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Preface to the Volume Advanced School
on Complexity and Emergence: Ideas, Methods,
with a Special Attention to Mathematics and Its
Application to Economics and Finance

Complex systems involve a large number of components and interactions and cannot
practically be reduced to a small number of simple components with well-defined
relations. The theory of complex systems has evolved from various areas of research,
in particular, nonlinear dynamical systems, general system theory, chaotic system
theory and the theory of stochastic processes. It is also strongly influenced by network
theory, statistical mechanics, computer science (algorithmic complexity), statistical
analysis (extreme events, data analysis) and control theory.

Emergent phenomena, presenting essential qualitative differences from those of
the components, deserve special interest, and their study (explanation of emergence,
prediction) constitutes a major goal in several areas of knowledge.

In the study of complex systems and associated simulations, models inspired by
theoretical andmathematical physics play an important role, since they often provide
well-defined candidates for the dynamics of the components (microlevel) fromwhich
emergent behaviour of the system as a whole (macrolevel) should be explained. In
the last decade in areas like meteorology or even climate analysis large-scale models
have been constructed on the basis of complex systems theory and are the basis
of present-day predictions, respectively, interpretation of past developments, since
they can be tested and improved by steadily increasing data sets. The construction
of similar models has also been attempted with some success in certain biological
contexts (e.g. in ecological settings or in the study of some brain functions).

In other areas, and, in particular, in socio-economical sciences, the interplay
between microlevel and macrolevel, and the phenomena of emergence arising from
this interplay aremuch less understood. In recent years, however, agent-basedmodels
have been developed in the area of econophysics; these have the potential to relate
to models also discussed by economists, especially in the study of financial markets.
In fact, a financial market generally consists of the traders, furnished by varying
amounts of capital and the interaction rules of the trading platform. In contrast to
such a simple microscopic structure, the macroscopic behaviour of financial markets
appears to be surprisingly rich: the seemingly uncorrelated swings of financial indices
and the extremeevent of a crash constitute typical phenomenapresent in systems.This
behaviour of the market resulting from the interactions of the investors is an example
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vi Preface to the Volume Advanced School on Complexity and Emergence. . .

of emergence of macrophenomena from an underlying microlevel of interactions.
Interdisciplinary efforts to better understand why the evolution of macroeconomical
systems can run into “singularities” (e.g. financial crisis) are increasingly required,
andmethods of the area of complex systems (phase transitions, asymptotics, extreme
events, stochastic control) are expected to play an important role.

The need to prepare a generation of researchers able to do critical, interdisci-
plinary work and possibly develop new synergies between different communities,
from mathematics to information sciences and theoretical physics, on one hand,
and to socio-economical sciences, on the other hand, is much felt. Because of this an
“AdvancedSchool onComplexity andEmergence: ideas,methods,with special atten-
tion tomathematics and its application to economics andfinance”wasorganized at the
international Institute Lake Como School of Advanced Studies (of the Universities
of Insubria, Milano and Milano-Bicocca and Pavia), July 22–27, 2018. The present
volume gathers contributions that resulted from lectures present at the School. All
lectures were given by leading specialists, active in different areas of mathematics,
physics, biology as well as philosophy of science, econometrics, jurisprudence and
architecture, building bridges among the various communities involved and working
jointly on developing new paths in the interdisciplinary subject of complexity and
emergence. We believe that the volume will be of interest to those working in mathe-
matics, information sciences, theoretical physics and economics, as well as research
workers in those areas, who want to enlarge their spectrum of knowledge towards
the world of complex systems and emerging effects.

The contribution by Nihat Ay, Nils Bertschinger, Jürgen Jost, Eckehard Olbrich,
JohannesRauh entitled “Information andComplexity, or:Where is the Information?”
presents and discusses basic principles of information theory and complexity, in
particular, regarding their quantification, how they are related and how the complexity
notions can be quantified in qualified information theoretical terms. They stress the
need to discuss the question of “what is information” next to the one “informa-
tion about what?”. They provide a very good survey on what is presently known
about these questions. The presentation is greatly enriched by numerous simple
examples. The structure of the lectures is as follows. Section 2 presents basic prin-
ciples of information theory, discussing Shannon information (or entropy) asso-
ciated with random variables (for simplicity they assume that they have a finite
number of values); then they go over to discuss measures for mutual and conditional
information, followed by a discussion of maximum entropy. The last topic of this
section handles geometric information concepts, in particular, the Kullback-Leibler
divergence. Section 3 discusses very clearly different notions of complexity (like
algorithmic and, respectively, computational complexity), as well as entropy and its
rate; minimal sufficient statistics, stochastic complexity, excess entropy, forecasting
complexity and statistical complexity; moreover, Aristotle’s definition as “the whole
being more than the union of its parts” is analysed. The difference between external
and internal complexity is stressed, based on results of the authors themselves, and
optimization principles, relating to autopoiesis and sociological approaches by N.
Luhmann aswell as to concepts of psychology, cognitive sciences,molecular biology,
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statistics and statistical learning theory. Hierarchical, complementarity and interac-
tion are also analysed and illustrated using a simple dynamical system. The last
section discusses the concepts related to information decomposition.

The contribution by Luciano Boi, entitled “A topological and dynamical approach
to the study of complex living systems” focuses on developments in the study of
biological phenomena that have emerged from new ideas and methods in mathe-
matics, notably differential geometry, topology and the theory of dynamical systems.
The modelling of many processes that occur within living cells and organisms has
indeed received a great momentum by such developments. In particular, ideas and
methods of mathematics have been applied to discuss: (i) relationships between plas-
ticity of biological structures and emergence of their functionality; (ii) the relation
between form and function (in Aristotelian sense) and (iii) the connection between
robustness and fragility in complex living organisms. On the way in his rich expo-
sition the author discusses (in Section 1) topics like complex structures in physics
(including topological stability, phase transitions, hierarchical approaches, winding
mechanism).He stresses especially the presence of geometrical and topological struc-
tures in nature (like knotted filamentary structures). For the study of them mathe-
matical methods and ideas naturally combined with insights from physics. So, e.g.
in the study of stability in condensed matter and its relations with phase transitions
in statistical mechanics, still in the introduction and also elsewhere in the article,
the author puts in evidence epistemological aspects, in particular, the limits of a
hierarchical paradigm of science, going through a rich collection of examples to
illustrate his point of view (including, e.g. superconductors and DNA structures). In
particular, in relation to DNA molecules, he discusses in detail topological struc-
tures, symmetry-breaking and linking numbers. Emergence in physical patterns as
related to topological changes in the system (that are illustrated using algebraic and
differential geometric methods, clearly presented). Complexity is illustrated also in
relation with symmetry-breaking phenomena, e.g. in morphogenesis and molecular
biology, and the special character acquired by the concepts of complexity, emergence
and causation in biological contexts. He also discusses self-organization and other
systemic properties in biology and measures of chaos, fractability and complexity.
The genome is viewed as a complex system that cannot be understood by looking at
DNA sequences alone. More generally, the need for an approach in terms of systems
biology is stressed. The last sections hint at present development involving complex
topology (relations between supercoiling, topological plasticity and biological func-
tions). The author strongly emphasizes the multi-levelness of complex systems and
urges a systemic approach, taking fully into account also recent developments in
the areas of topology and geometry. The strong point of view that “biological infor-
mation of living organisms come to be portrayed in the DNA sequence above” (as
formulated in Section 15) is illustrated in a very original way, with particular atten-
tion to functional aspects of plasticity and supercoiling. Interesting open problems
are pointed out in the conclusive remarks.

The contribution by Ilaria Capelli takes us in the world of jurisprudence looked
upon as handling of a complex system. In fact, a very innovative point of view is
presented through a description of the different levels of complexity in jurisprudence,
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linking financial systems and their regulations and “models related to fraud”. The
contribution starts with a survey of characteristics of complex systems (including
nonlinearity, information and entropy, interconnections between agents and environ-
ment). Then it goes over to describe complexity aspects and matters of jurisprudence
(distinguishing between complex systems and complicated ones). Aspects of emer-
gence and adaptation are stressed, as well as economic and social interrelations,
and their interwovenness with various other aspects of jurisprudence. In Section 3,
the relation between complexity theory and legal thinking is presented, in partic-
ular, connections with N. Luhmann’s theory of asymptotic systems is pointed out. In
Section 4, the relation between complexity theory and aspect of economics, in partic-
ular finance, is discussed, also in their relation to ecological and social problems.
In the last three sections, the author deals with complexity jurisprudence in relation
with financial systems regulation, including systemic risk and the role of regulation
in preventing crisis (in face of systemic risk and fraud). It ends with a most welcome
plea for a multidisciplinary approach concerning regulation of financial markets.

The contribution by Francesco Guerra is entitled “The emergence of the order
parameter in the interpolating replica trick for disordered statistical mechanical
systems” and presents in a condensed but clear and very competent way the results
of many decades of investigations of important models of cooperative behaviour
emerging from disorder complex systems. Such models originated from the classical
Ising-Lenz model of ferromagnetism, a paradigmatic model (originally handling a
discrete valued coupled “spin variables” introduced in the 20s to describe ferromag-
netic behaviour), but whose applications extend far beyond physics, into areas like
economics, sociology, geography, urbanism, biology and medicine. The models of
spin glasses and the random emergent model constitute the main topic of investi-
gation in F. Guerra’s essay. They can be looked upon as an extension of the above-
mentioned Ising-Lenz-type models to the case where the coupling between the spin
variables is taken to be random. The spin glass model was introduced by Sherrington
and Kirkpatrick in the 70s (as a meanfield-type random model), the random energy
model was introduced by B. Derrida in the early 80s. They are both suitable to model
large systems having random interactions among their variables, and as a conse-
quence exhibiting a complex behaviour. Whereas for the Ising-Lenz-type model the
order parameter to describe the macroscopic behaviour is easily identifiable and
correspondingly also the parameter describing phase transitions, for the case of spin
glasses and the random energy model the identification of suitable order parameter
constitutes a much more complex issue. G. Parisi in famous physical work invented
a “replica trick” for finding such an order parameter and for producing an explicit
formula (called Parisi’s formula) for a quantity of great interest associated with such
models. Themathematical justificationof this formula fromfirst principles has consti-
tuted an open problem since many decades, finally solved in hard work by Guerra
and his coworkers and Talagrand, see also Panchuck in the references of Guerra’s
article. In this exposition, Guerra presents the essence of an interpolation method
developed by himself and further developed by him with coworkers. By this method
the annealed free energy of the replicated system (first replicated an integer number
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s of times) is first expressed through variational principles, containing definite vari-
ational trial functions depending on special s-depending order parameters. Then the
interpolation method permits to consider the case of a real number s of replicas. The
limit where s is going to zero is investigated. It is shown that for generic values of s
there is a unique variational principle, with a trial function and order parameters not
depending on s. In this way from a suitable bound on the s-dependent order parameter
entering the variational procedure at least in the random energy model one gets to the
limit s → 0. In the case of the spin glass model there is a functional order parameter,
but the breaking of the replica symmetry can be interpreted as a phase transition in
the numbers of replicas.

The structure of this important paper is as follows. Section 1 is a nice introduc-
tion. In Section 2, study of the annealed averages of the replicated free energy is
provided together with the concept of an integer number of replicas and a related
variational principle. The emergence of replica symmetry in the infinite volume limit
is discussed. In Section 3, the extension to a real number s of replicas is provided.
Section 4 discusses Derrida’s random energy model. Section 5 explains very clearly
and in detail the main results concerning the Sherrington-Kirkpatrick mean field
spin glass model obtained by the very original methods of the author. Section 6 indi-
cates some possible future developments concerning multispecies models, Hopfield
network and neural networks.

Let us stress that this fundamental work also has implications for models which
are at the best of many attempts to understand complex phenomena in, e.g. biology,
neurobiology, information science, sociology, economics, geography and urbanism1.

The contribution by Frédéric Patras andVictor Planas-Bielsa is entitled “Complex
systems: from the presocratics to pension funds”. The main point of the contribution
(presented in its Introduction) is to describe and illustrate how complexity studies
inspire new modes of thinking, beyond the traditional mechanistic and reduction-
istic methods and involving a rethinking of the very foundations of science. In
particular, the authors advocate a direct approach to the question of the interplay
between complexity and simplicity. Section 1 presents a contemporary view of the
philosophical problems raised by presocratic philosophers (in particular, Heraclitus,
Parmenides and Democritus), illustrating the actuality of their reflections by a simple
example (going back to Poincaré). The authors also beautifully illustrate the rela-
tions with contemporary philosophical and epistemological discussions. Section 2
concentrates on the ideas of model and causality, also presented as having their
roots in classical Greek philosophy, in particular, Aristotle. Applications of these
ideas in two areas of contemporary research (quantum field theory and mathematical
finance) are presented. Section 3 discusses various versions of atomism especially
in relation with mathematics and its applications, illustrated by an example from
economics. The authors present an original point of view of looking at the whole
mathematics as a dynamical system, finding support in historical epistemology and

1 See, e.g. references in Stein, D. L., & Newman, C. M. (2013). Spin glasses and complexity.
Princeton University Press and Chakrabarti, B. K., & Sinha, A. (2021). Development of
Econophysics: A Biased Account and Perspective from Kolkata. Entropy, 23(2), 254.
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philosophy of science, in particular, the tradition from Braunschweig, Bachelard,
Cavaillès, Lautman, up to contemporaryphilosophers. Section4 takes uponeproblem
of contemporary economics (pension plans) and its relations with complex systems
and epistemological issues, arguing for a good use of mathematics (including its
atomism) taking critical care of the limits of models.

The contribution of FerdinandoSemboloniwith the title “Fromcomplex dynamics
to the architecture of the city” presents a new theory for the design of a city. Its main
point is to take in due account the self-organization components in cities and towns.
This requires a reconsideration of the role of urban planning and design from a
point of view inherited from enlightenment to a contrasting one, where the city
appears as a complex system, to be understood and transformed taking into account
its elements of spontaneous dynamics. This presentation of a new design of a new
city proceeds as follows. The exposition starts out in Section 3 with a brief review of
some basic theories of urban systems. Then Zipf’s law of population among cities
is described and interpreted as a sign of the presence of complex dynamics in cities.
The exposition proceeds by Sections 3 and 4 putting in evidence through beautiful
historical considerations how design and construction of a city are intimately related
to historical contexts.

The author observes in Section 3 how for a view “from above” cities often appear
as spontaneous artefacts and looking from a close distance they often appear as
designed. He then analyses the designed cities in Section 4, with historical roots in
ethical principles (as ideal cities).

Section 5 discusses the concept of self-organized cities and its relationship with
the theory of complex systems.

In Section 6, the idea of artificial self-organized cities is critically analysed. The
author argues for an approach where understanding the existing complexity can be
used to improve the architects’ ability to intervene in an urban asset.

In Section 7, scientific and architectonic ways of knowledge are compared and
contrasted, with examples from the history of architectural projects.

Section 8 points out the relations between patterns in architectural contexts
(following Christopher Alexander).

Section 9 digresses on imitation in arts and the role of time, with a mentioning of
statistical mechanical versus individual behaviour.

Section 10 briefly describes cities as solutions of some problems of communi-
cation that are deepened in Section 11 where the role of a centre (of a town) is
underlined.

Examples from architecture are mentioned, as well as centres in biological and
economic contexts. The genesis of a centre and the centre-area pattern is analysed
in Section 12, both in architectural and biological contexts. In Section 13, two basic
patterns of a circle and an ellipse formed in cities are analysed.

In Section 14, a self-similarity of systems of centre-area patterns in a city is
described and a semi-hierarchical organization of such patterns is pointed out.

In Section 15, a program developed with Netlogo is used to provide an example of
city design. The relationships between cells are based onZipf’s lawwith a distribution
in space inspired by Christaller’s theory of central places.
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In Section 16, the tracing of a road network is illustrated. It combines simulations
and manual design.

In Section 17, the theory of space syntax is used with topological tools to analyse
a road network and the production of a suitable urban space.

In Section 18, some conclusions are drawn. The author argues for facilitating
communication between individuals. For this an analysis of spontaneous dynamics
is advocated.

The contribution of Raffaello Seri, Davide Secchi and Mario Martinoli is enti-
tled “Randomness, emergence and causation: a historical perspective of simulation
in the social sciences”. It gives a comprehensive review of computational models
and techniques, in connection with simulations, particularly in their relations with
social sciences and the aspects of randomness, emergence and causation. It also
contains an historical account of the problems and methods and a discussion of
the relation between parts and the whole, typical of complex systems. Section 2
gives an interesting account of the early developments of computers and computa-
tional tools, including the Monte Carlo method. Section 3 explains system dynamics
(since about the 50s) as an approach to the understanding of the dynamics of
composed objects in interaction (in terms of differential equations). Examples are
provided (Lotka-Volterra and limits of growth models in biological and population
dynamical contexts). Also, the problematic aspects of deterministic versus stochastic
models are discussed, with emergence traced back to its economical roots. Section 4
discusses two examples of simulations, discrete-event simulation and query systems.
Microsimulation is presented in Section 5, in connection with economics (in partic-
ular, contemporary approaches). Simulation by cellular automata is reviewed in
Section 6, accompanied by discussion of examples (e.g. voting behaviour, Schelling’s
model). Contemporary agent-based models (ABM) are discussed in Section 7 and
the difference between them as computational tools with simulation methods and
analysed in detail and illustrated by many examples (taken from social and prac-
tical sciences, economics, biology, management and organization research). The
advantage of approaches based on ABM is put in evidence, as the most advanced
present-day computational approach for computational simulation.

Bonn, Germany
Varese, Italy
Milano, Italy
Milano, Italy

Sergio Albeverio
Elisa Mastrogiacomo

Emanuela Rosazza Gianin
Stefania Ugolini
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A Topological and Dynamical Approach
to the Study of Complex Living Systems

Luciano Boi

Abstract Traditionally one has addressed biological phenomena by analytical
and/or statistical tools with the goal to give average laws of the competition between
biological species and communities and of their evolution. This approach has
certainly permitted to obtain important results. However, many fundamental aspects
of biological systems at every scale remain to be explained. In the last four decades
new mathematical ideas and methods have emerged, relying notably on differential
geometry, topology and dynamical systems, which appear to be very meaningful for
the modelling of many processes which occur within the cell and organism contexts
and activity. In particular, these ideas and methods promises to be helpful for a better
understanding of the following three correlated issues (i) the relationship between
the plasticity of biological structures and the emergence of their functionality, (ii)
the interaction between form and function: how the first influences the second and,
conversely, how, the secondmay favors adaptive changes of the first, (iii) the connec-
tion between the robustness and fragility in complex living organism; in particular
the difficulty is to characterize the critical thresholds which may occur a transition
from robustness to fragility.
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2 L. Boi

Introduction

1 Introduction: Complex Structures in Physics

One of the most exciting developments of mathematical physics in the last four
decades has been the discovery of numerous intimate relationships between the
topology and geometry of knot theory and the dynamics of many domains of “clas-
sical” and “non-classical” macroscopic physics, especially soft matter physics and
biophysics. Indeed, complex systems of knotted and entangled filamentary structures
are ubiquitous in Nature and arise in such disparate contexts as electrodynamics,
magnetohydrodynamics, fluid dynamics (vortex structures), superfluidity, dynam-
ical systems, plasma physics, cosmic string theory, chaos of magnetic flows and
non-linear phenomena, turbulence, polymer physics and molecular biology (see Boi
[1–3], Boyland [4], Hornig [5], Kauffman [6] for a detailed account of the subject).
In the last decades, mathematical tools have been developed to identify and analyse
the geometrical and topological complex structures and behaviours of such systems
and relate this information to energy levels and stable states of matter.1

2 Topological Stability in Condensed Matter and Phase
Transition

Recent works established the role of topology in understanding exotic forms of
condensed matter (for more details we refer to AAVV [8], Kosterlitz and Thou-
less [9]). Holes and their number define the shape of many kinds of objects, in the
following sense they can be squished and stretched without changing essentially
their shape, in other words, they posses the property of (a certain) stability. If we
add or subtract one or more holes (closed loops) to these objects, they will change
their shape and yet conserve some topological stability, and this fact has impor-
tant physical effects. For example, when we add some holes to a complex Riemann

1 Recall that four states of matter are observed in everyday life: solid, liquid, gas and plasma. Many
other states are known such as Bose–Einstein condensates and neutron-degenerate matter but these
only occur in extreme situations such as ultra-cold or ultra-dense matter [7]. Other states, such as
quark-gluon plasmas, are believed to be possible but remain theoretical for now. The distinction
between these states was first made based on qualitative differences in properties. Matter in the solid
state maintains a fixed volume and a stable shape, with component particles (atoms, molecules or
ions) close together and fixed into place.Matter in the liquid statemaintains a fixed volume, but have
a variable shape that adapts to fit its container. Its particles are still close together but move freely.
Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its
particles are neither close together nor fixed in place. Matter in the plasma state has variable volume
and shape, but as well as neutral atoms, it contains a significant number of ions and electrons, both
of which canmove around freely. Plasma is the most common form of visible matter in the universe.
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surface—such as a sphere or a torus—by continuous or discontinuous deformations,
we change its shape without altering its essential topological properties. Similarly,
topological phases have a robustness that allows their properties to remain stable in
spite of the impurities or other material details. To explain this robustness, Thou-
less’s group considered all of the wave functions that can describe electrons in a
two-dimensional (2D) material and represented this set of possibilities with a curved
surface. The shape of this surface can be classified by a number called the genus
of the surface, which is a topological invariant and which has some stability, like
the vortices in the Kosterlitz-Thouless transition (see below). A common example
of a topological invariant is the number of holes, or the genus, in an object, like a
donut or a pretzel. One can distort a pretzel quite a bit, but the hole count doesn’t
change. With some effort, one can puncture or cut the pretzel to make more or fewer
holes, but the hole count always jumps by an integer amount Z (there are no half
holes). Thouless and his colleagues showed that their derived topological invariant
was related to the integers that define the Hall conductance steps. This result account
for the quantization and also explained why the Quantum Hall Effect (QHE) is so
robust: small changes to the material can affect the set of electrons wave functions,
but the topological invariant that describe the set is much harder to change.

The general and fundamental idea behind these results is that topology can be used
to characterize the phases of matter. In other words, the study of some topological
forms allows to predict and characterize new forms of matter with stable states.

3 Epistemological Remarks on the Limits
of the Hierarchical Paradigm of Science

According to the belief of almost all scientists, matter is organized in a hierarchical
structure. At the bottom we have elementary particles: quarks, gluons, electrons, etc.
At present we don’t knowwhat these particles are made off. But we believe we know
that quarks, gluons, etc. make up protons, neutrons, etc. These then goes together to
make atoms, that are building blocks of molecules. Atoms and molecules give gas,
liquids and solids from which we get stars and planets which are grouped together
in galaxies, that then form clusters and eventually we arrive at the entire universe.
Or from atoms and molecules we get macromolecules like proteins and DNA, that
are building blocks of organelles, which together form the cells. From cells we get
organs, that put together form organisms: animals and plants of a great variety of
species. The totality of individuals and species constitutes the entire ecology.

One branch of science, e.g. particle physics, is concerned with the breaking of
systems into smaller and smaller parts. The behaviour and properties are studied at
each respective level. However, the theory of dynamical systems, thermodynamics
and statistical mechanics are concerned with the opposite quest. Namely, from the
interactions between the components, say atoms, at one given level the aim is to under-
stand the collective coherent behaviour which emerges as many atoms or molecules
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are but or assembly together and the next level is formed. Often the microscopic
details of the properties of the individual building blocks are not so crucial. Rather
it happens that the collective behaviour is controlled by general properties of the
interaction between the building atoms or molecules (see Anderson [10], Jost [11],
and Kitano [12]).

There is a particular case where it is possible to follow in detail how components
at one level assemble and (in some phenomena) organize together and form certain
collective coherent structures: topological defects or topological charges. These
charges can be Coulomb charges in two dimensions, dislocations in two dimensional
crystals, vortices in two dimensional superconductors and more. The interaction
between the topological charges depends in all cases logarithmically on the spatial
separation and this leads to some very general collective behaviour, most spectacular
it causes a certain type of phase transition: the Kosterlitz-Thouless transition.

These authors identified a completely new type of phase transition in 2D
systems—such as thin fluid films or single-layer materials—where topological
defects play a crucial role. Their theory applied to certain kinds of magnets and
to superconducting and superfluid films. In the early 1980s David J. Thouless and F.
Duncan M. Haldane developed theoretical methods to describe phases of matter that
cannot be identified by their pattern of symmetry breaking.

Crystalline solids are a very important class of materials in which the atoms are
arranged in periodic patterns. These patterns can be classified by their symmetries.
When a liquid solidifies into a crystal, it changes from a phase which is, on macro-
scopic scale, invariant under both translations and rotations, to a phase where these
continuous symmetries are broken down to a finite symmetry group characteristic of
the crystal. Another example of such a phase transition occurs when a ferromagnet
is cooled below the Curie temperature TC or Curie point (it is the temperature above
which certain materials lose their permanent magnetic properties; in other words,
the magnetism is lost at a critical temperature), and the atomic magnetic moments,
or the spins, line up and give rise to a net magnetization.

The study ofmagnetism has been very important for our understanding of symme-
tries in physics. Using new experimental techniques, hidden patterns of symmetries
were discovered. For example, there are magnetic materials where the moments or
the spins form a chequerboard pattern where the neighbouring moments are anti-
parallels. In spite of non-having any net symmetrisation, such antiferromagnets are
nevertheless ordered states, and the pattern of microscopic spins can be revealed by
neutron scattering. The antiferromagnetic order can again be understood in terms of
the associated symmetry breaking.

There is a striking similarity between 2D magnet and certain superconducting
or superfluid films. The magnetisation is a vector that normally can point in any
direction but in certain magnets, the spins are constrained to lie in a plane, say
the xy-plane, where they are free to rotate. In such an “easy-plane” magnet the
direction of themagnetization is determined by a single angle, θ, denoting the rotation
around the z-axis. It is important now to stress that there are configurations of such
planar, or xy, spins that are topologically distinct. One of such configurations is a
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vortex configuration: in fact, we can have a single vortex configuration and a vortex-
antivortex pair, which can be smoothly transformed to the ground state. The vortex
is a topological defect that cannot be transformed into the ground state where all the
spins are aligned, by a continuous rotation of the spins. An important result is that the
configurations can be classified by their vorticity, which is a topological invariant
(see Ricca and Moffat [13], Boi [14], Oberti and Ricca [15]).

The classical example of a phase transition is a system going from a disordered
phase to an ordered phase as the temperature is lowered below a critical value.
More recently, the phase transition concept has been extended to quantum systems
at zero temperature. A quantum system can undergo a radical change of its ground-
state as a parameter in its Hamiltonian, such as pressure, magnetic field or impurity
concentration, is tuned trough a critical value, and such a quantum phase transition
signals the change from one state of matter to another. This insight has provided an
important link between statistical mechanics, quantum many-body physics and high
energy physics.

Kosterlitz and Thouless, in the paper already quoted (1973), showed that there is
indeed afinite temperature phase transition, but of a newandunexpected naturewhere
the vortex configuration plays an essential role.One year before thework ofKosterlitz
and Thouless, Vadim Berenziskij (1972) also recognized the importance of vortex
excitations in the xy-model. He understood that they could drive a phase transition,
but did not correctly describe the nature of this finite temperature transition, which is
therefore referred to as the “KT-transition”. The XY-model, which allows to describe
different systems like the planar magnet and a superfluid,—both have complex order
parameters describedby a single angle (specifically for a superconductor or superfluid
the complex order parameter can be expressed as ϕ = √

ρseiθ , where ρs is the
superfluid density and θ the phase)—is defined by the Hamiltonian

HXY = −J
∑

〈i j〉 cos(θi − θ j ) (1)

where 〈i j〉 denotes nearest neighbours and the angular variable, 0 < θi � π , can
denote either the direction of an XY-spin or the phase of a superfluid.

An important point to be considered is the existence of the thermal fluctuations,
which prevent ordering of XY-spins in two dimensions. A more precise statement
is based on the large distance behaviour the spin–spin correlation function. To see
what happens in two dimensions, we take the continuum limit of the Hamiltonian
(Eq. (1)) to get

HXY = J/2
∫

d2r(∇θ(r))2. (2)

A simplification is to extend the range of the angular variable to −∞ < θ < ∞
to get a free field Hamiltonian and thus Gauss fluctuations, and a direct calculation
using a short distance cut-off a give
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〈
ei(θ(r)−θ(0))

〉 ∼ (a/r)kBT/2π J. (3)

This is a power law even at high temperatures, where an exponential fall-off would
be expected. Kosterlitz and Thouless resolved the apparent paradox by showing that
there is indeed a finite temperature phase transition but of a new kind and essentially
topological in nature.

The glitch in the argument leading to Eq. (3) is that the periodic, or U(1), nature
of θ cannot be ignored, since that amounts to neglecting vortex configurations. A
vortex is characterized by a non-zero value of the vorticity

v = 1/2π
∫

C
d2r · ∇θ(r) (4)

whereC is any curve enclosing the centre positionof thevortex.The integralmeasures
the total rotation of the spin vector along the curve, so after dividing with 2π , v is
simply the number of full turns it makes when circling the vortex. From this, we
also understand there can also be antivortices, where the spins rotate in the opposite
direction. For a rotationally symmetrical vortex with v = ±1 it follows from last
equation that |∇θ(r)| = 1/r , so the energy cost for a single vortex becomes

Ev = J/2
∫

d2r(1/r)2 = J π ln L/a (5)

where L is the size of the system, and a a short distance cut-off that can be thought
of as the size of the vortex core.

Even in the case in which the energy cost for a single vortex is very large, and
cannot be excited by thermal fluctuations, the effect of the vortex cannot be neglected.
In other words, the vortex is a topological object whose shape and properties may
induce a change of structure and behaviour in the physical system, precisely a phase
transition, even in absence of a critical parameter breaking the symmetry of the
system.

We can understand the essence of this new type of topological phase transition
by a quite simple thermodynamic argument. Although the energy of a single vortex
diverges as ln L, this is not true for vortex-antivortex pairs since they have zero total
vorticity. The energy required to create such a pair is J2π ln r/a, where r is the
separation between the vortices. Such pairs can thus be thermally excited, and the
law temperature phase will host a gas of such pairs. The insight by Kosterlitz and
Thouless was that at a certain temperature TKT the pairs will break up into individual
vortices. It is this vortex pair unbinding transition that will take the system to a high
temperature phase with exponentially decaying correlations.
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4 The Spin-Like Representation of the KT Topological
Phase Transition

The general idea behind the KT-transition, which is an effect that shows up in thin
films of magnetic material, can be simply explained in terms of a geometric-spins
representation. Imagine a thin film of stuff where each atom’s spin likes to point in
the same direction as its neighbours. Also suppose that each spin must point in the
plane of the material; in other words, all the spins of the magnet material are lined
up. Physically, this means something precise: it means that the energy is low. When
the stuff is very cold, its energy will be as low as possible, so the spins will line up.
When one heats up the thin film, it gets a bit more energy so the spins can do more
interesting things. An interesting possibility is when they form a vortex: the spins
swirl around like the flow of water in a whirl-pool; each spin is fairly close to being
lined up to its neighbours, except near the middle where they are moving in a strange
way. The total energy of a vortex is enormous. The reason is that fairly close is not
good enough. The spins fall to perfectly line up with their neighbours even far away
from the middle. (In fact, the energy would be infinite if our thin film or material
went on forever.) So, even if you heat up your substance, there won’t be enough
energy to make many vortices. One might then think that vortices were irrelevant in
this story. But there is another possibility, called an “anti-vortex”: A single vortex
has a huge energy, just like a vortex. So again, it might seem antivortices irrelevant
if one is wondering what the stuff will do when it has just a little energy.

At this point Kosterlitz and Thouless noticed that the combination of a vortex and
an antivortex has much less energy than either one alone! So, when the thin film of
stuff is hot enough, the spins will form vortex-antivortex pairs. We can imagine (the
moving pictures of) how this might happen. A vortex-antivortex pair can appear out
of nothing… and then (somehow magically) disappear again. Thank to this process,
at low temperatures the thin film will contain a dilute “gas” of vortex-antivortex
pairs. Each vortex will stick to an antivortex, since it takes a lot of energy to separate
them. These vortex-antivortex pairs act a bit like particles: they move around, bump
into each other, and so on. But unlike most ordinary particles, they can appear out of
nothing, or disappear, in this process.

As one heats up the thin film, one gets more and more vortex-antivortex pairs,
since there is more energy available to create them. But here a real surprising thing
occurs. Kosterlitz and Thouless showed that as one turns up the heat, there is a
certain temperature at which the vortex-antivortex pairs suddenly “unbind” and break
apart! Why? Because at this point suddenly something happens at some particular
temperature. It is bit like how ice suddenly turns into liquidwaterwhen itwarms above
its melting point. A sudden change in behaviour like this is called a phase transition.
So, theKosterlitz-Thouless transition is the suddenunbindingof the vortex-antivortex
pairs as one heats up a thin film of stuff where the spins are confined to a plane and
they tend to line up. Superconducting materials too can exhibit a Kosterlitz-Thouless
transition. Indeed, their work was the key that unlocked a treasure room full up of
strange new states of matter, called “topological phases”; these states show clearly
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that the “usual” concepts of symmetry and symmetry-breaking are enriched andmust
be completed by the concept of topological deformations whose resulting forms may
generate new states of matter and a more subtle notion of stability of these states, in
spite of the thermal fluctuations and local spatial dislocations that apply to them. Such
stable new states of condensed matter, but almost the same can be said of soft and
livingmatter, emerge from these topological deformations and from some topological
invariants, such as the genus, which are related (and allow for characterising) some
classes of “objects” (surfaces and manifolds).

Vortex are one of themost significant (and surprising) topological objects showing
interesting physical properties and behaviours. Let’s start with the question: How
can a vortex and an antivortex be defined? Elementarily in this way. If one walk
around either one and look at the little arrows, the arrows turn around—one full
turn. It is a vortex if when one walk around it clockwise the little arrows make a
full turn clockwise, like in the first picture above. And it is an antivortex if when
one walk around it clockwise the little arrows make a full turn counter-clockwise,
like in the second picture above. Vortex can be characterized topologically by its
winding number whose value is 1 (1 positive for a counter-clockwise turning), while
the antivortex has winding number −1 (1 negative for clockwise turning). Roughly
speaking, the winding number of a closed curve in the plane around a given point
is an integer (Z) representing the total number of times that curve travels counter-
clockwise around the point. The winding number depends on the orientation of the
curve, and is negative if the curve travel around the point clockwise (for more details
see White [16], Gray [17], and Roe [18]).

Definition. The winding number is one the most basic invariant in topology. It
measures the number of times a moving point P goes around a fixed point Q, provided
that P travels on a continuous path that never goes through Q and the final position
of P is the same as its starting position.

Fig. 1 A vortex: the arrows are oriented toward the same direction. An antivortex: the arrows are
oriented toward different directions
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Fig. 2 A simple representation of a torus knot. Precisely, it is a torus knot K(3, -8) represented as
a knot diagram (left) and in three-dimensional space with volume (right)

This simple idea has far-reaching applications, firstly in almost all fields of math-
ematics and in theoretical physics (string theory and topological quantum field
theories), but also in condensed matter physics and in molecular biology.

Recall that the winding number is one of the most important concepts in the
topological theory of knots. The class of torus knots can be characterised as follows
(see Oberti and Ricca [19]).

“Torus knots and unknots are rotationally symmetric closed curves standardly
embedded on a mathematical torus T in P3. Each torus knot is de ned by a pair of
co-prime integers p > 1 and q > 1, denoting the number of full turns around T done
by the curve along the longitudinal (or toroidal) direction and meridian (or poloidal)
direction, respectively (see Figs. 2 and 3). The unknot is given by either p = 1 or q=
1. When p = q = 1 the unknot is a twisted circle on T, and when p and q are rational,
but not relatively prime, we have links (with number of components given by the
greatest common divisor between p and q). The ratio w = q/p (w > 0) defines the
winding number and is a measure of the knot topology. When w = q/p is irrational
the curve forms a dense set covering T almost everywhere. Two limits are of interest:
(i) a poloidal hollow ring covered by infinitely many poloidal coils, when p is fixed
and finite, and q → ∞; (ii) a toroidal hollow ring, when q is fixed and finite, and
p → ∞” (2019, 17284).

Oberti and Ricca provided a mathematical proof of the effects of winding
number—a topological invariant torus knots—are of primary importance on the
motion of vortex knots in the context of classical and, ideal (i.e. inviscid) fluid
mechanics. This has been done by considering the full Biot-Savart law.

(Recall that this law enables us to calculate the magnitude and direction of the
magnetic field produced by a current in a wire. The Biot-Savart law states that at
any point P, the magnetic field dB due to an element dl of a current-carrying wire is
given by
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Fig. 3 The outside shell of a donut or bagel is a good concrete representation of what we call a
mathematical torus. A torus knot is a knot (i.e. a tangled string in our 3-dimensional space) laying
on the surface of the torus shape, without intersecting itself in any place. The torus is made up of
two types of circles (a), the meridian curve, which wraps one the short way around the torus, and
the longitudinal curve, which wraps once the long way around the torus (b). Topologically, the torus
is the product of two smooth circles T ∼= C × C ′. Torus knots can be named as T (p, q), where
the knot K(p, q) crosses over the meridian curve (a circle) p times, and the longitudinal curve (the
other circle) q times. An example would be the (3, 5) torus knot K(3, 5) in (b). It crosses around
the meridian curve three times. (From Wolfram Mathworld.)

dB = μ0/4π ldl × r/r2. (6)

The constant μ0 is known as the permeability of free space and is exactly

μ0 = 4π × 10−7 T · m/A (7)

In the SI system. The infinitesimal wire segment dl is the direction as the current
I (assumed positive), r is the distance from dl to P and r is a unit vector that points
from dl to P.)

The influence of winding number is found to be comparable to curvature effects
(which, as we know, are essential in almost all domains of fundamental physics and
beyond) and for thin filaments it is more important than the vorticity distribution over
the vortex cross-section. The authors also determined, in full generality, precise rela-
tions between winding number, knot complexity and relative velocity contributions.
They computed the speed for most common knot types and showed that the propa-
gation velocity increases with the number of toroidal coils; moreover, they proved
that for increasing ratio and number of poloidal coils vortex can be even reversed.

For a formal definition of the linking number consider a curve in the xy-plane
defined by the parameter equations:

x = x(t) and y = y(t) for 0 ≤ t ≤ 1. (8)

If we think of the parameter t as time, then these equations specify the motion of
an object in the plane between t = 0 and t = 1. The path of this motion is a curve
as long as the functions x(t) and y(t) are continuous. The curve is closed as long as
the position of the object is the same at t = 0 and t = 1. We can define the winding
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number of such a curve using the polar coordinate system. Assuming the curve does
not pass through the origin, we can rewrite the parametric equations in polar form

r = r(t) and θ = θ(t) for 0 ≤ t ≤ 1. (9)

The function r(t) and θ(t) are required to be continuous, with r > 0. Because
the initial and final positions are the same, θ(0) and θ(1) must differ by an integer
multiple of 2π. This integer is the winding number:

w = θ(1) − θ(0)/2π (10)

This defines the winding number of a curve around the origin in the xy-plane. By
translating the coordinate system, we can extend this definition to include winding
numbers around any point.

In differential geometry, the winding number of a differentiable curve can be
expressed as a line integral:

w = 1/2π
∫

C
(x/r2dy − y/r2dx). (11)

In topology, thewinding number is an alternate term for the degree of a continuous
mapping [20]. The above example for a curve winding around a point has a simple
topological interpretation. The complement of a point in the plane is homotopy
equivalent to the circle, such that maps from the circle to itself are really all that is
needed to be considered. It can be shown that each such map can be continuously
deformed to (is isomorphic to) one of the standard maps S1 → S1: s → sn, where
multiplication in the circle is defined by identifying it with the complex unit circle.
The set of homotopy classes of maps from a circle to a topological space forms a
group, which is called the first homotopy group or fundamental group of that space.
The fundamental group of the circle is the group of the integers Z; and the winding
number of a complex curve is just its homotopy class. Maps from the 3-sphere to
itself are also classified by an integer which is also called the winding number or
sometimes Pontryagin index.

The simplest example of the concept of linking coefficient or linking number
is that of two non-intersecting closed rectifiable curves L1, L2 in R3, given by the
so-called Gauss integral:

I = 1/4π
∫

L1

∫

L2
(x1 − x2)dx1dx2/ |x1 − x2|3 (12)

(Here x1 and x2 are the radius vectors of L1 and L2).
The concept of linking number generalizes to the case of a pair of closed oriented

manifolds Mk–1 and Mn–k in Rn: the linking number is equal to the degree of the
mapping χ of the oriented direct product Mk–1 × Mn–k into the sphere Sn–1 ⊂ Rn,
where χ(x, y), x ∈ Mn–k , is the point at which Sn–1 is cut by a ray through the origin
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parallel to the vector (x, y). The linking number is equal to the intersection index (in
homology) of any k-chain Ck such that ∂Ck = αzk–1 with the cycle zn–k , divided by
α. This member is independent of the choice of Ck . (For more details, we refer to
Dubrovin et al. [21], and Ranicki [22])

5 The Effectiveness of the Concept of Winding

The notion of winding is effective and has a precise geometrical and dynamical
meaning in physics and in biology, especially in fluid mechanics and in molecular
biology (seeOphl andRoberts [23],White [24], andBoi [25]). Consider, for example,
the structure and function of DNA. As it well-known, the DNA must be compacted
more than ten thousand folds in the cell, and this might explain why almost any
protein that binds to DNA will bend it. Moreover, since the curvature K2 of an entire
DNA double-helix segment depends on the torsional stress which applies to DNA
strands, these strands must form a twisted curve, i.e. a curve of double curvature
in the three-dimensional space of the cell nucleus (see Olsen and Bohr [26]). DNA
double-helix must coil many times in a very ordered way to form thus a chromatin
structure, otherwise, if the chromosomes of the human cell were in the form of a
random coil, they will not fit within the nucleus (see Almouzni [27], Ridgway and
Almouzni [28], Cozzarelli and Holmes [29], and Boi [30]). The DNA double-helix
coils first by overwinding or underwinding of the duplex. The supercoiled form of a
circular DNA molecule minimizes to the highest the space volume it occupies in the
nucleus.

It is worth to note that the supercoiled DNA molecule follow the most important
property of minimal surfaces (as helicoid and catenoid): they minimize the area.
Supercoil condense DNA and promote the disentanglement of topological domains.
Recall that a surface

∑ ⊂ R3 is minimal if and only if every point p ∈ ∑
has a

2 The Gaussian curvature (or total curvature) K of a surface S is an intrinsic property of space
independent of the coordinate system used to describe it; in other words, it depends only on distance
that are measured on the surface, not on the way it is isometrically embedded in Euclidean space.
The Gaussian curvature of a regular surface in R3 at a point p is formally defined as K(p) = det
(S(p)), where S is the shape operator and det denotes the determinant. If x:U →R3 is a regular patch,
then the Gaussian curvature is given by K = eg – ƒ2/EG – F2, where E, F, and G are coefficients
of the second fundamental form. The Gaussian curvature can be given entirely in terms of the first
fundamental form (as demonstrated by C.F Gauss in its Theorema Egregium, 1827) ds2 = Edu2 +
2Fdudv + Gdv2, and the metric discriminant g ≡ EG − F2, by

K = 1/
√
g
[
∂/∂v(

√
g/E �2

11) − ∂/∂u(
√
g/E �2

12)
]
,

where �k
i j are Christoffel symbols of the first kind. The Gaussian curvature is positive at an elliptic

point, negative at a hyperbolic point, and it is zero at a parabolic point or a flat point. Since
the Gaussian curvature depends on the intrinsic metric only, i.e. on the coefficients of the first
fundamental form, it is invariant under isometric deformations of the surface (see Gray [17, pp. 373–
380 and 481–500)].
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Fig. 4 Properly embedded minimal planar domains M ⊂ R3 with infinite topology (equivalently,
with an infinite number of ends) are Riemann minimal surfaces, in the precise sense that such an
M must be congruent to a homothetic scaling of one of the classical examples found by Riemann
in 1860. Recent work (see Meeks and Pérez [32]) demonstrate that the plane, the catenoid and the
helicoid are the only properly embedded minimal surfaces of genus zero (without holes) with finite
topology (equivalently, with a finite number of holes). This is so since the surfaces �s converges to
a catenoid as s → 0 and to a helicoid as s→ ∞. Then the moduli spaceM of all properly embedded
non-planar, minimal planar domains in R3 is homeomorphic to the closed unit interval [0, 1]. One
of the fundamental results obtained by Meeks and Pérez (stated as a Theorem) asserts that Up to
scaling and rigid motion, any connected, properly embedded, minimal planar domain in R3 is a
plane, a helicoid, a catenoid or one of the minimal examples. In particular, for every such surface
there exists a foliation of R3 by parallel planes, where each plane intersects the surface transversely
in a circle or a straight line (2009, 283) (Figure from Meeks and Pérez [32])

neighbourhood with least-area relative to its boundary. Equivalently, a surface
∑ ⊂

R3 is minimal if and only if its mean curvature3 vanishes identically. The shape of
DNA and of any protein are minimal surfaces, or at least close approximations to
them (see Hildebrandt and Tromba [31], Meeks and Pérez [32]). Why are minimal
surfaces formed and how does this shape affect the local and global environment
of the system? For DNA, the following explications can be evoked. DNA-proteins
condensation in chromosomes calls for a packingmechanism that is fast, reliable and
that causes as little change as possible in the interaction between the DNA molecule
itself and the intracellular fluid in which it is immersed (Figs. 4, 5 and 6).

It is now understood that DNA is packed along hierarchical levels of rising
complexity (see Boi [33]). The lowest level is of course the DNA double-helix itself.
This then transforms in the nucleosomes, whose assembly form the chromatin, level

3 The mean curvature of a surface
∑

in 3-dimensional space R3 if the half of the sum of the
principal curvatures k1 and k2, calculated at a point p of this surface: H(p) = k1 + k2/2. The
mean curvature of a surface in R3 can be expressed by means of the coefficients of the first and
second fundamental forms, calculated at a point p ∈ ∑

. For a m-dimensional submanifold M of a
n-dimensional Euclidean space of codimension n – m > 1, the mean curvature generalizes to the
notion of the mean curvature normal

Vp = 1/m
∑

j
1n−m [Tr A(e j )]e j ,

where e1, …, en–m is the orthonormal form of the normal space ofM at p and A(ej): TpM → TpM
(TpM denotes the tangent space toM at p) is the shape operator ofM at p in the direction ej , which
is related to the second fundamental form V of M at p by 〈A(e j )(X), Y 〉 = 〈V (X, Y ), e j 〉.
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Fig. 5 A minimal surface. It
looks like a one-strand
right-handed model of DNA
helix

where the double helix is wound around a highly specific protein cluster creating
the bead-on-a-string form of chromatin. At the next level, the bead-on-a-string is
condensed to a chromatin fibre, again aided by a highly specific protein, which is
further compacted to the final metaphase chromosome (for more details see Gasser
[34], Cremer et al. [35]).

The question is now how to account for a more than 10,000-fold compactification
that takes place rapidly (in less than 0.5 ms) and yet is so gentle that the fragile
DNA molecule, that will break when pipetted, is preserved intact throughout the
transformation, and will survive through a large number of repetitions of this folding.
Themain reason for this remarkable property of a DNAmolecule is its general shape.
The double-helix sits on a helicoid,4 and therefore it shares the property of that

4 The helicoid, H, is a single periodic minimal surface swept out by horizontal lines moving at a
constant speed up the x3-axis while rotating at constant speed. It is invariant under any vertical
screw motion around the x3-axis, in particular vertical translations by 2π. Otherwise stated, the
(circular) helicoid is the minimal surface having a (circular) helix at its boundary. It is the only
ruled surface (i.e., a surface formed by a motion of a straight line) other than the plane. For many
years, the helicoid remained the only known example of a complete embedded minimal surface of
finite topology with infinite curvature. However, in 1992 a second example, known as Hoffman’s
minimal surface and consisting of a helicoid with a hole, was discovered. The helicoid is the only
non-rotary surface which can glide along itself. It can be described as a straight line that rotates at
a constant angular rate around a fixed axis, intersects the axis at a constant angle α, and at the same
time becomes gradually displaced at a constant rate k along this axis. The equations of a helicoid in
cylindrical coordinates is z = cθ; in cartesian coordinates, it is y/x = tan(z/c); and it can be given
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Fig. 6 The steps of the transformation of a catenoid (by cutting along x0(u)) into a right-handed
(xπ/2(u, v) helicoid, and a left-handed helicoid (x–π/2(u, v). (From Wolfram Mathworld.)

in parametric form by x = u cos v, y = u sin v, z = cv. The Gaussian curvature of a helicoid is given
by K = −c/(c2 + u2)2, and the mean curvature is H = 0, making the helicoid a minimal surface.
The helicoid can be continuously deformed into a catenoid by the transformation: x (u, v) = cos α

sin h v sin u + sin α cos h v cos u; y (u, v) = – cos α sin h v cos u + sin α cos h v sin u; z (u, v) = u
cos α = v sin α, where α = 0 corresponds to a helicoid and α = π/2 to a catenoid.

Locally the helicoid is isometric to the catenoid. In fact, such local isometry can be achieved
as endpoint of a continuous one-parameter family of isometric deformations which are all minimal
surfaces. If a twisted curve C (i.e., one with torsion τ �= 0) rotates about a fixed axis A and, at the
same time, is displaced parallel to A such that the speed of displacement is always proportional to
the angular velocity of rotation, then C generates a generalized helicoid. (Recall that the torsion of
a space curve is the rate of change of the curve’s osculating plane; the torsion τ is positive for a
right-handed curve, and negative for left-handed curve; a curve with curvature K �= 0 is planar iff
τ = 0; the torsion can be defined by = N · B′, where N is the unit normal vector and B is the unit
binormal vector.).

A helix, sometimes also called a coil, is a curve for which the tangentmakes a constant anglewith
a fixed line. The shortest path between two points on a cylinder (one not directly above the other) is
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surface. Themost important of these is theway the helicoid can be deformed applying
the Bonnet transformation,5 which preserve the mean curvature. This means that the
surface remains aminimal surface, and that is of great importance to a highly solvated
molecule like DNA, since themetric of the parallel surfaces remain the same. That is,

a fractional turn of a helix, as can be seen by cutting the cylinder along one of its sides, flattening it
out, and noting that a straight line connecting the points becomes helical upon re-wrapping. Helices
come in enantiomorphic left- (coils counterclockwise as it “goes away”) and right-handed form
(coils clockwise). Helices in a double-stranded molecule of DNA are right-handed. (Contrary to
DNA molecule, many large helical structures in plants and animals are left-handed). The helix is
a space curve with parametric functions x = r cost, y = r sin t, z = ct, for t ∈ [0, 2π], where r is
the radius of the helix and 2π c is a constant giving the vertical separation of the helix’s loops. The
curvature of the helix is given by K = r/r2 + c2, and the locus of the centers of curvature of a helix
is another helix. The arc length is given by s = √

r2 + c2t . The torsion of a helix is given by τ =
c/r2 + c2, so K /τ = r/c, which is constant. In fact, a necessary and sufficient condition for a curve
to be a helix is that the ratio of curvature to torsion be constant. The minimal surface of a helix is a
helicoid.
5 The Bonnet transformation (after its inventor Pierre-Ossian Bonnet, 1819–1892) is a very special
transformation which has many interesting applications in mathematics (minima surfaces, Riemann
surfaces, differential geometry, etc.) and in other sciences, especially chemistry and biology. To start
let us denote by k the curvature of a space curve, and by τ its torsion.We learned that at any (regular)
point a space-curve can be approximated by a circle and the curvature at that point is simply the
curvature of the circle that best approximates the curve at that point. The rate of recession of the
circles of curvature from the original plane is the torsion of the curve. If the torsion is zero, the rate of
recession from the plane is zero and the curve is planar. Let now k1 and k2 be the principal curvatures
of a surface patch σ(u, v). The Gaussian curvature of σ is the product of k1 and k2, K= k · k2, and its
mean curvature if the half of k1 and k2: H=½(k1 + k2). K is a measure of the metric of the surface.
When a surface is subjected to a transformation that leaves the metric invariant (bending without
stretching), K will not change. An important characteristic of H is that it changes when the surface
changes orientation. When this is forbidden from symmetry considerations, H must be identically
equal to zero, and the surface is a minimal surface. In the special case of minimal surfaces, fixing
H and K restricts us not to a single surface, but to a family of surfaces. The transformation from
one member of the family to another is known as the Bonnet transformation. This transformation
is highly restrictive. It is continuous and it preserves both the mean and the Gaussian curvature of
every point on the surface. The perhapsmost well-known example of a Bonnet transformation is that
allowing to transform a catenoid a catenoid in a helicoid.Mathematically the Bonnet transformation
can be described as the weighted sum of two minimal surfaces: S = cos θ S′′+ sin θ S′, where θ

is the Bonnet angle (parameter). The Bonnet transformation is well-defined in the sense that it can
follow one path only. As a minimal surface undergoes the Bonnet transformation the individual
points move along ellipses. Each point on the ellipse corresponds to a unique surface in the family.
This puts the Bonnet transformation (and therefore the minimal surface) in a very special position.
The sphere cannot be bent at all without changing the curvature K. This is known as the (metrical)
rigidity of the sphere. The plan on the other hand has an infinite number of possible modes of
isometric K-preserving deformations, something that might be called the floppiness of the plane.
For a minimal surface there exists one such mode only if the minimal surface properties are to be
preserved. For a minimal surface undergoing the Bonnet transformation, H and K are invariant.
The Bonnet transformation preserves all local axes of rotation and roto-inversion normal to the
surface. This determines what symmetries are possible for periodic minimal surfaces generated by
the Bonnet transformation. Periodic minimal surfaces have a specific obstacle to overcome when
undergoing the Bonnet transformation. The transformation continuous only for surfaces of genus
zero, that is for disc-like surfaces. When a surface of higher genus is transformed, it must be cut
open. In the case of periodic minimal surfaces, these cuts close up at the Bonnet angles where
the surface is one more periodic. Some important characteristics of the Bonnet transformation are
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Fig. 7 A (1-periodic) Bonnet transformation

the solvation6 shellswill remain unperturbed during folding if this can be described as
a Bonnet transformation. Nevertheless, globally, the difference is huge: 10,000-fold
compactification is accomplished, but only by moving bulk solvent, not by changing
solvation shells. Still another important property of Bonnet transformation is that it
imposes simultaneity on the system. In a mathematical Bonnet transformation, all
points on the surface move in unison. In the DNA molecule, which is only a good
approximation of the helicoid, the partial folding of the molecule at one location will
lead to the imposition of a similar structure at nearby sites (Fig. 7).

The trigger to start folding must come from outside the molecule if the Bonnet
transformation mechanism is to be used. Since the local environment is virtually
unchanged, the impetus must be a global effect. This is supplied by the protein’s
histones. By binding to sites that are distant from each other along the helicoid surface
and bringing them close together in 3-space, they pull the DNA strand together. The

thus: (i) It is isometric, i.e. it preserves distances along the surface. (ii) It is the only isometric
transformation of a minimal surfaces through minimal surfaces. (iii) The parallel surfaces undergo
Bonnet-like transformations as well. (iv) The Bonnet transformation preserves all axes of rotation
and roto-inversion normal to the surface.

To biologists, the Bonnet transformation is an attractive way to describe complex reorgani-
zations, which influence the physiological functions of macromolecules like DNA and proteins.
Many macromolecules, indeed, attain minimal surface shape, and for the kind of them that undergo
dynamic structural changes, the Bonnet transformation result to be very (physiologically and evolu-
tionary) advantageous. This notably because: there will be a well-defined, low energy path from
one state to another; the transformation is isometric, and therefore no bonds are stretched; it will
proceed along a well-defined path since the isometry is unique; and, perhaps most important in
the case off biomolecules, the parallel surfaces undergo a Bonnet transformation as well, leaving
any hydration shell virtually unperturbed. Bonnet transformation is a very interesting example of a
geometric structure which optimize the biological processing and work of living matter.
6 Solvation can be defined as a process in which a solute is transferred from a fixed position in the
ideal gas to a fixed position in the liquid (solution) phase.
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Fig. 8 A catenoid and a helicoid (From Wolfram Mathworld.)

mechanism is similar the coiling and super-coiling and an elastic (flexible) cord
(Fig. 8).

The general scheme of the folding would then be this: the loosely curled DNA
strand is swimming in a soup of intracellular fluid, containing the histones. At a
critical pH, the conditions become just right for the histones to bind to the DNA
strand. Once the first histone is in place, the folding will be self-catalysed, since
the binding induces a Bonnet transformation upon the nearby parts of the DNA
strands, creating ideal binding sites for free histones. This auto-catalysis yields an
ever-accelerating process that propagates through the entire DNA strand like a sonic
wave, dramatic on the global scale, but gentle on the local, thereby ensuring structural
integrity of the genetic material. Considering the fact that the ensuring condensation
of the chromatin fibre into themetaphase chromosome is achieved by further winding
of the molecule, it is fair to assume that this follows a similar mechanism, creating
a self-similar sequence, a cascade of Bonnet transformations.

The winding of the two strands of the DNA double helix about each other, repre-
sented by filled and open strings, can be measured by the linking number between
the strands. It is equal to the one-half the number of the signed crossing of the two
strands in any projection of the molecule. The linking number is a very important
knot or link invariant [36] it is, more precisely, an invariant of oriented links. Suppose
that D is an oriented regular diagram of a 2-component link L = {k1, k2}. Further,
suppose that the crossing points of D at which the projection of k1 and k2 intersect
are p1, p2, …, pn. (We consider only the crossing points of the projections of k1 and
k2, which are not self-intersections of the knot component.) Then 1/2{sign (p1) +
sign (p2)+…+ (sign (pn) is called the linking number of k1 and k2, which is usually
denoted Lk (k1, k2). This number has some striking properties, the most important
of which is that the linking number Lk (k1, k2) is an invariant of L, that is, it is the
same for two or more diagrams of L. To see how the linking number works, consider
how it applies to a real DNA, say the polyoma-virus DNA (a small, non-enveloped
virus, which is widespread in nature, and which can cause different diseases, from
cancers to disorders of the central nervous system). Remember that this DNA can be
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resolved through sedimentation into three components: I and II, which are circular,
and III, which is linear. It has been determined experimentally that the average linking
number for a population of relaxed circular molecules of this DNA is about +500.
On the other hand, for a population of closed circular molecules (the supercoiled
molecules that makes up component I) the average linking number is about +475.
Thus, the closed circular molecules of the polyoma-virus DNA are underwound,
having a deficit in the winding number of about 25. This finding suggests a way to
define supercoiling [37]. It is equal to	Lk, that is the difference between the linking
number of amolecule in the natural closed circular state and the linking number of the
same molecule in the relaxed closed circular state (when the energy of deformation
is at a minimum and the writhing number is zero). For example, for the DNA’s both
the polyoma-virus and the monkey virus SV40, 	Lk is approximately –25. It can
now be understood why a deficit in the linking number of a molecule of DNA causes
the molecule to supercoil. A linear molecule of DNA in solution normally assumes
a form known as the B configuration,7 in which the nucleotide bases are approxi-
mately perpendicular to the helical axis with 3.4 angström units between them and
in which there are about 10 bases pairs for each turn of the double helix. This is a
configuration of minimizing energy, and if the molecule is bent or twisted, its energy
is increased. If a long molecule is simple circular, however, the diameter of the circle
is large compared with the thickness of the double helix. Hence the curvature of the
molecule is small and its energy is increased only slightly. As a result, nicked circular
molecules such as components II of polyoma-virus DNA hardly depart from the B
configuration. The situation is quite different for a closed circular molecule with a
deficit in linking number. To satisfy the condition that the value of Lk be less than
that of a relaxedmolecule (say 475 rather than 500) the double helix would have to be
untwisted, a transformation that would substantially increase the deformation energy
of the molecule. By supercoiling, however, the closed circular molecule minimizes
the amount by which it departs from B configuration. More precisely, as the analysis
of the ribbon model revealed, one way that underwound DNA can reduce its defor-
mation energy is by writhing. Since writhing and twisting are interconvertible, it is
apparent that by changing the extent of writhing it is possible to minimize the twist
of a molecule, therebyminimizing the twisting component of its deformation energy.
On the other hand, writhing always introduces some curvature, and so it increases
the bending contribution to the energy of the molecule. Therefore, the supercoiled
configuration that the underwound DNA molecule assumes is one that minimizing
twist while introducing the smallest possible amount of bending (see White [24],
Summers [38], and Wolffe [39]) (Fig. 9).

ThewritheWr can simply be thought of in terms of the number of times the rubber
rod crosses over itself. It is a measure of the shape of the DNA as a three-dimensional
curve through space. One can count the of crossovers of the DNA in a single view in
order to estimateWr. All we need to do to getWr accurately is to count the number

7 B-DNA is the classical configuration of DNAwith a right-handed double helix and 10 nucleotides
per turn of the helix.
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Fig. 9 The B-DNA is in the middle, on the left A-DNA, and Z-DNA on the right. Other
configurations of DNA exist and have been observed

of crossovers that can been sought in many different randomly chosen views of the
structure, and then take the average of all of these to get the actual value of Wr.

The twisting Tw is a measure of the turning of a vector vac (a unit vector along the
line joining a to c) around the axis A. a is a unique point of the axis A and c a unique
point of the backbone curve C (perpendicular to A). Since the curve C (representing
a strand of DNA) winds helically about A, the vector vac turns around A, and as the
point amove alongA, the vector vac changes. The infinitesimal change in vac, denoted
dvac, will have a component tangent to the axis and a component perpendicular to
the axis. Tw is the measure of the total perpendicular component of the change of vac
as the point a traverse the entire length of the DNA. This is given by the integral

Tw = 1/2π
∫

A
dvac · T × vac, (13)

where T is the tangent vector along the curve A. When A is a straight line or planar,
dvac is always perpendicular to A, so that in this case Tw is simply the number of
time that vac winds about the axis. It can be easily demonstrated that Tw is positive if
the winding is right-handed and negative if left-handed. Furthermore, if the DNA is
closed the initial and final positions of vac are the same. Thus, if the DNA is closed
(and in the circular or ribbon model) and its axis planar, Tw must necessarily be an
integer.
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6 Topological Changes and Emergence of Physical Patterns

In fluid mechanics a very interesting phenomenon is that of topological changes,
which do occur when dissipative effects become predominant over the coherency of
structures. When this happens there is a dramatic change of fluid patterns, often on
small time-scales compared to evolution. The change occurs through the formation
and disappearance of physical reconnections in the fluid pattern. In real fluids, for
example, vortex and magnetic tubes do interact and reconnect freely. From a dynam-
ical system viewpoint Smale [40], Thom [41, 42]), reconnections take place when
the vector field lines (streamlines, vortex lines or magnetic lines) cross each other.
If two field lines meet, the point of crossing is a true nodal point, like a bifurcation
in a path. Dissipative effects allow the reconnection to proceed through such points
(for more details we refer to Hornig [5]).

Analytical and numerical studies of flow patterns show that bifurcations of the
field lines occur when configurations are degenerate, as with interfacial flows in the
vicinity of a solid boundary. When these events dominate the physics, we can still
use an alliance of topological, probabilistic and combinatorial techniques to predict
average properties and long-term evolution (see Ricca andMoffat [13], Boi [14, 43]).

As local processes, reconnections are difficult to describe and are still a puzzle for
theorists. One seemingly helpful mathematical approach, which must be mediated
by detailed knowledge of the particular physical process, involves techniques of
“oriented surgery”, performed on the bundle of constitutive vector field lines.

Recall that, mathematically, surgery8 is a procedure for changing one manifold
into another (of the samedimension n) by excising a copy of Sr ×Dn−r for some r, and
replacing it byDr+1 × Sn−r−1, which has the same boundary, Sr × Sn−r−1. In general
terms, the surgery problem can be stated as follows. Let X be a topological space.
When is X homotopy equivalent to a closed manifold? We first need to consider a
map of degree one ƒ:M → X from a closed manifoldM to a finite Poincaré complex
X covered by some bundle data. The surgery problem is to change it to a homotopy
equivalence without losing the structure of a closed manifold. We also need to state
the following theorem.

Theorem. Let X be a connected finite n-dimensional Poincaré complex. Let ƒ:
TM ⊕ Ra → ξ be a normal map of degree one covering ƒ: M → X. Then we can

8 Surgery theory is one of the most interesting method in differential topology and algebraic geom-
etry, introduced in the 1960s by Browder, Novikov and Wall. It investigates the homotopy type of
manifolds using a combination of topology and algebra. It has been used, initially by Milnor, to
generate a finite-dimensional manifold from another in a well-ordered way. Originally developed
for differentiable (or smooth) manifolds, surgery techniques also apply to piecewise linear (PL-)
and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a
part of another manifold, matching up along the cut or boundary. Surgery theory is deeply connected
with other important mathematical methods and techniques, notably with s-cobordism theorem, h-
cobordism theorems, Whitehead torsion, Dehn surgery, manifold handlebody decomposition knot
theory and the Perelman program on geometrization conjecture (deletion of singularities devel-
oping in simply connected oriented (compact) 3-manifolds). (See A. Ranicki, High-Dimensional
Knot Theory—Algebraic Surgery in Codimension 2, Springer-Verlag, Berlin Heidelberg, 1998.
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carry out a finite sequence of surgery steps to obtain a normal map of degree one g:
TN ⊕ Ra+b → ξ ⊕ Rb covering g: N → X such that (ƒ, ƒ) and (g, g) are normally
bordant and g is k-connected, where n = 2k or n = 2k + 1.

Then the final version of the surgery problem can be stated as follow.
Suppose we have some normal map (ƒ, ƒ) from a closed manifold M to a finite

Poincaré complex X. Can we change M and ƒ leaving X fixed by finitely many
surgery steps to get a normal map (g, g) from a closed manifold N to X such that g
is a homotopy equivalence?

Another important result which can be useful for what follows concern knots. By
definition, a knot is a smoothly embedded circle in R

3 or S3. The union of finitely
many disjoint knots is a link. By removing a thickened link in S3 (a union of solid tori)
and gluing it backwith a twist, one obtains a new 3-manifold (space)M. An important
result of W. B. R. Likorish (1962) showed that all closed, orientable, connected 3-
manifolds can be obtained by performing Dehn surgery on links in S3 (see Rolfsen
[44] and Lescop [45]).

Let’s briefly explain the notion of Dehn surgery [46], which is of great importance
in the theory of 3-manifolds. Given a 3-manifoldM and a knot K ⊂ M, one removes
a solid torus neighborhood of K from M and sews this solid torus back into the
resulting complement using self-diffeomorphism of the boundary 2-torus. These
self-diffeomorphisms up to isotopy are identified with SL(2, Z) via the action of the
diffeomorphism on the first homology H1 of the 2-torus T 2. Dehn then constructed
manifolds by this method, starting a (2, q)-torus knot in S3—these are knots lying on
the surface of the standard torus andwrapping that torus linearly twice in onedirection
and q times in the other (q must be odd). Dehn identified which of the non-identity
surgeries on (2, q)-torus knots generate manifolds with the homology of the 3-sphere
and showed that they all have non-trivial fundamental groups (usually infinite).When
the knot is the (2, 3)-torus knot there is surgery that generate amanifoldwith the same
group as Poincare’s example (later proved to be diffeomorphic to Poincaré example).
The example of Dehn surgery on (2, q)-torus knot was much better understood
after the work of Seifert [47] and Seifert and Threlfall [48]. They considered three-
manifolds that admit locally free circle actions, now called Seifert fibrations. They
showed that all the examples coming from Dehn surgery on (2, q)-torus knots were
such manifolds and they showed how to compute the fundamental group of these
manifolds. In particular, Dehn’s extraordinary example was shown to have the same
fundamental group as Poincaré’s original example—it is the pre-image in SU(2) of
the symmetries of the regular icosahedron.

The remarkable mathematical fact is that Dehn surgery gives a method for
constructing one manifold from another, especially one 3-manifold from another, by
a kind of cut-and-paste procedure. This is also philosophicallymuch relevant because
it allows to thinking space as a generated process, as a dynamical entity which is not
fixed or given a priori, rather as a result of certain operations and transformations.
The question then is: How can we from some space find those deformations that
applying to it give us the possibility to generate new spaces? This displaces signifi-
cantly the standard philosophical question, which was to ascertain whether the space
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is already comprised in our mental schemes or not, and which consists even now in
responding to the question whether space (and time) exists or not.

A standard application of Dehn is surgery along a link L in a 3-sphere S3. This
works in two steps:

1. Form the complement in the 3-sphere of a tubular neighborhoodof the embedded
link L → S3, of the form L × int(D2). This is called Dehn drilling. The result is
a 3-manifold with boundary M; whose boundary ∂M ∼= L × S1 can be viewed
as the boundary of a disjoint union of solid torr L × D2.

2. To each of the connected components C1, …, Cn of ∂M, apply an (orientation-
preserving) homeomorphism, say φ1, …, φn. The union φ1 ∪ … ∪ φn is a
homeomorphism φ: ∂M → ∂M. Then perform a Dehn filling by constructing
the pushout of an evident span:

∂M → ∂M,

↓ ↓
M L × D2,

thus, refilling the drilled portion, but in a new way (along φ). This gives a new
3-manifold N.

An important result state that

Theorem (Likorish-Wallace) Every connected oriented closed 3-manifold N arises
by performing an integral Dehn surgery along a link L → S3 (i.e., surgery along a
framed link).

Now return to the phenomenon of topological reconnection. Vector field lines in
the fluid flow are oriented curves, whose arrows give the direction of the field they
represent. A physical knot can be seen as a knotted tubular bundle made of oriented
curves. When two strands of the bundle come into contact, vector lines of one strand
may recombine with vector lines of the other by a “cut and connect” process, which
preserves orientation.

The process of surgery shows clearly how a local (geometrical) event, as a bifur-
cation, a breaking symmetry or other kinds of singularities, may have a global (topo-
logical) effect generating an overall reorganisation of the system.When this happens,
we have a complex change of topology of the system. Recent studies (see Hornig
[5], Boyland [4]) show that the efficiency of reconnection seems to be strongly influ-
enced by local geometric properties given, for example, by the relative inclination
of the tube strands. Orientation-preserving surgery and efficiency of the process are
therefore two important features for topological diagnosis of fluid flows.
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7 Complexity of Time and of the Universe

The reversibility of time in physical elementary process—both in classical and in
quantummechanics, aswell as in the relativistic theories—is commonly accepted and
very well established; that means that the fundamental laws of physics are invariant
under time reversal. However, it is an obvious fact that most phenomena in Nature
distinguish a direction of time; time is irreversible in complex systems (see Albeverio
and Blanchard [49]). Electromagnetic waves are observed in their retarded form
only, where the fields causally follow from their sources. The increase of entropy, as
expressed in the second law of thermodynamics, also defines a time direction. This
is directly connected with the psychological arrow of time—we remember the past
but not the future. In quantum mechanics it is the irreversible measurement process
and in cosmology the expansion of the Universe, as well as the local growing of
inhomogeneities, which determine a direction of time.

In complex systems consisting of many particles or other elements, disorder
(chaos) inevitably increases as a result of the random nature of numerous inter-
actions (see Devaney [50]. Entropy is that very measure of the degree of chaos. It is
very important that when creating a more ordered state in a system, by influencing it
from within a larger system, we inevitably insert additional disorder into this larger
system. The laws of thermodynamics state that the “chaos” added to the larger system
is inevitably greater than the ‘order’ introduced into the smaller system. Hence the
“chaos”, and “entropy”, in the whole world must grow, even though order may be
established in some parts of the world. One realizes then that the second law of
thermodynamics is of great importance for the evolution of the Universe. Indeed,
exchange of energy between the world and “other systems” being impossible, the
Universe must be treated as an isolated system. Therefore, all types of energy in
the Universe must ultimately convert to heat spread uniformly through matter, after
which all macroscopic motion peters out. Even though the law of conservation of
energy is not violated, the energy does not disappear and remains in the form of
heat, it ‘loses all forces’, any possibility of transformation, any possibility of doing
the work of motion. This bleak state became known as the ‘thermal death’ of the
Universe. The irreversible process in the Universe is thus the growth of entropy. The
question however remains open: can this process entirely dictate the direction of
flow of time? I guess that we shall search for some other key feature of time and of
space–time if we want be able to give a satisfactory answer to that question.

8 The Complexity and the Breaking-Symmetry
Phenomenon

It must be pointed out that one of the most important upheaval in the scientific vision
of nature in the last century has been the discovering that spontaneous breaking
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symmetries, bifurcations and singularities are three mechanisms which play a funda-
mental role for the organisation of physical and living matter and the unfolding of
natural phenomena (see Boi [51, 52]). These mechanisms are very deeply related,
because each time that a physical or living system bifurcate, the immediate conse-
quence is that the symmetry of the system breaks down and instead of that a new
broader symmetry will appear. Besides, the fact that a system may bifurcate at
some moment of his evolution means that its unfolding stops to be (mathematically
speaking) continuous or linear and become discontinuous and non-linear. In many
situations, this non-linearity (of partial differential equations) lead to the emergence
of new order–disorder transition phenomena which exhibits non-equilibrium states
which mathematically can be represented by time dependent equations, and these
states are a source of instability, bifurcation and symmetry breaking phenomena (see
Prigogine and Nicolis [53]). Many of these macroscopic and local dynamical laws
and phenomena manifest time-asymmetry or irreversibility, which is a feature of key
significance.

Let me first mention some examples and fields in which spontaneous symmetry-
breaking manifests itself as a primary feature of the problem (we refer to Jost [11]
for more details).

Morphogenesis and molecular biology.A striking example of symmetry breaking
in a biological system is the breakdown of rotational symmetry in the Fucus seaweed
egg. At a critical stage in the development of the egg a transition is made from a
spherically symmetric membrane potential distribution to a polarized state with an
axial symmetry, and a net trans-cellular current leaving one pole and entering the
opposite.

Wave propagation in neural networks. Bifurcation phenomena in simple mathe-
matical models of excitatory inhibitory neural networks have been discussed recently
by many peoples. Neural networks are aggregates of nerve cells which interact with
other neurons in the network in either an excitatory or inhibitory way, and so it is
plausible to expect these networks to exhibit such non-linear collective phenomena
as bifurcation, threshold effects, and hysteresis. One can model these networks by a
system of equations

μY = −Y + S(KY + P)

where Y is a two-component vector, S is a non-linear vector-valued function, K is a
linear convolution operator, and P is the external stimulus.

Phase transitions in statistical mechanics. The notion of symmetry breaking is
fundamental to phase transitions, yet much harder to treat mathematically. Until the
renormalization theories developed in the last four decades, the primary approach
to phase transition was, in one way or another, a mean-field approximation coupled
with a bifurcation analysis of the mean-field equations.
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9 The Specificity of Biological Complexity, Emergence
and Causation

The important fact that the specificity of complex biological activity does not arise
from the specificity of the individual molecules that are involved, as these compo-
nents frequently function in many different processes. For instance, genes that affect
memory formation in the fruit fly encode proteins in the cyclicAMP (camp) signaling
pathway that are not specific to memory. It is the particular cellular compartment and
environment inwhich a secondmessenger, such as camp, is released that allow a gene
product to have a unique effect. Biological specificity results from the way in which
these components assemble and function together. Interactions between the parts, as
well as influences from the environment, give rise to new features, such as network
behaviour which are absent in the isolated components (see Cornish-Bowden and
Cárdenas [54], Liljenström [55]).

More precisely, it can be said that complex biological levels of functionality
result from self-organized processes. For self-organization to act on macroscopic
cellular structures, three requirements must be fulfilled: (i) a cellular structure must
be dynamic; (ii) material must be continuously exchanged; and (iii) an overall stable
configuration must be generated from dynamic components. Interactions between
the parts, as well as influences from the environment, give rise to new features, such
as network and collective behaviors which are absent in the isolated components (see
Misteli [56], Karsenti [57]).

Consequently ‘emergence’ has appeared as a new concept that complements
‘reduction’ when reduction fails [58]. Emergent properties resist any attempt at
being predicted or deduced by explicitly calculation or any other means. In this
regard, emergent properties differ from resultant properties, which can be defined
from low-level configurations and information. An important aspect of emergent
properties is that they have their own causal power, which is not reducible to the
power of their constituents (for a thorough treatment of this topic see Boi [59]).

The key concepts here are those of ‘organization’ and ‘regulation’, first of all
because organization and regulation become cause in the livingmatter of morpholog-
ical, functional and mental novelties [60]. According to the principle of emergence,
the natural and living worlds are organized into stages and levels that have evolved
over different evolutionary times through continuous and discontinuous processes.

Reductionists advocate the idea of ‘upward causation’ by which molecular states
generally bring about higher-level phenomena, whereas proponents of emergence
admit ‘downward causation’ by which higher-level systems may influence lower-
level configurations. The importance of admitting ‘downward causation’ in the anal-
ysis of complex living systems (i.e. presenting and ever-increasing coupled activity
of plasticity and complexity) appear clearly in epigenetics phenomena, for example
in the fact that chromatin forms and its structural modifications play a crucial role
in the increasing complexity of gene regulatory networks [61], in the emergence of
cellular functions and in development, as well as in the neurocognitive plasticity.
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10 Systems Biology and Complexity

The principal challenge facing systems biology is complexity. Systems biology
defines and analyses the interrelationships of all the elements in a functioning system
in order to understand how the systems works. At the core of the challenge is the
need for a new approach, a shift from reductionism to an integrative perspective.
More precisely, what is needed is to provide a conceptual framework for system
biology research. The concept of a complex system, i.e. a system of subsystems each
belonging to a certain category of living entities such as proteins, tissues, organs,
etc., need first to be defined in general mathematical terms.

It is rather clear, however, that for a deeper understanding in systemsbiology inves-
tigations should go beyond building numerical mathematical or computer models—
important as they are. Biological phenomena cannot be predicted with the level of
numerical precision as in classical physics. Explanations in terms of how the cate-
gories of systems are organized to function in ever changing conditions are more
revealing. Non-numerical mathematical tools are appropriate for the task. Such a
categorical perspective led us to propose that the core of understanding in systems
biology depends on the search for organizing principles than solely on construction
of predictive descriptions (i.e. models) that exactly outline the evolution of systems
in space and time.

Biological systems are difficult to study because they are complex in several ways.
One of the most important aspects of biological complexity is multi-levelness: the
structural and functional organization of the human body into tissues and organs
systems composed of cells. From molecules to organs, levels are inter-related and
interdependent, so that the organism is able to conserve and adopt the integrity of its
structural and functional organization against a setting of continuous changes within
the organism and its environment. This capacity, usually described as ‘robustness’,
is a consequence of non-linear spatial–temporal intra- and inter-cellular interactions.

11 Self-Organization and the Causal Role Played
by Systemic Properties in Biology

Self-organization, that is the capacity of any complex living organism to intrinsi-
cally produce new properties and behaviors of organization and regulation, cannot
be addressed by purely reductionist approaches (For a comprehensive treatment of
this subject see Kauffman [62], Nicolis and Prigogine [63], and Boi [30, 52]). Living
organisms present the following two fundamental features. (1) They are thermody-
namically open systems, that is, they are in a state of permanent flux, continuously
exchanging energy and matter with their environment. (2) They are characterized by
a complex organization, which results from a vast network of molecular and cellular
interactions involving a high degree of nonlinearity. Under appropriate conditions,
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the combination of these two features, openness and nonlinearity, enables complex
systems to exhibit properties that are emergent or self-organizing.

In biological systems, such properties may express themselves through the spon-
taneous formation, from (almost) random molecular interactions, of long-range
correlated, macroscopic dynamical patterns in space and time—the process of self-
organization. The dynamical states that result from self-organizing processes may
have features such as excitability, bi-stability, periodicity, chaos or spatial–temporal
patterns formation, and all of these can be observed in biological systems.

To show the effective causal role played by systemic properties in biology, let us
consider the three following examples

(1) The first concerns the many cases of cooperative feedback inhibition of
metabolic pathways, which are now well-known, such as the inhibition of
aspartokinase in bacteria by lysine. This type of observation is often explained
by supposing that the biosynthetic flux is regulated by this feedback inhibition,
and would be subject to uncontrolled variations if there were no feedback loop.
However, this explanation is wrong, because fluxes can be controlled perfectly
well without feedback inhibition, whether cooperative or not. The need comes
not from flux control but concentration control: without feedback inhibition in
this pathway the rate at which lysinewould be synthetizedwould still match the
rate at which it is used in protein synthesis, but there would be huge and poten-
tially damaging variations in the concentration of lysine and the intermediates
in the pathway from aspartate. This sensitivity of metabolite concentrations to
perturbations has major implications for the regulatory design of metabolism
in living organisms.

(2) The second example concerns the failure of genome sequencing to provide
an effective explanation of how living organisms develop and evolve. There
are at least two fundamental reasons for this failure. (i) The first is related
to the essential fact that the expression of genome, i.e. its state of activity,
stands beyond the gene sequences, and depends much more upon the peculiar
spatial organization of the genome into the chromatin and the chromosome
[64]. Moreover, the functional properties of genomes are strongly determined
by their cellular organization. The functional relevance of spatial and temporal
genome organization must be stressed at three interdependent levels: the orga-
nization of nuclear processes; the organization of chromatin into higher-order
domains; and the spatial arrangement of chromosomes and genes within the
nuclear space.

Each of these levels has regulatory potential, and all are interdependent.
There is an increasing evidence that the higher-order, topological organization
of the genomes exert a fundamental influence on their functional properties,
and on many cellular processes, including expression and genome stability
[35, 65].

(3) The third example concerns the relationship between genotype and phenotype.
We know that for more than half a century the prevalent ‘dogma’ was to think
that the genotype completely and unidirectionally determine the phenotype and
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hence the fate of any complex living organism. Now, to be more precise, the
problem is not much that genome sequences contain no phenotypic informa-
tion, but that we do not have reliable methods for undertaking all of the steps
involved in deducing a phenotype from them. “A list of putative gene prod-
ucts, or even a list of putative enzymes, is not a phenotype, and converting it
into a phenotype requires construction of plausible metabolic map, which then
need further work to convert it into a possible phenotype. Finally, the possible
phenotype can only become a real phenotype when all relevant kinetic and
regulatory properties are taken into account, together with information about
how all the components are organized into a three-dimensional whole—even
a four-dimensional whole, given that the times when different components are
made may be just as important as where they are placed” [66].

12 Systems Biology, Reductionism and Emergence

To understand disease-relevant processes, we therefore require methodologies that
allow us to study non-linear spatial–temporal systems with multiple interconnected
levels of structural and functional organization. Non-linear dynamics plays an impor-
tant role for the explanation of highly non-linear biological behaviors such as
biochemical and cellular rhythms or oscillations (see Liljenström [55]). According to
biodynamics, biological systems are seen as open systems of non-linearly interacting
elements. Consequently, the field of biodynamics might be defined as the study of the
complex web of non-linear dynamical interactions between and among molecules,
cells and tissues, which give rise to the emergent functions of a biological system as a
whole. The work of non-linear dynamical interactions favors the self-organization of
emergentmacroscopic patterns, including temporal oscillations and spatial–temporal
wave patterns, especially in chemical and biological systems. Numerous examples
are now known at all levels of biological organization. The formation of biolog-
ical rhythms and oscillatory dynamical states of different periodicities plays a
fundamental role in living organisms.

Biological complexity and specificity results from theway inwhich single compo-
nents likemolecules, genes and cells self-organize and function togetherwhen consti-
tuting a whole (a tissue, an organ, an organism), say a whole system including
different subsystems. Not only the interactions between the parts and the influence
from the environment (think of epigenetic factors, both chemical and spatial, that
mediate the complex relationship between the genomes and the micro- and macro
biophysical environments), but also the systemic properties of the whole that exert
an action on the components, give rise to new features, such as network behavior and
functional properties, which are absent in the isolated components.

Self-organizing processes may give rise to new, unexpected properties and behav-
iors in living systems, also called emergent properties. Emergent properties can be
defined as properties that are possessed, either triggered or constrained, by a dynam-
ical system as a whole but not by its constituent parts. Otherwise stated, emergent
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phenomena are phenomena that are expressed at higher levels of organization in
the system but not at the lower levels. The concept of self-organization implies the
existence of a dynamical interdependence between the molecular and cellular inter-
actions at the microscopic level and the emerging global structure at the macroscopic
organismic level. (See Karsenti [57], Misteli [56].)

We need to consider ‘emergence’ as an effective new concept that complements
‘reduction’ when reduction fails, and allow to consider those specific systemic prop-
erties of the whole responsible for biological organization and regulation at higher
levels. Emergent properties do not result from properties pertaining to simple (and
isolated) components of biological systems. They resist any attempt at being pred-
icated or deduced by explicitly calculation or any other analytical means. In this
regard, emergent properties differ from ‘resultant’ properties, which can be predicted
from lower-level components. “For instance, the resultantmass of amulti-component
protein assembly is simply equal to the sum of the masses of each individual compo-
nent. However, the way in which we taste the saltiness of sodium chloride is not
reducible to the properties of sodium and chlorine gas. An important aspect of emer-
gent properties is that they have their own causal power, which is not reducible to
the powers of their constituents. For instance, the experience of pain can alter human
behavior, but the lower-level chemical reactions in the neurons that are involved in
the perception of pain are not the cause of the altered behavior, as the pain itself has
a causal efficacy.” (see Van Regenmortel [67]). Advocating the reductionist idea of
‘upward causation’ means to maintain that molecular components and states suffice
to determine higher-level processes occurring in biological systems.

We think that, in fact, there is an active combination of upward and downward
processes. The upward process indicates that, under non-equilibrium constraints,
molecular interactions tend to spontaneously synchronize their behavior, which initi-
ates the beginning of a collective, macroscopically ordered state. At the same time,
the downward process indicates that the newly forming macroscopic state acts upon
the microscopic interactions to force further synchronizations. Through the contin-
uing, energy-driven interplay between microscopic and macroscopic processes, the
emergent, self-organizing structure is then stabilized and actively maintained.

This important issue has been studied in depth by Ilya Prigogine and his collab-
orators [63, 53]. In particular, they showed the importance of fluctuation in the
emerging of instabilities. The general insight is the recognition that a deterministic
causal description cannot be adequate for large systems involving a macroscopic
number of degrees of freedom. The main raison is that the very existence of many
degrees of freedom implies necessarily (and spontaneously) the appearance of fluc-
tuations, i.e., of spontaneous deviations from some average macroscopic behavior. In
most cases, the appearance of fluctuations may be treated as a random event obeying
probabilistic laws. On the other hand, once the fluctuation is produced, the systems
respond according to definite macroscopic laws. In general, one expects that fluc-
tuations although measurable, should remain small compared to the macroscopic
average. As Nicolis and Prigogine underlined (1973, 91):
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An important result of equilibrium statistical mechanics shows that this cannot be so in the
neighborhood of critical points of phase transition (liquid-vapor transition, etc.). In these
cases, small thermal fluctuations are amplified, attain a macroscopic level and drive the
system to a new phase. The evolution of the new phase occurs as an abrupt change beyond
an instability point of the reference state. In the critical region around the instability the
system exhibits a markedly coherent behavior which is frequently combined to an increase
of spatial order. Several examples of similar phenomena in systems maintained far from
thermal equilibrium are also known. In all these phenomena the important feature is that
there exists a critical point of transition (threshold) in the neighborhood of which the least
macroscopic fluctuation is amplified and drives the system to the new state.

13 Chaos, Fractality and Complexity

Chaos and complexity are often deeply related, in the sense that chaotic phenomena
can generate some complexity and complex systemsmay exhibit chaotic behaviours.
Another important generator of complexity is fractal geometry [68]. The structures
entailed or generated by fractal geometry are wat give order to chaos. This relation-
ship can best be seen in the Mandelbrot set, which can be described as a complex
and beautiful mathematical object. Its most interesting characteristic is that it has
and extraordinarily efficiently organized storehouse of images, and as such is the
example for excellence of order in chaos. In essence, chaos theory and fractal geom-
etry radically question our understanding of equilibria, and therefore of harmony
and order, in nature as well as in other contexts. They offer a new integral model
which can encompass a part of the true complexity of nature for the first time. It is
highly likely that the new methods and concepts will allow us, for example, a much
more adequate understanding of ecology and climatic changes, and thus they could
contribute to our more tackling our enormous global problems. More precisely, the
Mandelbrot set visually constitute a picture of a complex number c for which the
images of the point c under iteration of the map z→ z2 + c never heads of to∞. Very
deep geometrical structures and transformations underlies these objects, which are
intimately related to the Kleinian modular functions and groups, the Schottky group
and the Julia set. All these mathematical objects are concerned with the exploration
of a family of unusually symmetrical shapes, which arise when two spiral motions
of a very special kind are allowed to interact. These shapes display intricate “fractal”
complexity on every scale from very large to very small. Sometimes the interaction
of two spiral motions is quite regular and harmonious, sometimes it is total disorder
and sometimes (and this is the most intriguing case) it has layer upon layer of struc-
ture teetering on the very brink of chaos. In a more precise mathematical language,
these spiral motions are maps of the complex plane to itself that can be expressed by
simple formulas like T (z) = z2 and T (z) = √

z.
Let us stress the following essential theoretical points about chaotic (non-linear)

systems and fractal geometry.

(i) Simple deterministic systems with only a few elements can generate random
behaviour, and that randomness is fundamental; gathering more information
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does not make it disappear. This fundamental randomness has come to be
called chaos.On the other hand, asR.M.Maypointed out [69],mathematically
simple nonlinear systems governed by simple sets of differential equations (for
example, in population biology)may generate very complicated dynamics and
hence a huge growth of their intrinsic complexity [70].

(ii) Deterministic chaos entail, as one of its most significant formulation, that
chaos occurs when the error propagation seen as a signal in a time process,
grows to the same size or scale as the original signal. To speak of deterministic
chaos is thus only apparently a paradox. In principle, the future is completely
determined by the past; but, in fact, small uncertainties, much like minute
errors of measurement which enter into calculations, are amplified, with the
effect that even though the behaviour is predictable in the short term, it is
unpredictable over the long term. The discovery of such behaviour is one of
the important achievements of chaos theory.

(iii) Deterministic chaos implies that the strong causality principle is incorrect
because its presumptions are erroneous and the conclusions are also wrong.
Natural laws do not exclude the possibility of chaos; in other words, deter-
minism and predictability are not equivalent. And an even more surprising
finding of recent chaos theory has been the discovery that these effects are
observable in many very simple feedback systems.Moreover, chaos and order
can be observed simultaneously in the same system. There may be a linear
progression of errors characterizing a deterministic system which is governed
by the causality principle, while (in the same system) there can also be an
exponential progression of errors (i.e., the butterfly effect) indicating that the
causality principle breaks down.

(iv) A most important point is that a definition of chaos entails the three funda-
mental properties: mixing and transitivity of mixing, dense periodic points,
and sensitive dependence on initial conditions (for a detailed presentation
see Devaney [50]). There is a very important interdependence of these three
properties of chaos. Consider now the question of the inheritance of chaotic
mappings, namely: given that a mapping ƒ is chaotic and that g is related to ƒ,
can we conclude that g is chaotic as well? There are, indeed, several examples
of mappings which are chaotic and which are related to each other. The notion
of being related is topological in essence, and can be properly explained by
the notions of topological conjugacy and topological semiconjugacy (for a
detailed description of this notion see Boi [25]).

(v) Fractal geometry and the associated notion of dimension is intimately linked
to the question of measurement, and it showed that curves, surfaces, and
volumes can be complex and performed at different levels that certain ordi-
nary measurements become meaningless. However, there is a way to measure
de degree of complexity by evaluating how fast length, or surface, or volume
increases if we measure with respect to smaller and smaller scales. The funda-
mental idea is to assume that the two quantities are related by a law, which
allows us to compute one quantity from the other. The kind of law which
seems to be relevant is a power law of the form y ∝ xd . Such a law also turns
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out to be very useful for the discussion of dimension (in fractal geometry).
Dimension is not easy to understand; at the turn of the nineteenth century it
was one of the major problems in mathematics to determine what dimension
means and which properties it has. Of course, for familiar geometric objects
the answer to the question “What is the ‘dimension’ of a set of points?” is clear:
lines and smooth curves are one-dimensional, planes and smooth surfaces are
two-dimensional, solid are three-dimensional, and so on.

Roughly, a definition could be that the dimension is the minimum number of
coordinates needed to describe every point in the set. For instance, a smooth curve
is one-dimensional because every point on it is determined by one number, the
arc length from some fixed reference point on the curve. Astonishingly, in the last
decades of last century it turns out that some of the many different notions of dimen-
sion: topological dimension, Hausdorff dimension, fractal dimension, self-similarity
dimension, capacity dimension, information dimension, Euclidean dimension, are in
fact all related. Some of them, however, make sense in certain situations, but not at
all in others, where alternative definitions are more helpful. Sometimes they all make
sense and are the same. Sometimes several notions make sense but do not agree.

The self-similarity dimension is actually a special form of Mandelbrot’s fractal
dimension, which in turn was motivated by the Hausdorff fundamental work [71].
Recall that the Hausdorff dimension of an object is a numerical measure of its
complexity. It interpolates our usual idea of dimension so as to give an idea of how
convoluted and crinkled or fragmented the object is at fine scales.

14 The Difference Between Self-Assembly
and Self-Organization

It is unknown what determines the different shapes and sizes of cellular organelles,
why specific structures form in particular places, and how cellular architecture is
affected by function and vice versa. Two fundamentally differentmechanisms exist to
generate macromolecular structures: self-assembly and self-organization (see Lehn
[72, 73]). Whereas self-assembly involves the physical association of molecules
into an equilibrium structure, self-organization involves the physical interaction
of molecules in a steady-state structure. The processes of self-organization have
been extensively studied by many scientists and notably by Jean-Marie Lehn, who
showed the importance of the transition frommolecular information to self-organized
functions in complex matter. In (2004, 250), he stressed some important points:

A step beyond preorganization (of supramolecular chemistry) consists in the design of
systems undergoing self-organization, i.e. systems capable of spontaneously generating
well-defined supramolecular architectures by self-assembly from their components. Self-
organization processes, directed by the molecular information stored in the components
and read out at the supramolecular level through specific interactions, represent the opera-
tion of programmed chemical systems. (…) Self-organization processes also give access to
advanced supramolecular materials, such as supramolecular polymers and liquid crystals,
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and provide an original approach to nanoscience and nanotechnology. In particular, the spon-
taneous but controlled generation of well-defined, functional supramolecular architectures
of nanometric size through self-organization represents a means of performing programmed
engineering and processing of nanomaterials. (…) Supramolecular chemistry is intrinsically
a dynamic chemistry, in view of the lability of the interactions connecting the molecular
components of a supramolecular entity and the resulting ability of supramolecular species to
exchange their constituents. (…) The merging of the features, information and programma-
bility, dynamics and reversibility, constitution and structural diversity, points towards the
emergence of adaptative and evolutionary chemistry. Together with the corresponding fields
of physics and biology, it constitutes a science of informed matter, of organized, adaptative
complex matter.

In biology self-organization play a crucial role and we have many fundamental
examples of self-organized processes. Concerning the difference between self-
assembly and self-organization, for example, virus and phage proteins self-assemble
to true equilibrium and form stable, static structures. In contrast, most cellular struc-
tures (i.e. the cytoskeleton, nuclear sub-compartments, or exocytic and endocytic
compartments) are open for exchange of energy and matter and are governed by
steady-state dynamics. The concept of self-organization is based on observations
of chemical reactions far from equilibrium, and it is well established in chemistry,
physics, and ecology. Self-organization in the context of cell biology can be defined
as the capacity of a macromolecular complex or organelle to determine its own
structure based on the functional interactions of its components [74]. In a self-
organizing system, the interactions of its molecular parts (and not the molecular
parts themselves) determine its architectural and functional features. The processes
that occur within a self-organized structure are not underpinned by a rigid architec-
tural framework; rather, they determine its organization. For self-organization to act
on macroscopic cellular structures, three requirements must be fulfilled:

(i) a cellular structure must be dynamic,
(ii) material must be continuously exchanged, and
(iii) an overall stable configuration must be generated from dynamic components.

Observations from recent advances in live cell imaging indicate that many
cellular structures fulfill the requirements for self-organization. I suggest to
think of self-organization as a more general mechanism for the formation,
maintenance, and function of cellular organization than self-assembly.

Let us now consider the relationship between self-organization and the property of
plasticity in living systems. Macroscopic cellular structures are characterized by two
apparently contradictory properties. On one hand, theymust be architecturally stable,
on the other hand they must be flexible and prepared for change. Self-organization
ensures structural stability without loss of plasticity. Fluctuations in the interaction
properties of its components do not have deleterious effects on the structure as a
whole. This means also that some form of robustness is conserved by the system.
However, global and persistent changes rapidly result in morphological and func-
tional changes. The basis of the responsiveness of self-organized structures is the
transient nature of the interactions among their components. The dynamic interplay
of components generates frequent windows of opportunity during which proteins
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can change their interaction partners or be modified. The effective availability of
components is controlled by posttranslational modifications via signal transduction
pathways. Why does a cell not simply build stable, static structures?

The absence of gradual intermediates in the reorganization of cellular struc-
tures is consistent with self-organization, as self-organizing systems are frequently
in a state of criticality; that is, a point at which system properties can change
suddenly. Self-organization is an elegant, efficient way to organize complex struc-
tures. The properties that determine the organization are the intrinsic properties of
the structure’s components. For example, in protein polymers, the protein–protein
interaction properties determine the architecture; in membrane structures, the flow
of membrane determines the architecture. Self-organized structures do not require
external mechanisms to establish, maintain, and regulate their architecture.

Thus, self-organization is a simple but effective way to optimally organize cellular
structures. The study of the dynamic behavior of dynamic cellular structures cannot
be described accurately by conventional equilibrium dynamics or by static obser-
vations. To understand the behavior of dynamic systems, the kinetic characteristics
of their components must be known. In contrast to the study of molecular mech-
anism, it is not sufficient to understand in detail the behavior of single molecules;
rather, the rules that govern the collective behavior of systems must be uncovered. In
contrast to the mechanism of self-assembly which involves the physical association
of molecules into an equilibrium structure (for example, virus and phage proteins
self-assemble to true equilibrium and form stable, static structures), the concept of
self-organization is based on observations of chemical reactions far from equilib-
rium, and the associated processes involve the physical interactions of molecules in
a steady-state structure. It is well established in chemistry, physics, and ecology.

15 Complexity of Biological Systems: The Genome
as a Complex System

The study of biological systems involves the qualitative-quantitative and simul-
taneous integration of different and multiple biological components and their
relationships with one another. For example, the components may be proteins,
while their relationships may be described by signal transduction pathways. The
cellular processing is a complex-dynamic system with hundreds of thousands of
bio-molecules interacting with one another to perform life’s many functions. To
fully understand the multi-layers information and organization “program” of life, a
comprehensive descriptionof protein–protein, cell–cell, cell-organismandorganism-
environment interactions is required. Understanding how genes ad their proteins
products and cells and their intra- and extra-interactions generate the complexity and
diversity thatweknowas life is perhaps one of the greatest challenge newmillennium.
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Recent theoretical studies and a huge amount of experimental data point forward
the need for a profound change in our way of thinking biological phenomena, and
their modelling. Let’s summarize some important findings:

In the last two decades it has becomemore andmore clear that the linear sequence
map of human genome is an incomplete description of our genetic information
and processing. This is because information on genome functions and gene regu-
lation is also encoded in the way DNA sequence folded up with proteins into
chromosome within nucleus [75]. This allowed for the conclusion that the biolog-
ical information on living organisms cannot be portrayed in the DNA sequence
alone. In a post-genomic, (epigenomic or/and proteomic?) era, the importance of
chromatin-chromosome/epigenetic interface has become increasingly apparent.

The genome of eukaryotes is a highly complex system, which is regulated at (at
least) four major (hierarchical and network-like) levels: (i) the DNA sequence level,
(ii) the DNA-proteins and chromatin level, (iii) the nuclear level, which includes
the dynamics and three-dimensional spatial organization of the chromosome inside
the nucleus, (iv) the cell regulation in response to internal and external signals and
factors, which is able to remodel the genome structure and function. There is an
increasing evidence that such a higher order organization of chromatin structure and
dynamics contribute in an essential way to the regulation of gene expression and
therefore to cell activity [76–79].

We have to take into account epigenetic in order to understand some features
of our genome, its topological forms and the ways in which its functions. The two
properties are closely related. Epigenetics encompass themany processes that cannot
be accounted for by the simple genetic code [80], and the term refers to extra layers
of instructions, that is of biological organization and information (notably cellular,
organismal and environmental) that influences gene activitywithout altering theDNA
sequence (for more details see Esteller and Almouzni [81], Cavalli and Heard [82]).

The development in recent years of epigenetics entails the emergence of a more
integrative and global approach to the study of biological forms and functions.
To tackle the whole human epigenome and to deal with the entire organisms, it
is needed to elucidate the relationship between the different level of plasticity of
protein complexes associated with chromatin remodeling and gene regulation, and
the various levels of complexity exhibited by the phenotypic patterns during embryo-
genesis. The landscape of genetic expression revealed by epigenetics studies appear
to be much more complex than that showed by DNA sequence alone, and it clearly
results from diverse layers of biological information (DNA folding, histone modi-
fications, the complex regulatory roles of DNA methylation, chromatin remodeling
complexes, spatial organization of chromosomes, architecture of nuclear bodies, cell
morphology and mobility), which intervenes at different stages of the spatial and
temporal development and evolution of a living human organism.
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16 The Need for a Systems Biology Approach

Another reflection, which relates to the previous one, is aimed at highlighting the
importance of a systems biology approach. System biology is about interactions
rather than about constituents, although knowing the constituents of the system under
study may be a prerequisite for starting description and modeling. Interactions often
bring about new properties—sometimes called emergent properties—, for instance,
a system may start oscillating although the constituent alone would not.

Another important example is that evolutionary biologists have wondered for
long jump-like transitions can occur in evolution. From the viewpoint of systems
theory, the answer arises from bifurcations. In a non-linear system, at certain points
in parameter space, called critical points, bifurcations occur, that is, a small change
in a parameter leads to a qualitative change in system behaviour—e.g. a switch from
steady state to oscillation. It is clear that the number of potential interactions within
a system is far greater than the number of constituents. If only pairwise interactions
were allowed, the former number would be n2 if the latter number were denoted by
n. The number of interactions is even larger if interactions within triples and larger
sets are allowed, as is the case in multi-protein complexes.

In the sense of systems biology, a biological object or being is a system if emergent
properties result from it. Genomics has certainly been a very important and fruitful
undertaking andgaveusmuchnew insights intomolecular biology.However,muchof
molecular biology is based on reductionism and simple determinism. It is an extreme
exaggeration to say that the human genome has been “deciphered”. Besides the fact
that not to all ORFs functions have been assigned yet, it should be acknowledged
that even if all functions were known, we would be far from understanding the
phenomenon of life because knowledge of all the individual gene products does not
say much about the interactions between them. According to a system’s view of life,
the study of the dynamics and interaction networks is essential for understanding
the ways in which living organisms regulate their cellular activity and organize their
physiological growth.

One of the major goals of systems biology is to find appropriate ways of diagram-
ming and mathematically describing the specific, complex interactions within and
between living cells. Because complex systems have emergent properties, their
behaviour cannot beunderstoodor predicted simplyby analyzing the structure of their
components. The constituents of a complex system interact in many ways, including
negative feed-back and feed-forward control, which lead to dynamic features that
cannot be captured satisfactorily by linear mathematical models that disregard coop-
erativity and non-additive effects. In view of the complexity of informational path-
ways and networks, new types of mathematics are required for modeling these
systems [83].
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17 The Complex Topology of Biological Structures: From
Topoisomerases to Supercoiling

Complex living systems may be studied from the phenomenological and from the
theoretical point of view as well. Theoretically, one studies the 3-dimensional struc-
ture of DNA and DNA–protein complexes through geometrical and topological
methods [37, 84]. This study follows two steps: Firstly, one tries to show that certain
topological deformations associated to the macromolecular structures during the cell
cycle take part in the dynamics of chromatin, chromosome, and therefore in the cell
metabolism. Then, to elucidate the way in which these deformations modulate the
action of different regulatory systems, ensuring in particular the transition of this
action from local-target mechanisms to global functional processes.

These interactions between topological changes and dynamical processes consti-
tute a deep and largely unexplored meeting point for mathematics ad biology. One
observes first that certain geometric properties and topological patterns work like
dynamical principles, which are involved in the organization and growth of living
systems, and next that these properties and patterns display intricate biological plas-
ticity and complexity on every scale, from the very marge (the organism as an inte-
grated system, as a whole) to the very small (the molecule as a component, which is
continuously changing its conformation—for instance when it auto-assembly for
forming macro-molecules aggregates with news patterns and functions—and its
function according to the context in which is involved.

Plasticity and complexity are two key features of DNA structure. First, it has to be
stressed that the double-helix structure is both a geometrical entity and a topological
form. This topological form is itself a manifestation of two remarkable operations,
namely linking and knotting. DNAwithin cell is a very long molecule with a striking
complex topology. Topological properties of DNA are defined as those that can
be changed only by breakage and reunion of the backbone; in fact, by surgery and
gluing. The very significant point is that this complex topology ofDNA is essential for
maintaining and reproducing life, as well as for assuring the evolution of organisms.

We want now go a little bit into details by observing that the topology of DNA
in vivo is set by a remarkable group of enzymes called topoisomerases [85]. These
enzymes essentially promote the passage of DNA segments through each other until
a stable state is achieved. This functional stability is thus made possible thanks
to a conformational topological flexibility of the double-helix, and the continuous
remodeling of nuclear structures is as well required for cell activity to be performed.

DNA has three important topological properties: (i) the linking number between
two strands of the double-helix, (ii) the interlocking of separate DNA rings in what
we call catenanes, (iii) the knotting and unknotting of the two DNA strands. To these
mathematical properties there correspond three important physical and phenomeno-
logical features, which are: (a) As the number of crossing in a knot or catenane
increases, the number of possible isomers grows exponentially; (b) the linking
number of DNA in all organisms is less than the energetically most stable value
in unconstrained (relaxed) DNA; this puts the DNA under stress, which causes it
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to buckle and coil in a regular way called negative (–)-supercoiling; (c) the name
supercoiling arises because it is the coiling of a molecule, which is itself formed by
the coiling two strands about each other.

The ability of a region of DNA, thanks to supercoiling, to affect processes that
occur hundreds to thousands of basic pairs away is an essential factor of the phys-
iological behavior of nuclear structures and of the chromosome. Dynamic changes
of DNA supercoiling act as a driving force behind the alterations of genetic activity
and DNA compaction in eukaryotes and prokaryotes [86]. Both these processes
involve formation of spatially organized nucleoprotein structures by DNA architec-
tural proteins. Supercoiling is a fundamental property of DNA and chromatin. It
is modulated by polymerase and topoisomerases activity and, through controlled
constraints, by DNA/chromatin binding proteins. DNA supercoiling plays a key role
in gene expression and genome organization. Indeed, recent studies makes it increas-
ingly clear that DNA double helix carries at least two types of encoded information
and these include the well-known genetic code and the structural information deter-
mining the changes of form and the physical properties of genetic material. It should
be stressed that the two layers of information interact in a very complex and dynamic
way.

18 The Functional Role of Topological Plasticity

We want again emphasize the fact that the geometrical structure and topological
form of nuclear components (DNA double-helix, chromatin and chromosome) play
an important role in the genome functions, cell differentiation (during embryo’s
development) and organism growth. Let’s consider un example regarding gene func-
tions, namely the role of enzymes topoisomerase [87]. They remarkably convertDNA
double-helix from one topological conformation to another through some specific
qualitative manipulations, and therefore they play an important role for assuring the
crucial genetic events of replication, transcription, recombination and repair of the
genetic material. Moreover, certain topological mechanisms, such as supercoiling
and knotting, are involved in the fundamental biological process of the compaction
of chromatin into the chromosome during the interphase and metaphase.

Another good example illustrating the complex relationship between form and
function in biological systems concern proteins. The standard approach in the study
of proteins focuses on one protein at a time. However, recent studies show that their
biological function appear to be more a correlate of macro-molecular geometry than
of chemical details.Any effective picture of protein structuremust provide at the same
time amodel (an explanation) for the commoncharacter of all proteins, as exemplified
by their many chemical and physical similarities, and for the highly specific nature
of each protein type. These studies stressed the topological determinants of protein
folding (see Dokholyan et al. [88], Gromov [89]). For some of them, one can show
that topological properties of protein conformation determine their kinetic ability to
fold. Roughly one speaks of a macroscopic measure of the protein contact network
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topology, the average graph connectivity, by constructing graphs that are based on the
geometry of protein conformations. It has been found that the average connectivity
is higher for conformations with a higher folding probability than for those with a
highly probability to unfold. As a protein unfold, it encounters dynamic constraints
that emerge as a consequence of its being folded into a particular low-resolution
structure or topology. Fo example, it often occurs that parts of protein are entangled
or wrapped within its interior, and for these “frustrated” parts to unfold requires
the rest of protein to reorganize and at least partially unfold first. At this level of
resolution, topological constraints can impose a time order on unfolding events and
occasionally this order can be reorganized in a protein’s actual nucleation process of
folding “pathway” despite the extreme complexity of its interactions.

19 The Topological State of Supercoiling and Its Biological
Functions

Wehave thus three interrelated theoretical and experimental facts, which now Iwould
like to stress. First, DNA condensation is a driving force for double-helix unlinking
and chromosome portioning, by folding in topological domains. Second, condensa-
tion is achieved by supercoiling, which is a topological state of the macromolecules
enhanced by three kind of deformations (or, technically speaking, embeddings9),
namely twisting, writhing and knotting. If DNA is modelled as a ribbon in three-
spacewhose axis is not flat in the plane,we can define the twist of the ribbon abstractly
as the integral of the incremental twist of the ribbon about the axis, integrated as we
traverse the axis once; so, it simply measures how much the ribbon twists about the
axis from the frame of reference of the axis: it needs to be an integer.10 The writhe

9 Let’s remember the definition of the concepts of embedding and immersion. Let X and Y be
topological spaces, an embedding of X into Y is a one-to-one bi-continuous map of X into Y—that
is a homeomorphism of X onto ƒ(X). If X and Y are smooth manifolds, an immersion of X into Y is a
smooth function, ƒ, from X into Y that is locally one-to-one but not necessarily globally one-to-one.
Equivalently, we can define an immersion as a smooth map whose differential, dƒ, is non-singular.
An immersed manifold is an image of an immersion. For example, the limaçon, the graph in polar
coordinates of r = 1/2 + cos(θ), is an immersed circle in the plane. Another important example,
the most familiar image of the Möbius band is a “circular band with a half-twist”—call this subset
M1. This is an image of one embedding of this 2-dimensional manifold into ambient space R3. This
manifold is non-orientable.
10 Recall the important concept of Dehn twist. A Dehn twist is a type of self-homeomorphism on
a 3-dimensional orientable closed manifold. Let

∑
be an orientable 2-manifold of genus g, and

consider an embedded circle: S1 → ∑
. The embedded circle has a tubular neighborhood in

∑
,

homeomorphic to an annulus S1 × [0, 1]. Representing elements of S1 by complex numbers z of
norm 1, a twist on the annulus may be defined by sending (z, t) → (exp (2πit) z, t), which equals
the identity on the boundary circles where t = 0, t = 1. This define a self-homeomorphism (mod
boundary) on the annulus. The corresponding Dhen twist on Z is obtained by extending the self-
homemomorphism on the annulus to the entire surface, by taking a point p to itself if p is outside
the annulus. If were working in the category of smooth manifolds, one may modify the twist on the
annulus by taking (z, t) → (exp(2πif (t)) z, t) where f is a smooth bump function such that f (t) = 0
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measures how much the axis of the ribbon is contorted in space. Because negative
(–)-supercoiling in bacteria arises from topological misalignment and not a protein
corset, it has the flexibility to do work. Thirdly, supercoiling result from topological
strain and the contortion of DNA by proteins, notably the nucleosome histone octet
and the structural maintenance of chromosomes (SMC) proteins.

There are three ways, which have been experimentally observed in vivo, in which
condensation of chromosome by supercoiling occurs, and to each of them corre-
sponds a topological model for explaining the compaction of chromosomes in the
cell nucleus. These ways are: (i) (–)-supercoiling by gyrase compacts the chromo-
somes such that random passages by topoisomerase IV disentangle them. In partic-
ular, topoisomerase IV is responsible for decatenation or unlinking of DNA.11 (ii)
With the second type of condensation via supercoiling, that is by core histones,
DNA is compacted in independent successive stages such that the total compaction
is the product of compaction of each stage. The first stage of this compaction is via
solenoidal12 wrapping ofDNA in the nucleosome.Although the compaction achieved

on a small neighborhood of t = 0 and f (t) = 1 on a small neighborhood of t = 1. This modification
ensures that we get a self-diffeomorphism on the surface

∑
as a smooth manifold.

One important theoremwas first proved by Dehn, then later, in a simplified version, by Likorish:
Theorem (Dehn-Likorish). The Dehn twists generate the mapping class of

∑
, of orientations-

preserving homeomorphisms considered modulo isotopy.
(In fact, Likorish described 3 g − 1 explicit embedded circles for a surface

∑
of genus g whose

corresponding twists give the generators.).
One example that is easy visualized is the mapping class group MCG(

∑
) of the torus

∑ =
S1 → S1. Here the canonical map MCG(

∑
) → Aut (π1(

∑
)) ∼= Aut (Z × Z) is an isomorphism

(where automorphisms of Z are required to preserve orientation, i.e., are elements of the modular
group SL2 (Z). Thus, in this case the Dehn twist can be visualized in terms of their action on loops
representing elements of π1(

∑
).

11 To be more precise, topoisomerase IV fulfils another function, which consists in relaxing positive
supercoils generated during DNA replication.
12 In rigorous mathematical terms, a solenoid is a compact connected topological space (i.e. a
continuum) that may be obtained as the inverse limit of an inverse system of topological groups and
continuous homeomorphisms

(Si , fi ), fi+1 → Si , i ≥ 0,

where each Si is a circle and ƒi is the map that uniformly wraps the circle Si+1 ni-time (ni ≥
2) around the circle Si. This construction can be carried out geometrically in three-dimensional
Euclidean spaceR3. A solenoid is a one-dimensional homogeneous indecomposable continuum that
has the structure of a compact topological group. In the geometrical theory of dynamical systems,
a solenoid can arise as a one-dimensional expanding attractor, or Smale-Williams attractor, and
forms an important example in the theory of hyperbolic dynamical systems (see Williams [90]).
Geometrically, each solenoidmay be constructed as the intersection of a nested system of embedded
solid tori in R3. Fix a sequence of natural numbers {ni}, ni ≥ 2. Let T0 = S1 × D be a solid torus.
For each i ≥ 0, choose a solid torus Ti+1 that is wrapped longitudinally ni times inside the solid
torus Ti. Then their intersection � = ∩i≥0 Ti is homeomorphic to the solenoid constructed as
the inverse limit of the system of circles with the map determined by the sequence {ni}. A variant
of a geometrical solenoid is the expanding attractor in the theory of smooth dynamical systems
constructed by Stephen Smale. Denote the angular coordinate on the circle S1 by t (t is defined
modulo 2π) and consider the complex coordinate z on the two-dimensional unit disk D. Let ƒ be
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is modest, the nucleosome provides a fundamental structure for genome organization
and function. The structure of a nucleosome reveals a scaffolding that forces DNA
ordered solenoidal supercoils [91]. (iii) The third type of compaction cum super-
coiling, that by condensing, is needed for the formation of mitotic chromosomes
from the open interphase forms.

There are two general classes of supercoil, known as interwound supercoil and
toroidal supercoil. The circular DNA (that is, with the ends of the molecule fixed)
consists of a series of open spirals that wind around an imaginary ring, or toroid; this
kind of supercoiling is known as toroidal. But the circular DNA can also wind above
and below itself several times, and this kind of supercoiling is called interwound.
In practice, real DNA supercoils may contain portions of both the toroidal and the
interwound geometries. Thus, where certain parts of DNA are highly curved, on
amount of either the base sequence or due to wrapping around a protein, onemay find
toroidal structures, since theDNA in a toroidal supercoil is highly curved throughout!
Alternatively, if such curved portions of DNA are not very long, they may locate
themselves at the two strongly curved end-loops of an interwound supercoil, as
shown in Figs. 10 and 11. Sometimes the interwound and toroidal geometries may
occur together, as in the looped-linear DNAwhich is shown schematically in Figs. 10
and 11. On a small scale, within any loop, the coiling is toroidal on account of the
wrapping of DNA around protein spools, but on a large scale, over the full length of
any loop, the structure is interwound. One can see this kind of arrangement in many
natural structures, especially in trees.

Now, what are the relative stabilities of these two forms of DNA supercoiling?
In other words, under which conditions will a DNA molecule be interwound, and
when will it be toroidal? The interwound shape is usually very stable, and most
underwound overwound DNA molecules will naturally adopt an interwound shape,
in the absence of other forces. But the proteins that associate with DNA in living

the map of the solid torus T = S1 × D into itself given by the explicit formula ƒ(t, z) = (2t, 1/4z +
1/2eit). This map is a smooth embedding of T into itself that preserves the foliation by meridional
disks (it is essential that ¼ < ½ and 1

4 + 1
2 < 1). If T is imagined as a rubber tube, the map ƒ

stretches it in the longitudinal direction, contract each meridional disk, and wraps the deformed
tube twice inside T with twisting, but without self-intersection. The hyperbolic set� of the discrete
dynamical system (T, f ) is the intersection of the sequence of nested solid tori described above,
where Ti is the image of T under the ith iteration of the map f . This set is a one-dimensional (in the
sense of topological dimension) attractor, and the dynamics of f on � has the following interesting
properties: (i) meridional disks are the stable manifolds, each of which intersects � over a Cantor
set, (ii) periodic points of f are dense in �, (iii) the map f is topologically transitive in f .

General theory of solenoids and expanding attractors, not necessarily one-dimensional, was
developed by R.F. Williams and involves a projective system of infinitely many copies of a compact
branched manifold in place of the circle, together with an expanding self-immersion. (Recall that
branched manifolds are a generalization of a differentiable manifolds which may have singularities
of very restricted type and admits a well-defined tangent space at each point; a branched manifold
is covered by n-dimensional “coordinate charts”, each of which involves one or several “branches”
homeomorphically projecting into the same differentiable n-disk inRn.) A solid toruswrapped twice
around inside another solid torus in R3 is a very nice example of branched manifold. Another beau-
tiful example of branched manifold is the Smale-Williams solenoid, or Smale-Williams expanding
attractors, which are one-dimensional hyperbolic attractors.
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Fig. 10 Five closely related circular DNA molecules: a and b show open circles, while c, d and e
show interwound supercoils. The DNA in its stress-free, relaxed form is drawn as a rubber rod of
square cross-section, with one face black (From Boi [25])

Fig. 11 Two general varieties of DNA supercoil. In a, the DNA coils into a series of spirals about
an imaginary toroid or ring (shown here by open lines); and so this kind of wrapping is known as
‘toroidal’. In b, the DNA crosses over and under itself repeatedly; and so this kind of wrapping is
known as ‘interwound’ (From Boi [25])
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cells can sometimes change the situation dramatically, and favors the toroidal over
the interwound form by wrapping the DNA around themselves.

20 Conclusive Remarks

To conclude, let’s emphasize the important fact that the complex topology of DNA is
essential for the evolution of all organisms, hence for life. In particular, it is needed
for the process known as DNA replication, whereby a replica of the DNA is made
and one copy is passed on to each daughter cell. Some of the open and key prob-
lems relating to the functional processing of biological systems seem to be deeply
linked to the following issues: (i) to the conformational, organizational and biological
role of topoisomerase which, because of their extreme structural plasticity and func-
tional complexity, still remain to be elucidated. (ii) To the DNA–protein supercoiling
process, because it links the biological activity of DNA to its tertiary structure (that
is, the different geometrical structures and general topologies of DNA and DNA-
proteins complexes) [92] and not to its sequence (see Misteli [65]). Indeed, almost
all cellular processes seem to be deeply related to the way in which supercoiling is
realized. (iii) To the three-dimensional organization of chromatin, which is a nucle-
oprotein complex and the stuff chromosomes are made of. This organization not
only compacts DNA but also plays a fundamental role in regulating interactions with
DNA during its metabolism.

In conclusion, it can be said that DNA double helix is an elegant and robust
structure that allows the genetic information to be stored, protected, replicated and
repaired. However, the interwound nature of the double helix also has the potential to
impose a number of topological constraints on the genetic material that affect all of
its physiological functions (see Boi [51]). This means that DNA double helix admit
different elastic deformations [93], in spite of some geometric rigidity characterizing
its basic structure, and constrained particularly by bending, coiling and twisting.
As long as the ends of DNA strands are fixed in space, as is the case for circular
molecules or long linear molecules that are attached to solid supports, DNA can be
considered to be a dynamically topological system. Therefore, topological properties
of DNA are designed as those that cannot be altered without breaking one or both
strands of the double helix. The topological nature of DNA double-helix is also
demonstrated by the fact that it adopts various conformations. This intertwining of
topological remodelling of biological structures and acquisition of functionality by
them in different contexts is very likely one of the most fundamental features of
biological systems. Variability of forms and enhancement of functions continuously
interact and both are essential for the evolution, generation and preservation of living
beings.
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with classical legal problems and in understanding the intimate interconnections
between law and other social sciences. Complexity theory understands the legal
system as a complex adaptive system like the economy: these two systems complexly
interact with each other, aswell aswith the other complex social and physical systems
they are interconnected with. Furthermore, complexity theory shows us how there
is no perfect form of regulation available. A complex version of the law would be
flexible and adaptable without, however, being able to provide a “perfect and stable”
solution to regulation. Such a system would only deliver a lower number of mistakes
and more adapt reactions. Complexity theory is considered an important tool for
better understanding, and therefore better regulating, global financial systems. Espe-
cially after the great crisis, there is a deep interest in using complex system models,
with the aim of forecasting the long-lasting effects of the regulation system and to
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1 The Characteristics of Complex Systems

The aim of this short presentation is to define and explain how law scholars are
using complexity theory to make sense of law. In relation to law, complexity theory
provides a revolutionary point of view when dealing with classical legal problems
and in understanding the intimate interconnections between law and other social
sciences.

Even if the origins of complexity theory can be traced back to early work on
cybernetics and information theory [34], it’s generally believed that the first notion
of a distinctive theory of complexity was theorized by the Belgian physical chemist
Ilya Prigogine. This scientist, who won the Nobel Prize for Chemistry in 1977,
worked on far-from-equilibrium systems and introduced the notion of ‘order out of
chaos’ [28], which can be considered as the first aphorism of a theory of complex
systems.

As highlighted by the real beginning, the complexity theory is inherently inter-
disciplinary. The US Santa Fe Institute (established in 1986) hosted some of the
leading academics in the field of complexity theory: Kauffman and Holland, who
both worked on biological complexity [16, 17, 19] Arthur, who worked on economic
complexity [1, 2]; scholars in the field of mathematics and computer sciences, and
scientists interested in the continental philosophy of Deleuze and Guattari [11] and
Morin [24].

It’s well known that complexity theory first developed in the sphere of natural
sciences. According to this theory, order arises without the need for a guiding hand
or a central control: in a complex system, the structural order emerges spontaneously
as the result of the interactions between the elements which compose the system, as
they encounter new information.

Through this theory, natural science scholars explain the structure of insect
colonies while neurologists adopt it in an effort of discovering the relationship
between the mind and the brain. Physics and chemistry reveal the existence of
complex systems like the Great Red Spot vortex of Jupiter; biology uncovers the
existence of complex adaptive systems such as ant colonies and the immune system.

Social sciences as well found how complexity theory and this revolutionary
approach explain the importance of connectivity and dynamic network organization,
unpredictability, systemic instabilities, and rapid change.

When talking about complexity, the main difference between social and natural
sciences is that social sciences involve human behavior, consciousness, and different
ways of reacting to events, each one determinedbypersonal ethical,moral or religious
beliefs. The social world is composed of complex adaptive systems such as those of
language and ‘symbolic interactions’, as well as political systems.

Due to this interdisciplinary kind of approach, there is not a generally agreed
definition of the complexity theory. Hence, there is a collection of different theories
and approaches related to complexity theory that began to grow in the 1990s, as an
alternative approach in response to the behavior of systems not readily understood
using traditional approaches.
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The absence of a general definition of the complexity theory has not prevented
scholars in both the natural and social sciences from looking to the language of
complexity with the aim of investigating applying it to almost every field of study.
For example, complexity can be used when studying economics, law, cosmology,
biology, and artificial intelligence.

In all of these domains, complexity theory allows scientists to identify common
principles that guide the dynamics and the evolution of systems across all of these
domains. These principles reflect a deeper order that deeply influences the physical
and social world in which we live by giving it a structure [25].

Complexity theorists recognize a series of qualities in complex systems, such as
ceaseless creativity and transformation, adaptation, evolution, order out of chaos,
far-from-equilibrium processes, and spontaneous self-organization.

Complexity theory has revolutionized many areas of the natural sciences, and
its core insights have been adopted by social sciences to provide a new and more
accurate way of dealing with human social existence by emphasizing the impor-
tance of connectivity and dynamic network organization, unpredictability, systemic
instabilities, and rapid change.

The interdisciplinarity and the absence of an agreed general definition lead to
identifying this approach as a set of tools, but perhaps a more accurate description
is the one of ‘a conceptual framework, a way of thinking, and a way of seeing the
world’ [25].

Complexity theorists are conscious of this situation and the absence of a general
definition is by now an agreed characteristic of this view of the world. As the philoso-
pher and sociologist Edgar Morin said, it is not possible to uncover general laws of
complexity. The key is to make sense of the relationships between the whole and the
parts by focusing on the notions of order and disorder.

A possible alternative could be the search for the laws of complexity. This
complexity theory, however, would be a “restrictive complexity” influenced by the
paradigm of classical science, and because of that, some important elements would
be inevitably missed.

The correct way of engaging with complexity is to focus on the interactions
between the system and its component elements, the interactions between the compo-
nent elements, and their interactions with elements outside of the system. Despite
the absence of a common definition of a complex system, there is some literary
consensus on the characteristics of complex systems. These include:

(1) Complex systems are self-organizing. There is no controlling power or central
control in a complex system, which is the result of the actions and interactions
of micro-level component elements;

(2) Complex systems change over time with the flow of new matter, energy or
information into the system, generating new characteristics;

(3) Complex systems not only interact with agents and elements in the external
environment but also with other complex systems (for example, the economic
system); in this way complex systems will increase their complexity by
interconnecting and interacting with other complex systems;
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(4) Whilst complex systemsmay remain stable for long periods, their non-linearity
means that radical change can happen quickly and unexpectedly, with complex
systems existing somewhere between entropy (where the system decays over
time) and chaos (where too much activity makes stable structures impossible
to maintain) [6, 9].

2 Complexity Theory and the Law: Complex Versus
Complicated

There are some legal scholars who seek to apply the insights from complexity theory
to law. Complexity gives law scholars a new way to describe law systems. However,
facing the complexity theory is not simple for lawyers.

Obstacles arise, first of all, from the problem related to the ambiguous meaning
of the word “complex”.

Generally speaking, there is a widespread belief according to which the legal
system is something “complex” and the two expressions, “complex” and “legal
system”, are systematically used in close proximity. Because of that, for example,
it’s possible to read that “the English legal system is a vast and complex subject”
[12] and legal systems are analyzed as complex systems by scholars [27].

The complexity theory approach is not focused on the complicatedness of the law
or its intricacy; regarding the law, complexity theorists analyze how agents interact
and the aggregated product of their interactions.

Complicatedness and complexity are not the same.
The legal system is complicated: a lawyer must study law for many years just to

have the privilege of taking the bar exam. The distinction between complicatedness
and complexity lays in the essence of the complex adaptive systems theory: in a
complicated world, the composing elements of a system maintain a degree of inde-
pendence from one another. Thus, removing one of such elements (reducing the level
of complication) does not fundamentally alter the system’s behavior (apart from the
one directly influenced by the removed piece).

A system is complexwhen the dependencies between the elements become impor-
tant: in such a system, removing a single element radically changes the system
behavior, to an extent that goes well beyond what is embodied by the removed
element. Complex adaptive systems theory analyzes the inter-agent dependencies
and the effect they produce in the system.

Systematic and adaption are the main properties of the theory of complexity: in
a system, agents interact adaptively. An example could be the dilemma of the two-
player prisoner’s theory. Bilateral adaptive system models are rather simple; on the
other hand, multi-agent adaptive systems can be more complicated.

This effectively applies to physical and biological systems. Concerning social
systems, the main difference is that humans are the intentional designers of law,
writing the rules for other social systems.
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Nonetheless, the legal system is a complex adaptive system since it regulates
complex adaptive systems, and the law itself co-evolves following the social system
it aims to regulate.

The direct consequence of co-evolution is the impossibility to create a perfect
legal system.

Complexity theory affects the way in which we understand the idea of law. More
specifically, the way in which we relate to law as a regulatory tool: the law is a
self-organizing system in which an interactive network of many parts (actors and
institutions) operate with no overall guiding hand.

There are several levels of analysis of law and complexity. First of all, we can
recognize that there are complex adaptive system properties in the economy, poverty,
war, crime and other domains the lawmakers attempt to manage and regulate through
law. At a deeper level, complexity theorists assert that the legal system is a complex
adaptive system, due to the fact that economic and other social systems (regulated by
the legal systems) exhibit complex adaptive system properties. Then, if the economy
and the legal systems are both complex adaptive systems, the two systems interact
complexly with each other and also with the other complex social and physical
systems connected to them.

Furthermore, if law complexly affects the economy and other systems and the
economy and other systems complexly affect law, there is a high probability that law
is complexly affecting itself.

Thanks to this idea of law as a complex adaptive system co-evolving with its
regulatory targets, complexity theory acquires the role of a possible new approach
to legal theory or, in other words, a new jurisprudence.

Jurisprudence includes various approaches such as natural law, positivism,
sociological jurisprudence, realism, critical legal studies, feminist jurisprudence,
postmodernist jurisprudence and critical race theory [13].

Even in such a wide overview, complexity theory adds a qualitatively new point
of view that involves interconnections, systemic properties, unpredictability, porous
boundaries, some element of bottom-up organization and rapid innovations in law
and regulation.

The regulation can be analyzed in very different fields, such as the regulation of
on-street sex work [7] or the legal complexity of the governance of global financial
markets.

3 Complexity Theory and Legal Thinking

Complexity theory poses a great influence on the natural and social sciences.
However, traditional legal thinking is dominated by the theory of autopoietic systems.

The theory of autopoiesis sees the law’s autonomy as the self-reproduction of
a communication network and define its relation to society as an interference with
other autonomous communication networks.



54 I. Capelli

German sociologist Niklas Luhmann developed a comprehensive theory of what
he called “autopoietic” or “self-referential systems”: he theorized the existence of a
major social system, composed by various social subsystems, such as state, economy,
science, religion, education, art, family, and law.

These ideaswere originally developed in the field of biological research conducted
in the early 1970s by biologists Humberto Maturana and Francisco Varela on visual
cognition in frogs and pigeons. From this biological research, they sought to develop
a general theory of living systems.

Luhmann developed his idea of autopoiesis as “operative closure”, describing
societal subsystems as closed with respect to code. The code is a distinction between
two opposed values, such as true/false for the scientific system and legal/illegal for
the legal system. The code defines the societal subsystem’s unity and is unique to
that system (at least as a code).

In Luhmann’s opinion, society is mainly divided into various subsystems that
perform some unique functions: economy, politics, law, science, education, religion,
art, mass media, and the family.

Thepolitical and legal systems, however, are partly regionally andnot simply func-
tionally differentiated due to the fact that these subsystems are influenced by territory.
The legal system, notably, is territorially differentiated into different legal orders—
even if it’s still possible to talk about a global legal system—without centralized
legislation or decision-making capacity.

The various subsystems regularly communicate and high number of exchanges
take place between the individual subsystems and the environment. The subsystems
receive inputs from the surrounding environment, and these inputs are processed and
converted into outputs fed back to the environment. Consequently, the outputs’ effects
on the environment are processed and flow back into the subsystems, completing the
feedback loop.

In this framework, the systems are cognitively open but operatively closed or
normatively closed.

This theory could be clearer if we consider that, in Luhmann’s opinion, the societal
systems and the subsystems are not the traditional associations among individuals,
but a network of communications. In other words, communication is the key, since
the societal systems and subsystems are networks of communications.

The presence of communications differentiates societal systems from the nonso-
cial environment, which is characterized by the absence of communication.

The societal systems are operatively closed because the information from the
surrounding environment does not penetrate the system: information is always inter-
nally produced within the system according to internal procedures, standards, and
criteria. In other words, the communications within a system only interconnect with
other communications within that same system.

A system’s operative closure is the basis for its autonomy or autopoiesis. The
term “autopoiesis” means literally self-production. Autopoietic systems produce
themselves through their own operations, their information and their structures.
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In Luhmann’s opinion, the idea of relative autonomy or relative autopoiesis does
not exist, because there are only two alternatives: either a system is autonomous and
autopoietic, or it is not.

The system’s operative closure does not deny a system’s dependence on its envi-
ronment but leads to investigate societal systems from within and define them in
terms of their own operations or, in other words, in terms of the communication that
characterizes the individual societal system.

Consequently, the system’s evolution is a transformation and a renewal of a
system’s relation to its environment.

Luhmann analyzed modern society’s evolution with the help of structural
couplings among functional subsystems. Through the concept of ‘structural
coupling’, Luhmann describes evolution as coordination or coevolution without an
intentional guide or direction between two systems, such as law and politics.

Luhmann’s thinking aligns with the mainline of legal positivism: the law is a
separate subsystem of society, distinct from politics as well as from morality. Only
law—not politics, morality or any other system of communication—determines what
law is.

The idea of operative closure excludes extralegal concepts and criteria from the
law since they have no legal relevance. In this context it’s important to note that,
when these extralegal concepts and criteria influence judicial decision (for example,
in constitutional decisions) they tend to be “juridified”. In other words, when incor-
porated in the legal system, the extralegal concepts and criteria have different and
specific legal meaning.

This can be identified as the biggest difference between the theory of autopoiesis
and the complexity theory. As previously described, complexity theory understands
the legal system as a complex adaptive system like the economy. These two systems
complexly interact with each other, as well as with the other complex social and
physical systems they are interconnected with.

Furthermore, complexity theory shows us how there is no perfect form of regula-
tion available. A complex version of the lawwould be flexible and adaptable without,
however, being able to provide a “perfect and stable” solution to regulation. Such a
system would only deliver a lower number of mistakes and more adapt reactions.

This is clear if we think about the numerous references to complexity theory across
all scientific disciplines, such as physics, chemistry, and biology. The literature has
drawn on a wide range of sources in these disciplines to produce socially influential
metaphors inter alia, such as the “butterfly effects” and the “tipping points”.

Being an adaptive system, the law must adapt itself to the constantly changing
reality that surrounds it and the continuous changing of regulations, especially in the
field of economics and finance. The endless effort of adaptation to the circumstances
is what lawmakers all over the world are currently experiencing.

For these reasons, complexity can lead to a better understanding of the quick
evolution of economy and finance, and it represents an effective set of tools for the
regulation of the financial system.
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4 Complexity Theory and the Financial System

It is thought that the global financial crisis indicates the failure of neoclassical
economics. This idea favors the application of complexity theory to the financial
system [8].

Even before the great crisis, complexity theory has already been applied to finan-
cial systems [32]. The main idea was to use the complexity theory’s approach to
develop predictionmodels, more specifically, to try and predict stockmarket crashes.

In particular, the approach utilizes the features of Santa Fe complexity economics
with the aim of developing a model of financial markets considering it a complex
and adaptive system in constant evolution [32].

A few years later, complexity theory was, for the first time, applied to finan-
cial regulation: complexity theory is considered an important tool for better
understanding, and therefore better regulating, global financial systems [18].

It’s essential to point out that these approaches to financial systems were deter-
minedly trans-disciplinary, bringing together ecologists and engineers with financial
professionals and regulators. This means that the complexity theory framework vali-
dated ecology and the complexity theory of ecosystems as an instrument to rethink
banking and financial systems and their regulation.

After the great crisis, Andrew Haldane was the first central banker to recog-
nize the potential importance of complex systems theory in understanding financial
systems and financial regulation. He put specific emphasis on bifurcation points and
tipping points in complex financial systems and crisis prediction [15]. The current
stage of development of the complexity theory paradigm for understanding financial
systems and the global financial system is well delineated by Battiston et al. [4]. The
complexity tools can improve the ability to avert crises or, at least, to lessen their
impact and better manage them when they occur.

The application of complexity theory to the financial systems raises a daunting
set of problems requiring new and innovative approaches. It’s necessary to take into
account a large number of interacting individual elements, such as people, companies,
and countries.

Furthermore, these new approaches challenge conventional thinking: complex
systems are dynamic rather than static, and they appear very difficult to predict and
control. The individual elements of a system are directly influenced by the behavior
of the system as a whole while, at the same time, their interactions lead to emergent
behavior at the aggregate level of the system.

In particular, complex systems are permeated by non-linear or network interac-
tions amongst the component agents. This means, inter alia, that the ‘common sense’
connection between the size of an event and its consequences are not interconnected
due to the fact that small changes have the capacity to trigger large scale events.

In current times, the authors are pointing in the direction of a new complexity
agenda specifically for financial regulation. They emphasize the need for lawyers to
develop new useful approaches to better manage complexity [20].
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5 Complexity Jurisprudence and Financial Systems
Regulation

Complexity jurisprudence sees law, regulation, andmanagement of financial systems
as part of afluid network characterizedby continuous change and transformation [26].

From this point of view, thefinancial systemconfigures itself as a complex adaptive
system. This means that it has an adaptive capacity which is, in other words, the
capacity to explore, to experiment, and to innovate.

Adaptive capacity relates to other systems and to its own self-organization, emer-
gence, and transformations. This predisposition leads to ecological resilience as the
ability to explore regimes, to systemically mutate and to create new regimes of
self-organization and emergence in new dissipative structures [26].

In this approach, compliant with the complexity jurisprudence, the issues
concerning regulation and management of the financial system are compared with
the resilience theory of adaptive management. According to complexity jurispru-
dence, the resilience theory of adaptive management is the practical application
of the complexity theory and deals with the complex problems of managing and
governing complex adaptive systems.

The main idea is that the system’s ecological resilience implies the presence of
creative processes of self-organization, emergence, innovation, and adaptation in the
managed system. Therefore, adaptive management considered as an outcome of the
complexity jurisprudence aims to manage systems so that they operate in ecological
resilience and are able to generate self-organization, emergence, innovations, and
adaptations, increasing themanaged system’s own adaptive capacity tomanage itself.
The main consequence is a highly flexible regulation.

The lawmaker acts by trial and error, and the possibility to change the rules is
surely kept in mind. There are many examples of this new approach of lawmaking:
we can consider, for example, the Italian statutes which explicitly provide for the
option of rule changes.

The adaptive management approach is very far from the creation of fixed
rules made to regulate a determined phenomenon forever, as seen in the property
rules inside the 1942 Italian Civil Code. Instead, adaptive management proceeds
with monitoring, measuring and mapping the managed complex adaptive system,
expecting regulatory interventions and modifications into the managed system.

This is the reason why adaptive management is a constant process: it needs to
incessantly learn, experiment, adapt and innovate.

Furthermore, the regulatory goals can change, together with the evolving
processes of regulation and management.

The real difference is not between old fixed rules and new variable rules, but it’s
the awareness of the continual changes and evolution of the system. Consequently,
lawmaker’s interventions are trial and error. Indeed, in the traditional approach,
the regulation is defined as strongly front-ended while, on the contrary, adaptive
management is back-ended where experimentation and changes of approach are
enabled and discretion to change decisions is retained.
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Flexibility is institutionalized: the organizationmust be polycentric, the regulatory
tools must vary, and the management interventions must be multi-scalar in terms of
the levels at which it can be targeted.

The core role of adaptive management is to monitor the complex adaptive system.
It’s necessary to focus on specific variables at different levels and be able to constantly
read the data and consequently react. This manner of regulating requires the devel-
opment of new tools for governing complex financial systems. Therefore, attention
must be paid to the technologically enabled real-timemonitoring of complexfinancial
systems.

For this, in summary, any notions of the top-down regulation of financial markets
would be abandoned and replaced with a bottom-up relational financial regulation.
This new financial regulation would become somewhat experimental in its inter-
ventions and open to regulatory innovations and to new technological tools. The
necessity to operate with a multilevel approach and the requirement to continuously
monitor the factual circumstances involved in the regulation would characterize this
approach as quite an interventionist one.

Considering the afore-described attributes of adaptive management, it’s possible
to estimate that, in case of a crisis of the financial system, the reaction would be very
different from the one based on the traditional approach.

The traditional approach is themodel according towhich financial regulation aims
to mitigate the systemic risk, seeking to preserve the existing financial system at all
costs (bailing out market externalities). On the contrary, adaptivemanagement would
transform the organization and the operation of a financial system in crisis, due to
the fact that the previous system could be socially and economically undesirable.
Hence, adaptive management could promote change at various levels.

Much attention is paid to the modality in which the financial system fails. As
complexity theory revealed when applied in the ecology field, the core is the under-
standing of the interconnections among the subjects involved, such as banks and
investors. For this reason, it’s necessary to focus on how information circulates
through the system; this data can reveal system stability, strength, and resilience.

The application of this theory to the financial system is deeply connected with
the availability of data and the development of quantifiable metrics. The regulation
requires a “policy dashboard”monitoring systemic risk [4] and calling for stress-tests
of the global financial system in real-time, as we do for the weather.

This “policy dashboard” for the financial system allows us to monitor it, detect
its systemic risk and understand how it will evolve. Likewise, the regulatory system
is a complex adaptive system (as well as the financial system, or other systems, like
the environment, the Internet or health care) and the “policy dashboard” can allow
the regulatory system to co-evolve alongside with the system it seeks to regulate.

Legal researchers have begun exploring such “policy dashboards” for politics.
These “policy dashboards” allow conscious choices by lawmakers and, eventually,
it will also allow them in politics. Quantitative studies about the complex adaptive
system behaviors of a regulatory system are also starting to take place [5].

As described before, the financial system and the regulatory system are both
complex adaptive systems that co-evolve and—being complex systems—have a close
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interconnection. For this reason, the regulatory system should be part of the research
and model-building of the financial system [30]: this regulatory approach needs to
understand the financial system itself.

Themain idea is that it could be very difficult to predict how the regulatory system
will evolve. However, the complexity theory allows the creation of abstract models
in laboratories, with a focus set on the evolution of the system. This means that
complexity theory hands over tools to test the possible effects of the regulation and
assess plausible alternatives which might improve regulation effectiveness [4].

Indeed, as a practical application of the complexity theory, adaptive management
results as experimental in its interventions and also opens to regulatory innovations
and to new technological tools.

6 The Financial System Regulation and the Systemic Risk

As previously noted, the debate about complexity theory and the regulation of the
financial system has been deeply affected by the great crisis of 2008. The regulatory
system is subjected to a continuous evaluation of the results achieved with the help
of technological tools. This constant evaluation of the effects implies continuous
learning, which could contribute to the evolution of the regulatory system in relation
to systemic risk.

The understanding of the long-term evolutionary dynamics of regulation is very
difficult, but one of the purposes of complex system models is measuring the effects
of regulations.

This evaluation and assessment activity can be achieved before model building,
with the aim to identify possible unintended consequences of prospected regulations.
In this scenario, a realistic complexity-based “policy dashboard” can be helpful in
empirically assessing reforms before implementing them in real markets [4].

On the other hand, continuous monitoring and testing can facilitate the process
of identifying and preventing systemic risks. A recent study made by the Dutch
interbank network illustrated how a realistic analysis of the financial system could
identify an early warning signal up to 3 years before the actual crisis [4]. Gener-
ally speaking, recent techniques such as warning signals of tipping points offer the
potential for better monitoring and regulating interconnected economic and financial
systems, which may assist in anticipating and managing future crises.

The importance of the evaluation and assessment activity can be easily explained
through the leverage example. A crucial factor driving the great crisis was the
excessive use of leverage: the banks borrowed too much without proper collateral.

The link between leverage and the crisis was analyzed by John Geanakoplos
who described the leverage cycle, in which leverage increases due to competition
during times of financial stability. The excessive growth of leverage eventually leads
to financial instability and triggers a crash; once the financial system is back to
a condition of stability, the cycle repeats itself [14]. Leverage can drive clustered
volatility and heavy tails in financial time series [33].
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First of all, this situation is a clear example of how the myopic perspective of
individual banks can drive systemic risk when too many banks act in unanimity.
Secondly, it’s possible to say that Basel III, the current regulation, is solely based on
the rules of thumb and intuition.

The choice of the proper level for leverage must be made taking into consid-
eration not only the exigence to have sounder individuals but considering all the
circumstances, including relationships such as interbank lending, which can provide
security in normal times but may amplify the extent of a crash in bad times. This
choice must contemplate the fact that bank holding companies are highly complex
institutions, formed by thousands of independent entities. Without understanding
the network of ownership and control, it’s virtually impossible to properly measure
leverage. Furthermore, local shocks can have systemic repercussions.

Connectivity might favor disease spreading, with domino effects and bankruptcy
cascades. This means that, in many situations, actions ensuring the soundness of
one institution (e.g., solvency, liquidity capacity, etc.) may not be consistent with
ensuring the soundness of another one [10] and may decrease the stability of the
system as a whole.

The complexity theory can help in evaluating as many circumstances as possible,
potentially making the regulation of leverage much more scientific than in the past.
The complexity theory approach allows us to set some mechanisms that can be
activated when the average leverage of the actors in a network reaches a critical
threshold. The data analysis concerning the complex system affected by the leverage
can provide a solid framework for making sound regulatory decisions.

The complexity approach is capable of developing new indicators, genuinely
constructed with a systemic risk approach starting from microscopic data and taking
into account the network of mutual exposures among institutions.

7 Complex Systems Models and the Role of Fraud

Complexity theorists show insightful trust in the ability to prevent crises. However,
a number of authors argue that relying too heavily on complex system models could
be a mistake, due to the fact that individuals can easily distort the model through
fraud. Indeed, in the financial crisis of 2008, fraud played an important role [35].

As James Galbraith said, “the existence of a bubble in a stable, regulated market
like housing is prima facie evidence of fraud” and the presence of fraud can alter the
model and, consequently, the ability of the complex systemmodels to prevent crises.

Speaking about the financial crisis of 2008, complexity theorists can argue that
the bubble and the crisis itself would have occurred anyway, even without any fraud
at all [4]. For example, the housing bubble can be generated by the growth of normal
leverage levels, and it can take place without any type of fraud. Furthermore, in
controlled laboratories, experimental asset markets bubbles and crashes have been
frequently observed, and it was seen how they can legitimately result as the emergent
outcome of the circumstances [31].
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Analyzing real facts, in the 2008 financial crisis the troubles were generated by
the legal use of excessively high leverage, which generated systemic risk.

Consequently, the role of fraud has to be considered as not crucial. Fraud may,
of course, increase the instabilities and intensify the signals of the crisis, but it’s not
the primary driving factor, as these instabilities are an emergent outcome of complex
financial networks [3].

Furthermore, fraud can be included in the model. The complex system model,
created with the aim of preventing crises, can contain agents who “cheat” the system
by not following accepted sets of rules in their behavior [4].

In conclusion, especially after the great crisis, there is a deep interest in using
complex system models, with the aim of forecasting the long-lasting effects of the
regulation system and to predict a potential collapse of the financial system.

Complexity theory introduces in the debate ideas and concepts that are new for
law scholars and also urges the institutions and the scholars themselves to analyze
the reality in overall terms, involving at once legal skills, systemmodeling, economic
skills and the knowledge of the technological tools. Proof of this is the implemen-
tation, in the financial and regulatory lexicon, of concepts such as tipping points,
networks, contagion, feedback, and resilience.

Currently, the use of complexity models and results lingers at an early stage, but
it noticeably indicates to scholars that a new multidisciplinary approach is needed in
dealing with the issues concerning the regulation of financial markets.
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The Emergence of the Order Parameter
in the Interpolating Replica Trick for
Disordered Statistical Mechanics Systems

Francesco Guerra

Abstract We recall the formulation of the so called replica trick, in the theory of
disordered statistical mechanics systems, based on interpolation on the number of
replicas, given in previous work. While the customary exploitation of the replica
method is based on analytic continuation on the number of replicas, we have pro-
posed a completely different and complementary strategy where interpolation on
the number of replicas plays the key role. As examples, we consider the case of
the Sherrington-Kirkpatrick mean field model for spin glasses and the case of the
Derrida random field model. Firstly we recall the case of an integer number of repli-
cas, which can be explicitly solved, by proving that the annealed free energy of the
replicated system can be expressed through variational principles, where definite
variational trial functions enter, as functions of special order parameters, depend-
ing on the number of replicas. Then we show how to interpolate on the number of
replicas, taking now any real positive value. The general scheme is described by an
auxiliary system of functions depending on the physical parameters involved and on
the “number of replicas” s now considered as a positive real number. The existence
and the main properties of these functions are proven through standard interpolation
techniques. The case of the usual thermodynamic systems is reached in the limit
when the number of replicas s goes to zero. By working firstly in the simple case
of the random energy model we prove a very significant fact. While for each inte-
ger s the auxiliary functions are naturally expressed through variational principles
involving trial functions and variational order parameters depending on the number
of replicas s, it is shown that for generic real values of s the whole structure can be
embedded in a unique variational principle, where there is a universal trial function
and a trial order parameter which do not depend on s. In order to have the values of
the auxiliary functions for each real value of s, it is only necessary to put a suitable
bound on the order parameter, depending on s, during the variational procedure.
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The method extends also to the physically significant zero replica limit. This general
strategy is extended also to the Sherrington-Kirkpatrick case, where the universal
variational principle assumes the well know ultrametric structure, with a functional
order parameter. It is important to notice that, according to this strategy, the universal
variational principle, and the order parameter arise only from considerations based
on the integer values of the number of replicas. Contrary to the traditional treat-
ment, where replica symmetry breaking is connected with the possibility of multiple
analytic continuations from the integer values towards the zero replica value, in the
present formulation replica symmetry breaking is found to be a phase transition in
the number of replicas. The method can be easily extended to multispecies models,
as for example the Hopfield model of neural networks.

Keywords Disordered models · Sherrington-Kirkpatrick · Derrida · Hopfield ·
Mean field spin glass · Random energy · Neural networks · Interpolation ·
Functional order parameter · Variational principles

1 Introduction

Let us recall some essential aspects of the replica trick as presented for example in
[1].

We consider simple disordered systems of statistical mechanics, as the
Sherrington-Kirkpatrick spin-glass mean field model [2], and associated models,
and the Derrida Random Energy Model [3].

We consider N spin Ising configurations

σ : (1, 2, . . . , N ) � i → σi = ±1. (1)

There are 2N Ising configurations on N sites. We will be interested in the limit
N → ∞.

For each configuration σ let us introduce (real valued) random variables
σ → K(σ ). In the simplest cases, we can assume these 2N variables as Gaussian,
with zero averages, and covariances given for example by

E(K(σ )K(σ ′)) = q2
σσ ′ , (2)

where q.. are the configuration overlaps defined by

qσσ ′ = 1

N

N∑

i=1

σiσ
′
i , (3)

in the Sherrington-Kirkpatrick model.
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The randomvariablesK can be simply realized in a uniquewell definedprobability
space. Let us introduce the normalized independent unit, i.e. mean 0 and variance 1,
Gaussian random variables J0, Ji j , i = 1, 2, . . . , j = 2, 3, . . . , i < j . Then we can
define

K(σ ) = 1√
N
J0 +

√
2

N

∑

i< j

Ji jσiσ j , (4)

and easily verify that the correct covariance properties are valid.
On the other hand, in the case of the Derrida Random Energy Model, we define

qσσ ′ = 1 if the two configurations are equal and qσσ ′ = 0 if they are different, i.e.
qσσ ′ = δσσ ′ .

The random variables K(σ ) are exploited to define the energy associated to each
configuration σ in the form

H(σ ) = −
√

N

2
K(σ ), (5)

where the term
√
N is introduced for serious thermodynamic reasons, as it will be

shown in the following.
In the well known Boltzmann-Gibbs scheme, the partition function is

ZN (β) =
∑

σ

exp(−βH(σ )) =
∑

σ

exp(β

√
N

2
K(σ )), (6)

where β is the inverse of the temperature.
We have performed the sum over all configurations. Therefore, the partition func-

tion does depend only on the random noise present in the K(σ )’s.
The (random) free energy FN (β) is defined by

− βFN (β) = log ZN (β). (7)

The rescaling
√
N in the definition (5) of the energy is introduced in order to assure

a good thermodynamic behavior for the free energy per site, in the limit N → ∞.
In fact, it is not difficult to prove, see for example [4], that the limit

lim
N→∞

1

N
log ZN (β) (8)

does exist almost surely in the probability space where allK(σ ) are defined. We call
A(β) this limit, where any random character has been lost.

It turns out that the limit A(β) can be calculated also through the quenched
averages

A(β) = lim
N→∞

1

N
E log ZN (β), (9)
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where E is the average expectation with respect to the noise due to the K(σ )’s.
The equality between the probabilistic limit and the quenched limit is due to a

moderate statistical fluctuation of the free energy in the limit, which can be easily
proved through elementary interpolation methods [4].

There is a deep physical motivation at the basis of the metallurgic terminology.
In the partition function ZN (β) we perform only the sum over the σ ’s, according to
Boltzmann prescriptions. Therefore, the noise in the K(σ )’s acts as external noise,
which is not involved in the thermodynamic equilibrium, but affects thermodynamic
equilibrium of the σ ’. Then, we take the log, and at the end the average E.

Obviously we can take also the (annealed) average, before taking the log, so that
the external noise does participate to the thermodynamic equilibrium

Ā(β) = lim
N→∞

1

N
logEZN (β). (10)

This annealed expression is easily calculated

EZN (β) = E

∑

σ

.. =
∑

σ

E.. = exp(N (log 2 + 1

4
β2)), (11)

since for each σ we have

E exp(β

√
N

2
K(σ )) = exp(

1

2
β2 N

2
E(K2(σ ))) = exp(

1

4
β2N ). (12)

The term log 2 comes from the final sum over the σ ’s.
Of course, the annealed expression Ā(β) is not correct in general. In any case it

is a rigorous upper bound, uniform in N . In fact, from the concavity of the log

E log .. ≤ logE.. (13)

we have
1

N
E log ZN (β) ≤ 1

N
logEZN (β) = log 2 + 1

4
β2, (14)

preserved in the limit

A(β) = lim
N→∞

1

N
E log ZN (β) ≤ log 2 + 1

4
β2. (15)

We are interested in the explicit expression for A(β) (given by (8), (9)) in the
form of a variational principle.

The paper is organized as follows. In Sect. 2 the concept of replicas is recalled.
Then we introduce the auxiliary functions connected with the annealed averages of
the replicated free energy, properly normalized, and study their infinite volume limit.
These are expressed through variational principles,with appropriate order parameters
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and trial functions. The key aspect of the replicated theory, for any integer value for
the number of replicas, is the emergence of replica symmetry in the infinite volume
limit. Therefore the variational principle can be recast in a simpler replica symmetric
formulation. In Sect. 3 we extend our scheme from an integer number of replicas
to the case where the number of replicas is formally given by a real number. Next
Sect. 4 deals with the random energy model. We show how to embed the model in
a general structure where all replicas are involved. We show how the variational
principle is emerging. In Sect. 5 we report about the main results of this paper.
We consider the Sherrington-Kirkpatrick mean field spin glass model and show
how the functional order parameter is emerging together with the trial functional.
Our treatment is extremely elementary and pedagogical. Everything is developed
from the structure based on real replicas, through simple progressive steps. Finally
Sect. 6 is dedicated to some outlook for future development, especially concerning
multispecies models and neural networks.

This paper is an extended version of lectures presented at the Lake Como School
of Advanced Studies, Villa del Grumello, July 22–27, 2018. We warmly thank the
Organizing Committee, Sergio Albeverio, Elisa Mastrogiacomo, Emanuela Rosazza
Gianin and Stefania Ugolini, for the kind invitation, the excellent organization, and
the very stimulating atmosphere.

2 Replicas and the Auxiliary Function

Let us introduce the concept of replicas. For s = 1, 2, . . . (s positive integer) the
s-replicated system has a configuration space which is the s time product space of
the original system. Therefore, now the variables are

σ a
i = ±1, i = 1, 2, . . . , N , a = 1, 2, . . . , s, (16)

where the index i denotes the sites, and the index a denotes the replicas. Therefore,
now overall there are sN sites.

The energy is now defined as the sum of the energies for each single replica, with
the same randomness. The Boltzmann factor is therefore factorized, and for the new
partition function we have a simple product

Z̄s,N (β) =
∑

σ 1

exp(β

√
N

2
K(σ 1)) . . .

∑

σ s

exp(β

√
N

2
K(σ s))

= Zs
N (β), (17)

since (by assumption) every sum on the variables σ ’s gives the same contribution.
Therefore the partition function of the new system is simply the product of identical
terms corresponding to the partition function of the original nonreplicated system.
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The free energy per site, and its quenched average, of the replicated system is the
same as for the original system. In fact, the logarithm of a product is the sum of the
logarithms, each with the same contribution

log Z̄s,N (β) = s log ZN (β). (18)

Therefore, trivially
1

sN
log Z̄s,N (β) = 1

N
log ZN (β). (19)

However, if we take the annealed expressions, as in (10), we have a nontrivial
dependence on the number of replicas s. We are induced to introduce an auxiliary
function

φN (s, β) := 1

sN
logEZ̄s,N = 1

sN
logEZs

N (β), s = 1, 2, . . . , (20)

with a deep motivation made explicit in the following. Obviously, if s = 1 we have
simply the annealed case, considered above.

It is easy to study the thermodynamic limit N → ∞ of φN (s, β), with very inter-
esting results.

The limit, φ(s, β), does exist for any integer s = 1, 2, . . ., and can be explicitely
expressed through a variational principle. We only give the general structure. We
have to specify the order parameters, and the trial function.

Let us consider firstly the Sherrington-Kirkpatrick model given by (2), (3).
Firstly we calculate the annealed average in the corresponding replicated model.

Let us start from

EZs
N (β) = E

∑

(σ a
i )

exp(β

√
N

2

s∑

a=1

K(σ a)) =
∑

(σ a
i )

exp(
1

2
β2 N

2
(s + 2

∑

(a,b)

q2
a,b)),

(21)
where we have written explicitely the product Zs in terms of the sum

∑
(σ a

i ) on
the replicated site variables, have interchanged this sum with the average E, and
performedE by using the standard formula for Gaussian random variablesE exp ξ =
exp 1

2Eξ 2. In the expression E(
∑s

a=1 K(σ a))2, there arise s diagonal terms, each
equal to 1 and s(s − 1) off diagonal terms each giving rise to a term q2

ab, for each
couple of variables (ab). Of course there are s(s − 1)/2 couples.

By putting this expression in the definition of φN (s, β) we have

φN (s, β) = β2

4
+ 1

sN
log

∑

(σ a
i )

exp(
1

2
β2N

∑

(a,b)

q2
a,b). (22)

We see that the annealed averages in φN (s, β) have a very familiar form of ferromag-
netic systems on the σ a

i Ising variables, a ∈ 1, . . . , s. By using well known standard
techniques, as described for example in [4], we arrive easily at the expression of
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the infinite volume limit φ(s, β) = limN→∞ φN (s, β) in the form of a variational
principle

φ(s, β) = sup
q(..)

φ̃(s, β; q..), (23)

where the order parameters q(..) and the trial function φ̃(s, β; q..) are defined as
follows.

For a given integer s, for each couple of replicas we introduce the system of order
parameters qab ≥ 0. There are s(s − 1)/2 order parameters. The case s = 1 does not
require any order parameter, and the auxiliary function φ(1, β) is given directly in
the form

φ(1, β) = φN (1, β) = log 2 + 1

4
β2. (24)

For s = 2 there is only one order parameter q12. For s = 3 three order parameters
appear q12, q13, q23, and so on. Notice that here, for the sake of simplicity, we have
adopted the notation qab for the order parameters. The same notation was exploited
for the σ overlaps appearing in (21). But we hope that there is no risk of confusion,
due to the different context.

The trial function φ̃(s, β; q..) is a function replica symmetric in the q.., explicitely
given by

φ̃(s, β; q..) = β2

4
+ 1

s
log

∑

σ1,...σs

exp(β
∑

(ab)

qabσaσb) − β2

4s

∑

(ab)

q2
ab. (25)

We see that the trial function involves an s-site Ising model, with a disordered two
body ferromagnetic interaction given by the trial parameters qab. If the replicas are
permuted its value clearly does not change. We have already said that the variational
principle states

lim
N→∞ φN (s, β) = φ(s, β) = sup

q..

φ̃(s, β; q..). (26)

The variational principle enjoys a remarkable property. In fact, the sup is realized
for values of the order parameters, where all q.. have the same value q̄ ≥ 0. There is
full replica symmetry for the optimal values. This can be shown as follows.

Let us define the value φ̃RS(s, β; q̄) of the trial function φ̃(s, β; q..) in the case
when all q.. assume the same value q̄ by

φ̃RS(s, β; q̄) := φ̃(s, β; q.. = q̄), (27)

(the suffix RS standing for “replica symmetric”). An easy direct calculation shows

φ̃RS(s, β; q̄) = log 2 + 1

s
log

∫
(cosh(β

√
q̄z))s dμ(z)) + β2

4
(1 − 2q̄ − (s − 1)q̄2),

(28)
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where dμ(z) is the unit Gaussian measure on the real line.
Obviously we have

sup
q̄

φ̃RS(s, β; q̄) ≤ sup
q..

φ̃(s, β; q..), (29)

because constraints make worse a variational trial. But the inverse inequality can be
easily obtained through a stability argument arising from the ferromagnetic nature
of the interaction. In fact, the following bound holds in general (for s 
= 1)

φ̃(s, β; q..) ≤ 2

s(s − 1)

∑

(ab)

φ̃RS(s, β; qab). (30)

Therefore
φ̃(s, β; q..) ≤ sup

q̄
φ̃RS(s, β; q̄) = φRS(s, β), (31)

where the last equality is nothing but the definition of φRS(s, β). By putting together
all bounds, we have in the infinite volume limit (i.e. N → ∞)

lim
N→∞ φN (s, β) = φ(s, β) = sup

q̄
φ̃RS(s, β; q̄) = φRS(s, β), (32)

for all integer values s = 1, 2, 3, . . ..
For a simple sketch of the proof of (30) we refer to [1], where we follow a standard

method exploited in the statistical mechanics of disordered ferromagnetic systems
in order to “tame the disorder”, see also the analogous treatment in [14]. Of course
other simple proofs of the replica symmetry for integer values of s are possible.

3 Interpolating on the Number of Replicas

There exists a deep and complex successive development, conventionally called
“replica trick”, introduced by the pioneers of the study of these systems, as shown
for example in [2, 5–7]. The aim of the replica trick is to show that all properties of
the system are in someway derived from the treatment at integer values of s. Here we
give a formulation of the replica trick in the frame of replica interpolation. The first
step is to extend the definition of the auxiliary function φN (s, β), from the integers
s = 1, 2, . . . to any real value of s. For the sake of simplicity we consider only the
case s > 0.

This extension is easily obtained by noticing that the very definition

φN (s, β) := 1

sN
logEZs

N (β), (33)
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originally introduced only for integer values of s, in the replica frame, has a perfect
rigorousmeaning also for any s > 0. For a study ofφN (s, β), based on large deviation
techniques, we refer to [8], see also [9].

For the β derivative, we easily find, through a direct calculation involving also
integration by parts on the Gaussian noise,

∂

∂β
φN (s, β) = β

2
(1 + (s − 1) < q2

σσ ′ >), (34)

for an appropriately defined average <>, involving two replicas

< q2
σσ ′ >= E(ZsΩ(q2

σσ ′))/E(Zs). (35)

Here Ω is the Boltzmann-Gibbs average for two replicas

Ω(F(σ, σ ′)) := Z−2
∑

σσ ′
F(σ, σ ′) exp(β

√
N

2
(K(σ ) + K(σ ′)), (36)

for any (real valued) function F depending on the spins of the two replicas.
Notice the presence of the term (s − 1). Its sign changes at s = 1. It is responsible

of many notable inversions, as for example superadditivity in N versus subadditivity,
and inf versus sup in variational principles.

According to a well established and suggestive tradition, we continue to consider
the real number s as the “number of replicas”, even when s is not integer.

The hope is that the experience accumulated in the study of φN (s, β), and its limit
φ(s, β), for integer s, can produce some information in the case of generic values
s > 0.

The interest in generic values of s is a deep aspect of the “replica trick”. As a
matter of fact, we find that in the limit s → 0 the auxiliary function φN reduces to
the quenched value

lim
s→0

φN (s, β) = 1

N
E log ZN (β), (37)

a very important relation which holds also in the thermodynamic limit N → ∞

lim
s→0

φ(s, β) = A(β), (38)

(with A(β) defined as in (8) and (9)). Therefore, the auxiliary function φ, for very
small values of s, reduces to the expression of the quenched free energy (correspond-
ing to (9)) we are interested in.

Here is a simple intuitive proof. For small values of s we have

EZs
N (β) = E exp(s log ZN ) � 1 + sE log ZN , (39)
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where only the dominating term to the first power of s has been considered, and
therefore

logEZs
N � log(1 + sE log ZN ) � sE log ZN . (40)

After division by s, as requested by the definition (33), in the limit s → 0 only the
contribution of the considered dominating terms to the first power of s survives.

It is important to start the discussion of the “replica trick” from the auxiliary
function φN (s, β) as defined in (33), and not from the apparently similar expression

Zs
N − 1

Ns
, (41)

which well reproduces log ZN/N if the limit s → 0 is taken firstly, but does surely
lead to disasters if it is the limit N → ∞ which is taken firstly. Some vigorous
apotropaic finger crossing, or equivalent gesture, is needed in this case, as recom-
mended by Michel Talagrand in [8], in the hope that by proceeding formally at the
end something significant will be achieved. The rigorous foundation of the replica
trick necessarily requires the auxiliary function φN (s, β), whose extension to all
values s > 0 is well founded and well motivated.

By a systematic exploitation of the general interpolation methods [4, 10, 11] it is
easy to establish the following important properties of φN (s, β), as recalled in [1].

It turns out that NφN (s, β) is subadditive in N for s ≥ 1

NφN (s, β) ≤ N1φN1(s, β) + N2φN2(s, β), (42)

for N = N1 + N2, and superadditive for s ≤ 1

NφN (s, β) ≥ N1φN1(s, β) + N2φN2(s, β). (43)

The proof is immediately obtained through an interpolation argument, according
to the strategy introduced in [10], by comparing a system with N sites with two
subsystems of N1 and N2 sites, with N = N1 + N2.

The thermodynamic limit N → ∞ follows in the form

φ(s, β) = lim
N→∞ φN (s, β) = inf

N
φN (s, β), (44)

for s ≥ 1, and
φ(s, β) = lim

N→∞ φN (s, β) = sup
N

φN (s, β), (45)

for s ≤ 1.
The functions φN (s, β) and φ(s, β) are monotone nondecreasing in the parameter

s
φ(s, β) ≤ φ(s ′, β) f or s ≤ s ′, (46)
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and convex in 1/s, for any value of β. These properties easily follows as a conse-
quence of Hölder inequality, as shown in [1].

Moreover, we can also prove that the functions φN (s, β) and φ(s, β) are convex,
not only in 1/s, but also in s. The proof is very simple if we exploit the deep stochastic
variational representations as introduced by Michelle Boué and Paul Dupuis in [12].
Let W (t), 0 ≤ t ≤ 1, be the standard N (N − 1)/2 dimensional Brownian motion,
with componentsWi j (t), so thatWi j (1) = Ji j ,where Ji j are the unitGaussian random
variables appearing in the definition of the partition function (2), (6). Call Z(W (1))
the partition function. Then the following variational representation holds

logEZs = logE exp s log Z(W (1)) =
sup

v

E
(
s log Z(W (1) +

∫ 1

0
v(t)) dt) − 1

2

∫ 1

0
‖v(t)‖2 dt), (47)

where the sup is taken over all N (N − 1)/2 dimensional processes, with components
vi j (t), which are progressively measurable with respect to the filtration generated by
the Brownian motion W , and

‖v(t)‖2 =
∑

(i j)

v2
i j (t). (48)

From this representation we immediately derive

1

s
logEZs = sup

u
E

(
log Z(W (1) + s

∫ 1

0
u(t)) dt) − 1

2
s
∫ 1

0
‖u(t)‖2 dt), (49)

through a simple rescaling v(t) = su(t). Finally we note that the right hand side is
convex in s since log Z is convex in its arguments, and the other term is linear in s.
We see that the convexity in s rests essentially on the convexity of log Z with respect
to the J i j’s, a condition of immediate thermodynamic meaning.

The functions φN (s, β) and φ(s, β) are convex in β, for any fixed value of s.
Here the proof is elementary and does not involve subtle properties based on the
Ghirlanda-Guerra identities [13]. As a matter of fact, in general we can see that for
any random interaction associated to atoms, i = 1, 2, . . . , K , i → Ai , with partition
function Z = ∑

i exp(βAi ), the expression logE(Zs), for any s > 0, is convex in β.
Here E denotes the average with respect to all random content in the Ai ’s. Through
a simple calculation firstly we find for the derivative

∂

∂β
logE(Zs) = 1

E(Zs)
E(sZs−1

∑

i

Ai exp(βAi ))

= s

E(Zs)
E(ZsΩ(A)) = sE′(Ω(A)), (50)

where we have introduced the Boltzmann average
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Ω(A) := 1

Z

∑

i

Ai exp(βAi ), (51)

and the deformed E
′ average

E
′(·) := E(Zs ·)/E(Zs). (52)

Now we take a second derivative in β. Through a simple calculation, we find

∂2

∂β2
logE(Zs) = sE′(Ω(A2) − Ω2(A)) + s2(E′Ω2(A) − (E′Ω(A))2). (53)

Since the two terms in the sum are obviously nonnegative, convexity in β is estab-
lished. It is important to resist to the temptation to resort to integration by parts,
for example if the Ai ’s are Gaussian. In this case the resulting expression, of the
Ghirlanda-Guerra type [13], will be very difficult to handle, as seen for example in
[8].

4 The Replica Trick in the Random Energy Model and the
Emergence of the Universal Order Parameter

In order to explore the potentialities of the “replica trick”, now we shift to the labora-
tory of the Random Energy Model [3]. Here we will show, by following [1] that the
new interpretation of the “trick”, not based on analytic continuation for s → 0, gives
the right order parameter, the right trial function and the right variational principle,
for any value of s, starting only from the elementary variational principle at integer
values s = 1, 2, 3, . . ..

We show that in this case the replica symmetry is minimally broken. The deep
reason for spontaneous replica symmetry breaking arises quite naturally.

Let us recall the expressions of the partition function and the auxiliary function
in the Random Energy Model

ZN (β) :=
∑

σ

exp(β

√
N

2
J (σ )), (54)

E(J (σ )J (σ ′)) = δσσ ′, (55)

so that the J (σ )’s are independent centered unit Gaussian random variables,

φN (s, β) := 1

Ns
logE(ZN (β)s). (56)
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Recall that at s = 1 we have the annealed value

φ(1, β) = log 2 + 1

4
β2. (57)

Firstly let us establish the variational principle for integer values of s. We have by
(56)

φN (s, β) = 1

Ns
logE(ZN (β)s) = 1

Ns
logE

∑

σ a
i

exp(β

√
N

2
(J (σ 1) + · · · + J (σ s))).

(58)
Now we can exchange freely the E and the

∑
(for any fixed N ∈ N). Therefore we

are led to the calculation of

E exp(β

√
N

2
(J (σ 1) + · · · + J (σ s))) = exp(

1

2
β2 N

2
E(J (σ 1) + · · · + J (σ s))2).

(59)
It turns out that

E(J (σ 1) + · · · + J (σ s))2 = s + 2
∑

(ab)

δab, (60)

where the first term s comes from the diagonal terms in the square, while δab = 1 if
the configurations σ a and σ b are equal, and zero otherwise, 1 ≤ a < b ≤ s.

Therefore we have

φN (s, β) = 1

Ns
log

∑

σ a
i

exp(
1

4
Nsβ2 + 1

2
Nβ2

∑

(ab)

δab). (61)

Nowwe split all possible configurations for the σ variables into the sum of K bub-
bles, K = 1, 2, . . . , s, eachmade of sr replicas,with r = 1, . . . , K , sr ≥ 1,

∑
r sr =

s, in such a way that the σ ’s are all equal in each bubble, and all different for different
bubbles.

The order parameters are therefore K , s1, . . . , sK . For each of these specifications
the

∑
(ab) in the exponent reduces to

∑

(ab)

δab =
∑

r

1

2
sr (sr − 1) =

∑

r

1

2
s2r − 1

2
s. (62)

For each system of K bubbles, the sum
∑

σ gives 2N (2N − 1) . . . (2N − K + 1).
Only the dominating terms in N are relevant, therefore we can take into account only
the dominating 2NK .

By collecting all terms, we can write
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φN (s, β) = 1

Ns
log

∑

K ,s1,...,sK

c(N ; K , s1, . . . , sK ) exp(Nsφ̃(s, β; K , s1, . . . , sK )),

(63)
where φ̃ is the trial function

φ̃(s, β; K , s1, . . . , sK ) = β2

4s

∑

r

s2r + K

s
log 2, (64)

and the c(N ; K , s1, . . . , sK ) take into account the neglected nondominating terms,
as explained above, and the combinatorial factors connected to all possible ways to
distribute the replicas into the available bubbles. These combinatorial factors do not
contribute to the dominant terms in N , and are irrelevant.

Clearly the infinite volume limit (N → ∞) of φN (s, β) will be bigger than each
contributing term, and equal to the highest one.

By collecting all information, we have the order parameters K , s1, . . . , sK , and
the trial functional φ̃(s, β; K , s1, . . . , sK ) so that

φ(s, β) = sup
K ,s1,...,sK

φ̃(s, β; K , s1, . . . , sK ) = sup
K ,s1,...,sK

(
β2

4s

∑

r

s2r + K

s
log 2). (65)

In the trial functional the first term has the meaning of an energy, the second is the
entropy. The variational principle is an entropy principle. The entropy is maximum
with the constraint of a given energy.

The sup is easily found. In fact we have to consider that themap sr → s2r is convex.
From this and that 1 ≤ sr ≤ s we have

s2r ≤ −s + (s − 1)sr , (66)

which implies the upper bound on the trial function

β2

4s

∑

r

s2r + K

s
log 2 ≤ β2

4
(s + 1) + K (

log 2

s
− β2

4
). (67)

This bound is linear in K and sharp at the extremal values K = 1 and K = s. There-
fore the sup is reached in one of these extremal values.

At K = 1 (one big bubble), we have the only term s1 = s, and the value of the trial
function is β2

4 s + 1
s log 2. At K = s (many small bubbles made by only one replica

each), we have sr = 1, r = 1, . . . , s, and the value of the trial function is β2

4 + log 2.
We see that there are transition points β2

c (s) = 4 log 2/s, such that

φ(s, β) = log 2 + β2

4
, (68)
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for β ≤ βc(s), and

φ(s, β) = 1

s
log 2 + β2

4
s, (69)

for β ≥ βc(s).
The replica symmetry is never broken. The overlaps are all zero in the first region

and all one in the second region. Remember that we are considering for the moment
only integer values s = 1, 2, . . ..

Now we come to the main point. We show that the variational principle at integer
s, gives a strong hint toward what should be the variational principle for all s > 0.
This is one interesting consequence of the “trick” on interpolating replicas.

Consider the values taken by the trial function

φ̃(s, β; K , s1, . . . , sK ) = β2

4s

∑

r

s2r + K

s
log 2, (70)

for various specifications of the order parameters K , s1, . . . , sK .
Let us start from the simple inequality

1

K

∑

r

s2r ≥ (
1

K

∑

r

sr )
2 = (

s

K
)2, (71)

so that
1

s

∑

r

s2r ≥ s

K
. (72)

Therefore, by defining s/K = m, so that 1 ≤ m ≤ s, we have the estimate

φ̃(s, β; K , s1, . . . , sK ) ≥ 1

m
log 2 + β2

4
m. (73)

This expression is really remarkable. It suggests to consider the convex trial func-
tion for the order parameter m

0 < m → φ̃(m, β) = 1

m
log 2 + β2

4
m, (74)

independent of s, and such that, at least for integer values of s

φ(s, β) = sup
1≤m≤s

(
1

m
log 2 + β2

4
m). (75)

The trial function is independent of s, only the range of the variational parameter
m is taken to depend on s. It is impressive to see that the variational values of
φ̃(s, β; K , s1, . . . , sK ) for different integer values of s, but at the same β, do still
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have as a common lower bound the same reduced trial function φ̃(m, β), only the
range for m may change, according to s.

Therefore, the order parameter m and the reduced trial function φ̃(m, β) are
suggested, in the present interpretation of the “trick”, by the variational values
of the complete trial function φ̃(s, β; K , s1, . . . , sK ). The variational parameters
(K , s1, . . . , sK ), which strongly depend on the value of s, are collapsed to a unique
essential variational parameter m.

The suggestion of the “trick” is proficuous. In fact, through some additional work,
one can easily prove the following.

Theorem 1 For the order parameter m > 0, introduce the convex trial function

φ̃(m, β) = 1

m
log 2 + β2

4
m. (76)

Then, we have in the infinite volume limit (N → ∞) for the auxiliary functionφ(s, β)

for any s ≥ 0 the following variational principle:

φ(s, β) = sup
1≤m≤s

φ̃(m, β), (77)

for s ≥ 1, and
φ(s, β) = inf

s≤m≤1
φ̃(m, β), (78)

for 0 ≤ s ≤ 1.

The inversion from a sup to an inf, by crossing the s = 1 line is completely
analogous to the mentioned inversion from subadditivity to superadditivity.

Since φ̃(m, β) is convex, the sup for s ≥ 1 can be reached only at the boundaries
m = 1 or m = s, and the replica symmetry can not be broken. On the other hand,
when s < 1, it can happen that theminimum for φ̃(m, β) is in the interval s ≤ m ≤ 1,
and replica symmetry is broken.

Globally the space (s, β), for s ≥ 0 is split in three regions. For s ≥ 1 we are
always in the replica symmetric case. For β < βc(s), with β2

c (s) = 4 log 2/s, we
have

φ(s, β) = log 2 + β2

4
. (79)

From
∂

∂β
φN (s, β) = β

2
(1 + (s − 1) < δσσ ′ >), (80)

we see that here < δσσ ′ >= 0 in the limit. For β > βc(s) we have

φ(s, β) = 1

s
log 2 + β2

4
s, (81)
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and here < δσσ ′ >= 1 in the limit.
These results extend the given expression from the case where s is an integer, to

any s ≥ 0. Notice that the line at βc(s) is a first order transition line. The function
φ(s, β) is continuous, as it should be, because of the convexity in β. But its derivative
in β has a sudden jump.

For s < 1 the situation is more complicated. There are two second order transition
lines, the first at βc = 2

√
log 2, the second at β ′

c(s) = 2
√
log 2/s. The two merge at

s = 1, but in general βc < β ′
c(s) holds.

For β ≤ βc, replica symmetry holds,

φ(s, β) = log 2 + β2

4
, (82)

and < δσσ ′ >= 0.
For β ≥ β ′

c(s), replica symmetry is restored in the form

φ(s, β) = 1

s
log 2 + β2

4
s, (83)

but now < δσσ ′ >= 1.
In the region βc ≤ β ≤ β ′

c(s) replica symmetry is broken, and we have

φ(s, β) = β
√
log 2, (84)

independently of s.
Now the formula

∂

∂β
φN (s, β) = β

2
(1 + (s − 1) < δσσ ′ >), (85)

gives

< δσσ ′ >= 1

1 − s
(1 − 2

√
log 2

β
), (86)

with a smooth interpolation between the value < δσσ ′ >= 0 at β = βc, and <

δσσ ′ >= 1 at β = β ′
c(s).

We can see that replica symmetry breaking is not connected to a difficulty in the
analytic continuation of the replica symmetric solution.

In fact let us take β > βc and a large value of s, where

φ(s, β) = 1

s
log 2 + β2

4
s. (87)

At fixed β, there is no problem in the analytic continuation of this expression
to all values of s > 0 well inside the region of symmetry breaking, for s < sc =
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2
√
log 2/β. However, for s < sc, the equation (87) can no longer be true for a very

simple reason.
In fact, at fixed β, the function

1

s
log 2 + β2

4
s (88)

is decreasing, with decreasing s, up to the point s = sc, where there is an inversion,
and the function starts to increase with decreasing s.

Notice that the derivative

∂

∂s
(
1

s
log 2 + β2

4
s) = − 1

s2
log 2 + β2

4
(89)

is positive in s for s > sc, becomes zero at s = sc, and becomes negative in s for
s < sc.

Since φ(s, β) must be increasing in s, we surely have

φ(s, β) ≤ (
1

sc
log 2 + β2

4
sc). (90)

As a matter of fact equality holds here, since for s = sc = 2
√
log 2/β we have

exactly
1

sc
log 2 + β2

4
sc = β

√
log 2. (91)

We say that in this case that “replica symmetry is minimally broken”. Replica
symmetry holds everywhere, with the exception of the region where this can not be
true, by simple thermodynamic reasons. Then, necessarily

φ(s, β) = φ(sc(β), β). (92)

Notice that φ(s, β), at each fixed value of β, is convex both in s and 1/s, as it
should be.

This ends our discussion of the “replica trick” for the Random Energy Model. We
have seen how to reach the right order parameter, and the right trial function, through
a direct inspection of the variational behavior of the trial function for the system at
integer values of s.
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5 The Emergence of the Order Parameter and the Trial
Function in the Sherrington-Kirkpatrick Model

Now we turn to the main topic of this paper. We will try to show that an appropriate
form of the variational principle for integer values of s does immediately suggest
the right form of the variational principle for all value of s, in particular at s = 0.
As in the case of the Random Energy Model, the main ingredients of the emerging
structure are provided by two facts. The new order parameter, call it symbolically x ,
and the trial function φ̃(β, x) must be independent of s. Then the order parameter
x must belong to a convex space, and the trial function φ̃, as a function of x , must
be convex in x . The variational principle for s ≥ 1 should be a supx principle, with
some constraints on x which here we denote symbolically by 1 ≤ x ≤ s, while for
0 < s ≤ 1 it should be a minx principle with constraints on s of the type s ≤ x ≤ 1.

Obviously the two forms of variational principles holding for integer s in the
Sherrington-Patrick model, which we have found in (26) and (32), do not satisfy
these properties. As a matter of fact, in the general form (26), the qualitative aspects
of the order parameters qab do strongly depend on s, while no kind of convexity is
visible. No convexity is also visible in the simplified form (32). As a matter of fact,
it is possible to easily verify that the trial function φ̃(s, β; qab) in (26) is concave
separately in each of the q2

ab. In a sense, we must transform variational principles
where concave trial functions are involved, into equivalent variational principles
where convex trial functions appear, through an appropriate transformation of the
order parameters.

Theway out is very simple, but conceptually very deep.We give a synthetic sketch
of the general strategy.

Firstly we have to resort to an old result coming from a simple form of interpo-
lation, which was presented for the first time in [15]. Let us recall that the infinite
volume limit limN→∞ φN (s, β) = φ(s, β), holding in the form of an inf or a sup, as a
consequence of subadditivity or superaddivity in N , for s ≥ 1, or s ≤ 1 respectively,
can be recast, on a general basis, as a Cesàro limit [18] for marginal quantities in the
volume N , according to φ(s, β) = c limN→∞((N + 1)φN+1 − NφN ). For a generic
sequence N → aN , N = 1, 2, . . . , the Cesàro limit is defined as c limN→∞ aN =
limN N−1 ∑N

K=1 aK . Partial averages are involved, so that the Cesàro limit is equal
to the standard limit if this does exist, but it can exist in some cases where the standard
limit does not exist. A typical case is the alternating sequence 0, 1, 0, 1, . . . which
has 1/2 as Cesàro limit.

Nowwe follow the strategy outlined in [15] for the case s = 0, but easily extended
to any s. Starting from the representation given by (2), we can write

(N + 1)φN+1 − NφN = s−1 log
EZs

N+1

EZs
N

= log 2 + s−1 logEΩs(exp (log cosh(βη(σ))) − B, (93)
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where we have explicitely performed the sum over σN+1, which gives rise to the
log 2 and the cosh put at the exponent under log for convenience,Ω is a random state
depending on the σ1, σ2, . . . , σN , the “cavity variables”, η(σ ) denotes the interaction
of the spin associated to the site N + 1 with the cavity σ variables, given essentially
by

η(σ ) = 1√
N

N∑

i=1

JiN+1σi . (94)

The quantity B in (93) is an additional important term which is not necessary to
specify here. Its form, in terms of the relevant order parameter will be clear later.

The interpolating method proposed here is very simple [15]. Introduce an inter-
polating parameter 0 ≤ q ≤ 1, and an auxiliary function f (q, y), where y is a real
variable, with given final boundary value f (1, y) = log cosh(βy). We will try to
adjust the function f in such a way that the quantity

s−1 logEΩs(exp f (q,
√
qη(σ )) (95)

does not depend on q. If this is the case then

s−1 logEΩs(exp log cosh(βη(σ ))) = f (0, 0). (96)

By taking the explicit derivative with respect to q, and integrating by parts on the
JiN+1 Gaussian random variables (see [15]), with some surprise we immediately
have that the quantity in (95) really does not depend on q provided that the auxiliary
function f satisfies the Hamilton-Jacobi-Bellmann equation

(∂q f )(q, y) + 1

2

(
f ′′(q, y) + x(q) f ′2(q, y)

) = 0, (97)

with final condition
f (1, y) = log cosh(βy). (98)

In (5.4), f ′ = ∂y f and f ′′ = ∂2
y f .

In the Eq. (97) x is a functional order parameter

[0, 1] � q → x(q), (99)

satisfying the bound 1 ≤ x(q) ≤ s, for the case s ≥ 1, and s ≤ x(q) ≤ 1 for the case
s ≤ 1.

By following the methods in [15] it is possible to show that there are order param-
eters x such that the representation given in (96) holds, even in cases where (95) does
not hold, because of a compensation of terms for different values of q.

Notice that the Eq. (97) is nothing but Parisi equation, and the functional order
parameter x is the Parisi functional order parameter [6], extended to any value of
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s. Here, they are given for free through interpolation starting from the marginal
(N + 1)φN+1 − NφN .

Equation (97) with the final condition (98) is easily solved by Gaussian quadra-
tures and limits. In fact, let us start from a piecewise constant order parameter,
expressed through constants q0 = 1 ≤ q1 ≤ · · · ≤ qK = 1, and 1 ≤ ma ≤ s, a =
1, . . . , K , for s ≥ 1, or s ≤ ma ≤ 1, a = 1, . . . , K , for s ≤ 1, in the form x(q) = ma

for qa−1 < q ≤ qa . Then it is immediately seen that the solution of the Eq. (97), with
final condition (98), is given recursively, starting from a = K by the equation

f (q, y) = 1

ma

∫
exp(ma f (qa, y + √

qa − q)), (100)

in the interval qa−1 ≤ q ≤ qa .
A very appealing interpretation of this recursive structure is given in [16], in

the frame of the concept of a multibath having different temperatures and widely
separated timescales.

In any case, it can be immediately shown (see [15]) that f is pointwise continuous
in the L1(dq) norm. In fact, for generic piecewise constant order parameters x , x̄ ,
we have

| f (q, y; x) − f (q, y; x̄)| ≤ β2

2

∫ 1

q
|x(q ′) − x̄(q ′)| dq ′, (101)

where we have written explicitly the dependence of f (q, y) on x and x̄ . The conti-
nuity in the L1 norm allows to express pointwise f (q, y; x) in terms of any L1 order
parameter through a limiting procedure.

We have also that the function f is monotone in x , in the sense that x(q) ≤ x̄(q),
for all 0 ≤ q ≤ 1, implies f (q, y; x) ≤ f (q, y; x̄), for any q and y.

Recently, through ground breakingwork of AntonioAuffinger andWei-KuoChen
[17], it has been proven that f (0, 0; x) is strictly convex in x , in the sense that if
x(q) = αx1(q) + (1 − α)x2(q), with 0 ≤ α ≤ 1, then

f (0, 0; x) ≤ α f (0, 0; x1) + (1 − α) f (0, 0; x2), (102)

where the equality holds only in the degenerate cases, x1(q) = x2(q), or α = 0, or
α = 1. The methods exploited in [17] are partly based on [12].

Now we can invoke the powerful broken replica bounds introduced in [11],
extended to any value of s, in order to produce the right candidate for the varia-
tional trial functional with the correct properties. Let us notice that from (93), (96)
we know that there exists an order parameter x such that

φN (s, β) = log 2 + f (0, 0; x) − B. (103)

Of course, we do not know the value of x , nor the expression of B. However
we can try to compare φN (s, β) with f (0, 0; x) through an interpolation argument
similar to what was done in [11] in the case s = 0. We end up with the following
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sum rule holding for any x

φN (s, β) = log 2 + f (0, 0; x) − β2

2

∫
q x(q) dq + R, (104)

where the error term R shares the following remarkable properties, uniformly in N :
in the case s ≥ 1 it happens that R ≥ 0 provided x(q) is non-increasing in q and
bounded by s ≥ x(q) ≥ 1, we call this conditionX−(s), while in the case 0 ≤ s ≤ 1
the error term is R ≤ 0 provided x(q) is non-decreasing in q and bounded by s ≤
x(q) ≤ 1, we call this condition X+(s).

Therefore, the whole procedure induces to define

φ̃(β; x) = log 2 + f (0, 0; x) − β2

2

∫
q x(q) dq (105)

as the trial functional, independent of s and strictly convex in x , as requested.
The sum rule implies

φN (s, β) ≥ φ(s, β) ≥ φ̃(β; x), (106)

in the case s ≥ 1 with x ∈ X−(s), while

φN (s, β) ≤ φ(s, β) ≤ φ̃(β; x), (107)

in the case 0 ≤ s ≤ 1 with x ∈ X+(s).
Notice that both X−(s) and X+(s) are convex spaces of functions.
For a moment let us go back to the case of where s is an integer. Through a

direct calculation, we immediately see that the replica symmetric trial in (28) can be
expressed also as

φ̃RS(s, β; q̄) = φ̃(β; xq̄), (108)

where xq̄ is the order parameter in X−(s) defined by xq̄(q) = s for 0 ≤ q ≤ q̄ , and
xq̄(q) = 1 for q̄ ≤ q ≤ 1. Order parameters of the type xq̄ are extremals in the convex
space X−(s).

Then we can check immediately that

sup
x∈X−(s)

φ̃(β; x) = sup
q̄

φ̃RS(s, β; q̄) = φRS(s, β) = φ(s, β). (109)

The proof is very simple but instructive. Let us consider any function x that is
piecewise constant in X−(s). It is easy to see that x is given by a convex mixture of
averages on the extremals

x(q) =
∑

a=1

paxqa (q), (110)
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where the weights pa ≥ 0 are expressed through the decreasing sequence of the ma

defined by

m1 = s = (p1 + p2 + · · · + pK )s, m2 = p1 + (p2 + · · · + pK )s, . . . (111)

Due to convexity we have

φ̃(β; x) ≤
K∑

a=1

paφ̃RS(s, β; qa) ≤ φRS(s, β) = φ(s, β). (112)

On the other hand (with φ̃RS(s, β; q̄) defined correspondingly to (27):

sup
x∈X−(s)

φ̃(β; x) ≥ sup
q̄

φ̃RS(s, β; q̄), (113)

because a constraint is added. By putting together the two inequalities, then Eq. (109)
follows.

As a matter of fact this result holds in general, so that we have the Theorem.

Theorem 2 Define the s independent trial functional φ̃(β; x) = log 2 +
f (0, 0; x) − β2

2

∫
q x(q), strictly convex in the functional order parameter then the

infinite volume limits φ(s, β) are given by the constrained variational principles

φ(s, β) = sup
x∈X−(s)

φ̃(β; x) (114)

for s ≥ 1, and
φ(s, β) = inf

x∈X+(s)
φ̃(β; x) (115)

for 0 ≤ s ≤ 1.

For the complete proof we have to rely on the extension of the basic results of
Michel Talagrand [19] and Dmitry Panchenko [20].

6 Conclusion and Outlook

We have seen how to reach the right order parameter and the right trial functional
for the generalized annealed free energy in the case of mean field disordered models,
starting from the elementary case of annealed replicated models. We have treated in
detail the case of the Sherrington-Kirkpatrick mean field spin glass model, and the
case of the Derrida random energy model. Since annealed replicated models can be
easily treated, ourmethods extend also to other interestingmodels as themultispecies
models, the neural networks, the K-SAT problems and similar models, [14, 21]. We
plan to report on them on a future occasion.
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Information and Complexity, Or: Where
Is the Information?
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Abstract We demonstrate how a systematic theory of complexity emerges from
information theoretical concepts. The complexity of a structure may refer to the
difficulty of its description, the encoding of its regularities or the relations between
its elements, components or parts.All suchmeasures can be and usually are quantified
with the help of information theoretical concepts.Wefirst describe those concepts and
then use them to analyze how complexity emerges from interactions between parts or
conversely, canbedecomposed into individual, joint, or complementary contributions
of those parts.We can also use these theoretical concepts to understand the interaction
between a system and its environment and the relations between different levels of
aggregation in complex systems.

Keywords Information theory · Mutual information · Complexity measures ·
Information decomposition · Levels and scales

1 Introduction

The concepts of information and complexity seem to be intricately linked. Complex-
ity notions are quantified in information theoretical terms, and a general principle
might say that a structure is the more complex, the more information is needed to

N. Ay · J. Jost (B) · E. Olbrich · J. Rauh
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
e-mail: jost@mis.mpg.de

N. Ay · J. Jost
Santa Fe Institute for the Sciences of Complexity, Santa Fe, NM, USA

N. Bertschinger
Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

Goethe University, Frankfurt am Main, Germany

© Springer Nature Switzerland AG 2022
S. Albeverio et al. (eds.), Complexity and Emergence, Springer Proceedings
in Mathematics & Statistics 383, https://doi.org/10.1007/978-3-030-95703-2_4

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95703-2_4&domain=pdf
mailto:jost@mis.mpg.de
https://doi.org/10.1007/978-3-030-95703-2_4


88 N. Ay et al.

describe or build it. That principle, however, needs some qualification. One should
distinguish between—usually useful—information about regularities of a structure
or a process and—often useless—information about random details. The question
is not only information about what?, but also where is that information?, that is,
whether and how it is or can be internally stored in a system with limited capacity,
at which level of a process information is needed to predict the continuation of a
process, and where it can be found in a distributed system. In the latter case, we
should, however, not only look for information that is exclusively located some-
where or that is shared between entities, but should also consider complementary or
synergistic information, that is, information that only emerges when several sources
are combined.

These lecture notes describe what is currently known about these questions, and
they develop the underlying theoretical concepts and elucidate them at simple exam-
ples. Also, when we can quantify complexity concepts, we can also try to optimize
the corresponding complexity measures. This will also be systematically discussed.

These notes are the result of a series of lectures that one of us (JJ) delivered at the
Summer School in Como in July, 2018. They present work that we have done jointly
during the last few years. JJ thanks Elisa Mastrogiacomo and Sergio Albeverio for
organizing a very stimulating school, and the participants and the other lecturers, in
particular Luciano Boi, Ivar Ekeland and Frank Riedel, for stimulating discussions.

2 Background: Principles of Information Theory

2.1 Shannon Information

The basic concept is that of the Shannon Information [52] of a random variable X ,
or equivalently, of a probability distribution p, when the possible values xi of X are
realized with probabilities pi = p(xi ). These probabilities satisfy 0 ≤ pi ≤ 1 for all
i , with the normalization

∑
i pi = 1. The Shannon information or entropy then is

H(X) = H(p1, . . . , pn) = −
∑

i

pi log2 pi (bits). (1)

This is the expected reduction of uncertainty, i.e., the information gain, if we learn
which concrete value xi of the random variable X from a known distribution p with
probabilities pi = p(xi ) is realized.

This is the basic example:Whenwe have two possible events occurringwith equal
probability 1/2 (an unbiased coin) we thus gain log2 2 = 1 bit of information when
we observe the outcome.

A fair dice yields log2 6 bits of information.
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2.2 Mutual and Conditional Information

We now consider the situation where we have an additional random variable Y .
In the example of the dice, we could let Y = 0 (resp. 1) for an odd (even) result,

each with probability 1/2. According to the basic example, we have H(Y ) = 1 bit.
When we know Y , there remain only 3 possibilities for the value of X , each with
probability 1/3.

This leads us to the concept of conditional information; in this example, the
remaining uncertainty about X when knowing Y is

H(X |Y ) = log2 3. (2)

Thus, the uncertainty about the value of X is reduced from log2 6 to log2 3 bit when
knowing Y .

The joint information is related to the conditional information by

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ). (3)

Thus, H(X, Y ) ≤ H(X) + H(Y ), and < if X and Y are not independent. In the
example, we have H(X, Y ) = H(X), since the value of X determines that of Y .

The information gain about X from knowing Y is called the mutual information
of X and Y ,

M I (X : Y ) = H(X) − H(X |Y ). (4)

In our example M I (X : Y ) = log2 6 − log2 3 = log2 2 = 1 bit. From Y , we gain 1
bit of information about X .

The mutual information is symmetric,

M I (X : Y ) = M I (Y : X). (5)

The difference structure is perhaps the most important aspect. In many respects, (4)
is more important and fundamental than (1), because we always have some prior
knowledge, expressed here through Y , when we observe some X . Thus, the mutual
information M I (X : Y ) tells us how much we can already infer about X when we
know Y . By then observing X , we only gain the additional information H(X |Y ).

Summary:
H(X) = M I (X : Y ) + H(X |Y ) (6)

H(X) = how much you learn from observing X
M I (X : Y ) = how much you learn about X by observing Y
H(X |Y ) = how much you learn from observing X when you already know Y .

We can iterate the conditioning process with another random variable Z , to get
the conditional mutual information
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M I (X : Y |Z) = H(X |Z) − H(X |Y, Z). (7)

M I (X : Y |Z) quantifies how much additional mutual information between X and Y
can be gained when we already know Z .

Careful: While always H(X |Z) ≤ H(X), we do not necessarily have M I (X :
Y |Z) ≤ M I (X : Y ).
Example: The XOR function (exclusive or):

x y z
0 0 0
1 0 1
0 1 1
1 1 0

where X, Y assume their two values independently with probability 1/2 each.
Thus, M I (X : Y ) = M I (X : Z) = M I (Y : Z) = 0, but M I (X : Y |Z) = M I (X :
Z |Y ) = M I (Y : Z |X) = 1, because knowing the values of twoof the variables deter-
mines that of the third.

2.3 Maximum Entropy

E. Jaynes’ maximum-entropy principle [24]: Take the least informative estimate pos-
sible on the given information, that is, don’t put any information into your model that
is not based on the observed data. Look for p with maximal entropy H(p) under the
constraint that the expectation values of certain observables fα be reproduced,

E p fα =
∑

i

f i
α pi for α = 1, . . . , A. (8)

The solution is an exponential distribution

p j = 1

Z
exp(

∑

α

λα f j
α ) with Z =

∑

i

exp(
∑

α

λα f i
α). (9)

In particular, when there are no observations,

p j = 1

n
for j = 1, . . . , n. (10)
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2.4 Kullback-Leibler Divergence

A reference for the information geometric concepts that will be introduced and used
here and in the sequel is [5]. The Kullback-Leibler divergence (KL-divergence for
short) or relative entropy for two probability distributions p, q

D(p‖q) =
{∑

i pi log2
pi

qi
if supp p ⊂ supp q

∞ else
(11)

is positive (D(p‖q) > 0 if p �= q), but not symmetric, as in general, D(p‖q) �=
D(q‖p).

Example: The mutual information is the KL-divergence between the joint distribu-
tion and the product of the marginals,

M I (X : Y ) = D(p(x, y)||p(x)p(y)). (12)

Among all distributions p(x, y) with the same marginals p(x) = ∑
y p(x, y), p(y)

= ∑
x p(x, y), the product distribution p(x)p(y) has the largest entropy. This is, of

course, a special case of Jaynes’ principle. That is, whenwe only know themarginals,
Jaynes’ principle would suggest to take the product distribution as our estimate.

Example: The space of all probability distributions on two binary variables is a
3-dimensional simplex. It contains the 2-dimensional subfamily of product distribu-
tions. The extreme points of the simplex are the Dirac measures δ(x,y), x, y = 0, 1.
Maximization of the distance from the family of product distributions leads to dis-
tributions with support cardinality two (perfect correlation or anticorrelation) [4].

The formal way of expressing Jaynes’ principle is to project a given distribution
onto the product family E to maximize entropy while preserving the marginals, with
π denoting that projection,

D(p ‖ E) := inf
q∈E

D(p ‖ q) = D(p ‖π(p)) (13)

= Hπ(p)(X, Y ) − Hp(X, Y ).

3 Complexity

In this section, we want to introduce and discuss complexity concepts. But what is
complexity? Some possible answers (see [5, 6] for a systematic discussion): Com-
plexity is

1. the minimal effort or the minimal resources needed to describe or generate an
object. Examples of such complexity concepts include algorithmic complexity
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(Kolmogorov [31], Chaitin [14], Solomonoff [57]); computational complexities;
entropy (Shannon [52]), or entropy rate (Kolmogorov [31], Sinai [56]).

2. the minimal effort or the minimal resources needed to describe or generate the
regularities or the structure of an object. Examples of such complexity concepts
include Kolmogorov minimal sufficient statistics and related notions, stochastic
complexity (Rissanen [46]), effective complexity (Gell-Mann and Lloyd [18]),
excess entropy [53], also known as effectivemeasure complexity [21], forecasting
complexity [64], also introduced as statistical complexity by Crutchfield, Young,
Shalizi [15, 51].

3. the extent towhich an object, as awhole, ismore than the sumof its parts (Aristotle
[1]), that is, the extent to which the whole cannot be understood by the analysis of
the parts of the system in isolation, but only by also considering their interactions.

In order to systematically explore these aspects, we start with the most basic
concept, that of algorithmic complexity [14, 31, 57] (see [33] for a systematic expo-
sition). This concept expresses 1) in its purest form.

3.1 Algorithmic Complexity

The algorithmic complexity of an object, such as a number or a piece of text, is the
length of the shortest computer program that generates or produces the object as
output.1 Typically, one cannot compute this complexity, but only provide an upper
bound by producing a computer program, but does not know whether this is the
shortest possible one.

From a conceptual perspective, the basic premise is that irregular or random
structures have the highest algorithmic complexity, because they do not admit a short
description. In other words, we want to characterize the complexity of a structure
by the difficulty of its description. That is, we ask the question: How much can the
description of a structure be simplified by utilizing regularities?

• Very simple structures need not be simplified any further.
• Random structures cannot be simplified.
• Computational complexity (see for instance the expositions in [38, 39]): Running
time of shortest computer program that can generate the structure: A simple struc-
ture is produced quickly, whereas for a random one, everything has to be explicit
in the program, and so, it does not need to run for a long time either.

• Random structures are not of interest for themselves, but only as members of an
ensemble; it therefore suffices to describe the latter (Gell-Mann and Lloyd [18]).

1 To make the complexity of different objects comparable, one needs to agree on a predetermined
programming language; usually, one assumes some universal Turing machine, and changing that
Turing machine will introduce an additive constant in the upper bounds.
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3.2 External and Internal Complexity

The question that arises from the above concept of algorithmic complexity is how
to compute it, that is, how to find the shortest description of a given structure. Quite
apart from the fact that this depends on the choice of the device we use to evaluate
it (in theory: some universal Turing machine, and the choice of that Turing machine
then introduces an additive constant), in practice, we have only bounded means to
represent a structure. Thus: What do we want to know? We want to

1. know a rich and complex structure,
2. but represent it most efficiently.

More formally, we want to

1. maximize external complexity,
2. but minimize internal complexity.

This perspective was introduced in [25]. For an application in pattern classification,
see for instance [3].

3.3 Optimization Principles

Organisms live in and interact with a complex environment, see for instance [61] (for
a measure theoretical approach, see [7]), and need to maintain their own autopoiesis
[37]. A modern society consists of several complex subsystems that follow their own
rules, but need to interact with each other [35, 36]. With the concept of Shannon
information, we can formulate some abstract principles that either maximize or min-
imize some kind of complexity (we follow [26] here). The basic versions, however,
lead to trivial results, as we shall now see.

1. Gain as much information as possible: Look at random patterns
2. Avoid surprises: Look at blank screen
3. Try to predict future sensory inputs as accurately as possible on the basis of the

current ones (and perhaps try to bring yourself into a state where this is possible
[17])

4. Try to manipulate the environment such that the results of own actions are as
accurately predictable as possible [32].

5. Maximize

M I (St+1 : Et ) −M I (St+1 : Et |St )

= H(St+1) − H(St+1|Et ) −H(St+1|St ) + H(St+1|Et , St ) (14)

to establish the strongest possible correlation between the current state Et of
the environment and future sensory data St+1, but such that this correlation can
already be predicted from the current input St [9]
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To proceed further, let us discuss some questions.

1. Q: Why should a system model an external probability distribution?
A: To make predictions on the basis of regularities

2. Q: How can this be achieved in an environment that is vastly more complex than
the system itself?
A: Detect regularities

3. Q: How to detect regularities?
A: Because of 2), the system is forced to compress.

These answers have some consequences in various fields:

• Psychology: Use heuristics [19, 54, 55]
• Cognition: External versus internal complexity [25]
• Statistics: Avoid overfitting
• Statistical learning theory: Start with models with few parameters and gradually
increase as you learn (Vapnik-Chervonenkis) [59, 60].

3.4 Correlations in Time Series

We can also use the information theoretical notions to evaluate the complexity of a
time series in terms of the correlations that it exhibits. A time series Xt , t ∈ N could
possibly have

• No regularities: H(Xt |Xt−1) = H(Xt )

• the Markov property: H(Xt |Xt−1, Xt−2, . . . ) = H(Xt |Xt−1), or
• Long term correlations, as in texts, genetic sequences, …

To evaluate this, we quantify how much new information is gained when one
already knows n consecutive symbols and then sees the (n + 1)st. (Grassberger
[21]).

For which n is this largest? When n is small, one perhaps cannot predict much,
and if n is large, one may be able to guess the rest anyway.

The larger this n, the more complex the sequence.
For genetic sequences, n ∼ 14 [47], for amino acid sequences (proteins) n ∼ 5.
In literature analysis, such a principle can be used to evaluate the complexity of

language [16].
A more sophisticated concept is the genon concept of molecular biology [30, 48,

49].

3.5 Complementarity

Instead of trying to predict the environment, one can also let the environment do the
computation itself (see [26]).
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If you want to catch a ball, you do not use Newtonian mechanics to compute the
trajectory, but simply run so that the ball appears under a constant angle. The envi-
ronment computes the trajectory, and you only need to sample. This outsourcing of
computation represents one mechanism for the compression mentioned in Sect. 3.3.

More generally, embodied cognition has emerged as a new paradigm in robotics
[43].

3.6 Hierarchical Models and Complexity Measures

In this section, we follow [5, 6]. Returning to Jaynes’ approach, we could maximize
entropy while preserving marginals among subsets of variables. For instance, for a
distribution on 3 variables, we could prescribe all single and pairwise marginals.

Assume that we have a state set V that consists of the possible values of N
variables. We then consider the hierarchy

S1 ⊆ S2 ⊆ . . . ⊆ SN−1 ⊆ SN := 2V , (15)

where Sk is the family of subsets of V with ≤ k elements, from wich we get the
set of probability distributions ESk with dependencies of order ≤ k. For instance,
ES1 is the family of distributions that are simply the products of their marginals.
In particular, for a probability distribution in this family, there are no correlations
between the probabilities of two or more of the variables. In ES2 , we then allow for
pairwise correlations, but no triple or higher order ones.

We point out that one can also consider other families of subsets of V and the
corresponding probability distributions. For instance, when V is the ordered set of
integers {1, . . . , N }, one could consider the family of those subsets that consist of
uninterrupted strings of length ≤ k. This will be our choice when we discuss the
excess entropy below.

We let πSk be the projection on ESk , p(k) := πSk (p). For instance, p(1) is the
product distribution with the same marginals as p.

We have the important Pythagorean relation

D(p(l) ‖ p(m)) =
l−1∑

k=m

D(p(k+1) ‖ p(k)), (16)

for l, m = 1, . . . , N − 1, m < l. In particular,

D(p ‖ p(1)) =
N−1∑

k=1

D(p(k+1) ‖ p(k)). (17)
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If we take configurations with dependencies of order≤ k, we get the Complexity
measure [6] with weight vector α = (α1, . . . , αN−1) ∈ R

N−1

Cα(p) :=
N−1∑

k=1

αk D(p ‖ p(k)) (18)

=
N−1∑

k=1

βk D(p(k+1) ‖ p(k)), (19)

with βk := ∑k
l=1 αl .

p(k) is the distribution of highest entropy among all those with the same correla-
tions of order ≤ k as p.

Thus, we consider a weighted sum of the higher order correlation structure.

Examples:

• Tononi-Sporns-Edelman complexity [58]: αk = k
N addresses the issue of the inter-

play between differentiation and integration in complex systems (for an analysis of
system differentiation from an information theoretical perspective, see also [28])

• Stationary stochastic process Xn: Conditional entropy

h p(Xn) := Hp(Xn | X1, . . . , Xn−1).

Entropy rate or Kolmogorov–Sinai entropy [31, 56]

h p(X) := lim
n→∞ h p(Xn) = lim

n→∞
1

n
Hp(X1, . . . , Xn), (20)

Excess entropy (Grassberger [21])

E p(X) := lim
n→∞

n∑

k=1

(h p(Xk) − h p(X))

= lim
n→∞

(
Hp(X1, . . . , Xn) − nh p(X)

)
(21)

= lim
n→∞

n−1∑

k=1

k

n − k
D(pn

(k+1) ‖ pn
(k))

︸ ︷︷ ︸
=:E p(Xn)

, (22)

where we choose Sk as the sequences of integers j + 1, j + 2, . . . , j + � with
� ≤ k. The excess entropy measures the non-extensive part of the entropy, i.e. the
amount of entropy of each element that exceeds the entropy rate.
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3.7 Interactions Between Levels

The question of emergence, that is, how a higher level that is (at least partially)
autonomous from lower levels, arises in many disciplines. For example, classical
mechanics arises from an underlying quantum structure, but the laws of classical
mechanics are causally closed, in the sense that for computing trajectories of Newto-
nian particles, we do not need information from the quantum level. Likewise, human
genetics rests on the laws of Mendel and does not need to consider an underlying
biochemical level. In other fields it is often not so clear, however, to what extent laws
operate autonomously at a certain level without needing permanent or at least regular
access to some lower level. For instance, does it suffice for understanding macroe-
conomic processes to consider relations between macroeconomic variables, or is
an input from the microeconomic level essentially needed? Or can one understand
social dynamics without access to the psychic and mental states of the participating
individuals? For a general discussion of the issue of emergence from the perspective
developed in the present contribution, see for instance [29].

Here, we describe the approach of [41, 42] (and refer to [41] for references to
earlier work). We consider a structure

X̂
ψ−−−−→ X̂ ′

π

�
⏐
⏐

�
⏐
⏐π

X
φ−−−−→ X ′

with basic level X, X ′ and higher level X̂ , X̂ ′; an arrow Y → Y ′ represents a discrete
time step where X, X ′ form a Markov process, with transition kernel φ, which can
be observed at the higher level X̂ , X̂ ′ in a lossy fashion.

The higher level could result from averaging or aggregating the lower level. Think
of X̂ as a coarse-graining of X given by an observation map π .

We can propose several criteria for the upper process being closed in the sense
that it depends on the lower process only through some initialization.

I Informational closure: The higher process is informationally closed, i.e. there
is no information flow from the lower to the higher level. Knowledge of the
microstate will not improve predictions of the macrostate.

M I (X̂ ′ : X |X̂) = 0 (23)

where the conditional mutual information

M I (X̂ ′ : X |X̂) = H(X̂ ′|X̂) − H(X̂ ′|X) (24)

measures the reduction in uncertainty about X̂ ′ when knowing X instead of only
X̂ .
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I I Observational commutativity: It makes no difference whether we perform the
aggregation first and then observe the upper process, or we observe the process
on the microstate level, and then lump together the states.
Kullback-Leibler divergence between the lower and the upper transition kernel
from X to X̂ ′ is 0, for some initial distribution on X .

I ⇒ I I, and in deterministic case also I I ⇒ I. (25)

(In I, probabilities at X̂ , in II at X )
I I I Commutativity: There exists a transition kernel ψ such that the diagram com-

mutes (Görnerup-Jacobi, 2010)

I I ⇒ I I I, and in deterministic case also I I I ⇒ I I. (26)

II: Transition kernels satisfy 
 = ���T

III: Transition kernels satisfy 
� = ��

I V Markovianity: X̂ , X̂ ′ forms again a Markov process (Shalizi-Moore, 2003).

I ⇒ I V, but I V � I I I. (27)

V Predictive efficiency: A more abstract formulation is that an emergent level
corresponds to an efficiently predictable process, that is, one that can be predicted
in its own terms, without permanent recourse to a lower level.

3.7.1 A Test Case: The Tent Map

We now evaluate the preceding concepts at the example of the tent map, following
[40] (see also [2] for background).

T (x) =
{
2x if 0 ≤ x ≤ 1/2

2 − 2x else

The tent map is a basic example of a chaotic dynamical iteration, because at every
step differences between values can get doubled, and therefore, after several steps,
even very tiny differences between initial values can become macroscopically large.
The folding at x = 1/2 ensures that nevertheless the unit interval is mapped to itself.
Thus, somedifferences also get reduced.Understanding this interplay between ampli-
fication and reduction of differences is surprisingly subtle, as one may also see in
the following.

For a threshold value α ∈ [0, 1] we define the symbolic dynamics
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φα : X → X̂ = {0, 1}

φα(x) :=
{
0 if 0 ≤ x < α

1 else

The sequence xn = T n(x), for an initial value x ∈ X , yields the derived symbol
dynamics sn = φα(xn) ∈ {0, 1}.

The probability of finding sn in the state 0 is the probability that xn lies in the
interval [0, α] (which is α for the tent map).

We consider the symbolic dynamics derived from consecutive time steps

(sn+m, sn+m−1, . . . , sn) ,

with k ∈ N

sk(x) =
{
0 if T k(x) < α

1 if T k(x) ≥ α
.

For comparison, we take a random sequence ξn ∈ [0, 1] (uniformly, i.i.d.), and
consider the corresponding symbolic dynamics

σn :=
{
0 if ξn < α

1 if ξn ≥ α.

The question now is:Are there systematic differences between the symbolic sequence
sn derived from iterations of the tent map and σn?

For α = 1/2, they look the same (in fact, we simply have a Bernoulli sequence:
the values 0 and 1 occur with equal probability 1/2; p(0) = p(1) = 1/2). If we don’t
know x , sn looks as random as σn . The transition probabilities are

p(0|0) = p(1|0) = p(0|1) = p(1|1) = 1/2.

We next consider α = 2/3. Put xn := T n(x).
σn = 0 and σn = 1 occur independently with probabilities 2/3 and 1/3.

When sn = 1, that is, 2/3 < xn ≤ 1, then 0 ≤ xn+1 < 2/3, that is sn+1 = 0. Thus,
there is no transition from 1 to 1. For the state sn = 0, both transitions are equally
likely: when 0 ≤ xn ≤ 1/3, we have 0 ≤ xn+1 ≤ 2/3, that is, sn+1 = 0, while for
1/3 < x ≤ 2/3, we get sn+1 = 1. Thus, for sn ,

p(0|0) = p(1|0) = 1/2, p(0|1) = 1, p(1|1) = 0

while for σn

p(0|0) = p(0|1) = 2/3, p(1|0) = p(1|1) = 1/3.

This leads us to the concept of forbidden sequences.While for the thresholdα = 1/2,
the symbolic dynamics of the tent map cannot be distinguished from that of a random
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sequence, and is Markovian, in contrast, for the threshold α = 2/3, the sequence 11
does not occur, and the symbolic dynamics is different from a random one, but still
Markovian.

For other thresholds, we can also get longer forbidden sequences and non-
Markovian symbolics.

Even from a random sequence ξn , we can derive non-Markovian symbolic dynam-
ics.

Let x1, x2 ∈ [0, 1]; we consider the symbolic rule

s(x1, x2) =
{
0 if x1 ≤ x2

1 if x2 < x1.

For our random sequence, take x1 = ξn, x2 = ξn+1. Thus, we draw the points x1, x2

randomly and independently.
The state probabilities are again p(0) = p(1) = 1/2, but the transition probabil-

ities now depend on the history. The more 1s we have seen, the less likely it is to see
another 1, because then ξn is expected to be very small, hence most likely, ξn+1 > ξn .

We now analyze the information flow of this example. The information flow
between the micro-level corresponding to state xn and the coarse-grained level sn is
the conditional mutual information

M I (sn+1 : xn|sn) = H(sn+1|sn) − H(sn+1|sn, xn) .

Since sn+1 is fully determined by xn , the second term vanishes,

M I (sn+1 : xn|sn) = H(sn+1|sn) ,

i.e., the information flow = conditional entropy on the coarse grained level, which
has a local minimum at α = 2/3.

Instead of drawing information from below, the upper level system relies on
its memory.

4 Information Decomposition

We finally turn to the concept of information decomposition. To motivate it, we start
with the transfer entropy [50]2

2 Such a principle had already been introduced by the econometrician Granger [20] who wrote “We
say that Yt is causing Xt if we are better able to predict Xt using all available information than if the
information apart from Yt had been used.” In the econometric literature, this principle was applied
only in linear settings. As [8], explained, the transfer entropy can be seen as an operationalization
of this principle in a general context.
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T E(Z → X) := M I (X+ : Z−|X−) (28)

where the subscript—refers to the past and + to the future. T E(Z → X) quanti-
fies the amount of information contained in Z about the future of X that cannot be
obtained from its own past.

Problem: X+ = XOR(X−, Z−):
Here, the information in Z− is only useful together with that of X−. The transfer
entropy cannot distinguish this situation from one where X− does not contribute and
Z− determines X+ by itself.

This problem is addressed by information decomposition. It was started by
Williams and Beer [63] (but their measure Imin of shared information does not dis-
tinguish whether different random variables carry the same information or just the
same amount of information), and continued by Harder, Salge, Polani [23], Griffith
and Koch [22], Bertschinger, Rauh, Olbrich, Ay, Banerjee, Jost [12, 13, 44, 45], and
taken up by many other people (see for instance the references in [34]), with appli-
cations in different fields, like neuroscience [62]. There is no optimal solution, but
that of Bertschinger, Rauh, Olbrich, Jost, Ay [13] (called the BROJA decomposition
in the community) is currently the most widely accepted.

To describe our approach, we consider three random variables X1, X2 and S. The
(total) mutual information M I (S : X1, X2) quantifies the total information that is
gained about S if the outcomes of X1 and X2 are known.Howdo X1 and X2 contribute
to this information? For two explanatory variables, we expect four contributions to
M I (S : X1, X2):

M I (S : X1, X2) = SI (S : X1; X2) shared information

+U I (S : X1\X2) unique information of 1

+U I (S : X2\X1) unique information of 2

+C I (S : X1; X2) complementary or synergistic information.

Here, U I (S : X1\X2) is the information that X1 has, but X2 does not have, SI (S :
X1; X2) is the information that both of them have individually. Perhaps the most
interesting term is the last, C I (S : X1; X2), the information that only emerges if
X1 and X2 pool their knowledge. This term is best illustrated in the XOR example
discussed below.

CI(S : X1;X2)
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We consider some examples. AND

x1 x2 s p(x1, x2, s)
0 0 0 1/4
1 0 0 1/4
0 1 0 1/4
1 1 1 1/4

Here, x1 and x2 jointly determine s, but cannot be fully recovered from s.
When 1 has the value x1 = 0, she can exclude s = 1, and analogously for 2.
Thus, when they both see 0, they share the information that s = 0.
The mechanism loses some information. When X1, X2 are i.i.d.,

H(X1, X2) = 2 bits,

but

H(S) = M I (S : X1, X2) = −1

4
log

1

4
− 3

4
log

3

4
≈ .811 bits.

In general, we may have both correlations between the input variables and relations
created by the mechanism that computes S.
We next recall XOR from Sect. 2.2:

x1 x2 s
0 0 0
1 0 1
0 1 1
1 1 0

Neither 1 nor 2 can determine the value of S by herself, but the value of the other is
needed for that. This is a clear case of synergistic information only.

Our approach: Unique and shared information should only depend on the marginal
distribution of the pairs (S, X1) and (S, X2). This idea can be explained from an oper-
ational interpretation of unique information: Namely, if X1 has unique information
about S (with respect to X2), then theremust be someway to exploit this information.
More precisely, there must be a situation in which X1 can use this information to
perform better at predicting the outcome of S.

In this interpretation, 1 possesses unique information about S compared with 2,
if there exists a reward function for which 1 can achieve a higher expected reward
based on her value x1 and her knowledge of the conditional distribution p(s|x1) than
if she knew and utilized instead the conditional distribution of 2.

Thus, unique and shared information depend only on pairwisemarginals. Only the
synergistic information includes higher order dependencies. In that sense, synergy
becomes ameasure of higher order interactions, in the sense of information geometry.
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From a conceptual perspective, and independently of the way the different terms
in the decomposition are quantified, it is important to understand synergy, in order
to clarify discussions that have become quite sterile, like the relative importance of
genes and environment in biology. For a perspective in this direction, see [27].
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Complex Systems: From the Presocratics
to Pension Funds

Frédéric Patras and Victor Planas-Bielsa

Abstract Complexity, as investigated in biology, chemistry, mathematics, physics
and the humanities requires new modes of thinking, beyond the mechanistic and
reductionist standards. We investigate it mostly from a philosophical point of view,
tracing back some of the relevant questions to Greek philosophers. Examples are
taken from probability, economics and finance to feature typical phenomena. We
detail in particular the one of defined benefit pension funds that points out at various
important issues in contemporary finance and economics.

Keywords Complex systems · Presocratic philosophies · Ionian school ·
Atomism · Logical atomism · Defined benefit pension fund · Card shufflings

1 Introduction

The notion of complexity, and the related one of complex systems, have a wide
acception and many fields of application: to quote only a few, living beings in their
globality in biology, energy levels and other properties of large molecules in chem-
istry, chaotic dynamical systems in mathematics and physics, various forms of social
networks in social sciences, and so on. Whereas it is difficult to encompass all these
forms of complex systems under a single generic pattern or set of axioms, it is gen-
erally agreed that one of their main common features is that they cannot be treated

1We refer to the other contributions in the present volume for an illustration of these ideas in various
fields of application.
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with a reductionist approach: that is, splitting the system into elementary components
whose deterministic interactions would allow to explain its global behaviour.1

This insight paves the way to various philosophical and epistemological theories.
Inmany respects, one can argue that complex systems could and even have to produce
their own epistemology. For instance, the idea of chaos in dynamical systems born
with the work of Poincaré has led to numerous reflections on causality, determinacy
andmore generally on themeaning that has to be given to deterministic mathematical
models so sensitive to initial conditions that the unavoidable uncertainty on them
makes the evolution of the system unpredictable (at least in the usual sense of the
word).

This process of interactions between science and philosophy,where the unforesee-
able progress of science guides the development of philosophy,which in turn provides
tools to understand conceptually the scientific revolutions, is typical of what is often
refered to as historical epistemology. The theory was born with G. Bachelard2 in
the first part of the 20th century and is currently revived by Ian Hacking,3 Lorraine
Daston,4 Hans-Jörg Rheinberger5 and many others.

Using this method in the context of complex systems makes sense. In the present
work we will however follow another approach.6 Building on the insight that con-
sidering complexity requires a rethinking of the very foundations of science, we will
argue that another approach is possible, namely by addressing directly the ques-
tion of the interplay between complexity and simplicity. Here, by simplicity we
mean the hope of science and theoretical knowledge to reconduct science to simple,
fixed, permanent elements, a hope that cannot be accounted for only by the idea
of reductionism. The interplay between simplicity and complexity is evolving fast,
however some of its features remain constant and various problems raised by the
Greek thinkers at the very beginning of philosophy are still meaningful today. This
will be the subject of the first section, with, as a modern illustration of the philo-
sophical problems discussed, an example taken from 20th century mathematics: a

2 Lecourt [1], Brenner [2].
3 Hacking [3].
4 Daston and Galison [4].
5 Rheinberger [5].
6 This text is composed of two distinct contributions. The lectures given by the first author on the
philosophy of complexity at the 2018 School Complexity and Emergence: ideas, methods, with a
special attention to economics and finance form the content of the first three sections. The last
section, on pension funds, is instead a joint work: it is based on a working paper written by the two
authors in 2007 for the Monaco Hedge Funds Research Institute that was directed by the second
author. The paper introduced a model aiming at describing some of the risks embedded in defined
benefit pension funds. Soon after, the 2007–2008 financial crisis occurred and our interests shifted.
The project remained dormant and the paper unpublished—after an unsuccessful submission at the
Journal of Applied Corporate Finance we had realized that the model needed a serious upgrade to
be used in practice. However, on the one hand the questions that we raised appear to be timely again
(see the references in Sect. 5). On another hand, in spite of its quantitative shortcomings (structural
models are difficult to implement quantitatively), we also believe that, as it is, it illustrates nicely
various risk and complexity related phenomena.
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convergence phenomena for Markov chains, due originally to Poincaré but revisited
recently.

The second section will deal with the ideas of model and causality. Feynman
diagrams are a classical example in modern physics of entities whose ontological
status in uncertain. Are they simple computational tools, or do they reflect actual
physical phenomena? To address this kind of questions, epistemological tools are
lacking in contemporary philosophy of science. As in the first section, we appeal
to Greek philosophy, not so much to find solutions and answers, but other ways of
thinking. Concretely, we survey Aristotle’s physics and more specifically his theory
of causes -only one of which fits modern, post-galilean science: formal causes. The
section concludes with two examples of applications of Aristotle’s ideas: quantum
field theory and the Black-Scholes paradigm in mathematical finance.

The third section treats various forms of atomism. Russell and Wittgenstein’s
logical atomism is historically one of the most interesting, in spite of well identified
drawbacks. We advocate the meaningfulness of the notion of mathematical atomism
to account for various phenomena, some of them internal to mathematics and related
to the notion of axiomatic systems, others related to applications of mathematics. We
develop from this point of view the example of Asset Backed Securities (ABS). The
section concludes with a plea for considering mathematics as a whole as a dynamical
system. We also argue that historical epistemology and philosophy of concepts in
Cavaillès’ sense support these views.

The fourth and last section deals with one of the key problems of contemporary
economics: the funding of pensions and the ageing of populations. We focus on a
specific issue and present a toy model for the quantitative appraisal of some of the
risks embedded inDefinedBenefit Pension Funds (DBPF). From the epistemological
point of view, the lesson to be learned from the model is that mathematical atomism
(the decomposition of a problem into a family of “atomic models” of its elementary
components) tends structurally to overlook the effects of interactions between these
components. This is particularly obvious for DBPF for which the risks due to the
correlation between the sponsor’s firm value and the fund assets seems to have been
for long overlooked.

2 Presocratic Philosophy Revisited

2.1 Heraclitus and the Philosophy of Nature

Presocratic philosophy is classically divided into various schools:

• Thales (c. 625 BC, c. 546 BC), the “first philosopher”, and the Ionian school with
Anaximander, Anaximenes and Heraclitus (c. 535 BC, c. 475 BC), that started to
develop the theoretical analysis of nature,

• the school of Pythagoras (c. 570 BC, c. 495 BC),
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• Parmenides (end of 6th century BC, beginning of 5th) and the Eleatic school with
Zeno, maybe Empedocles.

Whereas pythagoreanism stands apart due to its stance on the role of numbers
and arithmetic, the Ionian and Eleatic schools correspond to two radically different
ways of thinking about the world, about nature.

The Ionian school features movement, interaction between elementary compo-
nents (fire, earth, water, …). The most interesting of its members, at least in the
context of this article, is Heraclitus, the so-called “obscure philosopher”. He relates
the idea of movement and changes to the question of the very possibility of theoreti-
cal knowledge. The world is in a permanent flux and the stability of what surrounds
us is misleading. Of his writings only few fragments remain,7 most of which are
classical, such as:

We step and do not step into the same river,

or,

You cannot step twice into the same river.

The conclusion drawn from these fragments, due also to Heraclitus, is that:

All the objects of the senses are in a perpetual flux and cannot be the subject matter of
science.

What is still meaningful in Heraclitus is this idea that dynamics, time evolution of
phenomena can be intrinsically an obstacle to the building of theoretical knowledge.

In modern terms, what is at stake is the key ontological difference between objects
conceived as stable, permanent, sometimes eternal beings, and the moving reality of
real beings such as Heraclitus’ river.

2.2 Parmenides and the Modern Idea of Science

Following a tradition in the history of philosophy that has its roots in Plato, Par-
menides is the great opponent to Heraclitus. Whereas changes, flux, movement are
keywords for Heraclitus’ philosophy, the One, the unit, unity are the central ones in
Parmenides’.8 The world undergoes a perpetual movement, a constant evolution, but
the use of concepts allows us to grasp a unity behind the flow. Heraclitus’ river is
again a good example: it is constant as a conceptual reference, but in perpetual evo-
lution as an object of the senses. Unity is therefore the ultimate principle of science
because it is the key to the constitution of units of signification. To think of an object,
a thing, and to name it, means to gather together, in a unit, in a totality, the diversity
of its positions in space and time, its possible changes of form.

7 Heraclitus. Fragments. In Voilquin [6].
8 On the One and the unit in Parmenides, see Patras [7].
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With Parmenides, the idea that there is an opposition between the logical thinking
and the empirical one, between science and doxa, science and opinion emerges.
This opposition is important because it excludes from the realm of science any
discourse that would not fit the constraints of logic –whatever is meant by logic. It is
also clear that living systems, for example, hardly fit in this conception of science,
whereasmathematics or (Greek) astronomy that studyfixed, eternal entities,would be
paradigmatic examples of sciences in this framework. Bymany respects, consciously
or not, our conception of science remains largely dependent on these early views.

Today, when we face the problems raised by Heraclitus and Parmenides, several
answers are possible. One one hand, we know that very often the dynamics of phe-
nomena is driven by permanent laws (think of gravity, electromagnetism, quantum
mechanics …). As such, the corresponding changes are intelligible and can be the
subject matter of science. Classical physics relies on this ground. Quantum mechan-
ics raises already several issues: as far as its basic laws and principles are concerned,
they are fixed and therefore plainly “scientific”. However, the uncertainty intrinsic to
the very notion of quantum states and measurements is already more problematic to
address, and there are still lively debates on the interpretations of quantummechanics
-De Broglie-Bohm versus Copenhagen for example.

Of a very different nature is the question whether or not there is a science of facts
that do not obey fixed laws or that obey laws that we cannot expect to discover in the
present state of knowledge. Economics and finance provide examples: equilibrium
theory, risk neutral pricing and other similar key notions and principles are, struc-
turally, only an approximation of the “real” behaviour of markets. Biology, ecology
and living organisms raise still other problems of the same kind.9

Science is a difficult notion to define and, depending on the given meaning, many
theories can or cannot be considered as sciences, frommathematics to the humanities.
In this context, Heraclitus’ questioning is still meaningful: discussing on the very
possibility of theoretical knowledge in relation to dynamics, changes, transforma-
tions, allows to avoid restricting the debates to the Eleatic view, implicitly dominant
whenever science is discussed.

2.3 Democritus and Atomism

Theopposition betweenEleatic and Ionian philosophers is a very deep and structuring
one. On one side, we have logical requirements, paving the way to mathematical
ones. On the other side, we would also like to have global views on nature, being
able to understand global structures, dynamical variations and changes. Whereas
classical mathematics and physics are largely Eleatic, the mathematical and natural
phenomena studied in the context of complex systems (in the broadest sense of the
term) suggest a synthesis of the two approaches.

9 Bailly and Longo [8].
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From this point of view, Democritus (c. 460 BC, c. 370 BC) is an interesting
philosopher, and it would be tempting to suggest that philosophical investigations
on complexity and emergence first started when his philosophy was discussed and
challenged. He is sometimes considered as a presocratic, although younger than
Socrates. His philosophy, atomism, could have started as a reflexion on Parmenides’,
but leading to very different conclusions:

The metaphysical problem [faced by Democritus] is the same that arose for Anaxagoras and
Empedocles, following the Eleatic criticism of change. How to reconcile the immutability
and the eternity of being with the reality of movement and change, the “way of truth” with
that of “opinion”?10

For Parmenides, there is nothing excepted pure being, eternal, perfectly homoge-
neous, finite and perfect, excluding movement and transformation. Democritus’ idea
was that these features make sense for the ultimate components of matter, the atoms.
However, from the existence of a plurality of atoms follows also the possibility of
motions, interactions,movement and evolution. Themain problem that emerges from
atomism is ultimately how to account for the phenomena starting from atoms?

Without being augmented with a principle of internal stability (such as, for example, the
stoicists’ pneuma), [Democritus’ theory of atoms] does not seem able to account for the
cohesion of bodies. Leibniz would say that it is lacking a vinculum substantiale holding the
atoms together. The difficulty is characteristic of any theory that explains the “complexes”
by mere aggregation of the “simples” –be it Greek atomism, the monadic composite or (in
the 20th century) the logico-atomistic constructions of the world.11

There is indeed a huge gap between the idea of elementary components of matter
and large scale phenomena as we observe them. In modern science, this phenomenon
can sometimes become a well-identified problem: for example, decoherence, the
disappearance of quantum effects showing up in large quantum systems, is still only
very partially understood. This raises considerable tecnhological problems when
trying to build quantum computers with a large number of qbits, one of the current
technological challenges.

2.4 Markov Chains

The problem of emergence of patterns out of elementary “blocks” and their interac-
tions is manifold: there is a wide variety of situations where such phenomena occur.
An interesting cognitive fact is that we are used to such phenomena, and we know
some implicit rules of their emergence out of experience, althoughwithout being able
most often to explain the underlying reasons. In that sense, we have a prescientific
understanding of these phenomena. For example, we are not surprised by the group
flight of tens or hundreds of birds creating a moving cloud.

10 Gil [9].
11 F. Gil, op. cit.
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Limit theorems in probability theory are an important source of examples of
patterns emerging out of elementary schemes. It occurs often that we are aware of the
existence of these patterns and of their concrete meaning and practical consequences.
A striking illustration dates back from the beginning of the 20th century. It is not
an example of complex system: it is infinitely much simpler than the behaviour of
interacting systems such as birds’ clouds. However, in spite of its simplicity, it is
underlying the long term behaviour of many dynamical systems and is also showing
on a very concrete example that we have a fairly deep spontaneous intuition of
relatively complex phenomena that most of us would fail to explain if they were
asked to.

The example dates back to Poincaré’s treatise on probabilities12 and originated
one of the main research lines in probability and statistics: the evolution of random
processes (time-dependent random variables) and random chains (sequences of ran-
dom variables). The problem is the following: start with a deck of cards. We know
intuitively and by experience that if we mix the deck randomly enough, by repeated
shufflings, no information will be available after the mixing, and no one will be able
to take advantage of the ordering of the cards in the deck. Mathematically, this means
that iterated random shufflings of the deck create a random distribution that is close
to the uniform one (the distribution where all orderings have the same probability).

Poincaré’s analysis of the problem is essentially13 as follows. To mix a deck, one
splits it randomly into two decks and then mix the two decks by shuffling the cards.
This latter operation amounts to randomly selecting a card in one of the two decks,
put it on a new deck, and repeat this operation till the mixing is complete. Let us
detail the simplest possible case which is already not completely trivial: a deck of
two cards. The general case can be treated exactly along the same lines with some
knowledge of elementary linear algebra.14

Starting from a deck of two cards 1, 2with 1 on the top (wewrite the configuration
12), splitting and shuffling gives the following four possibilities denoted by arrow
diagrams15:

12 �−→ (12,∅) �−→ 12

12 �−→ (1, 2) �−→ 12, 21

12 �−→ (∅, 12) �−→ 12.

12 Poincaré [10].
13 We treat the case of so-called perfect shuffles. Poincaré’s analysis is actually more general,
allowing essentially for arbitrary non trivial mixings.
14 The reader is invited to read Poincaré’s treatise, astonishingly modern and insightful –the modern
accounts of these phenomena are actually very similar to Poincaré’s.
15 Pairs in the middle denote the two decks resulting from the splitting, for example (1, 2) means
that the first deck is the card 1, the second the card 2, and so on. On the right are the possible
outcomes of the shuffling. For example 12, 21 are the two decks that can be obtained by shuffling
1 and 2.
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Assuming that all mixing paths are equally likely, we get that the outcome of a
random shuffle starting from the deck 12 is 12 with probability 3/4 and 21 with
probability 1/4.

It is convenient to encode this process by a transition (or Markov) matrix:

M =
(
3/4 1/4
1/4 3/4

)

so that, starting with a probability distribution: P(12) = p, P(21) = 1 − p, we get
after a perfect shuffle the new distribution Q(12) = 1/2 p + 1/4, Q(21) = 3/4 −
1/2 p since:

M

(
p

1 − p

)
=

(
3/4 1/4
1/4 3/4

)(
p

1 − p

)
=

(
1/2 p + 1/4
3/4 − 1/2 p

)

The key idea of Poincaré is that the time evolution of probability distributions is
governed by the spectral analysis of the matrix M , which has a first eigenvalue
1, corresponding to the uniform distribution U (12) = 1/2, U (21) = 1/2 (that is,
the uniform distribution is stable under perfect shuffles: it is called the equilibrium
distribution). The second eigenvalue is 1/2 with eigenvector

(
1/2

−1/2

)
.

In general, for a deck of N cards, one can show that the spectrum of the Markov
matrix describing perfect shuffles is 1, 1/2, . . . , 1/2N−1 with the uniformdistribution
spanning the eigenspace associated to the top eigenvalue 1. A group theoretical
method to obtain this result is indicated below.

Coming back to the situation where one starts from the deck 12 and applies k
perfect shuffles, the resulting distribution Qk is obtained by computing

Mk

(
1
0

)
=

(
1/2
1/2

)
+ 1/2k

(
1/2

−1/2

)

so that, Qk(12) = 1/2 + 1/2k+1 and Qk(21) = 1/2 − 1/2k+1, which converges
exponentially fast to the uniform distribution U .

This phenomenon is called convergence to equilibrium of Markov chains and
applies in a wide variety of situations. The case of perfect shuffles that we just
described has actually two mathematical interpretations in the literature, with two
different epistemological implications. We sketch only the mathematical ideas and
refer the interested reader to the literature.

The first one is essentially the one due to Poincaré. Assume that the random
evolution of a discrete system is described by aMarkovmatrix such asM . Then, under
relatively mild “mixing” conditions, this matrix has an isolated eigenvalue 1 whose
eigenspace is associated to an invariant equilibrium distribution P . The modules
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of the other eigenvalues are then strictly less than 1, from what one deduces the
exponential convergence of the system to the equilibrium distribution. This property
can be used for example to devise Monte Carlo methods (probabilistic methods to
approximate numerically random distributions).

The second interpretation is more recent and in the spirit of mathematical struc-
turalism: treating the problem by appealing to general properties of algebraic struc-
tures. It applies to a small class of random systems but is grounded on another large
class of (group-theoretical) phenomena. The process of splitting a deck of cards into
two subdecks and shuffling the resulting two decks is typical of a general combina-
torial principle: in many situations in combinatorics (cards, words, but also partially
ordered sets, finite topological spaces …), such a splitting is encoded by a coalgebra
structure (the structure dual to the one of algebra) formally defined here by

�(x1 . . . xn) =
n∑

i=0

x1 . . . xi ⊗ xi+1 . . . xn,

(where x1 . . . xn stands for a deck of cards labelled x1, . . . , xn) whereas the mixing
is encoded by a product defined recursively by

x1 . . . xn × y1 . . . ym = x1(x2 . . . xn × y1 . . . ym) + y1(x1 . . . xn × y2 . . . ym).

With two cards, we recover our earlier computations in algebraic form: �(12) =
12 ⊗ ∅ + 1 ⊗ 2 + ∅ ⊗ 12,whereas 12 × ∅ = 12 = ∅ × 12 and 1 × 2 = 12 + 21, so
that × ◦ �(12) = 3 · 12 + 21 (three times the configuration 12, one time 21). The
splitting and themixing define together a bialgebra orHopf algebra structure.16 These
ideas were first emphasized by Rota and coauthors,17 giving rise to the use of Hopf
algebra techniques in combinatorics, a very active approach in the field for at least
20 years.

Commutative Hopf algebras such as the one that we just defined abstracting the
definition of perfect shuffles are naturally associated to groups. Groups and commu-
tative Hopf algebras are “dual” notions: commutative Hopf algebras can be though
of as algebras of functions on groups. The spectral analysis of Markov transitions
associated to perfect shuffles appear then as a special case of spectral phenomena
occurringwhen studying, at the level of functions, powermaps x �−→ xk on groups.18

In the end, what wewould like to emphasizewith these examples (discrete random
dynamical systems, group theory, iterations and power maps, exponential conver-
gence to equilibrium…) is that we have a pre-theoretical and intuitive understanding
of many phenomena. Certain are based on our daily experience of the world, others
are more complex: the convergence to the uniform distribution of cards by iterated
shufflings implicitely grounds the way we play card games and the idea of how to

16 These structures are studied in detail in Reutenauer [11], Cartier and Patras [12].
17 Joni and Rota [13].
18 The general theory was developed in Patras [14–16]. The application of these techniques to card
shufflings is more recent and was obtained in Diaconis et al. [17].
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play “fairly”, but the underlying intuition is most likely not based only on experience,
but also on prescientific views on probability and randomness.

The two general mathematical explanations we have presented of the convergence
to equilibrium phenomenon for deck of cards under iterated shufflings point out at
two different orders of phenomena, both deeply grounded in our pre-mathematical
understanding of the world. The convergence of Markov chains can be related to the
very idea of randomness. For example, we know that if we move in a forest alternat-
ing random forward moves and random turns, we will be lost pretty fast, although
explaining this basic fact through a theoretical model is certainly not straightfoward
-one would now use models such as Lévy flights.19 Group and other composition
laws, power maps, are still another family of basic intuitions with different epistemo-
logical and phenomenological roots. Following Dedekind’s approach for example,20

power maps of functions could be the intuition grounding the construction of natural
numbers. These ideas are still discussed in the Philosophy of Mathematics literature,
among others in relation to structuralism and the so-called Benacerraf dilemna.21

Philosophically, these insights resort largely to Husserl’s views as exposed in his
book on the epistemological crisis in modern science22: even the more sophisticated
scientific constructs would rely in the end on our fundamental intuitions and experi-
ences of the world. According to his views, disentangling science from its intuitive
roots would be a dangerous and counterproductive attempt.

3 Models and Causes

The atomistic and other reductionist approaches are bottom up: we start from ele-
mentary components, a dynamics or interaction rules, and try to grasp what happens
at higher levels. This approach is typical, for example, of modern mathematical
finance. Here, in the paradigmatic approach, mark-to-market valuation and risk neu-
tral probabilities, the elementary components are all the available market data: stock
prices, interest rate curves, prices on futures on commodities, swaps and swaption
prices …. From these data, that are assumed to account for all the available knowl-
edge on financial and economic entities, one should be able to account also for the
long term behaviour of complex assets. The example of how this strategy, applied
to Residential Mortgage-Backed Securities (RMBS) and other ABS, resulted in the
2007–2008 financial crisis is relatively well-known—we will come back to these
questions later.

19 Lévy flights are used to model various natural phenomena, a popular one being sharks forag-
ing. Application fields include finance, earthquakes…See e.g., also for references on the subject,
Humphries and Sims [18].
20 Dedekind [19].
21 Benacerraf [20].
22 Husserl [21].
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Fig. 1 The shape of a given
Feynman diagram in φ3

theory

Here, we will consider the other possible approach: starting from the phenomena
as we observe them and trying to understand their structure, their behaviour. Modern,
post galilean, physics has taught us how to proceed: namely by expressing everything
in mathematical language. There is no reason to depart from this programmatic idea
–however another question should still be addressed: what is intended and expected
exactly by a mathematical modeling? For example, should the model account for
the quantitative and dynamical properties of phenomena (in the sense that one could
read in the model the underlying “reasons” for its happening), or should it simply
describe them and give rise to the best possible predictions?

3.1 The Example of Feynman Diagrams

These seemingly innocuous questions are not so easy to answer, even in very abstract
and theoretical frameworks. A classical example is provided by Feynman diagrams in
perturbative quantum field theory (QFT). QFT is one among the most. If not the most
surprising scientific achievements ever. The so-called standard model, describing the
elementary particles and their interactions, is predicting phenomena at an amazing
level of precision. The underlying calculations are based on Feynman diagrams23

such as (Fig. 1).
For those not familiar with them, they can be thought of by analogy with Taylor

series expansions of functions (or, better, with the solutions of differential equations
obtained by Picard iterations, but we stick here to the more familiar example of
Taylor expansions)

f (x) + f ′(x)(y − x) + f ′′(x)
2! (y − x)2 + f (3)(x)

3! (y − x)3 + . . . .

Whereas the components of a Taylor series aim at approximating a function using its
successive derivatives, Feynman diagrams expansions aim at expressing the quanti-
ties relevant in the analysis of particle physics in terms of the fundamental interac-
tions between these particles (the diagrams parametrize the terms of the perturbative
expansion). The diagrams are built out of vertices with incoming and outgoing edges
representing these interactions (for example 3 edges pro vertex in φ3 theory as in the
Figure above).

23 For an epistemology-minded introduction, we refer to Brown [22].
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Feynman diagrams are now iconic. Like pictures of the Bohr atom, everyone knows they
have something important to do with physics. Those who work in quantum field theory,
string theory, and other esoteric fields of physics use them extensively. In spite of this, it is
far from clear what they are or how they work. Are they mere calculating tools? Are they
somehow pictures of physical reality? Are they models in any interesting sense? Or do they
play some other kind of role?24

In the same article, J. R. Brown notices that whereas they clearly are efficient calcu-
lation tools, going beyond this general statement is difficult:

If you ask me how to get from Toronto to Montreal, I could respond in two ways: (1) I could
tell you to drive north until you reach the main highway, then turn right and continue on
for about five hours, or (2) I could give you a map and tell you where you presently are on
it. Both ways provide the information to get you successfully to Montreal. The map in the
second method is clearly a model; the instruction in the first method is clearly not.

He argues then that Feynman diagrams “are a lot like (1) in spite of appearing a
lot like (2). In other words, they are not pictures or descriptions of reality, nor are
theymodels in any reasonable sense”. Other physicists would probably disagree with
his views—arguing, for example, that one should not look for more than efficient
computation tools: these would be the ultimate “models” and there would be no
reason to look for an explanation beyond them.

To restate these ideas, even very classical physical models such as the standard
model of particle physics raise ontological problems. Feynman diagrams are just a
particularly meaningful example: it is not clear whether they are mere computational
tools or correspond, at least partially, to actual physical phenomena and therefore
exist as models of actual physical processes.

3.2 Aristotle on Causality

Togoonwith the programof the first section,wewould like to analyse these questions
by going back, again, to Greek philosophy instead of appealing to the current debates
in science and epistemology. The underlying idea is to broaden the spectrum of point
of views that can be used when trying to understand contemporary science, some
problems raised by ancient philosophers keeping some relevance in spite of the
context in which they were stated.

Modern philosophy, as we know it, was really born with Plato and Aristotle.
Consciously or not, we are still much more dependent on the way they thought about
what science is and should be than many would believe. Modernity has kept and
developed certain of their ideas, but lost contact with other ones.

Plato, as far as theoretical knowledge is concerned, followed largely Parmenides.
Aristotle instead had quite different views, and the ones he had on Physics, although
often sharply criticized since Galileo, could still have some meaningful features.
The classical post-galilean views on Aristotle are not without a ground: he featured

24 Brown op. cit.
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a clear cut distinction between cosmology—the sky and the stars having perfect
mathematical movements of which there can be a science—and the sublunar world
that would be understandable only qualitatively. There would be therefore no room
formodern physics andmodern science in a philosophy of science filledwith qualities
and substances and void of quantitative and experimental methods.

Although largely true, this understanding misses many interesting ideas. As
Galileo himself observed, one should not indeed confuseAristotle’s general approach
of science and epistemology and the applications he made of them to physics and
natural sciences as they existed five centuries B.C.

What Aristotle wanted to understand, as a philosopher, is once again related to
presocratic philosophies: the fact that there is a contradiction between the constant
changes that physical beings are enduring and the permanence of knowledge. How-
ever, according to him, we cannot exclude from the field of theoretical knowledge
movement and changes, contrary to what Parmenides and Plato had suggested. His
Physics is therefore in the end mainly concerned with the essence of movement, of
becoming -in opposition to the Eleatic study of the essence of beings, of permanence,
of the underlying substance.

Aristotle’s physics is not “physics” in modern sense. Or, it is not the main sense of physics
in his work. It is enough to think of the fact that its object is what, in a programmatic sense,
modern physics avoids to consider a theme of inquiry. The subject matter of Aristotle’s text
is the ϕύσ ιζ [nature] and the things that belong to it. And, as the latter is characterized
as having in itself the principle of movement, the meaning and the structural conditions of
movement form the content of the aristotelician tradition.25

Moreover, and this point is also essential, movement for Aristotle does not only
mean mechanical movement, but all the transformations that we can observe:

What we indicate with the term “movement” translates the two notions that Aristotle uses
often indifferently and as synonymous, that is κν́ησ ισ and μεταβoλή, contains in itself the
various forms of movement: generation and corruption, alteration, increase and decrease,
translation; that is, using the categories as a reference scheme, movement according to
substance, quantity, quality and position.26

Understood in that way, Aristotle’s physics is another attempt, quite different from
atomism but equally meaningful, to go beyond the presocratic apory and the oppo-
sition between Ionian and Eleatic philosophies. One of the problems that Aristotle
faced was to understand general notions such as the infinite; space; the vacuum; time;
the continuum. All these questions have been central to the 20th centurymathematics
and science; they all have an intrinsically ontological and metaphysical dimension
that one shouldn’t ever forget. Here, we will emphasize another side of his physics,
namely his theory of causality.

Aristotle distinguishes four types of causalities27: material, formal, efficient and
final and, “since there are four causes, the physicist has to study all of them and,

25 Ruggiu [23].
26 Ruggiu [23].
27 Aristotle, Physics [194b16–195b30, 198a14–b9].
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considering all of them together, has to search, as a physicist, for the “reasons”, that
is, matter, form, movement, finality.28 The distinction between material and formal
goes back to a key distinction in his work, namely the distinction between matter
and form. He always insists that the subject matter of physics in neither matter nor
form, but the interplay between the two. Form abstracted from matter is instead the
subject matter of mathematics.

Formal causality refers therefore to ideas, structures, platonism, mathematics.
Material causality would instead be typical of Ionian philosophy, the phenomeno-
logical understanding of matter (fire, water, earth …). Efficient causality relates to
themovement and likely also to earlier philosophers like Anaxagoras. Final causality
refers at last to finality –the kind of causality that would be typical of early attempts
to understand, for example, living systems.

3.3 Aristotle’s Causes in Modern Science

Excepted for formal causality, these ideas seem very far away from modern science.
Aristotle’swork hints at the fact that we shouldmaybe have broader views on science,
its philosophy and its goals. This point of view has been defended recently by Francis
Bailly and Giuseppe Longo in their book, Mathématiques et sciences de la nature.
They refer explicitly to Aristotle and his theory of causality, some of their analysis
echoing our previous developments:

Physics and biology, in contrast to very abstract paradigms still dominating in the founda-
tions of mathematics, are constituted respectively around the concepts of matter and life,
seemingly so concrete although they cannot be defined internally in these disciplines. They
also present the difficulty of appealing all the time and essentially to the requirements of
rational coherence, largely mathematized in physics.29

They discuss then explicitely how some of Aristotle’s causalities could translate
in the framework of classical quantum mechanics.

Weprefer to consider here themore fundamental framework ofQFT.A striking but
seemingly unnoticed fact is indeed thatmany textbooks ofQFT follow spontaneously
a pattern that fits largely an aristotelician-type analysis of foundations (althoughmost
likely without any intention of the authors to follow such a pattern).

Formal causality relates to themathematical consequences of fundamental princi-
ples of invariance (or symmetry),which translate into physical principles andphysical
quantities.30 Time translation invariance of the theory leads to the conservation of
energy. Space translation invariance leads to conservation of momentum. Rotational
invariance to the conservation of angular momentum.

28 Op. cit. [198a23].
29 Bailly and Longo [8].
30 The mathematical framework being Noether’s principle: roughly stated, symmetries translate
into conservation laws and conserved quantities.
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Material causality is embodied instead in the definition of concrete theories and
quantum fields. This amounts to specify the underlying “matter” and its properties.
For example, photons, electrons and their interaction rules, in quantum electrody-
namics together with the choice of the physical constant giving the strength of the
interaction.

Efficient causality deals with movement and dynamics. The quantization of the
evolution equations of classical theories leads to the Schrödinger equation and other
equations that allow in the end to describe the free motion and the interaction of
particles. The Feynman diagrams we discussed in the first section appear when
expanding perturbatively their solutions.

These threemoments of the construction of theories of quantumfields are of course
intimately related and cannot be disentangled: it is actually classical in physics to
use conservation laws to derive equations of motion. They do however correspond
to three different moments of the analysis: symmetry principles; the definition of
“objects” (particles as quantum fields); the study of transformations and motion.

It is an interesting exercise to analyze other fields through this filter of causality. In
mathematical finance, the other field that we have chosen to illustrate epistemological
problems related to complexity, the foundational model is Black-Scholes’. Once
again, looking at the model different moments emerge in its constitution.

Formal causes arise from the mathematical translation of assumptions on the
behaviour of financial markets, in particular the absence of riskless profits (no arbi-
trage opportunity principle or “no free lunch” under the hypothesis of efficient mar-
kets and perfect information).

Material causes include the existence of stocks, risk free assets, but also transac-
tion rules (possibility of short selling), markets behaviour (liquidity of assets, trans-
action costs …). In a subtler way, they also include the financial analog of physical
constants in QFT: for instance implied volatility for vanilla call and put options.

Efficient causalitywould refer instead to the dynamics of assets. The basic assump-
tion here is the lognormal behaviour of stock prices, which is usually grounded the-
oretically on the central limit theorem and the idealized view of many independent
agents cooperating to asset price formation.

4 Mathematical Atomism

Epicure’s philosophy had already raised the problem of emergence of global patterns
out of local interactions. This problem, central to atomists’ philosophy, admits many
variations, in various contexts.
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4.1 Logical and Mathematical Atoms

Logical atomism is one of the best known. In many respects it is based on the same
assumptions as classical atomism: the idea that there are elementary components
(of thought, of sensation …) from which our knowledge of the world would be
assembled. Logical atomism was conceived in the early 20th century by Russell31

and Wittgenstein32 and was very influential inside the Vienna Circle and for the
edificationof analytic philosophy.Theopposition that developed amongphilosophers
of science such as Cavaillès or Lautman against the Vienna circle was largely rooted
in their anti-reductionist stance against this conception of science and knowledge.33

In philosophy, logical atomism stricto sensu was abandonned relatively rapidly,
partially because of the criticisms ofWittgenstein himself who realized that language
and therefore thinking is not the mere atomistic description of the structure of the
world and that the formation of meaning obeys to much more complex rules. How-
ever, the firstWittgenstein is an heraldic figure and his initial views remain influential
and underly a deep trend in logic and philosophy of language.

Another form of atomism is more relevant to discussions around reductionism,
complex systems and mathematical practice, namelymathematical atomism. We use
this name to denote the widespread temptation to think that the scientific description
of phenomena using mathematical models can always be obtained as the sum or con-
jonction of atomic models, each taking in charge a particular feature of the problem.
The problem of mathematical atomism is not so much the fact that the atomic models
can be wrong, than the fact that the emergence of patterns out of their interactions
often requires new ideas, new methods.

The 2007–2008 financial crisis34 provides an illustration of the drawbacks of
mathematical reductionism, entangled with other modelling and practical problems
stemming from financial markets and finance.

The crisis made evident that complex financial products such as RMBS were
much more difficult to price than expected. Practitioners did then value them using
a standard approach as far as interest rates, inflation and similar financial quantities
were involved, andMonte-Carlo simulations for the long-term behaviour of the other
parameters. This approach was mixed to a mark-to-market one, parameters implied

31 “BertrandRussell (1872–1970) described his philosophy as a kind of “logical atomism”, bywhich
he meant to endorse both a metaphysical view and a certain methodology for doing philosophy […].
According to logical atomism, all truths are ultimately dependent upon a layer of atomic facts, which
consist either of a simple particular exhibiting a quality, or multiple simple particulars standing in
a relation. The methodological view recommends a process of analysis, whereby one attempts to
define or reconstruct more complex notions or vocabularies in terms of simpler ones […]. Russell’s
logical atomism had a profound influence on analytic philosophy in the first half of the 20th century;
indeed, it is arguable that the very name “analytic philosophy” derives from Russell’s defense of
the method of analysis”. Klement [24]. See also Russell [25].
32 Wittgenstein [26].
33 See e.g. Castellana [27] and Benis Sinaceur [28].
34 For an in-depth and technical analysis of the role of mathematical models in the context of the
crisis, we refer to Brigo et al. [29].
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from the existing prices of contracts being used to derive the value of the newly
issued ones.

After the crisis, it became clear that the financial industry, whose behaviour had
been driven by various reductionist paradigms, had overlooked the key ingredients of
mortgage valuation. One key issue was the intrinsic contradiction between the short
term views of mark-to-market methods (suited for traders whose aim is to optimize
the value of their portfolios at high reporting frequencies) and the very long term
behaviour of the underlying contracts (typically 20 years, or more). Concretely, the
financial techniques used were based on a double transposition. First, the methods
in use to create and manage vanilla derivatives on stocks (call, puts …) had been
extended to the management of credit risk (bonds, corporate or sovereign loans …).
This first step raised already serious problems as default risk (that is, the risk encoding
defaults on the repayment of interests or notional on bonds, bankruptcies …) is of a
quite different nature from the one of the risks embedded in the random evolution of
stock prices.35 Then, the same methods were extended further to pools of products
with embedded credit risk such as mortgages, student loans, and so on. Still another
layer of abstraction was under development (CDO squared, based on pools of pools
of contracts) when the industry collapsed with the crisis.

The conflict we alluded to (between short term and long term views) was reflected
in the discrepancy between two financial communities with different cultures, back-
grounds and paradigms: say, derivative issuers and traders on one side; mortgage
issuers and retail bankers on another. What the short term views failed to understand
was:

• The key role of the housing market. As far as prices raised, borrowers in difficulty
could resell their houseswith a benefit and repay theirmortgages.When themarket
fell, prices collapsed and liquidity dried.

• The difficulty of modelling the evolution of interest rates and inflation on the long
term. Market-implied solutions (based on the traded forward values of rates) do
account only for the present views of markets and not on a serious modelling of
their long term dynamics.

• Various risks were embedded implicitely in RMBS, difficult tomodel and take into
account: evolution of the labourmarket, possibility for the borrowers to renegociate
their loans or repay them earlier …

• Lastly, the question of the quality of the loans, that could be addressed at “low”
levels (as occurs in retail banking) but not at the “macro” level of large pools of
mortgages.

Although these issues may seem to have little to do with mathematical reductionism,
they do indeed.Most of the ingredients used in the overall pricingmethodwere based
on relatively sound and robust principles. For example, it is sound to link the interest
rate served on a loan to the risk that the borrower will not be able to repay it and
will default on the scheduled paiements. Using long term forward rates on sovereign

35 On the pricing of credit derivatives, see e.g. Bielecki and Rutkowski [30].
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bonds and other information available on bond markets makes sense for an insurance
company managing dynamically a portfolio of pension funds.

On a behavioural side, the key mistake was to use these practices and models
outside of the domain where they were born and had been conceived. There is cer-
tainly a tendency in human beings to use their existing knowledge as a proxy for
knowledge still to be developed,36 and to trust their beliefs outside the area where
they can be considered as representing safely reality. On a purely mathematical side,
the key mistake was the idea that standard stochastic models that could make sense
separately for the various involved parameters would still hold when combined with
each other: wrong ways risks resulted from the correlation between all the parame-
ters. This phenomenon will be studied in detail in the last section of the article on a
simple toy model.

4.2 The Principle of Reason

Mathematical atomism has also philosophical roots and a technical background. The
starting point, in themodern area, could be a principle stated by Leibniz: the principle
of reason -principium rationis, der Satz vomGrund. The German philosopherMartin
Heidegger dedicated a long essay to the question,37 and we will implicitely follow
part of his analysis.

The principle of reason can be stated simply as “every effect has a cause”. Of
course, this may look like a tautology, but it is not when one looks at the true meaning
of the sentence—and actually at all its possible meanings. We know from Aristotle
that “cause” has several meanings, and as much can be expected from the principle
of reason. For example, it can be interpreted as a cognitive principle: we should
always be able to trace back a phenomenon to intelligible and rational principles and
grounds. This is how the principle is often understood. One can go a step further
and ask the description of causes to be mathematical—as it happens for example in
physics. The problem is then that the mathematical model is often confused with the
explanation of the phenomena, without a proper questioning of the limits or adequacy
of the model. This phenomenon is worsened when mathematical models are used
without an adequate training in mathematics, the latter helping to understand the
ground of the underlying hypotheses.

The example of QFT is interesting from this point of view: we are able to describe
very precisely particle physics with a complex mathematical apparatus. However,
whether or not this means that we truly understand what a particle, what the world
truly is, unclear: why has the theory this form? Why are the physical constants the
ones we observe and not different ones? Why is the mathematical theory plagued
with infinites that one has to remove through a complex process without a clear

36 This tendency is closely related to the notion of paradigm in the work of Kuhn andmore generally
in the context of historical epistemology. On the latter, see Brenner [2].
37 Heidegger [31].
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physical meaning, called renormalization, to get sensible results? On another hand
nobody can claim to understand what a particle is without learning first its definition
in the context of classical non relativistic quantum mechanics (where plenty of onto-
logical problems already arise); then the definition of quantum fields, of Feynman
propagators for free particles; at a higher level, the role of ghost fields, and so on.
There is no proper understanding without mathematical models, but these models
should not terminate the quest for a proper understanding. In other words, formal,
mathematical “causes” cannot be easily disentangled from the other ones –this is one
of the interesting sides of the philosophy of complexity. Complexity, complex sys-
tems, are indeed particularly interesting from this point of view since, by their very
nature, they raise the problem of relating effects with causes, explanations, models,
in situations where these relations are all but evident.

4.3 Mathematics as a Dynamical System

Turning back to mathematics, Heidegger observed that the latine word “principium”
and the German “Grund-Satz” do not say exactly the same thing and that the corre-
sponding Greek word would be “axiom”, with still another meaning. For Aristotle
and till recently, axioms were essentially propositions that hold true because express-
ing an obvious content. Another important idea of Aristotle, put in action in Euclide’s
treatise, the Elements, was that mathematics (arithmetics and geometry at the time)
can be obtained by looking at elementary objects (planes, lines, points …), con-
struction rules, and their interactions governed by a small set of fundamental axioms
and principles. This is probably the first example of highly sophisticated intellec-
tual construction built on elementary components. The Euclidean model would lead
to Hilbert’s views on axiomatics and later to the Vienna circle, and Russell’s and
Wittgenstein’s theses on logical atomism, with the consequences that we have briefly
described on 20th century philosophy of science.

Euclide’s Elements, due maybe to their beauty and deepness, have created indeed
the illusion that mathematics can be generated from basic sets of axioms, whereas the
underlying generation process is highly complex and can certainly not be accounted
for by a mere invocation of axioms and logical principles. The structure of groups,
with all its theoretical ramifications and applications, has for example little to do
with the axioms of set theory on which it is supposed to be founded. Another way
to state these ideas is that it is true that modern mathematics can be presented as
meaningless symbols interacting through a limited number of rules -the axioms of
set theory for example. But this presentation will never be able to account for the way
they progress, for their meaning, and why they have so many applications. The view
that axiomatics would be the right way to account for all the structure and meaning
of mathematics has however been for long popular as, in biology, the idea that DNA
would contain all the information on living, biological systems. The idea is still
popular in some circles of mathematical philosophy, although loosing momentum in
view of its scarse implications when it comes to analyse actual mathematics.
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Herewe suggestmathematics as awhole should be understood, at leastmetaphori-
cally, as a very sophisticated dynamical system. Its growth, its evolution are governed
by a mix of internal constraints; internal goals that emerge spontaneously from its
progress; external motivations, like the ones coming from physics, chemistry, biol-
ogy, economics, and lastly by esthetical requirements and metaphysical views. In
other terms, mathematics deserve to be explored from the point of view of dynamics,
complexity and emergence.

We do not pretend to develop this program in the context of the present article, but
we will stress its possible meaningfulness from the point of view of the development
of mathematics and philosophy of mathematics during the 20th century and the
beginning of the 21st. A possible path would be to build the analysis of mathematical
progress jointly on the two traditions of historical epistemology and philosophy of
concepts on one side, the problematics and mathematical developments surrounding
complex systems on another side. Following such a path would also go along with
the current reappraisal of historical epistemology in the philosophy of sciences to
which we have already alluded.

To explain why such as approach makes sense on theoretical grounds, we will
largely follow here the account of the French philosophy of mathematics given
by H. Benis Sinaceur.38 According to an epistemological vein running from Brun-
schvicg and Bachelard to Cavaillès, Lautman and, more recently, Desanti, Granger or
Vuillemin, mathematical concepts live and develop. The internal logic of the objects
and theories governs the dynamics, but in an unpredictable way:

In mathematics, links are made across a complex network scattered with concepts connected
to each other by organic links of different kinds. This ‘organism’ is not stable. It evolves
constantly under the influence of local changes, which have repercussions on the configura-
tion of the whole. The development of the concept is more important than the concept itself.
With mathematics we are dealing with a ‘conceptual progression’. The concept lives, and
develops.39

To describe the logic underlying this life and development, Cavaillès and others
used the Hegelian term ‘dialectic’.40

The dialectic is a logic, but it is not a formal logic […]. It expresses the, so to speak, substantial
link between the necessity and the unpredictability of mathematical development.41

Sinaceur’s analysis is focused on the history of epistemology but still conveys
implicitely a strong thesis: we have to take into account the legacy of these theo-
ries when trying to understand contemporary science. The mathematics studied by
Cavaillès and Lautman -and by later philosophers of the same tradition- are differ-
ent from the present ones in many respects. However, their ‘organic’ conception of

38 H. Benis Sinaceur, op. cit.
39 H. Benis Sinaceur, op. cit.
40 Interestingly, logical atomism was deliberately and explicitely devised by Russell against
hegelianism. See his essay on the subject “The Philosophy of Logical Atomism” in his Collected
Papers, vol. 8, op. cit.
41 H. Benis Sinaceur, op. cit.
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mathematical development is still meaningful: we should just adapt it to the new
phenomenology of mathematical progress, discoveries and problems. Conversely,
advances in mathematics, in the study of living systems as a whole, in random
growth processes, can help to revisit the ideas of organic links between concepts,
of organic growth, of a network of ideas and theories or of mixing necessity and
unpredictability.

5 Pension Schemes as Complex Systems

Although they are not solved, the nature of the problems raised by the valuation of
ABS is now relatively well understood. The funding of pensions raises very similar
difficulties that have been for long underestimated due to a poor understanding of
the joint dynamics of the involved parameters.42 The aim of this section is to show
how simple models allow to capture some of these phenomena.

5.1 Defined Benefit Pension Funds

Whereas in defined contributions plans the employer is only committed to serve
determined contributions to the pension plans of its employees, in defined benefit
plans43 it is committed to abund a fund that will serve pensions. Their amount is
determined in advance, hence the terminology “defined benefit”. The fund is invested
in assets, typically bonds and stocks. The employer, called the sponsor of the fund,
carries the investment risks but can also benefit from surpluses of the fund. An
important concern with defined benefit plans is their possible underfunding and its
consequences on the survival of the sponsor and the future paiement of pensions.

Whether considering defined benefit pension funds (DBPF) or defined contribu-
tions ones, there is a long list of parameters that are interacting to contribute making
any modelling of the system of pensions and any analysis of its long term reliabil-
ity extremely difficult. One can quote: the evolution of interest rates and inflation;
the evolution of stock markets and world growth; the ageing of populations and the
calculation of future mortality rates, and so on.

We focus here on a single issue: the wrong way risk created by the investment of
a DBPF in stocks. Many features of the problem are now well-known. First of all,
DBPFmanagement has for long relied on accounting rules and portfoliomanagement
practices that did not take into account the very particular life insurance-like features

42 As mentioned earlier, the results in this section were announced in a working paper written by
the two authors in 2007. We thank Lionel Martellini for pointing out to us the timeliness of these
questions and publications addressing them, in particular Martellini and Milhau [32] and Inkmann
et al. [33].
43 Defined benefit plan assets amounted to 7.9 trillion in the U.S. at the end of 2013. Inkmann,
Blake and Shi, op. cit.
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of pension funds. The accounting rules were often based on high expected returns
on the equity pension fund portfolio; this tended to give a fully inadequate picture
of the level of funding.

These problems tend to be solved progressively, following the introduction of
regulations, better rules of practice, modern accounting standards44 and a better edu-
cation of trustees (the managers of the fund, in the UK terminology) to the concepts,
tools and methods of modern quantitative finance. However, the quantitative treat-
ment of pension liabilities still remains a domainwhere the theory has not crystallized
into a stable set of paradigms, as illustrated by the ongoing debates among practition-
ers and academics in all the domains involved: among others, accounting, corporate
finance, insurance or regulation. Here, we will address a specific problem: how the
asset allocation of a DBPF affects the borrowing capacities of the sponsor and its
probability to go into bankruptcy. This is part of the general problem of understand-
ing how corporate and DBPFmanagement are entangled, and how this entanglement
should be dealt with.45

We follow the line of researches inaugurated byR.Merton and his collaborators.46

Merton pointed out that, knowing that theU.S. stockmarket incorporate shortfalls and
surpluses of pension funds into its estimates of company value, the most important
issue in the field is related to the risk induced by the very structure of the asset
allocation of pension funds assets. Pension funds have debt-like liabilities and hold
equity-like assets. However the corresponding impact of the risk profile of the firm
is not taken into account as it should be, among others because of the accounting of
the pension-related debt. Notice that, from the various stakeholders point of view,
investing in a company with a DBPF is a leveraged bet on the equity market, most
often without a clear view on the size of the leverage.47

On the technical side, our approach relies on the so-called structural methodol-
ogy to assess the default risk of a company and on the corresponding credit risk
tools linking the default probability of the firm and its funding costs with its capital
structure.48 The conclusions of our simulations may be summarized as follows: from
a quantitative risk-management approach, the impact of the asset allocation of the
pension fund, in particular the effect of the dependence of its assets value on the stock
market is certainly much higher than what one would naively expect. It is doubtful
that the risk induced for the sponsor by the fund investments into equity is correctly

44 See for instance Chapman et al. [34] or Cowling et al. [35].
45 Similar problems can be raised for government-funded plans, which are a burden on a state’s
finances that can hinder its growth, lead to an increased deficit and other similar consequences. The
idea that a state cannot fail on its long terms commitments is largely an illusion.
46 See for instance Jin et al. [36] or Merton [37].
47 Industry managers and shareholders have progressively become aware of the problem. One could
insist on reallocating the DBPF assets towards equity volatility immune assets but this practice can
have a negative impact on the long term in a context of low returns on bonds. Deriving tools to
decide what is the best possible asset allocation from a risk management point of view is actually
one of the main problems.
48 See T. Bielecki and M. Rutkowski, op. cit. and L. Martellini and V. Milhau, op. cit.
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priced by the market. Also, corporate managers may not fully appreciate the extent
of their exposure to the stock market.49

5.2 Wrong Way Risk

Let us start with a brief description of the problem featured, as well as of its quantita-
tive implications, both for the sponsor (the firm) and for the beneficiaries of a given
scheme.Thedebt Dt of thefirmdecomposes into twocomponents: the debt associated
with the DBPF accounted deficit Dft , and another component, Dit := Dt − Dft that
we call the industrial debt. The pension deficit Dft , in turn, relies on two components:
the fund assets At , which are invested in bonds, equity and other financial instruments
to which the fund liabilities Lt have to be subtracted, that is the discounted value at
time t of the future pensions cash flows: Dft = Lt − At . The equity component of
the pension assets is usually large and makes the fund’s deficit behavior share many
features with the behavior of the market capitalization of a firm.50

Below, we address the effect on the risk profile of the firm of the correlation of
the sponsor’s corporate value with the equity component of the pension assets. The
sponsor is more likely to default when the stock market and the economy behave
poorly. However, in such a situation, and because of the equity allocation of the
fund, the pension deficit will also deteriorate, enhancing mechanically the default
probability of the sponsor. This kind of effect is usually referred to as wrong way
risk; a company with pension assets highly invested into equity could be expected to
have higher funding costs than a company with pension assets highly invested into
bonds, everything else being equal.

5.3 A Merton Model for Defaults

Let us start with classical assumptions. Our research is conductedwithin the so-called
structural approach, introduced by Merton, Black, Cox and others.51 A corporate
valuation interpretation of the structural model relies on the idea that a firm defaults
when the value of its assets falls below the value of the debt. In this interpretation,
the process Vt introduced below would therefore stand for the corporate value at t
and K for the expected value of the debt at a given maturity T .52

49 From a historical perspective, this phenomenon is illustrated by the spring 2005 credit crisis that
followed the downgrades in the U.S. Automotive sector—a direct consequence of the depreciation
of the U.S. pension funds assets after the 2001 stock market crisis.
50 The observation was used by Merton to revisit the WACC computations in the presence of a
DBPS.
51 Black and Cox [38], Merton [39].
52 Stated in this way, this is, of course, a too strong assumption for variouswell-documented reasons.
For instance, there is a considerable uncertainty on corporate assets valuation; the safety covenants
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Concretely, one introduces a lognormal process

dVt = μVtdt + σVtdBt (1)

and a threshold K . Here Bt is a standard Brownian motion. The firm defaults at time
T if and only if VT ≤ K , where K can be computed from pT , the default probability
at time T of the sponsor53:

pT := P(VT ≤ K ). (2)

In practice, it makes sense to assume that the threshold K of the structural model
should, at first order, vary in proportion to the debt. This will be one of our assump-
tions, so that, for example, if the pension fund deficit accounts for 60% of the firm’s
liabilities, a 10% increase of the deficitwould result into a 6% increase of the threshold
value K . Random variations of the fund deficit related to the stock market volatility
should therefore impact the default threshold K and ultimately the default probability
and credit spread of the firm.

Since our goal is to study the variations of the default probability of the firmwhen
the asset allocation of the DBPS varies, we will use as a benchmark the case when
the fund is fully invested in bonds and will study how the firm’s default probability
changes when the asset allocation varies.

We first have:
VT = V0 exp

(μ− σ2

2 )T+σ BT , (3)

and:

pT = P(VT ≤ K ) = P(BT ≤ σ−1(log(
K

V0
) − (μ − σ 2

2
)T ))

= N (σ−1(log(
K

V0
) − (μ − σ 2

2
)T )),

where N stands for the cumulative Gaussian distribution. Solving for K gives the
value of the threshold corresponding to the market implied default probability pT :

K = V0 exp

[
(μ − σ 2

2
)T + σN−1(pT )

]
.

triggering default are strongly related to the value of the debt, but bankruptcy rarely occurs as the
mere effect of the asset values being less than the debt, since a firm would normally do various
attempts to restructure its debt before such a phenomenon occurs, and so on.
53 The quantity pT can be computed from the corporate credit spread s (the spread of corporate
bonds relative to the risk free rates), the expected recovery rate and the corresponding hazard rate h,
where pT = 1 − exp−hT . If credit spreads are not available, the hazard rate may be approximated
from the knowledge of the company’s rating (and the corresponding default probability). See T.
Bielecki and M. Rutkowski, op. cit.
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We assume, for simplicity, a constant risk free interest rate r . Since we do not want
to enter into considerations that would be irrelevant for our purposes, such as the
composition of the fund, the number of beneficiaries already receiving a pension, the
refunding of the scheme by the sponsor, we assume that the scheme’s liabilities Lt

behave as a risk free asset.
We write α for the proportion at t = 0 of the fund’s assets A0 invested in stocks,

As
0 = αA0, and Ab

0 for the fund’s assets invested in bonds assumed to be risk free.
Assuming that no rebalancing occurs we get:

Lt = expr t L0,

Ab
t = expr t Ab

0 = (1 − α) expr t A0.

Assuming that the equity component At
s of the fund assets follows a lognormal

process with drift μ′ and volatility τ , we get:

As
t = αA0 exp

(μ′− τ2

2 )t+τ B ′
t ,

where B ′
t is the time t value of a Brownian motion. We further assume that the two

Brownian motions Bt and B ′
t have correlation ρ: dBtdB ′

t = ρdt . The total T value
of the fund’s assets is then given by:

AT = A0(α exp(μ′− τ2

2 )T+τ B ′
T +(1 − α) exprT ).

When the fund assets are totally invested in bonds (α = 0), we get as benchmark
value of the fund deficit DfT :

Df benchT = A0 exp
rT −L0 exp

rT = Df0 exp
rT .

In general, DT = DfT + DiT and DfT depends of α:

DfT (α) = A0(α exp(μ′− τ2

2 )T+τ B ′
T +(1 − α) exprT ) − L0 exp

rT .

We finally assume that no refinancing takes place and that DiT behaves determinis-
tically: DiT = Di0 expr t .

Recall that, according to our Merton-type assumptions, the threshold K behaves
proportionally to DT . We get finally:

K (α) = K
DT (α)

Dbench
T

where K is computed in the benchmark case (K = K (0)) and, for the default prob-
ability dependency on α,
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pT (α) = P(VT ≤ K (α)).

Our following numerical results are based on aMonte-Carlo solution of this equation.

5.4 Quantitative Results

5.4.1 First Scenario

Sponsor with strong fundamentals: μ = 8%, σ = 15%, μ′ = 8%, τ = 20%, r =
3.5%, hbench = − log(1 − pT (0)) = 50bp, Di0 = 150M$, L0 = 500M$, A0 =
400M$.

The following table expresses the dependency of the 1Y default probability on
the correlation between the sponsor and the stock market and on the proportion of
the fund’s assets invested in bonds. The first (0,0) entry is the benchmark 1Y default
probability obtained under the assumption that the fund assets are fully invested in
risk free assets.

ρ
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

0.1 0.005 0.006 0.007 0.007 0.008 0.009 0.01 0.011 0.012 0.012 0.013

0.2 0.007 0.008 0.01 0.012 0.013 0.015 0.017 0.019 0.021 0.023 0.025

0.3 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03 0.033 0.037 0.041

0.4 0.014 0.017 0.021 0.026 0.03 0.034 0.039 0.043 0.048 0.053 0.057

0.5 0.019 0.024 0.03 0.035 0.041 0.046 0.053 0.058 0.063 0.069 0.074

0.6 0.027 0.033 0.04 0.047 0.053 0.059 0.066 0.073 0.079 0.085 0.092

0.7 0.036 0.044 0.051 0.058 0.066 0.073 0.08 0.088 0.096 0.103 0.108

0.8 0.046 0.055 0.063 0.071 0.079 0.088 0.096 0.103 0.11 0.118 0.124

0.9 0.057 0.066 0.075 0.086 0.094 0.102 0.11 0.117 0.125 0.132 0.139

1 0.07 0.08 0.089 0.098 0.107 0.115 0.124 0.131 0.139 0.147 0.154

Numerical results show that the effect of the stock market volatility on the 1Y
default probability can be significant: even without taking into account the spon-
sor/stock market correlation, the default probability moves from 50 bp in the bench-
mark hypothesis (fund assets fully invested into bonds) to 270 bp when 60% of the
fund assets are invested into equity. Moreover, taking into account the sponsor/stock
market correlation strongly enhances the default probability.

For example, under the assumption of a fund asset portfolio invested at 60% in
equity, the effect of the correlation on the 1Y default probability is of around 60 bp
if ρ = 10%, 130 bp if ρ = 20%, 200 bp if ρ = 30%, and so on.
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5.4.2 Second Scenario

Sponsor with weaker fundamentals and higher DBPS deficit under low returns and
growth hypothesis:μ = 1%,σ = 25%,μ′ = 2%, τ = 20%, r = 3.5%, hbench = 500
bp, Di0 = 250 M$, L0 = 500 M$, A0 = 300 M$.

ρ
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.049 0.049 0.048 0.049 0.049 0.049 0.049 0.048 0.049 0.049 0.049

0.1 0.05 0.05 0.052 0.053 0.054 0.056 0.056 0.057 0.058 0.059 0.06

0.2 0.051 0.053 0.056 0.058 0.06 0.061 0.064 0.066 0.068 0.07 0.071

0.3 0.053 0.057 0.059 0.063 0.066 0.069 0.072 0.075 0.078 0.081 0.083

0.4 0.056 0.061 0.065 0.069 0.073 0.076 0.08 0.084 0.088 0.091 0.095

0.5 0.06 0.065 0.07 0.075 0.08 0.085 0.089 0.094 0.099 0.102 0.106

0.6 0.064 0.069 0.076 0.081 0.087 0.093 0.098 0.103 0.108 0.112 0.118

0.7 0.067 0.075 0.082 0.088 0.095 0.101 0.107 0.113 0.119 0.124 0.129

0.8 0.073 0.081 0.088 0.095 0.103 0.109 0.115 0.122 0.129 0.0.135 0.14

0.9 0.078 0.087 0.095 0.103 0.11 0.118 0.126 0.132 0.138 0.145 0.15

1 0.083 0.092 0.102 0.11 0.119 0.126 0.134 0.14 0.148 0.154 0.161

The results show, once again, a strong enhancement of the default probabilities.
However, precisely because of the weaker fundamentals of the sponsor in the second
scenario and the higher underfunding of the pension fund, its exposure to the equity
component of the pension fund portfolio is lesser than the exposure of the sponsor in
the first one. It follows that the wrong way risk due to the investments of the pension
fund is relatively weaker in that situation.

5.5 Financial Conclusions

Investing in equity is a very tempting solution for DBPS managers, in view of the
long term higher expected returns that can be achieved on the stock market. How-
ever, this strategy may have devastating effects on the sponsor, enhancing its credit
spreads and, under bad market and/or idiosyncratic conditions, leading the company
to bankruptcy. Our computations, undertaken under conservative modeling assump-
tions, show that the effect of the DBPS investment strategies may be much greater
than onewould probably naively expect. This is particularly the case if the correlation
of the sponsor’s corporate value to the equity market is high.

Corporate managers that want to cooperate with pension funds asset managers to
achieve together determinate risk objectives (which should be in the interest of all
the sponsor’s stakeholders and may occur e.g. when discussing the refunding of the
fund’s deficit) may do so in two ways. The first one is reducing the exposure to the
stock market by switching from equity to bonds in the DBPS portfolio. The second
is to reduce the correlation of the sponsor to the equity component of the portfolio,
a result that may be achieved by switching investments, for example to stocks with
a different exposure to economic cycles than the sponsor, to other classes of assets
or to foreign stock markets.
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5.6 Epistemological Lessons

Pension funds and more generally pensions are an enlightening example of complex
systems. Trying to decompose these systems into elementary components will most
often fail to account for their joint dynamics on which the behaviour of the system is
ultimately based. The case study we have chosen to develop, featuring the effect of
correlation between a DBPF sponsor and the stock markets investments of the fund
is only one among many phenomena that could be analyzed in relation to pensions.
For instance, our computations indicate short term effects (1Y) of this correlation,
whereas more important problems can be expected to arise on the long term, due
to the structure of pensions payoffs. In practice, the problem of modelling pension
schemes is not only theoretical: parameters such as correlation are extremely difficult
to calibrate on existing data—even more when they are supposed to account for long
term phenomena. These questions can typically not be solved by brute mathematical
force and require a delicate blend of technical knowledge, experience and…cartesian
good sense.

The fact that this kind of phenomena took so long to be identified seems very sur-
prising in retrospect: the articles by Merton and collaborators on the problems raised
by pension plans date from 2004–2006. Insurance companies are used to handle
these questions and have been doing so for long using relatively robust accounting
and actuarial methods. The shift that could be observed during the last 20 years is
based on the replacement of these classical techniques by financial ones inspired by a
mark-to-market philosophy backed by the use of mathematical models originating in
derivatives trading and related areas. Analyzing this shift is not so easy. Some robust-
ness has been lost by trading long term views on financial markets and economy by
short term ones. Mark-to-market techniques increase the volatility of valuations and
prices and enhance wrong risks effects: a bad economical environment and bearish
stock market conditions will simultaneously deteriorate the valuation of a firm and
increase the underfunding of its DB pension plan, leading potentially to feedback
effects that can put the survival of the sponsor at risk. On another hand, another kind
of robustness has been gained. For example, discounting future pensions payoffs
using discretionary rates to compute their present value, as it had been done earlier,
was most certainly putting the plans at risk.

At a technical level, the example we treated is based on the use of default prob-
abilities and therefore, implicitely, credit spreads and hazard rates: notions whose
mathematical theory (as we used it) has been developed relatively recently, in the
context of credit derivatives. The understanding of the effects of correlation between
assets has also experienced deep advances due to the problems raised by multiname
credit derivatives such as ABS, CDOs, RMBS and the like. Being able to use now
these techniques to analyze problems is certainly useful and leads to quantitative
assesments that would be impossible otherwise.

Our conclusions are the therefore mitigated. Whereas mathematical atomism is
certainly dangerous when used blindly, a good blend of it with global viewsmay pave
the way to a good modelling of the phenomena. Or, using a direct language, math-
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ematics cannot be avoided, but cannot be relied on too much and blindly. Progress
in finance and economics in domains such as the one of pensions funding has to go
on two legs: creating models; criticizing them and fixing boundaries to their validity.
By experience, this second leg tends to be amputated. To paraphrase Aristotle: This
is ignorance not to be able to understand what a mathematical argument proves and
what it does not.54

References

1. Lecourt, D.: L’épistémologie historique de Gaston Bachelard. Vrin, Paris (2002)
2. Brenner, A.: Quelle épistémologie historique? Kuhn, Feyerabend, Hacking et l’école bachelar-

dienne. Revue de métaphysique et de morale 49(1), 113–125 (2006)
3. Hacking, I.: Historical Ontology. Harvard University Press (2002)
4. Daston, L., Galison, P.: Objectivity. Zone Books (2007)
5. Rheinberger,H.-J.: OnHistoricizingEpistemology:AnEssay. StanfordUniversity Press (2010)
6. Voilquin, J.: Les Penseurs grecs avant Socrate: De Thalès de Milet à Prodicos. Garnier (1964)
7. Patras, F.: The Essence of Numbers. Lecture Notes in Mathematics. History of Mathematics

Subseries. Springer, (2020)
8. Bailly, F., Longo, G.:Mathématiques et sciences de la nature. La singularité physique du vivant.

Hermann (2006)
9. Gil, F.: Démocrite, Encyclopedia Universalis (1988)
10. Poincaré, H.: Calcul des probabilités. Gauthier-Villars (1912)
11. Reutenauer, C.: Free Lie Algebras (London Mathematical Society Monographs). Clarendon

Press (1993)
12. Cartier, P., Patras, F.: Classical Hopf Algebras and Their Applications. Springer (2021)
13. Joni, S.A., Rota, G.C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2),

93–139 (1979)
14. Patras, F.: Homothéties simpliciales. Ph.D. Thesis, Université Paris 7 (1992)
15. Patras, F.: La décomposition en poids des algèbres de Hopf. Ann. Inst. Fourier 43(4), 1067–

1087 (1993)
16. Patras, F.: L’algèbre des descentes d’une bigèbre graduée. J. Algebra 170(2), 547–566 (1994)
17. Diaconis, P., Pang, C.A., Ram, A.: Hopf algebras and Markov chains: two examples and a

theory. J. Algebraic Comb. 39(3), 527–585 (2014)
18. Humphries, N.E., Sims, D.W.: Optimal foraging strategies: Lévy walks balance searching and

patch exploitation under a very broad range of conditions. J. Theor. Biol. 358, 179–193 (2014)
19. Dedekind, R.: Was sind und was sollen die Zahlen?, 1st edn. Auflage, Vieweg, Braunschweig

(1888)
20. Benacerraf, P.: What numbers could not be. Philos. Rev. 47–73 (1965)
21. Husserl, E.: Die Krisis der europäischenWissenschaften und die transzendentale Phnomenolo-

gie: Eine Einleitung in die phänomenologische Philosophie (The Crisis of European Sciences
andTranscendental Phenomenology:An Introduction toPhenomenological Philosophy) (1936)

22. Brown, J.R.: How do Feynman diagrams work? Perspect. Sci. 26(4), 423–442 (2018)
23. Ruggiu, L.: Introductive Essay to Aristotle’s Physics in Aristotle, Physics. Rusconi (1995)
24. Klement, K.: Russell’s Logical Atomism. The Stanford Encyclopedia of Philosophy. Spring

(2020 Edition)

54 Aristotle’s original sentence in his Metaphysics � reads: This is a crude ignorance not to distin-
guishwhat requires a demonstration andwhat does not. Hewas probably arguing against Heraclitus,
Democritus and their followers.



136 F. Patras and V. Planas-Bielsa

25. Russell, B.: Collected Papers of Volume 8, The Philosophy of Logical Atomism and Other
Essays: 1914–1919. Slater, J.G. (ed.). Allen and Unwin, London (1986)

26. Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge and Kegan Paul Ltd., London
(1922)

27. Castellana, M.: Alle origini della nuova epistemologia. Il Congrès Descartes del 1937. Il Pro-
tagora 17-18, Lecce (1992)

28. Benis Sinaceur, H.: From Kant to Hilbert: French philosophy of concepts in the beginning of
the twentieth century. In: Ferreirós, J., Gray, J. (eds.) TheArchitecture ofModernMathematics:
Essays in History and Philosophy, pp. 349–376. Oxford University Press (2006)

29. Brigo, D., Bielecki, T., Patras, F. (eds.): Credit Risk Frontiers: Subprime Crisis, Pricing and
Hedging, CVA, MBS, Ratings and Liquidity. Wiley-Bloomberg Press (2011)

30. Bielecki, T., Rutkowski, M.: Credit Risk: Modeling, Valuation and Hedging. Springer (2004)
31. Heidegger, M.: Le Principe de raison, trad. A. Préau. Gallimard, Paris (1962)
32. Martellini, L., Milhau, V.: Capital structure choices, pension fund allocation decisions and the

rational pricing of liability streams J. Pension Econ. Finance 1–21
33. Inkmann, J., Blake, D., Shi, Z.: Managing financially distressed pension plans in the interest

of beneficiaries. J. Risk Insur. 84(2), 539–565 (2017)
34. Chapman, R.J., Gordon, T.J., Speed, C.A.: Pension, Funding and Risk. Institute of Actuaries

and Faculty of Actuaries (2001)
35. Cowling, C.A., Gordon, T.J., Speed, C.A.: Funding Defined Benefit Pension Schemes. Institute

of Actuaries and Faculty of Actuaries (2004)
36. Jin, L., Merton, R.C., Bodie, Z.: Do a firm’s equity returns reflect the risk of its pension plan?

J. Financ. Econ. 81(1), 126 (2006)
37. Merton, R.C.: The Real Problem with Pensions. Harvard Business Review (2004)
38. Black, F., Cox, J.: Valuing corporate securities: some effects of bond indenture provisions. J.

Finance 31, 351367 (1976)
39. Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance

2, 449–470 (1974)



From Complex Dynamics to the
Architecture of the City

Ferdinando Semboloni

Abstract The paper presents a theory for the architecture of the city. The aim of
the theory, based on the imitation of cities that grow spontaneously, is to propose
a method for designing a city. In doing so, we apply the concept of pattern derived
from Alexander’s design method. Using the pattern method, we conceive the city
as a tool to solve the problem of communication between its inhabitants. We then
explain the basic center-area pattern as a practical way of solution. The hierarchical
combination of these patterns results in the urban structure. The method is shown
with an example of a city design made through a Netlogo computer platform. With
the help of the computer, the road network is then designed and its characteristics are
studied using graphical topological surveys that allow the definition of squares and
urban axes, the main components of the urban space. Based on centrality measures,
we establish the use of the land and the shape of urban blocks. The conclusions
underline the need for a comprehensive approach to the conception of the city.

Keywords Town design · Complex systems · Zipf’s law · Pattern language

1 Introduction

Understanding cities as a result of a process of self-organization is a recent achieve-
ment of urban science [5, 39]. The main sign of this process is the persistence of
Zipf’s law [54] in many aspects of urban life, starting with the distribution of the
population in cities. The internal organization of cities has also been recognized as
self-similar [17], according to the definition of a fractal object.

As large infrastructure projects are realized according to a plan, the spontaneous
rapid expansion of cities and new knowledge emerging from the field of complexity
raise the question of the role of urban planning and design. Indeed, it makes no sense,
one might say, to plan what is already managed by a spontaneous process, even if
planning, being a political process, is just another aspect of society’s self-regulation.
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Self-organization questions the existence of an external order. Therefore it can
represent a challenge for architecture which, as the name suggests, aims to establish
the principles for the construction. That echoes the dispute between creationists and
evolutionists and is probably the reason why the science of complexity has received
so little attention in the practice of urban planning and design.

Contemporary architecture is a global phenomenon and architects belong to dif-
ferent cultures. It is therefore difficult to give a general explanation of the current
trends in a nutshell. At the origins ofmodern architecture, there was awant to provide
people with a healthy, sunny home, well integrated with the natural context. But now,
one of the features that immediately catches the eye is the quest for an architectural
artifact to differentiate itself from the urban context, with strange shapes, heights,
and materials. We are witnessing a plethora of languages, from deconstructivism to
digital architecture. Their intention seems to amaze the user, as in theBaroque period,
with the difference that in that period, however, the ways of surprising people were
much more subtle and intellectual, while now they primarily rely on technology.
As if these unusual, and surprising architectures were trying to talk to each other
by screaming louder and louder without considering the urban fabric to which they
belong and the other common buildings that surround them. That is probably one of
the reactions of architecture to the complexity of the world.

There are other trends in architecture that don’t appear so dramatically at odds
with their surroundings, but rather, realize buildings to make people happy. Some
architects use a classical language arising from the tradition of the European city they
want to imitate [29]. Other consider architecture as an anthropological expression,
emerging from the culture of people in search of quality and beauty. I am referring to
Paul Oliver’s work on vernacular architecture [35], or architecture without architects,
according to Bernard Rudofsky [41]. In the research of Christopher Alexander [1]
on elementary forms of construction, there is not a style, nor the need to impress
people, but only an effort to make people happier to live in harmony in a place. My
idea builds on a similar understanding: I propose to approach the design of the city by
imitating the existing reality and replicating the urban characteristics resulting from
the process of self-organization. This approach, that I will explain in the following,
make it possible to develop new applications of the science of complexity whose
role becomes that of finding the invariant characteristics of self-similar objects, to
reproduce them in a project.

Considering the city as an object is a classical position of architecture [48]. The
reference is to Alberti’s famous statement that the city is a large house and the house
a small city. This statement was used by Alberti to show that rooms in a house, like
buildings in a city, have a specific function. But it is also used tomean that architecture
may claim its right to control the entire urban form. This desire finds its expression
in the ideal and Utopian city [19]. But a city is a complex object that emerges from
the interaction of many entities. Stephen Marshall calls it a collective entity [31].
How can it be considered a unitary object? That is the fundamental problem that I
will try to address with imitation.

The text presents the theory for the design of a city and is structured as follows.
After a brief review of the main theories on urban systems, the dichotomy between
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designed city and spontaneous development is presented. Building on it, we propose
an urban design that imitates the characteristics of the spontaneously growing city.
Then we analyze the architectural knowledge based on the transformation of objects,
and the related concept of pattern that includes problem and solution, to move on to
the concept of imitation of invariant time-independent characteristics. By using the
pattern method, we conceive the city as a tool to solve the problem of communication
among its inhabitants. We then explain the basic center-area pattern as a practical
way of solution. The hierarchical combination of these patterns results in the urban
structure. The method is shown with an example of a city design realized through
a computer Netlogo platform. With the support of the computer, we then design the
road network and analyze its features by means of graph topological surveys that
allow defining squares and urban axes, the main components of urban space. Based
on centrality measures, the use of land and finally the shape of the built urban blocks
are established.

2 Basic Classic Theories on Urban Systems

Since the idea is to mimic the essential characteristics of cities, let’s recap somemain
notions of theories about their organization. One of the main concepts behind the
explanation of cities is that of a market area: a city is a market place where people
gather to sell or buy goods.

Let us consider the case of an agricultural firm which sells goods with different
transportation cost. The farther the land is from the market, the higher the transporta-
tion cost and the lower is the rent offered for the use of the land. The farmer who
bids the highest wins the auction for the land and cultivates it. These are the basic
assumptions of von Thunen’s theory for explaining the decrease in land rent (1824),
a revised form of Ricardo’s theory of marginal rent. From this theory, it follows the
distribution in concentric circles of agricultural production around the urban center,
depending on the difficulty of transporting the product. The theory was applied, one
century and a half later, by Alonso [3] to the internal organization of the city, based
on land rent.

Customers too, have to pay transportation costs to buy goods in the market. The
price of the good therefore increases as the distance from the market growths. This
assumption underlies the market area concept which is the core of the Central place
theory of Christaller (1933) [12]. The basic hypotheses are (1) goods with differ-
ent purchase prices and frequencies, (2) a maximum distance that the customers are
willing to travel to buy the good at themarket price, and (3) aminimumnumber of cus-
tomers belowwhich, due to fixed costs, it is not convenient to sell or produce the good.
Under these hypotheses, the theory demonstrates that a hierarchically organized net-
work of centers is formed with hexagonal market areas of extension depending on
the frequency of purchase of the good and that these market areas overlap.

Only later in 1949, searching for the macroscopic laws of phenomena consisting
of a multitude of events, Zipf, a quantitative linguist, formulated his law on the
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distribution of population among cities [54]. Zipf’s law for cities, known as the Rank-
size-rule, is an empirical law that describes the population of a city belonging to a
geographical area, as inversely proportional to its position (called rank) in descending
ordering of cities by population size. This law is essentially a power law, similar to that
formulated by Pareto about the distribution of income among individuals. It provides
a rule about the distribution of population between cities which is the macroscopic
result of complex dynamics.

This brief review would not be complete without mentioning Thomas Schelling’s
contribution to segregation [43]. Schelling starts from a simple assumption concern-
ing the tolerance of an individual to live next to another individual different in ethnic
characteristics or wealth. Applying this rule many times and for many individuals,
the emergence of homogeneous areas is observed. The theory of segregation inte-
grates the results of the bid rent theory proposed by Alonso-von Thunen because
being close to similar people may result in economic advantages.

The theory of segregation is dynamically formulated using the complex systems
method. Others define the final state without saying how to get there. For this reason,
there havebeen studies to showhowadynamic systemcould reach the state of equilib-
rium hypothesized by the theories, especially for Central place, and Rank-size-rule.
The Zipf’s law, which seems to be the most mysterious, due to its validity for many
phenomena, has had dynamic explanations from various viewpoints and empirical
studies that have confirmed it for urban systems. Similarly, the other theories have
also been confirmed by empirical studies.

Zipf’s law remains the most important reference for this study since it is the
only one that describes the macroscopic and invariant characteristics of many urban
phenomena. But it says nothing about the organization of urban space. To this end,
the Central places theory is much more useful. Below we will use these two theories
and others as a guide to city design. So that we can move on to the main topic: design
and self-organization in cities.

3 Cities: Design and Self-organization

Cities are strange objects. Observed from above, most of them appear as a sponta-
neous artifact, like a settlement of termites, grown naturally, with subsequent addi-
tions, more or less integrated with the previous ones. That is quite obvious when one
thinks of the many human generations who have collaborated in the construction (or
destruction) of a city that has existed for two thousand years, let’s say more, during
which the city could be in decline due to external adversities. But looking closely,
every object, or part of the city, appear as realized according to some project ormodel.
Even a hut is built with a plan. Thus cities seem to be the result of spontaneous devel-
opment when viewed from afar and designed when viewed from a close distance, or
of the superimposition of continuous, local growth processes and punctual planned
changes [4].
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We then start from these two opposite but also complementary [28] points of
view for the construction of a city. The first: the designed city, a top-down approach
and the second: the self-organization paradigm in which the city, according to the
theory of complex systems, emerges from repeated interactions. Both have positive
aspects: the design approach emphasizes the application of a unitary principle, while
the complex system approach deepens the study of the functioning and evolution of
the city.

4 The City Designed

The design and construction of an entire city is a rare event because the decision to
create a new city is mainly a political one. The city usually hosts the administration
of the surrounding region. The foundation of a new town can be decided by a higher
level authority that intends to reorganize the territory under its jurisdiction, or by a
new community that invades a region on which wants to establish its new authority.
It is also connected to the colonization of territory, as in Spanish South America, or
to the discovery of new regions as in North America or Australia. It is also worth
remembering the experience of the sacred cities in India built with the method of
Vaastu Shastra, the architectural treatises ofmedieval India [47]. But the construction
of a new town is also motivated by the control of territory for defense, and for this
reason, military towns are the most widespread example. The designed city has a
simple and repetitive structure which does not change as the growth of the urban
structure is not allowed. Let’s consider these two aspects.

The most widespread military colonization experiment in the Western world can
be considered that of the Roman Empire which built around 170 new cities, including
London, Paris and of course Rome. Those cities were founded according to the rules
for setting upmilitary camps, includingorganizing the surrounding countryside based
on similar principles (centuriation). These were so efficient that they were replicated
in the United States with the Jefferson Grid in 1785.

Designing a city includes the effort to declare what the elements of a city are and
how they must be combined to achieve the desired result: a functioning settlement.
One of the most informative sources is the method of building a Roman camp. The
elements of the Roman camps are essentially three: the walls, the center, and the
roads between the two. Let’s analyze them.

Walls are a fundamental element of a city. Drawing the walls is one of the first
steps for founding the city. According to legend, when Romulus decided to build
Rome, he began by drawing the line of the walls that separate the city from the rest
of the world. The city is the inside, the rest is the outside. Although this act might
have been initially motivated by defensive reasons, the idea of separation is recurrent
in the planned cities. For example, in the garden city [23] there are no walls, but the
village has clear boundaries with the countryside. Along walls, there are the gates
which connect the city with the outside.
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The second main element is the center. While walls are like a logical operator that
decides whether something is in or out, the center is like a fuzzy logical operator; the
relationship to the center is measured by distance and an individual can be near, far
or very far from the center. The center, where the consul’s tent was set up, identifies
the power in the Roman castrum.

Between the center andwalls, there is the roads network. It allows communication
between each point and the center, and the accessibility of each point from any other
point. In the Roman camp, there is a hierarchy in the road network. The main roads,
cardo and decumano, connect the central square where they cross, with the four doors
in the walls, while the smaller streets provide access to any point of the camp.

The street layout also allows the regular location of the buildings. That is the
main reason for the town’s gridiron structure. The gridiron is, in fact, efficient in
two respects: easy location of each element thanks to only two measurable distances
and modular organization of buildings even of different sizes. The alternative radial
structure has the advantage of keeping the distance from the boundary to the center
invariant; it allows efficient communication with the center, but it is inefficient for
buildings that need to be adapted to the variable shape of the blocks.

The Roman camp plan was therefore inspired by order as mandated by military
requirements and thus responded to the vision of a society based on a rigid hierarchy,
as opposed to the organic nature of spontaneous development. Similar commitments
towards social order were also in the projects of Utopian cities, since the earliest
Filarete’s Sforzinda. But what unites these experiences, even more, is the prefig-
uration of a static organism that should not have to be grown. In the case of the
Roman camp, made up of men only, this was logical. But even later, the ideal city is
considered as a place without expansion which must rather occur in satellite towns.

The ideal city and the fortification models (Fig. 1) represented for a long period
a guide for the design of cities. In some sense, these cities are the result of a similar
approach: that of special places detached from the normal way of life but responding

Fig. 1 Palmanova a
Venetian designed town
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to special principles that are order and discipline in case of a military city, and ethical
principles in case of the ideal city. The design of a new town refers to the project of
a different society or the affirmation of a new political power in society.1

The most widespread achievements of the planned city in recent times have their
origin in Howard’s idea of a garden city. It inspired the construction of New towns
designed to decrease the density of metropolitan areas and generate a more balanced
regional development, especially after the World War II. On this occasion, manuals
were produced for designing whole urban arrangements [27]. The method involved a
radial organization of the streets, an urban centerwith commerce, offices and services,
secondary centers all around, alternating with green areas and an industrial zone. An
organization which is similar to that of Palmanova (Fig. 1). Unless buildings that
were not aligned with the road layout, as established by the modern movement in
architecture. After the end of the building of New towns in the Western world, this
phenomenon has found new life with the recent urban expansions in China [8, 50].

Aside from the new town’s experience, during the period of urban spatial expan-
sion caused by rapid population growth, the city project consisted of the addition
of new buildings to the existing urban fabric. The aim was to solve the most press-
ing problems as social housing. Urban design was handled by urban planning and
architecture [14]. Urban planning aimed to regulate growth according to norms and
standards. While architectural projects proposed large buildings ideally containing
a whole city. Both these strands have come together in an attempt to generate an
easy-to-build modular city. That did not result in the production of beauty and more
lively urban space as had happened in previous centuries when rich people were also
interested in producing beautiful things to make a profit, see for example Venice, but
in a mere increase of the number of buildings. Therefore the growth machine [33]
produces the city through a self-organized development, even if it is formally planned.

5 The Spontaneous Self-organizing City

Discussions about designed cities seem unimportant compared with the extent of
new settlements consisting of informal neighbourhoods, or widespread sprawl in the
surrounding area. Research on complex systems as well as the awareness of the neg-
ative impacts of urban sprawl have stimulated the study of cities as complex systems
in spontaneous evolution (Fig. 2). Urban evolution is the result of the interaction of
a multitude of elements, while the conventional design approach considers a single
organizational principle.

The theory of complex systems applied to cities has produced many insights that
explain both microscopic urban dynamics and the macroscopic characteristics of
urban systems such as the power law distribution of the size of cities. Moreover, the
study of complex systems and self-organization deserve credits for emphasizing the
spontaneous aspects of social organization and criticizing policies based on the idea

1 Figure1 is taken from GoogleMaps.
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Fig. 2 The self-organised
development of a city
simulated by the computer

that central control can achieve better results than lack of control and spontaneous
organization.

The theory of complex systems has been applied to the prediction of the effect of
an urban plan with the idea of better evaluating alternative solutions, see for instance
[53]. These are major advances in urban science, that I have been involved in. But the
way to define the alternatives is left to the creative action, to the mediation between
different interests, or to the participation of citizens who are asked to suggest solu-
tions. Furthermore, the problem of uncertainty remains, which makes prediction
difficult for complex systems. They are chaotic by definition, that is, strongly depen-
dent on their initial conditions so that prediction becomes almost impossible.

Urban transformations originatemore from a political will to change than from the
prediction of some future state. We then return to the idea that only through an act of
social will it is possible to define the future physical form and obtain configurations
more suited to the wished goals.

6 The Artificial Self-organized City

So what is the purpose of studying the complexity of these systems? Do we have
to throw away our studies just because the predictions don’t hold? We need a
complexity-based approach since any urban project, once completed, becomes part
of the dynamic system. The buildings created by a rationality that starts from abstract
principles resist for a short time the wear and tear of dynamics, especially that of
complex systems, if these principles are unrelated to reality, or even in opposition to
it. A clear example is the experimentation of modern architecture, especially in the
field of social housing, sometimes demolished because it was counterproductive for
the established goals.
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The Utopian approach is rooted in the idea that actions and therefore decision-
making must counteract the current lifestyle and social order. This approach is often
responsible for creating problems in decision making because it sets goals that are
difficult to achieve and in opposition to reality. On the contrary, I propose an approach
to urban design based on the imitation of the existing world. This is not a replica,
but the use of the macroscopic features of reality to produce a new part modified by
its major flaws. Even the slums could inspire the cities of the future [24].

But how to imitate a self-organizing reality and why? If the world is self-
organizing, it is not necessary to make an effort to create it. Like a tree: just dig
a hole to put a seed in it and wait for the tree to grow with its characteristic fractal
shape. Indeed, from a macroscopic point of view, the social system is self-organized,
while if we focus on details we realize that there are many actions planned and
intended as a voluntary act to generate something that depends on someone’s will.
If we accept imitation, the problem is not how to generate a world that depends on
a single idea or, on the contrary, let all reality be self-generated, but how to learn
from complexity to improve our decision-making and our ability to transform real-
ity [45].

The problemwe are facing is urban design as an example of the science of artificial
[46]. But with an additional difficulty: it involves designing objects that would oth-
erwise be produced spontaneously. There are many examples of this human activity,
from artificial intelligence to city design. The reasons humans want to replicate are
different, but the problem they face is similar: building an object that has to compete
with similar objects in a dynamic world.

Designing an artificial city is also away to study, or to understand the urban system
from a design point of view. This is what TonyGarnier didwith his “Cité Industrielle”
[20]. Other architects have also proposed new city structures to reproduce urban
features or represent extreme aspects of urban life. Such as Frank LloydWright who
conceived both the Illinois Sky City, the mile-high skyscraper, and Broadacre City,
the low-density suburb with an acre of land for each family. We will discuss these
aspects in the next section.

7 The Scientific and Architectonic Way of Knowledge

Architecture traditionally deals with the construction of artificial objects, and to do
that it has developed a knowledge suited to the purpose. This type of knowledge
differs from that of the natural sciences which traditionally do not intend to change
what they observe, but only better understand the dynamics and then use the laws
they discover in human activities. Time is therefore one of the main dimensions in
scientific analysis. The designer, on the other hand, is interested in creating an object
that satisfies the expected requests of a future user. That is why he/she is not very
interested in dynamics, but rather in discovering the basic elements to compose a
project which, once completed, will modify the world, adding a new object to those
already existing.
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This method resembles the radical constructivism in epistemology, according to
which knowledge of the world is a human and social construction [49]. However,
while constructivists think the world is independent of human minds, architecture
sees the world as a product of the architect’s activity. The knowledge of architecture
consists of exploring the possible future state of the world. When an architect looks
at an object, he/she is interested in the different combination of the single elements
to create a new object, for example, a building, or a garden that will change the state
of the place. This change can develop in many directions because there is no single
solution to an architectural problem. Therefore, the knowledge of architecture can
be applied to produce many solutions that can be considered as the possible future
states of the object.

The set of these solutions, along with the current state of the object, represent the
architectural knowledge.An architecture competition that results in somany different
solutions is like collective learning of the problem. Even the Utopian project as the
city of 3 million inhabitants of Le Corbusier can be considered not only as a project
of something that could be realized but also as a mean to understand, by contrast, the
contemporary urbanization model. In other words, as one of the alternative states,
albeit very different from what a city could assume in its development. From this
point of view, an Utopian project could also be used and partially implemented, as in
the case of Tony Garnier’s industrial city, which he used as a model for some projects
carried out in Lyon.

8 From Object to Patterns

The need for an object arises from a problem, of which this object represents the
solution. Whenever the same problem occurs, the same object will be the solution.
But the problem will never be the same again and neither will the object. Therefore
knowledge must consist of problems and solutions expressed in general terms that
coexist together in architectural knowledge. We call “pattern” a re-usable form of a
solution to a design problem, according to the definition ofChristopherAlexander [2].

A table, for example, results from two basic patterns: the top from the pattern
of having a flat surface on which to do the operations and the legs from the pattern
of supporting it horizontally at a certain height. Many objects are not as simple as
tables, but they have their internal dynamics, even if partly designed. Such as cities
which are objects created by many individual actions. In this case, the problem is
to identify the patterns on which people’s collective knowledge is rooted, the use of
which makes it possible to design the entire object.

However, we are aware that in the case of a complex object such as a city, the
relationship between problem and solution is not linear but dialectical. A problem
arises from a solution that already exists. The solution exists because it was there
before. In other words, the evolution of a city is path-dependent. Natural conditions
stimulate the creation of a settlement. The realized infrastructure becomes second
nature to further development [30]. The design approach reduces complexity to a
linear relationship, to imitate and use the solutions resulting from complex dynamics.
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9 Imitation and Time

Studying complex systems can help understand how from collective intelligence
solutions to problems emerge. This way we can create a book of solutions to imitate.
For example, biomimicry, which mimics organisms or ecosystems, is an expanding
field of research [37]. Through imitation, which considers the complex dynamics
of these systems as a source of knowledge, this study constructs the rationality that
emerges from reality and therefore is no longer in opposition to it.

The process of imitation has existed for a long time in art, but to produce an
additional art piece it is necessary to imitate by inventing something new, interpreting
the laws of classical art as in the Renaissance. Imitation is not making a copy but
finding a synthesis of the main characteristics of objects belonging to the same set.

Furthermore, imitation does not create a theatrical environment for the city, how-
ever entertaining itmaybe, such as neo-vernacular outlets or urban proceduralmodels
[51] which tend to automatically reproduce many urban configurations especially as
a game setting for the computer. The research is interesting, but the result depends on
the goal of creating realistic-looking scenarios for games. They are also fully auto-
mated, while architectural knowledge and design are craftsmanship’s activities that
can use a computer but still rely on human intelligence to make strategic decisions.

The process is similar to the imitation of nature in Aristotle’s sense. But what we
consider nature is the spontaneous and self-organized processes of the cities. Our
nature is the many examples of cities around the world, including all historical cities,
usually formed by a spontaneous process, of which we imitate stable macroscopic
characteristics [11]. The more the project resembles the macroscopic characteris-
tics of the context, the greater its probability of long-lasting survival, successfully
integrated with the existing reality.

Imitation implies an evaluation of the system to be reproduced. The structure of
the city is a consequence of the economic system. It may be unacceptable in some
of its aspects. Imitation does not imply the uncritical acceptance of everything that
exists. We imitate aspects that work well and reject or modify what does not work.
The criterion is not that of a novelty for which new is better, but that of functionality
for themaximumnumber of people, taking into account thosewho are disadvantaged.

According to the proposed design approach, a project is an improved reproduction
of what spontaneous dynamics is capable of achieving, with a difference. Observing
theworld as a set of systems emphasizes their dynamicswhich are understood through
their changes, using time as the reference variable of the various states. In turn,
knowing the world for changing it, means identifying the elements that can lead to
building a different world. But this knowledge must abstract from time, considering
the timeless elements.While the reality is continuously changing, the project ignores
the dynamics, because it must propose a new stable state to be realized. The problem
arises after the implementation as the dynamic, expelled, becomes the context in
which the project, once completed, must live and exist over time.

The relationship with time can be better understood by remembering the method
for maximizing entropy. The maximization of entropy in statistical physics results
in the exponential distribution obtained with the maximum number of alternative
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states of the particles. This distribution is stable and therefore time-independent, and
could become one of the system requirements to imitate. Statistical physics does not
consider alternative states in their individuality, but by the generalmacroscopic statis-
tical law, they produce. The process of imitation must follow the reverse path, that is
from generality to individuality, to propose a concrete alternative to be implemented,
choosing onewhich respects the general law, in that case, the exponential distribution.

Once the invariant elements have been identified, we realize that these can be at
various scales. A city can be made up of neighborhoods and these in turn of blocks
and therefore of buildings. Spontaneous processes bring out general aspects from
microscopic elements, such as individual buildings. But when it comes to designing
a city in a unified way, it is necessary to start from the general organization and then
go into detail. It simplifies a comprehensive approach to designing the object that
might otherwise consist of additional parts. This is why we start establishing the
general pattern to which the city belongs, answering the crucial question: for what
problem is the city the solution?

10 Communication Is the Main Problem that a City Faces
and Solves

There are many ways to understand how and why a city works:

• as an organism with its metabolism: materials that enter are processed and leave;
• as a safe area where their inhabitants can live and work;
• as a market area that serves the surrounding region;
• as a flow of people, goods and information.

These explanations refer to the city as a pattern, offering the solution to some
problem. Choosing the problem means giving an idea of the essence of the city. The
identification of the problem cannot be univocal, since it expresses a point of view.
Establishing the key issue is a political act as it is a way of seeing the city that also
includes a vision of the future state of the city.

Movement, not stillness, is the normal state of individuals. The movement also
produces interaction and therefore communication which is the essence of a social
system. On the other hand, communication requires movement. The problem is
twofold: communication between many individuals gathered and living in one place
and communication with the outside of the place. The city is the solution to both
problems.

The city becomes a communication system [32], an urban web [42], that con-
nects individuals there living. We get the result by distinguishing the space of flows
and communication from that of living. Flows run in a continuous space extended
throughout the entire city, fromwhich the living spaces, the blocks, emerge likemany
small islands. Moreover, the city organization includes business or commercial cen-
ters that facilitate and stimulate a concentration of flows. In so doing, the city reduces
the randomness of communication events and helps contact within the city [34].
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Fig. 3 1: Random communication. 2: Hierarchically structured communication. Few with many
and many with few. 3: Pattern center-area that allows many to interact with a few

On the other hand, the city provides one or more gateways that easily connect the
population with the outside world. In their simplest form, these gateways are the city
gates open along the walls. They can take a more complex structure when moving
from one transport system to another as in the case of a port. Large cities usually
have a port, because they are located on the sea or are connected to the sea by canals,
rivers and lakes. Railway stations and airports are the modern evolutions of the port.
The gateways end up concentrating the flows that enter and leave the city in a few
privileged points that become urban centers. The public space and the central areas
thus become the twomain ideas of the city’s response to the need for communication.

11 From Communication to the Basic Center-Area Pattern

Communication leads to flows between individuals which can be messages or, in the
case of the city, physical interactions that move people and goods. While there may
be an interaction between each pair of inhabitants, this is unlikely. Some individuals
become the reference for all others: few individuals have many relationships while
many have few. An efficient spatial organization of this distribution of relations
consists of placing the attractor of flows at the center (Fig. 3). That minimizes the
total number of movements. The problem is similar to that of selling goods. In that
case, the solution is to put the market at the center and the customers around.

Therefore the center-area pattern is considered the basic pattern for the organiza-
tion of the city. It is a pattern inAlexander’s sense: that is, it contains both the problem,
that is, of communicating effectively and the solution, the center-area relationship.
The center-area relationship is similar to the point-area relationship described by
Aldo Rossi [40]: a monument is located in one point while the surrounding area is
filled with ordinary housing. This design produces the primordial geometric figure,
that is, the circle that was also the base of the first huts, with the hearth in the center.

This pattern is widespread everywhere. Consider eukaryotic cells with its nucleus
and the mitochondria around it, an egg or an avocado. There are also circular cities,
and arguably the most famous is the ancient city of Baghdad, with the mosque and
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the Caliph’s palace in the center. Other geographical concepts go back to the idea of
the cell: the core-periphery model of the New Economic Geography and the market
area where the market is the fulcrum in the center of the zone where people live.

The center-area pattern is similar to the market area: activities are in the central
part and residences in the periphery, without a clear boundary between the two.
We can therefore consider the center-area relationship as a workplace-residence
connection. People live in this system usually commuting between these two places
not necessarily belonging to the same pattern. Commuting flows can occur both
within a pattern and between patterns.

A workplace can be, for example, a shopping mall or a public service such as
schools. In this sense, the center-area pattern is similar to the neighborhood unit used
as a building block in forming the city structure. The ideawas introduced byClarence
Perry [38], in the 1920s and applied later to the design of English New Towns [27].
The difference with the notion of the center-area pattern is this. The neighborhood
unit is a modular concept. Each unit includes a community center with an elementary
school and has a similar size because the minimum population should be able to
support the school. In addition, the maximum distance from the center should be a
distance that a child can walk, one-quarter mile. In turn, as later shown, the size of
center-area patterns differ from each other, mimicking the distribution of the cities
size in a regional context, the Zipf’s law.

12 The Channeling of Movement and the Establishment of
a Center

Movement on earth usually occurs through a canal, i.e. a road or something similar.
Only the sea allows movement in any direction without an established channel. That
is whymany large cities are on the seaside or communicatewith the sea through rivers
or canals. When land communications were harder than now, the sea was the mean
of communication and the small sea allowed for easy communication and thus the
development of trade and political control. That was the case of the Mediterranean
Sea around which the Roman Empire developed.

TheRomanswere extraordinary road builders when they had to expand the empire
towards the inland areas. But the roads also develop through self-construction pro-
cesses, when repeated movements lead individuals to follow the same path (Fig. 4).
In the periods technology was less developed, the privileged routes were those on
the ridges of the mountains since the crossing of rivers was avoided. Bridges were
rare, and it is not by chance that their existence was often the origin of a city born
nearby.

The bridge is the quintessence of the road since only at that point the flows of
people and freights can cross the flow of water. The main function of a transport
network is to channel the flows, establishing the areas through which the flows can
pass through, and the areas that cannot be crossed by the flows [22]. On the one hand,
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Fig. 4 1: Random movements. 2: Channeling of movements: street. 3: Breakpoint of the canal and
beginning of the establishment of the center

Fig. 5 1: An embryonic center is formed along the way. 2: The streets channel the flows between
the center and the area

interaction decreases in randomness, and on the other, it becomes more efficient as
roads and other communication networks accelerate the movement.

A center grows when there is a breakpoint (Fig. 4) in the channel, or it forks in
two or more directions. It favors a slowing down of movement and therefore the
meeting between moving subjects. A first central embryo begins inside the canal,
as an elementary center. These embryos are brought into the central area pattern to
give rise to the more elaborate form of the pattern which includes a center, an area
and the channels (roads) between the two (Fig. 5). This structure is similar to that
of the Roman military camp, apart from its rigidity. In addition, it resembles the
organization of the eukaryotic cell with energy-carrying mitochondria. Anyway, the
channeling of flows generates two basic patterns which are different instances of the
center-area pattern. We study them in the next section.

13 The Two Basic Patterns

People on the move, as pilgrims in the Middle Ages, require services which are
located along the circulation channels at a regular distance from each other. Thus,
the primordial form of organized communication occurs at the edge of the channel
by intercepting individuals on the move. That is why the village along the road, with
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Fig. 6 The two basic patterns: the strip and the center

the buildings on both sides, is the primeval model of the settlement. It generates
an axis, which is like an elongated center, and a periphery consisting of residential
streets orthogonal to the main road.

The real center arises from the intersection of at least two main roads. When
they are only two, as in the Roman camp, it is possible to keep the grid orthogonal.
When more than two roads intersect, the radial model is adopted, with different road
angles to which the shape of the blocks adapts. At the intersection of the streets,
a square is formed which serves both traffic and parking. The building takes on a
relevant architectonic aspect. Often there are monuments, that is particular buildings
that communicate the meaning of the activities often connected to religion or power
that take place in them in a lasting way. This pattern is represented with a circle, a
special case of an ellipse with equal axes (Fig. 6). Both patterns coexist in the city.

14 The Self-similarity of the System of Patterns

Understanding what a city is like is not easy. Its functioning arises from the synergy
between the central activities, the transport network and the movement of people. All
of these elements are not visible on a geographic map. On the other hand, it is easier
to understand a vast region with urban centers of various sizes placed where the
roads intersect. In a regional context, the urban centers, that develop linearly along
the roads, are separated by vast agricultural areas often eroded by urban expansion.

According to the principle of self-similarity, shapes of urban areas are scale-
invariant: a smaller part of the shape is similar to the whole and vice-versa. So, we
can consider a system of cities, after a scale reduction, as the image of the central
areas of a city where activities are located (Fig. 7). The usefulness of the exercise
consists in applying the macroscopic laws observed for the system of centers to the
internal structure of a city.

On the other hand, studies have confirmed the validity of the Central places theory
applied to the internal structure of cities and metropolitan areas [9, 52]. In other
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Fig. 7 Two images of Paris at night. The first on a large scale, the second on a smaller scale.
In the second, the central areas with greater brightness are red colored. A statistical similarity of
these central areas with the built-up areas of the first image can be detected which confirms the
self-similarity of the structure of the settlement

words, the shopping and service centers inside the city are organized according to
market areas and follow a semi-hierarchical structure.

The previous assumptions allow advancing in the theory of the urban internal
structure. The city is composed of interconnected center-area patterns, to which the
macroscopic rules found in the analysis of urban centers apply. Therefore the dimen-
sional distribution (i.e. the surface) of the patterns will be similar to that described by
Zipf’s law. Moreover, we establish the dependency relationships between patterns
with this method: a pattern depends on one, or two, larger patterns chosen at ran-
dom. The application of the method produces a system of semi-hierarchical relations
(Fig. 8) [44] similar to the semi-lattice proposed by Alexander. Furthermore, this
type of structure, which is also self-similar, has the advantage of wholeness [25].

Fig. 8 Semi-hierarchical
spatial organization of a
simple system of patterns. 1:
Centers. 2: Areas. 3: Special
patterns. Red: Primary
dependencies. Blue:
Secondary dependencies
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15 The Spatial Organization of the System of Patterns

Buildingon these theoretical bases,we showanexample of a city generation, obtained
using a program developed on the Netlogo platform.

The patterns are with a star in the middle that represents the center. A circular or
elliptical edge delimits the area or spatial extent of the pattern. Some of the center-
area patterns, different in size and variety of activities, are for specialized activities
such as industrial areas or centers serving the entire population, e.g. hospitals, waste
disposal, and commercial centers (Fig. 8). These centers have no surrounding suburbs
or subordinate smaller centers. They are located on the outskirts near the main roads,
making them easily accessible both from outside and from within the city. In these
cases, the centers are represented in an enlarged and more scattered form, because
they do not irradiate their effects in the immediate neighborhood.

The patterns are distributed more or less evenly throughout the space. The dis-
tance between each center and its nearest neighbor is similar on average, regardless
of the size of the patterns. They may also overlap so that a large pattern may include
smaller ones, as in the Central place theory. Environmental features such as lakes,
sea, rivers and mountains can be added, although urban development should take
place in a flat area.

To arrange the patterns in space, we establish the largest pattern in the center. The
secondary patterns dependent on the largest one, are located at a distance proportional
to their size. Patterns dependent on secondary patterns are located according to the
same principle. The process is repeated for the subordinate patterns (Fig. 9). The
shape of the pattern, circular or elliptical, depends on the ratio between the longest and
shortest axis. We define this ratio as inversely proportional to the degree (number) of
dependency relationships. So that more dependency relationships result in a circular

Fig. 9 The center-area patterns, with semi-hierarchical dependency relationship, and the corre-
sponding built-up area



From Complex Dynamics to the Architecture of the City 155

shape, fewer in an elliptical shape. The user can change the position of the patterns,
to suit his/her needs or the morphology of the land. The patterns area determine the
built-up urban area.

16 The Tracing of the Roads Network

After having established built areas and centers, we need to set up the crucial division
between urban public space that allows internal communication and private living
space. This division is achieved through the design of the road network that defines
the urban morphology consisting of squares and urban axes. As a result, the shape
of the blocks is also settled.

There are twoprinciples for the organization of roads: (1) responding to the need of
connecting points, typical of the regional scale; (2) ensuringwidespread accessibility,
together with the possibility of building or using the land for agriculture. The first
principle yields triangulation which is the most efficient way to connect a pattern of
points on a surface so that any pair of points are connected in the fastest way; the
second principle generates the grid which determines rectangular blocks or fields.

The squared mesh is a surface that can be covered with parallel lines all of the
same lengths. There are practical advantages in using these surfaces: if you plow a
field, you make many parallel passes with the tractor equal in length. If you build a
slab, put several parallel beams equal in length. Consequently, if you want to divide
the surface in two, you get two equal parts, while the triangle does not give the same
result.

The radial shape, often opposite to the grid, derives precisely from the use of
the fabric of connections between points, on an urban scale, such as the union of
triangles having a common vertex (the center). When triangles are equilateral we
get a hexagon that has been proposed for city planning [7]. But usually, the urban
network is a combination of the two types of networks that must simultaneously
satisfy opposite needs: building and accessibility, and connection between points.

The resulting road network does not have a hierarchical structure like the roots of
a tree or the bronchi of the lungs. In those hierarchical networks, it is not necessary
to connect two points at the base of the hierarchy, because the flows are tightly orga-
nized between the center and the periphery. In the city, however, communication,
even if centralized, is made possible between each pair of points. Suppose a hierar-
chical network and two people in the outermost branch that want to communicate.
Instead of going through the center, they will find a direct link, that is, a shortcut that
will allow them to communicate easily. This shortcut mechanism produces urban
loops, ring roads and blocks (Fig. 10). Overall, the road network is no longer strictly
hierarchical.

To trace the road network, two types of roads are distinguished: urban and regional.
The first connects the centers within the city, ensures accessibility to all surrounding
points and is therefore permeable. The second connects the points, passing near the
edges of the pattern area and away from the centers.
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Fig. 10 1: The hierarchical network. 2: Shortcuts are added. 3: Circuits are created

To trace the first type of roads, it helps to simulate random movements between
the centers, so that they occur without changes of direction. That is a crucial principle
resulting in the urban axes which, along with squares, form the structure of the urban
space. To perform the simulation, agents are left free to travel froma randomly chosen
center to the most important and nearest one without major changes of direction. In
this way, the most relevant possible urban axes are identified, which will be the
central elements of the organization of the urban space.

Starting from the identification of the preferred paths, one can manually draw the
roads, making sure that they connect the main centers (Fig. 11). Once the main roads
have been traced, it is possible to automatically trace the minor roads that allow both
access to all points and the definition of the blocks, using the method of fracturing
a surface according to the axis of least resistance (Fig. 12). The process stops when
the block surface is less than a threshold.

Fig. 11 The main flows, as calculated with agent simulation and the road network as manually
designed. The thickest lines are motorways, the others are common roads
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17 The Topological Aspects of the Roads Network, and the
Production of Urban Space

The network of streets defines the space within the city. The designed urban viability
is analyzed with the methods for the analysis of planar graphs: the configurational
analysis (the indirect distance of each road axis from the others, [21]), betweenness
(the most traveled road section [18]) and distance of each road section from the
others [6]. The weighted value of these three measures represents the importance
of the road for the urban space. We then calculate the centrality of the urban fabric
in each point considering two factors: the importance of the roads nearby and the
accessibility to the centers of the patterns.

This analysis makes it possible to establish the width of the streets based on their
importance. Squares are located in the most relevant intersections, or close to the
centers of the patterns. So, we can define the urban space in its main components:
squares and urban axes. The size of squares is proportional to number, if greater than
4, of streets intersecting in it or to the size of the connected pattern center. Streets
and square are distributed according to Zipf’s law: few are important and many are
small but diffused all over the city. That results in a pleasant urban space consisting
of a large variety of places [13].

The centrality of the urban fabric allows each block to be occupied by the most
suitable use: that is, exclusively by business activities , where the centrality is higher,
by residence mixed with activities, and by residence alone, where the centrality is
lower. Furthermore, the high centrality combined with the adjacency to a square
identifies the blocks for monumental buildings. Some blocks can also be cleared to
use the land for gardens and urban parks (Fig. 12).

Centrality represents the value that the land would have in case of realization of
the town. The established use depends on the offer per square meter of the various

Fig. 12 The urban spaces with squares and urban axes, including land use, and blocks
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Fig. 13 A 3d view of the
city

activities. As can be seen from Fig. 12, the distribution of activities and residences
recalls that resulting from the von Thunen-Alonso bid rent theory. When the planned
use of the land is similar to that obtained applying the economic equilibrium, the
project can easily resist the economic dynamics that will follow its realization.

The block design is the final act of the process. Blocks are the basic elements of
the urban fabric. They are like tiles in a tessellation and similar to citadels within the
town. Hence they are isolated, in opposition to the continuity of public space. The
block is defined by the streets and establishes the shape of the buildings [36] whose
front face the street while the rear-facing the inner courtyard. In so doing, blocks
contribute to the definition of the road or square they face (Fig. 12). The resulting 3d,
shown in Fig. 13, is just a sketch that needs to be detailed by architectonic projects.

18 Final Remarks

At the end of the process, we get a city that might look like existing cities where each
part collaborates in developing the whole. Wholeness depends on the elements, from
the few large to the many small, none alike, that make up a city. This distribution
favors the emergence of variety and therefore of beauty [26].

What has been shown is just an example. The method leaves room for the human
user who intends to design a city while maintaining the general principles based on
the use of patterns and their interrelation. See for instance Fig. 14 which shows a 3d
view of a city on the seaside, crossed by a river. However, many aspects have been
treated incompletely or too broadly. Here is a list.

First, the urban design assumes that the land is flat, as in most large cities. But
that’s not always the case. It is, therefore, necessary to face the problem of building
a road network on hilly terrain. The road network should be adapted to the slopes of
the ground, following the contour lines [10, 15].

Moreover, relevant transport infrastructures such as railway stations and the rail-
way network are not included in the method. They can have a double effect. On
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Fig. 14 A 3d view of a city
on the seaside, crossed by a
river

the one hand, they strengthen the centrality of the place, on the other, the network
infrastructure may be a barrier for the organization of the city. In general, the barriers
that constitute an element of the urban organization have not been considered.

We have sketched a simplified version of the block, adapted to the shape it takes
in the traditional western city. The block can have different variants depending on
the density, the cultural tradition, the economic model, as it is explained by the
Transect Theory [16]. In the peripheral areas of the city, blocks consist mainly of
single single-family houses, while in denser urban areas they are built internally to
use all the land parcels, due to the high land rent. In the special patterns, blocks are
treated with the usual method, while their shape varies, namely in industrial areas
where the buildings get light from the roof and require large continuous surfaces.
Only an architectural project can solve these problems specifying in detail the shape
of the buildings, having as references the urban morphology established by the road
system and the use of the land.

Last but the hardest is the intervention in an existing city. What I have shown
is a method for designing a new entire city. But most often we add new parts to
a town or demolish and rebuild parts to introduce new functions and regenerate
neighborhoods. Therefore, to make the method more useful, it must be able to deal
with the transformation of a city. It involves studying the organization of the existing
city with the identification of the patterns and their dependencies. Then we should
develop a method of reorganization by adding new patterns organically linked to the
existing ones, and connecting the new roads network.

19 Conclusions

Starting from complex dynamics, a theory of city architecture, including the basic
elements and how to compose them, has been shown. Is a theory so relevant for
designing a city, even if it risks being a mere theoretical exercise? I think so because
a city encompasses all aspects of architectural design: unique buildings such as
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monuments, but also ordinary artifacts such as residences, infrastructure and public
spaces. We consider these aspects in their interactions, as in a self-organized city,
not in a fragmentary way, as in architectural practice. To be able designing an entire
city is not a simple school exercise. It is a way to understand the role of each new
part of the city and each new building with all existing ones.

Anyway, the reality remains the best book fromwhich to learn. That is why I chose
the method of imitation. It may appear a choice anchored more to past experiences
than proposing solutions for the future. But it is not so. Imitation is not a way to
become a simple mirror of reality, but a way to learn from it. Learning from reality
means learning from the collective intelligence that has probably already solved the
problem we are facing.

Based on imitation, the theory proposes a top-down method. It starts from the
definition of social facts to then arrive at the architectural ones. The organization
of centre-area patterns determine the spatial organization. The design of the urban
space takes place later. The theory is based on the hypothesis that the normal state
of an individual is movement and that communication is an elementary need. For
these reasons, the road network is the central element in the definition of urban space.
Blocks are designed according to the viability, as in spontaneous growth. Hence each
part integrates with the whole.

Wholeness is the key word and the goal of the proposed method. We need a
comprehensive approach to the conception of the city. Architecture can face this
challenge if it renounces the claim to operate with abstract principles extraneous to
people’s daily life, recognizing that it does not belong exclusively to an elite because
all individuals are potentially involved, as the urban fabric results from a collective
work.

Acknowledgements I am particularly grateful to Sylvie Occelli, Sergio Albeverio and Valerio
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Randomness, Emergence and Causation:
A Historical Perspective of Simulation in
the Social Sciences

Raffaello Seri, Davide Secchi, and Mario Martinoli

Abstract This chapter is a review of a selection of simulation models, with special
reference to the social sciences.Three critical aspects are identified—i.e. randomness,
emergence and causation—that may help understand the evolution and the main
characteristics of these simulation models. Several examples illustrate the concepts
through a historical perspective.

Keywords Simulation models · Randomness · Emergence · Causation ·
Agent-based models

1 Introduction

The following pages present a selection of computational models and techniques that
have been used in the last 70 years and provide an overview of how the field has
evolved. In an era of cheap and fast computation, it is particularly important to look
back at the history to understand the specific reasons that make current advanced
techniques so remarkably relevant to social scientists.

We do not pretend to present a comprehensive overview of simulation modeling
techniques and systems, but have selected those that we believe have contributed
the most to build current simulation approaches. In so doing, we identify a thread,
concerning randomness, emergence and causation, that specifies some of the most
relevant characteristics of current techniques. In an attempt to make these comments
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as much visible as possible, they are found under the header “Intermezzo”, as they
interrupt the flow of the presentation and weave together the different methods.

Before moving forward, a few words need to be spent on these three aspects and
why they are so important as to appear as the ‘fil rouge’ of the chapter. Let us start from
randomness. Any simulation of a social system has to be able to reproduce elements
that appear unpredictably and without any apparent connection to the phenomenon
under analysis (or to an outcome variable). The reason is connected to Laplace’s
demon (see [31, p. 2]): an omniscient intellect having complete knowledge of all the
forces and positions of the items composing the natural world as well as unlimited
computing possibilities would be able to predict without error all future events.
Randomness is a way of accounting for our ignorance of these initial conditions
and for our computational limits. That is why a model not taking into account the
possibility of unpredictable and/or external events would fall short of capturing the
inherent complexity of most phenomena. The second aspect, emergence, is tied to
the assumption that social systems are complex [29, 50]. When this assumption
holds for the computational simulation that models a social system, then uncertainty,
ambiguity, and unpredictability are key features of that research effort. Some have
argued that a successful simulation is one that presents the modeler with counter-
intuitive and surprising results (see, e.g., [54]). We do not subscribe to this view,
because it is too radical and only fits certain types of simulations. However, we can
certainly support the idea that simulating a social system means to allow for a true
intellectual enquiry, where results are not entirely discernible by simply looking at
the code. On this respect, “a model is not a model” (opposite to what some argue in
a recent editorial, see [78]). The third aspect is that of causation. One of the defining
aspects of a computational simulation refers to the mechanisms that specify how its
component parts behave. The interactions of these parts are reflected in the values
taken by the aggregate variables describing the system that, on their turn, impact the
single components. The components and the aggregates are thus linked by up- and
downward relations. In a social system, both causal directions need to be present
to explain most phenomena. The history of computational simulation in the social
sciences has always bounced back and forth between these two levels, and settled on
recent techniques that could account for both.

The methods we are going to present are very heterogeneous. Some of them are
specified at the level of the individual, others are aggregate. Some of them require
interactions between agents, others don’t. Some of them are deterministic, others
contain random elements. However, all of them share the same two characteristics:
(a) objects (individuals or quantities) are reduced to a finite number of idealized types
(that may vary in quality); (b) objects are specified by relations partially or fully
connecting them together. The historical review that we are going to present will
show how the two mechanisms that have governed the evolution of these methods
are indeed the identification of basic units of analysis, at whatever level they are
defined, and the determination of the mechanisms that connect them. The solutions
that have been proposed to these two questions have led to the development of several
simulation methods.
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Now we come to the structure of the chapter. In Sect. 2, we review some com-
putational experiments involving early computers. In Sects. 3 and 4 we respectively
review System Dynamics and Discrete-Event Simulation, two methods of inquiry
considering the aggregate behavior of a system. Then, we review Microsimulation
techniques in Economics and Political Science in Sect. 5. Section6 covers Cellular
Automatawhile Sect. 7 introducesAgent-BasedModels. Section8wraps up themain
conclusions.

2 Experiments with Early Computers

2.1 ENIAC

One of the first electronic computers—the ENIAC, Electronic Numerical Integrator
and Computer—was built at the beginning of 1945 at the University of Pennsylvania
in Philadelphia [105, p. 125]. In the spring of 1946 at Los Alamos, Stan Ulam sug-
gested that ENIAC could be used to resuscitate some statistical sampling techniques
that “had fallen into desuetude because of the length and tediousness of the calcu-
lations” [105, p. 126]. He discussed the idea with John von Neumann, who sent, on
March 11, 1947, a letter to the leader of the Theoretical Division of the Los Alamos
National Laboratory, Robert Richtmyer, with “a detailed outline of a possible statis-
tical approach to solving the problem of neutron diffusion in fissionable material”
[105, p. 127]:

The idea then was to trace out the history of a given neutron, using random digits to select
the outcomes of the various interactions along the way. […] von Neumann suggested that
[…] “each neutron is represented by [an 80-entry punched computer] card …which carries
its characteristics,” that is, such things as the zone of material the neutron was in, its radial
position, whether it was moving inward or outward, its velocity, and the time. The card also
carried “the necessary random values” that were used to determine at the next step in the
history such things as path length and direction, type of collision, velocity after scattering–
up to seven variables in all. A “new” neutron was started (by assigning values to a new card)
whenever the neutron under consideration was scattered or whenever it passed into another
shell; cards were started for several neutrons if the original neutron initiated a fission [41, p.
133].

This led Nicholas Constantine Metropolis and Stanislaw Ulam to introduce, in 1949,
the name of Monte Carlo method [106] for a statistical sampling method:

I (Metropolis) suggested an obvious name for the statistical method—a suggestion not unre-
lated to the fact that Stan had an uncle who would borrow money from relatives because he
“just had to go to Monte Carlo” [105, p. 127].

The name of Monte Carlo method is nowadays generally used to denote a rather
heterogeneous array of techniques for solving mathematical problems by:

• reducing their solution to the computation of an expectation with respect to a
random variable and
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• approximating this expectation with the empirical average based on a sample of
realizations of the random variable.

The simplest example is the integration of a function on a bounded domain.

Example 1 (Monte Carlo integration) The aim is to compute the integral of a func-
tion f defined on a bounded domain that we identify, without loss of generality,
with the unit interval [0, 1]. The integral is

∫ 1
0 f (x) dx . A solution is to remark that

a random variable X uniformly distributed over the interval [0, 1] has probability
density function 1, so that

∫ 1
0 f (x) dx = E f (X). This means that, if we have a sam-

ple {x1, . . . , xn} of realizations from X , we can approximate
∫ 1
0 f (x) dx = E f (X)

through 1
n

∑n
i=1 f (xi ).

Modern statistical sampling methods largely predate the Monte Carlo method.

Example 2 (Buffon’s needle) An often-misquoted antecedent is Buffon’s needle, a
mathematical problem requiring to compute the probability that a needle of length
�, randomly cast on a floor with equally-spaced parallel lines at a distance d, lands
on a line. The problem was presented by Buffon in 1733 at the Académie Royale des
Sciences of Paris (see [16], where the problem is presented but not solved). A solution
was described in [17, pp. 100–105] (see also [30, pp. 359–360]). The original aim of
Buffonwas to look for an explicit solution. The probability itself is 2�/πd (when � ≤ d)
and this explains why several authors have performed the experiment repeatedly to
provide, through an empirical approximation to the probability, an approximation to
π . Despite the problem lends itself to a sampling solution, there is no evidence that
Buffon ever tried to do that. Notwithstanding this, many authors (among which, e.g.,
[95, p. 120]) have written that Buffon proposed a sampling solution: what probably
has misled them is the fact that [33] and [34, pp. 170–171] presented the needle
problem together with another problem that Buffon studied with 2048 trials (this is
confirmed by the fact that [95, p. 120] states that Buffon tried 2048 tosses in the needle
problem). Other authors (see [142, p. 117]) have attributed the sampling solution to
[30, p. 360]: despite Laplace is indeed talking about the limit for a large number of
draws, he is probably making a reference to a frequentist argument rather than to a
real sampling solution to the problem. However, the discussion in [33] (reprinted in
[34, pp. 170–171] and [83]) suggests that the sampling approximation of π through
Buffon’s needle was in use as early as 1855. A search of the literature leads to an
even older example, namely [159] (see also [127]).

2.2 Intermezzo

As no computer-basedmethod for building random numbers was (and still is) known,
John vonNeumannwent on to study algorithms to generate pseudo-random numbers,
i.e. numbers with characteristics similar to those of random numbers. A famous but
somewhat trite quotation is:
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Any one who considers arithmetical methods of producing random digits is, of course,
in a state of sin. For, as has been pointed out several times, there is no such thing as a
random number—there are onlymethods to produce random numbers, and a strict arithmetic
procedure of course is not such a method [154, p. 36].

The interpretation that is generally given to this sentence is inaccurate. Von Neu-
mann was not being skeptical, as often interpreted, of the usefulness of pseudo-
random numbers. He was just suggesting that “‘cooking recipes’ for making digits
[…] probably […] can not be justified, but should merely be judged by their results”
[154, p. 36]. This is themainway inwhich random-number generators (RNG, though
a better name would be pseudo-random-number generators, PRNG) are evaluated
today, through batteries of statistical tests in which their behavior is compared with
the theoretical behavior of true random numbers (e.g., [15, 100]). As computer sim-
ulation was, at that time, very difficult, random digits were collected in publications
among which the famous A Million Random Digits with 100,000 Normal Deviates
[27], published in 1955.

However, even before and around the construction of ENIAC several computa-
tional experiments were being performed using analog computers, and they often
used random numbers too.

2.3 FERMIAC

In the 1930s,when hewas still inRome,EnricoFermiwas studying neutron transport:
when a neutron (a sub-atomic particle) passes through matter, it can interact with
other particles, or it cannot. However, the aggregate behavior of neutrons seemed out
of reach. Fermi assumed that each neutron was like an agent whose behavior was
dictated by the sampling of some random numbers. He then computed the aggregate
results for a large numbers of neutrons on a mechanical calculator:

Fermi had invented, but of course not named, the present Monte Carlo method when he was
studying the moderation of neutrons in Rome [138, p. 221].

According to his student Emilio Segrè (see [105, p. 128]), Fermi kept the technique
secret and used it to solve several problems. His colleagues were often astonished
by the precision of his computations. These back-of-the-envelope calculations con-
tributed to create the myth of so-called Fermi estimates.

In the late 1947 the ENIAC (see Sect. 2.1) was moved at the Ballistics Research
Laboratory in Maryland. During the inactivity of the ENIAC, Fermi built an analog
simulator of neutron transport, called the FERMIAC (a pun on ENIAC; an image can
be found in [105, p. 129]). In the FERMIAC, neutrons were modelled as agents in a
planar region, whose behavior was affected when a material boundary was crossed.
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2.4 MONIAC

In 1949, at the London School of Economics (LSE), Bill Phillips (Alban William
Housego “A. W.” “Bill” Phillips, who later introduced the Phillips curve) built an
hydraulic machine called Monetary National Income Analog Computer or MONIAC
(see [116]). The name was a pun on “money” and “ENIAC”. It was a system of tanks
and valves through which water flowed, in a simulation of money circulation in the
UK economy. The example of theMONIAC looks very distant from the ones we will
see below, but it contains the features outlined above: here the tanks are the objects;
the valves are the relations connecting the objects.

Both the FERMIAC and the MONIAC were examples of analog or analogue
computers, i.e. machines using physical (electrical, mechanical, or hydraulic) phe-
nomena expressed in terms of variables measured on a continuous scale to model
a phenomenon. Analog computers were very common when no other computing
method was available. The difference with respect to digital computers is that the
latter use information stored in discrete form: the earliest digital computers were
program-controlled, i.e. they were programmed by modifying the physical structure
(plugs, wires, etc.) of the machine; modern computers are stored-program, as the
program is stored in memory, without hardware modifications.

3 System Dynamics

System dynamics (SD) is an approach to the dynamical study of systems composed
of objects in interaction. The idea of SD is to model the change over time of some
quantities through feedback loops, accumulation of flows into stocks, and identifica-
tion of inflows and outflows. The system is generally represented first graphically as
a diagram and then mathematically as a system of differential (or difference) equa-
tions, that are then solved numerically by a computer program. Its central insight is
the fact that the structure connecting the components is sometimes more important
than the components themselves in determining the behavior of the system. It was
founded, as a branch of systems theory [149], by Jay Wright Forrester in the 1950s
(see, e.g., [53] or the historical accounts in [55, 81]). At the beginning, SDwas devel-
oped to analyze complex business problems, in connection to the author’s position
at the MIT Sloan School of Management. It has been applied to several problems
ever since. SD goes through a series of steps to transform a verbal description of the
phenomenon under scrutiny into a mathematical model (see, for example, [144] for
a worked-out example on new product adoption).

Example 3 (Lotka-Volterra Model) An early example of a system of differential
equations in which the elements appearing in the system can be interpreted as feed-
back loops is the Lotka–Volterra Model (LVM), developed by Lotka [90, 91, pp.
92–94] and Volterra [151, 152] in their seminal work. The LVM is a predator-prey
model describing the dynamics of two species—i.e. predators and preys—interacting
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Fig. 1 Population densities of the two species in the Lotka–Volterra model (predator in grey, prey
in black)

in an ecological environment. The presence of feedback loops is made clear both by
Lotka (see the graphical representation in [90, pp. 411–412]) and by Volterra:1 “con-
viene […] di schematizzare il fenomeno isolando le azioni che si vogliono esaminare
e supponendole funzionare da sole, trascurando le altre” [152, p. 31]. A SD approach
is in [36], while the final behavior of the system is illustrated in Fig. 1.

Example 4 (The Limits to Growth) The Club of Rome is a think tank founded in
1968 in Rome as “an informal association of independent leading personalities from
politics, business and science, men and womenwho are long-term thinkers interested
in contributing in a systemic interdisciplinary and holistic manner to a better world.”
Their 1972 bookThe Limits to Growth [104] used SD to study theworld economy and
population, and raised considerable interest and concern about their sustainability.

Example 5 (The Lorenz system) In 1963, Edward Norton Lorenz studied atmo-
spheric convection through differential equations (see [89]). He realized that a small
change in the initial conditions could have long-term effects on the behavior of the
system. The idea is to take two starting points on two nearby trajectories: moving
along them, they will eventually diverge. Similar insights had already been advanced

1 In English, “it is more effective […] to schematize the phenomenon by isolating the actions that
one wants to examine and assuming they behave independently, irrespectively of the others” (our
translation).
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by Henri Poincaré in 1890 while studying the three-body problem and by Jacques
Hadamard while studying motion on surfaces of negative curvature, but had little
impact on the literature. Lorenz’s discovery, instead, sparked a small revolution.
It led to the identification of so-called deterministic chaos, chaos theory or, sim-
ply, chaos, i.e. sensitivity to initial conditions in deterministic systems (often called
dynamical systems). Lorenz coined the term butterfly effect for this phenomenon. An
oft-quoted sentence is taken from the title of Lorenz’s talk at the 139th meeting of
the American Association for the Advancement of Science in 1972: “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?”

Instances of chaos in models from several domains, and SD among them, were
described. As an example, in 1986, Erik Mosekilde and Javier Aracil received the
Jay W. Forrester Award for their work on chaos in SD.

Example 6 (A Sound of Thunder) In the June 28, 1952, issue of Collier’s magazine,
a science fiction short story by Ray Bradbury was published under the title A Sound
of Thunder [13]. It described a time travel into the past whose impact on the future
goes awry because of a butterfly (no spoilers). This story is sometimes miscredited
with the origin of the name butterfly effect but, despite being a wonderful example
of the very concept, it had no bearing on its development.

3.1 Intermezzo

While chaos is extremely important from a theoretical point of view, its relevance in
real examples is difficult to work out:

An essential point made by Poincaré is that chance and determinism are reconciled by long-
term unpredictability. Here it is, in one crisp sentence: A very small cause, which escapes us,
determines a considerable effect which we cannot ignore, and we then say that this effect
is due to chance [130, p. 48; emphasis in the original].

Theproblemwith chaos is that the dependenceon the initial conditionsmakes difficult
to forecast the future of the system, as initial conditions are always observed with a
small error. This is why chaotic dynamical systems may be modelled as stochastic
processes:2

En dernière analyse, le hasard réside donc […] dans l’œil de l’observateur. [43, p. 14]

For us, what mattersmost is that chaos is a property of the system that is not shared by
its components when considered in isolation. Properties like this are called emergent:

The ability to reduce everything to simple fundamental laws does not imply the ability to
start from those laws and reconstruct the universe. […] The constructionist hypothesis breaks
down when confronted with the twin difficulties of scale and complexity. […A]t each level
of complexity entirely new properties appear. […] Psychology is not applied biology, nor
is biology applied chemistry. […T]he whole becomes not only more than but very different
from the sum of its parts. [3, pp. 393–395]

2 In English: “So, in the end chance lies […] in the eye of the observer” [44, p. 4].
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Emergent properties arise when the system as a whole displays a behavior that is
not explicit in its single components. As put forth in [3], a system of interacting
quantities/agents is not only more than the sum of its components, it is different
from their sum. We will see below some examples of emergence (some authors use
supervenience for a related concept).

For the moment we review some of the history of the concept. As remarked in [79,
p. 49], one of the first disciplines to embrace emergence as its central phenomenon
was Economics, through the work of Adam Smith:3

[E]very individual […] neither intends to promote the publick interest, nor knows howmuch
he is promoting it. […H]e intends only his own gain, and he is in this, as in many other
cases, led by an invisible hand to promote an end which was no part of his intention. […] By
pursuing his own interest he frequently promotes that of the society more effectually than
when he really intends to promote it. [141, p. 35]

The philosopher John Stuart Mill wrote, when dealing with failures of the principle
of the Composition of Forces:

The chemical combination of two substances produces, as is well known, a third substance
with properties entirely different from those of either of the two substances separately, or
of both of them taken together. Not a trace of the properties of hydrogen or of oxygen is
observable in those of their compound, water. […W]e are not, at least in the present state of
our knowledge, able to foresee what result will follow from any new combination, until we
have tried it by specific experiment. [107, pp. 426–427]

The metaphor of water was a recurrent one in the work of early emergentists [12, p.
37]. In Biology, Thomas Henry Huxley, in the book [71, pp. 16–17], introduced the
idea that “there is no sort of parity between the properties of the components and
the properties of the resultant”: he used the “aquosity” of the oxide of hydrogen (i.e.
water) as a comparison for the “vitality” of living systems, and he admonished that
those who say that “the properties of water may be properly said to result from the
nature and disposition of its component molecules” are “placing [their] feet on the
first rung of a ladder which, in most people’s estimation, is the reverse of Jacob’s,
and leads to the antipodes of heaven.” Another oft-quoted antecedent involving a
different discipline is the recognition by the French sociologist Émile Durkheim that
social facts cannot be reduced to the agents that are involved in them:4

3 The sentence is often misquoted replacing the obsolete “publick” with the more modern “public”.
4 The article containing this quotation became the Préface of the second edition of Les Règles de la
méthode sociologique [39], and is generally quoted as such (despite the article is antecedent); the
sentence is not in the first, 1895, edition. In English:

The solidity of bronze lies neither in the copper, nor in the tin, nor in the lead which have
been used to form it, which are all soft or malleable bodies. The solidity arises from the
mixing of the two. The liquidity of water, its nutritive and other properties, are not in the two
gases of which it is composed, but in the complex substance they form by coming together.
[…Social facts] reside in the society itself that produces them and not in its parts, namely,
its members. [40, pp. 39–40]

It is difficult to say whether Durkheim was aware of Huxley’s example, but he was surely well
acquainted with the work of Huxley’s friend, Herbert Spencer (see [45]), on social organisms. By
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La dureté du bronze n’est ni dans le cuivre ni dans l’étain ni dans le plomb qui ont servi
à le former et qui sont des corps mous ou flexibles; elle est dans leur mélange. La fluidité
de l’eau, ses propriétés alimentaires et autres ne sont pas dans les deux gaz dont elle est
composée, mais dans la substance complexe qu’ils forment par leur association. […Les faits
sociaux] résident dans la société même qui les produit, et non dans ses parties, c’est-à-dire
dans ses membres. [38, p. 9]

Several other historical examples are in [102, pp. 63–64, 863]; outside Biology, the
economist Elinor Ostrom quoted this book [120, p. 44] as one of her major sources
of inspiration.5

4 Discrete-Event Simulation

Discrete-Event Simulation (DES) is a kind of simulation developed in the 1950s that:

utilizes a mathematical/logical model of a physical system that portrays state changes at
precise points in simulated time. Both the nature of the state change and the time at which the
change occurs mandate precise description. Customers waiting for service, the management
of parts inventories, or military combat are typical application domains for discrete event
simulation. [115, p. 370] or [114, p. 149]

Strictly speaking, the name DES denotes (almost) any simulation taking place in
discrete time, but this has several consequences on how it is performed. The system
has finitely many components, with finitely many states. These components interact
through events having no duration. In general, the state of the system is described by
a state variable.

Example 7 (Queueing Systems) The most classical example of a DES is a queue.
As an example, individuals from a calling population arrive at random times in front
of one or more servers, servicing them in FIFO (first in first out) order with random
serving times; if all servers are busy, a waiting line creates and its length is the state
variable. Several queueing systems are easily solvable, others are not, and require
simulation to be solved. An example may be found in [6, Sect. 2.1]: the random
values for the arrival and service times are collected in tables, and the number of
customers in the system can be obtained combining these values through the rules
of behavior of the queue.

the way, the metaphor of water is used in [45, p. 96] to describe the shorthand system developed by
William George Spencer, Herbert Spencer’s father.
5 These pages by Mayr contain some mistakes. First, the book of Lloyd Morgan cited by Mayr is
probably the one from 1923 [111], not from 1894, as emergence starts appearing in his work from
1912 (see [12, p. 59]). Second, the quotation just after that is not by Morgan but is taken from the
book [121, p. 72] where it is used to illustrate the reasoning in [112, p. 59].
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5 Microsimulation

5.1 Microsimulation in Economics

Microsimulation was introduced in 1957 by Guy Henderson Orcutt in [119]. Here
is a definition adapted from the one provided by the International Microsimulation
Association:

Microsimulation refers to a wide variety of modeling techniques that operate at the level of
individual units (such as persons, firms, or vehicles), with rules applied to simulate changes
in state or behavior. These rules may be deterministic or stochastic, with the result being an
estimate of the outcomes of applying these rules, possibly over many steps involving many
interactions. These estimates are also at the micro level, allowing analysis of the distribution
of the outcomes and changes to them, as well as the calculation of any relevant aggregate.
[48, p. 2142]

Microsimulation bears resemblances with agent-based modelling (see Sect. 7) but
they “have remained very distinct fields in the literature with microsimulation meth-
ods drawing heavily on micro-data” [48, p. 2142]. The reliance on micro-data for the
construction of rules of behavior—that is generally considered a positive, when not
the defining feature, of this method—has somewhat limited the scope of application
of microsimulation to situations in which these data are available.

5.2 Intermezzo

What is missing from Microsimulation can be illustrated using the so-called Cole-
man’s boat reproduced in Figs. 2 and 3.

The simplest form of this diagram (see [24, pp. 8 or 10]) is shown in Fig. 2. It
illustrates the causal paths between micro- and macro-level phenomena: a macro-
level cause influences agents at a micro-level and this in turn influences the macro-

macro cause macro effect

micro cause micro effect

downward 
causation

upward 
causation

Fig. 2 Coleman’s boat as represented in [24, pp. 8 or 10]



174 R. Seri et al.

● ●

● ●

situational
mechanisms

transformational 
mechanisms

macro−level 
association

action−formation 
mechanisms

4

2

1 3

Fig. 3 Coleman’s boat as represented in [65, p. 59]

level. Here, “the macro level is an abstraction, nevertheless an important one” [24,
p. 12]. A slightly different representation, from [65, p. 59], is in Fig. 3. The grey
area represents the macro level, while the white one represents the micro level.
Applications to simulation methods are in [146, p. 35], [65, p. 59] and [66].

Before turning to the explanation of these graphs, we remark that some authors
(see [18, p. 454] and [98, p. 42]) prefer to refer to this representation as a Boudon-
Coleman diagram (see [126] for a study of the antecedents of Coleman’s boat) while
others present modifications of the boat without an upper macro-macro path [23, p.
1322].

The mechanisms “by which social structures constrain individuals’ action and
cultural environments shape their desires and beliefs” [65, p. 59] represented by
path 1 are called situational. They represent downward causation. Action-formation
mechanisms (path 2) “[link] individuals’ desires, beliefs, etc., to their actions” [65, p.
59]. The mechanisms “by which individuals, through their actions and interactions,
generate various intended and unintended social outcomes” [65, p. 59] are called
transformational (path 3). They represent upward causation. Path 4 does not rep-
resent causality as “explanations that simply relate macro properties to each other
[…] are unsatisfactory” [65, p. 59]. One can iterate the “boat” over time: at each
step of the simulation, there is an upward causation path from the agents towards the
macro-level, and a downward causation path from the macro-level to the behavior
of the agents.

The link of emergence with Coleman’s boat is that emergent phenomena can
generally be identifiedwithmacro behaviors induced by themechanisms taking place
in the bilges of the boat. Transformational mechanisms are especially relevant as they
are the final step through which upward causation generates emergent phenomena.
It is no surprise, therefore, that simulation methods built from the characteristics of
the single agents may be better at modeling emergence (see [140, p. 230]).
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Now, returning to Microsimulation, Economics has at least two mechanisms of
individual market coordination that are coherent with both upward and downward
causation: general equilibrium and partial equilibrium. The former takes place when
equilibrium between demand and supply is achieved on all markets inside an econ-
omy at the same time, and changes in one market affect all other markets. The latter
happens when one market is considered in isolation and is supposed not to affect
the other markets. Both mechanisms predict that individuals, without coordination
but only through tâtonnement, select prices achieving a macro-level equilibrium
characterized by market clearing—i.e. full allocation of goods in any market of the
economy. As individuals face these prices, this constitutes a source of downward
causation, from the macro level to the micro one. But the application of partial and
general equilibria in simulated models has two problems. First, it is not credible that
these concepts of equilibrium hold exactly true, as perfect market clearing seems to
be the exception rather than the norm. Second, in models representing a proper sub-
set of the economy, it is difficult to imagine quantitative mechanisms of downward
causation.

Coleman’s boat can also be useful to classify simulation models. Indeed, some
authors [58, 92] identify three categories of models:

• Macrosimulations (e.g., SystemDynamics, see Sect. 3,Discrete-Event Simulation,
see Sect. 4) focus on an aggregate level and operate at the level of the deck of
Coleman’s boat;

• Microsimulations (e.g., Microsimulation, see Sect. 5.1, Simulation of Voting
Behavior, see Sect. 5.3) focus at the individual level and take place in the bilges of
Coleman’s boat;

• the third category is composed of models in which there is an iteration between the
two levels. These are identified with so-called Agent-Based Models (see Sect. 7).

5.3 Early Simulation of Voting Behavior

Some models similar to economic Microsimulations can be found in the early lit-
erature on simulation of voting behavior. We include these models in this review
because of their accent on agents’ heterogeneity.

Pool and Abelson [122] presented a model they had developed for the Democratic
Party in the 1960 US presidential campaign, the so-called Simulmatics project. The
original model used the positions of 480 types of voters (that were consolidated to
15 in the published paper) on 52 issues. The data for the model were based on over
100,000 interviews in polls collected over 10 years by polling firms. The researchers
advised Kennedy that he would benefit from taking a strong stance in favor of civil
rights and from openly dealing with his Catholic religious beliefs. The paper was so
influential that in 1964 Eugene Leonard Burdick, a political scientist and novelist,
wrote a novel, called The 480 (see [19]), criticizing the fact that the use of computer
models made easy to choose strategies to maximize votes and manipulate electors.
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In 1965, Ithiel de Sola Pool, Robert P. Abelson and Samuel L. Popkin published
Candidates, Issues, and Strategies: A computer simulation of the 1960 and 1964
presidential elections, a book describing in detail their model (see [123]). [1] con-
sidered a simulation model of voting in the fluoridation referendum (i.e. whether
tap water should be compulsorily fluoridated or not). The model had 500 agents
behaving according to 51 rules (22 about information processing, 27 on information
exchange, 2 for voting behavior).

6 Cellular Automata

Cellular automata (CA, sing.automaton) are systems composed of individuals taking
on one of a discrete number of states, arranged in fixed cells (hence the name cellular)
on a grid, interacting according to deterministic rules depending on the neighboring
agents’ state (hence the name automata). A more formal definition is the one in the
Stanford Encyclopedia of Philosophy:

CA are (typically) spatially and temporally discrete: they are composed of a finite or denu-
merable set of homogeneous, simple units, the atoms or cells. At each time unit, the cells
instantiate one of a finite set of states. They evolve in parallel at discrete time steps, follow-
ing state update functions or dynamical transition rules: the update of a cell state obtains
by taking into account the states of cells in its local neighborhood (there are, therefore, no
actions at a distance). [10]

They have been used both as specific examples of real-world phenomena and as
abstract examples of how complex behavior can arise from simple rules. Note that
the rules of behavior of cellular automata are deterministic and fixed. They were first
formalized by Stanislaw Ulam and John von Neumann in the 40s, while the former
was working on the growth of crystals and the latter on self-replicating systems.
The work of von Neumann culminated in the classic [153] (note that the symposium
for which the paper was written was held in 1948), while the work of Ulam was
published in [148]. However, it was only in the 1970s that CA rose to prominence
with the following example.

Example 8 (Game of Life) In 1970, in [56], Martin Gardner popularized “a fan-
tastic solitaire pastime” invented by John Horton Conway. This is indeed a cellular
automaton with very simple rules:

• each cell can be either occupied by a living creature or empty;
• the creature in the cell dies if it has 1 or 4+ neighbors (resp. of loneliness and
overcrowding);

• an empty cell comes to life if it has 3 living neighbors.

The neighbors of a cell are the ones in the Moore neighborhood, i.e. the set of 8 cells
in contact through a side or a corner with the cell (a von Neumann neighborhood,
instead, is the set of 4 cells in contact through a side with the cell). The game is
generally applied starting from a configuration of activated cells. At the beginning,
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iteration 0 iteration 1 iteration 2 iteration 3 iteration 4

iteration 5 iteration 6 iteration 7 iteration 8 iteration 9

iteration 10 iteration 11 iteration 12 iteration 13 iteration 14

Fig. 4 Game of Life: evolution of a glider on a 8 × 8 checkerboard

Conway thought that such a system could not create a universe in constant expansion,
but he was soon proved to be wrong (see the glider in [9, p. 931] or Fig. 4 and the
glider gun in [9, p. 935]). The number of configurations that have been explored is
incredibly large (see [9, Chap. 25]).

Around the same years, Thomas Crombie Schelling introduced a model dealing
with segregation, i.e. the enforced separation of different ethnic groups in a com-
munity. By taking inspiration from James Sakoda, who created a set of so-called
checkboard models (see [67] for the detailed story), Schelling’s Segregation Model
[131, 132] showed that a personal slight preference towards a less diverse neighbor-
hood could create in the long run a segregated community.

Example 9 (Schelling Segregation Model) Schelling [131, 132] proposed a model
in which two types of individuals, say, A and B, are located on a one-dimensional or
two-dimensional grid. Some of the cells may be empty. At each step, each individual
counts how many in their Moore neighborhood are like them: if the proportion is
smaller than a threshold value x , they move to a new position. This position is chosen
deterministically: it is the nearest empty position satisfying their threshold. Schelling
did not quote explicitly cellular automata in his paper, but to keep the paper inside the
framework was compelled to introduce awkward deterministic rules (as an example,
individuals choose to move according to a certain order in the grid). However, this
is not the version of Schelling’s model that is generally used: in the latter, some
randomness is generally introduced in the relocation of moving individuals. This
small step gets this cellular automaton close to agent-based models (see Sect. 7).
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 3

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

equilibrium

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

equilibrium

Fig. 5 Schelling SegregationModel for different values of x : the row above shows the case x = 0.5,
the row below the case x = 0.9; the left column displays a random initial configuration that is equal
for both values of x ; the second column shows the model after 3 (above) and 10 (below) iterations;
the last column shows what happens after an arbitrarily large number of iterations

This instance of the model is displayed in Fig. 5. The evolution of the system for
different values of x has been characterized:

Initially the system quickly develops small clusters, but then a slow evolution toward larger
clusters follows. […T]he system evolves toward one big cluster or very few clusters. In the
case of x = 1/2 the cluster surface tends to form flat surfaces […] In x �= 1/2 cases the surface
is bumpy and irregular [150, p. 19263].

6.1 Intermezzo

In thismodel, segregation is an example of emergence.Wediscuss in the following the
implications of emergence and its importance for the model and for the development
of simulation in the social sciences.

Example 10 (Schelling Segregation Model) In Schelling’s model, segregation is an
emergent property, as nobody necessarily wants it to take place. Schelling stated
this opposition in the famous title of one of his book, Micromotives and Macrobe-
havior [133], whose blurb summarizes the idea as follows: “small and seemingly
meaningless decisions and actions by individuals often lead to significant unintended
consequences for a large group.” The description in the blurb replicates the definition
of the upward causation path in Coleman’s boat.
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Note the striking difference with respect to two economic frameworks that gained
traction in the last decades.

On the one hand, in modern Macroeconomics, several models are based on a
representative agent, i.e. an agent that represents the whole economy (see, e.g., [64]).
This became a central element of Real Business Cycle (RBC) theory, first, and, after
that, of Dynamic Stochastic General Equilibrium Models (DSGE) introduced in the
two seminal papers [80, 88]. DSGE are, in general, macroeconomicmodels featuring
an economy in general equilibrium;moreover, themodels aremicrofounded, i.e. they
are not formulated in terms of aggregate quantities but they derive their behavior by
aggregating microeconomic individual models. In the case of DSGE, their behavior
can be reduced to that of a representative agent maximizing expected utility. In [62],
the authors provide an interesting point of view focused on the causal structure of
these dynamic models:

These types of models are nowadays the most widely used to draw and to evaluate policy
claims because they bear the advantage of simultaneously addressing two critical issues
about causal structures. On the one hand, under the acceptance of the rational expectation
hypothesis, the structure modeled by the RBC/DSGE approach remains invariant under pol-
icy intervention because it takes into account the forward-looking behavior of the economic
agents. On the other hand, the theoretical structure has an empirical counterpart in which
the distinction between endogenous and exogenous variables is eschewed. [62, p. 126]

The emphasis on the representative agent implies that any characteristic of the econ-
omy is a characteristic of the agent, and no emergence seems possible (see [79, p.
51]).

On the other hand, in Microeconomics, as well as in other Natural and Social
Sciences, some market and non-market interactions, in which tactical and strategic
factors are preeminent, are studied through the lens of game theory, a branch of
economics/mathematics introduced by Oskar Morgenstern and John von Neumann
[155] in which agents interact taking into account other agents’ reactions. Here
emergence is possible as a consequence of strategic interaction between the agents.

These two situations describe a whole spectrum of models, from one in which
no emergence is possible to one in which emergence is a consequence of strategic
interaction. But Schelling’s model is different as emergence is a consequence of
the myopic behavior of individuals in a dynamic context. There is no planning at
all. (One could even show that, if x is very high, no stable equilibrium is possible:
if individuals have strong preferences against diversity, they do not get what they
want!)

7 Agent-Based Models

An Agent-Based Model (henceforth ABM) is a computational model whose unit is
the agent, an autonomous individual behaving in a given environment according to
established rules [134]. The agent is the unit of analysis and it can be anything the
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modeler is interested in, from a neutron to a country. Its general features can be
characterized by:

• autonomy: each agent is modeled independently from the others and it can develop
in ways that are not predictable solely by looking at the initial conditions set;

• interaction: exchanges with other agents may modify the characteristics of the
agent and the way in which it perceives the environment and the self;

• complexity: some characteristics “emerge” during the interactions.6

Agents interact in a limited space that is usually referred to as environment, such that
their position can represent either their physical location (see Schelling’s Segregation
Model in Sect. 6) or their psychological state of mind (see the Garbage Can Model
below).

The rules are the norms that regulatewhat happens in themodel and are sometimes
identified as mechanisms. They can be:

• behavioral: they define what each agent should be doing in general and/or as a
function of their characteristics;

• interactional: they define what happens to an agent and/or to the environment
when they interact;

• time-dependent: rules maymodify agents’ characteristics, other rules, or the shape
of the environment as time—however defined in the simulation—goes by;

• developmental: rules set the conditions for agents (and/or the environment) to
change, evolve or die.

The next step we deem appropriate at this point in the chapter is to try and explain
the difference between ABM and other simulation frameworks, especially because
ABM is the latest and most advanced of all known techniques so far. A classification
of simulation models can be based on the following dichotomies:

• the backings of themodel can be based on equations or on properties of the objects;
• the approach can be either at the macro- or at the micro-level;
• agents can be homogeneous or heterogeneous;
• rules can be homogeneous or heterogeneous;
• the environment can be either static or dynamic.

While the other concepts have already been explained, it can be interesting to
spend a word on backings. Most simulation models involve behaviors that are dic-
tated by equations that connect the different elements of the model. This is clearly
true for simulation models working at the aggregate level, but also some microsim-
ulation models are based on actions described through the application of equations
on individual-level variables. Some models, however, start from the specification of
the characteristics of the objects—be they agents and/or rules—and let them interact
more or less freely. A first consideration is that this further increases the distance
between the observed behavior of the components of the model and the elements

6 It is a bit odd to attach this aspect to agents, butwewant to highlight that agents can be characterized
as complex; see below and [42].
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governing it. Indeed, while the result of an equation is often rather predictable, it is
not the case for the interactions of objects possessing their own characteristics and
behaving on their basis. For this reason, models whose backings are based on objects
often offer more opportunities for the development of those features that are not pos-
sessed by their own components but that are born out of the interactions—i.e. exactly
emergent properties. This is not to say that equation-backed models cannot exhibit
emergence—as the examples above show, they can and they often do—but only that
emergence is usuallymore unpredictable in object-backedmodels. A second, related,
point is that object-backed models are often built using a bottom-up approach—i.e.
starting from the properties of the objects—and they recover aggregate features only
as a result of the interactions. From this point of view, they start from the bilges of
Coleman’s boat (see Figs. 2 and 3) but they also involve its deck.7

From Table1, it is probably more apparent to understand why ABM is considered
themost advanced computational simulation approach as of yet. In fact, by comparing
core components of the simulation approaches reviewed so far, it becomes clear how
ABM stands at odds with most of them. Of course, the agent-based approach has
taken from past simulation techniques, but its comprehensive reach makes it stand as
a jump ahead. Omitted from the table and not explicitly mentioned (only cursorily
in the introduction) in this chapter so far are the surrounding conditions that make
ABM a viable option. We are referring to the surge of computational power and
to the possibility that even home computers are capable of performing complicated
operations, unthinkable twenty years ago. This means that, for example, having
heterogeneous agents in a simulation came at very high costs before the middle
of the 1990s, while it is relatively (computationally) cheap to allow them today.
This technical hardware and software innovation opened up for the possibility of a
different approach to simulation modeling.

In the following pages, we introduce an example concerning the ABM version of
the celebrated Garbage Can Model.

Example 11 (Garbage Can Model) The Garbage Can Model (GCM) of [21] is a
model of decisionmaking in an organized anarchy, i.e. an organization characterized
by the three properties of problematic preferences, unclear technology, and fluid
participation.

[A]n organization is a collection of choices looking for problems, issues and feelings looking
for decision situations in which they might be aired, solutions looking for issues to which
they might be the answer, and decision makers looking for work. [21, p. 2]

The GCM has been extremely influential in organizational behavior. The model
was implemented using one of the earliest computer languages developed by IBM,
FORTRAN, and it was not an ABM. Yet, by using an ABM jargon, four types
of agents can be identified: (a) problems, (b) opportunities, (c) solutions, and (d)

7 It is worth noting that ABM can also be backed by equations, better, by a mix of equations and
object-basedmodeling. Actually, we are not aware of ABM that do not have any equation embedded
in their coding. The difference of this approach is in the ability to mix and mash both object- and
equation-based techniques.
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decision makers. The overall goal of the model is to determine whether a formal
(hierarchic) organizational structure provides an institutional backbone for problem
solving that is better than an informal (anarchic) organizational structure, or not. In
the first case, the four types of agent interact following a specified sequence while
in the other they interact at random. There are two ways in which participants make
decisions in the organization. One is by resolution: it happens when problems are
solved once participants match opportunities to the right solutions; i.e. when the right
combination of the four agents are on the same patch at the same time. The other is
by oversight: it is when solutions and opportunities are available to participants but
no problems are actually solved.

Not all problems are solved automatically, just by having opportunities, decision
makers, and solutions available. In fact, all problems have difficulty levels, partici-
pants have abilities, and solutions have a certain degree of efficiency. The problem is
solved if the match of the participant with an opportunity and a solution overcomes
the difficulty of the problem.

The findings of the original model are the following: resolution is not the most
common style of decision making; hierarchies reduce the number of unresolved
problems but increase problem latency; important and early problems aremore likely
to be solved.

The model has later been implemented by [51, 52] in ABM form. In the agent-
based version of the model, there are three types of structures:

1. Anarchy. There is no hierarchy so that abilities, efficiencies, and difficulties are
randomly distributed among agents.

2. Hierarchy-competence. Abilities, efficiencies, and difficulties increase as one
moves up the hierarchical ladder.

3. Hierarchy-incompetence. Abilities, efficiencies, and difficulties decrease as one
moves up the hierarchical ladder.

Finally, themodel implements twomodes of (not) dealingwith problems (i.e. flights):

1. buck passing: when one participant has the alternative of passing the decision on
a problem to another participant;

2. postpone: when problems are kept on hold by participants and eventually solved
at an unspecified future time.

The results of the model are summarized as follows by the authors:

The […] properties point to very interesting features of organizational decision-making. […]

1. Decisions by oversight are very common, much more common than decisions made in
order to solve problems. This result suggests that the rational mode of decision-making
is a very rare case. Most decisions are socially induced acts, made with the purpose of
obtaining legitimacy by conforming to required rituals.

2. If there is a hierarchy, then top executives are busy with gaining legitimacy for their
organization by means of decisions by oversight, whereas the bottom line cares about
solving problems.
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3. Organizationsmake themselves busywith a few problems that present themselves again
and again. So participants have the impression of always facing the same problems. [52,
p. 123]

7.1 A Menagerie of Names

ABM have been used in several disciplines: Biology/Ecology [59, 60, 125], Com-
puter Science [37, 117], Sociology [4, 92, 143, 147], Management [2, 110] and
Organizational Behavior/Organization Science [7, 49, 136], Political Science [32],
Psychology [25, 26] and Cognitive Sciences [93], Population Studies [61], Eco-
nomics [5, 145] and Finance [157], Transportation Research [94].

As expected, their very general nature implies that ABMcan be adjusted in several
ways according to the discipline. The different definitions of ABM are exposed in
the following parts of the chapter. Since Social Sciences include many different
disciplines, we decided to restrict our attention only to a part of these and to compare
them with a selection of other disciplines, from the area of Natural Sciences and
Techniques (e.g., Physics, Engineering, and Biology). In particular, we dedicate
special attention to Economics and Management, highlighting the peculiarities of
agents as heterogeneous individuals, with bounded rationality, interacting with each
other.

7.1.1 Biology/Ecology

In Biology, anABM is sometimes called an Individual-Based Model (IBM), but there
is considerable confusion as to the definition. Some authors consider individual-
based and agent-based as synonyms (see, e.g., [125, p. 3]). Others reserve the term
individual-based when individuals are simpler and rules are formulated probabilis-
tically at the individual level (see, e.g., [11, p. 338]).

Example 12 (Conservation Biology) In this branch of biology, and especially in
population viability analysis (PVA)—i.e. the quantitative assessment of risk of extinc-
tion concerning a population or a species—most classical models fail to take into
account the spatial nature of habitats: spatially dispersed animals, like the giraffe
(see [28, 72]), may be at higher risk than commonly thought. Metapopulation mod-
els were the first to consider several populations interacting in separated locations,
but they generally constrain the locations to be discrete. ABM offer a continuous
improvement.

7.1.2 Computer Science

In Computer Science, one finds the concept of Multi-Agent System (MAS, see [37]
for a survey and [117] for the relation between MAS and ABM), used to denote a
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computer system of intelligent agents in interaction inside an environment. The aim
is not to study the behavior of agents, but to solve a problem or compute a quantity.
An agent is seen here only as a computing entity (and this is why, at odds with most
ABM, it must be intelligent). As agents share knowledge or computing power, they
approach the solution of the problem. From this point of view, MAS can be seen as
a subfield of Distributed Artificial Intelligence (DAI):

DAI is the study, construction and application of multiagent systems, that is, systems in
which several interacting intelligent agents pursue some set of goals or perform some set of
tasks. [158, p. 1]

Another related, but slightly more general concept, is that of Artificial Adaptive
Agents (AAA). This name is often connected with so-called Complex Adaptive Sys-
tems (CAS, e.g., [108]):

Such a system is complex in a special sense: (i) It consists of a network of interacting
agents (processes, elements); (ii) it exhibits a dynamic, aggregate behavior that emerges
from the individual activities of the agents; and (iii) its aggregate behavior can be described
without a detailed knowledge of the behavior of the individual agents. An agent in such a
system is adaptive if it satisfies an additional pair of criteria: the actions of the agent in its
environment can be assigned a value (performance, utility, payoff, fitness, or the like); and
the agent behaves so as to increase this value over time. A complex adaptive system, then,
is a complex system containing adaptive agents, networked so that the environment of each
adaptive agent includes other agents in the system. [68, p. 365; emphasis in the original]

What differentiates CAS from ABM is the emphasis, that is generally lacking in the
latter, on adaptivity, but the two approaches are not mutually exclusive (see [118] for
an example).

7.1.3 Physics

Physics does not generally require the introduction of agents as sentient and
autonomous entities. Optimization provides an example of the difference between
Social Sciences and Physics:

In physics and the natural sciences, maximization typically occurs without a deliberate
“maximizer.” […M]aximizing behavior differs from nonvolitional maximization because of
the fundamental relevance of the choice act. Fermat’s “principle of least time” in optics was a
fine minimization exercise (and correspondingly, one of maximization). It was not, however,
a case of maximizing behavior, since no volitional choice is involved (we presume) in the
use of the minimal-time path by light. [139, p. 745]

A notable exception is the area of complex systems, that is at the border of Physics.
Outside this area, the generic name of Monte Carlo is used for models that would
elsewhere give rise to ABM.

Example 13 (Why the Brazil Nuts are on Top) According to physical intuition, when
we shake a box of nuts, the largest nuts should go on the bottom while the smallest
should float; the evidence suggests that the contrary is true. In [128, 129] the authors
build a Monte Carlo model to show how and when this happens.
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7.1.4 Economics

In Economics, the most appreciated features of ABM are that they allow for hetero-
geneity of the agents, both in their types and their characteristics, for interactions
taking place in non-trivial, often dynamic, networks [57], and for a wide range of
individual behaviors, from perfect foresight to bounded rationality [124].

The name Agent-based Computational Economics (ACE) is sometimes used to
denote the computational study of economic processes modeled as dynamic systems
of interacting agents. According to [85, p. 246], an agent refers, in general, to “an
encapsulated collection of data and methods representing an entity residing in a
computationally constructed world.”

ACE may overcome some critiques moved to DSGE models in macroeconomics
(see [20, 75, 76]):8

The advantage of the ACE approach for macroeconomics in particular is that it removes
the tractability limitations that so limit analytic macroeconomics. ACE modeling allows
researchers to choose a form of microeconomics appropriate for the issues at hand, including
breadth of agent types, number of agents of each type, and nested hierarchical arrangements
of agents. It also allows researchers to consider the interactions among agents simultaneously
with agent decisions, and to study the dynamic macro interplay among agents. Researchers
can relatively easily develop ACE models with large numbers of heterogeneous agents,
and no equilibrium conditions have to be imposed. Multiple equilibria can be considered,
since equilibrium is a potential outcome rather than an imposed requirement. Stability and
robustness analysis can be done simultaneously with analysis of solutions. [22]

A second difference between ACE and DSGE concerns the agent’s expectations,
that in DSGE are generally rational. This is a mechanism of expectation formation
introduced in [113], according to which ex-ante expectations concerning the future
value of a variable differ from its real value by a zero-mean random term. This
can be justified supposing that agents know the model representing the economy,
from which the alternative name of model-consistent expectations, i.e. individuals
and researchers share the same model of the economy: “Muth’s notion was that the
professors, even if correct in their model of man, could do no better in predicting
than could the hog farmer or steelmaker or insurance company. […] The professors
declare themselves willing to attribute to economic actors at least as much common
sense as is embodied in professional theories” [103, p. 53]. Now, this kind of model-
consistent rationality, according to which agents are able to analyze the economy
as economists, cannot be generally assumed in ACE (and more generally in ABM)
because of the very way in which models are built.

ACE are widely used in Finance, although, as pointed out by [35, 69, 70, 84],
in Financial Economics several features of ABM are not used (interactions taking
place over networks, coexistence of several kinds of agents, etc.) and the attention is
more focused on the heterogeneity and bounded rationality of consumers.

Another class of models is formed by history-friendly models (HFM, see [96,
97]):

8 We refer to [46, 47, 63, 77, 86] for a detailed discussion on the differences between ACE and
DSGE.
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“[H]istory-friendly”models (HFMs) of industrial evolution […] are variants of ABMswhich
aim at capturing in stylized form qualitative theories about mechanisms and factors affecting
industrial evolution, technological advances and institutional changes. HFMs consist of
three steps: appreciative theories of the history of a specific industry, history-replicating
simulations, and history-divergent simulations. In HFMs, model building and calibration
are conducted with the guidance of the history. [160, p. 45]

As explained above, an important step in HFM is calibration, namely the search
for values of the parameters of the model producing an output that is approximately
similar to a set of real data.

7.1.5 Management and Organization Research

The status of ABM among the management disciplines is still controversial. In fact,
and in spite of the few attempts made so far [49, 109, 134, 137], there is still
no clear definition of what ABM are for scholars in the area of Management and
Organizational Research (MOR). If one excludes the more engineering-related area
of MOR, that is Operations and Supply Chain Management, there are very few
examples of ABM (a recent publication guides the reader on how to develop ABM
in this field of research; [135]).

In a review of the literature, Wall [156] divides the contributions in two groups,
those related to exploration/exploitation and those dealing with differentiation and
integration.Models pertaining to the former originate from JamesG.March’s famous
categorization of possible opposite decisions an organization usually faces [99]
between—to make a very long story short—putting existing resources to work
(exploitation) or seeking additional resources (exploration). The latter dichotomy
is engrained into very old discourses within the MOR literature, and relates to the
basic decision to “make or buy” [82]. One of the most interesting findings of the
review—although not discussed openly—is that almost all models are of a special
kind: they are NK models (see below). According to another recent study [8], it
seems there is a trend in MOR where scholars engage in one of the simplest kinds
of ABM while (a) not calling them as such, and (b) de facto establishing a parallel
literature. Using NK models to address MOR topics is probably a sign that the field
is struggling with concepts such as complexity, emergence, and randomness.

But, outside of this quite remarkable trend, there still are areas of MOR where
ABM have appeared. This is the case, for example, of those ABM dealing with
routines (e.g., [14, 110]), work team dynamics (e.g., [7, 101]), and, more broadly,
with organizational behavior [136].

Example 14 (Adaptation on a Rugged Landscape)Given their prominence inMOR,
it makes sense to introduce NK models in an example. Before shortly describing the
example, it is worth dedicating a few words on this typology of models. They were
introduced by evolutionary biologist Stuart A. Kauffman in the late 1980s [73, 74]
to study fitness and adaptation. Using Kauffman and Weinberger’s words:

The distribution of the fitness values over the space of genotypes constitutes the fitness
landscape. […] The space consists of all 20 N proteins, length N, arranged such that each
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protein is a vertex next to all 19 N single mutant variants obtained by replacing one amino
acid at one position by one of the 19 remaining possible coded amino acids. Each protein
in the space is assigned some “fitness” with respect to a specific property, such as binding a
specific ligand, where “fitness” can be defined as the affinity of binding. An adaptive walk
can be conceived as a process which begins at a single protein in the space and passes via
ever fitter 1-mutant variants. […]N is the number of “sites” in themodel genotype or protein,
while K is the number of sites whose alternative states, “alleles” or amino acids, bear on
the fitness contribution of each site. Thus K measures the richness of epistatic interactions
among sites. [74, pp. 211–212]

Outside of Biology, a modeler could attribute a diversity of characteristics to the two
main parameters N and K, preserving their relations, and adapting to the study of
different types of “fitness”. Thiswas the intuition ofDanielA.Levinthal [87]whowas
probably the first to introduce the MOR community to NK models. He studied how
organizations adapt to different forms (organizational design). In the model, there
are N organizational attributes and K other attributes that affect an organization’s
fitness—i.e. the extent to which interaction affects adaptation. Dependence on initial
conditions was one of the main findings of this simulation model.

8 Conclusions

The aim of the chapter was to show the central role played by randomness, emer-
gence and causation for the development of different groups of simulation models.
Following the literature, we have outlined a short and necessarily partial history of
simulation models, with special attention to the Social Sciences. The models that
we have covered are some early works with analog and digital computers, System
Dynamics, Discrete-Event Simulation, Microsimulation in Economics and Political
Science, Cellular Automata and Agent-Based Models.

To conclude, ABM can be considered the most advanced computational simula-
tion approach so far. Indeed, although this approach has taken from past simulation
techniques, its comprehensive reach makes ABM stand as a jump ahead.
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