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Abstract We demonstrate how a systematic theory of complexity emerges from
information theoretical concepts. The complexity of a structure may refer to the
difficulty of its description, the encoding of its regularities or the relations between
its elements, components or parts.All suchmeasures can be and usually are quantified
with the help of information theoretical concepts.Wefirst describe those concepts and
then use them to analyze how complexity emerges from interactions between parts or
conversely, canbedecomposed into individual, joint, or complementary contributions
of those parts.We can also use these theoretical concepts to understand the interaction
between a system and its environment and the relations between different levels of
aggregation in complex systems.

Keywords Information theory · Mutual information · Complexity measures ·
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1 Introduction

The concepts of information and complexity seem to be intricately linked. Complex-
ity notions are quantified in information theoretical terms, and a general principle
might say that a structure is the more complex, the more information is needed to
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describe or build it. That principle, however, needs some qualification. One should
distinguish between—usually useful—information about regularities of a structure
or a process and—often useless—information about random details. The question
is not only information about what?, but also where is that information?, that is,
whether and how it is or can be internally stored in a system with limited capacity,
at which level of a process information is needed to predict the continuation of a
process, and where it can be found in a distributed system. In the latter case, we
should, however, not only look for information that is exclusively located some-
where or that is shared between entities, but should also consider complementary or
synergistic information, that is, information that only emerges when several sources
are combined.

These lecture notes describe what is currently known about these questions, and
they develop the underlying theoretical concepts and elucidate them at simple exam-
ples. Also, when we can quantify complexity concepts, we can also try to optimize
the corresponding complexity measures. This will also be systematically discussed.

These notes are the result of a series of lectures that one of us (JJ) delivered at the
Summer School in Como in July, 2018. They present work that we have done jointly
during the last few years. JJ thanks Elisa Mastrogiacomo and Sergio Albeverio for
organizing a very stimulating school, and the participants and the other lecturers, in
particular Luciano Boi, Ivar Ekeland and Frank Riedel, for stimulating discussions.

2 Background: Principles of Information Theory

2.1 Shannon Information

The basic concept is that of the Shannon Information [52] of a random variable X ,
or equivalently, of a probability distribution p, when the possible values xi of X are
realized with probabilities pi = p(xi ). These probabilities satisfy 0 ≤ pi ≤ 1 for all
i , with the normalization

∑
i pi = 1. The Shannon information or entropy then is

H(X) = H(p1, . . . , pn) = −
∑

i

pi log2 pi (bits). (1)

This is the expected reduction of uncertainty, i.e., the information gain, if we learn
which concrete value xi of the random variable X from a known distribution p with
probabilities pi = p(xi ) is realized.

This is the basic example:Whenwe have two possible events occurringwith equal
probability 1/2 (an unbiased coin) we thus gain log2 2 = 1 bit of information when
we observe the outcome.

A fair dice yields log2 6 bits of information.
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2.2 Mutual and Conditional Information

We now consider the situation where we have an additional random variable Y .
In the example of the dice, we could let Y = 0 (resp. 1) for an odd (even) result,

each with probability 1/2. According to the basic example, we have H(Y ) = 1 bit.
When we know Y , there remain only 3 possibilities for the value of X , each with
probability 1/3.

This leads us to the concept of conditional information; in this example, the
remaining uncertainty about X when knowing Y is

H(X |Y ) = log2 3. (2)

Thus, the uncertainty about the value of X is reduced from log2 6 to log2 3 bit when
knowing Y .

The joint information is related to the conditional information by

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ). (3)

Thus, H(X, Y ) ≤ H(X) + H(Y ), and < if X and Y are not independent. In the
example, we have H(X, Y ) = H(X), since the value of X determines that of Y .

The information gain about X from knowing Y is called the mutual information
of X and Y ,

M I (X : Y ) = H(X) − H(X |Y ). (4)

In our example M I (X : Y ) = log2 6 − log2 3 = log2 2 = 1 bit. From Y , we gain 1
bit of information about X .

The mutual information is symmetric,

M I (X : Y ) = M I (Y : X). (5)

The difference structure is perhaps the most important aspect. In many respects, (4)
is more important and fundamental than (1), because we always have some prior
knowledge, expressed here through Y , when we observe some X . Thus, the mutual
information M I (X : Y ) tells us how much we can already infer about X when we
know Y . By then observing X , we only gain the additional information H(X |Y ).

Summary:
H(X) = M I (X : Y ) + H(X |Y ) (6)

H(X) = how much you learn from observing X
M I (X : Y ) = how much you learn about X by observing Y
H(X |Y ) = how much you learn from observing X when you already know Y .

We can iterate the conditioning process with another random variable Z , to get
the conditional mutual information
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M I (X : Y |Z) = H(X |Z) − H(X |Y, Z). (7)

M I (X : Y |Z) quantifies how much additional mutual information between X and Y
can be gained when we already know Z .

Careful: While always H(X |Z) ≤ H(X), we do not necessarily have M I (X :
Y |Z) ≤ M I (X : Y ).
Example: The XOR function (exclusive or):

x y z
0 0 0
1 0 1
0 1 1
1 1 0

where X, Y assume their two values independently with probability 1/2 each.
Thus, M I (X : Y ) = M I (X : Z) = M I (Y : Z) = 0, but M I (X : Y |Z) = M I (X :
Z |Y ) = M I (Y : Z |X) = 1, because knowing the values of twoof the variables deter-
mines that of the third.

2.3 Maximum Entropy

E. Jaynes’ maximum-entropy principle [24]: Take the least informative estimate pos-
sible on the given information, that is, don’t put any information into your model that
is not based on the observed data. Look for p with maximal entropy H(p) under the
constraint that the expectation values of certain observables fα be reproduced,

E p fα =
∑

i

f i
α pi for α = 1, . . . , A. (8)

The solution is an exponential distribution

p j = 1

Z
exp(

∑

α

λα f j
α ) with Z =

∑

i

exp(
∑

α

λα f i
α). (9)

In particular, when there are no observations,

p j = 1

n
for j = 1, . . . , n. (10)
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2.4 Kullback-Leibler Divergence

A reference for the information geometric concepts that will be introduced and used
here and in the sequel is [5]. The Kullback-Leibler divergence (KL-divergence for
short) or relative entropy for two probability distributions p, q

D(p‖q) =
{∑

i pi log2
pi

qi
if supp p ⊂ supp q

∞ else
(11)

is positive (D(p‖q) > 0 if p �= q), but not symmetric, as in general, D(p‖q) �=
D(q‖p).

Example: The mutual information is the KL-divergence between the joint distribu-
tion and the product of the marginals,

M I (X : Y ) = D(p(x, y)||p(x)p(y)). (12)

Among all distributions p(x, y) with the same marginals p(x) = ∑
y p(x, y), p(y)

= ∑
x p(x, y), the product distribution p(x)p(y) has the largest entropy. This is, of

course, a special case of Jaynes’ principle. That is, whenwe only know themarginals,
Jaynes’ principle would suggest to take the product distribution as our estimate.

Example: The space of all probability distributions on two binary variables is a
3-dimensional simplex. It contains the 2-dimensional subfamily of product distribu-
tions. The extreme points of the simplex are the Dirac measures δ(x,y), x, y = 0, 1.
Maximization of the distance from the family of product distributions leads to dis-
tributions with support cardinality two (perfect correlation or anticorrelation) [4].

The formal way of expressing Jaynes’ principle is to project a given distribution
onto the product family E to maximize entropy while preserving the marginals, with
π denoting that projection,

D(p ‖ E) := inf
q∈E

D(p ‖ q) = D(p ‖π(p)) (13)

= Hπ(p)(X, Y ) − Hp(X, Y ).

3 Complexity

In this section, we want to introduce and discuss complexity concepts. But what is
complexity? Some possible answers (see [5, 6] for a systematic discussion): Com-
plexity is

1. the minimal effort or the minimal resources needed to describe or generate an
object. Examples of such complexity concepts include algorithmic complexity
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(Kolmogorov [31], Chaitin [14], Solomonoff [57]); computational complexities;
entropy (Shannon [52]), or entropy rate (Kolmogorov [31], Sinai [56]).

2. the minimal effort or the minimal resources needed to describe or generate the
regularities or the structure of an object. Examples of such complexity concepts
include Kolmogorov minimal sufficient statistics and related notions, stochastic
complexity (Rissanen [46]), effective complexity (Gell-Mann and Lloyd [18]),
excess entropy [53], also known as effectivemeasure complexity [21], forecasting
complexity [64], also introduced as statistical complexity by Crutchfield, Young,
Shalizi [15, 51].

3. the extent towhich an object, as awhole, ismore than the sumof its parts (Aristotle
[1]), that is, the extent to which the whole cannot be understood by the analysis of
the parts of the system in isolation, but only by also considering their interactions.

In order to systematically explore these aspects, we start with the most basic
concept, that of algorithmic complexity [14, 31, 57] (see [33] for a systematic expo-
sition). This concept expresses 1) in its purest form.

3.1 Algorithmic Complexity

The algorithmic complexity of an object, such as a number or a piece of text, is the
length of the shortest computer program that generates or produces the object as
output.1 Typically, one cannot compute this complexity, but only provide an upper
bound by producing a computer program, but does not know whether this is the
shortest possible one.

From a conceptual perspective, the basic premise is that irregular or random
structures have the highest algorithmic complexity, because they do not admit a short
description. In other words, we want to characterize the complexity of a structure
by the difficulty of its description. That is, we ask the question: How much can the
description of a structure be simplified by utilizing regularities?

• Very simple structures need not be simplified any further.
• Random structures cannot be simplified.
• Computational complexity (see for instance the expositions in [38, 39]): Running
time of shortest computer program that can generate the structure: A simple struc-
ture is produced quickly, whereas for a random one, everything has to be explicit
in the program, and so, it does not need to run for a long time either.

• Random structures are not of interest for themselves, but only as members of an
ensemble; it therefore suffices to describe the latter (Gell-Mann and Lloyd [18]).

1 To make the complexity of different objects comparable, one needs to agree on a predetermined
programming language; usually, one assumes some universal Turing machine, and changing that
Turing machine will introduce an additive constant in the upper bounds.
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3.2 External and Internal Complexity

The question that arises from the above concept of algorithmic complexity is how
to compute it, that is, how to find the shortest description of a given structure. Quite
apart from the fact that this depends on the choice of the device we use to evaluate
it (in theory: some universal Turing machine, and the choice of that Turing machine
then introduces an additive constant), in practice, we have only bounded means to
represent a structure. Thus: What do we want to know? We want to

1. know a rich and complex structure,
2. but represent it most efficiently.

More formally, we want to

1. maximize external complexity,
2. but minimize internal complexity.

This perspective was introduced in [25]. For an application in pattern classification,
see for instance [3].

3.3 Optimization Principles

Organisms live in and interact with a complex environment, see for instance [61] (for
a measure theoretical approach, see [7]), and need to maintain their own autopoiesis
[37]. A modern society consists of several complex subsystems that follow their own
rules, but need to interact with each other [35, 36]. With the concept of Shannon
information, we can formulate some abstract principles that either maximize or min-
imize some kind of complexity (we follow [26] here). The basic versions, however,
lead to trivial results, as we shall now see.

1. Gain as much information as possible: Look at random patterns
2. Avoid surprises: Look at blank screen
3. Try to predict future sensory inputs as accurately as possible on the basis of the

current ones (and perhaps try to bring yourself into a state where this is possible
[17])

4. Try to manipulate the environment such that the results of own actions are as
accurately predictable as possible [32].

5. Maximize

M I (St+1 : Et ) −M I (St+1 : Et |St )

= H(St+1) − H(St+1|Et ) −H(St+1|St ) + H(St+1|Et , St ) (14)

to establish the strongest possible correlation between the current state Et of
the environment and future sensory data St+1, but such that this correlation can
already be predicted from the current input St [9]
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To proceed further, let us discuss some questions.

1. Q: Why should a system model an external probability distribution?
A: To make predictions on the basis of regularities

2. Q: How can this be achieved in an environment that is vastly more complex than
the system itself?
A: Detect regularities

3. Q: How to detect regularities?
A: Because of 2), the system is forced to compress.

These answers have some consequences in various fields:

• Psychology: Use heuristics [19, 54, 55]
• Cognition: External versus internal complexity [25]
• Statistics: Avoid overfitting
• Statistical learning theory: Start with models with few parameters and gradually
increase as you learn (Vapnik-Chervonenkis) [59, 60].

3.4 Correlations in Time Series

We can also use the information theoretical notions to evaluate the complexity of a
time series in terms of the correlations that it exhibits. A time series Xt , t ∈ N could
possibly have

• No regularities: H(Xt |Xt−1) = H(Xt )

• the Markov property: H(Xt |Xt−1, Xt−2, . . . ) = H(Xt |Xt−1), or
• Long term correlations, as in texts, genetic sequences, …

To evaluate this, we quantify how much new information is gained when one
already knows n consecutive symbols and then sees the (n + 1)st. (Grassberger
[21]).

For which n is this largest? When n is small, one perhaps cannot predict much,
and if n is large, one may be able to guess the rest anyway.

The larger this n, the more complex the sequence.
For genetic sequences, n ∼ 14 [47], for amino acid sequences (proteins) n ∼ 5.
In literature analysis, such a principle can be used to evaluate the complexity of

language [16].
A more sophisticated concept is the genon concept of molecular biology [30, 48,

49].

3.5 Complementarity

Instead of trying to predict the environment, one can also let the environment do the
computation itself (see [26]).
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If you want to catch a ball, you do not use Newtonian mechanics to compute the
trajectory, but simply run so that the ball appears under a constant angle. The envi-
ronment computes the trajectory, and you only need to sample. This outsourcing of
computation represents one mechanism for the compression mentioned in Sect. 3.3.

More generally, embodied cognition has emerged as a new paradigm in robotics
[43].

3.6 Hierarchical Models and Complexity Measures

In this section, we follow [5, 6]. Returning to Jaynes’ approach, we could maximize
entropy while preserving marginals among subsets of variables. For instance, for a
distribution on 3 variables, we could prescribe all single and pairwise marginals.

Assume that we have a state set V that consists of the possible values of N
variables. We then consider the hierarchy

S1 ⊆ S2 ⊆ . . . ⊆ SN−1 ⊆ SN := 2V , (15)

where Sk is the family of subsets of V with ≤ k elements, from wich we get the
set of probability distributions ESk with dependencies of order ≤ k. For instance,
ES1 is the family of distributions that are simply the products of their marginals.
In particular, for a probability distribution in this family, there are no correlations
between the probabilities of two or more of the variables. In ES2 , we then allow for
pairwise correlations, but no triple or higher order ones.

We point out that one can also consider other families of subsets of V and the
corresponding probability distributions. For instance, when V is the ordered set of
integers {1, . . . , N }, one could consider the family of those subsets that consist of
uninterrupted strings of length ≤ k. This will be our choice when we discuss the
excess entropy below.

We let πSk be the projection on ESk , p(k) := πSk (p). For instance, p(1) is the
product distribution with the same marginals as p.

We have the important Pythagorean relation

D(p(l) ‖ p(m)) =
l−1∑

k=m

D(p(k+1) ‖ p(k)), (16)

for l, m = 1, . . . , N − 1, m < l. In particular,

D(p ‖ p(1)) =
N−1∑

k=1

D(p(k+1) ‖ p(k)). (17)
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If we take configurations with dependencies of order≤ k, we get the Complexity
measure [6] with weight vector α = (α1, . . . , αN−1) ∈ R

N−1

Cα(p) :=
N−1∑

k=1

αk D(p ‖ p(k)) (18)

=
N−1∑

k=1

βk D(p(k+1) ‖ p(k)), (19)

with βk := ∑k
l=1 αl .

p(k) is the distribution of highest entropy among all those with the same correla-
tions of order ≤ k as p.

Thus, we consider a weighted sum of the higher order correlation structure.

Examples:

• Tononi-Sporns-Edelman complexity [58]: αk = k
N addresses the issue of the inter-

play between differentiation and integration in complex systems (for an analysis of
system differentiation from an information theoretical perspective, see also [28])

• Stationary stochastic process Xn: Conditional entropy

h p(Xn) := Hp(Xn | X1, . . . , Xn−1).

Entropy rate or Kolmogorov–Sinai entropy [31, 56]

h p(X) := lim
n→∞ h p(Xn) = lim

n→∞
1

n
Hp(X1, . . . , Xn), (20)

Excess entropy (Grassberger [21])

E p(X) := lim
n→∞

n∑

k=1

(h p(Xk) − h p(X))

= lim
n→∞

(
Hp(X1, . . . , Xn) − nh p(X)

)
(21)

= lim
n→∞

n−1∑

k=1

k

n − k
D(pn

(k+1) ‖ pn
(k))

︸ ︷︷ ︸
=:E p(Xn)

, (22)

where we choose Sk as the sequences of integers j + 1, j + 2, . . . , j + � with
� ≤ k. The excess entropy measures the non-extensive part of the entropy, i.e. the
amount of entropy of each element that exceeds the entropy rate.
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3.7 Interactions Between Levels

The question of emergence, that is, how a higher level that is (at least partially)
autonomous from lower levels, arises in many disciplines. For example, classical
mechanics arises from an underlying quantum structure, but the laws of classical
mechanics are causally closed, in the sense that for computing trajectories of Newto-
nian particles, we do not need information from the quantum level. Likewise, human
genetics rests on the laws of Mendel and does not need to consider an underlying
biochemical level. In other fields it is often not so clear, however, to what extent laws
operate autonomously at a certain level without needing permanent or at least regular
access to some lower level. For instance, does it suffice for understanding macroe-
conomic processes to consider relations between macroeconomic variables, or is
an input from the microeconomic level essentially needed? Or can one understand
social dynamics without access to the psychic and mental states of the participating
individuals? For a general discussion of the issue of emergence from the perspective
developed in the present contribution, see for instance [29].

Here, we describe the approach of [41, 42] (and refer to [41] for references to
earlier work). We consider a structure

X̂
ψ−−−−→ X̂ ′

π

�
⏐
⏐

�
⏐
⏐π

X
φ−−−−→ X ′

with basic level X, X ′ and higher level X̂ , X̂ ′; an arrow Y → Y ′ represents a discrete
time step where X, X ′ form a Markov process, with transition kernel φ, which can
be observed at the higher level X̂ , X̂ ′ in a lossy fashion.

The higher level could result from averaging or aggregating the lower level. Think
of X̂ as a coarse-graining of X given by an observation map π .

We can propose several criteria for the upper process being closed in the sense
that it depends on the lower process only through some initialization.

I Informational closure: The higher process is informationally closed, i.e. there
is no information flow from the lower to the higher level. Knowledge of the
microstate will not improve predictions of the macrostate.

M I (X̂ ′ : X |X̂) = 0 (23)

where the conditional mutual information

M I (X̂ ′ : X |X̂) = H(X̂ ′|X̂) − H(X̂ ′|X) (24)

measures the reduction in uncertainty about X̂ ′ when knowing X instead of only
X̂ .
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I I Observational commutativity: It makes no difference whether we perform the
aggregation first and then observe the upper process, or we observe the process
on the microstate level, and then lump together the states.
Kullback-Leibler divergence between the lower and the upper transition kernel
from X to X̂ ′ is 0, for some initial distribution on X .

I ⇒ I I, and in deterministic case also I I ⇒ I. (25)

(In I, probabilities at X̂ , in II at X )
I I I Commutativity: There exists a transition kernel ψ such that the diagram com-

mutes (Görnerup-Jacobi, 2010)

I I ⇒ I I I, and in deterministic case also I I I ⇒ I I. (26)

II: Transition kernels satisfy 
 = ���T

III: Transition kernels satisfy 
� = ��

I V Markovianity: X̂ , X̂ ′ forms again a Markov process (Shalizi-Moore, 2003).

I ⇒ I V, but I V � I I I. (27)

V Predictive efficiency: A more abstract formulation is that an emergent level
corresponds to an efficiently predictable process, that is, one that can be predicted
in its own terms, without permanent recourse to a lower level.

3.7.1 A Test Case: The Tent Map

We now evaluate the preceding concepts at the example of the tent map, following
[40] (see also [2] for background).

T (x) =
{
2x if 0 ≤ x ≤ 1/2

2 − 2x else

The tent map is a basic example of a chaotic dynamical iteration, because at every
step differences between values can get doubled, and therefore, after several steps,
even very tiny differences between initial values can become macroscopically large.
The folding at x = 1/2 ensures that nevertheless the unit interval is mapped to itself.
Thus, somedifferences also get reduced.Understanding this interplay between ampli-
fication and reduction of differences is surprisingly subtle, as one may also see in
the following.

For a threshold value α ∈ [0, 1] we define the symbolic dynamics
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φα : X → X̂ = {0, 1}

φα(x) :=
{
0 if 0 ≤ x < α

1 else

The sequence xn = T n(x), for an initial value x ∈ X , yields the derived symbol
dynamics sn = φα(xn) ∈ {0, 1}.

The probability of finding sn in the state 0 is the probability that xn lies in the
interval [0, α] (which is α for the tent map).

We consider the symbolic dynamics derived from consecutive time steps

(sn+m, sn+m−1, . . . , sn) ,

with k ∈ N

sk(x) =
{
0 if T k(x) < α

1 if T k(x) ≥ α
.

For comparison, we take a random sequence ξn ∈ [0, 1] (uniformly, i.i.d.), and
consider the corresponding symbolic dynamics

σn :=
{
0 if ξn < α

1 if ξn ≥ α.

The question now is:Are there systematic differences between the symbolic sequence
sn derived from iterations of the tent map and σn?

For α = 1/2, they look the same (in fact, we simply have a Bernoulli sequence:
the values 0 and 1 occur with equal probability 1/2; p(0) = p(1) = 1/2). If we don’t
know x , sn looks as random as σn . The transition probabilities are

p(0|0) = p(1|0) = p(0|1) = p(1|1) = 1/2.

We next consider α = 2/3. Put xn := T n(x).
σn = 0 and σn = 1 occur independently with probabilities 2/3 and 1/3.

When sn = 1, that is, 2/3 < xn ≤ 1, then 0 ≤ xn+1 < 2/3, that is sn+1 = 0. Thus,
there is no transition from 1 to 1. For the state sn = 0, both transitions are equally
likely: when 0 ≤ xn ≤ 1/3, we have 0 ≤ xn+1 ≤ 2/3, that is, sn+1 = 0, while for
1/3 < x ≤ 2/3, we get sn+1 = 1. Thus, for sn ,

p(0|0) = p(1|0) = 1/2, p(0|1) = 1, p(1|1) = 0

while for σn

p(0|0) = p(0|1) = 2/3, p(1|0) = p(1|1) = 1/3.

This leads us to the concept of forbidden sequences.While for the thresholdα = 1/2,
the symbolic dynamics of the tent map cannot be distinguished from that of a random
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sequence, and is Markovian, in contrast, for the threshold α = 2/3, the sequence 11
does not occur, and the symbolic dynamics is different from a random one, but still
Markovian.

For other thresholds, we can also get longer forbidden sequences and non-
Markovian symbolics.

Even from a random sequence ξn , we can derive non-Markovian symbolic dynam-
ics.

Let x1, x2 ∈ [0, 1]; we consider the symbolic rule

s(x1, x2) =
{
0 if x1 ≤ x2

1 if x2 < x1.

For our random sequence, take x1 = ξn, x2 = ξn+1. Thus, we draw the points x1, x2

randomly and independently.
The state probabilities are again p(0) = p(1) = 1/2, but the transition probabil-

ities now depend on the history. The more 1s we have seen, the less likely it is to see
another 1, because then ξn is expected to be very small, hence most likely, ξn+1 > ξn .

We now analyze the information flow of this example. The information flow
between the micro-level corresponding to state xn and the coarse-grained level sn is
the conditional mutual information

M I (sn+1 : xn|sn) = H(sn+1|sn) − H(sn+1|sn, xn) .

Since sn+1 is fully determined by xn , the second term vanishes,

M I (sn+1 : xn|sn) = H(sn+1|sn) ,

i.e., the information flow = conditional entropy on the coarse grained level, which
has a local minimum at α = 2/3.

Instead of drawing information from below, the upper level system relies on
its memory.

4 Information Decomposition

We finally turn to the concept of information decomposition. To motivate it, we start
with the transfer entropy [50]2

2 Such a principle had already been introduced by the econometrician Granger [20] who wrote “We
say that Yt is causing Xt if we are better able to predict Xt using all available information than if the
information apart from Yt had been used.” In the econometric literature, this principle was applied
only in linear settings. As [8], explained, the transfer entropy can be seen as an operationalization
of this principle in a general context.
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T E(Z → X) := M I (X+ : Z−|X−) (28)

where the subscript—refers to the past and + to the future. T E(Z → X) quanti-
fies the amount of information contained in Z about the future of X that cannot be
obtained from its own past.

Problem: X+ = XOR(X−, Z−):
Here, the information in Z− is only useful together with that of X−. The transfer
entropy cannot distinguish this situation from one where X− does not contribute and
Z− determines X+ by itself.

This problem is addressed by information decomposition. It was started by
Williams and Beer [63] (but their measure Imin of shared information does not dis-
tinguish whether different random variables carry the same information or just the
same amount of information), and continued by Harder, Salge, Polani [23], Griffith
and Koch [22], Bertschinger, Rauh, Olbrich, Ay, Banerjee, Jost [12, 13, 44, 45], and
taken up by many other people (see for instance the references in [34]), with appli-
cations in different fields, like neuroscience [62]. There is no optimal solution, but
that of Bertschinger, Rauh, Olbrich, Jost, Ay [13] (called the BROJA decomposition
in the community) is currently the most widely accepted.

To describe our approach, we consider three random variables X1, X2 and S. The
(total) mutual information M I (S : X1, X2) quantifies the total information that is
gained about S if the outcomes of X1 and X2 are known.Howdo X1 and X2 contribute
to this information? For two explanatory variables, we expect four contributions to
M I (S : X1, X2):

M I (S : X1, X2) = SI (S : X1; X2) shared information

+U I (S : X1\X2) unique information of 1

+U I (S : X2\X1) unique information of 2

+C I (S : X1; X2) complementary or synergistic information.

Here, U I (S : X1\X2) is the information that X1 has, but X2 does not have, SI (S :
X1; X2) is the information that both of them have individually. Perhaps the most
interesting term is the last, C I (S : X1; X2), the information that only emerges if
X1 and X2 pool their knowledge. This term is best illustrated in the XOR example
discussed below.

CI(S : X1;X2)
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We consider some examples. AND

x1 x2 s p(x1, x2, s)
0 0 0 1/4
1 0 0 1/4
0 1 0 1/4
1 1 1 1/4

Here, x1 and x2 jointly determine s, but cannot be fully recovered from s.
When 1 has the value x1 = 0, she can exclude s = 1, and analogously for 2.
Thus, when they both see 0, they share the information that s = 0.
The mechanism loses some information. When X1, X2 are i.i.d.,

H(X1, X2) = 2 bits,

but

H(S) = M I (S : X1, X2) = −1

4
log

1

4
− 3

4
log

3

4
≈ .811 bits.

In general, we may have both correlations between the input variables and relations
created by the mechanism that computes S.
We next recall XOR from Sect. 2.2:

x1 x2 s
0 0 0
1 0 1
0 1 1
1 1 0

Neither 1 nor 2 can determine the value of S by herself, but the value of the other is
needed for that. This is a clear case of synergistic information only.

Our approach: Unique and shared information should only depend on the marginal
distribution of the pairs (S, X1) and (S, X2). This idea can be explained from an oper-
ational interpretation of unique information: Namely, if X1 has unique information
about S (with respect to X2), then theremust be someway to exploit this information.
More precisely, there must be a situation in which X1 can use this information to
perform better at predicting the outcome of S.

In this interpretation, 1 possesses unique information about S compared with 2,
if there exists a reward function for which 1 can achieve a higher expected reward
based on her value x1 and her knowledge of the conditional distribution p(s|x1) than
if she knew and utilized instead the conditional distribution of 2.

Thus, unique and shared information depend only on pairwisemarginals. Only the
synergistic information includes higher order dependencies. In that sense, synergy
becomes ameasure of higher order interactions, in the sense of information geometry.



Information and Complexity, Or: Where Is the Information? 103

From a conceptual perspective, and independently of the way the different terms
in the decomposition are quantified, it is important to understand synergy, in order
to clarify discussions that have become quite sterile, like the relative importance of
genes and environment in biology. For a perspective in this direction, see [27].
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