternatives) may be used to construct
algorithms to compute Segre classes; see [6, 33, 48, 50, 52] for a sample of
approaches and applications. The algorithms in the recent paper [50] by Corey Har-
ris and Martin Helmer are implemented in the powerful package SegreClasses
[49] available in the standard implementation of Macaulay2 [46].

The assumption that X does not contain irreducible components of Y is not
a serious restriction: as we have noted that s(C) = s(C ⊕ 11) for a cone C
(cf. Remark 6.2.3), it follows that

s(X, Y ) = s(X, Y × A
1) ,

where on the right we view X ∼= X × {0} as a subscheme of Y × A
1. Thus, (6.11)

may be used to compute s(X, Y ) in general, by employing the exceptional divisor
E of the blow-up of Y × A

1 along X.
The construction of normal cones is functorial with respect to suitable types of

morphisms. This leads to the following useful result.

Proposition 6.2.5 ([39, Proposition 4.2]) Let Y , Y ′ be pure-dimensional schemes,
X ⊆ Y a closed subscheme, and let f : Y ′ → Y be a morphism, and g : f−1(X)→
X the restriction. Then

• If f is flat, then s(f−1(X), Y ′) = g∗s(X, Y ).
• If Y and Y ′ are varieties and f is proper and onto, then g∗s(f−1(X), Y ′) =
(deg f )s(X, Y ).

Here, f realizes the field of rational functions on Y ′ as an extension of the field of
rational functions on Y , and deg f is the degree of this extension if dimY = dimY ′,
and 0 otherwise. In particular, if Y ′ and Y are varieties and f : Y ′ → Y is proper,
onto, and birational, then

s(X, Y ) = g∗(s(f−1(X), Y ′)) .
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This birational invariance of Segre classes is especially useful.

Example 6.2.6 We have verified a particular case of this fact already. Indeed, let
X � Y be a proper subscheme of a variety, and let f : Y ′ = B�XY → Y be
the blow-up of Y along X. Then f−1(X) = E is the exceptional divisor, a Cartier
divisor of B�XY , therefore (Example 6.2.4)

s(f−1(X), Y ′) = E − E2 + E3 − · · · .

The birational invariance of Segre classes implies that, letting g = f |E : E → X,
we must have

s(X, Y ) = g∗(E − E2 + E3 − · · · ) ;

we have verified this above in (6.11) (where g is denoted π). �
The Segre class s(X, Y ) depends crucially on the scheme structure of X; in

general, s(X, Y ) �= s(Xred, Y ). On the other hand, different scheme structures
may lead to the same Segre class, and this is occasionally useful. For instance,
assume that the ideals IX,Y and IX′,Y of two subschemes X, X′ of Y have the
same integral closure. Then s(X, Y ) = s(X′, Y ). Indeed, we may assume IX,Y is
a reduction of IX′,Y ; then we have a finite morphism B�X′Y → B�XY preserving
the exceptional divisors [92, Proposition 1.44], so the equality follows from (6.11)
and the projection formula. See Example 6.3.4 below for a concrete example of this
phenomenon.

Summary (and Shortcut) A reader who may not be too comfortable with the
algebro-geometric language of Proj and cones employed so far may use the
following as a characterization (and hence an alternative definition) of Segre classes.

Let Y be a variety. Every closed embedding X ⊆ Y determines a Segre class
s(X, Y ) ∈ A∗(X). This class is characterized by the following properties:

• If X ⊆ Y is a regular embedding, with normal bundle NXY , then

s(X, Y ) = c(NXY )−1 ∩ [X] ;

• if f : Y ′ → Y is proper, onto, birational morphism of varieties, and g :
f−1(X)→ X is the restriction of f , then

s(X, Y ) = g∗s(f−1(X), Y ′) .

Indeed, by blowing up Y along X, the second property reduces the computation of
Segre class to the case of Cartier divisors, which is covered by the first property.

Unlike this characterization, the definition given in Sect. 6.2.1 does not require
the ambient scheme Y to be a variety. In our applications, this more general situation
will not be important. In any case we note that if Y is pure-dimensional, with
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irreducible components Yi (taken with their reduced structure) one can in fact show
[39, Lemma 4.2] that

s(X, Y ) =
∑

i

mis(X ∩ Yi, Yi) , (6.12)

where mi is the geometric multiplicity of Yi in Y , and the classes on the right-hand
side are implicitly pushed forward to X. Each s(X ∩ Yi, Yi) is the Segre class of a
subscheme of a variety, thus it is determined by the characterization given above.

6.2.3 A Little Intersection Theory

Segre classes play a key role in Fulton-MacPherson’s intersection theory; indeed,
the very definition of intersection product may be expressed in terms of Segre
classes. By way of motivation for the formula giving an intersection product,
consider a vector bundle

p : E→ X

on a scheme X. Then it may be verified [39, Theorem 3.3(a)] that the pull-back
p∗ : A∗(X)→ A∗(E) is an isomorphism.

Remark 6.2.7 The fact that p∗ is surjective may seem counterintuitive, as it implies
that a vector bundle overX has no nonzero rational equivalence classes of codimen-
sion larger than the dimension of X. See [39, §1.9], particularly Proposition 1.9 and
Example 1.9.2. This fact can be viewed as a generalization of the observation that
affine space A

n has no nonzero classes of dimension< n. �
We may therefore define a ‘Gysin homomorphism’ σ ∗ : A∗(E) → A∗(X), as

the inverse of p∗. That fact that for any subvariety Z ⊆ X,

σ ∗([p−1(Z)]) = σ ∗(p∗[Z]) = [Z]

(and linearity) suggests that σ ∗(α) should be interpreted as the ‘intersection class’
of α with the zero-section of E.
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We can get an explicit expression for σ ∗(α) in terms of the Segre homomorphism
from (6.4). For this, consider E as a dense open subset of its projective completion
P(E ⊕ 11), and let π : P(E ⊕ 11) → X be the projection. If α ∈ Ak(E), then
α = p∗(σ ∗(α)) is the restriction to E of π∗(σ ∗(α)). An expression for σ ∗(α) may
be given in terms of any class α ∈ Ak(P(E ⊕ 11)) restricting to α on E.

Lemma 6.2.8 Let α ∈ Ak(E). With notation as above,

σ ∗(α) = {c(E) ∩ SegreE⊕11(α)
}
k−rkE

where {· · · }� is the term of dimension � in the class within braces, and α is any class
in Ak(P(E ⊕ 11)) restricting to α on E.

This statement is equivalent to [39, Proposition 3.3]. We sketch a verification. As
we argued in (6.6) (note c(E ⊕ 11) = c(E)),

σ ∗(α) = c(E) ∩ (s(E ⊕ 11) ∩ σ ∗(α))

= c(E) ∩ π∗
⎛

⎝
∑

i≥0

c1(O(1))i ∩ π∗(σ ∗(α))
⎞

⎠

= c(E) ∩ SegreE⊕11(π
∗(σ ∗(α))) ∈ Ak−rkE(X) .

Now note that if α is any class in Ak(P(E ⊕ 11)) restricting to α on E, then

β = α − π∗(σ ∗(α))

is supported on the complement P(E) of E in P(E ⊕ 11). It follows easily that all
components of the class

c(E) ∩ π∗
⎛

⎝
∑

i≥0

c1(O(1))
i ∩ β

⎞

⎠
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have dimension ≥ k − (rkE − 1). Thus, the component of dimension k − rkE of

c(E) ∩ SegreE⊕11(α)

agrees with the component of dimension k − rkE of

c(E) ∩ SegreE⊕11(π
∗(σ ∗(α))) = σ ∗(α)

and the statement follows.
A deformation argument reduces to the template of intersecting a class with the

zero-section all intersection situations satisfying the following requirements. Let
X and V be closed subschemes of a scheme Y . We assume that V is a variety of
dimension m, and that X ⊆ V is a regular embedding of codimension d . We have
the fiber diagram

X ∩ V � � ��

j

��

V

i

��
X

� � �� Y

.

The pull-back i∗IX,Y of the ideal ofX in Y generates the ideal ofX∩V in V . This
induces a surjection

i∗Sym∗OY (IX,Y /I
2
X,Y ) = ⊕k≥0i

∗(I k
X,Y /I

k+1
X,Y )� ⊕k≥0I

k
X∩V,V /I

k+1
X∩V,V

and consequently realizes CX∩V V as a closed, m-dimensional subscheme of the
pull-back j∗NXY of the normal bundle of X in V . William Fulton and Robert
MacPherson (cf. [42], [39, Chapter 6]) define the intersection product X · V ∈
Am−d(X∩V ) to be the intersection of [CX∩V V ] with the zero section of the bundle
j∗NXY , defined as above by means of the Gysin morphism:

X · V := σ ∗([CX∩V V ]) .

As shown in [39], this definition implies all expected properties of an intersection
product. Applying Lemma 6.2.8, we see that

X · V = {c(j∗NXY) ∩ Segrej∗NXY⊕11([P(CX∩V V ⊕ 11)])}
m−d

since [P(CX∩V V ⊕ 11)] restricts to [CX∩V V ] on j∗NXY

= {c(j∗NXY) ∩ s(X ∩ V, V )
}
m−d
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(cf. (6.8) and (6.9)). This definition, which we rewrite here for emphasis:

X · V := {c(j∗NXY) ∩ s(X ∩ V, V )
}

dimV−codimX Y
(6.13)

is of foundational importance in intersection theory. Note that it assigns an explicit
contribution to X · V to every connected componentZ of X ∩ V :

contribution of Z to X · V : {c(NXY |Z) ∩ s(Z, V )}dimV−codimX Y . (6.14)

It can be shown that the right-hand side of (6.13) preserves rational equivalence in
the evident sense, so that it defines Gysin homomorphismsAkV → Ak−d(X ∩ V ).
More generally, it defines a homomorphism AkY

′ → Ak−d(X ×Y Y ′) for every
morphism Y ′ → Y . (See [39, Chapter 6].)

Example 6.2.9 A particular case of (6.13) gives the self-intersection formula of a
regularly embedded subschemeX of Y . For this, consider the fiber diagram

X ��

��

X

��
X �� Y

and apply (6.13) to obtain

X ·X = {c(NXY ) ∩ s(X,X)}dimX−codimX Y = cd(NXY ) ∩ [X] .

For instance, the self-intersection of the zero-section of a vector bundle E on a
variety W equals crkE(E) ∩ [W ]: indeed, the zero-section is regularly embedded,
with normal bundle E.

It follows that if σ is any section of a vector bundle E, then writing W for the
image of the zero-section of E,

ι∗(W · σ(W)) = crkE(E) ∩ [W ] ,

where ι : Z(σ) → W is the embedding of the zero-scheme of σ . Indeed, σ(W)
is rationally equivalent to the zero-section. Again using (6.13), we can identify the
contribution of a union of connected components Z of Z(σ) to crkE(E) ∩ [W ] as

{c(E|Z) ∩ s(Z,W)}dimW−rkE , (6.15)

‘localizing’ the top Chern class along the zeros of a section. (See [39, §14.1].) �
The requirement that X be regularly embedded in Y is nontrivial. It can be

bypassed if the ambient scheme Y is a nonsingular variety, say of dimension m.
Indeed, in this case the diagonal embedding Y → Y × Y is regular with normal
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bundle T Y , and we can interpret the intersection of any two subvarieties Z,W of Y
as the intersection of the diagonalΔ with the product Z ×W . The fiber diagram

Z ∩W ��

j

��

Z ×W
i

��
Y = Δ �� Y × Y

suggests the definition

[Z]·[W ] := Δ·(Z×W) = {c(j∗T Y )∩s(Z∩W,Z×W)}dimZ+dimW−m . (6.16)

Note that neither Z norW need be regularly embedded in Y . This definition passes
to rational equivalence and extends by linearity to a product A∗(Y ) × A∗(Y ) →
A∗(Y ) making the Chow group A∗(Y ) into a commutative ring. It can be shown
[39, Proposition 8.1.1(d)] that (6.16) is compatible with the previous definition, in
the sense that if Y is nonsingular, Z ⊆ Y is a regular embedding, andW ⊆ Y is any
subvariety, then [Z] · [W ] agrees with the definition of Z ·W given earlier.

Example 6.2.10 Sometimes this intersection product may be used to obtain infor-
mation about a Segre class. For example, consider the three singular quadrics
Q1,Q2,Q3 ⊆ P

3 obtained as unions of two out of three planes in general position.
For example, Q1 could be defined by the ideal (x2x3), Q2 by (x1x3), and Q3 by
(x1x2). The intersection J = Q1 ∩ Q2 ∩ Q3 is the reduced union of three lines
through a point. It follows (cf. Example 6.3.3) that

ι∗s(J,P3) = 3[P1] +m[P0] (6.17)

for some integer m, where ι is the embedding of J in P
3.

By Bézout’s theorem, the intersection productQ1 ·Q2 ·Q3 equals 8. On the other
hand, we may view this intersection product as arising from the diagram

J = Q1 ∩Q2 ∩Q3 ��

j

��

P
3

δ

��

Q1 ×Q2 ×Q3 �� P3 × P
3 × P

3

where δ is the diagonal embedding. Using (6.13), we get (omitting an evident pull-
back)

{
c(NQ1×Q2×Q3P

3 × P
3 × P

3) ∩ s(J,P3)
}

0
= 8[P0] ,
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that is, denoting by H the hyperplane class in P
3,

{
(1+ 2H)3 ∩ (3[P1] +m[P0])

}
= 8[P0] ,

which implies 18+m = 8. This determinesm = −10, and hence

ι∗s(J,P3) = 3[P1] − 10[P0] .

This agrees (as it should) with the result obtained by using the SegreClasses
package [49]:

i1 : load("SegreClasses.m2")

i2 : R=QQ[x0,x1,x2,x3]

i3 : I=ideal(x1*x2,x1*x3,x2*x3)

i4 : segre(I,ideal(0_R))

3 2
o4 = - 10H + 3H

1 1

(omitting some additional output; and note that the package chooses to call H1 the
hyperplane class).

Remark 6.2.11 We could have chosen the quadricsQ1,Q2,Q3 to be the generators
of the ideal of a twisted cubic C, and the same argument would show that the push-
forward of s(C,P3) also equals 3[P1]−10[P0]. In this case, the negative coefficient
of [P0] reflects the fact that the normal bundle to a twisted cubic in P

3 is positive.
So we could interpret the negative coefficient of [P0] in ι∗s(J,P3) as a measure of
‘positivity’ for the normal cone to the scheme J in P

3. �
The ‘reverse engineering’ technique illustrated above may be used to compute

Segre classes in broad generality. The approach to the computation of Segre classes
in projective space developed in [33] is based on an extension of similar methods. �

For every class α ∈ Ak(P(E ⊕ 11)), Lemma 6.2.8 gives an interpretation for the
class

{
c(E) ∩ SegreE⊕11(α)

}
k−rkE : (6.18)

this class encodes the class of the restriction of α to E. The other components of
the class within braces have an equally compelling interpretation. If E is a vector
bundle of rank e over a scheme X, and π : P(E) → X is its projectivization, the
Chow group A∗(P(E)) is described by a precise structure theorem: for every class
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G ∈ Ak(P(E)), there exist e unique classes gj ∈ Aj(X), j = k− e+ 1, . . . , k such
that

G =
e−1∑

i=0

c1(OE(1))i ∩ π∗(gk−e+1+i ) .

(Cf. [39, Theorem 3.3(b)].) We call the sum gk−e+1+· · ·+gk ∈ A∗(X) the shadow
of G. Note that G may be reconstructed from its shadow and its dimension. The
following elementary result relates the shadow of G to its Segre class.

Lemma 6.2.12 ([7, Lemma 4.2]) With notation as above, the shadow of G is
given by

e∑

i=0

gk−e+1+i = c(E) ∩ SegreE(G) .

With this understood, we see that the class

c(E) ∩ SegreE⊕11(α)

within braces in Sect. 6.18 is simply the shadow of α. From this point of
view, the intersection product X · V is one component of the shadow of
[CX∩V V ⊕ 11] ∈ A∗(P(j∗NXY ⊕ 11)). Several classes we will encounter will
have natural interpretations as shadows of classes in suitable projective bundles.

6.2.4 ‘Residual Intersection’, and a Notation

Let V be a variety, let X ⊆ V be a subscheme, and let L be a line bundle defined
onX. We introduce the following notation: if α is a class inA∗(X), and α = ⊕j α(j),
with α(j) of codimension j in V , we let

α ⊗V L :=
∑

j≥0

s(L )j ∩ α(j) =
∑

j≥0

α(j)

c(L )j
. (6.19)

This definition was introduced in [2]. Its notation is motivated by the following
property relating the definition to the ordinary operation of tensor product: if E is a
vector bundle onX, or more generally any element in the K-group of vector bundles
on X, then for all α ∈ A∗(X) we have

(c(E) ∩ α)⊗M L = c(E ⊗L )

c(L )rkE
∩ (α ⊗M L ) . (6.20)
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See [2, Proposition 1]; the proof of this fact is elementary. Equally elementary is the
observation that the notation gives an action of Pic on the Chow group: if L and
M are line bundles on X, then for all α ∈ A∗(X) we have

(α ⊗V L )⊗V M = α ⊗V (L ⊗M ) . (6.21)

See [2, Proposition 2].
The notation introduced above often facilitates computations involving Segre

classes. One good example is a formula for the Segre class of a scheme supported
on a Cartier divisor, along with ‘residual’ (possibly embedded) components. Let
D ⊆ V be an effective Cartier divisor, and let R ⊆ V a closed subscheme. The
scheme-theoretic union of D and R is the closed subscheme Z ⊆ V whose ideal
sheaf is the product of the ideal sheaves of D and R. We say that R is the ‘residual’
scheme to D in Z. The task is to express the Segre class of Z in V in terms of the
Segre classes of D and of the residual scheme R.

Proposition 6.2.13 With notation as above,

s(Z, V ) = s(D, V )+ c(O(D))−1 ∩ (s(R, V )⊗V O(D)) .

This is [39, Proposition 9.2], written using the notation given above; see [2,
Proposition 3]. An equivalent alternative formulation is

s(Z, V ) = ([D] + c(O(−D)) ∩ s(R, V ))⊗V O(D) . (6.22)

Along with definition (6.13) and a blow-up construction, Proposition 6.2.13
may be used to assign a contribution to intersections products due to residual
schemes, with important applications; see [39, Chapter 9]. In this article, the residual
formula (6.22) will have applications in the theory of characteristic classes for
singular varietes, cf. especially Sect. 6.4.4.

6.2.5 Example: Hyperplane Arrangements

In the rest of this article we will focus on the relation between Segre classes and
invariants of (possibly) singular spaces. Typically, we will extract information about
a variety X by considering a Segre class of a scheme associated with the singular
locus ofX. In many cases we will deal with the case of hypersurfaces of nonsingular
varieties, so we formalize the following definition.

Definition 6.2.14 Let X be a hypersurface in a nonsingular variety M , defined by
the vanishing of a section s of O(X). Then the singularity subscheme JX of X is
defined as the zero-scheme of the section ds of Ω1

M ⊗ O(X) determined by s. We
will denote by ι the embedding JX ↪→ X or JX ↪→ M , as context will dictate. �
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Thus, if z1, . . . , zn are local parameters for M at a point p, and f is a local
equation of X, the ideal of JX at p as a subscheme of M is the jacobian/Tyurina
ideal

(
∂f

∂z1
, . . . ,

∂f

∂zn
, f

)
.

In characteristic 0, if M = P
n and F(x0, . . . , xn) is a homogeneous polynomial

defining a hypersurfaceX, then JX is globally defined by the ideal

(
∂F

∂x0
, . . . ,

∂F

∂xn

)

(in characteristic 0, a homogeneous polynomial belongs to the ideal of its partials).
In order to illustrate the type of information encoded by this subscheme,

we present the case of hyperplane arrangements. Let A denote a hyperplane
arrangement in (complex) projective space P

n, consisting of d (not necessarily
distinct) hyperplanes, and consider the hypersurface A given by the union of these
hyperplanes. More precisely, let Li(x0, . . . , xn), i = 1, . . . , d be linear forms
whose vanishing defines the hyperplanes; then the hypersurface A is defined by
the polynomial

F(x0, . . . , xn) :=
d∏

i=1

Li(x0, . . . , xn) .

Max Wakefield and Masahiko Yoshinaga prove [94] that an essential arrangement
of distinct hyperplanes in P

n, n ≥ 2, may be reconstructed from the corresponding
singularity subscheme. The following result proves that the ranks of the cohomology
of the complement are determined by the Segre class of the singularity subscheme
of the arrangement.

Theorem 6.2.15 For an arrangement A of d hyperplanes, define integers σi , i =
0, . . . , n, such that

[Pn] − ι∗s(JA,Pn) =
∑

i≥0

σi [Pn−i] .

Then

rkHk(Pn � A,Q) =
k∑

i=0

(
k

i

)
(d − 1)k−iσi (6.23)

for k = 0, . . . , n.
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This statement is given in [11, Theorem 5.1]; we will sketch a proof in Sect. 6.4.4
(see Example 6.4.24). In fact, in loc. cit., the result is stated for hyperplane
arrangements consisting of distinct hyperplanes. Remarkably, this hypothesis is not
needed: if any of the hyperplanes appear with a multiplicity, the effect on the Segre
class of the singularity subscheme precisely compensates for these multiplicities.

Example 6.2.16 Consider the arrangement in P
3 consisting of the planes x1 = 0,

x2 = 0, x3 = 0. The corresponding hypersurface has equation x1x2x3 = 0; the
singularity subscheme is defined by the ideal

(x1x2, x1x3, x2x3) .

We have computed the corresponding Segre class in Example 6.2.10:

ι∗s(JA,P3) = 3[P1] − 10[P0] .

We have d = 3 and (σ0, . . . , σ3) = (1, 0,−3, 10), therefore Theorem 6.2.15 gives

rkHk(P3
� A,Q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

20 · 1 = 1 k = 0

21 · 1+ 20 · 0 = 2 k = 1

22 · 1+ 2 · 21 · 0+ 20 · (−3) = 1 k = 2

23 · 1+ 3 · 22 · 0+ 3 · 21 · (−3)+ 20 · 10 = 0 k = 3

as it should.
Now assume the same planes appear with multiplicities 2, 3, 5 respectively. The

ideal of A is generated by x2
1x

3
2x

5
3 , therefore JA is defined by the ideal

(
x1x

3
2x

5
3 , x

2
1x

2
2x

4
3 , x

2
1x

3
2x

4
3

)

and the package SegreClasses evaluates its Segre class as

ι∗s(JA,P3) = 7[P2] − 46[P1] + 270[P0] .
In this case d = 10 and (σ0, . . . , σ3) = (1,−7, 46,−270), therefore

rkHk(P3
� A,Q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

90 · 1 = 1 k = 0

91 · 1+ 90 · (−7) = 2 k = 1

92 · 1+ 2 · 91 · (−7)+ 90 · 46 = 1 k = 2

93 · 1+ 3 · 92 · (−7)+ 3 · 91 · 46+ 90 · (−270) = 0 k = 3

according to Theorem 6.2.15, with the same result since the support of the
arrangement is the same as in the previous case. �
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In general, the fact that multiplicities do not affect the right-hand side of (6.23)
is a consequence of the residual formula of Proposition 6.2.13, as the reader may
enjoy verifying.

Note that the Segre class appearing in Theorem 6.2.15 is the Segre class
s(JA,Pn) of the singularity subscheme in the ambient space P

n. The singularity
subscheme JA is also contained in the hypersurface A. It is natural to ask what
type of information the Segre class s(JA,A) may encode; a full answer to this
question will be given in Sect. 6.4.3. Here we point out that, in the case of reduced
arrangements (that is, if the hyperplanes are all different), this Segre class is in fact
determined by the number d of hyperplanes.

Proposition 6.2.17 Let A be a reduced arrangement of d hyperplanes in P
n, and

let ι : JA ↪→ P
n be the corresponding singularity subscheme. Then

ι∗s(JA,A) = d
n∑

i=2

(−1)i(d − 1)i−1[Pn−i ] . (6.24)

Proof Let H1, . . . , Hd be the hyperplanes of the arrangement, and let
Lk(x0, . . . , xn) be a generator of the homogeneous ideal of Hk. By (6.12),

s(JA,A) =
∑

k

s(JA ∩Hk,Hk) . (6.25)

The ideal of JA ∩Hk is given by

⎛

⎝
d∑

j=1

∏

� �=j
L�
∂Lj

∂xi
, Lk

⎞

⎠

i=0,...,n

=
⎛

⎝
∏

� �=k
L�
∂Lk

∂xi
, Lk

⎞

⎠

i=0,...,n

and this is the ideal
⎛

⎝
∏

� �=k
L�, Lk

⎞

⎠

since at least one of the derivatives of Lk is nonzero.
It follows that JA ∩Hk is the subscheme of Hk traced by the union of the other

hyperplanes; that is, it is a Cartier divisor of class (d−1)H inHk , whereH denotes
the hyperplane class. Therefore

ι∗s(JA ∩Hk,Hk) = (d − 1)[Pn−2] − (d − 1)2[Pn−3] + (d − 1)3[Pn−4] + · · ·

and the statement follows from (6.25). ��
Therefore, while the Segre class s(JA,Pn) detects nontrivial combinatorial

information about the arrangement (as Theorem 6.2.15 shows), the Segre class
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s(JA,A) is blind to any information but the degree of the arrangement (assuming
that the arrangement is reduced).

In particular, note that s(JA,Pn) is not determined by s(JA,A); we will come
back to this point in Sect. 6.4.1, Example 6.4.3.

In Sect. 6.4 we will learn that if X is a hypersurface in a nonsingular variety,
then the two classes s(JX,X) and s(JX,M) are closely related to different
‘characteristic classes’ for X, and this will provide a further explanation for the
behavior observed in this example (see Examples 6.4.13 and 6.4.24).

6.3 Numerical Invariants

6.3.1 Multiplicity

The most basic numerical invariant of a singularity is its multiplicity. Let X be a
hypersurface of An, and let p be the origin. Write the equation F of X as a sum of
homogeneous terms:

F(x1, . . . , xn) =
∑

i≥0

Fi(x1, . . . , xn)

with Fi(x1, . . . , xn) homogeneous of degree i. By definition, the multiplicity mpX
of X at p is the smallest m such that Fm(x1, . . . , xn) �= 0. Thus, p ∈ X if and only
if mpX ≥ 1. The ‘initial’ homogeneous polynomial FmpX defines the tangent cone
to X at p; therefore,mpX is the degree of the tangent cone to X at p.

There is a natural identification of the tangent cone to X at p defined in the
previous paragraph with the normal cone CpX introduced in Sect. 6.2.1:

CpX = Spec(⊕k≥0m
k/mk+1) (6.26)

where m is the maximal ideal in the local ring of X at p. We can projectivize this
cone, or rather consider the projective completion π : P(CpX ⊕ 11)→ p (cf. (6.7);
this accounts for the possibility X = p, see Remark 6.2.3), and observe that the
degreempX of this projective cone satisfies

(mpX)[p] = π∗
⎛

⎝
∑

i≥0

c1(O(1))i ∩ [P(CpX ⊕ 11)]
⎞

⎠

(cf. (6.2)). In other words, we have verified that the multiplicity ofX at p is precisely
the information carried by the Segre class of p in X:

s(p,X) = (mpX)[p] . (6.27)
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Of course these considerations are not limited to the case in which X is an affine
hypersurface. The tangent cone to a point p of any scheme X is defined to be the
normal cone CpX, that is, the spectrum of the corresponding associated graded
ring, as in (6.26). A standard computation shows that if U = A

N is an affine
space centered at p, and X ∩ U is defined by an ideal I , then the ideal defining
⊕k≥0m

k/mk+1 is generated by the initial forms of the polynomials in I ; so this
is indeed a straightforward generalization of the situation for hypersurfaces. We
can define mpX to be the degree of the projective completion P(CpX ⊕ 11); and
then (6.27) holds in this generality. To avoid certain pathologies, it is common
to assume that X be pure-dimensional. For example, this hypothesis implies that
the multiplicity of X at p equals the sum of the multiplicities of its irreducible
components, by (6.12).

The degree of the projective completion of CpX can also be computed by means
of the Hilbert function defined for all integers t > 0 by

h(t) := dimk(⊕t−1
i=0m

i/mi+1) : (6.28)

for t * 0, h(t) agrees with a polynomial with leading term (mpX)
td

d ! , where d is
the dimension of X.

More generally, we can consider a subvariety V of a (pure-dimensional)
scheme X. Samuel [84] defines the multiplicity mVX of the local ring OX,V in
terms of the leading term of (6.28), where now m is taken to be the maximal ideal
of OX,V . This amounts to taking the fiberwise degree of the projective completion
P(CVX ⊕ 11) → V of the normal cone CVX, hence it determines the dominant
term of the Segre class:

s(V,X) = (mVX)[V ] + lower dimensional terms . (6.29)

Example 6.3.1 Let V be a proper subvariety of codimension d of a variety X, and
let π : E→ V be the exceptional divisor in the blow-up B�VX. Then

π∗(Ed−1) = (−1)d(mVX)[V ] .

Indeed, this is the dominant term of the Segre class s(V,X) by (6.11). �
Summarizing, we can take (6.29) as the definition of multiplicity of a variety

along a subvariety, and this agrees with Samuel’s algebraic notion of multiplicity.
The agreement can be extended by the additivity formula (6.12) to arbitrary
pure-dimensional schemes X. It can also be extended to the case in which V
is an irreducible component of a subscheme Z of X, leading to the following
interpretation of Samuel’s multiplicity.

Definition 6.3.2 The multiplicity of a pure-dimensional scheme X along a sub-
scheme Z at an irreducible component V of Z is the coefficient of [V ] in s(Z,X).
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Example 6.3.3 If X is nonsingular and Z is reduced, then the multiplicity of X
along Z is 1 at every component of Z. For instance, each line in Example 6.2.10
appears with multiplicity 1 in the Segre class s(J,P3), and this is the reason why
the dominant term in (6.17) is 3[P1]. �
Example 6.3.4 If Z is (locally) a complete intersection in X, and its support V is
irreducible, then

s(Z,X) = m[V ] + lower dimensional terms

where m is the geometric multiplicity of V in Z, that is, the length of the local
ring OZ,V . Indeed, in this case the Segre class is the inverse Chern class of the
normal bundle (Sect. 6.2.2): s(Z,X) = c(NZX)

−1 ∩ [Z] = [Z] + · · · , and
[Z] = m[V ] [39, §1.5]. So the multiplicity of X along Z at V equals the geometric
multiplicity of V in Z for complete intersections.

This is not true in general, even if X is nonsingular. For example, let Z be the
‘triple point’ defined by the ideal (x2, xy, y2) in the plane. Then s(Z,A2) = 4[p],
where V = p is the origin, while the geometric multiplicity is 3. Indeed, let Z′
be the scheme defined by (x2, y2). Then s(Z′,A2) = 4[p], since Z′ is a complete
intersection, and s(Z,A2) = s(Z′,A2) since (x2, xy, y2) is the integral closure of
(x2, y2) (see Sect. 6.2.2). �
Example 6.3.5 Let D be the discriminant of a line bundle L on a nonsingular
complete varietyM , i.e., the subset of PH 0(M,L ) parametrizing singular sections
of L . For X ∈ D, consider the integer

mXD =
∫
c(L )c(T ∨M ⊗L ) ∩ s(JX,M) (6.30)

where JX is the singularity subscheme of X (Definition 6.2.14) and T ∨M is the
cotangent bundle of M . Under reasonable hypotheses, if D is a hypersurface, then
mXD �= 0 and in this case mXD is the multiplicity of D at X, as the notation
suggests. (See [16] for the precise statement of a more general result. A different
formula not using Segre classes may be found in [79].)

To see this, one can realize the discriminantD as the image of the correspondence

D̂ := {(p,X) ∈ M × P(M,L ) |p ∈ Sing(X)} .

The fiber of X in this correspondence is (isomorphic to) JX, and D̂ maps
birationally to D under mild hypotheses. The birational invariance of Segre classes
implies then that s(X,D) is the push-forward of s(JX, D̂), and the latter is
computed by making use of Theorem 6.4.1, which we will discuss later.

For instance, let X consist of a d-fold hyperplane in M = P
n. Then JX is a

(d − 1)-fold hyperplane, and consequently

s(JX,Pn) = (1+ (d − 1)H)−1 ∩ (d − 1)[Pn−1] ,
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where H denotes the hyperplane class. (Example 6.2.4.) View X as a point of the
discriminant D of O(X) over Pn. Then according to (6.30) the multiplicity of D
at X is

mDX =
∫
(1+ dH) (1+ (d − 1)H)n+1

1+ dH ∩ s(JD,Pn)

=
∫
(1+ (d − 1)H)n ∩ (d − 1)[Pn−1]

= n(d − 1)n .

At the opposite extreme, assume that X has isolated singularities. Then we will
verify that mDX equals the sum of their Milnor numbers, see Sect. 6.3.3. �

Several more refined notions of ‘multiplicity’ may be defined by means of Segre
classes; see [61] and [1] for two particularly well-developed instances.

6.3.2 Local Euler Obstruction

The local Euler obstruction EuX(p) of a possibly singular variety X (or more
generally a reduced pure-dimensional scheme) at a pointp ∈ X is another numerical
invariant, in some ways analogous to the multiplicity; indeed, if X is a curve, then
EuX(p) equals the multiplicitympX. We first summarize the original transcendental
definition, due to MacPherson [66, §3].

We will assume that X is a subvariety of a nonsingular variety M . If X has
dimension n, there is a rational map

X ��� Grn(TM)|X
associating with each nonsingular x ∈ X the tangent space TxX ⊆ TxM , viewed as
a point in the Grassmann bundle Grn(TM). The closure of the image of this rational
map is the Nash blow-up X̂ of X; it comes equipped with

• a proper birational map ν : X̂→ X; and
• a rank-n vector bundle T̂ , the pull-back of the tautological subbundle on

Grn(TM).

Over the nonsingular part X◦ of X, ν is an isomorphism and T̂ agrees with the pull-
back of TX◦. Thus, the Nash blow-up is a modification of X that admits a natural
vector bundle T̂ restricting to TX◦ on the nonsingular part ofX. The fiber of X̂ over
a point x ∈ X parametrizes ‘limits’ of tangent spaces to X◦ as one approaches x. At
a point x̂ ∈ ν−1(x), the fiber of T̂ over x̂ is just this limit tangent space.

The Nash blow-up and the tautological bundle T̂ are independent of the chosen
embedding of X in a nonsingular variety.
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Let p ∈ X. As we will work in a neighborhood of p, we may assume that
X is affine, M = A

m, and p is the origin. Over C, MacPherson considers the
differential form d||z||2, a section of the real dual bundle TM∗. By construction
T̂ is a subbundle of ν∗(TM); we denote by r the pull-back of this form to the real
dual T̂ ∗.

Next, consider the ball Bε and the sphere Sε of radius ε centered at p. For small
enough ε, r is nonzero over ν−1(z), 0 < ||z|| ≤ ε [66, Lemma 1]. By definition,
the local Euler obstruction EuX(p) is the obstruction to extending r as a nonzero
section of T̂ ∗ from ν−1(Sε) to ν−1(Bε).

For curves, the local Euler obstruction equals the multiplicity. The local Euler
obstruction of a cone over a plane curve of degree d at the vertex equals 2d−d2 [66,
p. 426]. In particular, note that (unlike the multiplicity) EuX(p) may be negative.

The following algebraic alternative to the transcendental definition is due to
G. Gonzalez-Sprinberg and J.-L. Verdier.

Theorem 6.3.6 ([45]) With notation as above,

EuX(p) =
∫
c(T̂ |ν−1(p)) ∩ s(ν−1(p), X̂) . (6.31)

The proof of this equality is quite delicate. The section r may be replaced with a
section σs of T̂ obtained by projecting the ‘radial’ section of ν∗TAm by means of
a Hermitian form s. Viewing ν−1(p) as a union of components of the zero-scheme
of this section, the local Euler obstruction is then interpreted as the contribution
of ν−1(p) to the intersection product of σs(X̂) with the zero-section of T̂ , that is,
the localized contribution to the degree of the top Chern class cdimX(T̂ ) ∩ [X̂].
This gives (6.31) as we have seen in Example 6.2.9, particularly (6.15). The main
problem with this sketch is that the section σs is not algebraic. This is handled in [45]
by applying this argument to a variety dominating X̂ and such that the pull-back of
σs is algebraic; (6.31) then follows by the projection formula.

Theorem 6.3.6 yields an interpretation of the local Euler obstruction that does
not depend on complex geometry, so may be adopted over arbitrary fields. The use
of the Nash blow-up is not necessary: any proper birational map ν : X̂ → X such
that ν∗Ω1

X surjects onto a locally free sheaf Ω̂ of rank n = dimX will do, with
T̂ = Ω̂∨. (This follows from the birational invariance of Segre classes; see [39,
Example 4.2.9].)

Claude Sabbah [83] recasts the algebraic definition of EuX(p) it in terms of
the conormal space of X. Recall that if W � M is an embedding of nonsingular
varieties, then the conormal bundle N∨WM of W in M is the kernel of the natural
morphism of cotangent bundles T ∨M|W → T ∨W :

0 �� N∨WM �� T ∨M|W �� T ∨W �� 0 .
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The conormal space N∨XM of a possibly singular subvariety X of M is the closure
of the conormal bundle of its nonsingular part X◦:

N∨XM := N∨X◦M .

The projectivization P(N∨XM) ⊆ P(T ∨M|X) is equipped with

• a morphism κ : P(N∨XM)→ X; and, letting m = dimM ,
• a rank-(m − 1) vector bundle T , the pull-back of the tautological subbundle on

P(T ∨M|X) = Grm−1(TM|X).
Proposition 6.3.7 ([60, Lemma 2])

EuX(p) = (−1)m−n−1
∫
c(T |κ−1(p)) ∩ s(κ−1(p),P(N∨XM)) . (6.32)

This result may be established as a corollary of Theorem 6.3.6, by means of a
commutative diagram

J ��

��

P(N∨XM)

κ

��
X̂

ν

�� X

where J is the unique component of the fiber product dominating X; see [60] for
details.

Example 6.3.8 Again letD be the discriminant of a line bundleL on a non singular
complete variety (Example 6.3.5), and let X ∈ D be a singular section of L . Then
under mild hypotheses (implying that D is a hypersurface) we have

EuD(X) =
∫
c(T ∨M ⊗L ) ∩ s(JX,M) (6.33)

[4, Theorem 3]. Indeed, one can verify that the correspondence D̂ mentioned
in Example 6.3.5 is the Nash blow-up of D, and JX is isomorphic to the fiber
of the point X ∈ D under D̂ → D. Then (6.33) follows from the Gonzalez-
Sprinberg–Verdier formula (6.31), after manipulations expressing s(JX, D̂) in
terms of s(JX,M) and a computation of the Chern class of the tautological bundle.
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For a concrete instance, consider (as in Example 6.3.5) the case of a d-
fold hyperplane in P

n. According to (6.33), the local Euler obstruction of the
discriminant of O(X) at the corresponding point is

EuD(X) =
∫
(1+ (d − 1)H)n

1+ dH ∩ (d − 1)[Pn−1]

= (d − 1) · (d − 1)n − 1

d
.

The reader should compare the formulas for the multiplicity of a discriminant at
a singular hypersurface X, (6.30), and for the local Euler obstruction at X, (6.33).
We do not know if the similarity between these formulas can be extended to more
general cases, e.g., discriminants of complete intersections. �

A classical result of Lê Dũng Tráng and Bernard Teissier expresses the local
Euler obstruction as an alternating sum of multiplicities of polar varieties, [64,
Corollaire 5.1.2].

6.3.3 Milnor Number

Segre classes provide a natural algebraic framework to treat Milnor numbers.
Here we work over C; the formulas we will obtain could be taken as alternative
algebraic definitions extending the notions to arbitrary algebraically closed fields of
characteristic 0.

Let X be a hypersurface in a nonsingular varietyM , and let p be an isolated sin-
gularity ofX. Again consider the singularity subscheme JX ofX, Definition 6.2.14.
In this case p is the support of one component of JX, which we denote p̂. As a
subscheme of M , the ideal of p̂ at p is

(
∂f

∂z1
, . . . ,

∂f

∂zn
, f

)

where the ideal of X is locally generated by f and z1, . . . , zn are local parameters
forM at p.

Proposition 6.3.9 The Milnor number μX(p) of X at p equals the coefficient of p
in s(p̂,M):

s(p̂,M) = μX(p)[p] .

From this observation and (6.30), it follows that if X only has isolated singulari-
ties p1, . . . , pr , then (under mild hypotheses) the multiplicity of the discriminant of
O(X) at X equals the sum of the Milnor numbers

∑
i μX(pi). For an earlier proof

of this fact, at least in the context of dual varieties, cf. [30].
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Proof In characteristic 0, f is integral over the ideal generated by its partials (see
e.g., [92, Example 1.43]), therefore s(p̂,M) = s(p′,M), where p′ is the scheme
defined by (∂f/∂z1, . . . , ∂f/∂zn). Now (Example 6.3.4) s(p′,M) = m[p], where
m is the geometric multiplicity of p in p′. By definition,

m = dimOM,p/(∂f/∂z1, . . . , ∂f/∂zn) ,

and this equals the Milnor number μ [73, p. 115]. ��
As an alternative, one can verify that s(p̂,M) evaluates the effect on the

Euler characteristic of X due to the presence of the singularity p, cf. [39,
Example 14.1.5(b)].

Adam Parusiński [78] defines a generalization of the Milnor number to hyper-
surfaces with arbitrary (compact) singular locus. A section s of O(X) defining
X determines a section ds of T ∨M ⊗ O(X) in a neighborhood of X, of which
JX is the zero-scheme (Definition 6.2.14). By definition, Parusiński’s generalized
Milnor numberμ(X) equals the contribution of the singular locus to the intersection
number of the image of this section and the zero section of T ∨M ⊗ O(X).

Proposition 6.3.10 ([3, Proposition 2.1]) With notation as above,

μ(X) =
∫
c(T ∨M ⊗ O(X)) ∩ s(JX,M) . (6.34)

Proof Let U be a neighborhood of JX where ds is defined, and consider the fiber
diagram

JX ��

��

U

ds
��

U
0

�� T ∨M ⊗ O(X)|U

The normal bundle of the zero-section equals T ∨M ⊗ O(X)|JX, and s(JX,U) =
s(JX,M) as open embeddings are flat, cf. Proposition 6.2.5. The stated formula
follows then from (6.13). ��

In other words, Parusiński’s Milnor number equals the localized contribution
of JX to the degree of the top Chern class of T ∨M ⊗ O(X). (But note that in
general the section s does not extend to an algebraic section defined on the whole of
M , so this number does not equal the degree of the top Chern class.)

IfM is compact and Xgen is a nonsingular hypersurface linearly equivalent to X,
then

μ(X) = (−1)dimX(χ(Xgen)− χ(X)) (6.35)
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where χ denotes the topological Euler characteristic ([78, Corollary 1.7], and
cf. [39, Example 14.1.5(b)]). Thus this generalization of the Milnor number can also
be interpreted as the effect on the Euler characteristic of X due to its singular locus.
This observation is at the root of the definition of the ‘Milnor class’, see Sect. 6.4.6.

Comparing (6.33) and (6.34), we see that, under reasonable hypotheses, this
generalized Milnor number equals the local Euler obstruction of the discriminant
of O(X) at X. The class c(T ∨M ⊗O(X))∩ s(JX,M) appearing in these formulas
is the ‘μ-class’ studied in [3]. Even when JX or M are not compact, this class
carries interesting information.

6.4 Characteristic Classes

The formalism of Segre classes provides a unifying point of view on several ‘char-
acteristic classes’ for singular varieties. We refer here to various generalizations to
(possibly) singular varieties of the basic notion of total Chern class of the tangent
bundle of a nonsingular variety:

c(T V ) ∩ [V ] ∈ A∗(V ) .

This is class of evident importance in the nonsingular case. The codimension-
1 term c1(T V ) ∩ [V ] is the canonical class of V , up to a sign. For compact
complex varieties, the degree of the dimension 0 term equals the topological Euler
characteristic, as a consequence of the classical Poincaré-Hopf theorem. The total
Chern class is effective if the tangent bundle is suitably ample. For nonsingular
toric varieties, the class has a compelling combinatorial interpretation: it is the
sum of the classes of the torus orbit closures, which are determined by the cones
of the corresponding fan. In any case, the sheaf of differentials is in a sense the
‘only’ canonically determined sheaf on a scheme, and the total Chern class of the
(co)tangent bundle is correspondingly the ‘only’ canonically defined class in the
Chow group of a nonsingular variety.

It is natural to explore generalizations of this notion to singular varieties, and in
this section we will review different alternatives for such an extension, as they relate
to Segre classes. We remark that there are several other notions of ‘characteristic
class’ associated to a variety (for example the Todd and L classes), and modern
unifications of these notions, such as the Hirzebruch and motivic Chern class
of Brasselet-Schürmann-Yokura [23]. While analogues of Segre classes may be
defined in these different contexts, we will limit ourselves to the characteristic
classes defined in the Chow group and having a direct relation with the classical
notion of Segre classes discussed in Sect. 6.2. We will also not deal with germane
notions such as Johnson’s or Yokura’s Segre classes (see [57, 96]).
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6.4.1 Chern-Fulton and Chern-Fulton-Johnson Classes

Let X be a scheme that can be embedded as a closed subscheme of a nonsingular
varietyM . Here no restrictions on the characteristic of the ground field are needed.
We let

cF(X) := c(TM|X) ∩ s(X,M)
cFJ(X) := c(TM|X) ∩ s(NXM) .

(6.36)

Here NXM = I /I 2, where I is the ideal sheaf of X in M; the Segre class
s(NXM) is obtained by applying the basic construction of Segre classes to the cone
Sym∗OX(NXM) (see Sect. 6.2.1). We call cF(X) the ‘Chern-Fulton class’ of X, and
cFJ(X) the ‘Chern-Fulton-Johnson’ class ofX. The following result shows that these
classes are canonically determined by X.

Theorem 6.4.1 ([39, Example 4.2.6], [41]) The classes cF(X), cFJ(X) defined
above are independent of the ambient nonsingular varietyM .

This is proved by relating classes determined by different embeddings by means
of ‘exact sequences of cones’ (cf. [39, Examples 4.1.6, 4.1.7]). For instance, ifX ↪→
M and X ↪→ N are distinct embeddings in nonsingular varieties, then we have a
diagonal embedding X ⊆ M × N , and there is a corresponding exact sequence of
cones

0 �� T N |X �� CX(M × N) �� CXM �� 0

implying

s(X,M ×N) = s(T N |X) ∩ s(X,M) .

The independence of cF(X) follows.
Theorem 6.4.1 is useful in the computation of Segre classes; it is employed in the

computations leading to the formulas presented in Example 6.3.5 and 6.3.8. It has
the following consequence.

Corollary 6.4.2 Let X = V be a nonsingular variety. Then

cF(V ) = cFJ(V ) = c(T V ) ∩ [V ] .

Proof By Theorem 6.4.1, we can use X = M = V to compute cF(V ) and cFJ(V );
and s(V, V ) = s(NV V ) = [V ]. ��

Therefore these two classes are generalizations of the notion of total Chern class
from the nonsingular case. They both satisfy formal properties analogous to the
nonsingular case. For example, both classes satisfy expected adjunction formulas for



450 P. Aluffi

sufficiently transversal intersections with smooth subvarieties: for the Chern-Fulton
class, this follows from [48, Theorem 3.2]; and see [41, §3] for the Chern-Fulton-
Johnson class. On the other hand, some simple relations in the nonsingular case do
not hold for these classes.

Example 6.4.3 If W ⊆ X ⊆ M , with both X and M nonsingular, we may
compute cF(W) using either embedding, and Theorem 6.4.1 implies that

s(W,X) = c(NXM|W) ∩ s(W,M) . (6.37)

For instance, if X is a nonsingular hypersurface, then

s(W,X) = c(O(X)) ∩ s(W,M) .

Such appealingly simple formulas do not hold in general if X is singular, even if it
is regularly embedded inM (so that NXM is defined, and the terms in the formulas
make sense). Indeed, (6.37) fails already for W = a singular point of a curve X
inM = P

2.
Without additional hypotheses onW and X guaranteeing that the corresponding

sequence of cones is exact, the Segre class ofW in X is not determined by the class
ofW inM . Sean Keel [59] proved that (6.37) does hold if X is regularly embedded,
provided that the embeddingW ⊆ X is ‘linear’.

It would be useful to have precise comparison results relating the difference
between the two sides of (6.37) to the singularities of X. We will encounter below
(Remark 6.4.16) one case in which this difference has a clear significance. �

The classes cF(X) and cFJ(X) differ in general. The discrepancy is a mani-
festation of the difference between the associated graded ring of an ideal I of a
commutative ring R, that is, ⊕kI k/Ik+1, and the symmetric algebra of I/I 2 over
R/I . The former is in a sense closer to the ring R: for example, in the geometric
context and if R is an integral domain, the Krull dimension of the associated graded
ring equals the dimension of R, while the dimension of the symmetric algebra
of a module is bounded below by the number of generators of the module [56,
Corollary 2.8]. The difference is analogous to the difference between the tangent
cone of a scheme at a point and the tangent space of the same: the former may
be viewed as an analytic approximation of the scheme at the point, while the latter
only records the minimal embedding dimension. Accordingly, cF(X) is perhaps a
more natural object of study than cFJ(X). The triple planar point X defined by
the ideal (x2, xy, y2) in the affine plane A

2 gives a concrete example for which
cF(X) �= cFJ(X) (see [8, §2.1]).

One class of ideals for which the associated graded ring is isomorphic to the
symmetric algebra is given by ideals generated by regular sequences (cf. [72], [90,
Theorem 1.3]). Thus, cF(X) = cFJ(X) if X is a local complete intersection. In this
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case the embedding X ⊆ M is regular, s(X,M) = c(NXM)−1 ∩ [X] (Sect. 6.2.2),
and therefore

cF(X) = cFJ(X) = c(TvirX) ∩ [X] , (6.38)

where TvirX is the class TM|X−NXM in the Grothendieck group of vector bundles
on X (so c(Tvir) = c(TM|X)c(NXM)−1). We can view TvirX as a ‘virtual tangent
bundle’ for X; it is well-defined for local complete intersections, i.e., independent
of the ambient nonsingular varietyM . We note that, more generally,

cF(Z) = c(TvirX) ∩ s(Z,X)
if Z is linearly embedded in a local complete intersection X, cf. Example 6.4.3.

If X is a local complete intersection, we will denote the class (6.38) by cvir(X),
the ‘virtual’ Chern class of X. For instance, if X = D is a hypersurface in a
nonsingular varietyM , then

cvir(D) = cF(D) = cFJ(D) = c(TM|D) ∩ [D]
1+D .

This implies the following useful interpretation of the Chern-Fulton / Fulton-
Johnson class of a hypersurface.

Proposition 6.4.4 Let i : D ↪→ M be a hypersurface in a nonsingular variety M ,
and let i ′ : Dgen → M be a nonsingular hypersurface such that [D] = [Dgen]. Then

i∗cvir(D) = i ′∗(c(TDgen) ∩ [Dgen]) .

In particular, over C and if M is compact, then
∫
cF(D) = χ(Dgen) is the

topological Euler characteristic of a smoothing ofD, when a smoothing is available.
Barbara Fantechi and Lothar Göttsche prove that in fact

∫
cF(X) is constant along

lci deformations if X is a local complete intersection [34, Proposition 4.15].
These results may be seen as indicating that a class such as cF(X) is not useful in

the study of singularities, precisely because (at least in the lci case) it is blind to the
singularities ofX. This feature is balanced by the sensitivity of cF(X) to the scheme
structure of X; as we will see below (Proposition 6.4.20) this can be used to encode
in a Chern-Fulton class substantial information on the singularities of X.

Bernd Siebert obtains a formula for the ‘virtual fundamental class’ in Gromov-
Witten theory in terms of the Chern-Fulton class, [87, Theorem 4.6]. Siebert also
argues that cF(X) could be considered as the Segre class of the Behrend-Fantechi
intrinsic normal cone of X [20].
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6.4.2 The Deligne-Grothendieck Conjecture and
MacPherson’s Theorem

A functorial theory of Chern classes arose in work of Alexander Grothendieck and
Pierre Deligne. Here we will assume that the ground field is algebraically closed, of
characteristic 0.

For an algebraic variety X, we denote by F(X) the group of integer-valued
constructible functions on X. These are integer linear combinations of indicator
functions for constructible subsets of X; equivalently, every constructible function
ϕ ∈ F(X) may be written

ϕ =
∑

W

mW 11W

where W ranges over subvarieties of X, 11W(p) = 1 or 0 according to whether
p ∈ W or p �∈ W , and mW ∈ Z is nonzero for only finitely many subvarietiesW .

For a proper morphism f : X → Y , we can define a push-forward of
constructible functions f∗ : F(X) → F(Y ). By linearity, this is determined by the
push-forward f∗(11W) of the indicator function of a subvarietyW of X; we set

f∗(11W)(p) := χ(f−1(p) ∩W)

for p ∈ Y . Here, χ is the topological Euler characteristic if k = C, and a suitable
generalization for more general algebraically closed fields of characteristic 0 (see
e.g., [10, §2.1]).

With this push-forward, the assignment X �→ F(X) is a covariant functor from
the category of algebraic k-varieties, with proper morphisms, to the category of
abelian groups ([66, Proposition 1] for the complex case; the argument generalizes
to more general fields).

The Chow group is also a covariant functor between the same categories. The
following statement, whose conjectural formulation is attributed to Deligne and
Grothendieck, gives a precise relationship between these two functors. It was proved
by MacPherson [66].

Theorem 6.4.5 There exists a natural transformation c∗ : F ⇒ A∗ which, on a
nonsingular variety V , assigns to the constant function 11V the total Chern class
c(T V ) ∩ [V ].

MacPherson’s statement and proof was for complex varieties, in homology;
Fulton [39, Example 19.1.7] places the target in the Chow group. Gary Kennedy
[60] extended the result to arbitrary algebraically closed fields of characteristic 0.
An alternative argument in this generality (and an alternative construction of c∗) is
given in [9].

The natural transformation c∗ is easily seen to be unique if it exists, as its
value is determined by the normalization requirement by resolution of singularities.
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MacPherson provides a different construction, not relying on resolutions; and then
proves that this construction satisfies the covariance requirement. The ingredients
in MacPherson’s construction are the local Euler obstruction EuX, reviewed above
in Sect. 6.3.2, and the Chern-Mather class cMa(X), which will be discussed below
in Sect. 6.4.3. MacPherson defines c∗ by prescribing that

c∗(EuX) = cMa(X) ,

and is able to prove that this assignment determines a natural transformation.
Since EuV = 11V if V is nonsingular, this definition satisfies the normalization
requirement in Theorem 6.4.5. Any choice of a constructible function on varieties
X which takes the constant value 11V for nonsingular varieties V will then provide us
with a ‘characteristic class’ in the Chow group A∗(X) agreeing with the total Chern
class of the tangent bundle when X = V is a nonsingular variety, as prospected in
the leader to this section.

Example 6.4.6 Let D be a hypersurface in a nonsingular complex variety. Assume
that D may be realized as the central fiber of a flat family over a disk, such
that the general fiber Dgen is nonsingular. Verdier [93] defines a ‘specialization’
of constructible functions from the general fiber to D, and proves that this spe-
cialization operation is compatible with MacPherson’s natural transformation and
specialization of Chow classes. As a consequence, if σ(11) denotes the specialization
of the constant function 11, we have

cvir(D) = c∗(σ (11))

(cf. Proposition 6.4.4). If D is itself nonsingular, then σ(11) = 11D, and cvir(D) =
c(TD) ∩ [D]. We do not know whether the Chern-Fulton or Chern-Fulton-Johnson
classes admit a similar description for more general varieties. �

A formula for the Chern-Mather class due to Sabbah, [83, Lemma 1.2.1], leads
to a useful alternative description of the image of a constructible function ϕ via
MacPherson’s natural transformation c∗. In recalling this description, we essentially
follow the lucid account given in [80, §1].

Let X be a proper subvariety of a nonsingular variety M . Every constructible
function ϕ ∈ F(X) may be written uniquely as a finite linear combination of local
Euler obstructions of subvarieties of X:

ϕ =
∑

W⊆X
nW EuW

([66, Lemma 2]). Now recall (6.3.2) that the conormal space N∨WM of a possibly
singular subvarietyW ofM is the closure of the conormal bundle of its nonsingular
part W ◦: N∨WM := N∨W ◦M . We associate with the local Euler obstruction of a



454 P. Aluffi

subvariety W of M the cycle of the projectivization of its conormal space, up to a
sign recording the parity of the dimension ofW :

EuW �→ (−1)dimW [P(N∨WM)] . (6.39)

By linearity, every constructible function on X is then associated with a cycle in the
projectivized cotangent bundle of the ambient nonsingular varietyM , P(T ∨M), and
in fact of the restriction P(T ∨M|X) to X.

Definition 6.4.7 The characteristic cycle of the constructible function ϕ is the
linear combination

Ch(ϕ) :=
∑

W⊆X
nW(−1)dimW [P(N∨WM)] ,

where ϕ =∑W⊆X nW EuW . �
(We have chosen to view Ch(ϕ) as a cycle in P(T ∨M|X). It is also common in the

literature to avoid the projectivization, and consider characteristic cycles as cycles
in T ∨M|X.)

In keeping with the theme of this paper, we will formulate the alternative
description of c∗ stemming from Sabbah’s work in terms of a Segre operator (cf. [7,
Lemma 4.3]). For this, it is convenient to adopt the following notation. IfA =∑i ai
is a rational equivalence class, where ai is the component of dimension i, we will
let

A∨ :=
∑

i

(−1)iai

be the class obtained by changing the sign of all odd-dimensional components ofA.
Note that if E is a vector bundle, then

(c(E) ∩ A)∨ = c(E∨) ∩ A∨ .

Later on, it will also be convenient to use the notation

A∨ := (−1)dimMA∨ =
∑

i

(−1)dimM−iai , (6.40)

whereM is the fixed ambient nonsingular variety.

Theorem 6.4.8 The class c∗(ϕ)∨ is the shadow of the characteristic cycle Ch(ϕ).
That is,

c∗(ϕ) = c(TM|X) ∩ SegreT ∨M|X(Ch(ϕ))∨ . (6.41)
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Indeed, (6.41) is equivalent to

c∗(ϕ) = (−1)dimM−1c(TM|X) ∩ π∗(c(O(1))−1 ∩ Ch(ϕ)) , (6.42)

where π∗ : P(T ∨M|X)→ X is the projection; this is [80, (12)], and the right-hand
side is the shadow of Ch(ϕ) by Lemma 6.2.12, up to changing the sign of every
other component. By linearity, (6.42) follows from

cMa(W) = c∗(EuW) = (−1)dimM−dimW−1c(TM|W)∩π∗(c(O(1))−1∩[P(N∨WM)])

(where π is now the projection to W ). This formula is (equivalent to) [83,
Lemma 1.2.1]; also cf. [60, Lemma 1].

Formula (6.41) should be compared with the formulas (6.36) defining the Chern-
Fulton and Chern-Fulton-Johnson classes. The Segre term

SegreT ∨M|X(Ch(ϕ))∨

plays for MacPherson’s natural transformation precisely the same rôle played by the
‘ordinary’ Segre classes s(X,M), resp., s(NXM) for cF(X), resp., cFJ(X). We will
come back to this term below, see (6.51).

The strength of Theorem 6.4.8 is that (as Sabbah puts it, [83, p. 162]) ‘. . . cela
montre que la théorie des classes de Chern de [66] se ramène à une théorie de Chow
sur T ∨M , qui ne fait intervenir que des classes fondamentales.’ Indeed, the Segre
term is determined by the characteristic cycle Ch(ϕ); this is a linear combination
of (dimM − 1)-dimensional fundamental classes of projectivized conormal spaces.
These characteristic cycles (and the local Euler obstruction itself) arise naturally in
the theory of holonomic D-modules; this aspect is also treated in [83], as well as
in work of Masaki Kashiwara, Victor Ginzburg, and others (see e.g., [25, 44]). The
characteristic cycles Ch(ϕ) are projectivizations of Lagrangian cycles in T ∨M , and
various functoriality properties admit a compelling geometric description in terms of
Lagrangian cycles. Thus, the functor F of constructible functions may be replaced by
a ‘Lagrangian functor’ associating with X the group of integer linear combinations
of conormal cycles. See [83] and [60] for more information.

From this point of view, defining a characteristic class for arbitrary varieties that
generalizes the total Chern class of the tangent bundle from the nonsingular case
amounts to identifying ways to define Lagrangian cycles which, in the nonsingular
case, associate a variety with the cycle of its conormal bundle (up to sign). We will
focus on two specific choices:

• The conormal space of a (possibly singular) variety X, corresponding to the
Chern-Mather class cMa(X) = c∗(EuX) (Sect. 6.4.3); and

• The ‘characteristic cycle’ of X, that is, Ch(11X), corresponding to the ‘Chern-
Schwartz-MacPherson class’ of X (Sect. 6.4.4).
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One of the challenges will be to find (more) explicit expressions for the correspond-
ing Segre terms SegreT ∨M|X(Ch(EuX))∨, SegreT ∨M|X(Ch(11X))∨.

6.4.3 Chern-Mather Classes

A key ingredient in MacPherson’s construction of the natural transformation c∗ is
the Chern-Mather class of a variety X, cMa(X). MacPherson gives a definition of
this class in [66, §2], attributing it to Mather. We note that the definition of an
equivalent notion was given earlier by Wu Wen-Tsün [95]; the equivalence was
proved later by Zhou Jianyi [100].1

Let X be a reduced subscheme of a nonsingular varietyM of pure dimension n,
and let X◦ be the nonsingular part of X. Recall (Sect. 6.3.2) that the Nash blow-up
X̂ of X is the closure of the image of the natural rational map X ��� Grn(TM)|X
associating with a nonsingular x ∈ X◦ the tangent space TxX◦ ⊆ TxM . The
projection from the Grassmannian restricts to a proper birational map ν : X̂ → X,
and the tautological subbundle restricts to a rank-n vector bundle T̂ on X̂ extending
the pull-back of TX◦. The local Euler obstruction EuX(p) equals

∫
c(T̂ |ν−1(p)) ∩ s(ν−1(p), X̂)

(Theorem 6.3.6). Following MacPherson, we define the Chern-Mather class of X to
be the push-forward of the Chern class of T̂ .

Definition 6.4.9 With notation as above, the Chern-Mather class of X is

cMa(X) = ν∗
(
c(T̂ ) ∩ [X̂]

)
, (6.43)

an element of A∗(X). �
As we discussed in Sect. 6.4.2, we have the following alternative expression for

the Chern-Mather class:

cMa(X) = c(TM|X) ∩ (−1)dimX SegreT ∨M|X([P(N∨XM)])∨ . (6.44)

This is (6.41) for ϕ = EuX, as Ch(EuX) = (−1)dimX[P(N∨XM)] (see (6.39)).
The equivalence of (6.43) and (6.44), due to Sabbah, may be verified by the same
techniques proving Proposition 6.3.7; cf. [60, Lemma 1].

If X is a hypersurface, the Segre term can be expressed directly in terms of
ordinary Segre classes. Recall that for a rational equivalence class A of a subvariety

1 We also note that in his review of [47], Raoul Bott credits Wu with an approach to the algebraic
construction of characteristic classes similar to and preceding Grothendieck’s.



6 Segre Classes and Invariants of Singular Varieties 457

of a fixed ambient varietyM , we let

A∨ := (−1)dimMA∨ .

Theorem 6.4.10 Let X be a hypersurface of a nonsingular varietyM . Then

(−1)dimX SegreT ∨M|X([P(N∨XM)])∨ =
([X] + ι∗s(JX,X)∨

)⊗M O(X) .

(Cf. [5, Lemma I.2] and [14, Proposition 2.2].) In this statement, JX is the
singularity subscheme of X (Definition 6.2.14), ι : JX → X is the embedding,
and we use the notation⊗M recalled in Sect. 6.2.4.

Proof The left-hand side of the stated formula equals

π∗
(
c(OT ∨M|X(1))

−1 ∩ [P(N∨XM)]
)
, (6.45)

where π : P(T ∨M|X) → X is the projection. As X is a hypersurface, the
projectivized conormal space P(N∨XM) may be realized as the closure of the image
of the rational map

X ��� P((T ∨M ⊗ O(X))|X) ∼= P(T ∨M|X)

associating with every x ∈ X◦ the hyperplane TxX◦ of TxM , viewed as a point
of P(N∨x M). This closure is isomorphic to the blow-up of X along the base scheme
of the rational map, and the base scheme is JX by definition. For another point
of view on this observation, recall that the Nash blow-up of a hypersurface X is
isomorphic to its blow-up along JX, see e.g., [74, Remark 2]; for hypersurfaces,
the conormal space is isomorphic to the Nash blow-up. Now we have

OT ∨M|X(1) ∼= O(T ∨M⊗O(X))|X(1)⊗ π∗O(X) ; (6.46)

therefore (6.45) may be rewritten

π∗
(
c(O(T ∨M⊗O(X))|X(1)⊗ π∗O(X))−1 ∩ [B�JXX]

)
,

and as O(T ∨M⊗O(X))|X(1) restricts to c(O(−E)) on the blow-up, where E denotes
the exceptional divisor, this class equals

π∗
(
c(π∗O(X)⊗ O(−E))−1 ∩ [B�JXX]

)
= π∗

(
c(O(−E))−1 ∩ [B�JXX]

)
⊗MO(X) ,

where now π denotes the projection from the blow-up and we made use of (6.21)
and of the projection formula. This last expression equals the right-hand side of the
formula given in the statement, by (6.11). ��
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Remark 6.4.11 To parse the expression obtained in Theorem 6.4.10, note that as
X is a hypersurface,

cF(X) = c(TM|X) ∩ s(X,M) = c(TM|X) ∩ (1+ X)−1 ∩ [X]
= c(TM|X) ∩ ([X] ⊗M O(X)) ,

while (6.44) and Theorem 6.4.10 imply that

cMa(X) = c(TM|X) ∩
(([X] + ι∗s(JX,X)∨

)⊗M O(X)
)
. (6.47)

What this is saying is that the Chern-Mather class of a hypersurface X is the
Chern-Fulton class of a virtual object whose fundamental class is

[X] + ι∗s(JX,X)∨ , (6.48)

a perturbation of the fundamental class of X, determined by the Segre class of the
singularity subscheme of X in X.

Enforcing the analogy with the Chern-Fulton class, we could formally write

cMa(X) = c(TM|X) ∩ sMa(X,M) ,

for a ‘Segre-Mather class’ sMa(X,M). Thus sMa(X,M) = s(X,M) if both X
and M are nonsingular, and Theorem 6.4.10 gives an explicit expression for the
Segre-Mather class if X is a hypersurface in a nonsingular varietyM .

We do not know a similarly explicit expression of the Segre-Mather class for
more general varieties X. �

As there are implementations for the computation of Segre classes (see Sect.
6.2.2), Chern-Mather classes of hypersurfaces in e.g., nonsingular projective vari-
eties can also be computed by making use of (6.47). See [48] for concrete examples.

Remark 6.4.12 We note that the relation between the Segre class of the singularity
subscheme of a hypersurface X of projective space and the Chern-Mather class
of X may also be obtained as a corollary of results of Piene: the polar classes of
a hypersurface X ⊆ P

n can be computed in terms of the Segre class s(JX,X)
([81, Theorem 2.3]) and the Chern-Mather class may be expressed in terms of polar
classes [82, Théorème 3].

In fact, for projective varieties, the fact that (6.47) only holds for hypersurfaces
is tempered by another result of Piene, [82, Corollaire, p. 20], showing that Chern-
Mather classes are preserved by general projections. Thus, the computation of the
degrees of the components of the Chern-Mather class of a projective variety may be
reduced to the hypersurface case. �

In any case, it would be interesting to extend Theorem 6.4.10 beyond the
hypersurface case. It is conceivable that even if X is not a hypersurface, the Segre
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term in (6.44) may admit an equally transparent expression in terms of the Segre
class of a scheme naturally associated with the singularities of X.

Example 6.4.13 It follows easily from the definition that if X = X1 ∪ X2 is the
union of two closed reduced subschemes of the same pure dimension and with no
irreducible components in common, then cMa(X) = cMa(X1)+ cMa(X2) (where the
classes on the right-hand side are viewed as classes in A∗(X)). Indeed, the Nash
blow-up of X is simply the union of the Nash blow-ups of X1 and X2. (This also
implies that EuX = EuX1 +EuX2 ; cf. [66, p. 426].)

For a hyperplane arrangement A consisting of d distinct hyperplanes Hi in P
n,

this implies that the Chern-Mather class of the corresponding hypersurface A is

cMa(A) =
∑

i

cMa(Hi) =
∑

i

c(THi) ∩ [Hi]

and therefore if i : A→ P
n is the embedding, and H denotes the hyperplane class,

i∗cMa(A) = d · (1+H)n ∩ [Pn−1] .

Let’s verify that this is compatible with the formula (6.24) for s(JA,A) obtained
in Sect. 6.2.5:

ι∗s(JA,A) = d
n∑

i=2

(−1)i(d − 1)i−1[Pn−i]

= d
(
(d − 1)[Pn−2] ⊗A O((d − 1)H)

)

= d(d − 1)(1+ (d − 1)H) ∩
(
[Pn−2] ⊗Pn O((d − 1)H)

)
,

where we have used the notation in Sect. 6.2.4. It follows that the ‘perturbed
fundamental class’ (6.48) is

[A] + ι∗s(JA,A)∨

= d
(
[Pn−1] + (d − 1)(1− (d − 1)H) ∩

(
[Pn−2] ⊗Pn O(−(d − 1)H)

))

and therefore the push-forward of the Segre-Mather class to P
n equals (using (6.20)

and (6.21))

i∗
(
([A] + ι∗s(JA,A)∨)⊗Pn O(A)

)

= d
(
[Pn−1] + (d − 1)(1− (d − 1)H) ∩

(
[Pn−2] ⊗Pn O(−(d − 1)H)

))
⊗Pn O(dH)

= d
(
[Pn−1] ⊗ O(dH)+ (d − 1)

1+H
1+ dH ∩ ([Pn−2] ⊗Pn O(H))

)
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= d
(

1

1+ dH + (d − 1)
1+H

1+ dH
H

(1+H)2
)
∩ [Pn−1]

= d · (1+H)−1 ∩ [Pn−1] .

In conclusion,

i∗
(
c(TPn|A) ∩ sMa(A,P

n)
) = d · (1+H)n+1(1+H)−1 ∩ [Pn−1]
= d · (1+H)n ∩ [Pn−1]

as it should.
More generally, let X = ∪ri=1Xi be the union of r distinct irreducible (possibly

singular) hypersurfaces in a nonsingular varietyM . Denote by X−i the union of the
hypersurfaces other than Xi . Then, omitting evident push-forwards:

s(JX,X) =
∑

i

Xi · s(X−i ,M)+ s(JXi,Xi)⊗M O(X−i ) . (6.49)

This may be proved by the same technique used in the proof of Proposition 6.2.17,
using (6.22) (that is, ‘residual intersection’) to account for the singularity sub-
schemes of the individual components Xi . The reader should have no difficulty
verifying that (6.49) is compatible with the fact that cMa(X) =∑i cMa(Xi). �

6.4.4 Chern-Schwartz-MacPherson Classes of Hypersurfaces

Again all our schemes will be subschemes of a fixed nonsingular variety M , and
we work in characteristic 0. We do not need to assume that schemes are reduced or
pure-dimensional.

Choosing the function 11X for every scheme is trivially the simplest way to define
a constructible function generalizing 11V for nonsingular varieties V . Thus, this
defines a characteristic class trivially generalizing c(T V ) ∩ [V ].
Definition 6.4.14 Let X be a scheme as above. The Chern-Schwartz-MacPherson
(CSM) class of X is the class

cSM(X) := c∗(11X) ∈ A∗(X) .

More generally (abusing language) we let

cSM(W) := c∗(11W) ∈ A∗(X)

for any constructible subset W of X; the context will determine the Chow group
where cSM(W) is meant to be taken. Note that as 11W only depends on the support
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Wred of W , we have cSM(W) = cSM(Wred). (Cf. Remark 6.4.21 below for relevant
comments on this point.)

Definition 6.4.14 is given in [66] (for compact complex varieties, and in
homology); MacPherson attributes it to Deligne. In [24], Brasselet and Marie-
Hélène Schwartz proved that the class agrees via Alexander duality with the classes
defined earlier by Schwartz in relative cohomology [85, 86].

One way to compute cSM(X) is to express the constant function 11X as a linear
combination of local Euler obstructions:

11X =
∑

i

mi EuWi

for a choice of finitely many subvarietiesWi of X. It then follows that

cSM(X) = c∗(11X) =
∑

i

mic∗(EuWi ) =
∑

i

micMa(Wi) .

The proof in [24] relies on establishing precise relations between indices of radial
vector fields and local Euler obstructions, and hence between Schwartz’s classes
and Chern-Mather classes. It is also possible to prove that the classes defined by
Schwartz satisfy enough of the functoriality properties of the classes defined by
MacPherson to guarantee that they must agree [15]; this approach avoids the use of
local Euler obstructions or Chern-Mather classes.

One motivation in Schwartz’s work was to obtain a class generalizing the classi-
cal Poincaré-Hopf theorem to singular varieties. This incorporated in MacPherson’s
approach as an implication of the naturality of c∗. Assume that X is complete, so
that the constant map κ : X → pt = Spec k is proper. The fact that c∗ is a natural
transformation implies that the following diagram is commutative:

F(X)

κ∗
��

c∗
�� A∗(X)

κ∗
��

F(pt) Z A∗(pt)

IfW ⊆ X is any constructible subset, the commutativity of the diagram

11W
�

κ∗
��

� �� cSM(W)
�

κ∗
��

χ(W)
� ��

∫
cSM(W)
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amounts to the equality

∫
cSM(W) = χ(W) : (6.50)

the degree of the CSM class equals the topological Euler characteristic (or a suitable
generalization over fields other than C). This can be viewed as an extension to
possibly singular, possibly noncompact varieties of the Poincaré-Hopf theorem,
holding over arbitrary algebraically closed fields of characteristic 0.

By Theorem 6.4.8, we have

cSM(X) = c(TM|X) ∩ SegreT ∨M|X(Ch(11X))∨ .

Just as in Sect. 6.4.3, it is natural to ask for a more explicit and computable
expression for the Segre term

sSM(X,M) := SegreT ∨M|X(Ch(11X))∨ , (6.51)

which we view as a ‘Segre-Schwartz-MacPherson’ class. In Sect. 6.4.5 we will
argue that this task can be reduced to the case of hypersurfaces; in this section
we focus on the hypersurface case. The following result is the CSM version of
Theorem 6.4.10.

Theorem 6.4.15 Let X be a hypersurface in a nonsingular varietyM . Then

SegreT ∨M|X(Ch(11X))∨ =
([X] + ι∗(c(O(X) ∩ s(JX,M)))∨

)⊗M O(X) .

This is [5, Lemma I.3]; cf. [14, Proposition 2.2]. It can be interpreted as stating
that if X is a hypersurface of a nonsingular variety M , then the Chern-Schwartz-
MacPherson class of X is the Chern-Fulton class of an object whose ‘fundamental
class’ is

[X] + ι∗(c(O(X)) ∩ s(JX,M))∨ . (6.52)

Remark 6.4.16 The reader should compare (6.48) and (6.52), that is, the perturba-
tions of the fundamental class corresponding to the different characteristic classes
we have encountered, in the case of hypersurfaces:

Chern-Fulton: [X]
Chern-Mather: [X] + ι∗s(JX,X)∨
Chern-Schwartz-MacPherson: [X] + ι∗(c(O(X)) ∩ s(JX,M))∨ .
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The difference between the Chern-Mather class and the Chern-Schwartz-
MacPherson class is captured precisely by the difference between

s(JX,X) and c(O(X)) ∩ s(JX,M) .

As we have observed in Example 6.4.3, it is natural to compare the classes s(W,X)
and c(O(X))∩ s(W,M), for any subschemeW of a hypersurfaceX. The caseW =
JX provides one instance in which the difference has a transparent and interesting
interpretation. �

Different proofs are known for Theorem 6.4.15. One approach consists of
proving that the class

c(TM|X) ∩
(([X] + ι∗(c(O(X) ∩ s(JX,M)))∨

)⊗M O(X)
)

(6.53)

has the same behavior under blow-ups along nonsingular subvarieties of JX as the
class cSM(X). By resolution of singularities, we may then reduce to the case in
whichX is a divisor with normal crossings and nonsingular components, and in this
case one can verify that (6.53) does equal cSM(X). It follows that (6.53) must equal
cSM(X) in general. This approach is carried out in [5].

A perhaps more insightful argument consists of a concrete realization of the
characteristic cycle Ch(11X). For this, view the singularity subscheme JX of X as a
subscheme of M . Consider the blow-up

π : B�JXM → M

of M along JX. This is naturally embedded as a subscheme of P(P1
M(O(X))),

the projectivization of the bundle of principal parts of O(X). The inverse image
X := π−1(X) is contained in P((T ∨M ⊗ O(X))|X) ⊆ P((P1

M(O(X)))|X), and
contains the exceptional divisor E = π−1(JX) of the blow-up. Thus, we have
(dimM−1)-dimensional cycles [X ], [E ] of P((T ∨M⊗O(X))|X) ∼= P(T ∨M|X).

The reader may find it helpful to recall that B�JXX may also be realized as a
subscheme of P(T ∨M|X); the proof of Theorem 6.4.10 relies on the identification
of this subscheme with the projectivized conormal space P(N∨XM), whose cycle is
(−1)dimX Ch(EuX).

Lemma 6.4.17 The characteristic cycle Ch(11X) equals (−1)dimX([X ] − [E ]).
This statement implies Theorem 6.4.15, by an argument similar to the proof

of Theorem 6.4.10. (Cf. e.g., [5, Theorem I.3].) Lemma 6.4.17 is proved in [80,
Corollary 2.4], along with a thorough discussion of characteristic cycles of other
constructible functions naturally associated with a hypersurface. An earlier descrip-
tion of the characteristic variety of a hypersurface is given in [63, Theorem 3.3].

Theorem 6.4.15 is equivalent to the following formula, which we state as a
separate result for ease of reference.
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Theorem 6.4.18 Let X be a hypersurface in a nonsingular varietyM . Then

cSM(X) = c(TM|X) ∩
(([X] + ι∗(c(O(X)) ∩ s(JX,M))∨

)⊗M O(X)
)
.

Remark 6.4.19 Xiping Zhang has generalized this result to the equivariant setting,
[99]. �

We have already observed that the formula in Theorem 6.4.18 may be viewed
as expressing cSM(X) as the Chern-Fulton class of a virtual object with a similar
behavior to a hypersurface, but with a fundamental class modified to include lower
dimensional terms. There is a perhaps more compelling intepretation of this object
as a Chern-Fulton class, obtained by applying residual intersection as follows.

Recall that the Chern-Fulton class of a scheme is not just determined by its
support; the specific scheme structure affects the class. For a hypersurface X of a
nonsingular varietyM , we consider the Chern-Fulton class of the scheme obtained
by ‘thickening’X along its singularity subscheme JX: that is, for k ≥ 0 we consider
the scheme X(k) whose ideal sheaf inM is

IX,M · (IJX,M)k .
ThusX = X(0). The residual formula in Proposition 6.2.13 yields an expression for
the Segre class of this scheme inM . According to (6.22),

s(X(k),M) = ([X] + c(O(−X)) ∩ s((JX)k,M)
)⊗M O(X) ,

where (JX)k is the subscheme ofM defined by the ideal (IJX,M)k . (Thus (JX)0 =
∅, (JX)1 = JX, etc.) Accordingly, we have an expression for the Chern-Fulton
class of X(k):

cF(X
(k)) = c(TM) ∩ ([X] + c(O(−X)) ∩ s((JX)k,M)

)⊗M O(X) . (6.54)

This expression makes sense for all nonnegative integers k, and by definition

cvir(X) = cF(X
(0)) .

Now we observe that s((JX)k,M) is determined by s(JX,M) for all k ≥ 0: indeed,
the component of dimension � of this class is given by

s((JX)k,M)� = kdimM−�s(JX,M)� .

Indeed, if E denotes the exceptional divisor of the blow-upB�JXM , then the inverse
image of (JX)k in the blow-up is kE , so the assertion follows from (6.11).

As a consequence, (6.54) expresses cF(X
(k)) as a polynomial in k, and as such

this class can be given a meaning for every integer k.
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Proposition 6.4.20 Let X be a hypersurface in a nonsingular variety M . With
notation as above,

cSM(X) = cF(X
(−1)) .

This is of course just a reformulation of Theorem (6.4.18). It identifies the
Chern-Schwartz-MacPherson class of X with the Chern-Fulton class of a virtual
(fractional?) scheme obtained from X by simply ‘removing’ its singular locus. The
Segre-Schwartz-MacPherson class of a hypersurface X in a nonsingular variety M
is simply

sSM(X,M) = s(X(−1),M) .

Remark 6.4.21 There is one case in which the virtual scheme X(−1) is not virtual.
Let V be a nonsingular hypersurface of a nonsingular variety M , and let X be the
non-reduced hypersurface whose ideal is the r-th power of the ideal of V :

IX,M = IV,M
r .

Then (as the characteristic is 0), JX has ideal IV,M
r−1, hence X(k) has ideal

IV,M
r+k(r−1) for k ≥ 0. This ideal makes sense for k = −1, giving X(−1) = V .

Therefore

cSM(X) = cSM(V ) = c(T V ) ∩ [V ] = cF(V ) = cF(X
(−1))

as it should.
Using Proposition 6.2.13, it is not hard to verify that if X is a possibly non-

reduced effective Cartier divisor in a nonsingular varietyM , then

cF(X
(−1)) = cF(Xred

(−1)) ,

even if the support Xred is singular. This is compatible with our definition of the
Chern-Schwartz-MacPherson class of a possibly non-reduced scheme X, which
guarantees that it only depends on the support of X. �
Example 6.4.22 The polar degree of a hypersurfaceX of Pn defined by a homoge-
neous polynomial F is the degree of the gradient map P

n→ P
n,

p �→
(
∂F

∂x0
: · · · : ∂F

∂xn

)
. (6.55)

A hypersurface is ‘homaloidal’ if this map is birational, that is, if its polar degree
is 1. Igor Dolgachev [32, p. 199] conjectured that a hypersurfaceX is homaloidal if
and only if Xred is homaloidal.
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Now, the graph of the map (6.55) is isomorphic to the blow-up of the zero-scheme
of the partials, that is, to B�JXPn. Therefore, it is straightforward to express the
polar degree in terms of the degrees of the components of the Segre class of JX in
P
n, and therefore in terms of the degrees of the components of the Chern-Schwartz-

MacPherson class of X. The result of this computation is the following (see [10,
§3.1] for more details).

Proposition 6.4.23 LetX ⊆ P
n be a hypersurface. Denote by deg ci(X) the degree

of the dimension-i component of cSM(X). Then the polar degree of X equals

(−1)n −
n∑

i=0

(−1)n−i deg ci(X) .

Since cSM(X) = cSM(Xred), it follows that the polar degree ofX equals the polar
degree ofXred, verifying Dolgachev’s conjecture. (To our knowledge, the first proof
of the conjecture appeared in [31, Corollary 2], over C. The argument sketched
above holds over any algebraically closed field of characteristic 0.) �
Example 6.4.24 We return once more to a hyperplane arrangement A in P

n and its
corresponding hypersurface A. We will sketch a proof of Theorem 6.2.15, which
relies on the computation of cSM(A). We will assume that A is reduced, but as we
just observed, cSM(Ared) = cF(A

(−1)
red ) = cF(A

(−1)), and it follows that the result
holds without changes for non-reduced arrangements (as stated in Sect. 6.2.5).

The arrangement A corresponds to a central arrangement Â in A
n+1. We let

χÂ (t) be the characteristic polynomial of Â ; see e.g., [77, Definition 2.5.2]. (For
arrangements corresponding to graphs, this is essentially the same as the chromatic
polynomial of the graph.) We define χA (t) to be the quotient χÂ (t)/(t − 1); this
is also a polynomial in Z[t], of degree n.

Now consider the Chern-Schwartz-MacPherson class of the complement of A:

cSM(P
n
� A) = c∗(11Pn − 11A) ∈ A∗(Pn) .

As an element of A∗(Pn), this class may be written as an integer linear combination
of the classes [Pi] for i = 0, . . . , n.

Theorem 6.4.25 ([11, Theorem 1.2]) The class cSM(P
n
� A) equals the class

obtained by replacing t i with [Pi] in χA (t + 1).

This may be proved by a combinatorial argument, using ‘Möbius inversion’.
Alternately, one may use the deletion-contraction property of the characteris-
tic polynomial and the fact that Chern-Schwartz-MacPherson classes satisfy an
inclusion-exclusion property: if W1 and W2 are locally closed subsets of a variety
V , then

cSM(W1 ∩W2) = c∗(11W1∩W2) = c∗(11W1 + 11W2 − 11W1∪W2)

= cSM(W1)+ cSM(W2)− cSM(W1 ∪W2)
(6.56)
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in A∗(V ). June Huh extracts an expression of the characteristic polynomial from
these considerations, see [55, Remark 26].

The information carried by the characteristic polynomial of an arrangement is
equivalent to the information in its Poincaré polynomial

πA (t) := (−t)n · χA(−t−1) .

As the reader can verify, Theorem 6.4.25 is equivalent to the following formula:

i∗cSM(A) = c(TPn) ∩
(

1− 1

1+H πA
( −H

1+H
))

∩ [Pn]

whereH is the hyperplane section and i : A→ P
n is the inclusion. Therefore

i∗sSM(A,P
n) =

(
1− 1

1+H πA
( −H

1+H
))

∩ [Pn]

Using Theorem 6.4.15 and simple manipulations, it follows that

πA

( −H
1+H

)
∩ [Pn] = 1+H

1+ dH
(
1− ι∗s(JA,Pn)∨ ⊗Pn O(dH)

) ∩ [Pn]

where d is the number of hyperplanes in the arrangement. Letting

ι∗s(JA,Pn) =
∑

i

si [Pi] =
∑

i

siH
n−i ∩ [Pn]

we get an equality of power series in h modulo hn+1:

πA

( −h
1+ h

)
≡ 1+ h

1+ dh

(
1−

n∑

i=0

si · (−h)n−i
(1+ dh)n−i

)
mod hn+1

or equivalently

πA (t) ≡ 1

1− (d − 1)t

(
1−

n∑

i=0

si ·
(

t

1− (d − 1)t

)n−i)
mod tn+1 .

(6.57)

By a classical result of Peter Orlik and Louis Solomon [77, Theorem 5.93],

πA (t) =
n∑

i=0

rkHk(Pn � A,Q)ti .

Reading off the coefficients of t i , i = 0, . . . , n in (6.57) yields Theorem 6.2.15. �
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6.4.5 Chern-Schwartz-MacPherson Classes, General Case

Formulas in the style of Theorem 6.4.18 are useful: they have been applied
to concrete computations of Chern-Schwartz-MacPherson classes, and they are
amenable to implementation in systems such as Macaulay2 since Segre classes are
(Sect. 6.2.2). One may expect that there should be a straightforward generalization
of Theorem 6.4.15 to higher codimension subschemes X of a nonsingular variety,
based on the Segre class of a subscheme defined by a suitable Fitting ideal,
generalizing the singularity subscheme JX. One could also expect a generalization
of the interpretation of the Chern-Schwartz-MacPherson class as the Chern-Fulton
class of a suitable virtual scheme, along the lines of Proposition 6.4.20. With the
exception of results for certain types of complete intersections [36, 38], we do not
know of explicit results along these lines.

However, a formula for the Chern-Schwartz-MacPherson class of an arbitrary
subscheme of a nonsingular variety in terms of the Segre class of a related scheme
can be given. This is the most direct extension of Theorem 6.4.15 currently
available, and it will be presented below (Theorem 6.4.30). Before discussing this
result, we note that, for computational purposes, the case of arbitrary subschemes
can already be treated by organizing a potentially large number of applications of
the hypersurface case.

Proposition 6.4.26 Let X be a subscheme of a nonsingular varietyM , and assume
that X is the intersection of r hypersurfaces X1, . . . , Xr . Then

cSM(X) =
r∑

s=1

(−1)s−1
∑

i1<···<is
cSM(Xi1 ∪ · · · ∪Xis ) .

This is clear from inclusion-exclusion, which holds for CSM classes since it
holds for constructible functions, cf. (6.56). Since the classes appearing in the right-
hand side are all CSM classes of hypersurfaces, they can be computed by applying
Theorem 6.4.18. This approach yields an algorithm for computing Chern-Schwartz-
MacPherson classes of subschemes of P

n and more general varieties, based on
the computation of Segre classes (cf. [6, 48, 52, 53, 58]). The current Macaulay2
distribution includes the package CharacteristicClasses [54], by Helmer
and Christine Jost, which implements this observation.

Example 6.4.27 Let X be the scheme defined by the ideal (xz2 − y2w, xw2 −
yz2, x2w − y3, z4 − yw3) in P

3. The following Macaulay2 commands compute
the push-forward to P

3 of its Chern-Schwartz-MacPherson class.
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i1 : load("CharacteristicClasses.m2")

i2 : R=QQ[x,y,z,w]

i3 : I=ideal(x*z^2-y^2*w, x*w^2-y*z^2, x^2*w-y^3, z^4 -y*w^3)

i4 : CSM I

3 2
o4 = 2h + 6h

1 1

(The package uses h1 to denote the hyperplane class.) This shows that the locus
is a sextic curve with topological Euler characteristic equal to 2. (It is in fact an
irreducible rational sextic with one singular point.) As the ideal has four generators,
the computation requires 15 separate applications of Theorem 6.4.18, including one
for a degree-13 hypersurface. �

One intriguing aspect of this approach via inclusion-exclusion is that the same
subscheme may be represented as an intersection of hypersurfaces in many different
ways; and extra features such as embedded or multiple components do not affect
the result, since the Chern-Schwartz-MacPherson class only depends on the support
of the scheme. Massive cancellations involving the Segre classes underlying such
computations must be at work. To our knowledge, more direct proofs of such
cancellations are not available.

One obvious drawback of Proposition 6.4.26 is the large number of computations
needed to apply it: 2r − 1 distinct Segre class computations for the intersection of r
hypersurfaces. As we will see next, the same input—for example, a set of generators
for the homogeneous ideal of a projective scheme X ⊆ P

n—may be used to obtain
an expression that is a more direct generalization of Theorem 6.4.18, in the sense
that it gives an expression for cSM(X) in terms of a single Segre class of a related
scheme. The price to pay is an increase in dimension, and the fact that (at this time)
the result only yields the push-forward of cSM(X) to the Chow group A∗(M) of the
ambient nonsingular variety.

Let X be a subscheme of a nonsingular variety M . We may assume that X is
the zero scheme of a section of a vector bundle E on M; in fact, we may choose
E = Spec(SymE ), where E is any locally free sheaf surjecting onto the ideal
sheaf IX,M of X in M . Note that we can assume that the rank of E is as high
as we please: for example, we can replace E with E ⊕ O⊕aM for any a ≥ 0. The
surjection E � IX,M induces a morphism φ : E |X → ΩM |X whose cokernel is
the sheaf of differentialsΩX. We view this as a morphism of vector bundles overX,
φ : E∨|X → T ∨M|X. The kernel of φ determines a subscheme JE(X) of the
projectivization P(E∨|X) π→ X.

Definition 6.4.28 With notation as above, we will denote by JE(X) the subscheme
of P(E∨|X) defined by the vanishing of the composition of the pull-back of φ with
the tautological inclusion OE∨(−1)→ π∗E∨|X. �
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It may be helpful to describe JE(X) in analytic coordinates (x1, . . . , xn) forM ,
over an open set U where ΩM and E are trivial. If X is defined by f0(x) = · · · =
fr(x) = 0 (so rkE = r + 1), φ : E |X → ΩU |X has matrix

⎛

⎜⎜⎝

∂f0
∂x1

· · · ∂fr
∂x1

...
. . .

...
∂f0
∂xn

· · · ∂fr
∂xn

⎞

⎟⎟⎠

and JE(X) is defined by the ideal

(y0df0 + · · · + yrdfr) =
(

r∑

i=0

yi
∂fi

∂xj

)

j=1,...,n

in P(E∨|X∩U) = P
r × (X ∩ U). In other words, JE(X) records linear relations

between the differentials of the generators of the ideal of X. These may be due
to relations between the generators themselves (note that nothing prevents us from
choosing e.g., f0 = f1), or to singularities of X.

Example 6.4.29 If X is a hypersurface, defined by the vanishing of a section s of
E = O(X), then JE(X) is the subscheme of X ∼= P

0 ×X defined by the vanishing
of ds. That is, JE(X) = JX in this case: in this sense, the definition of JE(X)
generalizes the notion of ‘singularity subscheme’ of a hypersurface. �

We view JE(X) as a subscheme of the nonsingular variety P(E∨), and denote by
ι : JE(X) ↪→ P(E∨) the inclusion and π : P(E∨) � M the projection. The claim
is now that the Segre class of JE(X) in P(E∨) determines the Segre term for the
Chern-Schwartz-MacPherson class of X, at least after push-forward toM .

Theorem 6.4.30 ([13]) Let i : X ↪→ M be a closed embedding of a scheme X in a
nonsingular varietyM , defined by a section of a vector bundle E of rank> dimM .
Then with notation as above, i∗cSM(X) equals

c(TM) ∩ π∗
(
c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
∩ (s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

))
.

(6.58)

Despite its rather complicated shape, (6.58) is straightforward to implement in
a system capable of computing Segre classes; for example, Macaulay2 enhanced
with the package SegreClasses [49] for computations in products of projective
space. Concrete examples may be found in [13, §1].

Theorem 6.4.30 is proved by realizing JE(X) as the singularity subscheme of a
hypersurface in P(E∨), applying Theorem 6.4.4, and computing the push-forward



6 Segre Classes and Invariants of Singular Varieties 471

by using standard intersection-theoretic calculus and the naturality of c∗. The result
is that if X is given by a section of a vector bundle E, then (6.58) computes

i∗cSM(X)− c(TM)
c(E)

ctop(E) ∩ [M] (6.59)

([13, Theorem 2.5]). If the rank of E exceeds the dimension of M (as required
in Theorem 6.4.30), then the second term vanishes, and the theorem follows. We
will come back to the more general case in Sect. 6.4.6. To our knowledge, the
auxiliary hypersurface used in this argument was first introduced by Callejas-
Bedregal, Morgado, and Seade in [26], in the case of local complete intersections.
The construction was also considered independently by Ohmoto [75] and Xia Liao
[65].

The class (6.58) may be interpreted unambiguously as a class in A∗(X), and it is
likely that it simply equals cSM(X), but the argument we just sketched only shows
the equality in A∗(M).

The reader will certainly notice similarities between the statement of Theo-
rem 6.4.30 and the case of hypersurfaces treated in Sect. 6.4.4. The new statement
does recover Theorem 6.4.18 (after push-forward toM) in the hypersurface case, as
we see in the example that follows.

Example 6.4.31 Let X be the hypersurface defined by a section s of a line bundle
L ∼= O(X) on a nonsingular varietyM . We may view X as the zero scheme of the
section (s, s, . . . , s) of E = O(X)⊕r+1, for any r ≥ 0. Then

P(E∨) = P(O(−X)⊕r+1) ∼= P
r ×M ;

via this identification, OE∨(1) ∼= OPr×M(1)⊗ π∗O(X). Therefore

c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
= (1+ h)r+1

1+ h+ π∗X ,

where h is the hyperplane class in P
r ×M . The scheme JE(X) is locally defined by

the ideal

((y0 + · · · + yr)ds, s)

in P
r × M , where yi are homogeneous coordinates in P

r . Note that (ds, s) is the
ideal of the singularity subscheme JX. A generalization of the residual formula for
Segre classes (6.22) shows that

s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

= h

(1+ h)(1+ π∗X)∩π
∗[X]+ 1+ h+ π∗X

(1+ h)(1+ π∗X)∩π
∗ (s(JX,M)∨ ⊗M O(X)

)
.
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Therefore, the term to push forward in (6.58) evaluates to

(1+ h)r · h
(1+ h+ π∗X)(1 + π∗X) ∩ π

∗[X] + (1+ h)r
1+ π∗X ∩ π

∗ (s(JX,M)∨ ⊗M O(X)
)
.

The push-forward is carried out by the projection formula and reading off the
coefficient of hr . The second summand pushes forward to

1

1+X ∩
(
s(JX,M)∨ ⊗M O(X)

) = (c(O(X) ∩ s(JX,M))∨ ⊗M O(X) .

The first summand pushes forward to

(
coefficient of hr in

(1+ h)r · h
1+ h+ π∗X

)
∩ [X]

1+X
and elementary manipulations evaluate the coefficient, giving

(
1− Xr

(1+X)r
)
∩ [X]

1+X .

In conclusion, (6.58) equals

c(TM) ∩
( [X]

1+X + (c(O(X) ∩ s(JX,M))
∨ ⊗M O(X)− Xr

(1+X)r+1 ∩ [X]
)
.

Theorem 6.4.30 asserts that for r + 1 > dimM , this expression equals i∗cSM(X).
And indeed, if r + 1 > dimM , the last term vanishes and we recover the expression
in Theorem 6.4.18. �

As with Proposition 6.4.26, one intriguing feature of Theorem 6.4.30 is the
vast degree of freedom in the choice of the data needed to apply it—here, the
vector bundle E and the section of E whose zero-scheme defines X. The fact that
different choices of bundles or of defining sections lead to the same result reflects
sophisticated identities involving the relevant Segre classes, for which we do not
know a more direct proof.

6.4.6 Milnor Classes

We have seen that Parusiński’s generalization of the Milnor number to complex
hypersurfaces with arbitrary singularities satisfies (6.35):

μ(X) = (−1)dimX(χ(Xgen)− χ(X)) ,
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where Xgen is a nonsingular hypersurface linearly equivalent to X. Also, we have
seen that χ(Xgen) =

∫
cvir(X) (Proposition 6.4.4) and χ(X) = ∫ cSM(X) (6.50).

Therefore,

μ(X) = (−1)dimX
∫
cvir(X)− cSM(X) .

This equality motivates the following definition, which makes sense over any
algebraically closed field of characteristic 0.

Definition 6.4.32 Let X be a local complete intersection. The Milnor class of X is
the class

M (X) := (−1)dimX (cvir(X)− cSM(X))

where cvir(X) is the class of the virtual tangent bundle of X. �
(Recall that being a local complete intersection in a nonsingular variety is an

intrinsic notion, cf. [51, Remark II.8.22.2, p.185], and that the virtual tangent bundle
of a local complete intersection is well-defined as a class in the Grothendieck group
of vector bundles on X.)

Definition 6.4.32 would place the class in A∗(X). The class is clearly supported
on the singular locus Xsing of X, and in the case of a hypersurface X we will
produce below a well-defined class inA∗(JX) whose image inA∗(X) is the class of
Definition 6.4.32. Formulas explicitly localizing the class to the singular locus are
also given in the local complete intersection case in [22] (over C, and in homology).

One could extend the definition of the Milnor class to more general schemes X,
as measuring the difference between cSM(X) and cF(X) or cFJ(X) (cf. (6.38)).
However, recall that in general cF(X) �= cFJ(X) for schemes that are not local
complete intersections, so this would require a choice that seems arbitrary. For this
reason, we prefer to only consider the Milnor class for local complete intersections.

The geometry associated to Milnor classes of hypersurfaces and more generally
local complete intersections has been studied very thoroughly. We mention [22, 26,
71, 80] among many others, as well as [97, 98], where (to our knowledge) the notion
was first introduced and studied. The contribution [29] to this Handbook includes
a thorough survey of Milnor classes. Here we focus specifically on the relation
between Milnor classes and Segre classes, and on consequences of this relation.

First, we note that the Milnor class of a hypersurface X of a nonsingular
varietyM admits an expression in terms of a Segre operator (6.41):

M (X) = c(TvirX) ∩ SegreT ∨M([E ])∨ , (6.60)

where [E ] is the class of the exceptional divisor of the blow-up π : B�JXM →
M; as pointed out in Sect. 6.4.4, E may be viewed as a cycle in P(T ∨M), so
SegreT ∨M([E ]) is defined. To verify (6.60), let X = π−1(X); then s(X,M) =
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π∗s(X , B�JXM), by the birational invariance of Segre classes, and this implies
the expression

cvir(X) = c(TM|X) ∩ π∗
( [X ]

1+X

)

for the virtual Chern class of X. Also, note that OT ∨M(1)|X ∼= O(X −E )|X (this
follows from (6.46)); by Lemma 6.4.17, (6.42) implies

cSM(X) = c∗(11X) = c(TM|X) ∩ π∗
( [X ] − [E ]

1+X − E

)
.

Therefore

(−1)dimX(cvir(X)− cSM(X)) = (−1)dimXc(TM|X) ∩ π∗
( [X ]

1+X
− [X ] − [E ]

1+X − E

)

= (−1)dimXc(TM|X) ∩ π∗
(

1

1+X
· [E ]

1+X − E

)

= c(TM|X)
1+X ∩ π∗

( [E ]
1−X + E

)

∨

= c(TM|X)
1+X ∩ π∗

(
c(OT ∨M(−1))−1 ∩ [E ]

)

∨
= c(TvirX) ∩ SegreT ∨M([E ])∨

as claimed. By Theorem 6.4.8, identity (6.60) may be written

M (X) = c(O(X))−1 ∩ c∗(νJX)

for the constructible function νJX whose characteristic cycle is the exceptional
divisor E . As a Lagrangian cycle, [E ] is a linear combination of cycles of conormal
spaces of subvarieties of JX: [E ] = ∑

W nW [N∨WM]; then, as prescribed by
Definition 6.4.7:

νJX =
∑

W

(−1)dimWnW11W .

Over C, and if X is reduced, Parusiński and Pragacz [80, Corollary 2.4] prove that

νJX = (−1)dimX(χX − 11X) ,

where for p ∈ X, χX(p) denotes the Euler characteristic of the Milnor fiber of X
at p. (In [80], νJX is denoted μ.)
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In general, note that E is the projectivized normal cone of JX. If Y is any
subscheme of M , then we can associate to Y a constructible function νY by letting
νY = ∑

W(−1)dimWnW 11W , where the subvarieties W are the supports of the
components of the normal cone CYM and nW is the multiplicity of the component
supported onW . Then the class c∗(νY ) generalizes the class c∗(νJX) = c(O(X)) ∩
M (X). Kai Behrend [19, Proposition 4.16] proves that if Y is endowed with a
symmetric obstruction theory (the singularity subscheme of a hypersurface gives
an example), then the 0-dimensional component of c∗(νY ) equals the corresponding
‘virtual fundamental class’; its degree is a Donaldson-Thomas type invariant.

Expression (6.60) for the Milnor class may be recast in terms of the Segre
class s(JX,M).

Proposition 6.4.33 Let X be a hypersurface in a nonsingular varietyM . Then

M (X) = (−1)dimMc(TM|JX) ∩
(
(c(O(X)) ∩ s(JX,M))∨ ⊗M O(X)

)
.

This is an immediate consequence of Theorem 6.4.18. Indeed,

cvir(X) = c(TvirX) ∩ [X] = c(TM|X)c(NXM)−1 ∩ [X] = c(TM|X)c(O(X))−1 ∩ [X]
= c(TM|X) ∩ ([X] ⊗M O(X)) .

Note that we have written the right-hand side in Proposition 6.4.33 as a class
in A∗(JX). The statement means that this class pushes forward to the difference
defining the Milnor class in Definition 6.4.32. The formula also implies that every
connected component of JX has a well-defined contribution to the Milnor class
of X. Of course if a component is supported on an isolated point p, and p̂ denotes
the part of JX supported on p, then the contribution of p to the Milnor class is

(−1)dimMc(TM|JX) ∩
(
(c(O(X)) ∩ s(p̂,M)∨)⊗M O(X)

) = s(p̂,M) ,

a class whose degree equals (in the complex setting) the ordinary Milnor number,
cf. Sect. 6.3.3.

Proposition 6.4.33 may be formulated in terms of the ‘μ-class’ of [3], already
mentioned in Sect. 6.3.3:

μO(X)(JX) := c(T ∨M ⊗ O(X)) ∩ s(JX,M) .

Indeed, simple manipulations using (6.20) and (6.21) show that

M (X) = (−1)dimMc(O(X))dimX (μO(X)(JX)∨ ⊗M O(X)
)
,

or, equivalently,

μO(X)(JX) = (−1)dimMc(O(X))dimX (M (X)∨ ⊗M O(X)
)
.
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It is somewhat remarkable that M (X) and μO(X)(JX) are exchanged by the ‘same’
operation. Such involutions are not uncommon in the theory, see [27, 37].

The μ-class has applications to e.g., duality, and such applications can be
formulated in terms of the Milnor class. We give one explicit example.

Example 6.4.34 Let M be a nonsingular projective variety, and let H be a hyper-
plane tangent toM , that is, a point of the dual varietyM∨ ofM; so X = M ∩H is
a singular hypersurface ofM . Rewriting [3, Proposition 2.2] in terms of the Milnor
class, we obtain that the codimension of M∨ in the dual projective space is the
smallest integer r ≥ 1 such that the component of dimension r − 1 in the class

(1+ X)dimM (M (X)∨ ⊗M O(X)
)

does not vanish. Further, the projective degree of this component (viewed as a class
in the dual projective space) equals the multiplicity of M∨ at H , up to sign. (This
result generalizes (6.30).) We do not know a ‘Segre class-free’ proof of these facts.

For a concrete example, consider M = P
2 × P

1, embedded in P
5 by the Segre

embedding. Using coordinates (x0 : x1 : x2) for the first factor, and (y0 : y1) for
the second factor, let X be the hypersurface with equation x0y1 = 0: Thus, X is
a hyperplane section via the Segre embedding, and X is the transversal union of
two surfaces isomorphic to P

1 × P
1, resp. , P2, meeting along a P

1. If h1, resp., h2
denote the pull-back of the hyperplane class from the first, resp. second factor, then
the reader can verify that

cvir(X) =
(
(h1 + h2)+ (2h2

1 + 3h1h2)+ 4h2
1h2

)
∩ [P2 × P

1] ,

cSM(X) =
(
(h1 + h1)+ (2h2

1 + 4h1h2)+ 5h2
1h2

)
∩ [P2 × P

1] .

It is easy to obtain these expressions ‘by hand’; in any case, the following
application of [54] will confirm the second assertion.

i1 : load("CharacteristicClasses.m2")

i2 : R=MultiProjCoordRing {2,1}

i3 : CSM ideal(R_0*R_4)

2 2
o3 = 5h h + 2h + 4h h + h + h

1 2 1 1 2 1 2

Therefore

M (X) = (−h1h2 − h2
1h2) ∩ [P2 × P

1] ,
(1+X)dimM (M (X)∨ ⊗O(X)

) = −h1h2 ∩ [P2 × P
1] .
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In fact, it is easy to verify (by hand!) that for the corresponding hypersurface in
M = P

n × P
1, we have

M (X) = (−1)n+1(1+ h1)
n−1h1h2 ∩ [Pn × P

1] ,
(1+ X)dimM (M (X)∨ ⊗ O(X)

) = (−1)n+1h1h2 ∩ [Pn × P
1] .

The conclusion is thatM∨ has codimension n in the dual P2n+1, and is nonsingular
at the point corresponding to this hyperplane section. (In fact, it is well known that
the Segre embedding of Pn×P

1 in P
2n+1 is isomorphic to its dual variety for all n ≥

1 [89, Example 9.1].) �
It is natural to ask about extensions of Proposition 6.4.33 to more general local

complete intersections. For us, X ⊆ M is a local complete intersection if X
is the zero-scheme of a regular section of a vector bundle E defined on some
neighborhood of X. For notational convenience, we will restrict M if necessary
and assume that E is defined over the whole of M . Recall that the bundle E
and the section defining X determine a closed subscheme JE(X) of P(E∨|X)
(Definition 6.4.28). We view JE(X) as a subscheme of P(E∨), and denote by
π : P(E∨)→ M the projection.

Theorem 6.4.35 Let i : X ↪→ M be a local complete intersection in a nonsingular
varietyM , obtained as the zero-scheme of a regular section of a vector bundle E of
rank codimX M . Then (−1)dimX+1i∗M (X) equals

c(TM) ∩ π∗
(
c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
∩ (s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

))

(6.61)

in A∗(M).

This statement may seem puzzling at first, since (6.58) and (6.61) are the
same formula, yet the first is stated to equal i∗cSM(X) (for arbitrary X) and the
second equals i∗M (X) (for local complete intersections). The difference is in
the ranks of the bundle E: in Theorem 6.4.30 the rank is required to exceed the
dimension of the ambient variety M , while in Theorem 6.4.35 the rank is equal
to the codimension of X. Both statements are consequences of the more general
result (6.59): the formula evaluates the CSM class up to a correction term, which is
0 if rkE * 0, and it is precisely i∗(cvir(X)) if X is a local complete intersection
and rkE = codimX M .

Example 6.4.36 Let X ⊆ M be a hypersurface defined by a section s of O(X).
In Example 6.4.31 we viewed X as the zero scheme of the section (s, . . . , s)
of O(X)⊕r+1, and showed that (6.58) evaluates to

c(TM) ∩
( [X]

1+X + (c(O(X) ∩ s(JX,M))
∨ ⊗M O(X)− Xr

(1+X)r+1 ∩ [X]
)
.
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The case considered in Theorem 6.4.35 corresponds to r = 0, for which the formula
gives

c(TM) ∩ ((c(O(X) ∩ s(JX,M))∨ ⊗M O(X)
)
,

agreeing with (−1)dimX+1i∗M (X) by Proposition 6.4.33. In this sense, Theo-
rem 6.4.35 generalizes Proposition 6.4.33. �

Expression (6.61) shows that, as in the case of the ‘characteristic’ classes
reviewed in this section, the Milnor class of a local complete intersection is
determined by a Segre class, s(JE(X),P(E∨)) in this case. IfM = P

n, this class can
be computed using e.g., the Macaulay2 package [49]; the other ingredients in (6.61)
are straightforward. For explicit formulas and examples, see [13].

6.5 Lê Cycles

6.5.1 Stückrad-Vogel Intersection Theory and van Gastel’s
Result

An ‘excess intersection’ situation occurs when loci intersect in higher than expected
dimension. For example, r hypersurfaces in a nonsingular variety M are expected
to intersect in a codimension-r subscheme; if they intersect along a subscheme of
higher dimension, ‘excess’ intersection occurs.

The ability to deal with excess intersection is one the successes of Fulton-
MacPherson’s intersection theory. If X1, . . . , Xr are hypersurfaces, and Z is a
connected component ofX1∩· · ·∩Xr , then the contribution ofZ to the intersection
product of the classes of the hypersurfaces may be written as

{
r∏

i=1

(1+ Xi) ∩ s(Z,M)
}

dimM−r
. (6.62)

For this, view X1 · · ·Xr as (X1 × · · · × Xr) · Δ, where Δ is the diagonal in M ×
· · · ×M: we have (X1× · · · ×Xr)∩Δ ∼= X1 ∩ · · · ∩Xr ,Δ ∼= M , and we consider
the fiber diagram

X1 ∩ · · · ∩Xr ��

��

Δ ∼= M

��
X1 × · · · ×Xr �� M × · · · ×M .
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We can view Z as a connected component of (X1×· · ·×Xr)∩Δ. The restriction of
the normal bundleNX1×···×Xr (M×· · ·×M) to Z is then isomorphic to⊕iO(Xi)|Z,
so that its Chern class is (the restriction of)

∏r
i=1(1 + Xi). Then (6.62) follows

from (6.14). The fact that Z may be of dimension higher than dimM−r is precisely
accounted for by the Segre class of Z inM .

An alternative approach to intersection theory in projective space, dealing differ-
ently with excess intersection, was developed by Jürgen Stückrad and Wolfgang
Vogel ([88], and see [35] for a comprehensive account). In excess intersection
situations, this approach produces a cycle after a transcendental extension of the
base field; the intersection product can be computed from this cycle, and agrees
with the Fulton-MacPherson intersection product.

We review the construction of the Stückrad-Vogel ‘v-cycle’, essentially following
the ‘geometric’ account given in [91], where it is also extended to the setting of
more general schemes. However, we only present the construction in the somewhat
limited scope needed for our application, and we make a substantial simplification,
at the price of only obtaining a cycle depending on general choices. (The Stückrad-
Vogel construction produces a well-defined cycle independent of such choices, after
a transcendental extension of the base field.)

Let V be a variety, L a line bundle on V , s1, . . . , sr nonzero sections of L , and
D the collection of the corresponding Cartier divisors D1, . . . ,Dr . The sections
s1, . . . , sr span a subspace of H 0(V ,L ); by a ‘D-divisor’ we will mean a divisor
defined by a section of this subspace. Let Z = D1 ∩ · · · ∩Dr .

The following inductive procedure constructs a cycle onZ, depending on general
choices of D-divisors. The procedure only involves proper intersections with Cartier
divisors, which is defined at the level of cycles: if W is a variety, and a Cartier
divisor D intersects it properly, i.e., it does not contain it, then D ∩ W is a Cartier
divisor in W (or empty), and we denote by D ∗W the corresponding cycle (or 0).
The class of this cycle is the intersection product of [W ] by D in the Chow group.
By linearity, this operation is extended to cycles ρ such that D does not contain any
component of ρ: thenD∗ρ denotes the corresponding ‘proper intersection’ product.

The algorithm may be described as follows.

• Let α0 = 0, ρ0 = V ;
• For j > 0: if ρj−1 �= 0, then a general D divisor D′j intersects ρj−1 properly;

let D′j ∗ ρj−1 = αj + ρj , where αj collects the components of the intersection
product that are contained in Z = D1 ∩ · · · ∩Dr ;

• This procedure stops when ρj = 0.

It is easy to see that a general D′j does intersect ρj−1 properly, so it is always
possible to make the choice needed in the second point. Also, let s′j be the section

defining D′j . The construction implies that if ρj−1 �= 0, then s′j is not in the span

of s′1, . . . , s′j−1. In particular, the procedure must stop at some j ≤ r . We set αi =
ρi = 0 for j < i ≤ r .
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Definition 6.5.1 We denote by D ∩. V the sum
∑r
i=0 α

i . This is a cycle on Z =
D1 ∩ · · · ∩Dr . �
Remark 6.5.2 We chose the notation D ∩. V to align with the notation used by
van Gastel (in a more general context). This is the ‘v-cycle’ determined by D .
The definition presented above only depends on the linear system spanned by the
sections defining the divisorsDi in the collection D . �

According to our definition, the cycle D ∩. V depends on the choice of the
divisors D′j . One of the advantages of the more sophisticated Stückrad-Vogel
construction is that it yields a well-defined cycle independent of any choice, albeit
after extending the ground field. However, we are only interested in the rational
equivalence class of D ∩. V , and this is independent of the choices. In fact, the
following holds.

Theorem 6.5.3 With notation as above,

[D ∩. V ] = s(Z, V )⊗V L ∨

in A∗(Z).

In the context of Stückrad-Vogel intersection theory, this is [91, Corollary 3.6].
Theorem 6.5.3 can also be proved by interpreting D ∩. V in terms of the blow-up
of V along Z; this naturally identifies its rational equivalence class as a ‘tensored
Segre class’ in the sense of [12], up to a product by c(L ).

By (6.21), Theorem 6.5.3 is equivalent to

s(Z, V ) = [D ∩. V ] ⊗V L . (6.63)

Using (6.62), we see that

D1 · · ·Dr ∩ [V ] =
{
c(L )r ∩ ([D ∩. V ] ⊗V L )

}
dimV−r

in AdimV−rZ. This is equivalent to the formula

D1 · · ·Dr ∩ [V ] =
r∑

j=0

c1(L )r−j ∩ αj ,

cf. [91, Proposition 1.2 (c)].
In conclusion, the Stückrad-Vogel construction offers an alternative to the

treatment of excess intersection of linearly equivalent divisors. By (6.63), the
relevant Segre class may be computed in terms of the v-cycle. Among other
pleasant features, this approach leads to ‘positivity’ statements for Segre classes:
by construction, the v-cycle is effective; by (6.63), the non-effective parts of the
Segre class of the intersection of sections of a line bundle L are due to the ‘tensor’
operation _⊗V L . (Cf. [12, Corollary 1.3].)
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6.5.2 Lê Cycles and Numbers

Broadly speaking, one can view singularities as arising because of an excess inter-
section. For example, ifX is a hypersurface of Pn, with equationF(x0, . . . , xn) = 0,
the singular locus of X is the intersection of the n+ 1 hypersurfaces with equations
∂F/∂xi = 0, i = 0, . . . , n. Then X is singular precisely when these hyper-
surfaces meet with excess intersection. The scheme they define is the singularity
subscheme JX of Definition 6.2.14; and the Segre class that is relevant to the
Fulton-MacPherson approach is precisely, and not surprisingly, the class s(JX,M)
that appears in most results concerning hypersurfaces reviewed in Sect. 6.3 and 6.4.
Taking the point of view of Sect. 6.5.1, we could express these results in terms of
the v-cycle corresponding to the linear system spanned by the partials.

A closely related construction was provided (independently from Stückrad and
Vogel) by Massey in 1986, leading to his definition of Lê cycles [68–70]. The theory
and applications of Lê cycles are surveyed in [67]. Massey’s definition may be given
for analytic functions defined for a nonempty open subset of Cn+1. We are going to
consider the case of a homogeneous polynomial, and view it as the generator of the
ideal of a hypersurface in P

n. We will follow [67, §7.7] for the resulting projective
Lê cycles. The considerations that follow would hold over any algebraically closed
field of characteristic 0.

Let F(x0, . . . , xn) be a homogeneous polynomial, defining a projective hypersur-
faceX ⊆ P

n. Massey’s definition can be phrased in terms very close to the inductive
definition given in Sect. 6.5.1, applied to the linear system spanned by the derivative
∂F/∂xi of F . We give the affine definition of the cycles first.

• Let Γ n+1 = C
n+1, Λn+1 = 0;

• For 1 ≤ k ≤ n+ 1, define Γ k−1 and Λk−1 by downward induction by

Γ k ∗ V
(
∂F

∂xk−1

)
= Λk−1 + Γ k−1 ,

where the (cycle-theoretic) intersection is assumed to be proper, and Λk−1

consists of the components contained in JX, Γ k−1 of the other components.

Following [67, §7.7]:

Definition 6.5.4 The projective Lê cycles of X are the cycles
Vk
X := P(Λk+1). �

The projectivization of the cycles Γ j are the projective relative polar cycles of
X.

The Lê cycles of X evidently depend on the chosen coordinates, and may not be
defined for certain choices as the cycles appearing in the definition may fail to meet
properly. Massey proves that a general choice of coordinates guarantees that the
intersections are proper, so that the corresponding Lê cycles exist. In the following,
the Lê cycles we consider will be assumed to be obtained from a general choice of
coordinates.
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Comparing Massey’s definition with Definition 6.5.1, we recognize that the sum∑n
k=0

Vk of Lê cycles may be viewed as an instance of the v-cycle D ∩. Pn, where
D is the collection of partial derivatives of F . The dependence on the choices
(e.g., the choice of coordinates in Massey’s definition, or the choice of D′j in
Definition 6.5.1) is eliminated once one passes to rational equivalence, so that

[D ∩. Pn] =
∑

k

[VkX]

in A∗(JX) if all choices are general. (Note however that the indexing conventions
differ, so that with notation as in Sect. 6.5.1, [VkX] = [αn−k].)

With this understood, the next result follows immediately from Theorem 6.5.3.

Proposition 6.5.5 Let X be a degree-d hypersurface in P
n, with projective Lê

cycles
Vk
X. Then

∑

k

[VkX] = s(JX,Pn)⊗Pn O(−(d − 1)) (6.64)

in A∗(JX).

Remark 6.5.6 For M = C
n, Gaffney and Gassler [43] propose a generalization of

classes of Lê cycles based on more general ideals, which in the case of the Jacobian
ideal of a polynomial defining a hypersurface X is closely related with the Segre
class of JX (cf. the definition of the Segre cycle Λg

k(I, Y ) in [43, (2.1)]). Partly
motivated by this work, Callejas-Bedregal, Morgado, and Seade gave a definition of
Lê cycles for a hypersurfaceX of a compact complex manifoldM , which amounts
essentially to a cycle representing the Segre class s(JX,M) [27, Definition 3.2].
This definition is not compatible with Massey’s Lê cycles for M = P

n, as the
authors opted to omit the extra tensor appearing in (6.64). Since the ‘hyperplane’
defined in [43] differs from the tautological class used in [27], this causes a
discrepancy amounting to a twist of the line bundle of the hypersurface. This twist
is accounted for in Proposition 6.5.5, which is compatible with the construction
in [43].

See [28] and [37] for further discussions of [27, Definition 3.2]. In particular,
Callejas-Bedregal, Morgado, and Seade propose an alternative ‘geometric’ defini-
tion in [28] (Definition 1.3), which does agree with Massey’s for M = P

n. Also
see [29, §4] (particularly Definition 4.4) for a comprehensive account. We will come
back to this definition in Sect. 6.5.3. �

The fact that the Lê cycles are cycles is important for geometric applications.
Proposition 6.5.5 only computes their classes up to rational equivalence, in the
Chow group A∗(JX) of the singularity subscheme of the hypersurface. These
classes still carry useful information, even after a push-forward by the inclusion
ι : JX→ P

n. We consider the class

ι∗([VkX]) = λkX[Pk] ,
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where the integers λkX are (still following Massey) called the Lê numbers of the
hypersurface. (Massey’s Lê numbers also depend on the choice of coordinates;
again, we will assume that the choice of coordinates is sufficiently general.)
Proposition 6.5.5 implies as an immediate corollary a formula for the Lê numbers
in terms of the degrees of the components of the Segre class (and conversely).

Corollary 6.5.7 Let X ⊆ P
n be a hypersurface, and denote by si the degree of the

i-th dimensional component of the Segre class s(JX,Pn). Then for k = 0, . . . , n:

λkX =
n∑

j=k

(
n− k − 1

j − k
)
(d − 1)j−ksj (6.65)

sk =
n∑

j=k

(
n− k − 1

j − k
)
(−(d − 1))j−kλjX . (6.66)

Proof Denote the hyperplane class by H . By Proposition 6.5.5 and the definition
of ⊗Pn (6.19):

(λnX + λn−1
X H + · · · + λ0

XH
n) ∩ [Pn]

= ((sn + sn−1H + · · · + s0Hn) ∩ [Pn])⊗Pn O(−(d − 1))

=
(
sn + sn−1H

(1− (d − 1)H)
+ · · · + s0H

n

(1− (d − 1)H)n

)
∩ [Pn]

and the first formula follows by matching terms of equal degrees in the two
expressions. ‘Solving for s(JX,Pn)’ in Proposition 6.5.5 gives

s(JX,Pn) =
∑

k

[VkX] ⊗Pn O(d − 1)

(apply (6.21)), and the second formula follows by the same token. ��
Remark 6.5.8 Formula (6.65) in Corollary 6.5.7:

λkX = sk + (n− k − 1)(d − 1)sk+1 +
(
n− k − 1

2

)
(d − 1)2sk+2 + · · · .

can be viewed as the degree of the ordinary Segre class, ‘corrected’ by a term
determined by the degree d of the hypersurface.

In the introduction to [43], Gaffney and Gassler state: “. . . In fact, the Segre
numbers (of the Jacobian ideal) are just the Lê numbers of David Massey.”
Corollary 6.5.7 is compatible with this assertion: it is easy to verify that the ‘Segre
numbers’ of [43] agree with the right-hand side of (6.65). �
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Example 6.5.9 Consider the hypersurfaceX of P5 defined by the polynomial

F = x7
0 − x7

1 − (x3
2 + x3

3 + x3
4 + x3

5 ) x
4
0 .

The singularity subscheme JX is a non-reduced 3-dimensional subscheme of P5

supported on the linear subspace x0 = x1 = 0. We can use the package [49] to
compute its Segre class:

i1 : load("SegreClasses.m2")

i2 : R=ZZ/32749[x0,x1,x2,x3,x4,x5]

i3 : X=ideal(x1^7- x0^7 - (x2^3+x3^3+x4^3+x5^3)*x0^4)

i4 : JX=ideal jacobian X

i5 : segre(JX,ideal(0_R))

5 4 3 2
o5 = - 3168H + 792H - 144H + 18H

1 1 1 1

(Working over a finite field of large characteristic does not affect the result, and
often leads to faster computations.) Thus,

ι∗s(JX,P5) = 18[P3] − 144[P2] + 792[P1] − 3168[P0] ,

and Corollary 6.5.7 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ4
X = 0

λ3
X = 18

λ2
X = −144+ 2 · 6 · 18 = 72

λ1
X = 792+ 3 · 6 · (−144)+ (32

) · 36 · 18 = 144

λ0
X = −3168+ 4 · 6 · 792+ (42

) · 36 · (−144)+ (43
) · 216 · 18 = 288 .

These Lê numbers agree with those obtained by applying Massey’s inductive
definition with coordinates (x0, . . . , x5); the Lê cycles are complete intersections
in this case, and computing their degrees is straightforward. (Using (x5, . . . , x0)

leads to a different list; this latter choice is not sufficiently general.) �
We can also projectivize the cycles Γ k appearing in Massey’s definition (cor-

responding to the ρ-cycles in the Stückrad-Vogel algorithm). Again (loosely)
following Massey, we call

Lk
X := P(Γ k+1) the ‘projective polar cycles’ of X, and

their degrees γ kX the ‘polar numbers’ of X. We assume these are computed for a
general choice of coordinates.
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At the level of rational equivalence classes, Massey’s algorithm implies easily
the relation

∑

k

[VkX] = [Pn] − (1− (d − 1)H)
∑

k

[LkX]

from which λnX = 0 and

λkX = (d − 1)γ k+1
X − γ kX

for 0 ≤ k < n. Equivalently,

γ kX = (d − 1)n−k −
n−1∑

j=k
(d − 1)j−kλjX

for 0 ≤ k ≤ n. (Also see [67, Corollary 7.7.3].)

Corollary 6.5.10 With notation as in Corollary 6.5.7, and for k = 0, . . . , n:

γ kX = (d − 1)n−k −
n∑

j=k

(
n− k
j − k

)
(d − 1)j−ksj

sk = δnk −
n∑

j=k

(
n− k
j − k

)
(−(d − 1))j−kγ jX

where δnk = 1 if k = n, 0 otherwise.

Proof The first formula is obtained by reading off the coefficient of [Pk] in the
identity

∑

k

[LkX] = (1−(d−1)H)−1∩([Pn] − s(JX,Pn)⊗Pn O(−(d − 1))
)
, (6.67)

which follows from the above discussion and Proposition 6.5.5. Solving for
s(JX,Pn) in (6.67) gives

s(JX,Pn) = [Pn] − (1+ (d − 1)H)−1 ∩
∑

k

([LkX] ⊗Pn O(d − 1))

(use (6.20) and (6.21)) with the stated implication on degrees. ��
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Example 6.5.11 For the hypersurface in Example 6.5.9, the computation of the
polar numbers runs as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ 5
X = 1

γ 4
X = 6

γ 3
X = 36− 18 = 18

γ 2
X = 216 − (−144) − (31

) · 6 · 18 = 36

γ 1
X = 1296 − 792 − (41

) · 6 · (−144) − (42
) · 36 · 18 = 72

γ 0
X = 7776 − (−3168) − (51

) · 6 · 792 − (52
) · 36 · (−144) − (53

) · 216 · 18 = 144 .

Again, it is straightforward to verify that these agree with the result of Massey’s
algorithm, applied with coordinates (x0, . . . , x5). �
Remark 6.5.12 We already mentioned (Remark 6.4.12) Piene’s seminal 1978
paper [81], including formulas for polar classes of hypersurfaces in terms of Segre
classes. The reader is warned that these two uses of the term ‘polar’ differ: Piene’s
polar classes of a hypersurface X are classes in A∗(X), while Massey’s polar
cycles are not supported on X. Therefore, the degrees of Piene’s polar classes are
not the polar numbers γ k computed above. However, we note that the formula
in Corollary 6.5.10 is very similar to the formula in [81, Theorem 2.3]; the main
difference is in the use of s(JX,M) rather than s(JX,X). �

6.5.3 Lê, Milnor, Segre

One moral to be drawn from the preceding considerations is that the information
carried by the Lê classes of a hypersurface X of projective space, its Milnor
class, and the Segre class of its singularity subscheme JX, is essentially the same.
The relation between Segre classes and Milnor classes goes back to [2], while
the relation between Milnor classes and Lê classes was first studied in [27, 28].
As far as hypersurfaces of projective space are concerned, many of the results
covered in this review could be written in terms of any of these notions. Note
however that extending Lê cycles/classes to the setting of a hypersurface of a more
general nonsingular variety is nontrivial (this is one of the main goals of [27];
and see below); localizing Milnor classes to the components of the singular locus
also requires nontrivial considerations (see e.g., [22]); while the Segre class of
the singularity subscheme JX is naturally defined as a class in the Chow group
of JX, does not require a projective embedding, and may be considered over
arbitrary fields. For these reasons, it would seem that the language of Segre classes
is preferable over these alternatives.
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For the convenience of the reader, we collect here the formulas translating these
notions into one another. For notational economy we will let

V :=
∑

k

[VkX] , M :=M (X) , S := s(JX,Pn)

for a degree-d hypersurface X of P
n, and omit evident push-forwards. Then,

denoting by H the hyperplane class:

{V = S ⊗Pn O(−(d − 1)H)

S = V⊗Pn O((d − 1)H)
(6.68)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M = (−1)n
(1+H)n+1

1+ dH ∩ (S∨ ⊗Pn O(dH)
)

S = (−1)n
(1+ dH)n

(1+ (d − 1)H)n+1
∩ (M ∨ ⊗Pn O(dH)

)
(6.69)

⎧
⎪⎨

⎪⎩

V = (−1)n(1+H)n(1− (d − 1)H) ∩ (M ∨ ⊗Pn O(H))

M = (−1)n
(1+H)n+1

1+ dH ∩ (V∨ ⊗Pn O(H))
(6.70)

Indeed, (6.68) follows from Proposition 6.5.5; (6.69) from Proposition 6.4.33;
and (6.70) is then an immediate consequence, using (6.20) and (6.21).

This dictionary suggests possible extensions of the notion of Lê classes to
hypersurfaces of more general varieties. Let M be a nonsingular compact complex
variety endowed with a very ample line bundle O(H). For a hypersurface X of
M , Callejas-Bedregal, Morgado, and Seade have constructed global Lê cycles,
determined by the choice of linear subspaces of Pn, generalizing the caseM = P

n;
see [28, Definition 1.3] and [29, §4.3]. Denoting the corresponding class

V
CBMS(X),

and letting L = O(X), they prove the following result (which we state using our
notation).

Theorem 6.5.13 ([29, Theorem 4.6])

V
CBMS(X) = (−1)dimMc(O(H))dimM c(O(H)⊗L ∨) ∩ (M (X)∨ ⊗M O(H))

M (X) = (−1)dimMc(O(H))dimM+1 c(L )−1 ∩ (VCBMS(X)
∨ ⊗M O(H)) .

That is, the natural generalization of (6.70) holds for this class; the class
V

CBMS
agrees with the class of Massey’s Lê cycle forM = P

n.
It is straightforward (using Proposition 6.4.33 and (6.20) and (6.21)) to write

V
CBMS(X) in terms of a Segre class:

V
CBMS(X) = c(O(H)) c(T ∨M ⊗ O(H)) ∩ (s(JX,M)⊗M (O(H)⊗L ∨)

)
.
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This expression reduces to (6.68) for M = P
n, and it could be used to extend the

definition of
V

CBMS(X) to arbitrary fields and possibly noncomplete varieties.
There are other possible extensions of Massey’s Lê class to more general

projective varieties; (6.68) suggests alternative generalizations. Exploring such
alternatives is the subject of current research.
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Abstract We survey how the Milnor number of complex map-germs with an
isolated critical point relates to various indices of vector fields on singular varieties,
and the way how this number extends via the theory of Chern classes of singular
varieties, to the concept of Milnor classes of varieties with arbitrary singular set in
complex manifolds. This relates several deep theories in mathematics and gives rise
to a necklace of beautiful jewels.

7.1 Introduction

The Milnor Fibration of holomorphic maps introduced in [94] is a fundamental
object for the study of the local topology of complex hypersurfaces. When the
map-germ has an isolated critical point one has the associated Milnor number,
which is the most important numerical invariant associated to an isolated complex
hypersurface singularity. The literature about the Milnor number is vast and we
refer for instance to [73] for a recent account of the subject. It is a topological
invariant, easily computable and it determines the homeomorphism type of the
Milnor fiber. This invariant was extended by Hamm [64] to isolated complete
intersection singularities, and it is well-known (see for instance [30]) that this
number can be expressed as the difference of two indices of vector fields that extend
to singular varieties the classical local index of Poincaré-Hopf, namely the GSV and
radial indices.

When considering non-isolated complex hypersurface singularities there are two
important viewpoints extending the Milnor number: one is local and due to work by
Lê D. T., B. Teissier and D. Masssey, who introduced in [77, 78] the notions of Lê
cycles and Lê numbers. These spring from the theory of polar varieties developed by
Lê and Teissier, with roots in ideas by René Thom. There is a Lê cycle (and number)
in each complex dimension from 0 to that of the singular set; these encode deep
information about the singularity germ and they determine the homeomorphism type
of the local Milnor fiber (see for instance [78, 80]). The other viewpoint is global
and is due to A. Parusińsky who introduced in [97] the notion of a generalized
Milnor number: this is an integer associated to each connected component of the
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singular set of a complex hypersurface in a compact complex manifold. There are
several interpretations of that invariant by Parusińsky-Pragacz and by other authors.
In particular, this notion was extended in [26, 30] to singular complete intersections
in complex manifolds by expressing it (as for isolated singularities) as the difference
of two indices of vector fields, the radial index and the virtual index, an extension of
the GSV index. See [30] and [51] for expositions about indices of vector fields and
1-forms on singular varieties and their relations with other invariants of singularities.

On the other hand, the theory of Chern classes for singular varieties, initiated by
M. H. Schwartz [116], D. P. Sullivan [121], R. MacPherson [81], and continued
by J. P. Brasselet, W. Fulton and others, keeps growing fastly and it is now
a rich theory that can be regarded from several points of view and has deep
connections with several areas of mathematics. There are various notions extending
to the singular case the classical Chern classes of complex manifolds, having
each its own properties and interest. The classes introduced by M. H. Schwartz
are a natural extension for stratified singular varieties of the usual Chern classes
regarded as obstructions for constructing linearly independent sections of vector
bundles. The classes introduced by MacPherson proved affirmatively a conjecture
stated by Deligne with ideas by Grothendieck, somehow motivated by Sullivan’s
work for the Stiefel-Whitney classes. MacPherson’s construction actually assigns a
“theory of homology Chern classes” to each constructible function on a compact
complex varietyX. Then Brasselet and Schwartz showed in [24] that Schwartz’ and
MacPherson’s construction for the constructible function 1X actually coincide up to
Alexander duality; hence the name Schwartz-MacPherson classes, that we denote
cSM∗ . On the other hand the Fulton classes cFu∗ are defined using the classical Segre
classes in algebraic geometry. All of these are regarded in the singular homology or
in the Chow ring in the algebraic case. (See Allufi’s excellent survey [7] on Segre
classes in this volume.)

In the 1990s P. Aluffi, studying which schemes can arise as singular schemes of
hypersurfaces in complex manifolds, realized that it was important to compare the
Schwartz-MacPherson and the Fulton classes. This same issue, comparing the cSM∗
and cFu∗ classes, also arose at almost the same time and by different reasons in the
work of Parusiński-Pragacz, Yokura and Brasselet-Lehmann-Seade-Suwa. In [98–
101] this appears in relation with the generalized Milnor number and the topology
of degeneracy loci of sections of vector bundles. In Yokura’s work this appeared in
[132, 133] while looking at Chern classes in bivariant theory (cf. Brasselet’s work
[21]), searching for a Verdier-Riemann-Roch type theorem for the MacPherson
classes of singular varieties. On the other hand this comparison of the cSM∗ and
cFu∗ classes was a natural continuation of Brasselet-Schwartz’ theorem showing that
the MacPherson and the Schwartz classes coincide (up to Alexander duality). Seade
and Suwa proved [118, 122] that in the case of local complete intersections with
only isolated singularities, the difference cSM∗ − cFu∗ is the sum of the local Mlnor
numbers, up to sign. This was a clue for coining the name “Milnor classes” of
compact varieties with arbitrary singular set for the difference (up to sign) between
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Schwartz-MacPherson and Fulton classes. Milnor classes were studied in [25, 26]
by localizing them using indices of vector fields, and we refer to [30] for a thorough
account on the subject. (See Brasselet’s [23] and Suwa’s [123] works in this volume
for thorough accounts on the subject.)

The remarkable work by Baum-Fulton-MacPherson [16] and Verdier [130]
generalizing to singular varieties Hirzebruch’s and Grothendieck’s generalizations
of Riemann-Roch, by Cappell and Shaneson for the HirzebruchL-class that appears
in the signature theorem, and by Kontsevich introducing the deep theory of motives,
was notably continued by Schürmann, Yokura, Aluffi, Maxim, Brasselet and others,
then leading to the concept of motivic Hirzebruch and Hirzebruch-Milnor classes.
This important subject is discussed below and also in Brasselet’s paper in this
volume. A more detailed study will be given in Yokura’s paper [137].

On the other hand, in [33] the authors of this article used work by Schürmann
and Tibăr for affine varieties [113], to show that Massey’s concept of Lê cycles can
be globalized to projective manifolds and, surprisingly, the information encoded in
those classes is equivalent to the information encoded in the Milnor classes, since
the global Lê classes determine the Milnor classes and conversely.

In this work we introduce and review all these concepts and contributions. We
also give a topological interpretation of the virtual index of vector fields and a short
proof of the theorem in [118] that for singular varieties with only isolated complete
intersection singularities, the 0-dimensional Milnor class is the sum of the local
Milnor numbers: we thank José Luis Cisneros for a lemma that we use in that proof.
It would be interesting to know what this invariant is for varieties with isolated
singularities which are not local complete intersections.

We are grateful to the referee for many helpful comments. Our dear friend and
co-author Roberto Callejas-Bedregal passed away while we were writing this work,
so we dedicate it to him.

7.2 Milnor Number and Indices of Vector Fields

In this section we briefly review the various notions of indices of vector fields on
singular varieties and their relation with the Milnor number of isolated complete
intersection complex singularities.

7.2.1 Definition and Basic Properties

The literature about the Milnor number is vast. We refer to [94] for background
material about it, or see for instance [73] for a recent account on the subject.

Consider a holomorphic function

f : (Cn+1, 0)→ (C, 0)
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with a critical point at 0. Let V = f−1(0) and let Sε be a sphere in C
n+1 centered

at 0 of radius ε > 0 sufficiently small so that Sε is a Milnor sphere for f , cf. [73].
Let K = V ∩ Sε be the link of 0 in V . Milnor’s fibration theorem in [94] says that,

φ := f

|f | : Sε \K −→ S
1 ,

is aC∞ locally trivial fibration. There is another way of looking at this. Given ε > 0
as above, choose 0 < δ ( ε and set N(ε, δ) = f−1(∂Dδ) ∩ Bε , where ∂Dδ is the
boundary of the disc in C of radius δ > 0 and centered at 0. Then,

f : N(ε, δ) −→ ∂Dδ ∼= S
1

is a locally trivial fibration, equivalent to the previous one if we take the ball Bε
to be open. The manifold N(ε, δ) is called a Milnor tube for f and the fiber Ft =
f−1(t) ∩ Bε with t ∈ ∂Dδ is called the Milnor fiber of f . We denote this fiber by
Ff .

One knows from [94], and it follows easily from [10], that Ff has the homotopy
type of a CW -complex of middle dimension n. Furthermore, if f has an isolated
critical point at 0 then Ff actually has the homotopy type of a bouquet of spheres
of middle dimension n, Ff �∨μ Sn. One has:

Definition 7.2.1 If the map f has an isolated critical point, say at 0, then the
number μ above is the Milnor number of f at 0.

It is proved in [94] that the number μ equals the local Poincaré-Hopf index at 0
of the gradient vector field of ∇f = (∂f/∂z0, . . . , ∂f/∂zn), where {(z0, . . . , zn)}
are the coordinates in C

n+1.
Recall that a vector field v on an open set U ⊂ R

m with coordinates
{(x1, . . . , xm)} can be written as v = ∑m

i=1 fi ∂/∂xi or, as above, simply as
v = (f1, . . . , fm). This is a section of the tangent bundle of U . The vector
field is said to be continuous, smooth, analytic, etc., according as its components
(f1, . . . , fm) are continuous, smooth, analytic, etc., respectively. If m is even and
the fi are all holomorphic functions in C

m/2, then we say that v is holomorphic.
A singularity a of v is a point where all of its components vanish, i.e., fi(a) = 0

for all i = 1, . . . ,m. The singularity is isolated if at every point x near a there is at
least one component of v which is not zero.

The Poincaré-Hopf index of a vector field at an isolated singularity is its most
basic invariant and it has many interesting properties. To define it, let v be a
continuous vector field on U with an isolated singularity at a, and let Sε be a small
sphere in U around a. Then the (local) Poincaré-Hopf index of v at a, here denoted
IndPH(v, a), is the degree of the Gauss map v/‖v‖ from Sε into the unit sphere in
R
m.



498 R. Callejas-Bedregal et al.

If the vector field v is holomorphic in C
m and (v0, . . . , vm) are its components,

one has (see for instance [95, §7]) that its local index at an isolated singular point,
say 0, can be computed as an intersection number:

IndPH(v, 0) = dimC

Om,0
(v0, . . . , vm)

,

where Om,0 is the local ring of holomorphic functions in C
m at 0 and (v0, . . . , vm)

is the ideal generated by the vi . We thus arrive to Milnor’s theorem [94, Theorem
7.2]: given a holomorphic map with an isolated critical point at 0, f : (Cn+1, 0)→
(C, 0) , its Milnor number is always positive and it is given by:

μ = dimC

On+1,0

(
∂f
∂z0
, . . . ,

∂f
∂zn
)
. (7.1)

We remark that much of the above discussion generalizes to isolated complete
intersection singularity germs, by [64] (see also [75]). One has Hamm’s theorem:

Theorem 7.2.2 Let f : (Cn+k, 0) → (Ck, 0) be an isolated complex isolated
complete intersection germ; set V = f−1(0) and let Bε ⊂ C

n+k be a Milnor ball
for f . LetΔ be the image in C

k of the set of critical points of f in Bε. Then for every
δ > 0 sufficiently small with respect to ε, we have a locally trivial fiber bundle:

f :
(
(Bε ∩ f−1(Dδ) \ f−1(Δ)

)
→ Dδ \Δ ,

where Dδ is the disc in C of radius δ > 0 and centered at 0. Moreover, the fiber F
of this fibration has the homotopy type of a bouquet of spheres of middle dimension:
F �∨μ Sn.

The number μ of spheres in this bouquet is called the Milnor number of f at 0.
We refer to [64, 73, 75] for more on this topic.

7.2.2 The Radial and GSV Indices

When working with singular analytic varieties there is no obvious definition of the
Poincaré-Hopf local index of vector fields at the singularities of the vector field.
There are instead several possible definitions, each having its own properties and
interest. We refer to [30] for a thorough account on the subject.

The radial index springs from the work [116] of M.-H. Schwartz in relation with
the Chern classes for singular varieties. This index was defined in general by H.
King and D. Trotman in [68] (unpublished for a long time) and later, independently,
by Ebeling and Gusein-Zade [48] and by Aguilar-Seade-Verjovsky [1].
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We shall use the Poincaré-Hopf theorem for manifolds with boundary:

Theorem 7.2.3 LetM be a compact differentiablem-manifold with boundary ∂M ,
and let v be a continuous vector field in a neighborhood of ∂M in M , with no
singularities. Then:

• v can be extended to all ofM with finitely many singularities and the total index
IndPH(v,M) of the extension depends only on v and not on the way we extend it.

• Furthermore, if we extend v to a vector field ṽ in M with non-isolated
singularities, then a generic perturbation turns ṽ into a vector field with
isolated singularities and the total index is IndPH(v,M), independently of the
perturbation.

• If v is transversal to the boundary ∂M at all points, pointing outward, then
IndPH(v,M) equals χ(M), the Euler characteristic.

Now let Z ⊂ C
m be a complex analytic variety of complex dimension n ≥ 1

with an isolated singularity at 0 ∈ C
m. Let U be an open ball around 0, small

enough so that every sphere in U centered at 0 is a Milnor sphere for Z, so it meets
Z transversally (see [73, 94]). For simplicity we restrict the discussion to U . By a
continuous vector field on Z with an isolated singularity at 0 we mean a continuous
section v of TCm|Z which is tangent to Z∗ = Z \ {0} and non-singular on Z∗.

Let vrad be a continuous vector field on Z with an isolated singularity at 0, which
is transverse (outward-pointing) to all spheres Sε ⊂ U around 0. We call vrad a
radial vector field at 0 ∈ Z. By definition the radial index of vrad is 1, which is
the Euler characteristic of a point. Now let v be another continuous vector field on
Z with an isolated singularity at 0. To define the difference between v and vrad at
0 consider small spheres Sε, Sε′ ; ε > ε′ > 0, and let w be a vector field on the
cylinder Vεε′ in Z bounded by the links Kε = Sε ∩ Z and Kε′ = Sε′ ∩ Z, such that
w has finitely many singularities in the interior of Z, it restricts to v on Kε and to
vrad onKε′ . The difference of v and vrad is defined as the total Poincaré-Hopf index
of w on Z:

d(v, vrad) = IndPH(w,Z) .

Definition 7.2.4 (cf. [1, 48, 68, 118]) The radial (or Schwartz) index of v at 0 ∈ Z
is:

Indrad(v, 0;Z) = 1+ d(v, vrad) .

The GSV-index of vector fields was introduced in [58, 117] and then generalized
to various settings by different authors; the name was coined in [74]. This index is
related with the extensions of the vector field to the nearby Milnor fibers of the func-
tion defining a hypersurface germ, and one of its basic properties is its stability under
small perturbations of both, the function and the vector field in question (Fig. 7.1).
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Fig. 7.1 The radial and GSV indices: the first is given by the difference with the radial vector
field; the second is given by the zeros in a Milnor fiber

Let us denote by (V , 0) a complex analytic hypersurface in C
n+1 defined by a

holomorphic function

f : (Cn+1, 0) −→ (C, 0) ,

which may be defined only on a small ball Bε around 0, where it has a unique critical
point. Let v be a tangent vector field on V . If n = 1 we further assume for simplicity
that V is irreducible (cf. [30, Remark 3.2.2]). Since 0 is an isolated singularity of V ,
it follows that the (complex conjugate) gradient vector field

∇f :=
( ∂f
∂z0
, . . . ,

∂f

∂zn

)
,

is normal to V ∗ for the usual Hermitian metric in C
n+1. The set {v(x),∇f (x)} is

a 2-frame at each point in V ∗ := V \ {0}, and up to homotopy it can be assumed
to be orthonormal. Hence this 2-frame defines a continuous function Φ : V ∗ →
W2(n+ 1) into the Stiefel manifold of complex orthonormal 2-frames in C

n+1.
Let K = V∩Sε be the link of 0 in V . It is an oriented, real manifold of dimension

(2n− 1). The restriction of the above map Φ to K defines a continuous map

φv = (v,∇f ) : K −→ W2(n+ 1) .

The Stiefel manifoldW2(n+1) is (2n−2)-connected and its homology in dimension
(2n− 1) is isomorphic to Z. Hence φv has a degree deg(φv) ∈ Z, defined by means
of the induced homomorphismH2n−1(K)→ H2n−1(W2(n+ 1)) in the usual way.

Definition 7.2.5 The GSV index of v at 0 ∈ V , IndGSV(v, 0), is the degree of map
φv .
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The definition of this index extends easily to vector fields on complex isolated
complete intersection singularities (ICIS for short). We refer to [30] for a whole
account on this topic. Notice that since V is a closed subspace of Cn+1 and a vector
field v tangent to V can be regarded as a continuous section of the tangent bundle
TCn+1|V , then v can always be extended (in infinitely many ways) to a vector field
in a ball in C

n+1 around 0, with an isolated singularity at 0. Furthermore, one can
show that v can also be extended to the ambient space being tangent to all Milnor
fibers, but for this we may need to create more singularities. In fact one has:

Proposition 7.2.6 Let ṽ be a continuous extension of v to a Milnor fiber Ff . Then
the GSV-index of v equals the total Poincaré-Hopf index of ṽ in Ff .

One gets:

Theorem 7.2.7 Let f : (Cn+1, 0) −→ (C, 0) be a holomorphic germ with an
isolated singularity at 0 ∈ V = f−1(0) and μ the Milnor number of f at 0. Let v
be a tangent vector field on V , singular only at 0. Then:

μ = (−1)n+1(Indrad(v, 0)− IndGSV(v, 0)
)
,

independently of the choice of the vector field.

The proof is easy. The first step consists in observing that by the definition of
the radial index, together with Theorem 7.2.3 and Proposition 7.2.6, one has that
the difference Indrad(v, 0) − IndGSV(v, 0) is independent of the vector field. So to
prove Theorem 7.2.7 it is enough to show that the formula holds for one vector field.
We choose v = vrad , a radial vector field. Then Indrad(v, 0) = 1 by definition. On
the other hand Theorem 7.2.3 and Proposition 7.2.6 imply that IndGSV(v, 0) equals
the Euler characteristic χ(Ff ) of the Milnor fiber. From [95] one has χ(Ff ) =
1+ (−1)nμ and the result follows.

Notice that Theorem 7.2.7 and its proof extend easily to ICIS (cf. for instance
[30]).

Remark 7.2.8 (The Virtual Index) For vector fields on a compact variety V defined
by a regular section of a holomorphic vector bundle N over a complex manifold
M , one also has the virtual index of vector fields. This was introduced in [74] for
holomorphic vector fields and extended in [118] to continuous vector fields. The
virtual index is discussed later in 7.4.10 and it is defined for vector fields on compact
varieties with arbitrary singular set. At an isolated singularity of both the variety V
and the vector field, the virtual and the GSV indices coincide.
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7.2.3 The Homological Index

The homological index was introduced by Gómez-Mont [57]. This reminisces the
classical interpretation of the Poincaré-Hopf index of holomorphic vector fields as
the Euler-characteristic of a Koszul complex [62]. The homological index is defined
for holomorphic vector fields on complex analytic normal isolated singularity
germs, and when the germ is a complete intersection, this equals the GSV-index,
by [31, 57].

Let (V , 0) ⊂ (Cm, 0) be a germ of a normal complex analytic variety of pure
dimension n, which is regular on V \ {0}. A holomorphic vector field v on (V , 0)
is the restriction to V of a holomorphic vector field v̂ in the ambient space which is
tangent to V \ {0}. So we may write v = (a1, . . . , am) where the ai are restrictions
to V of holomorphic functions on a neighborhood of 0 in (Cm, 0).

A (germ of a) holomorphic j -form on V at 0 means the restriction to V of a
holomorphic j -form on a neighborhood of 0 in C

m; two such forms in C
m are

equivalent if their restrictions to V coincide on a neighborhood of 0 ∈ V . We denote
byΩjV,0 the space of germs of all such forms; these are the Kähler differential forms

on V at 0. SoΩ0
V,0 is the local structure ringO(V ,0) of holomorphic functions on V at

0 and eachΩjV,0 is anΩ0
V,0-module. Notice that if the germ of V at 0 is determined

by (f1, . . . , fk) then one has:

Ω
j
V,0 :=

Ω
j

C
m,0

f1Ω
j

C
m,0 + df1 ∧Ωj−1

C
m,0 , . . . , fkΩ

j

C
m,0 + dfk ∧Ωj−1

C
m,0

, (7.2)

where d is the exterior derivative.
Now, given a holomorphic vector field v̂ at 0 ∈ C

m with an isolated singularity
at the origin, and a differential form ω ∈ Ωj

C
m,0, we can always contract ω by v in

the usual way. We get a differential form iv(ω) ∈ Ωj−1
C
m,0. Notice that contraction is

well defined at the level of forms on V and one gets a complex (Ω•V,0, v):

0 −→ ΩnV,0 −→ Ωn−1
V,0 −→ · · · −→ OV,0 −→ 0 , (7.3)

where the arrows are contraction by v and n is the dimension of V . We consider the
homology groups of this complex:

Hj(Ω
•
V,0, v) = Ker (ΩjV,0 → Ω

j−1
V,0 )/Im (Ω

j+1
V,0 → Ω

j
V,0) .
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The first observation in [57] is that if V is regular at 0, so that its germ at 0 is that of
C
n at the origin, and if v = (a1, . . . , an) has an isolated singularity at 0, then this is

the usual Koszul complex. In that case, its homology groups vanish for j > 0, while

H0(Ω
•
V,0, v)

∼= OC
n,0
/
(a1, . . . , an) ,

so its dimension is the Poincaré-Hopf local index. The above complex is exact if
v(0) �= 0. Since the contraction maps are OV,0-module maps, this implies that if V
has an isolated singularity at the origin, then the homology groups of this complex
are concentrated at 0, and they are finite dimensional because the sheaves of Kähler
differentials on V are coherent. Hence it makes sense to define:

Definition 7.2.9 The homological index Indhom(v, 0;V ) of the holomorphic vector
field v on (V , 0) is the Euler characteristic of the above complex:

Indhom(v, 0;V ) =
n∑

i=0

(−1)ihi(Ω
•
V,0, v) ,

where hi(Ω•V,0, v) is the dimension of the corresponding vector space over C.

One has the following theorem from [31, 57]:

Theorem 7.2.10 If the germ at 0 of the singular variety V is a hypersurface germ
(or, more generally, an ICIS), then the homological and the GSV indices coincide
for holomorphic vector fields.

The proof uses that the homological index satisfies a law of conservation of the
number under small perturbations. It is easy to see that the radial index also has that
property and therefore the difference

Indrad(v, 0;V ) − IndHom(v, 0;V ) := ν(V, 0) ,

is a constant that does not depend on the choice of vector field. If the germ (V , 0)
is a hypersurface germ or an ICIS, then Theorem 7.2.7 implies that this difference
ν(V, 0) is the Milnor number up to sign. One has:

Question What is the constant ν(V, 0) when the germ (V , 0) is not an ICIS?

In some sense this constant plays the role of a Milnor number for singularities
which are not complete intersections (cf. [52]).

Now suppose Z is a compact analytic variety of dimension n with isolated
singularities q1, . . . , qr , and let vi , i = 1, . . . , r , be a holomorphic vector field
on an open neighborhood Ũi of each qi , singular only at qi . For each i, let Ui be
an open neighborhood of qi such that its closure is contained in the interior of Ũi .
Then Z∗ := Z \⋃ri=1 Ui is a compact smooth manifold with boundary the union
of the links of the qi , and we have vector fields vi defined on a neighborhood of
the boundary. By Theorem 7.2.3 this extends to a C

∞ vector field v on all of Z
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with isolated singularities at the qi and perhaps at some points pj in the regular
part of Z. Then one has a well-defined total homological index Indhom(v, Z): this
is the sum of the homological indices of v at the qi plus its Poincaré-Hopf index at
the singularities of v in the regular part of Z. Similarly one has a total radial index
Indrad(v, Z) and a total GSV-index. It is an exercise to check that these numbers
depend only on Z and not on the choice of the vector fields vi nor their extensions
to Z, so we may denote these simply by Indrad(Z), Indhom(Z). The following result
is well-known (see [1, 48, 118]).

Theorem 7.2.11 Let Z be a compact complex analytic variety with isolated
singularities q1, . . . , qr in a complex manifoldM , and let v be a continuous vector
field onZ, singular at the qi and possibly at some other isolated points inZ. Then:

• The total radial index is the Euler characteristic of Z: Indrad(Z) = χ(Z) .

Furthermore, this equals the 0-degree Chern-Schwartz-McPherson class of Z.
• If the singularities of Z are ICIS, then the total GSV index is the Euler

characteristic of a smoothing Z# of Z: IndGSV(Z) = χ(Z#) , where Z# is the
compact differentiable manifold obtained from Z∗ := Z \⋃ri=1 Ui by attaching
to it a Milnor fiber of each qi . Furthermore, this equals the 0-degree Fulton class
of Z.

In the sequel we shall explain what the Chern-Schwartz-McPherson, Fulton and
Milnor classes are.

This rises natural questions:

(i) What is the total homological index Indhom(Z)?, or perhaps one can ask: is the
total homological index Indhom(Z) the 0-degree Fulton class? (this is so when
the singularities of Z are all ICIS). Or equivalently,

(ii) What is the difference Indrad(Z)−Indhom(Z)?; is this the 0-degree Milnor class?

7.2.4 The Local Euler Obstruction

The local Euler obstruction was introduced by R. MacPherson in [81] as an
essential ingredient for the construction of characteristic classes of singular complex
algebraic varieties; that will be explained later. An interpretation of the local
Euler obstruction was given in [24] by J.-P. Brasselet and M.-H. Schwartz using
vector fields. This was later extended in [28] to an obstruction for functions and
vector fields on singular varieties, thus bringing the local Euler obstruction into the
framework of “indices of vector fields on singular varieties”; the classical Euler
obstruction corresponds to the square of the function distance to the singular point.
An important analytic interpretation of the classical Euler obstruction was given
in [59] by G. Gonzalez-Springer. In [105] C. Sabbah introduces a local Euler
obstruction ĚuV (0) using the dual Nash bundle (see also [107]). Then Ebeling and
Gusein-Zade defined in [49] the Euler obstruction for 1-forms in general; they also
extended the concept to collections of 1-forms (see [50]). Also note that the Euler
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obstruction for functions defined in [28] was extended in [63] to maps with values
in C

k, k > 1.
We now recall the definition in [24] of the local Euler obstruction. Let (V , 0) be

a reduced, pure-dimensional complex analytic singularity germ of dimension n in
an open set U ⊂ C

m. LetG(n,m) denote the Grassmannian of complex n-planes in
C
m. On the regular part Vreg of V there is a map σ : Vreg → U ×G(n,m) defined

by σ(x) = (x, Tx(Vreg)). The Nash transformation Ṽ of V is the closure of Im(σ )
in U ×G(n,m). It is a complex analytic space endowed with an analytic projection
map

ν : Ṽ −→ V

which is a biholomorphism away from ν−1(Sing(V )) . Now consider the tautolog-
ical bundle over G(n,m) and denote by T the corresponding product extension
bundle overU ×G(n,m). We denote by π the projection map of this bundle and let
T̃ be the restriction of T to Ṽ , with projection map π .

In this section we only look at germs of analytic sets; yet, in the sequel we shall
consider compact complex analytic varieties. We notice that given such a variety
X, its Nash transform X̃ is defined in the obvious way, that springs from the local
definition. Similarly one has a bundle T̃ over X̃ defined as above.

Definition 7.2.12 The bundle T̃ over the Nash transform X̃ of X is called the Nash
bundle of X (both, in the local and global cases).

Given V as before, an element of T̃ is written (x, P, v) where x ∈ U , P is an
n-plane in C

m based at x and v is a vector in P . So we have maps:

T̃
π−→ Ṽ

ν−→ V .

Let us consider a complex analytic Whitney stratification (Vα) of V (see for
instance [60, 128]). Adding the stratum U \ V we obtain a Whitney stratification
of U . Let us denote by TU |V the restriction to V of the tangent bundle of U . A
stratified vector field v on V means a continuous section of T U |V such that if x ∈
Vα ∩V then v(x) ∈ Tx(Vα). By Whitney condition (a) one has the following lemma
in [24]:

Lemma 7.2.13 Every stratified vector field v on a subset A ⊂ V has a canonical
lifting to a section ṽ of the Nash bundle T̃ over ν−1(A) ⊂ Ṽ .
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The following definition from [28, 30] extends the interpretation of the Euler
obstruction given in [24] as we explain below.

Definition 7.2.14 Consider a stratified vector field v(x) in a neighborhood of {0} in
V . Let Sε be a small sphere centered at 0 and let ṽ be the lifting of v on ν−1(V ∩Sε)
to a section of the Nash bundle given by Lemma 7.2.13. The Euler obstruction of v
at 0, denoted EuV (v, 0), is defined to be the obstruction to extending ṽ as a nowhere
zero section of T̃ over ν−1(V ∩ Bε).

That is: let O(̃v) ∈ H 2d
(
ν−1(V ∩ Bε), ν

−1(V ∩ Sε)
)

be the obstruction cocycle
to extending ṽ as a nowhere zero section of T̃ inside ν−1(V ∩ Bε). The local Euler
obstruction EuV (0) is the integer defined as the evaluation of the cocycle O(̃v) on
the fundamental class of the pair

(
ν−1(V ∩ Bε), ν

−1(V ∩ Sε)
)
.

Now recall that the stratified vector field v(x) is radial in a neighborhood of {0}
in V if there is ε0 such that for every 0 < ε ≤ ε0, v(x) is pointing outwards the ball
Bε over the boundary Sε := ∂Bε .
Definition 7.2.15 Assume the stratified radial vector field v is radial at 0. Then the
Euler obstruction of the space V at 0, denoted EuV (0), is the Euler obstruction of
v:

EuV (0) := EuV (v, 0) .

We know from [81] (see also [72]) that EuV (x) is a constructible function on V
which is constant along the strata of every complex analytic Whitney stratification.

In [46] and [67] one finds the idea of studying the Euler obstruction à la
Lefschetz, using hyperplane sections. This is also done, differently, by Lê and
Teissier in [72] and in [27, 28]. We now say a a few words about this.

We start with the following lemma, which is a special case of well-known results
about Lefschetz pencils. Let us denote by L the space of complex linear forms
on C

m. Fix a Whitney stratification of V . There are a finite number of strata of
this Whitney stratification which contain 0 in their closure, and we assume that the
representative of (V , 0) is chosen small enough so that these are the only strata of
V .

Lemma 7.2.16 ([27]) There exists a non-empty Zariski open set Ω in L such that
for every l ∈ Ω , there exists a representative V of (V , 0) so that:

(1) for each x ∈ V , the hyperplane l−1(0) is transverse in C
m to every limit of

tangent spaces in T Vreg of points in Vreg converging to x,
(2) for each y in the closure V α in V of each strata Vα, the hyperplane l−1(0) is

transverse in C
m to every limit of tangent spaces in T Vα of points converging

to y.

Then we can state the following Theorem:

Theorem 7.2.17 ([27]) Let (V , 0) be a germ of an equidimensional complex
analytic space in C

m. Let Vα, α = 1, . . . , �, be the (connected) strata of a Whitney
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stratification of a small representative V of (V , 0) such that 0 is in the closure of
every stratum. Then for each l ∈ Ω as in 7.2.16 there is ε0 such that for any ε,
ε0 > ε > 0 and t0 �= 0 sufficiently small, we have the following formula for the
Euler obstruction of (V , 0):

EuV (0) =
�∑

α=1

χ(Vα ∩ Bε ∩ l−1(t0)) · EuV (Vα),

where χ denotes the Euler-Poincaré characteristic and EuV (Vα) is the value of the
Euler obstruction of V at any point of Vα, α = 1, . . . , �.

The following corollary of Theorem 7.2.17 is due to Dubson [46] and provides
an important relation between the Euler obstruction of an ICIS germ and the Milnor
number of a general hyperplane section:

Corollary 7.2.18 Assume that the germ (V , 0) is an ICIS of dimension n and let
μ(V ∩H) be the Milnor number of a general hyperplane section. Then

EuV (0) = (−1)nμ(V ∩H) .

Remark 7.2.19 In [28] the authors replace the general linear form l in theo-
rem 7.2.17 by an arbitrary function on V . For this they use the invariant of vector
fields in Definition 7.2.14 to introduce the Euler obstruction of a function f with
an isolated singularity on a germ V ⊂ C

m by projecting to the Whitney strata of V
its gradient vector field. In [28] there is also an alternative viewpoint to define the
Euler obstruction of functions using derived categories; this has the advantage of
working equally well for functions with non-isolated singularities. The difference
between the Euler obstruction of the space and that of the function is called the
Brasselet invariant in [47] and there is a vast literature on that topic. In [119] it
is shown that the Euler obstruction of a function is a natural generalization of the
Milnor number to the case of functions on singular spaces. The Euler obstruction of
functions was elegantly extended in [49] to an invariant for 1-forms; this viewpoint
is more natural than the original definition for functions and it allowed itself to a
generalization for collections of 1-forms (see [50]). In [47] there is an extension
of the Euler obstruction of functions to maps. We refer to [30, 51] for thorough
discussions on indices of vector fields and 1-forms.

7.3 Chern Classes for Singular Varieties

Chern classes of vector bundles play a central role in geometry and topology. In the
case of (almost) complex manifolds, by definition their Chern classes are those of
its tangent bundle. When looking at singular varieties, the point is what plays the
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role of the tangent bundle at the singular set. There are several candidates, as for
instance (in the sequel we say more about each of these):

• One may consider a singular variety X embedded in a complex manifold M
equipped with a Whitney stratification adapted toX and consider stratified vector
fields. This leads to the Chern-Schwartz classes.

• One has the Nash bundle T̃ that somehow extends over the singular set the
tangent bundle of the regular part of X. This leads to the Mather classes.
And considering the Mather classes with “appropriate weights” given by the
local Euler obstruction one arrives to the MacPherson classes. These satisfy
the important functoriality properties predicted by a conjecture of Deligne and
Grothendieck.

• If X is defined by a regular section of a holomorphic bundle E overM , then one
has its virtual tangent bundle ofX, TX := TM|X−E|X and its total Chern class
is determined by the Chern classes of TM|X and E|X. This leads to the Fulton
and the Fulton-Johnson classes ofX. These classes actually are defined for every
complex analytic variety in a complex manifold by means of the Segre class.

So there are different notions of Chern classes extending to singular varieties
the classical notion for complex manifolds; as noticed in [30] each of these is also
related with one of the indices of vector fields mentioned previously.

In this section we recall the classical Chern classes of vector bundles using the
viewpoint of algebraic topology. Then we look at singular varieties.

7.3.1 Chern Classes of Vector Bundles

There are several alternative ways to define the Chern classes; see for instance [30,
55, 95, 124] for accounts on the subject. As a motivation we define first the Euler
class of a manifold using the Poincaré-Hopf index: the paradigm to follow. Consider
a real m-dimensional compact smooth oriented manifoldM and a vector field v on
M regarded as a section of its tangent bundle TM . Let x1, . . . , xr be the singularities
of v. We use this information to construct from it a canonical cohomology class
Eu(M) ∈ Hm(M;Z), called the Euler class ofM , whose Poincaré dual is the cycle
represented by the points x1, . . . , xr weighted by their local Poincaré-Hopf index;
so we get the Euler characteristic χ(M), by Poincaré-Hopf’s theorem. We remark
that the cohomology class Eu(M) is independent of v, but the cochain we construct
to represent it does depend on the choice of v.

Let (K) be a triangulation ofM such that the singularities of v are vertices (i.e.,
they are in the 0-skeleton). Now take the barycentric sub-division of (K), denote
it (K̂). We use this to construct the dual cell decomposition of (K) that we denote
(DK): to each simplex σ in (K) we associate a cell d(σ) which is the union of all
simplexes in (K̂) whose closure meets σ exactly at its barycenter σ̂ . For a vertex
xi ∈ K(0) its dual cell has dimension m and it is the union of all simplexes in (K̂)
that have xi in its closure. Now define an m-cochain as follows: to each m-cell in
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(DK) which is dual to a singularity of v we associate its local Poincaré-Hopf index;
to all other m-cells we associate 0, and we extend this to m-chains by linearity.
We get a cochain with integer coefficients, which actually is a cocycle [124]. By
definition this is the Euler class of M . Clearly this class is the Poincaré dual of the
Euler characteristic regarded as an element in H0(M;Z) ∼= Z.

Now we define the Chern classes of a smooth complex vector bundle E over a
compact simplicial complex K of real dimension n. We remark that everything we
say in this context works similarly if we replace K by a CW-complex with a cell
decomposition. We assume the complex dimension of the fibers of E is k ≤ m/2
(this condition is not necessary; we refer to [124] for the general case).

Definition 7.3.1 An r-field for E, r ≤ k, on a subcomplex L of K is a set v(r) =
{v1, . . . , vr } of r continuous sections of E defined at all points in L. A singular
point of v(r) is a point where the vectors (vi) fail to be linearly independent. A
non-singular r-field is also called an r-frame.

The Chern class cq(E) ∈ H 2q(K), where q = k − r + 1, is the first possibly
non-zero obstruction for constructing an r-frame of E. Let us explain this. LetWr,k
be the Stiefel manifold of complex unitary r-frames in C

k . Notice that we will use
r-frames which are not necessarily unitary, but this does not change the results,
because every frame is homotopic to a unitary one. We know (see [124]) thatWr,k is
(2k − 2r)-connected and its first non-zero homotopy group is π2k−2r+1(Wr,k) ∼= Z.
The bundle of r-frames on E, denoted by Wr(E), is the bundle associated with
E whose fiber over x ∈ K is the set of all r-frames in the fiber Ex over x (it is
diffeomorphic toWr,k). In the following, we fix the notation q = k − r + 1.

We use the standard stepwise process in obstruction theory to construct this class,
similarly to the way we constructed the Euler class of a manifold. Recall that a map
X → Y between topological spaces extends to the cone of X if and only if it is
nulhomotopic; and a p-cell σ is homeomorphic to the cone over ∂σ .

Let σ be a p-cell in K . If the section v(r) of Wr(E) is already defined over its
boundary ∂σ , it defines a map :

∂σ � S
p−1 v(r)−→ Wr(E)|U � U ×Wr,k pr2−→ Wr,k,

thus an element of πp−1(Wr,k). If p ≤ 2k − 2r + 1, this homotopy group is zero
and therefore the section v(r) can be extended to σ without singularity. This means
that we can always construct a section v(r) of Wr(E) over the (2q − 1)-skeleton
K(2q−1).

If p = 2(k − r + 1) = 2q , we meet a possible obstruction. The r-frame on
the boundary of each 2q-cell σ defines an element, denoted by ind(v(r), σ ), in the
homotopy group π2q−1(Wr,m) ∼= Z. The integer ind(v(r), σ ) is the (Poincaré-Hopf)
index of the r-frame v(r) on the cell σ . Similarly to the above case of the Euler class,
this defines a cochain

γ ∈ C2q(K;π2q−1(Wr,m)) ,
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by setting γ (σ) = ind(v(r), σ ) for each 2q-cell σ and then by extending it linearly.
This cochain is actually a cocycle [124]:

Definition 7.3.2 The cohomology class so obtained is the q-th Chern class of the
bundle E, cq(E) ∈ H 2q(K;Z).

The class one gets in this way is independent of the various choices involved in its
definition. Note that ifK is a complex manifoldM and E is its tangent bundle TM ,
then the top Chern class cm(M) coincides with the Euler class of the underlying
real tangent bundle TRM , so Chern classes are a natural generalization of the Euler
class. That is, cm(M) is the primary obstruction to construct a never-zero tangent
vector field on M , where primary means the first possibly non-zero obstruction.
Then cm−1(M) is the primary obstruction to constructing two linearly independent
tangent vector fields onM and so on.

Assume now that we are given an r-frame v(r) on the 2q-skeleton of a
subcomplex L of K , denoted by L(2q). The same arguments as before say that we
can always extend v(r) without singularity to L(2q) ∪K(2q−1). If we wish to extend
this frame to the 2q-skeleton of K we meet an obstruction for each corresponding
cell which is not in L. This gives rise to a cochain which vanishes on L and is a
cocycle in H 2q(K,L).

Definition 7.3.3 The relative Chern class

cq(E; v(r)) ∈ H 2q(K,L) ,

is the class represented by the previous cocycle.

The image of cq(E; v(r)) by the natural map into H 2q(K) is the usual Chern class,
but as a relative class it does depend on the choice of the frame v(r) on L.

Example 7.3.4 Consider a continuous vector field v in C
m with an isolated singu-

larity at a point x and let B be a compact 2m-ball in C
m of positive radius, centered

at x, containing no other singularities of v. Let T B be the restriction to B of the
tangent bundle TCm. Since B is contractible, all the Chern classes of TB vanish.
Yet, we have the top Chern class of TB relative v:

cq(B, ∂B; v) ∈ H 2m(B, ∂B) .

We have the Lefschetz duality isomorphism H 2m(B, ∂B) ∼= H0(B) ∼= Z, and the
integer we get, the dual of cq(M,L; v), is exactly the local Poincaré-Hopf index of
v.

The relative Chern classes are useful in various settings including the study of
Chern classes of singular varieties.



7 Milnor Number and Chern Classes for Singular Varieties: An Introduction 511

7.3.2 Schwartz Classes

The first generalization of Chern classes to singular varieties is due to M.-
H. Schwartz [116]. These classes are the primary obstructions for constructing
stratified frames on a singular variety V in a complex manifold (cf. [30]). Let us
recall this.

We consider a compact complex analytic n-dimensional variety V embedded in
a complex m-manifoldM endowed with a complex analytic Whitney stratification
{Vα} adapted to V . As in Sect. 7.3.1, we use a cellular decomposition (D) dual
to a triangulation of M compatible with the stratification. The cells σ of (D) are
transverse to the strata Vα.

Definition 7.3.5 Let L be a subspace of M which is a union of strata. A stratified
r-field (or frame) v(r) = {v1, . . . , vr } on L is an r-field (or frame) onM , defined at
the points in L, consisting of stratified vector fields.

A basic ingredient in the work of M. H. Schwartz is what she called “radial
extension”. The idea is simple though there are technical difficulties that we shall
omit. See [30] for a more detailed exposition of this construction. First we describe
the local process, then we say a few words about the global process.

Let vα be a vector field in a neighborhood of a point x ∈ Vα with possibly a
singularity at x. By the local topological triviality of Whitney stratifications (see
[60, 126]), there is a product neighborhoodW ∼= Δ×Uα of x in the ambient space,
where Uα is a neighborhood of x in Vα , Δ is a small disc in the ambient manifold,
transversal to Vα at x and V ∩ W is a product (Δ ∩ V ) × Uα. We may assume
that x is the only one possible singularity of vα in Uα . Denoting by p1 : W → Δ

and p2 : W → Uα the projections on the two factors of the product, we have a
decomposition

TW = p∗1TΔ⊕ p∗2T Uα.

On the one hand, the pull-back p∗2vα is a continuous vector field on W , which is
“parallel” to vα . It is stratified, since it is tangent to the fibers of p1. On the other
hand, let Δ be equipped with the induced stratification and let vΔ be a stratified
vector field on Δ, which is singular at x and it is radial in the usual sense (i.e.,
pointing outwards in all directions). Then p∗1vΔ is a stratified vector field on W
since it is tangent to the fibers of p2 and vΔ is stratified. It is thus radial in each slice
Δ× {q} for q in Uα . The local radial extension of vα inW is the following:

Definition 7.3.6 The local radial extension of vα , denoted by v, is the stratified
vector field defined on the neighborhoodW as the sum:

v = p∗1vΔ + p∗2vα.

A fundamental property of the local radial extension is that v has no singularity
along the boundary ofW , it is pointing outwardW along its boundary, and if vα has
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a singularity at x with index IndPH(vα, x;Vα), then the local radial extension v of
vα admits x as unique singular point in W , and one has

IndPH(v, x;W) = IndPH(vα, x;Vα). (7.4)

The local radial extension allows to define the global radial extension. For this
we filter V by the dimension of the strata as follows:

V = V reg = V n ⊃ V n−2 ⊃ · · · ⊃ V αj ⊃ · · · ⊃ V α2 ⊃ V α1 ⊃ Vα0

where Vαj are the (not necessarily connected) strata and Vα0 is the lowest dimen-
sional stratum. The radial extension is defined by induction on the dimension of the
strata, starting with Vα0 . In the first step one considers a vector field vα0 with isolated
singularities on Vα0 , which is compact. One performs the local radial extension
around Vα0 in a tube T (Vα0), union of neighborhoodsW as above (see [20] for the
construction of these tubes). The vector field v is pointing outward T (Vα0) along
its boundary and the singularities of v in T (Vα0) are exactly those of vα0 in Vα0 .
The vector field v extends to the next element in the above filtration since the Vα are
complex manifolds. We iterate this process and we arrive to the following theorem
of M. H. Schwartz (see [30] for details):

Theorem 7.3.7 Let V be a complex analytic variety in a complex manifoldM , and
let (Vα)α∈A be a complex analytic Whitney stratification of M adapted to V . Then
there exist stratified vector fields on a neighborhood of V inM constructed by radial
extension as above, and every such vector field v satisfies:

(1) Given any stratum (Vα), the total Poincaré-Hopf index of v on T (V α) is χ(V α).
(2) v is transverse, outwards pointing, to the boundary of every small regular

neighborhood of V inM .
(3) The Poincaré-Hopf index of v at each singularity x is the same if we regard

v as a vector field on the stratum that contains x or as a vector field in a
neighborhood of x in M . Hence the total Schwartz (or radial) index of v on
V is χ(V ), as stated in Theorem 7.2.11.

Now we are ready to define the Schwartz classes of the compact complex analytic
singular variety V in a complex manifold M . Let n,m be the dimensions of V
and M , respectively. We endow M with a Whitney stratification adapted to V and
consider a triangulation (K) of M compatible with the stratification. We denote
by (D) a cellular decomposition of M dual to (K). Recall that if a 2q-cell dα of
(D) meets V , then it intersects V transversally. To define the Schwartz classes one
considers particular stratified r-frames vr . A key-step is:

Theorem 7.3.8 Let n,m be, respectively, the complex dimensions of V and M ,
and we equip M with a complex analytic Whitney stratification adapted to V , a
triangulation K for which every stratum is a union of simplexes, and its dual cell
decomposition (D). Then, for every r = 1, . . . , n, there exist stratified r-fields v(r)

on the skeleton (D)(q), q = m− r + 1, such that:
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• Every vector field in it is constructed by radial extension and v(r) has only
isolated singularities on (D)(2m−2r+2);

• If we write v(r) = (v(r−1), vr ), where v(r−1) denotes the (r − 1)-field consisting
of the first (r−1) vector fields in v(r), then v(r−1) is non-singular on (D)(2q) and
the singularities of v(r) are the singularities of the last vector field vr .

• The r-field v(r) extends to a neighborhood U of (D)(2q) in M , with no other
singularities, and being everywhere transversal to the boundary of U .

Now let U be a regular neighborhood of X in M . Notice that U , being an open
set, is itself a complex manifold, so it has its own Chern classes. Recall that by
definition, cq(U) ∈ H 2q(U) is the class of the obstruction cocyle obtained by trying
to extend to the 2q-skeleton of U an r-frame v(r) defined on the (2q − 1)-skeleton
(for some cell decomposition); r = 2m − 2q + 1. Assume v(r) can be extended to
a non-singular frame on all 2q-cells in U \ X. Then the corresponding obstruction
cocycle vanishes on U \X and actually represents a class in H 2q(U,U \X). This is
the relative Chern class cq(U,U \X; v(r)) in Definition 7.3.3. While the usual Chern
classes are independent of all choices, the relative ones do depend on the choice of
the frame v(r) away from X, as noticed in Example 7.3.4.

In general, we have the exact sequence:

· · · −→ H 2q−1(U \ V ) −→ H 2q(U,U \ V ) −→ H 2q(U) −→ · · · (7.5)

The natural morphism carries cq(U,U\V ; v(r)) into the usual Chern class cq(U).
That is, the relative Chern class cq(U,U \ V ; v(r)) is the specific lifting of cq(U)
from H 2q(U) to H 2q(U,U \ V ) determined by the choice of the frame v(r).

The various possible choices of such liftings correspond to the image of
H 2q−1(U \ V ) in H 2q(U,U \ V ) in the above exact sequence (7.5).

Definition 7.3.9 The Chern-Schwartz class, or simply the Schwartz class, cScq (V )

of V is the relative Chern class of U in H 2q(U,U \ V ) ∼= H 2q(M,M \ V )
determined by an r-frame as in Theorem 7.3.8: defined on the (2n−2r+1)-skeleton
of V in a cell decomposition of U which is dual to a triangulation of U adapted to
V , and then extended radially to U , with singularities only on V . The total Schwartz
class is cSc∗ (V ) = 1+ cSc1 (V )+ . . .+ cScn (V ).

It is known that the classes so obtained depend only on V and not on the choice
of the manifoldM nor on the embedding of V inM .

Notice that usual Chern classes are defined using arbitrary frames and here we
are using stratified frames obtained by radial extension, which is the original way of
defining these classes. Yet, we know from [30] that one can use arbitrary stratified
frames, and that will be essential for what follows. The key point is defining an
appropriate index, a way of counting the contribution of each singularity of an
arbitrary stratified field. Let us recall this.
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We have the following definitions 10.1.3 and 10.1.4 from [30]:

Definition 7.3.10 We say that v(r) is normally radial at aσ if for each stratum Vβ
having aσ in its closure and for each sufficiently small tube Tε(Vα) around Vα in
M , one has that each component v1, . . . , vr of v(r) is transverse (pointing outwards)
to the intersection V β ∩ Tε(Vα). We say that v(r) is actually radial at aσ if it is
normally radial and it is also radial in its stratum.

So the framings constructed by radial extension are normally radial but they may
not be radial.

We need to define the local Schwartz index for arbitrary (stratified) frames; this is
similar to the definition of the radial index in (7.2.4). Let v(r) be an r-frame defined
on the boundary of a (D)-cell σ of dimension 2m − 2r + 2, whose barycenter is
a point aσ ∈ Vα ⊂ V . We extend v(r) to a stratified frame on all of σ \ {aσ }.
Recall that, by construction, the cell σ meets transversally all the Whitney strata Vβ
containing Vα in their closure. Let v(r)rad be a stratified radial frame around aσ . We

define the difference between v(r) and v(r)rad at aσ as follows. Consider sufficiently
small spheres Sε , Sε′ inM , ε > ε′ > 0, centered at aσ , and consider the frame v(r)

on Sε ∩ σ ∩ V and v(r)rad on Sε′ ∩ σ ∩ V . We use again the Schwartz’s technique
of radial extension to get a stratified r-frame w(r) on the intersection of σ with the
cylinder

X = [(V ∩ Bε) \ (V∩
◦
Bε′)]

in V bounded byKε = Sε∩V andKε′ = Sε′ ∩V , having finitely many singularities
in the interior of X. At each of these singular points its index in the stratum,
IndPH(w

(r), X ∩ σ), equals its index in the ambient space C
m. The difference of

v(r) and v(r)rad is defined as:

d(v(r), v
(r)
rad) =

∑
IndPH(w

(r), X ∩ σ) ,

where the sum on the right runs over the singular points of w(r) in X and each
singularity is being counted with the local index of w(r) in the corresponding
stratum. As in the work of M.-H. Schwartz, we can check that this integer does
not depend on the choice of w(r).

Definition 7.3.11 The Schwartz (radial) index of a stratified r-field v(r) at aσ ∈ V
is:

IndSch
(
v(r), aσ ;V

) = 1+ d(v(r), v(r)rad) .
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As before, a stratified r-frame v(r), r ≥ 1, which is non-singular on (D)(2m−2r+1)

and has isolated singularities on (D)2m−2r+2, defines a cochain in the obvious way,
and this cochain is actually a cocycle. One obtains a relative class

cq(U, ∂U ; v(r)) ∈ H 2q(U,UV \ V ) ∼= H 2q(M,M \ V ) , (7.6)

where U is a regular neighborhood of V inM . One has [30, Theorem 2.14]:

Theorem 7.3.12 Given V ⊂ M as before, equipped with a Whitney stratification
adapted to V and a compatible triangulation (K), let (D) be its dual cellular
decomposition and denote (D)j the union of all cells of dimension j . If v(r) is a
stratified r-frame, r ≥ 1, which is non-singular on (D)(2m−2r+1) and has isolated
singularities on (D)2m−2r+2, then the Schwartz indices of v(r), defined as in 7.3.11,
determine a cocycle cq(V ; v(r)) ∈ H 2q(M,M \ V ), q = 2m − 2r + 2, and this
cocycle represents the corresponding Schwartz class of V , independently of the
choice of the frame v(r).

The proof is immediate from the definitions and properties of Schwartz index.

Remark 7.3.13 In short, this theorem is telling us that the Schwartz class cq(V )
of a singular variety V of dimension n in a complex manifold M is the primary
obstruction for constructing a stratified n-frame of TM|V . Unlike the classical case,
now the cell decomposition must be dual to a triangulation of V compatible with a
Whitney stratification adapted to V .

Remark 7.3.14 (Localization of Schwartz Classes) The Poincaré-Hopf index theo-
rem tells us that a choice of a vector field v on a complex manifoldM localizes the
top Chern class at the singularities of v. Similarly, following [30, 10.5], we have
that an appropriate frame v(r) on a singular variety V , localizes the corresponding
Schwartz class at the connected components of the singular set Vsing of V and at the
possible singularities of the frame v(r) contained in the regular part Vreg := V \Vsing.
In fact, let S1, . . . , S� be the connected components of Vsing and Ui a regular
neighborhood of each Si . Let v(r) be an r-frame on the 2m − 2r + 1 skeleton of
the dual decomposition (D) with no singularities, and with isolated singularities in
(D)2m−2r+2 that are all contained either in Vsing or in V ∗ := V \ (U1 ∪ . . . ∪ U�).
For instance the frames constructed by radial extension satisfy this condition. Let
Li be an open regular neighborhood of the boundary of each Ui . Then the above
construction yields a cocycle in H 2m−2r+2

(
M,M \ (V \ (L1 ∪ . . . ∪ L�)

)) ∼=
H2r−2

(
V \(L1∪ . . .∪L�

)
. This decomposes the Schwartz class into a part contained

in V ∗, which is the usual Chern class relative to the frame, and another part localized
at the connected components of Vsing. If v(r) is obtained by radial extension, the
contribution at each Ui corresponds to the Schwartz class of Si (see [30, Theorem
10.5.2] for details).
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7.3.3 MacPherson’s Theory

In his paper [121] in the famous 1969 Liverpool singularities symposium, D.
P. Sullivan discusses the existence of homology Stiefel classes for real analytic
varieties. In the last page he explains that Deligne outlined a general conjectural
theory of Chern classes for singular varieties based on ideas of Grothendieck and
Hironaka’s theorem about resolution of singularities. Nowadays this is known as
the Deligne-Grothendieck conjecture, and it was proved by MacPherson in [81] by
a different way. Let us say a few words about this.

A constructible set in a complex analytic variety X is a set obtained from
its subvarieties by finitely many of the usual set-theoretic operations: unions,
intersections and differences. A Z-valued constructible function on X is a function
φ : X → Z for which X has a finite partition into constructible sets so that φ
is constant on each set. Or equivalently, there exists a complex analytic Whitney
stratification of X such that φ is constant on each stratum. One has [81, Proposition
1]:

Proposition 7.3.15 There is a unique covariant functor F from the category V of
compact complex algebraic varieties to the category of abelian groups Ab, whose
value on a variety X is the group of constructible functions on X and whose value
f∗ on a map f satisfies:

f∗(1W)(p) := χ(f−1(p) ∩W) ,

where 1W is the characteristic function ofW , defined by 1W(x) = 1 for x ∈ W and
1W(x) = 0 for x /∈ W , and χ denotes the usual (topological) Euler characteristic.

MacPherson then proves the Deligne-Grothendieck conjecture:

Theorem 7.3.16 There exists a natural transformation from the functor F to
homology, which for manifolds assigns to the constant function 1 the Poincaré dual
of the total Chern class. Explicitly, to any constructible function α on a compact
complex algebraic varietyX we can assign an element c∗(α) inH∗(X) satisfying:

1. f∗c∗(α) = c∗f∗(α) ;
2. c∗(α + β) = c∗(α)+ c∗(β) ;
3. c∗(1) = dual of c(X) if X is non-singular, where c(X) is the total Chern class.

Definition 7.3.17 The total Chern-MacPherson class cMP∗ (X) of any compact
variety X is c∗ applied to the constant function 1 on X. More generally, for
a constructible function α on X, the homology class c∗(α) is the total Chern-
MacPherson class of the constructible function. For simplicity, we shall often
call this the MacPherson class of the constructible function α; and c∗(1X) is the
MacPherson class of X.

MacPherson’s proof of Theorem 7.3.16 uses three important ingredients; one of
these is the local Euler obstruction EuX of an algebraic variety, already defined
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in Sect. 7.2.4; another are the Mather classes that we now introduce; the third
is the so-called graph construction in the algebraic context. We remark that the
analyticity of the graph construction was proved by M. Kwieciński [70] and
therefore MacPherson’s theorem and proof work in the complex analytic category.

Let X be a complex analytic variety of dimension n, let X̃
ν→ X be its Nash

transformation, defined locally as in Sect. 7.2.4, and let T̃ → X̃ be the Nash bundle.
Then one has the usual Chern classes of T̃ defined as above, ci(T̃ ) ∈ H ∗(X̃). The
variety X̃ is singular in general, but since it is complex analytic, it is automatically
a pseudomanifold (see for instance [20]) and therefore one has an Alexander
homomorphism H ∗(X̃) → H2n−∗(X̃). Composing this with the homomorphism
in homology induced by the projection ν, we get classes in the homology of X:
these are the Mather classes, introduced in [81] (MacPherson said that these were
explained to him by Mather):

Definition 7.3.18 The Mather classes of X, cMai (X), are the Chern classes of
the Nash bundle of X, carried to the homology of the Nash transform X̃ by the
Alexander homomorphism, and then pushed forward to the homology of X by the
homomorphism induced by the projection. The total Mather class is cMa(X) =
ν∗(dual c(T̃ )). More generally, to any algebraic cycle

∑
niVi in X, where the ni

are integers and the Vi are irreducible subvarieties ofX, we can associate its Mather
class:

cMa
(∑

niVi

)
=
∑
niιi∗cMa(Vi) ,

where ιi is the inclusion of Vi in X.

MacPherson’s next step is writing a formula that expresses c∗(α) as the Mather
class of an associated algebraic cycle. For this he proves [81, Lemma 2]:

Lemma 7.3.19 There exists an isomorphism T from the group of algebraic cycles
in X to the group of constructible functions on X defined by:

T
(∑

niVi

)
(p) =

∑
niEupVi ,

where Eu is the local Euler obstruction.

Then MacPherson proves [81, Theorem 2]:

Theorem 7.3.20 c∗ := cMaT −1 satisfies the requirements for c∗ in Theo-
rem 7.3.16.

Then cMaT −1(1X) is the (total) MacPherson class of X that we denote by
cMP∗ (X). Notice that one actually has a total MacPherson class cMP (α) for every
constructible function on X, and we know from [81] that one has:

cMa(X) = cMP (EuX) , (7.7)



518 R. Callejas-Bedregal et al.

where EuX is the local Euler obstruction, which is constructible.
Recall that in the previous section we defined the Schwartz classes of a

singular analytic variety X of dimension n embedded in a complex manifold M
of dimension m. Brasselet and Schwartz proved in [24] that these classes coincide
with MacPherson’s classes. In fact the theorem in [24] makes this statement precise
and gives an explicit cycle representing the MacPherson class. Let us recall this.

We endow M with a Whitney stratification adapted to X and consider a
triangulation (K) of M compatible with the stratification. We denote by (D) a
cellular decomposition of M dual to (K). Recall that if a 2q-cell dα of (D) meets
X, then it is dual to a 2(m−q)-simplex σα of (K) contained inX. We recall too that
to define the Schwartz classes one considers particular stratified r-frames vr . These
have no singularity on the (2q − 1)-skeleton of (D), where q = m− r + 1, and (at
most) isolated singularities on the 2q-cells dα. At each such cell, the frame vr has a
Poincaré-Hopf type index at the corresponding singularity σ̂α , that we may denote
I (vr , σ̂α); of course this index is 0 if there is no singularity of vr in that simplex.
Then we have the following theorem of Brasselet and Schwartz:

Theorem 7.3.21 The Alexander duality isomorphism H ∗(M,M \ X) → H∗(X)
carries the Schwartz class cSc∗ (X) ∈ H ∗(M,M \ X) to the Chern-MacPherson
class cMP∗ (X) ∈ H∗(X). In fact, the MacPherson class cMPr−1(X) is represented in
H2(r−1)(X) by the cycle:

∑

σα⊂X
I (vr , σ̂α) · σα ,

where the sum runs over all the simplexes σα of dimension 2(r − 1) which are
contained in X, and I (vr , σ̂α) is the (Poincaré-Hopf) index in the dual cell of each
such simplex σα of a stratified vector field vr constructed by radial extension.

Hence, from now on we denote the classes so obtained in homology by cSM∗ (X)

and call them the Chern-Schwartz-MacPherson classes of X, or simply Schwartz-
MacPherson classes.

Remark 7.3.22 Brylinski, Dubson and Kashiwara [32] showed that the MacPherson
classes of a singular variety can be studied by means D-modules. In fact the micro-
local viewpoint, through the theory of Lagrangian cycles, has proved to be very
important and fruitful to study these characteristic classes (see for instance [105,
107]).

7.3.4 Segre and Fulton Classes

When we consider holomorphic vector bundles E over algebraic varieties X, the
total Segre class is inverse to the total Chern class, and thus provides equivalent
information. The Segre classes were introduced in the non-singular case by B. Segre
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[120]; these are defined as operators in the Chow ring, AkX → Ak−1X , that
satisfy certain properties and they have the advantage that generalize to settings
(specifically to cones) where Chern classes are not defined. We refer to the literature
for more on the subject, particularly to Fulton’s book [55] and various papers by P.
Aluffi.

We need to recall first several basic concepts from algebraic geometry.
LetX be an algebraic variety (overC) of dimension n;X and its subvarieties here

are always assumed to be reduced and irreducible. Let R(X) be its field of rational
functions and R(X)∗ the multiplicative subgroup of its non-zero elements. Denote
by A = OV,X the local ring of X along a subvariety V .

For a (k + 1)-dimensional subvariety W and a function r ∈ R(W)∗, the divisor
of r is the k-cycle [div(r)] on X defined by:

[div(r)] =
∑

ordV (r)[V ] ,

where the sum runs over all codimension one subvarieties of W and ordV is the
order of vanishing of r . If we write r = a/b with a, b ∈ A, then ordV (r) =
ordV (a)− ordV (b).

A k-cycle on X is a finite formal sum
∑
ni [Vi] where the ni are integers and the

Vi are k-dimensional subvarieties ofX. The group of k cycles in X, ZkX, is the free
abelian group generated by the k-dimensional subvarieties of X; to a subvariety V
of X corresponds [V ] ∈ ZkX. A Weil divisor on X is an (n − 1)-cycle on X; these
form the group Zn−1X.

A k-cycle α is rationally equivalent to zero, written α ∼ 0, if it is the divisor
of a rational function. That is, if there are a finite number of (k + 1)-dimensional
subvarietiesWi of X, and ri ∈ R(Wi)∗ such that:

α =
∑
[div(ri )] .

The cycles rationally equivalent to zero form a subgroup RatkX of ZkX. The Chow
group AkX is the group of k-cycles in X modulo rational equivalence:

AkX = ZkX/RatkX .

Consider now a line bundleL over an algebraic varietyX. For any k-dimensional
subvariety V of X, the restriction of L to V , L|V , is isomorphic to OV (C) for some
(Cartier) divisorC on V , determined up to linear equivalence [55, §2.2]. The divisor
[C] determines an element in the Chow groupAk−1(V ), which we denote by c1(L)∩
[V ]. That is:

c1(L) ∩ [V ] = [C] .
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This is extended by linearity to algebraic cycles by α �→ c1(L) ∩ α, and defines a
homomorphism:

c1∩ −: Zk(X)→ Ak−1(X) .

In fact one has (see [55, 2.5.(a)]) that if α is rationally equivalent to zero on X, then
c1(L) ∩ α = 0. Hence one has a well-defined homomorphism:

c1∩ −: Ak(X)→ Ak−1(X) .

This defines the Chern class of the line bundle L. In fact if V is non-singular, c1
is the usual Chern class, defined before by other means, regarded in homology via
cap product with the fundamental cycle.

Remark 7.3.23 The Chern class so defined satisfies various important properties
(see [55, Proposition 2.5]), in particular:

1. (Commutativity) If L,L′ are line bundles onX, and α is in Zk(X), then, one has
in Ak−2(X):

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α).

2. (Additivity) If L,L′ are line bundles on X, and α is in Zk(X), then, in Ak−1(X)

one has:

c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L
′) ∩ α ,

and

c1(L
∨) ∩ α = −c1(L) ∩ α ,

where L∨ is the dual bundle.

It follows that if L1, . . . , Ln are line bundles on X, then arbitrary polynomials in
their Chern classes act on A∗X. If P is a homogeneous polynomial of degree d in n
variables, then

P
(
c1(L1), . . . , c1(Ln)

) ∩ α

is defined inductively in Ak−d(X). In particular, and this will be used in the sequel,
for a line bundle L on X and α ∈ Ak(X), c1(L)

d ∩ α is an element in Ak−d(X)
defined inductively by c1(L)

d ∩ α = c1(L) ∩
(
c1(L)

d−1 ∩ α).
Now recall that if f : X → Y is a proper morphism of algebraic varieties, then

for any subvariety V of X, its image f (V ) is a closed subvariety of Y , and one has
an induced embedding of the field of rational functions R(f (V )) into R(V ). As
noticed in [55, Appendix B.2.2], this is a finite field extension if V and f (V ) have



7 Milnor Number and Chern Classes for Singular Varieties: An Introduction 521

the same dimension; in this case we denote by [R(V ) : R(f (V )] the degree of that
field extension. Set:

deg(V /f (V )) =
{ [R(V ) : R(f (V )] if dimV = dim f (V )

0 if dimV > dim f (V )
.

We then define the push-forward of V by f as:

f∗[V ] = deg(V /f (V ))[f (V )] .

This extends linearly to the push-forward homomorphism of cycles (see for instance
[55, 1.4]):

f∗ = ZkX→ ZkY .

Now recall that a homomorphismA→ B of rings is flat if every exact sequence
of A-modules remains exact after tensoring over A with B. And a morphism f :
X → Y between algebraic varieties is flat if for every p ∈ X the induced map in
the local rings

fp : OY,f (p)→ OX,p ,

is flat. Flatness is an open generic condition, and its failure occurs where the map
exhibits a type of “discontinuity”. For instance, performing a blow up at a point
exhibits a fiber where the dimension “jumps” and we have no flatness there. A flat
morphism f : X → Y always has a relative fiber dimension, say n. In fact if Y is
non-singular andX is Cohen-Macaulay, then flatness is equivalent to saying that the
fibers have constant dimension.

Given any subvariety V of Y , set:

f ∗[V ] = [f−1(V )] .

Notice that f−1(V ) is a subvariety of X of pure dimension dim Y +n. This extends
by linearity to the pull-back homomorphism of cycles:

f ∗ : ZkY → Zk+nX .

We now have all the ingredients we need to define the Segre classes, and therefore
Chern classes, which are their inverses.

Let E
p→ X be a holomorphic bundle of rank (fiber dimension) r over an

algebraic variety X. Let P = P(E) be the projective bundle of lines in E, and
let O(1) = OE(1) be the canonical line bundle on P(E). For each i = 1, . . . , r ,
define a homomorphism in the Chow ring of X by:

si (E)∩ −: AkX→ Ak−iX , k ≥ i ,
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by the formula

si(E) ∩ α = p∗
(
c1(O(1)r+i ) ∩ p∗α

)
,

where p∗ is the flat pull back from AkX to Ak+rP , (c1(O(1)r+i ) ∩ p∗α) is the
iterated first Chern class homomorphism fro Ak+rP to Ak−iP , and p∗ is the push-
forward from Ak−iP to Ak−iX.

These are, by definition, the Segre classes of E. The si (E) are endomorphisms
of the Chow ring A∗X, with products being compositions that commute, so there is
no ambiguity.

If we write the total Segre class of the bundle E overX as:

s(E) = 1+ s1(E)+ s2(E)+ . . .+ sr (E) ,

then the total Chern class

c(E) = 1+ c1(E)+ c2(E)+ . . .+ cr(E)

is its inverse in the Chow ring. One has:

c1(E) = −s1(E), c2(E) = s1(E)2 − s2(E), . . . ,

cr (E) = −s1(E)cr−1(E)− s2(E)cr−2(E)− . . .− sr (E) .

Remark 7.3.24 (Mather and MacPherson’s Classes) In the previous section we
defined the Mather and MacPherson’s classes of singular varieties X as elements
in the homology of X. We remark however that the above construction of Chern
classes of vector bundles as the inverse of the Segre classes, shows that if X is
algebraic, then the Mather and the MacPherson classes actually live in the Chow
ring of X.

As mentioned earlier, Segre classes extend to the more general setting of
(algebraic) cones over an algebraic variety (or scheme). This includes several
familiar examples, including all vector bundles. And it also includes many other
important families. One of these is the normal coneC = CXY of a closed subvariety
X in a variety Y . Let us say a few words about this.

As a motivation, recall first that in algebraic geometry one studies algebraic sets,
i.e., subsets of Kn, where K is an algebraically closed field, that here we take to be
the complex numbersK = C. The algebraic sets are by definition the common zeros
of a set of polynomials in n variables. If X is such an algebraic set, one considers
the commutative ring R of all polynomial functions X → C. Since K = C is
algebraically closed, the maximal ideals of R correspond to the points ofX, and the
prime ideals of R correspond to the irreducible subvarieties of X.

Let us now forget this information for a moment and consider an arbitrary
commutative ring R, and define its spectrum, denoted Spec(R), to be the set of
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all prime ideals. For any ideal I of R, define VI to be the set of all prime ideals that
contain I , and we equip Spec(R) with the Zariski topology by defining the closed
sets to be

{
VI | I is an ideal of R

}
.

Coming back to the previous example where R is the ring of polynomial functions
X → C, the spectrum of R consists of the points of X together with elements
corresponding to all subvarieties of X. The points of X are closed in the spectrum,
while the elements corresponding to subvarieties of positive dimension have a
closure consisting of all their points and subvarieties.

Therefore the topological space Spec(R) somehow is a refinement of the
algebraic space X with its Zariski topology. By studying spectra of rings instead
of algebraic sets, one can generalize concepts of algebraic geometry to non-
algebraically closed fields and beyond, eventually arriving to the concept of
schemes, due to A. Grothendieck.

There is a relative version of this concept (actually a functor) called the relative or
global spectrum. IfX is an algebraic variety and we are given a quasi-coherent sheaf
A of OX-algebras, there is a scheme SpecX(A) and a morphism f : SpecX(A)→
X satisfying certain important properties. This allows us, among other things, to
define key concepts for this presentation: The normal cone and the Segre class of a
subvariety X in a variety Y . The normal cone to X in Y , C = CXY is defined by:

C = Spec
( ∞∑

n=0

In/In+1
)

where I is the ideal sheaf defining X in Y .
When X and Y are non-singular, this corresponds to the usual normal bundle.

More generally, if the embedding of X in Y is regular, the normal cone is the vector
bundle on X corresponding to the dual of the sheaf I/I2, and it is also called the
normal bundle of X.

Then one has:

Definition 7.3.25 Let X be a proper subvariety of Y . The (total) Segre class of X
in Y , denoted s(X, Y ), is the Segre class of the normal cone CXY in the Chow ring
of X:

s(X, Y ) = s(CXY ) ∈ A∗X .

In case X is regularly embedded in Y , then the normal cone is a vector bundle
and [55, Proposition 4.1] implies that the Segre class s(X, Y ) is the cap product of
the total inverse Chern class of the normal bundle with [X]. That is:

s(X, Y ) = c(NXY )−1 ∩ [X] . (7.8)



524 R. Callejas-Bedregal et al.

The following result [55, Corollary 4.2.2] gives a beautiful and useful character-
ization of the Segre class. This could be taken as a definition of the Segre class ofX
in Y with no need of introducing the previous concepts:

Proposition 7.3.26 Let X be a subvariety of a compact variety Y , and let Ỹ be the
blow-up of Y along X. Let X̃ ⊂ Ỹ be the exceptional divisor and η : X̃ → X the
projection. Then the total Segre class of X in Y is:

s(X, Y ) =
∑

i≥0

η∗
(
c1(O(1))i ∩ [X̃]

)
.

We remark that all terms in this formula make sense in the complex analytic
category, so we can take this as the definition of the Segre class in that setting.

Observe that if X is a complex submanifold (i.e., non-singular) of a complex
manifold M , then one has a C∞ splitting of the tangent bundle of M restricted to
X:

TM|X = TX ⊕NXM

where the latter is the normal bundle. By general properties of Chern classes (see
for instance [95]) this implies:

c∗(TM|X) = c∗(T X) · c∗(NXM)

regarded in the cohomology of X. Notice too that TM|X, TX and NX are all
complex vector bundles and in the Grothendieck group K(X) of vector bundles
on X we have:

[TX] = TM|X −NXM .

Now following Fulton [55, 4.2.6], let X be an algebraic variety embedded in a
compact algebraic manifoldM , and consider the class:

cFu∗ (X) := c(TM|X) ∩ s(X,M) ∈ A∗(X) .

This class is independent of the choice of embedding, and if X is a local complete
intersection inM , then one has the virtual tangent bundle of X:

TX := TM|X − NXM

a well-defined element in the corresponding Grothendieck group K(X), and one
has:

cFu∗ (X) = c(TM|X) c(NXM)−1 ∩ [X] = c(TX) ∩ [X] ∈ A∗(X) .
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Definition 7.3.27 Let X be an n-dimensional algebraic variety embedded in a
compact algebraic manifoldM . Then the class:

cFu∗ (X) := c(TM|X) ∩ s(X,M) ∈ A∗(X) ,

is called the total Fulton class of X.

By the above comments, if X is a local complete intersection in M , this is the cap
product of the Chern class of the virtual tangent bundle with [X]. By definition:

cFu∗ (X) = 1+ cFu1 (X)+ . . .+ cFun (X) ,

with cFui (X) ∈ Ai(X). The various cFui (X) are called the Fulton classes of X.
If X andM are complex analytic, not algebraic, the above definitions hold in the

homology of X.

Remark 7.3.28 (Fulton-Johnson) Recall that the Segre class s(X,M) by definition
is the Segre class of CXM and the Fulton class is cFu∗ (X) := c(TM|X)∩s(X,M) ∈
A∗(X) . If we let I be as before, the ideal sheaf defining X, one has the conormal
sheaf of X inM , denoted by NXM = I/I2, then one has the Fulton-Johnson class
of X, which by definition is:

cFJ∗ (X) := c(TM|X) ∩NXM ∈ A∗(X) .

In case X is regularly embedded in M the Fulton and the Fulton-Johnson classes
coincide with the total Chern class of the virtual tangent bundle TX = TM|X −
NXM capped with the fundamental class [X].

7.3.5 Topological Interpretation of the Fulton Classes

J.-L. Verdier in [131] proved that Chern classes behave well under “specialization”.
In [99] this is used to give a nice interpretation of the Fulton classes under certain
conditions. For this we restrict the discussion to the case where X is defined by
a regular section of a very ample rank k vector bundle E over a compact (say
connected) manifoldM of dimension n > k. So the Fulton class of X is the Chern
class of the virtual bundle TM|X − E|X capped with the fundamental cycle [X].

Since the bundle E is very ample, we can approximate the section s that defines
X by a family of sections {st }, with t in some open disc Δ in C, centered at 0, such
that s0 = s and st is everywhere transversal to the 0-section of E for all t �= 0.
Hence the zero sets {Xt } of these sections define a flat family of local complete
intersections inM , which are non-singular for t �= 0 and degenerate to X0 = X.

Consider a regular neighborhood of X in M , actually a tube T (X) as in
Sect. 7.3.2. Then there is a deformation retract from T (X) toX and a retraction map
inducing an isomorphism r∗ : H∗(T (X)) → H∗(X). Now choose to sufficiently
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close to 0 ∈ C so that the manifoldXto is contained in T (X); this is possible by the
compactness of the Xt . Then there is a homomorphism ι∗ : H∗(Xto)→ H∗(T (X))
induced by the inclusion and we have a special case of Verdier’s specialization
morphism [131]:

r∗ ◦ ι∗ : H∗(Xto) −→ H∗(X) .

We have from [131] that the Chern classes of TM|Xt and E|Xt , regarded in
homology, specialize to those of TM|X and E|X. That is, setting S =: r∗ ◦ ι∗
we have

S
(
c∗(TM|Xt )[Xt ]

) = c∗(TM|X)[X] and S
(
c∗(E|Xt )[Xt ]

) = c∗(E|X)[X] .
(7.9)

Hence:

S
(
c∗(TM|Xt )[Xt ]

)(
c∗(E|Xt )[Xt ]

)−1
)
= cFu∗ (X) .

Since each Xt , t �= 0, is non-singular, we have:

(
c∗(TM|Xt )[Xt ]

)(
c∗(E|Xt )[Xt ]

)−1
)
= c∗(Xt) ,

and we arrive to the following immediate consequence of Verdier’s work (see [101]):

Theorem 7.3.29 Under the above hypothesis, the total Chern class of the complex
manifoldsXt , t �= 0, regarded in homology, specializes to the Fulton class of X.

7.4 Milnor Classes: The Foundations

So far we have discussed the Schwartz-MacPherson and the Fulton classes of
singular varieties. It is natural to ask how these are related, and that is the topic
we explore in this section.

Definition 7.4.1 The total Milnor class of X is, up to sign, the difference between
the total Schwartz-MacPherson and Fulton classes:

M(X) := (−1)dimX
(
cFu(X)− cSM(X)

)
. (7.10)

This is the sum of the corresponding Milnor classes Mr (X) in all (even) dimen-
sions. Milnor classes are defined globally on X, yet one has (see [5, 26, 101, 122])
that these classes have support in the singular set Xsing and therefore they vanish in
dimensions higher than that of Xsing.
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Milnor classes appeared first implicitly in [3, 4] and [99]. The actual name of Milnor
classes was coined by various authors at about the same time (see [25, 26, 101, 132]).
The genesis of the name comes from the following theorem [118, Theorem 2.4] and
its corollary below:

Theorem 7.4.2 Let X be the zero locus of a regular section s of a holomorphic
bundle E of rank k ≥ 1 over a compact complex manifold M of dimension n + k;
assume the singular set of X consists of isolated points, say x1, . . . , xr . Then the
Fulton and the Schwartz-MacPherson classes in H0(X) differ by the sum of the
local Milnor numbers:

cFu0 (X) = cSM0 (X)+ (−1)n−1
r∑

i=1

μi .

The proof of Theorem 7.4.2 is via Chern-Weil theory, using the virtual index of
vector fields, which is a localization of the top Fulton class (cf [123]). In Sect. 7.4.4
we give a topological interpretation of this index and a short proof of Theorem 7.4.2.
It was first proved by Suwa in [122] that the Milnor classes are localized at the
singular set, and therefore the theorem above yields:

Corollary 7.4.3 With the hypotheses of Theorem 7.4.2, the total Milnor class of X
is the sum of the local Milnor numbers:

M(X) =
r∑

i=1

μi .

So Milnor classes are a generalization of the classical Milnor number to compact
varietiesX with arbitrary singular set. In the sequel we say more about these classes,
and we relate them with the Lê cycles, introduced by D. Massey, which provide a
generalization of the Milnor number to germs of functions with arbitrary critical set.

7.4.1 First Steps

Aluffi’s article [3] began the study of the difference between the Schwartz-
MacPherson class cSM(X) and the Fulton class cFu(X) of a hypersurface X in a
complex manifold M . A key ingredient for this is a certain μ-class defined in [2],
that springs from a different (related) setting:

Definition 7.4.4 Let Y be the singular scheme of a section of a line bundle L on
a smooth complex algebraic variety M . Let s(Y,M) be the Segre class of Y in M
(defined in 7.3.25). Then the μ-class of Y with respect to L is

μL(Y ) := c(T ∗M ⊗L) ∩ s(Y,M) ,

in the Chow group A∗Y .
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This definition depends a priori on the choice ofM , yet Corollary 1.7 in [2] says
that it is actually intrinsic to Y and L|Y . The name μ-class comes from the fact
that, by [2, Proposition 2.1], the degree of its zero-dimensional component equals
Parusiński’s generalized Milnor number that we explain below, in Sect. 7.4.2.

Aluffi’s Theorem I.5 in [4] says:

Theorem 7.4.5

cSM(X) = c(TM) ∩ s(X,M)+ c(L)dimM ∩ (μL(Y )
∨ ⊗M L) .

This result is reformulated in [4] as follows. Recall that the singular subscheme Y
of the hypersurfaceX inM is locally defined by the partial derivatives of an equation
of X. In [4], for every integer k ≥ 0, Aluffi defines the k-th thickening X(k) of X
along Y . To explain this, if IY denotes the ideal of Y and J is the locally principal
ideal of X, then X(k) is the subscheme of M defined by the ideal J · IkY . One
may then consider the class cFu(X(k)) in the Chow group A∗(X). It was observed
in [3] that this class is a polynomial in k with coefficients in A∗(X), so it can be
formally evaluated on arbitrary k’s. It is also clear from the definition that cFu(X) =
cFu(X(0)). Then Theorem 7.4.5 can be stated as [4, Theorem I.2]:

Theorem 7.4.6

cSM(X) = cFu(X(−1)) .

Aluffi actually gives in [4] two other important equivalent formulations of these
theorems relating Fulton and Schwartz-MacPherson classes.

7.4.2 The Generalized Milnor Number and Milnor Classes of
Hypersurfaces

It is well-known that for a compact complex hypersurface (or complete intersec-
tion) X with only isolated singularities, the sum of the Milnor numbers at the
singular points equals (up to a sign) the difference between the topological Euler
characteristic of X and that of a smoothing of it, as for instance a manifold
given by a non-singular hypersurface linearly equivalent to X (provided such a
hypersurface exists). This is just an immediate application of Milnor’s work [95]
and Poincaré-Hopf’s theorem for manifolds with boundary (see for instance [30,
Proposition3.4.1]). This led Parusiński to extend the notion of Milnor number to
non-isolated hypersurface singularities. We refer to [97] for details on the original
definition and to Sect. 7.4.4 below for a generalization of this number for local
complete intersections.

We now recall another interesting way to view this invariant, given in [98].
We first call to mind the classical Gauss-Bonnet theorem. This says that if M
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is a compact m-dimensional complex manifold with tangent bundle TM , then its
topological Euler characteristic can be expressed as:

χ(M) =
∫

M

Ω

whereΩ is an m− f orm representing the top cohomology Chern class.
As pointed out in [98, Section 5], if L is a holomorphic line vector bundle over

M and s is a section transverse to the zero section, so its zero set Z is a non-singular
hypersurface in M and its normal bundle is isomorphic to L|Z, then the Gauss-
Bonnet theorem yields:

χ(Z) =
∫

M

c1(L) · c(M) · c(L)−1 ,

where c( ) denotes the total cohomology Chern class. If we now drop the hypothesis
of s being transversal to the zero section, then its divisor Z is a hypersurface in
M with singular set the points of non-transversality with the zero section. In this
setting, Parusiński’s generalized Milnor number can be regarded as being (up to
sign) the correction term coming from the singular set in the above formula:

μ(Z) := (−1)n
(
χ(Z)−

∫

M

c1(L) · c(M) · c(L)−1
)
.

It is easy to see that if Z has only isolated singularities then the formula above
implies that μ(Z) is the sum of the usual Milnor numbers at the singularities of Z.

In [99] Parusiński and Pragacz study, more generally, the Euler characteristic of
degeneracy loci associated with various bundle homomorphisms. Recall that given
a holomorphic morphism φ : F → E of vector bundles over a (possibly singular)
analytic variety X, the r-th degeneracy locus is the set

Dr(φ) = {x ∈ X | rankφ(x) ≤ r} .

Several authors have worked out formulas for the Euler characteristic of degeneracy
loci in terms of cohomological and numerical invariants under certain assumptions.
Recalling that for a singular variety its Euler characteristic is the 0-degree Chern-
Schwartz-MacPherson class, in [100, Theorem 2.1] the authors use the theory of
Chern classes on singular varieties to compute the image of the whole Chern-
Schwartz-MacPherson class ofDr(φ) in the homology ofX of a general morphism.

The functorial approach of MacPherson is especially useful for the purposes of
[99]. Then, in [100] the authors ask whether that formula can be extended to a
broader family of morphisms, and explore the “simplest case” where the morphism
is a nontrivial section s of a line bundle L and the degeneracy locus is the zero set
Z. As explained above, the difference between the Euler characteristic of Z and that
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of the zero locus of a general section is, up to sign, the generalized Milnor number
μ(Z).

In [100] the authors give a formula for the invariant μ(Z) in the vein of [99],
describing the generalized Milnor number in terms of a local invariants of the
singularities of Z and Chern-Schwartz-Macpherson’s classes. For this, consider an
analytic Whitney stratification S = {S} of Z with connected strata, such that Zsing
is union of strata; let γS be the function defined on each stratum S as follows. For
each x ∈ S, let Fx be a local Milnor fibre, and let χ(Fx) be its Euler characteristic.
Then

μ(x;Z) := (−1)n (χ(Fx)− 1) ,

is the local Milnor number of Z at x. This number is constant on each Whitney
stratum, so we denote it by μS . Then γS is defined inductively by:

γS = μS −
∑

S ′ �=S, S ′⊃S
γS ′ .

Then [100, Theorem 4] says:

Theorem 7.4.7

μ(Z) =
∑

S∈S
γS

∫

S

(
c(L|S )

−1 ∩ cSM(S)
)
.

Outline of the Proof First considerL to be very ample. By Bertini’s theorem in the
version of Verdier (see [129] and [62, p. 137]) there exists a holomorfic section s′ of
L whose zero set Z′ is transverse to a Whitney stratification S of Z. Approximate
Z by the zero sets Zt of the sections st = s − ts′, t ∈ C.

Let Y = M \ {x ∈ M ; ||s′(x)|| < ε}. For a sufficiently small t , we can find
ε > 0 such that the stratification S is transverse to ∂Y (see [100, Step 1, p.8]).
By [100, Step 2, p. 10] we see that it is possible to construct a system of tubular
neighbourhoods ΓS of S ∩ Y in Y , for each S ∈ S such that:

(a) GS = ΓS \⋃S ′⊂S\S int (ΓS ′) is a manifold with corners which (as a stratified
set) is transverse to S;

(b) GS is a locally trivial topological fibration over S̃ := S ∩ GS ; let πS be the
corresponding projection map;

(c) S̃ is a manifold with corners with the same homotopy type as S ∩ Y .

Then for t �= 0 small enough, Zt is transverse to the fibres of πS . Hence
πS |Zt∩GS : Zt ∩ GS → S̃ is a locally trivial fibration and its fibre F̃x at x ∈ S̃
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is homotopically equivalent to the Milnor fibre Fx by Thom’s First Isotopy Lemma.
Therefore,

μ(Z) = (−1)n[χ(Z)− χ(Zt)] = (−1)n[χ(Z ∩ Y )− χ(Zt ∩ Y )]
= (−1)n

[
∑

S∈S
(χ(S̃)− χ(Zt ∩GS))

]
= (−1)n

[
∑

S∈S
(χ(S̃)− χ(S̃)χ(F̃x))

]

=
∑

S∈S
μSχ(S̃) =

∑

S∈S
μSχ(S \ Z′) .

(7.11)

Using that γS = μS −∑S ′ �=S, S ′⊃S γS ′ and, since s′|S is a general section of L|S ,

χ(S ∩ Z′) =
∫

S

c(L|S)−1c1(L|S) ∩ cSM(S)

we have (see [99] or [100, Lemma 8]),

μ(Z) =
∑

S∈S
γSχ(S \ Z′) =

∑

S∈S
γS[χ(S)− χ(S ∩ Z′)]

=
∑

S∈S
γS

[∫

S

cSM(S)−
∫

S

c(L|S)−1c1(L|S) ∩ cSM(S)
]

=
∑

S∈S
γS

∫

S

c(L|S)−1 ∩ cSM(S).

This proves the theorem when L is very ample. Otherwise let E be a very ample
line bundle onM such that L⊗E is also very ample (such a bundle exists sinceM
is projective). LetH be the zero set of a section of E such thatH is nonsingular and
transverse to S. Then the family S \ H (for S ∈ S), S ∩ H (for S ∈ S) and H \ Z
defines a Whitney stratification of Z ∪H . Let T be the zero set of a general section
of L ⊗ M such that T is nonsingular and transverse to the above stratification of
Z ∪H .

As in obtaining Eq. (7.11), using a construction of a system of tubular neighbour-
hoods for above stratification,

μ(Z∪H) =
∑

S∈S
μS\H χ(S \H \T )+μH\Z χ(H \Z)+

∑

S∈S
μS∩H χ(S∩H \T ).

Using some computations and properties (see [100, Step 2, p.11]), we obtain

μ(Z ∪H) =
∑

S∈S
γS
[
χ(S)− χ(S|E)− χ(S|(L⊗E))− χ(S|E ⊕ (L⊗ E))]

−μ(Z ∩H) − μ(Z ∩H ∩ T )+ (−1)n(χ(M|L⊕ E)−χ(M|L⊕ E ⊕ (L⊗ E)).
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On the other hand, by the definition of μ(∗) and the additivity of Euler characteristic
(see [100, Step 3, p.12]), we have

μ(Z) = μ(Z ∪H)−μ(Z ∩H)− (−1)n [χ(M |L)+ χ(M |E)− χ(M |L⊕ E)− χ(M |L⊗ E)] .

Then some straightforward computations (see [100, Step 4 and 5, p.13]) yield:

μ(Z) =
∑

S∈S
γS[χ(S)− χ(S|L)] , (7.12)

proving Theorem 7.4.7. �
Remark 7.4.8 For another proof of formula (7.12), in terms of Deligne’s vanishing
cycle complexes, see e.g., [83, Section 10.4]. This formula, as well as the result of
Theorem 7.4.9, has been generalized to the case of global complete intersections in
[85], also in the context of Hodge-theoretic Hirzebruch characteristic classes of [29].
For an important recent application of formula (7.12) to the triangulation problem
in computer vision, see [84].

We know, for instance by 7.4.2 and 7.4.15, that the generalized Milnor number
can be identified with the 0-degree Milnor class. Yokura conjectured (unpublished;
cf. [132]) that Theorem 7.4.7 could be extended to a theorem concerning all Milnor
classes. This was proved by Parusiński and Pragacz in [101]:

Theorem 7.4.9 If M is an n-dimensional compact complex manifold, and Z is a
hypersurface inM , then its total Milnor class can be expressed as:

M(Z) :=
∑

S∈S
γS

(
c(L|Z )−1 ∩ (iS,Z)∗cSM(S)

)
,

where iS,Z : S ↪→ Z is the inclusion.

Outline of the Proof Let T ∨M be the cotangent bundle of M . For V an
(irreducible) subvariety ofM , let

T ∨V M = closure {(x, ξ) ∈ T ∨M | x ∈ Vreg, ξ |TxVreg ≡ 0} ,

be the conormal space to V inM . Let L(M) be the free abelian group of all cycles
generated by the conormal spaces T ∨V M , where V varies over all subvarieties of
M . Given a constructible function ξ on M with respect to a Whitney stratification
S = {S} define:

Ch(ξ) :=
∑

S∈S
(−1)dimSη(S, ξ) · T ∨

S
M,
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which is a element in L(M), η(S, ξ) is the normal Morse index of S with respect
to ξ (cf. [60] or Sect. 7.5.1 below). Hence if F(M) is the free abelian group of
constructible functions on M , we have the isomorphism Ch : F(M) → L(M),
by [81]. Denoting by π : Supp Ch(1V ) → V the restriction of the projection
P(T ∨M)→ M , C. Sabbah in [105] described the Schwartz-MacPherson classes as

cSM(V ) = (−1)n−1c (TM|V ) ∩ π∗
(
c(O(1))−1 ∩ [P(Ch(1V ))]

)
, (7.13)

where O(1) denotes the tautological line bundle on the projectivization P(T ∨M)→
M .

Let L, Z be as above. Let B = BlYX → X be the blow-up of X along the
singular subscheme Y of Z. Let Z e Y denote the total transform of Z and the
exceptional divisor in B, respectively.

By Aluffi technique (see [4]), that uses the bundle P1
XL of principal parts of L

over X, B may be treated as a subvariety of P(P1
XL), Z equals B ∩ P(T ∨X ⊗ L)

and the canonical line bundle OB(−1) on B is the restriction of the tautological line
bundle O(−1) on P(P1

XL). Then OB(−1)|Z is the restriction of the tautological line
buncleO

P̃
(−1) on P̃ = P(T ∨X⊗L). Using the natural identification P(T ∨X⊗L) ∼=

P(T ∨X), Eq. (7.13) can be written as

cSM(Z) = (−1)n−1c (TX|Z) ∩ π∗
(
c(OB(1)⊗ π∗L|Z)−1 ∩ [P(Ch(1V ))]

)
,

(7.14)

where π : Z→ Z is the restriction of the blow-up to Z.
Since Z = c1(π

∗(L|Z)), Y = c1(OB(−1)) and [P(Ch(1V ))] = (−1)n−1([Z]−
[Y]) (see [101, Corollary 2.4]), by Eq. (7.14),

cSM(Z) = c (T X|Z) ∩ π∗
( [Z] − [Y]

1+Z−Y

)

and by definition of the Fulton class,

cFu(Z) = c (T X|Z) ∩ π∗
( [Z]

1+Z

)
.

Then,

M(Z) = (−1)n−1 c (TX|Z) ∩ π∗
( [Y]
(1+Z)(1+Z−Y)

)
.

Since [P(Ch(μ))] = ([Y]) (see [101, Corollary 2.4]), μ = ∑S∈S γS1S (see [101,
Lemma 4.1]) and by Sabbah’s result for each S, we get the desired result. �
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7.4.3 The Milnor Number for Compact Complete Intersections
with Non-isolated Singularities

This section is largely based on [26] (see also [30]). We give an interpretation of
Parusiński’s generalized Milnor number as the 0-degree Milnor class, extending
Parusiński’s invariant to local complete intersections. This is proved in [26, 118]
using the virtual index, an invariant of vector fields that generalizes the GSV index.
Here we give an elementary topological definition of the virtual index, we prove
Theorem (7.4.2 above) and discuss the general case.

The virtual index was introduced in [74] for holomorphic vector fields and
extended in [118] to continuous vector fields. This is a localization of the Fulton
class cFun (X) at the singular set of an n-dimensional varietyX. Localization is a key
concept underlying this and the following sections. This can be done via topology
(obstruction theory) as we do it here, and also via differential geometry (Chern-Weil
theory). We refer to [15, 26, 27] for thorough discussions on that subject.

A paradigm of localization is given by Poincaré-Hopf’s local index as in Exam-
ple (7.3.4). More generally, given a regular neighborhood US of some simplicial
subcomplex S in an m-manifoldM (for some triangulation or cell decomposition),
and a vector field v with no singularity on US , this determines a lifting of the
Chern class cm(T US) fromH 2m(US) to H 2m(US,US \ S). The relative Chern class
cm(US, ∂US) that we obtain, evaluated on the orientation cycle of US relative to
its boundary, gives the element IndPH(v;M; S) in H0(S) ∼= Z. This is the idea we
develop. The subtle point is that the Fulton class is defined by the Chern classes of
a virtual bundle.

We look first at the isolated singularity case. Unlike [26, 30], here we do it
topologically. Then we discuss the general case from the topological viewpoint.

7.4.3.1 The Virtual Index for Isolated Singularities

We considerX of pure dimension n in a compact complex manifoldM of dimension
n + k, defined by a regular section s of a rank k holomorphic bundle E on M ,
k < n. By definition we have the virtual tangent bundle TX := TM|X − E|X. Its
total Fulton class cFu(X) is the cap product with [X] of the polynomial c(TM|X) ·
c(E|X)−1, i.e.,

(1+ c1(TM|X)+ . . .+ cn(TM|X) · (1+ c1(E|X)+ . . .+ ck(E|X))−1. (7.15)

We consider the degree n term in this polynomial, so it is something of the form:

cn(TM|X)+ cn−1(TM|X)d1(E|X)+ . . .+ cn−k(TM|X)dk(E|X)+ . . . ; (7.16)

where (1+d1+ . . .+dn) is c(E|X)−1 ∈ H ∗(X). This lives inH 2n(X), so evaluated
on [X] it is an integer.
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We know from [30] that whenever we have a C∞ tangent vector field v with
isolated singularities on Xreg, the regular part of X, this splits cFun (X) in two parts:
one, denoted IndVir(v, Si ), is localized at each connected component Si of the
singular set of X; this is the virtual index of v at Si , that we want to understand;
the other is the total Poincaré-Hopf index of v in Xreg.

We look first at the case where X has only isolated singularities; and we prove
Theorem 7.4.2. Let x1, . . . , x� be the singular set of X. Choosing appropriate
coordinate charts Ui at each xi , i = 1, . . . , �, we let sij : (Cn+k, xi) → (Ck, 0),
j = 1, . . . , k be local components of the section that defines X; these define the
ICIS germ (X, xi).

Now consider a C∞ vector field v on X which is singular at the singularities of
X and possibly at some other regular points ofX, say y1, . . . , yp. We want to define
a localization of cFun (X) at each of these points.

For each xi , choose a Milnor ball Bεi , let Sεi be its boundary sphere and Li :=
X∩Sεi its link. We remark that, by [94],Xi := X∩Bεi is homeomorphic to the cone
over Li and therefore it has the homotopy of a point. Hence the bundles TM|Xi and
E|Xi are trivial restricted to each Xi .

We have a canonical (up to a change of coordinates) trivialization τi of E|Li
determined by the complex conjugate gradient vector fields ∇si1, . . . ,∇sik . These
define cycles in the relative cohomologyH ∗(X,L1∪ . . .∪Lq) representing relative
Chern classes of E|X, c̃i (E|X; τ ), whose images in H ∗(X) are the usual Chern
classes.

By definition, the Chern class cn(TM|X) is the primary obstruction to construct-
ing a (k+1)-frame of this bundle, i.e., (k+1) linearly independent sections, because
TM has dimension n + k. We notice that each link Li is a submanifold of the
regular part Xreg , and the bundle E is isomorphic to the normal bundle of Xreg in
M . Hence if we have a continuous vector field v on X with isolated singularities
at the xi (and possibly also at some regular points of X), then (v,∇si1, . . . ,∇sik)
determine a (k+ 1)-frame of TM|L1∪...∪Lq and give rise to a cocycle representing a
class c̃n(TM|X) in H 2n(X,L1 ∪ . . . ∪ Lq) whose image in H 2n(X) is cn(TM|X).

Consider the polynomial appearing in Eq. (7.16) but now with respect to the
relative classes c̃i (E|X; τ ) and c̃n(TM|X). The element we get is a lifting of
cn(TM|X − E|X) ∈ H 2n(X) to a class

c̃n(TM|X − E|X) ∈ H 2n(X,L1 ∪ . . . ∪ Lq) .

One has:

Definition 7.4.10 At each singular point xi of X, the virtual index of v at xi ∈ X,
IndVir(v;X, xi) ∈ Z, is the contribution to the Chern number c̃n(TM|X −E|X)[X]
localized at Xi := X ∩ Bεi . That is:

IndVir(v,Xi) := c̃n(TM|Xi − E|Xi )[Xi] .
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Lemma 7.4.11 For each i = 1, . . . , q , let Fi be the (k + 1)-frame on the
link Li defined by the tangent vector field v and the local gradient vector fields
(∇1, . . . ,∇k). Let c̃n(TM|Xi ) ∈ H 2n(Xi, Li;Fi) be the n-th Chern class of TM|Xi
relative to Fi . Then one has:

c̃n(TM|Xi − E|Xi ) = c̃n(TM|Xi ) .

Therefore the virtual index as defined above, in 7.4.10, equals the GSV-index
(definition 7.2.5) and it coincides with the classical virtual index for isolated
singularities, as defined in [74, 118].

Proof Notice that each monomial appearing in Eq. (7.16), other than cn(TM|X),
is decomposable: it is either a product of some (absolute) Chern class of TM|X
by a class in c(E|X)−1 or a product of classes in c(E|X)−1. In the first case, the
Chern classes of TM|Xi , vanish since Xi is contractible, except cn which has been
lifted to a relative class. In the second case, the Chern classes of c(E|X) have all
been lifted to relative classes, but a general fact in algebraic topology is that the
cup product of two relative classes does not change if we push one of them to the
absolute cohomology. And then we use that restricted to each Xi the bundle E is
trivial sinceXi is contractible. This proves the first statement: c̃n(TM|Xi −E|Xi ) =
c̃n(TM|Xi ). Then, by definition of the relative Chern classes (see for instance [124]),
the integer cn(TM|Xi )[Xi] equals the degree of the map

(v,∇1, . . . ,∇k) : Li → Wk+1,n+k

into the Stiefel manifold of (orthonormal up to homotopy) (k + 1)-frames in C
n+k ,

and this is by Definition (7.2.5) the GSV-index of v. ��
The proof of Theorem 7.4.2 is now an exercise using Theorem 7.2.3, Proposi-

tion 7.2.6 and Theorem 7.2.7. �

7.4.3.2 The Virtual Index at Non-isolated Singularities

We now introduce localization at higher dimensional sets. Consider first a compact
complexm-manifoldM and a continuous vector field v onM with compact singular
set Σ which is a subcomplex for some triangulation of M . Let S be a connected
component of Σ; we assume there is a regular neighborhood US of S so that v is
non-singular on US \ S. We can always perturb v slightly and get a vector field
ṽ on US with finitely many singularities x1, . . . , xs . Then we define the Poincaré
Hopf index of v at S, IndPH(v;M; S), to be the sum of the local indices at the xi :
This number is independent of the way we perturbe v and if we do this over all the
connected components of Σ we get the Euler characteristic of M (cf. [30, Chapter
1]).

We now let the space X in M be as in Sect. 7.3.5: X is defined by a regular
section of a very ample vector bundle E and it may have arbitrary singular locus
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Xsing. Let S1, . . . , S� be the connected components of Xsing. Let v be a continuous
vector field on the regular part Xreg := X \ Xsing and assume Ui , i = 1, . . . , �, are
regular neighborhoods of the Si such that v is non singular on Ui \ Si . We want to
define the virtual index of v at each Si , a localization of the 0-degree Fulton class.

We consider a family of sections {st } with t in some open disc Δ in C, centered
at 0, such that s0 = s and st is everywhere transversal to the 0-section of E for all
t �= 0. The zero sets {Xt } of these sections define a flat family of local complete
intersections in M , which are non-singular for t �= 0 and degenerate to X0 = X.
And we have Verdier’s specialization morphism

r∗ ◦ ι∗ : H∗(Xto) −→ H∗(X) .

We need to refine this construction slightly. For this we assume further (with no loss
of generality) that each Ui has smooth boundary ∂Ui . Let η be small enough so that
the open disc Δη in C of radius η and center at 0 is contained in Δ and for each
t ∈ Δη, Xt intersects ∂Ui transversally, for all i = 1, . . . , �. For each t ∈ Δη, set

X̂t = Xt \ (U1 ∪ . . . ∪ U�) .

This is a compact smooth manifold with boundary the intersection ofXt with ∂U1∪
. . . ∪ ∂U�, and its interior is a complex manifold which for t = 0 is a deformation
retract ofXreg. We claim that the manifolds X̂t are all isotopic inM \(U1∪. . .∪U�).
This follows from the next lemma proved for us by J. L. Cisneros-Molina.

Lemma 7.4.12 Let p : E→ M be a smooth vector bundle. Let S : M × I → E be
a homotopy between sections of E such that for all t ∈ I the section St : M → E

defined by St (x) = S(x, t) is transversal to the zero section Z of E. Set Nt =
s−1
t (Z) with t ∈ I . Then all the Nt are isotopic as submanifolds ofM .

Proof The sections St : M → E are all transversal to the zero section Z of E, so
the map S : M × I → E also is transversal to Z. Set N = S−1(Z), then N is a
submanifold with boundary of the manifold with boundary M × I . Consider the
projection:

π : M × I → M.

Define πt : M ∼= M×{t} → M as the restriction of π toM×{t}. Then πt : M → M

is a diffeomorphism ofM into itself and π is an isotopy between N0 and N1. ��
Now let v be as above. Given X̂t with t ∈ Δη and t �= 0, we know from the

above lemma that X̂0 is isotopic to X̂t . Hence v can be regarded as a vector field on
X̂t with no singularities on its boundary. This defines a splitting of the Chern class
cn(X̂t ) in two parts, one contained in the complement of the Ui and another with
support in the Si . Now recall that Theorem 7.3.29 says that the Chern classes of the
X̂t , t �= 0, regarded in homology, specialize to the Fulton class of X. Hence the
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above splitting of the Chern classes of X̂t determines the localization of the Fulton
class cFun (X):

Definition 7.4.13 The integer so obtained, by localizing the Fulton class cFun (X) at
Si with the vector field v, is the virtual index of v at Si , Indvir(v;X, S).

It is clear that the virtual indices of v at the connected components of the singular
set ofM , together with its Poincaré-Hopf indices at the singular points v may have
on the regular part of X, add up to the Fulton class cFun (X).

Notice that this index is defined in [26, 30] in more generality than we do it here.

7.4.3.3 The Generalized Milnor Number

In (7.3.14) we remarked how Schwartz classes can be localized at connected
components of the singular set by using appropriate frames. In particular, given
a local complete intersectionX in a manifoldM , a connected component S ofXsing
and a vector field v on a neighborhood U of S in X, non-singular on U \ S, we
can localize the 0-degree Schwartz-MacPherson class cSMn (X) ∈ H0(X;Z) and get
the Schwartz index of v on X at S, IndSch(v;X, S). It is an exercise to see that the
difference

Indvir(v;X, S)− IndSch(v;X, S)

does not depend on the choice of v. We can think of it as being up to sign the
localization at S of the 0-degree Milnor class of X. Define (following [26, §6]):

Definition 7.4.14 The generalized Milnor number of X at S is:

μ(X, S) := (−1)n
(
Indvir(v;X, S)− IndSch(v;X, S)

)
.

By Theorem 7.4.2 this is the usual Milnor number when S is a point; and by [26,
Theorem 6.2] it is Parusiński’s generalized Milnor number if X is a hypersurface.

The previous discussion yields the following theorem:

Theorem 7.4.15 Let X be the zero set of a regular section of a rank k holomorphic
bundle E over a compact complex manifoldM of dimension n + k. Let S1, . . . , S�
be the connected components of the singular set of X. Then the sum of the Milnor
numbers of X at the Si adds up to the 0− degree Milnor class of X:

M0(X) =
�∑

i=1

μ(X, Si) .
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7.4.4 Milnor Classes for Complete Intersections via
Localization

The previously described localization of the 0-degree Milnor class was extended in
[25, 26] to define Milnor classes in general by localizing the difference between
Schwartz-MacPherson and Fulton classes at the connected components of the
singular set of X. Here we say a few words about this from a topological viewpoint.

The bulk of [25, 26] can be condensed in the following theorem, which actually
holds in greater generality than we state here (see also [30]). LetX be an irreducible
and reduced compact complex analytic n-variety in a complex m-manifoldM .

Theorem 7.4.16 Let X be defined by a regular section of a holomorphic vector
bundleE overM of rank k, 1 ≤ k < m. Let S1, . . . , S� be the connected components
of the singular set Xsing. Equip X with a Whitney stratification so that S1, . . . , S�
are union of strata, and a triangulation (T ) compatible with the stratification. Let
(D) be the cell decomposition dual of the barycentric decomposition of (T ) and for
each i = 1, . . . , � let Ui be the regular neighborhood of Si consisting of all cells in
(D) that meet Si . Let (D)j be the j th skeleton of the cell decomposition. Then:

1. For every r , 1 ≤ r ≤ n, there exist continuous stratified r-frames F ir on each Ui ,
i = 1, . . . , �, which are non-singular on (D)2n−2r+2 ∩ (Ui \ Si).

2. Every such frame splits the corresponding Schwartz-MacPherson and the Fulton
classes of X in two pieces, one contained in the regular part of X and another
localized at the components Si of the singular set.

3. The difference between the localizations of the Schwartz-MacPherson and the
Fulton classes of X at each Si is independent of the choice of frame: this is, by
definition, the Milnor class of X at Si : Mr (X; Si)

4. The contributions to the Schwartz-MacPherson and the Fulton classes of X
contained in the regular part are equal to the Chern classes ofX \⋃Ui relative
to the r-frames F ir on the boundary of each Ui .

5. Therefore the sum of the Milnor classes Mr (X; Si) of X at the connected
components of the singular set is the global Milnor class Mr (X) defined in 7.4.1.

Idea of the Proof The first statement follows from the work of M. H. Schwartz
constructing frames by radial extension; we refer to [30, Chapter 2] for details.
Also, localization of the Schwartz-McPherson classes is straightforward (see
Remark 7.3.14 and see Chapter 10 in [30] for a thorough discussion). Hence,
in order to localize the Milnor classes the subtle point is localizing the Fulton
classes compatibly. The degree 0 case was already discussed above.

Now, for every r = 1, . . . , n, let F ir be a stratified r-frames on each Ui , i =
1, . . . , �, as in Theorem 7.4.16. These are non-singular on (D)2n−2r+2 ∩ (Ui \ Si).
Given an X̂t as in Sect. 7.4.3.2 with t ∈ Δη and t �= 0, we know from Lemma 7.4.12
that X̂0 is isotopic to X̂t . Hence the F ir can be regarded as an r-frame on X̂t with no
singularities on its boundary. This defines a splitting of the Chern class cn−r+1(X̂t )

in two parts, one contained in the complement of the Ui and another with support in
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the Si . Now recall that Theorem 7.3.29 says that the Chern classes of the X̂t , t �= 0,
regarded in homology, specialize to the Fulton class ofX. Hence the above splitting
of the Chern classes of X̂t determines the localization of the Fulton classes stated in
Theorem 7.4.16. �

As an example one has:

Example 7.4.17 [26, Corollary 5.13] Let S be a non-singular connected component
ofXsing such thatX is Whitney regular along S. Let s be the complex dimension of S
and let H be a local slice transversal to S of codimension s in the ambient manifold
M , passing through a point x in S, so thatX∩H is a complete intersection inH with
an isolated singularity at x. Let μ(X ∩ H, x) be the corresponding Milnor number.
Then the top Milnor class of X at S is up to sign, the transversal Milnor number
μ(X ∩H, x) times the fundamental cycle [S]:

Ms(X, S) = (−1)sμ(X ∩H, x) · [S] .

Remark 7.4.18 Finally, let us note that Milnor classes can also be seen (via Verdier
specialization) as Chern-Schwartz-MacPherson classes of the complex of vanishing
cycles of Deligne, see, e.g., [40, 85], etc.

7.4.5 Riemann-Roch, Bivariant Theory and Milnor Classes

Riemann-Roch is one of the deepest theorems in mathematics; it is a landmark that
relates the complex analysis of a compact Riemann surface S with the surface’s
genus g, which is a topological invariant. Its origin is Riemann’s theorem that
on every such surface S there are g linearly independent holomorphic 1-forms.
There have been remarkable generalizations of Riemann-Roch for non-singular
varieties by various people, perhaps most notably by Hirzebruch, Grothendieck and
Atiyah-Singer (through the general index theorem). And then by Baum, Fulton,
MacPherson, Verdier and others for singular varieties. Searching for a Verdier-
Riemann-Roch type theorem for the MacPherson classes, S. Yokura realized that
Milnor classes naturally come into the picture. This is much related to Chern classes
in bivariant theory and Brasselet’s paper [21]. In this section we glance at this
material and we refer to [114, 134] for more complete discussions on the subject.

After G. Roch (1839–1866), several people tried to generalize Riemann-Roch to
higher dimensions. A first step was to propose a good candidate to play the role of
the genus of a Riemann surface. The arithmetic genus ρa(M) was such a candidate.
This was defined by F. Severi, and Hirzebruch points out in the introduction to
[65] that it can also be defined using the Hilbert characteristic function. Hirzebruch



7 Milnor Number and Chern Classes for Singular Varieties: An Introduction 541

modified its definition slightly so that it has convenient multiplicative properties.
This is defined in terms of the analytic Euler characteristic:

ρa(M) := χ(M,OM) :=
dimM∑

i=0

Hi(M;O) .

In the 1930s J. A. Todd gave a slightly different definition of the arithmetic genus
and showed that this can be represented in terms of certain (Eger-Todd) canonical
classes, which are by definition equivalence classes of algebraic cycles; however
the proof was incomplete. This was before Chern classes were defined, and it was
proved later that the Eger-Todd classes essentially coincide with Chern classes.

Then J. P. Serre, in a letter to Kodaira and Spencer, conjectured that in fact for
any holomorphic vector bundle E onM , the holomorphic Euler characteristic of E,

χ(M,E) :=
dimCM∑

i=0

(−1)i dimCH
i(M,E) ,

can be determined by the Chern classes of M and E; this was known for curves
(proved by A. Weil), extending Rieman-Roch.

In 1953 Hirzebruch proved Serre’s conjecture. For this he realized how to gen-
eralize Todd’s constructions and introduced what he called the Todd polynomials.
These are polynomials in the Chern classes of the manifold, corresponding to a
certain multiplicative sequence as we explain below.

The Hirzebruch-Riemann-Roch theorem, says the analytic Euler characteristic of
a compact complex manifoldM equals its Todd genus. And more generally:

χ(M,E) := ch(E)Td(M)[M] ,

where ch is the Chern character and Td is the Todd class. One side is analytic and
the other is topological. We now recall these concepts, for the reader’s convenience,
and we refer to [65] and to the excellent survey paper [114] for more on the topic.

To define this multiplicative sequence of polynomials, one considers the formal
power series

Q(x) = x

1− e−x = 1+ x
2
+

∞∑

i=1

(−1)i−1Bi

(2i)! x2i = 1+ x
2
+ x

2

12
− x4

720
+ . . .

where Bi is the i-th Bernoulli number. Then one considers the coefficient of xj in
the product

m∏

i=1

Q(βix) ,
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for any m > j . This is symmetric in the βi and homogeneous of weight j , so it can
be expressed as a polynomial Tdj (σ1, . . . , σj ) in the elementary functions of the βi .
This is the Todd sequence of polynomials. The first Todd polynomials are:

Td1 = 1

2
c1 , Td2 = 1

12
(c2

1 + c2) , Td3 = 1

24
(c1 · c2) ,

Td4 = 1

24
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

2 − c4) , . . .

The Todd class of M is the formal power series in its Chern classes defined by
all these polynomials:

Td(M) := 1+ Td1(M)+ Td2(M)+ . . .

Notice that χ(M,E) is an integer by definition, while ch(E)Td(M)[M] is a
polynomial with rational coefficients in the Chern classes ofM and E; by definition
this is a rational number. A highly non-trivial and yet obvious consequence of
Hirzebruch-Riemann-Roch is that this number actually is an integer. In particular
the Todd genus of a compact complex manifold is an integer. See for instance [19,
p. 11] where Hirzebruch tells Bourguignon: “I admired already the fact that for an
algebraic surface c2

1 + c2 is always divisible by 12”.
Of course one may ask if this integrality property of the Todd genus is best

possible. More precisely, when is the Todd genus of a compact complex manifold
an even integer? For complex surfaces the answer is given by the classical Rochlin’s
signature theorem for spinc 4-manifolds: the parity of the Todd genus is given by
the mod(2)-index of the Dirac operator associated to the canonical spinc-structure
(cf. [11]). This statement is generalized in [53] to complex dimensions of the form
4k + 2 using a theory of characteristic divisors.

The Chern character is uniquely characterized by being a ring homomorphism:

ch : K(M) −→ H ∗(M;Q) ,

such that for one dimensional bundles one has

ch(L) = ec1(L) :=
∞∑

i=0

c1(L)
i

i! .

This is extended to higher dimensional bundles using the splitting principle.
Grothendieck’s version of Riemann-Roch can be expressed by saying that the

mapping ξ �→ ch(ξ) ∩ Td(M) from the Grothendieck group K0M of algebraic
vector bundles on M to a suitable cohomology theory H •M , is a natural transfor-
mation of covariant functors, where ch is the Chern character and Td is the Todd
class; K0M and H •M are contravariant but for non-singular varieties they can
be made covariant, as explained by Borel and Serre in [18]. That is, let K0(M)
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be the Grothendieck group of coherent algebraic sheaves on M; for a morphism
f : X→ Y one has the pushforward f! : K0(X)→ K0(Y ) defined by means of the
higher direct image sheaves:

f!(G) :=
∑

i≥0

(−1)iRif∗G .

The canonical map K0(M)→ K0(M) taking a bundle to its sheaf of sections is an
isomorphism and turns K0 into a covariant functor. Then one has:

Theorem 7.4.19 (Grothendieck-Riemann-Roch) For X,Y non-singular com-
pact algebraic varieties over C, the map τ∗(G) = Td(X)ch(G) ∪ [X] is natural.
That is, for any morphism f : X→ Y the following diagram is commutative:

K0(X)
τ∗−→ H2∗(X;Q)

f! ↓ ↓ f∗
K0(Y )

τ∗−→ H2∗(Y ;Q)

Taking Y to be a point and G the sheaf of local sections of a bundle we recover
Hirzebruch’s theorem.

Grothendieck-Riemann-Roch was extended for singular varieties in various ways
by Baum, Fulton and MacPherson in [16]. In particular, consider a possibly singular
projective variety X and let K0 be as before, the Grothendieck group of coherent
sheaves on X. We consider singular cohomology with rational coefficients. Then
[16] there is a unique natural transformation τ : K0 → H∗ such that the diagram

K0(X)⊗K0(X)
⊗−→ K0(X)

ch⊗ τ ↓ τ ↓
H ∗(X;Q)⊗H∗(X;Q) ∩−→ H∗(X;Q)

is commutative and ifX is non-singular and OX is its structure sheaf, then τ (OX) =
Td(X)∩[X] . The naturality of τ means, as usual, that if f : X→ Y is a morphism,
then the following diagram commutes:

K0(X)
τ−→ H∗(X;Q)

f∗ ↓ ↓ f∗
K0(Y )

τ−→ H∗(Y ;Q)

This τ is called the Todd class of Baum-Fulton-MacPherson. The following
Theorem was conjectured in [16] and affirmatively proved by Verdier in [130] (see
[55, Theorem 18.2(3)]). We recall [130, 1.4, p. 190] that a morphism f : X → Y

is a local complete intersection if at each point it factorizes as the composition of a
regular embedding ι into some variety Z, followed by a smooth morphism Z → Y ,
i.e. a flat morphism such that the sheafΩX/Y of relative differentials is locally free.
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Theorem 7.4.20 (Verdier-Riemann-Roch) Let f : X → Y be a local complete
intersection morphism and let Tf be the virtual relative tangent bundle. Then the
following diagram commutes:

K0(Y )
τ−→ H∗(Y ;Q)

f ∗ ↓ ↓ T d(Tf ) ∩ f ∗
K0(X)

τ−→ H∗(X;Q)

Here the homology functor can be replaced by A∗, the Chow homology covariant
functor. Then Yokura in [132] asked whether a similar diagram holds for the Chern-
Schwartz-MacPherson transformation C∗ : F → A∗, where F is the group of
constructible function. In [133] he proved that indeed such a Verdier-type Riemann-
Roch formula holds in the case of smooth morphisms: given a smooth morphism
f : X→ Y , the following diagram commutes [133, Theorem 2.2]:

F (Y ) C∗−→ A∗(Y )
f ∗ ↓ ↓ c(Tf ) ∩ f ∗
F (X) C∗−→ A∗(X)

Yokura then noticed that unlike the case of Baum-Fulton-MacPherson’s
Riemann-Roch, one cannot expect a Verdier-type Riemann-Roch theorem for
the Chern-Schwarz-MacPherson transformation in the case of local complete
intersection morphisms in general. Even in the simplest case where Y is a point, the
lack of commutativity for the corresponding diagram is given by the Milnor classes
of X.

Therefore one is naturally led towards considering Milnor classes in bivariant
theory (cf. Brasselet’s paper [21]). We refer to Yokura’s quoted papers and also to
Schürmann’s article [106] as well as [22, 82, 114, 132]. The concept of bivariant
theory was introduced by W. Fulton and R. MacPherson [56]. This topic is vast
and here we say only a few words. Bivariant theory is concerned with maps, not
with spaces. It consists of two functors, one covariant and another contravariant,
that fit together in a nice way. More precisely, a bivariant theory B on a category
C with values in an abelian category comes with a distinguished class of maps
called confined (or proper) morphisms and a class of commutative squares called
independent squares, which satisfy certain axioms (see for instance [56, Section

2.1]). Then B assigns to each such morphism X
f→ Y in the category C an abelian

group B(X
f→ Y ), and there are three basic operations:

(i) Given morphisms f : X→ Y and g : Y → Z we have a product operation:

• : B(X f→ Y )⊗ B(Y
g→ Z) −→ B(X

gf→ Z) .
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(ii) For f, g as above with f proper, there is a pushforward operation:

f∗ : B(X gf→ Z) −→ B(Y
g→ Z) .

(iii) For each independent square

X′ g′−→ X

f ′ ↓ ↓ f
Y ′ g−→ Y

,

one has a pullback operation:

g∗ : B(X f→ Y ) −→ B(X′ f
′
→ Y ′) .

These three operations are required to satisfy certain (seven) compatibility
axioms (see [56, Section 2.2] or [114, Section 9] for details).

To finish this section we remark that there is another interesting approach
initiated by Yokura, to study Milnor classes in bivariant theory. One can motivate
this with a natural question posed by himself in [135]: given a holomorphic bundle
E over a compact complex analytic space X with compact fiber Y , what can we say
about the Milnor classes (or more generally, the various types of Chern classes for
singular varieties) of E out from those of X and Y ?

The above question is highly non-trivial even in the simplest case where E =
X×Y . In fact, that setting was studied by Ohmoto and Yokura in [96]. They proved
a general product formula for the Milnor class of a finite Cartesian product of local
complete intersections Xi . In the particular case of a product X × Y of two local
complete intersections of dimensions n,m, respectively, this formula is particularly
nice:

M(X×Y ) = M(X)×M(Y )+(−1)mM(X)×cSM∗ (Y )+(−1)ncSM∗ (X)×M(Y ) .
(7.17)

Since Milnor classes have support in the singular set, if Y is non-singular this
implies:

M(X × Y ) = (−1)mM(X)× cSM∗ (Y ) . (7.18)

This last equation is nicely extended in [135] as follows. Let f : X̃ → X be a
morphism of compact complex analytic varieties. Say that f is smooth of relative
dimension d if it is flat, for all subvarieties V of X and all irreducible components
V ′ of f−1(V ) one has dimV ′ = dimV + d , and the sheaf of relative differentials
Ω1
X̃/X

is locally free. Set M0 =
(
cFu(X)− cSM(X)); so this is the total Milnor

class up to sign. Then one has [135, Theorem 2.2]
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Theorem 7.4.21 LetM be an (n+ k)-dimensional complex analytic manifold, and
letE be a rank k holomorphic vector bundle overM . Let s be a regular holomorphic
section of E, and let X be the zero set of s. Let π : M̃ → M be a smooth morphism.
Set Ẽ = π∗E, s̃ = π∗s and X̃ = π−1(X). Let f = π |X̃ be the restriction of π to
X̃. Then:

M0 = c(Tf ) ∩ f ∗M0(X) ,

where Tf is the relative tangent bundle of the smooth morphism.

The aforementioned product formulas for the Milnor class of Ohmoto and Yokura
in [96] inspired the recent article [34], which reminisces work by Aluffi-Faber [8]
and Schürmann [110]. The main theorem in [34] considers an n-dimensional com-
pact complex analytic manifoldM and holomorphic vector bundles {E1, · . . . ·, Er },
r ≥ 1, over M of ranks di ≥ 1. For each i = 1, · . . . · r , let Xi be the
(n − di)-dimensional local complete intersection in M defined by the zeroes of
a regular section si of Ei . Assume further that the Xi are equipped with Whitney
stratifications Si such that all the intersections amongst strata in the various Xi are
transversal. Set X = X1 ∩ · . . . · ∩Xr , a local complete intesection of dimension
n− d1 − · . . . · −dr . Then:

(i) cSM(X) = c ((TM|X)⊕r−1)−1 ∩
(
cSM(X1) · . . . · cSM(Xr)

)
;

(ii) cFJ (X) = c ((TM|X)⊕r−1)−1 ∩
(
cFJ (X1) · . . . · cFJ (Xr)

)
; and therefore

(iii) M(X) = (−1)dimX c
(
(TM|X)⊕r−1)−1 ∩

(
cFJ (X1)·. . .·cFJ (Xr)−cSM(X1)·

. . . · cSM(Xr)
)
.

7.5 Milnor Classes and Lê Cycles

7.5.1 Local Lê Cycles

Lê cycles are analytic cycles encoding deep information about singularity germs
f : (Cn+1, 0) → (C, 0) and allow describing the topology and diffeomorphism
type of the local Milnor fibres. These were introduced by D. Massey and we refer to
[77, 78] for thorough discussions on this subject (see also [73], §6 and 9). Lê cycles
spring from the theory of polar varieties developed by B. Teissier and Lê D. T. in
the 1970s; particularly by Lê’s attaching handles theorem [73, Theorem 1.6.8].

Recall (see for instance [71, 126]) that given f as above and a general linear
form � : Cn+1 → C, one has the first relative polar curve Γ 1

f,� of f with respect to
a linear form �. As a set this is the union of those components in the critical set of
(f, �)which are not critical points of f . In other words, assume we have coordinates
(z0, . . . , zn) so that the linear function � = z0 is “sufficiently general”. Then the
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critical locus of (f, �) is V (∂f /∂z1, . . . , ∂f /∂zn), the set of points where ∂f /∂zi =
0 for all i = 1, . . . , n. Now write the cycle represented by V (∂f /∂z1, . . . , ∂f /∂zn)

as a formal sum over the irreducible components:

[
V
( ∂f
∂z1
, . . . ,

∂f

∂zn

)] =
∑
ni [Vi] .

Then Γ 1
f,�, as a cycle, is defined by: Γ 1

f,� =
∑
Vi�Σf

ni [Vi] .
More generally we may consider a generic linear functional C

n+1 → C
r .

This gives rise to a polar variety relative to f determined by the points of non-
transversality of the fibers of � and f , denoted Γ rf,�. Let U be an open subset of

C
n+1 containing the origin, z = (z0, . . . , zn) a choice of linear coordinates in C

n+1

and Σ(f ) = V
(
∂f
∂z0
, . . . ,

∂f
∂zn

)
the critical set of f. For each k with 0 < k < n,

the polar variety Γ kf,z is the analytic space V
(
∂f
∂zk
, . . . ,

∂f
∂zn

)
/ Σ(f ), where X/Y

means the analytic closure of X − Y . At the level of ideals Γ kf,z consists of those

components of V
(
∂f
∂zk
, . . . ,

∂f
∂zn

)
which are not contained in the set Σ(f ). Massey

denotes by [Γ kf,z] the cycle associated with the space Γ kf,z. Then, for each 0 < k < n

, Massey defines the k-th Lê cycle Λkf,z of f with respect to the coordinate system
z as the cycle:

Λkf,z :=
[
Γ k+1
f,z ∩ V

(
∂f

∂zk

) ]
− [ Γ kf,z ].

If a point p = (p0, . . . , pn) ∈ U is an isolated point of the intersection of Λkf,z
with the cycle of V (z0 − p0, . . . , zk−1 − pk−1), then the Lê number λkf,z(p) is the
intersection number at p:

λkf,z(p) := (Λkf,z · V (z0 − p0, . . . , zk−1 − pk−1) )p .

For a generic choice of coordinates all Lê numbers of f at p are defined and they
are independent of the choice of coordinates. These are the (generic) Lê numbers of
f at p. If the singularity of f is isolated, then there is only one generic Lê number
and it coincides with the Milnor number. One has [78, Theorems 3.3 and 10.3]:

Theorem 7.5.1 Let f : (Cn+1, 0) → (C, 0) be a holomorphic map-germ and let
Ff be its Milnor fiber.

• If the complex dimension s of its critical set is s ≤ n− 2, then Ff is obtained up
to diffeomorphism, from a 2n-ball by successively attaching λn−kf,� (0) k-handles,

where n− s ≤ k ≤ n and λn−kf,� (0) is the (n− k)th Lê number.
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• If s = n− 1, then Ff is obtained up to diffeomorphism, from a real 2n-manifold
with the homotopy type of a bouquet of λn−1

f,� (0) circles, by successively attaching

λn−kf,� (0) k-handles, where 2 ≤ k ≤ n.
• The reduced Euler characteristic of the Milnor fiber of f at 0 is:

χ̃ (Ff,0) =
n∑

i=0

(−1)n−iλif,z(0) .

We refer to [80] for a self-contained sketched proof of this theorem.
Massey also gave an alternative characterization of the Lê cycles of a hyper-

surface singularity which leads to a generalization that can be applied to any
constructible complex of sheaves. To explain this, let us equip X = f−1(0) with
a Whitney stratification {Sα}. Recall that for every constructible function β on X
one has the normal Morse index η(Sα, β) defined by Goresky and MacPherson in
[60, Chapter 3]. To recall the definition of η(Sα, β), given X denote by Dbc (X) the
derived category of bounded constructible complexes of sheaves of C-vector spaces
on X. Denote the objects of Dbc (X) by something of the form F •. For F • ∈ Dbc(X)
and p ∈ X we denote by H∗(F •)p the stalk cohomology of F • at p and by
χ(F •)p its Euler characteristic (we refer to [66], but see also [43, 83] and [92]
for background material on these topics). That is,

χ(F •)p =
∑

k

(−1)k dimCHk(F •)p .

We also denote by χ(X,F •) the Euler characteristic of X with coefficients in F •,
i.e.,

χ(X,F •) =
∑

k

(−1)kdimC H
k(X, F •),

where H
∗(X, F •) denotes the hypercohomology groups of X with coefficients in

F •.
Now let N be a germ of a closed complex submanifold ofM which is transversal

to Sα , with N ∩ Sα = {x}. Define the complex link lSα of Sα by [60]:

lSα := X ∩N ∩ Bδ(x) ∩ {g = c} for 0 < |c| << δ << 1,

where Bδ(x) is a closed ball of radius δ in some local coordinates, g : (M, x) →
(C, 0) is a germ of holomorphic function such that dxg ∈ T ∗SαM and dxg �∈ T ∗

S
′ M ,

for all stratum S
′ �= Sα . The normal Morse datum of Sα is defined by:

NMD(Sα) := (X ∩N ∩ Bδ(x), lSα ),
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and the normal Morse index η(Sα, F •) of the stratum is:

η(Sα, F
•) := χ(NMD(Sα), F •),

where the right-hand-side is the Euler characteristic of the relative hypercohomol-
ogy.

Everything we have defined so far for a constructible complex of sheaves
works equally well for constructible functions and the two constructions are
somehow equivalent (cf. [109, 112]). The normal Morse index, say with respect
to a constructible function β, may also be defined by

η(Sα, β) = χ(X ∩N ∩ Bδ(x), β)− χ(�Sα , β) .

In general, let X be an analytic germ of an s-dimensional space which is
embedded in some affine space, M := C

n+1, so that the origin is a point of X.
If β is a constructible function on X, for a generic linear choice of coordinates
z = (z0, . . . , zn) for Cn+1, Massey in [79, Proposition 0.1] proves that there exist
analytic cycles Λiβ,z in X, which are purely i-dimensional, such that Λiβ,z and
V (z0 − p0, . . . , zi−1 − pi−1) intersect properly at each point p = (p0, . . . , pn)

of X near the origin, and such that

β(p) =
s∑

i=0

(−1)s−i(Λiβ,z · V (z0 − p0, . . . , zi−1 − pi−1))p .

In [78, Corollary 10.15] is proved that, for a generic linear choice of coordinates
z = (z0, . . . , zn), if we let Li be the i-dimensional linear subspace V (z0, . . . , zi )

then,

Λiβ,z =
∑

α

(−1)s−dα η(Sα, β) Pi(Sα) ,

where Pi(Sα) is the absolute affine i-dimensional polar variety with respect to the
flag given by the Li above, as defined by Lê and Teissier in [72].

If X = V (f ) and the constructible function on X is defined by w(p) =
χ(Ff,p)− 1 with Ff,p being the local Milnor fiber at p ∈ X, the Lê cycles are:

Λif,z =
∑

α

(−1)s−dα η(Sα,w) Pi (Sα) . (7.19)

This is the formulation that will be used in the sequel to extend the construction
of local Lê cycles to the affine and projective settings.
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7.5.2 Affine and Global Lê Cycles

In the affine context, Schürmann and Tibǎr in [113] describe the Schwartz-
MacPherson classes of a complex algebraic proper subset X ⊂ C

N using algebraic
cycles that they called MacPherson cycles. In this construction a key role is played
by the affine polar varieties, which we now define. For each 0 ≤ i ≤ N , let Li be
a linear subvariety of CN of codimension i. If X is of pure dimension d < N , the
k-th global affine polar variety of X, with 0 ≤ k ≤ d , is the algebraic set:

Pk(X,Lk+1) = {x ∈ X reg | dim (TxXreg ∩ Lk+1) ≥ d − k} .

For Lk+1 general enough Pk(X,Lk+1) has pure dimension k. We have
Pd(X,Lk+1) = X and we set Pk(X,Lk+1) = ∅ for k > d . We fix an algebraic
Whitney stratification {Sα} of X with connected strata. Let β be a constructible
function on X with respect to the stratification.

Definition 7.5.2 The k-th affine Lê cycle of β is:

ΛA

k (β,Lk+1) :=
∑

α

(−1)d−dαη(Sα, β) Pk(Sα, Lk+1) ,

where dα denotes the dimension of Sα and η(Sα, β) is the normal Morse index.

These polar varieties are used in [113] to define the MacPherson cycles,

MPk(β,Lk+1) :=
∑

α

(−1)dαη(Sα, β) Pk(Sα, Lk+1) .

These are our Lê cycles up to sign and one has by [113] that (−1)k+dΛA

k (β,Lk+1)

represents the Schwartz-MacPherson class cSMk (β).
An interesting feature of these affine Lê cycles of X is that they are a global

extension of the above local Lê cycles defined by Massey:

Proposition 7.5.3 The restriction of the affine Lê cycles to each point x ∈ X are
the local Lê cycles at x. To be precise, let X be a closed affine algebraic subvariety
of CN and β a constructible function on X with respect to a Whitney stratification
{Sα} of X; x ∈ X and U ⊂ C

N is an open neighborhood of x. Consider a generic
flag of linear subvarieties of CN , {x} = LN ⊂ LN−1 ⊂ · · · ⊂ L1 ⊂ L0 = C

N ,
with Li being of codimension i and such that Li ∩ U = Z(z0, . . . , zi−1) where
z = (z0, . . . , zN−1) are generic linear coordinates around x. Let ι : U → C

N be
the inclusion. Then, the flat pull-back of the affine Lê cycles satisfy:

ι∗ΛA

k (β,Lk+1) = Λkβ◦ι,z .

The proof of this proposition is easy and we refer to [35] for details.
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We now define the global, or projective, Lê cycles. These were defined in [33]
as follows. Let X be a d-dimensional subvariety of PN . Its k-th polar variety is [33,
Definition 4.2]:

Pk(X,Lk+2) = {x ∈ Xreg | dim
(
TxXreg ∩ Lk+2

) ≥ d − k − 1},

where Lk+2 is a plane of codimension k + 2 in P
N and TxXreg is the projective

tangent space of X at a regular point x. The classes in the Chow and homology
groups represented by these varieties do not depend on the choice of the linear
space provided this is general enough (see [103, Prop. 1.2]). We denote these classes
by [Pk(X)]. For any given constructible function β on X ⊆ P

N with respect to
a Whitney stratification S = {Sα} of X, motivated by [113], we defined in [33,
Equation (12)] the MacPherson cycles as :

MP P

k (β,Lk+2) :=
∑

α

(−1)dαη(Sα, β)Pk(Sα, Lk+2),

where dα denotes the dimension of Sα . Then we defined in [33]:

Definition 7.5.4 Let M be a smooth complex submanifold of P
N of dimension

n + 1, let Z be the hypersurface in M defined by the set of zeroes of a reduced
holomorphic section s of a line bundle L on M . Endow Z with a Whitney
stratification. The kth global Lê cycle of Z with respect to a general linear subspace
Lk+2 (of codimension k + 2) of PN is:

Λk(Z,Lk+2) = (−1)nMP P

k (ω,Lk+2), (7.20)

where ω(x) = χ(Ff,x)−1 with Ff,x a local Milnor fiber of f at x of the function f
corresponding to s in some local trivialization of L around x. The classes associated
to these cycles will be denoted by Λk(Z).

For any subvariety Z of PN we denote by Cone(Z) the cone in C
N+1 induced by

Z. Analogously, for any conical subvariety V through the origin of CN+1 we denote
by P(V ) the induced projective variety in P

N . Let X be a subvariety of PN and let
Lk+2 be a linear subvariety of PN of codimension k+2. In this case, Cone(Lk+2) is
a linear subspace of codimension k+ 2 in CN+1 and Pk+1(Cone(X),Cone(Lk+2))

is a conical subvariety of CN+1 of dimension k + 1. One has:
The relationship between the projective and the affine polar varieties is given by

Pk(X,Lk+2) = P
(
Pk+1(Cone(X),Cone(Lk+2))

)
.

For any given Whitney stratification S = {Sα} of X and a constructible function β
on X define the kth projective Lê cycle with respect to Lk+2 by:

ΛP

k (β,Lk+2) :=
∑

α

(−1)d−dαη(Sα, β)Pk(Sα, Lk+2) .
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The next result relates the projective (or global) and affine Lê cycles:

Proposition 7.5.5

ΛP

k (β,Lk+2) = P
(
ΛA

k+1(β̃, Cone(Lk+2))
)
,

where β̃ is the constructible function on Cone(X) induced by β with respect the
Whitney stratification {π−1(Sα)} ∪ {{0}} and π : CN+1 \ {0} → P

N is the natural
projection.

Summarizing we get that the affine Lê cycles restricted to every point in X give
the local Lê cycles, and the projective Lê cycles are the projectivization of the affine
Lê cycles of the affine cone defined by a projective variety.

7.5.3 Lê Classes and Milnor Classes

Lê cycles are originally associated to map-germs C
n+1 → C and determine the

diffeomorphism type of the Milnor fiber. These were extended above to invariants
of projective manifolds. On the other hand Milnor classes are by definition the
difference between two extensions of the classical Chern classes to the case of
singular varieties. It was proved in [33] that these two concepts are remarkably
linked together in a deep way. In fact the main result in [33] says that the information
encoded in the Milnor classes is essentially equivalent to the information encoded
in the Lê cycles. One has:

Theorem 7.5.6 LetM be a smooth complex submanifold of PN of dimension n+1,
letZ be the hypersurface inM defined by the set of zeroes of a reduced holomorphic
section s of a line bundleL onM . Set h := c1(OP

N (1)|Z) and denote by Mk(Z) the
k-th Milnor class of Z. Then, for each k = 0, . . . , r = dim(Zsing), there are cycles,
obtained with respect to the choice of a linear subspace of PN, which give rise to
well defined classes Λk(Z) of Z in the Chow group and integral homology group
of Z, that we call the global Lê classes of Z, and these are related to the Milnor
classes Mk(Z) by the formulas:

Mk(Z) =
∑

j≥0

∑

i≥k+j
(−1)i+j

(
i + 1

k + j + 1

)
c1(L|Z)jhi−k−j ∩Λi(Z)

and conversely:

Λk(Z) =
∑

j≥0

(−1)k+j
(
k + j + 1
k + 1

)
hj ∩ (Mk+j (Z)+ c1(L|Z)Mk+j+1(Z)

)
.
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One gets the corollary below, which extends and strengthens [26, Corollary 5.13]
in the hypersurface case:

Corollary Assume M,L and Z are as above and equip M with a Whitney
stratification {Zβ} adapted to Z. Let d be the dimension of the singular set Zsing.
Then we have the following equalities of cycles in the Chow group of Z:

Md(Z) =
∑

Sβ⊂Zsing

μ⊥(Sβ) [Sβ ] =
∑

Sβ⊂Zsing

λdSβ [Sβ ] = (−1)dΛd(Z) ,

where the sums run over the strata of dimension d which are contained in Zsing,
μ⊥(Sβ) is the transversal Milnor number of Sβ and λdSβ is the d-th Lê number of
Sβ .

The trail for getting to Theorem 7.5.6 can be roughly described as follows. The
first step is recalling the main theorem of A. Parusinski and P. Pragacz in [101],
Theorem 7.4.9 above. This expresses the total Milnor class as a function of the
Schwartz-MacPherson classes of the closure of the strata of a Whitney stratification:

M(Z) :=
∑

Sα∈S
γSα

(
c(L|Z )−1 ∩ (iSα,Z)∗cSM(Sα)

)
. (7.21)

Then one has the aforementioned MacPherson cycles [113], associated to any
constructible function on a complex algebraic proper subset X ⊂ C

N that represent
the (dual) Schwartz-MacPherson classes in the Borel-Moore homology group, and
also in the Chow group. We already described above the analogous result in the
projective case. In this construction a key role is played by the projective polar
varieties.

Next one uses R. Piegne characterization in [102] of the Mather classes via
polar varieties to give a formula for the Schwartz-MacPherson classes in terms of
polar varieties and the normal Morse indices. Finally we use the above described
characterization of the global Lê cycles for constructible sheaves via polar varieties.
This also answers a question raised by J.-P. Brasselet.

7.6 Motivic and Hirzebruch-Milnor Classes

The theory of Chern classes for singular varieties keeps growing fastly and the lit-
erature is vast. The work we speak about in this section mostly concerns work done
by P. Aluffi, J.-P. Brasselet, L. Maxim, J. Schürmann and S. Yokura, and we refer to
the literature for more on the subject, particularly to [6, 29, 41, 54, 82, 85, 114, 136].
Here we only glance at some of the main topics.

For other important developments, the reader may also consult the following
papers: [9, 17, 36–38, 41, 42, 44, 45, 86–91, 93, 111, 137].
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7.6.1 Motivic Classes

A resolution π : X̃→ X of a normal singular variety is crepant [104] if the pullback
of the canonical divisor class on X is numerically the canonical divisor class on
X̃, i.e., the (discrepancy) divisor KX̃ − π∗KX is numerically equivalent to zero.
Suppose X is such that its canonical divisor KX is Q-Cartier (i.e., mKX is Cartier
for some integerm) and consider a resolution π : X̃→ X. The canonical divisor of
X̃ is:

KX̃ = π∗KX +
∑

i

aiEi ,

where the sum is over the irreducible exceptional divisors and the ai are rational
numbers, called the discrepancies (so in a crepant resolution there are no discrepan-
cies, hence the name). The singularities of X are canonical if ai ≥ 0 for all i, and
they are terminal if ai > 0 for all i. These concepts were introduced by M. Reid in
1980 as part of the canonical and minimal models of a projective variety.

The variety X is Gorenstein if at each point its local ring is Cohen-Macauley
and the dualizing sheaf is locally free. In [13] V. V. Batyrev gives the following
definition:

Definition 7.6.1 A normal projective algebraic variety X is a (weak) Calabi-Yau
variety if X has at worst Gorenstein canonical singularities and the canonical line
bundle on X is trivial.

The notion of “Calabi-Yau” usually requires certain vanishing conditions on the
cohomology of the structure sheaf. However, these are not needed for the following
remarkable theorem of V. V. Batyrev [12, 13], which somehow gave rise to the birth
of motivic integration, due to Kontsevich:

Theorem 7.6.2 If X is a complex projective (weakly) Calabi-Yau variety with at
worst canonical Gorenstein singularities, and πi : X̃i → X, i = 1, 2, are
two crepant resolutions, then X̃1 and X̃2 have the same Betti numbers hi =
dimHi( ,C).

Kontsevich, in his (December 7th) 1995 talk at Orsay [69], explained a direct
approach for proving Batyrev’s theorem avoiding p-adic integration and the Weil
conjectures, but involving arc spaces: this led to motivic integration and proved:

Theorem 7.6.3 (Kontsevich) Birationally equivalent smooth Calabi-Yau varieties
have the same Hodge numbers

We do not discuss here motivic integration; we refer for this to the literature, as
for instance [76]. Motivic integration has led to an avalanche of applications. These
include new so-called stringy invariants of singularities. In the vein of Batyrev’s
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theorem, one has the following theorem by to P. Aluffi in [6] concerning the total
Chern class of the tangent bundle, regarded as a class in the Chow group:

Theorem 7.6.4 Let φ : V → W be a birational morphism of nonsingular algebraic
varieties over an algebraically closed field of characteristic 0. Assume that there is
a resolution of indeterminacies of φ, Z:

Z
v

����
��
� w

���
��

��

WV
φ

��

such that v and w are proper and birational, and the Jacobian ideals of v and w
coincide. Then there exists a class C ∈ (A∗Z)Q such that:

c(T V ) ∩ [V ] = v∗(C) and c(TW) ∩ [W ] = w∗(C) ,

in (A∗V )Q and (A∗W)Q respectively.

One thus gets a type of Chern class for Y with a motivic flavor [6, Corollary 1.2]:

Corollary 7.6.5 Let α : Y → X be a crepant resolution. Then the class

α∗(c(T Y ) ∩ [Y ])

in (A∗X)Q is independent of Y .

In fact, one has the notion of K-equivalence of varieties, where K refers to the
canonical divisor, and Aluffi’s work shows that after passing to rational coefficients,
the Chern classes of two K-equivalent smooth varieties are the push-forward of the
same class on a resolution of the indeterminacies.K-equivalence has its origin in the
minimal model program where, starting with a smooth variety X (of non-negative
Kodaira dimension), one tries to produce a minimal model of X. Roughly speaking
this is a variety Y with mild singularities, birational to X, but whose canonical class
KY is in some sense smallest among all such varieties birational to X. Minimal
models are not necessarily unique; this and other considerations led to look for ways
of putting some sort of “ordering” on the elements of the birational equivalence class
of X by means of comparing canonical bundles. This led to the following:

Definition 7.6.6 Let X and Y be smooth projective varieties over the complex
numbers. They are K-equivalent if there exists a smooth projective variety Z and
birational morphisms f : Z → X and g : Z → Y such that f ∗ωX is equivalent to
g∗ωY , where ω( ) is the canonical bundle.

In the same vein as [6] one has [54] where the authors introduce a theory of Chern
classes for singular varieties, called stringy Chern classes, with strong birational
properties and an interesting orbifold interpretation when the variety is a Gorenstein
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quotient of a manifold by a finite group. For this, they combine techniques of
motivic integration with the transformation defined by MacPherson and discussed
previously. The main theorem in [54] is:

Theorem 7.6.7 The stringy Chern class satisfies:

• It coincides with the usual homology Chern class when X is non-singular; and
• If X and X′ are K-equivalent and

Y
f

����
��
�� f ′

���
��

��

X′X
φ

�������������

is a common resolution, then cstr (X) = f∗(C) and cstr(X′) = f ′∗(C) for some
C ∈ A∗(Y )Q.

A simplification of the stringy Chern class was later given in [14], where the
authors give applications to mirror symmetry for Calabi-Yau complete intersections
in toric varieties. We refer also to [29, 41, 41, 85, 87, 91, 108, 114, 115] and the
following section for alternative viewpoints and further discussions on motivic
Chern classes for singular varieties.

7.6.2 The Motivic Hirzebruch-Milnor Classes

To prove the generalization in [65] of Riemann-Roch, Hirzebruch introduced the χy-
genus of a compact complex manifold, that specializes to the Euler characteristic,
the arithmetic genus and the signature at y = −1, 0, 1, respectively. This led to what
today are known as Hirzebruch classes of complex manifolds. We already spoke in
Sect. 7.4.5 about the Todd class, Riemann-Roch and its generalizations to singular
varieties. The case y = 1 is related to the signature and leads to what is known
as the L-class. Let us say a few words about Hirzebruch classes in general. Our
main references for this, besides [65], are works by Brasselet, Maxim, Schürmann,
Yokura, Cappell, Shaneson and Saito, see for instance [29, 41, 82, 85, 108, 114].

We start with some basic notions from [65]. Given a commutative ring B with
identity element 1, let p0 = 1 and let p1, p2, . . . be the indeterminates. Consider
the ring of polynomials B = B[p1, p2, . . .]. This can be graded by setting that the
product pj1pj2 . . . pjr has weight j1 + . . .+ jr . Then we can write:

B =
∞∑

k=0

Bk ,
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where Bk is the additive group of polynomials which contain only elements of
weight k and B0 = B. Clearly Br ·Bs ⊂ Br+s . A sequence {Kj } of polynomials in
the pi with K0 = 1 andKj ∈ Bj is multiplicative if every identity of the form

1+ p1z+ p2z
2 + . . . = (1+ p′1z + p′2z2 + . . .)(1+ p′′1z+ p′′2z2 + . . .)

implies an identity of the form:

∞∑

j=0

Kj(p1, p2, . . . , pi)z
j =

∞∑

j=0

Kj (p
′
1, p

′
2, . . . , p

′
i )z
j

∞∑

j=0

Kj (p
′′
1 , p

′′
2 , . . . , p

′′
i )z

j .

The characteristic power sequence of the multiplicative sequence is by definition:

K(1+ z) =
∞∑

j=0

bj z
j with b0 = 1 and bj = Kj (1, 0, . . . , 0) ∈ B .

We now introduce indeterminates β1, β2, . . . and regard the pi as being the
elementary symmetric functions in these variables:

1+ p1z+ . . .+ pmzm =
m∏

i=1

(1+ βiz) .

One has [65, Lemmas 1.2.1 and 1.2.2]:

Proposition 7.6.8 The multiplicative sequence {Kj } is completely determined by
its characteristic power series Q(z) = K(1+ z), and to every formal power series
Q(z) =∑∞

j=0 biz
i (b0 = 1 , bi ∈ B) there is an associated multiplicative sequence

{Kj } with K(1+ z) = Q(z).
The Todd sequence of polynomials described in Sect. 7.4.5 corresponds to the

formal power series Q(z) = x/(1 − e−x). In that case the indeterminates are the
Chern classes, and in the case of complex manifolds of complex dimension n the
valued of the polynomial Td(c1, . . . , cn) in the orientation cycle gives the Todd
genus. Hirzebruch-Riemann-Roch’s theorem says that this equals the arithmetic
genus.

Also, the multiplicative sequence in indeterminates ci with 1 + x2 as character-
istic power series is 1, 0, p1, 0, p2, . . . . where

p1 = −2c2 + c2
1, p2 = 2c4 − 2c3c1 + c2

2, p3 = −2c6 + 2c5c1 − 2c4c2 + c2
3, . . .

which are precisely the equations relating the Chern and Pontrjagin classes.
Recall that every closed oriented 4k-manifold has associated a bilinear form in

H 2k(M;R) given by the cup product, and its signature is by definition, the number
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of positive eigenvalues minus the number of negative eigenvalues. The signature of
this bilinear form is called the signature ofM .

R. Thom had observed in [127] that for closed oriented (real) manifolds of
dimensions 4 and 8, the signature is given respectively by 1

3 (p1(M))[M] and
1

45 (7p2(M)− p2
1(M))[M], where the pi are the Pontrjagin classes. This was a clue

for Hirzebruch that introduced in the L-sequence of polynomials, another important
multiplicative sequence; this corresponds to the formal power series

Q(z) =
√
z

tanh
√
z
= 1+

∞∑

k=1

(−1)k−1 22k

(2k)!Bkz
k ,

where the coefficients Bk are the Bernoulli numbers. The first two L-polynomials
are those found by Thom: L1 = 1/3(p1), L2 = 1/45(7p2 − p2

1). Hirzebruch’s
theorem says that the signature of a 4k dimensional closed manifold M equals its
L-genus.

Hirzebruch’s proof of the generalized Riemann-Roch theorem in higher dimen-
sions with coefficients in arbitrary vector bundles provided a unified view of the
above genera by introducing what he called the χy-characteristic. This corresponds
to considering the formal power series:

Q(y; x) := x(y + 1)

1− e−x(y+1)
− yx .

Hirzebruch points out [65, §1, p. 16] that:

• For y = 0 this is the series x/(1− e−x) associated to the Todd sequence;
• For y = −1 we haveQ(−1; x) = 1+ x that gives rise to the top Chern class cn;
• For y = 1 we haveQ(1; x) = x/(tanhx) that essentially gives the L-sequence.

So each multiplicative sequence of polynomials determines a type of cohomol-
ogy classes of complex manifolds (the Todd class, theL-class, etc.); these are known
as Hirzebruch (cohomology) classes for complex manifolds. One can also speak of
Hirzebruch’s homology classes. In the case of singular varieties we have already
discussed how Chern classes extend. We also have the Todd class in the singular
Riemann-Roch theorem of Baum-Fulton- MacPherson (Sect. 7.4.5); and one has the
L-class transformations of Goreski-MacPherson[61] and Cappell-Shaneson [39].

In [29] Brasselet, Schürmann and Yokura introduced a motivic Chern Class trans-
formation and a certain natural transformation Ty∗ that generalizes Hirzebruch’s
construction to the singular setting. Ty∗ is a homology class version of the motivic
measure corresponding to a suitable specialization of the Hodge polynomial.
This transformation remarkably unifies MacPherson’s Chern class transformation
(for y = −1), the Todd class transformation in the Baum-Fulton-MacPherson
generalization of Riemann-Roch for singular varieties (for y = 0) and the L-class
transformation of Cappell-Shaneson (for y = 1).
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Hirzebruch also introduced in [65, §17] the notion of virtual χy characteristics
for collections (E1, . . . , Er) of holomorphic line bundles and a holomorphic bundle
W over a complex n-manifold M . The r-tuple (E1, . . . , Er) is called a virtual
submanifold of M of complex dimension n − r . He then introduced an invariant
in Z that he called the virtual χy-genus of the virtual submanifold. The virtual
Hirzebruch classes can be defined likewise and in [85] Maxim, Schürmann and Saito
show that the difference between the Hirzebruch class and the virtual one is given
by what they call the Hirzebruch-Milnor class. This has support on the singular
locus of X, and they prove an inductive formula to calculate it explicitly in the case
of global complete intersections with arbitrary singularities. This generalizes the
formula for the Chern-Milnor classes in the hypersurface case that was conjectured
by S. Yokura (unpublished) and was proved by A. Parusinski and P. Pragacz [101].
It also generalizes a formula of J. Seade and T. Suwa [118] for the Chern-Milnor
classes of complete intersections with isolated singularities.

Finally, a characteristic class version of the Steenbrink spectrum [125], termed
the spectral Hirzebruch class, was introduced in [87] by taking into account the
monodromy of the vanishing cycles of mixed Hodge modules. For hypersurfaces
defined by global functions on smooth varieties, a Thom-Sebastiani type theorem for
the spectral classes was obtained in [87], by using a corresponding Thom-Sebastiani
theorem for the underlying filtered D-modules of vanishing cycles proved in [88].
Interestingly, these spectral characteristic classes can detect jumping coefficients of
multiplier ideals, Du Bois singularities, and rational singularities for any globally
defined hypersurface in a complex manifold.
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8.3.2 Čech-de Rham Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
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Abstract We discuss relative Čech-de Rham and relative Čech-Dolbeault coho-
mologies and their applications. In the de Rham case, we are mainly concerned
with the residues that arise from the localization of characteristic classes via the
Alexander duality. The relative Čech-de Rham theorem allows us to deal with
the problem from both the topological and differential geometric viewpoints and
the comparison of the two yields various interesting expressions of the residues
and applications. In the Dolbeault case, the relative Čech-Dolbeault cohomology
turns out to be canonically isomorphic with the relative cohomology of the sheaf
of holomorphic forms. As an application, we give explicit expressions of Sato
hyperfunctions and related operations including the embedding of the space of real
analytic functions into that of hyperfunctions, where as well the Thom class plays
an important role.

8.1 Introduction

Čech-de Rham cohomology, particularly its relative version, combined with the
Chern-Weil theory has been extensively used in the localization problem of
characteristic classes. It started with the study of residues of singular holomorphic
foliations (cf. [55] and references therein) and the theory was then transferred to
the index theory of holomorphic self-maps (e.g., [2]). The philosophy behind is
rather simple. Namely, once we have some kind of vanishing theorem on the non-
singular part of a geometric object such as a foliation, certain characteristic classes
are localized at the set of singular points and the localization gives rise to residues
and the residue theorem via the Alexander duality. Combined with the combinatorial
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description of the Alexander duality, we have various interesting expressions of the
residues and applications.

The idea and the techniques turned out to be effective in many other problems
including characteristic classes of singular varieties, localized intersection theory,
Thom class, localized Riemann-Roch theorem for embeddings and so forth (cf. [11,
12, 54, 56, 59]).

A similar theory may be developed for the Dolbeault complex, the relevant char-
acteristic classes in this case being the Atiyah classes (cf. [1, 60]). In particular, the
relative Čech-Dolbeault cohomology turns out to be canonically isomorphic with
the local (relative) cohomology of A. Grothendieck and M. Sato with coefficients
in the sheaf of holomorphic forms. This gives a handy way of expressing the latter
and would possibly lead to many applications. One of them is already apparent,
i.e., we have a simple way of expressing the Sato hyperfunctions and some of the
fundamental operations on them (cf [30, 63]).

This chapter reviews residues and hyperfunctions along the line described as
above. It is organized as follows.

In Sect. 8.2, we recall the dualities on manifold s from the combinatorial
viewpoint. In particular, the Alexander duality in this context (Theorem 8.2.2)
is the fundamental instrument to describe residues and the residue theorem from
the topological side. We discuss, in Sect. 8.3, Čech-de Rham cohomology and the
integration theory on this cohomology. We then introduce its relative version and
state a theorem asserting that the relative Čech-de Rham cohomology is canonically
isomorphic with the relative singular or simplicial cohomology with C-coefficients
(Theorem 8.3.13). We then describe the Alexander duality in terms of relative Čech-
de Rham cohomology. This constitutes a bridge between the localization theory
from the topological side and that from the differential geometric side. In Sect. 8.4,
we recall the obstruction theoretical definition of the Chern classes of complex
vector bundles. The Euler class of real oriented vector bundles is also discussed.
We then consider the localized classes in Sect. 8.5. We introduce the notion of
topological residue for Chern classes, state the residue theorem (Theorem 8.5.4)
and give an explicit expression of the topological residue (Theorem 8.5.7). We
do similar considerations for Euler classes and recall the Poincaré-Hopf theorem
as a prototype of the residue theorem. In Sect. 8.6, we review the Chern-Weil
theory of characteristic classes and its modification to be adapted to Čech-de Rham
cohomology. This is essential in expressing the localizations from the differential
geometric side.

In Sect. 8.7, we explain general idea and techniques of localizing characteristic
classes and state a general residue theorem (Theorem 8.7.3). We also give various
ways of localizing characteristic classes. The localization of Chern classes by
frames from the differential geometric viewpoint is discussed in Sect. 8.8. We recall
residues and the residue theorem in this case and state that the topological and
differential geometric localizations are essentially the same in the cases the both
make sense (Theorem 8.8.8). The essential ingredient here is a differential geometric
expression of the index of a family of sections (Theorem 8.8.6). We then apply these
to the case of residue defined by a family of holomorphic sections of a holomorphic
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vector bundle and have a general expression of the residue (Theorem 8.8.10), which
indicates that, in order to find the residue in the “proper case”, it suffices to know
the residue at an isolated singularity. We give topological, analytic and algebraic
expressions of the residue at an isolated singularity in the basic case. From these,
we may rephrase Theorem 8.8.10 as asserting that, for a family of holomorphic
sections of a holomorphic vector bundle, the localization of the Chern class by
the sections corresponds to the complex space defined by the sections via the
Alexander duality (Theorem 8.8.14). In Sect. 8.9, we discuss the Thom isomorphism
and the Thom class from topological and differential geometric viewpoints and
make comparisons of the two. The Thom class of an oriented real vector bundle is
interpreted as a localized Euler class and that of a complex vector bundle a localized
top Chern class (Theorems 8.9.9 and 8.9.20). In fact the Thom class is a universal
localization in each of the above cases (Remark 8.9.10. 2 and Theorem 8.9.22).
We emphasize that the expression of the Thom class in relative Čech-de Rham
cohomology (Theorem 8.9.18 and Remark 8.9.21) is effectively used in a number
of problems, including the fixed point and coincidence point formulas of Lefschetz
type as well as the hyperfunction theory (Remark 8.9.23. 3).

In Sect. 8.10, we review Dolbeault, Čech-Dolbeault as well as relative Čech-
Dolbeault cohomologies almost in parallel with the de Rham case. There is the
relative Čech-Dolbeault theorem asserting that the relative Čech-Dolbeault coho-
mology is canonically isomorphic with the relative cohomology with coefficients
in the sheaf of holomorphic forms (Theorem 8.10.9). This is the key to represent
hyperfunctions in terms of Čech-Dolbeault cocycles and to bring in the tools from
complex geometry to the theory of hyperfunctions. We then discuss two cases
where there is a direct relation between the de Rham and the Dolbeault complexes.
The first one is used to define integration on the Čech-Dolbeault cohomology
and the second one to have an explicit embedding morphism of the real analytic
functions into the hyperfunctions. We also make consideration of local duality in
parallel with the Alexander duality. Unlike the topological case, we do not have a
duality isomorphism in general. One of the cases we do is given in Theorem 8.11.5
in Sect. 8.11, where we also discuss the local residue paring. These are closely
related to the hyperfunction theory. We discuss in Sect. 8.12, the aforementioned
application of relative Čech-Dolbeault cohomology to the Sato hyperfunction
theory. We give explicit expression of hyperfunctions and fundamental operations
on them. Particularly noteworthy here is that the integral of hyperfunctions are
expressed as a usual Stokes type integral (8.50). We also introduce the δ-function
and the δ-form in our framework. The latter has essentially the same expression
as the Thom class of a trivial bundle (Remark 8.12.6. 1). Finally we explain how
to regard a real analytic function as a hyperfunction. The Thom class in relative
Čech-de Rham cohomology plays an essential role in this scene as well, namely the
embedding morphism is constructed using its image in the relative Čech-Dolbeault
cohomology by the canonical morphism mentioned above (cf. (8.52)).

This is an expository article and the original literatures and general references
are cited in each place to be referred to for details. Besides these, Sects. 8.2–8.9 are
based on [58, 59, 64] and Sects. 8.10–8.12 on [30, 63].
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Notation and Conventions
1. Z : the ring of integers.
2. Rm = {(x1, . . . , xm)} : the realm-space. As a C∞ manifold, it is oriented so that
(x1, . . . , xm) is a positive coordinate system.

3. Cn = {(z1, . . . , zn)} : the complex n-space. As a C∞ manifold, it is orientable.
In Sects. 8.2–8.9, it is oriented the “usual” way, i.e., so that (x1, y1, . . . , xn, yn)

is a positive coordinate system when we write zi = xi +
√−1yi , i = 1, . . . , n.

While in Sects. 8.10–8.12, it is oriented, however the orientation may not be the
usual one.

4. The orientation convention as in 3 above applies also to complex manifolds.

8.2 Poincaré and Alexander Dualities

In this section, we letM denote a C∞ manifold of dimensionm. Also we take Z as
the coefficient of homology and cohomology.

8.2.1 Algebraic Topology on Manifolds

In order to describe duality theorems for manifolds, we recall some basic notions in
algebraic topology, particularly from the combinatorial viewpoint. We list [22, 27,
51] as general references for algebraic topology. See [45] for C∞ triangulations.

C∞ Triangulations Let X be a topological space. A triangulation of X is a pair
(K, h) of a simplicial complex K and a homeomorphism h : |K| → X, where |K|
is the polyhedron of K . Let Y be a subspace of X. We say that the triangulation is
compatible with Y if there is a subcomplex L of K such that the restriction of h to
|L| is a triangulation of Y .

A triangulation h : |K| → M of a C∞ manifoldM is C∞ if, for every simplex
s of K , h|s is C∞ and its rank at each point of s is equal to dim s. Here we think of
s as being in the affine space spanned by s and h|s being C∞ means that it admits a
C∞ extension near each point in s.

The following is known (cf. [45, 66]):

1. Every C∞ manifold M admits a C∞ triangulation. In fact, if R is a closed C∞
submanifold of M possibly with boundary, there is a C∞ triangulation of M
compatible with R and ∂R.

2. If K1 andK2 are C∞ triangulations ofM , there exist subdivisions ofK1 andK2
that are simplicially isomorphic.

We take a triangulation (K0, h) of M and let K denote the barycentric subdivi-
sion of K0. We further let K ′ be the barycentric subdivision of K , i.e., the second
barycentric subdivision of K0. We take the second barycentric subdivision so that
the star of a K0-subcomplex L of K0 with respect to K ′ has the same homotopy
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type as the polyhedron |L| of L. In the sequel, a simplex s of K is identified with
h(s) and |K| is identified withM .

Dual Cellular Decomposition For a p-simplex s of K , we denote by s∗ the union
of (m − p)-simplices of K ′ intersecting with s at its barycenter bs. It is a regular
closed (m − p)-cell in |K|, called the cell dual to s. The intersection of s and
s∗ consists of the one point bs. The cells dual to simplices in K form a cellular
decomposition of |K| = M , which will be denoted by K∗.

Orientations of Simplices and Cells In order to describe the homology and coho-
mology of M via triangulation or dual cellular decomposition, we fix orientations
of simplices of K and cells of K∗. As to the orientations of simplices of K ′, we
impose the following conditions. Thus let t be a p-simplex of K ′.

(1) If t ⊂ s, a p-simplex of K , the orientation of t is the same as that of s.
(2) If t ⊂ (s′)∗, a p-cell of K∗, the orientation of t is the same as that of (s′)∗.

Note that for t not satisfying either of the above assumptions, there is still
freedom of choice of the orientation.

Homology and Cohomology We denote by Hp(M) the p-th singular homology
of M . An important feature in the case of a manifold is that it can be computed
using either the triangulation K or the cellular decomposition K∗ in the following
sense. Thus let (CK• (M), ∂) be the chain complex with CKp (M) the free Abelian

group generated by the oriented p-simplices inK and ∂ : CKp (M)→ CKp−1(M) the
boundary operator defined by

∂(v0, . . . , vp) =
p∑

i=0

(−1)i(v0, . . . , v̂i , . . . , vp),

for an oriented simplex s = (v0, . . . , vp) with vertices v0, . . . , vp , and extended
linearly. We denote by HKp (M) the p-th homology of CK• (M). Denoting by Sp(M)

the group of singular p-chains ofM , there is a natural chain morphism CK• (M)→
S•(M), which induces an isomorphism on the homology level:

HKp (M)
∼−→ Hp(M).

Also if we denote by (CK
∗

• (M), ∂) the chain complex with CK
∗

p (M) the
free Abelian group generated by the oriented p-cells in K∗, we have a natural
isomorphism:

HK
∗

p (M)
∼−→ Hp(M), (8.1)
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where HK
∗

p (M) is the p-th homology of CK
∗

• (M). In our case we have injective
chain morphisms

CK
∗

• (M)
α−→ CK

′
• (M) −→ S•(M), (8.2)

where α is the morphism that regards aK∗-chain as aK ′-chain, and the composition
induces the isomorphism (8.1).

Also the singular cohomology Hp(M) of M can be computed either from
the cochain complex (C•K(M), δ) with CpK(M) = Hom(CKp (M),Z) or from the

cochain complex (C•K∗(M), δ) with CpK∗(M) = Hom(CK
∗

p (M),Z). That is to say
that the transposes of the chain morphisms above induce isomorphisms

Hp(M)
∼−→ H

p

K(M) and Hp(M)
∼−→ H

p

K∗(M).

Denoting by C̆K• (M) and S̆•(M) the chain complexes of locally finite chains of
K and of locally finite singular chains ofM , respectively, we have a chain morphism
C̆K• (M)→ S̆•(M) as before. It induces an isomorphism on the homology level:

H̆Kp (M)
∼−→ H̆p(M).

Likewise, considering the complex C̆K
∗

• (M) of locally finite chains ofK∗, we have

a canonical isomorphism H̆K
∗

p (M)
∼→ H̆p(M).

In the sequel, 〈 , 〉 denotes the paring of chains and cochains, i.e., the Kronecker
product.

8.2.2 Poincaré and Alexander Dualities

We discuss the dualities from the combinatorial viewpoint, following the descrip-
tions as given in [10], except for the orientation convention.

LetM ,K0,K ,K ′ andK∗ be as in the previous subsection. In this subsection we
assume that M is oriented and take orientations of the simplices and cells so that
they satisfy the conditions (1) and (2) in Sect. 8.2.1 and that they are furthermore
compatible with that ofM in the following sense:

(3) The orientation of eachm-simplex is the same as that ofM .
(4) For every p-simplex s of K , 0 < p < m, the orientation of s∗ followed by the

orientation of s gives the orientation ofM .

Poincaré Duality We define a morphism

P : CpK∗(M) −→ C̆Km−p(M) by u �→
∑

s

〈s∗, u〉 s, (8.3)
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for a p-cochain u ofK∗, where the sum is taken over all (m− p)-simplices s inM .
The morphism P is in fact an isomorphism on the chain and cochain level. We may
actually prove that it is compatible with boundary and coboundary operators so that
it induces an isomorphism between the corresponding cohomology and homology.
To be a little more precise, letMK ′ denote the fundamental cycle ofM inK ′, i.e., the
sum of allm-simplices ofK ′. There is a natural injective morphism α : CK∗p (M)→
CK

′
p (M) (cf. (8.2)), whose transpose is denoted by α∗. Likewise there is a natural

injective morphism C̆Km−p(M)→ C̆K
′

m−p(M), which is denoted by β. The key point
in the proof is to show that the following diagram is commutative:

(8.4)

where the morphism in the bottom is the (left) cap product with MK ′ . As a
consequence, using properties of cap product, we have

P(δu) = (−1)p+1∂P (u) for u ∈ CpK∗(M) (8.5)

so that we have:

Theorem 8.2.1 (Poincaré Duality) For an oriented C∞ manifoldM of dimension
m, the isomorphism P of (8.3) induces an isomorphism

PM : Hp(M) ∼−→ H̆m−p(M).

We denote by [M] the class in H̆m(M) corresponding to [MK ′ ] by the isomor-
phism H̆K

′
m (M) � H̆m(M) and call it the fundamental class of M . Note that it does

not depend on the choice of the triangulation by the property 2 of C∞ triangulations
(cf. Sect. 8.2.1). By the commutativity of (8.4), we may write

PM(u) = [M] 	 u for u ∈ Hp(M).
Thus the Poincaré duality is a topological invariant.

Alexander Duality Let S be a closed set inM . Suppose that there is a triangulation
K0 ofM such that S is aK0-subcomplex ofM . Recall that the star SK ′(S) of S inK ′
is the union of simplices ofK ′ intersecting with S. LetOK ′(S) = SK ′(S)�∂SK ′(S)
denote the open star. Note that there is a proper deformation retraction SK ′(S)→ S

and a deformation retractionOK ′(S)→ S.

We note that, for a simplex s ofK , the following three conditions are equivalent :

(1) s ⊂ S, (2) s∗ ∩ S �= ∅, (3) s∗ ∩OK ′(S) �= ∅.
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Noting thatM�OK ′(S) is a K∗-subcomplex ofM , we may write

C
p

K∗(M,M�OK ′(S)) = { u ∈ CpK∗(M) | 〈s∗, u〉 = 0 for s �⊂ S }.
They form a subcomplex of C•K∗(M). Denoting by HpK∗(M,M � OK ′(S)) its
cohomology, we have a natural isomorphism:

Hp(M,M�OK ′(S))
∼−→ H

p
K∗(M,M�OK ′(S)).

Note that there is a natural isomorphismHp(M,M�OK ′(S)) � Hp(M,M�S).
Now in the sum in (8.3), if u is in CpK∗(M,M�OK ′(S)), only (m−p)-simplices

in S appear. Thus P in (8.3) induces an isomorphism

A : CpK∗(M,M�OK ′(S)) −→ C̆Km−p(S). (8.6)

SinceC•K∗(M,M�OK ′(S)) is a subcomplex ofC•K∗(M) and C̆K• (S) is a subcomplex
of C̆K• (M), by (8.5), we see thatA is also compatible with boundary and coboundary
operators. Thus we have:

Theorem 8.2.2 (Alexander Duality) For a closed set S in M as above, the
isomorphism (8.6) induces an isomorphism

AM,S : Hp(M,M�S)
∼−→ H̆m−p(S).

From the construction, we have the following commutative diagram:

(8.7)

where j∗ denotes the canonical morphism and i : S ↪→ M the inclusion.

Example 8.2.3 For Rm, we have:

Hp(Rm;Z) ∼−→
P
H̆m−p(Rm;Z) �

{
Z p = 0,

0 otherwise.

Hp(Rm,Rm�{0};Z) ∼−→
A
H̆m−p({0};Z) = Hm−p({0};Z) �

{
Z p = m,
0 otherwise.

In the first isomorphism for p = 0, P([1]) = [Rm] ↔ 1, where [1] denotes the
class of the cocycle that assigns 1 to each 0-cell and [Rm] the fundamental class. In



574 T. Suwa

the second for p = m, A([um]) = [{0}] ↔ 1, where um is the cocycle that assigns
1 to the dual cell of the vertex 0 and 0 to other m-cells.

Remark 8.2.4 See [24] as to the topological invariance of the Alexander duality.

8.2.3 Pseudo-Manifolds

As a generalization of manifold, we introduce the following:

Definition 8.2.5 A pseudo-manifoldX of dimension d inM is a subcomplex ofM ,
with respect to some triangulation ofM , satisfying the following conditions:

(1) Every simplex in X is a face of some d-simplex in X.
(2) Every (d − 1)-simplex is the face of exactly two d-simplices.
(3) The d-simplices in X can be oriented so that, if s is a (d − 1)-simplex in X

and if s1 and s2 are the two simplices that contain s in their boundary, then the
prescribed orientations of s1 and s2 induce opposite orientations of s.

A pseudo-manifold X is said to be oriented, once orientations of d-simplices
in X satisfying (3) above are fixed. We say that X is irreducible if X�Xd−2 is
connected, where Xd−2 denotes the (d − 2)-skeleton of X. A general point of X is
a point in X�Xd−2. Then we have a decomposition into irreducible components:

X =
⋃

i

Xi .

If X is oriented, each Xi carries a fundamental cycle, the union of d-simplices in
Xi and it defines a class in Hd(X). In fact Hd(X) is generated by these classes.

For an oriented pseudo-manifold, we may define the Poincaré morphism.

Example 8.2.6 A closed submanifold of a C∞ manifold M is a non-singular
pseudo-manifold.

An analytic variety V in a complex manifold is a pseudo-manifold. The
irreducible decomposition of V as a variety gives that as a pseudo-manifold. A
general point of V is nothing but a non-singular point of V .

8.3 de Rham and Relative Čech-de Rham Theorems

In this section, we let M denote a C∞ manifold of dimension m. Also, for an open
set U inM , let E (p)(U) denote the C-vector space of complex valued C∞ p-forms
on U .
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8.3.1 de Rham Cohomology

The exterior derivative defines a complex of C-vector spaces:

0 −→ E (0)(M)
d0−→ E (1)(M)

d1−→ · · · dm−1−→ E (m)(M) −→ 0,

which is called the de Rham complex ofM and is denoted by (E (•)(M), d).

Definition 8.3.1 The p-th de Rham cohomology of M is the p-th cohomology of
(E (•)(M), d):

H
p
d (M) = Ker dp/ Im dp−1.

For a closed p-form ω, its class in Hpd (M) is denoted by [ω]. Since Ker d0 =
C(M), the complex valued locally constant functions onM , we have:

H 0
d (M) = C(M).

In the caseM is connected,H 0
d (M) = C.

In the below we discuss the de Rham theorem which states that Hpd (M)
is canonically isomorphic with the singular, simplicial or cellular cohomology
Hp(M;C) ofM (cf. Theorem 8.3.2 below). One of the essential ingredients for this
is the Poincaré lemma, which asserts that the de Rham complex of Rm is acyclic,
i.e.,

H
p

d (R
m) = 0 for p > 0.

Compare this with the topological counterpart in Example 8.2.3.

de Rham Theorem We have a natural morphism

E (p)(M) −→ C
p

K(M;C), (8.8)

which assigns to each p-form ω the cochain s �→ ∫
s ω. By Stokes’ formula, this

morphism is compatible with d and δ and induces a morphism on the cohomology
level. In fact we have:

Theorem 8.3.2 (de Rham) The above induces an isomorphism

H
p

d (M) � Hp(M;C).

Suppose M is oriented. In (8.8), we could use the cochain group CpK∗(M;C) as
well and may describe the Poincaré duality with C-coefficient

H
p

d (M)
∼−→ Hp(M;C) ∼−→

P
H̆m−p(M;C)
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as being induced from ω �→∑∫
s∗ ω · s.

Cup Product The exterior product of forms induces a product in H ∗d (M), which
corresponds to the cup product inH ∗(M;C) via the isomorphism of Theorem 8.3.2.

If M is compact and oriented, we also have the integration
∫
M
: Hmd (M) → C

and we have a bilinear pairing as the composition:

H
p
d (M)×Hm−pd (M)

∧−→ Hmd (M)

∫
M−→ C.

The Poincaré duality in this case says that the pairing is non-degenerate and induces
an isomorphism

H
p
d (M)

∼−→ H
m−p
d (M)∗.

8.3.2 Čech-de Rham Cohomology

The Čech-de Rham cohomology may be defined for an arbitrary covering of a
manifold. Here we only consider coverings consisting of two open sets and refer
to [9, 55] for details and the general case.

Let U = {U0, U1} be an open covering ofM . We set U01 = U0 ∩ U1 and define
the vector space E (p)(U) as

E (p)(U) = E (p)(U0)⊕ E (p)(U1)⊕ E (p−1)(U01).

Thus an element σ in E (p)(U) is given by a triple σ = (σ0, σ1, σ01) with σ0 a
p-form on U0, σ1 a p-form on U1 and σ01 a (p − 1)-form on U01. We define an
operatorD = Dp : E (p)(U)→ E (p+1)(U) by

Dσ = (dσ0, dσ1, σ1 − σ0 − dσ01).

Then it is not difficult to see thatD◦D = 0. Thus we have a complex (E (•)(U),D),
which is called the Čech-de Rham complex of U.

Definition 8.3.3 Thep-th Čech-de Rham cohomology of U is thep-th cohomology
of (E (•)(U),D):

H
p
D(U) = KerDp/ ImDp−1.

We have the following:

Theorem 8.3.4 The morphism E (p)(M) → E (p)(U) given by ω �→
(ω|U0, ω|U1, 0) induces an isomorphism

H
p
d (M)

∼−→ H
p
D(U).
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Note that the inverse of the above isomorphism is given by assigning to the class
of a cocycle (σ0, σ1, σ01), the class of a global closed form ρ0σ0+ρ1σ1−dρ0∧σ01,
where {ρ0, ρ1} is a C∞ partition of unity subordinate to U.

Integration We recall the integration on Čech-de Rham cohomology (cf. [39, 55]).
LetM and U = {U0, U1} be as above.

Definition 8.3.5 A honeycomb system adapted to U is a pair {R0, R1} of m-
dimensional piecewise C∞ manifolds with boundary inM such that

(1) Ri ⊂ Ui , for i = 0, 1,
(2) IntR0 ∩ IntR1 = ∅,
(3) R0 ∪ R1 = M ,

where “Int” means the interior.
Suppose M is oriented. We endow Ri , i = 0, 1, with the orientation same as

that ofM . Let R01 = R0 ∩ R1 and give R01 the orientation as the boundary of R0;
R01 = ∂R0, equivalently give R01 the orientation opposite to that of the boundary
of R1; R01 = −∂R1.

Suppose moreover that M is compact and let {R0, R1} be as above. Then each
Ri is compact, for i = 0, 1, and we may define the integration

∫

M

: E (m)(U) −→ C by
∫

M

σ =
∫

R0

σ0 +
∫

R1

σ1 +
∫

R01

σ01. (8.9)

Then by Stokes’ formula, we see that it induces the integration

∫

M

: HmD (U) −→ C,

which is compatible with the integration on the de Rham cohomology via the
isomorphism of Theorem 8.3.4.

Čech-de Rham Theorem The Čech-de Rham theorem is described using integra-
tion on general Čech-de Rham cochains, which may be defined using C∞ singular
chains transverse to a honeycomb system, a C∞ triangulation or the dual cellular
decomposition. Here we explain the last way, which is appropriate later to express
residues.

Let K0, K , K ′ and K∗ be as before. Let U = {U0, U1} be an open covering of
M and {R0, R1} a honeycomb system adapted to U.

Definition 8.3.6 We say that {R0, R1} is adapted to K ′, if for each p-simplex t of
K ′, t ∩ Ri is an p-chain, i = 0, 1, and t ∩ R01 is an (p − 1)-chain with respect to
some subdivision of K ′.
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We assume that there exists a honeycomb system {R0, R1} adapted to U andK ′.
Then, for each p-cell s∗, s∗∩Ri , i = 0, 1, are p-chains and s∗∩R01 is a (p−1)-chain
with respect to some subdivision of K ′. We consider the morphism

E (p)(U) −→ C
p
K∗(M;C) (8.10)

that assigns to σ = (σ0, σ1, σ01) ∈ E p(U) the cochain

s∗ �→
∫

s∗∩R0

σ0 +
∫

s∗∩R1

σ1 +
∫

s∗∩R01

σ01.

In the above, the orientations of s∗ ∩Ri are naturally determined from that of s∗ and
we endow s∗ ∩ R01 with the orientation as a part of the boundary of s∗ ∩ R0. Then,
by Stokes’ formula the morphism (8.10) induces a morphism on the cohomology
level; HpD(M)→ H

p
K∗(M;C) � Hp(M;C), which is in fact an isomorphism:

Theorem 8.3.7 (Čech-de Rham Theorem) The above morphism is an isomor-
phism

H
p
D(M) � Hp(M;C).

The above isomorphism is compatible with that in Theorem 8.3.2 via the
isomorphism of Theorem 8.3.4.

Cup Product LetM and U = {U0, U1} be as above. We define the cup product

E (p)(U) × E (p
′)(U) �−→ E (p+p′)(U) (8.11)

by assigning to (σ, τ ) in E (p)(U) × E (p
′)(U) the cochain σ 
 τ in E (p+p′)(U)

given by

(σ 
 τ )i = σi ∧ τi, i = 0, 1, and (σ 
 τ )01 = (−1)pσ0 ∧ τ01 + σ01 ∧ τ1.

Then it is bilinear in (σ, τ ) and we have D(σ 
 τ ) = Dσ 
 τ + (−1)pσ 
 Dτ .
Thus it induces the cup product

H
p
D(U)×Hp

′
D (U)

�−→ H
p+p′
D (U),

which is compatible with the product in the de Rham cohomology via the isomor-
phism of Theorem 8.3.4.

If M is compact and oriented, we may describe the Poincaré duality as in the
case of de Rham cohomology.
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8.3.3 Relative Čech-de Rham Cohomology

Let S be a closed set inM . Letting U0 =M�S and U1 an open neighborhood of S,
we consider the covering U = {U0, U1} ofM . We set

E (p)(U, U0) = { (σ0, σ1, σ01) ∈ E (p)(U) | σ0 = 0 }.

Then (E (•)(U, U0),D) is a subcomplex of (E (•)(U),D). Note that we may write

E (p)(U, U0) = E (p)(U1)⊕ E (p−1)(U01)

and D : E (p)(U, U0) → E (p+1)(U, U0) is given by D(σ1, σ01) = (dσ1, σ1 −
dσ01).

Definition 8.3.8 The p-th relative Čech-de Rham cohomology HpD(U, U0) of the
pair (U, U0) is the p-th cohomology of (E (•)(U, U0),D).

If S is a subcomplex ofM with respect to some triangulation ofM , HpD(U, U0)

is canonically isomorphic with the relative singular cohomologyHp(M,M�S;C)
(cf. Theorem 8.3.13 below).

There is an exact sequence of complexes

0 −→ E (•)(U, U0)
j•−→ E (•)(U) i•−→ E (•)(U0) −→ 0,

where jp(σ1, σ01) = (0, σ1, σ01) and ip(σ0, σ1, σ01) = σ0. This gives rise to a long
exact sequence

· · · −→ H
p−1
d (U0)

δ−→ H
p

D(U, U0)
j∗−→ H

p

D(U)
i∗−→ H

p

d (U0) −→ · · · .

Note that δ assigns to the class of a closed (p − 1)-form θ on U0 the class of
(0,−θ).

The cohomologyHpD(U, U0) is determined by the local structure ofM near S in
the following sense. We consider a special covering U1 = {U0, U

1
1 } ofM given by

U0 =M�S and U11 = M .

Definition 8.3.9 The cohomologyHpD(U
1, U0) is called the p-th relative de Rham

cohomology of the pair (M,M�S) and is denoted by HpD(M,M�S).

It is easily checked that, for any covering U = {U0, U1} as above, the
morphism E (p)(U1, U0) → E (p)(U, U0) given by restriction of forms induces an
isomorphism

H
p
D(M,M�S)

∼−→ H
p
D(U, U0).
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Thus we have:

Proposition 8.3.10 The cohomology HpD(U, U0) is determined uniquely modulo
canonical isomorphisms, independently of the choice of U1.

Proposition 8.3.11 (Excision) Let S be a closed set inM . Then, for every open set
U inM containing S, there is a canonical isomorphism

H
p
D(M,M�S)

∼−→ H
p
D(U,U�S).

Integration We assume that M is oriented and S is a compact set in M . Letting
U0 = M � S and U1 a neighborhood of S in M , we consider the covering
U = {U0, U1}. Let R1 be a compact m-dimensional manifold with boundary in M
containing S in its interior and set R0 = M�IntR1. Then {R0, R1} is a honeycomb
system adapted to U. The integration (8.9), which is not defined in general for
E (m)(U) unlessM is compact, makes sense on E (m)(U, U0):

∫

M

: E (m)(U, U0) −→ C,

∫

M

σ =
∫

R1

σ1 +
∫

R01

σ01.

It induces the integration

∫

M

: HmD(U, U0) −→ C. (8.12)

Relative Čech-de Rham Theorem Suppose now that S is a subcomplex ofM with
respect to a C∞ triangulation K0 of M and let K , K ′ and K∗ be as in Sect. 8.2.1.
We may assume without loss of generality thatU1 contains the star SK ′(S) of S with
respect to K ′.

Definition 8.3.12 A honeycomb system {R0, R1} is adapted to U and S if it is
adapted to U and if R1 ⊂ OK ′(S).

For example, if we set R1 = SK ′′ (S), the star of S with respect to the barycentric
subdivisionK ′′ of K ′, and R0 = M�IntR1, then {R0, R1} is adapted to U, K ′ and
S.

If we choose a honeycomb system {R0, R1} so that it is adapted to U, K ′ and S,
we see that the morphism (8.10) induces a morphism

E (p)(U, U0) −→ C
p
K∗(M,M�OK ′(S);C),

which assigns to σ = (σ1, σ01) ∈ E (p)(U, U0) the cochain

s∗ �→
∫

s∗∩R1

σ1 +
∫

s∗∩R01

σ01 (8.13)
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for an p-cell s∗. Then it induces an isomorphism

H
p

D(U, U0)
∼−→ H

p

K∗(M,M�OK ′(S);C).

Combined with HpK∗(M,M�OK ′(S);C) � Hp(M,M�S;C), we have:

Theorem 8.3.13 (Relative Čech-de Rham Theorem) Let S be a closed set in M .
If S is a subcomplex of M with respect to some triangulation of M , there is a
canonical isomorphism:

H
p
D(U, U0) � Hp(M,M�S;C).

Remark 8.3.14 In Theorem 8.3.13, considering the case of the covering U1, we
see that there is a canonical isomorphism H

p
D(M,M�S)

∼→ Hp(M,M�S;C).
The excision in Proposition 8.3.11 is compatible with the one in relative (singular)
cohomology via this isomorphism.

Alexander Duality We now assume thatM is oriented. From the Alexander duality
(Theorem 8.2.2) and the relative Čech-de Rham theorem (Theorem 8.3.13), we
have:

Theorem 8.3.15 Let S be a closed set inM . If S is a subcomplex with respect to a
triangulationK0 ofM , there is a canonical isomorphism:

A : HpD(U, U0)
∼−→ H̆m−p(S;C).

Let K ,K ′ andK∗ be as before and {R0, R1} a honeycomb system adapted to U,
K ′ and S (cf. Definitions 8.3.6 and 8.3.12). Then the isomorphism is induced from
the composition

E (p)(U, U0) −→ C
p
K∗(M,M�OK ′(S);C) −→ C̆Km−p(S;C),

where the first one is defined as in (8.13) and the second one is (8.6) with C-
coefficients. It assigns to (σ1, σ01) in E (p)(U, U0) the chain

∑

s

css, cs =
∫

s∗∩R1

σ1 +
∫

s∗∩R01

σ01, (8.14)

where s runs through all the oriented (m− p)-simplices of K in S.

Cup Product Let S be a closed set inM and U = {U0, U1} a covering ofM with
U0 =M�S and U1 a neighborhood of S inM , as before.
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In the product (8.11), if σ is in E (p)(U, U0), i.e., if σ0 = 0, then

σ 
 τ = (0, σ1 ∧ τ1, σ01 ∧ τ1)

and we have a product E (p)(U, U0)×E (p
′)(U1)

�→ E (p+p′)(U, U0), which induces
a product

H
p

D(U, U0)×Hp
′

d (U1)
�−→ H

p+p′
D (U, U0).

Suppose now that S is a subcomplex of M with respect to a triangulation K0

of M . Then there is a canonical isomorphism H
p

D(U, U0)
∼→ Hp(M,M�S;C)

(Theorem 8.3.13). There is also the de Rham isomorphismHp
′

d (U1)
∼→ Hp

′
(U1;C)

(Theorem 8.3.2). The above cup product is compatible with the topological one in
the sense that the following diagram is commutative:

Note that there is the excision Hp(M,M�S;C) � Hp(U1, U1�S;C).
If S is compact and if U1 has the same homotopy type as S (for example, the

open star OK(S) of S in K), we have

H̆m−p(S;C) = Hm−p(S;C) � Hm−p(U1;C) � Hm−pd (U1)
∗.

Thus we see that, in this case, the pairing

H
p
D(U, U0)×Hm−pd (U1)

�−→ HmD (U, U0)

∫
M−→ C

is non-degenerate and induces the Alexander duality.

8.4 Chern Classes via Obstruction Theory

Obstruction theory for characteristic classes of fiber bundles is thoroughly done in
[52], to which we refer for details of the materials in this section. The descriptions
given here are based on those in [11].

In the sequel, we denote by B
m a closedm-ball around 0 in R

m and S
m−1 = ∂Bm

an (m − 1)-sphere. We endow B
m with the orientation same as that of R

m and
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S
m−1 with the orientation as the boundary of Bm. In this section the homology and

cohomology are with Z-coefficients.

8.4.1 Index of a Family of Sections

Let X be a topological space and E a complex vector bundle of rank l on X.

Definition 8.4.1 An r-section on a subset A of X is an ordered family s(r) =
(s1, . . . , sr ) of r sections of E on A. A singular point of s(r) is a point where
the si ’s fail to be linearly independent over C. An r-frame is an r-section without
singularities.

A 1-section is nothing but a section. In this case the singular points are the zeros
of the section. An l-frame is simply called a frame.

In the below, we define the q-th Chern class cq(E) of E to be the primary
obstruction to constructing an r-frame of E, r = l − q + 1. For this purpose, we
introduce the notion of the index of an r-section at a point where it is singular or is
not defined.

Stiefel Manifold An r-frame in C
l is an ordered family of linearly independent r

vectors in C
l . The set of r-frames in C

l has a natural structure of complex manifold
of dimension lr , which is called the Stiefel manifold of r-frames in C

l and is denoted
by W(l, r). Recall that it is (2q − 2)-connected and π2q−1(W(l, r)) � Z, q =
l − r + 1. Thus, by Hurewicz’ theorem,

H2q−1(W(l, r)) � Z. (8.15)

Note that π2q−1(W(l, r)) and H2q−1(W(l, r)) have a canonical generator. In
particular, in the case r = 1, W(l, 1) = C

l
� {0} and q = l. There is a

deformation retraction r : Cl� {0} → S
2l−1. The homotopy class of the inclusion

S
2l−1 ↪→ C

l
�{0} is the canonical generator of π2l−1(C

l
�{0}). There exist canonical

isomorphismsH 2l−1(Cl�{0}) � H 2l−1(S2l−1) � Z, which determine the canonical
generator of H 2l−1(Cl�{0}).
Mapping Degree If ϕ : S

2q−1 → W(l, r) is a continuous map, it induces a
morphism

ϕ∗ : H2q−1(S
2q−1) −→ H2q−1(W(l, r))

and we may write

ϕ∗ν2q−1 = d · w2q−1
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with d an integer uniquely determined by the homotopy class of ϕ. In the
above, ν2q−1 and w2q−1 denote the canonical generators of H2q−1(S

2q−1) and
H2q−1(W(l, r)), respectively.

Definition 8.4.2 The above integer d is called the mapping degree of ϕ and is
denoted by degϕ.

Remark 8.4.3

1. Note that π2l−1(C
l
�{0}) � Z, which has the canonical generator [ι], ι : S2l−1 ↪→

C
l
�{0} being as above. A map ϕ as above defines an element in π2l−1(C

l
�{0}),

which is of the form d ·[ι]with d = degϕ. Then degϕ = 0 if and only if ϕ can be
extended to a map B

2l → C
l
�{0} and we may think of degϕ as the obstruction

to extending ϕ to B
2l .

2. See Proposition 8.8.4 below for a differential geometric interpretation of the
degree.

Index of an r-Frame We consider the bundle W(E, r) of r-frames of E on X.
This is a bundle associated with E whose fiber W(E, r)x at each point x of X is
diffeomorphic withW(l, r). An r-frame of E is nothing but a section ofW(E, r).

Suppose we have an oriented 2q-cell e inX. We assume that e is regular and take
a characteristic map χ : B2q → e, the closure of e, so that it is a homeomorphism
determining the orientation of e. We may assume that E is trivial on e. Suppose we
are given an r-frame s(r) of E on e�e. Although it is not necessary, in order to fix
the idea, we extend s(r) to an r-frame on e� {a}, where a is a point in in e. It is
always possible as e�{a} deformation retracts to e�e. We have a map

ϕs(r) : S2q−1 −→ W(l, r) (8.16)

as the composition of the restriction of χ to S
2q−1, s(r) and the projection onto the

fiberW(l, r) ofW(E, r).

Definition 8.4.4 The index I (s(r), a) of s(r) at a is defined by

I (s(r), a) = degϕs(r) .

Note that the definition does not depend on the order of the members of s(r), the
choice of a in e or the trivialization of E.

Example 8.4.5 Let U be a neighborhood of 0 in C = {z} and E = C × U the
product bundle on U . Also let B2 be a closed 2-ball in U with center 0. For an
integer d , let s be the frame of E on S

1 = ∂B2 given by s(z) = (zd , z). Then,
noting thatW(1, 1) = C�{0} and the map in (8.16) is given by z �→ zd , we see that
I (s, 0) = d .
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More generally, if the frame s on S
1 is given by s(z) = (f (z), z) with f a non-

vanishing C∞ function, we have (cf. Example 8.8.3 and Remark 8.4.3. 2):

I (s, 0) = 1

2π
√−1

∫

S
1

df

f
.

Remark 8.4.6 The index above coincides with the index of a section of some
quotient bundle of E of rank q = l − r + 1.

8.4.2 Chern Classes

We briefly review the obstruction theoretic construction of Chern classes of complex
vector bundles on cell complexes.

LetX be a locally finite cell complex and suppose that every cell is regular. Recall
that the singular homology of X can be computed from the chain complex C•(X)
of oriented p-cells in X. Also the singular cohomology can be computed from the
dual cochain complex C•(X).

Let E be a complex vector bundle of rank l on X and r an integer with 1 ≤
r ≤ l. We set q = l − r + 1 as before. We try to construct an r-frame, i.e., a
section ofW(E, r), on each skeleton Xp of X starting from the 0-skeleton and then
extending it inductively to larger skeletons. On the way we get a 2q-cochain γ as the
obstruction to the construction. In fact γ is a cocycle and defines a class inH 2q(X),
which will be the q-th Chern class cq(E) of E.

To be a little more precise, it is always possible to construct a section s(r) of
W(E, r) on X0. Let e be a p-cell. If a section s(r) of W(E, r) is given on e�e, it
defines a map as (8.16), replacing S

2q−1 with S
p−1 � e� e. Thus s(r) defines an

element in πp−1(W(l, r)). If p ≤ 2l − 2r + 1 = 2q − 1, the section s(r) can be
extended to e, since the homotopy group vanishes. This way we may construct a
section s(r) ofW(E, r) onX2q−1. Then we reach to an “obstruction” when p = 2q .
Namely, for each 2q-cell e, the r-frame s(r) on e�e is extended to an r-frame on e
possibly except for a point a in e and the obstruction is given by the index I (s(r), a).
We define a cochain γ by

〈e, γ 〉 = I (s(r), a) (8.17)

for each 2q-cell e and then extending it linearly. Then it is shown that the cochain γ
is in fact a cocycle in C2q(X) and that different choices of extensions in each step
leads to cocycles that are cohomologous.

Definition 8.4.7 The q-th topological Chern class cqtop(E) of E is the class of γ in
H 2q(X).
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Throughout this section, we denote cqtop(E) simply by cq(E) and call it the q-th
Chern class of E. The total Chern class of E is defined by

c∗(E) = 1+ c1(E)+ · · · + cl(E),

which is an element in the cohomology ring H ∗(X) and is invertible.

Remark 8.4.8

1. If E admits an r-frame on X, then clearly cq(E) = 0. Conversely if cq(E) = 0,
then it is possible to construct an r-frame of E on X2q , but not on X in general.
Thus cq(E) is referred to as the primary obstruction to constructing an r-frame
of E.

2. In Sect. 8.6 below, we define differential geometric Chern classes for C∞
complex vector bundles via the Chern-Weil theory and discuss, in Sect. 8.8.3,
the relation between the classes defined from two different approaches.

8.4.3 Euler Class of a Real Oriented Vector Bundle

Let E be an oriented real vector bundle of rank l′ on a regular cell complex X. If
l′ = 1, the orientability of E implies that E is a trivial bundle. Thus we assume that
l′ > 1 in the sequel. We denote by V (l′, 1) the real Stiefel manifold of 1-frames in
R
l′ , which is in fact Rl

′
� {0} so that it has the homotopy type of Sl

′−1. We denote
by V (E, 1) the bundle of 1-frames of E on X.

We may define the index of a section at a point where it is singular or it is not
defined, as before. Thus let e be an l′-cell in X, on which E is trivial. Suppose we
have a 1-frame s ofE on e�{a}, a ∈ e. We have a composition ϕs : Sl′−1 → V (l′, 1)
as in (8.16). The index of s at a, denoted by I (s, a), is defined by

I (s, a) = degϕs. (8.18)

We then perform a similar construction as in the case of Chern classes to obtain
the Euler class e(E) of E as the obstruction to constructing a section of V (E, 1),
i.e., a non-vanishing section of E, on Xl

′
, which is in Hl

′
(X).

Remark 8.4.9

1. As in the case of Chern classes, e(E) = 0 if and only ifE admits a non-vanishing
section on Xl

′
(cf. Remark 8.4.8. 1).

2. If E is a complex vector bundle of rank l, we may think of it as a naturally
oriented real bundle of rank 2l and W(l, 1) may be identified with V (2l, 1). In
this case, we have e(E) = cl(E), the top Chern class of E.
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8.5 Localization and Topological Residues

Let M be a C∞ manifold of dimension m and let K0, K , K ′ and K∗ be as in
Sect. 8.2.1.

8.5.1 Duals of Characteristic Classes

In the construction described in Sects. 8.4.2 and 8.4.3, we use the dual cellular
complexK∗.

Chern Classes Let E be a complex vector bundle of rank l on M . Denoting by
s(r) an r-frame already constructed on the (2q − 1)-skeleton (K∗)2q−1 of K∗, the
Poincaré dual of cq(E) is represented in H̆m−2q(M) by the cycle

C =
∑

s

I (s(r), bs) s, (8.19)

where the sum is taken over all the (m−2q)-simplices s ofK and I (s(r), bs) denotes
the index of s(r) on s∗ ∩ (K∗)2q−1 at the barycenter bs (cf. Definition 8.4.4, we may
take bs as a there).

Euler Class Let E be a real oriented vector bundle of rank l′ onM . Denoting by s
a non-vanishing section already constructed on (K∗)l′−1, the Poincaré dual of e(E)
is represented in H̆m−l′(M) by the cycle

C =
∑

s

I (s, bs) s, (8.20)

where the sum is taken over all the (m− l′)-simplices s of K .

8.5.2 Localized Chern Classes

Let E be a complex vector bundle of rank l on M and S a K0-subcomplex of
M . Suppose we are already given an r-frame s(r) of E on (M � S) ∩ (K∗)2q ,
where (K∗)2q denotes the 2q-skeleton of K∗. We follow the procedure described
in Sect. 8.4.2, starting with this frame to obtain an r-frame s̃(r) on (K∗)2q �
{isolated points}. To be more precise, recall that, for an (m − 2q)-simplex s of K ,
s∗ ∩ S = ∅ if and only if s �⊂ S. The above frame s̃(r) has the properties:

1. if s �⊂ S, then s̃(r) is defined and equals s(r) on s∗,
2. if s ⊂ S, then s̃(r) is defined on s∗�{a}, where a is a point in s∗.

Note that the point a may be assumed to be the barycenter bs of s. For every 2q-
cell s∗ not intersecting with S, we have I (s̃(r), bs) = I (s(r), bs) = 0. Thus the
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cocycle γ defined by (8.17) for s̃(r) is in C2q
K∗(M,M�OK ′(S)). It represents a class

in H 2q(M,M�S), which is denoted by cqS,top(E, s
(r)) and is called the topological

localization of cq(E) by s(r) at S. It will also be denoted by cqS(E, s
(r)), cqtop(E, s

(r))

or cq(E, s(r)). The class depends on s(r), but not on the choice of the extension s̃(r)

of s(r). Its image by the canonical morphism H 2q(M,M�S) → H 2q(M) is the
Chern class cq(E).

Suppose M is oriented so that we have the Alexander isomorphism (Theo-
rem 8.2.2):

A : H 2q(M,M�S)
∼−→ H̆m−2q(S).

Definition 8.5.1 The topological residue TRescq (s(r), E; S) of s(r) for cq(E) at S
is the image of cqS(E, s

(r)) by A.

Remark 8.5.2 In order to have the above localization and residue, it suffices to have
s(r) on ∂SK ′(S) ∩ (K∗)2q .

Suppose that S has only a finite number of connected components (Sλ)λ. Then
we have a decomposition

H̆m−2q(S) =⊕λH̆m−2q(Sλ)

and accordingly we have the residue TRescq (s(r), E; Sλ) in H̆m−2q(Sλ) for each λ.
We have (cf. (8.19)):

Proposition 8.5.3 In the above situation, the residue TRescq (s(r), E; Sλ) is repre-
sented by the cycle

Cλ =
∑

s

I (s̃(r), bs) s, (8.21)

where the sum is taken over the (m− 2q)-simplices of K in Sλ.

In particular, if 2q = m and if Sλ is compact, H̆0(Sλ) = H0(Sλ) = Z and
TRescq (s(r), E; Sλ) is an integer given by

TRescq (s
(r), E; Sλ) =

∑

s

I (s̃(r), bs),

where the sum is taken over all the 0-simplices s of K in Sλ, in fact bs = s.
By the commutativity of (8.7), we have the following “residue theorem”:

Theorem 8.5.4 In the above situation, it holds:

1. For each λ, we have the residue TRescq (s(r), E; Sλ) in H̆m−2q(Sλ), which is
represented by the cycle (8.21).
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2. We have

∑

λ

(iλ)∗ TRescq (s
(r), E; Sλ) = [M] 	 cq(E) in H̆m−2q(M),

where iλ : Sλ ↪→ M denotes the inclusion.

Transverse Residues LetM ,K0,K ,K∗ and S be as above. Suppose the maximum
dimension of the simplices ofK in S ism−2q and let S′ be an oriented submanifold
of M of dimension m − 2q which is contained in S. We may assume that the
orientations of simplices in K are compatible with that of S′. Let x be a point in
S′ and D a slice of S′ inM at x, i.e., a 2q-dimensional submanifold ofM containing
x, transverse to S′ at x and diffemorphic with an open 2q-ball. We may assume that
x is the barycenter bs of some (m− 2q)-simplex s ofK in S′ and that s∗ is in D. We
may also extend the triangulationK ′ on s∗ throughoutD. Let s(r) be an r-frame ofE
on (M�S)∩(K∗)2q , as before. Restricting E and s(r) to D, we have the localization
c
q
x(E|D, s(r)|D) and the residue TRescq (s(r)|D, E|D; x), which correspond to each

other by the Alexander isomorphism

H 2q(D,D�{x}) � H0({x}).

As H0({x}) � Z, we may think of TRescq (s(r)|D, E|D; x) as an integer, which is
referred to as the transverse residue at x. In fact it is given by

TRescq (s(r)|D, E|D; x) = I (s(r), bs).

Remark 8.5.5 By Remark 8.5.2, in the above notation, TRescq (s(r)|s∗, E|s∗; bs)
makes sense and is equal to TRescq (s(r)|D, E|D; x).

As a function of x, TRescq (s(r)|D, E|D; x) is locally constant. Thus, if S′ is
connected, it is constant. From Proposition 8.5.3, we have:

Proposition 8.5.6 If Sλ is an (m− 2q)-dimensional submanifold ofM ,

TRescq (s(r), E; Sλ) = TRescq (s(r)|D, E|D; x) · [Sλ] in H̆m−2q(Sλ),

where x is a point in Sλ and D a slice of Sλ at x.

The above expression of the residue is generalized to the case Sλ is a pseudo-
manifold. Thus let Sλ be a connected component of S as above and suppose it is
an oriented pseudo-manifold of dimension m − 2q (cf. Definition 8.2.5). If s is an
(m − 2q)-simplex of K in Sλ, s∗ is a 2q-cell such that s∗ ∩ Sλ = {bs}. Thus we
have the transverse residue TRescq (s(r)|s∗, E|s∗; bs), which is equal to I (s(r), bs)
(cf. Remark 8.5.5). From Proposition 8.5.3, we have:
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Theorem 8.5.7 Suppose Sλ is an oriented pseudo-manifold of dimension m − 2q .
Then the residue TRescq (s(r), E; Sλ) in H̆m−2q(Sλ) is represented by the cycle

∑

s

TRescq (s(r)|s∗, E|s∗; bs) · s,

where s runs through all the (m− 2q)-simplices of K in Sλ.

Corollary 8.5.8 In the above situation, if Sλ = ⋃i Sλ,i is the irreducible decom-
position,

TRescq (s
(r), E; Sλ) =

∑

i

TRescq (s
(r)|D, E|D; xλ,i) · [Sλ,i] in H̆m−2q(Sλ),

where xλ,i is a general point of Sλ,i and D a slice of Sλ,i at xλ,i .

In the above, [Sλ,i ] denotes the class of Sλ,i in H̆m−2q(Sλ). In fact H̆m−2q(Sλ) is
a free Abelian group generated by these classes.

In the case Sλ is a submanifold, the above reduces to Proposition 8.5.6.

Remark 8.5.9 In Sect. 8.7 below we discuss localization problems in various
settings mainly from the differential geometric viewpoint and give a general residue
theorem (Theorem 8.7.3). The localization of Chern classes by frames in this
context is treated in Sect. 8.8, where the differential geometric counterpart of
Theorem 8.5.4 is discussed. We then prove that these two are essentially the same
(cf. Theorem 8.8.8).

8.5.3 Localized Euler Class

LetE be a real oriented vector bundle of rank l′ onM and S aK0-subcomplex ofM .
Suppose we are already given a non-vanishing section s of E on (M�S) ∩ (K∗)l′ .
We follow the procedure described in Sect. 8.5.2 for the Euler class starting with
this section to obtain a class in Hl

′
(M,M�S), which we denote by e(E, s) and call

the localization of e(E) by s.
SupposeM is oriented so that we have the Alexander isomorphism

A : Hl′(M,M�S)
∼−→ H̆m−l′(S).

Definition 8.5.10 The topological residue TRese(s, E; S) of s for e(E) at S is the
image of e(E, s) by A.

If S has a finite number of connected components (Sλ)λ we have the residue
TRese(s, E; Sλ) in H̆m−l′(Sλ) for each λ. It is represented by the cycle (cf. (8.20))

Cλ =
∑

s

I (s̃, bs) s,
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where the sum is taken over the (m− l′)-simplices ofK in Sλ.
In particular, if l′ = m and if Sλ is compact, H̆0(Sλ) = H0(Sλ) = Z and

TRese(s, E; Sλ) is an integer given by

TRese(s, E; Sλ) =
∑

s

I (s̃, bs), (8.22)

where the sum is taken over all the 0-simplices s of K in Sλ, in fact bs = s.
We have the residue theorem as Theorem 8.5.4 for the Euler class, replacing cq ,

s(r) and 2q with e, s and l′, respectively.

Transverse Residues As in the case of Chern classes, we may consider the
transverse residue, replacing cq , s(r) and 2q with e, s and l′, respectively. Thus we
have the transverse residue TRese(s|D, E|D, x), which is an integer, and expressions
similar to the ones in Proposition 8.5.6, Theorem 8.5.7 and Corollary 8.5.8.

Euler Class of the Tangent Bundle Let M be a C∞ manifold of dimension m. If
E = TRM is the tangent bundle ofM , then l′ = m so that (K∗)l′ = M . The sections
of TRM are vector fields.

Definition 8.5.11 Let a be a point in M and U a neighborhood of a. For a non-
vanishing vector field v on U � {a}, its Poincaré-Hopf index PH(v, a) at a is the
index I (v, a) as defined in (8.18).

Now suppose that M is oriented so that TRM is also oriented. The Euler class
e(M) of M is then by definition the Euler class of TRM . In the above, we may think
of a as a vertex of K and may write (cf. (8.22))

PH(v, a) = TRese(v, TRM; a).

In particular, if M is compact and connected, for a vector field v defined and
non-vanishing onM , except for a finite number of points a1, . . . , ar ,

r∑

i=1

PH(v, ai) = [M] 	 e(M). (8.23)

On the other hand, there exists a vector field v0 having a singularity of index 1 at the
barycenter of each even dimensional simplex and a singularity of index −1 at the
barycenter of each odd dimensional simplex, and for v0 we have

∑
s PH(v0, bs) =

χ(M), where s runs through all the simplices in K . From (8.23), we have

χ(M) = [M] 	 e(M). (8.24)
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Thus we have:

Theorem 8.5.12 (Poincaré-Hopf Theorem) Let M be a compact, connected and
oriented C∞ manifold. For a vector field v defined and non-vanishing onM , except
for a finite number of points a1, . . . , ar ,

r∑

i=1

PH(v, ai) = χ(M).

Case of Complex Vector Bundles From the construction we have the following
(cf. Remark 8.4.9. 2):

Proposition 8.5.13 If E is a complex vector bundle of rank l, we may think of it as
a real oriented vector bundle of rank 2l and we have

e(E, s) = cl(E, s) in H 2l(M,M�S).

IfM is oriented, we also have

TRese(s, E; Sλ) = TRescl (s, E; Sλ) in H̆m−2l(Sλ).

Let X be a complex manifold of dimension n. Then the q-th Chern class cq(X)
of X is defined to be the q-th Chern class cq(TX) of the holomorphic tangent
bundle TX. Recall that TX can be naturally identified with the real tangent bundle
TRX. Thus a section of TX can be considered as either a complex vector field or a
real vector field.

As a special case of Proposition 8.5.13, we have:

Proposition 8.5.14 Let v be a section of TX defined and non-vanishing on a
neighborhood of a, possibly except for at a. Then its Poincaré-Hopf index PH(v, a)
as defined in Definition 8.5.11 coincides with the index as defined in Definition 8.4.4
(with r = 1).

We also see that, since the top Chern class cn(X) is the primary obstruction to
constructing a (non-vanishing) vector field, it coincides with the Euler class e(X) of
TRX:

cn(X) = e(X).
In particular, if X is compact and connected, (8.24) reads

χ(X) = [X] 	 cn(X). (8.25)
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Later in Sect. 8.6, we represent the Chern classes of a complex vector bundle by
differential forms using connections for the bundle. If X is compact, (8.25) may be
written

χ(X) =
∫

X

cn(X),

which is referred to as the “Gauss-Bonnet formula”.

8.6 Chern-Weil Theory Adapted to Čech-de Rham
Cohomology

In this section we review the Chern-Weil theory of characteristic classes of complex
vector bundles and modify it to have the classes in Čech-de Rham cohomology. As
general references for the Chern-Weil theory we list [5, 7, 8, 44]. As to its adaptation
to Čech-de Rham cohomology, see [38, 55].

Throughout this section, we let M denote a C∞ manifold of dimension m. For
an open set U in M , we denote by E (0)(U) the C-algebra of C∞ functions on U
as before. Also, for a C∞ complex vector bundle E on M , we set E (p)(U ;E) =
C∞(U ;∧p(T c

R
M)∗ ⊗E), the E (0)(U)-module of C∞ p-forms with coefficients in

E.

Connections Let E be a C∞ complex vector bundle of rank l onM .

Definition 8.6.1 A connection for E is a C-linear map

∇ : E (0)(M;E) −→ E (1)(M;E)

satisfying the Leibniz rule:

∇(f s) = df ⊗ s + f∇(s) for f ∈ E (0)(M) and s ∈ E (0)(M;E).

For example, the exterior derivative d : E (0)(M)→ E (1)(M) is a connection for
the product bundle C×M . A connection ∇ is a local operator, i.e., if a section s is
identically 0 on an open set U , so is ∇(s). Thus the restriction of ∇ to an open set
U makes sense and it is a connection for E|U . Using a partition of unity, we see that
every vector bundle admits a connection.

If ∇ is a connection for E, it induces a C-linear map

∇ : E (1)(M;E) −→ E (2)(M;E)

satisfying

∇(ω⊗ s) = dω⊗ s − ω ∧ ∇(s) for ω ∈ E (1)(M) and s ∈ E (0)(M;E).



594 T. Suwa

The composition

K = ∇ ◦ ∇ : E (0)(M;E) −→ E (2)(M;E)

is called the curvature of ∇. It is easily checked that

K(f s) = fK(s) for f ∈ E (0)(M) and s ∈ E (0)(M;E).

From this we see that the curvature K may be thought of as an element in
E (2)(M; Hom(E,E)) so that it is locally represented by an l × l matrix whose
entries are differential 2-forms. On the other hand the connection ∇ itself may not
be thought of as an element in E (1)(M;Hom(E,E)). However, the fact that it is a
local operator allows us to represent it locally by a matrix whose entries are 1-forms.

Thus suppose that ∇ is a connection for E and that E is trivial on U . If e(l) =
(e1, . . . , el) is a frame of E on U , we may write, for i = 1, . . . , l,

∇(ei) =
l∑

j=1

θji ⊗ ej , θij ∈ E (1)(U).

We call θ = (θij ) the connection matrix of ∇ with respect to e(l). For the curvature
K of ∇, we may write

K(ei) =
l∑

j=1

κji ⊗ ej , κij ∈ E (2)(U).

We call κ = (κij ) the curvature matrix of ∇ with respect to e(l). From the definition
we compute κij = dθij +∑l

k=1 θik ∧ θkj , which we write as

κ = dθ + θ ∧ θ.

If e′(l) = (e′1 . . . , e′l ) is another frame of E on U ′, we have e′i =
∑l
j=1 pjiej for

some C∞ function s pij on U ∩ U ′. The matrix P = (pij ) is non-singular at each
point of U ∩U ′. If we denote by θ ′ and κ ′ the connection and curvature matrices of
∇ with respect to e′(l),

θ ′ = P−1 · dP + P−1θP and κ ′ = P−1κP in U ∩ U ′. (8.26)

The second relation signifies the fact that K is an element in E (2)(M,Hom(E,E)).
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8.6.1 Characteristic Classes of Complex Vector Bundles

Invariant Polynomials Let M(l,C) denote the vector space of l × l complex
matrices. A polynomial ϕ on M(l,C) is a function ϕ(A) of A ∈ M(l,C) which
is a polynomial in the entries of A. It is said to be invariant if

ϕ(P−1AP) = ϕ(A) for all A ∈ M(l,C) and P ∈ GL(l,C).

If we define a function σq , for q = 1, 2, . . . , l, by σq(A) = tr
(∧q

A
)
, it is an

invariant polynomial, homogeneous of degree q . In particular, σ1(A) = tr(A) and
σl(A) = det(A). We may also write

det(Il + A) = 1+ σ1(A)+ · · · + σl(A),

where Il denotes the identity matrix of rank l. We call σq the q-th elementary
invariant polynomial

It is known that every invariant polynomial is a polynomial in the elementary
invariant polynomials.

Characteristic Forms Let E be a C∞ complex vector bundle of rank l on M , ∇
a connection for E and K its curvature. Since K is in E (2)(M;Hom(E,E)), for an
invariant polynomial ϕ, we have a differential form ϕ(K). It is shown that the form
is closed and its class in the de Rham cohomology depends only on E and not on
the choice of the connection.

Proposition 8.6.2 For every invariant polynomial ϕ, the form ϕ(K) is closed.

By a slight abuse of notation, we introduce the following:

Definition 8.6.3 For a connection ∇ and an invariant polynomial ϕ homogeneous
of degree k, the characteristic form is defined by

ϕ(∇) =
(√−1

2π

)k
ϕ(K).

Difference Form We have the following:

Proposition 8.6.4 Let ∇ and ∇′ be connections for E. For an invariant polynomial
ϕ homogeneous of degree k, there exists a (2k − 1)-form ϕ(∇,∇′) such that
ϕ(∇′,∇) = −ϕ(∇,∇′) and that

dϕ(∇,∇′) = ϕ(∇′)− ϕ(∇).
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Here we recall the construction of the formϕ(∇,∇′). Consider the productR×M
with projection ρ : R ×M → M . Denoting by t a coordinate on R, let ∇̃ be the
connection for ρ∗E given by

∇̃ = (1− t)ρ∗∇ + tρ∗∇′.

Letting ρ′ : [0, 1] ×M → M be the restriction of ρ, we have the integration along
the fibers ρ′∗ : E 2k([0, 1] ×M)→ E 2k−1(M). Then we set

ϕ(∇,∇′) = ρ′∗ ϕ(∇̃).

The form ϕ(∇,∇′) as above is called a difference form. From this we see that the
class [ϕ(∇)] of the closed form ϕ(∇) in the de Rham cohomologyH 2k

d (M) depends
only on E and not on the choice of the connection ∇.

Definition 8.6.5 We denote this class by ϕ(E) and call it the characteristic class of
E for the polynomial ϕ.

Definition 8.6.6 The q-th Chern form of ∇ is defined by

cq(∇) =
(√−1

2π

)q
σq(K).

Its class in H 2q
d (M) is denoted by cqdiff(E) and is called the q-th differential

geometric Chern class of E.

If κ is the curvature matrix of ∇ with respect to some frame of E on U , the total
Chern form is given by

c∗(∇) = det
(
I +

√−1

2π
κ
)
.

We call

c∗diff(E) = 1+ c1
diff(E)+ · · · + cldiff(E)

the total Chern class of E, which is considered as an element in the cohomology
ring H ∗d (M). Note that the class c∗diff(E) is invertible in H ∗d (M).

Remark 8.6.7

1. As noted above, for an invariant polynomial ϕ, there is a polynomial P such
that ϕ = P(σ1, σ2, . . . ). We have ϕ(∇) = P(c1(∇), c2(∇), . . . ) and ϕ(E) =
P(c1(E), c2(E), . . . ).

2. For a finite number of connections, we may define the difference form.
3. As is shown below (cf. Theorem 8.8.7), the Chern class cqdiff(E) defined above

is the image of the Chern class cqtop(E) defined by obstruction theory by the
canonical morphism H 2q(M;Z)→ H 2q(M;C).
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8.6.2 Characteristic Classes in Čech-de Rham Cohomology

Let U = {U0, U1} be an open covering of M . Also, let π : E → M be a C∞
complex vector bundle of rank l and ϕ an invariant polynomial homogeneous of
degree k. For each i = 0, 1, we choose a connection ∇i for E on Ui , and for the
collection ∇∗ = (∇0,∇1), we define the element ϕ(∇∗) in E (2k)(U) by

ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)).

Then we have Dϕ(∇∗) = 0. Hence the form ϕ(∇∗) defines a class in H 2k
D (U). It is

shown that the class does not depend on the choice of the collection of connections
∇∗. Comparing with the class defined by a global connection, we see that the
class [ϕ(∇∗)] in H 2k

D (U) corresponds to the class ϕ(E) in H 2k
d (M) under the

isomorphism of Theorem 8.3.4.
This way of representing characteristic classes is particularly relevant in dealing

with the “localization problem”, which we discuss in the next section.

8.7 Localization and Associated Residues

In this section, we explain general philosophy and procedure of localizing charac-
teristic classes and of obtaining the associated residues.

8.7.1 General Philosophy

Let M be a C∞ manifold of dimension m and S a closed set in M . For a complex
vector bundle E onM and an invariant polynomial ϕ, it sometimes happens that we
have the vanishing ϕ(E) = 0 onM�S. Then, in view of the exact sequence

· · · −→ H ∗(M,M�S)
j∗−→ H ∗(M) −→ H ∗(M�S) −→ · · · ,

there is a class ϕS(E) in H ∗(M,M�S) which is sent to ϕ(E) by j∗. We call ϕS(E)
a localization of ϕ(E) at S. Note that, since j∗ is not injective in general, ϕS(E)
is not uniquely determined. However, in the cases we consider below, the vanishing
of ϕ(E) occurs on the cocycle level of and, using this fact, we may define a natural
localization. If M is oriented and if S is a subcomplex of M with respect to some
triangulation of M , the localization defines the “residue” in the homology of each
connected component of S through the Alexander duality H ∗(M,M�S) � H̆∗(S)
and we have the residue theorem (cf. Theorem 8.7.3 below).

We have already seen this kind of phenomenon as localization by frames from
topological viewpoint (cf. Sect. 8.5). We explain the procedure in the framework of
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Chern-Weil theory adapted to Čech-de Rham cohomology, which is applicable in
other settings as well.

8.7.2 Residue Theorem

Let M and S be as above. Letting U0 = M�S and U1 a neighborhood of S, we
consider the covering U = {U0, U1} of M . Let E be a C∞ complex vector bundle
on M . For an invariant polynomial ϕ homogeneous of degree k, the characteristic
class ϕ(E) is represented by the cocycle ϕ(∇∗) in E (2k)(U) given by

ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)), (8.27)

where ∇0 and ∇1 are connections for E on U0 and U1 respectively (cf. Sect. 8.6.2).
Sometimes it happens that we have a “vanishing theorem” on U0 for some
polynomials ϕ. To be a little more precise, there is some “geometric object” γ on
U0, with which is associated a class C of connections for E on U0 such that, for a
certain polynomial ϕ, we have

ϕ(∇0) = 0 if ∇0 belongs to C.

We call a connection belonging to C special for γ and a polynomial ϕ as above
adapted to γ . If ∇0 is special and if ϕ is adapted to γ , the cocycle ϕ(∇∗)
of (8.27) is in E 2k(U, U0) and defines a class in H 2k

D (U, U0), which is denoted
by ϕS(E, γ ). Usually we have the vanishing of the difference form for every family
of finite number of special connections and, using this fact, it is shown that the
class ϕS(E, γ ) does not depend on the choice of the special connection ∇0 or the
connection ∇1. We call ϕS(E, γ ) the localization of ϕ(E) at S by γSometimes we
denote it simply by ϕ(E, γ ).

From now on we assume that M is oriented and that S is a subcomplex of M
with respect to some triangulationK0 ofM . Then there is a canonical isomorphism
H 2k
D (U, U0) � H 2k(M,M�S;C) (cf. Theorem 8.3.13) and the class ϕS(E, γ ) is

sent to ϕ(E) by the canonical morphism j∗ : H 2k(M,M�S;C) → H 2k(M;C).
We have the Alexander duality (Theorems 8.2.2 and 8.3.15):

A : H 2k(M,M�S;C) ∼−→ H̆m−2k(S;C).

Definition 8.7.1 The residue Resϕ(γ,E; S) of γ at S for ϕ(E) is the image of
ϕS(E, γ ) by A.

Suppose that S has only a finite number of connected components (Sλ)λ. Then
we have a decomposition

H̆m−2k(S;C) =
⊕

λ

H̆m−2k(Sλ;C)
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and accordingly we have the residue Resϕ(γ,E; Sλ) in H̆m−2k(Sλ;C) for each λ.
For each λ, we take an open neighborhood Uλ of Sλ in U1 so that Uλ ∩ Uμ =
∅, if λ �= μ. Let K , K ′ and K∗ be as in Sect. 8.2.1. We may assume that
OK ′(Sλ) ⊂ Uλ. Also let {R0, R1} be a honeycomb system adapted to U, K ′ and
S (cf. Definitions 8.3.6 and 8.3.12) and set Rλ = R1 ∩ Uλ and R0λ = −∂Rλ. Then
we have (cf. (8.14)):

Proposition 8.7.2 In the above situation, the residue Resϕ(γ,E; Sλ) is represented
by the cycle

Cλ =
∑

s

css, cs =
∫

s∗∩Rλ
ϕ(∇1)+

∫

s∗∩R0λ

ϕ(∇0,∇1), (8.28)

where s runs through the (m− 2k)-simplices of K in Sλ.

In particular, if 2k = m and if Sλ is compact, H̆0(Sλ;C) = H0(Sλ;C) = C and
we have:

Resϕ(γ,E; Sλ) =
∫

Rλ

ϕ(∇1)+
∫

R0λ

ϕ(∇0,∇1). (8.29)

From the commutativity of the diagram (8.7) with C-coefficients, we have:

Theorem 8.7.3 (Residue Theorem) In the above situation, it holds:

1. For each λ, we have the residue Resϕ(γ,E; Sλ) in H̆m−2k(Sλ;C), which is
represented by the cycle (8.28).

2. We have

∑

λ

(iλ)∗ Resϕ(γ,E; Sλ) = [M] 	 ϕ(E) in H̆m−2k(M;C),

where iλ : Sλ ↪→ M denotes the inclusion.

If 2k = m and ifM is compact, we may write the right hand side of the identity
in 2 as

∫
M
ϕ(E).

Remark 8.7.4

1. The above arguments also work, if we replace E with a virtual bundle and M
with a possibly singular variety, with some modifications.

2. The above theorem becomes especially meaningful every time we have an
explicit description of the residues.

Transverse Residues LetM ,K0,K ,K∗ and S be as above. Suppose the maximum
dimension of the simplices ofK in S ism−2k and let S′ be an oriented submanifold
of M of dimension m − 2k which is contained in S. Let x be a point in S′ and D a
slice of S′ inM at x (cf. the paragraph right after Theorem 8.5.4).
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Suppose

(*) the restriction γ |D of γ to D makes sense and the restriction of any connection
special for γ is special for γ |D.

Then, restricting the bundle E and the connections ∇0 and ∇1 to D, we have the
localization ϕx(E|D, γ |D) and the residue Resϕ(γ |D, E|D; x), which correspond to
each other by the Alexander isomorphism

H 2k(D,D�{x};C) � H0({x};C).

As H0({x};C) � C, we may think of Resϕ(γ |D, E|D; x) as a number, which is
called the transverse residue at x. If we take a closed 2k-ball B1 with center x in D

and set B01 = −∂B1, which is a (2k−1)-sphere with the orientation opposite to the
natural one, it is given by (cf. (8.29))

Resϕ(γ |D, E|D; x) =
∫

B1

ϕ(∇1)+
∫

B01

ϕ(∇0,∇1). (8.30)

With these, we have:

Proposition 8.7.5 As a function of x, Resϕ(γ |D, E|D; x) is locally constant. Thus,
if S′ is connected, it is constant.

Remark 8.7.6

1. We may assume that x is the barycenter bs of some (m − 2k)-simplex s of
K in S′ and B1 = s∗ ∩ R1. The transverse residue is then expressed as (cf.
Proposition 8.7.2)

Resϕ(γ |D, E|D; x) =
∫

s∗∩R1

ϕ(∇1)+
∫

s∗∩R01

ϕ(∇0,∇1).

2. In the cases we consider below, the assumption (*) is always satisfied.
3. If 2k = m and if S is compact, we do not have to assume that S is a subcomplex

of M . Simply take arbitrary mutually disjoint open neighborhoods as the Uλ’s
and define Resϕ(γ,E; Sλ) by (8.29) with Rλ as above, then Theorem 8.7.3 is
still valid.

We give a formula for the residue at Sλ when it is a compact oriented submanifold
ofM of dimensionm− 2k with orientation compatible with that ofM . In this case
we have the transverse residue Resϕ(γ |D, E|D; x) at each point x in Sλ and it is in
fact constant (cf. Proposition 8.7.5).

Theorem 8.7.7 Suppose that Sλ is a compact oriented submanifold of M of
dimension m− 2k. Then we have:

Resϕ(γ,E; Sλ) = Resϕ(γ |D, E|D; x) · [Sλ] in Hm−2k(Sλ;C).
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We give an explicit expression of Resϕ(γ,E; Sλ) in the case Sλ is a pseudo-
manifold (cf. Definition 8.2.5).

Let Sλ be a connected component of S as above and suppose it is an oriented
pseudo-manifold of dimension m − 2k. If s is an (m − 2k)-simplex of K in Sλ, s∗
is a 2k-cell such that s∗ ∩ Sλ = {bs}. Thus we have the residue Resϕ(γ,E|s∗; bs),
which is given by (cf. Remark 8.7.6. 1)

Resϕ(γ,E|s∗; bs) =
∫

s∗∩R1

ϕ(∇1)+
∫

s∗∩R01

ϕ(∇0,∇1).

From Proposition 8.7.2, we have:

Theorem 8.7.8 Suppose Sλ is an oriented pseudo-manifold of dimension m − 2k.
Then the residue Resϕ(γ,E; Sλ) in H̆m−2k(Sλ;C) is represented by the cycle

∑

s

Resϕ(γ,E|s∗; bs) · s,

where s runs through all the (m− 2k)-simplices of K in Sλ.

Corollary 8.7.9 In the above situation, if Sλ = ⋃i Sλ,i is the irreducible decom-
position,

Resϕ(γ,E; Sλ) =
∑

i

Resϕ(γ |D, E|D; xλ,i) · [Sλ,i] in H̆m−2k(Sλ;C),

where xλ,i is a general point of Sλ,i and D a slice of Sλ,i at xλ,i .

In the case Sλ is a compact submanifold, the above reduces to Theorem 8.7.7.
Note that we do not need the compactness ofM or of Sλ in Corollary 8.7.9.

8.7.3 Grothendieck Residues

In the complex analytic setting, the transverse residue is usually expressed in term
of Grothendieck residues, which we briefly review (cf. [21]). We denote by On the
ring of germs of holomorphic functions at 0 in C

n.
Let U be a neighborhood of the origin 0 in C

n and f1, . . . , fn holomorphic
functions on U such that their common set of zeros V (f1, . . . , fn) consists only
of 0. For small positive numbers εi , i = 1, . . . , n, we set

Γ = { z ∈ U | |fi(z)| = εi, i = 1, . . . , n },
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which is an n-cycle in U . It is oriented so that the form dθ1 ∧ · · · ∧ dθn is positive,
θi = argfi . For a holomorphic n-form ω on U , we set

Res0

[
ω

f1, . . . , fn

]
=
( 1

2π
√−1

)n ∫

Γ

ω

f1 · · · fn
and call it the Grothendieck residue of ω/f1 · · · fn at 0. In the case n = 1, the above
residue is the usual Cauchy residue at 0 of the meromorphic 1-form ω/f1.

Note that this residue is alternating in (f1, . . . , fn). In general, this is computed
as follows. From the condition V (f1, . . . , fn) = {0}, we see that, for each i, zi is in
the radical

√
(f1, . . . , fn) of the ideal (f1, . . . , fn) in On generated by (the germs

at 0 of) the fi ’s (Nullstellensatz). Hence there is a positive integer ki such that zkii is

in (f1, . . . , fn) and we may write zkii =
∑n
j=1 gij fj with gij ∈ On. Then

Res0

[
ω

f1, . . . , fn

]
= Res0

[
det(gij ) ω
z
k1
1 , . . . , z

kn
n

]
.

If we write ω = f dz1 ∧ · · · ∧ dzn with f in On, the right hand side of the above is,
by the Cauchy integral formula, the coefficient of zk1−1

1 · · · zkn−1
n in the power series

expansion of f det(gij ).
In particular, if f = (f1, . . . , fn) is non-degenerate, i.e., if the Jacobian Jf =

det
(
∂fi/∂zj

)
is non-zero at 0, then we have

Res0

[
ω

f1, . . . , fn

]
= f (0)

Jf (0)
.

Example 8.7.10 If ω = df1 ∧ · · · ∧ dfn, then

Res0

[
df1 ∧ · · · ∧ dfn
f1, . . . , fn

]

is a positive integer which is simultaneously equal to (cf. Sect. 8.8.5 below):

1. The mapping degree of f = (f1, . . . , fn), thus the Poincaré-Hopf index at 0 in
C
n of the vector field v =∑n

i=1 fi · ∂/∂zi .
2. dimCOn/(f1, . . . , fn).

Example 8.7.11 In particular, if fi = ∂f/∂zi for some holomorphic function f on
U , then it is the Milnor number μ(V, 0) of the hypersurface V defined by f at 0
(cf. [43, 47]):

Res0

[
d
( ∂f
∂z1

) ∧ · · · ∧ d( ∂f
∂zn

)

∂f
∂z1
, . . . ,

∂f
∂zn

]
= μ(V, 0).
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8.7.4 Various Types of Localizations

In the sequel, we discuss some vanishing theorems and the corresponding localiza-
tions. In the case (I) below, both the obstruction theory and the Chern-Weil theory
are effective and the comparison of the two approaches yields interesting results. In
the case (II), it seems difficult to apply the obstruction theory directly. We use either
the relativeK-theory or the Chern-Weil theory. In the case (III), we have continuous
invariants and the topological method seems to be non-applicable in general. The
method using connections is effective.

(I) Localization by a Frame
Let M be a C∞ manifold and E a C∞ complex vector bundle of rank l on M .
Suppose E admits an r-frame s(r) on M�S. If we use the obstruction theory, this
means the vanishing of the cocycle representing the Chern class cq(E), q = l −
r + 1, on M � S and we have naturally the topological localization cqtop(E, s

(r))

(cf. Sect. 8.5). In the differential geometric framework as in the above, the geometric
object γ is s(r) and the connections special for γ are the s(r)-trivial connections.
Here a connection ∇ is said to be s(r)-trivial if ∇(si) = 0 for every member si of
s(r). The Chern polynomial cq is adapted to γ (in fact ci , q ≤ i ≤ l, are adapted,
however the case i = q is of particular interest). The corresponding localization of
cq(E) is denoted by cqS(E, s

(r)). This will be discussed in detail in Sect. 8.8 below.

The relevant vanishing theorem is the following:

Proposition 8.7.12 Let s(r) be an r-frame of E on an open set U in M and let ∇
be an s(r)-trivial connection for E on U , then on U ,

ci(∇) = 0 for i ≥ l − r + 1.

(II) Localization by Exactness
Suppose we have a complex of complex vector bundles onM

0 −→ Eq −→ · · · −→ E0 −→ 0,

which is exact on M � S. In this situation we are to consider the characteristic
classes of the “virtual bundle” ξ = ∑q

ν=0(−1)jEν . The geometric object γ is the
exact sequence and the connections special for γ are the families of connections
compatible with the sequence. Any polynomial ϕ without constant term is adapted
to γ and we have the localization ϕS(ξ) in H ∗(M,M�S).

For example, let X be a complex manifold and OX the sheaf of holomorphic
function s on X. Then, for a coherent OX-module S , we may define the localized
class ϕS(S ) with S the support of S , taking a resolution of S by real analytic
vector bundles (cf. [4, 56])
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(III) Localization by Bott Type Vanishing Theorems
This type of vanishing occurs on some characteristic forms of vector bundles or
virtual bundles that admit an action of a subbundle of the holomorphic tangent
bundle. Thus the geometric object γ is such an action and the connections special
for γ are the ones compatible with the action. It leads to a general residue theory for
singular holomorphic foliations or distributions. Here we discuss only a basic case
and refer to [55] and references therein for the general case.

Let X be a complex manifold of dimension n and TX the holomorphic tangent
bundle of X, which is naturally identified with the real tangent bundle TRX of X as
a C∞ manifold. Let v be a non-vanishing holomorphic vector field on X. Thus in
this case we are to consider the subbundle F of TX spanned by v and the action
E (0)(X, F ) × E (0)(X, T X)→ E (0)(X, TX) of F on TX given by the Lie bracket
[ , ].
Definition 8.7.13 A connection ∇ for TX is a v-connection if

1. ∇w(v) = [v,w] for every w in E (0)(X, T X),
2. ∇ is of type (1, 0), i.e., the entries in the connection matrix with respect to a

holomorphic frame are of type (1, 0).

With these we have the following:

Theorem 8.7.14 Let v be a non-vanishing holomorphic vector field on X, ∇ a v-
connection for TX and ϕ an invariant polynomial homogeneous of degree n. Then

ϕ(∇) = 0.

Note that there exists a v-connection which is also v-trivial.
Let v be a holomorphic vector field on X and S = zero(v) the set of zeros of

v. Letting W0 = X� S and W1 a neighborhood of S, we consider the covering
W = {W0,W1} ofX, as in Sect. 8.7.2. Then, by the above theorem, for an invariant
polynomial ϕ homogeneous of degree n, we have the localization ϕS(v, T X) in
H 2n
D (W,W0) and the residue Resϕ(v, T X; S) in H̆0(S;C). They correspond each

other by the Alexander isomorphism H 2n
D (W,W0) � H̆0(S;C) and we have a

residue theorem as Theorem 8.7.3. If Sλ is a compact connected component of S,
H̆0(Sλ;C) = H0(Sλ;C) � C and we may think of Resϕ(v, T X; Sλ) as a complex
number.

We give an explicit expression of the residue in the case Sλ consists of an isolated
point. Thus let v be a holomorphic vector field in a neighborhoodW of 0 in C

n =
{(z1, . . . , zn)}. We write

v =
n∑

i=1

ai
∂

∂zi
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with ai holomorphic functions on W and assume that the set of their common
zeros is {0}. Let A be the matrix whose (i, j)-entry is ∂ai

∂zj
and define σq(A) as

in Sect. 8.6.1. For an invariant polynomial ϕ homogeneous of degree 0, we write
ϕ = P(σ1, σ2, . . . ) and set ϕ(A) = P(σ1(A), σ2(A), . . . ) (cf. Remark 8.6.7. 1).
With these we have an expression of the residue as a Grothendieck residue:

Resϕ(v, T W ; 0) = Res0

[
ϕ(A)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]
.

In particular, if ϕ = σn, the right hand side is

Res0

[
da1 ∧ · · · ∧ dan
a1, . . . , an

]
,

which is the Poincaré-Hopf index PH(v, 0) of v at 0. Thus the residue theorem in
this case generalizes the Poincaré-Hopf theorem (Theorem 8.5.12).

Example 8.7.15 Letting λ1 and λ2 be non-zero complex numbers, consider the
vector field

v = λ1z1
∂

∂z1
+ λ2z2

∂

∂z2

on C
2 = {(z1, z2)}. Then S = {0} and

Resσ 2
1
(v, 0) = (λ1 + λ2)

2

λ1λ2
and Resσ2(v, 0) = 1.

In general, a holomorphic subbundle F of TX is called a (non-singular)
distribution. It is a (non-singular) foliation, if it is involutive, i.e., [F,F ] ⊂ F .
Let p be the rank of F . If E is a holomorphic vector bundle admitting an action of
F , for an invariant polynomial ϕ homogeneous of degree greater than n − p and a
connection ∇ for E compatible with the action, we have the vanishing ϕ(∇) = 0.

We give some example of holomorphic actions.

(A) Action on the Normal Bundle of the Foliation Suppose F is involutive, i.e.,
a foliation. We call NF = TX/F the normal bundle of the foliation. We denote by
η : TX→ NF the canonical surjection and define

α : E (0)(X, F )× E (0)(X,NF ) −→ E (0)(X,NF ) by α(v, η(w)) = η([v,w]).

Then it is a well-defined action (cf. [5]). The case we discussed above may be
considered as a special case of this where F is trivial.

(B) Action on the Normal Bundle of an Invariant Submanifold Let V be a
complex submanifold of X. Let NV be the normal bundle of V in X so that we
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have the exact sequence

0 −→ T V −→ TM|V 2−→ NV −→ 0.

Let F be a distribution on X. We say that F leaves V invariant if F |V ⊂ T V . In
this case we set FV = F |V , which is a distribution on V . In this situation, there is a
natural holomorphic action of FV on NV , which is defined as follows. Let u and ν
be C∞ sections of FV and NV , respectively. Take sections ũ of F and ṽ of TX so
that ũ|V = u and2(ṽ|V ) = ν, where |V means the restriction as sections. Define

α : E (0)(V , FV )× E (0)(V ,NV ) −→ E (0)(V ,NV ) by α(u, ν) = 2([ũ, ṽ]|V ).

Then it is a well-defined action (cf. [15, 40, 53]).

(C) Action on the Normal Bundle of the Ambient Foliation Let V be as in (B)
and let F be a foliation on X leaving V in variant. Then the action in (A) induces
an action of FV on NF |V (cf. [33, 41]).

Remark 8.7.16 For applications of the above residue theories, see for example [14].
A general index theory for complex discrete dynamical systems is developed in
parallel with the above in a series of papers including [2].

8.8 Localization of Chern Classes by Frames

8.8.1 Differential Geometric Localization by Frames

Let M be a C∞ manifold of dimension m and E a C∞ complex vector bundle of
rank l on M . Also let S be a closed set in M and suppose we have a C∞ r-frame
s(r) of E onM�S. Then we will see that there is a natural localization cqS(E, s

(r))

in H 2q(M,M�S;C) of the Chern class cq(E), q = l − r + 1.
Letting U0 = M � S and U1 a neighborhood of S, we consider the covering

U = {U0, U1} ofM . Recall the class cq(E) is represented by the cocycle cq(∇∗) in
E (2q)(U) given by

cq(∇∗) = (cq(∇0), c
q(∇1), c

q(∇0,∇1)),

where∇0 and ∇1 denote connections forE onU0 andU1, respectively. If we take as
∇0 an s(r)-trivial connection, then cq(∇0) = 0 and the cocycle is in E (2q)(U, U0)

(cf. Proposition 8.7.12). Moreover, the class of cq(∇∗) in H 2q(M,M�S;C) does
not depend on the choice of the s(r)-trivial connection∇0 or the connection∇1. Thus
the class is well-defined in H 2q(M,M�S;C), which we denote by cqS,diff(E, s

(r))

and call the differential geometric localization of cq(E) by s(r) at S. Sometimes it
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will simply be denoted by cqS(E, s
(r)), cqdiff(E, s

(r)) or cq(E, s(r)). Its image by the
canonical morphismH 2q(M,M�S;C)→ H 2q(M;C) is the class cq(E).

Suppose M is oriented and S is a subcomplex of M with respect to some trian-
gulation ofM . Then we have the Alexander duality (Theorems 8.2.2 and 8.3.15):

A : H 2q(M,M�S;C) ∼−→ H̆m−2q(S;C).

Definition 8.8.1 The differential geometric residue Rescq (s(r), E; S) of s(r) for
cq(E) at S is the image of cqS(E, s

(r)) by A.

Suppose that S has a finite number of connected components (Sλ)λ. Then we
have the residue Rescq (s(r), E; Sλ) in H̆m−2q(Sλ;C) for each λ. It is represented by
a cycle as in (8.28), or given by a number as in (8.29), with k, ϕ(∇1) and ϕ(∇0,∇1)

replaced by q , cq(∇1) and cq(∇0,∇1), respectively.
Also we have the differential geometric counterpart of Theorem 8.5.4 by letting

k = q , γ = s(r) and ϕ = cq in Theorem 8.7.3.
Moreover we have the transverse residues and the statements corresponding to

Theorems 8.7.7 and 8.7.8 and Corollary 8.7.9.

Remark 8.8.2

1. As noted in Remark 8.7.6. 3, if 2q = m and if S is compact, it is not necessary to
assume that S is a subcomplex ofM to have the residue theorem.

2. In Sect. 8.5, we defined the topological localization cqS,top(E, s
(r)) and the

topological residue TRescq (s(r), E; Sλ). In Sect. 8.8.3 below, we see that they
are essentially the same as the ones defined using connections.

Before we proceed further we give some basic examples to illustrate the
procedure explained above.

Example 8.8.3 Let U be a neighborhood of 0 in R
2 and E = C × U the product

bundle onU . Suppose we have a non-vanishingC∞ section s ofE onU0 = U�{0}.
Set U1 = U and consider the covering U = {U0, U1} of U . Then we have
the localization c1(E, s) in H 2(U, U0) � H 2(U,U � {0};C) and the residue
Resc1(s, E; 0) in H0({0};C) = C, which we try to find.

Denoting by e the frame of E given by e(z) = (1, z), we write s = f e with
f a non-vanishing C∞ function on U0. Let B2 be a closed 2-ball around 0 in U .
Its boundary ∂B2 is a circle S

1 oriented counterclockwise. In the expression of the
residue corresponding to (8.29), we take as ∇1 the e-trivial connection on U , thus
c1(∇1) = 0 and

Resc1(s, E; 0) = −
∫

S
1
c1(∇0,∇1)

with ∇0 the s-trivial connection on U0. Now we recall how the difference form
c1(∇0,∇1) is defined (cf. the paragraph right after Proposition 8.6.4). Let θi be the
connection matrix, in fact a form, of ∇i with respect to the frame e, i = 0, 1. Then
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θ1 = 0. Noting that the connection form of ∇0 with respect to s is zero, we get
from (8.26),

θ0 = −df
f
.

Hence θ̃ = (1− t)θ0 = (t − 1) df
f

and the curvature form κ̃ is given by

κ̃ = dθ̃ + θ̃ ∧ θ̃ = dt ∧ df
f
.

Thus

c1(∇0,∇1) = ρ′∗c1(∇̃) =
√−1

2π
ρ′∗(dt ∧

df

f
) = − 1

2π
√−1

df

f

and

Resc1(s, E; 0) = 1

2π
√−1

∫

S
1

df

f
.

If we denote by p : E→ C the projection in the fiber direction and by ζ a coordinate
on C, we may write df

f
= f ∗ dζ

ζ
(= s∗p∗ dζ

ζ
). Thus Resc1(s, E, 0) is equal to degf

(cf. Proposition 8.8.4 below).

8.8.2 Angular Form and Bochner-Martinelli Form

Recall that Hm−1
d (Rm� {0}) � Hm−1(Sm−1;C) � C. We give an explicit closed

(m − 1)-form generating Hm−1
d (Rm� {0}). As we will see, it is in the core of the

Thom class of a real oriented vector bundle (cf. Theorem 8.9.18). In the complex
case, we have the Bochner-Martinelli form on C

n
�{0}, which is a closed (2n− 1)-

form generating the cohomologyH 2n−1
d (Cn�{0}) � H 2n−1(S2n−1;C) � C. In fact

it is a ∂̄-closed (n, n − 1)-form. As we see later, it is in the core of the Thom class
of a complex vector bundle (cf. Remark 8.9.21).

Consider the forms on R
m = {(x1, . . . , xm)} given by

Φ(x) = dx1 ∧ · · · ∧ dxm, Φi(x) = (−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm
so that d Φi(x) = Φ(x). Also let C′m be the constant given by

C′m =
{
(k−1)!

2πk
m = 2k,

(2k)!
22k+1πkk! m = 2k + 1.
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Then the form

ψm = C′m
∑m
i=1Φi(x)

‖x‖m

is a closed (m− 1)-form on R
m
�{0} such that

∫

S
m−1
ψm = 1, (8.31)

where S
m−1 is the unit sphere, in fact it may be a sphere of arbitrary radius. It is

called the angular form on R
m.

If we identify C
n with R

2n, then ψ2n = (βn + βn)/2, where

βn = Cn
∑n
i=1Φi(z) ∧Φ(z)

‖z‖2n
, Cn = (−1)

n(n−1)
2

(n− 1)!
(2π

√−1)n
.

We call βn the Bochner-Martinelli form on C
n. Note that

β1 = 1

2π
√−1

dz

z
,

the Cauchy form on C. The form βn is a closed form of type (n, n− 1) on C
n
�{0},

real on S
2n−1 and

∫

S
2n−1

βn = 1.

8.8.3 Coincidence of Topological and Differential Geometric
Localizations

First we give an expression of the mapping degree in terms of differential forms.
Let W(l, r) be the Stiefel manifold of r-frames in C

l and set q = l − r + 1
as before. We have H 2q−1((W(l, r);C) � C with a canonical generator. By the
de Rham theorem, the generator is represented by a closed (2q − 1)-form ω2q−1 on
W(l, r). By definition of the mapping degree, we have:

Proposition 8.8.4 For a C∞ map ϕ : S2q−1 → W(l, r),

degϕ =
∫

S
2q−1

ϕ∗ω2q−1.

In particular, if r = 1, then q = l and W(l, 1) = C
l
� {0}. In this case we may

take as ω2q−1 the Bochner-Martinelli form βl (cf. Sect. 8.8.2).
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We first state a generalization of Example 8.8.3 to the higher dimensional case,
which will be of fundamental importance in the subsequent discussions.

Let U be a neighborhood of 0 in R
2n and E = C

n ×U the product bundle on U .
Suppose we have a non-vanishingC∞ section s of E on U0 = U�{0}. Set U1 = U
and consider the covering U = {U0, U1} of U . We have the localization cn(s, E)
in H 2n(U, U0) � H 2n(U,U � {0};C) and the associated residue Rescn (s, E, 0)
in H0({0};C) = C. If we denote by e(n) = (e1, . . . , en) the frame of E given by

ei(x) = (t(0, . . . ,
i

1, . . . , 0), x), we may write s =∑n
i=1 fiei with fi C∞ functions

on U0 such that, at every point of U0, at least one of them is non-zero. Let B2n be
a closed 2n-ball around 0 in U and S

2n−1 = ∂B2n. In the expression (8.29) (with
ϕ = cn and γ = s) of the residue, we take as ∇1 the e(n)-trivial connection on U so
that cn(∇1) = 0 and

Rescn (s, E; 0) = −
∫

S
2n−1

cn(∇0,∇1)

with ∇0 an s-trivial connection on U0. Let βn denote the Bochner-Martinelli form
on C

n.

Theorem 8.8.5 (Fundamental Theorem for Residues) In the above situation, we
have cn(∇0,∇1) = −f ∗βn for a suitable choice of the s-trivial connection∇0. Thus

Rescn (s, E; 0) =
∫

S
2n−1

f ∗βn.

From the above we see that Rescn (s, E; 0) is equal to deg f (cf. Proposi-
tion 8.8.4). Moreover, if we identify R

2n with C
n and if s, thus f is defined

and holomorphic on U , this may be expressed as either dimOn/(f1, . . . , fn) or

Res0

[
df1 ∧ · · · ∧ dfn
f1, . . . , fn

]
(cf. Sect. 8.8.5 below).

More generally, let B2q be a closed ball of dimension 2q in R
2q andE a complex

vector bundle of rank l on a neighborhood U of B2q . Suppose we have an r-frame
s(r), r = l − q + 1, on a neighborhood of S2q−1 = ∂B2q . We may extend s(r) to an
r-frame on U�{x}, where x is a point in the interior of B2q .

Theorem 8.8.6 In the above situation, we have

Rescq (s(r), E; x) = I (s(r), x).

Thus Rescq (s(r), E; x) is an integer.

Using the above, we may prove that the Chern class defined by obstruction theory
and the one defined by Chern-Weil theory are essentially the same.
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Let E be a C∞ complex vector bundle of rank l on M . We have the q-th Chern
class cqdiff(E) inH 2q(M;C) defined via Chern-Weil theory and the q-th Chern class
c
q
top(E) in H 2q(M;Z) defined via obstruction theory.

Theorem 8.8.7 In the above situation, cqdiff(E) is the image of cqtop(E) by the

canonical morphism H 2q(M;Z)→ H 2q(M;C).
We have a similar theorem for localized classes. Thus let S be a K0-subcomplex

ofM and s(r) an r-frame of E onM�S, r = l− q + 1. Then we have the localized
classes cqdiff(E, s

(r)) in H 2q(M,M�S;C) and cqtop(E, s
(r)) in H 2q(M,M�S;Z).

Theorem 8.8.8 In the above situation, if the codimension of S is greater than or
equal to two, cqdiff(E, s

(r)) is the image of cqtop(E, s
(r)) by the canonical morphism

H 2q(M,M�S;Z)→ H 2q(M,M�S;C).
Corollary 8.8.9 Suppose M is oriented. Then Rescq (s(r), E; S) is the image of
TRescq (s(r), E; S) by the canonical morphism H̆m−2q(S;Z)→ H̆m−2q(S;C).

In particular, if m = 2q and if S is compact and connected, the both are the
identical integers.

8.8.4 Complex Spaces Defined by Families of Holomorphic
Sections

Let X be a complex manifold of dimension n and E a holomorphic vector bundle
of rank l on X. Let s(r) = (s1, . . . , sr ) be a holomorphic r-section of E and S the
complex space in X defined by s(r), i.e., the complex space defined by the (r × r)-
minors of the matrix of local components of the si ’s. Thus the support S of S is
the singular set S(s(r)) of s(r). It is an analytic variety in X and dim S ≥ n − q ,
q = l − r + 1. It is known that X admits a C1 triangulation compatible with S and
that two such triangulations have a common refinement (cf. [46]).

In this situation, we have the topological localization cqtop(E, s
(r)) in the relative

cohomology H 2q(X,X � S;Z) (cf. Sect. 8.5.2) and the differential geometric
localization cqdiff(E, s

(r)) in H 2q(X,X� S;C) (cf. Sect. 8.8.1). We also have the
associated residues TRescq (s(r), E; S) in H̆2(n−q)(S;Z) and Rescq (s(r), E; S) in
H̆2(n−q)(S;C). We have seen (cf. Corollary 8.8.9) that Rescq (s(r), E; S) is the image
of TRescq (s(r), E; S) by the canonical morphism

H̆2n−2q(S;Z) −→ H̆2n−2q(S;C). (8.32)

Now we consider the case where S is of pure dimension n− q . In the sequel, we
refer this situation as a proper case. Suppose S has a finite number of irreducible
components Si , i = 1, . . . , ρ. Each Si defines a class [Si ] in H̆2n−2q(S;Z) and it is
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the free Abelian group generated by the [Si ]’s. Thus the morphism (8.32) is injective
so that we may identify the two residues:

Rescq (s
(r), E; S) = TRescq (s

(r), E; S).

Let pi be a non-singular point of Si�
⋃
j �=i Sj and Di a complex slice of Si in

X at pi , i.e., a locally closed complex sudmanifold of dimension q in X through
pi and transverse to Si at pi . The r-section s(r)i = s(r)|Di of Ei = E|Di has an

isolated singularity at pi so that we have the residue Rescq (s
(r)
i , Ei;pi), which is

an integer (cf. Theorem 8.8.6). We may assume that pi is the barycenter bs of a
2(n− q)-simplex s in the non-singular part of Si and that the 2q-cell s∗ dual to s is
in Di . Then by Corollary 8.8.9,

Rescq (s
(r)
i , Ei;pi) = TRescq (s

(r)
i , Ei;pi), pi = bs.

Note that this number does not depend on the choice of pi on the non-singular part
of Si , since the residue is locally constant in pi and the non-singular part of Si is
connected.

We restate Corollary 8.5.8 (see also Corollary 8.7.9) in the above situation:

Theorem 8.8.10

TRescq (s(r), E; S) =
ρ∑

i=1

TRescq (s
(r)
i , Ei;pi) · [Si ] in H̆2(n−q)(S;Z).

Thus we see that, in order to find the residue in the proper case, it suffices to
know the residue at an isolated singularity.

8.8.5 Residues at an Isolated Singularity

Let W be a neighborhood of 0 in C
n and E = C

l ×W the product bundle of rank
l on W , l ≥ n. Let r = l − n + 1 and suppose we have a holomorphic r-section
s(r) of E on W with an isolated singularity at 0. Thus this is a proper case. In this
situation, we have Rescn (s(r), E; 0), which is an integer, in fact we will see that it is
positive in the holomorphic case. Here we only review the case r = 1, thus l = n,
and refer to [57] and the references therein for details and the general case. Letting
W0 = W�{0} andW1 = W , we consider the covering {W0,W1} ofW . We take an
s-trivial connection ∇0 for E on W0 and a connection ∇1 for E on W1 trivial with
respect to some holomorphic frame e(n) = (e1, . . . , en) of E. Thus cn(∇0) = 0 and
cn(∇1) = 0. Let R be a compact real 2n-dimensional manifold with C∞ boundary
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in W containing p in its interior. Then we have (cf. (8.29) with ϕ = cn, γ = s and
Sλ = {0})

Rescn (s, E; 0) = −
∫

∂R

cn(∇0,∇1).

We give various expressions of this number.

Topological Expression We have already seen that Rescn (s, E;p) may be
expressed as a mapping degree, even if E and s are not holomorphic, in fact s
may not be defined at p (cf. Definition 8.4.4 and Theorem 8.8.6). Let S2n−1 denote
a small (2n− 1)-sphere in W with center p. Then we have the mapping as given
in (8.16):

ϕ : S2n−1 −→ W(n, 1).

In the above situation, we have :

Rescn (s, E;p) = degϕ.

Remark 8.8.11 IfE and s are holomorphic, then Rescn (s, E;p) is a positive integer,
by our orientation convention.

Analytic Expression Let E,W , e(n) and s be as above. We write si =∑n
i=1 fi ei ,

with fi holomorphic functions onW . Then S is the complex space inW defined by
f1, . . . , fn and its support S = S(s) is the set of common zeros of the fi’s.

Theorem 8.8.12 In the above situation,

Rescn (s, E;p) = Resp

[
df1 ∧ · · · ∧ dfn
f1, . . . , fn

]
.

This is proved by considering Čech-de Rham cohomology for a covering
consisting of n open sets. In the case n = 1, the proof can be done by directly
computing the difference form c1(∇0,∇1) (cf. Example 8.8.3).

Algebraic Expression Let E, W , e(n) and s be as above. Also let fi be as before.
We denote by On the ring of germs of holomorphic functions at 0 in C

n and by
(f1, . . . , fn) the ideal generated by the germs of f1, . . . , fn in On.

Theorem 8.8.13 In the above situation,

Rescn (s, E;p) = dimCOn/(f1, . . . , fn).

The proof involves the theory of Cohen-Macaulay rings.



614 T. Suwa

8.8.6 Duals of Complex Subspaces

We again consider the proper case in the situation of Sect. 8.8.4 and let S, Si , pi , Di ,
Ei and s(r)i be as before. We define the multiplicity mi of Si in S by

mi = Rescq (s
(r)
i , Ei;pi).

Note that this definition is justified by Theorem 8.8.13. We then define the class of
S by [S] =∑mi [Si ] in H̆2(n−q)(X) or in H̆2(n−q)(S).

From Theorem 8.8.10 we have:

Theorem 8.8.14 The class cq(E, s(r)) corresponds to [S] via the Alexander duality
H 2q(X,X�S;Z) ∼→ H̆2(n−q)(S;Z).

The above is a precise form of the fact that the class cq(E) corresponds to [S] via
the Poincaré duality H 2q(X;Z) ∼→ H̆2(n−q)(X;Z).

Here is an example.

Divisors Let X be a complex manifold of dimension n. A divisor D on X is
represented by a system ({Wα}, {ϕα}), where {Wα} is a covering of X, ϕα is a
meromorphic function on Wα , for each α, and f αβ = ϕα/ϕβ is a non-vanishing
holomorphic function onWα ∩Wβ , for each pair (α, β). We may assume that each
Wα is small enough so that we may write ϕα = f α/gα with f α and gα holomorphic
functions on Wα . The factorization of f α and gα leads to an expression of D as a
locally finite sum D =∑niVi with ni integers and Vi irreducible hypersurfaces in
X. We have the class [D] =∑i ni [Vi] ofD in H̆2(n−1)(X;Z) or in H̆2(n−1)(|D|;Z),
where |D| =⋃i Vi is the support of D.

On the other hand, the system {f αβ} defines a line bundle LD , the bundle
associated with D. It has a natural meromorphic section, i.e., the section sD that
is represented by ϕα on eachWα .

Suppose for the moment that D is positive, i.e., ni > 0 for all i. Then each
ϕα is holomorphic and we may think of D as a complex space in X defined by
the holomorphic section sD of LD . In this case, ni is the multiplicity of Vi in D.
In this situation, we have the localized class c1(LD, sD) in H 2(X,X � |D|;Z)
that correspond to [D] in H̆2(n−1)(|D|;Z) via the Alexander duality H 2(X,X�

|D|;Z) ∼→ H̆2(n−1)(|D|;Z) (cf. Theorem 8.8.14). In particular, the first Chern class
c1(LD) is the Poincaré dual of [D].

Considering the localization by meromorphic sections, we have similar state-
ments in the case of not necessarily positive divisors.
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8.9 Thom Isomorphism and Thom Class

We discuss the Thom isomorphism and the Thom class first from the combinatorial
viewpoint, following [10]. We then consider the differential geometric counterparts
in Čech-de Rham cohomology (cf. [55]). In particular, it gives explicit expressions
of the Thom class.

Throughout this section we let M denote a C∞ manifold of dimension m. In
Sects. 8.9.1–8.9.4 the homology and cohomology are with Z-coefficients.

8.9.1 Thom Class of a Submanifold

Let V be a closed submanifold of dimension d of M . We set k = m − d . We take
a triangulation K0 of M compatible with V and let K and K ′ be as in Sect. 8.2.1.
We denote by KV the set of simplices of K that are in V and by K ′V its barycentric
subdivision. Then K ′V is the set of simplices in K ′ that are in V . We denote by K∗
and K∗V the cellular decompositions of M and V dual to K and KV , respectively.
Note that, for a p-simplex s ofK in V , its dual s∗ in K∗ is an (m− p)-cell and that
its dual s∗V in K∗V is a (d − p)-cell. They are related by s∗V = s∗ ∩ V as sets.

The simplices and cells of K , K ′ and K∗ are oriented so that the conditions
(1) and (2) in Sect. 8.2.1 are satisfied. The simplices of KV and K ′V are oriented
as simplices of K and K ′, respectively. In order to describe the homology and
cohomology of V , we impose similar conditions for simplices and cells of KV ,
K ′V andK∗V . The condition corresponding to (1) is automatically satisfied. Thus we
impose:

(2)V Let t be a p-simplex of K ′V . If t ⊂ (s′)∗V , a p-cell of K∗V , the orientation of t
is the same as that of (s′)∗V .

We have an isomorphism

T : Cp
K∗V
(V ) −→ C

p+k
K∗ (M,M�OK ′(V )), uV �→ u,

where u is given by, for each (d − p)-simplex s in K ,

〈s∗, u〉 =
{
〈s∗V , uV 〉 if s ⊂ V,
0 if s �⊂ V.

Now we wish to have T compatible with coboundary operators so that it
induces an isomorphism on cohomologies. For this we further impose the following
condition. Let s be a p-simplex ofKV . We take a d-simplex s0 ofKV so that s ≺ s0.
Then there exist an (m− p)-simplex t of K ′ in s∗, a k-simplex t0 of K ′ in s∗0 and a
(d − p)-simplex tV of K ′V in s∗V such that t0 and tV span t. Note that the simplices
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t, t0 and tV have the same orientations as s∗, s∗0 and s∗V , respectively (cf. (2) and
(2)V ).

(5) The simplices and cells are oriented so that the orientation of s∗0 followed by the
orientation of s∗V gives the orientation of s∗.

Note that, by the tubular neighborhood theorem, the above can be done con-
sistently with other conditions, in particular independently of the choice of s0, if
the normal bundle NR,V of V in M is orientable. With the assumption that the
bundle NR,V is oriented as the condition (5), with s∗0 being thought of as in the
fiber direction,

δ ◦ T = (−1)kT ◦ δ
and thus the following:

Theorem 8.9.1 If the normal bundle of V inM is oriented, the above T induces an
isomorphism

T : Hp(V ) ∼−→ Hp+k(M,M�V ),

called the Thom isomorphism.

Definition 8.9.2 The Thom class of V inM , denoted by ΨM,V or simply by ΨV , is
the image of the unity [1] in H 0(V ) by T :

ΨV = T ([1]) ∈ Hk(M,M�V ).

From the definition we have:

Proposition 8.9.3 The Thom class ΨV is represented by a cocycle that assigns 1 or
0 to each oriented k-cell s∗ according as s∗ intersects with V or not.

The Thom isomorphism is also described as follows. There is a deformation
retraction r : OK ′(V ) → V inducing an isomorphism r∗ : Hp(V ) ∼→
Hp(OK ′(V )). We also have Hp+k(M,M �V ) � Hp+k(OK ′(V ),OK ′(V )�V )
and, for a class a in Hp(V ), we have

T (a) = ΨV 
 r∗a. (8.33)

Remark 8.9.4 In the above, we do not assume that M or V to be orientable. In the
case they are, we have the dualities on M and V and we have the commutative
diagram (8.35) below.
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8.9.2 Thom Class of an Oriented Real Vector Bundle

Let π : E → M be a C∞ real oriented vector bundle of rank l′. We denote by Σ
the image of the zero section s0 : M → E. Note that s0 is a diffeomorphism of M
onto Σ and that s∗0NR,Σ = E. We apply the above considerations by letting M , V
and k be E, Σ and l′, respectively. ThusK0 is a triangulation of E compatible with
Σ . Then we have the Thom class ΨE,Σ , which we simply denote by ΨE and call the
Thom class of E.

Rephrasing Proposition 8.9.3, we have:

Proposition 8.9.5 The Thom classΨE ∈ Hl′(E,E�Σ) is represented by a cocycle
that assigns 1 or 0 to the dual l′-cell s∗ in E of an m-simplex s the value 1 or 0
according as s is in Σ or not.

Example 8.9.6 IfM is a point, then E = R
l′ and we have

Hl
′
(Rl

′
,Rl

′
�0) � H0({0}) � Z.

The Thom class Ψ
R
l′ is the canonical generator of Hl

′
(Rl

′
,Rl

′
� 0) (cf. Exam-

ple 8.2.3).

The relation between the Thom class of E and that of each fiber is given as
follows. For each point x inM , let ix : (Ex,Ex�0) ↪→ (E,E�Σ) be the inclusion.
We have the commutative diagram:

(8.34)

Note that δ in the first row is an epimorphism for l′ = 1 and an isomorphism for
l′ > 1. From the above description, we have:

Proposition 8.9.7 A class Ψ in Hl
′
(E,E�Σ) coincides with ΨE if and only if

i∗xΨ = ΨEx for all x inM .

We see below (cf. (8.37)) that (π∗)−1j∗ΨE = e(E), the Euler class of E.

Remark 8.9.8

1. Let V be a closed submanifold ofM . We denote the normal bundleNR,V simply
by N . By the tubular neighborhood theorem, there is a neighborhood U of V
in M , a neighborhood W of the zero section, identified with V , in N and a
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homeomorphism τ : (U, V ) → (W, V ), which is the identity on V . It induces
an isomorphism

Hp(N,N�V ) = Hp(W,W�V )
∼−→ Hp(U,U�V ) = Hp(M,M�V ).

If N is orientable, the Thom class ΨN corresponds to ΨV .
2. We discuss the Thom isomorphism and the Thom class in terms of differential

forms in Sect. 8.9.5 below, where they are treated in cohomology with C-
coefficients.

8.9.3 Poincaré, Alexander and Thom Isomorphisms

Let V be a closed submanifold of dimension d of M , as in Sect. 8.9.1. We assume
that M and V are oriented. In order to describe the dualities for M we impose
the conditions (1), (2) in Sect. 8.2.1 and (3), (4) in Sect. 8.2.2. We also impose the
corresponding conditions for the simplices and cells of KV , K ′V and K∗V . Note that
the one corresponding to (1) is already satisfied. Besides (2)V we further impose:

(3)V The orientation of each d-simplex of KV is the same as that of V .
(4)V For every p-simplex s, 0 < p < d , of KV , the orientation of s∗V followed by

the orientation of s gives the orientation of V .

We have the exact sequence of real vector bundles:

0 −→ TRV −→ TRM|V 2−→ NR,V −→ 0.

Since we assumed that M and V to be oriented, the normal bundle NR,V is
orientable. We orient the bundle sno that, if (x1, . . . , xm) and (xk+1, . . . , xm) are
positive coordinate systems on M and V , then the frame (2( ∂

∂x1
), . . . ,2( ∂

∂xk
))

is positive. The total space of NR,V is then oriented so that the orientation of the
fiber followed by that of V gives the orientation. By identifying neighborhoods of
V inM andNR,V by the tubular neighborhood theorem, we may rephrase the above
conventions as:

Convention We orient the bundle NR,V so that the orientation of the fiber of NR,V

followed by that of V gives the orientation ofM .

We also impose the condition (5) in Sect. 8.9.1, which is consistent with the above
convention.
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With these, we have the following commutative diagram:

(8.35)

from which we see that

A(ΨM,V ) = [V ], (8.36)

the fundamental class of V .

8.9.4 Thom Class as a Localized Euler Class

Let π : E → M be an oriented real vector bundle of rank l′. We apply the
considerations in Sect. 8.5.3 to the “diagonal section” of the pull-back bundle π∗E.
Recall that it is a vector bundle on E given by

π∗E = { (ξ1, ξ2) ∈ E × E | π(ξ1) = π(ξ2) }.

We think of it as a vector bundle 2 : π∗E → E on the second factor with 2
the restriction of the projection. We denote by Σ the image of the zero section of
π : E→ M , which is naturally diffeomorphic withM . The bundle π∗E admits the
diagonal section sΔ defined by sΔ(ξ) = (ξ, ξ) for ξ in E, whose zero set isΣ . Thus
we have the localization e(π∗E, sΔ) in Hl

′
(E,E�Σ) of e(π∗E) by sΔ.

Suppose M is oriented so that Σ is also oriented. We orient the total space E
so that the orientation of the fiber followed by that of Σ gives the orientation of E
(cf. Convention in the previous subsection). Then we have the corresponding residue
TRese(sΔ, π∗E;Σ) in H̆m(Σ) (note that E is m+ l′ dimensional).

Recall that we have the Thom class ΨE of E in Hl
′
(E,E�Σ).

Theorem 8.9.9 In the above situation,

1. e(π∗E, sΔ) = ΨE in Hl
′
(E,E�Σ).

2. IfM is oriented,

TRese(sΔ, π∗E;Σ) = Σ in H̆m(Σ).
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Remark 8.9.10

1. By the functoriality of the obstruction cocycles and Theorem 8.9.9, we have
π∗e(E) = e(π∗E) = j∗ΨE . As the map π : E→ M is a deformation retraction,
it induces an isomorphism π∗ : Hl′(M) ∼→ Hl

′
(E) and we have

e(E) = (π∗)−1j∗ΨE. (8.37)

2. The Thom class is a universal localization of the euler class in the following
sense. Given a section s : M → E of E with singular set S. We have the induced
morphism

s∗ : Hl′(E,E�Σ) −→ Hl
′
(M,M�S).

By the functoriality of relative obstruction cocycles, we have

e(E, s) = s∗e(π∗E, sΔ) = s∗ΨE.

If E is a complex vector bundle of rank l, we have the topological localization
cltop(π

∗E, sΔ) in H 2l(E,E�M), which coincides with e(π∗E, sΔ) (cf. Proposi-
tion 8.5.13) so that we have:

Corollary 8.9.11 For a complex vector bundle E of rank l,

1. cltop(π
∗E, sΔ) = ΨE in H 2l(E,E�Σ).

2. IfM is oriented,

TRescl (sΔ, π
∗E;Σ) = Σ in H̆m(Σ).

Remark 8.9.12 Remark 8.9.10. 2 applies with e and l′ replaced by cl and 2l, i.e., the
Thom class of a complex vector bundle is a universal localization of the top Chern
class.

We come back to this point and review this from differential geometric viewpoint
in the subsequent subsections.

8.9.5 Thom Class in Relative Čech-de Rham Cohomology

The Thom isomorphism and the Thom class are introduced in the previous
subsections from topological viewpoint in cohomology with Z-coefficients. In this
subsection we express them in terms of differential forms. Thus the cohomologies
involved are with C-coefficients.

Case of Submanifolds Let M be a C∞ manifold of dimension m and V a closed
submanifold of dimension d . We set k = m − d . Recall that, assuming the normal
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bundle of V inM is oriented, we have the Thom isomorphism

T : Hp(V ;Z) ∼−→ Hp+k(M,M�V ;Z)

and the Thom class ΨV = T ([1]) (cf. Sect. 8.9.1). Its image by the canonical
morphismHk(M,M�V ;Z)→ Hk(M,M�V ;C) is still called the Thom class of
V and is denoted by ΨV .

Let K0, K , K ′, K∗ and K∗V be as before. Letting U0 = M � V and U1 a
neighborhood of V , we consider the covering U = {U0, U1} of M . Then we have
the isomorphism (cf. Theorem 8.3.13):

HkD(U, U0)
∼−→ Hk(M,M�V ;C).

If we choose a honeycomb system {R0, R1} so that it is adapted to U, K ′ and V (cf.
Definitions 8.3.6 and 8.3.12), by Proposition 8.9.3, the Thom classΨV is represented
by a cocycle (ψ1, ψ01) in E (k)(U, U0) such that, for each oriented k-cell s∗ forming
a basis of CK

∗
k (M),

∫

s∗∩R1

ψ1 +
∫

s∗∩R01

ψ01 =
{

1 if s∗ ∩ V �= ∅,
0 otherwise

(cf. (8.13)). In fact the above characterizes the Thom class.
If we choose U1 to be a tubular neighborhood of V with a C∞ deformation

retraction r : U1 → V , then r∗ : Hp(V ;C) ∼→ Hp(U1;C) and, by (8.33), the
Thom isomorphism T assigns to the class of θ the class of (ψ1 ∧ r∗θ,ψ01 ∧ r∗θ).
Case of Oriented Vector Bundles Let π : E → M be a C∞ real oriented vector
bundle of rank l′. We denote by Σ the image of the zero section of E and setW0 =
E�Σ . LettingW1 = E (in fact we may take arbitrary neighborhood ofΣ inE asW1
by Corollary 8.3.10), we consider the covering W = {W0,W1} of (the total space
of) E. Let T1 be a closed ball bundle in W1 and let T0 = E� IntT1. Then {T0, T1}
is a honeycomb system adapted to W. We denote by π1 and π01, respectively, the
restrictions of π to T1 and T01. Thus π1 : T1 → M is a closed l′-ball bundle and
π01 : T01 → M an (l′−1)-sphere bundle. Note that the orientation of T01 is opposite
to that of the boundary of T1. Let (π1)∗ and (π01)∗ denote the integrations along the
fibers of π1 and π01, respectively.

Definition 8.9.13 The fiber integration on Čech-de Rham cochains

π∗ : E (p)(W,W0) −→ E (p−l′)(M)

is defined by

π∗ξ = (π1)∗ξ1 + (π01)∗ξ01 for ξ = (ξ1, ξ01).



622 T. Suwa

Then we have the following:

Proposition 8.9.14 (Projection Formula) In the above situation,

1. For ξ in E (p)(W,W0) and θ in E (q)(M),

π∗(ξ · π∗θ) = π∗ξ ∧ θ,

where π∗θ is considered as an element in E (q)(W1).
2. IfM is compact and oriented, for ξ in E (p)(W,W0) and θ in E (m+r−p)(M),

∫

E

ξ · π∗θ =
∫

M

π∗ξ ∧ θ.

Also noting that (∂π1)∗ = −(π01)∗, we have π∗ ◦D+ (−1)l
′+1d ◦π∗ = 0. From

this we see that the fiber integration induces a morphism

π∗ : Hp(E,E�Σ;C) −→ Hp−l′(M;C). (8.38)

Theorem 8.9.15 The morphism (8.38) is an isomorphism. In fact, it is the inverse
of the Thom isomorphism with coefficients in C.

From Proposition 8.9.14.1, we recover the expression (8.33) in terms of differen-
tial forms:

TE(a) = ΨE 
 π∗a for a ∈ Hp(M;C).

Thus, if ΨE is represented by a cocycle (ψ1, ψ01) ∈ E (l
′)(W,W0), TE is

induced in cohomology by the map θ �→ (ψ1 ∧ π∗θ,ψ01 ∧ π∗θ) of E (p)(M) to
E (p+l′)(W,W0).

We now describe the Thom class in terms of Čech-de Rham cohomology. First
note that, from Theorem 8.9.15, we have:

Corollary 8.9.16 A class Ψ in Hl
′
(W,W0) coincides with the Thom class ΨE if

and only if

π∗Ψ = 1.

Proposition 8.9.17 The Thom class ΨE inHl
′
(W,W0) is represented by a cocycle

in E (l
′)(W,W0) of the form

(π∗ε,−ψ),

where ε is a closed l′-form on M and ψ is an (l′ − 1)-form on W01 such that
dψ = −π∗ε inW01 and −(π01)∗ψ = 1.
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The form ψ above is called a global angular form. In particular, if M is a point,
then E = R

l′ and we have

Hl
′
D(W,W0) = Hl′(Rl′,Rl′�{0};C) � C.

The Thom class ΨE is then represented by a cocycle (0,−ψ) with

∫

S
l′−1
ψ = 1,

i.e., we may take as ψ the angular form ψl′ on R
l′ (cf. Sect. 8.8.2).

In the diagram (8.34) with C-coefficients, we see that the global angular form ψ
restricts to an angular form on each fiber Ex and we recover Proposition 8.9.7 using
differential forms.

Thus we have:

Theorem 8.9.18 Let E = R
l′ × M be the product bundle and ρ : E → R

l′ the
projection onto the fiber direction. Then the Thom class ΨE is represented by a
cocycle in E l

′
(W,W0) of the form

(0,−ρ∗ψl′),

where ψl′ is the angular form on R
l′ .

If E = C
l ×M , ΨE is represented by a cocycle (0,−ρ∗βl) with βl the Bochner-

Martinelli form on C
l (cf. Sect. 8.8.2 and the next subsection).

The Euler class in terms of differential forms naturally arises in this context:

Proposition 8.9.19 The form ε in Proposition 8.9.17 represents the Euler class
e(E) in Hl

′
d (M) � Hl

′
(M;C).

Thus the Euler class e(E) vanishes if and only if there is a closed (l − 1)-form
ψ ′ onW01 such that ΨE is represented by (0,−ψ ′).

8.9.6 Thom Class of a Complex Vector Bundle

Thom Class as a Localized Top Chern Class Let π : E → M be a complex C∞
vector bundle of rank l. We apply the considerations in Sect. 8.8.1 to the diagonal
section sΔ of the pull-back bundle π∗E (cf. Sect. 8.9.4). The zero set of sΔ is the
image Σ of the zero section of E → M , which is naturally diffeomorphic with
M . In this situation, on the one hand there is the differential geometric localization
cldiff(π

∗E, sΔ) in H 2l(E,E�Σ;C) of cl(π∗E) by sΔ. On the other hand, as a real
vector bundle of rank 2l, there is the Thom class ΨE of E in H 2l(E,E�Σ;Z) or
H 2l(E,E�Σ;C) (cf. Sects. 8.9.2 and 8.9.5).
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IfM is oriented, we have the residue Rescl (sΔ, π
∗E;Σ) as the image of the class

cldiff(π
∗E, sΔ) by the Alexander isomorphism

A : H 2l(E,E�Σ;C) ∼−→ H̆m(Σ;C).

In this case, ΨE corresponds to Σ by A.

Theorem 8.9.20 In the above situation,

1. cldiff(π
∗E, sΔ) = ΨE in H 2l(E,E�Σ;C).

2. IfM is oriented,

Rescl (sΔ, π
∗E;Σ) = Σ in H̆m(Σ;C).

Remark 8.9.21 The above follows from Corollary 8.9.11 and Theorem 8.8.8. It
can also be proved directly along the following line. Thus take a covering W =
{W0,W1} of E as in Sect. 8.9.5. Suppose E is trivial on an open set U in M;
E|U � C

l × U . Then we may choose an sΔ-trivial connection D0 for π∗E on
W0 and a connectionD1 for π∗E onW1 so that

(cl(D1), c
l(D0,D1))|π−1(U) = (0,−p∗βl),

wherep : E|U → C
l is the projection onto the fiber and βl is the Bochner-Martinelli

form on C
l (cf. Sect. 8.8.2). Then by Corollary 8.9.16, we have the theorem.

The above choice of D0 and D1 gives explicit local expressions of the forms in
Proposition 8.9.17 for a complex vector bundle.

Universality of the Thom Class Let π : E→ M be as above. Suppose we have a
section s of E→ M with zero set S. Then it induces a morphism

s∗ : H 2l(E,E�Σ;C) −→ H 2l(M,M�S;C).

Theorem 8.9.22 In the above situation,

clS(E, s) = s∗ΨE.

Remark 8.9.23

1. The above follows from the fact that the Thom class is a universal localization of
the Euler class (cf. Remark 8.9.12). It can also be proved directly taking suitable
connections.

2. The residues defined in Sects. 8.5 and 8.8 correspond, in the case r = 1, to what
is called the “localized top Chern class” defined in [18] in the algebraic category.
In particular, see Example 19.2.6 loc.cit. as to Theorem 8.9.22.
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3. For applications of the expression as in Theorem 8.9.18 (cf. also Remark 8.9.21),
see [6, 13] and the embedding of real analytic forms into hyperforms in Sect. 8.12
below.

4. An equivariant version of the above theory is developed in [17].

8.10 Dolbeault and Relative Čech-Dolbeault Theorems

For generalities on sheaves and sheaf cohomology, we refer to [19, 28]. See also
[61] and the references therein. As references for complex manifolds and the theory
of analytic functions of several complex variables, we list [21, 23, 36].

Throughout this section, we let X denote a complex manifold of dimension n.
We also denote by O

(p)
X , E (p)X and E

(p,q)
X the sheaves of holomorphic p-forms, C∞

p-forms and C∞ forms of type (p, q), respectively, on X. We omit the suffix X, if
there is no fear of confusion. For a sheaf S onX and an open setW inX, we denote
by S (W) the set of sections onW . This is consistent with the notation E (p)(W) in
the previous sections.

8.10.1 Dolbeault Cohomology

For each p, the ∂̄-operator defines a complex of C-vector spaces:

0 −→ E (p,0)(X)
∂̄p,0−→ E (p,1)(X)

∂̄p,1−→ · · · ∂̄p,n−1−→ E (p,n)(X) −→ 0,

which is called the p-th Dolbeault complex of X and is denoted by (E (p,•)(X), ∂̄).

Definition 8.10.1 The Dolbeault cohomology of type (p, q) of X is the q-th
cohomology of (E (p,•)(X), ∂̄):

H
p,q

∂̄
(X) = Ker ∂̄p,q/ Im ∂̄p,q−1.

For a ∂̄-closed (p, q)-form ω, its class in Hp,q
∂̄
(X) is denoted by [ω].

On the other hand, for the sheaf O(p), we may define the cohomology
Hq(X;O(p)) taking, for example, a flabby resolution of O(p). Also, if W is an
open covering of X, we have the Čech cohomologyHq(W;O(p)). If W is a Stein
covering, there is a canonical isomorphismHq(W;O(p)) � Hq(X;O(p)).
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We have:

Theorem 8.10.2 (Canonical Dolbeault Theorem) There is a canonical isomor-
phism

H
p,q

∂̄
(X) � Hq(X;O(p)).

Remark 8.10.3 The above isomorphism is given via the Čech-Dolbeault cohomol-
ogy, regarding both Dolbeault and Čech cocycles as being Čech-Dolbeault cocycles
(cf. [61, 63]).

The use of the resolution of O(p) by the complex E (p,•) leads to an isomorphism

H
p,q

∂̄
(X) � Hq(X;O(p)), which differs from the above by a sign of (−1)

q(q+1)
2 . For

example, in Theorem 8.11.1 below, the sign (−1)
n(n−1)

2 does not appear this way.

8.10.2 Čech-Dolbeault Cohomology

The Čech-Dolbeault cohomology may be defined for an arbitrary covering of a
manifold. Here we only consider coverings consisting of two open sets and refer
to [60, 63] for details and the general case.

Let W = {W0,W1} be an open covering of X. We set W01 = W0 ∩ W1 and
define the vector space E (p,q)(W) as

E (p,q)(W) = E (p,q)(W0)⊕ E (p,q)(W1)⊕ E (p,q−1)(W01).

Thus an element ξ in E (p,q)(W) is given by a triple ξ = (ξ0, ξ1, ξ01) with ξ0 a
(p, q)-form on W0, ξ1 a (p, q)-form on W1 and ξ01 a (p, q − 1)-form on W01. We
define an operator ϑ̄ = ϑ̄p : E (p,q)(W)→ E (p,q+1)(W) by

ϑ̄ξ = (∂̄ξ0, ∂̄ξ1, ξ1 − ξ0 − ∂̄ξ01).

Then it is not difficult to see that ϑ̄ ◦ ϑ̄ = 0. Thus we have a complex
(E (p,•)(W), ϑ̄), the p-th Čech-Dolbeault complex of W.

Definition 8.10.4 The Čech-Dolbeault cohomology of type (p, q) of W is the q-th
cohomology of (E (p,•)(W), ϑ̄):

H
p,q

ϑ̄
(W) = Ker ϑ̄p,q/ Im ϑ̄p,q−1.

We denote the image of ξ by the canonical surjection Ker ϑ̄p,q → H
p,q

ϑ̄
(W) by

[ξ ].
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Theorem 8.10.5 The morphism E (p,q)(X)→ E (p,q)(W) given by ω �→ (ω, ω, 0)
induces an isomorphism

H
p,q

∂̄
(X)

∼−→ H
p,q

ϑ̄
(W).

Note that the inverse of the above isomorphism is given by assigning to the class
of a cocycle (ξ0, ξ1, ξ01), the class of a global closed form ρ0ξ0 + ρ1ξ1 − ∂̄ρ0 ∧ ξ01,
where {ρ0, ρ1} is a C∞ partition of unity subordinate to W.

8.10.3 Relative Čech-Dolbeault Cohomology

Let S be a closed set in X. Letting W0 = X� S and W1 an open neighborhood
of S, we consider the covering W = {W0,W1} of X. We have the cohomology
H
p,q

ϑ̄
(W,W0) as the cohomology of the complex (E (p,•)(W,W0), ϑ̄), where

E (p,q)(W,W0) = E (p,q)(W1)⊕ E (p,q−1)(W01), W01 = W0 ∩W1,

and ϑ̄ : E (p,q)(W,W0)→ E (p,q+1)(W,W0) is given by

ϑ̄(ξ1, ξ01) = (∂̄ξ1, ξ1 − ∂̄ξ01).

We have the exact sequence

0 −→ E (p,•)(W,W0)
j∗−→ E (p,•)(W)

i∗−→ E (p,•)(W0) −→ 0,

where j∗(ξ1, ξ01) = (0, ξ1, ξ01) and i∗(ξ0, ξ1, ξ01) = ξ0. This gives rise to the exact
sequence

· · · −→ H
p,q−1
∂̄

(W0)
δ−→ H

p,q

ϑ̄
(W,W0)

j∗−→ H
p,q

ϑ̄
(W)

i∗−→ H
p,q

∂̄
(W0)−→· · · ,

(8.39)

where δ assigns to the class of θ the class of (0,−θ).
Now we consider the special case whereW1 = X. Thus, lettingW0 = X�S and

W1
1 = X, we consider the covering W1 = {W0,W

1
1 } of X.

Definition 8.10.6 We denote Hp,q
ϑ̄
(W1,W0) by Hp,q

ϑ̄
(X,X� S) and call it the

relative Dolbeault cohomology of (X, S).

Let W = {W0,W1} be as in the beginning of this subsection, with W1 an
arbitrary open set containing S. Then we see that the restriction E (p,•)(W1,W0)→
E (p,•)(W,W0) induces an isomorphism

H
p,q

ϑ̄
(X,X�S)

∼−→ H
p,q

ϑ̄
(W,W0).
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Thus we have:

Proposition 8.10.7 The cohomology Hp,q
ϑ̄
(W,W0) is uniquely determined mod-

ulo canonical isomorphisms, independently of the choice ofW1.

Proposition 8.10.8 (Excision) Let S be a closed set in X. Then, for every open set
W in X containing S, there is a canonical isomorphism

H
p,q

ϑ̄
(X,X�S)

∼−→ H
p,q

ϑ̄
(W,W�S).

Denoting by Hq(X,X�S;O(p)) the relative cohomology of O(p) for the pair
(X,X�S), we have:

Theorem 8.10.9 (Relative Čech-Dolbeault Theorem) There is a canonical iso-
morphism:

H
p,q

ϑ̄
(W,W0) � Hq(X,X�S;O(p)).

The excision of Proposition 8.10.8 is compatible with that of the relative
cohomology, via the isomorphism of Theorem 8.10.9.

We finish this subsection by presenting the following topic:

Differential Let X, S and W = {W0,W1} be as above. We set X′ = X�S. If we
define an operator

d : E (p,q)(W,W0) −→ E p+1,q(W,W0) by (ξ1, ξ01) �→ (−1)q (∂ξ1,−∂ξ01),

then it is compatible with ϑ̄ and induces

d : Hp,q
ϑ̄
(W,W0) −→ H

p+1,q
ϑ̄

(W,W0).

Also, d : O(p)→ O(p+1) induces d : Hq(X,X′;O(p))→ Hq(X,X′;O(p+1)).

The operators d and d are compatible with the isomorphism in Theorem 8.10.9:

Proposition 8.10.10 The following diagram is commutative:

Remark 8.10.11 Relative Dolbeault cohomology has already been considered in
some form or another (cf. [31, 32]).
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8.10.4 Relative de Rham and Relative Dolbeault Cohomologies

We consider the following two cases where there is a natural relation between the
two cohomology theories.

(I) Note that, for every (n, q)-form ω, ∂̄ω = dω. Thus the inclusion E (n,q)(W) ↪→
E (n+q)(W) is compatible with ∂̄ and d for every open set W in X and induces
morphisms

H
n,q

∂̄
(X) −→ H

n+q
d (X) and H

n,q

ϑ̄
(W) −→ H

n+q
D (W), (8.40)

where W = {W0,W1} is a covering of X. The two morphisms correspond to each
other via the isomorphisms of Theorems 8.3.4 and 8.10.5. Let S be a closed set
in X. Letting W0 = X� S and W1 a neighborhood of S, consider the covering
W = {W0,W1}. Then we also have a natural morphism

H
n,q

ϑ̄
(W,W0) −→ H

n+q
D (W,W0). (8.41)

In particular, this is used later to define the integration on Čech-Dolbeault
cohomology.

(II) We define ρq : E (q)→ E (0,q) by assigning to a q-formω its (0, q)-component
ω(0,q). Then ρq+1(dω) = ∂̄(ρqω) and we have:

Proposition 8.10.12 There is a natural morphism of complexes

Let S and W be as above.

Corollary 8.10.13 There is a natural morphism ρq : H
q
D(W,W0) →

H
0,q
ϑ̄
(W,W0) that makes the following diagram commutative:

Recall that we have the analytic de Rham complex

0 −→ C
ι−→ O

d−→ O(1)
d−→ · · · d−→ O(n) −→ 0,
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which yields a complex

0 −→ Hq(X,X′;C) ι−→ Hq(X,X′;O) d−→ · · · d−→ Hq(X,X′;O(n)) −→ 0,

where X′ = X�S(= W0).
The following is proved by a spectral sequence argument:

Proposition 8.10.14 If Hq(X,X′;C) = 0 and Hq(X,X′;O(p)) = 0 for p ≥ 0
and q �= q0, then the above sequence is exact for q = q0.

As an application, we have the de Rham complex for hyperforms (cf. (8.49)
below).

8.10.5 Cup Product and Integration

Cup Product We again consider the case of coverings by two open sets. Thus let
W = {W0,W1} be an open covering of X and let E (p,q)(W) be as in Sect. 8.10.2.
We define the cup product (cf. (8.11))

E (p,q)(W)× E (p
′,q ′)(W)

�−→ E (p+p′,q+q ′)(W) (8.42)

by assigning to ξ in E (p,q)(W) and η in E (p
′,q ′)(W) the cochain ξ 
 η in

E (p+p′,q+q ′)(W) given by

(ξ 
 η)i = ξi ∧ ηi, i = 0, 1, and (ξ 
 η)01 = (−1)p+qξ0 ∧ η01 + ξ01 ∧ η1.

Then it is bilinear in (ξ, η) and we have ϑ̄(ξ 
 η) = ϑ̄ξ 
 η + (−1)p+qξ 
 ϑ̄η.
Thus it induces the cup product

H
p,q

ϑ̄
(W)×Hp′,q ′

ϑ̄
(W) −→ H

p+p′,q+q ′
ϑ̄

(W)

compatible, via the isomorphism of Theorem 8.10.5, with the product in the
Dolbeault cohomology induced by the exterior product of forms.

Let S be a closed set in X. Let W0 = X�S and W1 a neighborhood of S and
consider the covering W = {W0,W1}. Then we see that (8.42) induces a product

E (p,q)(W,W0)× E (p
′,q ′)(W1)

�−→ E (p+p′,q+q ′)(W,W0) (8.43)

assigning to (ξ1, ξ01) and η1 the cochain (ξ1 ∧ η1, ξ01 ∧ η1). It induces the cup
product

H
p,q

ϑ̄
(W,W0)×Hp

′,q ′
∂̄

(W1)
�−→ H

p+p′,q+q ′
ϑ̄

(W,W0). (8.44)
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Integration Let X be a complex manifold of dimension n. As a C∞ manifold it is
orientable. In the sequel we suppose thatX is oriented, however the orientation may
not be the usual one (cf. Glossary at the end of Sect. 8.1).

Using the natural morphism Hn,n
∂̄
(X) → H 2n

d (X) (cf. (8.40)), if X is compact,

we may define the integration on Hn,n
∂̄
(X) as the composition

H
n,n

∂̄
(X) −→ H 2n

d (X)

∫
X−→ C. (8.45)

This may as well expressed in terms of Čech-Dolbeault and Čech-de Rham
cohomologies.

Let K be a compact set in X (X may not be compact). LettingW0 = X�K and
W1 a neighborhood ofK , we consider the covering WK = {W0,W1}. Let {R0, R1}
be a honeycomb system adapted to WK . In this case we may take as R1 a compact
2n-dimensional manifold with C∞ boundary in W1 containingK in its interior and
set R0 = X�IntR1. Then R01 = −∂R1 (cf. Sect. 8.3.2) and we have the integration
on E (n,n)(W,W0) given by, for ξ = (ξ1, ξ01),

∫

X

ξ =
∫

R1

ξ1 +
∫

R01

ξ01.

This again induces the integration on the cohomology

∫

X

: Hn,n
ϑ̄
(WK,W0) −→ C, (8.46)

which is the composition of (8.41) and (8.12).

Local Duality Morphism First, if X is compact, the bilinear pairing

H
p,q

∂̄
(X)×Hn−p,n−q

∂̄
(X)

∧−→ H
n,n

∂̄
(X)

∫
X−→ C

given as the composition of the wedge product and the integration induces the
Kodaira-Serre duality

KSX : Hp,q∂̄ (X)
∼−→ H

n−p,n−q
∂̄

(X)∗,

where ∗ denotes the algebraic dual. We may also express the above using Čech-
Dolbeault cohomology.

Now we consider the case whereX may not be compact. Let K be a compact set
in X andWK = {W0,W1} a covering of X as considered in the previous paragraph.
The cup product (8.44) followed by the integration (8.46) gives a bilinear pairing

H
p,q

ϑ̄
(WK,W0)×Hn−p,n−q

∂̄
(W1)

�−→ H
p,q

ϑ̄
(WK,W0)

∫
X−→ C.
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Setting

H
n−p,n−q
∂̄

[K] = lim−→
W1⊃K

H
n−p,n−q
∂̄

(W1),

whereW1 runs through open neighborhoods of K , this induces a morphism

ĀX,K : Hp,qϑ̄ (WK,W0) −→ H
n−p,n−q
∂̄

[K]∗

which we call the complex analytic Alexander morphism, or the ∂̄-Alexander
morphism for short. If X is compact, we have the following commutative diagram:

Compare this with (8.7).
An interesting problem would be to see when Ā is an isomorphism. For this, we

need to consider topological duals instead of algebraic duals. See Theorem 8.11.5
below for an example.

8.11 Examples, Applications and Related Topics

8.11.1 A Canonical Dolbeault-Čech Correspondence

We consider the covering W′ = {Wi}ni=1 of Cn�{0} given byWi = {zi �= 0}. Here
we put ′ as we later consider the covering W = {Wi}n+1

i=1 of Cn with Wn+1 = C
n

(cf. Remark 8.12.6. 2 below). In the sequel we denote Cn�{0} by C
n
�0.

On the one hand we have the Bochner-Martinelli form βn, which is a ∂̄-closed
(n, n − 1)-form on C

n
�0 (cf. Sect. 8.8.2). On the other hand we have the Cauchy

form in n-variables

κn =
( 1

2π
√−1

)n Φ(z)

z1 · · · zn ,

which may be regarded as a cocycle c in Cn−1(W′;O(n)), the (n − 1)-st group of
Čech cochains on W′ with coefficients in O(n), given by c1...n = κn. Note that,
since W′ is a Stein covering, there is a canonical isomorphismHn−1(W′;O(n)) �
Hn−1(Cn�0;O(n)).
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Theorem 8.11.1 Under the isomorphism

H
n,n−1
∂̄

(Cn�0) � Hn−1(W′;O(n))

of Theorem 8.10.2, the class of βn corresponds to the class of (−1)
n(n−1)

2 κn.

Remark 8.11.2 If we set

β0
n = Cn

∑n
i=1Φi(z)

‖z‖2 , κ0
n =

( 1

2π
√−1

)n 1

z1 · · · zn ,

under the isomorphism

H
0,n−1
∂̄

(Cn�0) � Hn−1(W′;O),

the class of β0
n corresponds to the class of (−1)

n(n−1)
2 κ0

n .

In the sequel we endow C
n with the usual orientation. In the above situation set

R1 = { z ∈ C
n | ‖z‖2 ≤ nε2 }.

The boundary ∂R1 is a usually oriented (2n− 1)-sphere S2n−1. We also set

Γ = { z ∈ C
n | |zi | = ε, i = 1, . . . , n },

which is an n-cycle oriented so that arg z1 ∧ · · · ∧ arg zn is positive.

Theorem 8.11.3 Let θ be a ∂̄-closed (n, n − 1)-form on C
n
� 0 and γ a cocycle

in Cn−1(W′;O(n)). If the class of θ corresponds to the class of γ by the canonical
isomorphism

H
n,n−1
∂̄

(Cn�0) � Hn−1(W′;O(n)),

then
∫

S
2n−1

θ = (−1)
n(n−1)

2

∫

Γ

γ.

Note that the above is consistent with Theorem 8.11.1:
∫

S
2n−1

βn = 1 =
∫

Γ

κn.

Remark 8.11.4 The above correspondence is studied in [26], with a different sign
convention.
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8.11.2 Local Duality

A Theorem of Martineau The following theorem of A. Martineau [42] (see also
[25, 37]) may naturally be interpreted in our framework as one of the cases where
the ∂̄-Alexander morphism is an isomorphism with topological duals so that the
duality pairing is given by the cup product followed by integration as described in
Sect. 8.10.5. In the below we assume that Cn is oriented, however the orientation
may not be the usual one.

Theorem 8.11.5 Let K be a compact set in C
n such that Hp,q

∂̄
[K] = 0 for q ≥ 1.

Then for every open setW ⊃ K ,Hp,q
ϑ̄
(W,W�K) andHn−p,n−q

∂̄
[K] admits natural

structures of Fréchet-Schwartz and dual Fréchet-Schwartz spaces, respectively, and
we have :

Ā : Hp,q
ϑ̄
(W,W�K)

∼−→ H
n−p,n−q
∂̄

[K]′ =
{

0 q �= n
O(n−p)[K]′ q = n,

where ′ denotes the strong dual.

The theorem is originally stated for p = 0 in terms of local cohomology. The
hypothesisHp,q

∂̄
[K] = 0, for q ≥ 1, is satisfied if K is a subset of Rn ⊂ C

n by the
following theorem (cf. [20]):

Theorem 8.11.6 (Grauert) Any subset of R
n admits a fundamental system of

neighborhoods consisting of Stein open sets in C
n.

In our framework, the duality is described as follows (cf. Sect. 8.10.5). Let
W0 = W �K and W1 a neighborhood of K in W and consider the covering
WK = {W0,W1} of W . The duality pairing is given, for a cocycle (ξ1, ξ01) in
E (p,n)(WK,W0) and a holomorphic (n− p)-form η near K , by

∫

R1

ξ1 ∧ η +
∫

R01

ξ01 ∧ η, (8.47)

where R1 is a compact real 2n-dimensional manifold with C∞ boundary in W1
containing K in its interior and R01 = −∂R1. We may always choose a cocycle
with ξ1 = 0, ifW is Stein.

Local Residue Pairing Now we consider Theorem 8.11.5 in the case K = {0}
and (p, q) = (n, n). We also let W = C

n. In this paragraph we consider the usual
orientation on C

n. We have the exact sequence

· · · −→ H
n,n−1
∂̄

(Cn�0)
δ−→ H

n,n

ϑ̄
(Cn,Cn�0) −→ 0.
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Thus every element in Hn,n
ϑ̄
(Cn,Cn� 0) is represented by a cocycle of the form

(0,−θ). Since O[K] = OC
n,0 = On in this case, the duality in Theorem 8.11.5 is

induced by the pairing

H
n,n

ϑ̄
(Cn,Cn�0)× On

∫

−→ C

given by

((0,−θ), h) �→ −
∫

R01

hθ =
∫

S
2n−1

hθ.

In the above, h is a holomorphic function in a neighborhoodW of 0 in C
n. We may

take as R1 a 2n-ball around 0 in W so that R01 = −∂R1 = −S2n−1 with S
2n−1 a

usually oriented (2n − 1)-sphere. Thus if θ corresponds to γ , the above integral is
equal to

(−1)
n(n−1)

2

∫

Γ

hγ

(cf. Theorem 8.11.3). In particular, if θ = βn the pairing is given by

∫

S
2n−1

hβn =
∫

Γ

hκn =
( 1

2π
√−1

)n ∫

Γ

hdz1 ∧ · · · ∧ dzn
z1 · · · zn = h(0). (8.48)

Likewise in the case (p, q) = (0, n), the duality in Theorem 8.11.5 is induced
by the pairing

H
0,n
ϑ̄
(Cn,Cn�0)× O(n)

C
n,0

∫

−→ C

given by

((0,−θ), η) �→ −
∫

R01

θ ∧ η =
∫

S
2n−1

θ ∧ η.

The above subjects are closely related to the theory of hyperfunctions, which we
discuss in the next section.

8.11.3 Some Others

We may develop the theory of Atiyah classes in the context of Čech-Dolbeault
cohomology, which is conveniently used to define their localizations in the relative
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Dolbeault cohomology. In particular we have the ∂̄-Thom class of a holomorphic
vector bundle, see [1, 60] for details.

The Bott-Chern cohomology introduced in [8] refines both de Rham and
Dolbeault cohomologies. The above idea and techniques may further be pushed
forward to develop the theory of Čech-Bott-Chern cohomology. In particular the
relative Bott-Chern cohomology which arise naturally in this context is used for
the localization of Bott-Chern classes of vector bundles admitting a Hermitian
connection compatible with an action of a distribution. For details and the relation
with the relative Dolbeault cohomology theory, we refer to [16].

We refer to [3] for another application of the relative Dolbeault cohomology,
namely to the study of Hodge structures under blowing-up. We may equally use
the complex of currents, instead of that of differential forms, to define the relative
Dolbeault cohomology. One of the advantages of this is that the push-forward
morphism is available, see [65] for details and applications in the context of [3].

8.12 Sato Hyperfunctions

Sato hyperfunctions are defined in terms of relative cohomology with coefficients
in the sheaf of holomorphic functions and the theory is developed in the language
of derived functors (cf. [35, 48–50]). The use of relative Dolbeault cohomology
via the relative Dolbeault theorem (Theorem 8.10.9) provides us with another
way of treating the theory. This approach gives simple and explicit expressions of
hyperfunctions and some fundamental operations on them and leads to a number of
new results. These are discussed in detail in [30], see also [29, 62]. Here we pick up
some of the essentials of the contents therein. In general the theory of hyperfunctions
may be developed on an arbitrary real analytic manifold and it involves various
orientation sheaves. However for simplicity, here we consider hyperfunctions on
open sets in R

n fixing various orientations.

Hyperfunctions and Hyperforms We consider the standard inclusion R
n ⊂ C

n,
i.e., if (z1, . . . , zn), zi = xi +

√−1yi , is a coordinate system on C
n, then R

n

is given by yi = 0, i = 1, . . . , n. We orient R
n and C

n so that (x1, . . . , xn)

and (y1, . . . , yn, x1, . . . , xn) are positive coordinate systems. Thus (y1, . . . , yn)

is a positive coordinate system in the normal direction. This is consistent with
Convention in Sect. 8.9.3. Note that the difference between this orientation of Cn

and the usual one, where (x1, y1, . . . , xn, yn) is positive, is a sign of (−1)
n(n+1)

2 .

With these, for an open set U in R
n, the space of hyperfunctions on U is given

by

B(U) = Hn(W,W�U ;O),



8 Residues and Hyperfunctions 637

where W is an open set in C
n containing U as a closed set and O the sheaf of

holomorphic functions on C
n. We call such a W a complex neighborhood of U .

Note that, by excision, the definition does not depend on the choice of the complex
neighborhoodW . By the relative Dolbeault theorem (cf. Theorem 8.10.9), there is
a canonical isomorphism:

B(U) � H 0,n
ϑ̄
(W,W�U).

More generally we introduce the following:

Definition 8.12.1 The space of p-hyperforms on U is defined by

B(p)(U) = Hp,n
ϑ̄
(W,W�U).

Note that the definition does not depend on the choice of W by excision
(cf. Proposition 8.10.8). Denoting by O(p) the sheaf of holomorphic p-forms on
C
n, we have a canonical isomorphism (cf. Theorem 8.10.9):

H
p,n

∂̄
(W,W�U) � Hn(W,W�U ;O(p))

so that B(0)(U) is canonically isomorphic with B(U). Hyperforms are essentially
the same with what have conventionally been referred to as differential forms with
coefficients in hyperfunctions.

Remark 8.12.2 In the above, we implicitly used the fact that R
n is “purely n-

codimensional” in C
n with respect to O(p) and Z (cf. [34]). This means that

Hq(Cn,Cn�R
n;O(p)) = 0 and Hq(Cn,Cn �R

n;Z) = 0 for q �= n. For the
latter, it can be seen from the Alexander isomorphism

Hq(Cn,Cn�R
n;Z) ∼−→ H̆2n−q(Rn;Z)

(cf. Theorem 8.2.2 and Example 8.2.3).

Expression of Hyperforms Let U and W be as above. Letting W0 = W �U and
W1 a neighborhood of U in W , we consider the open covering W = {W0,W1} of
W . Then B(p)(U) = H

p,n

ϑ̄
(W,W �U) = H

p,n

ϑ̄
(W,W0) and a p-hyperform is

represented by a pair (ξ1, ξ01) with ξ1 a (p, n)-form on W1, which is automatically
∂̄-closed, and ξ01 a (p, n − 1)-form on W01 such that ξ1 = ∂̄ξ01 on W01. We have
the exact sequence (cf. (8.39)):

H
p,n−1
∂̄

(W) −→ H
p,n−1
∂̄

(W�U)
δ−→ B(p)(U)

j∗−→ H
p,n

∂̄
(W).

By Theorem 8.11.6, we may take as W a Stein open set and, if we do this, we
haveHp,n

∂̄
(W) � Hn(W ;O(p)) = 0. Thus δ is surjective and every p-hyperform is
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represented by a cocycle of the form (0,−θ) with θ a ∂̄-closed (p, n − 1)-form on
W�U .

In the case n > 1,Hp,n−1
∂̄

(W) � Hn−1(W ;O(p)) = 0 and δ is an isomorphism:

H
p,n−1
∂̄

(W�U) �B(p)(U), [θ ] ↔ [(0,−θ)].

In the case n = 1, as Hp,0
∂̄
(W �U) = H 0(W �U ;O(p)) and Hp,0

∂̄
(W) =

H 0(W ;O(p)), p = 0, 1, we have the isomorphism

H 0(W�U ;O(p))/H 0(W ;O(p)) � B(p)(U), [ω] ↔ [(0,−ω)].

In particular, for p = 0, the left hand side is the original expression of hyperfunc-
tions by Sato in the one-dimensional case and the right hand side is the expression
in terms of relative Dolbeault cohomology.

Remark 8.12.3 Although a hyperform may be represented by a single differential
form in most of the cases, it is important to keep in mind that it is represented by a
pair (ξ1, ξ01) in general.

Now we describe some of the operations on hyperforms.

Multiplication by Real Analytic Functions Let A (U) denote the space of real
analytic functions on U . We define the multiplication

A (U)×B(p)(U) −→ B(p)(U)

by assigning to (f, [ξ ]) the class of (f̃ ξ1, f̃ ξ01) with f̃ a holomorphic extension of
f .

Partial Derivatives We define the partial derivative

∂

∂xi
: B(U) −→ B(U)

as follows. Let (ξ1, ξ01) represent a hyperfunction onU . Write ξ1 = f dz̄1∧· · ·∧dz̄n
and ξ01 =∑n

j=1 gj dz̄1 ∧ · · · ∧ d̂ z̄j ∧ · · · ∧ dz̄n. Then ∂
∂xi
[ξ ] is represented by the

cocycle

( ∂f
∂zi

dz̄1 ∧ · · · ∧ dz̄n,
n∑

j=1

∂gj

∂zi
dz̄1 ∧ · · · ∧ d̂ z̄j ∧ · · · ∧ dz̄n

)
.

Thus for a differential operator P(x,D), P(x,D) : B(U) → B(U) is well-
defined.
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Differential We define the differential

d : B(p)(U) −→ B(p+1)(U).

by assigning to the class of (ξ1, ξ01) the class of (−1)n(∂ξ1,−∂ξ01) (cf. Propo-
sition 8.10.10). From Proposition 8.10.14, we have the exact sequence (de Rham
complex for hyperforms, cf. Remark 8.12.2):

0 −→ C(U) −→ B(U)
d−→ B(1)(U)

d−→ · · · d−→ B(n)(U) −→ 0. (8.49)

We come back to the first part below.

Integration Let K be a compact set in U . We define the space B
(p)
K (U) of p-

hyperforms on U with support in K as the kernel of the restriction B(p)(U) →
B(p)(U�K). Then, for any complex neighborhood W of U , there is a canonical
isomorphism

B
(p)
K (U) � Hp,nϑ̄ (W,W�K).

Thus we may define the integration on B(n)
K (U) by directly applying (8.46), which

we recall for the sake of completeness. LetW be a complex neighborhood of U and
consider the covering WK = {W0,W1} with W0 = W�K andW1 a neighborhood
of K in W . Then we have a canonical identification B

(p)
K (U) = Hp,n

ϑ̄
(WK,W0).

Let R1 be a compact real 2n-dimensional manifold with C∞ boundary in W1
containingK in its interior and set R01 = −∂R1. Then the integration

∫

U

: B(n)
K (U) −→ C

is given as follows. Noting that u ∈ B(n)
K (U) = Hϑ̄(WK,W0) is represented by

ξ = (ξ1, ξ01) ∈ E (n,n)(WK,W0) = E (n,n)(W1)⊕ E (n,n−1)(W01),

we have
∫

U

u =
∫

R1

ξ1 +
∫

R01

ξ01. (8.50)

Duality By Theorem 8.11.5 we have

B
(p)

K (U) = Hp,n
∂̄
(W,W�K) � O(n−p)[K]′ = A (n−p)[K]′, (8.51)



640 T. Suwa

where A (n−p) denotes the sheaf of germs of real analytic (n− p)-forms on R
n and

A (n−p)[K] = lim−→A (n−p)(U1),

the direct limit over the set of neighborhoods U1 of K in U . Recall that the pairing
is induced by (8.47).

δ-Function and δ-Form We consider the case K = {0} ⊂ R
n.

Definition 8.12.4 The δ-function is the element in B{0}(Rn) = H 0,n
ϑ̄
(Cn,Cn�{0})

which is represented by

(0,−(−1)
n(n+1)

2 β0
n),

where β0
n is as defined in Remark 8.11.2.

The isomorphism (8.51) reads in this case:

B0(R
n) � (A (n)

0 )′,

where A (n)
0 denotes the stalk of A (n) at 0. For a representativeω = h(x)Φ(x) of an

element in A (n)
0 , h(z)Φ(z) is its complex representative. Let R1 be a small 2n-ball

around 0 in C
n so that R01 = −∂R1 = −(−1)

n(n+1)
2 S

2n−1 with S
2n−1 a usually

oriented (2n− 1)-sphere. Then the δ-function is the hyperfunction that assigns to a
representative ω = h(x)Φ(x) the value (cf. (8.48))

−(−1)
n(n+1)

2

∫

R01

h(z)βn =
∫

S
2n−1

h(z)βn = h(0).

Definition 8.12.5 The δ-form is the element in B(n)
{0} (Rn) = H

n,n

ϑ̄
(Cn,Cn� {0})

which is represented by

(0,−(−1)
n(n+1)

2 βn).

Recall the isomorphism (8.51), which reads in this case:

B(n)
0 (Rn) � (A0)

′.

For a representative h(x) of an element in A0, h(z) is its complex representative.
LetR1 be as above. Then the δ-form is the hyperform that assigns to a representative
h(x) the value

−(−1)
n(n+1)

2

∫

R01

h(z)βn =
∫

S2n−1
h(z)βn = h(0).
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Remark 8.12.6

1. If we orient Cn the usual way so that the coordinate system (x1, y1, . . . , xn, yn) is
positive, the delta function δ(x) is represented by (0,−β0

n). Also, the delta form
is represented by (0,−βn). Incidentally, it has the same expression as the Thom
class of the trivial complex vector bundle of rank n (cf. Remark 8.9.21).

2. Set Wi = {zi �= 0}, i = 1, . . . , n, and Wn+1 = C
n and consider the coverings

W = {Wi}n+1
i=1 and W′ = {Wi}ni=1 of C

n and C
n
� 0. We have the natural

isomorphisms

B{0}(Rn) � H 0,n−1
∂̄

(Cn�0) � Hn−1(W′;O) � Hn(W,W′;O).

As noted in Remark 8.11.2, under the middle isomorphism above, the class of

β0
n corresponds to the class of (−1)

n(n−1)
2 κ0

n . If we choose the usual orientation
on C

n, the class corresponding to [κ0
n] in Hn(W,W′;O) is the traditional

representation of the δ-function (cf. (8.48)).

1 as a Hyperfunction We examine the map C(U) → B(U) in (8.49). Let W be
as before. Then it is given by ρn : HnD(W,W0)→ H

0,n
ϑ̄
(W,W0), which is induced

by (ω1, ω01) �→ (ω
(0,n)
1 , ω

(0,n−1)
01 ) (cf. Corollary 8.10.13). For simplicity we assume

that U is connected.

Then we have the commutative diagram:

where T denotes the Thom isomorphism, which sends 1 ∈ C to the Thom
class ΨU ∈ Hn(W,W �U ;C) of U (cf. Sect. 8.9.5). If ΨU is represented by
(ψ1, ψ01) in HnD(W,W0), as a hyperfunction, 1 is represented by ρn(ψ1, ψ01) =
(ψ
(0,n)
1 , ψ

(0,n−1)
01 ). In particular, we may set (ψ1, ψ01) = (0,−ψn(y)), whereψn(y)

is the angular form on R
n
y (cf. Theorem 8.9.18). Thus as a hyperfunction, 1 is

represented by (0,−ψ(0,n−1)
n (y)). Noting that yi = 1/(2

√−1)(zi−z̄i ), we compute

ψ(0,n−1)
n (y) = (√−1)nCn

∑n
i=1(−1)i(zi − z̄i )dz̄1 ∧ · · · ∧ d̂ z̄i ∧ · · · ∧ dz̄n

‖z − z̄‖n .

In particular, if n = 1,

ψ
(0,0)
1 (y) = 1

2

y

|y| .
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Embedding of Real Analytic Forms Let U and W be as above. Using the above
expression of 1, we may define an embedding

A (p)(U) ↪→ B(p)(U) = Hp,n
ϑ̄
(W,W�U) by ω �→ [(ψ(0,n)1 ∧ ω̃, ψ(0,n−1)

01 ∧ ω̃)],
(8.52)

where (ψ1, ψ01) is a representative of the Thom class as above and ω̃ the
complexification of ω. Note that (ψ(0,n)1 ∧ ω̃, ψ(0,n−1)

01 ∧ ω̃) is a cocycle as ω̃ is
holomorphic. It is compatible with the differentials d of A (•)(U) and B(•)(U).

In particular, if p = 0, we have the embedding A (U) ↪→ B(U), which is given
by f �→ [(f̃ ψ(0,n)1 , f̃ ψ

(0,n−1)
01 )] with f̃ the complexification of f .
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9.1 Introduction

In this paper we focus on the applications of mixed Hodge theory to the study
of singularities. Hodge theory deals with the cohomology of smooth complex
projective varieties, or more generally, compact Kähler manifolds. By de Rham’s
theorem, cohomology classes of compact oriented differentiable manifolds can be
considered as classes of closed differential forms modulo exact ones. The choice of
a Riemannian metric enables one to define the Laplace operator � on differential
forms. Each de Rham cohomology class contains exactly one closed form ω with
�ω = 0, the harmonic representative, see [31]. For compact complex manifolds
there exists the Hodge decomposition of complex-valued diffential k-forms ω =∑
p+q=k ωp,q . Here ωp,q is a form of type (p, q). In terms of local holomorphic

coordinates (z1, . . . , zn), the representation of such a form involves p factors dzi
and q factors dz̄j . On a compact Kähler manifold, the (p, q)-components of a
harmonic form are again harmonic. As a consequence, the Hodge decomposition
of forms induces a Hodge decomposition of cohomology classes via their harmonic
representatives:

Hk(X,C) =
⊕

p+q=k
Hp,q(X)

where Hp,q(X) is the subspace of Hk(X,C) consisting of classes of forms
containing harmonic forms of type (p, q). Complex conjugation with respect to
Hk(X,R) interchanges Hp,q(X) and Hq,p(X): this equips Hk(X) with a Hodge
structure of weight k.

Using Leray’s theory of sheaves and resolution of singularities, Grothendieck
[24] defined the de Rham cohomology of complex algebraic varieties in purely
algebraic terms. For smooth complete varieties, the analogue of the Hodge decom-
position is the degeneration at the E1-term of the spectral sequence

E
p,q

1 = Hq(X,�p
X/C
)⇒ H

p+q
DR (X/C) := H

p+q(X,�·X/C)

where H stand for hypercohomology of a sheaf complex. Though there is no
algebraic description of the Hodge decomposition, this formula does give an
algebraic description of a decreasing filtration F · on the de Rham cohomology,
the Hodge filtration which has the property that Fp/Fp+1 � Hq(X,�

p

X/C). By
GAGA, this space is isomorphic to Hp,q(X).

On the level of the sheaf complex�·X/C the Hodge filtration is given by

Fp�kX/C = 0 if k < p and = �kX/C if k ≥ p.

A generalization of Hodge theory to arbitrary complex algebraic varieties was
developed by Deligne [17, 18]. He showed that the cohomology of a complex
algebraic variety (not necessarily complete or nonsingular) carries a slightly more
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general structure, which presents Hk(X,C) as a successive extension of Hodge
structures of decreasing weights, contained between 0 and 2k, whose Hodge
numbers hpq = dimHpq are zero unless 0 ≤ p, q ≤ k. This generalization is called
a mixed Hodge structure. Morphisms between varieties give rise to morphisms of
mixed Hodge structures in a functorial way. In the smooth case, the main tool is the
logarithmic de Rham complex with its Hodge and weight filtrations.

Griffiths [22], see also [16], studied the asymptotic behaviour of the Hodge
structure on the cohomology of compact Kähler manifolds in a one parameter
degeneration. Deligne conjectured in [23, Conjecture 9.17] that the limit object
would be a mixed Hodge structure, whose weight filtration is determined by the
logarithm of the unipotent part of the Picard-Lefschetz monodromy. This conjecture
was proved by Schmid [52].

In the mean time, Deligne advised the author to study the relative logarithmic
de Rham complex �·X/S(logE) to control the behaviour of intermediate Jacobians
in a one-parameter degeneration. Using unpublished notes of Katz, a sheaf double
complex A·,· was constructed in [55] which carries three filtrations: a Hodge
filtration F , a weight filtration W and a monodromy filtration M . The main
properties are (under the hypothesis that the special fibre E is reduced):

1. There is a bifiltered quasi-isomorphism (�·X/S(logE) ⊗ OE,W,F) →
(A·,·,W,F );

2. (A·,·,M,F) is a mixed Hodge complex of sheaves (its hypercohomology groups
are mixed Hodge structures);

3. the logarithm N of the monodromy (which is unipotent in this case) has a lift to
A·,· which mapsMk toMk−2.

It was claimed in [55] that M induces on the hypercohomology groups of A·,· the
weight filtration ofN , but F. El Zein remarked that the proof is incomplete. A correct
proof was given in [27].

Deligne observed that the existence of the double complex A·,· enables one
to localize the study of one-parameter degenerations. This meant the entrance of
mixed Hodge theory in singularity theory, and gave rise to [56], where a mixed
Hodge structure on the cohomology of the Milnor fibre of an isolated hypersurface
singularity is constructed, and its relation with monodromy, intersection form and
local cohomology is established.

In this paper, we describe the construction of this mixed Hodge structure and give
a survey of several applications. We start with some general background. Then we
describe the formalism of nearby and vanishing cycles and show how the complex
A·,· fits into this pattern. We describe the relation between monodromy and weight
filtration for arbitrary smoothings of isolated singularities. Then we pass to two
alternative approaches to this theme: algebraic analysis and motivic integration.
We return to isolated hypersurface singularities and consider the spectrum and its
properties. Finally, we discuss the notion of du Bois singularities, which plays an
important role in the minimal model program.

More background on mixed Hodge theory can be found in [42]; for further
reading about mixed Hodge structures and singularities we refer to Kulikov’s
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monograph [36]. The referee deserves credit for the remarks on recent developments
at the end of this paper.

9.2 Background

9.2.1 Mixed Hodge Structures

LetHZ be a finitely generated abelian group. Consider the finite-dimensional vector
spacesHQ = HZ⊗Q and HC = HZ⊗C. A mixed Hodge structure onHZ is a pair
(W,F) where

• W is a finite increasing filtration of HQ, the weight filtration, and
• F is a finite decreasing filtration of HC, the Hodge filtration

(here “finite” means that there exist integers a < b withWa = (0), Wb = HQ resp.
Fa = HC, F

b = (0)). These data must satisfy the conditions, that for all integers p,

Fp+1 ∩ (Wk ⊗ C)+ Fk−p ∩ (Wk ⊗ C)+Wk−1 ⊗C = Wk ⊗ C;
(
Fp+1 ∩Wk ⊗ C+Wk−1 ⊗ C

)
∩
(
Fk−p ∩Wk ⊗ C+Wk−1 ⊗ C

)
= Wk−1 ⊗C.

The filtration F induces a filtration Fk on the subquotient GrWk HC := Wk ⊗
C/Wk−1 ⊗ C of HC by

F
p
k :=

(
Fp(Wk ⊗ C)+Wk−1 ⊗ C

)
/Wk−1 ⊗ C.

The conditions above imply that

GrWk HC = Frk ⊕ Fsk if r + s = k + 1.

We let

Hp,q := Fpp+q ∩ Fqp+q ⊂ GrWp+qHC

where the bar refers to complex conjugation with respect to GrWk HQ. One has the
Hodge decomposition

GrWk HC =
⊕

p+q=k
Hp,q with Hq,p = Hp,q.

The Hodge numbers are the numbershp,q = dimCH
pq . The mixed Hodge structure

(HZ,W,F ) is called pure of weight k if GrWmHQ = 0 for all m �= k. An important
example is the Tate Hodge structure Z(m) for m ∈ Z, given by (2πi)mZ ⊂ C. It is
pure of weight −2m, with hp,q = 0 unless p = q = −m, and h−m,−m = 1.
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A morphism of mixed Hodge structures (HZ,W,F ) → (H ′
Z
,W,F ) is a group

homomorphism φ : HZ → H ′
Z

such that for all k, p ∈ Z one has

(φ ⊗Q)(WkHQ) ⊂ WkH ′Q and (φ ⊗ C)(FpHC) ⊂ FpH ′C.

For R a noetherian subring of R such that R⊗Q is a field, one defines the notion of
an R-mixed Hodge structure as above, replacing Z by R. The category of R-mixed
Hodge structures is abelian.

Recall that a morphism of filtered vector spaces

f : (V , F )→ (V ′, F )

is a linear map f : V → V ′ with the property that f (FpV ) ⊂ FpV ′ for all p.
It is called strict if f (V ) ∩ FpV ′ = f (FpV ) for all p. Every morphsm of mixed
Hodge structures is strict with respect to the Hodge and weight filtrations (cf. [42,
Cor. 3.6]). As a consequence, the functors GrWk , GrpF and GrpFGrWk are exact (cf.
[42, Cor. 3.8]).

Let H and H ′ be two mixed Hodge structures. Then Hom(H,H ′) becomes a
mixed Hodge structure with the following definitions:

Hom(H,H ′)Z = HomZ(HZ,H
′
Z
)

WkHom(HQ,H
′
Q
) = {f | f (WmHQ) ⊂ Wm+kH ′Q for all m}

FpHom(HC,H
′
C
) = {f | f (F �HC) ⊂ Fp+�H ′C for all �}

The tensor product of these mixed Hodge structures is defined by

(H ⊗H ′)Z = HZ ⊗H ′Z,

Wk(H ⊗H ′)Q =
∑

m+m′=k
WmHQ ⊗Wm′H ′Q,

Fp(H ⊗H ′)C =
∑

r+s=p
F rHC ⊗ FsH ′C.

Let m ∈ Z. The m-th Tate twist of the mixed Hodge structureH is given by

H(m) := H ⊗ Z(m).



650 J. Steenbrink

A polarization of an R-Hodge structure H of weight k is a (non-degenerate)
R-valued bilinear form Q : HR ⊗ HR → R which is symmetric if k is even, anti-
symmetric if k is odd, and satifies

1. ip−qQ(u, ū) > 0 for 0 �= u ∈ Hp,q ;
2. the Q-orthogonal complement of Fm is Fk−m−1 for all m.

If R is a field, the category of polarized R-Hodge structures of weight k is
semisimple.

9.2.2 Compact Kähler Manifolds

On a complex manifold X of dimension n with tangent bundle TX, the sheaf of
differentiable sections E1

X of T ∗X ⊗C has the decomposition

E1
X = E1,0

X ⊕ E0,1
X ,

where a section of E1,0
X (resp. E0,1

X ) is locally of the form
∑
fiαi for differentiable

functions fi and holomorphic (resp. anti-holomorphic) one-forms ωi . This induces
a canonical decomposition (the Hodge decomposition) of each complex-valued
differentialm-form

ω =
∑

p+q=m
ωp,q

where ωp,q is a section of
∧p E1,0

X ⊗ ∧q E0,1
X ⊂ ∧m E1

X. Under complex
conjugation, the Hodge type changes from (p, q) to (q, p).

A Kähler metric on X is a hermitian metric on its tangent bundle whose
imaginary part is a closed 2-form. A Kähler manifold is a complex manifold
equipped with a Kähler metric.

For a complex manifold X we consider its de Rham cohomology:

Hm(X,C) = {closed complex valued m-forms}
{exact complex valued m-forms} .

We define Hp,q ⊂ Hp+q(X,C) as the subspace of de Rham cohomology classes
which contain a form of Hodge-type (p, q). Then Hp,q = Hq,p.

Theorem 9.2.1 Suppose thatX is a compact Kähler manifold of dimension n. Then
for all m = 0, 1, . . . , 2n one has

Hm(X,C) =
⊕

p+q=m
Hp,q.
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Corollary 9.2.2 If the compact complex manifold X admits a Kähler metric, then
Hm(X) carries a Hodge structure which is pure of weight m. This Hodge structure
does not depend on the choice of a Kähler metric.

In order to obtain polarized Hodge structures, we need to consider primitive
cohomology. In contrast with the Hodge decomposition, this depends on the choice
of a Kähler metric in general.

Let (X, h) be a compact Kähler manifold of dimension n. The form ω = @h
is real, closed and of type (1, 1). It defines an endomorphism L of the de Rham
cohomology algebra: L([η]) = [ω ∧ η]. Then L(Hp,q) ⊂ Hp+1,q+1.

Theorem 9.2.3 (Hard Lefschetz Theorem) Cup product with the Kähler class [ω]
induces isomorphisms

Ln−k : Hk(X,C)→ H 2n−k(X,C), k ≤ n

Ln−p−q : Hp,q → Hn−q,n−p, p + q ≤ n.

For each k ≤ n one defines the primitive cohomology groups

Hkprim(X) = ker(Ln−k+1) ⊂ Hk(X,C)

and considers the Hodge-Riemann formQk on Hk(X,C) defined by

Qk(α, β) = (−1)k(k−1)/2
∫

X

α ∧ β ∧ ωn−k.

Theorem 9.2.4 For each k ≤ n
1. the group Hkprim(X) is a R-Hodge substructure of Hk(X,R);

2. the formQk defines a polarization on Hkprim(X).

IfK is a subfield of R such that the Kähler class [ω] lies inH 2(X,K) ⊂ H 2(X,R),
then the mapL is defined overK , so the primitive cohomology groups areK-Hodge
structures.

Theorem 9.2.5 (Kodaira’s Embedding Theorem) The complex Kähler manifold
is projective algebraic if and only if [ω] ∈ H 2(X,Q).

It follows that for projective algebraic complex manifolds, the primitive cohomol-
ogy groups are polarized Q-Hodge structures.

Theorem 9.2.6 (Hodge Index Theorem) Let X be a compact Kähler manifold of
even dimensionm. Then the symmetric intersection form on Hm(X,R) has index

σ(X) =
∑

q

(−1)qhp,q .
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Following Griffiths, the Hodge filtration on Hk(X,C) can be described in the
following way. For each p ∈ Z define

σ≥p�·X = {0 → · · · → �
p
X → �

p+1
X → · · · → �nX}

where n = dimX. (We call this filtration of a complex the “obvious” filtration,
from the French “filtration bête”). Then σ≥p�·X is a subcomplex of �·X and for a
compact Kähler manifold the resulting maps

H
k(X, σ≥p�·X)→ H

k(X,�·X)

are all injective (this results from the Dolbeault isomorphismHq(X,�pX) � Hp,q).
Then FpHk(X,C) = H

k(X, σ≥p�·X).
Until now there has been no reason to consider the Hodge filtration instead of

the Hodge decomposition. This has changed drastically through Griffiths’ work on
variation of Hodge structure.

Consider a one parameter family of compact Kähler manifolds, i.e. a Kähler
manifold X provided with a proper and smooth holomorphic map π : X → S,
where S is a Riemann surface. Then for m ∈ N one has the local system Rmπ∗CX
on S with fibre Hm(Xs,C) where Xs = π−1(s). The holomorphic vector bundle
Rmπ∗CX ⊗ OS contains the C∞-subbundles Hp,m−p with fibres Hp,m−p(Xs) and
the bundles F p =⊕r≥pH r,m−r . In contrast with the Hp,m−p the bundles F p are
holomorphic subbundles of Rmπ∗CX ⊗ OS . This means that the Hodge filtration
varies holomorphically with s, whereas the Hodge decomposition does not.

This can be clarified using relative hypercohomology of the relative de Rham
complex. One defines

�
p

X/S := �pX/π∗�1
S ∧�p−1

X .

The complex�·X/S carries the “obvious” filtration σ≥p and one has isomorphisms

F p � R
mπ∗σ≥p�·X/S.

9.2.3 Smooth Complex Algebraic Varieties

The de Rham cohomology groups of a complex manifold X can be described by
the holomorphic de Rham complex �·X in the following way. First, one has the
embedding�·X ↪→ E·X, which is a quasi-isomorphism (i.e. induces an isomorphism
of cohomology sheaves, because of the Poincaré Lemma for differentiable and
holomorphic forms), and hence induces an isomorphism on hypercohomology

H
k(X,�·X) � H

k(X,E·X) � Hk(X,C).
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The Hodge filtration on Hk(X,C) can be described in the following way. For each
p ∈ Z consider the obvious filtration

σ≥p�·X = {0 → · · · → �
p
X → �

p+1
X → · · · → �nX}

where n = dimX. Then σ≥p�·X is a subcomplex of �·X and for a compact Kähler
manifold the resulting maps

H
k(X, σ≥p�·X)→ H

k(X,�·X)

are all injective (this results from the Dolbeault isomorphism Hq(X,�pX) � Hpq).
Then FpHk(X,C) = H

k(X, σ≥p�·X).
This description has two important consequences.
First, for a smooth complex projective variety Xa , with associated complex

manifold X, the sheaf complex of holomorphic differentials can be replaced by
its subcomplex of algebraic differentials. By GAGA, this gives an isomorphism
Hq(Xa,�

p

Xa
) � Hq(X,�

p

X) for all p, q . Therefore one has isomorphisms

H
k(Xa, σ

≥p�·Xa) � H
k(X, σ≥p�·X). So the Hodge filtration admits an algebraic

description. In particular, if Xa is defined over a subfield K of C, then Hk(X,C)
and its Hodge filtration are defined overK .

Second, it enables us to describe the cohomology of smooth quasiprojective
varieties in an analogous fashion. Let U be a smooth complex quasiprojective
variety. Then by resolution of singularities, there exists a smooth projective variety
X containing U as a Zariski-dense open subset, such that D = X \ U is a divisor
with simple normal crossings on X. This means that each irreducible component
of D is a smooth subvariety of X of codimension one, and that at each x ∈ D,
the tangent spaces of the irreducible components of D that contain x are in general
position. If n = dimX, this means that there exists a system of holomorphic local
coordinates (z1, . . . , zn) at x such that near x, the divisorD is given by the equation∏r
i=1 zi = 0.
A holomorphic differential α on an open subset of U is said to have logarithmic

poles along D if both α and dα have at most a pole of order one along D. Letting
j : U ↪→ X be the inclusion map, the differentials with logarithmic poles along
D form a subcomplex of sheaves �·X(logD) ⊂ j∗�·U : the logarithmic de Rham
complex alongD.

Theorem 9.2.7 With these notations, the following hold.

1. For all k ∈ N one has a canonical isomorphism

Hk(U,C) � H
k(X,�·X(logD));
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2. The increasing filtrationW on �·X(logD) defined by

Wm�
p
X(logD) =

⎧
⎨

⎩

0 form < 0
�
p

X(logD) form ≥ p
�
p−m
X ∧�mX(logD) if 0 ≤ m ≤ p.

induces in cohomology

WmH
k(U ;C) = Image of

(
H
k(X,Wm−k�•X(logD))→ Hk(U ;C)

)
,

a filtration which can be defined over the rationals.
3. The filtration σ≥· on the complex �·X(logD) in cohomology gives a filtration

FpHk(U,C) = Image of
(
H
k(X, σ≥p�·X(logD)) ↪→ Hk(U ;C)

)

4. The filtrationsW and F define a mixed Hodge structure on Hk(U).

The inclusion �·X = W0�
·
X(logD) ↪→ �·X(logD) induces the restriction map

Hk(X,C) = H
k(X,�·X)→ H

k(X,�·X(logD)) = Hk(U,C)

with imageWkHk(U,C).

9.2.4 Varieties with Simple Normal Crossings

A variety with normal crossings is a complex projective variety which locally
analytically is isomorphic to a divisor with normal crossings on a complex manifold.
If all of its irreducible components are smooth, it is called a variety with simple
normal crossings.

Let X be a variety with simple normal crossings and irreducible components
X1, . . . , XN . Then for each i, the intersection Di of Xi with

⋃
j �=i Xj is a divisor

with simple normal crossings on Xi . A mixed Hodge structure on Hk(X) is
constructed by defining a suitable de Rham complex for it, equipped with filtrations
W and F .

Let X(p) denote the union inside X of all intersections Xi1 ∩ . . . ∩ Xip for 1 ≤
i1 < . . . < ip ≤ N and let X̃(p) denote their disjoint union. One has a natural
finite morphism ap : X̃(p) → X. Define ω·X := �·X/torsion. It is a resolution of the
constant sheaf CX hence

Hk(X,C) � H
k(X,ω·X).



9 Mixed Hodge Structures Applied to Singularities 655

Moreover one has exact sequences for all q

0 → ω
q

X → (a1)∗�q
X̃(1)

→ (a2)∗�q
X̃(2)

→ . . . (9.1)

of Mayer-Vietoris type. One defines a double complex

ω
·,·
X =

⊕

p,q≥0

(aq+1)∗�p
X̃(q+1)

with differentials d ′ and d ′′, where d ′ is just the derivative of holomorphic differen-
tials and d ′′ is a combination of pull-back maps under inclusions of components of
X̃(q+2) in components of X̃(q+1). This double complex is equipped with filtrations
W and F as follows. One defines

Fpω
·,·
X =

⊕

r≥p,q≥0

(aq+1)∗�rX̃(q+1) .

Then from the exact sequence (9.1) one sees that the natural map ω·X → (a1)∗�·
X̃(1)

induces a filtered quasi-isomorphism

(
ω·X, σ≥

)→ (
ω
·,·
X ,F

)

The filtrationW on ω·,·X is defined by

Wmω
·,·
X =

⊕

p≥0,q≥−m
(aq+1)∗�p

X̃(q+1)

so GrWm ω
·,·
X = (a1−m)∗�·

X̃(1−m) . The mixed Hodge structure on Hk(X) is obtained

from the filtrations induced on the hypercohomology of the sheaf complex ω·,·X in
the same way as in Theorem 9.2.7.

9.2.5 Weighted Homogeneous Isolated Hypersurface
Singularities

Consider a polynomial f = ∑α cαz
α ∈ C[z0, . . . , zn] with α = (α0, . . . , αn) ∈

N
n+1. The support of f is the finite set {α | cα �= 0}. Given positive rational

numbers (w0, . . . , wn) one says that f is weighted homogeneous with weights
(w0, . . . , wn) if its support is contained in the hyperplane with equation w0α0 +
· · · + wnαn = 1. Let d be the smallest common denominator of w0, . . . wn and let
vi = dwi . Then f is weighted homogeneous with weights (w0, . . . , wn) if and only
if

f (λv0z0, . . . , λ
vnzn) = λdf (z0, . . . , zn) for all λ ∈ C. (9.2)
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Suppose that f is weighted homogeneous with weights (w0, . . . , wn) and that
0 is the only singular point of the affine variety V (f ). Then X := V (f − 1)
is a smooth affine variety, homotopy equivalent with the Milnor fibre of f at
0. This Milnor fibre has the homotopy type of a wedge of μ n-spheres, where
μ = dimC[z0, . . . , zn]/Jac(f ). Here Jac(f ) is the ideal generated by the partial
derivatives of f .

This fact can be made explicit using algebraic de Rham cohomology. Let �k(X)
denote the space of regular n-forms on X. As X is affine and nonsingular, its
algebraic de Rham cohomology is just the cohomology of the complex �·(X) of
regular differential forms. See [24].

Let U = C
n+1 \ X. The Poincaré residue map defines an isomorphism res :

Hn+1(U,C)→ H̃ n(X,C). Let A ⊂ N
n+1 be a finite subset with the property that

the monomials zα for α ∈ A form a C-basis for C[z0, . . . , zn]/Jac(f ). For α ∈ A
we set �(α) :=∑n

i=0 wi(αi + 1) and

ωα := z
αdz0 ∧ · · · ∧ dzn
(f − 1).�(α/

.

Theorem 9.2.8 A basis for H̃ n(X,C) is given by the classes ηα of the forms
res(ωα) for α ∈ A.

For t ∈ [0, 1] the map (z0, . . . , zn) �→ (exp(2πitw0)z0, . . . , exp(2πitwn)zn)
defines an isomorphism ht : X → f−1(exp(2πit)). Hence the geometric
monodromy of f is given by the automorphism h1 of X. The cohomological
monodromy is then T = (h∗1)−1. So

T (ηα) = exp(−�(α))ηα.

Let H̃ n(X,C)1 (resp. H̃ n(X,C) �=1) denote the eigenspace of T for the eigenvalue
1 (resp. the sum of eigenspaces of T for eigenvalues different from 1). Then one
has the decomposition H̃ n(X,C) = H̃ n(X,C)1 ⊕ H̃ n(X,C) �=1 which is defined
over Q.

The weight filtration on H̃ n(X,C) is defined by

Wk = 0 for k < n, Wn = H̃ n(X,C) �=1 andWk = H̃ n(X,C) for k > n.

Then GrWn+1 � H̃ n(X,C)1. The classes in Wn are represented by regular forms
which are square integrable on X.

The Hodge filtration on H̃ n(X,C) is given by

Fp = the subspace generated by all ηα with �(α) ≤ n− p + 1.
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The pure Hodge structureWn is polarized by the form (α, β) �→ (−1)n(n−1)/2
∫
X
α∧

β. In the case that f is homogeneous, the projective closure X̄ of X in projective
space is smooth, and the restriction map Hn(X̄) → Hn(X) identifies WnHn(X)
with the primitive cohomology Hnprim(X̄). If f is merely weighted homogeneous,
one considers instead the closure of X in some weighted projective space. Then
X̄ has quotient singularities. In [57] the Hodge theory of varieties with quotient
singularities is developed with a suitable de Rham complex, and the situation is
similar.

The Hodge numbers of the mixed Hodge structure on H̃ n(X) are therefore the
following:

• hn+1−q,q = 5{α ∈ A | �(α) = q} for q = 1, . . . , n;
• hn−q,q = 5{α ∈ A | q − 1 < �(α) < q} for q = 0, . . . , n.

If n is even, the intersection form on Hn(X,R) is symmetric. By the Hodge Index
Theorem its index is equal to

∑
q(−1)qhn−q,q . This has been conjectured by V.I.

Arnol’d (private communication by Varchenko on the boat trip during the Arbeits-
tagung in 1975). It was known in the case of Pham-Brieskorn polynomials, where
w−1
i ∈ N, see [30, §14].

9.2.6 Varieties with Isolated Singularities

LetX be a projective variety such that�, the singular set ofX, has dimension zero.
Choose a good resolution π : X̃ → X and let E = π−1(�), a divisor with simple
normal crossings on X̃. The resolution

0 → QX → Rπ∗QX̃ ⊕Q� → Rπ∗QE → 0

gives on the complex level the resolution of CX by the sheaf complex �·X which is
the mapping cone of the morphism

Rπ∗�·X̃ ⊕ C� → Rπ∗ω·E .

It is equipped with filtrationsW and F which induce the mixed Hodge structure on
the cohomology of X. Moreover there is a natural morphism of filtered complexes
λ : (�·X,F )→ (�·X).

The filtered complex (�·X,F ) is unique in a suitable derived category by Du Bois
[6]. See Sect. 9.9.
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9.3 Nearby and Vanishing Cycles Formalism

Let X be a complex manifold of dimension n + 1 and let f : X → C be a
holomorphic function. For t ∈ C we set Xt = f−1(t) and i : X0 ↪→ X. We
choose ε > 0 so small that 0 is the only critical value of f in the disc |t| < ε and
put

X∞ := {(x, u) ∈ X ×C | f (x) = exp(2π
√−1u), |f (x)| < ε}

and let k : X∞ → X be the projection on the first factor.
Let K · be a sheaf complex of abelian groups on X which is bounded from

below. Choose an injective resolution k∗K · → I·, i.e. a quasi-isomorphism of
sheaf complexes such that I· is bounded from below and Ip is an injective sheaf
for each p. Then ψf (K ·) := i∗k∗I·. This defines a functor on the derived category
of sheaf complexes of abelian groups which are bounded from below: the nearby
cycles functor

ψf : Db(X)→ Db(X0).

Let x ∈ X0 and choose ε, η > 0 with η ( ε ( 1. Then the restriction of f to
{z ∈ X | |z − x| < ε, 0 < |f (z)| < η} is a C∞ fibre bundle (the Milnor fibration).
Let Xf,x denote a typical fibre of this fibration. Then

Hk(ψf (K)x) � H
k(Xf,x,K ·|Xf,x ).

The morphism k∗K · → I· induces the specialization morphism

sp : i∗K · → ψf (K ·).

We let φf (K ·) be the mapping cone over this morphism sp. This defines the
vanishing cycle functor

φf : Db(X)→ Db(X0).

Observe that φf (K ·)x is acyclic (i.e. a complex with zero cohomology) if and only
if spx : K ·

x → ψf (K ·)x is a quasi-isomorphism. In that sense the vanishing cycles
functor measures the cohomological difference between the special fibreX0 and the
general fibre, which is homotopy equivalent to X∞. The inclusion of the second
factor of the mapping cone induces the canonical map

can : ψfK · → φfK ·
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and one has the distinguished triangle in Db(X0)

i∗K · sp→ ψfK · can→ φfK · +1→ · · · (9.3)

The map (x, u) �→ (x, u + 1) is a covering transformation h of k and hence
determines an automorphism h∗ of ψfK ·. The monodromy transformation for f
is the map T = (h∗)−1 : ψfK · → ψfK ·. Because (T − I) ◦ sp = 0 we obtain the
variation morphism var : φfK · → ψfK · with the property that var ◦ can = T − I
on ψfK ·.

Consider the special case where K · is the constant sheaf CX and X is smooth.
Then for each x ∈ X0 the germ f : (X, x)→ (C, 0) is a hypersurface singularity,
and Hj(φf (K ·)x) � H̃ j (Xf,x,C) is the reduced cohomology of the Milnor fibre.
Moreover T is the cohomological monodromy.

9.4 Mixed Hodge Structure on the Nearby and Vanishing
Cohomology

In this section we will describe a mixed Hodge structure on the nearby and vanishing
cohomology of a proper regular function f : X→ C where X is a quasi-projective
complex algebraic variety whose singular locus has finite image. We choose a good
embedded resolution π : X̃→ X of X0 = f−1(0), i.e.

• X̃ is smooth and π is a projective birational morphism;
• E := π−1(X0) is a divisor with simple normal crossings on X̃.

Let I denote the set of irreducible components of E, so E =⋃i∈I Ei . For i ∈ I we
let ei denote the multiplicity of f along Ei . As a divisor we have E = ∑i∈I eiEi .
We choose a common multiple e of the multiplicities ei and let Ỹ denote the
normalization of the fibre product

Y = {(z, t) ∈ X̃ ×C | f (π(z)) = te}.

Let us write f̃ and ρ for the natural projections from Ỹ to C and X̃ respectively. The
Semistable Reduction Theorem [37] tells us, that for a suitable choice of π and e,
the variety Ỹ is smooth, the fibreD := f̃−1(0) is reduced and ρ is a cyclic covering
of degree e branched only over E. Note that in this case ψfπ = ρ∗ψf̃ .

The mixed Hodge structure we look for has been constructed by realizing the
cohomology of the nearby fibre as the hypercohomology of a suitable complex
of differential forms, equipped with filtrations F and W . Following an idea of P.
Deligne, I studied in my thesis [55] the relative logarithmic de Rham complex.
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Choose a disk S in C such that 0 is the only critical value of f in S. Let S̃ =
{t ∈ C | te ∈ S}. We may assume that X = f−1(S). A first step is

Theorem 9.4.1 Let�p
Ỹ/S̃
(logD) = �p

Ỹ
(logD)/ d

dt
∧�p−1

Ỹ
(logD) for p ∈ Z. Then

ψf̃ (CỸ ) � �·Ỹ /S̃ (logD) ⊗ OD

in Db(Ỹ0).

A Hodge filtration F on �·
Ỹ /S̃
(logD) ⊗ OD is defined by Fp = σ≥p as usual.

However, a suitable weight filtration cannot be defined on this complex. We need a
further (double) complex to make this filtration visible. Define

Ap,q = �p+q+1
Ỹ

(logD)/Wp�
p+q+1
Ỹ

(logD) for p, q ≥ 0

with differentials

d ′ : Ap,q → Ap+1,q, and d ′′ : Ap,q → Ap,q+1

defined by

d ′(ω) = dt
t
∧ ω, and d ′′(ω) = dω.

For each q ≥ 0 the map μ : �q
Ỹ/S̃
(logD) ⊗ OD → A0,q defined by μ(ω) =

(−1)q dt
t
∧ ω extends to an exact sequence

0 → �
q

Ỹ/S̃
(logD)⊗ OD → A0,q → A1,q → A2,q → · · ·

andμd = d ′μ. Hence, if we equip the total single complex s(A·,·)with the filtration
F defined by

Frs(A·,·) =
⊕

p

⊕

q≥r
Ap,q,

then μ defines a filtered quasi-isomorphism

(�·
Ỹ /S̃
(logD)⊗ OD,F )→ (s(A·,·), F ).

The monodromy filtrationM on s(A·,·) is defined by

MrA
p,q = the image ofWr+2p+1�

p+q+1
Ỹ

(logD) in Ap,q.
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Observe that d ′Mr ⊂ Mr−1 so the differential onMr/Mr−1 is just the one induced
by d ′′. Hence we obtain the direct sum splitting

GrMr s(A
·,·) =�

⊕

k≥0,−r
GrWr+2k+1�

·
Ỹ
(logD)[1] �

⊕

k≥0,−r
(ar+2k+1)∗�·D̃r+2k+1 [−r − 2k].

A careful study of the underlying rational structure (see [42, Sect. 11.2.6]) leads
to a Tate twist ⊗Q(−r − k) for the summand (ar+2k+1)∗�·

D̃r+2k+1[−r − 2k]. Thus

H
m(D,GrMr s(A

·,·)) is a Hodge structure of weightm+r . The general yoga of mixed
Hodge theory tells us that F andM induce a mixed Hodge structure onHm(Ỹ∞,Q)
and that the weight spectral sequence

ME
−r,q+r
1 =

⊕

k

Hq−r−2k(D̃r+2k+1)(−r − k)⇒ Hq(Ỹ∞,Q)

degenerates at the term E2.
The terminology monodromy weight filtration needs an explanation. First some

linear algebra. Let V be finite dimensional vector space, k an integer and N
a nilpotent endomorphism of V . Then there exists a unique increasing filtration
W(N, k) of V with the following properties:

1. N(W(N, k)j ) ⊂ W(N, k)j−2 for all j ∈ Z;
2. For all j ∈ N the induced linear map

Nj : W(N, k)k+j /W(N, k)k+j−1 → W(N, k)k−j /W(N, k)k−j−1

is an isomorphism.

We callW(N, k) the weight filtration of N centered at k.
The transformation T of ψfQX induces the monodromy automorphism of

Hm(Ỹ∞,Q). By the Monodromy Theorem this transformation is quasi-unipotent.
The Jordan decomposition T = TsTu = TuTs with Ts semisimple and Tu unipotent
enables us to define N = log Tu, a nilpotent endomorphism of Hm(Ỹ∞,Q).

Theorem 9.4.2

• The filtrationM of s(A·,·) induces on Hm(Ỹ∞,C) the filtrationW(N,m).
• The semisimple part Ts of the monodromy is an automorphism of the mixed

Hodge structure.

See [56, Theorem 2.13]. In other words, the weight filtration of the mixed Hodge
structure on the nearby cohomology of the map f is equal to the weight filtration of
the logarithm of the unipotent monodromy.

Let Z ⊂ X0 be a closed subvariety and let iZ : Z ↪→ X0 and jZ : X0 \Z ↪→ X0
be the inclusion mappings. Then we have the distinguished triangle

jZ!j∗ZψfQX → ψfQX → (iZ)∗i∗ZψfQX
+1→ · · · (9.4)
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The cohomology of jZ∗j∗ZψfQX can be interpreted as the cohomology of the part
Z∞ ⊂ X∞ of the nearby fibre which is “near to Z”. (To understand this, take
a sufficiently small open neighborhood of Z inside X and take the closure of its
intersection with the fibre Xt for t sufficiently small but nonzero.) If Z is a point x,
this is the (closed) Milnor fibre Xf,x . The long exact cohomology sequence for the
triangle (9.4) is then

· · ·Hkc (X∞\Z∞)→ Hk(X∞)→ Hk(Z∞)→ Hk+1
c (X∞\Z∞)→ · · · (9.5)

We perform the same geometric construction as above but with the extra condition
that π−1(Z) is a subdivisor of E. That means that there is a subset I ′ of I such that

π−1(Z) =
⋃

i∈I ′
Ei =: E′.

In order to get a mixed Hodge structure on the cohomology of Z∞ we restrict the
complex ψf̃ to the subdivisorD′ := ρ−1E′ of D. The restriction map Hq(X∞)→
Hq(Z∞) corresponds to the quotient map�·

Ỹ /S̃
(logD)⊗OD → �·

Ỹ /S̃
(logD)⊗OD′

on the level of sheaf complexes. We let D′′ denote the divisorD −D′ and define

W ′
k�

�

Ỹ
(logD) = ��−k

Ỹ
(logD′′) ∧�k

Ỹ
(logD) for k ≤ �;

A
p,q
Z = �p+q+1

Ỹ
(logD)/W ′

q�
p+q+1
Ỹ

(logD) for p, q ≥ 0.

We obtain a quotient A·,·Z of A·,· which we equip with the induced (quotient)
filtrationsM and F . We have a commutative diagram

�·
Ỹ /S̃
(logD)⊗ OD → �·

Ỹ /S̃
(logD)⊗ OD′

↓ ↓
A·,· → A

·,·
Z

where the vertical arrows are filtered quasi-isomorphisms with respect to F and the
second horizontal arrow is compatible with the filtrations M and F . This defines a
mixed Hodge structure on Hq(Z∞) � H

q(D′, s(A·.·Z )) such that the restriction map
Hq(Y∞)→ Hq(Z∞) is a morphism of mixed Hodge structures.

By defining A·,·Z,c as the kernel of A·,· → A
·,·
Z with the induced filtrations F

andM we get a mixed Hodge structure on Hkc (X∞ \ Z∞) in such a way that (9.5)
becomes an exact sequence of mixed Hodge structures.
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9.5 Smoothings of Isolated Singularities

We consider an isolated singularity (X, x) of pure dimension n + 1 and a holo-
morphic function germ f : (X, x) → (C, 0). By Steenbrink [62, Theorem 1] a
representative f : X → C for this germ can be found such that X \ {x} is smooth,
the map f is flat, projective and with x as its only critical point in X0. Moreover the
restriction mappingHn(X∞,C)→ Hn(Xf,x,C) is surjective.

In this section we deal with the relation between monodromy and weight
filtration on Hn(Xf,x,C). Let us first consider the hypersurface case (i.e. x is a
regular point of X) as in [56]. Then one has the exact sequence of mixed Hodge
structures

0 → Hn(X0)→ Hn(X∞)→ H̃ n(Xf,x)→ 0,

from the distinguished triangle (9.3) and the fact that Hn(φfCX) � H̃ n(Xf,x,C).
The monodromy T acts on this sequence, and by the Invariant Cycle Theorem [42,
Theorem 11.43] we have Hn(X0) = ker(T − I ;Hn(X∞). If the subscript 1 (resp.
�= 1) refers to the generalized eigenspace of T for the eigenvalue 1 (resp. for the
eigenvalues �= 1), then one hasHn(X∞) �=1 � Hn(Xf,x) �=1 andHn(X∞)1/ ker(T −
I) � Hn(Xf,x)1. This means that

W = W(N, n) on Hn(Xf,x) �=1. (9.6)

This is true for any globalized smoothing of an isolated singularity, for the
isomorphismHn(X∞) �=1 � Hn(Xf,x) �=1 is always valid.

For the eigenvalue 1 we use that ker(T − I)∩Hn(X∞)1 = ker(N)∩Hn(X∞)1.
Moreover, the filtration W(N, k) of a vector space V induces on the quotient
V/ ker(N) the filtration W(N̄, k + 1) where N̄ ∈ End(V / ker(N)) is induced by
N . So

W = W(N, n + 1) on Hn(Xf,x)1. (9.7)

Here the hypersurface case is special in the sense that the variation mapping in
rational cohomology var : Hn(Xf,x)→ Hnc (Xf,x) is an isomorphism. This is true
if and only if X is a rational homology manifold.

In the general case we have a canonical decomposition GrWHn(Xf,x)1 = A⊕B
such that W = W(N, n) on B and W = W(N, n + 1) on A. See [62, Remark
9], where graded polarizations of A and B are given. Unlike the hypersurface
case, this decomposition of GrWHn(Xf,x)1 does not lift in general to a direct sum
decomposition of Hn(Xf,x)1 as a mixed Hodge structure. To see this we consider
the case n = 1.

Suppose (X, x) is a normal surface singularity. The local cohomology group
H 2
x (X) has a mixed Hodge structure with weights 0 and 1. If (X̃, E) → (X, x)

is a good resolution, then we have an isomorphism H 1(E) → H 2
x (X), and
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W0H
2
x (X) = Q

hX where hX is the first Betti number of the dual graph of the
curve E. Moreover GrW1 H

2
x (X) � H 1(Ẽ). Suppose f : (X, x) → (C, 0) defines

a curve singularity X0 with r irreducible components. Then the decomposition
GrWH 1(Xf,x)1 = A ⊕ B has B = B0 ⊕ B1 ⊕ B2 with B1 = H 1(Ẽ), B0 = Q

hX

and B2 = Q(−1)hX . Moreover N : B2 → B0 is an isomorphism. Finally
A = A2 = Q(−1)r−1 = ker(N : GrW2 H

1(Xf,x)→ GrW0 H
1(Xf,x).

Suppose the decomposition would lift to a decomposition ofH 1(Xf,x). ThenA2
would be a direct summand of H 1(Xf,x). Consider the Hodge substructure ker(N)
of H 1(Xf,x). We have GrW2 ker(N) � A2 and A2 would be a direct summand. So
ker(N) � W1 ker(N)⊕ A2. However, ker(N) is the cohomology of the open curve
E′ which is Ẽ with the r points of its intersection with the strict transfom of X0
removed. We have the extension of mixed Hodge structures

0 → H 1(E)→ H 1(E′)→ A2 → 0

The position of these points on E is reflected in the extension data of this mixed
Hodge structure, as described by Carlson [13]. So in general A2 will not be a direct
summand.

The following formula for the signature of the cup product form h : (ω.η) �→∫
ω ∧ η on Hnc (Xf,x,R) holds:

σ(h) =
∑

p+q=n
(−1)p

⎛

⎝hpq + 2
∑

i≥1

(−1)hp+i,q+i
⎞

⎠ .

See [62, Theorem 11]. For a detailed exposition of several bilinear forms associated
to this situation see [3].

9.6 Hodge Structure via D-Modules

The use of algebraic analysis in the study of isolated singularities began with
Brieskorn’s proof of the monodromy theorem [11], followed by Malgrange [38]
and Pham [44]. The first reference I found which deals with the description of the
Hodge filtration using D-modules is [12]. Our treatment follows this text closely.
Brylinski’s aim was to show that the intersection homology groups of a complete
complex algebraic variety carry a pure Hodge structure.

Varchenko [65] developed a method to describe the mixed Hodge structure on
the cohomology of the Milnor fibre in the case of isolated hypersurface singularities
which does not use resolution of singularities. With the assistance of F. Pham and
M. Saito this method was reformulated into the language of D-modules in [51].

For each complex manifold X we have the coherent sheaf of rings DX of germs
of holomorphic differential operators on X. It is equipped with the increasing
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filtration F by the order of differential operators, such that GrFDX � Sym(TX)
where TX is the holomorphic tangent bundle of X.

There exists an algebraic definition of DX for smooth algebraic varieties X over
a field K of characteristic zero as follows. One defines FkDX as the subsheaf of
EndKOX for k ∈ N recursively: F0DX = OX and a local section P of EndKOX
is in Fk+1 if and only its commutator Pf − fP is a section of Fk−1DX for k ≥ 1.
Finally DX =⋃k≥0 FkDX.

Let Y be a complex submanifold of codimension one in the complex manifold
X. We define OX(∗Y ) as the sheaf of germs of meromorphic functions on X which
are holomorphic on X \ Y . It is a (left) DX-module. Moreover, if for each k ∈ N

we let OX((k + 1)Y ) =: FkOX(∗Y ) be the subsheaf whose sections have a pole of
order at most k + 1 along Y , then OX(∗Y ) becomes a filtered DX-module: for local
sections P of FkDX and g of F�OX(∗Y ) the section P(f ) is in Fk+�OX(∗Y ).

Consider the de Rham complex �·X(∗Y ) of X with poles along Y . The filtration
F· onOX(∗Y ) extends to this complex byFk�

p
X(∗Y ) = �pX((k+p+1)Y ) if k+p ≥

0 and Fk�
p
X(∗Y ) = 0 else. Then the cohomology sheaves of the quotient complex

F−p�pX(∗Y )/F−p+1 are given byHq = 0 for q �= p andHp � �pX(logY ). Putting
Fp for F−p we find that the inclusion map

(�·X(logY ), F ·)→ (�·X(∗Y ), F ·)

is a filtered quasi-isomorphism. See [15, Prop. II.3.13]. In the case that X is
smooth projective and Y a closed codimension one subvariety this means that the
Hodge filtration of the mixed Hodge structure on H ∗(X \ Y,C) can be obtained by
consideration of the order of pole of differentials along Y . This was used by Griffiths
[22] to describe the cohomology of (complements of) smooth hypersurfaces in
projective space. It is the main inspiring example of the de Rham complexes of
holonomic D-modules. Note that working with filtered D-modules, the natural
filtrations are increasing, and this is why we use subscripts rather than superscripts
for them.

Consider a coherent DX-module M. A good filtration on M is an increasing
filtration {FkM}k∈Z by OX-submodules such that

1. FmDX · FkM ⊂ Fm+kM for all m, k;
2. locally there existsK ∈ Z such that FmDX ·FkM = Fm+kM form ≥ 0, k ≥ K .

A good filtration always exists locally on X. For a coherent DX-module M with
a good filtration F , the associated graded module

⊕
k∈Z FkM/Fk−1M has an

associated coherent sheaf on the holomorphic cotangent bundle T ∗X. The support
of this module, the characteristic variety Ch(M), is a homogeneous analytic
subvariety of dimension at least dim(X). It does not depend on the choice of a
good filtration, hence is globally defined. The module M is called holonomic if
dimCh(M) = dimX, and regular holonomic if there exist a global good filtration
for which the characteristic variety is reduced. In that case, Kashiwara and Kawai
[33] showed the existence of a canonical good filtration.
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The de Rham complex of a DX-module M is the complex
DR(M) := �·X ⊗OX M with differential

d(ω⊗m) = (dω)⊗m+
dimX∑

i=1

(dzi ∧ ω)⊗ ( ∂
∂zi

·m)

where (z1, . . . , zn) is a local holomorphic coordinate system on X. For M holo-
nomic, the cohomology sheaves of DR(M) are analytically constructible by
Kashiwara [32]. The de Rham complex is functorial. The Riemann-Hilbert corre-
spondence [33, 41], tells us that the de Rham functor defines an equivalence between
the derived category Dbrh(DX) of bounded complexes of coherent DX-modules
with regular holonomic cohomology sheaves and the derived category Dbc (CX) of
bounded complexes of sheaves of C-vector spaces with analytically constructible
cohomology sheaves. The de Rham complexes of single regular holonomic DX-
modules are exactly the perverse sheaves of CX-modules for the middle perversity.
Perverse sheaves K are sheaf complexes characterized by the conditions that the
dimensions of the support of the cohomology sheaves H i (K) and H i(DK) are at
most −i. Here D stands for Verdier duality.

The origin of the study of isolated hypersurface singularities using D-modules
is Brieskorn’s proof of the monodromy theorem [11]: the eigenvalues of the
monodromy are roots of unity. He “construct(s) by algebraic methods a regular
singular ordinary linear differential operator, such that the monodromy of this
singular operator coincides with the Picard-Lefschetz monodromy”.

The Brieskorn lattice H (0) of an isolated hypersurface singularity f :
(Cn+1, 0)→ (C, 0) is defined by

H (0) := �n+1
Cn+1,0

/df ∧ d�n−1
Cn+1,0

.

It is a free C{t} module of rank equal to the Milnor number

μ(f ) = dimC�
n+1
Cn+1,0

/df ∧�n
Cn+1,0.

Here t acts by multiplication with f . The submodule

H ′ := df ∧�n
Cn+1,0/df ∧ d�n−1

Cn+1,0
.

is a free C{t} module of rank μ(f ) as well and the operator ∂t : [df ∧ ω] �→ dω is
a bijection from H ′ to H (0). If we let

C{{∂−1
t }} :=

⎧
⎨

⎩
∑

i≥0

ai∂
−i
t |

∑

i≥0

aiz
i/i! ∈ C{z}

⎫
⎬

⎭
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then H (0)is equipped with the operator ∂−1
t and becomes a free C{{∂−1

t }}-module
of rank μ(f ). The D-module we arrive at is the localization H := H (0)[∂t ]. It is a
vector space of dimensionμ(f ) over the field C{{∂−1

t }}[∂t ]. Note that ∂tH ′ = H (0).
For each a ∈ C one defines Ca = ⋃

r>0 ker(t∂t − a)r ⊂ H . This is a
finite dimensional vector space and Ca = 0 unless exp(−2πia) is a monodromy
eigenvalue. By the monodromy theorem,Ca �= 0 implies that a is a rational number.
For a ∈ Q we define VaH ( resp. V>aH) to be the C{t}-submodule of H generated
by all subspaces Cb with b ≥ a (resp. b > a). Then for each a ∈ Q we have
VaH = Ca ⊕ V>aH , and the cohomology of the Milnor fibre is identified in [51]
with

⊕
−1<a≤0 Ca . The Hodge filtration on Ca is given by

FpCa = the image of ∂n−pt H (0) ∩ Va in Ca.

For any ω = g(z)dz0 ∧ . . . ∧ dzn ∈ �n+1
Cn+1,0

we may define a family of

holomorphic n-forms ηt = ResXt
(
ω
f−t
)

on the Milnor fibres Xt of the singularity

f . A multivalued family of n-cycles γt on Xt may be obtained by choosing one
n-cycle on a fibre and then moving this continuously to the other fibres, using
monodromy. Then the multivalued function I (t) = ∫γt ηt may be written as

I (t) =
∑

α,q

cα,q t
α(log t)q/q!

for certain constants cα,q with α ∈ Q and q ∈ N. By a result of Malgrange [38] we
know that cα,q �= 0 implies that

1. 0 ≤ q ≤ n (this gives the bound n+ 1 for the Jordan blocks of the monodromy);
2. exp(−2πiα) is an eigenvalue of the monodromy T ;
3. α > −1.

This result has been used by Varchenko [65] to define the order α(ω) of ω as the
smallest α such that there exists (γt ) and q with cα,q �= 0. It appears, due to Stokes’
theorem, that α(ω) = ∞ if and only if ω ∈ df ∧ d�n−1

Cn+1,0
. This order function

corresponds to the filtration V above.
We let

Qf = �n+1
Cn+1,0

/df ∧�n
Cn+1,0 = H (0)/H ′

and define VαQf as the image of V αH (0) in Qf . Multiplication by f maps VαQf

to Vα+1Q
f and hence defines an endomorphism {f } of degree one of GrVQf .

Theorem 9.6.1 The maps {f } and N := log Tu ∈ EndHn(Xf,x,C) have the same
Jordan normal form.

See [66] and [51, Theorem 7.1].
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Mixed Hodge Modules
The description of Hodge structures in terms of D-modules found its culmination in
the fundamental work of M. Saito on mixed Hodge modules [48]. Mixed Hodge
modules on a smooth complex manifold X form an abelian category MHM(X)
whose objects are tuples consisting of

1. a perverse sheafK of Q-vector spaces, equipped with an increasing filtrationW ;
2. a regular holonomic DX-module M with an increasing filtration W by DX-

submodules and a good filtration F ;
3. a filtered quasi-isomorphism between (K ⊗ C,W) and (DR(M),W)

which satisfy certain conditions. The formulation of these conditions involves
nearby cycle functors and induction on the dimension. See [46] for a short
summary. When X is a point, one obtains the category of graded-polarizable mixed
Hodge structures. In particular, this formalism puts mixed Hodge structures on the
cohomology of any hypersurface singularity, and shows functoriality in many cases.

9.7 Motivic Milnor Fibre

The notions of motivic nearby fibre and motivic Milnor fibre were introduced by
Denef and Loeser [19] using arc spaces. They are defined for non-constant regular
functions f : X → k on a smooth connected quasi-projective variety over a field k

of characteristic zero, and take their value in the groupK0(Varμ̂k ), the Grothendieck
group of varieties over k equipped with an action of a finite cyclic group.

Let us recall the Grothendieck group K0(Vark) of varieties over k. We will use
Bittner’s description from [4]. Generators are isomorphism classes [X] of smooth
projective varieties over k. Relations are generated by the following. Let X be a
smooth projective variety and Y ⊂ X a smooth closed subvariety. Let π : X′ → X

be the blowing-up with center Y and let Y ′ = π−1(Y ). Then

[X′] − [Y ′] = [X] − [Y ] in K0(Vark) .

For an arbitrary projective k-variety X of dimension n, one defines [X] ∈ K0(Vark)
by induction on n. Choose a resolution of singularities π : X̃ → X, let � be the
singular locus of X and E = π−1(�). Then E and � have smaller dimension than
X so we may assume [E] and [�] are well-defined. Then we put [X] := [X̃] −
[E] + [�]. For X quasi-projective there exists projective T such that X̄ = X ∪ T is
projective and [X] := [X̄] − [T ].

The group K0(Varμ̂k ) is an equivariant version of this construction. For n ∈ N

we let μn denote the group of n-th roots of unity in k. By mapping μnd to μn by
x �→ xd we obtain a projective system and we let μ̂ = lim←−μn. A good μ̂-action on
a k-variety X is given by an action of the group μn of n-th roots of unity on X for
some n.
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The groupK0(Varμ̂k ) has generators [X, μ̂] where X is a k-variety with good μ̂-
action and relations [X, μ̂] = [Y, μ̂] + [X \ Y, μ̂] and [X × V, μ̂] = [X, μ̂] · Lm
when V is an m-dimensional affine space with any good μ̂-action. Finally Mμ̂

k =
K0(Varμ̂k )[L−1], where L = [A1

k].
For a degeneration f : X → C with special fibre E a divisor with normal

crossings the motivic nearby fibre ψf is defined by Bittner in [5] as

ψf :=
∑

m≥1

(−1)m−1[D̃m × P
m−1] ∈ Kμ̂0 (Vark)

with notations as in Sect. 9.3. For ζ ∈ μe the covering transformation z �→ ζ z of τ
extends to an automorphism γ (ζ ) of order e of X̃ and in this way we obtain a good
μ̂-action on X̃ and D.

A similar formula holds under the hypothesis that X \ X0 ↪→ X is a toroidal
embedding without self-intersection, see [64, Theorem 3].

9.8 Spectrum and Spectral Pairs

9.8.1 Definitions

We let HS denote the category of mixed Q-Hodge structures. Its Grothendieck ring
K0(HS) is the target of a ring homomorphism

χHdg : K0(VarC)→ K0(HS)

defined for a generator [X] with X smooth projective by

χHdg([X]) =
∑

k

(−1)k[Hk(X)].

For a blowing-up (X′, Y ′) → (X, Y ) with Y ⊂ X smooth projective one has
exact sequences 0 → Hk(X) → Hk(X′) ⊕ Hk(Y ) → Hk(Y ′) → 0, so
χHdg respects the relation [X′] − [Y ′] = [X] − [Y ]. For arbitrary X one has
χHdg([X]) =∑k(−1)k[Hkc (X)]. See [43] for more details.

On the other hand, one has a ring homomorphism

Phn : K0(HS)→ Z[u, v, u−1, v−1]

defined by Phn(V ) =∑p,q∈Z hp,q(V )upvq , the Hodge number polynomial.
Both χHdg and Phn have their equivariant companions. To describe this we

consider the category HSμ̂ of Q-mixed Hodge structures with a finite order
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automorphism γ . The functor χHdg extends in a natural way to a functor

χ
μ̂
Hdg : K0(Varμ̂

C
)→ K0(HSμ̂)

The equivariant Hodge number polynomial P μ̂hn takes its values in the ring of

Laurent-Puiseux polynomials R := ⋃
n∈N Z[u 1

n , v
1
n , u−1, v−1]. Let (V , γ ) be

a Hodge structure of weight k with an automorphism of finite order. We have
decompositions

VC =
⊕

0≤a<1

Va and VC =
⊕

p

V p,k−p

where Va = ker(γ − exp(2πia)). This leads to a double decomposition

VC =
⊕

0≤a<1,p∈Z
Va ∩ V p,k−p.

For 0 < a < 1 and p ∈ Z we define b = a+p and h̃b,k+1−b = dimVa∩V p,k−p and
we let h̃p,k−p = dimV p,k−p ∩V0. Then the equivariant Hodge number polynomial
is defined by

P
μ̂
hn(V , γ ) =

∑

b∈Q
h̃b,k−b(V )ubvk−b.

The singularity spectrum (in Varchenko’s sense, see [68]) of the isolated hypersur-
face singularity f : (X, x)→ (C, 0) is defined by

SpV (f, x) := t−1P
μ̂
hn(φf,x)(t, 1) = t−1SpSa(f, x)

where SpSa(f, x) is the generating function for the exponents of f in Saito’s sense
[45], which is also equal to

∑
α dim GrVα (Q

f )tα by Sect. 9.5. The characteristic

pairs from [56] contain the same information as P μ̂hn(φf,x).

9.8.2 Examples

1. Let f be a weighted homogeneous isolated singularitiy with weightsw0, . . . , wn.
Then by Steenbrink [56, Example 5.11]

SpSa(f, x) =
n∏

i=0

t − twi
twi − 1

.
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If A ⊂ N
n+1 is a finite subset with the property that the monomials zα for α ∈ A

form a C-basis for C[z0, . . . , zn]/Jac(f ), then

SpSa(f, x) =
∑

α∈A
t�(α)

where �(α) =∑n
i=0 wi(αi + 1).

2. A formula for the spectrum of an irreducible plane curve singularity was found
by M. Saito [50]. It was reproved by Guibert using motivic integration in [25].

3. In [56] a conjectural formula occurs for P μ̂hn(φf,x) in the case of isolated
hypersurface singularities which are nondegenerate with respect to their Newton
diagram. It was proven there for functions of two variables. This conjecture was
corrected by Arnol’d [1]. V.I. Danilov in [14] described an algorithm calculating

P
μ̂
hn(φf,x) for Newton nondegenerate functions. The corresponding formula for

the spectrum was proved by M. Saito, who showed in [47] that for these the V -
filtration on Qf coincides with the Newton filtration. A more elementary proof
was given in [71].

4. The behaviour of the spectrum in a Yomdin series of isolated singularities is
described in [61] as the spectrum of a non-isolated singularity plus a correction
term. This was proved for series arising from homogeneous functions and
conjectured in general. Proofs of the formula in the general case were given by
M. Saito [49] (using mixed Hodge modules) and Guibert, Loeser and Merle [26]
(using motivic integration).

9.8.3 Some Properties of the Spectrum

Range: Consider an isolated hypersurface singularity f : (Cn+1, 0) → (C, 0)
with SpSa(f, x) =

∑
α∈Qmαtα . If mα �= 0 then 0 < α < n+ 1.

Symmetry: Moreovermα = mn+1−α .
Thom-Sebastiani: Let f : (Cn+1, 0) → (C, 0) and g : (Cm+1, 0) → (C, 0) be

isolated singuarities. Then the germ f ⊕ g : (Cn+m+2, 0) → (C, 0) defined by
(f ⊕ g)(x, y) = f (x)+ g(y) is also an isolated singularity and

SpSa(f ⊕ g, (x, y)) = SpSa(f, x) · SpSa(g, y)

(product in the ring of Laurent polynomials). This was conjectured in [56,
Conjecture 5.4] and proved in [67] and [51, Theorem 8.11]. See also [70, Sect.
7].

Semicontinuity: It was observed by Arnol’d [2] that the spectral numbers in
certain deformations display semicontinuity behaviour. Work of Varchenko on
this problem led to the following formulation. Let F : X × S → T × S be
a good representative of a one-parameter unfolding of the isolated singularity
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f = F0, where S is a small disc in C containing 0. Let s ∈ S and t ∈ T such
that the fibre F−1(t, s) has the singular points x1, . . . , xr . Then the spectrum of
f at its critical point x is bigger than the sum of the spectra of fs at its critical
points xi in the following sense. For any subset I of R and Laurent-Puiseux
polynomial h =∑α mαt

α one defines degI (h) :=
∑
α∈I mα. Then I is called a

semicontinuity domain if for any unfolding as above,

r∑

i=1

degI SpV (fs, xi) ≤ degI SpV (f, x).

Varchenko [69] showed that for deformations of negative weight of weighted
homogeneous isolated singularities, each open interval of length one is a
semicontinuity domain. This leads to a rather sharp bound on the number of
isolated singular points that can occur on a projective hypersurface of given
dimension and degree. The author [59] proved that for arbitrary deformations
of isolated singularities, each half-open interval (α, α + 1] with α ∈ Q is a
semicontinuity domain. This result gives conditions on which multigerms can
appear as small deformations of a given isolated singularity. A recent application
is the classification of projective hypersurfaces with small polar degree [54]. The
proof uses Varchenko’s formula for the spectrum of f + wq (special case of
the Thom-Sebastiani formula) and a semicontinuity result for Hodge numbers
of Milnor fibres of isolated complete intersection singularities. This again relies
on the existence of a mixed Hodge structure on the Milnor fibre of deformations
which are not necessarily smoothings [7].

Geometric genus: It was shown by M. Saito [45] that the geometric genus of an
isolated hypersurface singularity is equal to the number of spectral numbers in
the interval (−1, 0], i.e. to deg(−1,0] SpV (f, x).

Spectrum for isolated complete intersection singularities: The construction of
a mixed Hodge structure on the Milnor fibre in Sect. 9.3 is not restricted to the
case of isolated hypersurface singularities. In [21] the case of isolated complete
intersection singularities is considered. Unlike in the hypersurface case, there
does not exist a privileged one parameter smoothing for such a singularity. The
topology of the Milnor fibre is independent of the choice of smoothing, but the
monodromy does depend on it, and a fortiori the mixed Hodge structure on its
cohomology. Moreover, the resulting spectrum will not be symmetric in general.
This leads to the introduction of the notion of a smoothing pair of an isolated
complete intersection singularity.
A two-parameter deformation F = (f, g) : (X, x) → (C2, 0) of an n-
dimensional isolated complete intersection singularity (X, x) is called a smooth-
ing pair if x is an isolated singularity of X and ofX′ := g−1(0). Then g : X→ C

and f : X′ → C are one-parameter smoothings of these isolated singularities,
with Milnor fibres Xt and X′t respectively. The mixed Hodge structure involved
is on the relative cohomology groupHn+1(Xt , X′t ).
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To define this mixed Hodge structure, we apply Saito’s theory of mixed Hodge
modules [48]. It enables one to iterate the functors of nearby and vanishing
cycles and stay within the category of mixed Hodge modules. Restriction to a
point gives a mixed Hodge module with support on this point, which is nothing
but a mixed Hodge structure. The group Hn+1(Xt , X′t ) can be identified with
φf ψgQ

H
X and is equipped with a mixed Hodge structure in this way. The relevant

monodromy action is Tf .
There exists an obvious notion of a deformation of smoothing pairs, and the
symmetry and semicontinuity of the spectrum also hold in this context.

Distribution of the spectral numbers: Let us write SpV (f, x) =
∑μ
i=1 t

αi with
α1 ≤ · · · ≤ αμ. By the symmetry of the spectrum, αi + αj = n − 1 when
i+j = μ+1. The spectrum can therefore be considered as a probability measure
with support in the interval (−1, n) and mean (n−1)/2. Its variance is then given
by

V2 := 1

μ

μ∑

i=1

(
n− 1

2
− αi)2.

Hertling [29] showed that V2 = (αμ − α1)/12 for quasi-homogeneous isolated
hypersurface singularities. His proof uses the theory of Frobenius manifolds. An
elementary proof was given by Dimca [20]. Moreover, Hertling conjectured that
(αμ−α1)/12 is an upper bound for V2 for all isolated hypersurface singularities.
This conjecture was proved for irreducible curve singularities by M. Saito
[50] and by Brélivet [9] for curves in general. Moreover, he showed that for
curves the equality V2 = (αμ − α1)/12 holds only for semi-quasihomogeneous
functions (which are μ-constant deformations of quasi-homogeneous isolated
curve singularities, and therefore have the same spectrum). In [10], results and
conjectures concerning higher moments of the spectral distribution are discussed.

9.9 The Filtered de Rham Complex and Applications

Let X be a complex algebraic variety of dimension n. Its filtered de Rham complex
is a sheaf complex �·X equipped with a filtration F by subcomplexes with the
following properties:

1. Its analytic partner�·X ⊗ OXan is a resolution of the constant sheaf CX;
2. The differentials in �·X are differential operators of order at most one, and the

induced differentials on the quotient complexes �pX := GrpF�
·
X[p] are OX-

linear.
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3. If X is complete, then the filtration F induces on Hk(X,C) = H
k(X,�·X) the

Hodge filtration of its mixed Hodge structure, and the spectral sequence

E
p,q
1 = H

q(X,�
p
X)⇒ Hp+q(X,C)

degenerates at the E1-term.
4. There exists a natural morphism of filtered sheaf complexes (�·X,F ) →
(�·X,F ), where (�·X,F ) is the complex of Kähler differentials with its usual
filtration.

This filtered de Rham complex was defined by Du Bois [6]; it is constructed using
hyperresolutions of X and is unique in a suitable filtered derived category. There
also exists a filtered de Rham complex for morphisms of varieties f : Y → X, the
cone over a morphism f ∗ : �·X → Rf∗�·Y , which we denote by �·X,Y .

Example Let E be a variety with normal crossings. Then �·E � ωE (see
Sect. 9.2.4). The morphism �·E → ω·E is just dividing out the torsion. If E ⊂ Y

is the inclusion of E as a divisor with normal crossings in a nonsingular variety Y ,
then one has an isomorphism�·Y,E � �·Y (logE)(−E). See [60, Proposition 3.3].

Let (X, x) be a singularity, purely of dimension n. Its du Bois invariants are
defined using the filtered de Rham complex. We follow the simpler description in
[63]. Let � denote the singular locus of X. Choose a good resolution π : (Y,E)→
(X,�). Then �pX,� = Rπ∗�pY (logE)(−E) for 0 ≤ p ≤ n. These are complexes

ofOX-modules with coherent cohomology sheavesRqπ∗�pY (logE)(−E). These do
not depend on the choice of the good resolution. Two important vanishing properties
from [28], see also [60], are:

Theorem 9.9.1 Let X be an n-dimensional complex projective variety, � ⊂ X

a subvariety such that X \ � is nonsingular, L an ample line bundle on X and
π : Y → X a proper birational morphism such that Y is nonsingular,E := π−1(�)

is a divisor with normal crossings on Y and π maps Y \E isomorphically to X \�.
Then

(a) Hq(Y,�
p
Y (logE)(−E)⊗ π∗L) = 0 for p + q > n,

(b) Rqπ∗�pY (logE)(−E) = 0 for p + q > n.

For a regular point x ∈ X, the complex �pX,x is a resolution of �pX,x . Hence in

the isolated singularity case, the cohomology sheaves Hq(�
p
X) have support in x

for q > 0. Their lengths give rise to the du Bois invariants of (X, x):

bp,q(X, x) := dimC R
qπ∗�pY (logE)(−E)x.
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We list some properties of these invariants:

1. bp,q(X, x) = 0 when p + q > n. This follows from Theorem 9.9.1(b).
2. For a toric isolated singularity (X, x) we have bp,q(X, x) = 0 for all p, q .
3. If (X, x) has depth≥ k, then b0,q(X, x) = 0 for q < k − 1. See [63, Proposition

1].
4. If (X, x) is an isolated complete intersection singularity, then bp,q(X, x) = 0

unless p + q ∈ {n− 1, n}. See [63, Theorem 5].

As mentioned above, the filtered de Rham complex (�·X,F ) is equipped with
a morphism of filtered complexes (�·X,F ) → (�·X,F ). In particular one has a
morphismOX → �0

X. One says that (X, x) is a du Bois singularity if this morphism
is a quasi-isomorphism, i.e. H0�0

X � OX and H i�0
X = 0 for all i �= 0. The first

condition is equivalent with weak normality of X. In the isolated singularity case,
the second condition means that b0,q(X, x) = 0 for all q > 0.

In [53] the following characterization of du Bois singularities can be found:

Theorem 9.9.2 Let X be a reduced separated scheme of finite type over a field of
characteristic zero. Embed X in a smooth scheme Y and let π : Ỹ → Y be a log
resolution of X in Y that is an isomorphism outside of X. If E is the reduced pre-
image of X in Ỹ , then X has Du Bois singularities if and only if the natural map
OX → Rπ∗OE is a quasi-isomorphism.

By definition, X has rational singularities if for some resolution π : Y → X the
natural map OX → Rπ∗OY is a quasi-isomorphism. Rational singularities are du
Bois. See [58] for the case of isolated singularities, and [35] for the general case.

By definition, X has log canonical singularities if X is normal, its canonical
divisorKX is Q-Cartier and for some good resolution π : Y → X with exceptional
divisor E =∑i Ei one has KY = f ∗(KX)+∑i aiEi with ai ≥ −1 for all i. Log
canonical singularities are du Bois [34].

Isolated hypersurface singularities are rational (resp. du Bois) if and only if each
spectral number α satsifies α > 0 (resp. α ≥ 0).

The filtered de Rham complex (�, F ), which is also referred to as the Du
Bois complex, has been used in [8] for defining motivic Chern and Hirzebruch
classes of singular complex algebraic varieties, i.e. characteristic classes analogous
to χHdg. Moreover, a characteristic class version of the spectrum, termed the spectral
Hirzebruch class, was introduced in [39] by using vanishing cycles of mixed Hodge
modules. For hypersurfaces defined by global functions on smooth varieties, a
Thom-Sebastiani type theorem for the spectral classes was obtained in [39], by using
a corresponding Thom-Sebastiani theorem for the underlying filtered D-modules of
vanishing cycles proved in [40]. Notably, these spectral characteristic classes can be
used to detect jumping coefficients of multiplier ideals, Du Bois singularities, and
rational singularities for any globally defined hypersurface in a complex manifold.



676 J. Steenbrink

References

1. V. I. Arnol’d. Index of a singular point of a vector field, the Petrovskii-Oleinik inequality, and
mixed Hodge structures. Funct. Anal. Appl. 12, 1–12, 1978.

2. V. I. Arnol’d. On some problems in singularity theory. Proc. Indian Acad. Sci. (Math. Sci.),
Vol. 90, number 1, 1–9, 1981.

3. S. Baljonan, C. Hertling. Real Seifert Forms and Polarizing Forms of Steenbrink Mixed Hodge
Structures. Bull. Braz. Math. Soc., New Series 50, 233–274, 2019.

4. F. Bittner. The universal Euler characteristic for varieties of characteristic zero. Compos.
Math. 140, 1011–1032, 2004.

5. F. Bittner. On motivic zeta function and the motivic nearby fibre. Math. Z. 249, 63–83, 2005.
6. Ph. du Bois. Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France 109,

41–81, 1981.
7. Ph. du Bois. Structure de Hodge mixte sur la cohomologie évanescente. Ann. Inst. Fourier,

35(1), 191–213, 1985.
8. J.-P. Brasselet, J. Schürmann and S. Yokura. Hirzebruch classes and motivic Chern classes for

singular spaces. J. Topol. Anal. 2, no. 1,1–55, 2010.
9. T. Brélivet. The Hertling conjecture in dimension 2. Preprint. arXiv: math/0405489

10. T. Brélivet and C. Hertling. Bernoulli moments of spectral numbers and Hodge numbers.
Journal of Singularities 20, 205–231, 2020.

11. E. Brieskorn. Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta
math. 2, 103–161, 1970.

12. J.-L. Brylinski. Modules holonomes à singularités régulières et filtration de Hodge. I. In:
Algebraic Geometry, La Rabida 1981. Lecture Notes in Math. 961, 1–21. Springer-Verlag
Berlin Heidelberg New York 1982.

13. J. Carlson. Extensions of mixed Hodge structures. In: Géométrie algébrique, Angers 1979.
Sijthoff-Noordhoff, Alphen a/d Rijn, 107–127, 1980.

14. V. I. Danilov. Newton polyhedra and vanishing cohomology. Funct. Anal. Appl. 13, 103–115,
1979.

15. P. Deligne. Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathe-
matics, vol. 163. Springer-Verlag Berlin Heidelberg New York 1970.

16. P. Deligne. Travaux de Griffiths. Sém. Bourbaki, 22e année, 1969/70, no 376.
17. P. Deligne. Théorie de Hodge II. Publ. Math. IHES 40, 5–58, 1971.
18. P. Deligne. Théorie de Hodge III. Publ. Math. IHES 44, 5–77, 1974.
19. J. Denef, F. Loeser. Geometry of arc spaces of algebraic varieties. European Congress of

Mathematics, vol. I (Barcelona 2000). Progr. Math. vol. 201, pp. 327–348. Birkhäuser, Basel
2001.

20. A. Dimca. Monodromy and Hodge theory of regular functions. D. Siersma et al. (eds.), New
Developments in Singularity Theory, 257–278, Kluwer 2001.

21. W. Ebeling and J. H. M. Steenbrink. Spectral pairs for isolated complete intersection
singularities. J. Algebraic Geom. 7, 55–76, 1998.

22. Ph. Griffiths. On the periods of certain rational integrals: I. Annals of math. 2nd series Vol. 90
no. 3, 460–495 1969.

23. Ph. Griffiths. Periods of integrals on algebraic manifolds: Summary of main results and
discussion of open problems. Bull. Amer. Math. Soc. 76, 228–296, 1970.

24. A. Grothendieck. On the de Rham cohomology of algebraic varieties. Publ. Math. IHES 29,
95–103, 1966.

25. G. Guibert. Espaces d’arcs et invariants d’Alexander. Comment. Math. Helv. 77, 783–820,
2002.

26. G. Guibert, F. Loeser, M. Merle. Iterated vanishing cycles, convolution, and a motivic analogue
of a conjecture of Steenbrink. Duke Math. J., 132(3), 409–457, 2006.

27. F. Guillén, V. Navarro Aznar. Sur le théorème local des cycles invariants. Duke Math. J. 61,
133–155, 1990.



9 Mixed Hodge Structures Applied to Singularities 677

28. F. Guillén, V. Navarro Aznar, P. Pascal-Gainza, F. Puerta. Hyperrésolutions cubiques et
descente cohomologique. Lecture Notes in Math. 1335, Springer Verlag, Berlin etc. 1988.

29. C. Hertling. Frobenius manifolds and variance of the spectral numbers. In: D. Siersma et al.
(eds.), New Developments in Singularity Theory, 235–255. Kluwer 2001.

30. F. Hirzebruch, K. H. Mayer. O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten.
Lecture Notes in Math. 57. Springer-Verlag Berlin Heidelberg New York 1968.

31. W. V. D. Hodge. The Theory and Applications of Harmonic Integrals. Cambridge Univ. Press,
1947.

32. M. Kashiwara. On the maximally overdetermined systems of linear differential equations I.
Publ. RIMS Kyoto Univ. 10, 563–579, 1975.

33. M. Kashiwara and T. Kawai. On holonomic systems of micro-differential equations III. -
Systems with regular singularities. Publ. RIMS Kyoto Univ. 17, 813–979 (1981).

34. J. Kollár and S. Kovács. Log canonical singularities are du Bois. J. Amer. Math. Soc. 23(3),
791–813, 2010.

35. S. J. Kovács. Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and
Steenbrink. Compos. Math. 118, no. 2, 123–133, 1999.

36. Va. Kulikov. Mixed Hodge structures and singularities. Cambridge Tracts in Math. 132,
Cambridge University Press, Cambridge 1998.

37. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat. Toroidal embeddings I. Lecture Notes in
Math. 339. Springer, Berlin Heidelberg New York 1973.

38. B. Malgrange. Intégrales asymptotiques et monodromie. Ann. Scient. Ec. Norm. Sup. 4e série,
7, 405–430, 1974.

39. L. Maxim, M. Saito and J. Schürmann. Spectral Hirzebruch-Milnor classes of singular
hypersurfaces. Math.Ann. 377, no. 1–2, 281–315, 2020.

40. L. Maxim, M. Saito and J. Schürmann. Thom-Sebastiani theorems for filtered D-modules and
for multiplier ideals. Int. Math. Res. Not. IMRN 2020, no. 1, 91–111.

41. Z. Mebkhout. Une équivalence de catégories. Compos. Math. 51, 51–62. Une autre équiva-
lence de catégories. Ibid. 63–88, 1984.

42. C. A. M Peters and J. H. M. Steenbrink. Mixed Hodge Structures. Ergebnisse der Mathematik
und ihrer Grenzgebiete Volume 52, Springer-Verlag Berlin Heidelberg 2008.

43. C. A. M Peters and J. H. M. Steenbrink. Hodge number polynomials for nearby and vanishing
cohomology. In: J. Nagel, C. Peters (eds.) Algebraic cycles and motives, Volume 2. London
Math. Soc. Lect. Note series, vol. 344, 289–303. Cambridge University Press, 2007.

44. F. Pham. Singularités des systèmes différentiels de Gauss-Manin. Progress in Math. 2,
Birkhäuser Verlag, 1979.

45. M. Saito. On the exponents and the geometric genus of an isolated hypersurface singularity.
Proc. Symp. Pure Math. 40, Part 2, 465–472, 1983.

46. M.Saito. Mixed Hodge modules. Proc. Japan Acad. 62, Ser. A, 360–363, 1986.
47. M. Saito. Exponents and Newton polyhedra of isolated hypersurface singularities. Math. Ann.

281, 411–417, 1988.
48. M. Saito. Mixed Hodge modules. Publ. Res. Inst. Math. Sci. Kyoto Univ. 26, 221–333, 1989.
49. M. Saito. On Steenbrink’s conjecture. Math. Ann. 289, 703–716, 1991.
50. M. Saito. Exponents of an irreducible plane curve singularity. arXiv.math.AG/0009133.
51. J. Scherk and J. H. M. Steenbrink. On the mixed Hodge structure on the cohomology of the

Milnor fibre. Math. Ann. 271, 641–665, 1985.
52. W. Schmid. Variation of Hodge structure: the singularities of the period mapping.. Invent.

math. 22, 211–319, 1973.
53. K. Schwede. A simple characterization of du Bois singularities. Compos. Math. 143, 813–828,

2007.
54. D. Siersma, J.H.M Steenbrink and M. Tibar. Polar degree and Huh’s conjectures. J. Algebraic

Geom. 30, 189–203, 2021.
55. J. H. M. Steenbrink. Limits of Hodge structures. Invent. Math, 41, 229–257, 1976.



678 J. Steenbrink

56. J. H. M. Steenbrink. Mixed Hodge structures on the vanishing cohomology. In: P. Holm ed.,
Real and Complex Singularities, Oslo 1976. Sijthoff-Noordhoff, Alphen a/d Rijn, 525–563,
1977.

57. J. H. M. Steenbrink. Intersection form for quasi-homogeneous singularities. Compos. Math.
42, 211–223 (1977).

58. J. H. M. Steenbrink. Mixed Hodge structures associated with isolated singularities. Proc.
Symp. Pure Math. 40, Part 2, 513–536, 1983.

59. J. H. M. Steenbrink. Semicontinuity of the singularity spectrum. Invent. math. 79, 557–565,
1985.

60. J. H. M. Steenbrink. Vanishing theorems on singular spaces. Astérisque 130, 330–341, 1985.
61. J. H. M. Steenbrink. The spectrum of hypersurface singularities. In: Théorie de Hodge,

Luminy, Juin 1987. Astérisque 179–180, 163–184, 1989.
62. J. H. M. Steenbrink. Monodromy and weight filtration for smoothings of isolated singularities.

Compos. Math. 97, 285–293 (1995).
63. J. H. M. Steenbrink. Du Bois invariants of isolated complete intersection singularities. Ann.

Inst. Fourier, Grenoble 47(5), 1367–1377, 1997.
64. J. H. M. Steenbrink. Motivic Milnor fibre for nondegenerate function germs on toric singu-

larities. In: D. Ibadula, W. Veys (eds.), Bridging algebra, geometry, and topology. Springer
Proceedings in Mathematics and Statistics 96, Springer 2014.

65. A. N. Varchenko. Hodge properties of the Gauss-Manin connection. Funct. Anal. Appl. 14,
46–47, 1980.

66. A. N. Varchenko. On the monodromy operator in vanishing cohomology and the operator of
multiplication by f in the local ring. Sov. Math. Dokl. 24, 248–252, 1981.

67. A. N. Varchenko. Asymptotic Hodge structure in vanishing cohomologies. Izv. Akad.Nauk
SSSR, Ser. Mat., 45, No. 3, 540–591, 1981.

68. A. N. Varchenko. The complex exponent of a singularity does not change along strata μ =
const. Funct, Anal, Appl. 16,1, 1–12, 1982.

69. A. N. Varchenko. On semicontinuty of the spectrum and an upper bound for the number of
singular points of projective hypersurfaces. Sov. Math. Dokl. 27, 735–739, 1983.

70. A. N. Varchenko. Asymptotic integrals and Hodge structures. J. Soviet Math. 27, 2760–2784,
1984.

71. A. N. Varchenko and A. G. Khovanskii. Asymptotics of integrals over vanishing cycles and the
Newton polyhedron. Soviet Math. Dokl. 32, No. 1, 122–127, 1985.



Chapter 10
Constructible Sheaf Complexes
in Complex Geometry and Applications
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Abstract We present a detailed introduction of the theory of constructible sheaf
complexes in the complex algebraic and analytic setting. All concepts are illustrated
by many interesting examples and relevant applications, while some important
results are presented with complete proofs. This paper is intended as a broadly
accessible user’s guide to these topics, providing the readers with a taste of the
subject, reflected by concrete examples and applications that motivate the general
theory. We discuss the stability of constructible sheaf complexes under the standard
functors, and explain the relation of these functors to perverse sheaves and the
perverse t-structure. We introduce the main results of stratified Morse theory in the
framework of constructible sheaves, for proving the basic vanishing and finiteness
results. Applications are given to various index theorems, the functorial calculus of
characteristic cycles of constructible functions, and to weak Lefschetz and Artin-
Grothendieck type theorems. We recall the construction of Deligne’s nearby and
vanishing cycle functors, prove that they preserve constructible complexes, and
discuss their relation with the perverse t-structure. We finish this paper with a
description and applications of the Kähler package for intersection cohomology
of complex algebraic varieties, and the recent study of perverse sheaves on semi-
abelian varieties.

10.1 Introduction

The main goal of this paper is to provide a user’s guide, both for the novice and
the expert, for the theory of (weakly) constructible sheaf complexes in complex
geometry and their many applications. Our guiding principle for writing these notes
was to provide an explicit and geometric introduction of the mathematical concepts,
while also explaining some of the most important examples of the general theory.
For this reason, we aim to present as many of the basic results as possible, sometimes
even with complete proofs in some special important cases. Moreover, these results
and definitions are then always explained and illustrated by many examples.

Constructible (complexes of) sheaves are the algebraic counterpart of the decom-
position of a variety into manifolds pieces (strata), and they are, roughly speaking,
obtained by gluing local systems defined along strata of a Whitney stratification
S . Perverse sheaves are an important class of constructible complexes, introduced
in [6] as a formalization of the celebrated Riemann-Hilbert correspondence of
Kashiwara [64], which relates the topology of algebraic, resp., analytic varieties
(intersection homology) and the algebraic, resp., analytic theory of differential
equations (holonomic D-modules).

In recent years, constructible sheaf complexes and especially perverse sheaves
have become indispensable tools for studying complex algebraic and analytic
varieties. They have seen spectacular applications in geometry and topology (e.g.,
the decomposition theorem [6] and the topology of complex algebraic maps), but
also in fields such as representation theory (e.g., proof of the Kazhdan-Lusztig
conjecture, proof of the geometrization of the Satake isomorphism, and proof of
the fundamental lemma in the Langlands program) or combinatorics (e.g., Stanley’s
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proof of McMullen’s conjecture, or the resolution of the Dowling-Wilson top-
heavy conjecture); see, e.g., [24, 89] for more recent surveys of such applications.
Furthermore, perverse sheaves and the nearby and vanishing cycle functors of
Deligne [52] are the backbone of Saito’s mixed Hodge module theory [105, 106], a
far-reaching generalization of Deligne’s mixed Hodge theory.

However, despite their fundamental importance, perverse sheaves as special
constructible complexes of sheaves remain rather mysterious objects. It is our hope
that the present paper will help readers become better acquainted with various
aspects of the general theory. Those looking to delve further into more specialized
topics or wishing to explore problems of current research will find ample references
to facilitate navigation of both classic and recent literature.

Let us next give a brief summary of the content of the paper.
In Sect. 10.2, we define the notion of (weak) constructibility, and discuss the

stability of (weakly) constructible sheaf complexes under the standard functors. As
far as possible, we allow also weakly constructible sheaf complexes, where one
does not impose any finiteness conditions for the stalks (and which is sometimes
even more natural or simpler to work with, especially as long as no duality is used).
Similarly, we try to work in such a way that it applies to the complex algebraic
as well as complex analytic context (sometimes only under suitable compactness
assumptions in the complex analytic context). The presented calculus includes
external products, Künneth isomorphisms, Verdier duality and the relation to the
Euler characteristic calculus of constructible functions.

We also introduce here the perverse t-structure and perverse sheaves (with
respect to middle perversity), and explain their relation with the standard functors
(following their counterparts in l-adic cohomology as presented in [6, Chapter
4]). Several aspects of the general theory are worked out in detail for intersection
cohomology complexes, which provide some of the main examples of perverse
sheaves. Furthermore, for constructible sheaf complexes of R-modules with R a
Dedekind domain, we also consider the dual perverse t-structure and its relation to
the rectified homological depth of Grothendieck, as studied by Hamm and Lê [56]
(also for the corresponding homotopical notion).

In Sect. 10.3, we explain the basic results from [109] about stratified Morse
theory in the framework of (weakly) constructible sheaves in the complex context,
continuing and extending the recent survey of Goresky [49] in this handbook series,
as well as Massey’s survey [85]. We follow here the notions of the geometric
stratified Morse theory of Goresky-MacPherson [47], so that one can easily compare
the results of our paper with those of loc.cit.. We introduce, for example, the sheaf
theoretic counterparts of the local and normal Morse data, as well as their relations
for a stratified Morse critical point of aC∞-function on a complex algebraic (or ana-
lytic) variety. The normal Morse data of (weakly) constructible sheaf complexes are
studied via the complex link of a stratum of a Whitney stratification, which allows
to prove the basic vanishing and finiteness theorems by induction on the dimension
of the underlying complex analytic variety. In particular, we get a description of
the (dual) perverse t-structure in terms of properties of the normal Morse data.
Moreover, we also explain some relations to the general micro-local sheaf theory of
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Kashiwara-Schapira [66], e.g., like a description of the micro-support of a (weakly)
constructible sheaf complex in terms of the normal Morse data.

We use the language of stratified Morse theory for constructible functions
and sheaves to also give in this section an introduction to the functorial theory
of Lagrangian cycles in the complex analytic and algebraic context. We discuss
from this viewpoint the Euler isomorphism between constructible functions and
Lagrangian cycles given by the characteristic cycle of a constructible function,
together with some index theorems. Examples are given to Poincaré-Hopf index
theorems for singular spaces, effective characteristic cycles on abelian varieties [4]
and the global Euler obstruction for affine varieties [116], as well as the famous
local Euler obstruction of MacPherson [80]. We also explain (using this language
of stratified Morse theory for constructible functions) the translation into the
context of Lagrangian cycles of the following operations for constructible functions
and sheaves: external product, proper direct image, non-characteristic pullback
and specialization (i.e., nearby cycles), together with an intersection formula for
vanishing cycles.

Finally, the last part of Sect. 10.3 deals with applications of the stratified Morse
theory for constructible sheaves to vanishing and weak Lefschetz theorems in the
complex algebraic and analytic context. This includes different versions of the Artin
vanishing theorem for complex algebraically (weakly) constructible complexes on
an affine variety, and vanishing theorems for (weakly) constructible complexes on
complex analytic Stein and q-complete varieties, as well as relative counterparts for
morphisms given by Artin-Grothendieck types theorems in the complex algebraic
and analytic context.

In Sect. 10.4, we recall the construction of Deligne’s nearby and vanishing cycle
functors [52], and prove that they preserve (weakly) constructible complexes. For
the constructible context we also need and explain the calculation of their (co)stalks
in terms of the Milnor fibers for the corresponding local Milnor fibrations [70],
based on the existence of an adapted Whitney stratification satisfying the af -
condition of Thom [14, 57, 73]. Then we state the relation of nearby and vanishing
cycle functors with duality [86], and prove their relation with the (dual) perverse
t-structure and perverse sheaves (from the point of view of stratified Morse theory,
as developed in the previous section), i.e.,

ψf [−1] and ϕf [−1] are t-exact for the (dual) perverse t-structure.

We also include here a discussion on the Thom-Sebastiani theorem for vanishing
cycles [50, 84], and give a brief description of Beilinson’s and Deligne-Verdier’s
procedure for gluing perverse sheaves via vanishing cycles [7, 124]. As a final
application we explain the equality Rf! = Rf∗ on the level of Grothendieck
groups of algebraically constructible complexes [69, 125], as well as analytically
constructible functions in a compactifiable complex analytic context [109].

In Sect. 10.5, we give an overview of properties of the intersection cohomology
groups of complex algebraic varieties, which generalize the corresponding features
of the cohomology groups of smooth varieties. These properties, consisting of
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Poincaré duality, (weak and hard) Lefschetz theorems and the decomposition
theorem, are collectively termed the Kähler package for intersection cohomology
[6, 23, 24, 105, 106].

We also mention briefly a recent combinatorial application of the Kähler package
for intersection cohomology, namely a proof (for realizable matroids) by Huh-Wang
[59] of the Dowling-Wilson top-heavy conjecture [31, 32].

Finally, in Sect. 10.6, we survey recent developments in the study of perverse
sheaves on semi-abelian varieties. We also include several concrete applications of
this theory, e.g., to the study of homotopy types of complex algebraic manifolds
(formulated in terms of their cohomology jump loci), as well as new topological
characterizations of semi-abelian varieties [74, 76, 77].

We assume reader’s familiarity with derived categories and the derived calculus;
for a quick refresher on these topics the interested reader may consult [30, 89] or
[66, Chapter I–III].

We work in the complex algebraic or analytic setting with reduced Hausdorff
spaces, e.g., in the complex algebraic context we are working with the complex
analytic space associated to a reduced separated scheme of finite type over Spec(C).
Unless otherwise specified, all dimensions are taken to be complex dimensions.
In the complex analytic setting we always assume that our spaces have bounded
dimension and a countable topology, e.g., the disjoint union of all Cn’s (n ∈ N0) is
not allowed.

10.2 Constructible and Perverse Sheaf Complexes

10.2.1 Constructibility

Let X be a complex algebraic (or analytic) variety (here a variety does not need to
be irreducible). It is well known (see, e.g., [47, 121, 122]) that such a variety can be
endowed with a Whitney stratification, i.e., a (locally) finite partition S into non-
empty, connected, locally closed nonsingular subvarieties S of X (called “strata”)
which satisfy the following properties:

(i) Frontier condition: for any stratum S ∈ S , the frontier ∂S := S̄ \ S is a union
of strata of S , where S̄ denotes the closure of S.

(ii) Constructibility: the closure S̄ and the frontier ∂S of any stratum S ∈ S are
closed complex algebraic (respectively, analytic) subspaces in X.

These conditions already imply that X gets an induced dimension filtration

X• : ∅ := X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X
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by the closed algebraic (or analytic) subsets Xi := ⋃
dimS≤i S (0 ≤ i ≤ n =

dimX), with the strata S of dimension i given by the connected components of
Xi\Xi−1.

In addition, whenever two strata S1 and S2 are such that S2 ⊆ ∂S1, the pair
(S2, S1) is required to satisfy the following Whitney b-regularity condition that
guarantee that the variety X is topologically or cohomologically equisingular along
each stratum (as in [109, Section 4.2]):

(iii) Whitney b-condition: If xn ∈ S1 and yn ∈ S2 are sequences converging to
x ∈ S2 such that the tangent planes TxnS1 converge to some limiting plane τ
and the secant lines ln = xn, yn converge to some limiting line l (in some local
coordinates), then l ⊂ τ .

Note that the Whitney b-condition implies the following.

(iv) Whitney a-condition: If xn ∈ S1 is a sequence converging to x ∈ S2 such that
the tangent planes TxnS1 converge to some limiting plane τ , then TxS2 ⊂ τ .

These conditions are independent of the choice of local coordinates, and any
algebraic (or analytic) partition S as above has a refinement to an algebraic (or
analytic) Whitney stratification (see, e.g., [121, Theorem 1.2 and Proposition 2.1],
[122], as well as the references given in [47, Section 1.7]). Moreover, if the Whitney
b-conditions hold for all connected components S of theXi\Xi−1 and a filtrationX•
by closed algebraic (or analytic) subsets as above, then the partition S with these
strata S is (locally) finite and satisfies the frontier condition (see, e.g., [109, Section
4.2.1]) as well as the constructibility condition.

Example 10.2.1 (Whitney Umbrella) The singular locus of the Whitney umbrella

X = {z2 = xy2} ⊂ C
3

is the x-axis, but the origin is “more singular” than any other point on the x-axis. A
Whitney stratification of X is given by the strata

S1 = X \ {x − axis}, S2 = {(x, 0, 0) | x �= 0}, S3 = {(0, 0, 0)}.

Another example is given by X a complex manifold, with strata S given by its
connected components.

In the following, let R be a Noetherian and commutative ring of finite global
dimension. Let X be a complex algebraic (or analytic) variety, and denote by
Db(X;R) the derived category of bounded complexes of sheaves of R-modules.
By our assumptions on X and R, these bounded derived categories Db(−;R) are

closed under Grothendieck’s six operations:Rf∗, Rf!, f ∗, f !,RH om• and
L⊗, with

f an algebraic (or analytic) morphism.

Definition 10.2.2 A sheaf F of R-modules onX is said to be weakly constructible
if there is a Whitney stratification S of X so that the restriction F |S of F to
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every stratum S ∈ S is an R-local system (i.e., a locally constant sheaf). In this
case we also say that F is S -weakly constructible. A (S -)weakly constructible
sheaf F on X is called (S -)constructible, if all stalks Fx for x ∈ X are finitely
generated R-modules. A bounded complex F • ∈ Db(X;R) is called (weakly)
constructible if all its cohomology sheaves H j (F •) are (weakly) constructible.
Similarly for S -(weakly) constructible complexes in case one works with a fixed
Whitney stratification S .

Note that the category Sh(S−)wc(X) of (S -)weakly constructible sheaves on X is
an abelian subcategory of the category of all sheaves of R-modules on X, which is
stable under extensions (like the subcategory of R-local systems). Similarly for the
category Sh(S−)c(X) of (S -)constructible sheaves (like the subcategory of R-local
systems with finitely generated stalks), since we assume R to be Noetherian.

Example 10.2.3 On a point space X = {pt} any sheaf is weakly constructible. For
general X, the constant sheaf RX (resp., an R-local system L on X) is (weakly)
constructible on X with respect to any Whitney stratification. On the other hand, if
i : X ↪→ C

∗ denotes the inclusion of the closed analytic subsetX := { 1
n
| n ∈ N} ⊂

C
∗, then the direct image sheaf i∗RX is constructible on C

∗. But if k : C∗ ↪→ C is
the open inclusion, then the closure X̄ = X ∪ {0} in C is not analytic and the direct
image sheaf k∗i∗RX = (k ◦ i)∗RX is not weakly constructible on C.

We denote by Db
(w)c
(X;R) the full triangulated subcategory of Db(X;R)

consisting of (weakly) constructible complexes (that is, complexes which are
(weakly) constructible with respect to some Whitney stratification). We will also
use the simpler notation Db

(w)c
(X) if the coefficient ring R is understood from the

context. Similarly forDbS−(w)c(X;R) in case we work with (weakly) constructible
complexes with respect to a fixed Whitney stratification S . By viewing a sheaf as
a complex concentrated in degree zero, one gets an isomorphism of Grothendieck
groups (and similarly for weakly constructible sheaves)

(10.1)

whose inverse is given by taking the alternating sum of (classes of) cohomology
sheaves (see [109, Lemma 3.3.1]).

Remark 10.2.4 Even in the complex analytic setting a sheaf F (resp., a bounded
sheaf complex F •) on X is (weakly) constructible iff this is locally the case, in
the sense that there is an open covering (Ui) of X such that F |Ui (resp., F •|Ui ) is
(weakly) constructible for all i (see [30, Proposition 4.1.13] and compare also with
[53, Corollary 3.4]). In fact, the complement of the largest open U of X such F |U
is locally constant (resp., F •|U has locally constant cohomology sheaves) is then
an analytic subset of X (see [30, Proposition 4.1.12]).
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The derived categoryDb(w)c(X;R) of bounded (weakly) constructible complexes

is closed under Grothendieck’s six operations: Rf∗, Rf!, f ∗, f !, RH om• and
L⊗.

More precisely, one has the following (e.g., see [11] or the unified treatment of [109,
Theorem 4.0.2 and Proposition 4.0.2]):

Theorem 10.2.5 Let f : X→ Y be a morphism of complex algebraic (or analytic)
varieties, with j : U ↪→ Y the inclusion of the open complement of a closed
algebraic (or analytic) subset.

(a) If G • ∈ Dbc (Y ;R), then f ∗G •, f !G • ∈ Dbc (X;R).
(b) If F • ∈ Dbc (X;R) and f is an algebraic map, then Rf∗F •, Rf!F • ∈

Dbc (Y ;R). If F • ∈ Dbc (X;R) and f is an analytic map so that the restriction
of f to supp(F •) is proper (e.g., f is proper), then Rf∗F • � Rf!F • ∈
Dbc (Y ;R).

(c) If G • ∈ Dbc (Y ;R), then Rj∗j∗G •, Rj!j∗G • ∈ Dbc (Y ;R).
(d) If F •,G • ∈ Dbc (X;R), then F • L⊗ G •, RH om•(F •,G •) ∈ Dbc (X;R).
Similarly for weakly constructible instead of constructible complexes.

In fact, the above theorem in an application of the following more precise
version, where one considers a stratified morphism with respect to given Whitney
stratifications (e.g., see [11] or [109, Proposition 4.0.2 and Corollary 4.2.1]):

Theorem 10.2.6 Let f : X→ Y be a stratified morphism of complex algebraic (or
analytic) varieties mapping all strata S ∈ S of a Whitney stratification of X into
strata T ∈ T of a Whitney stratification of Y , with j : U ↪→ Y the inclusion of
the open complement of a closed union of strata of T (with its induced Whitney
stratification T |U ).

(a) If G • ∈ DbT −c(Y ;R), then f ∗G •, f !G • ∈ DbS−c(X;R).
(b) If F • ∈ DbS−c(X;R) and f is a stratified submersion (i.e., it maps all

strata S ∈ S submersively to a stratum T ∈ T ) so that the restriction
of f to supp(F •) is proper (e.g., f is proper), then Rf∗F • � Rf!F • ∈
DbT −c(Y ;R).

(c) If G • ∈ DbT |U−c(U ;R), then Rj∗G •, Rj!G • ∈ DbT −c(Y ;R).
(d) If F •,G • ∈ DbS−c(X;R), then F • L⊗ G •, RH om•(F •,G •) ∈

DbS−c(X;R).
Similarly for weakly constructible instead of constructible complexes.

By considering the constant map c : X→ pt to a point, one gets the following.

Example 10.2.7 Let X be a complex algebraic (or analytic) variety with a Whitney
stratification S , and let i : Z ↪→ X be the inclusion of a closed algebraic
(or analytic) subset given as a union of strata of S with its induced Whitney
stratification S |Z.
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1. The constant sheaf RX = c∗R is constructible with respect to S , with

Hkc (X;R) = Hk(Rc!c∗R) resp., Hk(X;R) = Hk(Rc∗c∗R) (k ∈ Z)

the corresponding cohomology (with compact support) of X.
2. The sheaf complex i !RX = i !c∗R is constructible with respect to S |Z, with

HkZ(X;R) = Hk(Rc∗i !c∗R) = Hk(X,X\Z;R) (k ∈ Z)

the corresponding cohomology with support in Z of X (or relative cohomology
of the pair (X,X\Z)).

3. The dualizing complex D•X := c!R of X is constructible with respect to S , with

Hk(X;R) = H−kc (X;D•X) = H−k(Rc!c!R) (k ∈ Z)

resp.,

HBMk (X;R) = H−k(X;D•X) = H−k(Rc∗c!R) (k ∈ Z)

the corresponding (Borel-Moore) homology of X. If X is smooth (or more
generally an R-homology manifold) of pure dimension d , then D

•
X = c!R �

c∗R[2d], which implies the Poincaré duality:

H2d−k(X;R) � Hkc (X;R) and HBM2d−k(X;R) � Hk(X;R) (k ∈ Z) .

Corollary 10.2.8 (External Tensor Product) Let Xi be complex algebraic (or
analytic) varieties, with F •

i ∈ Db(w)c(Xi;R) for i = 1, 2. Consider the external
tensor product

F •
1

L

�F •
2 := p∗1

(
F •

1

) L⊗ p∗2
(
F •

2

) ∈ Db(w)c(X1 ×X2;R) ,

with pi : X1 × X2 → Xi the projection on the corresponding factor for i = 1, 2.
If F •

i is (weakly) constructible with respect to a Whitney stratification Si of Xi

for i = 1, 2, then F •
1

L

� F •
2 is (weakly) constructible with respect to the product

Whitney stratification S1 ×S2 of X1 × X2 (with strata S1 × S2 for S1 ∈ S1 and
S2 ∈ S2).

The external tensor product of (weakly) constructible complexes behaves nicely
with respect to products of two morphisms, as the following result shows (see, e.g.,
[109, Eq. (1.16) on p.78, Proposition 2.0.1 and Corollary 2.0.4] for more general
versions).
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Proposition 10.2.9 (Künneth Isomorphisms) Let fk : Xk → Yk be two mor-
phisms of complex algebraic (or analytic) varieties, with ik : Zk ↪→ Xk the inclusion
of a closed complex algebraic (or analytic) subset, and jk : Uk := Xk\Zk ↪→ Xk
the inclusion of the open complement (k = 1, 2).

1. For any F •
k ∈ Db(Yk;R) for k = 1, 2 one has:

(f1 × f2)
∗
(
F •

1

L

�F •
2

)
� f ∗1

(
F •

1

) L
� f ∗2

(
F •

2

)
.

2. For any F •
k ∈ Db(Xk;R) for k = 1, 2 one has:

R(f1 × f2)!
(
F •

1

L

�F •
2

)
� Rf1!

(
F •

1

) L
� Rf2!

(
F •

2

)
.

3. For any F •
k ∈ Dbwc(Yk;R) for k = 1, 2 one has:

(i1 × i2)!
(
F •

1

L

�F •
2

)
� i !1

(
F •

1

) L
� i !2

(
F •

2

)
.

4. For any F •
k ∈ Dbwc(Xk;R) for k = 1, 2 one has in the complex algebraic

context:

R(f1 × f2)∗
(
F •

1

L

�F •
2

)
� Rf1∗

(
F •

1

) L
� Rf2∗

(
F •

2

)
.

5. For any F •
k ∈ Dbwc(Xk;R) for k = 1, 2 one has:

R(j1 × j2)∗(j1 × j2)∗
(
F •

1

L

�F •
2

)
� Rj1∗j∗1

(
F •

1

) L
� Rj2∗j∗2

(
F •

2

)
.

By taking for both morphisms fk the constant map fk = c : Xk → pt to a point
space (k = 1, 2) one gets the following.

Example 10.2.10 (Classical Künneth Formulae) For any F •
k ∈ Dbwc(Xk;R) for

k = 1, 2 one has:

R�c

(
X1 ×X2;F •

1

L

�F •
2

)
� R�c

(
X1;F •

1

) L⊗ R�c
(
X2;F •

2

)
,

R�Z1×Z2

(
X1 ×X2;F •

1

L

�F •
2

)
� R�Z1

(
X1;F •

1

) L⊗ R�Z2

(
X2;F •

2

)
,
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and in the complex algebraic context:

R�

(
X1 ×X2;F •

1

L

�F •
2

)
� R� (X1;F •

1

) L⊗ R� (X2;F •
2

)
.

In the special case when R is a field, one further gets

H ∗c
(
X1 ×X2;F •

1 �F •
2

) � H ∗c
(
X1;F •

1

)⊗H ∗c
(
X2;F •

2

)
,

and in the complex algebraic context also

H ∗
(
X1 ×X2;F •

1 �F •
2

) � H ∗ (X1;F •
1

)⊗H ∗ (X2;F •
2

)
.

Another important application of the general calculus of (weakly) constructible
complexes deals with Verdier duality (see, e.g., [109, Corollary 4.2.2]):

Corollary 10.2.11 Let X be a complex algebraic (or analytic) variety with a
Whitney stratification S , with morphisms f : Z→ X and g : X→ Y .

1. If F • ∈ Db(X;R) is S -(weakly) constructible, then its Verdier dual

DF • := RH om•(F •,D•X)

is also S -(weakly) constructible, with

f ! (DF •) � D
(
f ∗F •) resp., Rg∗ (DF •) � D (Rg!F •) .

2. If F • ∈ Db(X;R) is constructible, then biduality holds:

F • � DDF • (10.2)

so that F • ∈ Db(X;R) is (S -)constructible iff its Verdier dual DF • ∈
Db(X;R) is (S -)constructible. Moreover

f ∗ (DF •) � D
(
f !F •) resp., Rg! (DF •) � D (Rg∗F •) .

Here, for the last isomorphism one has to assume that Rg! (DF •) is con-
structible (e.g., as in the algebraic context).

Note that already for a point space X = {pt} the biduality result uses our
assumption that R is a Noetherian and commutative ring of finite global dimension
(see also [66, Exercise I.30]). Similarly, Verdier duality commutes for constructible
sheaf complexes with external tensor products (see, e.g., [109, Corollary 2.0.4] in a
more general context).
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Proposition 10.2.12 Let Xi be a complex algebraic (or analytic) variety with
F •
i ∈ Dbc (X;R) for i = 1, 2. Then

D
(
F •

1

L

�F •
2

)
� D

(
F •

1

) L
�D

(
F •

2

)
.

In particular, D•X1×X2
� D

•
X1

L

�D
•
X2

, so that one gets the classical Künneth formula
for homology, e.g., for R a field:

H∗(X1 ×X2;R) � H∗(X1;R)⊗H∗(X2;R) ,

and in the algebraic context also for Borel Moore homology, e.g., for R a field:

HBM∗ (X1 ×X2;R) � HBM∗ (X1;R)⊗HBM∗ (X2;R) .

The general calculus of constructible sheaves also includes finiteness results for
the cohomology (with compact support) of constructible sheaf complexes.

Corollary 10.2.13 Assume that F • ∈ Dbc (X;R) and that either

(a) X is a complex algebraic variety, or
(b) X is an analytic space and supp(F •) is compact.

Then the hypercohomology groups Hi(X;F •) and Hic (X;F •) are finite type R-
modules for every i ∈ Z (which are zero for |i| large enough).

(c) Assume X is a compact analytic space with a Whitney stratification S so that
j : U ↪→ X is the inclusion of the open complement of a closed union of strata.
If G • ∈ DbS |U−c(U ;R), then also the hypercohomology groups Hi(U ;G •)
and Hic(U ;G •) are finite type R-modules for every i ∈ Z (which are zero for
|i| large enough).

With F • ∈ Dbc (X;R) as in the above corollary, we make the following.

Definition 10.2.14 Assume R is a field. The (compactly supported) Euler charac-
teristic of F • ∈ Dbc (X;R) is defined as:

χ(c)(X,F
•) := χ(H ∗(c)(X;F •)) :=

∑

i∈Z
(−1)i dimR H i(c)(X;F •).

(Here, we use the notation χ(c) and Hi(c) to indicate that the definition applies to the

compactly supported Euler characteristic χc by using Hic , as well as to the usual
Euler characteristic χ by using Hi .)
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As it will be explained later on (see Example 10.4.37, and also [109, Section 2.3
and Section 6.0.6]), in this complex context we have the equality:

χ(X,F •) = χc(X,F •). (10.3)

Moreover, this Euler characteristic depends only on the associated constructible
function

χstalk (F
•) ∈ CF(X) (10.4)

given by the stalkwise Euler characteristic χstalk (F •) (x) := χ (F •
x

)
for x ∈ X,

with CF(X) the corresponding abelian group of constructible functions given by
(locally) finite Z-linear combinations of indicator functions 1Z, for Z ⊂ X a
closed irreducible algebraic (or analytic) subset of X. Similarly for the abelian
group CFS (X) of S -constructible functions given by (locally) finite Z-linear
combinations of indicator functions 1S or 1S̄ for S ∈ S a stratum, i.e., Z-valued
functions which are constant on all strata S ∈ S . This induces a surjective group
homomorphism

χstalk : K0

(
Db(S−)c(X;R)

)
→ CF(S )(X) , (10.5)

with

χc(X,F
•) =

∑

S∈S
χc(S) · χstalk (F •) (S) (10.6)

for an S -constructible complex F • on X in the complex algebraic context (or
analytic context with X compact). Here χc(S) := χc(RS) = χ(H ∗c (S;R)) is the
corresponding Euler characteristic of a stratum S ∈ S .

Let us also mention here the following (co)stalk calculation.

Proposition 10.2.15 Let F • ∈ Dbc (X;R), x ∈ X, and ix : {x} ↪→ X the inclusion.
Then

H j (F •)x � Hj(i∗xF •) � Hj(B̊ε,x;F •), (10.7)

Hj(i !xF •) � Hjc (B̊ε,x;F •) � Hj(B̊ε,x, B̊ε,x \ x;F •), (10.8)

where B̊ε,x is the intersection of X with an open small ε-ball neighborhood of x in
some local embedding ofX in C

N . Here, i∗xF • and i !xF • are called the stalk and,
respectively, costalk of F • at x.
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In fact, this will be an easy application of the Morse theoretical results explained
later on, since the proper real analytic function r given by the squared distance to x
(in these local coordinates) has no stratified critical values in an interval ]0, ε[ for
ε > 0 small enough (see Lemma 10.3.3 and, e.g., [109, Lemma 5.1.1]).

10.2.2 Perverse Sheaves

Perverse sheaves are an important class of constructible complexes, introduced in
[6] as a formalization of Kashiwara’s Riemann–Hilbert correspondence [64] (see
also [58]), which relates the topology of complex algebraic, resp., analytic varieties
(intersection homology) and the algebraic, resp., analytic theory of differential
equations (holonomic D-modules). We recall their definition below.

Definition 10.2.16

(a) The perverse t-structure on Dbc (X;R) consists of the two strictly full subcate-
gories pD≤0(X;R) and pD≥0(X;R) of Dbc (X;R) defined as:

pD
≤0
(X;R) := {F • ∈ Dbc (X;R) | dim supp−j (F •) ≤ j,∀j ∈ Z},

pD
≥0
(X;R) := {F • ∈ Dbc (X;R) | dim cosuppj (F •) ≤ j,∀j ∈ Z},

where, for ix : {x} ↪→ X denoting the point inclusion, we define the j -th support
and, respectively, the j -th cosupport of F • ∈ Dbc (X;R) by:

suppj (F •) = {x ∈ X | Hj(i∗xF •) �= 0},

cosuppj (F •) = {x ∈ X | Hj(i !xF •) �= 0}.

(For a constructible complex F •, the sets suppj (F •) and cosuppj (F •) are
closed algebraic (or analytic) subvarieties ofX, hence their dimensions are well
defined.)

(b) For a given Whitney stratification S of X this also induces the perverse t-
structure on DbS−c(X;R) with pD

≤0
S (X;R), resp., pD≥0

S (X;R) defined by
the same (co)support conditions.

(c) A (S -)constructible complex F • ∈ Db
(S−)c(X;R) is called a perverse sheaf

on X if

F • ∈ Perv(S )(X;R) := pD
≤0
(S )(X;R) ∩ pD≥0

(S )(X;R).
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The category of (S -constructible) perverse sheaves is the heart of the perverse
t-structure, hence it is an abelian category, and it is stable by extensions (see, e.g.,
[6, Theorem 1.3.6]).

Remark 10.2.17

(a) The same definition also defines the perverse t-structure for (S -) weakly
constructible complexes with heart the abelian category of (S -)weakly con-
structible perverse sheaves.

(b) An algebraically (weakly) constructible complex is perverse if and only if it is
so when viewed as an analytically (weakly) constructible complex.

(c) If R is a field, the Universal Coefficient Theorem can be used to show that the
Verdier duality functor D : Dbc (X;R)→ Dbc (X;R) satisfies:

cosuppj (F •) = supp−j (DF •), (10.9)

In particular, D exchanges pD≤0(X;R) and pD≥0(X;R), so that it preserves
(S -) constructible perverse sheaves with field coefficients.

Recall here that the condition that two subcategories pD≤0(X;R) and
pD≥0(X;R) of Db

(S−w)c(X;R) define a t-structure just means (see, e.g., [6,
Definition 1.3.1]):

1. HomDb(X;R)(F •,G •[−1]) = 0 for all F • ∈ pD≤0(X;R) and G • ∈
pD≥0(X;R).

2. pD≤0(X;R) is stable under [1], and pD≥0(X;R) is stable under [−1].
3. For any E • ∈ Db

(S−w)c(X;R) there is a distinguished triangle

F • −→ E • −→ G •[−1] [1]−→

for some F • ∈ pD≤0(X;R) and G • ∈ pD≥0(X;R).
Then it is enough to check these properties for a fixed Whitney stratification

S , where they can be proved by induction on dimX via the gluing of t-structures
as in [6, Corollary 2.1.4, Proposition 2.1.14]. Here it is important to note that the
conditionsF • ∈ pD≤0(X;R) and, resp.,F • ∈ pD≥0(X;R) can also be described
in terms of a fixed Whitney stratification of X for which F • is S -(weakly)
constructible. Indeed, the perverse t-structure can be characterized as follows:

Theorem 10.2.18 Assume F • ∈ Db(w)c(X;R) is (weakly) constructible with
respect to a Whitney stratification S of X. Then:

(i) stalk vanishing:

F • ∈ pD≤0
(X;R) ⇐⇒ ∀S ∈ S , ∀x ∈ S : Hj (i∗xF •) = 0 for all j > − dim S.
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(ii) costalk vanishing:

F • ∈ pD≥0
(X;R) ⇐⇒ ∀S ∈ S , ∀x ∈ S : Hj (i!xF •) = 0 for all j < dim S.

Of course the isomorphism class of the stalk i∗xF • for x ∈ S as above does not
depend on the choice of the point x ∈ S. In fact, if iS : S ↪→ X denotes the inclusion
of the stratum S, the stalk vanishing condition is equivalent to

(i’) F • ∈ pD≤0(X;R) ⇐⇒ ∀S ∈ S : H j (i∗SF •) = 0 for all j > − dim S.

Similarly for the costalk i !xF • for x ∈ S, since this costalk is also isomorphic to
k!xi !SF • with kx : {x} ↪→ S the inclusion of the point {x} into S. But i !SF • has
locally constant cohomology sheaves so that k!xi !SF •[2 dimS] � k∗xi !SF • for all
x ∈ S. And then the costalk condition is equivalent to

(ii’) F • ∈ pD≥0(X;R) ⇐⇒ ∀S ∈ S : H j (i !SF •) = 0 for all j < − dim S.

Example 10.2.19 Assume X is of pure complex dimension with c : X → pt the
constant map to a point space. As usual, for an R-module M we denote by MX =
c∗M the constant R-sheaf on X with stalkMx = M for all x ∈ X. Then:

(a) MX[dimX] ∈ pD≤0(X;R). More generally, if L is a local system on X, then
L [dimX] ∈ pD≤0(X;R) (since this is a local condition).

(b) If X is smooth with the trivial stratification, and L is a local system on X, then
L [dimX] is perverse on X (since in this case i !xL [2 dimX] � i∗xL for all
x ∈ X).

(c) The intersection (IC) complexes on X of Goresky-MacPherson [46] (for the
middle perversity) are examples of perverse sheaves. For a given Whitney
stratification S of X these are defined by further imposing, for all strata
S ∈ S with dim S < dimX, the stronger stalk/costalk vanishing conditions
in Theorem 10.2.18 obtained by replacing > with ≥ and < with ≤. Such
an IC complex on X is S -weakly constructible and determined by its
restriction to the top dimensional strata, which is (isomorphic to) a shifted
local system L [dimX], so we may denote it unambiguously by ICX(L ). It
is S -constructible if L has finitely generated stalks. If L is the constant sheaf
R on the top dimensional strata, we use the notation ICX . In the end, these
perverse IC-complexes do not depend on the chosen Whitney stratification S ,
but only on the generically defined local system L (on the complement of a
closed algebraic or analytic subset of X of dimension smaller than dimX).

(d) If X is a local complete intersection then RX[dimX] is a perverse sheaf on
X (see Example 10.4.29 and, e.g., [109, Example 6.0.11]). More generally, if
L is a local system on X, then L [dimX] is perverse on X. By (a) one only
has to show that L [dimX] ∈ pD≥0(X;R). Since this is a local condition
in the classical topology, we can assume L = MX is a constant sheaf, with
i : X ↪→ X′ the inclusion of a closed analytic subset defined as the zero set
of k holomorphic functions on a pure dimensional complex manifold X′ with
dimX′ −k = dimX. ThenMX = i∗MX′ withMX′ [dimX′] ∈ pD≥0(X′;R) by
(b), so that the claim follows from Proposition 10.4.28 below (see, e.g., [109,
Proposition 6.0.2]).
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To simplify the formulation of some results, let us recall the following.

Definition 10.2.20 For n ∈ Z one defines the following two strictly full subcate-
gories pD≤n

(S )(X;R) and pD
≥n
(S )(X;R) of Db

(S−)c(X;R), resp., Db
(S−)wc(X;R)

by

pD
≤n
(S )(X;R) := pD

≤0
(S )(X;R)[−n] and pD

≥n
(S )(X;R) := pD

≥0
(S )(X;R)[−n]

so that pD≤−1
(S ) (X;R) ⊂ pD

≤0
(S )(X;R) and pD≥1

(S )(X;R) ⊂ pD
≥0
(S )(X;R).

Remark 10.2.21 The two subcategories pD≤n
(S )(X;R) and pD≥n

(S )(X;R) define a

shifted perverse t-structure onDb
(S−)c(X;R) andDb

(S−)wc(X;R). But for most of
the results of this paper (especially those proved by stratified Morse theory later on),
we only need the following obvious properties (as in [109, Chapter VI]):

1. The zero object belongs to pD≤n
(S )(X;R) and pD≥n

(S )(X;R).
2. pD≤n

(S )(X;R) and pD≥n
(S )(X;R) are stable by extensions.

3. pD≤n(X;R) is stable under [1], and pD≥n(X;R) is stable under [−1].
Example 10.2.22 On a point space X = {pt} one gets:

1. pD≤n({pt};R) is given by the bounded complexes of R-modules, whose
cohomology is concentrated in degree≤ n. This condition is stable under shifting
a complex to the left (i.e., the shift [1]).

2. pD≥n({pt};R) is given by the bounded complexes of R-modules, whose
cohomology is concentrated in degree≥ n. This condition is stable under shifting
a complex to the right (i.e., the shift [−1]).

Lemma 10.2.23 Let f : X→ Y be a morphism of complex algebraic (or analytic)
varieties, whose fiber dimension is bounded by d ∈ N0. Then:

(a) f ! maps pD≥n(Y ;R) into pD≥n−d (X;R).
(b) f ∗ maps pD≤n(Y ;R) into pD≤n+d(X;R).
This follows from the definitions using i !xf ! � i !f (x) and i∗xf ∗ � i∗f (x) for all x ∈
X. As an example, one can take for f a locally closed inclusion or an unramified
covering map, both of which have fiber dimension d = 0.

Example 10.2.24 Let X be a complex algebraic (or analytic) variety of dimension
d = dimX, with c : X→ pt a constant map. Then

D
•
X = c!R ∈ pD≥−d(X;R) and RX = c∗R ∈ pD≤d(X;R) .



696 L. G. Maxim and J. Schürmann

Corollary 10.2.25 Let f : X → Y be a smooth morphism (i.e., a submersion) of
complex algebraic (or analytic) varieties, with constant relative (or fiber) dimension
d ∈ N0. Then f ! � f ∗[2d] so that

(a) f ∗ maps pD≥n(Y ;R) into pD≥n+d(X;R).
(b) f ! maps pD≤n(Y ;R) into pD≤n−d (X;R).
In particular f ![−d] � f ∗[d] maps Perv(Y ;R) into Perv(X;R).
Example 10.2.26 Let f : X → Y be a smooth morphism (i.e., a submersion) of
complex algebraic (or analytic) varieties, with constant relative (or fiber) dimension
d . Assume f is surjective and Y (and then also X) is pure dimensional. Then

f ∗ICY (L )[d] � ICX(f ∗L )

for a generically defined local system L on Y , with f ∗L the corresponding
generically defined local system on X defined by pullback.

The following result will be very important for the applications of the stratified
Morse theory for constructible sheaves in the next sections.

Proposition 10.2.27 Let Y ↪→ M be a closed complex algebraic (or analytic)
subvariety of an ambient complex algebraic (or analytic) manifold M . Assume
N ↪→ M is a closed complex algebraic (or analytic) submanifold of constant
codimension d = dimM − dimN , which is transversal to a Whitney stratification
S of Y (i.e., N is transversal to all strata S ∈ S ). Then X := Y ∩ N gets an
induced Whitney stratification S ′ with strata S′ the connected components of the
intersections S ∩ N for S ∈ S , with dim S ∩ N = dim S − d for all S ∈ S (and
S ∩N �= ∅). Let i : X = Y ∩N ↪→ Y be the (stratified) closed inclusion. Then

(a) i∗ maps pD≤nS (Y ;R) into pD≤n−dS ′ (X;R).
(b) i∗ maps pD≥nS (Y ;R) into pD≥n−dS ′ (X;R).
In particular i∗[−d] maps PervS (Y ;R) into PervS ′(X;R).
Proof Consider the following cartesian diagram of closed inclusions for S ∈ S :
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Then (a) follows from i∗
S ′i
∗ � i ′∗i∗S for checking the stalk vanishing condition (i’).

Similarly (b) follows from the base change isomorphism

i !S ′i
∗F • � i ′∗i !SF • for F • ∈ DbS−wc(X;R) (10.10)

for checking the costalk vanishing condition (ii’). ��
Example 10.2.28 Consider the context of Proposition 10.2.27, with Y (and there-
fore also X = Y ∩ N) pure dimensional. Let L be a local system on the open
subset U of Y given by the top dimensional stratum of S (which is then dense in
Y ). Similarly U ∩N is open and dense in X. Then

i∗ICY (L )[−d] � ICX(i ′∗L ) ,

with i ′ : U ∩N → U the induced inclusion.

In the base change isomorphism (10.10) used above, we can even assume that
S ↪→ Y is a closed stratum, by restriction to the open complement of ∂S. Then it
is a special case (with Y ′ = S) of the following more general result (see, e.g., [109,
Proposition 4.3.1 and Remark 4.3.6]).

Theorem 10.2.29 (Base Change Isomorphisms) Let Y ↪→ M be a closed
complex algebraic (or analytic) subvariety of an ambient complex algebraic (or
analytic) manifoldM . Assume N ↪→ M is a closed complex algebraic (or analytic)
submanifold, which is transversal to a Whitney stratificationS of Y . Let i : Y ′ ↪→ Y

be the inclusion of a closed union of strata of S , with j : U := Y\Y ′ ↪→ Y the
inclusion of the open complement with its induced stratification S |U . Consider the
cartesian diagram

Then one has the following base change isomorphisms:

k∗Rj∗F • � Rj ′∗k′′∗F • for F • ∈ DbS |U−wc(U ;R) (10.11)

and

k′∗i !F • � i ′!k∗F • for F • ∈ DbS−wc(Y ;R). (10.12)

Next we study the relation between the perverse t-structure and external tensor
products.
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Proposition 10.2.30 LetXi be complex algebraic (or analytic) varieties (i = 1, 2).
Then

(a) The external tensor product
L

� induces

L

� : pD≤n(X1;R)× pD
≤m
(X2;R)→ pD

≤n+m
(X1 ×X2;R) .

(b) Assume R is a field. Then
L

� induces

L

� : pD≥n(X1;R)× pD
≥m
(X2;R)→ pD

≥n+m
(X1 ×X2;R) .

In particular, if R is a field,
L

� induces

L

� : Perv(X1;R)× Perv(X2;R)→ Perv(X1 ×X2;R) .

Property (a) follows from i∗(x1,x2)
(− L

�−) � i∗x1
(−) L⊗ i∗x2

(−) and the right exactness
of the tensor product⊗. Property (b) is a consequence of the Künneth isomorphism

i !(x1,x2)
(− L

�−) � i !x1
(−) L⊗ i !x2

(−) and the exactness of the tensor product⊗ for R
a field.

Example 10.2.31 Let Xi be pure dimensional complex algebraic (or analytic)
varieties (i = 1, 2), with R a field. Then

ICX1(L1)
L

� ICX2(L2) � ICX1×X2(L1 �L2)

for a generically defined local system Li on Xi (i = 1, 2).

Example 10.2.32 LetX be a complex algebraic (or analytic) variety, with R a field.
If F • ∈ Perv(X;R) and L is a locally constant sheaf on X, then F • ⊗ L ∈
Perv(X;R). In particular, if X is also pure dimensional, one gets:

ICX(L1)⊗L2 � ICX(L1 ⊗L2),

with L1 a generically defined local system on X, and L2 a local system on all of
X. As a special case, one also gets:

ICX ⊗L � ICX(L )

if X is pure dimensional and L is a local system on X. These assertions can be
checked locally in the analytic topology (so it suffices to assume that L2 is a
constant sheaf), by using Proposition 10.2.30 and Example 10.2.31 in which we
take X2 to be a point space.
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Corollary 10.2.33 Let Xi ↪→ M be closed complex algebraic (or analytic)
subvarieties of the complex algebraic (or analytic) manifoldM of pure dimension d
(i = 1, 2). Let Si be Whitney stratifications ofXi (i = 1, 2) which are transversal in
M , i.e., all strata S1 ∈ S1 are transversal to all strata S2 ∈ S2. This is equivalent
to the diagonal embedding � : M → M × M being transversal to the product
stratificationS1×S2 ofX1×X2. In particular,X1∩X2 � (X1 ×X2)∩�(M) gets
an induced Whitney stratification S1 ∩S2 with strata the connected components of
the intersections S1∩S2. Then one gets for the induced map� : X1∩X2 → X1×X2
the following:

(a) The tensor product
L−⊗− � �∗(− L

�−) induces

L⊗ : pD≤nS1
(X1;R)× pD

≤m
S2
(X2;R)→ pD

≤n+m−d
S1∩S2

(X1 ∩X2;R) .

(b) Assume R is a field. Then the tensor product
L−⊗− � �∗(− L

�−) induces

L⊗ : pD≥nS1
(X1;R)× pD

≥m
S2
(X2;R)→ pD

≥n+m−d
S1∩S2

(X1 ∩X2;R) .

In particular, if R is a field,

(
− L⊗−

)
[−d] induces

PervS1(X1;R)× PervS2(X2;R)→ PervS1∩S2(X1 ∩X2;R) .

Example 10.2.34 In the context of Corollary 10.2.33, let Xi be in addition pure
dimensional (i = 1, 2), with R a field. Then

(
ICX1(L1)

L⊗ ICX2(L2)

)
[−d] � ICX1∩X2(L1 ⊗L2)

for a local system Li defined on the open dense subset Ui of Xi given by the top
dimensional stratum (i = 1, 2). HereX1∩X2 is also pure dimensional with L1⊗L2
defined on the open dense subset U1 ∩ U2 of X1 ∩X2.

The existence of the perverse t-structure onDb(w)c(X;R) implies the existence of
perverse truncation functors pτ≤0,

pτ≥0, which are adjoint to the inclusions

pD
≤0
(X;R) ↪→ Db(w)c(X;R)←↩ pD≥0

(X;R) .

In particular, for every k ∈ Z, there are adjunction maps F • → pτ≥kF • and
pτ≤kF • → F • (see, e.g., [6, Proposition 1.3.3]). These perverse truncation
functors can be used to associate to any constructible complex F • ∈ Db(w)c(X;R)
its perverse cohomology sheaves defined as:

pH i
(F •) := pτ≤0

pτ≥0(F
•[i]) ∈ Perv(X;R).
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These are S -(weakly) constructible for F • S -(weakly) constructible. It then
follows that F • ∈ pD≤0(X;R) if and only if pH i (F •) = 0 for all i > 0.
Similarly, F • ∈ pD≥0(X;R) if and only if pH i (F •) = 0 for all i < 0. In
particular, F • ∈ Perv(X;R) if and only if pH i (F •) = 0 for all i �= 0 and
pH 0(F •) = F • (see, e.g., [6, Proposition 1.3.7]). Perverse cohomology sheaves
can be used to calculate the (hyper)cohomology groups of any F • ∈ Db(w)c(X) via
the perverse cohomology spectral sequence

E
i,j

2 = Hi(X; pH j (F •))  ⇒ Hi+j (X;F •). (10.13)

Definition 10.2.35 A functor F : D1 → D2 of triangulated categories with t-
structures is left t-exact if F(D≥0

1 ) ⊆ D
≥0
2 , right t-exact if F(D≤0

1 ) ⊆ D
≤0
2 , and

t-exact if F is both left and right t-exact.

Example 10.2.36 The inclusion of full subcategories

DbS−(w)c(X;R) ⊂ Db(w)c(X;R) and Db(S−)wc(X;R) ⊂ Db(S−)c(X;R)

are t-exact with respect to the perverse t-structures.

Remark 10.2.37 If F is a t-exact functor, it restricts to a functor on the correspond-
ing hearts. More generally, if F : D1 → D2 is a functor of triangulated categories
with t-structures, and we let C1,C2 be the corresponding hearts with ki : Ci ↪→ Di ,
then

pF := tH 0 ◦ F ◦ k1 : C1 → C2

is called the perverse functor associated to F . (Here, if τ≤0 and τ≥0 are the
truncation functors on a triangulated category D with heart C, we set tH 0 :=
τ≥0τ≤0 = τ≤0τ≥0 : D → C.) In this paper we work only with the perverse t-
structure, so a t-exact functor preserves perverse sheaves.

Example 10.2.38 LetX be a complex analytic (or algebraic) variety, and let Z ⊆ X
be a closed subset. Fix a Whitney stratification S of the pair (X,Z), i.e., Z is a
union of strata of S . ThenZ andU := X\Z inherit Whitney stratifications as well,
and if we denote by i : Z ↪→ X and j : U ↪→ X the stratified inclusion maps, then
the functors j∗ = j !, i !, i∗, i∗ = i!, j! and Rj∗ preserve (weak) constructibility with
respect to the above fixed stratifications, with j∗i! = 0 and i !Rj∗ = 0. Moreover,
the functors j!, i∗ are right t-exact, the functors j ! = j∗, i∗ = i! are t-exact, andRj∗,
i ! are left t-exact. Similarly for the functors j∗ = j !, i !, i∗, i∗ = i!, j!j∗ and Rj∗j∗
(as well as j! and Rj∗ in the complex algebraic context), if we do not fix a Whitney
stratification.

Example 10.2.39 Let f : X → Y be a smooth morphism (i.e., a submersion) of
complex algebraic (or analytic) varieties, with constant relative (or fiber) dimension
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d . Then f ![−d] � f ∗[d] is t-exact. Similarly, the external tensor product
L

� is
t-exact in each variable in case R is a field.

Example 10.2.40 Let f : X → Y be a finite map (i.e., proper, with finite fibers).
ThenRf∗ = f! is t-exact (see Example 10.3.31). If, moreover,X is pure dimensional
with f surjective and generically bijective, then Rf∗ICX � f∗ICX � ICY . The
latter fact applies, in particular, to the case when X is the (algebraic) normalization
of Y .

The perverse cohomology sheaf construction provides a way to get perverse
sheaves out of any (weakly) constructible complex. Another important method for
constructing perverse sheaves, the intermediate extension, will be discussed below.

Let j : U ↪→ X be the inclusion of an open constructible subset of the complex
algebraic (or analytic) varietyX, with i : Z = X \U ↪→ X the closed inclusion. We
can also work with a fixed Whitney stratification S of X so that U is an open union
of strata of S . A complex F • ∈ Db(w)c(X;R) is a (weakly) constructible extension

of G • ∈ Db(w)c(U ;R) if j∗F • � G •. In what follows, we are interested to find
perverse extensions of G • ∈ Perv(S |U )(U ;R).
Definition 10.2.41 The intermediate extension j!∗G • of the perverse sheaf G • ∈
Perv(S |U )(U ;R) is the image in the abelian category Perv(S )(X;R) of the
morphism

pj !G • := pH 0
(j!G •)→ pH 0

(Rj∗G •) =: pj∗G •.

Here, pj !G • → pj∗G • is obtained by applying the functor pH 0 to the natural
morphism j!G • → Rj∗G • in Db(w)c(X;R). In the analytic context we explicitly
have to assume that j!G • (and then also Rj∗G • � Rj∗j∗j!G •) is (weakly)
constructible, e.g., G • ∈ Perv(U ;R) is (weakly) constructible with respect to
S |U .

Example 10.2.42 If X is of pure dimension n, and j : U ↪→ X is the inclusion
of a smooth open subset whose complement is an algebraic (or analytic) subset
of dimension < dimX, then for a local system L on U one has that L [n] ∈
Perv(U ;R) and

ICX(L ) � j!∗(L [n]) .

Example 10.2.43 Let X be smooth of pure dimension one and let j : U ↪→ X be
the inclusion of a Zariski open and dense subset. If L is a local system on U , then:

ICX(L ) � j!∗(L [1]) � (j∗L )[1] .

The intermediate extension functor plays an important role in describing the
simple objects in the abelian category of (S−)constructible perverse sheaves on
X. Indeed, we have the following.
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Proposition 10.2.44 Consider the context of Definition 10.2.41 above.

(a) The intermediate extension j!∗G • of G • ∈ Perv(S |U )(U ;R) has no non-trivial
sub-object and no non-trivial quotient object whose supports are contained in
Z = X \ U .

(b) Moreover, if G • ∈ Perv(S |U )(U ;R) is a simple (S |U -constructible) object
then j!∗G • ∈ Perv(S )(X;R) is a simple (S -constructible) object.

Moreover, the following important result holds, see [6, Theorem 4.3.1] (where the
assumptions are needed for the use of biduality and the stability of perverse sheaves
under duality):

Theorem 10.2.45 LetX be a complex algebraic variety, assume that the coefficient
ring R is a field, and consider (constructible) perverse sheaves Perv(X;R) ⊂
Dbc (X;R).
(a) The category of perverse sheaves Perv(X;R) is Artinian and Noetherian, i.e.,

every perverse sheaf on X admits an increasing finite filtration with quotients
simple perverse sheaves .

(b) The simple R-perverse sheaves on X are the twisted intersection complexes
ICV (L ) (regarded as complexes on X via extension by zero), where V runs
through the family of smooth connected constructible subvarieties of X, L is a
simple (i.e., irreducible)R-local system of finite rank on V , and V is the closure
of V in X.

Remark 10.2.46 A similar result as in Theorem 10.2.45 is also true for a compact
analytic variety, or if one works in the algebraic or analytic context with S -
constructible perverse sheaves PervS (X;R) ⊂ DbS−c(X;R) for a fixed Whitney
stratification S of X with only finitely many strata. In the latter case one needs to
use in (b) for V only the strata S ∈ S .

Example 10.2.47 Let R be a field of coefficients, and let X = C, U = C
∗ with

open inclusion j : U ↪→ X, and Z = {0} with closed inclusion i : Z ↪→ X. Let L
be a local system of finite rank on U with stalk V and monodromy automorphism
h : V → V . Then L [1] ∈ Perv(U ;R) and ICX(L ) � j∗L [1]. Moreover, it is an
instructive exercise to show that the following assertions hold:

(a) j!L [1] and Rj∗L [1] are perverse sheaves on X.
(b) There is a short exact sequence of perverse sheaves on X:

0 −→ ICX(L ) −→ Rj∗L [1] −→ i!ICZ(Vh) −→ 0 , (10.14)

where Vh = Coker (h − 1). In particular, if the local system L is simple, then
the perverse sheaf Rj∗L [1] admits the filtration

ICX(L ) ⊂ Rj∗L [1]

with simple quotients ICZ(Vh) and ICX(L ).
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(c) There is a short exact sequence of perverse sheaves on X:

0 −→ i!ICZ(V h) −→ j!L [1] −→ ICX(L ) −→ 0 , (10.15)

where V h = ker(h − 1). Hence, if the local system L is simple, then the
perverse sheaf j!L [1] admits the filtration

ICZ(V
h) ⊂ Rj∗L [1]

with simple quotients ICX(L ) and ICZ(V h).

The next result describes the behavior of the intermediate extension with respect
to the dualizing functor (see, e.g., [89, Proposition 8.4.15]).

Proposition 10.2.48 Consider the context of Definition 10.2.41 with coefficient
ring R a field, and let G • ∈ Perv(S |U )(U ;R) be (S |U -)constructible. Then

D(j!∗G •) � j!∗(DG •). (10.16)

In particular, DICX � ICX for X pure dimensional.

10.2.3 Strongly Perverse Sheaves, Dual t-Structure
and Rectified Homological Depth

In this section we only consider (S−)constructible sheaves so that biduality is
available, with a dual perverse t-structure

p+D
≤0
(X;R) := D

(
pD

≥0
(X;R)

)
and p+D

≥0
(X;R) := D

(
pD

≤0
(X;R)

)

on Db
(S−)c(X;R). Here D denotes the Verdier duality functor on X. But only

for R a Dedekind domain one can give a more explicit description of this dual
perverse t-structure. If R s a field, the Universal Coefficient Theorem yields that
F • ∈ pD≥0(X;R) if and only if DF • ∈ pD≤0(X;R). More generally, one has
the following result (see also [6, Section 3.3]):

Proposition 10.2.49 Assume that the ring R is a Dedekind domain (e.g., a field or
a principal ideal domain). If F • ∈ Dbc (X;R) is constructible with respect to a
Whitney stratification S of X, then DF • ∈ pD≤0(X;R), or equivalently F • ∈
p+D

≥0
(X;R), if and only if the following two conditions are satisfied:

(i) F • ∈ pD≥0(X;R);
(ii) for any stratum S ∈ S and any x ∈ S, the costalk cohomologyH dimS(i !xF •)

is torsion-free.
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Proof Let S ∈ S and x ∈ S, with inclusion ix : {x} ↪→ X. Properties of the
dualizing functor and the Universal Coefficient Theorem yield:

Hj(i∗xDF •) � Hj(Di !xF •) � Hom(H−j (i !xF •), R)⊕Ext(H−j+1(i !xF •), R).

The desired equivalence can now be checked easily. In particular pD≥−1(X;R) ⊂
p+D

≥0
(X;R) ⊂ pD≥0(X;R). ��

Definition 10.2.50 Assume that R is a Dedekind domain. We say that F • ∈
Dbc (X;R) is strongly perverse if F • ∈ pD≤0(X;R) and DF • ∈ pD≤0(X;R).
Equivalently, F • ∈ pD≤0(X;R) ∩ p+D≥0

(X;R).
If R is a field, the notions of perverse sheaf and strongly perverse sheaf coincide.

If R is a Dedekind domain, then F • is strongly perverse (with respect to S ) if and
only if F • is perverse and property (ii) above holds (i.e., costalks of F • in the
lowest possible degree are torsion-free on each stratum).

Example 10.2.51 Let X be a pure dimensional complex algebraic or analytic
variety, and let R be a Dedekind domain. Then ICX(L ) is strongly perverse if
the generically defined local system L has finitely generated and torsion-free stalks
(since then condition (ii) only needs to be checked for the top dimensional strata S,
with H dimS(i !xL [dimX]) � Lx for x in such a stratum S).

Strongly perverse sheaves are related to the notion of rectified homological depth,
which we now define.

Let X be a complex algebraic or analytic variety. Following [109, Definition
6.0.4], we make the following.

Definition 10.2.52 The rectified homological depth rHd(X,R) of X with respect
to the commutative base ring R is ≥ d (for some d ∈ Z) if

D(RX[d]) ∈ pD≤0
(X;R) , (10.17)

or, equivalently,

RX ∈ p+D≥d(X;R) . (10.18)

The rectified homological depth rHd(X,R) of X �= ∅ with respect to the
commutative base ring R is the maximum of such integers d .

As indicated in [109, p. 387], the above definition agrees with the notion of rectified
homological depth introduced by Hamm and Lê [56] (following an earlier definition
of Grothendieck, together with the corresponding homotopical notion) in more
geometric terms. In the following, let dim−X be the minimum of the dimension
of the irreducible components of X. So for X �= ∅ smooth, this is the minimum of
the dimension of the connected components of X. Similarly, dim−X = dim−Xreg ,
for Xreg the open dense regular part of X.
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Example 10.2.53

(a) One always has rHd(X,R) ≤ dim−X, and rHd(X,R) = dim−X if X is
smooth and nonempty (since then D

•
X � RX[2 dimX] with dimX viewed as

a locally constant function). Moreover, rHd(X,R) = dimX implies that X is
pure dimensional (by looking at the regular part).

(b) If X is a pure-dimensional local complete intersection, then rHd(X,R) =
dimX (see Example 10.4.29 and, e.g., [109, Example 6.0.11]).

In view of Example 10.2.19(a) and Definition 10.2.50, one has the following
equivalence (see also [109, (6.14)]):

Proposition 10.2.54 Let R be a Dedekind domain. For any nonempty complex
algebraic or analytic variety X one has:

rHd(X,R) = dimX ⇐⇒ X is pure-dimensional and RX[dimX] is strongly perverse.

As a consequence, Proposition 10.2.49 yields the following.

Corollary 10.2.55 Let X be a nonempty pure-dimensional complex algebraic or
analytic variety with a Whitney stratification S .

(a) If R is a field, then:

rHd(X,R) = dimX ⇐⇒ RX[dimX] is perverse.

(b) If R is a Dedekind domain (e.g., a PID), then rHd(X,R) = dimX if and only
if the following two conditions are satisfied:

(i) RX[dimX] is perverse.
(ii) for any stratum S ∈ S and any x ∈ S with ix : {x} ↪→ X, the costalk

cohomologyH dimS(i !xRX[dimX]) is torsion-free.

Let us finish this section with citing the following result from [6, Section 3.3].

Proposition 10.2.56 Assume that the ring R is a Dedekind domain (e.g., a field or
a PID). If F • ∈ Dbc (X;R) is constructible with respect to a Whitney stratification

S of X, then DF • ∈ pD≥0(X;R), or equivalently F • ∈ p+D
≤0
(X;R), if and

only if the following two conditions are satisfied:

(i) F • ∈ pD≤1(X;R);
(ii) for any stratum S ∈ S and any x ∈ S, the stalk cohomology

H− dimS+1(i∗xF •) is a torsion module.

In particular, pD≤0(X;R) ⊂ p+D
≤0
(X;R) ⊂ pD≤1(X;R).

Assume R is a Dedekind domain. Let us denote byDb
(S−)tc(X;R) the full trian-

gulated subcategory of (S -)constructible sheaf complexes F • ∈ Db
(S−)c(X;R),

with all stalk cohomology modules Hk(i∗xF •) being torsion modules for all x ∈
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X, k ∈ Z. These are also stable by the usual truncation functors. Similarly, in
the context of Example 10.2.38, all considered functors preserve the subcategory
DbS−tc(−;R) of these torsion S -constructible sheaf complexes. For i! = i∗ and

j∗ = j ! this is trivial, and for i ! it follows from the corresponding property for Rj∗
and the standard distinguished triangle

i∗i ! −→ id −→ Rj∗j∗ −→ .

But the stalk cohomology modules of the open push-forward Rj∗ can be expressed
in terms of the compact link [109, Remark 4.4.2], and by the Künneth formula they
vanish after tensoring with the quotient field Q(R) of R. Then the usual perverse
t-structure and its truncation functors restrict to the perverse t-structure

(
pD

≤0
S−t (X;R), pD≥0

S−t (X;R)
)

on DbS−tc(X;R), (10.19)

and the corresponding heart of S -constructible torsion perverse sheaves

PervS−t (X;R) .

Example 10.2.57 LetX be a pure dimensional complex algebraic or analytic variety
with a Whitney stratification S , and let R be a Dedekind domain. Then ICX(L ) is
a S -constructible torsion perverse sheaf if the local system L defined on the open
top dimensional strata has only finitely generated torsion stalks.

Corollary 10.2.58 Assume R is a Dedekind domain. Then one gets for the shifted
Verdier duality functor (D(−))[1]:
(a) (D(−))[1] maps pD≤0

S−t (X;R) into pD≥0
S−t (X;R).

(b) (D(−))[1] maps pD≥0
S−t (X;R) into pD≤0

S−t (X;R).
In particular, the category PervS−t (X;R) of S -constructible torsion perverse
sheaves is stable under the shifted Verdier duality functor (D(−))[1].
Example 10.2.59 Assume R is a Dedekind domain. Then on a point space X =
{pt} the shifted duality functor (D(−))[1] is given by

RH om•(−, R)[1] �H om•(−,Q(R)/R) : Dbtc({pt};R)→ Dbtc({pt};R) ,

preserving finitely generated torsion modules (viewed as complexes concentrated in
degree zero). HereQ(R) is the quotient field of R so that the short exact sequence

0 −→ R −→ Q(R) −→ Q(R)/R −→ 0

gives the injective resolution [Q(R) −→ Q(R)/R] of R used for the calculation of
RH om•(−, R).
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In fact this example is also used on a general X for showing that the Verdier
duality functor D preserves Db

(S−)tc(X;R), together with i∗xD � Di !x for all x ∈
X. For applications and a discussion of related results see also [20, 48, 87, 88, 115].

10.3 Stratified Morse Theory for Constructible Sheaves

In this section, we explain the basic results from [109] about stratified Morse
theory in the framework of (weakly) constructible sheaves in the complex context,
continuing and extending the recent survey of Goresky [49] in this handbook series
(as well as the survey of Massey [85]). We follow the notions of the geometric
stratified Morse theory of Goresky-MacPherson so that one can easily compare
our results with those of [47]. Moreover, we also explain some relations to the
general micro-local sheaf theory of Kashiwara-Schapira [66]. But unlike most of
these references, we do not need a global embedding into an ambient complex
manifold (except for the index theorems for characteristic cycles of constructible
sheaves and the comparison with the notion of micro-support from [66]).

10.3.1 Morse Functions, Local and Normal Morse Data

We work with a fixed complex algebraic (or analytic) variety X with a given
Whitney stratification S .

Definition 10.3.1 A function f : X→ R is a Ck-differentiable function (with 2 ≤
k ≤ ∞) if, for any x ∈ X, there exists a local embedding (X, x) ↪→ (Cn, x) such
that f is induced by restriction of a Ck-function germ f̂ : (Cn, x)→ (R, f (x)).

Of course, a complex algebraic (or analytic) function or morphism h : X → C

is by definition locally given by restriction of a complex algebraic (or analytic)
function germ ĥ : (Cn, x)→ (C, h(x)).

Definition 10.3.2 A point x ∈ X is called a stratified critical point of f : X → R,
resp., h : X → C (with respect to S ) if f : S → R, resp., h : S → C is not a
submersion at the point x belonging to the stratum S ∈ S . Let Sing(f |S), resp.,
Sing(h|S) be the set of critical points of f , resp., h in the stratum S ∈ S , with

SingS (f ) :=
⋃

S∈S
Sing(f |S) resp., SingS (h) :=

⋃

S∈S
Sing(h|S) .

Then SingS (f ) (resp., SingS (h)) is a closed (complex algebraic or analytic) subset
of X by the Whitney a-condition.
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The following result shows that for S -weakly constructible sheaf complexes
the local change of cohomology with respect to f is located at the critical points
x ∈ SingS (f ) (see, e.g., [109, Example 5.1.1]).

Lemma 10.3.3 Let f : X →]c, d[ ⊂ R be a proper differentiable function, with
F • ∈ DbS−wc(X;R) a S -weakly constructible complex.

1. If f is a stratified submersion at a point x ∈ {f = e} (with e ∈ ]c, d[ , and here
f does not need to be proper), then

(
R�{f≥e}(F •)

)
x
� 0 � (R�{f≤e}(F •)

)
x
.

2. If f is a stratified submersion at all points of {f = e} (for e ∈ ]c, d[ ), then

R�({f = e}, R�{f≥e}(F •)) � 0 � R�({f = e}, R�{f≤e}(F •)) .

3. If f is a stratified submersion at all points of {a < f < b} (with ]a, b[ ⊂ ]c, d[ ),
then all cohomology sheaves of (Rf∗F •)| ]a,b[ are locally constant.

These results can be proved by induction on the dimension of X without using
the “first isotopy Lemma of Thom”. Property 1. above just means that a Whitney
b-regular stratification satisfies the “local stratified acyclicity” property form [109,
Definition 4.0.3]. In the embedded context of a global closed embedding k : X ↪→
M into a complex manifold it also implies the following estimate [109, Corollary
4.0.3] of the micro-support of Rk∗F • in the sense of Kashiwara-Schapira [66,
Definition 5.1.2] (with Rk∗ = k∗ = k! the extension by zero):

μsupp(Rk∗F •) ⊂
⋃

S∈S
T ∗S M ↪→ T ∗M for any F • ∈ DbS−wc(X;R).

(10.20)

Here, μsupp(G •) ⊂ T ∗M is by definition the complement of the largest open
subset U ⊂ T ∗M such that R�{f≥f (x)}(G •)x � 0 for any differentiable function
germ f : (M, x) → (R, f (x)) with dfx ∈ U (see [66, Definition 5.1.2]). We also
use the notation T ∗S M for the conormal bundle of the stratum S in M , i.e., for
the kernel of the natural vector bundle epimorphism T ∗M|S → T ∗S dual to the
inclusion T S ↪→ TM|S . Let us denote by T ∗SM this union of conormal spaces
of strata S ∈ S . Then the Whitney a-condition for S is equivalent to the fact
that T ∗SM ↪→ T ∗M is closed in T ∗M . Moreover it is conic in the sense that
it is invariant under the natural C∗-action on the cotangent bundle. The inclusion
of the micro-support in (10.20) implies that μsupp(Rk∗F •) ⊂ T ∗M is a closed
complex algebraic (or analytic) conic Lagrangian subset of T ∗M , and (10.20) is
even equivalent to S -weak constructibility (see, e.g., [109, Lemma 4.1]).

Lemma 10.3.4 Let G • ∈ Db(M;R) be given with μsupp(G •) ⊂ T ∗SM . Then
supp(G •) ⊂ X and G •|X is S -weakly constructible.
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Example 10.3.5 Assume X = M with G • ∈ Db(M;R) be given. Then
μsupp(G •) ⊂ T ∗MM the zero section of T ∗M if and only if all cohomology
sheaves H i (G •) are locally constant onM .

This Example can be proved directly with the “non-characteristic deformation
Lemma” of Kashiwara (see, e.g., [109, Proposition 4.1.1]). Moreover, it can be used
as a substitute for the “first isotopy Lemma of Thom”.

If one does not want to fix a complex Whitney stratification S , then one gets
the following micro-local characterization of weak constructibility (see, e.g., [109,
Theorem 4.0.1] and [66, Theorem 8.5.5]).

Theorem 10.3.6 Let M be a complex algebraic (or analytic) manifold. Then
G • ∈ Db(M;R) is a weakly constructible complex (i.e., G • ∈ Dbwc(M;R)) in
the complex algebraic (or analytic) sense if and only if μsupp(G •) ⊂ T ∗M is a
closed complex algebraic (or analytic) conic Lagrangian subset of T ∗M .

Let us now come back to the general non-embedded context with S a fixed
Whitney stratification of X. Then Lemma 10.3.3 implies (see, e.g., [109, Corollary
5.1.1]).

Corollary 10.3.7 Let f : X →]c, d[ ⊂ R be a proper differentiable function,
with F • ∈ DbS−wc(X;R) a S -weakly constructible complex. If f is a stratified
submersion at all points of {a ≤ f ≤ b} ∩ {f �= e} (with [a, b] ⊂ ]c, d[ and
e ∈ ]a, b[ ), then one has distinguished triangles

R�({f = e}, R�{f≥e}(F •))→ R�({f ≤ b},F •)→ R�({f ≤ a},F •)→ ,

(10.21)

and

R�c({f < a},F •)→ R�c({f < b},F •)→ R�({f = e}, R�{f≤e}(F •))→ .

(10.22)

Here, R�({f = e}, R�{f≥e}(F •)) is the cohomological counterpart of the
“coarse Morse datum” as defined in [47, p.62, Definition 3.4]. In particular,

R�({f = e}, R�{f≤e}(F •) � R�({−f = −e}, R�{−f≥−e}(F •))

is the “coarse Morse datum” of −f . So this “coarse Morse datum” of −f
corresponds to the “relative cohomology with compact support” in the trian-
gle (10.22). But the cohomology with compact support is in some sense “dual” to
the cohomology with closed support. So this reflects the “duality” observed in [47,
p.27, 2.7]. In the context of stratified Morse theory for constructible sheaves, this is
a special form of Poincaré-Verdier duality (see Equation (10.25)).

The next step is to consider a differentiable function f with isolated stratified
critical points in {f = e}, and to localize the “coarse Morse datum” at these critical
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points. In terms of sheaf theory, this is quite easy (since R�{f≥e}(F •)|{f=e} is
supported on the stratified critical points).

Lemma 10.3.8 Let f : X →]c, d[ ⊂ R be a proper differentiable function, with
F • ∈ DbS−wc(X;R) a S -weakly constructible complex. Assume f is a stratified
submersion at all points of {a ≤ f ≤ b} except for finitely many xi ∈ {f = e} (with
[a, b] ⊂ ]c, d[ and e ∈ ]a, b[ ). Then

R�({f = e}, R�{f≥e}F •)) �
⊕

i

(
R�{f≥e}(F •)

)
xi
. (10.23)

The stalk complex

LMD(F •, f, x) := (R�{f≥f (x)}(F •)
)
x

(10.24)

is the sheaf theoretic counterpart of the “local Morse datum” of [47, p.63, Definition
3.5.2]. The “duality” between f and −f discussed above is closely related to
Verdier duality for the local Morse data in the following form of [109, Equation
(5.54) on p.314]:

D(LMD(F •,−f, x)) � LMD(D(F •), f, x) for F • ∈ DbS−wc(X;R).
(10.25)

Let us now recall two notions from [47].

Definition 10.3.9 Fix a point x in the stratum S ∈ S .

1. x is called a stratified Morse critical point of the differentiable function germ
f : (X, x) → R (with respect to S ), if f |S has at x a Morse critical point in
the classical sense (i.e., its Hessian at x is non-degenerate), and f = f̂ |X is
induced in some local embedding (X, x) ↪→ (Cn, x) by a differentiable function
germ f̂ : (Cn, x) → (R, f (x)) such that the covector df̂x is non-degenerate in
the sense of [47, p.44, Definition 1.8], i.e., it does not vanish on any generalized
tangent space

τ := lim
xn→x

TxnS
′ at x,

with xn a sequence in a stratum S′ ∈ S with S ⊂ ∂S′.
2. A normal slice N at x ∈ S ↪→ X ↪→ C

n is a closed complex submanifold germ
N of (Cn, x), with N ∩ S = {x} such that N intersects S transversally at x (so
that codimN = dim S).

Note that a normal slice N intersects all strata transversally near x by Whitney
a-regularity. Therefore N ∩ X gets an induced Whitney stratification S |N near x
with strata the connected components of intersections S′ ∩ N �= ∅ (S′ ∈ S ) and
{x} = S ∩N now a point stratum.
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Similarly, a stratified Morse critical point of f is an isolated stratified critical
point of f . Finally, if f = f̂ |X is induced in some local embedding (X, x) ↪→
(Cn, x) by a differentiable function germ f̂ : (Cn, x) → (R, f (x)) such that the
covector df̂x is non-degenerate, then one can find such an f̂ in any local embedding
(X, x) ↪→ (Cm, x).

Example 10.3.10 Let S be an open stratum of X. Then x ∈ S is a stratified Morse
critical point of f if and only if f |S has at x a classical Morse critical point. If
S = {x} is a point stratum, then x is by definition a stratified critical point for
any differentiable function f : X → R. It is a stratified Morse critical point if and
only if f = f̂ |X is induced in some local embedding (X, x) ↪→ (Cn, x) by a
differentiable function germ f̂ : (Cn, x)→ (R, f (x)) such that the covector df̂x is
non-degenerate.

Example 10.3.11 Let X = M be a complex manifold, with M ′ ↪→ M a closed
complex submanifold of positive codimension and the Whitney stratification S
given by the connected components ofM ′ andM\M ′. Then a differentiable function
f : M → R has a stratified Morse critical point at x ∈ M ′ if and only if x is not a
critical point of f : M → R (this is equivalent to dfx is nondegenrate) and x ∈ M ′
is a classical Morse critical point for f : M ′ → R.

Let us now state the first main result from stratified Morse theory for con-
structible sheaves (see, e.g., [109, Theorem 5.0.1]).

Theorem 10.3.12 Let X be a complex algebraic (or analytic) variety with a
Whitney stratification S , and let F • ∈ DbS−wc(X;R) be a given S -weakly
constructible complex. Let f : (X, x) → R be a differentiable function germ with
a stratified Morse critical point at x ∈ S for some stratum S ∈ S . Take a normal
slice N ⊂ C

n at x in some local embedding (X, x) ↪→ (Cn, x).

1. Then one has an isomorphism

(
R�{f≥f (x)}(F •)

)
x
� (R�{f |N∩X≥f (x)}(F •|N∩X)

)
x
[−τ ] ,

with τ the Morse index of f |S (i.e., its Hessian at x has exactly τ negative
eigenvalues).

2. The isomorphism class of

(
R�{f |N∩X≥f (x)}(F •|N∩X)

)
x

is independent of the choice of such a local embedding and normal slice N .
Moreover, this isomorphism class only depends on the stratum S ∈ S , but not
on the point x ∈ S or the function germ f = f̂ |X with df̂x non-degenerate in
such a local embedding.

The isomorphism class of

NMD(F •, S) := (R�{f |N∩X≥f (x)}(F •|N∩X)
)
x

(10.26)
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is the sheaf theoretic counterpart of the “normal Morse data” of [47, p.65,
Definition 3.6.1]. In the (locally) embedded context k : X ↪→ M , NMD(F •, S) is
also isomorphic to the “micro-local type of Rk∗F • at the non-degenerate covector
ω = df̂x” in the sense of Kashiwara-Schapira [66, Proposition 6.6.1(ii)] (as shown
in [109, Equation (5.52) on p.311]). Part 1. of Theorem 10.3.12 corresponds to
[47, p.8, Theorem SMT Part B; p.65, Main Theorem 3.7], and part 2. to [47, p.93,
Theorem 7.5.1] (compare also with [47, p.223, Proposition 6.A.1]).

Let us consider again the embedded context with k : X ↪→ M a closed embed-
ding into a complex algebraic (or analytic) manifold, and F • ∈ DbS−wc(X;R).
By using the estimate (10.20) and the involutivity of μsupp(Rk∗F •) [66, Theorem
6.5.4] one can show thatμsupp(Rk∗F •) is a union of closures of conormal bundles
T ∗S M of some strata S ∈ S . Then the explicit characterization of the micro-support
μsupp(Rk∗F •) is given as follows (see, e.g., [109, Proposition 5.0.1]).

Proposition 10.3.13 Let F • ∈ DbS−wc(X;R) be given. Then

T ∗S M ⊂ μsupp(Rk∗F •) ⇐⇒ NMD(F •, S) �� 0 .

For the applications of stratified Morse theory for constructible sheaves, it is
important to get information about this normal Morse datum NMD(F •, S) for a
stratum S ∈ S . In our complex context this can be obtained in the following way.
Since it is a local study, we can assume that for a given point x ∈ S we have (locally)
a closed embedding (X, x) ↪→ (Cn, x = 0).

We already know that the isomorphism class of the “normal Morse datum”
NMD(F •, S) only depends on the non-degenerate covector ω = df̂x ∈ T ∗S Cn|x .

So one can use a holomorphic function germ g : (Cn, x) → (C, 0) with df̂x =
d(Re(g))x . Also choose a local normal slice N at x ∈ S ↪→ X ↪→ C

n, with
{x} = S ∩ N a point stratum of the induced Whitney stratification S |N of X ∩ N .
Then one gets (see Remark 10.4.18 and also, e.g., [109, Proposition 5.0.3]).

Proposition 10.3.14 Let kx : {x} → N ∩ X be the inclusion of this point stratum,
and F • ∈ DbS−wc(X;R) be given. Then there exists two distinguished triangles

(10.27)

and

(10.28)

Moreover, the isomorphism classes of R�(lX,F •) and R�(lX, ∂lX,F •) only
depend on the stratum S of X (but on no other choice like the local embedding
(X, x) ↪→ (Cn, x = 0), or the choice of N or g as above).
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Here we use the following notation (with 0 < |w| ( δ ( 1 and r(z) :=∑
1≤i≤n zi z̄i the square of the local distance to x = 0 ∈ C

n)

(lX, ∂lX) := (X ∩N ∩ {r ≤ δ, g = w},X ∩N ∩ {r = δ, g = w}) (10.29)

for the complex link of X with respect to S ∈ S (see [47, p.161, Definition.2.2]).
In other words, this is the local Milnor fiber (with its boundary) (see, e.g., [71] or
[109, Example 1.1.2]) of the holomorphic function germ g : (X ∩ N, x)→ (C, 0),
which has an isolated stratified critical point in x with respect to S |N (since dgx is
a non-degenerate covector).

Example 10.3.15 Assume S ∈ S is an open stratum in X. Then for x ∈ S and a
normal slice N at x one gets X ∩ N = {x}, so that the corresponding complex link
is empty, lX = ∅, with

NMD(F •, S) � k∗x(F •|N∩X) � i∗xF •

just the stalk of F • ∈ DbS−wc(X;R) at x.

Example 10.3.16 We state here cohomological counterparts of some results of
[47].

1. If we take F • = ZX, then we get by the first distinguished triangle (10.27) for
the cohomology of the “normal Morse datum” NMD(F •, S) for x ∈ S:

(
Rk�{Re(g)|N∩X≥0}(F •|N∩X)

)
x
�

⎧
⎪⎪⎨

⎪⎪⎩

Z for k = 0 and lX = ∅,
0 for k �= 0 and lX = ∅,
H̃ k−1(lX;Z) for lX �= ∅.

This corresponds to the “first part of the fundamental theorem of complex
stratified Morse theory” [47, p.16, Theorem CSMT Part A, p.166 Corollary
2.4.1].

2. Consider now the case F • = Rj∗ZU for j : U ↪→ X the inclusion of an open
subspace, which is a union of strata. Assume x �∈ U . Then one gets by the second
distinguished triangle (10.28) for the cohomology of the “normal Morse datum”
NMD(F •, S) for x ∈ S:

(
Rk�{Re(g)|N∩X≥0}(F •|N∩X)

)
x
� Hk−1(lX, ∂lX;Rj∗ZU ) .

Moreover, by the base change isomorphism (10.11) one gets

Hk−1(lX, ∂lX;Rj∗ZU) � Hk−1(lU , ∂lU ;Z) ,

with (lU , ∂lU ) := (lX, ∂lX) ∩ U the complex link of U . This corresponds to the
“second part of the fundamental theorem of complex stratified Morse theory”
[47, p.18, Theorem CSMT Part B, p.169, Corollary 2.6.1].
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Proposition 10.3.14 and the corresponding distinguished triangles for dgx ∈
T ∗S Cn a non-degenerate covector are related to the theory of the nearby and
vanishing cycle functors of Deligne, as will be explained and discussed in later
sections (see Remark 10.4.18):

NMD(F •, S) � (ϕg|N∩X [−1](F •|N∩X)
)
x

(10.30)

and

R�(lX,F
•) � (ψg|N∩X (F •|N∩X)

)
x
, (10.31)

resp.,

R�(lX, ∂lX,F
•) � k!x

(
ψg|N∩X (F •|N∩X)

)
. (10.32)

One also has for a holomorphic function germ g : (X, x) → (C, 0) and F • ∈
DbS−wc(X;R) an isomorphism (see Corollary 10.4.14 or, e.g., [109, Corollary
1.1.1])

LMD(F •, Re(g), x) = (R�{Re(g)≥0}(F •)
)
x
� ( ϕg[−1](F •)

)
x
. (10.33)

Example 10.3.17 (Normal Morse Data for Products) LetXi be a complex algebraic
(or analytic) variety, with F •

i weakly constructible with respect to a Whitney

stratification Si of Xi , for i = 1, 2. Then F •
1

L

� F •
2 is weakly constructible with

respect to the product Whitney stratification S1×S2 ofX1×X2 (with strata S1×S2
for S1 ∈ S1 and S2 ∈ S2). Moreover

NMD

(
F •

1

L

�F •
2 , S1 × S2

)
� NMD(F •

1 , S1)
L⊗NMD(F •

2 , S2) .

Let Ni ⊂ C
ni be normal slices at xi ∈ Si , with a corresponding non-degenerate

covector dgi,xi ∈ T ∗SiCni for a holomorphic function germ gi : (Cni , xi) → (C, 0)
as above (i = 1, 2). ThenN = N1×N2 ⊂ C

n1 ×C
n2 is a normal slice at (x1, x2) ∈

S1 × S2, with dg(x1,x2) =
(
dg1,x1, dg2,x2

)
a corresponding non-degenerate covector

defined by g(z1, z2) := g1(z1) + g2(z2). Example 10.3.17 is then by (10.30) a
very special case of the Thom-Sebastiani Theorem for vanishing cycles stated in
Theorem 10.4.30.

10.3.2 Perverse Sheaf Description via Normal Morse Data

The distinguished triangles of Proposition 10.3.14 can be used to get (inductive)
information about the “normal Morse data”. The advantage in the complex context
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comes from the fact that X ∩ N ∩ {g = w} is a complex analytic space (of lower
dimension) with an induced Whitney stratification. Moreover, the distance function
r used for the stratified Morse theory on X ∩N ∩ {g = w} (in the induction step) is
now strongly plurisubharmonic so that one has nice estimates for the Morse index
(of an approximation by a Morse function) of r and −r .
Definition 10.3.18 A Ck-function f : X→ R (k ≥ 2) is called q-convex in x ∈ X,
if one can choose f̂ : (Cn, x)→ (R, f (x)) in a local embedding (X, x) ↪→ (Cn, x)

with f̂ |X = f so that its Levi form L
f̂
(x) at the point x has at most q non-positive

eigenvalues. Here the Levi form of f̂ at the point x is the Hermitian form given by
the matrix of partial derivatives:

L
f̂
(x) :=

(
∂2f̂

∂zj ∂z̄k
(x)

)

1≤j,k≤n
.

f is called q-convex (in a subset Z ⊂ X) if it is q-convex in all points (of Z).

For example, a strongly plurisubharmonic Ck-function on an open subset U of
C
n (with k ≥ 2) is 0-convex in all of U . In particular, the distance function

r : Cn → R
≥0 ; r(z) :=

n∑

i=1

zi z̄i is 0-convex in C
n.

We next state the second main result for stratified Morse theory of constructible
sheaves in the complex context (see [109, Theorem 6.0.1] for a more general
formulation). We include here a complete proof based on Theorem 10.3.12, for
explaining the use of stratified Morse theory and because similar ideas can also
be used later on for other important results.

Theorem 10.3.19 Let S be a Whitney stratification of the complex algebraic (or
analytic) variety X, and consider a C∞-function f : X → R. Assume a < b are
stratified regular values of f with respect to S such that {a ≤ f ≤ b} is compact.
Let F • ∈ DbS−(w)c(X;R) be given.

1. Suppose f is q-convex in {a ≤ f ≤ b}, and let q ′ := min{q, dimX}.

F • ∈ pD
≤n
S (X;R)⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ pD≤n+q ′({pt};R).

If R is a Dedekind domain and F • is S -constructible, then also

F • ∈ p+D≤nS (X;R) ⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ p+D≤n+q ′({pt};R) .

2. Suppose−f is q-convex in {a ≤ f ≤ b}, and let q ′ := min{q, dimX}.

F • ∈ pD
≥n
S (X;R)⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ pD≥n−q ′({pt};R).
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If R is a Dedekind domain and F • is S -constructible, then also

F • ∈ p+D≥nS (X;R) ⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ p+D≥n−q ′({pt};R) .

Here R�({a ≤ f ≤ b}, {f = a},F •) ∈ Dbc ({pt};R) in case F • is S -
constructible.

Proof We prove the claim by induction over dimX, where the case dimX = 0 is
trivial (since the conditions to be checked contain the zero object and are stable by
finite direct sums).

After approximating f by a stratified Morse function (see [8]), we can assume
that f has only finitely many stratified Morse critical points in {a ≤ f ≤ b}. If the
approximation is close enough, then also this new±f is q-convex. This implies the
following important estimate for the Morse index τ (f |S) of f |S for a stratum S ∈ S
in terms of q ′ := min{q, dim(X)} (compare with [47, p.191, Lemma 4.A.2]):

{
τ (f |S) ≤ dim S + q ′, if f is q-convex.

τ (f |S) = 2 dimS − τ (−f |S) ≥ dim S − q ′, if − f is q-convex.
(10.34)

Then we apply Lemma 10.3.8. Since the conditions to be checked contain the
zero object and are stable by extensions, we only have to show that the “local Morse
datum”

LMD(F •, f, x) = (R�{f≥f (x)}(F •))x

of f at such a stratified Morse critical point x in a stratum S ∈ S belongs to
p(+)D≤n+q ′ ({pt};R) for statement 1. (resp., belongs to p(+)D≥n+q ′ ({pt};R) for
statement 2.).

By Theorem 10.3.12 we get

LMD(F •, f, x) � NMD(F •, S)[−τ ],

with NMD(F •, S) the “normal Morse datum” of F • in the stratum S and τ
the Morse index of f |S . Here we can use the estimate (10.34) for this Morse
index. Since the conditions to be checked contain the zero object and are stable
by extensions as well as shifting by [1] (resp., [−1]) for the first (resp., second)
result, we only have to show that (with s := dim S):

NMD(F •, S) ∈
{
p(+)D≤n−s ({pt};R) in part 1. of the theorem.
p(+)D≥n−s ({pt};R) in part 2. of the theorem.

(10.35)
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By Proposition 10.3.14 we have two distinguished triangles:

and

where we use, as before, the notation (with 0 < |w| ( δ ( 1)

(lX, ∂lX) := (X ∩N ∩ {r ≤ δ, g = w},X ∩N ∩ {r = δ, g = w})

for the complex link of X with respect to S ∈ S . Also, kx : {x} ↪→ N ∩ X is the
inclusion, and r is the 0-convex distance function r(z) := ∑n

i=1 zi z̄i in our fixed
local embedding (X, x) ↪→ (Cn, x = 0).

But N ∩ {g = w} is transversal to S near x (for 0 < |w| ( 1). So

L := X ∩N ∩ {g = w}

gets an induced Whitney stratification S |L. Moreover, for 0 < |w| ( δ ( 1, δ is
a regular value of r with respect to S |L, since dgx is non-degenerate. Then we can
use the induction hypothesis with q = 0 for

{
F •|L, r and [a, b] := [−1, δ] in part 1. of the theorem.

F •|L, −r and [a, b] := [−δ, 1] in part 2. of the theorem.

Note that

F •|L[−1] ∈ p(+)D≤n−sS |L (L;R) or p(+)D≥n−sS |L (L;R)

by transversality and Proposition 10.2.27 (or its proof), with codimL = s + 1.
By the induction hypothesis we get

R�(lX,F
•)[−1] ∈ p(+)D≤n−s ({pt};R)

or

R�(lX, ∂lX,F
•)[−1] ∈ p(+)D≥n−s ({pt};R) .

But, by definition, k∗x(F •|N∩X) ∈ p(+)D≤n−s ({pt};R), which implies part 1. of
the theorem by the first distinguished triangle above. Similarly

F •|X∩N ∈ p(+)D≥n−sS |N (X ∩N;R)
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by Proposition 10.2.27 (or its proof), so that k!x(F •|N∩X) ∈ p(+)D≥n−s ({pt};R).
This implies part 2. of the theorem by the second distinguished triangle above. The
last claim of Theorem 10.3.19 follows by inspection of the proof. ��
Corollary 10.3.20 Let X̄ be a compact complex algebraic (or analytic) variety of
dimension d , with F • ∈ Dbwc(X̄;R) (resp., F • ∈ Dbc (X̄;R) and R is a Dedekind
domain in case we consider the dual perverse t-structure). Let j : X ↪→ X̄ be the
inclusion of the open dense complement of a closed algebraic (or analytic) subset
Z ⊂ X̄ (so that d = dimX = dim X̄). Then:

1. j∗F • ∈ p(+)D≤n(X;R) ⇒ Rj!j∗F • ∈ p(+)D≤n(X̄;R)

⇒ R�c(X, j
∗F •) � R�(X̄,Rj!j∗F •) ∈ p(+)D≤n+d ({pt};R) .

2. j∗F • ∈ p(+)D≥n(X;R) ⇒ Rj∗j∗F • ∈ p(+)D≥n(X̄;R)

⇒ R�(X, j∗F •) � R�(X̄,Rj∗j∗F •) ∈ p(+)D≥n−d ({pt};R) .

Note that by a theorem of Nagata (see, e.g., [22, 79]) such a compactification is
always available in the complex algebraic context.

The (method of) proof of Theorem 10.3.19 also implies the following.

Proposition 10.3.21 Let S be a Whitney stratification of the complex algebraic
(or analytic) variety X, and consider a differentiable function f : X → R. Assume
a < b are stratified regular values of f with respect to S such that {a ≤ f ≤ b}
is compact. Let T ⊂ Db({pt};R) be a fixed “null system”, i.e., a full triangulated
subcategory stable by isomorphisms.

1. Denote by Db
(S−)T−stalk(X;R) the induced “null system” given by all F • ∈

Db
(S−)wc(X;R) with stalks i∗xF • ∈ T for all x ∈ X. Then

F • ∈ DbS−T−stalk(X;R) ⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ T .

2. Denote by Db
(S−)T−costalk(X;R) the induced “null system” given by all F • ∈

Db
(S−)wc(X;R) with costalks i !xF • ∈ T for all x ∈ X. Then

F • ∈ DbS−T−costalk(X;R) ⇒ R�({a ≤ f ≤ b}, {f = a},F •) ∈ T .

Corollary 10.3.22 Let X̄ be a compact complex algebraic (or analytic) variety,
with F • ∈ Dbwc(X̄;R). Let j : X ↪→ X̄ be the inclusion of the open complement
of a closed algebraic (or analytic) subset Z ⊂ X̄, and fix a given “null system”
T ⊂ Db({pt};R).
1. j∗F • ∈ DbT−stalk(X;R) ⇒ Rj!j∗F • ∈ DbT−stalk(X̄;R)

⇒ R�c(X, j
∗F •) � R�(X̄,Rj!j∗F •) ∈ T .
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2. j∗F • ∈ DbT−costalk(X;R) ⇒ Rj∗j∗F • ∈ DbT−costalk(X̄;R)

⇒ R�(X, j∗F •) � R�(X̄,Rj∗j∗F •) ∈ T .

Example 10.3.23 Let us mention here some important examples of such a “null
system” T ⊂ Db({pt};R).
1. T = Dbc ({pt};R) are the complexes with finitely generated cohomology. Then
Db
(S−)T−stalk(X;R) is the category of (S -)constructible sheaf complexes.

2. Assume R is a Dedekind domain and T = Dbtc({pt};R) are the complexes with
finitely generated torsion cohomology. ThenDb

(S−)T−stalk(X;R) is the category
of (S -)constructible torsion sheaf complexes.

3. Assume R is a field and T = Dbc,χ=0({pt};R) are the complexes with
finitely generated cohomology whose Euler characteristic is zero. Then
Db
(S−)T−stalk(X;R) is the category of (S -)constructible sheaf complexes

F • ∈ Db
(S−)c(X;R) with associated (S -)constructible function

χstalk (F
•) = 0 ∈ CF(S )(X) ,

i.e., whose stalkwise Euler characteristic χstalk (F •) (x) := χ
(
F •
x

)
vanishes

for all x ∈ X. Then [F •] ∈ K0

(
Db
(S−)c(X;R)

)
is in the kernel of

χstalk : K0

(
Db
(S )−c(X;R)

)
→ CF(S )(X) ⇐⇒ F • ∈ Db

(S−)T−stalk(X;R).

Example 10.3.24 Let X̄ be a compact complex algebraic (or analytic) variety, with
a given Whitney stratification S . Let F •,G • ∈ DbS−c(X̄;R) and assume R a

field. Let j : X ↪→ X̄ be the inclusion of the open complement of a closed algebraic
(or analytic) subsetZ ⊂ X̄, which is a union of strata S ∈ S , with S |X the induced
Whitney stratification of X. Then χstalk(j∗F •) = χstalk(j∗G •) as a constructible
function implies

χc(X, j
∗F •) = χc(X, j∗G •) .

So the global Euler characteristic with compact support χc(X, j∗F •) only depends
on the underlying constructible function χstalk(j∗F •) = α ∈ CFS (X), with

χc(X,F
•) =

∫

X

αdχ :=
∑

S∈S |X
χc(S) · α(S) . (10.36)

Here χc(S) := χc(S,RS) = χ(H ∗c (S;R)) is the corresponding Euler characteristic
of a stratum S ∈ S |X.



720 L. G. Maxim and J. Schürmann

Similar considerations apply if X is given as a relatively compact open subset
X = {f < b} (resp., a compact subset X = {f ≤ b}) for a proper differentiable
function f : X̄→ [a, d[ ⊂ R, with b < d a stratified regular value of f with respect
to S . Here X̄ does not need to be compact, with strata S of S |{f<b} given by the
connected components of S′ ∩{f < b} for S′ ∈ S . Similarly for the decomposition
S |{f≤b} of {f ≤ b}, but here the parts S′ ∩ {f ≤ b} for S′ ∈ S are complex
manifolds with possible non-empty boundary S′ ∩ {f = b}.

The proof of Theorem 10.3.19 implies directly the following characterizations
(see, e.g., [109, Corollary 6.0.2]).

Corollary 10.3.25 Let S be a Whitney stratification of the complex algebraic (or
analytic) variety X, and consider F • ∈ DbS−wc(X;R) (resp., F • ∈ Dbc (X;R)
and R is a Dedekind domain in case we consider the dual perverse t-structure).
Then we have:

1. F • ∈ p(+)D≤0
S (X;R) ⇐⇒ NMD(F •, S)[− dim(S)] ∈ p(+)D≤0({pt};R)

for all strata S ∈ S .

2. F • ∈ p(+)D≥0
S (X;R) ⇐⇒ NMD(F •, S)[− dim(S)] ∈ p(+)D≥0({pt};R)

for all strata S ∈ S .
3. Let T ⊂ Db({pt};R) be a fixed “null system”. Then

F • ∈ DbS−T−stalk(X;R) ⇐⇒ NMD(F •, S) ∈ T for all strata S ∈ S

⇐⇒ F • ∈ DbS−T−costalk(X;R) .

Proof The implications ⇒ are already contained in (10.35) from the proof of
Theorem 10.3.19. For the other implications ⇐ in case of a point stratum S = {x}
one applies the proof of Theorem 10.3.19 for the (co)stalk description

i∗xF • � R�({r ≤ δ},F •) � R�({−1 ≤ r ≤ δ}, {r = −1},F •)

and

i !xF • � R�c({r < δ},F •) � R�({−δ ≤ −r ≤ 1}, {−r = −δ},F •) ,

with 0 < δ small and r the 0-convex distance function r(z) := ∑n
i=1 zi z̄i in some

fixed local embedding (X, x) ↪→ (Cn, x = 0). The general case is reduced to a
point stratum via intersecting with a normal slice N to S ∈ S at a given point
x ∈ S. Here, the normal Morse data NMD(F •, S′) = NMD(F •|N, S′ ∩ N) for
S′ ∈ S close to x does not change. ��
Example 10.3.26 Let S be a Whitney stratification of the complex algebraic (or
analytic) variety X, with F • ∈ DbS−wc(X;R). Then F • is a perverse sheaf if
and only if
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Hi (NMD(F •, S)[− dim(S)]) = 0 for i �= 0 and all strata S ∈ S .

If, moreover, F • is constructible and R a Dedekind domain, then F • is a strongly
perverse sheaf if and only if, in addition,

H 0 (NMD(F •, S)[− dim(S)]) is finitely generated and torsion-free

for all strata S ∈ S .

Example 10.3.27 Let S be a Whitney stratification of the complex algebraic
(or analytic) variety X, with F •,G • ∈ DbS−c(X;R) and R a field. Then
χstalk(F •) = χstalk(G •) as an S -constructible function if and only if

χ (NMD(F •, S)) = χ (NMD(G •, S)) for all strata S ∈ S .

So the Euler characteristic χ (NMD(F •, S)) =: χ (NMD(α, S)) for S ∈ S
depends only on the underlying S -constructible function α = χstalk(F •).

Remark 10.3.28 Corollary 10.3.25 also shows that the corresponding properties of
the normal Morse data do not depend on the choice of the Whitney stratification S
ofX with F • S -(weakly) constructible. The given characterization of the perverse
t-structure in terms of normal Morse data is equivalent (in an embedded context) to
[66, Theorem 10.3.12], if one identifies the normal Morse data with the correspond-
ing “micro-local type” in the sense of Kashiwara-Schapira [66, Proposition 6.6.1(ii)]
(as shown in [109, Equation (5.52) on p.311]). The characterization of perverse
sheaves in terms of normal Morse data corresponds to the “dimension axiom” in the
Morse theoretic approach to perverse sheaves as outlined in [81]. It also implies the
purity result stated in [47, p.223, 6.A.3].

Here are the final applications of Theorem 10.3.19 for this section (see, e.g., [109,
Corollary 6.0.5]), which for Y a point space reduce to Corollary 10.3.20.

Proposition 10.3.29 Let f̄ : X̄ → Y be a proper holomorphic map of complex
varieties, with Z ⊂ X̄ a closed complex subvariety. Consider the induced
holomorphic map

f := f̄ |X : X := X̄\Z → Y .

Suppose the fiber dimension of f is bounded above by d , and consider F • ∈
Db(w)c(X;R) (resp., F • ∈ Dbc (X;R) and R is a Dedekind domain in case we
consider the dual perverse t-structure). Then:

1. F •|X ∈ p(+)D≥n(X;R) ⇒ Rf∗(F •|X) ∈ p(+)D≥n−d (Y ;R).
2. F •|X ∈ p(+)D≤n(X;R) ⇒ Rf!(F •|X) ∈ p(+)D≤n+d (Y ;R).

Note that by a theorem of Nagata (see, e.g., [22, 79]) such a (partial) compact-
ification f̄ : X̄ → Y is always available in the complex algebraic context for a
morphism f : X→ Y .



722 L. G. Maxim and J. Schürmann

Corollary 10.3.30 Let f : X → Y be a morphism of complex algebraic varieties.
Suppose the fiber dimension of f is bounded above by d , and consider F • ∈
Db(w)c(X;R) (resp., F • ∈ Dbc (X;R) and R is a Dedekind domain in case we
consider the dual perverse t-structure). Then:

1. F • ∈ p(+)D≥n(X;R) ⇒ Rf∗F • ∈ p(+)D≥n−d (Y ;R).
2. F • ∈ p(+)D≤n(X;R) ⇒ Rf!F • ∈ p(+)D≤n+d (Y ;R).
Example 10.3.31 (Finite Morphism) Let f : X → Y be a finite morphism of
complex algebraic (or analytic) varieties (i.e., f is proper with fiber dimension
d = 0). Then Rf! = Rf∗ = f∗ is t-exact with respect to the perverse t-structure,
and in case R a Dedekind domain also with respect to the dual t-structure.

10.3.3 Characteristic Cycles and Index Theorems

In this section, we give an introduction to the theory of Lagrangian cycles in the
complex analytic and algebraic context, using the language of stratified Morse
theory for constructible functions and sheaves, as developed in the previous sec-
tions. We explain from this viewpoint the Euler isomorphism between constructible
functions and Lagrangian cycles, together with some index theorems.

The theory of Lagrangian cycles in the complex analytic context started in 1973
with Kashiwara’s local index formula for holonomic D-modules, as formulated in
[62] and proved in [63, Chapter 6] (compare also with [82]). Kashiwara introduced
for this a local invariant of a singular complex analytic set, which around the same
time was independently introduced by MacPherson as the local Euler obstruction in
his celebrated work [80] on Chern homology classes for singular complex algebraic
varieties (establishing a conjecture of Grothendieck and Deligne). It was Dubson
[15, 33, 34] who observed some years later that these two invariants are the same.
The definitions of Kashiwara and MacPherson are of transcendental nature. A
purely algebraic definition of the “local Euler obstruction” was found by Gonzalez-
Sprinberg and Verdier [44] (compare with [40, Example 4.2.9]).

In this section we work in a global embedded context, with k : X ↪→ M the
closed embedding of a complex algebraic (or analytic) variety X into a complex
algebraic (or analytic) manifold M of dimension dimM = m (with M pure-
dimensional or otherwise dimM viewed as a locally constant function). Let S be a
given Whitney stratification of X, with conormal space

T ∗SM :=
⋃

S∈S
T ∗S M ↪→ T ∗M|X ↪→ T ∗M .

Here T ∗SM is a closed subset by the Whitney a-condition of our stratification S .
The open subset of non-degenerate covectors is given by
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(
T ∗SM

)◦ =
⋃

S∈S

(
T ∗S M

)◦
,

with

(
T ∗S M

)◦ := T ∗S M\
⋃

S �=S ′∈S
T ∗
S ′M .

Definition 10.3.32 The abelian group L(S , T ∗M) of (C∗-conic) Lagrangian
cycles in T ∗SM is given by

L(S , T ∗M) := HBM2m

(
T ∗SM;Z

)
,

so that a corresponding Lagrangian cycle is uniquely given by a (locally) finite sum

∑

S∈S
m(S) ·

[
T ∗S M

]
with m(S) ∈ Z, (10.37)

and
[
T ∗S M

]
the corresponding fundamental class. If we do not want to fix the

stratification S , then we denote by L(T ∗M|X) the abelian group of (C∗-conic)
Lagrangian cycles in T ∗M|X given by a similar (locally) finite Z-linear combination
of fundamental classes

[
T ∗ZM

] :=
[
T ∗ZregM

]

with Z ↪→ X an irreducible closed algebraic (or analytic) subvariety.

Remark 10.3.33 In the complex algebraic context, the Borel-Moore homology
group

HBM2m

(
T ∗SM;Z

) � Am
(
T ∗SM

) � Zm
(
T ∗SM

)

is also the same as the corresponding Chow- and cycle group of T ∗SM as in [40],
since T ∗SM is of dimensionm. So many of the following results could also be stated
in this language, but this does not apply to our method of proof based on stratified
Morse theory for constructible functions and sheaves. For this reason, we work in
this section only with the homological language, which at the same time also applies
to the complex analytic context.

For simplicity, in this section we only consider (S -)constructible sheaf com-
plexes in Db

(S−)c(−;R) with R a field and their corresponding (compactly sup-
ported) Euler characteristic, even though most of our results and proofs work for
more general “stalk properties and corresponding additive functions” (see, e.g.,
[109, Section 5.0.3]).
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Definition 10.3.34 The characteristic cycle CC(F •) ∈ L(S , T ∗M) of a con-
structible complex F • ∈ DbS−c(X;R) is defined via the following multiplicities
in (10.37):

m(S) := (−1)dimS · χ(NMD(F •, S)) ∈ Z for a stratum S ∈ S . (10.38)

By Example 10.3.27 the Euler characteristic

χ(NMD(F •, S)) = χ(NMD(α, S))

only depends on the associated S -constructible function α = χstalk(F •) ∈
CFS (X) so that we can also define the characteristic cycleCC(α) of α ∈ CFS (X)
via

(−1)dimS ·m(S) := χ(NMD(α, S)) = α(x)−
∫

lX

α dχ ∈ Z , (10.39)

with x ∈ S, (lX, ∂lX) the corresponding complex link of X in S ∈ S and l◦X :=
lX\∂lX. This can also be reformulated as

(−1)dimS ·m(S) = α(x)−
∑

S⊂∂S ′
c(S, S′) · α(S′) ∈ Z , (10.40)

with c(S, S′) := ∫lX 1S ′dχ =
∫
l◦X

1S ′dχ = χc(l◦X ∩ S′,Q) for S ⊂ ∂S′ and S, S′ ∈
S a topological invariant of the Whitney stratification S of X. Note that

χc(lX ∩ S′,Q) = χc(l◦X ∩ S′,Q) , (10.41)

since ∂lX is a compact real analytic Whitney stratified set with odd-dimensional
strata so that χc(∂lX ∩ S′,Q) = 0 (see, e.g., [109, Lemma 5.0.3] and [120]).

Here, the last equality in (10.39) follows from the distinguished triangle (10.27).
The choice of the sign (−1)dimS will become clear in a moment.

Example 10.3.35 Let X ↪→ M be a closed complex submanifold ofM , with strata
S ∈ S given by the connected components of X. Let L be a local system of rank
r on X. Then

CC(L ) = CC(r · 1X) = (−1)dimX · r · [T ∗XM
]
.

Similarly, in the general context of the above Definition with S ∈ S an open stratum
of X and F • ∈ DbS−c(X;R). Then by Example 10.3.15, the multiplicity m(S) of

the characteristic cycle CC(F •) is given by m(S) = (−1)dimS · χstalk(F •)(S) ∈
Z.
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Remark 10.3.36 Let F • ∈ DbS−c(X;R) be given, with k : X ↪→ M the global
closed embedding into the complex manifoldM . Then for a stratum S ∈ S we get
by definition

T ∗S M ⊂ supp(CC(F •)) ⇐⇒ χ(NMD(F •, S)) �= 0 .

And, in general, this is much weaker than the corresponding condition

T ∗S M ⊂ μsupp(Rk∗F •) ⇐⇒ NMD(F •, S) �� 0

from Proposition 10.3.13. So in general the inclusion

supp(CC(F •)) ⊂ μsupp(Rk∗F •) for F • ∈ DbS−c(X;R) (10.42)

does not need to be an equality. But Example 10.3.26 implies

supp(CC(F •)) = μsupp(Rk∗F •) for F • ∈ PervS (X;R). (10.43)

Moreover, Example 10.3.26 also implies that CC(F •) is an effective Lagrangian
cycle for 0 �= F • ∈ PervS (X;R), i.e., the multiplicity m(S) ≥ 0 for all S ∈ S ,
with m(S) > 0 for S a top-dimensional stratum in supp(F •).

By induction on dimX and Example 10.3.35, one easily gets that the induced
group homomorphism

CC : K0(D
b
S−c(X;R))→ L(S , T ∗M) = HBM2m

(
T ∗SM;Z

)

is surjective. Moreover, CC factorizes over χstalk and both homomorphisms

CC : K0(D
b
S−c(X;R))→ L(S , T ∗M) and CC : CFS (X)→ L(S , T ∗M)

have by Example 10.3.27 the same kernel, so that CC induces for a fixed Whitney
stratification S of X an isomorphism of abelian groups

(10.44)

Finally, CC(F •) ∈ L(T ∗M|X) (and then also CC(α) ∈ L(T ∗M|X)) does not
depend on the choice of the Whitney stratification S with F • ∈ DbS−c(X;R).
In fact, if T is another Whitney stratification of X which refines S , then any
stratum T ∈ T is contained in a stratum S ∈ S . If T ⊂ S is open, then
NMD(F •, S) = NMD(F •, T ) just by the definitions. If T ⊂ S is a proper
closed subset, then NMD(F •, T ) = 0. In fact, if x ∈ T is a stratified Morse
critical point of a function germ f : (M, x) → (R, f (x)) with respect to T , then
LMD(F •, f, x) � NMD(F •, T )[−τ ] by Theorem 10.3.12. But then x ∈ S
is not a stratified critical point of f : (M, x) → (R, f (x)) with respect to S so
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that LMD(F •, f, x) = 0 by Lemma 10.3.3. So in the limit over all such Whiney
stratifications S of X, we get a surjective group homomorphism

CC : K0(D
b
c (X;R))→ L(T ∗M|X) ,

which factorizes via χstalk over an isomorphism

(10.45)

Let us now explain the choice of the sign (−1)dimS in the Definition 10.3.34 of
the characteristic cycle CC.

The differentiableCk-function germ f : (M, x)→ (R, f (x)) (with 2 ≤ k ≤ ∞)
has a stratified Morse critical point at x ∈ S, for a stratum S ∈ S , if and only if
(see, e.g., [66, p.311] or [109, p.286]):

{
dfx ∈

(
T ∗S M

)◦
, i.e., dfx ∈ T ∗S M is non-degenerate, and

the graph df (M) ⊂ T ∗M of df intersects T ∗S M transversally at dfx .
(10.46)

Using the complex orientations of T ∗M and M � df (M) one gets in this case for
the corresponding local intersection number:

(−1)dimS · 5dfx
( [T ∗S M] ∩ [df (M)]

) = (−1)λ , (10.47)

with λ the Morse index of f |S at x (i.e., its Hessian at x has exactly λ negative
eigenvalues). Here [df (M)] ∈ HBM2m (df (M);Z) is the fundamental class of the
oriented manifold df (M) � M . The local intersection number 5dfx in (10.47) is
defined similarly (with A∩B = {dfx}) to the following global intersection number

5 : HBM2m (A;Z)×HBM2m (B;Z)→ Z

for two closed subsets A,B ⊂ T ∗M with A ∩ B compact:

Here, PD is Poincaré duality given by the cap-product with the fundamental class
[T ∗M] of the complex manifold T ∗M .

Example 10.3.37 Let g : (M, x) → (C, g(x)) be a holomorphic function germ so
that the graph dg(M) ⊂ T ∗M of dg intersects T ∗S M transversally at dgx . Then
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5dgx
( [T ∗S M] ∩ [dg(M)]

) = 1

and g|S has a complex Morse critical point at x ∈ S. But if we identify the
complex cotangent bundle T ∗M with the real cotangent bundle of the underlying
real (oriented) manifold, then the graph dg(M) of g gets identified with the graph
df (M) of the real part f := Re(g) of g. So, with the complex orientations, one also
has

5dfx
( [T ∗S M] ∩ [df (M)]

) = 1 ,

but f |S has at x ∈ S a classical Morse critical point of index λ = dim S.

The intersection theory in the ambient cotangent bundle T ∗M is used for the
formulation of the following beautiful intersection formula (see, e.g., [109, Theorem
5.0.4] for a more general version).

Theorem 10.3.38 Let f : M → [a, d[ ⊂ R be a C∞-function (a ≤ d ≤ ∞),
with f |X proper. Suppose that T ∗SM ∩ df (M) is compact, with T ∗SM the union
of conormal spaces T ∗S M to the strata S ∈ S of the Whitney stratification S of
X ↪→ M . Then we have for all F • ∈ DbS−c(X;R):

dimR H ∗(X,F •) <∞ , with

χ(X,F •) = 5( CC(χstalk(F •)) ∩ [df (M)] ) , (10.48)

and

dimR H ∗c (X,F •) <∞ , with

χc(X,F
•) = 5( CC(χstalk(F •)) ∩ [−df (M)] ). (10.49)

Proof The reader should compare the following proof also with the proof of
Theorem 10.3.19. By approximation [8], we can assume that f has only stratified
Morse critical points with respect to S , since the corresponding intersection
number does not change by a homotopy argument. By assumption, T ∗SM ∩ df (M)
is compact so that f has only finitely many stratified Morse critical points. Choose
b ∈ [a, d[ with all these critical points contained in {a ≤ f < b}. Then one gets by
Lemma 10.3.3

R�(X ∩ {f ≤ b},F •) � R�(X,F •) ,

and

R�c(X ∩ {f < b},F •) � R�c(X,F •) .

And these complexes belong to Dbc ({pt};R) by Proposition 10.3.21. Similarly, the
normal Morse data NMD(F •, S) ∈ Dbc ({pt};R) by Corollary 10.3.25. Since the
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Euler characteristicχ is additive, by Corollary 10.3.7 and Lemma 10.3.8 it is enough
to show that for such a stratified Morse critical point x ∈ S:

χ(LMD(F •,±f, x)) = 5± dfx ( CC(F •) ∩ [± df (M)] ) .

But this follows from Theorem 10.3.12:

LMD(F •,±f, x) � NMD(F •, S)[−τ ] ,

with τ the Morse index of ±f |S at x. Finally, by the definition of CC(F •) and
Equation (10.47) we have

χ(LMD(F •,±f, x)) = (−1)τ · χ(NMD(F •, S))

= 5± dfx ( CC(F •) ∩ [± df (M)] ) ,

which completes the proof. ��
This intersection Theorem 10.3.38 goes back to Dubson [35], Sabbah [103] and

Ginsburg [42] (partially in the context of holonomic D-modules).
Note that the condition that T ∗SM ∩ df (M) is compact just means that the

stratified critical locus SingS (f ) :=
⋃
S∈S Sing(f |S) is compact. The intersection

formula above can also be reformulated in the language of constructible functions.
Assume that f : M → [a, d[ ⊂ R is a C∞-function with f |X proper and

π
(
T ∗SM ∩ df (M)) ⊂ [a, b] for some b ∈ [a, d[ , with π the projection T ∗M →

M . In particular, T ∗SM ∩ df (M) is compact.
Then one also has the following counterpart of Theorem 10.3.38 for a con-

structible function α ∈ CFS (X):
∫

X∩{f≤r}
α dχ = 5( CC(α) ∩ [df (M)] ) for all r ∈ ]b, d[ , (10.50)

and
∫

X∩{f<r}
α dχ = 5( CC(α) ∩ [−df (M)] ) for all r ∈ ]b, d[ . (10.51)

Note that r ∈ ]b, d[ is a stratified regular value of f |X so that the left Euler
characteristics are defined by Example 10.3.24. Let us give some examples, where
the above conditions on f are satisfied.

Example 10.3.39 (Global Index Formula and Poincaré-Hopf Theorem for Singular
Spaces) Let X ↪→ M be a compact complex algebraic (or analytic) subvariety of
M , with S a given Whitney stratification of X. Then we can take for f a constant
function so that df (M) is the zero-section. Then we get for any S -constructible
function α ∈ CFS (X):
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∫

X

α dχ = 5( CC(α) ∩ [T ∗MM] ) = 5( CC(α) ∩ [ω(M)] ) (10.52)

for any differentiable one-form ω onM , i.e., a section of T ∗M → M . Assume that
T ∗SM∩ω(M) is finite, i.e., the set SingS (ω) :=

⋃
S∈S Sing(ω|S) of critical points

of ω with respect to S is finite. If one defines for x ∈ SingS (ω) and α ∈ CFS (X)
the local index indx(ω, α) of ω with respect to α by

indx(ω, α) := 5ωx
(
CC(α) ∩ [ω(M)] ) , (10.53)

then one gets the Poincaré-Hopf theorem

∫

X

α dχ =
∑

x∈SingS (ω)

indx(ω, α) . (10.54)

See also [117] for an overview of different indices of vector fields and one forms
in the context of singular complex varieties. The following recent application is due
to [4] (and implicitly already contained in [39, 113]).

Example 10.3.40 (Effective Characteristic Cycles on an Abelian Variety) LetM =
A be a complex abelian variety, so that A is a projective abelian algebraic group
with trivial cotangent bundle T ∗A. Let α ∈ CF(A) be a constructible function with
CC(α) an effective cycle in T ∗A. By Kleiman’s transversality theorem, a generic
algebraic one-form ω intersects supp(CC(α)) only in finitely many points ωx (see,
e.g., [113, Proposition 2.8]). Then the local intersection number (10.53) as well as
the global Euler characteristic (10.53) are non-negative:

indx(ω, α) = 5ωx
(
CC(α) ∩ [ω(A)] ) ≥ 0 and

∫

A

α dχ ≥ 0 . (10.55)

For example α could be given by

1. α = Eu∨Z = (−1)dimZ ·EuZ is the dual Euler obstruction of a pure dimensional
closed subvariety Z ↪→ A (see Eq. (10.59) below).

2. α = χstalk(F •) for a perverse sheaf F • ∈ Perv(A;R).
3. α = χstalk(Rp∗F •) for a perverse sheaf F • ∈ Perv(G;R) on a semi-abelian

varietyG, with p : G→ A the projection onto the corresponding abelian variety
A. Then

χ(G;F •) = χ(A;Rp∗F •) =
∫

A

α dχ ≥ 0 .

See [4, Proposition 8.4, Example 8.5] for a more general class of morphisms
p : G→ A to an abelian variety with this property for any perverse sheaf F • ∈
Perv(G;R) (for a different approach via generic vanishing theorems on semi-
abelian varieties see (10.128) in Sect. 10.6).
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Example 10.3.41 (Affine Varieties and Global Euler Obstruction) Let X ↪→ C
n be

an affine complex algebraic variety endowed with a complex algebraic Whitney
stratification S . Then the semi-algebraic distance function r : Cn → [0,∞[,
r(z) := ∑n

i=1 zi · z̄i has only finitely many critical values with respect to S . So
one gets for F • ∈ DbS−c(X;R):

χ(X,F •) = 5( CC(χstalk(F •)) ∩ [dr(Cn)] ) ,

and

χc(X,F
•) = 5( CC(χstalk(F •)) ∩ [−dr(Cn)] ) .

Similarly, for a constructible function α ∈ CFS (X):
∫

X∩{r≤δ}
α dχ = 5( CC(α) ∩ [dr(Cn)] ) for all δ > 0 large enough,

and
∫

X∩{r<δ}
α dχ = 5( CC(α) ∩ [−dr(Cn)] ) for all δ > 0 large enough.

If X is pure dimensional and CC(α) = (−1)dimX ·
[
T ∗XregM

]
, then the intersection

number

Eu(X) := (−1)dimX · 5
([
T ∗XregM

]
∩ [dr(Cn)]

)

is by [109, Equation (5.6.4)] the global Euler obstruction ofX in the sense of Seade-
Tibăr-Verjovsky [116] (and compare also with [35, Theorem 1]). The sign (−1)dimX

comes from different orientation conventions. As we will see in a moment, here
α = EuX is the local Euler obstruction function of X as defined by MacPherson
[80].

Example 10.3.42 (Local Index Formula) Let f : M → [0, d[ ⊂ R be a real
analytic function, with f |X proper. Then

f ◦ π( T ∗SM ∩ df (M) ) ⊂ [0, d[

is subanalytic and, by the curve selection lemma, it is discrete. Especially,

π( T ∗SM ∩ df (U) ) ⊂ X ∩ {f = 0} ,

if we restrict to f : U := {f < ε} → [0, ε[ , with 0 < ε small enough. Then one
gets for α ∈ CFS (X) and 0 < r < ε:
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∫

X∩{f=0}
α dχ =

∫

X∩{f≤r}
α dχ = 5( CC(α) ∩ [df (U)] ) . (10.56)

The most important special case is the local situation (M, x) � (Cn, 0) with
f (z) := r(z) :=∑n

i=1 zi · z̄i . In this case we get for 0 < ε ( 1:

α(x) = 5drx ( CC(α) ∩ [dr({r < ε})] ) . (10.57)

In particular, this local intersection number is independent of the choice of the real
analytic function r with {r = 0} = {x}. Moreover, it defines the inverse of the
characteristic cycle map (see, e.g., [109, Corollary 5.0.1] and compare with [42,
Theorem 11.7]).

Corollary 10.3.43 The inverse of the characteristic cycle map

CC : CFS (X)→ L(S ; T ∗M)

is given by

Eu∨ : L(S ; T ∗M)→ CFS (X);

[C] �→ α , with α(x) := 5drx ( [C] ∩ [dr({r < ε})] ) ,

for r, ε as above. In particular, for CC(α) = ∑
S∈S m(S) ·

[
T ∗S M

]
, we get for

x ∈ X:

α(x) =
∑

S∈S
m(S) ·Eu∨

([
T ∗S M

])
. (10.58)

Note that this corollary is also a refinement of [42, Theorem 11.7], since we work
with a fixed stratification. Assume now that X ↪→ M is pure dimensional, so that

C = [T ∗XM
] :=

[
T ∗XregM

]
∈ L(S ; T ∗M)

defines a corresponding Lagrangian cycle. Then one gets by [109, Equation (5.35)
and p.323–324] that

Eu∨
([
T ∗XM

]) = Eu∨X := (−1)dimX · EuX ∈ CFS (X) (10.59)

is the dual local Euler obstruction function Eu∨X, with EuX the famous local
Euler obstruction function of X as defined by MacPherson [80] (compare also with
[42, Theorem 11.7]). The sign (−1)dimX comes again from different orientation
conventions. In particular, we get without any calculation that the local Euler
obstruction EuX is constructible with respect to any Whitney stratification of X.
Since this is a local result, it is then also true for any pure-dimensional complex
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algebraic (or analytic) varietyX (without any embedding into a complex manifold).
This result is due to Dubson [33, Proposition 1, Theorem 3] and Brasselet-
Schwartz [13, p.125, Corollary 10.2]. Then the local index formula (10.58) can be
reformulated as

α(x) =
∑

S∈S
m(S) · (−1)dimSEuS̄(x) for x ∈ X (10.60)

and CC(α) =∑S∈S m(S) ·
[
T ∗S M

]
for a given α ∈ CFS (X).

Remark 10.3.44 The local index formula (10.60) goes back to a corresponding
index formula of Kashiwara [62] (compare with [63, Theorem 6.3.1]) for the
solution complex SolM(M ) := RhomDM (M ,OM) of a holonomic DM -module on
the complex manifoldM . Note that this solution complex is a complex analytically
(or algebraically) constructible complex of sheaves of C-vector spaces, with
finite dimensional stalks ([66, Theorem 11.3.7]). Kashiwara’s formula corresponds
to (10.60) for the constructible function

α := χstalk( RhomDM (M ,OM)[dimM] ) .

Moreover, he works directly with the characteristic cycle of a holonomic DM -
module. The corresponding multiplicities of characteristic cycles fit by [109,
Example 5.3.4] with our conventions. Similarly, Kashiwara introduced for his
index formula some topological invariants, which are nothing else but the Euler
obstructions of the closures S̄ for the strata S ∈ S of a Whitney stratification S
of M so that the characteristic variety char(M ) ⊂ T ∗SM . But this fact was only
observed later on by Dubson (compare with [15], and also with [63, Introduction,
p.xiii]).

Other references for these formulae are [35], [14, p.545] and [42, Theorem 8.2,
Theorem 11.7, p.393] (but with an incorrect sign in [42, Corollary 6.19(b) and
Theorem 8.2]).

So one gets in the complex analytic (or algebraic) context a commutative diagram
(see also [42]):

(10.61)

Here DRM(M ) � RhomDM (OM,M )[dimM] is the De Rham complex of
the holonomic DM -module M . In the algebraic context one has of course to
use the De Rham or solution complex of the associated analytic DM -module.
That DRM(M ) and SolM(M )[dimM] for a holonomic DM -module M have
the same characteristic cycle (or associated constructible function χstalk) follows,
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e.g., from the fact that they are exchanged by the duality of holonomic DM -
modules, resp., Verdier duality for constructible sheaf complexes (see, e.g., [58,
Proposition 4.6.4(iii), Corollary 4.6.5]). Finally, also the left vertical arrow becomes
an isomorphism by the famous Riemann-Hilbert correspondence (see, e.g., [58,
Theorem 7.2.1]), if we restrict ourselves to regular holonomic DM -modules.

10.3.4 Functorial Calculus of Characteristic Cycles

We continue to work in an embedded context and discuss the functorial calculus
of characteristic cycles (see also, e.g., [42, 103] and compare with [66, Chapter
IX] for counterparts in real geometry). We explain the translation into the context
of Lagrangian cycles of the following operations for constructible functions and
sheaves: external product, proper direct image, non-characteristic pullback and spe-
cialization (i.e., nearby cycles), together with an intersection formula for vanishing
cycles.

Note that by Corollary 10.3.22 and Corollary 10.3.25, the constructible com-
plexes

F • ∈ Db
(S−)c(X;R) with χstalk(F

•) = 0 ∈ CF(S )(X)

are preserved by all Grothendieck functors like pullback f ∗, direct image Rf! =
Rf∗ for a proper morphism, and the (external) tensor products ⊗ resp., � (which
are exact in the case R a field as considered here). So they induce similar
transformations of constructible functions CF(S )(X) via the surjection

χstalk : K0

(
Db
(S )−c(X;R)

)
→ CF(S )(X) .

Similarly for the nearby and vanishing cycles functorsψf , ϕf of Deligne, as studied
in Sect. 10.4. So it is natural to ask for a direct description of the corresponding
transformations of characteristic cycles in the embedded context, compatible with
the isomorphisms

Whenever possible, we formulate the corresponding results for the refined context
of fixed Whitney stratifications.

Example 10.3.45 (Characteristic Cycle of External Products) Let Xi ↪→ Mi
be a closed embedding of the complex algebraic (or analytic) variety Xi into a
complex algebraic (or analytic) manifold Mi (for i = 1, 2). Assume Si is a
Whitney stratification of Xi , with αi ∈ CFSi

(Xi) (for i = 1, 2). Then α1 � α2 ∈
CFS1×S2(X1 ×X2) is defined by

α1 � α2(x1, x2) := α1(x1) · α2(x2) for (x1, x2) ∈ X1 ×X2,
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with

CC(α1 � α2) = CC(α1)� CC(α2) ∈ L(S1 ×S2, T
∗M1 × T ∗M2) . (10.62)

Here, we use the identification T ∗(M1 × M2) = T ∗M1 × T ∗M2, and this
result follows directly from the product formula for normal Morse data as in
Example 10.3.17. Alternatively, it can be deduced from the multiplicativity of the
local Euler obstruction functions (as stated in [80, p. 426]):

EuX1×X2 = EuX1 � EuX2

in case the Xi are pure-dimensional (i = 1, 2).

To formulate the results for suitable pullbacks f ∗ and direct images f∗ for a
morphism f : M → N of complex (algebraic) manifolds, we need to compare the
corresponding cotangent bundles as in the following commutative diagram (whose
right square is cartesian):

(10.63)

Here t f ′ is the dual of the differential of f , with fπ induced by base change. We first
consider the case of direct images. Let X ↪→ M , resp., Y ↪→ N be closed complex
algebraic (or analytic) subvarieties endowed with Whitney stratifications S of X,
resp., T of Y in such a way that f : X→ Y is a proper stratified submersion. Then
also fπ : f ∗(T ∗N)|X → T ∗N |Y is proper by base change. Moreover

fπ

(
t f ′−1 (T ∗SM

)) ⊂ T ∗T Y ,

since f : X → Y is a stratified submersion. So on the level of Lagrangian cycles
one gets an induced group homomorphism

fπ∗t f ′∗ : L(S , T ∗M)→ L(T , T ∗N) , (10.64)

with the pullback t f ′∗ defined via Poincaré duality:
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with m = dimM,n = dimN and T ∗M,T ∗N, f ∗(T ∗N) oriented as complex
manifolds.

Similarly, the pushforward of constructible functions fits into a commutative
diagram

with

f∗(α)(y) :=
∫

X∩{f=y}
αdχ for y ∈ Y and α ∈ CFS (X). (10.65)

And these pushforwards of Lagrangian cycles and constructible functions are
compatible with the characteristic cycle map (see, e.g., [111, Section 4.6] for the
following proof).

Proposition 10.3.46 Let α ∈ CFS (X) be given. Then

CC(f∗α) = fπ∗t f ′∗CC(α) ∈ L(T , T ∗N) .

Proof Let β ∈ CFT (Y ) be defined by CC(β) = fπ∗t f ′∗CC(α) ∈ L(T , T ∗N).
Then we need to show β = f∗α. For this we calculate β(y) for y ∈ Y as in
Corollary 10.3.43 via

β(y) := 5dry ( fπ∗t f ′∗CC(α) ∩ [dr({r < ε})] ) ,

with r : (N, y) � (Cn, 0) → [0,∞[ given by r(z) = ∑n
i=1 zi · z̄i the distance

function to y (in local coordinates) and 0 < ε small enough. By the projection
formula one gets

β(y) = 5( CC(α) ∩ [d(r ◦ f )({r ◦ f < ε})] ) .

And the last intersection number is by the local index formula (10.56) given by

5( CC(α) ∩ [d(r ◦ f )({r ◦ f < ε})] ) =
∫

X∩{f=y}
α dχ = f∗α(y) ,

thus completing the proof. ��
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Example 10.3.47 Let Y = N = {pt} be a point with f a constant map, so that
f ∗(T ∗N) = T ∗MM is the zero section of T ∗M . Then we recover the global index
formula (10.52):

∫

X

α dχ = 5( CC(α) ∩ [T ∗MM] ) .

To define similarly a pullback of Lagrangian cycles, we have to go in diagram
(10.63) into the opposite direction, and need the following properness condition for
t f ′ : f ∗(T ∗N)→ T ∗M (see, e.g., [109, Lemma 4.3.1]).

Definition 10.3.48 Let C ⊂ T ∗N be a closed C
∗-conic subset. Then f : M →

N is non-characteristic with respect to C if one of the following two equivalent
conditions holds:

1. f−1
π (C) ∩ kern(tf ′) ⊂ f ∗(T ∗NN), with kern(tf ′) the corresponding kernel

bundle, and f ∗(T ∗NN) the zero-section of f ∗(T ∗N).
2. The map t f ′ : f−1

π (C)→ T ∗M is proper and therefore finite.

Example 10.3.49 If f : M → N is a submersion, then f is non-characteristic with
respect to any closed C

∗-conic subset C ⊂ T ∗N , since then kern(tf ′) = f ∗(T ∗NN)
is the zero-section of f ∗(T ∗N).

More generally, transversality with respect to a Whitney stratification T of a
closed complex algebraic (or analytic) subset Y ↪→ N can be characterized as
follows (see, e.g., [109, Example 4.3.2] and [66, Definition 4.1.5]).

Example 10.3.50 The morphism f : M → N is transversal to T , i.e., f is
transversal to all strata T ∈ T , if and only if f is non-characteristic with respect
to the closed C

∗-conic subset T ∗T N ⊂ T ∗N . In this case, X := f−1(Y ) gets an
induced Whitney stratification S = f−1T with strata S given by the connected
components of the locally closed complex submanifolds f−1(T ) ⊂ M (for T ∈ T ).
Here, the codimension codimf−1(T ) = codimT is preserved, i.e.,

dim f−1(T ) = dimT + dimM − dimN for all T ∈ T .

Moreover, t f ′ : f−1
π (T ∗T N) → T ∗M is injective with image T ∗

f−1(T )
M . By

Poincaré duality one gets an induced pullback map of Lagrangian cycles

t f ′∗f ∗π : L(T , T ∗N)→ L(S , T ∗M), (10.66)

with

t f ′∗f ∗π
([
T ∗T N

])
=
[
T ∗
f−1(T )

M
]

for all T ∈ T .

Moreover, normal slices to f−1(T ) ⊂ M and T ⊂ N get identified via f , so that
the corresponding Euler characteristics of normal Morse data do not change under
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pullback of constructible functions given by f ∗α := α ◦ f for α ∈ CFT (Y ). In
particular, the characteristic cycle map CC commutes with this pullback only up to
a sign:

(−1)dimM−dimN · CC(f ∗α) = t f ′∗f ∗πCC(α) for all α ∈ CFT (Y ).

For example, if Y (and hence also X = f−1(Y )) is pure-dimensional, then one gets
for such a transversal map

f ∗(EuY ) = EuX .

More generally one has the following result (see, e.g., [114, Theorem 3.1]).

Theorem 10.3.51 Let f : M → N be a morphism of complex algebraic (or
analytic) manifolds of dimension m = dimM,n = dimN , with Y ⊂ N a closed
complex algebraic (or analytic) subvariety and X := f−1(Y ) ⊂ M . Assume that
f is non-characteristic with respect to the support C := supp(CC(α)) ⊂ T ∗N |Y
of the characteristic cycle CC(α) of a constructible function α ∈ CF(Y ). Then
C′ := t f ′

(
f−1
π (C)

)
is pure m-dimensional, with

t f ′∗f ∗π (CC(α)) = (−1)m−n · CC(f ∗(α)) . (10.67)

In particular, the left hand side is a Lagrangian cycle in T ∗M|X.

The following Example 10.3.52 has nice applications in geometric representation
theory for the Weyl group W of a connected semisimple complex Lie groupG (see,
e.g., [43]). Here, M1 = M2 = G/B is the Flag manifold of G (with B ⊂ G a
Borel subgroup), and the Whitney stratification S of G/B ×G/B is given by the
finitely many G-orbits Sw of the diagonalG-action (indexed by w ∈W). Then any
α ∈ CFS (G/B ×G/B) satisfies the following assumption for

C :=
⋃

w∈W
T ∗Sw(G/B ×G/B) ⊂ T ∗(G/B ×G/B)

the corresponding Steinberg variety.

Example 10.3.52 Let Mi be three complex algebraic (or analytic) complex man-
ifolds of dimension mi = dimMi (i = 1, 2, 3). Assume α ∈ CF(M1 × M2)

satisfies one of the following two equivalent conditions for a closed C
∗-conic subset

C ⊂ T ∗(M1 ×M2) with supp(CC(α)) ⊂ C:

1. The projection T ∗(M1 ×M2) = T ∗M1 × T ∗M2 → T ∗M1 ×M2 restricted to C
is proper and therefore finite,

2. C ∩M1 × T ∗M2 is contained in the zero section of T ∗(M1 ×M2).
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Then the embedding d : M1 × M2 × M3 → (M1 × M2) × (M2 × M3) induced
by the diagonal embeddingM2 → M2 ×M2 is non-characteristic with respect to
supp(CC(α � β)) for any β ∈ CF(M2 ×M3), so that

t d ′∗d∗π(CC(α � β)) = (−1)m2 · CC(d∗(α � β)) .

Another application of Theorem 10.3.51 is the following intersection formula
(see, e.g., [114, Corollary 3.1]).

Corollary 10.3.53 LetM a complex algebraic (or analytic) manifold of dimension
m = dimM , with α, β ∈ CF(M) given constructible functions. Assume that
the diagonal embedding d : M → M × M is non-characteristic with respect to
supp(CC(α � β)), with supp(α · β) compact.

Then also supp(CC(α) ∩ CC(β)) ⊂ T ∗M is compact, with

∫

M

α · β dχ = (−1)m · deg(CC(α) ∩ CC(β)) . (10.68)

Example 10.3.54 The assumption d : M → M × M is non-characteristic with
respect to supp(CC(α � β)) for α, β ∈ CF(M) holds in the following cases:

1. α, resp., β is constructible with respect to a Whitney stratification S , resp., T of
M , with S and T intersecting transversally (i.e., all strata S ∈ S and T ∈ T
intersect transversally inM), so that d : M → M×M is transversal to the product
stratification S ×T ofM ×M .

2. α and β are splayed in the sense of [114, Definition 2.1], i.e., for any p ∈ M
there are locally analytic isomorphisms M = V1 × V2 of analytic manifolds so
that α = π∗1 (α′) and β = π∗2 (β ′) for some α′ ∈ CF(V1) and β ′ ∈ CF(V2),
with πi : V1 × V2 → Vi the projection (i = 1, 2). For α = 1X and β = 1Y , with
X,Y ⊂ M closed complex algebraic (or analytic) subvarieties, this just means
that X and Y are splayed in the sense of Aluffi-Faber [1, 2].

We next explain the relation between specialization of Lagrangian cycles and
nearby cycles for constructible functions (see, e.g., [14, 42, 103]).

Let f : N → C be a submersion of complex algebraic (or analytic) manifolds,
with k : M := {f = 0} ↪→ N the inclusion of a smooth hypersurface with open
complement U = {f �= 0}. Consider the exact sequence of vector bundles on N

0 → 〈df 〉 = kern(p)→ T ∗N → T ∗f → 0 ,

with the projection p : T ∗N → T ∗f dual to the inclusion Tf → T N of the subvector
bundle of tangents to the fibers of f . LetX ↪→ N be a closed complex algebraic (or
analytic) subvariety endowed with a Whitney stratificationS so thatX∩{f = 0} =:
X0 is a union of strata, with S |X0 , resp., S |U the induced Whitney stratification of
X0, resp.,X∩U . After shrinking to an open neighborhood, we can and will assume
by the curve selection lemma that f |S is a submersion for all strata S ∈ S |U .
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Finally, we assume that S satisfies the following af -condition of Thom:

⎧
⎪⎪⎨

⎪⎪⎩

If xn ∈ S′, for S′ ∈ S |U , is a sequence converging to x ∈ S ∈ S |X0,

such that kern(dfxi |Txi S ′) = Txi (S′ ∩ {f = f (xi)})
converges to some limiting plane τ , then TxS ⊂ τ.

(10.69)

By a classical theorem of Hironaka [57, Corollary 1 of Theorem 2, p.248] (and
see also [73, Corollary 1.3.5.1]), one can always refine a given stratification so that
it satisfies the af -condition. In fact, by a more recent result [14, Theorem 4.2.1],
this af -condition is true for any Whitney stratification S as above (withX0 a union
of strata).

Then T ∗
S ′N ∩ kern(p) is contained in the zero-section T ∗NN |U of T ∗N |U , since

f : S′ → C is a submersion for S′ ∈ S |U . Therefore p′ = p : T ∗
S ′N → T ∗f |S is a

proper injection with image p′(T ∗
S ′N) =: T ∗S ′f , the relative conormal space of f |S ′ .

Here we consider the commutative diagram

(10.70)

Note that by the af -condition the closure T ∗
S ′f ⊂ T ∗f for a stratum S′ ∈ S |U is

contained in the closed subset

T ∗S f :=
⋃

S∈S
T ∗S f ↪→ T ∗f ,

with T ∗S f := T ∗S M for S ∈ S |X0 and p′ : T ∗SN |U → T ∗f |U proper. Then the
specialization of Lagrangian cycles

sp : L(S , T ∗N)→ L(S |X0, T
∗M)

is defined as the composition of the following homomorphisms (with n = dimN =
dimM + 1):

(10.71)
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with the Gysin map i∗ again defined by Poincaré duality as the intersection with
[T ∗M]. So sp([T ∗S N]) = 0 for S ∈ S |X0 and

sp([T ∗
S ′N ]) =

[
T ∗
S ′f
]
∩ [T ∗M] for S′ ∈ S |U .

The nearby cycles of constructible functions used in the next Theorem are
induced from Deligne’s nearby cycle functor ψf for constructible sheaf complexes
as discussed later on in Sect. 10.4, fitting into a commutative diagram

(10.72)

With these notations, we can now show the following result (see, e.g., [103,
Theorem 4.3] and compare with [14, 42]), which is also used in [114] in the proof
of Theorem 10.3.51 above.

Theorem 10.3.55 Let α ∈ CFS (X) be given. Then

sp(CC(α)) = CC(−ψf (α)) ∈ L(S |X0, T
∗M) , (10.73)

with ψf (α)(x) :=
∫
Mf |X,x

αdχ , forMf |X,x a local Milnor fiber of f |X at x ∈ X0.

Proof Let β ∈ CFS |X0
(X0) be defined by CC(β) = sp(CC(α)) ∈

L(S |X0, T
∗M). Then we need to show that β = −ψf (α). For this, we calculate

β(x) for x ∈ X0 as in Corollary 10.3.43 via

β(x) := 5dr ′x ( sp(CC(α)) ∩ [dr ′({r ′ < ε})] ) ,

with r ′ := r|M , for r : (N, x) � (Cn, 0)→ [0,∞[ given by r(z) =∑n
i=1 zi · z̄i the

distance function to 0 (in local coordinates of N), and 0 < ε small enough. But this
intersection number is locally constant in the family T ∗f |{f=w} for |w| ( 1 small
compared to ε, since {r = ε} is transversal to all S ∩ {f = w}, for S ∈ S and
|w| ( 1 small, by the af -condition as well as the Whitney condition for S |X0 . So
instead of specializing at w = 0, we can do this at a small stratified regular value
w �= 0 and use Example 10.3.50:

β(x) = − 5( CC(α|{f=w}) ∩ [dr ′′({r ′′ < ε})] ) ,

with r ′′ := r|{f=w}. Note that the sign comes from dimN − dim{f = w} = 1,
i.e., we intersect transversally with a submanifold of codimension 1. And the last
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intersection number is by Eq. (10.50) given by

5( CC(α|{f=w}) ∩ [dr ′′({r ′′ < ε})] ) =
∫

Mf |X,x
α dχ = ψf (α)(x) ,

with Mf |X,x := X ∩ {f = w} ∩ {r ≤ ε′}, for 0 < |w| ( ε′ < ε, a local Milnor
fiber of f |X at x ∈ X0. ��

Note that the af -condition is also needed to have such a local Milnor fibration
with Milnor fiber Mf,x for a general holomorphic function germ f : (X, x) →
(C, 0) on a singular complex analytic variety X (see, e.g., [109, Example 1.3.3]
and [70]). The definition of nearby cycles of constructible functions in terms of
(weighted) Euler characteristics of these local Milnor fibers goes back to Verdier
[123].

As an example, let us explain how Theorem 10.3.55 implies Theorem 10.3.51
for the inclusion k : M = {f = 0} ↪→ N of a global smooth hypersurface (i.e.,
of codimension one), with f : N → C a submersion and the notations as before.
Consider the following cartesian diagram:

(10.74)

Assume that k : M ↪→ N is non-characteristic with respect to supp(CC(α)) ⊂
T ∗N for a given α ∈ CF(N), so that t k′ : k−1

π (supp(CC(α))) → T ∗M is proper.
After shrinking N we can then assume that also p : supp(CC(α))→ T ∗f is proper.
Then one gets by base change

j ′∗p∗CC(α) = p′∗j∗CC(α) ,

and

t k′∗k∗πCC(α) = i∗p∗CC(α) = sp(CC(α))
= CC(−ψf (α)) = −CC(k∗α) .

Here, the fact that ψf (α) = k∗α follows from (10.79) below, since we have 0 =
ψf (α)(x) − k∗α(x) = ψf (α)(x) − α(x) for all x ∈ M by the non-characteristic
assumption, which gives dfx �∈ supp(CC(α)) for all x ∈ M .

We finish this section with citing from [110, Corollary 0.3] (and compare with
[103, Theorem 4.5]) a nice intersection formula related to the vanishing cycle
functor ϕf introduced in Sect. 10.4. For a description of the characteristic cycle
of vanishing cycles we refer to [83, Theorem 2.10].
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Theorem 10.3.56 (Global Intersection Formula for Vanishing Cycles) Let M
be a complex algebraic (or analytic) manifold and f : M → C an algebraic
(or holomorphic) function, with F • ∈ Dbc (M;R), resp., α ∈ CF(M) be given.
Suppose that the intersection of df (M) and the support of the characteristic cycle
of F •, resp., α is contained in a compact complex algebraic (or analytic) subset
I ⊂ T ∗M , withK := π(I) ⊂ {f = 0} for π : T ∗M → M the projection. Then one
has

χ
(
R�(K, ϕf [−1]F •)

) = 5( [CC(F •)] ∩ [df (M)] ) , (10.75)

resp.,

−
∫

K

ϕf (α) dχ = −χ(K, ϕf (α)) = 5
( [CC(α)] ∩ [df (M)] ) . (10.76)

Example 10.3.57 Let f : M → {0} be the constant zero function so that df (M) =
T ∗MM is the zero section of T ∗M , with −ϕf (α) = α for all α ∈ CF(M). Assume
M =: K is compact. Then we recover the global index formula (10.52):

∫

X

α dχ = 5( CC(α) ∩ [T ∗MM] ) .

In the special case I = {ω} given by a point ω ∈ T ∗M , we get back by
Theorem 10.3.56 a formula conjectured by Deligne (with x := π(ω) andK := {x}):

χ
(
(ϕf [−1] F •)x

) = 5dfx
( [CC(F •] ∩ [df (M)] ) (10.77)

and

− ϕf (α)(x) = α(x)−
∫

Mf ;x
α dχ = 5dfx

( [CC(α)] ∩ [df (M)] ) , (10.78)

with Mf,x the local Milnor fiber of f in x. In particular, for dfx �∈ supp(CC(α)),
we get

− ϕf (α)(x) = α(x)− ψf (α)(x) = α(x)−
∫

Mf ;x
α dχ = 0 . (10.79)

Example 10.3.58 Let f : (M, x) = (Cn+1, 0)→ (C, 0) be a holomorphic function
germ with an isolated singularity in 0 ∈ C

n+1. Then the local Milnor fiber Mf,0
has the homotopy type of a wedge of a finite number of n-spheres (for n ≥ 1). The
Milnor number μ(f ) is the number of these n-spheres, so that

χ(Mf,x,Q) = 1+ (−1)n · μ(f ) .
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For n = 0, the local Milnor fiberMf,0 consists of 1+ μ(f ) points. If we apply the
above formula to the perverse sheaf F • = QM [n + 1], resp., α = (−1)n+1 · 1M ,
with CC(QM [n+ 1]) = CC((−1)n+1 · 1M) = T ∗MM the zero section of T ∗M , we
recover the formula

μ(f ) = 5dfx
( [T ∗MM] ∩ [df (M)]

)

for the Milnor number, i.e.,

μ(f ) = dimC

(
OCn+1

)
0

(∇f )0
for the Milnor number in terms of the Jacobian ideal (∇f )0 ⊂

(
OCn+1

)
0.

The local intersection formula for the vanishing cycle functor (10.75) is due
to Dubson [36, Theorem 1], Ginsburg [42, Proposition 7.7.1], Lê [72, Theorem
4.1.2] and Sabbah [103, Theorem 4.5]. For a discussion of the history of this local
intersection formula for vanishing cycles we recommend the paper [72].

But most of these references are in the language of holonomic D-modules or
perverse sheaves. So the assumption on the intersection for a constructible complex
of sheaves F • corresponds to an assumption on the micro-support μsupp(F •).
To be able to state the result also for constructible functions, it is important to
work with the weaker assumption about the support of the characteristic cycle
supp(CC(F •)) ⊂ μsupp(F •).

Let us finally point out that MacPherson’s theory [80] of Chern classes c∗ of
singular varieties and constructible functions in the embedded context can easily
be recovered and improved from the functorial theory of characteristic cycles as
presented above, e.g., like the following results about c∗:

1. Functoriality of c∗ for proper morphism via Proposition 10.3.46.
2. Multiplicativity of c∗ with respect to external products via Example 10.3.45.
3. Specialization of c∗ in one parameter families via Theorem 10.3.55.
4. A Verdier-Riemann-Roch Theorem for c∗ with respect to non-characteristic

pullbacks (e.g., submersions or transversal pullbacks) via Theorem 10.3.51.
5. An intersection formula for c∗ via Theorem 10.3.51 in the context of Exam-

ple 10.68.

In fact, the most recent approach of [3] deduces c∗(α) for α ∈ CF(X) from CC(α),
viewed as a C

∗-invariant cycle, via intersection with the zero-section T ∗MM in C
∗-

equivariant Borel-Moore homology. For further reading also on relations between
MacPherson Chern classes c∗ and characteristic cycles we refer to, e.g., [1–4, 19,
42, 43, 103, 111, 113, 114, 123].
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10.3.5 Vanishing Results

Let us now explain other applications of the stratified Morse theory for constructible
sheaves and of Theorem 10.3.19, to vanishing and weak Lefschetz theorems in
the complex algebraic and analytic context. In the following we are back to the
general context that the base ring R is commutative and Noetherian, of finite global
dimension, and we work with (weakly) constructible complexes of sheaves of R-
modules.

First we consider the complex algebraic context with an affine complex algebraic
variety X ↪→ C

n and the strongly plurisubharmonic and semi-algebraic distance
function

r : Cn → R
≥0 ; r(z) :=

∑n

i=1
zi z̄i .

If F • ∈ DbS−wc(X;R) is S -weakly constructible with respect to a complex
algebraic Whitney stratification S of X, then the proper semi-algebraic distance
function r has only finitely many stratified critical values so that one gets as in the
proof of Theorem 10.3.38 and Example 10.3.41:

R�(X ∩ {r ≤ b},F •) � R�(X,F •) for b > 0 large enough,

and

R�c(X ∩ {r < b},F •) � R�c(X,F •) for b > 0 large enough.

Then Theorem 10.3.19 implies for f := r (with q = 0, since r is strongly
plurisubharmonic) directly the following important Artin-Grothendieck type result
(see also [109, Corollary 6.0.4] for a more general version):

Theorem 10.3.59 (Artin Vanishing Theorem) Let X be an affine complex alge-
braic variety, with F • ∈ Db(w)c(X;R) a complex algebraically (weakly) con-
structible sheaf complex (respectively, complex algebraically constructible in case
of a Dedekind domain R, if we want to use the dual perverse t-structure). Then:

1. F • ∈ p(+)D≤n(X;R)⇒ R�(X,F •) ∈ p(+)D≤n({pt};R) ⊂ Db(w)c({pt};R),
2. F • ∈ p(+)D≥n(X;R) ⇒ R�c(X,F •) ∈ p(+)D≥n({pt};R) ⊂
Db(w)c({pt};R).

Remark 10.3.60 The same proof as indicated above gives the Artin vanishing
Theorem more generally for an open semi-algebraic subset j : X ↪→ X′ of a
complex algebraic variety X′, if it has a proper strongly plurisubharmonic and
semi-algebraic function r : X→ R

≥0, and we consider only (weakly) constructible
sheaves of the form F • = j∗G • for some algebraically (weakly) constructible
G • ∈ Db(w)c(X′, R).
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Compare with [6, Section 4], especially [6, Theorem 4.1.1]), for the corre-
sponding relative counterpart for an affine morphism in the context of the perverse
t-structure in l-adic cohomology. The relative version of Theorem 10.3.59 for an
affine complex algebraic morphism is also true, as we will see later on. For now, let
us only illustrate this Theorem 10.3.59 by the following example (see, e.g., [109,
Example 6.0.4]).

Example 10.3.61 (Weak Lefschetz Theorem for Singular Spaces) LetX be a closed
algebraic subvariety of the complex projective space, withH a hyperplane. Consider
the open inclusion j : U := X\H ↪→ X, with i : X ∩ H ↪→ X the corre-
sponding closed inclusion. Assume F • ∈ Db(w)c(X;R) is complex algebraically
(weakly) constructible (respectively, complex algebraically constructible in case of
a Dedekind domain R, if we want to use the dual perverse t-structure). Then

j∗F • ∈ p(+)D≤n(U ;R)⇒

R�(X,Rj∗j∗F •) � R�(U, j∗F •) ∈ p(+)D≤n({pt};R) ,

and

j∗F • ∈ p(+)D≥n(U ;R)⇒

R�(X,X∩H,F •) := R�(X,Rj!j∗F •) � R�c(U, j∗F •) ∈ p(+)D≥n({pt};R).

In particular:

1. The relative homology

Hk(X,X ∩H ;R) = H−k(U ; j∗D•X)

vanishes for k < rHd(U,R).
2. If R is a Dedekind domain, then the we get for the relative cohomology that

Hk(X,X ∩H ;R) � Hkc (U ;RU) =
{

0 for k < rHd(U,R),

torsion-free for k = rHd(U,R).

3. Suppose X is purely n-dimensional, and H is a generic hyperplane, i.e., H is
transversal to a Whitney stratification S of X, so that i∗ICX[−1] � ICX∩H by
Example 10.2.28. Then the relative intersection cohomology

IHk(X,X ∩H ;R) := Hk−nc (U ; j∗ICX) = 0 for k < n.

Moreover, IHn(X,X ∩H ;R) is torsion-free in case R is a Dedekind domain.
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Here, statements 1. and 2. show the role of the rectified homological depth for
the “weak Lefschetz theorem for singular spaces” as conjectured by Grothendieck.
Compare also with [56, Theorem 3.4.1] for the corresponding homotopy result.

The “weak Lefschetz theorem for intersection homology” 3. is due to [46,
Theorem 7.1], and compare also with [47, Theorem 6.10]. Here we only cite the
following remark of Goresky-MacPherson from the beginning of [47, Section 6.10]:
“. . . The following Lefschetz hyperplane theorem was our original motivation for
developing Morse theory on singular spaces . . . ”.

The weak Lefschetz theorem of Example 10.3.61 can be generalized in many
different directions. Especially, it is enough to assume that X is a quasi-projective
algebraic subvariety X = X′\A, with A ⊂ X′ ⊂ CPN closed subvarieties, if H is
a generic hyperplane. Just take a Whitney stratification of X′ such that A is a union
of strata, and H is transversal to all strata. Then one can apply the following base
change isomorphisms (see, e.g., [109, Lemma 6.0.5]).

Lemma 10.3.62 Let A ⊂ X′ be closed analytic subvarieties of the complex
manifoldM . Fix a Whitney stratification S ofX′, with A a union of strata. Suppose
H is closed complex submanifold of M , which is transversal to all strata, and
consider the following cartesian diagram of inclusions:

Then for F • ∈ DbS |X−wc(X;R) a weakly constructible complex with respect to the
induced stratification S |X of X, one has natural isomorphisms:

j ′!Rk∗j
∗F • � Rk′∗j!j∗F • and Rj ′∗k!j∗F • � k′!Rj∗j∗F • . (10.80)

If X′ is also compact, then one gets for F • ∈ DbS |X−wc(X;R):

R�c(X,Rj∗j∗F • � R�(X′, k′!Rj∗j∗F •) � R�(U ′, k!j∗F •) ,

and

R�(X,X ∩H,F •) � R�(X′, Rk′∗j!j∗F •) � R�c(U ′, Rk∗j∗F •) .

Moreover,

j∗F • ∈ p(+)D≤n(U ;R) ⇒ k!j∗F • ∈ p(+)D≤n(U ′;R) ,
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and

j∗F • ∈ p(+)D≥n(U ;R) ⇒ Rk∗j∗F • ∈ p(+)D≥n(U ′;R) .

Applying the Artin vanishing Theorem 10.3.59 to these complexes on the right
hand side, one gets that the weak Lefschetz theorem of Example 10.3.61 remains true
for X = X′\A a quasi-projective variety, with A ⊂ X′ ⊂ CPN closed subvarieties,
if H is a generic hyperplane as discussed above (with U ′ ↪→ CPN\H = C

N

affine).
We next discuss the counterpart of the Artin vanishing Theorem 10.3.59 in the

complex analytic context for q-complete varieties in the following sense.

Definition 10.3.63 A complex variety X is called q-complete (q ∈ N0), if there
exists a proper q-convex C∞-function f : X→ R

≥0 (with q-convexity in the sense
of Definition 10.3.18). In particular, the 0-complete complex varieties are just the
complex analytic Stein spaces (see, e.g., [100]), and a closed complex subvariety of
a q-complete variety is again q-complete.

Then we need to consider a Morse approximation of f (as in [8]) with possibly
infinitely many critical points, and get by Theorem 10.3.19 the following result (see,
e.g., [109, Corollary 6.1.2] and compare also with [66, Theorem 10.3.8]).

Theorem 10.3.64 (Vanishing Theorem for q-Complete Varieties) Let X be a
complex analytic variety with a Whitney stratification S , f : X → R

≥0 a proper
q-convex function, and

Kn := {f ≤ rn}, Un := {f < rn}, for rn ↗∞

a sequence of regular values of f with respect to S (n ∈ N). Then one
gets for F • ∈ DbS−wc(X;R) a S -weakly constructible complex and q ′ :=
min {q, dimX}:
1. If F • ∈ pD

≤m
S (X;R), then

Hk(Kn+1,Kn;F •) � Hk({rn ≤ f ≤ rn+1}, {f = rn};F •) = 0 for k > m+ q′,

so that Hk(Kn+1;F •) → Hk(Kn;F •) is surjective for k ≥ m + q ′. In
particular, the projective systemHk(Kn;F •), n ∈ N, satisfies the Mittag-Leffler
condition for k ≥ m+ q ′ so that

Hk(X;F •) � lim← Hk(Kn;F •) = 0 for k > m+ q ′. (10.81)

2. If F • ∈ pD
≥m
S (X;R), then

Hkc (X;F •) � lim→ Hkc (Un;F •) = 0 for k < m− q ′. (10.82)
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3. If F • ∈ p+D≥mS (X;R) is constructible and R is a Dedekind domain, then

H
m−q ′
c (X;F •) � lim→ H

m−q ′
c (Un;F •) is torsion-free. (10.83)

Note that in the general complex analytic context one cannot expect any finiteness
or torsion-properties for the corresponding cohomology groups. If X is the Stein
space given by an infinite discrete set X = N ⊂ C and F is a sheaf on X, then

H 0(X;F ) =
∏

x∈X
Fx and H 0

c (X;F ) =
⊕

x∈X
Fx .

So even if all stalks Fx (x ∈ X) are finitely generated (torsion)R-modules, this does
not need to be the case forHk(X;F ) orHkc (X;F ). See [108] for similar finiteness
results on q-convex and q-concave complex varieties (using the same method of
proof as in Theorem 10.3.64).

Example 10.3.65 Let X be a q-complete variety of dimension n = dimX (e.g., a
Stein space for q = 0), with q ′ := min {q, n}. Then

1. The homology Hk(X;R) = H−kc (X;D•X) vanishes for k > n + q ′. Moreover,
Hn+q ′(X;R) is torsion-free in case R is a Dedekind domain.

2. The cohomologyHk(X;R) vanishes for k > n+ q ′.
3. SupposeX is purely n-dimensional. Then we get for the intersection cohomology

that

IHk(X;R) := Hk−n(X; ICX) = 0 for k > n+ q ′,

and the intersection homology IHk(X;R) := Hn−kc (X; ICX) vanishes for k >
n+ q ′. Moreover, IHn+q ′(X;R) is torsion-free in case R is a Dedekind domain.

The results in 1. and 2. are due to Hamm [54, 55], whereas 3. is due to Goresky-
MacPherson [47, Section 6.9] (at least for Stein spaces). See [109, Chapter 6] for
more general results and further references.

Before stating the relative versions of these vanishing results, let us recall the
following.

Definition 10.3.66 A morphism f : X→ Y of complex algebraic varieties is called
affine, if any point y ∈ Y has an open affine neighborhoodU ⊂ Y such that f−1(U)

is affine. Similarly, a morphism f : X → Y of complex analytic varieties is called
q-complete, resp., Stein, if any point y ∈ Y has an open neighborhood U ⊂ Y

such that f−1(U) is q-complete, resp., Stein (q ∈ N0). So, by definition, a Stein
morphism corresponds to a 0-complete morphism.

Example 10.3.67 A finite morphism (e.g., a closed embedding) is an affine, resp.,
Stein morphism. Similarly, if the closed embedding i : X ↪→ Y is locally given by
one algebraic, resp., analytic equation X = {f = 0}, then the inclusion of the open
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complement j : U := Y\X ↪→ Y is an affine, resp., Stein morphism. Also, an affine
algebraic morphism is Stein when viewed as a morphism of the underlying analytic
varieties.

Remark 10.3.68 Let us explain the crucial property of a q-complete (resp., affine)
morphism f : X → Y used for (co)stalk calculations in the following Theorems.
In the analytic context consider a local embedding (Y, y) ↪→ (Cn, 0) and an open
neighborhood U ⊂ Y of y such that f−1(U) is q-complete, with g : f−1(U) →
R
≥0 a proper q-convex function. Consider the strongly plurisubharmonic distance

function r : Cn → R
≥0 with r(z) := ∑n

i=1 zi · z̄i . Then for any small r0 > 0 the
function

g′ := g + 1

r − r0 ◦ f : f
−1(U ∩ {r < r0})→ R

≥0 is also proper and q-convex

(10.84)
(see, e.g., [109, p.429] and [119, Proposition 2.2, Proposition 2.4]). Therefore one
can apply the vanishing Theorem 10.3.64 to f−1(U ∩ {r < r0}).

For an affine morphism f : X → Y , one takes a global affine embedding
(U, y) ↪→ (Cn, 0) of an open affine neighborhood U ⊂ Y of y such that f−1(U)

is also affine with g : f−1(U) → R
≥0 a proper strongly plurisubharmonic and

semialgebraic function. Then g′ as before is a proper strongly plurisubharmonic and
semialgebraic function on the open semi-algebraic subset f−1(U ∩ {r < r0}) ⊂ X,
so that one can use the Artin vanishing Theorem in the version of Remark 10.3.60.

Let us now state the following Artin-Gothendieck type result in the complex
algebraic context (see, e.g., [109, Theorem 6.0.4]).

Theorem 10.3.69 (Algebraic Artin-Grothendieck Type Theorem) Let f : X→
Y be an affine morphism of complex algebraic varieties, with F • ∈ Db(w)c(X;R) a
complex algebraically (weakly) constructible sheaf complex (respectively, complex
algebraically constructible sheaf complex in case of a Dedekind domain R, if we
want to use the dual perverse t-structure). Then:

1. F • ∈ p(+)D≤n(X;R)⇒ Rf∗F • ∈ p(+)D≤n(Y ;R),
2. F • ∈ p(+)D≥n(X;R)⇒ Rf!F • ∈ p(+)D≥n(Y ;R).

Compare with [6, Section 4], especially [6, Theorem 4.1.1], for the corresponding
relative counterpart for an affine morphism in the context of the perverse t-structure
in l-adic cohomology. In the case Y = {pt} a point space, Theorem 10.3.69 just
reduces to Theorem 10.3.59.

In the complex analytic context one has in addition to assume that the corre-
sponding direct image complexes are again (weakly) constructible (see, e.g., [109,
Corollary 6.0.8] and [66, Proposition 10.3.17] for the case of a Stein map).
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Theorem 10.3.70 (Analytic Artin-Grothendieck Type Theorem) Let f : X →
Y be a q-complete morphism of complex analytic varieties (e.g., a Stein map for
q = 0), with F • ∈ Db(w)c(X;R) a (weakly) constructible sheaf complex. Then:

1. F • ∈ pD≤n(X;R) andRf∗F • ∈ Db(w)c(Y ;R)⇒ Rf∗F • ∈ pD≤n+q (Y ;R),
2. F • ∈ pD≥n(X;R) and Rf!F • ∈ Db(w)c(Y ;R)⇒ Rf!F • ∈ pD≥n−q (Y ;R).
3. Assume F • ∈ Dbc (X;R) is constructible with R a Dedekind domain. then

F • ∈ p+D≥n(X;R) and Rf!F • ∈ Dbc (Y ;R)⇒ Rf!F • ∈ p+D≥n−q (Y ;R).
In the case Y = {pt} a point space, Theorem 10.3.70 corresponds to Theo-

rem 10.3.64.
Let us finish this section with the following:

Example 10.3.71 (Relative Weak Lefschetz Theorem for Singular Spaces) Let
V → Y be a complex algebraic (or analytic) vector bundle, and W ↪→ V be a
subbundle with rank V = rank W + 1. Let i : P(W) ↪→ P(V ) be the closed
inclusion of the associated projective bundles, with open complement j : U :=
P(V )\P(W) ↪→ P(V ). Then the projection π : U → Y is an affine (resp., Stein)
morphism.

Assume F • ∈ Db(w)c(P(V );R) is (weakly) constructible (respectively, con-
structible in case of a Dedekind domain R, if we want to use the dual perverse
t-structure), so that

Rπ!j∗F •, Rπ∗j∗F • ∈ Db(w)c(Y ;R) .

Then

j∗F • ∈ pD≤n(U ;R)⇒ Rπ∗j∗F • ∈ pD≤n(Y ;R) ,

and

j∗F • ∈ p(+)D≥n(U ;R)⇒ Rπ!j∗F • ∈ p(+)D≥n(Y ;R) .

10.4 Nearby and Vanishing Cycles, Applications

In this section we recall the construction of Deligne’s nearby and vanishing cycle
functors ([52]), and indicate their relation with perverse sheaves. We continue
to assume that the base ring R is commutative and Noetherian, of finite global
dimension, and we work with (weakly) constructible complexes of sheaves of R-
modules in the complex algebraic (or analytic) context.
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10.4.1 Construction

Let f : X → C be a morphism from a complex algebraic (or analytic) variety X
to C. Let X0 = f−1(0) be the central fiber, with inclusion map i : X0 ↪→ X. Let
X∗ := X \ X0 and let f ∗ : X∗ → C

∗ be the induced morphism to the punctured
affine line. Consider the following cartesian diagram:

(10.85)

where π : C̃∗ → C
∗ is the infinite cyclic (universal) cover of C

∗ given by z �→
exp(2πiz). Then π̂ : X̃∗ → X∗ is an infinite cyclic cover with deck groupπ1(C

∗) �
Z. Note that π is only a holomorphic but not an algebraic map, so that this fiber
square only exists in the complex analytic category, even if we start with a morphism
f : X→ C in the complex algebraic context.

Definition 10.4.1 The nearby cycle functor of f assigns to a bounded complex
F • ∈ Db(X;R) the complex on X0 defined by

ψfF
• := i∗R(j ◦ π̂)∗(j ◦ π̂)∗F • � i∗Rj∗Rπ̂∗π̂∗j∗F • ∈ Db(X0;R) .

(10.86)

Remark 10.4.2 By definition,ψfF • depends only on the restriction j∗F • of F •
to X∗. In the complex analytic context, it would have been enough for the definition
of the nearby cycles to start with a holomorphic map f : X → D ⊂ C to a small
open disc D around zero in the complex plane, with π : D̃∗ → D∗ the induced
infinite cyclic (universal) cover of D∗.

Note that π1(C
∗) � Z acts naturally on Rπ̂∗π̂∗, with an induced action on the

nearby cyclesψfF •. In our complex context we choose the generator of π1(C
∗) �

Z fitting with the complex orientation of C∗ and call the induced action

h = hf : ψfF • → ψfF
•

the monodromy automorphism of the nearby cycles. The adjunction morphism

id → R(j ◦ π̂)∗(j ◦ π̂)∗

induces the specialization map sp : i∗ → ψf commuting with the monodromy
automorphism h acting trivially on i∗ (i.e., acting as the identity on i∗). Let us now
explain the use of the base change induced by the universal cover π : C̃∗ → C

∗ in
the definitions above in a simple but important example.
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Example 10.4.3 (Nearby Cycle Functor for the Identity Map) Let f = id be the
identity map of C, with i : {0} ↪→ C the inclusion of the point zero. Similarly, let
ix : {x} ↪→ Dr := {|z| < r} ⊂ C, for 0 < |x| < r ≤ ∞, be the inclusion of a
(nearby) point x �= 0 in a (small) open disc of radius r around zero. Finally consider
a complex F • ∈ DbS−wc(C;R) which is weakly constructible with respect to the
Whitney stratification S of C given by the two strata S = {0} and S′ = C

∗.
Then the cohomology sheaves H k(j∗F •) are only locally constant on C

∗, but
their pullbacks H k(π̂∗j∗F •) to C � C̃∗ (or their restrictions to D̃∗r ) are locally
constant and therefore constant (for all k ∈ Z) since C � C̃∗ (or D̃∗r ) is convex and
contractible. Then

for ix̃ : {x̃} ↪→ D̃∗r the inclusion of a point x̃ with π(x̃) = x. And the monodromy
h on Hk(ψid(F •)) gets identified with the monodromy of the local system
H k(j∗F •) acting on i∗xH k(j∗F •) (for all k ∈ Z). Finally the specialization
map is given by

Definition 10.4.4 In the context of the diagram (10.85), the complex of vanishing
cycles of F • ∈ Db(X;R), denoted ϕfF •, is the bounded complex on X0 defined
by taking “the” cone of the specialization map sp : i∗F • → ψfF •. In particular,
one gets a unique distinguished triangle

i∗F • sp−→ ψfF
• can−→ ϕfF

• [1]−→ (10.87)

in Db(X0;R).
Remark 10.4.5 Note that cones are not functorial, but in the above construction one
can for example work with (a suitable truncation of) the canonical flabby resolution
to get ϕf as a functor (see [66, Chapter 8] or [109, pp. 25–26] for more details). The
vanishing cycle functor also comes equipped with a monodromy automorphism,
denoted also by h, so that h induces an automorphism of the triangle (10.87).

Example 10.4.6 Assume F • ∈ Db(X;R) is supported on X0, i.e., j∗F • � 0.
Then ψfF • � 0 and (ϕfF •)[−1] � i∗F •, with a trivial monodromy action h.

Example 10.4.7 (Vanishing Cycle Functor for the Identity Map) Consider the
context of the Example 10.4.3. Then for any point 0 �= x ∈ Dr in a small open
disc Dr around zero:

(ϕidF
•)[−1] � R�(Dr , {x};F •) � (R�{l≥0}(F •)

)
0 =: LMD(F •, l, 0)
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for anyR-linear map l : C→ R with l(x) < 0. In particular the following properties
are equivalent:

1. sp : i∗F • → ψidF • is an isomorphism,
2. ϕidF • � 0,
3. all cohomology sheaves H k(F •) are locally constant on C or Dr (k ∈ Z),
4. the normal Morse datum NMD(F •, {0}) � LMD(F •, l, 0) vanishes.

Next we explain why the nearby and vanishing cycle functors preserve (weak)
constructibility. Consider a complex algebraic (or analytic) morphism f : X → C

as in diagram (10.85). Assume X is endowed with a Whitney stratification S such
that X0 = {f = 0} is a union of strata, with induced stratification S |X0 . Similarly
for the induced stratification S |X∗ of the open complement X∗ = {f �= 0}. But
π̂ : X̃∗ → X∗ is an infinite cyclic covering with deck group π1(C

∗) � Z, so that X̃∗
gets an induced complex analytic Whitney stratification S̃ , making π̂ : X̃∗ → X∗
a stratified map such that, for any stratum S ∈ S , π̂ : π̂−1(S) → S is also an
infinite cyclic covering with deck group π1(C

∗) � Z, i.e., a locally trivial fibration
with fiber Z. But this implies by induction on dimX∗ the following (see, e.g. [109,
Corollary 4.2.1(4)]).

Lemma 10.4.8 Rπ̂∗π̂∗ mapsDbS |X∗−wc(X
∗;R) to itself.

Together with Example 10.2.38 this implies (also in the complex algebraic
context) the following important fact.

Corollary 10.4.9 The nearby and vanishing cycle functors ψf , ϕf induce

ψf , ϕf : Db(S−)wc(X;R)→ Db(S |X0−)wc(X0;R) ,

i.e., they preserve weak constructibility (with respect to S and S |X0).

But note that Rπ̂∗π̂∗ does not preserve Db
(S |X∗−)c(X

∗;R), i.e., constructibility.
Let g be a generator of π1(C

∗) � Z, given by the complex orientation of C∗, which
we interpret now as an automorphism of X̃∗. Let G be a sheaf on X∗. We claim that
the following sequence of sheaves on X∗ is exact:

Take a ball B in C
∗ so that the restriction of the universal covering map of C∗ to B

is isomorphic to the projection B ×Z→ B, with g corresponding to the translation
Z→ Z, i �→ i + 1. If we take an open subset V ⊂ f−1(B), then π̂ : π̂−1(V )→ V

is isomorphic to the projection V × Z→ V , with g acting as before on the second
factor. Then

�(V, π̂∗π̂∗G ) �
∏

i∈Z �(V,G )
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such that g∗ acts by the permutation i �→ i + 1. Moreover the adjunction map
corresponds to the diagonal embedding �(V,G ) → ∏

i∈Z �(V,G ). Then the
sequence

is exact. Since each point of X∗ = {f �= 0} has a fundamental system of open
neighborhoods V as before, this implies our claim.

By using a flabby resolution we therefore get the distinguished triangles (see,
e.g., [109, (5.88) on p.369])

for any G • ∈ Db(X∗;R), and

(10.88)

for any F • ∈ Db(X;R).
Consider also the distinguished triangle

(10.89)

Since the map can : i∗F • → ψfF
• factorizes as

we get from the distinguished triangles (10.89), (10.88), (10.87) and the octahedral
axiom a distinguished triangle

(10.90)

for F • ∈ Db(X;R). Here the variation morphism

var : ϕfF • → ψfF
•

can be defined by the cone of the pair of morphisms (applied to a flabby resolution):

(0, h− id) : [i∗F • → ψfF
•] −→ [0 → ψfF

•] ,
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with h = hf the monodromy automorphism, so that

can ◦ var = h− id and var ◦ can = h− id . (10.91)

Remark 10.4.10 Note that the variation morphism var depends of the choice of a
generator g ∈ π1(C

∗) � Z, i.e., on the choice of an orientation for C∗. Moreover
there are then two choices for var in the literature, using a different sign convention
so that

can◦ var = ±(h− id) = ∓(id−h) and var ◦ can = ±(h− id) = ∓(id−h) .

For example, our choice here only fits with −var as used in [66, Equation (8.6.8)]
and [109, Equation (5.90)].

Let us now explain an important description of the (co)stalks of the nearby
cycles in terms of local Milnor fibers. Consider a complex algebraic (or analytic)
morphism f : X→ C as in diagram (10.85). AssumeX is endowed with a Whitney
stratification S such that X0 = {f = 0} is a union of strata, with induced
stratification S |X0 . Recall again that by a classical theorem of Hironaka [57,
Corollary 1 of Theorem 2, p.248] (see also [73, Corollary 1.3.5.1]), one can always
refine a given stratification so that it satisfies the af -condition (10.69). Moreover,
by [14, Theorem 4.2.1], this af -condition is true for the given Whitney stratification
S , with X0 a union of strata.

Note that the af -condition is needed to have a local Milnor fibration at a given
point x ∈ X0, with Milnor fiber

(Mf,x, ∂Mf,x) := (X ∩ {f = w} ∩ {r ≤ ε},X ∩ {f = w} ∩ {r = ε})

and M̊f,x :=Mf,x\∂Mf,x
for 0 < |w| ( ε and a general holomorphic function germ f : (X, x) → (C, 0)
on a singular complex analytic variety X (see, e.g., [109, Example 1.3.3] and [70]).
Here we consider a local embedding (X, x) ↪→ (Cn, 0)with r(z) :=∑n

i=1 zi · z̄i the
distance to x = 0. By the curve selection lemma one can assume that (locally near
x ∈ X0) w is a stratified regular value, i.e., {f = w} is transversal to S for 0 < |w|
small enough. Then by the af -condition, and for 0 < |w| ( ε small enough, r = ε
is a stratified regular value of r with respect to the induced Whitney stratification of
X ∩ {f = w} (see, e.g., [109, Example 1.1.3]).

Then the following local calculation is a direct consequence of the definition of
the nearby cycle functor and the existence of such a local Milnor fibration (see, e.g.,
[109, Example 5.4.2]).

Proposition 10.4.11 For every x ∈ X0, with ix : {x} ↪→ X0 = {f = 0} the
inclusion, there are isomorphisms:

i∗x (ψfF •) � R�(Mf,x ,F •) � R�(M̊f,x ,F •) (10.92)
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compatible with the corresponding monodromy actions, and

i !x(ψfF •) � R�(Mf,x, ∂Mf,x,F •) � R�c(M̊f,x,F •) (10.93)

for any F • ∈ Dbwc(X;R).
By Proposition 10.3.21 and the triangle (10.87) we get the following.

Corollary 10.4.12 Let T ⊂ Db({pt};R) be a fixed “null system”, i.e., a full
triangulated subcategory stable by isomorphisms. If F • ∈ Db

(S−)T−stalk(X;R),
then also

ψfF
•, ϕfF • ∈ Db(S |X0−)T−stalk(X;R) .

In particular, ψfF • and ϕfF • are constructible for F • constructible.

Remark 10.4.13 By taking T = Dbc,χ=0({pt};R), we get the nearby and vanishing
cycles for constructible functions:

ψf , ϕf : CF(S )(X)→ CF(S |X0 )
(X0) ,

with

ψf (α)(x) :=
∫

Mf,x

αdχ and ϕf (α)(x) :=
∫

Mf,x

αdχ − α(x)

for α ∈ CF(S )(X) and x ∈ X0 = {f = 0}.
Using Proposition 10.4.11 and the distinguished triangle (10.87), one gets the

following (see, e.g., [109, Lemma 5.4.1, Example 5.4.1]).

Corollary 10.4.14 For every x ∈ X0 = {f = 0}, with ix : {x} ↪→ X0 = {f = 0}
the inclusion, there are isomorphisms:

i∗x (ϕfF •)[−1] � R�(B̊ε,x, B̊ε,x ∩ {f = w},F •)

� (R�{Re(f )≥0}(F •)
)
x
=: LMD(F •, Re(f ), x) (10.94)

for F • ∈ Dbwc(X;R) and 0 < |w| ( ε small enough. Here B̊ε,x = X ∩ {r < ε} is
the intersection of X with a small open ε-ball around x ∈ X.

Example 10.4.15 As a special case of (10.94), let F • = RX be the constant sheaf
on X. Since B̊ε,x ∩X0 is contractible, one gets

H k(ϕf RX)x � H̃ k(Mf,x;R)

is the reduced cohomology of the Milnor fiber Mf,x of f at x. If, moreover, X is
smooth, then Milnor fibers at smooth points of X0 are contractible, so the above
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calculation yields the inclusion:

supp(ϕf RX) :=
⋃

k

supp H k(ϕfF
•) ⊆ Sing(X0).

A more general estimation of the support of vanishing cycles is provided by the
following result (see, e.g., [83] or [109, Remark 4.2.4]).

Proposition 10.4.16 Let X be a complex algebraic (or analytic) variety with a
given Whitney stratification S , and let f : X → C be a morphism with X0 =
{f = 0}. For every S -weakly constructible complex F • on X and every integer k,
one has the inclusion

suppH k(ϕfF
•) ⊆ X0 ∩ SingS (f ), (10.95)

where

SingS (f ) :=
⋃

S∈S
Sing(f |S)

is the stratified singular set of f with respect to the stratification S .

Example 10.4.17 (Isolated Stratified Critical Point) In the context of Proposi-
tion 10.4.16, assume that x ∈ X0 = {f = 0} is an isolated stratified critical point
of f . Then

i !x(ϕF •)[−1] � i∗x (ϕF •)[−1] � (R�{Re(f )≥0}(F •)
)
x
=: LMD(F •, Re(f ), x)

for ix : {x} → X0 the point inclusion. Applying i∗x to the distinguished triangle
(10.87), one gets

with i∗x (ψfF •) � R�(Mf,x,F •) for a local Milnor fiberMf,x as in (10.92).
Applying i !x to the distinguished triangle (10.90), one gets

with i !x(ψfF •) � R�(Mf,x, ∂Mf,x,F •) for a local Milnor fiber (Mf,x, ∂Mf,x)
as in (10.93).

Remark 10.4.18 Consider a local embedding (X, x) ↪→ (Cn, x), with N a normal
slice to x ∈ S for a stratum S ∈ S . Assume g : (CN, x)→ (C, 0) is a holomorphic
function germ such that the covector dgx is non-degenerate with respect to S .
Then x is an isolated stratified critical point of g|N with respect to the induced
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Whitney stratification S |N of X ∩ N , so that Example 10.4.17 gives for this case
the distinguished triangles from Proposition 10.3.14.

The nearby and vanishing cycle functors have the following base change
properties. Consider a cartesian diagram of morphism

(10.96)

with f ′ := f ◦ k. Then one has the following base change isomorphisms (see, e.g.,
[109, Remark 4.3.7, Lemma 4.3.4]).

Proposition 10.4.19 (Base Change Isomorphisms for Nearby and Vanishing
Cycles) The following base change isomorphisms commute with the maps can
and var:

1. Assume k : Y → X is proper. Then

Rk′∗(ψf ′F •) � ψf (Rk∗F •) and Rk′∗(ϕf ′F •) � ϕf (Rk∗F •)

for all F • ∈ Db(Y ;R).
2. Assume k : Y → X is smooth. Then

k′∗(ψfF •) � ψf ′(k∗F •) and k′∗(ϕfF •) � ϕf ′(k∗F •)

for all F • ∈ Db(X;R).
3. Assume X ↪→ M is a closed subvariety of the complex algebraic (or analytic)

manifold M , with S a Whitney stratification of X. Let N ↪→ M be a closed
complex algebraic (or analytic) submanifold which is transversal to S (i.e.,
transversal to all strata S ∈ S ), with k : Y := X ∩ N ↪→ X the induced
inclusion. Then

k′∗(ψfF •) � ψf ′(k∗F •) and k′∗(ϕfF •) � ϕf ′(k∗F •)

for all F • ∈ DbS−wc(X;R).
Then one gets by proper base change and the Examples 10.4.3 and 10.4.7 the

following (see, e.g., [109, Example 1.1.1]).

Example 10.4.20 Let f : X→ C be a proper morphism, withX0 = {f = 0}. Then

R�(X0, ψfF
•) � ψid(Rf∗F •) � i∗x (Rf∗F •) � R�({f = x},F •)

(10.97)
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and

R�(X0, ϕfF
•)[−1] � ϕid(Rf∗F •)[−1]

� R�(Dr , {x}, Rf∗F •) � R�({|f | < r, {f = x},F •) (10.98)

for F • ∈ Dbwc(X;R) and a point 0 �= x ∈ Dr in a small open disc Dr around zero.
In particular, it follows from (10.87) and (10.97) that for any 0 �= x ∈ Dr as above,
one has for f proper the following specialization sequence:

· · · → Hk(X0;F •)→ Hk({f = x};F •)→ Hk(X0;ϕfF •)→ Hk+1(X0;F •) · · ·
(10.99)

In the case F • = RX and by analogy with the local situation, the groups
H ∗(X0; ϕfRX) are usually referred to as the the vanishing cohomology of f (see,
e.g., [92]).

10.4.2 Relation with Perverse Sheaves and Duality

Let f : X → C be a morphism of complex algebraic (or analytic) varieties. The
behavior of the nearby and vanishing cycle functors with regard to Verdier duality
is described by the following result (for instance, see [86, Theorem 3.1, Corollary
3.2]).

Theorem 10.4.21 The shifted functors ψf [−1] and ϕf [−1] commute with the
Verdier duality functor D up to natural isomorphisms.

Note that this duality result also fits with the following behavior of the nearby
and vanishing cycle functors with regard to the (dual) perverse t-structure (but this
is not used in its proof, see, e.g., [109, Theorem 6.0.2]).

Theorem 10.4.22 Let f : X → C be a morphism of complex algebraic (or
analytic) varieties, with X∗ := {f �= 0}. Assume F • ∈ Db(X;R) is weakly
constructible (resp., F • is constructible with R a Dedekind domain, in case we
want to use the dual perverse t-structure). Then we have:

1. j∗F • ∈ p(+)D≤n(X∗;R) ⇒ (ψfF •)[−1] ∈ p(+)D≤n(X0;R).
2. j∗F • ∈ p(+)D≥n(X∗;R) ⇒ (ψfF •)[−1] ∈ p(+)D≥n(X0;R).
3. F • ∈ p(+)D≤n(X;R) ⇒ (ϕfF

•)[−1] ∈ p(+)D≤n(X0;R).
4. F • ∈ p(+)D≥n(X;R) ⇒ (ϕfF •)[−1] ∈ p(+)D≥n(X0;R).
Proof Note that the result (3.) resp., (4.) for the vanishing cycle functor follows
directly form the corresponding result (1.) resp., (2.) for the nearby cycle functor, if
one uses the distinguished triangle (10.87) or (10.90).



760 L. G. Maxim and J. Schürmann

The argument for the nearby cycles is similar to the proof of Theorem 10.3.19.
But this time we use the corresponding description of Proposition 10.4.11 for the
(co)stalk of the nearby cycle functor. Choose a complex algebraic (or analytic)
Whitney stratification S of X with X0 = {f = 0} and X∗ = {f �= 0} a union of
strata, which satisfies the af -condition of Thom (10.69). Then we already know, by
Corollary 10.4.9, that ψfF • is (weakly) constructible with respect to the induced
Whitney stratification S |X0 of X0.

Consider a point x ∈ S for a stratum S ⊂ {f = 0} of dimension s. First we
assume that S = {x} is a point stratum. By Proposition 10.4.11 we get

i∗x (ψfF •) � R�(X ∩ {r ≤ δ, f = w},F •) ,

and

i !x(ψfF •) � R�(X ∩ {r ≤ δ, f = w},X ∩ {r = δ, f = w},F •)

for 0 < |w| ( δ ( 1, with ix : {x} → {f = 0} the inclusion and

r(z) :=
∑n

i=1
zi z̄i in a local embedding (X, x) ↪→ (Cn, 0) .

Then L := {f = w} is transversal to S near x for 0 < |w| ( 1 (by the curve
selection lemma). So we get by Proposition 10.2.27:

F •|L[−1] ∈ p(+)D≤n(L;R) or F •|L[−1] ∈ p(+)D≥n(L;R) .

Moreover, for 0 < |w| ( δ ( 1, δ is a regular value of r with respect to S |L. This
follows from the af -condition. If we apply Theorem 10.3.19 with q = 0 to r (or
−r), then we get by the (co)stalk formulae above:

i∗x (ψfF •)[−1] ∈ p(+)D≤n({pt};R) or i !x(ψfF •)[−1] ∈ p(+)D≥n({pt};R) .

This proves our claim for a point stratum.
We reduce the general case to the first case by taking a complex analytic normal

slice N at x (in some local embedding), with codimN = dim S = s. Consider the
cartesian diagram
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Then we have

k∗xi∗S(ψfF •) � κ∗x k′∗(ψfF •) .

Since ψfF • is weakly constructible with respect to the induced stratification of
{f = 0}, we get by the base change property (10.10):

k∗xi !S(ψfF •) � κ !xk′∗(ψfF •) .

But we also have by Proposition 10.4.19 the base change isomorphism

k′∗(ψfF •) � ψf ′(k∗F •) , with f ′ := f ◦ k.

Then the claim follows from the first case for f ′, X′ := N∩X and k∗F •, sinceN is
transversal to S near x, with codimN = dim S = s, so that by Proposition 10.2.27:

k∗F • ∈ p(+)D≤n−s (X′;R) or k∗F • ∈ p(+)D≥n−s (X′;R) .

This completes the proof. ��
Remark 10.4.23 We get in particular that the (shifted) nearby and vanishing cycle
functors pψf := ψf [−1] and pϕf := ϕf [−1] are t-exact functors with respect to
the perverse t-structure.

This is a result of Gabber in the algebraic context for l-adic cohomology
(unpublished, but compare with [6, Proposition 4.4.2], [16, Theorem 1.2] and
[61, Corollary 4.5, 4.6]). In the complex analytic context it is due to Goresky-
MacPherson [45, Theorem 6.5], and [47, p.222, Corollary 6.13.6, p.224 6.A.5]. For
another proof of this classical case see [66, Corollary 10.3.11, 10.3.13].

But it does not seem to be well known that the result also applies for R a
Dedekind domain to the dual t-structure. In particular, the functors pψf = ψf [−1]
and pϕf = ϕf [−1] preserve then strongly perverse sheaves.

Example 10.4.24 IfX is a pure-dimensional complex algebraic (or analytic) variety
satisfying rHd(X,R) = dimX for R a Dedekind domain, then Proposition 10.2.54
and the above Remark yield that pψf RX[dimX] and pϕfRX[dimX] are strongly
perverse sheaves onX0. Therefore these perverse sheaves have torsion-free costalks
in the lowest possible degree (cf. Corollary 10.2.55).

Example 10.4.25 Let f : (X, 0) → (C, 0) be a nonconstant holomorphic function
germ defined on a pure (n + 1)-dimensional complex singularity germ contained
in some ambient (CN, 0). Denote byMf,0 the Milnor fiber of the singularity at the
origin in X0 = f−1(0). Let � := SingS (f ) be the stratified singular locus of f
with respect to a fixed Whitney stratification S of X, and set r := dim0�. Let R
be a Dedekind domain and assume that rHd(X,R) = n+ 1. The support condition
for the perverse sheaf pϕf RX[n+ 1] (which is supported on �) yields that the only
possibly non-trivial reduced cohomology H̃ k(Mf,0;R) of Mf,0 is concentrated in
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degrees n − r ≤ k ≤ n. Moreover, as shown, e.g., in [93, Theorem 3.4(d)] or
[109, Example 6.0.12], the lowest (possibly) non-trivial module H̃ n−r (Mf,0;R) is
torsion-free.

For more applications of the fact that vanishing and nearby cycle functors
preserve strongly perverse sheaves see [109], e.g., [109, Example 6.0.14] for
applications to local Lefschetz and vanishing theorems, as well as [92] (for the
study of vanishing cohomology of complex projective hypersurfaces) and [93] (for
understanding the Milnor fiber cohomology).

Using Theorem 10.4.22 and Corollary 10.3.25, together with Example 10.4.17
and Remark 10.4.18, one gets the following characterization (see, e.g., [109,
Corollary 6.0.7]).

Corollary 10.4.26 Let X be a complex algebraic (or analytic) variety. Assume
F • ∈ Db(X;R) is weakly constructible (resp., F • is constructible with R a
Dedekind domain, in case we want to use the dual perverse t-structure). Then we
have for “? given by ≤” or “? given by ≥”:

F • ∈ p(+)D ? n(X;R) ⇔ (
(ϕfF

•)[−1])
x
∈ p(+)D ? n({pt};R)

for all holomorphic function germs f : (X, x) → (C, 0) such that x is isolated in
the support of ϕf (F •).

As an application we get once more the effectivity of characteristic cycles of
perverse sheaves, this time via vanishing cycles. Assume X is a complex manifold
and R is a field. Let F • ∈ DbS−c(X;R) be a constructible complex with respect to
some Whitney stratification S . Consider the characteristic cycle of F •, i.e.,

CC(F •) =
∑

S∈S
m(S) · T ∗S X,

with multiplicitiesm(S) given as in Definition 10.3.34 in terms of the normal Morse
data ofF •. Here, we recall the calculation ofCC(F •) in terms of vanishing cycles.

For a stratum S ∈ S , let x ∈ S be a point, and let g : (X, x) → (C, 0) be a
holomorphic function germ at x such that dgx is a non-degenerate covector and x
is a complex Morse critical point of g|S (i.e., dg(X) intersects T ∗S X transversally
at dgx). Then, as in Example 10.3.37, Re(g)|S has a classical Morse critical point
at x of Morse index equal to dimS, and the multiplicities m(S) of CC(F •) can be
computed from Theorem 10.3.12 and Corollary 10.4.14:

m(S) = χ((pϕgF •)x). (10.100)
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Then we get by Example 10.4.17 and Corollary 10.4.26:

Corollary 10.4.27 If, in the above notations, F • is a perverse sheaf, then its
characteristic cycle is effective, i.e.,m(S) ≥ 0 for all strata S in S .

Let us come back to the general context for finishing this section with the
following applications of Theorem 10.4.22 (see, e.g., [109, Proposition 6.0.2]).

Proposition 10.4.28 Let i : Y ↪→ X be the inclusion of a closed complex algebraic
(or analytic) subset, with j : U := X\Y ↪→ X the inclusion of the open
complement. Suppose that Y can locally be described (at each point x ∈ Y ) as the
common zero-set of at most k algebraic (or holomorphic) functions on X (k ≥ 1).

Assume F • ∈ Db(X;R) is weakly constructible (resp.,F • is constructible with
R a Dedekind domain, in case we want to use the dual perverse t-structure). Then
one has:

1. F • ∈ p(+)D≤n(X;R)⇒ i !F •[k] ∈ p(+)D≤n(Y ;R).
2. F • ∈ p(+)D≥n(X;R)⇒ i∗F •[−k] ∈ p(+)D≥n(Y ;R).
3. j∗F • ∈ p(+)D≤n(U ;R)⇒ i∗Rj∗j∗F •[k − 1] ∈ p(+)D≤n(Y ;R) and
Rj∗j∗F •[k − 1] ∈ p(+)D≤n(X;R) .

4. j∗F • ∈ p(+)D≥n(U ;R)⇒ i !Rj!j∗F •[−(k − 1)] ∈ p(+)D≥n(Y ;R) and
Rj!j∗F •[−(k − 1)] ∈ p(+)D≥n(X;R) .
These are local results, so that we can assume that Y is the common zero-set of

k′ algebraic (or holomorphic) functions (with 1 ≤ k′ ≤ k). Then the claim for (1.)
or (2.) follows by induction from the case k′ = 1, which is a direct application of
Theorem 10.4.22 and the distinguished triangle (10.87) or (10.90). Finally (3.) or
(4.) is, by i∗Rj∗j∗ � i !Rj!j∗[1] (see, e.g., [6, (1.4.6.4)]), a special case of (1.) or
(2.).

Example 10.4.29 (Purity) Let i : Y ↪→ X be the inclusion of a closed complex
algebraic (or analytic) subset, which can locally be described as the common zero-
set of at most k algebraic (or holomorphic) functions onX. Then i !DX � DY implies
by Proposition 10.4.28 the following estimate of the rectified homological depth:

rHd(X,R) ≥ n ⇒ rHd(Y,R ≥ n− k . (10.101)

Especially for X smooth of pure dimension n, we get (using also i∗RX = RY )

rHd(Y,R) ≥ n− k = dimY ≥ rHd(Y,R) and RY [dimY ] ∈ pD≥0(Y ;R) ,

if Y is locally a set-theoretical complete intersection of codimension k in X. In
particular

rHd(Y,R) = dimY and RY [dimY ] is a perverse sheaf

for Y a pure-dimensional local complete intersection.
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Compare also with [56, Theorem 3.2.1, Corollary.3.2.2] for the corresponding
homotopy results.

10.4.3 Thom-Sebastiani for Vanishing Cycles

In this section, we state a Thom-Sebastiani result for vanishing cycles, generalizing
[118] to functions defined on singular ambient spaces, with arbitrary critical loci,
and with arbitrary weakly constructible sheaf coefficients. For complete details, see
[84] and also [109, Corollary 1.3.4].

Let f : X→ C and g : Y → C be complex algebraic (or analytic) functions. Let
pr1 and pr2 denote the projections of X × Y onto X and Y , respectively. Consider
the function

f � g := f ◦ pr1 + g ◦ pr2 : X × Y → C.

The goal is to express the vanishing cycle functor ϕf�g in terms of the correspond-
ing functors ϕf and ϕg for f and, resp., g.

We let V (f ) = {f = 0}, and similarly for V (g) and V (f � g). Denote by �
the inclusion of V (f ) × V (g) into V (f � g). With these notations, one has the
following result.

Theorem 10.4.30 For F • ∈ Dbwc(X;R) and G • ∈ Dbwc(Y ;R), there is a natural
isomorphism

�∗pϕf�g(F • L� G •) � pϕfF
• L� pϕgG

• (10.102)

commuting with the corresponding monodromies.
Moreover, if p = (x, y) ∈ X × Y is such that f (x) = 0 and g(y) = 0, then, in

an open neighborhood of p, the complex pϕf�g(F • L� G •) has support contained
in V (f ) × V (g), and, in every open set in which such a containment holds, there
are natural isomorphisms

pϕf�g(F
• L�G •) � �!(pϕfF • L�pϕgG •) � �∗(pϕfF • L�pϕgG •). (10.103)

Corollary 10.4.31 In the notations of the above theorem and with integer coeffi-
cients, there is an isomorphism

H̃ i−1(Mf�g,p) ∼=
⊕

a+b=i

(
H̃ a−1(Mf,pr1(p))⊗ H̃ b−1(Mg,pr2(p))

)

⊕
⊕

c+d=i+1

Tor
(
H̃ c−1(Mf,pr1(p)), H̃

d−1(Mg,pr2(p))
)
, (10.104)
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whereMf,x denotes as usual the Milnor fiber of a function f at x, and similarly for
Mg,y .

Remark 10.4.32 Note that the Thom-Sebastiani Theorem 10.4.30 implies directly
the multiplicativity of normal Morse data in terms of vanishing cycles with respect
to external products as mentioned in Example 10.3.17.

Example 10.4.33 (Brieskorn Singularities and Intersection Cohomology) For i =
1, . . . , n, consider a C-local system Li of rank ri on C

∗, with monodromy
automorphism hi , and denote the corresponding intersection cohomology complex
on C by ICC(Li ). The complex ICC(Li ) agrees with Li[1] on C

∗, and has
stalk cohomology at the origin concentrated in degree −1, where it is isomorphic
to ker(id − hi). For positive integers ai , consider the functions fi(x) = xai on
C. The complex pϕfi ICC(Li ) is a perverse sheaf supported only at 0; therefore,
pϕfi ICC(Li ) is non-zero only in degree zero, where it has dimension airi −
dim ker(id − hi).

Next, consider the C-local system L1� · · ·�Ln on (C∗)n with monodromy
automorphism h := �ni=1hi , and note that, as in Example 10.2.31,

ICC(L1)
L

� · · · L� ICC(Ln) � ICCn (L1� · · ·�Ln).

The perverse sheaf

pϕ
x
a1
1 +···+xann ICCn (L1� · · ·�Ln)

is supported only at the origin, and hence is concentrated only in degree zero. In
degree zero, it can be seen by iterating the Thom-Sebastiani isomorphism that it has
dimension equal to

∏

i

(airi − dim ker(id − hi)) .

In the special case when ri = 1 and hi = 1 for all i, the above calculation recovers
the classical result stating that the Milnor number of the isolated singularity at the
origin of xa1

1 + · · · + xann = 0 is
∏
i (ai − 1).

10.4.4 Gluing Perverse Sheaves via Vanishing Cycles

Assume R = C (or, more generally, R is an algebraically closed field; but only the
case R = C also nicely fits with the corresponding theory of (regular) holonomic
D-modules). Let f : X → C be a complex algebraic (or analytic) morphism
with corresponding nearby and vanishing cycle functors ψf , ϕf . Recall that these
two functors come equipped with monodromy automorphisms, both of which are
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denoted here by h. For F • ∈ Dbc (X;C), the morphism

can : ψfF • −→ ϕfF
•

of (10.87) is called the canonical morphism, and it is compatible with monodromy.
Similarly for the variation morphism

var : ϕfF • −→ ψfF
•

of (10.90). In the above notations we also have

can ◦ var = h− id and var ◦ can = h− id . (10.105)

The monodromy automorphisms acting on the nearby and vanishing cycle
functors have Jordan decompositions

h = hu ◦ hs = hs ◦ hu,

where hs is semi-simple (and locally of finite order) and hu is unipotent. For any
λ ∈ C and F • ∈ Dbc (X;C), denote by ψf,λF • the generalized λ-eigenspace for
h, and similarly for ϕf,λF •. By the definition of vanishing cycles, the canonical
morphism can induces morphisms

can : ψf,λF • −→ ϕf,λF
•,

which (since the monodromy acts trivially on i∗F •) are isomorphisms for λ �= 1,
and there is a distinguished triangle

i∗F • sp−→ ψf,1F
• can−→ ϕf,1F

• [1]−→ . (10.106)

There are decompositions

ψf = ψf,1 ⊕ ψf, �=1 and ϕf = ϕf,1 ⊕ ϕf, �=1 (10.107)

so that hs = 1 on ψf,1 and ϕf,1, and hs has no 1-eigenspace on ψf, �=1 and ϕf, �=1.
Moreover, can : ψf, �=1 → ϕf, �=1 and var : ϕf, �=1 → ψf, �=1 are isomorphisms.

The canonical and variation morphisms play an important role in the following
gluing of perverse sheaves.

Let X be a complex algebraic variety, with i : Z ↪→ X the inclusion of a
closed algebraic subvariety, and j : U ↪→ X the inclusion of the open complement
U := X\Z. A natural question to address is if one can “glue” the categories
Perv(Z) and Perv(U) to recover the category Perv(X) of perverse sheaves onX.
We discuss here only the case whenZ is a hypersurface, but see also [124] for a more
general setup. The gluing procedure, due to Beilinson [7] and Deligne-Verdier [124],
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establishes an equivalence of categories between perverse sheaves on the algebraic
variety X and a pair of perverse sheaves, one on Z, the other on U , together with
a gluing datum. A similar method was used by M. Saito for constructing his mixed
Hodge modules [106].

As a warm-up situation, consider X = C with coordinate function z, Z = {0}
and U = C

∗. Let F • be a C-perverse sheaf on X. One can form the diagram

pψzF
• can�
var

pϕzF
•

whose objects are perverse sheaves on Z = {0}, i.e., complex vector spaces. This
leads to the following elementary description of the category of perverse sheaves on
C, cf. [124].

Proposition 10.4.34 The category of perverse sheaves on C which are locally
constant on C

∗ is equivalent to the category of quivers (that is, diagrams of vector
spaces) of the form

ψ
c

�
v
ϕ

with ψ, ϕ finite dimensional vector spaces, and id + c ◦ v, id + v ◦ c invertible.

Example 10.4.35 Let L be a local system on C
∗ with stalk V and monodromy

h : V → V . The perverse sheaf j∗L [1] (e.g., see Example 10.2.47) corresponds to

V
c

�
v
V /ker(h− id),

where c is the projection and v is induced by h− id . Thus a quiver

ψ
c

�
v
ϕ

with c surjective arises from j∗L [1], where L1 = ψ is the stalk of L and h =
id + v ◦ c.

More generally, let f be a regular function on a smooth algebraic varietyX, with
Z = f−1(0) and U = X \ Z. Let Perv(U,Z)gl be the category whose objects are
(A •,B•, c, v), with A • ∈ Perv(U), B• ∈ Perv(Z), c ∈ Hom(pψf,1A

•,B•),
v ∈ Hom(B•, pψf,1A •), and so that id + v ◦ c is invertible. Then one has the
following.

Theorem 10.4.36 (Beilinson [7], Deligne-Verdier [124]) There is an equivalence
of categories

Perv(X) � Perv(U,Z)gl
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defined by:

F • �→ (F •|U , pϕf,1F •, can, var).

See also [115, Section 3.3, 3.4] for some other examples of quiver descriptions
of perverse sheaves, especially also for the corresponding description of Verdier
duality on the quiver side.

10.4.5 Other Applications

There are many more applications of the nearby and vanishing cycle functors
than we can mention in an expository paper, e.g., see [30, 66, 90, 109] and the
references therein. Let us only mention here that vanishing cycles play an important
role in the theory of characteristic classes for singular hypersurfaces (e.g., see
[19, 96, 97, 112]), which have recently seen applications in birational geometry (cf.
[97]), and they have also found applications to concrete optimization problems in
applied algebraic geometry and algebraic statistics (e.g., see [94, 95] and the survey
[91]).

We finish this section with an application to the calculus of Grothendieck groups
of constructible sheaves and their relation to the theory of constructible functions
(see, e.g., [109, Section 6.0.6] for a more general version).

Let f : X → C be an algebraic (or analytic) morphism with i : X0 := {f =
0} ↪→ X and j : U := {f �= 0} ↪→ X the inclusions. Then one has the distinguished
triangle (10.88)

for any F • ∈ Dbc (X;R). But then also ψfF • ∈ Dbc (X0;R) by Corollary 10.4.9
and Corollary 10.4.12, so that

[i∗Rj∗j∗F •] = 0 ∈ K0(D
b
c (X0;R)) (10.108)

for the corresponding class in the Grothendieck group of constructible sheaf
complexes on X0.

Let more generally X0 := {fi = 0, i = 1, .., k + 1} be the common zero-set
of the algebraic (or holomorphic) functions fi : X → C (i = 1, . . . , k + 1). Let
j : U := X\X0 ↪→ X be again the inclusion. Then the equality (10.108) is also
true. This follows by induction from a Mayer-Vietoris triangle (see, e.g., [66, p.114,
(2.6.28)], with R�U (·) � Rj∗j∗) associated to the open covering {U1, U2} of U ,
with

U1 := {fk+1 �= 0} and U2 := X\{fi = 0, i = 1, . . . , k} .
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Note that

U1 ∩U2 = X\{fi · fk+1 = 0, i = 1, . . . , k}

is the complement of the common zero-set of k algebraic (or holomorphic)
functions.

Let i : X0 ↪→ X be the inclusion. By the distinguished triangle

we get

Rj!j∗ = Rj∗j∗ : K0(D
b
c (X;R))→ K0(D

b
c (X;R)) . (10.109)

Similarly, the distinguished triangle

implies

i ! = i∗ : K0(D
b
c (X;R))→ K0(D

b
c (X0;R)) . (10.110)

Using again a Mayer-Vietoris triangle (see, e.g., [66, p.114, (2.6.28)], with
R�U (·) � Rj∗j∗) associated to an open affine covering, these equalities (10.109)
and (10.110) are then available in the general complex algebraic context. Consider
in addition a proper morphism h : X → Y . Then Rh! = Rh∗ maps Dbc (X;R) into
Dbc (X;R) and we get the following equality for the induced maps on the level of
Grothendieck groups:

R(h ◦ j)!j∗ = R(h ◦ j)∗j∗ : K0(D
b
c (X;R))→ K0(D

b
c (Y ;R)) (10.111)

in the complex algebraic context. Let f : X → Y be a morphism of complex
algebraic varieties. By a theorem of Nagata (see, e.g., [22, 79]) this can be (partially)
compactified to f = f̄ ◦ j , with j : X ↪→ X̄ an open inclusion and f̄ : X̄ → Y

a proper morphism of complex algebraic varieties. Then the functors Rf!, Rf∗
preserve algebraically constructible complexes and one gets the equality (compare
also with [69, p.210] and [125]):

Rf! = Rf∗ : K0(D
b
c (X;R))→ K0(D

b
c (Y ;R)) , (10.112)

which also implies for the induced group homomorphisms of complex algebraically
constructible functions the equality

f! = f∗ : CF(X)→ CF(X) . (10.113)
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Let us now consider the complex analytic context, with CF(X) the abelian group
of complex analytically constructible functions on X.

Example 10.4.37 Let i : X0 ↪→ X be the inclusion of a closed complex analytic
subset, with j : U := X\X0 ↪→ X the inclusion of the open complement. Fix also
a proper holomorphic map f : X → Y of complex analytic varieties. Then we get
the following equalities for the corresponding group homomorphisms on the level
of constructible functions:

1. j!j∗ = j∗j∗ : CF(X)→ CF(X), especially i∗j∗j∗ = 0.
2. i ! = i∗ : CF(X)→ CF(X0).
3. (f ◦ j)!j∗ = (f ◦ j)∗j∗ : CF(X)→ CF(Y ).

Note that (1.) implies (3.). Moreover, (1.) and (2.) are local results so that we
can assume that X0 is defined by finitely many holomorphic functions. Then they
follow from the corresponding result above on the level of Grothendieck groups of
constructible sheaf complexes.

A typical application is the following generalization of a classical result of
Sullivan for R a field and X0 compact so that the constant map f : X0 → pt is
proper. Then

χ(X0, i
∗Rj∗j∗F •) = f∗i∗j∗j∗(χstalk(F •)) = 0 (10.114)

for any F • ∈ Dbc (X;R).
Remark 10.4.38 R�(X0, i

∗Rj∗j∗F •) calculates the global link cohomology of
F • as defined in [37]. For example, forX0 = {x} a point, one has (for 0 < ε ( 1):

R�(X0, i
∗Rj∗j∗F •) � R�(X ∩ {||z|| = ε},F •) ,

with || · || defined by some local embedding (X, x) ↪→ (Cn, 0). So, for F • := RX
the constant sheaf, we get that the link

X ∩ {||z|| = ε} of X in x

has a vanishing Euler characteristic. For a proof of this classical result of Sullivan
[120], based on the Milnor fibration theorem, compare with [18, Proposition 4.1].

10.5 Intersection Cohomology, the Decomposition Theorem,
Applications

In this section, we overview properties of the intersection cohomology groups of
complex algebraic varieties, which generalize the corresponding features of the
cohomology groups of smooth varieties. These properties, consisting of Poincaré
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duality, Lefschetz theorems and the decomposition theorem, are collectively termed
the Kähler package for intersection cohomology. In this section we work over
R = Q.

Recall the following.

Definition 10.5.1 The (compactly supported) intersection cohomology groups of a
pure complex n-dimensional complex algebraic variety X are defined as:

IHk(X;R) := Hk−n(X; ICX) , IHkc (X;R) := Hk−nc (X; ICX).

First note that Poincaré duality for the intersection cohomology groups of X
is an immediate corollary of the self-duality of ICX (cf. Proposition 10.2.48).
Specifically, if X is a pure n-dimensional complex algebraic variety, there is an
isomorphism

IH 2n−k(X;Q) � IHkc (X;Q)∨, (10.115)

for any integer k.
Note also that ifX is a pure n-dimensional complex algebraic variety, there exists

a natural morphism

αX : QX[n] −→ ICX, (10.116)

extending the natural quasi-isomorphism on the smooth locus of X. Moreover, αX
becomes a quasi-isomorphism if X is assumed to be a rational homology manifold
(see, e.g., [89, Theorem 6.6.3]). Applying the hypercohomology functor to (10.116)
yields a morphism

Hk(X;Q) −→ IHk(X;Q),
which is an isomorphism if X is a rational homology manifold.

10.5.1 Lefschetz Type Results for Intersection Cohomology

Lefschetz type results for intersection cohomology can be derived from sheaf
theoretic statements about perverse sheaves. We begin with the following immediate
consequence of the Artin vanishing Theorem 10.3.59 for perverse sheaves:

Theorem 10.5.2 (Weak Lefschetz Theorem for Perverse Sheaves) If X is a
complex projective variety and i : D ↪→ X denotes the inclusion of a hyperplane
section, then for every F • ∈ Perv(X;Q) the restriction map

Hk(X;F •) −→ Hk(D; i∗F •)

is an isomorphism for k < −1 and is injective for k = −1.
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Example 10.5.3 Let X ⊂ CPn+1 be a complex projective hypersurface, with
i : D ↪→ X the inclusion of a hyperplane section. By applying Theorem 10.5.2
to the perverse sheaf F • := QX[n] on X, one gets isomorphisms

Hk(X;Q) −→ Hk(D;Q)

for all k < n− 1 and a monomorphism for k = n− 1.

Theorem 10.5.2 has the following important consequence (see also Exam-
ple 10.3.61).

Corollary 10.5.4 (Lefschetz Hyperplane Section Theorem for Intersection
Cohomology) Let Xn ⊂ CPN be a pure n-dimensional closed algebraic
subvariety with a Whitney stratification S . Let H ⊂ CPN be a generic hyperplane
(i.e., transversal to all strata of S ), with i : D := X ∩H ↪→ X the inclusion of the
corresponding hyperplane section. Then the natural homomorphism

IHk(X;Q) −→ IHk(D;Q)

is an isomorphism for 0 ≤ k ≤ n− 2 and a monomorphism for k = n− 1.

(Indeed, by transversality, one gets that i∗ICX � ICD[1], e.g., see Exam-
ple 10.2.28.)

The Hard Lefschetz theorem for intersection cohomology can also be deduced
from a more general sheaf-theoretic statement. Let f : X → Y be a projective
morphism and let L ∈ H 2(X;Q) be the first Chern class of an f -ample line bundle
on X. Then L corresponds to a map of complexes L : QX → QX[2], which, after
tensoring with ICX , yields a map

L : ICX −→ ICX[2].

This induces L : Rf∗ICX → Rf∗ICX[2], and after applying perverse cohomology
one gets a map of perverse sheaves on Y :

L : pH i
(Rf∗ICX) −→ pH i+2

(Rf∗ICX).

Iterating, one gets maps of perverse sheaves

Li : pH −i
(Rf∗ICX) −→ pH i

(Rf∗ICX)

for every i ≥ 0. Then one has the following result, proved initially by positive
characteristic methods [6, Theorem 6.2.10] (see also [105, 106], or the more
geometric approach of [23]):

Theorem 10.5.5 (Relative Hard Lefschetz) Let f : X → Y be a projective
morphism of complex algebraic varieties with X pure-dimensional, and let L ∈
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H 2(X;Q) be the first Chern class of an f -ample line bundle onX. For every i > 0,
one has isomorphisms of perverse sheaves

Li : pH −i
(Rf∗ICX)

�−→ pH i
(Rf∗ICX).

By taking f in Theorem 10.5.5 to be the constant map f : X → point , one
obtains as a consequence the Hard Lefschetz theorem for intersection cohomology
groups:

Corollary 10.5.6 (Hard Lefschetz Theorem for Intersection Cohomology) Let
X be a complex projective variety of pure complex dimension n, with L ∈ H 2(X;Q)
the first Chern class of an ample line bundle on X. Then there are isomorphisms

Li : IHn−i (X;Q) �−→ IHn+i (X;Q) (10.117)

for every integer i > 0, induced by the cup product by Li . In particular, the inter-
section cohomology Betti numbers of X are unimodal, i.e., dimQ IH

i−2(X;Q) ≤
dimQ IH

i(X;Q) for all i ≤ n/2.

10.5.2 The Decomposition Theorem and Immediate
Applications

A great deal of information about intersection cohomology groups can be derived
from the BBD decomposition theorem [6, Theorem 6.2.5], one of the most important
results in the theory of perverse sheaves. It was conjectured by S. Gelfand and R.
MacPherson, and proved soon after by Beilinson, Bernstein, Deligne and Gabber
by reduction to positive characteristic. The proof given in [6] ultimately rests on
Deligne’s proof of the Weil conjectures. Different proofs were given later on by M.
Saito (as a consequence of his theory of mixed Hodge modules [105]) and, more
recently, by de Cataldo and Migliorini [23] (involving only classical Hodge theory).
A more general decomposition theorem (for semi-simple perverse sheaves) has been
obtained by Mochizuki [98, 99] (with substantial contributions of Sabbah [104]),
in relation to a conjecture of Kashiwara [65]; see also [25]. For more topological
versions of the decomposition theorem for self-dual perverse sheaves on the level of
Witt and cobordism groups, see [21, 115]. In what follows, we explain the statement
of the decomposition theorem, together with a few applications.

In its initial form of [6], the decomposition theorem calculates the derived
pushforward of an IC-complex under a proper algebraic map. For simplicity, in
this section we assume that all varieties are irreducible.

Recall that every algebraic map f : X→ Y of complex algebraic varieties can be
stratified, i.e., there exist algebraic Whitney stratifications S ofX and T of Y such
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that, given any connected component T of a T -stratum on Y one has the following
properties:

(a) f−1(T ) is a union of connected components of strata of S , each of which is
mapped submersively to T by f ;

(b) For every point y ∈ T , there is an Euclidean neighborhood U of y in T and
a stratum-preserving homeomorphism h : U × f−1(y) → f−1(U) such that
f |f−1(U) ◦ h is the projection to U .

Property (b) is just Thom’s isotopy lemma: for every stratum T in Y , the restriction
f |f−1(T ) : f−1(T )→ T is a topologically locally trivial fibration.

Theorem 10.5.7 (BBD Decomposition Theorem [6]) Let f : X→ Y be a proper
map of complex algebraic varieties. Then:

(i) (Decomposition) There is a (non-canonical) isomorphism in Dbc (Y ;Q):

Rf∗ICX �
⊕

i

pH i (Rf∗ICX)[−i]. (10.118)

(ii) (Semi-simplicity) Each pH i (Rf∗ICX) is a semi-simple object in
Perv(Y ;Q), i.e., if T is the set of connected components of strata of Y in
a stratification of f , there is a canonical isomorphism of perverse sheaves on
Y :

pH i
(Rf∗ICX) �

⊕

T ∈T
ICT (Li,T ) (10.119)

where the local systems Li,T are semi-simple.

Remark 10.5.8 If f is a projective submersion of smooth complex algebraic
varieties, Theorem 10.5.7 reduces to Deligne’s decomposition theorem, see [27]
and [28, Theorem 4.2.6].

Standard facts in algebraic geometry (e.g., resolution of singularities and Chow’s
lemma) reduce the proof of the BBD decomposition theorem (Theorem 10.5.7) to
the case when f : X → Y is a projective morphism, with X a smooth variety. If
the morphism f is projective, then (10.118) is a formal consequence of the relative
Hard Lefschetz theorem (cf. [29]). So the heart of the BBD decomposition theorem
consists of the semi-simplicity statement. After the above-mentioned reductions for
f , the proof given in [23] is by induction on the pair of indices (dimY, r(f )), where
r(f ) is the degree of semi-smallness of f . The problem is then reduced to the case
r(f ) = 0, i.e., that of a semi-small map, when Rf∗QX[dimX] � pH 0(f∗QX[n])
is perverse on Y . This case is handled via the non-degeneracy of a certain refined
intersection pairing associated to the fibers over the most singular points of f .
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One of the first consequences of the BBD decomposition theorem is that it gives
a splitting of IH ∗(X;Q) in terms of twisted intersection cohomology groups of
closures of strata in Y , namely:

Corollary 10.5.9 Under the assumptions and notations of Theorem 10.5.7, there is
a splitting

IHj (X;Q) �
⊕

i∈Z

⊕

T ∈T
IHj−dimX+dimT−i (T ;Li,T ), (10.120)

for every j ∈ Z.

By applying Theorem 10.5.7 to the case of a resolution of singularities one gets
the following.

Corollary 10.5.10 The intersection cohomology of a complex algebraic variety is
a direct summand of the cohomology of a resolution of singularities.

More generally, one has the following nice application of the BBDG decompo-
sition theorem (e.g., see [26, Section 4.5] or [89, Theorem 9.3.37]):

Theorem 10.5.11 Let f : X→ Y be a proper map of complex algebraic varieties,
and let Y ′ := f (X) be the image of f . Denote by d = dimX − dimY ′ the relative
dimension of f . Then ICY ′ [d] is a direct summand of Rf∗ICX . In particular,
IHj (Y ′;Q) is a direct summand of IHj (X;Q) for every integer j .

An important application of the decomposition statement (10.118) for f : X →
Y is the E2-degeneration of the corresponding perverse Leray spectral sequence:

E
i,j
2 = Hi(Y ; pH j

(Rf∗ICX))  ⇒ Hi+j (Y ;Rf∗ICX) = IH i+j+dimX(X;Q).

This can be used to prove the following singular version of the classical global
invariant cycle theorem for smooth projective maps, as well as a local version of it
(see [6, Corollary 6.2.8, Corollary 6.2.9]):

Theorem 10.5.12 (Global and Local Invariant Cycle Theorems) Let f : X →
Y be a proper map of complex algebraic varieties. Let U ⊆ Y be a Zariski-open
subset on which the sheaf Rif∗ICX is a local system. Then the following assertions
hold:

(a) (Global) The natural restriction map

IH i(X;Q) −→ H 0(U ;Rif∗ICX)

is surjective.
(b) (Local) Let u ∈ U and Bu ⊂ U be the intersection with a sufficiently small

Euclidean ball (chosen with respect to a local embedding of (Y, u) into a
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manifold) centered at u. Then the natural restriction/retraction map

Hi(f−1(u); ICX) � Hi(f−1(Bu); ICX) −→ H 0(Bu;Rif∗ICX)

is surjective.

10.5.3 A Recent Application of the Kähler Package for
Intersection Cohomology

In this section, we mention briefly a recent combinatorial application of the Kähler
package for intersection cohomology. For more applications, the interested reader
may consult [24, 89] and the references therein.

Let E = {v1, · · · , vn} be a subset of generators of a d-dimensional complex
vector space V , and let wi(E) be the number of i-dimensional subspaces spanned
by subsets of E. In 1974, Dowling and Wilson [31, 32] proposed the following
conjecture (which is a special case of a more general conjecture for matroids; see
[12] for more recent developments):

Conjecture 10.5.13 (Dowling–Wilson Top-Heavy Conjecture) For all i < d/2 one
has:

wi(E) ≤ wd−i (E). (10.121)

Remark 10.5.14 If d = 3, de Bruijn–Erdös showed that w1(E) ≤ w2(E). More
generally, Motzkin showed that w1(E) ≤ wd−1(E).

Another conjecture concerning the numbers wi(E) was proposed by Rota [101,
102] in 1971, and it can be formulated as follows:

Conjecture 10.5.15 (Rota’s Unimodal Conjecture) There is some j so that

w0(E) ≤ · · · ≤ wj−1(E) ≤ wj(E) ≥ wj+1(E) ≥ · · · ≥ wd(E). (10.122)

Huh-Wang [59] used the Kähler package on intersection cohomology to prove
the Dowling-Wilson top-heavy conjecture, and the unimodality of the “lower half”
of the sequence {wi(E)}. Specifically, they showed the following:

Theorem 10.5.16 (Huh-Wang) For all i < d/2, the following properties hold:

(a) (top heavy) wi(E) ≤ wd−i(E).
(b) (unimodality) wi(E) ≤ wi+1(E).

Proof (Sketch of Proof) The key step in the proof is to show that the numberswi(E)
are realized geometrically, i.e., there exists a complex d-dimensional projective
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variety Y such that for every 0 ≤ i ≤ d one has:

H 2i+1(Y ;Q) = 0 and dimQH
2i(Y ;Q) = wi(E).

To define the variety Y one first uses E = {v1, · · · , vn} to construct a map
iE : V ∨ → C

n by regarding each vi ∈ E as a linear map on the dual vector space
V ∨. Precomposing iE with the open inclusion C

n ↪→ (CP 1)n yields a map

f : V ∨ → (CP 1)n.

Set

Y := Im (f ) ⊂ (CP 1)n.

Ardila-Boocher [5] showed that the variety Y has an algebraic cell decomposition
(i.e., it is paved by complex affine spaces), the number of C

i’s appearing in the
decomposition of Y being exactlywi(E). However, the space Y is in this case highly
singular, so its rational cohomology does not satisfy the Kähler package. Instead,
one needs to use the corresponding intersection cohomology results.

Next, note that for any complex projective variety Y one has that

ker
(
Hi(Y ;Q) α→ IH i(Y ;Q)

)
= W≤i−1H

i(Y ;Q)

is the subspace of Hi(Y ;Q) consisting of classes of Deligne weight ≤ i − 1 (e.g.,
see [126, Theorem 9.2]). Since the complex projective variety Y constructed above
has an algebraic cell decomposition, its cohomologyHi(Y ;Q) is pure of weight i.
(This follows easily by induction using the fact that Hic(C

n;Q) = 0 for i �= 2n and
H 2n
c (C

n;Q) = C is pure of weight 2n.) Hence, the natural map

α : H ∗(Y ;Q)→ IH ∗(Y ;Q)

is injective in any degree i.
For i < d/2, consider the following commutative diagram:

where the right-hand vertical arrow is the Hard Lefschetz isomorphism for the
intersection cohomology groups of Y (see Corollary 10.5.6). Since the maps labelled
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by α are injective, it follows that

H 2i(Y ;Q) �Ld−2i

−−−−→ H 2d−2i(Y ;Q)

is injective as well. In particular,

wi(E) = dimQH
2i(Y ;Q) ≤ dimQH

2d−2i(Y ;Q) = wd−i (E)

for every i < d/2, thus proving part (a) of the theorem. Part (b) follows
similarly, by using the unimodality of the intersection cohomology Betti numbers
(cf. Corollary 10.5.6). ��

10.6 Perverse Sheaves on Semi-Abelian Varieties

In this section, we survey recent developments in the study of perverse sheaves on
semi-abelian varieties, with concrete applications to the study of homotopy types of
complex algebraic manifolds (formulated in terms of their cohomology jump loci),
as well as new topological characterizations of semi-abelian varieties. We begin by
introducing and recalling the main ingredients needed to formulate our results. For
complete details, the interested reader may consult [74, 76, 77].

10.6.1 Cohomology Jump Loci

Let X be a connected CW complex of finite type (e.g., a complex quasi-projective
variety) with positive first Betti number, i.e., b1(X) > 0. The character variety
Char(X) of X is the identity component of the moduli space of rank-one C-local
systems on X, i.e.,

Char(X) := Hom(H1(X;Z)/Torsion,C∗) � (C∗)b1(X).

Definition 10.6.1 The i-th cohomology jump locus of X is defined as:

Vi (X) = {ρ ∈ Char(X) | Hi(X;Lρ) �= 0},

where Lρ is the unique rank-one C-local system on X associated to the representa-
tion ρ ∈ Char(X).

The jump loci Vi (X) are closed subvarieties of Char(X) and homotopy invari-
ants of X. For projective varieties, they can be seen as topological counterparts
of the Green-Lazarsfeld jump loci of topologically trivial line bundles [50, 51].
Cohomology jump loci emerged from work of Novikov on Morse theory for closed
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1-forms on manifolds, and provide a unifying framework for the study of a host of
questions concerning homotopy types of complex algebraic varieties.

10.6.2 Jump Loci via Constructible Complexes

The Albanese map construction allows one to interpret the cohomology jump loci
of a smooth connected complex quasi-projective variety as cohomology jump loci
of certain constructible complexes of sheaves (or even of perverse sheaves, if the
Albanese map is proper) on a semi-abelian variety. This motivates the study of
cohomology jump loci of such complexes, with a view towards characterizing
important classes of objects (such as perverse sheaves) on semi-abelian varieties.

An abelian variety of dimension g is a compact complex torus Cg/� with � �
Z

2g, which is also a complex projective variety. A semi-abelian variety G is an
abelian complex algebraic group, which is an extension of an abelian variety by
a complex affine torus. (Semi-)abelian varieties are naturally associated to smooth
(quasi-)projective varieties via the Albanese map construction, see [60]. Specifically,
if X is a smooth complex (quasi-)projective variety, the Albanese map of X is a
morphism

alb : X→ Alb(X)

from X to a (semi-)abelian variety Alb(X) such that for any morphism f : X→ G

to a semi-abelian variety G, there exists a unique morphism g : Alb(X)→ G such
that the following diagram commutes:

Here, Alb(X) is called the Albanese variety associated to X.
The Albanese map induces an isomorphism on the torsion-free part of the first

integral homology groups, i.e.,

H1(X;Z)/Torsion
�−→ H1(Alb(X);Z). (10.123)

In particular, there is an identification:

Char(X) � Char(Alb(X)), (10.124)

and the equality of Betti numbers b1(X) = b1(Alb(X)).
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By using the projection formula, for any ρ ∈ Char(X) � Char(Alb(X)) one
gets:

Hi(X;Lρ) � Hi(X;CX ⊗ Lρ) � Hi
(

Alb(X); (R alb∗ CX)⊗ Lρ
)
. (10.125)

If, moreover, the Albanese map alb : X→ Alb(X) is proper (e.g., ifX is projective),
then the BBD decomposition theorem [6] yields that R alb∗ CX is a direct sum of
(shifted) perverse sheaves. In view of (10.125), this provides a description of the
cohomology jump loci of X in terms of cohomology jump loci of certain perverse
sheaves on the semi-abelian variety Alb(X). This motivates the following.

Definition 10.6.2 Let F • ∈ Dbc (G;C) be a bounded constructible complex of C-
sheaves on a semi-abelian variety G. The degree i cohomology jump locus of F •
is defined as:

Vi (G,F •) := {ρ ∈ Char(G) | Hi(G;F • ⊗C Lρ) �= 0}.

Back to the cohomology jump loci of X, we note that (10.125) yields the
following identification:

Vi (X) = Vi (Alb(X),R alb∗ CX). (10.126)

10.6.3 Mellin Transformation and Applications

LetG be a semi-abelian variety defined by an extension

1 → T → G→ A→ 1,

where A is an abelian variety of dimension g and T � (C∗)m is a complex affine
torus of dimensionm. Set

�G := C[π1(G)],

and note that �G is a Laurent polynomial ring in m+ 2g variables. Moreover,

Char(G) � Spec�G.

Let LG be the (universal) rank-one local system of �G-modules on G, defined
by mapping the generators of π1(G) to the multiplication by the corresponding
variables of �G.
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Definition 10.6.3 ([41]) The Mellin transformation M∗ : Dbc (G;C)→ Dbcoh(�G)

is given by

M∗(F •) := Ra∗(LG ⊗C F •),

where a : G→ point is the constant map to a point space, and Dbcoh(�G) denotes
the bounded coherent complexes of �G-modules (i.e., whose cohomology modules
are all finitely generated �G-modules).

The Mellin transformation can be used to completely characterize perverse
sheaves on complex affine tori. More precisely, one has the following result due
to Gabber-Loeser [41, Theorem 3.4.1 and Theorem 3.4.7] in the l-adic context, and
extended to the present form in [74, Theorem 3.2]:

Theorem 10.6.4 A constructible complex F • ∈ Dbc (T ;C) on a complex affine
torus T is perverse if, and only if,

Hi(M∗(F •)) = 0 for all i �= 0.

In the context of abelian varieties, the Mellin transformation was used in [9]
for proving generic vanishing results for the cohomology of perverse sheaves. By
induction on the dimension of the complex affine torus T , the result of [9] was
extended to the semi-abelian context as follows.

Theorem 10.6.5 ([77, Theorem 4.3]) For any C-perverse sheaf F • on a semi-
abelian variety G, one has:

Hi(M∗(F •)) = 0 for i < 0,

and

Hi(D�G(M∗(F •))) = 0 for i < 0.

Here D�G(−) := RHom�G(−, �G) is the dualizing functor for �G-modules.

The Mellin transformation can be used to translate the question of understanding
the cohomology jump loci of a constructible complex to a problem in commutative
algebra. Specifically, by the projection formula, cohomology jump loci of F • ∈
Dbc (G;C) are determined by those of the Mellin transformation M∗(F •) of F •
as follows (see [74, 77]):

Vi (G,F •) = Vi (M∗(F •)). (10.127)

Here, if R is a Noetherian domain and E� is a bounded complex of R-modules with
finitely generated cohomology, the closed points of Vi (E�) can be described as

Vi (E�) := {p ∈ SpecR | Hi(F � ⊗R R/p) �= 0},
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with F � a bounded above finitely generated free resolution of E�. One also has the
following:

Proposition 10.6.6 ([9, Lemma 2.8]) Let R be a regular Noetherian domain and
E� a bounded complex of R-modules with finitely generated cohomology. Then
Hi(E�) = 0 for i < 0 if, and only if, codimV−i (E�) ≥ i for i ≥ 0.

By using the identification (10.127), together with Proposition 10.6.6 and
standard facts from commutative algebra, the following result of [77] is a direct
consequence of Theorem 10.6.5:

Theorem 10.6.7 ([77, Theorem 4.7]) For any C-perverse sheaf F • on a semi-
abelian variety G, the cohomology jump loci of F • satisfy the following proper-
ties:

(i) Propagation:

V−m−g(G,F •) ⊆ · · · ⊆ V0(G,F •) ⊇ V1(G,F •) ⊇ · · · ⊇ Vg(G,F •).

Moreover, Vi (G,F •) = ∅ if i /∈ [−m− g, g].
(ii) Codimension lower bound: for all i ≥ 0,

codimVi (G,F •) ≥ i and codimV−i (G,F •) ≥ i.

Theorem 10.6.7 is inspired by, and can be viewed as a topological counterpart
of, similar properties satisfied by the Green-Lazarsfeld jump loci of topologically
trivial line bundles, see [50, 51].

Remark 10.6.8 Let F • be a C-perverse sheaf so that not all Hj(G;F •) are zero.
The propagation property (i) can be restated as saying that the set of integers j for
which Hj(G;F •) �= 0 form an interval of consecutive integers. Indeed, let

k+ := max{j | Hj(G;F •) �= 0} and k− := min{j | Hj(G;F •) �= 0}.

Then it is easy to see that the propagation property (i) is equivalent to: k+ ≥ 0,
k− ≤ 0 and

Hj(G;F •) �= 0 ⇐⇒ k− ≤ j ≤ k+.

In this form, the result of Theorem 10.6.7(i) provides a generalization of a result of
Weissauer [128, Corollary 1] from the abelian context.

A nice consequence of Theorem 10.6.7 is the following generic vanishing result:

Corollary 10.6.9 For any C-perverse sheaf F • on a semi-abelian variety G,

Hi(G;F • ⊗C Lρ) = 0
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for any generic rank-one C-local system Lρ and all i �= 0. In particular,

χ(G,F •) ≥ 0. (10.128)

Moreover, χ(G,F •) = 0 if, and only if, V0(G,F •) �= Char(G).

The above generic vanishing statement was originally proved by other methods
in [67, Theorem 2.1] in the l-adic context and further generalized to arbitrary
field coefficients in [75, Theorem 1.1]. For abelian varieties, generic vanishing
results were obtained in [68, Theorem 1.1], [112, Corollary 7.5], [127, Vanishing
Theorem] or [9, Theorem 1.1]. The signed Euler characteristic property (10.128) is
originally due to Franecki and Kapranov [39, Corollary 1.4] (and compare with the
Example 10.3.40 for another approach to this signed Euler characteristic property).

Remark 10.6.10 The properties of perverse sheaves from Theorem 10.6.7 and
Corollary 10.6.9 are collectively termed the propagation package for perverse
sheaves on semi-abelian varieties.

10.6.4 Characterization of Perverse Sheaves on Semi-abelian
Varieties

In this section, we discuss a complete (global) characterization of perverse sheaves
on semi-abelian varieties; see [77] for complete details. Motivation is also provided
by the following result:

Theorem 10.6.11 ([107]) If A is an abelian variety and F • ∈ Dbc (A;C), then
F • is perverse if, and only if, for all i ∈ Z, codimVi (A,F •) ≥ |2i|.

Furthermore, as a consequence of Theorem 10.6.4, Proposition 10.6.6 and Artin’s
vanishing theorem 10.3.59, one gets the following:

Theorem 10.6.12 ([77, Corollary 6.8]) F • ∈ Dbc (T ;C) is perverse on a complex
affine torus T if, and only if,

(i) For all i > 0: Vi (T ,F •) = ∅, and
(ii) For all i ≤ 0: codimVi (T ,F •) ≥ −i.

In order to unify and generalize the results of Theorems 10.6.11 and 10.6.12 to
the semi-abelian context, one can make use of the new notions of (co)dimension for
the cohomology jump loci, which were introduced in [77]. First recall the following.

Definition 10.6.13 A closed irreducible subvariety V of Char(G) is called linear if
there exists a short exact sequence of semi-abelian varieties

1 → G′′(V )→ G
q→ G′(V )→ 1
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and some ρ ∈ Char(G) such that

V := ρ · Im (q# : Char(G′(V ))→ Char(G)).

HereG′′(V ) andG′(V ) depend on V , and q# is induced by q : G→ G′(V ).

With the above definition, one has the following important structure result:

Theorem 10.6.14 ([17]) For any F • ∈ Dbc (G;C), each jump locus Vi (G,F •)
is a finite union of linear subvarieties of Char(G).

Definition 10.6.15 Let G be a semi-abelian variety and let V be an irreducible
linear subvariety of Char(G). In the notations of Definition 10.6.13, let T ′′(V ) and
A′′(V ) denote the complex affine torus and, resp., the abelian variety part ofG′′(V ).
Define:

abelian codimension: codima V := dimA′′(V ),
semi-abelian codimension: codimsa V := dimG′′(V ).

Similar notions can be defined for reducible subvarieties by taking the minimum
among all irreducible components.

Remark 10.6.16 Let V be a nonempty linear subvariety of Spec�G.

1. IfG = T is a complex affine torus, then: codimsa V = codimV and codima V =
0.

2. If G = A is an abelian variety, we have: codimsa(V ) = codima(V ) =
1
2 codim(V ).

In the above notations, the following generalization of Schnell’s result was
obtained in [77]:

Theorem 10.6.17 ([77, Theorem 6.6]) A constructible complex F • ∈ Dbc (G;C)
is perverse onG if, and only if,

(i) codimaVi (G,F •) ≥ i for all i ≥ 0, and
(ii) codimsaVi (G,F •) ≥ −i for all i ≤ 0.

Proof The “only if” part is proved by induction on dimT , using Theorem 10.6.11
as the beginning step of the induction process. For the “if” part, one shows that the
two codimension lower bounds in the statement of Theorem 10.6.17 are sharp. See
[77, Section 6] for complete details. ��

10.6.5 Application: Cohomology Jump Loci of
Quasi-Projective Manifolds

The results of Theorems 10.6.7, 10.6.17 and Corollary 10.6.9 can be directly applied
for the study of cohomology jump loci Vi (X) ⊆ Char(X) = Char(Alb(X)) of a
smooth complex quasi-projective variety X. Specifically, one has the following.
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Theorem 10.6.18 LetX be a smooth quasi-projective variety of complex dimension
n. Assume that R alb∗(CX[n]) is a perverse sheaf on Alb(X) (e.g., alb is proper and
semi-small, or alb is quasi-finite). Then the cohomology jump loci Vi (X) satisfy the
following properties:

(1) Propagation property:

Vn(X) ⊇ Vn−1(X) ⊇ · · · ⊇ V0(X) = {CX};

Vn(X) ⊇ Vn+1(X) ⊇ · · · ⊇ V2n(X).

(2) Codimension lower bound: for all i ≥ 0,

codimsaVn−i (X) ≥ i and codimaVn+i (X) ≥ i.

(3) Generic vanishing:Hi(X,Lρ) = 0 for generic ρ ∈ Char(X) and all i �= n.
(4) Signed Euler characteristic: (−1)nχ(X) ≥ 0.
(5) Betti property: bi(X) > 0 for all i ∈ [0, n], and b1(X) ≥ n.

Example 10.6.19 Let X be a smooth closed subvariety of a semi-abelian variety
G. The closed embedding i : X ↪→ G is a proper semi-small map, and hence
the Albanese map alb : X → Alb(X) is also proper and semi-small. Then
R alb∗(CX[dimX]) is a perverse sheaf on Alb(X) and the jump loci of X satisfy
the properties listed in Theorem 10.6.18.

10.6.6 Application: Topological Characterization of
Semi-abelian Varieties

The Structure Theorem 10.6.14 together with the propagation package of Theo-
rem 10.6.7 and Corollary 10.6.9 can be used to give the following topological
characterization of semi-abelian varieties (see [77, Proposition 7.7]):

Theorem 10.6.20 LetX be a smooth quasi-projective variety with proper Albanese
map (e.g.,X is projective), and assume thatX is homotopy equivalent to a real torus.
Then X is isomorphic to a semi-abelian variety.

Proof Assume X has complex dimension n. By the BBD decomposition theorem
[6], R alb∗(CX[n]) is a direct sum of shifted semi-simple perverse sheaves on
Alb(X). Denote by U the collection of all simple summands F • appearing (up to
a shift) in R alb∗(CX[n]). Then, by using Theorem 10.6.7(i) and the identification
(10.126), one gets that

2n⋃

i=0

Vi (X) =
⋃

U
V0(Alb(X),F •). (10.129)
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Since X is homotopy equivalent to a real torus, a direct calculation yields that⋃2n
i=0 Vi (X) is just an isolated point. Hence, by (10.129), for every simple perverse

sheaf F • ∈ U, the jump locus V0(Alb(X),F •) is exactly this isolated point, so
Corollary 10.6.9 gives χ(Alb(X),F •) = 0.

Simple perverse sheaves with zero Euler characteristic on semi-abelian varieties
are completely described in [77, Theorem 5.5] by using the structure Theo-
rem 10.6.14 and the propagation package for their cohomology jump loci. In
particular, it follows that for all F • ∈ U one has that F • = CAlb(X)[dim Alb(X)].
So R alb∗ CX is a direct sum of shifted rank-one constant sheaves on Alb(X). Since
X and Alb(X) are both homotopy equivalent to tori, and since b1(X) = b1(Alb(X)),
one gets that bi(X) = bi(Alb(X)) for all i. Therefore,

R alb∗ CX � CAlb(X).

Since alb is proper, it follows that all fibers of alb are zero-dimensional. Then it can
be seen easily that alb is in fact an isomorphism. ��

Under the assumptions of Theorem 10.6.20, it follows that the Albanese map
alb : X→ Alb(X) is an isomorphism. One can similarly prove the following special
case of a question of Bobadilla-Kollár [10], see [78] for more general results:

Proposition 10.6.21 Let X be a projective manifold, and denote by Xab the uni-
versal free abelian cover ofX, i.e., the covering associated with the homomorphism
π1(X) → H1(X;Z)/T orsion. If Xab is homotopy equivalent to a finite CW
complex, then the sheaves Ri alb∗ CX are local systems on Alb(X) for all i ≥ 0.

Remark 10.6.22 The study of perverse sheaves on semi-abelian varieties has other
interesting topological applications, e.g., strong finiteness properties for Alexander-
type invariants, generic vanishing of Novikov and L2-homology, the study of
homological duality properties of smooth complex algebraic varieties, etc., see
[38, 74, 75, 77] for more details.
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Artin-Gothendieck type theorem, algebraic,
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Artin-Laufer program, 166
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K-trivial, 67
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theory, 540
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C
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Canonical morphism, 766
Canonical singularity, 554
Carrousel, 149
Cartier divisor, 238
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Casson–Walker invariant, 241, 241, 247
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form, 609, 632
Čech-de Rham cohomology, 576
Čech-Dolbeault cohomology, 626
Cellular

decomposition, 570
tube, 313

Characteristic
classes, 448, 596

and intersection homology, 382
motivic, 387

cycle, 358, 366, 454, 724
of a hypersurface, 463

divisors, 542
element, 221
form, 595
polynomial of an arrangement, 466

Character variety, 778
Chern

-Fulton class, 449
of a thickening., 464

-Fulton-Johnson class, 449
-Mather class, 453, 455
-Schwartz-MacPherson classes (CSM),

460
equivariant, 362

class, 424, 743
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as an operator, 520
stringy, 555
via Chern-Weil theory, 593
via obstruction theory, 585
virtual, 451, 473

form, 596
Chern classes for manifolds

axiomatic definition, 327
obstruction theory, 323
Schubert varieties, 325

Chern roots, 331
Chern-Schwartz-MacPherson classes, 355
Chern-Weil theory, 593
Chow group, 421, 519
Chromatic polynomial, 466
Coarse Morse datum, 709
Codimension, 82, 83, 87, 90, 99, 101, 102,

104, 106, 112–118, 134, 137, 138
Codimension lower bound, 782, 785
Cohen Macaulay, 117, 118, 137
Cohomology, 687
Cohomology jump loci, 778
Cohomology with compact support, 687
Complex analytic Alexander morphism, 632
Complex link, 548, 713, 717
Complex Morse critical point, 727
Complex neighborhood, 637
Conductor ideal, 100–102, 115, 126, 136
Cone, 424

normal, 425, 440
tangent, 440

Conical structure, 147
Connection, 593
Conormal

bundle, 444
cycle, 334
space, 353, 366, 375, 401, 444, 453

Constructible, 685
function, 348
set, 348

Constructible function, 452, 691
Contact

class, 21
equivalence, 19
group, 19
group KV , 72
loci, 185

Continued fraction, 209
Costalk, 691
Costalk vanishing, 694
Cosupport, 692

Covering, canonical, 218
Crepant resolution, 554
Critical set, 44
Cup product, 576, 578, 581, 630
Curvature, 594

D
Decomposition theorem, 774
Deformations
pg -constant, 281

Degeneracy locus, 529
Degree, 422
Degree of semi-smallness, 774
Deligne-Grothendieck conjecture, 349, 452,

508, 516
δ-form, 640
δ-function, 640
Descartes, 310
Determinantal singularities, 344, 361, 362,

368, 372
De Rham

cohomology, 575
complex, 575
theorem, 575

De Rham complex, 732
Difference form, 596
Differential, 628, 639
Discriminant, 44, 83, 97, 107–110, 112–115,

118, 133, 138, 139
local Euler obstruction, 445
multiplicity, 442

Discriminant Milnor number, 82, 106, 108,
111, 119

Divisor, 614
Q-Cartier, 217
Weil, 217
with simple normal crossings, 653

Dolbeault
cohomology, 625
complex, 625
theorem, 626

Dolgachev–Pinkham–Demazure formula,
212

Dolgachev’s conjecture, 465
Dual

cell, 570
decomposition, 311
decomposition, singular case, 335

local Euler obstruction, 731
perverse t-structure, 703, 759
variety, 476

Dualizing complex, 687
Du Bois singularity, 675
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Effective characteristic cycles, 729, 762
Ehresmann, 317, 325, 351
Equisingularity at the critical set, 178
Euler, 310

characteristic, 309, 690, 719
of lattice cohomology, 267

class, 587, 591
localized, 590

obstruction, 504, 506
of a function, 507
of a vector field, 506

Exceptional divisor
as a projective normal cone, 427

Exceptional set, 207
Excess intersection, 478
Excision, 580, 628
Extended tangent space

A-equivalence, 15
K-equivalence, 20

External
product, 733
tensor product, 687

Extra-nice dimensions, 38

F
Families and deformations, 153
Family of sections (r-section), 583
Fiber dimension, 695, 721, 722
fiber integration on Čech-de Rham cochains,

621
Filtered de Rham complex, 674
Filtration, 230

divisorial, 234
monomial, 234

Finite determinacy
Geometric criterion of, 35
infinitesimal criterion of, 22, 34
of Mather’s groups G, 34
necessary condition for, 26
sufficient condition for, 26

Finite morphism, 722
Finite singularity type, 33
Fitting ideal, 82, 100, 126, 128–130, 141
Flag manifold, 737
Flat morphism, 521
Floer cohomology, 185
Fourier transform

of Zh,I, 243
Frame, 509, 583
Free divisor, 114, 118
FST, see Finite singularity type (FST)
Fulton classes, 386, 504, 525

Fulton-Jhonson classes, 525
Fulton MacPherson conjecture, 401
Fulton-MacPherson intersection theory, 429
Fundamental

class, 572
cycle, 224, 572

G
Gauss-Bonnet

formula, 593
theorem, 529

Gauss map, 349, 365
Generic vanishing, 782, 785
Geometric genus, 164, 207

equivariant, 226
Germ

A-equivalence, 15
infinitesimally stable, 15

Global
Euler obstruction, 381, 730
index formula, 728, 736, 742
link cohomology, 770

Gluing of perverse sheaves, 766
Gómez-Mont–Seade–Verjovsky index, 371
Gordon, 298
Gorenstein, 135, 554

singularity, 222
Graded root, 279

of a τ -function, 270
of a plumbing graph, 271
of a surgery manifold, 274

the τ–function, 276
symmetry, 272

Graph
almost rational, 259
AR, 267, 275
characters of, 244
manifolds, 160
of resolution

string, 210
star-shaped, 212

Grassmannian manifold, 505
complex, 323
real, 315

Grauert, 207
Grauert Theorem, 273
Grothendieck group, 685, 768
Grothendieck residue, 602
Gysin homomorphism, 421, 429

H
Halperin-Toledo, 316
Handle decomposition, 149
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Hard Lefschetz Theorem, 651
for intersection cohomology, 773

Heegaard Floer homology, 167, 264
Heegaard Floer theory, 280
Hirzebruch-Milnor classes, 556
Hirzebruch Riemann-Roch Theorem, 332
Hirzebruch theory

for manifolds, 329
Hodge decomposition, 648
Hodge filtration, 646, 648
Hodge Index Theorem, 651
Hodge number polynomial, 669
Hodge numbers, 648
Hodge structure, 646
Holonomic, 732
Homology, 687
Homology splitting, 174
Honeycomb system, 577
Hopf, 305, 311
Hyperplane arrangement, 437, 459, 466
Hypersurface, 83, 98, 101, 109–111, 114, 133,

138, 139, 367, 421
homaloidal, 465

I
Image Milnor number, 111, 119
Inclusion-exclusion property of CSM classes,

466
Index

of a frame, 514
GSV, 500
Homological, 503
Poincaré-Hopf, 497, 591
Radial, 499
of an r-section, 584
Schwartz, 499, 504
of a section, 586
virtual, 501, 534, 538

Integral closure, 158
Intermediate extension, 701, 703
Intersection

cohomology, 748
group, 771

complex, 694
formula, 727, 738
homology, 382, 748

and Chern classes, 385
group, 383
and Stiefel-Whitney classes, 384
and Wu classes, 384

theory
Fulton-MacPherson, 429
Stückrad-Vogel, 478

Invariant
cycle theorem, 775
polynomial, 595

Inverse of characteristic cycles, 731
Isolated

singularity, 742
stratified critical point, 757
complete intersection singularity, 83
instability, 93, 95, 110, 133, 138, 139

Isolated complete intersection singularity
(ICIS), 83, 121, 123, 124, 127, 138

J
Jacobian ideal, 743
Jet space of mappings, 5
JSJ decomposition, 164

K
Kähler manifold, 650
Kähler metric, 650
Kodaira’s Embedding Theorem, 651
Kodaira-Serre duality, 631
Künneth formulae, 688
Künneth isomorphisms, 688

L
Lagrangian cycle, 455, 723
Lattice cohomology, 263, 263

augmentation, 264
chain complex, 264
Euler characteristic, 267, 267
reduced, 265
restrictions, 265
symmetry, 266
the cochain complex, 263

Lattice Homology, 167
Laufer algorithm, 224
Lê

cycles, 171, 546, 551
cycles and classes, 481

global, 487
numbers, 171, 483, 546

Left t-exact functor, 700
Legendre, 310
Lemma

Nakayama, 25
Thom-Levine, 23

Lens spaces, 241, 246
Lê-Ramanujam-King-Timourian Theorem,

154
Levi form, 715
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Linear embedding of schemes, 450
Line bundle

natural, 219
Link, 147, 210, 770
Lipman’s cone, 208
Lipschitz equivalence, triviality, 188
Lipschitz nice dimensions, 66
Local algebra, 21, 93, 107
Local Chern obstruction, 378
Local complete intersection, 477, 705, 763
Local Euler obstruction, 443, 730

Aluffi definition, 366
Brasselet-Schwartz definition, 363
and Bruce-Roberts’ Milnor number, 375
of a function, 371
Gonzalez-Sprinberg–Verdier, 364

formula, 444
and Goryunov, Mond, van Straten Milnor

number, 375
and hyperplane sections, 370
Kashiwara definition, 366
Lê-Teissier definition, 365
and local Chern number, 380
MacPherson definition, 363
of map-germs, 372
and Milnor-Lê number, 374
Morse theory, 373
Sabbah definition, 366

Local index, 729
formula, 732

Localization, 539, 588, 597
differential geometric, 606, 611
topological, 588, 611

Locally constructible, 685
Local Morse datum, 710
Logarithmic de Rham complex, 653
Log canonical singularity, 675

M
Macaulay2, 102
MacPherson

classes, 355
natural transformation, 355, 452

Malgrange preparation theorem, 25
Map
Cl - stable, 5
excellent, 8
good, 7
infinitesimally stable, 13
Lipschitz stable, 5
locally infinitesimally stable, 15
non-proper stable, 38
quasi-proper, 48

stable, 5
Lipschitz, 66

Thom-Mather, 2
Thom stratified, 43, 46
topologically stable, 5

Mapping degree, 584
Martineau theorem, 634
Mather classes, 351, 517
Mather’s groups, 14
Maurolico, 310
Mayer-Vietoris triangle, 768
Mellin transformation, 781
Micro-support, 708, 712
Milnor

classes, 386, 472, 504, 526
fibration, 148
fibre, 83, 109, 111, 112, 123, 148, 497, 713,

740–742, 755, 757, 761
number, 149, 443, 446, 497, 602, 742

Bruce and Roberts’ Milnor Number,
374

generalized, 528, 534, 538
Goryunov, Mond and van Straten

Milnor number, 375
Image Milnor number, 376
Milnor-Lê number, 374
Parusiński’s, 447, 472

Minimal model, 555
Minimum convolution, 291
Mixed Hodge modules, 668
Mixed Hodge structure, 647
Modification, 206
Monodromy, 148, 751, 764
Monodromy filtration, 647
Monodromy weight filtration, 660
Morse index, 711, 726
Morse theory, 83, 119
Morsification, 149
Motivic

Baum-Fulton-MacPherson Todd classes,
388

bivariant characteristic classes, 392
Cappell-Shaneson classes, 389
characteristic classes, 388
classes, 556
nearby fibre, 668
Schwartz-MacPherson classes, 388
Verdier Riemann-Roch Formula, 391

Multigerm, 14
Multigrading, 234
Multiplicative sequence, 557
Multiplicativity, 734
Multiplicity, 151, 440

of discriminants and Milnor numbers, 443
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geometric, 442
of a scheme along a subvariety, 441

N
Nakayama, see Lemma
Nash

blow-up, 443
bundle, 366, 504
transformation, 349, 505

Natural line bundles, 252
Nearby cycle, 738

functor, 714, 751
Net of quadrics, 39
Newton non-degenerate, 171
Nice dimensions, 35–37

boundary of, 38
Node, 209
Non-characteristic, 736–738
Non-degenerate covector, 722
Normal cone, 425, 523

intrinsic, 451
Normally radial, 514
Normal Morse

data, 711
index, 548

Normal slice, 710
Normal surface singularities, 162
Null system, 718, 756

O
Obstruction, 584
Obvious filtration, 652
Okuma, 238
Open stratum, 713, 724

P
Perverse

cohomology, 699
cohomology spectral sequence, 700
functor, 700
sheaf, 692, 720
sheaves, 666
truncation functors, 699
t-structure, 692, 759

Perversity
complementary perversity, 383

Piene formula, 353
Pinched torus, 337
Plato, 309
Plumbing manifolds, 160
Poincaré, 311

duality, 312, 572, 687, 726
isomorphism, 618
polynomial of an arrangement, 467

Poincaré-Hopf
index, 591
theorem, 592, 728

for manifolds, 311
for manifolds with boundary, 499
for singular varieties, 343

Point
cusp, 8
fold, 8
regular, 7
singular, 7

Polar
cycles and classes, 458, 481
degree, 465
numbers, 484
variety, 330, 353, 357, 365, 546

Polarization, 650
Pontryagin, 317, 330

classes, 328
Primitive cohomology, 651
Principle of iteration, 140
Projection formula, 622
Projective completion, 425
Propagation, 782, 785

package, 783
Proper case, 611
Properties holding in general, 44
Pseudo-manifold, 574
Purity, 763
Pythagoras, 309

Q
Q-complete

morphism, 748
variety, 747

Q-convex function, 715
Quasi-projective, 746, 784
Quiver, 767

R
Radial frames

global construction, 346
local construction, 345

Radial vector field, 371, 499, 506
global construction, 342
local construction, 339

Rank condition, 134
Rational equivalence, 421
Rational singularity, 675
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Rectified homological depth, 704, 746, 763
Reduced cohomology, 756, 761
Regular embedding, 426
Regular holonomic, 733
Reidemeister move, 89
relative Čech-de Rham

cohomology, 579
theorem, 581

relative Čech-Dolbeault
cohomology, 627
theorem, 628

Relative de Rham cohomology, 579
Relative Dolbeault cohomology, 627
Relative Hard Lefschetz theorem, 772
Relative intersection cohomology, 745
Relative weak Lefschetz theorem, 750
Residual intersection, 435
Residue, 597

differential geometric, 607
Grothendieck, 602
theorem, 588, 599
topological, 588
transverse, 589, 600

Resolution, 206
very weak simultaneous, 281

Resolution of singularities, 206
Riemann-Hilbert correspondence, 733
Riemann-Roch, 540
Right, right-left equivalence, 82, 148
Right t-exact functor, 700

S
Sato hyperfunction, 636
Schubert varieties, 306, 318, 325, 353, 361
Schwartz classes, 344, 347
Schwartz-MacPherson class, 504, 508
Segre

-Mather class, 458
-Schwartz-MacPherson class, 455, 462

of a hypersurface, 465
numbers, 483
operator, 423

Segre class, 387, 422, 428, 508, 522
birational invariance, 428
of a coherent sheaf, 424
of a complete intersection, 426
of a cone, 425
of a regular embedding, 426
of a subscheme, 425
of a vector bundle, 423
tensored, 480

Seiberg–Witten invariant, 166, 247, 267
Seiberg–Witten invariant conjecture, 279, 281

Seifert manifold, 239
Semi-abelian codimension, 784
Semi-abelian variety, 779
Semicontinuity domain, 672
Semigroup Distribution Property, 255, 279
Semi-simplicity, 774
Semi-small map, 774
Series of singularities, 181
Series, reduced, 234
Shadow, 435
Shifted perverse t-structure, 695
Shifted Verdier duality, 706
Signature of a manifold, 558
Signature - Thom-Hirzebruch, 330
Signed Euler characteristic property, 729, 783,

785
Simple elliptic singularity, 49, 59
Simple perverse sheaf, 702
Simultaneous resolutions, 161
Singular, 92, 102, 104, 106, 130
Singularity

Q-Gorenstein, 222
Hirzebruch–Jung, 238, 253
plane curve, 291

delta-invariant, 291
Hilbert function, 291
semigroup, 291

rational, 259, 267, 272
superisolated, 213, 254, 275, 278, 281
weighted homogeneous, 211

Singularity spectrum, 670
Singularity subscheme of a hypersurface, 436
Singular point of an r-section, 583
Smoothing pair, 672
Smooth morphism, 696
Solution complex, 732
Specialization, 738
Specialization map, 752
Specialization sequence, 759
Special point, 379
Spec, spectrum of a ring, 522
Spinc structure, canonical, 228
Splayed, 738
Splice singularity, 232
Stabilization, 71
Stable perturbation, 83, 110–112, 119, 120,

123, 124, 126–128, 137, 139
Stable singularities

in the nice dimensions, 37
when n = p ≤ 8, 37

Stalk, 691
vanishing, 693

Star, 572
open, 572
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Steenrod squares, 306, 322
Stein

morphism, 748
space, 747

Steinberg variety, 737
Stiefel, 305

manifold, 509
complex, 323
real, 315

Stiefel-Whitney classes
for manifolds, 315

axiomatic definition, 319
combinatorial definition, 316

for singular varieties, 334
Stratification
Ck−, 42
Thom-Mather, 43
topological, 333
Whitney, 333

Stratified
critical point, 707
frame, 511
Morse critical point, 710, 726
submersion, 686, 734
vector field, 335, 505

Strict morphism, 649
String, 209
Stringy

Chern classes, 392, 394
Strongly perverse sheaf, 704, 721, 761
Strongly plurisubharmonic, 715
Stückrad-Vogel intersection theory, 478
Submersion, 696
Sullivan, 317
Super-isolated singularities, 166
Support, 692, 757
Support of a characteristic cycle, 725

T
Tangent cone, 151
Tangent space

A-equivalence, 15
K-equivalence, 20

Tautological bundle
complex, 323, 327
real, 315

T-exact functor, 700
Theaetetus, 309
Thom
Af condition, 158
class, 615

of a complex vector bundle, 623
as a localized Euler class, 619

as a localized top Chern class, 623
of an oriented real vector bundle, 617
in relative Čech-de Rham cohomology,

620
of a submanifold, 616

isomorphism, 616, 618
polynomials, 360

and Schwartz-MacPherson classes, 360
second isotopy theorem, 47
spaces, 361
theorem (cobordism), 320
topological stability theorem, 46
transversality theorem, 10

Thom-Levine, see Lemma
Thom-Sebastiani Theorem for vanishing

cycles, 714, 764
Todd class, 542
Todd genus, 330
Todd-Hirzebruch classes, 331
Top-heavy conjecture, 776
Topological stems, 184
Topological triviality, 153
Topological type, 147
Toric varieties, 357, 361, 368
Torsion

Reidemeister–Turaev
for plumbed manifolds, 247

Torsion perverse sheaves, 706
Transversal intersection, 696, 699
Transversal morphism, 736
Transverse residue, 589, 600
Triangulation, 569
ϕ-adapted, 348, 356
compatible with a stratification, 335, 356
compatible with a subspace, 313, 356

Trivial family
A−, 23
G−, 23

U
Unfolding, 34, 359

versal, 359
Unimodal conjecture, 776
Unimodular strata, 51–65
Unipotent group, 90, 101
Universal free abelian cover, 786

V
Vanishing cohomology, 759
Vanishing cycle functor, 714, 752
Vanishing cycles, 150
Vanishing folds, 159
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Vanishing homology, 83, 109, 118
Vanishing Theorem

Grauert–Riemenschneider, 223
Variation morphism, 754, 766
Variety with normal crossings, 654
Verdier dual, 689, 759
Verdier-Riemann-Roch, 544
Verdier specialization, 453
Virtual

Chern class, 451
fundamental class, 451, 475
tangent bundle, 451

W
Watson, 298
Weak Lefschetz theorem, 745, 771
Weakly constructible, 684
Wedge of spheres, 83, 109, 111
Weighted

Chern-Mather classes, 353, 395
Euler characteristic, 382, 395, 397, 400

Weighted homogeneous, 102, 114, 115, 117,
118, 138, 655

Weight filtration, 647
Weyl group, 737
Whitney
C∞-topology, 5
Ck-topology, 5
conditions (a) and (b), 42
fibering conjecture, 50

Whitney equisingularity, 157
Whitney stratification, 683
Wu classes, 306

complex, 352
real, 320

Wu transformation, 351
Wu Wen Tsün, 306

Z
Zariski conjectures, 151
Zariski’s equisingularity, 157
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