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Foreword

We are on the cusp of a paradigm shift in healthcare catalysed by technology 
advances. This book brings to the fore the elements that are shaping this transforma-
tion with a broad-based coverage of relevant issues. Interestingly, COVID has raised 
our sensitivity to scientific cooperation and technological innovation that extends 
beyond the current pandemic to address a broad range of challenges. Data analytics 
enabled by technology advances encourages advances in understanding. Devices 
providing data through the Internet of Things vastly outnumber people. Technology 
innovation continues to accelerate as opportunities emerge.

Unfortunately, though, the best of technological advancements will not succeed 
in the absence of an appropriate support infrastructure of systems, processes and 
policy. The importance of attention to processes is often underappreciated in getting 
technology and associated systems used and useful. In this sense, implementation 
involves more than just technological functionality. Healthcare processes can 
become exceptionally complicated and require significant attention as pointed out 
in Part II of this book. Process modelling can provide insight that assists in success-
ful implementation.

However, without attention to implementation in the presence of sound policy, 
sustained behavioural change will not occur. As pointed out in Part III of this book, 
policy provides the framework and guidance within which people can function in a 
coordinated fashion. Finally, Part IV is dedicated to specific COVID-19 initiatives. 
Ultimately, the combination of technological advances coupled with effective pro-
cesses and policy can achieve a bright future for healthcare from which all of us can 
benefit. This book is important in raising attention to healthcare in a way seldom 
seen that can inform a broad range of stakeholders.

Douglas R. Vogel
Association for Information Systems,  
Australasian Institute of Digital Health,  
eHealth Research Institute, School of Management,  
Harbin Institute of Technology, Harbin, China
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Preface

Digital disruption represents a change, at times a revolution, that is created by the 
incorporation of emerging digital technologies and business models into industry, 
practice and day-to-day life [1]. These innovative digital solutions and models typi-
cally impact the value of existing products and services and day-to-day operations. 
Hence, why the term ‘disruption’ is used. Fuelled by advances in technology and 
more specifically the technologies that make up the Internet of Things (IoT) [2], like 
never before, we have the opportunity to create better processes, solutions and ways 
to support all areas of our life and work.

Healthcare delivery in today’s twenty-first century continues to contend with the 
triple challenge of exponentially increasing costs, aging populations and the rise of 
chronic care [3]. This has resulted in most countries around the world investing in 
technology-enabled healthcare reform with a view to provide better quality, better 
access and better value care, in general, and leveraging the opportunities and bene-
fits afforded by the technologies of the IoT for the healthcare domain [3]. In con-
trast, though, this adoption and diffusion of digital health solutions has not been as 
rapid or radical as similar diffusions of digital solutions in other industries, notably 
banking, manufacturing and retail. However, since March 2020, when the world 
was faced with the challenge of the COVID-19 pandemic, without our digital health 
capabilities, it would have been almost impossible to provide care to citizens during 
harsh lockdowns. Thus, since March 2020, there has never been a more pressing 
time or urgency to try to incorporate the best technology advances and embrace 
digital disruption in healthcare, thereby making a focus on digital health solutions 
and the digital disruption that typically ensues an area of keen interest and para-
mount importance.

Our book serves to present a miscellany of chapters that focus on notable exam-
ples of utilising, incorporating, designing and conceptualising roles for digital tech-
nology solutions to enable and support superior healthcare delivery and wellness 
management. The rapid pace of the advancements in technology is exciting and a 
hallmark of this decade and century. Never more than now has healthcare delivery 
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needed to draw upon these developments to provide high-fidelity, high-quality and 
high-value care to all. This is indeed a nascent domain, and many issues around 
health literacy, policy, privacy and security, not to mention the direct and subtle as 
well as far-reaching implications for the various stakeholders (patients, clinicians, 
healthcare organisations, regulators, payers and the community at large), have yet to 
be fully understood or identified.

Our goal is simple in compiling the chapters to make up this work. We wanted to 
share with you, the reader, some of the critical touch points and help to enrich dis-
cussions and discourse and inspire further research into this critical domain; a 
domain that touches all of us and thus all of us should form considered opinions 
about its future directions. It is our belief that by building awareness, sharing unique 
examples and critical issues, challenges, barriers and facilitators encountered, it will 
help engage and ignite the imagination of researchers to explore further opportuni-
ties for digital health solutions. In this way, it will be possible to enable and sustain 
an environment where digital technologies support better monitoring, better data 
and better communications so that we have better access, better quality and a high 
value of healthcare delivery and wellness management for all as, when and how 
they need it, as well as design solutions to ensure we are both prepared and ready 
for future and perhaps catastrophic challenges.

The chapters making up this book have been arranged into four main sections as 
follows: (1) Technological Disruptions, (2) Process Disruption and Process 
Modelling, (3) People and Policy Considerations and (4) COVID-19-Pandemic 
Focus. We note that these sections are by design unequal, because we believe that 
the most significant aspect of digital disruption in healthcare is on the people and 
policy considerations. In addition, to be as contemporaneous as possible, we also 
include a small section on COVID-19-specific issues.

Specifically, the chapters are as follows:
Part I. Technological Disruptions
Chapter 1 How Technology Is Changing the Delivery and Consumption of 

Healthcare (Mark Wehde)
Chapter 2 Brain–Computer Interfaces: Taking Thoughts Out of the Human Body 

(Melissa Gregg)
Chapter 3 Towards Network Medicine: Implementation of Panomics and 

Artificial Intelligence for Precision Medicine (Robert D. Barber and Keith Kroeger)
Chapter 4 Data Analytics for Accountable Care Organizations in a Shifting 

Landscape of Health and Medicine (Suresh Chalasani, Madhumita Banerjee, and 
Gitika S. Chalasani)

Chapter 5 The Case for Digital Twins in Healthcare (Nilmini Wickramasinghe)
Part II. Process Disruption and Process Modelling
Chapter 6 Using Coloured Petri Nets for Optimisation of Healthcare Processes 

(Vijay Gehlot, Nilmini Wickramasinghe, Elliott B. Sloane, Michael Kirk, and Eric 
R. Miller)

Preface
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Chapter 7 Towards Concept Realisation of Digital Health Technologies (Ruwini 
Edirisinghe)

Chapter 8 Clinical Tele-assessment: The Missing Piece in Healthcare Pathways 
for Orthopaedics (Oren Tirosh, John Zelcer, and Nilmini Wickramasinghe)

Chapter 9 Telehealth Implementation: A Synopsis of Patients’ Experience of 
Clinical Outcomes (Chinedu I. Ossai, Stephen Vaughan, John Zelcer, and Nilmini 
Wickramasinghe)

Part III. People and Policy Considerations
Chapter 10 Disrupting LATAM Digital Healthcare with Entrepreneurship and 

Intrapreneurship (Luis E. Fernández)
Chapter 11 Data for Social Good: A Tripartite Approach to Address Diabetes 

Self-care and Patient Empowerment (Nilmini Wickramasinghe and Steve Goldberg)
Chapter 12 Realising the Healthcare Value Proposition of Better Access, Quality 

and Value of Care by Incorporating the Social Determinants of Health with Digital 
Health (Nilmini Wickramasinghe and John Zelcer)

Chapter 13 Why Do You Want Me to Use This EMR? (Amir Eslami Andargoli, 
Helen Almond, Dominic King, Jonathan Schaffer, and Nilmini Wickramasinghe)

Chapter 14 Leveraging Information Technology in Pharmacovigilance: Benefits 
for Pharmacists and Pharmaceutical Companies (Joel Fossouo, Rachael Mcdonald, 
and Nilmini Wickramasinghe)

Chapter 15 Scoping Mobile Clinical Decision Support Systems to Enhance 
Design and Recording of Usage Data Effectively: A Suggested Approach (Nalika 
Ulapane and Nilmini Wickramasinghe)

Part IV. COVID-19-Pandemic Focus
Chapter 16 Better Pandemic Preparedness with the Intelligence Continuum 

(Nilmini Wickramasinghe)
Chapter 17 COVID-19 Response in Australia and the USA (March–August 

2020) and the Key Role for Digital Health: A Tale of Two Countries (Foluke Ajiboye 
and Nilmini Wickramasinghe)

Chapter 18 Digital Tools as Optimising Enablers of Quantitative Medicine and 
Value-Based Healthcare in a SARS-CoV-2/COVID-19 Pandemic World (Duane 
F. Wisk)

Chapter 19 The Internet Hospital in the Time of COVID-19: An Example from 
China (Jianqiu Kou, Zhengzhong Yan, and Nilmini Wickramasinghe)

No book can ever present in one volume a comprehensive collection covering all 
areas pertaining to the digital disruption in healthcare; however, we hope this mis-
cellany of chapters we present will challenge our readers and be thought-provoking. 
We also hope that you have as much fun reading our book as we have had in compil-
ing and writing it. The global pandemic has indeed served to highlight how fragile, 
dynamic and challenging healthcare delivery is, but it also provides us an opportu-
nity to build and establish new models of care powered by digital health solutions 
that were once only imagined. In summary, we trust that on the completion of this 
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book, researchers, scholars, practitioners, consultants and the general public will all 
have a better understanding of how digital health solutions can be best harnessed to 
provide superior healthcare delivery and wellness management and will rise to the 
challenge of starting to build a better health and wellness environment for tomor-
row, today.

Melbourne, VIC, Australia Nilmini Wickramasinghe  
Kenosha, WI, USA  Suresh Chalasani  
Sarasota, FL, USA  Elliot Sloane   
May 2022
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Chapter 1
How Technology Is Changing the Delivery 
and Consumption of Healthcare

Mark Wehde

1.1  Introduction

Two disruptive technologies in the late 1800s turned the hospital from an institution 
for the destitute into a place of hope and healing. Historically, middle- and upper- 
class patients would be cared for, and even operated on, in their homes. Hospitals 
were primarily associated with poverty, infection and death. It was the profound 
changes brought on by the advent of anaesthesia and aseptic surgery that forever 
changed how and where we care for patients. By the mid-1900s, antibiotics were 
making a huge impact on health and longevity. The invention of the transistor in the 
1940s, the integrated circuit in the 1950s, the minicomputer in the 1960s and the 
introduction of the first commercial microcontroller in the 1970s all lead to incred-
ible improvements in diagnostics and therapeutics. Also, in the last half of the cen-
tury, imaging systems, including CT, MRI, fMRI and PET scanners, coupled with 
the development of high-performance computers allowed for the development of 
sophisticated imaging systems for diagnosis and enabled the use of radiation and 
proton beam therapy systems for treatment of previously untreatable cancers.

Healthcare is about to experience a transformation perhaps even more profound 
than the disruptive changes that occurred over the last 150 years. Those changes that 
started with the advent of anaesthesia and aseptic surgery have led to the industriali-
sation of hospitals. Today, more and more physicians and equipment are being 
aggregated into extremely large healthcare systems due to economies of scale. 
Hospitals and healthcare systems are burdened by tremendous capital assets that 
will effectively limit their ability to respond to the changes in technology and con-
sumer preferences that are core to the Fourth Industrial Revolution.
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The hospital of the future will be much different than the hospital of today. The 
massive physical infrastructure that we most often associate with a healthcare sys-
tem will be primarily for those critically ill who need highly specialised equipment 
and expertise. But for most of us, healthcare will happen either in our communities 
or in our homes.

Healthcare systems are likely to adopt new models of providing care. Advanced 
care centres often combined with teaching hospitals will provide the most complex 
care. These hospitals will support very capital-intensive care. These tertiary and 
quaternary care centres will treat very challenging problems requiring the most spe-
cialised care.

Utilising a spoke and hub model, community centres will provide most routine 
care that requires a patient visit. This will include emergency care, although it is 
very possible that localised emergency care facilities will develop as a stand-alone 
service.

Most of the healthcare system is going to be designed around keeping people—
not patients—well by providing ongoing monitoring of health conditions as a means 
of preventive care. Much of this care will be provided remotely and it offers the 
greatest chance of disruption of existing healthcare models.

1.2  Disruption of Existing Business Models

In his book, The Innovator’s Dilemma, Clayton Christensen [1] described the role 
of disruptive technologies in undermining existing businesses and business models. 
To understand how the healthcare industry is on the verge of being disrupted, we 
need to look at the conditions put forth by Christensen.

Disruption of a business is a process that evolves over time. But change by itself 
is not disruption. The advent and wide adoption of EMRs, the improvements in 
diagnostics enabled by incredibly powerful computers and data analytics, the deli-
cate operations supported by robotic surgery, the advances in genomics and pro-
teomics and the advancement of proton and heavy ion therapy for cancer are among 
the amazing changes that have dramatically changed how we provide care for 
patients. However, they have not disrupted the industry. These innovations have 
mostly benefited the existing healthcare industry.

There are small-scale experiments ongoing, however, that do have the potential 
to be disruptive. Healthcare services are starting to be seen as a commodity with the 
arrival of online visits and wearable technologies that allow new entrants into the 
diagnostic field. With more and more data available digitally, the potential of data 
analytics and artificial intelligence (AI) allows new entrants and new participants. 
Once trained, an artificial intelligence system can often augment the performance of 
a highly trained specialist, allowing a greater volume of work at a much lower cost. 
And currently, most of the expertise in data analytics and artificial intelligence lies 
outside the healthcare industry.
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The digital revolution has also led to an explosion in the availability and accep-
tance of wearable devices. Consumers are comfortable with technologies that moni-
tor a variety of conditions. Our iPhones have been tracking our movement and 
shopping habits for years. New devices such as the iWatch and Fitbit allow for 
ongoing monitoring of activity and general health. Digital platforms now collect 
and analyse the data continuously and present results back to the consumer as a 
summary of behaviours or recommendations. It is not a great leap of the imagina-
tion to expect these wearable devices to morph into medical devices’ capability of 
monitoring an individual’s health and providing diagnostics or referrals based on a 
review of the data by a physician or machine learning system.

Pressure by government and private payers is also constraining pricing, often 
making it difficult for existing providers to provide service at a profit. This could 
mean that existing healthcare providers won’t fight to retain certain less profitable 
aspects of their business, allowing a new entrant to provide a leaner and more profit-
able solution. This could be a challenging competitor for an existing healthcare 
organisation because often these low margin procedures still bring in a substantial 
amount of revenue needed to offset base capital costs for a major hospital system.

At the same time, we see new companies building very different business mod-
els. Standardised treatment protocols allow patients to be treated very efficiently 
and effectively without the significant overhead of a specialist. The acceptance of 
wearables is only a small step away from accepting devices that would provide 
ongoing measures of health, perform diagnostics and provide recommendations to 
visit a healthcare provider when something appears amiss. All of this points to the 
consumerisation of healthcare, where small, efficient providers address many of the 
most common needs, leaving the large healthcare centres to address the more com-
plex health conditions.

1.3  Changing Population Demographics

1.3.1  Move Away from Rural Communities

Technology and cost are two drivers of changes in our healthcare systems. Another 
driver of change is population demographics. Rural communities are already facing 
challenges with access to healthcare, in part due to the lack of retention of primary 
care providers and the threat of financial sustainability.

An ongoing worldwide trend is the movement of people from rural to urban cen-
tres. The United Nations reported in 2009 that 54% of the world now lives in cities, 
up from 30% in 1950 [2]. With the movement of people away from rural communi-
ties eventually the population base will be insufficient to support effective medical 
care, particularly critical care services and complex care.

Small hospitals and healthcare systems have been closing for years in rural mar-
kets, with the recent COVID-19 pandemic accelerating that trend. But a significant 
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market remains in these rural communities which will soon be motivated to make 
use of remote care offered by companies supported by the new digital platform 
technologies if for no other reason than they have no other options.

1.3.2  Aging Population

Besides the movement away from rural areas to cities, another major driver will be 
our aging population. By 2050, the world will be home to 10 billion people, and 2 
billion of these people will be aged 60 or older, including 434 million older than 
80 years. Japan has the world’s highest share of the population aged 65 and older, 
but the United States and Europe are not far behind [3].

We know that this is going to change our social structures. It also has a huge 
implication on healthcare as it is a simple fact that as we age we require more 
healthcare.

If that was not enough, we are seeing a dramatic shortage in the number of 
healthcare providers. The physician shortage is expected to reach 85,000  in the 
United States by 2032 due to the complexity of training, the aging population and 
associated impending retirements [4]. We must rethink how we train physicians and 
caregivers and how we provide care. Because this is not sustainable.

1.4  Digital Transformation

1.4.1  Hospital of the Future

In the future, two fundamental shifts will reshape the healthcare industry. First, 
healthcare will be delivered as a seamless continuum of care, away from the clinic- 
centred point-of-care model and with a greater focus on prevention and early inter-
vention. Second, health and healthcare delivery will focus on each person as an 
individual. This is often referred to as the consumerisation of healthcare.

Longitudinal patient data sets—that is, data across time—will allow us to inte-
grate medical data, financial data and data from home and self-monitoring sources, 
and we will be able to do this over a patient’s entire life.

Advanced analytics and AI engines will generate unexpected insights for patients 
and their caregivers. We know that quality improvements require measures and met-
rics. But that data can be hard to access. This is going to change. We will be able to 
look at the data in different ways to figure out what is happening.

There will be a continuum of care model where patients may start at a major 
healthcare centre for serious illnesses before being transferred back into their com-
munity care facilities and eventually receiving care at home. Evashwick [5] catego-
rises this care into seven categories: extended care, acute hospital care, ambulatory 
care, home care, outreach, wellness and housing.
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We will see real-time refinement of individualised care solutions. We are going 
to have the data from home monitoring to make changes on the fly. The explosion 
in consumer wearable devices is going to morph into wearable medical devices over 
the next decade.

There will be a seamless integration of monitoring and care from clinical care-
givers, social and community structures and family members. This is not a new 
idea; in fact, it is the idealised vision of healthcare. However, it is our newly inter-
connected world that makes this possible.

The hospital of the future will be in your home and your community. It will travel 
with you wherever you go. Only serious conditions will require a hospital stay. For 
most, the hospital will be in your home or occasionally in your community hospital.

All of this points to a need for the major healthcare systems to rethink their plans. 
Expansion no longer means more hospital beds or more brick-and-mortar facilities. 
It means providing care wherever the patient is.

1.4.2  Connectedness

By 2030 most of humanity will be connected. Over 90% of people will have a digi-
tal presence [6]. This has a significant impact on our society and how we can pro-
vide healthcare.

Once we are connected, our devices can also be connected. This allows devices 
to be developed that can improve healthcare delivery and therapy outcomes. This 
includes both wearable and handheld devices that we might only access occasion-
ally, for example, a handheld injection device that tracks the administration of a 
prescribed drug. The performance of other devices, such as implantable devices for 
cardiac rhythm, can be monitored remotely and new operating parameters down-
loaded to the device if indicated.

One of the most pressing issues will be associated with chronic disease manage-
ment. Often patients have multiple co-morbidities that must be simultaneously 
monitored and addressed—sometimes across several healthcare providers. Regular, 
ongoing monitoring of these patients is the key to preventing worsening conditions.

With the advent of 5G communication technology, the bandwidth available to 
mobile devices and applications increases by an order of magnitude. Perhaps even 
more relevant for wearable devices is the dramatic decrease in latency, that is, the 
delay between when data is sent and when it is received. We can expect much more 
responsive systems to be developed as this new communication technology is 
deployed [7].
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1.4.3  Artificial Intelligence

One of the first things people ask when discussing artificial intelligence is when will 
we replace the doctor. This is a challenging endeavour. The best diagnosticians are 
detectives, turning over seemingly unrelated clues until the puzzle pieces start to fit 
together. To the untrained observer, this can seem almost magically intuitive. And 
yet even the best, most knowledgeable diagnostician can only know a portion of the 
knowledge available for disease identification.

Each day the National Library of Medicine Medline database indexes more than 
1500 new journal articles and 55 new clinical trials [8]. All these factors now con-
tribute to the knowledge overload, which all practicing physicians face in providing 
optimal care for their patients.

It is easy to suggest that we let the computer do it. In fact, for the last 30 years, 
we have been working to develop systems that can mimic the diagnostic ability of a 
physician, with not very encouraging results. It is challenging to mimic the path-
ways of the human brain, but researchers are now realising that a partnership 
between humans and machines might lead to superior results. Vinod Khosla [9], 
cofounder of Sun Microsystems, suggested that “80 percent of what physicians cur-
rently do might be replaced.” It is likely that physicians will always be involved in 
providing oversight and review. AI systems are much more likely to be adjuncts, 
helping make the physician and care providers’ job easier.

Modern AI systems have become much more sophisticated in large part due to 
the dramatic increases in processing power available to modern computational serv-
ers. Also, a historical problem in AI has been the paucity of the dataset—a problem 
now rapidly being addressed by the overwhelming adoption of electronic health 
records.

We are now using AI for drug development, diagnostic radiology, pathology and 
many other fields. AI systems excel at pattern recognition and that is perhaps why 
many of the first successful applications are in radiology and imaging.

AI and machine learning systems rely on having a large and accurate dataset for 
training. And once trained, they are extremely good at identifying subtleties that are 
often missed by humans. However, when they are wrong, they are often ridiculously 
wrong. Their value is incalculable due to their ability to identify pathologies missed 
by humans because they never tire or get distracted. But they will not replace a 
human entirely. A trained radiologist likely always be required to review and con-
firm the diagnosis provided by the AI.

1.4.4  Edge AI

Having tremendous datasets and processing power on a Cloud-based server allows 
us to unleash the full power of our modern computational engines. We can discover 
novel and unique ways of analysing and understanding data from patients. However, 
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these algorithms in many cases must migrate from the Cloud where we have almost 
unlimited resources, to the patient bedside or to wearable devices, where our com-
putational power and data storage are more limited. There are simply times when 
the bandwidth limitation and latency become relevant. A self-driving car that must 
wait for a delayed response from the Cloud could lead to catastrophic results. 
Because of this we often need to move the computational power down to the device 
to allow for real-time performance.

Edge refers to the edge of the Cloud. This is where the Internet of Things (IoT) 
resides. Google autonomous cars do not send all their data to the Cloud for process-
ing. And medical devices will often need to analyse data in real-time, meaning algo-
rithms developed on the cloud against large data sets with virtually unlimited 
processing power will have to be scaled to small microcontroller systems running 
on batteries in a watch or another device attached to the patient.

The ability to provide continuous monitoring of patients through wearable sen-
sors is going to allow early diagnostics of conditions before they worsen. The early 
diagnosis and treatment of diseases often result in improved outcomes.

1.4.5  Computational Power

We now have a supercomputer in our pocket. If the iPad 2 had been released in 
1988, it would have been the most powerful computer in the world. The Cray-2, 
developed by a company founded in Minneapolis, was the fastest computer in the 
world from 1985 to 1990. Today, its computing power is equivalent to an iPhone.

Computational power has been fundamental to the advances that have occurred 
over the last decade. Some of the most significant successes have been based on AI 
systems that train on immense data sets and this has only been possible because of 
advances in processing speed and in our ability to store and access huge amounts of 
information.

It is not just the speed of modern processors but their architecture that has made 
some of these breakthroughs possible. It was an unexpected convergence of machine 
learning and graphical processing units (GPUs) developed for the gaming industry 
that has allowed many of these advances to occur [10]. By leveraging the highly 
parallel architecture of the modern GPUs, machine learning researchers were able 
to make computational intense calculations in a fraction of the time previously 
required. And it is quite often useful to have a complex algorithm present its results 
in real-time to make use of the data.

Currently, the processing power requirements of machine learning are increasing 
faster than improvements in the processors themselves. However, there are break-
through technologies being explored including massively parallel architectures and 
quantum computing [11].
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1.4.6  EMR

The only thing growing faster than knowledge is data. According to IBM Watson 
team lead Eric Brown [12], “the literature of medicine...currently contains about 24 
million records and expands at a rate of 2,100 articles per day.”

When this is combined with the amount of data in a typical EMR, which can 
amount to thousands of pages of data per patient, there is an almost unimaginable 
complexity to analysing, diagnosing and treating each patient in the best way pos-
sible. Data analytics allows us to filter and present the most important data to the 
care provider.

The use of big data in healthcare has the potential to improve decision-making 
and address inefficiencies in the healthcare ecosystem. For example, we can provide 
continuity over the entire lifetime of care. A patient is born, and we create a record. 
We can provide care and track results. We can follow up on the progress until the 
eventual death of the patient. This gives us incredible information on an individual 
patient. And now, we can use that data gathered from our current patients to help 
determine the best course of care for future patients through data analytics.

1.4.7  Real-World Clinical Trials

Currently, over 90% of clinical trials on new pharmaceuticals are sponsored by the 
people who manufacture them [13]. Not surprisingly these tend to favour the manu-
facturer. Goldacre [13] reports that with sponsored trials, sites performing clinical 
trials are often contractually prevented from disclosing the results without company 
approval.

With more and more data being stored online, real-time clinical trials can become 
a possibility. Imagine that a patient’s symptoms, co-morbidities, treatments and out-
comes are all available in an online system. This would allow anyone to compare the 
effectiveness of drugs based on real-world use on patients instead of carefully con-
trolled, and often unreported, clinical trials.

1.4.8  Blockchain

Blockchain is a technology that has the power to give ownership of the data back to 
the individual while allowing others access to important shared information. 
Blockchain is defined as a distributed, decentralised data ledger but can be simply 
thought of as a shared database. The technology enables the creation of digital 
records and allows them to be shared and managed securely on a network. It keeps 
an incorruptible, decentralised log of all patient data in a highly secure fashion. A 
key concern with healthcare is the privacy of data. Blockchain “can help to ensure 
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the security of EHR systems, enhance the integrity and privacy of data, encourage 
organizations and individuals to share data, and facilitate both audit and account-
ability” [14].

An easy way to think of block change is as a ledger or record book. Their ledger 
book doesn’t have a physical location. There are copies everywhere, on my com-
puter, on your computer, making it impossible to change a local copy—because you 
must change them all or none. Although everyone has a copy, accessing your own 
data requires your own personal key or password.

Blockchain is known best for its use in cryptocurrencies. Applying the technol-
ogy to healthcare is compelling because it can create unique digital identities, where 
all your data can be safely stored and accessed anywhere in the world. It also sup-
ports data exchange while safeguarding security, integrity and control of the data by 
its owner.

The most likely healthcare applications of blockchain will be to securely store 
patient records. These can be encoded with a private key only accessible to indi-
viduals who possess the key. This allows the creation of a healthcare record that can 
be accessed by the patient wherever they need care.

1.4.9  Home Monitoring

Imagine this. You are a physician visiting with a patient about their current health. 
They describe an occasional racing heart rate, dizziness, shortness of breath, excess 
sweating and general lethargy. You suspect atrial fibrillation and prescribe a Holter 
Monitor. Forty-eight hours later, you review the data and find nothing. Now what?

Continuous, long-term monitoring of heart rhythms is the answer. One day, 
two days, ten days and forty-five days later, the monitor is still there, unobtrusively 
capturing your heart rate, analysing the data and presenting your physician with 
suspect cardiac rhythms.

Twenty years ago, this would have involved a lot of body burden, including a 
large backpack and a heavy deep cycle battery. It would also have required compli-
cated technologies to transmit the data to a healthcare provider where it would be 
painstakingly subject to human review. Today, we all know this is much simpler. We 
now have many simple options for both wearable and implantable devices.

Remote monitoring of patients is nothing new. We were sending patients home 
with Holter monitors 30 years ago. We had people transmitting data from home over 
phone lines. The difference is really the ease of connecting and transmitting 
data today.

Telehealth technologies will enable patients to send personal information to pro-
viders who can remotely diagnose health problems. IoMT (Internet of Medical 
Things) and other technologies will enable continuous real-time monitoring; and 
technologies such as apps and wearables will help promote healthy behaviours and 
identify health conditions early when they can be more easily treated.
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The Institute for Healthcare Improvement Triple Aim Initiative describes three 
measures of a health system’s performance: improving individual patient care, 
improving the health of an entire community and reducing the cost of care [15]. 
Preventive care can have a huge net positive impact on the health of a society and as 
these technologies become cheaper and more available, they can help drive improve-
ments in our overall health [12].

The rapidly expanding consumer market for wearables points to the possibilities 
for home health monitoring in the future. Data will be gathered from body-worn 
sensors and instruments located in your home, analysed with highly sophisticated 
algorithms and relevant information will be shared with your healthcare provider. 
Your health will be tracked and changes that could be important will be flagged by 
the system and shared with you in time to make changes in lifestyles or medications 
or to receive timely treatment.

1.5  New Technologies

1.5.1  Neuroprosthetics

Neuroprosthetics in their simplest form is an interface to the brain that controls 
artificial limbs. Conceptually this is quite simple. The prosthetic itself is essentially 
a robot. A robot is a mechanical system designed to perform a function. In this con-
text, they are generally designed to mimic some portion of the human body, for 
example, an arm or an eye. While this is generally true, other mobility systems such 
as exoskeletons or wheelchairs can also be described as neuroprosthetic if they are 
interfaced with the brain.

It is the interface to the brain or the nervous system that differentiates a robot 
from a neuroprosthetic. These devices can reply on a chip implanted in the brain, 
they can be controlled via electrodes mounted on the surface of the skull or they can 
interface to muscles or nerves in the periphery of the body.

Systems based on scalp electroencephalogram (EEC) have been explored for 
many years and are relatively simple to create. However, due to their location on the 
surface of the skull, they are less exact than systems that interface directly with 
neurons in the brain. They also are generally quite obtrusive. However, in many 
cases, they are preferred because they are simpler and safer. Recently, a study at 
Carnegie Mellon demonstrated a much higher resolution system than has previously 
been described and this may become the first mainstream application of this tech-
nology [16].

True brain–computer interfaces are rare in humans but have been studied in ani-
mals for decades [17]. The most common and successful to date is the cochlear 
implant. The greatest advantage of implanting a brain–computer interface is the 
high accuracy. However, there is still great resistance to the use of this technology 
in commercial applications in part due to the perceived risks of implanting devices 
in the brain.
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One of the more interesting types of neuroprosthetics is sensory substitution 
where one sensory system which had been damaged is substituted with another. For 
example, using either electrical or vibratory stimulation on the torso, images or 
sounds can be presented to a person with either a sight or a hearing deficit [18]. With 
enough training, the brain remodels and routes the signals from the torso into the 
auditory or visual processing centres of the brain and those signals are perceived as 
sight or sound.

A new study led by neuroscientists from the University of Chicago brings us one 
step closer to building prosthetic limbs for humans that re-create a sense of touch 
through a direct interface with the brain [19]. Experimenters have been able to rec-
reate a sense of touch in primate studies.

1.5.2  Robotics

Robotic surgery, as it exists today, is primarily an assistive technology for the sur-
geon. Typically, they leverage video imaging and small-scale manipulators to allow 
surgeons to perform minimally invasive procedures with unprecedented accuracy. 
The use of surgery through an endoscope goes back to the nineteenth century [20]. 
And while instruments have become smaller and more precise, allowing access 
through very small incisions or through the vascular system, they remain primarily 
an assistive device to the basic operations or a surgeon—cutting or sewing. In the 
future, these systems will be much more autonomous.

We are likely to see centralised surgical centres with links to remote locations—a 
spoke and hub model—where robotic surgery is performed [21]. This could be a 
boon to rural areas where for years physicians and surgeons have abandoned rural 
communities and moved to larger cities [22]. Another application could be robotic 
surgeons used in military units to perform surgery at the front lines while the sur-
geons remain safely behind. Newer low latency 5G networks will allow surgeons to 
operate at a distance, although there will still be practical physical limitations at 
significant distances. However, the use of artificial intelligence to help guide robot-
ics will also likely allow them to perform some operations with minimal oversight 
from the surgeon, and this may extend the range of some of these surgical robots 
around the world—or even beyond to the space station, the moon or even supporting 
a mission to Mars.

Pharmacy robots will reduce errors and allow technicians and pharmacists to 
spend less time filling prescriptions and more time with patients while associated 
clinical decision-making systems will help identify drug interactions to prevent pre-
scribing medications that interfere with each other [23].

1 How Technology Is Changing the Delivery and Consumption of Healthcare
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1.5.3  Additive Manufacturing

Point-of-care additive manufacturing (3D printing) has been growing as a training 
vehicle for 3D visualisation for physicians as well as manufacturing non-implanted 
medical devices, such as surgical models and cutting guides or instruments.

We can create sophisticated augmented reality systems leveraging 3D visualisa-
tion and printed parts from images of the patient’s own anatomy. This allows the 
training of surgeons on complex procedures prior to performing the surgery on 
patients.

We can also now create novel surgical tools and print them at the point of care, 
along with other non-implanted medical devices, such as surgical models and cut-
ting guides or instruments. Manufacturers use additive manufacturing to develop 
inexpensive medical devices, such as spine cages or cranial implants. Additive man-
ufacturing can also be used to create patient-specific implants that based on CT or 
MRI scans for use in complicated surgical procedures.

Currently, the additive manufacturing of patient-specific implants is time- 
consuming, taking weeks or even months to develop. The resulting printed implants 
are relatively expensive. Putting an additive manufacturing facility at the point of 
care will save time and money and will drive innovation by immersing technolo-
gists, engineers and clinicians in a collaborative environment.

One of the interesting new applications of neuroprosthetics and additive manu-
facturing is the creation of prosthetic limbs. The Bristol Robotics Laboratory (BRL) 
is now 3D printing neuroprosthetic arms for amputees [24, 25]. In the past, prosthet-
ics that incorporate both aesthetic design and function have been too expensive for 
many [26]. This has been especially problematic for children as their nominal 
growth rate requires new or modified limbs on a regular basis. BRL and other com-
panies are now starting to address that challenge by leveraging additive manufactur-
ing and providing much lower cost, aesthetic and functional prostheses.

1.6  Summary

Healthcare is facing significant challenges even without the dramatic changes being 
brought on by the digitalisation of our world. Costs are rising at an unsustainable 
rate. The digitisation of health and healthcare is creating some fundamental chal-
lenges to our conception of privacy and ownership of data. And the rapid evolution 
of science and medicine is driving prices up and making it more expensive to pro-
vide care.

The hospital of the future will be in your home and community. It will travel with 
you wherever you go. Only serious conditions will require a hospital stay. For most, 
the hospital will be in your home or occasionally in your community hospital if 
extra vigilance is warranted. Medical staff will once again make house calls to col-
lect blood and samples and provide medications and other daily care. In some cases, 
personal care will even be provided by robot assistants.
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All of this points to a need for the major healthcare systems to rethink their plans. 
Expansion no longer means more hospital beds or more brick-and-mortar facilities. 
A more distributed model that centralises knowledge and expertise while distribut-
ing care will be the healthcare model of the future.

A lot of the challenge in healthcare is complexity. Healthcare is also highly frag-
mented with many stakeholders beyond the traditional patients, providers and pay-
ers. The list of stakeholders includes patients, physicians, insurance companies, 
pharmaceutical firms, medical device manufacturers, laboratory system and elec-
tronic medical record system providers and governments. In addition to the tradi-
tional stakeholders of patients, providers and payers, there are a significant number 
of large companies providing such services.

Healthcare is also a highly regulated industry and that makes it hard to take 
advantage of some of the advances in technology. Patient privacy is very closely 
managed and that prevents us from accessing the data to look at broad trends in 
treatment, diagnosis and outcomes.

Despite all the challenges inherent in changing a large and established system, 
the advances in technology brought on by the Fourth Industrial Revolution are about 
to disrupt healthcare in almost unimaginable ways. The confluence in advances in 
artificial intelligence/machine learning, additive manufacturing, virtual and aug-
mented reality, robotics, virtual care and continuous monitoring of health conditions 
guarantee that healthcare will not look the same a decade from now.

References

 1. Christensen, C. M. (2016). The innovator’s dilemma: When new technologies cause great firms 
to fail. Harvard Business Review Press.

 2. Boyd, B. (2019, December 2). Urbanization and the mass movement of people to cities. 
Retrieved from https://graylinegroup.com/urbanization- catalyst- overview/

 3. Scommegna, P. (2019, May 29). Which country has the oldest population? It depends on how you 
define ‘old’. Retrieved from https://www.prb.org/which- country- has- the- oldest- population/

 4. Heiser, S. (2019, April 23). New findings confirm predictions on physician short-
age. Retrieved from https://www.aamc.org/news- insights/press- releases/
new- findings- confirm- predictions- physician- shortage

 5. Evashwick, C.  J. (1989). Creating a continuum. The goal is to provide an integrated sys-
tem of care. Health Progress, 70(5), 36–56. Retrieved from https://pubmed.ncbi.nlm.nih.
gov/10293328/

 6. Deep shift technology tipping points and societal impact (rep.). (2015). World Economic Forum.
 7. How 5G and edge computing are taking wearables to new fron-

tiers. (2020, March 9). Retrieved from https://www.computing.co.uk/
sponsored/4012034/5g- edge- computing- taking- wearables- frontiers

 8. Glasziou, P., & Haynes, B. (2005, March–April). The paths from research to improved health 
outcomes. ACP Journal Club, 142(2), A8–A10.

 9. Khosla, V. (2012). Technology will replace 80% of what doctors do. Retrieved from https://
www.khoslaventures.com/forbes- technology- will- replace- 80- of- what- doctors- do

 10. Mims, C. (2020, September 19). Huang’s law is the new Moore’s law, and 
explains why Nvidia wants arm. Retrieved from https://www.wsj.com/articles/
huangs- law- is- the- new- moores- law- and- explains- why- nvidia- wants- arm- 11600488001

1 How Technology Is Changing the Delivery and Consumption of Healthcare

https://graylinegroup.com/urbanization-catalyst-overview/
https://www.prb.org/which-country-has-the-oldest-population/
https://www.aamc.org/news-insights/press-releases/new-findings-confirm-predictions-physician-shortage
https://www.aamc.org/news-insights/press-releases/new-findings-confirm-predictions-physician-shortage
https://pubmed.ncbi.nlm.nih.gov/10293328/
https://pubmed.ncbi.nlm.nih.gov/10293328/
https://www.computing.co.uk/sponsored/4012034/5g-edge-computing-taking-wearables-frontiers
https://www.computing.co.uk/sponsored/4012034/5g-edge-computing-taking-wearables-frontiers
https://www.khoslaventures.com/forbes-technology-will-replace-80-of-what-doctors-do
https://www.khoslaventures.com/forbes-technology-will-replace-80-of-what-doctors-do
https://www.wsj.com/articles/huangs-law-is-the-new-moores-law-and-explains-why-nvidia-wants-arm-11600488001
https://www.wsj.com/articles/huangs-law-is-the-new-moores-law-and-explains-why-nvidia-wants-arm-11600488001


16

 11. Möller, M., & Vuik, C. (2017). On the impact of quantum computing technology on future 
developments in high-performance scientific computing. Ethics and Information Technology, 
19(4), 253–269. https://doi.org/10.1007/s10676- 017- 9438- 0

 12. Wachter, R. M. (2017). The digital doctor: Hope, hype, and harm at the Dawn of Medicine’s 
computer age. McGraw-Hill Education.

 13. Goldacre, B. (2013). Bad pharma: How drug companies mislead doctors and harm patients. 
Faber & Faber.

 14. Shi, S., He, D., Li, L., Kumar, N., Khan, M. K., & Choo, K. R. (2020). Applications of block-
chain in ensuring the security and privacy of electronic health record systems: A survey. 
Computers & Security, 97, 101966.

 15. IHI Triple Aim: IHI. (2021). Retrieved from http://www.ihi.org/Engage/Initiatives/TripleAim/
Pages/default.aspx

 16. Edelman, B. J., Meng, J., Suma, D., Zurn, C., Nagarajan, E., Baxter, B. S., Cline, C. C., & He, 
B. (2019). Noninvasive neuroimaging enhances continuous neural tracking for robotic device 
control. Science Robotics, 4(31), eaaw6844.

 17. Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012). Brain-computer interfaces in medicine. 
Mayo Clinic Proceedings, 87(3), 268–279.

 18. Memon, M. A., & Rizzo, J. F. (2010). Visual prostheses and other assistive devices. Ocular 
Disease, 590–598.

 19. University of Chicago Medical Center. (2015, October 26). Sheet music for creating the artifi-
cial sense of touch. ScienceDaily.

 20. Davis, C. J., & Filipi, C. J. (1995). A history of endoscopic surgery. Principles of laparoscopic 
surgery: Basic and advanced techniques (pp. 3–20). Springer.

 21. Madder, R. (2020, February 19). Commentary: Robot surgery could be the future of health care in 
remote areas. Retrieved from https://fortune.com/2020/02/11/tele- robotics- surgery- 5g- health/

 22. Puls, M. (2018, March 28). Shortage of rural surgeons: How bad is it? Bulletin of 
the American College of Surgeons. Retrieved from https://bulletin.facs.org/2018/04/
shortage- of- rural- surgeons- how- bad- is- it/

 23. Gebhart, F. (2019, July). The future of pharmacy automation. Drug Topics Journal, 163(7).
 24. Hobbs, A. (2018, April 24). Open Bionics’ releases affordable 3D printed bionic arm. Retrieved 

from https://internetofbusiness.com/open- bionics- hero- arm/
 25. The first medically approved 3D printed bionic arms. (2018, May 1). Retrieved from https://

tectales.com/bionics- robotics/the- first- medically- approved- 3d- printed- bionic- arms.html
 26. Manero, A., Smith, P., Sparkman, J., Dombrowski, M., Courbin, D., Kester, A., Womack, I., 

& Chi, A. (2019). Implementation of 3D printing technology in the field of prosthetics: Past, 
present, and future. International Journal of Environmental Research and Public Health, 
16(9), 1641.

M. Wehde

https://doi.org/10.1007/s10676-017-9438-0
http://www.ihi.org/Engage/Initiatives/TripleAim/Pages/default.aspx
http://www.ihi.org/Engage/Initiatives/TripleAim/Pages/default.aspx
https://fortune.com/2020/02/11/tele-robotics-surgery-5g-health/
https://bulletin.facs.org/2018/04/shortage-of-rural-surgeons-how-bad-is-it/
https://bulletin.facs.org/2018/04/shortage-of-rural-surgeons-how-bad-is-it/
https://internetofbusiness.com/open-bionics-hero-arm/
https://tectales.com/bionics-robotics/the-first-medically-approved-3d-printed-bionic-arms.html
https://tectales.com/bionics-robotics/the-first-medically-approved-3d-printed-bionic-arms.html


17© Springer Nature Switzerland AG 2022
N. Wickramasinghe et al. (eds.), Digital Disruption in Healthcare, Healthcare 
Delivery in the Information Age, https://doi.org/10.1007/978-3-030-95675-2_2

Chapter 2
Brain–Computer Interfaces: Taking 
Thoughts Out of the Human Body

Melissa Gregg

2.1  What Is a Brain–Computer Interface?

A brain–computer interface (BCI), also called neural-control interface and brain– 
machine interface, measures brain activity and translates the brain activity into a 
command to be carried out by an external device, such as a robotic arm or a cursor 
on a screen. Brain–computer interfaces have a long tradition in science fiction. For 
example, exoskeletons controlled by the brain were used in the movie Robocop and 
by Dr. Octopus in Spiderman. A BCI is used to control an exoskeleton and to steal 
thoughts from other brains in the movie Elysium. And, the Netflix series Black 
Mirror has portrayed many creative ways to use BCIs, such as recording brain activ-
ity to recreate and project memories on a screen, modulating brain activity to make 
one feel as if they are in a video game, stealing thoughts from the brain of an indi-
vidual in a coma and modifying the environment that soldiers perceive.

Although the media often characterises BCIs as a new and emerging technology, 
BCIs have been a topic of investigation in the scientific world since the 1970s. In a 
famous article, Vidal [1] was one of the first to describe how to use an electroen-
cephalogram (EEG) to create a BCI. According to Vidal, the neural signals mea-
sured from EEG can be “carriers of information in man-computer communication”. 
The EEG is a technique for measuring brain activity that has been around since the 
1920s [2], and the EEG technique is one of the most popular and least invasive ways 
to record brain activity for a BCI. Since Vidal’s [1] claim, there have been impres-
sive advancements in the use of EEG-recorded brain activity to control an external 
device. For example, Farwell and Donchin [3] were able to use the EEG technique 
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to train human research participants to spell words with their thoughts by directing 
their attention to specific letters on a screen.

The technology underlying BCIs is possible because of the brain’s electrochemi-
cal communication system. The brain is an organ, and like all organs in your body, 
the brain is made up of cells, which include glial cells and neurons. Neurons are 
particularly special because neurons conduct nerve impulses, which convey envi-
ronmental information from our sensory systems to the brain, carry out the opera-
tions involved in thinking, feeling and acting and transmit commands to the body’s 
muscles and organs. Every thought we have, every word we say, every movement 
we make, every memory and every emotion we experience is possible because our 
neurons are communicating. Neurons communicate with each other via nerve 
impulses, which are small electric signals that can travel from neuron to neuron at 
speeds faster than 200 mph [4]. During a nerve impulse, the cell membrane of the 
neuron experiences a rapid depolarisation, which is a change in voltage to a more 
positive value. The depolarisation travels down the length of the neuron, stimulating 
the release of neurotransmitters, such as dopamine or serotonin, at the synapse. The 
result of the exchange of neurotransmitters is an increased or a decreased possibility 
of an electrical reaction in the next neuron. The electrical reaction in neural com-
munication can be measured. There are many techniques for measuring neural 
activity that have been developed over more than 100 years of neuroscience research. 
The discussion in this chapter will be limited to some of the techniques used 
in a BCI.

The most common non-invasive technique for measuring brain activity in a BCI 
is the EEG technique. The research participant is fitted with a snug electrode cap. 
The electrodes (which typically number anywhere from 1 to 280 electrodes) sit on 
the surface of the head and provide a continuous measure of neural activity gener-
ated by large populations of neurons. The neural activity appears as oscillating volt-
ages often referred to as “brain waves”. The frequency and the amplitude of these 
waves can indicate normal and abnormal (e.g. epileptic) brain activity and the fre-
quency and the amplitude of the waves characterise certain states of awareness. For 
example, low-frequency, high-amplitude theta waves are reflective of a deeply 
relaxed state [5]. To incorporate the neural activity recorded via EEG in a BCI, the 
neural activity is analysed by a signal processing program that uses the neural activ-
ity to identify the person’s intended message or intended motor command. These 
programs are often called decoders because they identify meaningful neural pat-
terns. The meaningful neural patterns are then sent to a separate program or inter-
face that uses the information to carry out a command, such as moving a cursor on 
a computer screen [6]. It should be noted that the process is not as simple as the user 
thinking “move the cursor”, and the cursor suddenly moves in the desired direction. 
BCI systems require extensive practice, training and continual feedback to be effec-
tive [7].

EEG signals are fairly easy to acquire and they impose no harmful side effects or 
risks to the research participant. However, EEG by nature is a messy data collection 
technique. EEG signals are measured from electrodes placed on the surface of the 
scalp. The neural signals picked up by the electrodes become significantly 
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attenuated and distorted as they pass through the dura, skull and scalp. In addition, 
EEG signals can be contaminated by signals generated from muscle movements of 
the face and body and from other electrical equipment in the recording room [5]. An 
additional limitation of the EEG technique is the poor spatial resolution. EEG can 
provide a measure of neural activity in near real-time; however, the source of that 
neural activity can only be estimated (see [8] for a review of source modelling tech-
niques). The poor spatial resolution of EEG makes precise motor movements in a 
BCI extremely difficult. Although the EEG technique is not very useful for making 
precise motor movements with an external device, the use of EEG in a BCI has been 
quite successful at providing assistive communication, for example, by allowing 
paralysed individuals to use their thoughts to move cursors on a screen or to select 
letters on a virtual keyboard [9].

An alternative and higher resolution technique for recording brain activity in a 
BCI is an electrocorticogram (ECoG), which involves the surgical implantation of 
electrodes. Similar to the EEG technique, the electrodes provide a continuous mea-
sure of electrical activity generated by neurons, however, rather than sitting on the 
surface of the head, the electrodes of an ECoG sit on the surface of the brain. The 
introduction of this approach for long-term recording of neural activity was estab-
lished in animal research paradigms [10]. In one of the first experiments utilising 
data from an ECoG in a BCI, rats learned to use neural activity from the motor 
cortex to move a robotic arm to obtain water [11]. Incorporating an ECoG in a BCI 
is similar to the EEG technique: Neural activity is analysed by a signal processing 
program that translates the neural activity to a command in an external device.

Because the electrodes sit on the surface of the brain, the neural activity recorded 
from an ECoG provides higher fidelity data to a BCI system. Data acquired from an 
ECoG has better spatial resolution and is less susceptible to contamination by arte-
facts. The excellent spatial and temporal resolution of an ECoG has allowed for 
some impressive feats. For example, a tetraplegic individual with an electrode array 
surgically implanted over his motor cortex was able to use his thoughts to open an 
email, turn on a television and perform actions with a robotic arm [12]. Although 
there are more possibilities with an ECoG, there are some disadvantages. One of the 
major issues with an ECoG is the brain’s reaction to the surgically implanted elec-
trodes. Recording quality can deteriorate over time because of the brain’s reaction 
to the electrodes, which can include inflammation, glial scar formation around the 
electrodes and cell death near the electrode sites [13].

2.2  Development of BCIs: Medical Applications

One of the main sources of inspiration for the development of BCIs has been the 
possibility of restoring function to people who have become disabled. Cochlear 
implants, which have been around since the 1960s, are examples of BCIs that restore 
hearing. In individuals with normal hearing, sound waves enter the ear, are ampli-
fied by the bones of the middle ear, are transduced into neural signals in the inner 

2 Brain–Computer Interfaces: Taking Thoughts Out of the Human Body



20

ear and then processed by the auditory nerves in the form of electric signals. In 
individuals with specific types of deafness, a cochlear implant can bypass the non-
functioning part of the ear. An external sound processor receives sound from the 
environment and passes the information along to surgically implanted electrodes 
that stimulate the auditory nerves, resulting in the experience of hearing (see [14] 
for a history of the cochlear implant). Following a similar logic, retinal implants can 
restore vision. In individuals with normal vision, light enters the eye, is focused by 
the cornea and lens and is transduced into electrical signals by the cells in the retina, 
the neural layer in the back of the eye. A retinal implant involves the surgical 
implantation of an electrode array in the retina. A pair of glasses that contain small 
cameras is worn, and the information recorded from the camera is sent to the 
implanted electrode arrays, which convert the information into electrical signals 
(see [15] for a review). It is important to note that cochlear implants and retinal 
implants do not restore sound and sight to the same level as an individual with non- 
impaired hearing and sight (see [16] for some illustrations of how individuals with 
retinal implants see the world).

BCIs have also been developed to restore or replace motor function in individu-
als who have become paralysed. In individuals with non-impaired motor function, 
voluntary movements of the body’s muscles are generated by neural activity in the 
primary motor cortex and supplementary areas of the brain (the movements are 
coordinated and refined by other brain structures, including the basal ganglia and 
the cerebellum). The neural signals from motor areas of the brain eventually reach 
the body’s muscles via peripheral motor nerves. Paralysis can occur if the signal 
from the brain to the body’s muscles is disrupted, which often occurs in spinal cord 
injury. BCIs can assist paralysed individuals by essentially rerouting the motor sig-
nal from the brain to an external device, such as a robotic arm. In one of the first 
experiments utilising this idea on human research participants [12], an electrode 
array was surgically implanted on the motor cortex of two tetraplegic patients. After 
the implantation, the patients were instructed to imagine moving their arm and 
hand. The neural activity measured from the surgically implanted electrodes was 
sent to a program that translated the neural activity into a motor command to a 
robotic arm. The training was time-intensive, but eventually, the patients were able 
to use their “thoughts” to control a robotic arm. One patient was able to control the 
robotic arm with enough precision that she was able to use it to give herself a drink 
for the first time in 15 years (a video of this research participant can be found at the 
following link: https://news.brown.edu/articles/2012/05/braingate2).

Another version of a BCI designed to assist disabled individuals involves a sys-
tem that sends the motor signals from the brain to a prosthetic limb and sensory 
signals from the prosthetic limb to the brain. These bidirectional BCIs send electri-
cal signals from the prosthetic limb to tactile and proprioception areas of the brain. 
Bidirectional BCIs allow for the integration of motor and sensory information, 
which is needed for more precise interaction between the prosthetic device and the 
environment and to create the perception that the prosthetic is a “real” body part 
[17]. Bidirectional BCIs allow for prosthetic limbs to be moved with a high degree 
of accuracy, and they allow for movements to be coordinated with the environment, 
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which allows for prosthetic fingers to accurately grasp objects, button a shirt or type 
on a keyboard. Bidirectional BCIs are not as advanced as unidirectional BCIs, but 
there are several recent notable advances in the development of bidirectional BCIs. 
One recent experiment reported that a research participant with a bidirectional BCI 
was able to use tactile and proprioception information to determine which finger on 
a prosthetic hand was moving with 84% accuracy [18].

A different type of BCI has been designed to restore motor function by allowing 
disabled individuals to move within robotic exoskeletons. One group of researchers 
found that research participants could use their self-generated EEG signals to con-
trol movements of a lower limb robotic exoskeleton [19]. In a more recent study, the 
neural activity measured from an ECoG when a tetraplegic patient imagined mov-
ing was transmitted to a program that translated the neural activity into motor con-
trol of a full-body exoskeleton [20]. The training was extensive, but over the course 
of 2  years, the patient was able to use neural activity generated from imagined 
motion to move a virtual avatar with 64% accuracy and to move a full-body exoskel-
eton with 71% accuracy (a video of the research participant operating the exoskel-
eton can be found at the following link: https://www.youtube.com/
watch?v=1GyJBBB8O_M).

BCI research and development has accomplished some amazing feats, particu-
larly in the last decade. But, to achieve parity between normal sensory/motor abili-
ties and BCI-augmented sensory/motor experience, the technology still has quite a 
way to go. Bionic eyes offer very low-resolution vision, cochlear implants convey 
only limited speech information and the movements produced by BCIs are slower, 
simpler and less precise than the movements that non-disabled individuals make 
every day. Part of the problem is that specialised areas of the brain do not operate in 
isolation. The motor cortex, for example, is connected to many other structures (e.g. 
supplementary motor areas, basal ganglia, cerebellum), and the neural communica-
tion among them contributes to the fluid movement of the body through a specific 
environment. Current BCIs are still fairly limited in the size and location of the 
neural population that can be accessed and recorded. The decoders in BCIs are also 
still quite limited. Simple neural patterns, such as those involved with a movement 
of the arm from the left to the right, are easily extracted by current decoders and 
translated into motor movements to an external device. But, the neural pattern asso-
ciated with the movement of an arm to pick up a pencil, write a paragraph, grab a 
moving object and move fluidly through the environment to avoid obstacles is more 
complex and a challenge for current decoders [21].

2.3  The Implications of Turning Humans into Cyborgs

The direct interaction of the brain and machine raises some ethical issues and con-
cerns. And, as BCI technology becomes more advanced, the ethical issues are going 
to become more pressing and more serious. One commendable application of BCI 
technology is restoring sensory and motor abilities, but one could imagine other 

2 Brain–Computer Interfaces: Taking Thoughts Out of the Human Body

https://www.youtube.com/watch?v=1GyJBBB8O_M
https://www.youtube.com/watch?v=1GyJBBB8O_M


22

possible uses of BCI technology, such as enhancing the lives of non-disabled indi-
viduals. For example, a realistic and currently feasible possibility is that BCIs could 
be used to augment human intelligence. There are many published reports of experi-
ments that have successfully used neuroscience techniques to optimise human per-
formance. For example, researchers applied transcranial direct current stimulation 
(tDCS) to the left dorsolateral prefrontal cortex in neurologically healthy research 
participants [22]. Transcranial direct current stimulation is a noninvasive technique 
that delivers a weak electric current via electrodes on the surface of the head, and 
the electric currents alter neural functioning. The tDCS to the left dorsolateral pre-
frontal cortex resulted in improved performance on a test of verbal association and 
general intelligence. Other studies have found that brain stimulation through tDCS 
can improve attention, learning and memory [23]. If such human enhancements are 
possible with non-invasive electrical stimulation, imagine the possibilities of a sur-
gically implanted electrode array. The electrodes could potentially be used to make 
humans smarter, more or less moral, calmer, happier, more aggressive, less aggres-
sive, stronger and so on. Some may argue that these possibilities are positive options, 
but regardless of whether they are viewed in a positive or negative light, such human 
enhancements would necessitate a reframing of humanity and authenticity. One of 
the most concerning implications of neural enhancements is their potential to per-
petuate and exacerbate inequity in society, and the possibility that such modifica-
tions could be done without the person’s knowledge or consent.

Several other ethical issues have been raised over the use of BCIs [24]. For exam-
ple, patients may avoid BCI-assisted technology to avoid the stigma associated with 
a disability or with being a human cyborg. There are also concerns over autonomy. 
The user’s brain is the source of the neural activity for imagined movement, but the 
external device performs the action. Within this integrated brain–machine system, 
who or what is responsible for the action, the user or the machine? Although a dis-
abled individual has regained some function, the ambiguity surrounding the account-
able party in a BCI could make the user feel less autonomous. A related issue of 
concern is that of morality and legal responsibility. Imagine a hypothetical scenario 
in which the machine part of a BCI commits an illegal act but the user claims no 
knowledge or intent of the action. Is anyone or anything legally responsible?

One of the most important implications of brain–machine interaction is the pos-
sibility that the user’s privacy will be violated. The brain and a machine are con-
nected in a BCI, and the data collection device, such as a surgically implanted 
electrode array, is constantly recording brain activity. Medical BCIs collect brain 
activity and translate it to restore sensory and motor abilities, but there is the pos-
sibility that this brain activity could be used for something beyond the user’s knowl-
edge and consent [25]. This privacy issue is an important point that is revisited at the 
end of the chapter. Before the issue is considered further, I will provide an overview 
of some of the nonmedical uses of brain–computer interfaces, as the privacy issue 
applies to both medical BCI users and commercial BCI users.
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2.4  Nonmedical Brain–Computer Interfaces

On the consumer side of things, BCIs come in all sorts of varieties. There is the 
Brainwave Starter kit, for example (https://store.neurosky.com/). The kit comes 
with a headband that contains one electrode to measure the electrical activity gener-
ated by neurons (this is essentially the same as the EEG technique described above, 
but limited to the single electrode). The electrode communicates via Bluetooth with 
an app that lets you see your brainwaves in real time. The app teaches the user bio-
feedback to alter attention and to relax. There are BCI games, such as MindFlex and 
Force Trainer, both of which use an electrode to measure neural activity. With some 
practice, your neural activity powers a fan that causes a ball to levitate. BCI video 
games have been in development for years [26], including Brain Invaders, a BCI 
version of Space Invaders. Self-driving cars have been in development for decades, 
but a more recent, related effort is the development of brain-controlled cars [27].

Some companies, such as Facebook and Neuralink, have their own BCI research 
programs. Facebook has developed sophisticated speech decoders, which are 
devices that can use brain activity to reconstruct the speech that someone is imagin-
ing (https://ai.facebook.com/). Speech decoders have the potential to restore com-
munication abilities to individuals with locked-in syndrome or other severe 
communication disabilities. However, Facebook also intends to use the speech 
decoder technology in their own BCI that will allow anyone to use their thoughts to 
communicate with their devices, such as phones and computers. The implications 
are quite lucrative for Facebook: BCIs would allow the company direct access to 
data from human minds. Neuralink is also involved in the research and development 
of BCIs. One goal of Neuralink’s research is to assist paralysed individuals. But, 
Neuralink has additional interests in BCIs. One goal of the BCIs being developed by 
Neuralink is the development of a small electrode array that can be easily and non- 
surgically implanted into any user’s brain (in a process no more painful than an 
ear-piercing). The electrode array will read the user’s brain activity and translate it 
to an external device, allowing the user to do things with their thoughts alone, such 
as opening apps or typing an email. A quote from the Neuralink website says, 
“Neuralink’s long-term vision is to create BMIs that are sufficiently safe and power-
ful that healthy individuals would want to have them” (https://neuralink.com/
applications/).

2.5  Privacy Concerns

Privacy is a significant concern for medical and nonmedical BCI users [28]. BCIs 
have direct access to brain activity, which raises some serious issues regarding how 
brain activity data will be used, how it will be kept private and how it will be kept 
safe from third parties with nefarious interests. Social media platforms, such as 
Facebook, collect tons of data from users based on their internet activity. Imagine 
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the possibilities if these platforms, or other third parties, such as the government or 
an employer, had access to your brain activity. Brain activity has the potential to 
reveal vast amounts of personal information, ranging from morality, honesty, psy-
chological traits, mental states, emotions and attitudes towards other people. 
Commercial BCIs, such as those being developed by Facebook and Neuralink, 
would also allow our brains to connect directly to the internet, which means that 
others on the internet could connect to our brain, against our knowledge or will. 
There is the related possibility of BCI “hacking” where third parties could take 
control of BCIs and use them to harm the user or to harm others [29].

As BCIs continue to advance and move beyond restoring motor and sensory 
functions to augmenting able-bodied individuals beyond their human capacity, we 
need to be aware of the issues related to consent, privacy, identity, agency and 
inequality. The concern over potential ethical, moral and social justice issues in the 
context of BCIs has gained quite a bit of attention in the peer-reviewed literature 
recently [24]. The development of BCIs will also require new laws and prosecution 
policies. Currently, criminal liability requires a bodily movement. The manner in 
which “bodily” movement is treated within the criminal justice system will need 
some revising as BCIs become more popular [30, 31].

In summary, the development of BCIs is exciting. The BCIs portrayed in science 
fiction are, and have been for some time, a real possibility. There have been monu-
mental leaps in our understanding of the processes underlying the human brain and 
in making a direct connection between the human brain and a machine. BCI devel-
opment is an innovative area of research, but it should be approached and received 
with caution and forethought. The coming years will require some new rules about 
how brain data are collected, stored and used.
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Chapter 3
Towards Network Medicine: 
Implementation of Panomics and Artificial 
Intelligence for Precision Medicine

Robert D. Barber and Keith Kroeger

3.1  Introduction

Societal integration of artificial intelligence (AI), machine learning (ML) and deep 
learning (DL) technologies is widespread as individuals are inundated with their use 
in daily activities ranging from advertising to smart assistants to social media. Given 
unmatched ability to recognise relationships and novel trends through data mining 
and decision-making, AI, ML and DL are keystone approaches to deciphering infor-
mation within a data-rich world. The transformative properties of AI and ML as 
applied to information technology are apparent in many fields, but in particular, 
innovative applications are emerging that both deliver and hold promise for 
improved healthcare. Market reports indicate that AI technologies in healthcare will 
reach a $31.3 billion share by 2025 with ~42% annual growth between 2021 and 
2025 [1]. This growth is fuelled substantially by innovations in diagnostic and prog-
nostic approaches. Initial use of AI-related technologies in diagnostics focused on 
imaging analyses, but advancements in the rapidly developing field of molecular 
assays are accelerating AI, ML and DL implementation in healthcare. More than 
140,000 molecular diagnostic products can be found on the market, with 10–15 
added each day according to one market analysis [2]. Many of these products offer 
individual molecular measurements and tests that can contribute important insights 
into various disease states. However, the added diagnostic and prognostic values of 
combinatorial molecular analyses have recently been recognised and have led to a 
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new healthcare discipline, network medicine. This chapter provides an overview of 
network medicine within the context of the molecular assay ecosystem, associated 
AI, ML and DL approaches that empower molecular diagnostics in healthcare, visu-
alisation approaches for panomic information and potential future directions and 
challenges regarding implementation of network medicine.

3.2  The Molecular Assay Ecosystem and Network Medicine

The advent of genome sequencing in the 1990s offered, at the time, the best pros-
pect for the implementation of precision medicine and personalised healthcare. 
However, the complexity of biological systems limited initial efforts towards these 
healthcare goals. Subsequent development of additional high-throughput technolo-
gies to further interrogate cells at a molecular level has renewed the promise of 
precision medicine. Techniques are available to quantify every facet of a biological 
sample at a molecular level allowing one to decipher relationships or networks evi-
dent among this array of measurements [3]. Briefly, such molecular measurement 
techniques include:

• Genomics—Next-generation DNA sequencing or probe technologies such as 
fluorescence in situ hybridisation (FISH) are used to catalogue nucleotide 
sequences and loci among chromosomes.

• Epigenomics—Assortment of assays to assess DNA modifications that have the 
potential to influence gene expression. Approaches include variations in 
Chromatin Immunoprecipitation (ChIP) assays and Bisulphite DNA sequencing 
to measure the methylation state of genomic DNA as well as assays for enzyme 
activity involved in histone modifications.

• Transcriptomics—Microarray and RNA-Seq are prevalent techniques to profile 
and quantify coding and noncoding RNA molecules.

• Proteomics—Mass spectrometry (possibly including chromatographic steps) 
serves as the primary approach to profile and quantitate protein levels as well as 
post-translational modifications. New techniques for these measurements are 
under development [4].

• Interactomics—Protein–protein interactions (PPI) or networks mediate cell 
physiology. Interactions can be defined at various levels ranging from co- 
expression determined by measuring transcript or protein levels to physical con-
tact as detected using assorted techniques [5, 6].

• Metabolomics—Mass spectrometry and various chromatographic techniques are 
applied to profile and quantitate various molecules present within samples. 
Lipidomics and glycomics are subsets of this discipline. Although applicable to 
other omic fields, microfluidic chips or “lab on a chip” systems are prevalent 
platforms to measuring metabolites.

• Microbomics—Community-level microorganism (bacteria, archaea, fungi, pro-
tozoa and virus) identification related to various environments of the human 
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body, which is typically determined by DNA sequencing or FISH analyses per-
formed on samples.

• Exposomics—Concept that relates exposure to external factors throughout a per-
son’s life to alterations in levels or timing of molecules measured by other omic 
technologies [7].

Signals derived from these molecular measurements and the relationships identi-
fied within these data can enhance the utility of traditional disease biomarkers. 
Initial attempts have focused on omic data from independent assessments such as 
genomics or transcriptomics and have been successful at identifying numerous bio-
markers such as single-nucleotide polymorphisms (SNPs) or RNA expression pro-
files [8, 9]. While the use of isolated omic technologies continues to have value and 
contribute to biomarker discovery, the integration of multiple omic technologies for 
the identification of disease states is rapidly supplanting the individualised omic 
approach [10–12]. Integrative studies have shown a combination of omic approaches 
also known as multi-omics or panomics offer added value at several levels as both 
independent and complementary measures. For example, a recent combination of 
metabolomics with microbiomics augments the primarily demographic nature of 
microbiome measurements revealing greater insight [13]. Notably, the perspective 
derived from panomic approaches provides more than a platform for diagnostics 
and prognostics as this discipline is also being utilised to “close the loop” regarding 
precision medicine and develop personalised therapeutics, as well [14].

As key contributors to precision medicine advancements, resolution and estab-
lishment of relationships among molecular biomarkers using panomics coupled to a 
deep understanding of cellular and molecular network interactions for disease rec-
ognition and treatment also serve as founding principles of a new, related discipline, 
network medicine [15]. Network medicine recognises the hierarchical nature of 
interactions within and among biological systems and their environments. In 
essence, cells, tissues and organisms are systems of interdependent biochemical 
reactions that respond to internal and external cues. The complexity of these bio-
chemical networks is exemplified well by protein–protein interactions, where an 
individual protein may have on the scale of 10–100 different partners under varying 
cellular conditions. Prediction or measurements of cellular protein levels and their 
interactions can be linked to disease models [16]. Extrapolation of these measure-
ments across all molecule types using panomics underscores the amplification of 
signal complexity as well as the high resolution of biological and health status that 
can be inferred from such data. Currently, the implementation of panomic data anal-
yses and network approaches across healthcare is varied, with oncology and cardi-
ology serving as leading fields [17–19]. The development of network medicine 
models within these particular fields is practical given these represent leading causes 
of mortality and morbidity in several countries and offer a wealth of molecular sig-
natures associated with disease states. However, the adoption of network medicine 
in these and other medical disciplines remains nascent in part due to meaningful 
analysis of panomic high-dimensional biological data being complicated at sev-
eral levels.
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Concerns regarding effective panomic data integration into network medicine 
include, but are not limited to, complexity of data, limited curation of targets, tech-
nical artefacts related to signal to noise ratios, differentiation between causality and 
correlation, cost and reimbursement, reproducibility and satisfying regulatory 
requirements [20–22]. However, such challenges are being actively addressed. For 
instance, many disease states require population-level comparisons for the appropri-
ate context of an individual’s panomic report, and data availability in electronic 
health records can be constrained to fiefdoms created by health systems and research 
model networks [23, 24]. New data-sharing models have been proposed and infra-
structure needs for panomic data reconciliation and availability are currently being 
addressed. Government-led initiatives have been key in integrating molecular data 
into electronic health records and supporting the necessary infrastructure for data 
sharing [25]. Numerous software applications and biobanks have become available 
for these different, individual molecular measurements and innovation in software 
tools for use in exploring potential disease features is an area of active research 
[26–28]. For example, specific applications are under development and available to 
address complexity issues with panomic data [29]. As evident in several of these 
novel computational tools, much of the progress regarding challenges associated 
with panomic data analysis and utility in network medicine has been achieved using 
artificial intelligence, machine learning and deep learning applications.

3.3  Artificial Intelligence, Machine Learning 
and Deep Learning

Artificial intelligence (AI), machine learning (ML) and deep learning (DL) form a 
hierarchy of analytical approaches. At the top level, AI is basically using computers 
to simulate the human mind, such as experiential learning, item recognition and 
decision-making. ML is an AI subset that equates data with experiences and special-
ised algorithmic techniques with learning. Applying the algorithms to the data is the 
basis on which machines can improve task performance. Finally, DL is an ML sub-
set in which the algorithms are based on artificial neural networks that mimic infor-
mation processing in the human brain through multiple layers of connected neurons.

Two broad classes of ML techniques are supervised and unsupervised. Supervised 
algorithms use example pairs of feature inputs and target outputs to learn the func-
tion that maps input to output. The primary goal is to create a predictive model based 
on the relationships between features and targets that can be applied to new values 
of inputs to generate outputs. Unsupervised algorithms, on the other hand, attempt 
to discover structure in inputs without reference to any outputs. The primary goal of 
these techniques is to find hidden input patterns instead of predicting outputs. These 
two classes can be further divided to distinguish among potential applications. 
Supervised methods are identified as either classification or regression, based on 
characteristics of the target output being predicted. Classification approaches require 
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a target that can only take discrete values, such as detection of a particular allele 
associated with a specific Mendelian genetic disorder such as sickle cell anaemia, 
cystic fibrosis and so on. In contrast, regression techniques apply when the target is 
continuous, taking on numeric values from a theoretically infinite set.

Unsupervised approaches can be classified as cluster identification, dimensional-
ity reduction or association rule mining. In cluster identification, data cases are 
grouped such that cases in each group have similar values across the input features 
while the groups themselves have different values. For dimensionality reduction, 
the goal is to reduce an extremely large number of input features to a more manage-
able set. This can be done by eliminating features or by deriving new composite 
features that replace feature sets. Finally, in association rule mining, sets of “if- 
then” rules are derived that identify how features are related. For instances in which 
target output values are not available for all data records, supervised and unsuper-
vised techniques can be combined in a semi-supervised method. One possibility is 
to use an unsupervised algorithm to identify similar cases and assign target values 
accordingly. An alternative is to use the cases with known target values to derive a 
supervised model that can generate predicted target values for the remaining cases. 
In either case, with target values now available for all cases, a new supervised model 
can be derived.

The following list briefly describes common ML algorithms that can be applied 
to address a variety of problems.

• Linear regression—a supervised regression approach that finds the best linear 
relationship between the input features and the output target.

• Logistic regression—a supervised classification method that predicts the proba-
bilities of discrete output categories based on the values of the input features.

• Decision trees—a supervised technique that can be used for either classification 
or regression that forms successive splits of the output target based on the input 
features to derive the most homogeneous target groups.

• Random forests—a supervised technique for classification or regression that 
uses an ensemble of decision trees built from input feature and data case subsets, 
with the results from the individual trees aggregated into a single output 
prediction.

• XGBoost—a supervised method for classification and regression that uses an 
ensemble of decision trees to derive an output prediction, where each subsequent 
tree attempts to address areas where previous trees performed poorly.

• Support vector machines—a supervised classification approach that identifies 
boundaries (or hyperplanes) in a space defined by the input features that opti-
mally separate the output classes from each other.

• Naive Bayes—a supervised classification method that determines class probabil-
ities assuming all input features are independent of each other.

• K-means clustering—an unsupervised approach in which cases are grouped such 
that their distances to their group centre are smaller than their distances to the 
other group centres.
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• Principal components analysis—an unsupervised technique for dimensionality 
reduction in which features are transformed into orthogonal linear combinations, 
known as principal components, which capture variability in the features, ordered 
such that each successive component accounts for less feature variability than its 
predecessor.

• Apriori algorithm—an unsupervised method for mining association rules that 
uses the most frequent individual feature values and value combinations to iden-
tify commonly occurring sets.

• Convolutional neural networks (CNNs)—deep artificial neural networks that 
usually consist of several layers (convolutional, nonlinear, pooling and fully con-
nected classification) that automatically learn feature hierarchies using spatial 
characteristics.

• Generative adversarial networks (GANs)—a combination of two neural net-
works, one of which generates example cases based on the input features while 
the other network attempts to identify each example case as authentic or artificial.

While the power and depth of machine learning techniques can make them 
appear as a panacea, there are several limitations and challenges that must be con-
sidered when attempting to use these methods in practice. First, training machine 
learning models to produce useful results can require massive amounts of data to 
counter dimensionality issues [30]. This is particularly true for complex deep neural 
networks. Without expansive datasets, the model may fail to capture important char-
acteristics and conclusions will be less than optimal. Second, initial processing to 
make data suitable for machine learning can be quite intensive. Lack of uniformity 
regarding data formats is a recurring challenge in biological data, including medical 
records. Data combined from multiple sources, which is a clear property of panom-
ics, must be standardised to ensure compatibility. In addition, missing values must 
be addressed in some way and some field values may need to be recoded. Individual 
fields or field combinations can be processed into potential new features. This is 
particularly true for wide data consisting of numerous features that need to be dis-
tilled into a manageable, yet meaningful, set. Next, the complexity of the required 
data engineering and the fine-tuning of the ML models may require a specialised 
analyst familiar with omic data to ensure derived features and models are sensible. 
Finally, the issue of AI interpretability must be considered. Some techniques, such 
as DL models, are basically “black boxes” that yield outputs in response to inputs. 
How those inputs translate into specific outputs is not easily explained. Yet, for net-
work medicine, there needs to be some level of explanation for consumers, whether 
researchers, medical professionals or patients, to have trust in the results. Still, the 
width and depth of panomic data have been demonstrated to offer an exceptional 
opportunity for use of AI, ML and DL techniques to contribute to healthcare.

Artificial intelligence has been successfully integrated into clinical support deci-
sion networks for several years and is widely viewed as transformative in healthcare 
[31, 32]. A continuum ranging from proof-of-concept studies to US Food and Drug 
Administration (FDA) approved healthcare AI applications for molecular biomark-
ers are currently available [33–35]. Recent work has demonstrated strong perfor-
mances of DL approaches, suggesting a current trend in diagnostic applications 
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using these techniques [36–38]. However, continuous efforts are being made to 
improve and refine diagnostic approaches, indicating a high level of flexibility in 
applications [39]. As expected, cardiology and oncology are the primary disciplines 
that serve as areas of active research in the development and implementation of AI, 
ML and DL applications in network medicine [40–42]. This focus is due to the tar-
get richness, depth and heterogeneity of biomarkers in these disciplines that neces-
sitate AI-related interventions to facilitate clinical trials [43]. However, the use of 
AI, ML and DL is expanding quickly to diagnostics in other medical fields, as well, 
and moreover, recent reports indicate AI-related approaches are beginning to out-
perform humans in identifying disease states at least under some conditions [44–
47]. Furthermore, innovative approaches are being developed using combinations 
of machine learning algorithms such as a novel approach described as explainable 
artificial intelligence (EAI) [48]. This approach tries the random forest, XGBoost 
and Light GBM techniques and selects the best-performing model. This model is 
analysed by an explainable AI algorithm known as SHapley Additive exPlantations 
(SHAP) to discern complex microbiome compositions under changing environmen-
tal conditions. SHAP attempts to derive the specific contribution of each input fea-
ture to the resulting predictions, allowing an examination of how inputs drive the 
output. AI, ML and DL are clearly indispensable for network medicine, but hurdles 
regarding the ability of clinicians and patients to interpret, use and communicate 
findings from these analyses persist.

3.4  Data Visualisation and Interpretation

The network medicine concept reflects an intersection of the information age and 
the age of personalisation that has generated specific expectations from consumers, 
both patients and healthcare providers. Visualisation techniques for effective inter-
pretation of higher order, complex biological datasets are under development [49–
52]. The preponderance of implemented visualisation platforms is designed for 
researchers to interrogate data derived from panomic studies in efforts to identify 
correlations associated with disease states. While often conceived for specific data 
types, other more flexible tools and platforms are available for data visualisation, as 
well. For example, PHATE, a tool that provides a method to discern structure in data 
by an information-geometry distance between data points offers a powerful alterna-
tive to commonly used methods such as principal component analysis and t- 
distributed stochastic neighbour embedding [53]. Clearly, such tools are essential 
for identifying data relationships within network structures; however, it is also a 
clear expectation to develop additional meaningful tools for analysis dissemination 
to clinicians and patients.

Translation and visualisation of data analyses for clinicians and network medi-
cine implementation remains a challenge, but substantial progress is being made 
[54]. Infrastructure for data management and custody has been under development 
for the past decade, and new models for electronic health records (EHRs) are being 
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explored to address challenges in effectively integrating network medicine data 
[23–25, 55, 56]. Regarding these models, one important consideration for EHRs 
and clinical support decision tools used in network medicine is the integration of 
mechanisms for meaningful clinician input. Clinicians offer experience and per-
spective that are not necessarily available for initial data analyses and modelling 
derived from molecular assays. Integration of clinical knowledge including per-
sonal context of individual patients has been shown to inform ML models and 
enhance patient outcomes related to imaging results, and one would predict that 
similar input would be valuable for multi-omic data models, as well [57]. However, 
the implementation of such a workflow seems rather idealistic. Engagement of cli-
nicians in model refinement consumes their most valuable resource, time and con-
cerns regarding time are validated by the implementation of reporting systems in 
electronic health records [58]. As a result, it appears software tools alone will be 
insufficient to support network medicine implementation.

Translating data effectively for patient communication has challenges, as well. 
The growth of consumer-oriented healthcare in the early 2000s coupled with a 
patient’s desire for ready access to data on their mobile devices results in an expec-
tation for effective communication and understanding of results [59, 60]. As a result, 
tools for dissemination of molecular data to patients require resources for commu-
nication with patient care teams, as well as suitable depictions and explanations of 
tests and results. However, omic data display for clinical decision-making can be 
multifactorial and complex. Multiple data analysis pipelines converge for correla-
tive analyses for presentation in a clinical decision support system. As the number 
of applications for these approaches, as well as the complexity of biomarkers esca-
lates, it would seem to be pragmatic to consider implementing alternative strategies 
to address this challenge beyond a data visualisation application. For instance, it is 
reasonable to suggest creating positions for medical data scientists as translational 
intermediates to deliver coherent data analyses for clinician review and patient con-
sumption. This suggestion aligns well with the surge of genetic counsellor positions 
that occurred in response to genome sequencing and concomitant increased genetic 
screenings that looked to take full advantage of this omic approach for precision 
medicine. It would seem current genetic counselling curricula could be augmented 
with tracks for training in network medicine within a particular discipline such as 
oncology or cardiology. Further, augmentation of patient care teams with genetic 
counsellors prepared in molecular diagnostics would seemingly help alleviate clini-
cian time constraints.

3.5  Future Directions in Network Medicine

It is expected that the molecular assay ecosystem will only continue to grow as new 
molecular biomarkers are discovered and more assays are being implemented 
through increased use of non-invasive sample collection, such as liquid biopsies 
[61–63]. This growth in molecular assay use will continue to be a driving force for 
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network medicine realisation, but it is important to note that the diagnostic and 
prognostic values of molecular assays do not exist in a healthcare vacuum. Rather 
molecular assays complement biomarkers identified from physiological, histologi-
cal and radiology analyses. Interestingly, an explosion of data from non-molecular 
analyses analogous to those observed from omic approaches is occurring as well. 
This observation is perhaps best exemplified by the digitisation of the US Department 
of Defense’s massive pathology specimen library [64]. Integration of these diverse 
data sets using artificial intelligence, machine learning and deep learning approaches 
for novel biomarker discovery and disease state identification will continue for the 
foreseeable future.

Advances in AI, ML and DL approaches have been impressive. Core architec-
tures are constantly evolving into advanced modelling techniques and this is antici-
pated to continue [65]. These advancements are expected only to increase as 
progress is made in understanding relationships between AI and neuroscience [66]. 
As a result, the toolbox for diagnostics and prognostics in network medicine will 
continue to expand and such growth is critical as it is clear that no single approach 
addresses the needs in biomarker discovery and disease recognition. Rather, deriv-
ing information from complex biological data whether molecular, histological, 
physiological, radiological or combinations of these disparate data will require var-
ied machine learning techniques or combinations of these approaches. For example, 
an ensemble of models that each leverage a different algorithm can produce a single 
prediction by treating their results as votes. Alternatively, a separate ML model can 
be derived using the ensemble model results as input features, in a process known 
as “stacking”. However, the future of artificial intelligence, machine learning and 
deep learning on healthcare is not limited to diagnostics. As evidenced by the 
COVID-19 pandemic, AI-related approaches using network principles are instru-
mental and transformative for drug discovery and clinical trial management [67, 
68]. Moreover, AI, ML and DL approaches are being integrated into several routine 
aspects of healthcare delivery ranging from administrative tasks to patient engage-
ment, including telemedicine [69].

Analogous to improved algorithms in AI, ML and DL, resolution is always 
increasing and becoming more refined through the development of new technolo-
gies in biology and analysis of biological systems. It has been argued that recent 
innovations in single-cell analyses may displace traditional omic studies in preci-
sion medicine [70–73]. These techniques and associated nanotechnologies, such as 
quantum dots, utilise imaging and multi-omic approaches with the potential to even-
tually image molecules within individual living cells [74]. Such resolution will offer 
snapshots or perhaps real-time images of active cellular and molecular networks 
that can be used to extrapolate to tissue or organismal levels. These measurements 
provide a mechanism to identify subpopulations of cells within tissues exhibiting 
differential physiological effects. However, discernment of signals within omic data 
regardless of single-cell or multicellular samples will continue to require AI, ML 
and DL approaches. Given these roles ranging from biomarker identification to 
diagnostics to therapeutics to patient engagement, artificial intelligence is currently 
and will continue to be the single greatest contributor to innovation in healthcare.
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3.6  Taking a “Moonshot” at Network Medicine Now

Even with massive data generation potential, improving data availability and the 
development of innovative tools for data analysis, the realisation of network medi-
cine still faces considerable obstacles. Implementation of precision medicine or net-
work medicine will occur when the healthcare market and community develop both 
confidence in these approaches and the systems necessary for their integration. It is 
important to note that required systems do not refer to simply computational and 
software tools for analysis, visualisation and interpretation of information derived 
by network analyses. Instead, financial models for network medicine are of greater 
consequence. Cost is a primary driver of healthcare services, and implementation 
will be sporadic or slow until network medicine presents a financially viable alter-
native that improves patient outcomes. However, the future is promising. It is obvi-
ous that network medicine offers cost savings through the acceleration of biomarker 
identification and reducing clinical time regarding discovery. Moreover, predictive 
models produced by AI, ML and DL techniques will save time and decrease cost for 
patient care teams provided information flow from testing to the team to the patient 
is productive. Clearly, the potential for increased costs of molecular assays and 
other tests is a concern. However, it is possible that AI, ML and DL approaches 
could be applied to manage judicious testing regimes by recognising patterns 
resolved from growing case studies of success regarding various disease states. In 
these ways, network medicine and personalised biomarker profiles will realise cost 
benefits, as well as care benefits, in terms of efficiency and effectiveness for indi-
vidual patients.

While this prediction is promising, it would seem moving forward that a focused 
approach to the implementation of network medicine may be more effective at 
developing a convincing cost-benefit argument than the current distributed approach. 
While convincing arguments can be made for use of network medicine in the treat-
ment of any disease state, the advanced biomarker discovery and analyses in cardi-
ology and oncology indicate these disciplines are prime for a ‘moonshot’ network 
medicine initiative. Oncology was identified as an initial target for precision medi-
cine [25] and among the diverse disease states comprising cancer, treatment of mul-
tiple myeloma offers a clear platform for potential improvements in cost, patient 
care and patient outcomes using network medicine. Multiple myeloma is an incur-
able cancer of plasma cells generally occurring in individuals 45 years or older. 
Importantly, precursor asymptomatic stages of myeloma have been identified. 
Monoclonal gammopathy of underdetermined significance (MGUS) was recog-
nised over 40 years ago as a benign condition deserving subsequent periodic moni-
toring for progression to multiple myeloma [75]. An intermediate, active disease 
state in the progression towards multiple myeloma known as “smoldering multiple 
myeloma” (SMM) was recognised in 2007 [76]. As a nascent diagnosis, SMM bio-
marker discoveries and their prognostic value for the progression of this disease to 
multiple myeloma are still being explored [77]. Current measures to monitor the 
precancerous SMM state include complete blood count, haemoglobin levels, 
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monoclonal protein levels, free immunoglobulin light chain ratio, calcium levels 
and bone imaging to detect lesions. Typically this data is collected every 3–4 months 
for 5 years after initial diagnosis. Recently molecular biomarkers have been inte-
grated into SMM prognoses, but primarily at the level of genomic markers using 
next- generation DNA sequencing or fluorescence in situ hybridisation (FISH) tech-
niques [78, 79].

New reports highlight preliminary efforts to apply network medicine principles 
to multiple myeloma. Myeloma-specific ontology has been generated and used with 
artificial intelligence to extract relevant information from medical records [80]. 
Differential cell counts in bone marrow derived from less invasive techniques have 
been analysed using machine learning [81–83]. Treatment plans for multiple 
myeloma, as well as the development of artificial intelligence models, are beginning 
to arise from case studies using molecular biomarkers [79, 84–86]. Taken together, 
the emerging application of disparate molecular, histological, physiological and 
imaging techniques coupled to the longitudinal nature of disease progression and 
periodic screening make multiple myeloma a unique and powerful opportunity for 
network medicine. A large-scale, comprehensive clinical trial should be conducted 
including healthy individuals, individuals identified with MGUS, SMM patients 
and patients that have progressed to multiple myeloma with deep data being col-
lected at all levels including panomics. By profiling changes over time in each popu-
lation, patterns can be discerned and linked to progression. Such datasets have the 
promise to transform diagnostics, prognostics and potential treatments regarding 
myeloma for generations by providing clarity on the spectrum of genetic lesions, 
their effects at molecular, cellular and tissue levels and their consequences for this 
disease that can be translated on an individual patient basis.

3.7  Summary

It is a critical and promising time for network medicine. The maturation of panomic, 
artificial intelligence, machine learning and deep learning approaches has demon-
strated the accessibility and value of this new discipline. The current developmental 
environment guarantees continued innovation in these data collection and analysis 
areas to deliver enhanced biomarker discovery for disease state diagnostics and 
prognostics. In particular, an increased scale of data availability will foster the 
development and implementation of improved and novel combinations of learning 
algorithms. Given these advancements in network medicine, consideration of 
addressing translational obstacles for network medicine is timely. Among these, 
communication appears to be a recurring theme, whether among the patient and 
patient care team or translating evidence regarding the benefits of network medicine 
for cost and patient outcomes to healthcare systems. As such issues are resolved, 
network principles and applications will deliver precision medicine and transform 
healthcare.
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4.1  Introduction

In 2018, the US government spent about 1.1 trillion dollars on healthcare, out of 
which about $583 billion was spent on the Medicare program [1]. About 18% of the 
Gross Domestic Product (GDP) in the United States is spent on healthcare, much 
higher than the other high-income countries. While spending the most money on 
healthcare out of any other country in the world, the United States has astonishingly 
poor healthcare outcomes and has the lowest life expectancy rates compared to all 
other OECD (Organisation for Economic Co-Operation and Development) coun-
tries, as well as one of the highest suicide rates. In terms of OECD averages, the 
United States has two times the rate of chronic disease and obesity but still manages 
to utilise more expensive healthcare technologies than other OECD nations. A 
recent study by Papanicolas et al. [2] found that, despite a large amount of health-
care spending, the United States lags in a few key metrics compared to other coun-
tries: (a) Percentage of adults who are overweight/obese stands at 70% in the United 
States, much higher than the other comparable countries; (b) Life expectancy in the 
United States is 78.8, lower than the other comparable countries studied; and (c) 
United States has the highest infant mortality rate (5.8 deaths per 1000 live births in 
the US; 3.6 per 1000 for all 11 countries studied).
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Furthermore, although the United States prioritises preventative measures and 
screening visits, general health and well-being outcomes remain poor. Even with 
this focus on prevention, the United States has the highest rate of hospitalisations 
from causes that could have been prevented. To add to these disheartening facts, 
American citizens somehow visit the doctor less frequently than all other OECD 
nations and have fewer physicians available as a whole [3]. Although all these facts 
are astonishing, the US welfare state is fundamentally and foundationally not com-
parable to other OECD countries, both in terms of economics and in terms of public 
priority. As healthcare spending in the United States continues to grow, consumers, 
taxpayers and elected officials are asking whether the high amount of healthcare 
spending is translating into healthcare quality.

From a philosophical perspective, the healthcare system is a social institution 
that constitutes a range of processes and structures to address some social need [4]. 
It is a set of organisations and systems, physical or ideological, that are connected 
to a specific sector of society and that serve to shape and channel behaviour towards 
specific ends [5]. The system comprises individuals, groups, organisations, prac-
tices, structures and purposes and to that end, Budrys [4] contends that healthcare 
delivery shares attribute with other societal institutions in the sense that it was con-
structed to meet specific societal needs in a way that reflects our values, behavioural 
expectations and culture. Through the analogy of viewing the American Healthcare 
system as “a house erected over multiple generations with each set of inhabitants 
building upon, remodeling, or altering the bricks of those coming before them,” 
Hinote and Wasserman [5] explain how in the process of constructing this institu-
tion, each participant drew upon their understandings of health and the body, their 
values and their goals as both individuals and a collective society thereby constantly 
reproducing or reworking the form of the institution. The aforementioned authors 
argue that what is commonly thought of as the failure of the institution is really the 
failure of the stakeholders to contemporise and modernise it that plays a critical role 
in sustaining, fortifying and reproducing the inefficiencies of the system.

Viewing the healthcare system from the lens of the building block metaphor, we 
discuss several initiatives that are currently in place in the United States to improve 
the quality of care. We then present infrastructure schematics that may be used to 
analyse large-scale healthcare data. Next, we present specific examples of health-
care decisions that can be made using data analytics and how healthcare technical 
infrastructure can be utilised for data analytics, with the end goal of providing 
insights into healthcare delivery that achieve the objectives it was designed to  
meet – attend to the needs of the sick and promote health and well-being.

One of the initiatives is based on providing care for patients through healthcare 
entities designated as Accountable Care Organizations (ACOs). The broad theme of 
ACOs is to promote quality of care rather than volume of care or quantity of care 
[6]. ACOs participate in Medicare Shared Savings Program and are eligible for 
additional financial benefits if they demonstrate that they meet certain quality mea-
sures. The Centers for Medicare & Medicaid Services (CMS) define ACOs as fol-
lows [7]: “Accountable Care Organizations (ACOs) are groups of doctors, hospitals, 
and other healthcare providers, who come together voluntarily to give coordinated 
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high-quality care to the Medicare patients they serve. Coordinated care helps ensure 
that patients, especially the chronically ill, get the right care at the right time, with 
the goal of avoiding unnecessary duplication of services and preventing medical 
errors. When an ACO succeeds in both delivering high-quality care and spending 
healthcare dollars more wisely, it will share in the savings it achieves for the 
Medicare program.”

All healthcare entities including ACOs are grappling with the explosion of data 
as data analytics is transforming every industry, from banking and finance to retail 
and certainly in the realm of patient care. In healthcare, huge amounts of data from 
disparate data sources have the potential to improve patient outcomes through 
improved analysis and decision-making [8]. Several aspects of ACOs are changing 
the clinical communication and some of the processes to improve patient outcomes 
[9]. In essence, the demand for quality of care while reducing healthcare costs and 
the extensive amount of data coupled with advanced technologies is leading us to an 
unprecedented era of digital health.

Some of the sources of digital information related to health include mobile wear-
able devices, sensors, electronic portals, virtual reality, analytics and machine learn-
ing tools and applications. Wearable devices such as smartwatches, fitness bands, 
and health monitors interface with smartphones and personal computing software to 
collect a wide variety of data [10]. They are commercially available and becoming 
popular in healthcare with an increasing number of Americans owning a smart-
watch or fitness tracker. Wearable devices collect data either automatically through 
the use of sensors or by the user manually entering data into the device [11] and 
include a treasure trove of data from location, activity, sleep patterns, body tempera-
ture, blood pressure, blood oxygen level, heart rates and brain activities to fertile 
reproductive periods [12].

Cillers [12] cites examples of data that may be available for collection and analy-
sis [11, 13–16] including location (GPS), air quality (phone sensor), diet and nutri-
tion (user logging), activity/movements and sleep patterns (personal device sensors, 
accelerometers, pedometers, altimeters), muscle function and coordination (pres-
sure sensors), skin conductance as a proxy for arousal (sensor attached to phone), 
temperature and fertile periods (thermometer, electrodermographs), heart rate, 
blood pressure and blood oxygen (heart rate sensors, oximeters, electrocardiograms, 
digital camera/flash), psychological disorders and personality traits (social media 
use, involvements with friends, behavioural patterns and activities when using a 
smartphone) and measuring cognitive functions and brain activity (brain wearables, 
cognitive sensors). The collected data may then be transferred to a mobile applica-
tion or database to be statistically analysed and presented with visualisation tech-
niques that show changes over time [17]. Sharing this information with healthcare 
providers will facilitate informed healthcare-related decision-making [18].

Aziz [19] reports the application of virtual reality (VR) in healthcare allows for 
increased operationalisation of health information and data whereby VR is used 
both for the training of healthcare professionals such as anatomy instructions and 
surgery simulations as well as for diagnosis and treatment. The use of VR allows for 
a three-dimensional computer-generated world that can be explored interactively 
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through a variety of peripheral devices and be effectively used for medical therapy, 
preventive medicine, visualisation of databases, skill enhancement and rehabilita-
tion and medical education and training. Technological advancement in diagnostic 
imaging has allowed the use of VR in CT, MRI, X-ray imaging NM, ultrasound and 
computed radiography. VR simulation is also being used in the autopsy, micro-
scopic examination and digital pathology paving the way for maintaining sustain-
able and efficient services and quality of care.

In this era of data abundance, artificial intelligence (AI) has introduced the pos-
sibility of using aggregated healthcare data to produce powerful models that can 
automate diagnosis [20] and enable an increasingly precision approach to medicine 
by tailoring treatments and targeting resources with maximum effectiveness in a 
timely manner [21, 22]. The potential of AI is vast and machine learning, a tech-
nique of AI is being developed and used to manage, decide and predict the results of 
healthcare data more precisely [23]. Automated medical image diagnosis is one of 
the most popular applications of AI and is successfully being used in radiology, 
ophthalmology, dermatology and pathology [24]. The authors [24] report additional 
usage of AI in genome interpretation, biomarker discovery, clinical outcome predic-
tion and patient monitoring, inferring health status through wearable devices and 
autonomous robotic surgery.

In this chapter, we focus on technologies for data analytics applications in health-
care. The rest of this chapter is organised as follows. We first discuss ACO quality 
measures and give specific examples of how to compute ACO quality measures 
based on patient data. Then we present a few examples of technologies that are used 
for data analytics in healthcare. Before concluding this chapter, we give specific 
examples of applications of data analytics in healthcare.

4.2  ACO Quality Measures

To qualify for federal incentives, ACOs need to demonstrate that they are meeting 
certain quality measures every calendar year. The number of quality measures dif-
fers from year to year; however, the concept and some of the core measures remain 
the same. For example, in 2018, ACOs needed to report data on 31 quality measures 
[25]. These 31 quality measures are grouped into the following four different 
domains.

• Patient/Caregiver Experience (8 measures)
• Care Coordination/Patient Safety (10 measures)
• Clinical Care for At-Risk Population

 – Diabetes (2 measures scored as 1 composite measure)
 – Hypertension (1 measure)
 – Ischemic Vascular Disease (1 measure)
 – Depression (1 measure)

• Preventive Health (8 measures)
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4.2.1  Quality Measures for Patient/Caregiver Experience

A few examples of the ACO patient/caregiver experience quality measures are:

• ACO-1: Getting Timely care, Appointments and Information
• ACO-2: How Well Your Providers Communicate
• ACO-3: Patients’ Rating of Provider
• ACO-4: Access to Specialists

The data to compute these measures comes from the patient survey and Consumer 
Assessment of Healthcare Providers and Systems (CAHPS), conducted by the 
Agency for Healthcare Research and Quality (AHRQ).

4.2.2  Quality Measures for Quality Care Coordination/
Patient Safety

A few examples of the ACO care coordination/patient safety quality measures are:

• ACO-36: All-Cause Unplanned Admissions for Patients with Diabetes
• ACO-37: All-Cause Unplanned Admissions for Patients with Heart Failure
• ACO-38: All-Cause Unplanned Admissions for Patients with Multiple Chronic 

Conditions

The data to compute some of these measures comes from healthcare claims data. 
For example, for ACO-36, we compute the rate of acute, unplanned hospital admis-
sions in 65 years and older population with diabetes.

4.2.3  Quality Measures for Clinical Care 
for At-Risk Population

A few examples of the ACO clinical care for at-risk population quality measures are:

• ACO-27: DM-2: Diabetes: Haemoglobin A1c (HbA1c) Poor Control (>9%)
• ACO-41: DM-7: Diabetes: Eye Exam
• ACO-28: Hypertension (HTN): Controlling High Blood Pressure
• ACO-30: Ischemic Vascular Disease (IVD): Use of Aspirin or Another 

Antiplatelet
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For example, ACO-27 quality measure computes the percentage of patients in 
the age range 18–75 years with diabetes (type 1 or type 2) whose Haemoglobin A1c 
(HbA1c) test result is above 9%. The formula for computing HbA1c is as follows:

 
# . % / #PatientswithHbA c Total DiabeticPatients1 9 0�� � � �  

For the numerator, we take the number of patients whose most recent HbA1c 
level (performed during the measurement period) is above 9.0%. If a patient’s test 
result is missing or the test was not completed during the year, such patients are also 
included in the numerator. For the denominator, the following patients are included: 
patients with at least two face to face encounters with different dates of service in an 
outpatient setting or non-acute inpatient setting, or patients with at least one face-to- 
face encounter in an acute inpatient or emergency department setting during the 
measurement period or the year prior to the measurement period (services that occur 
over both years may be counted). Furthermore, patients should be in the age range 
18–75 years and need to have a diagnosis of diabetes (type 1 or type 2) for the year 
are included. Diabetic patients with a diagnosis of polycystic ovaries, gestational 
diabetes and/or steroid-induced diabetes are not included in the denominator counts.

Similarly, ACO-41 (DM-7) quality metric measures the percentage of patients in 
the age range 18–75 years with diabetes (type 1 or type 2) who had an eye exam 
(retinal) performed. The formula below is used to compute this quality mea-
sure value.

 
# / #PatientswithRetinalExam Total Diabetic Patients� � � �  

For the numerator, the total number of patients who received a retinal eye exam 
during the measurement period or had a negative retinal eye exam (normal result) 
during the year prior to the measurement period is used. The process for computing 
the denominator is very similar to the process described for ACO-27.

4.2.4  Quality Measures for Preventive Health

A few examples of the ACO preventive health quality measures are:

• ACO-14: Preventive Care and Screening: Influenza Immunisation
• ACO-15: Pneumonia Vaccination Status for Older Adults
• ACO-17: Preventive Care and Screening: Tobacco Use – Screening and Cessation 

Intervention

For example, ACO-14 measures the percentage of patients who received the flu 
vaccine. As can be seen, data at the enterprise level is needed to compute every ACO 
quality measure. The next section presents the data architectures and technologies 
used in healthcare for computing ACO quality measures and decision-making.
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4.3  Data Architectures and Technologies 
for Healthcare Applications

Figure 4.1 presents a high-level schematic of the infrastructure used for healthcare 
data analytics. Healthcare data can arise from a variety of sources. For example, 
smart meters that track the blood glucose levels of patients can transmit the readings 
(Sensor Data in Fig. 4.1). Medical records of patients in the United States are typi-
cally stored in electronic health records (EHR Data). Data from patient satisfaction 
surveys are available in a separate database. Epidemiology and data on public health 
and genome data are separate data sources. These diverse data sources are combined 
to form a data warehouse. Smaller data marts that are applicable for different depart-
ments can be created from the larger data warehouse. For example, a research divi-
sion that is studying the effectiveness of specific medications in patients will utilise 
a different data mart compared to the division that needs to report the ACO quality 
metrics.

Several platforms/programs can be used to conduct analysis on data and arrive at 
meaningful conclusions. Some of these programs are SAS, SPSS and R. One advan-
tage of R is that it is open-source and freely available. Spreadsheet software pack-
ages such as Excel can also be used to analyse data to some extent, though some of 
the tasks can take a significantly longer time with Excel compared to software pack-
ages such as R. Tableau and other tools such as Power BI can help visualise data 
with ease. To extract data from databases, structured query language (SQL) is a 
common language that works across multiple database formats. For example, a 
database query to extract patient lab test result data can be constructed as shown in 
Fig. 4.2.
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Fig. 4.1 An infrastructure diagram for healthcare data analytics
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4.3.1  Data Analytics: Example Application #1: Physician 
A Versus Physician B

You are working as an administrator for a large hospital system that is designated as 
an Accountable Care Organization. Your 65-year-old uncle John is diagnosed with 
diabetes and he wants to see a primary care physician (PCP) who demonstrates bet-
ter results in controlling diabetes. Uncle John narrowed his choices to two physi-
cians: Physician A versus Physician B.  Knowing that both doctors work for the 
same hospital system where you work as an administrator, uncle John requested 
your help in deciding which physician he should select. You would like to help your 
uncle with the decision. How would you approach this decision-making scenario?

The approach you likely will follow consists of the steps outlined below:

 1. Extract relevant data from the database. In this example, the sample data you will 
extract includes the HbA1c lab test results for diabetic patients for whom 
Physician A vs. Physician B are the primary care physicians.

 2. Formulate the null hypothesis that the means of HbA1c values for patients of 
Physician A vs. Physician B are the same.

 3. Utilise Microsoft Excel and/or R (or any other statistical testing tool) to conduct 
the t-Test to test the null hypothesis.

 4. Interpret the statistical test results and draw conclusions on whether the mean 
blood sugar levels, as indicated by HbA1c, are similar for Physician A vs. 
Physician B.

The infrastructure components that are utilised in this example are indicated in 
Fig. 4.3.

As the quality movement in healthcare gains momentum, such statistical analysis 
can be expanded to compare the outcomes of different ACO measures across health-
care systems and regions. As patient data becomes available for easier access 

Fig. 4.2 A visual representation of a database query to extract patient test results data
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through initiatives such as Health Information Exchanges (HIEs), a large amount of 
treatment and outcomes data can be analysed. Based on this data, predictive analyt-
ics models can be used to find out the best possible treatment options based on 
patient data and treatment options.

4.3.2  Data Analytics: Example Application #2: Predicting 
the Future Sales of Medical Equipment

You are working as a sales manager for a large pharmaceutical company. Your com-
pany sells medicines and medical equipment such as defibrillators and coronary 
stents. You are planning to predict the total number of medical equipment such as 
the defibrillators that your company sells in the coming years. Likely, the growth is 
slow initially, then growth takes off as the product becomes more popular and then 
the growth tapers off. You can model the sales growth using a growth curve such as 
the S-curve or the Gompertz curve [26].

For the Pearl function, the formula is: x(t) = L/(1 + a * e^(−b * t)). Here, x(t) is 
the sales at time t, and L is the maximum value that x(t) can achieve. Constants a and 
b are used in the model to help determine the curve’s shape. The inflection point for 
the curve occurs when t = ln(a)/b, where ln(a) is the natural logarithm of a.
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Fig. 4.3 Infrastructure components used in deciding between Physician A vs. Physician B as 
uncle John’s physician
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Another growth curve model is defined by the Gompertz curve. For the Gompertz 
function, the formula is x(t) = a * e^(−c * e^(−b * t)). Here, x(t) is the sales at time 
t. As t becomes large, x(t) approaches a.

To fit these curves to predict sales, we can utilise the data from the sales data 
warehouse (or data mart). Though the sales data is not explicitly shown in Fig. 4.4, 
depending on the organisation (in this example, a pharmaceutical company), differ-
ent data sources need to be brought in. In this example, you need to find the best fit 
values for L, a and b if we use the Pearl function; if we use the Gompertz function, 
you need to find the best fit values for a, b and c. The best fit values can be found 
either using Excel solver or using a programming package such as R.

4.3.3  Data Analytics: Example Application #3: Comparing 
the Reimbursement Amounts for Different Hospitals

You are working as an auditor at the Centers for Medicare and Medicaid Services 
(CMS). You are reviewing the claims submitted by four different hospitals in the 
same urban area of Milwaukee, WI for treating “Heart Failure and Shock without 
complication or comorbidity (CC) or major complication or comorbidity (MCC).” 
The MS-DRG code for this treatment is MS-DRG 293. You somehow suspect that 
there are significant differences among the reimbursements for this MS-DRG code 
for these four hospitals. You would like to investigate whether this is true or not. 
How would you approach this decision-making scenario?

The approach you likely will follow consists of the steps outlined below:

 1. Extract relevant data from the database. In this example, the sample data you will 
extract includes the reimbursement data for all the claims submitted for the MS- 
DRG code 293 by the four hospitals.
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Fig. 4.4 Infrastructure components used in comparing reimbursements for different hospitals
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 2. Formulate the null hypothesis that the means of the reimbursements for MS- 
DRG 293 are the same for all four hospitals.

 3. Utilise Microsoft Excel and/or R (or any other statistical testing tool) to conduct 
the ANOVA test to verify the null hypothesis.

 4. Interpret the statistical test results and conclude whether the mean reimburse-
ments are the same or not.

The infrastructure components are not the same as those shown in example 1. 
Since the CMS data sources are different, we need to obtain the relevant data on 
reimbursements from the claims data available in the CMS database systems. 
Except for the data sources, other infrastructure components may be the same as 
before in this example. Figure 4.4 shows the infrastructure components such as the 
claims data used in this example.

4.4  Concluding Remarks and Directions for Future Work

Healthcare is the largest service industry in the United States and constitutes the 
world’s fifth-largest economy on its own [5]. Healthcare data arise from myriad 
sources such as electronic health records, sensors such as RFID tags and smart 
meters, public health agencies and patient surveys. The definition of big data for 
healthcare uses four V’s: volume, velocity, variety and veracity [27]. As healthcare 
data grow, governmental agencies, hospitals, pharmaceutical organisations and 
insurance companies are trying to find meaning in the data [28]. Researchers need 
to utilise both technologies and statistical techniques to draw meaningful conclu-
sions from healthcare data. Since 18% of the US GDP is in healthcare, there is a 
significant emphasis on data analytics in healthcare to improve quality of care as 
well as reduce healthcare costs.

Although a daunting task, the delivery system’s effectiveness can be assessed by 
analysing the three domains of cost, quality and access. Today’s complex health-
care institution has many players including new entrants such as the software devel-
oper, vendor and IT professional and each will play a critical role in gleaning 
insights from big data to initiate long-lasting and meaningful change. Harnessing 
the predictive technology and decision-making processes of big data, the healthcare 
industry can attempt to realise both quality outcomes and cost containment in 
patient care. Other challenges that need to be addressed include accessibility, pri-
vacy, security, usability, implementation costs, transportability, interoperability and 
standardisation [29].

For accurate diagnosis and prediction across different segments of the society, 
and to correct for bias, data need to be representative of race, class and gender. Due 
to cost, access and cultural issues, healthcare institutions often lack the data needed 
to fit algorithms for accurate analytics of specific populations [30]. Only then can 
such analytics be used to identify health needs, analyse problems and trends, con-
duct relevant research, plan and evaluate programs and justify budgetary costs and 
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administrative decisions. Furthermore, resolving issues related to data ownership 
and trust and investing in the development of efficient and streamlined analytics 
infrastructure with adequate attention to the representativeness of information will 
provide a step towards early intervention, quick and accurate diagnosis, appropriate 
treatment, reduced costs and improved healthcare quality. This new decade is poised 
to bring significant developments in terms of using analytics for improving quality 
and reducing expenses.
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Chapter 5
The Case for Digital Twins in Healthcare

Nilmini Wickramasinghe 

5.1  Introduction

One of the defining features of the new millennium is the impact of digital technol-
ogy that is revolutionising the world by improving everyday lives. In particular, the 
advances in the Internet of Things (IoT) are enabling what was only once imagined 
to become a possibility. Healthcare is no exemption, even if it has been slower to 
embrace digital solutions as rapidly as perhaps banking manufacturing and retail 
sectors. As healthcare is embracing digital solutions, we are not witnessing the 
dawn of health 4.0, a concept coined towards running healthcare services supported 
by data and technology, which enables the digital transformation of healthcare.

In fact, in healthcare delivery today we are not surprised to see the adoption of 
mobile solutions and apps, sensors, augmented, mixed or even virtual reality and 3D 
printing. Moreover, advances in genome sequencing have also meant that more 
sophisticated analytics, AI (artificial intelligence) and ML (machine learning) are 
also being incorporated to address various aspects around the provision of superior 
care. These advancements have been pivotal in offering quality healthcare services 
to all. However, technology development that has served to bring tremendous ben-
efits to manufacturing and service sectors, in particular, has yet to be significantly 
embraced in healthcare, namely, digital twins.

Digital twin advancements are currently being used in service sectors to provide 
better analytical insights through simulations. This has been achieved by combining 
the already existing data with available simulation models to provide intangible 
replicas [1, 2]. This technology has empowered industry scientists with an opportu-
nity to test ideas without engaging the real world thus limiting negative 
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consequences that may have arrived in real-world testing. The trend has been driven 
by the technology efficiency and benefits that have significantly cut the costs of test-
ing new ideas and concepts. This chapter contends that similar benefits can be 
realised in healthcare and, therefore, examines how we might conceptualise the 
digital twin technology application in the healthcare sector.

5.2  Digital Twin Concepts

It is generally accepted that one of the first instances of digital twins is found with 
NASA, which has been known to create mirrored systems, or simulated environ-
ments, to monitor unreachable physical spaces (e.g. spacecraft in mission) [3]. This 
is one of the first occurrences but since then, numerical models and computer simu-
lations of varying complexity have gradually been introduced to diverse fields such 
as engineering, retail, service and manufacturing [5].

A typical digital twin has three key components [4]:

 1. A component from the physical world (e.g. an object, a process, a person, etc.)
 2. A virtual or a digital representation of the physical component and
 3. A data stream that serves to connect the physical and virtual components.

This relatively new and nascent innovation is one of the fastest-growing techno-
logical solutions across all industries, and its concepts revolve around the conver-
gence of physical and virtual worlds to produce a clear digital replica [5]. Through 
the use of different data sources, the advancement allows for learning and reasoning 
in an attempt to make optimal decisions (ibid). As the word “twin” suggests, the 
technology allows for virtual and physical object development. The creation is 
founded on extensive data collection from different points by using sensors and 
other information collecting devices. After collection, the information is interpreted 
and run through rigorous algorithms to come up with deep physical analytics. 
Analytic results summarise lessons learnt and opportunities that exist in the physi-
cal environment. The whole process is not only more cost-effective than testing real 
physical constructions but has also seen as useful in operations optimisation.

5.3  Digital Twins in Healthcare

Digital twins in healthcare have been described as the integration of data-rich 
sources with AI platforms to provide clinical solutions [6]. Such solutions then pro-
vide an ideal testing and monitoring environment and at the same time eliminate the 
need for physical objects and human subjects (ibid). In healthcare, while applica-
tions are still emerging, to date the technology has proved efficient in predicting 
procedure outcomes [7–10]. Furthermore, beyond outcome prediction, digital twins 
have empowered medical experts with the tools to customise therapies for individ-
ual patients (ibid).
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Outcome prediction is one of the most important benefits of the application of 
digital twins in medicine [11, 12]. Cases exist where digital twin solutions have has 
been used in predicting different intervention results including to predict successful 
treatment scenarios in delicate procedures such as cardiac resynchronisation ther-
apy (CRT) (ibid). By integrating digital twin technology, medical experts can easily 
predict patients that are more likely to respond to such therapies (ibid).

Smith, et al. described using AI to produce digital twins for Alzheimer’s disease 
(AD) patients under treatment to reduce the number of failing clinical trials, 
although the trials were well-justified and well-funded [13]. Previously, using data 
from a randomised controlled trial was considered as a gold standard for Alzheimer’s 
disease (AD), but with limited access to a small pool of Alzheimer’s disease (AD) 
patients, it is becoming extremely hard to create randomised trials. The digital twin 
can create synthetic control subject records with matching baseline variable records 
with the patients under treatment which can enhance control groups in clinical trials 
[13]. This work also highlights that this new technology can improve the overall 
efficiency of trials by reducing the recruitment time and number of trials thereby 
improving product/therapeutic practices.

Recently another study which is in its initial stage has incorporated the digital 
twin (whole-body digital twin) concept for reversing diabetes based on precision 
medical treatment [14]. This study will use TPT (Twins Precision Treatment) to 
gather data related to blood and sensor along with remote coaching for nutrition and 
exercises (at a frequency of 90 days for duration 2–5 years) using mobile apps and 
this data will be analysed through AI. This will help in understanding and compar-
ing how the digital twin for these patients under treatment matches in terms of treat-
ment and recovery predicted by AI and data analytical techniques.

Successful healthcare outcomes are highly dependent on the accuracy and 
effectiveness of clinical decisions [11]. Technologies that both enhance and 
empower clinical decision-making processes have the potential to not only result 
in the better clinical outcome but higher quality care, high-value care and high 
patient satisfaction. Utilising digital twin solutions in this regard has the potential 
to lead to superior clinical decision-making. For instance, in oncology, prostate 
cancer specialists have multiple intervention options for their patients. However, 
choosing the right option is not a simple decision and can be dependent on differ-
ent circumstances. Specifically, the choices include surgery, radiation and hormone 
therapy options [15]. By integrating relevant patient data and thereby constructing 
a digital twin of the patient, it can assist the clinician to choose the best option in 
relation to the risks involved and outcomes expected. The therapy process can be 
extended to more sophistication by combining digital twin resources with patient 
data imaging, lab and genetic data to come up with a more advanced therapy plan 
[15]. By following such a strategy, the aim is to maximise therapeutic benefits and 
minimise patient discomfort by making an optimal decision supported by mined 
and analysed data.
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5.4  The Case for Digital Twins in Healthcare

There appears to be a strong case for focusing on trying to incorporate digital twins 
into healthcare today as this may be the way to address current concerns around 
limitations with precision medicine and lack of patient-centeredness of care. Much 
of medical research has been focused on treating patients in a generalised way and 
following prescribed, established practices, which include specified pathways for 
diagnosis, treatment and post-treatment recovery [16]. To help clinicians to navi-
gate/decide their treatment pathways, atlases were produced which used scans of 
thousands of patients and created atlas for the future record [16]. Gradually, how-
ever, a growing realisation is occurring where there is an emphasis to look at each 
patient as an individual, unique person, with their own speed and pathway for treat-
ment and recovery, which, in turn, has led to the focus on precision medicine (ibid). 
In essence, a precision medicine approach is an emerging approach for disease 
treatment and prevention that takes into account individual variability in genes, 
environment and lifestyle for each person [17, 18].

However, the precision medicine approach has not totally delivered as promised 
and, in particular, has not been able to include the current and real-time data gener-
ated by the patient, thereby making it misaligned with the concept of precision 
medicine [17, 18]. With the significant advancements in the myriad of data analytic 
techniques and artificial intelligence in healthcare, digital twins, which could be 
used to create digital representations of specific patients, and thereby enabling all 
critical and individual aspects to be captured and thus considered when formulating 
a treatment strategy, appears to fill this void.

5.5  Critical Considerations

As with all emerging innovations, the conceptualisation of digital twins for health-
care also brings with it multiple unsolved issues. First, the idea faces multiple chal-
lenges with respect to design and implementation in the healthcare industry. Unlike 
counterparts in manufacturing, constructing a digital twin of a person is more com-
plex and complicated than creating a digital twin of a physical object of a car or 
plane. Moreover, challenges emanate from the core technology principle that 
requires successful and sustainable connections [19]. Given that the technology 
requires a conclusive connection between the real and virtual world for the real 
interaction, this process has proven difficult and technically challenging for most 
medical organisations with little resources (ibid). In addition, the technology also 
requires quality supportive resources such as sensors, databases and sophisticated 
algorithms for complete data mining and insights (ibid). These are clearly challeng-
ing for hospitals with inadequate financial and human resources to manage all these 
critical phases.

We also note that in general, the medical sector is likely to have difficulties utilis-
ing digital twin for outcome prediction [20]. This is related to likely technicalities 
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and risks involved in providing substantive evidence to support findings generated 
(ibid). Furthermore, inconsistencies between virtual models and physical objects 
have also become prevalent, making the whole process “untrustworthy” while pos-
sible technical errors in sensor data collection, simulation, or interpretation could 
lead to irreversible errors (ibid). Most of these errors can be traced back to the diver-
gence between physical and virtual realms that have proven difficult to converge 
together (ibid). Beyond inconsistencies and errors witnessed, some healthcare facil-
ities have abandoned using these systems due to lack of sufficient IT professionals 
or the cost to employ sufficient professionals; hence, most hospitals are short of 
capable personnel with the necessary system integration, monitoring and trouble-
shooting experience. Just like other technologies, it is challenging to account for the 
return on investments in using digital twins in healthcare contexts today.

5.6  Future of Digital Twins in Healthcare

The aforementioned considerations notwithstanding, we believe that digital twins 
have a critical role and future in healthcare. We expect as health 4.0 matures, health-
care organisations will continue using more and more digital health solutions, and 
thus the opportunities for incorporating digital twins will also increase. Moreover, 
medical engineers will still require simulating medical situations and digital twins 
will thus continue to avail the solution [21].

Contemporaneously, machine learning and AI field experts will expand, which 
will also result in field specialisation, with more healthcare technology-oriented 
workers expected. We suggest that this growth will be boosted by the need to bridge 
the gap between the demand and the supply of medical experts. In addition, the 
growth in subject personnel will also boost technological innovations within the 
healthcare domain. We also proffer that new digital twin-related inventions will be 
developed and patients will demand more personalisation in their care treatments.

As sophistication continues to evolve, digital twin technology will not only affect 
the patient care service delivery but will also improve other key areas. For example, 
through big data and other analytics, hospitals can draft personalised marketing 
messages for checkups and other consultative services. Although not fully imple-
mented yet, it is anticipated that digital simulations will have a role in medical ser-
vices marketing in the future.

5.7  Conclusions

In closing, we contend that digital twins are powerful technology innovations that 
are likely to revolutionise healthcare delivery as they have manufactured, albeit in a 
less dramatic, slower fashion. Moreover, we predict that within the next 5 years 
there will be a plethora of digital twin applications in healthcare. Such proxies of the 
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physical world will more than likely lead to new treatment protocols and faster 
recovery as well as better healthcare outcomes and higher patient satisfaction. In 
addition, we anticipate that such collaboration opportunities among physical world 
experts and data scientists will ultimately also lead to more expeditious solutions 
which, in turn, will provide higher value care.

The applications of digital twins, in general, are still in its infancy. However, its 
benefits have been felt across all industries. Its effects have been characterised by 
better efficiency and service delivery. This impact is yet to be fully realised in the 
healthcare sector; however, we believe this will happen in the next few years. Today, 
medical professionals can use real-time data to simulate medical situations and 
experiences. This has proved to be useful in providing high-quality medical inter-
vention services. The digital disruption that digital twins will make in the healthcare 
sector is likely to be significant and bring with it new challenges but the benefits are 
also likely to be significant including better approaches for treating chronic condi-
tions like diabetes, cancer and mental health issues like Alzheimer’s and dementia. 
Our future research will focus on evaluating several instantiations of digital twins in 
healthcare contexts.
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Chapter 6
Using Colored Petri Nets for Optimization 
of Healthcare Processes

Vijay Gehlot, Nilmini Wickramasinghe , Elliot B. Sloane, Michael Kirk, 
and Eric R. Miller

6.1  Introduction

In recognition of the need to ensure significant incorporation of health information 
technology into healthcare delivery, the US Government passed the Health 
Information Technology for Economic and Clinical Health (HITECH) Act, which 
included incentives to accelerate the adoption of health information technology 
(HIT) by the healthcare industry. Given that healthcare information technology can 
dramatically improve healthcare services delivery, reduce cost, improve care effi-
ciency, and patient safety, under a government mandate, hospitals and medical care 
providers were required to adopt/introduce electronic systems for the management 
and delivery of healthcare services.
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The adoption of electronic health records (EHRs) and electronic medical records 
(EMRs) has resulted in a large amount of healthcare data in electronic form that can 
be computationally processed. Several healthcare organizations are utilizing data 
mining, machine learning, and related approaches to analyze healthcare data and 
improve the quality of care. However, data analysis alone cannot give insights into 
the underlying process. For example, the efficacy of clinical interventions identified 
by data analysis cannot be evaluated unless the underlying cause and effects are 
modeled. A report by the US Institute of Medicine emphasizes that many serious 
errors result from systems and their interactions rather than individual failures [1]. 
Thus, to effect changes to improve healthcare and to design and deploy better sys-
tems for improving human health, we also need to adopt tools and techniques for 
process modeling, simulation, and analysis.

Although modeling and simulation are widely used in many sectors, their adop-
tion in healthcare has been challenging. A study, reported in [2], investigates model-
ing and simulation in healthcare against a context of defense and manufacturing 
industries. The authors report limited evidence of modeling and simulation being 
used to drive change in the healthcare delivery system. In addition to the complexi-
ties of a healthcare system, both [3, 4] identify stakeholder issues as a barrier to the 
successful and widespread use of simulation in healthcare. Results of a relatively 
recent survey dealing with modeling and simulation in healthcare are reported in 
[5]. The key summary of the survey is that modeling in healthcare is perceived to be 
different and more difficult across a range of factors. Reference [6] highlight three 
challenges for health modeling: First, how good is good enough, that is, what level 
of details should be included in models; second, clearly understanding how model-
ing is linked to decision-making; and third, dealing with the cultural barriers to 
adoption of modeling and simulation in the health sector.

In 2017, Academic Emergency Medicine convened a consensus conference on 
Catalyzing System Change Through Healthcare Simulation: Systems, Competency, 
and Outcomes to assess the impact of simulation on various aspects of healthcare 
delivery. The work reported in [7] is the summary of a breakout session on under-
standing complex interactions through systems modeling. Specifically, it explores 
the role that computer modeling and simulation can and should play in the research 
and development of emergency care delivery systems. The authors note that “One 
underutilized approach to addressing problems in healthcare quality and value, par-
ticularly in emergency care, is through the use of computer simulation modeling.”

Furthermore, they emphasize that “Not unlike high-fidelity patient simulation 
for training clinicians in clinical care through the use of mannequins, computer 
simulation provides a platform to inform decision making prior to implementation 
in the real world.”

Ample data are confirming that the number of emergency visits in the United 
States is going up whereas the number of emergency departments providing such 
services is on the decline. Furthermore, COVID-19 forced many hospitals to reeval-
uate and reengineer their workflows. For example, recently a healthcare facility had 
to transform from a traditional model of care to a virtual model of care in orthopedic 
surgery. They followed an OODA (Observe Orient Decide Act) approach toward 
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this adaptation [8]. Although OODA is a powerful framework [9], it by itself does 
not provide a mechanism for validation to ensure, for example, patient safety is not 
compromised by the change. Access to a simulation-based tool, when used in con-
junction with the OODA approach, can yield promising results. The authors of [7] 
note that “Computer simulation should be viewed as a necessary first step prior to 
implementation of a change in procedure or practice.”

As noted earlier, stakeholder issues appear to be a barrier. However, in our own 
experience, part of the issue is the perceived learning curve associated with the 
simulation language (notation) and the lack of user-friendliness of associated tools. 
Even though stakeholders are not directly involved with actual model development, 
they need to be convinced that the adopted approach is user-friendly and, in particu-
lar, the adopted notation is understandable. This is where we see the strengths of a 
Colored Petri Nets (CPNs)-based approach and the underlying CPN Tools software 
[10–12]. The basic graphical/visual vocabulary of CPNs is small and intuitive, 
which renders them an attractive choice for modeling and simulation in healthcare.

The remainder of this chapter is organized as follows. Section 6.2 contains a 
hospital workflow example as described in [13]. We use this example to build our 
hierarchical CPN model, which we describe in Sect. 6.4. Before it, in Sect. 6.3, we 
give an overview of CPN and introduce the vocabulary of the CPN modeling lan-
guage utilizing a simple example. Section 6.5 contains details of our simulation data 
collection and results. We present an approach to model verification and validation 
in Sect. 6.6. Finally, in Sect. 6.7, we present our conclusions.

6.2  Emergency Workflow Example

To illustrate our Colored Petri Nets-based approach, in this chapter we provide 
details of a CPN model of the emergency workflow described in [13]. The work-
flow, as described in the paper, is shown in Fig. 6.1. As depicted in this figure, there 
are two separate paths that a patient may take. The one on the left is taken by emer-
gency patients whereas the one on the right is for elective surgeries where patients 
are initially hospitalized.

As part of the patient flow, the diagram explicitly depicts various resources that 
are needed at different stages of the flow. The aforementioned paper focuses on and 
distinguishes two types of resources: rooms (physical) and hospital staff (human). 
The various labels and their descriptions are given in [13] are as follows:

• Activity: reception (AA), transfer (AT), induction (AI), surgical operation (AO), 
and recovery (AR).

• Staff: nurse for reception (RI), anesthesiology staff for induction and operation 
(MSI), surgical staff for elective surgeries (MSH), surgical staff for emergency 
surgeries (MSU), nurse assistant (RAS), anesthesiology staff for recovery (MSR).

• Rooms: reception room (MA), induction room for elective surgery (MIH), induc-
tion room for emergency surgery (MIU), operating room for elective surgery 
(AOH), operating room for emergency surgery (AOU), recovery room (MR1).

6 Using Colored Petri Nets for Optimization of Healthcare Processes
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Fig. 6.1 The emergency workflow as described using a Workflow Management Systems (WFMS) 
notation in [13]. It describes the overall patient workflow in a healthcare system focusing on two 
different paths to OR, namely, Emergency workflow and Elective workflow
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The shown diagram also gives delays in minutes for various activities as well as 
the probability of various choices. For example, the probability of a patient needing 
short induction on the emergency side is specified as 0.95, whereas the probability 
of short induction on the elective side is given as 0.93. In building our model, we use 
the same label and values where possible. For the benefit of the reader, before going 
into the details of our model, we give a brief introduction to the CPN vocabulary 
and modeling approach next.

6.3  Colored Petri Nets

Colored Petri Nets (CPNs) provide a graphical (visual) modeling notation well 
suited for concurrent and distributed systems in which communication, synchroni-
zation, and resource sharing play an important role. A key aspect of the CPN vocab-
ulary is the ability to express a cause and its effect, which allows one to capture a 
workflow naturally. In terms of depiction, a CPN consists of places (depicted as 
circles or ovals), transitions (depicted as rectangles), and arcs (depicted as arrows) 
that connect a place to a transition or a transition to a place. Figure 6.2 shows a very 
basic CPN consisting of two places (P1 and P2) and one transition (T). We can 
interpret P1 as “Healthy,” T as “Bug Bites,” and P2 as “Sick,” thereby expressing a 
cause and its effect.

Places are containers of tokens. Depending on the context, tokens may represent 
a state, a data value, a resource, or some other entity. Transitions represent (abstrac-
tion of) actions. The cause and effect dynamics of a CPN are defined using the firing 
rule, whereby tokens are removed from input places of a transition and deposited in 
the output places of a transition. Thereby, recording the fact that the associated 
action has occurred. The distribution of tokens across places in a net is called a 
marking and describes the global state of the system being modeled. As mentioned 
earlier, another crucial aspect of the CPN notation is its ability to express sharing of 
resources and associated constraints, which are also inherent to healthcare work-
flows. For example, the availability of an operating room or an infusion pump is a 
resource constraint that would be part of the flow of care in a hospital dealing with 
trauma patients.

The basic execution semantics of a CPN in terms of the firing rule above gives 
rise to several interesting net configurations and associated interpretations that are 
natural in modeling workflows. Figure 6.3 depicts some net configurations useful 
for expressing various communication and coordination activities that form part of 
typical healthcare workflows. For example, the Sequential configuration is useful in 
capturing the dependency that a patient must register at the front desk before being 

Fig. 6.2 A simple Colored 
Petri Net with two places 
and one transition
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examined by a nurse or a doctor. The Concurrent configuration captures the inde-
pendence of events or flows. For example, a patient being checked for blood pres-
sure is totally independent of another patient being checked into a trauma center. 
Therefore, these two actions can happen concurrently. The Choice configuration is 
useful in capturing the flow where two or more options are possible. For example, 
surgery or medication option for treating a tumor. The Join configuration provides a 
synchronization mechanism. For example, all test results must be in before proceed-
ing further with the possible diagnosis or treatment. The Synchronous Communication 
is a generalization of the Join whereby it allows multiple outcomes. The 
Asynchronous Communication easily captures the flow where a test sample can be 
delivered to a lab by the clinical staff and then the lab can process it asynchronously 
without the staff waiting for it. Finally, the depicted Mutual Exclusion is useful in 
expressing resource-sharing constraints such as a single nurse cannot be attending 
to two different patients at the same time or a single monitor cannot be hooked to 
two different patients at the same time.

To explain the basic CPN notation further and its capability, we consider a con-
crete example of a very simple workflow where patients waiting for surgery can be 
taken in for surgery only if there is an operating room available. For this example, 
we are ignoring other resources, such as surgical staff, surgical instruments, and 
patient monitoring devices. The net in Fig. 6.4 captures this basic workflow. In this 
net, the active tokens are shown in small green circles. In this initial state, there are 
two Available Operating Rooms, as depicted by the associated token, and five 
Patients Waiting for Surgery as indicated by the associated token. The transition In 
Surgery can fire only if a patient is waiting (at least one token in the place named 
Patients Waiting for Surgery) and an operating room is available (at least one token 
in the place named Available Operating Rooms). The net in Fig. 6.5 is a snapshot of 
the next simulation step showing the state where one surgery is in progress (one 
token in the place named Surgery in Progress) and only one operating room is avail-
able, that is, the token count of Available Operating Rooms is now down to 1. At this 

Fig. 6.3 Useful CPN configurations for modeling workflows and associated constraints [10]
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stage, either another waiting patient can be taken in the surgery, or the current in 
surgery patient can be out of surgery or both since in the depicted net, both In 
Surgery and Out of Surgery transitions are simultaneously enabled (highlighted in 
green) and can fire. The net in Fig. 6.6 depicts the state where we have two patients 
in active surgery and we cannot take the next patient in since there is no token in 
Available Operating Rooms thereby disabling the In Surgery transition (not high-
lighted in green) although we have three more patients waiting. Once one of the 

Fig. 6.4 A CPN model of 
a very simplified operating 
room workflow taking into 
account just the room 
availability. The net shows 
initially we have two 
operating rooms and five 
patients waiting

Fig. 6.5 The net showing 
a simulation state with 1 
surgery in progress and 1 
room available

6 Using Colored Petri Nets for Optimization of Healthcare Processes
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currently active surgeries is done, a token representing room availability will be 
deposited in Available Operating Rooms via the arc connecting the transition Out of 
Surgery to Available Operating Rooms.

With this given background, we are now ready to describe the details of our CPN 
model. Readers interested in more details of CPN, including formal definitions and 
theoretical foundations, may refer to [14, 15].

6.4  CPN Model Details

We give details of our hierarchical CPN model that captures the details of the work-
flow shown in 1. The creation of hierarchical nets is based on the simple idea that 
any transition can be replaced or substituted by a (sub) net that details the activities 
underlying it. Such transitions are called substitution transitions (or modules) in the 
CPN parlance. Pictorially, a substitution transition is drawn with double rectangles.

The (hierarchical) net in Fig. 6.7 shows the overall patient workflow starting with 
the entry of a patient from reception to the exit from the recovery system. The 
shown patient workflow net consists of four modules, namely, Patient Entry, 
Emergency Workflow, Elective Workflow, and Recovery, and five places namely To 
Emergency, To Elective, From Emergency, From Elective, and Discharge. The dia-
gram in Fig. 6.8 shows the module hierarchy, that is, the various sub-modules and 
their nesting structure that comprises our hierarchical model.

The tokens in the basic model in Fig. 6.4 do not carry any information. For a 
detailed analysis, we may want to carry additional information in tokens. For exam-
ple, we may want to distinguish different types of operating rooms or patients with 

Fig. 6.6 The net showing 
the state where 2 active 
surgeries are in progress 
and we cannot take any 
more patients since the 
transition In Surgery is not 
enabled (highlighted in 
green)

V. Gehlot et al.



77

different conditions. CPNs provide an enhanced vocabulary to create tokens of dif-
ferent data types (or colorsets in CPN parlance) and utilize the full functionality of 
the underlying inscription language CPN ML, which is built on top of the functional 
programming language SML [16]. Before going into details of some of the sub-
modules, we give a brief description of key colorsets used in this model below:

(* Model colset declarations *) colset PTYPE = with EM | EL; colset 
PID = INT;
                colset PID_T = PID timed; colset AT = INT;

colset PATIENT = product PTYPE * PID * AT; colset PATIENTS = list 
PATIENT;
                colset ROOM = with MA | MIU | MIH | AOU | AOH | MRI 
| WR; colset ROOMS = list ROOM;
                colset HR = with RI | MSI | MSH | MSU | RAS | MSR; 
colset STAFF = list HR;
                colset PSTAT = product PATIENT * ROOMS * STAFF; 
colset PSTAT_T = PSTAT timed;
                colset HRACT = product HR * ROOM timed;

Fig. 6.7 The top-level net showing the overall workflow and associated modules
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These types are used to carry the following information, which is used in the 
model description, creation, and simulation:

• PTYPE or patient type allows us to distinguish emergency EM from elective 
(EL). In general, a more complex type may be associated that will allow other 
patient or application-specific attributes.

• PID is patient ID and PID_T is the associated timed version. The latter allows 
the creation of the timed tokens to account for various delays and process-
ing times.

• PATIENT is a compound type consisting of patient type, patient ID, and patient’s 
arrival time. PATIENTS is a list of patients useful in describing a queue.

• ROOM is a room type based on the workflow described above and ROOMS is used 
to represent a set of rooms.

• HR is a human resource type per the workflow described above and STAFF is a 
list of those.

• PSTAT is a compound type that captures the status of a patient in terms of 
assigned rooms and assigned staff. PSTAT_T is its associated timed version for 

OperatingRoomWorkflowNet
PatientWorkflow

Elective Workflow
Elective Reception
Transfer Activity
Elective Induction

Short Elective Induction
Long Elective Induction

Elective Operation
Elective Surgery

Short Elective Surgery
Average Elective Surgery
Long Elective Surgery

Clean Elective OR Block
Elective Preparation

Emergency Workflow
Emergency Reception
Emergency Induction

Short Emergency Induction
Long Emergency Induction

Emergency Operation
Emergency Surgery

Short Emergency Surgery
Average Emergency Surgery
Long Emergency Surgery

Clean Emergency OR Block
Emergency Preparation

Recovery
Enter Patient Waiting Area
Patient Recovery

Patient Entry

Fig. 6.8 The module 
hierarchy of the CPN 
model. The module 
hierarchy depicts the 
various sub-modules and 
their nesting structure that 
comprises our hierarchical 
model
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performance metrics. HRACT is a compound type denoting which human 
resource is active (or assigned to) in which room. It is a timed colorset for per-
formance metrics.

We start with the module Patient Entry module, which is shown in Fig. 6.9. This 
module is responsible for generating patients who either go for elective or emer-
gency surgery. The original paper [13] specifies 80% to be elective surgeries and 
20% to be emergency surgeries as shown in Fig. 6.1. However, it does not specify 
any arrival pattern or rate. Thus, in this chapter, we have assumed the interarrival 
time to be exponentially distributed. Using the file input/output and external process 
communication faculties of the CPN Tools, we can certainly drive a CPN simulation 
based on an actual log of patient arrivals if available. Internally, this module utilizes 
the type PID_T to generate a timed token with the next patient ID and arrival time. 
Based on this information, a token of type PATIENT is generated, which will move 
either to To Emergency or To Elective depending on the PTYPE value of the token.

NextID place represents the state of the number of patients with their waiting 
times. When Generate Patient transition occurs, it puts back a token in NextID with 
the next number and randomly generated a waiting time for the next patient. The 
CPN ML function genNextPat(pid) on the arc from Generate Patient is 
responsible for generating a patient token and depending on the patient type of this 
token, it will move either To Emergency or To Elective.

After this, the patient (or token) will follow the Emergency Workflow module or 
the Elective Workflow module of the net shown in Fig.  6.7. The two workflows 

Fig. 6.9 The Patient Entry module responsible for the generation of patient traffic
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essentially differ in terms of the Transfer Activity module as given by the module 
hierarchy diagram in Fig.  6.8. We, therefore, focus mainly on the details of the 
Emergency Workflow module. Specifically, we present details of the following sub- 
modules: Emergency Induction, and its sub-module Long Emergency Induction; 
Emergency Operation and two of its sub-modules, namely, Emergency Preparation 
and Long Emergency Surgery; and finally the Patient Recovery module.

The next two modules, Emergency Induction and its sub-module Long Emergency 
Induction are shown in Figs. 6.10 and 6.11, respectively. Neither [13] nor Fig. 6.1 
indicates an explicit queue, but in our model, we have put an explicit queue at the 
start of various activity stages for better accounting of delays. Otherwise, multiple 
tokens in a place are viewed as a multi-set with no specific order. As shown in the 
figure, when the transition Add to Queue fires, the incoming patient token will be 
added to the Emergency Induction Queue. The next patient in the queue enters the 

Fig. 6.10 The Emergency Induction module as shown in the module hierarchy of Emergency 
Workflow in Fig. 6.8
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induction room only if OR Block for Urgencies and Induction Room for Urgencies 
is available.1 Additionally, it requires the availability of an Anesthesiologist Staff. 
All these resource constraints are captured in a very simple and visual manner by 
the incoming arcs of the Enter Induction Room transition in the figure.

The net in Fig. 6.11 shows the Long Emergency Induction module. The Boolean 
condition [n > 95] on the transition Long Induction and the random number in 
the connecting place Random Number guarantee the probability of long induction 
to be 0.05, as specified in Fig. 6.1. Note that the place Random Number is shared 
with the activities of the corresponding Short Emergency Induction (not shown) to 
ensure that both modules are using the same number in determining the firing of the 
associated transition. This sharing is achieved via the CPN notion of a fusion set 
whereby a set of places may be fused as one by associating a fusion tag with those 

1 We are using the term Urgency instead of Emergency per the original paper.

Fig. 6.11 The sub-module Long Emergency Induction of the Emergency Induction module as 
shown in the module hierarchy of Emergency Workflow in Fig. 6.8

6 Using Colored Petri Nets for Optimization of Healthcare Processes



82

places. We have used the fusion tag EmInRN as shown in the figure above. An asso-
ciated timed token in Long Emergency Induction Complete determines the time for 
long induction.

After induction, a patient moves to Emergency Operation, which itself consists 
of two sub-modules: Emergency Preparation and Emergency Surgery. As depicted 
in Fig. 6.1, emergency surgeries can be either of short duration or average duration 
or long duration. We only include the Long Emergency Surgery module here since 
the other two are similar. Figures  6.12 and 6.13 show the two sub-modules 
Emergency Preparation and Long Emergency Surgery, respectively. As shown in 
the associated net, Patient Installation requires the availability of Medical Staff for 
Urgencies and Nurse Assistants. Once Patient Preparation is finished, the Nurse 
Assistant becomes available for other patients as captured by the outgoing arc from 
Patient Preparation to Nurse Assistant. At this stage, the human resource Medical 
Staff for Urgencies is considered still in use, that is, busy. The prepared patient then 
enters Emergency Surgery. A patient requiring long surgery will follow the net 
depicted in Fig. 6.13. The Boolean condition [n > 7] on the transition Long 
Emergency Surgery and the random number in the connecting place Random 
Number guarantee the probability of long surgery to be 0.30, as specified in Fig. 6.1. 
An associated timed token in Patient in Long Emergency Surgery determines the 
time for surgery. When done, that is, the transition Complete Long Surgery fires, 

Fig. 6.12 The Emergency Preparation sub-module of Emergency Operation as shown in the mod-
ule hierarchy of Emergency Workflow in Fig. 6.8
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both human resources, namely, Anesthesiologist Staff from the induction stage and 
Medical Staff for Urgencies from the patient preparation stage are returned to their 
respective free pools.

The final stage is patient recovery. The associated Patient Recovery sub-module 
is shown in Fig. 6.14. As depicted in the associated net, Transfer to Recovery Room 
requires availability in the Recovery Room and an available Anesthesiologist Staff 
for Recovery. At this stage, the Nurse Assistant and the Waiting Room from the pre-
vious stage are returned to their respective free pools. An associated timed token in 
Enter Recovery Room determines the time for recovery. Once the recovery is com-
plete, that is, the model time reaches the time stamp on the timed token, and the 
Recovery transition fires, the room and the staff are returned to their respective free 
pools, and the patient is moved to Discharge.

Fig. 6.13 The Long Emergency Surgery sub-module of Emergency Operation as shown in the 
module hierarchy of Emergency Workflow in Fig. 6.8
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This completes the discussion of our hierarchical CPN model. Next, we briefly 
describe the monitoring faculties of CPN Tools we utilized to collect data and gen-
erate performance reports.

6.5  Data Collection and Results

CPN Tools provide a monitoring facility to conduct performance analysis of a sys-
tem [17]. Monitors are used to extracting relevant data during a simulation run. 
Monitors can be associated with any subnet of interest. Different types of monitors 
can be defined for a net. For example, a simulation breakpoint monitor can be used 
to stop a simulation run based on a specified condition. A data collector monitor is 
used to extract numerical data from a model during a simulation and to calculate 
statistics for the extracted data. The statistics that are calculated for a particular data 
collector are either untimed statistics or timed statistics (that is, time-dependent 
weighted statistics). The statistics that are computed and can be accessed from each 
data collector monitor are: count (number of data observations), minimum, 

Fig. 6.14 The Patient Recovery sub-module as shown in the module hierarchy of Emergency 
Workflow in Fig. 6.8
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maximum, sum, average, confidence intervals for average, variance, standard devia-
tion, the sum of squares, the sum of squares of deviation, first value observed, and 
last value observed. Once monitors have been created, the built-in function 
CPN’Replications.nreplications can be used to run any number of 
simulation replications, collect data, and calculate, among other values, 90%, 95%, 
and 99% confidence intervals for averages. It also auto-generates a performance 
report containing statistics, including confidence intervals, that are calculated for 
the independent and identically distributed (IID) data values in the replication out-
put log files.

We set a breakpoint monitor for a 24-h period and ran simulation replications 
with a medium traffic flow with an average inter-arrival of 1 h and another with 
intense traffic flow with an average inter-arrival of 10 min. Table 6.1 contains some 
data from the first replication run. Our results show that the utilization rates of both 
the anesthesiologist staff and recovery rooms were low, highlighting a potential area 
to save resources. Furthermore, while the nurse assistant maintained a comfortably 
high utilization rate, the rate of the reception nurse was much lower, showing the 
potential of reclassifying them into a shared resource.

6.6  Model Verification and Validation

The starting point of building a simulation model should always be a conceptual 
model [18]. One may utilize an informal notation or a formalized notation in 
describing a conceptual model. Typically, the notation should be expressive enough 
to capture the key requirements. In general, a conceptual model is a blueprint for the 
computer (or simulation) model to be built. Once a model has been created, a key 
exercise is to carry out the verification and validation of the model. Towards this 
end, we recommend adopting the approach described in [19].

According to [19], verification is the process of determining that a model imple-
mentation accurately represents the conceptual description and specifications 
whereas model validation is the process of determining the degree to which a model 
is an accurate representation of the real world. In particular, “...operational valida-
tion is carried out to determine the simulation model’s output behavior has the accu-
racy required for the model’s intended purpose over the domain of the model’s 
intended applicability.”

Model building is a collaborative process and both verification and validation 
steps require input from the stakeholders and subject-matter experts [20]. 
Additionally, the validation step requires access to data from actual operations. 
Verification ensures that the key requirements have been captured by the model. 
Both verification and validation are iterative processes and should be carried out 
hand in hand with model building, preferably following an agile approach. In the 
past, quality data for healthcare applications may not have been readily available in 
all situations of interest, but with the advent and progress of digital health, a mod-
eler may have easier access to data of interest. In the validation step, data generated 
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by a verified model is compared against real-life data and the model is fine-tuned by 
changing parameters, if necessary, to align with the real data.

As mentioned earlier, for data generation and validation purposes, CPN Tools 
software provides an extensive monitoring and simulation report generation facility 
[17]. A simulation report provides a complete execution trace of the model whereas 
a monitor is a mechanism in the CPN software that is used to observe, inspect, con-
trol, or even modify a simulation of a CPN. A variety of monitors can be defined for 
a given net. Monitors can inspect both the markings of places and enabling of transi-
tions during a simulation, and they can take appropriate actions based on the obser-
vations as well as extract relevant data. It is only after the validation step that one 
should use a simulation model to evaluate “what-if?” scenarios for implementing 
changes in the underlying actual operations. The interactive simulation tool avail-
able in the CPN Tools software can be used for incremental model verification. It 
allows a modeler to step through various markings and even set desired markings in 
an interactive manner. Using this facility, a modeler can check whether the desired 
specifications have been captured in the model.

6.7  Conclusion

Adoption of modeling and simulation in healthcare continues to be a challenging 
issue. One key barrier is buy-in from the stakeholders. Certainly, as noted by [7], 
simulation-based approaches can help improve patient safety and help better man-
age resources in a costly and constrained system like healthcare. Of particular 
importance is emergency care since there is data confirming that the number of 
emergency visits in the US is going up whereas the number of emergency depart-
ments providing such services is on the decline. Furthermore, COVID-19 forced 
many hospitals to re-evaluate and re-engineer their workflows but in absence of any 
simulation-based tools, there is no simple way to evaluate the impact of such 
changes. In our own experience, we have found a Colored Petri Nets-based approach 
to be less of a barrier for the stakeholders owing to a simple and visual graphical 
representation of the net model and its associated intuitive semantics. Furthermore, 
the free CPN Tools software with its visual editing and simulation capabilities ren-
ders it a very user-friendly environment for model development and analysis. We 
illustrated our approach by employing an operating room workflow and taking into 
account a variety of resources and constraints (room and staff availability) in a natu-
ral manner using the hierarchical CPN notation. The modular approach offered by 
the hierarchical CPNs allows a model to be constructed incrementally and, there-
fore, supports a very agile approach. We presented details of data collection and 
summarized our results. We provided an approach for the verification and validation 
of CPN models.

As we now move into a post-COVID world, healthcare organizations also need 
to find the new normal. At this stage there are too many unknowns and uncertainties; 
however, we do know that more and more focus is now being placed on virtual care 
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models and possibilities. We contend that CPN modeling can be of great help and a 
strategic tool when trying to model and understand specific scenarios in healthcare 
contexts in which several divergent elements such as effectiveness, value, human 
input, and interactions must be tracked. In conclusion, given the advances in digital 
health and the availability of rich digital health data, we can make model-driven 
healthcare a reality to help improve patient safety and reduce cost.
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Chapter 7
Toward Concept Realization of Digital 
Health Technologies

Ruwini Edirisinghe

7.1  Introduction

With exponential technological growth, digital healthcare applications are emerg-
ing. In contrast with traditional technology- or platform-centric solutions, this new 
paradigm of patient-centric solutions aims to deliver better healthcare and to 
enhance wellness more effectively.

Home-cared elderly people, those who need monitoring-based assistive services, 
can benefit from such patient-centric solutions. As Norris, Stockdale, and Sharma 
[1], argue, these solutions enhance home-cared elderly people’s quality of life by 
allowing them to live independently [2]. In addition, such technological solutions 
contribute to the economy positively due to the reduced hospitalization rates and 
cost of care.

According to Magnusson et al. [2], digital health systems provide services for 
three different stakeholder groups: for elderly patients living at home, for family 
caregivers, or for both groups. They go on to suggest that problems faced by eldered 
people include unavailability of ready access to a computer [3], or being unfamiliar 
with computers, which could discourage adoption, and can be ameliorated through 
targeted training to familiarize consumers with the relevant technology in their day- 
to- day activities.

As highlighted in Gov2020 [4], digital health will be a major motivation for 
future healthcare innovations. However, elderly consumers still show a slow adop-
tion of digital health applications, despite smart mobile phones having been perva-
sive for almost two decades. Several studies on elderly people have found that older 
adults as a consumer group (aged over 50) remain reluctant to adopt smartphones 
[5–7]. As Edirisinghe [5] highlighted, more recent studies, too, show that such 
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consumers are still reluctant to use smartphone services [8]. Among the major bar-
riers to adoption are financial limitations due to retirement, age-related physiologi-
cal challenges such as vision impairments, sociological, and psychological factors 
[8, 9] such as lack of technical skills and lack of interests [6, 10]. In addition, 
Berenguer et al. [8] state that seniors often do not take up digital health systems and 
services because they are not particularly designed for them. Supportively, 
Edirisinghe [5] argues that such technologies do not accommodate the lifestyle 
changes seniors experience and nor do they meet their needs. A study surveyed 90% 
of US elderly people found that they preferred to ‘age in place’ [11]. Edirisinghe [5] 
called for research by highlighting the significant responsibility such preferences 
place on healthcare researchers and technology providers to better support for inde-
pendent living of this unique consumer group.

This chapter unpacks the innovation process for the development of patient- 
centric, innovative technology solutions for the coming digital health era. The 
example consumer group selected to demonstrate the concepts is elderly home- 
cared patients.

The next section presents monitoring technologies (which cover home monitor-
ing systems, assistive technologies, and wearables) developed for elderly people 
since 2004.

Then a technology-based system for the digital era patient is proposed, along 
with an Internet of Things (IoT)-smart garment-based monitoring system. The idea 
generation stage for a prototype to assist elderly home-cared patients is also 
discussed.

Third, the chapter describes an innovation lifecycle based on technology readi-
ness levels—vital to the effectiveness of the digital health technology development 
process.

7.2  Literature Review

7.2.1  Digital Health Solutions

An extensive review of the literature in digital health solutions [5] revealed that the 
existing evaluations and classifications were limited to a technology point of view. 
For example, a review conducted by Bozan and Berger [11] classified the technolo-
gies developed for ambient assisted living based on the advancement of the technol-
ogy as first, second and third generation. Their classification was based on the 
detection, responsiveness, and prevention functionalities of each of the technology.

Edirisinghe, Stranieri, and Wickramasinghe [5] addressed this research gap by 
presenting a taxonomy for Mobile Health (mHealth). In addition to the technology 
aspect, this research investigated the often-ignored clinical, economic, and social 
aspects. The cohesive taxonomy presented by Edirisinghe, Stranieri, and 
Wickramasinghe [5] is based on technology, clinical, social, and economic dimen-
sions. Each of the dimensions is composed of critical parameters where: (1) 
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technology dimension includes context parameters, communication aspect, scope 
of access, and technology evaluation; (2) clinical dimension includes clinical focus, 
clinical purpose, consumer group, and clinical evaluations; (3) economic dimension 
includes business case, change management, and disruptive technology; and (4) 
social dimension includes social context, end user, and usability. Edirisinghe, 
Stranieri, and Wickramasinghe [5] further highlighted the challenges pertaining to 
the slow adoption in mobile health and called for research in patient-centric solu-
tions while supporting the needs of healthcare providers.

7.2.2  Digital Health Solutions for Elderly Consumer Group

A growing interest appeared in the literature around assistive digital health systems 
for elderly people living in their own homes. Literature also argued that the technol-
ogy adoption of elderly people as a consumer group is slow [6, 7] and remained in 
its infancy [8, 10]. Their reluctance to adopt smartphones and associated services 
was mainly because of the ignorance of the practical aspects such as ease of use and 
user-friendliness more specific to this non-technology-savvy elderly consumer 
group [7, 8]. It is also vital to develop systems considering personal needs, capabili-
ties, lifestyle, and aging process of home-cared elderly consumer group.

Body Area Network (BAN) [12] based home monitoring systems proposed for 
the elderly people monitor environmental variables such as light [13], audio signals 
[14], accelerometer data [15], active household appliances use [16], and image- 
processing to monitor occupants and falls [17] and to predict falls [18]. BANs also 
monitor wearer’s physiological parameters [19–22] such as blood pressure [23] to 
generate smartphone-based alerts to the healthcare providers [24] and to provide 
various home assistive systems [25] ranging from robotic mobility assistance [26] 
to social robots functions [27], whereas some solutions were tailored for specific 
groups such as people with disabilities [28] and dementia [29, 30].

Despite the critiques [31] regarding the social robots’ ability to fully satisfy the 
specific needs of elderly people and unverified reliability in detecting those needs, 
it is notable that researchers are attempting to provide personalized solutions [27] 
through personalized care modes.

More recently, Al-khafajiy et al. [32] propose a home-based monitoring system 
composed of a wearable connected to a smartphone app. In this study, heart rate was 
communicated via an email notification. Any abnormalities are communicated to 
the doctor. The practicality and ease of use in the system are yet to be evaluated 
because of the unrealistic expectation to wear the sensors all the time by the patients. 
In addition, it is expected that the elderly person used the smartphone to use this 
solution.

As technologies advance, the motivation of the researchers and developers to 
offer simple, easy-to-use systems for home-cared elderly people is attracting less 
attention. Wearable garments designed for elderly people are also of particular inter-
est due to the style of interaction that the consumer group prefers. To address this 
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knowledge and practice gap, this chapter presents a smart garment-based system for 
home-cared elderly people with a particular emphasis on the innovation lifecycle.

7.3  The Patient of the Future Digital Health Era 
and Proposed Healthcare Monitoring System

The proposed system monitors patients in real-time. The system is robust enough to 
be installed in both indoor and outdoor settings and is composed of a cloud-based 
wireless sensor network to gather environmental parameters. The wearer’s general 
health conditions and activities such as movement are monitored through a wear-
able garment. The data, transmitted to the smart handheld device, is fed to a web 
server through Wi-Fi or the cellular network. The proposed system is compatible 
with communicating to a personal smartphone or wall-mounted tablet. The pro-
posed future IoT-based health monitoring system is an indoor setup. Outdoor envi-
ronmental sensors such as local weather stations will be utilized in the case of 
outdoor monitoring.

The proposed system has two forms: (1) a simple smart garment-based system to 
warn anomalies for the patient’s caregivers or the wearer; and; (2) a more cohesive 
system to assist a wide range of stakeholders, including emergency services, clini-
cians, caregivers, and hospital staff. Such caregiving consumer groups generally 
have extensive experience in adopting advanced features of smart devices and smart 
device-based services, unlike elderly consumers, who are reluctant to use them 
[6–8, 10].

The system is composed of the following sensors:

 1. Wearable sensors attached to the garment: sensors that can measure various 
health variables, such as body temperature, heart rate, blood pressure, electrocar-
diogram (ECG), muscle activity and other biomedical conditions, and motion/
activity are attached to the garment. The IoT-based smart garment can ultimately 
communicate with a smart device placed at home or a personal smartphone.

 2. Environmental sensors: the conditions of the surroundings (indoor or outdoor) 
are monitored using sensors to collect various environmental parameters. These 
include sensors that can measure temperature, light, pressure applied on furni-
ture such as bed (to detect falls), room proximity detection (to detect presences 
of the person in a particular room), humidity, and the presence of gas and smoke. 
Outdoors, local weather stations, or mini weather sensors can be used to capture 
relevant environmental parameters for the setup.

Considering an industry application for example, if the patient/person monitored 
is a construction worker, the environment where they work will be mostly outdoors. 
A future construction worker on a pervasive construction site [33] can use the pro-
posed system to enhance health and safety in this workplace because heat stress is a 
significant risk in the industry [34].
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The sensors in the smart garment form a BAN. They detect various parameters 
and then communicate with the mobile device via Bluetooth/Wi-Fi. The environ-
mental sensors installed indoors or outdoors, communicate via Wi-Fi. This informa-
tion flow enables the elderly patient’s self-education. The mobile application 
visualizes the information and assists the patient in managing their own self-care. 
The data are ultimately communicated to the cloud-hosted web server. This cloud- 
enabled patient information will be sent to healthcare providers and relevant parties 
such as physicians, clinicians, emergency services, ambulances, and hospitals.

The patient-centric monitoring feature alerts the patient about abnormalities 
either through the sensors themselves or through the system. Other healthcare sys-
tem stakeholders/end-users can access the relevant information through the cloud in 
real time. Server functionalities include abnormality detection and prediction. This 
enables visualization of patient’s activities in real time. A prototype version of the 
proposed system is discussed in this chapter.

7.4  Smart Garment Prototype

Van Langenhove and Hertleer [35] (p. 63) define smart garments as: “Textiles that 
are able to sense stimuli from the environment, to react to them and adapt to them 
by integration of functionalities in the textile structure”. According to Buechley and 
Eisenberg [36], cross-disciplinary creative and innovative experimentation in smart 
garments is possible through an integrated approach of disciplines: electrical engi-
neering, computer science, and fashion and textile design. Also, Dunne [37] pre-
dicts that future smart garment applications will be available in various industries 
including medical, therapy, and rehabilitation.

This chapter proposes the first stage of a project Buechley and Eisenberg [36] 
envisioned. The project involved developing a smart garment-based system to sup-
port elderly people. A prototype of the concept was developed as discussed next.

7.4.1  Development of the Proof of Concept

The prototype was developed using LilyPad Arduino [38] embedded platform 
which can be programmed using the Arduino programming environment. The board 
of the LilyPad Arduino microcontroller was attached to the garment by stitching it. 
In the original prototype conductive threads were used in stitching. The board was 
powered with a 3.7  V LiPo (lithium polymer) battery. Figure  7.1 illustrates the 
sample of a smart garment.
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7.4.1.1  Sensors for Data Collection

The input variable of the smart garment is the body temperature of the wearer. It is 
measured using a LilyPad Arduino temperature sensor which was attached to the 
garment using conductive threads. LilyPad Arduino temperature sensor measure-
ments were collected every second and it is programmable according to the needs of 
the wearer and healthcare system requirements.

7.4.1.2  Sensor Data Representation

The sensor data was represented in two ways: (1) visually through a change of color 
in a light-emitting diode (LED); and (2) in audio form using a speaker (buzzer). A 
LilyPad Arduino RGB (red, green, blue) LED was used as the visual data output 
sensor. LilyPad Arduino speaker was used as the audio-based data output sensor. 
Both LED sensor (indicating the color at the back of the garment) and speaker were 
attached to the garment using conductive threads and are shown in Figs. 7.2 and 7.3.

7.4.2  Alerting the Anomalies

The smart garment was developed with an inbuilt mechanism to alert any anoma-
lies. The anomalies were indicated using the color changes of the LED and the 
sound emitted by the buzzer. In the current proof of concept, anomalies indicated by 
the LED lights in the smart garment will be extended to more sophisticated func-
tions such as sending alerts to caregivers, clinicians, and medical professionals in 
the fully developed version.

General fluctuations of the temperate sensor readings were observed. An average 
of ten readings were obtained, to smooth out the fluctuations and to receive a stable 
temperature reading.

Fig. 7.1 LilyPad 
Arduino- enabled smart 
garment
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7.4.2.1  Normal Temperature and Anomalies

A reference temperature together with upper and lower predefined thresholds (off- 
sets), were used to define the acceptable/normal temperature range. Anomalies were 
defined as the temperature variations beyond the predefined thresholds from the 
acceptable reference temperature.

Both normal temperature and anomalies were indicated visually using a tri-color 
LED light and audibly using the sound emitted in the speaker. When the body tem-
perate reading is normal, the LED light indicates the green color and the speaker is 
silent (speaker is not activated). When the temperature reading is lower than the 
lower threshold temperature, LED color changes to blue, which represents a ‘too 
cold’ condition and the speaker emits a beeping sound (every 500 ms). If the tem-
perature reading is higher than the upper threshold, the LED color changes to red, 
which represents a ‘too hot’ condition. During the ‘too hot’ condition, the speaker 
plays warning music to indicate the danger.

Fig. 7.2 Temperature sensor and speaker

Fig. 7.3 Tri-color LED
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7.5  Technology Readiness of the Prototype

The objective of any innovation-based research project is ultimately to translate the 
findings of basic research into applied research. The solutions should be success-
fully adopted in the field as a result. Despite the challenges in the healthcare indus-
try due to its unique structure and the varying and demanding needs of a wide range 
of end-user/stakeholder groups, it is vitally important that digital technological 
solutions follow the innovation lifecycle.

Hence, the focus of this section is on discussing the milestones of the innovation 
lifecycle to reach the concept realization stage from the idea generation stage. The 
technology readiness levels [39] model is commonly used as a guide for technology 
development. The levels of technology readiness [33] are:

• Level 1: Scientific research begins to be translated into applied research.
• Level 2: Once basic principles are observed, practical applications are formu-

lated through analytic studies.
• Level 3: Active research and development is initiated to validate the research 

concept. The activities include analytical studies, and/or laboratory studies as 
part of knowledge production.

• Level 4: Applied investigation begins. Activities include validating the functions 
in a controlled environment, such as a testbed, laboratory, or through a sce-
nario model.

• Level 5: Prototypes of basic technological components are integrated for testing 
in a simulated environment, either in a laboratory or (through data collected from 
a) case study.

• Level 6: Development captures the operational requirements. The prototype is 
qualified in an operational set-up representing a near-desired configuration. 
Activities include testing of the qualified prototype in a representative site set-up, 
and/or field tests.

• Level 7: Full, scaled-up system with all operational requirements met. The sys-
tem, at the planned operational level, is demonstrated in multiple operational 
environments to verify generalizability.

• Level 8: Product commercialization begins. The technology is proven to function 
in its final form in any operational environment and is verified through develop-
mental testing.

• Level 9: Industrial system is launched/deployed in an operational set-up, and is 
verified through operational evaluations and tests.

Table 7.1 illustrates the classification of the technology readiness levels to the 
research process, from pre-concept to industrial product.

The proposed system is expected to follow the innovation lifecycle and to achieve 
technology readiness levels. The proof of concept, demonstrated during prototype 
refinement in this chapter, is expected to be refined as the project progresses. For 
example, iterative cycles of prototype refinement and sophisticated thermal man-
nequin testing [40] have already been conducted.
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7.6  Conclusions

This chapter presents an IoT-based patient-centric technology solution for digital 
health monitoring for the future digital health era. With a specific focus on technol-
ogy readiness levels of the innovation life cycle, this chapter also presented a proto-
type developed for elderly home-care patients as the consumer group.

This prototype system is offered to answer the viability of the research question: 
how the innovative technology-based solutions can be used to better support elderly 
patients living in their own homes? The prototype smart garment developed aimed 
at developing an IoT-based healthcare system for elderly people living indepen-
dently to assist them to enjoy a more dignified life while saving the cost of care.

The full system development is currently ongoing, together with extensive labo-
ratory testing for its robustness in various environmental conditions. The future 
work of the project will be to conduct real-world field trials.
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Chapter 8
Clinical Tele-Assessment: The Missing 
Piece in Healthcare Pathways 
for Orthopaedics

Oren Tirosh, John Zelcer and Nilmini Wickramasinghe 

8.1  Introduction

In Australia, the exponential growth of joint replacements, in particular total hip and 
total knee replacements (THR and TKR, respectively) is projected to reach an 
unsustainable burden by 2030 [1], which has many severe and far-reaching implica-
tions for healthcare delivery and for the demand on public and private hospitals. 
Given several key contributing factors, most notably an aging population and longer 
life expectancy [2], the most prudent way to address this is to leverage technology 
solutions that can support cost-effective, efficient and effective care delivery post- 
surgery. We proffer tele-assessment, a noted void in current telemedicine solutions 
for orthopaedic care, as such a solution.

A key bottleneck in the recovery from THR and TKR is the return to appropriate 
postural and functional control [3]. The current standard clinical pathway involves 
12–60 face-to-face visits for 3 months [4]. This is not only costly and difficult to 
manage, especially for isolated and disadvantaged populations [4], but if not done 
successfully leads to poor clinical outcomes and low patient satisfaction [5]. 
Moreover, clinical best practice notes that this 3-month window post-surgery is 
imperative for optimal recovery and best results [6]. To address this critical aspect 
on the THR and TKR patient journey and support quality clinical outcomes and 
patient satisfaction as well as ease the burden for our healthcare system, we design, 
develop and test ARIADNE (Assist foR hIp AnD kNEe), a pervasive tele- assessment 
solution that can perform clinical tele-assessment to assess postural and functional 
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control to support post-surgery THR and TKR recovery. ARIADNE will enable 
objective, remote examination and monitoring of patient functional performance 
during their typically long rehabilitation journey, something that to date is missing 
from current telemedicine solutions especially in orthopaedic care (see Fig. 8.1). By 
implementing such a pervasive tele-assessment solution within the traditional prac-
tice, we have the potential to: (a) improve existing practice patterns, (b) shorten the 
recovery trajectory, (c) increase the likelihood for optimal clinical outcomes and (d) 
support a superior patient experience.

8.2  Background

Total hip or knee replacement is a common surgical intervention for treating 
advanced hip/knee osteoarthritis (OA). As a strategy to address the burden of dis-
ease of OA in Victoria and optimally align health services to consumers’ needs and 
evidence, the Department of Health and Human Services commissioned the devel-
opment of a Model of Care (MoC) for Osteoarthritis of the Hip and Knee. An MoC 
is an evidence and consultation-informed framework that describes what and how 
health services and other resources should be delivered locally to people who live 
with specific health conditions. In 2018 [7], the MoC recommended the “Innovation 
in service delivery model”. The model was designed to establish: (1) telehealth 
services to improve consumers’ access to specialist clinics for the purposes of clini-
cal assessment, management planning and treatment and (2) web-based and smart-
phone app tools that deliver accurate health information and support behaviour 
change to consumers and care providers. The development of ARIADNE is designed 
to addresses the above acknowledgement of the importance of a telemedicine plat-
form to improve healthcare services for rehabilitation following THR and TKR [7, 8].

Tele-rehabilitation via online video communication is an emerging area attract-
ing increased attention as a potential alternative to conventional, face-to-face reha-
bilitation, suggested being an option for people located remotely to reduce the need 
for frequent travel [3]. A recent systematic review concluded that tele-rehabilitation 
can lead to better healthcare at lower costs [9]. An example is the tele-rehabilitation 
eHAB (NeoRehab, Brisbane, Australia) that enables real-time video conferencing 
to the patient’s home and includes features such as recording instruction and exer-
cises [10]. Similarly, MyRehab offers a tele rehabilitation communication system 
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via text or voice messages and video-conference, currently evaluated in an RCT 
with THR and TKR patients [11].

Indeed, tele-rehabilitation partially addresses some of the requirements of the 
MoC. However, a critical missing element in current solutions is tele-assessment 
which supports an objective remote postural and functional assessment integrated 
with web-based management and planning capabilities. ARIADNE addresses this 
key void by being able to transform standard care with a face-to-face assessment, 
mostly available only in major cities with experts, to provide remote assessment 
access and quality of care to a wider and remote community. Thus, ARIADNE will 
significantly enhance Australian healthcare services, ensuring objective postural 
and functional examination can be performed. It will provide the foundation for 
future telemedicine platforms for clinical trials and treatment monitoring.

To further improve upon the Australian telehealth system, the following objec-
tives need to be addressed:

 1. An examination into the measurement consistency and agreement of a newly 
established tele-assessment system with respect to a face-to-face clinical-based 
reference condition.

 2. A determination of the feasibility and the extent to which the tele-assessment 
can be used by clinicians and patients to achieve effectiveness (accuracy and 
completeness), efficiency (resources needed for effectiveness) and satisfaction 
(comfort and acceptability).

 3. An assessment of the cost-effectiveness associated with tele-assessment includ-
ing those related to healthcare, purchase of equipment, mobile phone data usage 
and costs associated with establishing and delivering the service and analysing 
the results.

8.3  Overview of ARIADNE

In orthopaedics, performance measures following THR and TKR are required to 
identify patient functional competency and physical progress. In existing clinical 
practice, these postural and functional measures include: (1) range of motion, (2) 
postural balance, (3) chair rise, (4) 40-m fast-paced walk and (5) timed up and go 
(TUG) [7] and are executed face-to-face while the clinician manually records the 
duration and number of repetitions to complete the task. A more robust objective, 
but to date only used in research and not in clinical settings due to availability and 
accessibility, is quantifying performance using Inertial Measuring Units (IMU) 
motion sensors comprising accelerometers and gyroscopes [12–14] to measure lin-
ear acceleration and angular velocity, respectively. Once the raw data are captured, 
the level of performance is quantified by further well-defined signal processing 
methods [12, 13, 15–17].

ARIADNE has been developed and designed to support the above requirements 
and is built from previous work by one of the authors around web-based repository 
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applications Gaitabase and PROMsBase [18, 19] and leverages his research on the 
use of IMU motion sensor signals to capture, process and interpret postural and 
functional performance [16, 17, 20–23]. Gaitabase has been used by world-leading 
gait laboratories for clinical gait analysis, having 22 different centres in 8 different 
countries on four different continents. PROMsBase is routinely used at Western 
Health in Victoria to collect patients’ satisfaction and wellbeing data pre- and post- 
joint replacement procedures with over 8000 questionnaires from over 10,000 sur-
gery procedures now collected.

8.4  Development of ARIADNE

To be clinically useful as a tele-assessment platform, we extended the technology 
with unique integration methods of the web-based repository system coupled with 
the motion sensor IMU data captured from a mobile phone. During the assessment, 
the clinician remotely connects to the motion capture app installed on the patient’s 
mobile phone that is strapped at the lower back (to measure postural control) or 
above the ankle (to measure joint angle) using an ankle strap (Fig. 8.2a). Once con-
nected, the clinician remotely operates the app while the patient performs the spe-
cific functional task as instructed by the clinician (Fig.  8.2b). Once the task is 

Fig. 8.2 Smartphone placement (a), remote tele-assessment of balance, sit-stand and TUG tests 
(b) and the web-based interface with balance report (c)
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completed the clinician remotely saves the mobile sensors data that is automatically 
uploaded to the web-based application for further analysis to generate report on 
performance compared to healthy population (Fig. 8.2c). Both the clinician and the 
patient can login to the web application to evaluate performance and progress.

8.5  Preliminary Exploration

Validity and reliability: The validity and reliability of using IMU to measure the 
aforementioned five postural and functional assessments are well-documented in a 
range of population types including healthy older adults [24, 25], Parkinson disease 
[13], multiple sclerosis [14] and TKR [26], showing very good to excellent validity 
and reliability. These validity and reliability studies and the systematic review [25] 
used mobile phones motion sensors suggesting that mobile phones are non-inferior 
when compared to the other postural and functional measurement techniques. 
Furthermore, our pilot work validating our tele-assessment knee range with the 
golden standard video analysis also showed excellent correlation (r = 0.98) and very 
good agreement with a clinically acceptable bias of 5.4° with 17.3° and −6.4° for 
upper and lower 95% confidence bound, respectively (Bland-Altman Plot analysis, 
see Fig. 8.3).

Fig. 8.3 Comparison in knee angle measurements between video analysis and ARIADNE. Mobile 
device is fixed to distal leg while the patient extends their leg to four knee extension positions (A, 
B, C, D). The top left is the mobile device outcomes. The bottom right is Bland Altman plot com-
paring measurement outcomes between the two methods
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Figure 8.3 illustrates the assessment of knee joint range-of-motion test in sitting 
position. Supine position may also be used to evaluate knee range of motion. Our 
pilot work on the comparison in measuring knee angles using video analysis and 
ARIADNE showed a bias of 5.4° with 17.3° and −6.4° for upper and lower bound, 
respectively (Bland-Altman Plot analysis, see Fig.  8.3) and a significant 0.98 
Pearson correlation coefficient.

Age-related deterioration in postural balance using ARIADNE: A pilot study 
investigates age-related changes in postural balance to determine the age at which 
balance deteriorates and falls risk increases. Twenty healthy adults (11 male, 16 
female), divided into five age groups (30–39, 40–49, 50–59, 60–69) performed 30 s 
two-leg and one-leg stance postural balance test using ARIADNE. Similar anterior- 
posterior and medi-lateral sway magnitude were found between the age groups 
when standing on two legs. During unilateral stance postural sway was greater in 
the older (50–59, 60–69 years) groups compared to the younger (30–39, 40–49 years) 
groups (see Table 8.1). These results may suggest that postural sway may deterio-
rate from the age of 50 years and thus may increase fall risk.

8.6  Method

To test the proposed tele-assessment solution this section outlines the research plan. 
Tele-assessment is the missing piece in telemedicine care for orthopaedic rehabilita-
tion. Unique aspects of ARIADNE include that it: (a) can provide remote, quanti-
fied, and postural and function control and (b) provide early detection of deviation, 

Table 8.1 Mean ± SD Medio-lateral and Anterior–posterior sway during 30 s double leg and 
single leg postural balance test (lower values indicate less sway)

Age group
Mediolateral sway
(mean ± SD)

Anterior–posterior sway
(mean ± SD)

Double leg balance
30–39 0.008 ± 0.002 0.011 ± 0.002
40–49 0.011 ± 0.014 0.009 ± 0.010
50–59 0.009 ± 0.010 0.012 ± 0.012
60–69 0.009 ± 0.002 0.015 ± 0.005

Single right leg balance
30–39 0.017 ± 0.013 0.015 ± 0.006
40–49 0.033 ± 0.042 0.024 ± 0.028
50–59 0.062 ± 0.096 0.065 ± 0.100
60–69 0.069 ± 0.035 0.046 ± 0.012

Single left leg balance
30–39 0.029 ± 0.016 0.022 ± 0.010
40–49 0.040 ± 0.052 0.027 ± 0.033
50–59 0.057 ± 0.069 0.053 ± 0.063
60–69 0.058 ± 0.013 0.046 ± 0.012

O. Tirosh et al.



109

problems and potential complications. Our pilot study will serve to incorporate key 
co-design principles to ensure clinician and patient input in the design and develop-
ment of ARIADNE, and then test the definitive solution in terms of: (a) desirability 
(patients and clinicians), and clinician and patient usability and acceptance, (b) 
reliability (ability to deliver consistently on key clinical outcomes) and “fit for pur-
pose” and (c) cost-effectiveness.

The tele-assessment platform: ARIADNE is very simple to use as it integrates a 
web-based database and interface platform and motion sensor data that is captured 
remotely from the patient’s mobile phone while the patient performs their essential 
postural and functional measures, including [7]: (1) range of motion, (2) postural 
balance, (3) chair rise, (4) 40-m fast-paced walk and (5) timed up and go (TUG). 
The motion sensor data is processed to objectively quantify patients’ perfor-
mance level.

Primary Hypotheses: (a) ARIADNE will be desirable for, and usable by, both 
patients and clinicians and (b) ARIADNE will be clinically reliable and will meet 
the key needs for both clinicians and patients, “fit for purpose”.

Primary Aims: to (a) assess desirability and usability of ARIADNE; and (b) 
assess clinical reliability including Minimum Detectable Change (MDC), and (c) 
evaluate if ARIADNE is fit for purpose.

Secondary Hypotheses: (a) ARIADNE will provide a cost-effective solution to 
support post-surgical recovery for THR and TKR patients; and (b) ARIADNE will 
support the healthcare value proposition of better access, quality and value of care 
for THR and TKR contexts.

Secondary Aims: to (a) determine the cost-effectiveness of ARIADNE; and (b) 
demonstrate that ARIADNE supports a healthcare value proposition of better 
access, quality and value for THR and TKR patients.

The study outcomes will create ARIADNE, a new tele-assessment solution to 
address a current gap in telemedicine delivery, that is desirable and useable for 
patients and clinicians, clinically reliable, fit for purpose and cost-effective with a 
high likelihood of addressing current issues around the sustainability of practice for 
THR and TKR patients. ARIADNE will be at the forefront in future telemedicine 
delivery models and will assist to advance Australia in telemedicine research, 
which, unfortunately, to date, is lagging, having only 6.3% of the telemedicine 
usability research published in the world [9].

8.6.1  Overview of Design

To ensure a robust solution it is essential to conduct a feasibility pilot study to mea-
sure the desirability, usability, reliability, MDC, fit for purpose, cost-effectiveness, 
and better access, quality and value of the tele-assessment platform for THR and 
TKR patients. The tele-assessment will be utilised during the conventional THR and 
TKR standard care pathways.
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8.6.2  Participants

Patients: 76 patients (4 of whom will be solely involved in the solution co-design 
phase) from the Western Health outpatient clinic are to be recruited. On average 221 
and 259 THR and TKR patients are treated each year at Western Health, respec-
tively. Patients who are scheduled for THR and TKR as suggested by their consul-
tant and meet the eligibility criteria will be invited to participate in the study by the 
researchers who will issue them with the information statement. Once the partici-
pant consents to participate, they will receive a written plan with booked dates for 
tele-assessment sessions with the responsible Community Based Rehabilitation 
(CBR) senior physiotherapists. Any participant considered to require surgery, such 
as revision, during the course of the study will be removed from the study. Inclusion 
criteria: (a) after THR or TKR, (b) have proficient English language skills (i.e. do 
not require an interpreter) and (c) have a mobile smartphone. Exclusion criteria: (a) 
THR or TKR with clinical complications and (b) do not possess and use a mobile 
smartphone.

Clinicians: the Senior Fellow physiotherapist and three physiotherapists from 
CBR will be recruited to deliver the tele-assessment sessions. The clinicians will 
have substantial experience in standard care for joint replacement patients.

8.6.3  Protocol

The project will begin with the ethics submission and a final ARIADNE co-design 
session with two clinicians and four patients (two TKR and two THR). Prior to tele- 
assessment at T0, clinicians and patients will participate in an educational focus 
group session. In this session, participants will be educated on the use of ARIADNE 
with preparation for their joint replacement journey.

Tele-assessments will be performed on ten occasions including; base-line pre- 
surgery- 1 (T1), pre-surgery-2 (T2) and at 1 (T3), 2 (T4), 3 (T5), 4 (T6), 5 (T7), 6 
(T8), 9 (T9) and 12 (T10) weeks post-surgery. The duration of each tele- assessment 
session is 20 min. In each session, the patient will start the app that automatically 
connects to the clinician web portal. The patient will then insert the mobile phone in 
the waist pouch and attach it around their waist. The clinician will instruct the 
patient to perform the tasks (balance, TUG, chair rise, range of motion) while the 
mobile app captures the motion data and automatically uploads it to the web portal 
for storage and further analysis. At T2 and T10, patient questionnaires will be 
administered to assess the usability of ARIADNE. In addition, at T10 a clinician 
focus group will be conducted.

Outcome and data analysis: At the completion of the study, the following aims 
will be achieved:

Primary Aim (a): assess desirability and usability of ARIADNE:
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The Unified Theory of Acceptance and Use of Technology (UTAUT) will be 
used, as the theoretical framework underpinning the research, to understand and 
empirically test the factors that influence the end-users’ acceptance and adoption of 
the tele-assessment services in THR and TKR patients (see Fig. 8.4). The UTAUT 
includes four determinants; performance expectancy (PE), effort expectancy (EE), 
social influence (SI) and facilitating conditions (FCs), which can explain 70% of the 
variance of behavioural intentions [27], while other models explained approxi-
mately 40% of technology acceptance [28]. It has been widely adopted in different 
areas including mobile health such as to investigate the intention to use Physical 
Activity Apps [29], but to our knowledge, there is no published study applying 
UTAUT to the investigation of tele-assessment use intention in joint replacement 
patients. To specify, PE refers to the services of the clinician in the clinician–patient 
interaction in tele-assessment. EE refers to patients’ perceived ease of interacting 
with physicians in tele-assessment. SI refers to the impact of other people’s feel-
ings, views and behaviours on the behavioural intention of patients interacting with 
clinicians in telehealth. FC refers to users’ perceptions of their ability to perform the 
behaviour and measure the degree to which the tele-assessment fits with their exist-
ing values, previous experiences and current needs. Each determinant includes 
related questions with a five-point Likert-type response format that ranged from 
“strongly disagree” (1) to “strongly agree” (5) to measure each construct covering 
the variables in the research model. The UTAUT will be completed at T1, T8 and 
T10. Separate analyses will be conducted for older and younger groups of partici-
pants to test usability and efficacy across all age levels.

Primary Aim (b): assess reliability using MDC:
The outcome measure for each postural and functional task is calculated by pro-

cessing the motion sensor signal from the mobile device. The outcome measures are 
the hip and knee joint maximum range of motion, the magnitude of body sway for 
the postural balance test, the time taken to complete five repetitions of the sit-to- 
stand manoeuver test and time taken to complete the TUG and 40-m fast-paced 
walk tests. The pre-surgery-1 session will be used for the validation study. A video 
camera will simultaneously record the patient’s performance during the postural 
and functional tasks. The range of motion and time taken to complete the task mea-
surements collected from the video analysis will be regarded as the gold standard in 
this study. Measurement consistency between the tele-assessment platform and the 
reference condition will be compared using two-way random-effects intra-class 
correlation.

Fig. 8.4 UTAUT as an organising structure, relating to users’ perceptions of tele-assessment
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Reliability and MDC will be analysed from the tele-assessment outcome mea-
sures (described above) when comparing outcomes between the pre-surgery-1 and 
the pre-surgery-2 sessions. The reliability will be estimated using repeated- measures 
analysis of variance and the intra-class correlation coefficient. Standard error of 
measure (SEM) and MDC will be calculated utilising the same methodology as our 
previous study using IMU measurements in gait [22]. SEM will be calculated as 
SD × √1 − ICC, where SD is the standard deviation of all scores from the partici-
pants. SEM is also presented as a SEM% by dividing the SEM with the average of 
the test and retest values. The MDC will be calculated as SEM × 1.96 × √2 to 
construct 95% CI. The multi-level analysis will be used to test for significant differ-
ences across younger and older age groups separately for THR and TKR patients. 
This is an intention-to-treat method that allows for irregular assessment measures, 
allowing for the control of other variables as needed.

Primary Aim (c): evaluate if ARIADNE is fit for purpose:
Empirical evidence shows that users will not simply accept and use the technol-

ogy if it does not fit their needs and improve their performance [30, 31]. Hence, to 
assess the fit for purpose of ARIADNE, we apply task-technology fit, the degree to 
which a technology assists an individual in performing his or her task. To measure 
the level of “fit for purpose” of ARIADNE, during the focus group session con-
ducted at T10, we will ask clinicians to compare their experience with ARIADNE 
to that without tele-assessment; i.e. as per their normal delivery of care. This will 
enable us to understand key task characteristics, how the technology supported 
those tasks, and whether clinician users perceived ARIADNE to perform better, as 
good as, or worse than face-to-face assessments.

Secondary Aim (a): The cost-effectiveness of the tele-assessment model:
The costs associated with tele-assessment will be assessed using a societal per-

spective. To provide some comparison with standard care, an “average cost per 
patient” will be derived from historical records (to estimate the mean number of 
visits and time spent delivering the consultation) and including travel costs that 
would have been relevant to the participants if they underwent face to face consulta-
tions. Estimation of the costs of full implementation of tele-assessment at Western 
Health outpatient clinic may also be conducted.

Secondary Aim (b): Determine ARIADNE’s ability to support better access, 
quality and value:

We will assess patient-reported measures regarding ease of access, clinician- 
reported measures of quality of clinical outcomes as compared to past records of 
results from past face-to-face consults, and cost-effectiveness as considered in 
Secondary Aim (a).

8.6.4  Ethics

Approval will be obtained from Swinburne University of Technology Ethics in 
Human Research Committee, followed by a Research Governance application to 
Western Health.

O. Tirosh et al.



113

8.6.5  Sample Size

Sample size was calculated using the G*Power software tool [32] for repeated 
Analysis of Variance test (2 × 5, age groups × tele-assessment sessions, allowing for 
50% completion of ten possible assessments) for both THR and TKR participants. 
This analysis is based on the tele-assessment postural and functional outcome mea-
sures (2 × 10, groups × tele-assessment sessions). Cohen’s effect size was based on 
a previously published RCT that investigated the effectiveness of tele-rehabilitation 
as a supplement to rehabilitation in THR and TKR patients [33]. Patients that 
received standard care reported an improvement of 1.5 s in TUG having 9.0 ± 2.4 s 
and 7.5 ± 1.6 s in pre and 3 weeks post-surgery testing, respectively. For the chair 
rise test an improvement of 3.9 s was found from pre and 3 weeks post-surgery, 
17.1 ± 6.2 s and 13.2 ± 2.3 s, respectively. Further, subjective parameters on func-
tion using the Western Ontario and McMaster Universities Arthritis Index were 
found to be 24.8 ± 16.4 and 13.9 ± 14.3 for pre and 3 weeks post-surgery, respec-
tively. The Cohen’s d effect size using the above data was calculated to be 0.73, 0.83 
and 0.71. Using a 0.7 effect size (f  =  0.35), α  =  0.05, and power  =  0.80, for a 
repeated-measures ANOVA 15 participants are needed in each age group, for both 
THR and TKR participants (60 total). Having 20% dropouts 72 participants in total 
will be recruited for this study.

8.6.6  Identified Risks

Risk #1—Poor desirability and reliability of the tele-assessment platform: the 
tele-assessment platform is built for the purpose of assessing joint replacement 
intervention postural and functional control outcomes. Thus, it is important for the 
platform to be desirable and reliable. This risk is mitigated from findings of previ-
ous studies on the desirability and reliability of using IMU in measuring the postural 
and functional performance of the proposed tasks in a range of population types 
including healthy older adults [24, 25], Parkinson disease [13], multiple sclerosis 
[14] and TKR [26], with very good to excellent desirability and reliability. These 
studies and the systematic review [25] used mobile phone motion sensors, suggest-
ing that mobile phones are non-inferior compared to the other postural and func-
tional measurement techniques. Furthermore, our unpublished preliminary 
experiment validating our tele-assessment knee range with the gold standard video 
analysis showed excellent correlation (r = 0.98) and very good agreement with a 
clinically acceptable bias of 5.4° with 17.3° and −6.4° for upper and lower 95% 
confidence bounds respectively.

Risk #2—Security of the data: to increase data security the data will be stored 
on Nectar cloud and will be backed up daily. Nectar is an online infrastructure for 
researchers to store, access and analyse data remotely and is managed and funded 
by the Australian Government through the National Collaborative Research 
Infrastructure Strategy.
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Risk #3—Participants can feel directionless and overwhelmed with the tech-
nology: to reduce participant anxiety with the digital technology, the patient advo-
cate team member, will provide coaching and mentoring support to participants, 
enabling them to optimise self-management.

Risk #4—Falls, limited space and poor environmental set-up at home or dif-
ficulties to attach the phone to the ankle and/or waist: patients’ home visits will 
occur to inspect and set up the testing environment and reduce potential hazards.

Risk #5—Poor Internet connection: the necessary Internet connection will uti-
lise the mobile device’s Internet access provider. Data collection is performed using 
the app installed on the patient’s mobile device, thus a poor network will not disrupt 
data capture and quality.

8.7  Results to Date

The assessment of the fidelity, efficacy and fit for purpose of the developed 
ARIADNE solution requires many stages and is thus a longitudinal study. On the 
receipt of ethics approval, initial phases of the design science research methodology 
have been conducted with a small group of patients and clinicians respectively to 
fine-tune the solution. This is an important key step to ensure high clinician and 
patient use as well as ensure the developed solution will support the required needs 
for rehab of THR and TKR patients. The ARIADNE solution now has patient and 
clinician approval and based on a small pilot study demonstrated the ease of use and 
fit for purpose. While not statistically significant, this directional data provides sup-
port to progress to the next phase with confidence. The next key step is to conduct a 
large-scale clinical trial to capture key data around the impact of the solution to 
support THR and TKR patients in their rehabilitation. Once the clinical trial is con-
cluded it will then be possible to address issues around the deployment of the solu-
tion into appropriate clinical contexts.

8.8  Discussion

ARIADNE is designed to remotely capture, analyse and interpret body motion 
using the accelerometer and gyroscope motion sensors embedded in today’s mobile 
phones. The mobile phones we have today have three-axial accelerometers and 
gyroscope components. The accelerometer allows the measurement of linear accel-
eration in three orthogonal directions (x, y and z) and the gyroscope allows the 
measurement of angular velocity in the x, y and z axes. The linear acceleration and 
angular velocity signals can be processed and used to analyse body motion and 
further provide interpretation of the movement quantity and quality, such as level of 
stability during quiet standing. The ability to remotely connect to patient mobile 
phones and capture accelerometer and gyroscope data creates new opportunities for 
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clinicians, sports trainers and engineers to remotely quantify and analyse the perfor-
mance level of any posture and/or movement task.

ARIADNE is comprised of three components including the mobile phone app, 
web-based application and a cloud database. The objective of the mobile phone app 
is to capture accelerometer and gyroscope data at 100 Hz and to upload the data to 
the cloud database. The objectives of the web-based application are to provide the 
examiner (clinician and sports trainer) with a web browser platform to remotely 
connect and control the mobile phone app, instruct the mobile app to upload the 
accelerometer and gyroscope data to the cloud database and perform data analysis 
for further interpretation and reporting of the level of performance.

8.9  Conclusion

Our designed solution, ARIADNE, represents a novel and unique approach to tele-
health rehabilitation in orthopaedic care for THR and TKR patients. To date, current 
telehealth solutions in this space do not address tele-assessment, which means that 
there is a significant limitation in the current post-operative critical 12-week period 
for THR and TKR patients. Hence, ARIADNE not only addresses this key void, but 
it also serves to potentially help address a major conundrum facing healthcare deliv-
ery around THR and TKR; namely, the fact that current services will be unsustain-
able by 2030. Moreover, our solution is consistent with 2018 MoC recommendation 
[7] for “Innovation in service delivery model.” By including a co-design approach 
and assessing ARIADNE as fit for purpose, we will have a unique tele-assessment 
solution that can be used for THR and TKR patients and potentially beyond, thereby 
also serving to leapfrog Australian telehealth initiatives. If the results of the clinical 
trial provide a positive endorsement for ARIADNE, then we would have success-
fully developed a unique teleassessment solution that addresses a key gap in post-
surgical recovery for THR and TKR patients.
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Chapter 9
Telehealth Implementation: A Synopsis 
of Patients’ Experience of Clinical 
Outcomes

Chinedu I. Ossai, Stephen Vaughan, John Zelcer, 
and Nilmini Wickramasinghe 

9.1  Introduction

Telehealth can be defined as the strategic implementation of telecommunication 
technologies in healthcare to improve wellness [1]. The technique has relied on 
videoconferencing platforms, mobile apps, wearable and monitoring sensors for 
remotely collecting information and providing healthcare services to patients [2]. It 
has been used for managing chronic disease conditions and real-time monitoring of 
patients using the seamless acquisition of blood pressures, electrocardiogram 
(ECG), oxygen saturation (SpO2), heart rate, temperature and respiration [3–5]). 
The role of telehealth in maintaining wellness and reducing the cost of healthcare 
has been strongly promoted by many researchers who have published myriads of 
scientific articles of the applications in different areas of medicine. These clinical 
trials and reviews show the applications of this technique in managing different 
disease conditions while new telehealth platforms that boast of several capabilities 
such as remote monitoring and diagnosis of complex disease conditions are 

C. I. Ossai 
Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne 
University of Technology, Melbourne, VIC, Australia 

S. Vaughan
Epworth HealthCare, Melbourne, VIC, Australia 

Swinburne University of Technology, Melbourne, VIC, Australia
e-mail: stephen@sldv.com.au 

J. Zelcer 
Swinburne University of Technology, Melbourne, VIC, Australia

N. Wickramasinghe (*) 
Swinburne University of Technology, Melbourne, VIC, Australia

Epworth HealthCare, Melbourne, VIC, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95675-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-95675-2_9
https://orcid.org/0000-0002-1314-8843
mailto:stephen@sldv.com.au


120

springing up continuously. The benefits of telehealth are not in doubt, especially in 
this time of social distancing due to COVID-19. Thus, the use of telehealth as a 
viable alternative to the traditional face-to-face healthcare services in many instances 
cannot be overemphasised. As research shows that lack of interest in the use of the 
technique is a huge burden to the health system that stands to save more than $101 M 
in the emergency department with only 1% adoption rate [6]. With only one in ten 
Americans being interested in telehealth pre- COVID- 19 and a modest expectation 
of 15–20% adoption in 2020, it is not surprising that the social isolation resulted in 
257–700% increased use [7] as billing and privacy restrictions were relaxed to 
enable patients to access insurance. This signifies that the future of telehealth in 
effective healthcare implementation cannot be ignored, especially when 5–20% of 
patients admitted in hospitals have the potential of contracting other infections [8].

The very rapid uptake of telehealth driven by the infection control considerations 
to control COVID-19 has outpaced evaluation methods for the technology, particu-
larly in comparison to in-person consultations.

Although the health outcome obtained from telehealth has been shown not to 
differ significantly with in-person hospital visitation [9], in some instances, some 
experts have argued that the readiness of the telehealth implementation hinges on 
adopting a platform and training of healthcare professionals, integration of EMRs, 
patient education and acquisition of the necessary hardware for the participating 
patients [10]. Others believe that the implementation of telehealth should be a work-
in-progress that will keep maturing with time. However, the business module of 
telehealth is driving investors into developing new technologies to maximise gains 
prior to the flooding of the market. These expectations have caused researchers to 
ramp up publications on telehealth strategies, the enabling technologies and the 
ever-increasing applications in numerous healthcare contexts. Yet the evidential out-
comes of these technologies from patients’ experiences of their effectiveness have 
received minimal attention particularly for what is regarded as ‘difficult conversa-
tions’ related to life-threatening illness and complex treatments like those involved 
with cancer.

At least part of the problem is the failure to fully characterise all of the dimen-
sions of the in-person consultation prior to considering what effect telehealth might 
have on those aspects.

It remains difficult to explain with some degree of certainty how telehealth tech-
nologies are helping patients in self-management of chronic conditions to advance 
their quality of life despite complex health challenges. Despite the overwhelming 
belief that telehealth is the next big revolution in the healthcare industry, it is worth-
while to understand what telehealth strategy works and in which healthcare context.

To understand the patients’ experience of the clinical outcomes of different tele-
health strategies and the enabling technologies for managing different disease con-
ditions, we decided to draw information from different academic literature. Hence, 
showing the synopsis of patients’ experience of clinical outcomes in varying clini-
cal trials. This knowledge will be vital for integrating efficient telehealth strategies 
for managing different disease conditions into the mainstream healthcare system.
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9.2  Scope of Telehealth Applications in the Clinical Context

The ever-growing scope of telehealth has patients, doctors and hospitals relying on 
many techniques for the implementation of healthcare. Figure 9.1 shows some of 
the telehealth strategies, enabling technologies and the expected outcomes for effi-
cient maintenance of wellness at a distance.

Televisits have afforded patients dwelling in remote locations with the opportu-
nity to have specialist attention following teleconferencing, telephone conversation, 
or by using any of the specialist telehealth platforms. Tonyushkina et al. [11] showed 
that televisit is a well-accepted strategy for minimising doctor’s appointments for 
patients with diabetes type 1 because the A1C levels were under control after replac-
ing 3 of the 4 yearly doctors visit with televisit. Telerounding has also been shown 
to be evolving significantly with the advances in the enabling technologies of tele-
health. Some experts have touted it as a cost-effective technique for pre-operative 
care although there is no difference in the hospital factors and mortality of patients 
managed with robot-guided telerounding [12].

With the advances in telecommunication technology, surgeons can use robots 
remotely to perform surgical procedures on patients via telesurgery, thus providing 
a panacea for the shortage of surgeons especially in remote and rural communities 
[13]. Telesurgery also boasts of timeliness of operation by eliminating the geo-
graphical barriers that hinder real-time surgical interventions while enhancing sur-
gical accuracy and ensuring the safety of surgeons. Similarly, the presence of video 
conferencing and advanced telehealth software in operating rooms have enabled 
telementoring and teleproctoring of surgeons who reported increased confidence for 
laparoscopic surgery with excellent robotic skills [14]. Remote mentoring of robot 

Fig. 9.1 Summary of some telehealth strategies utilised for managing the wellness of patients at a 
distance
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manipulation during telesurgery is also increasing with enhanced accuracy of surgi-
cal procedures compared with human-operated surgery [15].

9.2.1  Cardiovascular Diseases

It is pertinent to use telehealth for acute cardiac, stroke and rehabilitation services, 
especially to reduce the risk factors for patients in rural and remote Australia 
because they are at higher risk of mortality because of limited specialist care [16]. 
The case of full-scale implementation of telehealth in acute care is well-known to 
result in efficient diagnosis and treatment of cardiac conditions through electronic 
transmission of ECGs, remote rehabilitation [17] and exercises [18]. This has 
resulted in reducing mortality [19, 20], which has plagued rural and remote dwell-
ing Australians whose risk of mortality due to chronic heart conditions increases 
with the increase in location to major clinical hubs in the major cities [21]. With 
numerous evidence pointing to the potency of telehealth in cardiac rehabilitation 
services [22, 23], the adoption in rural and remote hospitals and in-home monitor-
ing will inevitably help to reduce cardiovascular-based mortalities because of early 
identification and interventions [16].

9.2.2  Surgery

The goal of telehealth application in surgery ranges from providing improved access 
to specialist surgeons by patients in rural and remote communities to the efficiency 
of surgical procedures [13, 24]. Similarly, there is increased support for patients 
who receive specialist pre-operative and post-operative care at a reduced time due 
to the elimination of travel times [25]. There is also a higher tendency of carrying 
out high-quality surgery due to the collaboration between medical centres in real 
time [26, 27] while damages to healthy tissues are minimised due to the precision of 
the robots, hence quickening patients recovery time [26].

9.2.2.1  Pre-operative Assessment

Specialist surgeons can rely on video conferencing for pre-operative examination 
with the aid of a local consulting physician who can provide specific information for 
the decision on the progression of the disease condition and the urgency of surgical 
telemedicine can help in optimal decision support about for surgical procedures to 
forestall complications as non-essential procedures are on hold due to the effects of 
COVID-19 [28–30]. Patient assessments can be done remotely through a series of 
self-assessment questions to obtain temperature, blood pressure and pulse rates. 
Digital stethoscopes with the associated mobile apps have also been used for 
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remotely obtaining lung and heart sound, murmur and afib analysis and electrocar-
diogram (ECG) [4, 5]. Clinicians have also incorporated radiographic images, ultra-
sounds, laboratory reports and ECG and skin images for severity assessment of 
certain diseases in pre-operative assessments of surgical procedures using telehealth.

9.2.2.2  Post-operative Monitoring

Video conferencing and pictures are very viable for post-operative monitoring of 
surgical patients, especially for detecting complications [31]. Telephone calls were 
effectively used to substitute standard post-operative clinical visits for selected 
ambulatory surgery patients after hernia and appendectomy with no complication 
recorded for cholecystectomy and 4.8% for herniorrhaphy [32]. The preference for 
telephone pre-operative monitoring was inspired by convenience and time savings 
of 74.2–99.4  min when compared with pre-intervention pre- operative visits [33, 
34]. Patients who were pre-operatively monitored by emails after arthroscopic 
rotary cuff surgery were satisfied with the strategy after safe monitoring for 2, 6 and 
12 weeks [35].

9.2.3  Urology

Numerous telehealth techniques such as televisit, teleconsultation, telesugery, teler-
ounding and mobile app image sharing are currently in use in urology [2]. Numerous 
studies point to the effectiveness of telehealth in urology because of the comparative 
effectiveness with face-to-face visits, especially for post-operative care [36, 37]. 
Telesurgery has also become predominant with many small invasive procedures 
related to bladder cancer, prostate and kidney, example is percutaneous nephroli-
thotomy [38]. Some of the works on telesurgery have been based on verbal guidance 
and telestration direction [15] to enhance telemanipulation of robots to improve the 
accuracy of operations, which were shown to be more accurate than human opera-
tions [39].

9.2.4  Psychiatry

The survey of mental health professionals in regional South Australia [40] was nec-
essary to ascertain the challenges and advantages derived from telehealth especially 
with the advances in digital telehealth facilities. There was an enhanced quality of 
service that culminated in improved consultation due to the good communication 
between users and resultant improved work output in mental health assessment for 
the review of involuntary detentions. Thus, staffs were better able to do case confer-
encing and consultation with the guardianship board on different patients’ need and 
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other administrative issues such as discharge planning and narrative therapies. It 
was also easier to support staff educationally via therapeutic trainings and peers 
supports while hospital staff meetings with the psychiatric health management 
boards improved. Similarly, Pratt et  al. [41] concluded that a 6-month telehealth 
intervention for comorbid psychiatric patients resulted in improved efficacy of self-
management of conditions with improved knowledgebase. Thus, resulting in low-
ered blood sugar levels for those that are diabetic and reduced care needed for the 
patients with bipolar disorder and major depression. For patients with post-trau-
matic stress disorder and depression, lack of familiarity with telehealth technology 
caused them a poor response to the treatment because of limited confidence [42], 
despite the positive impact of the technique on the treatment. Unfortunately, a 
nurse-led augmented telehealth treatment for depression in primary care did not 
show any improvement in medication adherence [43].

9.2.5  Ophthalmology

The key requirements for effectiveness in managing the visual health of the popu-
lace will rely on the telehealth strategy for offering triage [44], maintaining patients- 
physical engagement, medication recommendation, scheduling of future 
appointments and appraisal of care plans [45]. Imperatively, the telehealth visit 
cycle will involve scheduling, diagnosis following the health history evaluation, 
visual acuity from mobile apps [46] and intraocular pressure checks with finger ten-
sion patients. Although this procedure may not give a good accuracy, it may provide 
a guide for the assessment of the condition of patients. Ancillary testing can also be 
done with commercial or free apps for muscular diseases evaluation while relying 
on video visits for the examination of external adnexal, pupil, motility, alignment, 
anterior segment, iris and corneal light reflexes [47]. This strategy with significant 
self-management education can suffice for preventing diabetes- associated visual 
loss [47].

9.2.6  Cancer

All medical consultations have some common dimensions, but the consultation with 
a cancer patient is widely regarded as having a particularly strong psychosocial 
component given the gravity of issues that are often discussed particularly in the 
context of treatment with palliative intent and end-of-life care.

Most patients in these consultations are accompanied by carers who are a critical 
part of the care team and whose body language reactions to the content of the con-
versations is sometimes difficult to determine in a teleconference where the camera 
is obviously focused on the patient. Consultations involving a significant number of 
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family members which often occur in the context of cancer treatment are even more 
difficult to manage.

A critical part of any cancer consultation is the process of ‘turn taking’, where 
the practitioner and the patient usually give non-verbal cues to indicate the end of 
their contribution to their part of the conversation and the opportunity for the other 
party to start their contribution. These cues are substantially attenuated in a telecon-
ferencing situation and much more difficult to read and thus affect the quality of the 
consultation.

Much of the focus of evaluation in cancer consultations is the effectiveness of 
information transfer from the practitioner to the patient and the elicitation of patient 
preferences by the practitioner. These verbal exchanges are usually faithfully 
recorded by Telemedicine, but the non-verbal dimensions to these exchanges are 
often difficult to record.

During these conversational exchanges, a process of trust is concurrently and 
hopefully developing in the patient for the practitioner. It is not clear from the pub-
lished literature that this process of trust development is enhanced or attenuated by 
telemedicine processes.

A key part of modern cancer services is the decision-making by a multidisci-
plinary meeting, where different types of cancer specialists discuss cases and come 
to consensus recommendations about the management.

Telehealth makes these meetings much easier to convene and function and pro-
vides the possibility of national or international experts participating enhancing 
quality.

9.2.7  Other Disease Conditions

Table 9.1 summarises the effects of using telehealth for managing some selected 
chronic disease conditions, such as diabetes, chronic obstructive pulmonary disease 
(COPD) and cancer.

9.3  Intelligent Supports for Quick Outcomes in Telehealth

Although telehealth has been used for different forms of patient care, the implemen-
tation of artificial intelligence (AI)-based support for intelligent decision is gaining 
ground [59, 60] because of the quick decision support that is revolutionising care-
giving. Notwithstanding, the importance of quality decision support frameworks 
cannot be overemphasised [61]. To this end, the promotion and use of high-fidelity 
data and techniques to develop these architectures with high true positive and true 
negative rates will be vital for effective health management. Researchers have 
implemented the strategy in different forms with Molina et al. [62] integrating EMR 
and telehealth services for managing epilepsy by ensuring an intelligent detection of 
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EEG signals from the patients. This framework that was configured in OpenMRS 
platform helped neurologists to make quick health assessments on the patients with 
a 65–75% time savings when compared with the manual signal assessment. Eggerth 
et al. [63] showed that the integration of intelligent decisions into medication adher-
ence management is vital for quick analysis of patients’ compliance. Intelligent 
decision support also interphases with EMR via loop telehealth to facilitate collab-
orative management by relevant stakeholders for proactive caregiving [64, 65]. 
Intelligent decision support for medication adherence through real-time monitoring 
and prediction of risks with vital signs can be a useful strategy for quick decision 
about patient’s wellness status and therapeutic effects management [66]. 
Unfortunately, Alghamdi et al. [67] showed that improved medication adherence 
was not achieved through telemonitoring and text messaging, whereas other studies 
supported improved medication adherence with other forms of telehealth monitor-
ing strategies requiring constant reminders [68, 69].

9.4  Challenges of Telehealth Application

Removing distance barriers to telehealth is vital for enhancing the wellness of the 
community if sufficient electronic and telecommunication infrastructure can be 
available for the various kinds of medical services to be undertaken remotely [70]. 
The numerous challenges facing telehealth are summarised in Table 9.2.

9.5  Implications for Theory and Practice

There is overwhelming evidence from the reviews to support the efficacy of tele-
health in managing various diseases such as cardiovascular diseases, mental health 
problems, diabetes, COPD, degenerative eye conditions, cancer etc. This advantage 
is pronounced for patients in rural and remote communities, which do not have 
immediate access to specialist services and have higher mortality rates [19, 20] that 
are decreasing especially for cardiovascular conditions [17, 21].

The major advantages in telehealth for rural and regional communities accrue to 
the patient in terms of reduced travel time and cost to access highly specialised 
services that are non-procedural as procedural services still require in-person atten-
dance with the current state of robotics.

Governments have invested substantially in the development of specialised 
health services in regional centres.

If in-person health services of a non-procedural nature are regarded as equivalent 
in quality to those delivered by Telehealth it may result in withdrawal of non- 
procedural specialist services from regional and rural centres and concentration in 
Metropolitan centres.
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The improvement in the quality of life is also evident in patients with chronic 
conditions subjected to self-management care via telehealth as diabetes prevention 
programs conducted for satellite patients achieved the same level of body weight 

Table 9.2 Summary of key challenges

Key 
challenges Description Reference

Infrastructure •  Lack of critical infrastructure for health service 
provision in remote and rural communities is 
hampering the smooth running of telehealth

Rashvand and Hsiao 
[70], Rosenbaum [7], 
Saleem et al. [45]

Safety 
challenges

•  Safety of client managed by telehealth can be 
compromised due to poor clinical decisions 
necessitated by poor inferences

•  Staff training on the use of some telehealth 
technologies is posing a barrier to their 
implementation in some regional health centres

• Security and privacy of cloud-based platforms

Rashvand and Hsiao 
[70], Ellimoottil et al. 
[2], Newton et al. [40], 
Jin and Chen [71]

Legislative 
bottleneck

•  Legislative bottlenecks are preventing the wide 
implementation of telehealth as many nations, 
states and territories have conflicting requirements 
for the management of patients’ health records

Rashvand and Hsiao 
[70], Ellimoottil et al. 
[2], Newton et al. [40]

Cost •  As most of the technologies on which telehealth are 
built are not yet matured, investors are not always 
willing to invest on such infrastructure and services 
for fear of inadequate financial returns

Rashvand and Hsiao 
[70], Ellimoottil et al. 
[2], Newton et al. [40]

Waiting time •  Due to the COVID-19 pandemic and struggling 
capacity of the current infrastructure, the waiting 
time for patients increased

•  The healthcare professionals may spend more time 
in acquiring patient’s history due to poor narratives 
that sometimes cannot be quickly interpreted 
because of the inconsistencies with the established 
norms for clinical assessments of clinical conditions

Rosenbaum [7], 
Saleem et al. [45], 
Blue et al. [72]

Scepticism •  Many patients are hard to convince about the 
efficacy of telehealth, thus, making it difficult to 
win them over

•  Organisational business strategy adopted in several 
health contexts

Ellimoottil et al. [2], 
Trux [6], Newton et al. 
[40]

Quality of 
service

•  There is a tendency for a decrease in the quality of 
examination patients get especially when the 
quality of video transmission is poor for locations 
with limited telecommunication infrastructures

•  The delay in transmission could be a recipe for 
poor information delivery and subsequently poor 
health outcome. This can be worsened during poor 
weather or technical problems with the 
telecommunication infrastructures

•  Interoperability of electronic medical records 
(EMRs) and challenges of seamless communication 
with telehealth platform

Park et al. [73], Sahin 
et al. [74], Blue et al. 
[72], Jin and Chen [71]
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loss (5 and 7%) as face-to-face patients [49, 50]. There was also evidence of an 
enhanced reduction in HbA1c levels and other biomarkers for telehealth patients 
compared with those using the conventional practice of face-to-face doctor visita-
tion ([51, 75]). As a result of these positive patients’ experiences, it may suffice to 
implement telecare with videoconferencing and/or mobile apps as the enabling 
technology to manage diabetes in regions of high prevalence to improve wellness 
and reduce the cost impact to the healthcare sector.

The importance of adapting less complex telehealth enabling technologies was 
clearly shown by the inability of patients with limited knowledge of telehealth tech-
nologies to complete clinical trials and benefitting from the health management 
information proffered [42]. Some health experts are also having problems with tele-
health technology due to their complex navigation platforms, thus, many are dis-
couraging the patients about the potency of the technology despite the numerous 
advantages. To this end, some of the complex telehealth platforms may be prevent-
ing the adoption despite the cost associated with the integration process. It may 
therefore be beneficial for developers to focus on using mobile apps with minimal 
features or use manipulation strategies that will rely more on scanning barcodes for 
information retrievals [76]. Health professionals relying on these platforms can be 
able to manipulate reports easily and retrieve medical images in time to facilitate 
diagnosis.

Inclusion of educational modules about the various disease conditions targeted 
by telehealth is very vital for achieving the anticipated wellness of the patients. 
Evidence from this study suggests that proper education is necessary for managing 
the symptoms of chronic conditions during and after treatments such as chemo-
therapy and radiation [56, 57]. This was further proved by patients suffering from 
major depression and bipolar disorder that had improved wellness (reduced care) 
through self-management education and reduced blood sugar level for diabetic 
patients with mental illness [41].

Although most of the telehealth outcomes are encouraging as patients in some 
instances have similar health outcomes with telehealth as with face-to-face hospital 
visitation, the hindrance caused by insufficient telecommunication infrastructure in 
rural and remote communities is enormous. Health professionals who can only rely 
on telehealth for covering a vast expanse of rural communities were met with poor- 
quality networks that impaired the service delivery [40]. In light of this, getting 
telehealth to achieve more milestones in wellness will involve efficient telecommu-
nication services [3], that will boost communication between the health profession-
als and patients. This will promote intelligent telehealth in diagnosis, prognosis, 
medication adherence, collaborative decision support and quick recovery for 
patients [26, 60, 63, 76]. Similarly, the challenge posed by the fragmentation of 
electronic medical records (EMRs) and the poor interoperability of most hospital 
systems [77], and the impact on smooth telehealth implementation can be mitigated 
with the cost-effectiveness of the open EMR platforms [78].
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9.6  Limitations

We made a concerted effort to address patients’ experience of clinical outcomes 
from telehealth by reviewing the findings of numerous studies in the literature. 
Although the study tried to incorporate the results from many papers addressing the 
subject matter especially the focused disease conditions and clinical practices, we 
know that some studies must have been omitted. Given the fact that the practicality 
of exhausting all the known literature in a given area is not possible, we affirma-
tively believe that the information in this study represents patients’ experiences of 
clinical outcomes from telehealth and will provide invaluable information for policy 
implementations.

9.7  Conclusions

As the cost of healthcare is increasing all over the world and managing wellness is 
becoming gradually more difficult, one of the sure ways of expanding access to 
healthcare is telehealth. Despite some of the challenges facing telehealth implemen-
tation such as limited telecommunication infrastructure and the cost of developing 
and running a successful platform, the technology still remains the true option for 
self-management of many chronic diseases and maintaining the quality of life of 
rural and remote dwellers.

This study relied on the information from the literature to show how telehealth 
has helped patients maintain wellness or manage chronic and debilitating conditions 
by analysing numerous clinical trials and other articles on telehealth strategies, 
enabling technologies and patients’ experiences of the clinical outcomes. This 
evidence- based study confirmed that the use of telehealth services improves self- 
management efficiency and glycaemic control in patients with diabetes. It also helps 
individuals undergoing diabetes prevention programs to lose body weight at the 
same rate as people using face-to-face services lose theirs following some regi-
mented programs. People with mental illness and have diabetes were also able to 
have reduced blood sugar levels following a telehealth education program that con-
trolled their anxiety levels. The advantages of telehealth for pre-operative and post- 
operative surgical care were also outstanding with results of patients’ satisfaction 
and ease of identification of complications after surgery compared to those obtained 
via face-to-face care. Patients with COPD were able to reduce the number of emer-
gency visits, hospitalisation, use of mechanical ventilators and LOS after telecare, 
whereas cancer patients undergoing chemotherapy and radiation treatments had 
increased quality of life due to their ability to understand the symptoms and the 
management strategies of the sickness.

It is obvious that telehealth still has obvious challenges that are hampering the 
widespread implementation, but the progress made so far through the intervention 
in monitoring, mentoring, rehabilitation, surgery and caring is sufficient to open 
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new healthcare frontiers for implementation. Thus, a systematic investment in the 
needed infrastructures, the simplification of the telehealth software and the improve-
ment of EMRs’ interoperability and democratisation will define the next phase of 
adoption of the technology. Since the legislative bottlenecks surrounding data pri-
vacy and security are gradually easing and the security of data transmitted through 
the platforms is improving, there is bound to be an enhanced acceptance of the 
technology. This will inevitably give room for greater investments in the infrastruc-
ture facilities, hence guaranteeing greater access to the populace.
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Chapter 10
Disrupting LATAM Digital Healthcare 
with Entrepreneurship 
and Intrapreneurship

Luis E. Fernández

10.1  Digital Health Overview

Now more than ever, technology has played a massive role in how we deliver safe 
and accessible healthcare services to patients around the world. The implementation 
of digital tools and systems in both healthcare organisations and companies pro-
vides the right set of circumstances to enable healthcare professionals to do their job 
better, faster, safer and with a wider scope.

Since the accessibility of personal computers in the early 1990s [1], the world 
has been constantly innovating to shorten the gap between patients-healthcare pro-
fessionals, make smarter decisions by using data and provide accessible service to 
the community through Digital Health applications [2].

According to the US Food and Drug Administration (FDA) [3] and the drug 
treatment agency (DTA) in the UK, there are six categories in which Digital Health 
applications can be divided into [4]:

• Telehealth
• Health Information Technology
• Digital Therapeutics
• Personalised Healthcare
• Devices, Wearables and Sensors
• Mobile Health

Although it may seem that Digital Health applications are expensive projects to 
develop, through the “Startup Movement”, the world has discovered a feasible and 
popular channel in which intrapreneurs and entrepreneurs can validate a specified 
hypothesis in a shorter period and with a lower budget. According to the Journal of 
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mHealth’s Global Digital Health 100 Award, there is a huge market niche that’s 
being addressed by Health tech/Digital Health startups today.

10.2  The Startup Movement and Method Overview

The access to personal computers and the boom of the dot.com era brought a world 
of possibilities to solve problems in every sector. Companies such as Amazon and 
Uber have disrupted traditional business models and methodologies, offering results 
that reduce inefficiencies, costs and increase quality for customers and busi-
ness owners.

Over the past decades, individuals and groups of people have used this technol-
ogy as an inexpensive basis to innovate, producing solutions with limited funding 
that can create a huge impact and value on our society. The popular phenomenon of 
venturing to create a business under a high level of uncertainty is often referred to 
as “create a startup”.

Eric Ries’s book The Lean Startup [5] describes a framework under which one or 
more individuals can create a startup by following an adjusted set of principles that 
are similar to those included in the Scientific Method (Fig. 10.1).

To prove if a startup’s product or service will be successful, its value proposition 
needs to be centred on an established hypothesis that has been designed to challenge 
the customer’s or user’s usual behaviour. For example, if a startup’s product or ser-
vice was related to electronic health records, the hypothesis would most probably be 
related to enhancing performance improvement in medical practices and/or increas-
ing patient outcomes by using the product in a certain process.

After carefully designing a hypothesis, a startup builds a product or service that 
serves as a vehicle to challenge it, but because funding and other resources are likely 
limited, the venture needs to make smart decisions on product/service development. 
Ries describes this as the Minimum Viable Product/Service development process, 
which is basically creating a solution with sufficient features to attract early adopt-
ers that will offer the needed feedback to improve and scale.

Fig. 10.1 The build- 
measure- learn loop as 
described in Eric Ries’s 
The Lean Startup [5]
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The Value Proposition Canvas (VPC) developed by Dr. Alexander Osterwalder 
[6] can help a startup create products/services that are centred around the custom-
ers’ needs. The VPC will help illustrate the customer’s usual activities and pinpoint 
the “pains” or “symptoms” he/she is experimenting with because they’re not using 
the startup’s product/service. After making a list of both the activities and the pains, 
a startup must validate these assumptions through customer engagement, surveys 
and focus groups; not doing so may result in imprecise product/service design 
which will eventually lead a startup to a pivoting process and probable failure. After 
validating the customer’s usual activities and pains, a startup can now focus on 
designing the product/service features that will provide value to the customer, sav-
ing them time and money.

Although being an entrepreneur in any sector can be very tough, Health tech/
Digital Health startups face additional challenges that make it even harder for a 
product/service to reach the market (Table 10.1).

Since most health tech/digital health startup products/services are related to 
diagnose, treat or rehabilitate patients, they might have to comply with additional 
medical device regulation that requires additional funding and time to successfully 
launch into the market.

10.3  Entrepreneurship and Intrapreneurship

In entrepreneurship, the founding team is responsible for the ideation, operational 
framework, product/service development, funding, marketing, sales, legal and other 
process groups that lead to the startup becoming a formal company. In this type of 
venture, the team operates freely at their own pace and with their own rules. On the 
other hand, intrapreneurship refers to the innovation process within an established 
company, who provides resources and guidelines so that a team can deliver a result 
that either enhance an existing product/service or creates a new one. If the product/
service developed in an intrapreneurship scenario is successful enough, it’s com-
mon for the venture to evolve into a spinoff; a part of a company that has been sold 
to create a new one.

Table 10.1 Examples of challenges faced by digital health products/services

Digital health application Example of a challenge

Telemedicine Connectivity
Electronic health record Privacy
Digital sleep improvement Accuracy
Personalised health recommendations using AI Liability
Smart watches Traceability
Symptom monitoring through smartphones Timing
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In both cases, the team members share the startup mindset (uncertainty, adapt-
ability, awareness and leadership skills) and they also use the same startup princi-
ples, methodologies and tools previously mentioned. However, an entrepreneur will 
receive all the rewards and has a much higher risk than an intrapreneur, as the for-
mer one will not be risking neither time nor money. Regardless of the risk level, it 
is very common to see both project classifications competing in the health-
care market.

10.4  Health Tech/Digital Health Startup Ecosystem in Chile 
and Mexico

As mentioned in the abstract, most of the medical devices used in Latin America are 
imported from foreign nations, with countries like Mexico importing more than 
80% of the medical technology used in hospitals [7]. With the rise in the accessibil-
ity of technology and inspiration from popular startup regions such as Silicon Valley, 
Latin American entrepreneurs and intrapreneurs have been working hard to deliver 
much more affordable and LATAM-oriented solutions [8, 9].

10.5  The VSZ-20-02 COVID-19 Mexican Emergency 
Ventilator Case

Due to limited critical COVID-19 equipment and complications in international logis-
tics caused by the pandemic, the healthcare sector suffered one of its biggest crises in 
history [10]. Mexico was one of the most affected countries due to its large percentage 
of imported medical devices, outdated regulatory procedures related to emerging 
medical technology and lack of a well-established medical device industry [11].

When Mexican entrepreneurs and intrapreneurs witnessed the lack of mechani-
cal ventilators for critically ill COVID-19 patients, multiple individuals (Biomedical 
and Non-Biomedical Professionals) gathered to assess the possibility to create ven-
tilators to help their country. Although more than 30 ventilator initiatives were 
detected by the Mexican Society for Biomedical Engineering (SOMIB), almost all 
of them failed to deliver due to a simple motive; building a ventilator that will be 
used on patients is not just simply building a machine that pushes air through a 
circuit.

In 2020, a group of private companies and the Salvador Zubirán National Institute 
of Health Sciences and Nutrition gathered to develop an emergency ventilator to 
fight the deficit of these devices nationwide [12].

After months of hard work, the VSZ-20-02 emergency mechanical ventilator 
received a temporary emergency approval by the Mexican FDA COFEPRIS and 
built over 200 units to be sold at a lower price than foreign devices available in the 
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market ($12,000.00 USD in comparison to an average price of $60,000.00 USD per 
ventilator from recognised manufacturers).

The VSZ-20-02 Emergency Ventilator Project can be categorised within the 
entrepreneurial scope since several groups of professionals worked together to 
prove that the national industry holds the potential to develop the needed technology 
for clinics and hospitals in Mexico. Although most of the manufacturing team had 
not worked on medical technology projects before the VSZ-20-02 project, the ven-
tilator succeeded to meet the regulatory criteria to obtain a temporary authorisation 
from COFEPRIS. Its success was due mainly because of the participation of several 
medical device specialists, consultants, healthcare professionals, regulatory agen-
cies and universities. The project had a hypothesis, was built with limited function-
ality that targeted specific COVID-19 therapy needs and allowed Mexican hospitals 
to save over 70% of their budget when purchasing a ventilator for COVID-19 pur-
poses. To evaluate both its functionality and feasibility, as well as to correctly main-
tain each unit, a third-party service provider was hired to offer preventive and 
corrective maintenance, user training, customer support and register any customer 
interaction that involved a ventilator unit in a CMMS software [13]. The collected 
data will be evaluated in 24 months to conclude if the ventilator could go under 
further development to enhance its functions and compete in the market with a 
wider scope [14].

10.6  Innovation Within a Company (Intrapreneurship)

Curious enough, the CMMS platform was donated by a startup (TINC) that emerged 
within a service company. Due to the lack of Latin American-focused CMMS solu-
tions, a Clinical Engineering (CE) outsourcing company (Biomedica en Línea) [15] 
developed an asset management platform to be used in the 35 hospitals in which 
they were offering CE outsourcing services. The main purpose of this platform was 
to standardise CE processes among their customers, which would then give them 
the opportunity to generate enough data to create tailored reports for each customer 
(saving thousands of dollars in administrative labour). The platform was so success-
ful that it eventually became a company of its own, offering a job to more than 20 
professionals in Mexico that led them to win multiple international entrepreneurial 
competitions, raise a USD $300,000.00 investment round and offer their SaaS ser-
vices to +700 customers in nine countries.

10.7  Proposed Role for Universities in the Startup Movement

Innovation begins in a classroom filled with enthusiastic students and experimented 
professionals (teachers). From 2012 through 2017, a survey was conducted in a 
private university in Mexico to assess final projects developed by last semester’s 
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students. The intention of the survey was to conclude what percentage of those 
projects could be potentially used as a Minimum Viable Product/Service to help the 
community. The results concluded that only 7% of the 72 projects were targeted to 
a real community need.

Universities can have a huge and very productive role in the entrepreneurial pro-
cess if only professors would (1) include assessing real customer needs in their 
project criteria, (2) were trained in the VPC/Lean Startup methodologies and (3) 
made enough emphasis in the Scientific Method for research.

One of the Top-Class Entrepreneurial Accelerators worldwide, Start-Up Chile 
[16], offers entrepreneurial teams an opportunity to develop their business idea into 
a startup under a proven mentoring process that includes networking, business 
model ideation, pitch practice and an equity-free seed fund of USD $40,000.00. 
Since its creation in 2016, Start-Up Chile has accelerated 1960 startups and has 
reached a USD $2.1B valuation, becoming one of the Top Ten accelerators in the 
world and the most important in Latin America.

If only the universities would focus more on solving real issues among their 
communities instead of randomly asking the student to develop a research essay to 
meet a milestone of a final project, many of these projects could be funded by pro-
grams like Start-Up Chile, which can help them turn their university project into a 
startup that will evolve into a successful business that generates value.

10.8  Conclusion

Latin America holds the potential of becoming a leading industry in medical tech-
nology [17], from university classrooms to manufacturing companies that export 
their products internationally. The Startup Era is slowly (but surely) emerging in 
Latin American countries [18], and with the clear example of scarce health tech 
solutions during the COVID-19 pandemic, economies will start looking at startups 
as the next solution to enterprise problems. With much lower operating costs, great 
talent, young energy and the recognition of the Biomedical Engineering profession 
healthcare regulations, disruption in the traditional healthcare model is happening 
through a systematic process that will require Venture Capital and Governments to 
start re- shaping their ways much faster than they thought [19].
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Chapter 11
Data for Social Good: A Tripartite 
Approach to Address Diabetes Self-Care 
and Patient Empowerment

Nilmini Wickramasinghe  and Steve Goldberg

11.1  Introduction

One of the biggest burdens for healthcare systems globally is the exponential growth 
of chronic, non-communicable diseases such as diabetes [1–4]. In 2019, approxi-
mately 463 million adults (20–79 years) were living with diabetes [5, 6]; by 2045, 
it is estimated that this will rise to 700 million. The proportion of people with type 
2 diabetes is increasing in most countries while 79% of adults with diabetes are liv-
ing in low- and middle-income countries (ibid). The greatest number of people with 
diabetes are between 40 and 59 years of age, and 1 in 2 (232 million) people with 
diabetes are undiagnosed (ibid). Diabetes is responsible for 4.2 million deaths (ibid) 
and is a major cause of blindness, kidney failure, heart attacks and lower limb 
amputations. In the United States alone, diabetes caused at least USD 760 billion 
dollars in health expenditure in 2019—10% of total spending on adults (ibid). More 
than 1.1 million children and adolescents are living with type 1 diabetes and more 
than 20 million births (one in six births) are affected by diabetes, while 374 million 
people are at increased risk of developing type 2 diabetes (ibid). Clearly, these 
alarming statistics serve to underscore the depth and magnitude of this silent epi-
demic of diabetes, and the dearth of globally effective approaches to curb its con-
tinually rising incidence and impact.

Succinctly, diabetes mellitus (diabetes) is a metabolic disease due to several 
causes characterised by hyperglycaemia (high blood sugar) resulting from defects 
in insulin secretion, insulin action or both [5]. The chronic hyperglycaemia of 
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diabetes is associated with long-term damage, dysfunction and failure of various 
organs, especially the eyes, kidneys, nerves, heart and blood vessels [7]. The vast 
majority of cases of diabetes fall into two broad categories (ibid). In one category, 
type 1 diabetes, the cause is an absolute deficiency of insulin secretion. In the other, 
much more prevalent category, type 2 diabetes and gestational diabetes, the cause is 
a combination of resistance to insulin action and an inadequate compensatory insu-
lin secretory response (ibid).

Early detection and proactive management of diabetes are thus essential [8]. In 
this regard, a critical treatment imperative is to improve the control of diabetes by 
providing patients’ monitoring to enable better assessment and control of blood 
glucose coupled with appropriate support and feedback regarding effective diet and 
exercise regimens [9–11]. This strategy also serves to prevent and/or limit the onset 
of further and unpleasant complications associated with poorly managed diabetes 
[8]. It is vital that a cost-effective solution that is convenient to both patients and 
clinicians, and least disruptive to patient lifestyle, be adopted [10]. However, given 
the escalating numbers of people developing diabetes (made more problematic by 
the rapid rise in developing countries primarily due to the adoption of westernised 
diets coupled with reduced physical activity) is reaching a crisis point for healthcare 
delivery. This indicates that current approaches to management are falling short.

As there is no cure, diabetes requires daily self-management with attention to 
regulating blood sugar through a balance of diet (supply of carbohydrate) and exer-
cise (demand for carbohydrates), regardless of whether or not an individual is also 
using pharmacological therapeutic agents to enhance their insulin supply and/or 
cellular uptake [8].

To address this healthcare and community predicament, the Data for Social Good 
Cloud Innovation Centre powered by Amazon Web Services (AWS) at Swinburne 
University of Technology, Northern Health and Inet International, Inc., Canada, 
together with academics and healthcare professionals, are developing a unique 
flipped healthcare model (i.e. where the patient takes more responsibility, becomes 
an active participant who is empowered to manage their health based on being better 
informed) [12] for providing patients with type 2 diabetes support for self-manage-
ment and patient empowerment. This is the first such initiative in the Southern 
hemisphere and is a unique approach, bringing together key yet very disparate 
stakeholders, a large international IT solutions organisation, an SME (small- to 
medium-sized enterprise) IT vendor, a large healthcare organisation and academe to:

 (a) Serve society—by addressing a critical healthcare priority that affects 1  in 3 
people and cost billions of dollars annually.

 (b) Involve stakeholders—by bringing together patients, healthcare professionals, 
healthcare organisations with IT and academe as well as other key healthcare 
stakeholders such as government, and payers.

 (c) Impact stakeholders—by working together to co-design a technology solution 
to enable people with diabetes to flourish while living with diabetes as well as 
supporting healthcare providers to provide superior, patient-centred care and 
reduce healthcare costs.
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 (d) Value both basic and applied contributions—by harnessing tools and technolo-
gies of the Internet of Things (IoT) to develop a new theoretical framework that 
will enable applied research to impact a pressing and current issue effectively 
and successfully.

 (e) Value plurality and multidisciplinary collaboration—by bringing together all 
key stakeholders and working together to solve the pressing dilemma.

 (f) Subscribe to a sound methodology—by applying Amazon’s innovation 
approach and enfolding around these key principles of Design Science Research 
Methodology, co-creation and user-centred design.

 (g) Provide broad dissemination—by using many forms of dissemination, includ-
ing Amazon press releases, hospital and research networks, social networks and 
patient advocacy organisations to ensure the advancement and uptake of knowl-
edge and practice in this space.

The proposed approach serves to underscore the importance of adopting a 
responsible style to design, development and deployment of a robust, personalised 
yet culturally sensitive IS/IT (information systems/information technology) solu-
tion to support individuals with diabetes will prove to be beneficial in addressing the 
current crisis. The following presents the key steps in the design and development 
of this solution “SAPIENT”, the first stage of this longitudinal research project.

11.2  Background

Jimenez et  al. [13] have noted that currently there are over 300,000 health apps 
available in the market targeting a variety of user needs from weight loss to manage-
ment of chronic conditions, with diabetes being the most commonly targeted condi-
tion. Separately, we conducted a simple assessment of several of these Apps using a 
Google search and examining patient/user reported feedback to develop a flavour 
for the strengths and limitations of these Apps. Specifically, we examined the top 60 
iOS and Android mobile apps used for monitoring diabetes based on user ratings 
available at the time of review and noted the following:

 – 41 are free apps
 – 19 require some form of payment
 – The cost of paid apps ranges from $0.99 to $86.99
 – 50 are Android-based
 – 10 are iOS-based
 – Of the 53 Android-based and 10 iOS-based apps, 6 are both iOS- and 

Android-based

Tables 11.1 and 11.2 present summaries of the data compiled around specific 
features.

A key point to note is that none of these leading apps provided ongoing behav-
iour support and reinforcement nor was their provision for cultural nuances, 
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religious and/or ethnic preferences around diet and exercise; rather, it was assumed 
that everyone subscribed to a typical meat and vegetable diet.

Given that diabetes management is an ongoing, lifetime endeavour, especially 
given the lack of existence of any cure or known solution for a foreseeable cure, 
sustained behaviour modification around lifestyle, diet and exercise is an essential 
aspect to achieve successful and long-term blood glucose management [8]. 
Therefore, it is unsurprising that the current apps on the market are not significantly 
successful in supporting long-term management for patients with diabetes. 
Moreover, another aspect to be noted is that these apps pay little if any attention to 
cultural and/or religious sensitivities around food choices and recommendations 
and/or exercise activities. It is not possible to ascertain that co-design featured sig-
nificantly as this point was never mentioned but this also means we cannot assume 
that it did not occur just because it was not mentioned; thus it is prudent to believe 
it is highly likely that co-design was not a significant factor in the design and 

Table 11.1 Classification of the key features of diabetes mobile apps

Feature

Alcohol consumption management
Automatic synchronisation
Bluetooth connectivity and compatibility with other apps and devices
Carb intake and sugar level analysis
Data backup and export
Doctor’s report and appointments
Expenses management
Health and medication analysis
Lab report inclusion and prescription management
Location monitoring
Meditation, thoughts and behavioural management
Nutrition, exercise and health tips
Report modification
Scheduling and reminders
SharePoint and networking
Smart assistance

Table 11.2 Summary of number of features present in surveyed apps

Number of features % of Apps

1 28
2 8
3 15
4 22
5 10
6 5
7 7
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development of the examined apps. Finally, this chapter contends that by drawing 
upon the more recent advances in analytics (such as artificial intelligence (AI) and 
machine learning techniques), it should be possible to design and develop a digital 
health solution that can support diabetes self-management by providing real-time 
feedback and decision support to individuals regarding better diet and exercise 
choices based on their current blood glucose levels when interpreted in the context 
of their actual current and recent food and diet choices.

Hence, the following sets about to design a more tailored, precision diabetes self- 
management tool to address this apparent void. The research question guiding the 
study is: How can we combine the advances in digital health, in particular mobile 
health solutions and data analytics, to support a personalised yet culturally sensi-
tive self-management support for individuals with type 2 diabetes to enable ongoing 
tight blood glucose control and thereby superior diabetes management?

11.3  Method

As noted by Jimenez et al. [13] and confirmed not only by our own assessments of 
the extant literature but also by previous work [9], the ambiguity of app selection 
and the wide variability in key features of the apps recommended for diabetes man-
agement create many difficulties for patients when trying to select the most appro-
priate and effective app to help them achieve optimal self-care of their diabetes. 
Moreover, it appears that these apps fall short of providing sustained benefits [9, 13]. 
It is critical, then, to involve key stakeholders; patients, clinicians and technology 
leaders to define the key features an app should have for it to be classified as a “dia-
betes management” app (ibid). Taking this into consideration and motivated to 
address a serious and significant healthcare issue; namely diabetes management, we 
thus, assembled a multi-dimensional team including leading clinicians (endocri-
nologist, diabetic nurse, diabetic educator and dietician as well as senior health 
professionals), a large public hospital in Victoria, Australia that has an extensive and 
heterogeneous diabetic patient population, AWS Cloud Innovation team, an SME IT 
vendor who has had over 20 years of designing mobile solutions for diabetes and an 
academic team consisting of individuals with clinical expertise in diabetes and glu-
cose control, digital health, IS/IT and behavioural science. In this way, we were 
confident that the team had the necessary expertise, knowledge and skills to address 
the design, development and deployment of a suitably robust technology solution 
that would be fit for purpose.

This research project represents the first AWS Cloud Innovation Collaboration 
(CIC) in the Southern hemisphere and it subscribes to a rapid idea-to-realisation 
format incorporating Amazon’s “working backwards” technique [14] that has been 
used and proved to be successful, coupled with design science research methodolo-
gies, co-creation and user-centred design principles. The project consisted of sev-
eral sequential phases that also required numerous iterative steps within and across 
the respective phases.
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11.3.1  App Development

The initial build phase was conducted over a 10-week period on the securement of 
appropriate ethics approvals. The objective of this phase, which is consistent with 
Amazon’s working backwards mechanism that is applied to Amazon new product 
development projects, was to apply rapid development to complete a conceptual pro-
totype. This conceptual prototype was then used to facilitate discussions with user 
groups to ascertain key features and needs required of the solution, so it would indeed 
be fit for purpose. Figure 11.1 depicts the essential stages within this key phase.

To build the conceptual prototype, the key stages included multiple site visits, 
semi-structured interviews with patients and clinicians, as well as working with IT 
team members to design and develop the essential elements of the conceptual pro-
totype. Key deliverables at this stage included identifying important person/patient 
types or personas around age, gender, cultural sensitivities, likes and helpful fea-
tures for patient users and key clinical imperatives for the clinical users. Standard 
qualitative and quantitative techniques were used including focus groups, semi- 
structured interviews, surveys and hermeneutic analysis to gather the necessary data.

11.3.2  App Validation

Once the conceptual prototype was deemed appropriate by both clinical and patient 
users then the next phase was the build stage of the functional prototype. On the 
development of the functional prototype a test phase is now in progress. The test 
phase consists of two key parts. The first part involves unit testing to ensure the 
solution provides the correct results when dummy data is entered, and the second 
part is a clinical trial with 100 patients to assess usability, feasibility, fidelity desir-
ability, viability and establish proof of concept. The clinical trial involves a two-arm 

Fig. 11.1 Phase 1 with associated stages
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cross-over trial of 6 months, with cross-over taking place at the 3-month mark (refer 
to Fig. 11.2). One arm of the study will have standard care plus the built solution 
while the other will have just standard care. At the 3-month cross-over mark the two 
arms will inter-change. This is necessary to assess haemoglobin A1c levels 
(HbA1C), an objective measure of blood sugar control [15]. Cross-over trials are 
deemed a most appropriate research design to test solutions of this nature; namely 
when a technology solution is introduced to enhance or augment standard care [16]. 
At the start, cross-over point and conclusion of the clinical trial both patient and 
clinician users complete a short survey regarding the use of the solution. During the 
course of the clinical trial patient blood glucose, diet and exercise are monitored and 
at each 3-month mark HbA1C is measured, to enable assessments of the fidelity, 
desirability and viability of the built solution. In addition, at the end of the clinical 
trial a subset of patients and all clinicians will partake in focus groups respectively 
to discuss the solution, enhancements and other issues.

11.4  Results

In following the prescribed “working backwards” approach of Amazon, a first 
essential step is the development of an infographic that captures all the key aspects 
around the problem domain. Figure 11.3 presents the developed infographic. This 

Fig. 11.2 Study design for the clinical trial
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infographic was used to communicate between all users (patient and clinician) criti-
cal aspects of the problem domain and its far-reaching implications. Specifically, in 
the case of diabetes, there is the cost for the healthcare system, the impact on 

Fig. 11.3 Diabetes infographic
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clinicians and most importantly the impact on patients especially if left untreated or 
poorly managed. The developed infographic also captures key inhibitors.

The conceptual prototype called “SAPIENT” was developed within the 10-week 
rapid design phase, as presented in Fig. 11.4. Although not explicitly demonstrated 
in the conceptual prototype, this solution is powered by a very sophisticated analyt-
ics engine. The analytics are required to support the integration of patient anthro-
pometry, daily blood glucose measurements coupled with exercise activity and food 
intake to then predict and thereby advise to the patient suggested food and exercise 
choices that will ensure best blood glucose levels and thus guide them in achieving 
the best and sustained management of their diabetes. Cultural sensitivity is reflected 
in the food choices that are developed, keeping in mind the patient’s ethnicity, reli-
gious beliefs and/or allergies and food preferences. Moreover, in the course of time, 
personal preferences will be learned and thus can also be recommended. The sophis-
ticated analytics to support this is designed in collaboration with AWS and their 
Data for Social Good group.

In addition to subscribing to the “working backwards” approach of Amazon, the 
study also adhered to a design science research methodology coupled with co- creation 
and user-centred design framework. It is important to note that in this context there 
are two key user groups: patients (and their carers) and clinicians and both groups’ 
inputs were considered. Design science is becoming an important research paradigm 
especially if the desire is to design and develop high fidelity, useful and usable solu-
tions [17]. Moreover, Hevner and Wickramasinghe [18] noted that for healthcare con-
texts, the use of a design science research methodology (DSRM) is especially prudent 
when fine-tuning innovative solutions; and thus, it was incorporated when moving 
from the conceptual prototype to design and develop the functional prototype. 
Table 11.3 maps the cycles of DSRM as used to develop the built prototype.

The developed conceptual and functional prototypes respectively have several 
unique features including being culturally sensitive and supporting ethnic diversity 
and being tailored to individuals needs around their diabetes management. 
Moreover, the built prototype provides educational and behaviour change support 
coupled with guidance around good diabetes care for medication management, glu-
cose control, diet and exercise. This is achieved through nudge features, the ability 
to support serious games [19] and/or interact with users chosen social network. 
The  power of nudge solutions, coupled with serious games and the ability to 

Initial Diagnosis & 
Consultation
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Understanding
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Planning
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Forecasting

Follow Up 
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Fig. 11.4 Conceptual prototype
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interact with one’s chosen social network has been shown to enable and support 
desired and sustained behaviour modification [20]. In addition, at all times clini-
cians have oversight of the essential clinical metrics so can assess if the patient is 
in need of essential medical treatment, thus ensuring the solution is medically 
responsible at all times.

Table 11.3 Design science research guidelines

Design science 
research 
guidelines SAPIENT

Guideline 1: 
Design as an 
artefact

SAPIENT—a convenient and innovative mobile solution to support patient 
and clinical users and enable diabetes self-management and monitoring to 
ensue is developed after iterative discussion with clinicians and patients. It 
also has the potential to support a value-based care agenda as it can increase 
timely patient access, has the potential to increase quality of care and has 
the potential to reduce costs of care by preventing more serious problems 
from occurring

Guideline 2: 
Problem relevance

To address the need for continuous and superior monitoring and 
management of type 2 diabetes patients. To provide in a timely fashion 
anywhere, anytime key data to facilitate better decision making. To provide 
an appropriate technology solution that can support self-management of 
diabetes for patients and support for clinicians

Guideline 3: 
Design evaluation

Clinicians and potential patient users were included at various points in the 
design and testing of the solution. In addition, hospital representatives were 
consulted to ensure the solution complied with all government requirements 
for technology solutions interacting in medical research. In particular, 
patient and clinician feedback enabled the solution to be tailored to the 
Australian healthcare context. Key examples included ensuring the scale to 
measure blood glucose levels were correct, since different scales are used in 
different countries; the correct names of the medications were enabled; 
appropriate legal requirements met and message included such as “if you 
have any concern please contact your health professional [number provided] 
immediately”; while patient-users provide insights into the look and feel 
from their perspective on how they would like data displayed. In addition, 
we tried to gather critical insights around cultural/ethnic and/or religious 
preferences regarding diet and exercise choices. All these aspects were 
addressed before the solution was used in the study

Guideline 4: 
Research 
contributions

In this study, users’ perspectives of the mediating role of the solution are 
explored

Guideline 5: 
Research rigor

Theoretical foundations and conceptual models drawn from information 
systems, chronic disease management protocols, healthcare quality and 
safety were used to inform the development cycles to evaluate SAPIENT in 
clinical contexts

Guideline 6: 
Design as a search 
process

In this project, the design was essential to be correct to meet with ethics 
requirements in healthcare studies and to ensure full and complete risk 
mitigation in such a context

Guideline 7: 
Communication 
of research

Internal communication: Presented the technology and clinically-oriented 
users through focus groups, simulations exercises, brainstorming meetings, 
as well as technical and managerial meetings
External communication: Progress and findings are reported in relevant 
health and IT forum
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Initial results and feedback from patients on the conceptual prototype were very 
positive. In particular, patients commented on simplicity and ease of understanding 
as well as the ability to have the important information readily accessible. Similarly, 
clinician users were very supportive and enthusiastic, noting that the proposed solu-
tion addressed all clinical considerations from their perspective in a convenient 
fashion.

Reflections on the rapid conceptual build phase with both clinician and patient 
participants identified some noteworthy comments as follows:

 1. Patient 1—it was nice to be heard and have my concerns listened to.
 2. Clinician a—while it has been a very full on day, this is best given we are so time 

poor. I can focus on this and also see where it is going quickly…. I am really 
pleased with the approach and look forward to seeing the built solution.

 3. Clinician b—it is great to work with such a strong and diverse team. I think we 
have captured the key features…. I am sure it will really help us.

11.5  Discussion

There is little doubt that diabetes is a significant global problem. In today’s informa-
tion age, we should expect that IS/IT can play a pivotal role to ameliorate the current 
crisis around diabetes and more importantly support better care and self- management 
so that those who suffer from this serious, unpleasant, chronic, non-communicable 
disease can enjoy high-quality life. We decided to address this significant void by 
setting out to answer the research question How can we combine the advances in 
digital health, in particular, mobile health solutions and data analytics to support a 
personalised yet culturally sensitive self-management support for individuals with 
type 2 diabetes to enable on-going tight blood glucose management and thereby 
superior diabetes management?

To answer such a question requires a rich and complex longitudinal project. 
Critical steps include the assembling of a robust and skilled multi-dimensional 
team, the design and development of an approximate conceptual prototype which is 
then developed into a functional prototype that can then be tested at both the unit 
level and in a clinical trial. Only once all these steps have been completed can we 
evaluate the success of the project.

Based on the results to date, the solution is rated highly by the clinician and 
patient users in terms of usability, acceptability and functionality. Results from the 
clinical trial will serve to confirm the success of the solution with regard to patient 
compliance, patient satisfaction, level of glycaemic control and clinician satisfac-
tion. Once all these benefits are assessed, it will be then necessary to unpack how 
and why it supports value-based care and provides a better approach to combating 
diabetes, a pressing global healthcare priority that has far-reaching individual and 
societal implications.

At this stage, we have completed most of the key steps in the development of the 
prototype except the completion of the clinical trial. Hence, we cannot state if the 
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project is successful. However even at this stage, this research in progress study 
highlights many essential contributions for theory and practice and most impor-
tantly in terms of critical factors to ensure responsible IS design, development and 
deployment to address a global social priority as follows: In terms of practice, it 
demonstrates the benefits of collaborating with a multi-dimensional team of clini-
cians, IT vendors and researchers. Without such a skilled team it would not be pos-
sible to effectively and appropriately design and develop a solution to address this 
complex and wicked problem. Next, it highlights that especially in healthcare, it is 
important to recognise that there exist multiple user groups, most typically patients 
and clinicians, and both groups’ needs and requirements must be identified. 
Moreover, while neither of these two groups is homogenous, the heterogeneity of 
the patient-user group is an important factor to consider when providing sugges-
tions around diet and exercise. In particular, it is vital to be sensitive to cultural/
ethnic and/or religious preferences and/or requirements. Designing solutions with 
either an explicit or an implicit view that one size fits all with regard to diet and 
exercise is not only problematic in the context of diabetes but also irresponsible 
because it unintentionally contributes to the significant chasm around health 
inequality with regard to individuals of different cultural/ethnic and/or religious 
backgrounds and their ability to access appropriate food choices that also are appro-
priate from the perspective of their diabetes management plan.

From the perspective of theory, it demonstrates the benefits of subscribing to solid 
research methodologies and design principles such as DSRM coupled with co-cre-
ation and user-centred design but also incorporating successful techniques from 
practice such as Amazon’s “working backwards” approach. In this way, we have 
developed a “flipped” healthcare model where the patient takes part in designing the 
solution that is best suited for their care but we also have taken key steps to ensure a 
designed solution is not only useful and usable but also of clinical value. Today, we 
can see many apps developed to address various healthcare issues but we caution that 
when such solutions are developed without sufficient rigor and healthcare domain 
expertise they are highly likely to do more harm than good, albeit the harm is natu-
rally unintended, it is nonetheless irresponsible rather than responsible because ulti-
mately in healthcare a mistake can mean the difference between life and death.

This study does also have a significant contribution to highlighting an important 
area with regard to IS research and that is its role in outlining an IS study that is 
focused on enabling a “better world”. Given the number of people globally cur-
rently suffering, as well as those projected to suffer, from diabetes in the next 5 years 
alone there is broad recognition that diabetes is a serious global health concern. Of 
note, this health concern has far-reaching implications not just for the patients and 
their families but also for the care team and healthcare workforce implications, 
healthcare funding and society at large. Hence, we believe this study highlights 
critical aspects of how an information systems research initiative can strive to enable 
a better world as follows:

 (a) Serve society—type 2 diabetes affects one in three people and cost billions of 
dollars annually so by focusing on designing and developing a superior technol-
ogy solution that supports self-management and patient empowerment, that is 
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clinically valid, addresses behaviour modification and is culturally sensitive, 
indeed serves society.

 (b) Involve stakeholders—in this project we have brought together patients, health-
care professionals, a large healthcare organisation, a global organisation AWS 
and an SME together with academe as well as other key healthcare stakeholders 
such as government, and payers. In fact, it is unusual for clinicians to collabo-
rate with a leading IT vendor and patients on a project, and we refer to this as a 
tripartite approach.

 (c) Impact stakeholders—by working together to co-design a technology solution 
to enable people with diabetes to flourish while living with diabetes as well as 
supporting healthcare providers to provide superior, patient-centred care and 
reduce healthcare costs we are making progress to beneficially impact all key 
stakeholders.

 (d) Value both basic and applied contributions—by harnessing tools and technolo-
gies of the Internet of Things (IoT) we have developed a theoretical framework 
by combining DSRM with co-creation and user-centred design together with 
Amazon’s “working backwards” approach to enable the rapid design and devel-
opment of a technology solution that is fit for purpose to impact a pressing and 
current issue effectively and successfully.

 (e) Value plurality and multidisciplinary collaboration—by bringing together all 
key stakeholders and working together to solve the pressing dilemma we have 
been able to combine diverse types of inquiry to facilitate the development of a 
solution to address the complex and wicked healthcare problem of diabetes 
management. Moreover, by recognising a “one size fits all” solution is not 
appropriate in the context of people suffering from diabetes and thus incorpo-
rating cultural, ethnic and/or religious sensitives to food and/or exercise we are 
also recognising plurality with the solution and helping to reduce rather than 
increase health inequality issues.

 (f) Subscribe to a sound methodology—by applying Amazon’s innovation 
approach and enfolding around this the key principles of Design Science 
Research Methodology, co-creation and user-centred design we have sub-
scribed to existing sound methodology but also leveraged this and developed a 
more suitable methodology for designing solutions for complex healthcare 
contexts.

 (g) Provide broad dissemination—by using many forms of dissemination, includ-
ing Amazon press releases, to ensure the advancement of knowledge and prac-
tice in this space we plan to disseminate our findings on completion of the 
clinical trial.

11.6  Conclusions

This study describes a unique approach to combating a pressing and significant 
healthcare and social problem; namely diabetes. By bringing together industry, 
healthcare and academe to co-design a solution together with patient and clinical 

11 Data for Social Good: A Tripartite Approach to Address Diabetes Self-Care…



164

users that is fit for purpose, the study highlights not just a specific example of 
responsible IS Research for a better world but also and perhaps more importantly a 
model or blueprint for performing sound IS research that can benefit society, which 
we hope that many will choose to adopt. We believe that by having a multi- 
dimensional team of academics and not just IS researchers to co-design a digital 
health solution together with industry, clinical experts and patient users, we are 
more likely to develop solutions that are fit for purpose, appeal to both clinical and 
patient users and deliver better clinical outcomes. We note that working in such a 
multispectral team brings with it its own challenges as individuals and/or groups 
have specific approaches and need to become flexible and nuanced in other mem-
bers’ styles and protocols, but our experience is that when all have the same shared 
goal, trying to address a key healthcare priority, there is a willingness to work 
together to develop a successful solution.

Acknowledgements The authors are grateful to the support from Northern Heath, its clinicians 
and patients who participated in this study and Dr. Michael Kirk for his critical insights and sup-
port. In addition, Professors Peter Brooks, Adjunct Professor John Zelcer and Penelope Schofield 
are thanked for their insights as well as Kim Anderson from AWS for her energy and support. This 
project was part of the first AWS CIC in the Southern Hemisphere, led by Prof. Wickramasinghe.

References

 1. AIHW. (2007). National Indicators for Monitoring Diabetes: Report of the Diabetes Indicators 
Review Subcommittee of the National Diabetes Data Working Group: Australian Institute of 
Health and Welfare (AIHW) cat. no. CVD 38. Canberra: AIHW.

 2. AIHW. (2008). Diabetes: Australian facts 2008. Australian Institute of Health and 
Welfare (AIHW).

 3. DiabCostAustralia. (2002). Assessing the burden of type 2 diabetes in Australia. DiabCost 
Australia. Retrieved from https://care.diabetesjournals.org/content/by/year/2002

 4. DiabetesAustralia. (2008). Diabetes in Australia. Retrieved from http://www.diabetesaustra-
lia.com.au/UnderstandingDiabetes/Diabetes- in- Australia/

 5. IDF. (2019). Diabetes facts and figures. Retrieved from https://www.idf.org/aboutdiabetes/
what- is- diabetes/facts- figures.html

 6. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: 
Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.

 7. Diabetes Care. (2004). Diagnosis and classification of diabetes mellitus available at diabetes 
care. Retrieved from https://care.diabetesjournals.org/content/by/year/2004

 8. Khan, M., Chua, Z., Yang, Y., Liao, Z., & Zhao, Y. (2019). From pre-diabetes to diabetes: 
Diagnosis, treatments and translational research. Medicina. Retrieved from https://www.mdpi.
com/1648- 9144/55/9/546

 9. Wickramasinghe, N., John, B., George, J., & Vogel, D. (2019). Achieving Value-Based Care 
in Chronic Disease Management: The DiaMonD (diabetes monitoring device) Solution. JMIR 
Diabetes, 4(2), e10368. https://doi.org/10.2196/10368

 10. Wickramasinghe, N., Cole, N., Kliman, S., Vogel, D., & Goldberg, S. (2014). Exploring the 
possibility for a pervasive technology solution to facilitate effective diabetes selfcare for 
patients with GDM. Paper presented at 2014 ECIS, Tel Aviv.

 11. Wickramasinghe, N., Troshani, I., Hill, S. R., Hague, W., & Goldberg, S. (2011). A transac-
tion cost assessment of a pervasive technology solution for gestational diabetes. International 
Journal of Healthcare Information Systems and Informatics (IJHISI), 6(4), 60–76.

N. Wickramasinghe and S. Goldberg

https://care.diabetesjournals.org/content/by/year/2002
http://www.diabetesaustralia.com.au/UnderstandingDiabetes/Diabetes-in-Australia/
http://www.diabetesaustralia.com.au/UnderstandingDiabetes/Diabetes-in-Australia/
https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
https://care.diabetesjournals.org/content/by/year/2004
https://www.mdpi.com/1648-9144/55/9/546
https://www.mdpi.com/1648-9144/55/9/546
https://doi.org/10.2196/10368


165

 12. Mate, K., & Salinas, G. (2014, December). Flipping primary health care: A personal story. 
Healthcare (Amst), 2(4), 280–283. https://doi.org/10.1016/j.hjdsi.2014.10.003. PMID: 
26250637.

 13. Jimenez, G., Lum, E., & Car, J. (2019). Examining diabetes management apps recommended 
from a google search: Content analysis. JMIR mHealth uHealth, 7(1), e11848. https://doi.
org/10.2196/11848. Published 2019 Jan 16.

 14. Amazon. (2019). Working backwards. Retrieved from https://www.product- frameworks.com/
Amazon- Product- Management.html

 15. Glycemated Haemaglobin. (2019). Use of glycated haemoglobin (HbA1c) in the diagnosis of 
diabetes mellitus. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK304271/

 16. Rigby, A. (2003). Cross-over trials in clinical research. Journal of the Royal Statistical Society, 
52(3), 417–418.

 17. Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for 
maximum impact. MIS Quarterly, 337–355.

 18. Hevner, A. & Wickramasinghe, N. (2017). Design Science Research Opportunities in 
Healthcare. Book Chapter for Eds Wickramasinghe and Schaffer, Theories in Health 
Informatics Management 2017. Springer, New York.

 19. Nauta, H., & Spil, T. (2011). Change your lifestyle or your game is over: The design of a seri-
ous game for diabetes. In IEEE 1st Intl Conference on Serious Games and Applications for 
Heath. Retrieved from https://ieeexplore.ieee.org/abstract/document/6165436

 20. Wendal, S. (2016). Behavioural nudges and consumer technology. In S. Abdukadirov (Ed.), 
Nudge theory in action (pp. 95–123). Springer.

11 Data for Social Good: A Tripartite Approach to Address Diabetes Self-Care…

https://doi.org/10.1016/j.hjdsi.2014.10.003
https://doi.org/10.2196/11848
https://doi.org/10.2196/11848
https://www.product-frameworks.com/Amazon-Product-Management.html
https://www.product-frameworks.com/Amazon-Product-Management.html
https://www.ncbi.nlm.nih.gov/books/NBK304271/
https://ieeexplore.ieee.org/abstract/document/6165436


167© Springer Nature Switzerland AG 2022
N. Wickramasinghe et al. (eds.), Digital Disruption in Healthcare, Healthcare 
Delivery in the Information Age, https://doi.org/10.1007/978-3-030-95675-2_12

Chapter 12
Realising the Healthcare Value Proposition 
of Better Access, Quality and Value of Care 
by Incorporating the Social Determinants 
of Health with Digital Health

Nilmini Wickramasinghe  and John Zelcer

12.1  Introduction

Healthcare systems in most OECD countries are facing major challenges as they try 
to deliver on a healthcare value proposition of better access, quality and high-value 
care. There are many factors that combine to increase demand and contribute to the 
rising costs of care, including an aging population, longer life expectancy and a rise 
in chronic conditions [1]. This situation is most stark when we look at the United 
States. When comparing healthcare performance across high-income countries, the 
United States most notably ranks the lowest [2]. In contrast, the United States is 
generally above average with respect to care process measures, which include pre-
vention, safety and patient engagement [2]. Again, however, the United States ranks 
relatively low with respect to indicators relating to access, care coordination, avoid-
able hospitalisation and information flow between healthcare providers and social 
service providers [2, 3].

One essential factor to facilitate more effective and efficient care delivery is 
around tailoring care and reducing disparities [2]. To realise such a goal, it is neces-
sary to focus on aspects that add value while simultaneously removing areas that do 
not directly impact patients and/or do not add value. By focusing on care coordina-
tion and engaging patients, it is possible to be successful in this regard [1]. 
Improvements in care coordination that focus on chronic conditions as well as 
the  elimination of unnecessary and low-value services, reduce over-prescription 
of  antibiotics and analgesics coupled with reducing unnecessary surgeries, have 
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shown that it is possible to save up to $271 billion [1]. The key stakeholders of 
healthcare—doctors, payers, regulators and healthcare administrators—are all 
focused on improving quality, access and value in care delivery [4]. One way to do 
this is to increase the role of primary care, especially with respect to prevention as 
is noted in the literature [3, 5]. Furthermore, we have witnessed a significant adop-
tion and diffusion of expensive digital health solutions [5]. However, this fails to 
take into account social indicators which also have a bearing on prevention and bet-
ter healthcare outcomes [6] and thus only serves to exacerbate the cost of care with-
out addressing improvement to the quality of care or better access, and hence the 
healthcare value proposition is pushed further from attainment [7–11].

The situation has become bleaker in the COVID-19 pandemic when we have 
witnessed people in lower socio-economic communities being more severely 
affected and having less access to necessary care [12]. While the association 
between socio-economic and behavioural determinants has been noted by care pro-
viders to have a germane impact on outcomes, it is still to be seen if this view will 
be recognised in healthcare reform initiatives [3, 6].

12.2  Social Determinants of Health

Patients’ social and physical environments have a strong impact on their relative 
health and wellness and as such, are recognised as critical aspects of the social 
determinants of healthcare (SDOH) [11]. Figure 12.1 depicts these key areas which 
are the main aspects that impact people’s work and living activities. Thus, if specific 
SDOH is improved, it is not just an individual who will benefit but rather it is pos-
sible to ameliorate specific disparities relating to healthcare and in so doing, the 
likelihood of reducing unnecessary hospital visits also increases [3, 7, 8].

To summarise, the SDOH comprises economic and social aspects that, taken 
together, impact people’s health status and ability to recover. Thus, they make up the 
health-promoting factors from one’s working and living environments and directly 
impact the risk of contracting a disease or infection as well as one’s ability to recover 
[7]. For example, if one lives in a location that has no running water, it is highly 
likely that infection will occur versus if one has clean water. Hence, by systemati-
cally examining these factors one by one, it is possible to identify solutions to ame-
liorate such conditions and thus ensure a better level of health and care might 
ensue [3].

Therefore, we focus on the key social determinants of health with a view to map 
these against healthcare delivery challenges of access, quality and value so that we 
can then model this and identify the key factors and their relation to individual 
patients’ outcomes [3].

From this, we can also construct a framework to assist in the identification and 
evaluation of current determinates to then assist with the design and development of 
a solution set to address the current situation [3]. Next, we integrate this with the key 
tools of digital health to show how we might transform specific healthcare contexts 
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to enable better healthcare ecosystems which in turn will then support the realisa-
tion of the aspired healthcare value proposition.

We contend that without critical consideration of the social determinants of 
health coupled with digital health solutions, it will not be possible to realise the 
desired healthcare value proposition. To address this key void and answer the 
research question; “How can we incorporate the social determinants of health and 
digital health solutions to enable and support better healthcare outcomes and the 
realisation of the healthcare value proposition of better access, quality and value?”, 
we proffer the value cube model (Fig. 12.2).

12.3  Method

This research will adopt a qualitative research methodology to answer the posed 
research question and by so doing, develop a suitable model. The research has sev-
eral phases including performing a substantive review of relevant literature to iden-
tify and assess aspects of clinical and non-clinical determinants of health [3]. We 
included studies that emphasised identifying the subcomponents within healthcare 
determinants. These components actively apply to patients’ lifestyles under differ-
ent categories of health determinants. In addition, we assessed the major digital 
health capabilities and finally the impacts that could be realised if the necessary 
building blocks are put in place. From this, we develop our value cube model 
(Fig. 12.2).

SDOH

Environmental 
factors

Healthcare 
factors

Social 
factors

Economic 
factors

Literacy/
Health 
literacy

Behavioral 
factors

Fig. 12.1 Five determinant areas of SDOH (adapted from [11])
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12.4  Digital Health Powered Through Health 4.0

The application of advances in digital technologies, such as mobile and platform 
solutions, analytics and artificial intelligence (AI) as well as high-speed computing 
and networking, has brought significant gains to various industries in terms of effec-
tiveness and efficiencies as well as enabled mass customisation [3].

Since the early part of this new millennium, Industry 4.0 has been spearheading 
much of this advancement [12]. Industry 4.0 is enabled via the technologies that 
make up the Internet of Things (IoT) and Internet of Systems (IoS) [12]. When 
Industry 4.0 is applied to healthcare, it is often called Health 4.0 and relates to the 
digitisation of healthcare and the application of IoT to healthcare contexts [12, 13]. 
Specifically, the relevant technologies in Health 4.0 include analytics and AI, aug-
mented, mixed and/or virtual reality, mobile and platforms, sensors, 3D printing 
and/or enterprise-wide systems such as EMRs (electronic medical record systems) 
[3, 13–15].

Returning to the SDOH, the role of Health 4.0 is as an enabler for trying to 
address the disparities. A case in point can be around health literacy; via a mobile 
solution that provides advice and information around a chronic condition such as 
diabetes and what might be a good food choice versus a less appropriate food choice 
can be very powerful and yet convenient and relatively inexpensive to an individual 
in a lower socioeconomic situation. Thus, it is the contention of this chapter that 
Health 4.0 plays a pivotal role in enabling an amelioration of most if not all the fac-
tors that are connected to the SDOH and thus can have a critical role to play moving 
forward [3].

Fig. 12.2 Value cube
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12.5  Impacts

Returning to the value cube presented earlier, we identified several key impacts 
(refer to Fig. 12.2) which we now discuss in turn.

 (a) Fostering Communities
Due to various cultural norms and differences in socio-economic level, there exist 

variations in health equity and healthcare delivered across different communi-
ties [8, 16]. Taken together these factors also affect relative health literacy [8]. 
By developing targeted and tailored strategies to ensure a high level of health 
literacy for all communities it is then possible to address some of these current 
voids [16].

 (b) Innovative Ecosystems
As the recent COVID-19 pandemic has clearly illustrated, ecosystems that are able 

to respond and adapt quickly have been able to manage more effectively and be 
less affected by the pandemic. Thus, it becomes necessary to ensure that eco-
systems are prepared and ready for dealing with various types of emergency 
and disaster scenarios [17].

 (c) Empowering Individuals
Today, when health and wellness are affected much more by chronic conditions 

rather than infectious disease, it becomes essential that individuals are empow-
ered in their own health and well-being activities. Mental health, diabetes and 
obesity are examples of chronic conditions that can either be avoided or at least 
better managed if individuals are empowered and take an active role in their 
health and wellness management including following a suitable diet and main-
taining appropriate physical exercise regimens [18].

 (d) Improving Outcomes
Delivering high-value, quality care also includes trying to mitigate risks, avoid 

adverse events and prevent unplanned readmissions. To address these aspects, 
advances in analytics have demonstrated that it is possible to a priori identify 
possible high-risk patients so that preventative measures can be initiated which 
will serve to ensure higher clinical outcomes ensue [19].

 (e) Digital Health (DH) and Behaviour Modification
An essential aspect of managing various chronic conditions, such as diabetes and 

obesity or programs to address medication adherence, is to address behaviours 
that exacerbate the condition—for example, eating the wrong foods. In particu-
lar, as this is an ongoing requirement, it is essential that patients have the neces-
sary support. Technology solutions, most notably a plethora of apps, have been 
developed to include nudge strategies and serious games which serve to focus 
on reinforcing positive behaviours and minimise negative behaviours in a gen-
tle, non-judgmental, non-punitive approach [20].
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12.6  Discussion

The presented value cube model (Fig. 12.2) is proffered as a suitable model to assist 
in addressing various public health issues in which the social determinants of health 
can be a major factor impeding the realisation of better care. For example, if we 
apply the value model to the COVID-19 pandemic, it is possible to relatively rapidly 
assess how best to design and develop a technology intervention that can have maxi-
mum benefit. Specifically, as has been the case, when designing a mobile solution 
to remind and support people on the three public health steps for precaution (hand 
sanitising, mask-wearing and social distancing where possible), the knowledge (or 
at least appreciation) of the individual’s or group’s education, health status, social or 
community surroundings and built environment become relevant factors to consider 
in the design of a suitable solution if the solution is to then have high fidelity with 
respect to providing support that can be useful and useable in a sustained manner for 
greatest impact. Hence, this example illustrates the role of the value cube in support-
ing primarily the education angle via a simple mobile solution in order to realise the 
impacts of improving outcomes. Figure 12.3a highlights this in yellow.

The proffered value cube can also be used to realise a shift and impact multiple 
aspects including empowering communities and individuals, improving outcomes 
as well as changing behaviours as the next two case vignettes illustrate. While the 
two vignettes are different, the components of the value cube of relevance are high-
lighted in blue in Fig. 12.3b.

Fig. 12.3 (a) Model I for smarter health communities. (b) Model II for smarter health communities
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A study conducted in South Side in Chicago, Illinois [21] that focused on the 
design and development of an appropriate technology solution to support African 
Americans and Hispanics with respect to diet and exercise to decrease the individu-
als risk of developing diabetes is a case vignette that serves to illustrate the benefits 
of the cube to provide both descriptive needs and prescriptive recommendations. 
For instance, in this region, the average level of education is at best high school 
graduation, while the general health status is poor, and the level of health literacy is 
also low. Community influence in the form of gang activity is prevalent and the built 
environment is in general not supportive. Thus, in developing the appropriate digital 
health solution to provide high impact with respect to fostering communities and 
empowering individuals, as a first step it was necessary to engage individuals and 
build their awareness. Given the relatively low level of education and health literacy, 
this was done using gamification based on “local” heroes and villains, being sure to 
use language that was culturally appropriate and used.

Similarly, in a study to develop a diabetes self-management solution for the 
catchment of patients served by a public hospital in the northeast of Melbourne, 
Australia [22], the solution is being developed with due consideration to food pref-
erences including halal and vegetarian options, high use of graphics and multi- 
lingual capability.
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Fig. 12.3 (continued)
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12.7  Conclusion

As 2020 ends, globally we are still trying to get control of the COVID-19 pandemic. 
Many things have become apparent with the pandemic. One such area is the inequal-
ities of care and the failure in general of public health initiatives to rapidly address 
the COVID-19 crisis. We contend that one aspect that could help in this regard is a 
focus on the social determinants of health and how a better understanding of these, 
combined with leveraging possibilities from digital health solutions, can result in 
meaningful and impactful initiatives that can empower individuals, foster commu-
nities, modify behaviours and thus improve outcomes. By examining case vignettes, 
we have illustrated some of the benefits of the proffered value cube. Our future work 
will serve to empirically test the cube in a variety of contexts to demonstrate not just 
its benefits but also its generalisability and thus its full potential to support the reali-
sation of better public health initiatives.
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Chapter 13
Why Do You Want Me to Use This EMR?

Amir Eslami Andargoli, Helen Almond, Dominic King, Jonathan Schaffer 
and Nilmini Wickramasinghe 

13.1  Introduction

For the last 10 years, the digital transformation of healthcare delivery for all [1] is 
typically highlighted by the implementation of an EMR (electronic medical record). 
However, research to date, mainly from the United States [2, 3], suggests that while 
investment in the EMR is significant, the return on this investment, patient satisfac-
tion, nurse and clinician satisfaction is rated as poor at best. Moreover, EMR sys-
tems do not (and arguably should not) mimic the actual clinical care processes used 
routinely by nurses and clinicians, making adoption even more challenging. 
Anecdotally, it is noted that nurses often question “You want me to use this EMR”?

Digital transformation in healthcare delivery is here to stay. However, the trans-
formation can only be successful with the expected benefits achieved if health and 
care providers and users adopt, adapt and embrace such electronic solutions. As 
nurses provide the majority of inpatient healthcare, this research has focused on 
them. Specifically, the benefits and detriments of the adoption of EMR systems for 
nurses are evaluated, thus assisting in proactive development to responses when 
they question the benefit of an EMR.

For more than two decades, the transition from paper-based systems to digital 
records systems has been advocated by payors, patients and providers globally [4]. 
The goals were to increase the efficiency and efficacy of healthcare delivery while 
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decreasing waste and error, increasing the value of the services provided and 
improving clinical outcomes [5]. These efforts require healthcare professionals, 
including nurses, to adopt EMRs [5]. The importance of nursing attitude and expec-
tations to the successful implementation and ongoing use of an EMR is well docu-
mented [4].

Technological change is a constant in today’s workplace, especially the health-
care workplace. The burden of EMR implementation on nursing practice and the 
complexities of how the technology is adopted in nursing remain poorly understood 
[6]. However, as the largest healthcare profession, nurses are regarded as key drivers 
towards the move from paper-based to electronic systems [4]. The importance of 
their participation in decision-making, development, implementation and evalua-
tion of EMR is now being realised [6].

The barriers to nurses’ adoption and use of the EMR are broad and varied. 
Sockolow, Liao, Chittams and Bowles [7] identified barriers, which included cum-
bersome system functionalities, lack of interoperability and hardware issues. It has 
been argued that these frustrations and dissatisfaction continue to be precipitated by 
low awareness, uncertainty, resource burden, low access to sufficient resources, 
uncertainty of impact on patient outcomes or alignment with patient preferences 
and reduced confidence about nurses own ability to perform tasks with an EMR [8]. 
All of these elements impact the nurses’ work stress and health, further complicat-
ing EMR use [9].

To determine nurses’ acceptance of the implementation of an EMR system and 
fully engage them in the decision-making, development, implementation and evalu-
ation of the EMR, three important foundational domains require better understand-
ing: (1) issues at the system level (e.g. system usability; interoperability systems 
and integration; standards; limited functionality/missing components), (2) user–
task issues (e.g. systems to meet nursing needs) and (3) environment issues (e.g. 
lack of user training, the attention of educators, managers, policymakers) [5]. As a 
solution, human-centred frameworks need to be identified and established to under-
stand EMR use and satisfaction for nurses.

The research question considers “how can we encourage nurses to use an EMR 
and develop foundational skills required of a Nurse Informatician?”. To answer the 
question, it is necessary to first apply rich theories in the information systems 
domain, helping us segment and understand critical issues impacting nurses with 
respect to EMR use. The application of relationship equity theory (RET) is pro-
posed as the optimal theory.

13.2  Method

This study used the narrative review process, proposed by [10], to investigate the 
factors that affect nurses’ perceptions of EMR acceptance.

Utilising this approach, a series of keywords ((“EMR” OR “Electronic Medical 
Record” OR “EHR” OR “Electronic Health Record”) AND (“Nurse”) AND 
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(“Acceptance” OR “Adoption”)) were used to search the catalogue of studies in the 
Scopus database.

The search focused on journal articles that included these keywords in either 
their titles or abstracts or keywords, published between 1990 and 2020 in English. 
The study excluded articles without an empirical basis.

The initial search retrieved 300 articles, of which only one focused on nurses was 
included. By reviewing all relevant references and sources from the retrieved arti-
cles, other available documents on other sources were reviewed.

13.3  Findings

Given that most EMR/EHR adoption studies were undertaken from the perspective 
of physicians, only a limited number of studies were found that adopted a nurse’s 
perspective [11]. As nurses are a key group of stakeholders using EHR/EMR tech-
nologies directly, they play an important role in the success of those technologies 
[12]. The lack of acceptance of EHR/EMR, even in mandatory settings, suggests 
that the development of negative perceptions toward technology by nurses could 
lead to lack of usage and unwillingness to learn new functionalities of the systems 
[11]. Investigating and understanding critical factors with regard to the adoption and 
utilisation behaviour of these systems could benefit designers and implementers and 
improve the utilisation of them [11, 12].

The literature review found only 14 studies that investigated factors from a 
nurse’s perspective. Table 13.1 shows the critical factors identified in the adoption 
of these technologies by nurses. Perceived usefulness, or lack thereof, was seen as 
the most common barrier to the adoption of EHR/EMR systems by them. This 
comes as no surprise because the technology acceptance model (TAM), or a variant 
of it, was used as a theoretical model for conducting these studies. Another interest-
ing observation was the lack of qualitative studies in this field, with only one study 
out of fourteen captured in our review.

In this qualitative study, [13] used semi-structured interviews to investigate the 
critical factors in the adoption of EHR by nurses, who considered themselves as 
digital laggards. This study used FITT framework (Fit between the Individual, Task 
and Technology) as a theoretical lens. This study found the lack of user-friendliness, 
integration with workflows, training and the system’s excessive time demands, as 
the main reasons for their being unable to meaningfully use the system.

These results, when taken collectively, highlight the need for more qualitative 
studies so that the role of context may be considered more fully. The context in these 
studies can provide a deeper understanding of the barriers and facilitators in the 
adoption of e-Health technologies. This could assist developers, implementers and 
policymakers to design and put into place new systems in various settings, which 
are more effective in terms of cost and time—both critical factors for a more rapid 
rate of adoption of them.
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13.4  Application

The literature review showed the majority of studies used either TAM or the unified 
theory of acceptance and use of technology (UTAUT), one of their extensions, 
which brings into question whether other factors, not included in the above- 
mentioned models, were being addressed. Therefore, we propose to investigate the 
suitability of Relationship Equity Theory (RET) in studying EMR adoption 
by nurses.

Application of Relationship Equity Theory (RET) falls into the area of the social 
sciences and originates from the works of Adams [24, 25] and Homans [26]. It is a 
dynamic process in which each participant’s perception may change over time [27]. 

Table 13.1 Critical factors in the adoption of EMR/EHR from Nurses’ perspectives

Adoption 
barriers and 
factors EHRs EMRs

Individual 
factors

Lack of digital skills [13], Gender, age, experience 
expectancy [14]

Psychological 
factors

Fear of usage [15], self-efficacy [16], perceived ease 
of use [15], perceived usefulness [11, 12, 16] attitude 
[16], privacy [15], security [15], attitude [17] 
behavioural intention, effort expectancy, performance 
expectancy [14]

Perceived usefulness, 
attitude, behavioural 
intention [18]
Perceived ease of use, 
perceived usefulness, 
self-image [19]
Behavioural intention, 
effort expectancy, 
performance 
expectancy, self- 
efficacy, attitude [20]

Environmental 
factors

Physical security [21]
Work environment [22] 

Social influence, 
facilitating conditions 
[19]

Organisational 
factors

Leadership [15], experiences of users [11, 15], 
leadership and experienced users, training and 
education [13] 
Involvement in planning and implementation [17]

Financial 
factors

Cost of implementation and maintenance [15], 
incentive [15]

Legal factors
Technical 
factors

Design [23], decision support tools [23], training [15], 
user-friendly interface [15], communication [15], 
interoperability [15], usability [11], ICT 
Infrastructure, Internet access [21], usability [20]

Compatibility, 
security, accuracy, 
reliability [19]

Time Productivity [23], workload [15], Workload and 
productivity [13]
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According to RET, in any social exchange, when participants to the relationship 
perceive that their share of the output, or gain, is not proportionate to their input, 
they experience an unpleasant emotional state [25]. RET, therefore, is uniquely 
suited to the evaluation of the approach of nurses to the EMR.

This research aims to apply RET, providing a better understanding of both the 
adoption and utilisation of EMR by nurses and the potential consequences of an 
EMR on nurses. Adoption of an EMR should be considered as a change process. 
The introduction of them in the hospitals does have an effect on the dynamics of 
existing relationships.

Joshi [28] extended RET in the development of his Equity Implementation 
Model (EIM) which describes the process of organisational information systems 
implementation and adoption. They argued, introducing new systems to an organ-
isation may lead to changes in the inputs required by the users. It would be expected 
that a new system might, on the one hand, demand more inputs, such as effort in 
learning a new system, whilst, on the other hand, decreasing other inputs in the 
general areas of effort and manual work.

Similarly, outcomes, the introduction of a new system may lead to the changes 
for the better, such as job satisfaction, but may negatively affect outcomes by the 
fear of losing one’s job, more tension and conflict.

According to the EIM [28], there are three levels of application:

• Self: One’s own perception about the changes in the net outcomes, expressed as 
net changes in equity status.
Adopting and using EMRs may increase the inputs required. For example, add-
ing to participants’ workloads may cause them to feel as though they have less 
control and flexibility over their activities. In turn, this may demand new skills 
and effort on their part. Therefore, if outputs, in comparison to inputs, do not 
proportionately increase, then nurses may feel distressed.

• Self and the employer: The change in relative outputs of one’s self versus the 
relative change of outputs accruing to the employer.
At the second level of application, the focus is on the nurse’s perceptions of fair-
ness in sharing the benefits. If nurses consider that the EMR brings greater ben-
efits for the hospital rather than for themselves, they may feel dissatisfied.

• Self and other users: The change in relative outputs of oneself versus the change 
in relative outputs accruing to other users.
At the third level of application, the focus of consideration is that of the nurse 
whose basis for comparison is between him or her and other groups of users, 
including other nurses, clinicians, lab staff and others. If nurses perceive that 
their relative outcomes are less than those of other users, they may feel dis-
tressed. For example, if they feel using an EMR has added to their workload, but 
clinicians are reaping the benefits, they feel unjustly dealt with. Equally, if they 
feel other nurses, using the system, do not enter data correctly, they have to spend 
their time and effort to correct the information, they may feel aggrieved and 
distressed.
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13.5  Discussion

Advances in Information and Communication Technology (ICT) provide many 
opportunities within the healthcare industry. However, unless the systems are actu-
ally adopted and used appropriately by all stakeholders, any potential benefits aris-
ing from these systems will remain elusive and will not be achieved, [29, 30]. It is 
noteworthy in itself that there is a large body of literature addressing Health 
Information System (HIS) failures arising from either a lack of system uptake or 
issues in their implementation [31–34]. These failures range from individual, physi-
ological, environmental, technical, legal, financial, cultural, organisational, struc-
tural, political and behavioural [30, 35, 36]. From the nursing perspective, these are 
interpreted as interoperability and hardware issues [7], lack of awareness, uncer-
tainty, resource burden, the uncertainty of the impact on patient outcomes or align-
ment with patient preferences and lack of confidence [8]. In this connection, as 
adoption of technologies is in reality a change management process, the adoption 
should be treated as such [37, 38].

Nursing is in and of itself, a challenging occupation, and the activities nurses 
perform are vital for improving healthcare safety, efficiency, quality, effectiveness 
and satisfaction [39]. Nurses work in highly complex environments, and they must 
perform a wide range of cognitive and physical activities [40]. The range of activi-
ties expected of nurses has been illustrated by Hendrich et al. [39], who demon-
strate nurses’ time is spent on: Documentation (35.3%), Care coordination 
(20.6%), Patient care activities (19.3%), Medication administration (17.2%) and 
Patient assessment including reading vital signs (7.2%). In theory, a HIS can assist 
nurses to improve their practices by reducing non-value-added activities [41]. 
However, the impact of EMR implementation on nurses has not been studied  
thoroughly [41].

13.6  Conclusion

Hospitals are environments where a matrix of social exchanges occurs, and the 
dynamics of the relationships between the internal stakeholders and with external 
stakeholders are complex and subject to change over time [42–44]. Applying RET 
could assist in understanding the impact of EMR and the complexity of the relation-
ship of nursing within a complex health environment.

This study postulates that RET can provide a better understanding of both the 
adoption and utilisation of an EMR by nurses and the potential consequence of an 
EMR on nurses. RET is relevant to any social setting and essentially can be applied 
when there is any sort of exchange taking place [25]. Adoption of any EMR should 
be considered as a change process where the introduction of them, into hospitals, 
does affect the dynamics of existing relationships. This research represents the first 
phase of a longitudinal project. This will serve to shed further light on this important 
area that impacts nurses, all healthcare providers and users alike.
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Chapter 14
Leveraging Information Technology 
in Pharmacovigilance: Benefits 
for Pharmacists and Pharmaceutical 
Companies

Joel Fossouo, Rachael Mcdonald, and Nilmini Wickramasinghe 

14.1  Introduction

The development and use of medications aim to alleviate suffering and ailments. 
However, they can be associated with adverse side effects or adverse drug reactions 
(ADRs), leading to physical and psychological harm, of which many could be pre-
vented [1]. Severe ADRs can cause an overload in hospital admissions and increase 
health expenditure, with studies showing 3–7% of all hospital admissions are the 
results of an ADR, causing a heavy burden on the national healthcare systems [2]. 
In the United States, serious ADRs were the fourth to sixth causes of death in hos-
pitalised patients, extended hospital admissions and increased the cost of treating 
these patients.

All medications have adverse effects; however, many that are new are not 
detected until drug commercialisation. Therefore, it is crucial to have strategies to 
monitor drug safety [3]. This can be achieved by drug surveillance or pharmacovigi-
lance (PV), with its main goal of public health safety [3].
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14.2  Background

14.2.1  Pharmacovigilance (PV)

PV is the science and activities involving the detection, assessment, understanding 
and prevention of adverse effects and other drug-related problems [4]. The data are 
derived from multiple sources, these include case reports within the medical litera-
ture, spontaneous ADR reporting to national PV centers, post-marketing clinical 
and epidemiological studies or data generated from prescriptions and medical 
claims monitoring [5]. However, one of the most widely used forms of PV is spon-
taneous ADR reporting (SAR) made by healthcare professionals (HCP) [3].

14.2.2  Spontaneous ADR Reporting (SAR)

Spontaneous ADR reporting (SAR) was developed in the 1960s following the tha-
lidomide tragedy [6]. In 1951, it was initially marketed as an effective antiemetic for 
morning sickness during pregnancy, thousands of pregnant women took the drug to 
relieve their symptoms [7]. Initially considered safe, however, the drug was respon-
sible for a significant number of serious birth defects, accounting for more than 
10,000 children and led to the death of around 2000 children [6, 7]. Following 
unyielding pressure from the media and the public in November of 1961 Thalidomide 
was taken off the market, after almost 10 years [7].

In 1968, ten countries, including Australia operating a national PV services, 
decided to collaborate under the administration of the World Health Organization 
(WHO) and launched the WHO Pilot Research Project for International Drug 
Monitoring [8]. In 1971, a resolution of the twentieth World Health Assembly laid 
the groundwork for the WHO International Drug Monitoring Programmed (IDMP) 
[9]. Today, PV agencies in 72 countries collect, process and evaluate case reports of 
suspected ADRs submitted by healthcare professionals (HCPs) [9]. The information 
from these reports is also submitted to the WHO’s central data processing agency, 
that is, Uppsala Monitoring Centre (UMC) in Sweden, for inclusion in their interna-
tional database [9].

14.2.3  The Problem of New Drugs

The prescription and supply of medications are intended to relieve ailments and suf-
fering, as such, HCPs generally trust that the administration of drugs at the appro-
priate dose, for their registered indications, will result in safe use [3]. However, all 
medications have adverse effects and some of these may not be detected until post- 
marketing. Due to the limitations of pre-marketing clinical trials, many aspects of 
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drug safety cannot be known until a drug is widely used in a broad range of medi-
cally complex patients [3].

During the clinical trial phase, generally, the number of subjects exposed to the 
investigational product is approximately 1500–2000 subjects [6]. Here, only the 
most common ADRs can be detected, unfortunately, rare ADRs such as those with 
an incidence of less than 1 in 500 may not be detected [6]. Furthermore, the partici-
pants in the clinical trial are generally highly selective, in accordance with the study 
protocol; therefore, sample may not necessarily represent the broader population 
that will eventually require the drugs [10]. Therefore, certain adverse events may 
not occur until these novel agents are used in, for example, very young, elderly or 
very ill patients with concomitant diseases, as these patients are often excluded 
from clinical trials [6]. The true safety profile only emerges over time and as the 
drug is used in a broad range of patients, some with medically complex situations. 
For these reasons, HCPs must be alert to the chance of new adverse drug events 
(ADE) [11].

14.2.4  Adverse Drug Events (ADEs) Versus Adverse Drug 
Reactions (ADRs)

ADE is an umbrella term that encompasses the harm that results from both an ADR 
and a Medication Error (ME). ADRs describe any response to a drug that may occur 
during the use of a pharmaceutical product that may or may not have a causal rela-
tionship with the drug, that is noxious and untoward [12]. MEs are the result of 
imperfect human intervention or human error, including poisoning and other prob-
lems associated with the manufacture, distribution and therapeutic failure that 
results from under-use of medicines or failure to prescribe medicine when indicated 
[13, 14]. According to the WHO, a definition for an ADR is: “any response to a drug 
which is noxious, unintended and occurs at doses used in man for prophylaxis, 
diagnosis or therapy of disease or modification of physiological function” [12].

14.2.5  Voluntary Versus Mandatory Reporting

Pharmacovigilance is predominantly based on SAR made by healthcare profession-
als (HCPs), consumers and pharmaceutical companies [4]. The reporting of sus-
pected ADRs is mandatory for all pharmaceutical and medical device companies; 
however, it is voluntary for HCPs and consumers. The primary purpose of SAR is 
to provide early warnings or “signals” of previously unrecognised drug reactions or 
toxicities [3].

SAR systems accept reports for all drugs at all stages of their life cycle, as soon 
as they are in use and on all patients regardless of the age or disease state with no 
limits on the medicines involved, making SARs a very effective PV tool for 
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highlighting problems with new drugs compared to other PV tools, for example, 
published case reports within medical literature, post-marketing clinical and epide-
miological studies or data generated from prescriptions and medical claims moni-
toring[3]. Furthermore, SAR is a relatively inexpensive PV tool to operate, as it only 
requires the investment of well-trained staff and basic technical equipment such as 
computers or telephones [3].

14.2.6  The Problem of ADR Under-Reporting

Currently, underreporting by HCPs is the major limitation associated with sponta-
neous reporting systems and a global problem. A systematic review conducted in 
the European Union estimated that only 6% of all ADRs are reported [3]. It is 
important to note that under-reporting of ADRs delays the identification of drugs 
with triggering alert signals and thus imposes a threat to public health. HCPs have 
expressed several reasons for hesitating to report suspected ADRs. These included, 
but were not limited to, insufficient knowledge of ADR detection and reporting, 
time constraints due to workload, and lack of incentives [1]. Another factor that may 
also account for underreporting is the respondent’s motivation [15].

14.2.7  Strategies to Improve ADR Reporting

To improve ADR reporting, several interventions have been developed and evalu-
ated to overcome the barriers perceived by HCPs that prevent ADR reporting. Some 
of these interventions include [16]:

• Improving access to ADR reporting forms (e.g. distributing the reporting forms 
to increase availability).

• Facilitating the reporting processes (e.g. computer links)
• Improving the reporting form (e.g. original reporting form modified to a report-

ing card)
• Educating HCPs about ADR reporting.
• Improvement of feedback to reporters (e.g. information is sent to the reporter 

once the ADR report is evaluated)
• Incentives for reporting (e.g. financial or bonuses such as educational credits)

14.2.8  The Need to Improve ADR Reporting

No single activity has been shown to achieve a sustained increase in the quantity or 
quality of ADR reports [16]. In fact, a systematic review looking at the strategies to 
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improve ADR reporting found that most studies applied more than one type of inter-
vention, making it challenging to isolate the individual impact of each intervention 
strategy in the final results [16].

Another important factor is the duration of the effect of the intervention. Some 
studies which have analysed the duration of effect, that is, the length of time the 
resulting effect is sustained from the date of the intervention, estimate a maximum 
duration of 3 years. As such, there continues to be a need to overcome the problem 
of under-reporting by HCPs. It is commonly agreed that continual and consistent 
interventions are required to maintain ADR reporting systems as most interventions 
have a limited effect over time [17]. Molokhia et al. concluded that using electronic 
health data combined with other methods of ADR reporting can enhance the effi-
ciency of PV. As healthcare systems are becoming more digitised in both primary 
and secondary care, there is great potential to explore these information systems for 
ADR reporting [18]. Furthermore, improvement in the current ADR reporting meth-
ods in Australia, including analysing the effectiveness of underused or innovative 
methods, is crucial to improve patient safety and public health.

14.2.9  ADR Reporting in Australia

While medicines can contribute to significant health improvement, they can also 
have adverse effects and cause serious harm. It’s estimated that close to 250,000 
Australians are hospitalised each year due to an ADE, of which half could have been 
prevented [19]. Furthermore, approximately 400,000 Australians present to the 
emergency departments as a result of medication-related problems, with 50% of 
medication-related problems being preventable [20, 21]. The total Pharmaceutical 
Benefits Scheme (PBS) expenditure for medication-related problems is estimated at 
15%, that is, close to $1.4 billion per annum [19].

14.2.10  The Reporting Processes

In Australia, the regulatory authority, that is, Therapeutics Goods Administration 
(TGA), receives information on suspected ADRs and medication error reports 
directly from healthcare professionals (such as physicians, pharmacists, nurses and 
others) and consumers (such as patients, family members, lawyers and others) 
[17, 22].

The TGA makes drug safety decisions by regularly reviewing available informa-
tion which originates from suspected ADR reports. In the preliminary evaluation, 
the goal is to assess the likelihood of an association between the reaction and the 
health product [22]. Typical information which must be taken into account includes 
the frequency, severity, plausibility, quality of the information contained in the ADR 
reports, amount of product used, the time needed for the appearance of the reaction, 
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underlying diseases, simultaneous use of other medications and evidence of disap-
pearance or reappearance of the reaction once the product was discontinued or rein-
troduced [8]. Additional investigative studies and consultations with other regulatory 
agencies are often necessary to confirm the product-ADR relationship [22]. If action 
is needed, the TGA may require changes or additions to product labelling, dosing or 
removal of products from the market [22].

14.2.11  ADR Reporting Rates to the TGA

In 2017, the TGA received approximately 18,600 reports of adverse events [23]. Of 
these adverse event reports received, approximately 54% (9998) were from spon-
sors; 18% (3441) from State and Territory Health Departments (reports of adverse 
events following immunisation); 10% (1879) from hospitals and hospital pharma-
cists; 7% (1201) from consumers; 6% (1170) from community pharmacists; 3% 
(579) from general practitioners (GPs); and 2% (359) from other sources [23]. The 
latest TGA reports for the source of notification of medicines and vaccines adverse 
reactions 2019–2020 show that Healthcare Professionals (HCPs) contributed 
approximately 19% [24]. It is important to take note the reporting of suspected 
ADRs is mandatory for all pharmaceutical and medical device companies; and vol-
untary for HCPs and consumers [3].

14.2.12  Community Pharmacist: Most Accessible of HCPs

HCPs are the key source of ADR reports, as consumers will generally discuss their 
medication-related problems with them; however, due to the voluntary nature of 
ADR reporting for HCPs, its effectiveness is undermined. Community pharmacists 
are drug experts and are employed by pharmacies. They may work at a pharmacy 
within a supermarket or big-box retailer, or they may work at an independent phar-
macy and some own their pharmacy. Some pharmacies are open late and on week-
ends, so community pharmacists may have to work evening and weekend shifts. As 
such, community pharmacists are the most accessible of healthcare providers, the 
most frequently visited, and usually, the first point of contact regarding medication- 
related issues as anyone can walk into a retail pharmacy and request to speak to the 
pharmacist. Furthermore, if the agent causing an ADR was likely to be available in 
a community pharmacy, the patients are more likely to consider it necessary to 
inform or discuss any new ADRs with their regular community pharmacist or return 
to the pharmacy where they initially purchased it. Therefore, pharmacists are 
uniquely suited to detect, document and report any suspected ADRs to the regula-
tory authorities. However, under-reporting of ADRs by community pharmacists is a 
major issue. Factors that influence pharmacists reporting ADRs may include, insuf-
ficient knowledge of ADR detection and the reporting process; lack of time within 
their daily practice, or lack of financial incentives [15, 25].
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14.2.13  Why Community Pharmacists Must Report

A survey into the habits of medicine use of Australians estimates more than nine 
million people take a prescribed medicine every day, with eight million taking two 
or more prescribed medicines in a week [26].

In Australia, there are 5822 community pharmacies, with an average person vis-
iting a community pharmacy 18 times each year, in both metropolitan as well as 
rural and remote locations [27]. Community pharmacies are easily accessible with 
the majority open after-hours, including weekends. In capital cities, 97% of con-
sumers are no further than 2.5 km from a pharmacy [28]. In regional and remote 
areas, 65% of people are within 2.5 km of a pharmacy. As such, community phar-
macies are the most frequently accessed health destination with over 462 million 
individual patient visits annually. The total 2020 PBS prescription report volumes 
was 216.7 million prescriptions dispensed by community pharmacies [29]. 
Furthermore, a pharmacist is among the most trusted profession, with 84% of adults 
trusting the advice they receive from the pharmacist, according to a public opinion 
survey [27]. Furthermore, in a 2012 FIP Pharmacist Workforce Report, a global 
sample revealed that, on average, 55% of pharmacists were found to work in a com-
munity pharmacy environment, where they can face events based on ADRs or other 
drug-related problems [4].

As community pharmacists are the most accessible of healthcare providers, the 
most frequently visited, and usually the first point of contact regarding medication- 
related issues as anyone can walk into a retail pharmacy and request to speak to the 
pharmacist, community pharmacists are uniquely suited to detect, document and 
report any suspected ADRs to the regulatory authorities [25]. In fact, a study to 
assess the frequency of adverse drug events (ADE)-related admissions during a pro-
spective medical record review of patients admitted to a metropolitan tertiary refer-
ral hospital, suggest within clinical settings, the cost of employing more pharmacists 
to detect and rectify ADEs earlier may reduce overall hospital costs by minimising 
patient morbidity and length of stay [21]. However, factors that influence pharma-
cists reporting ADRs may include; insufficient knowledge of ADR detection and the 
reporting process; lack of time within their daily practice; or lack of financial incen-
tives [15, 25].

14.2.14  Why Do Community Pharmacists Lack Time to Report

Raymond Li et al. investigated the knowledge, perspectives and practices of ADR 
reporting by community pharmacists in Australia. The study showed that non- 
reporting community pharmacists indicated that lack of time was the most signifi-
cant barrier to reporting ADRs. This is also consistent with studies conducted 
overseas [25]. A cross-sectional study to identify the barriers to ADR reporting 
amongst community pharmacists practicing in the United Kingdom reported that 
46% of community pharmacists attributed to lack of time as a barrier to reporting. 
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Training and information about what to report, as well as access to information 
technology to do the ADR reporting system, were identified as potential facilitators 
to improve reporting of ADRs [30].

In Australia, the most significant barrier to reporting ADRs is the lack of time, 
partly because the community pharmacists’ roles have increased beyond dispensing 
medicines, with added responsibility and complexity [25]. Community pharmacists 
now provide vaccination services, health checks and professional services such as 
MedsCheck Program, home medicines reviews, dose administration aids and clini-
cal interventions [31]. Another factor contributing to lack of time is having to manu-
ally complete a separate ADR reporting form which is both time-consuming and 
comes with a higher degree of error [31]. Therefore, one of the priorities to improve 
ADR reporting rates by community pharmacists would be to shorten the time it 
takes to complete the reporting process [25].

A systematic review on the use of information systems for the promotion of ADR 
reporting proposed that it would be useful to develop systems to assist HCPs to 
complete ADR reporting within electronic health records as this approach presents 
as an efficient method to increase ADR reporting rates [1]. This can be achieved by 
making the reporting forms more accessible and utilising any auto-population fea-
tures available from existing information in the dispensing software to allow com-
munity pharmacists to report ADRs directly to the TGA via their dispensing 
software [25].

14.3  Technology in Pharmacovigilance

14.3.1  Role of PV Systems for Marketing 
Authorisation Holders

Digital transformation is the adoption of digital technology to transform services 
or businesses [32]. This can be done by replacing manual processes or non-digital 
processes with digital processes or changing older digital technology with newer 
digital technology. It is no secret that health information technology (HIT) has sig-
nificant potential to not only transform the healthcare system but to also support 
continuous quality improvements [32].

The adoption of TeleHealth, artificial intelligence (AI)-enabled medical devices 
and electronic health records are just a few concrete examples of how digital trans-
formation in healthcare is completely reshaping how individuals and HCPs interact 
with each other, how data is shared among providers and how decisions are made 
about our treatment plans and health outcomes [33].

As more receive regulatory approvals and a massive amount of data is generated 
daily, pharmaceutical companies and sponsors of clinical trials have mandatory 
obligations to collect the large and growing volumes of safety data, for which much 
of this data includes individual case safety reports (ICSRs), medication errors, 
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product quality complaints and exposures to medicines during pregnancy [34]. PV 
being a highly regulated sector requires careful planning and management. As such, 
the pharmaceutical industry faces significant challenges when it comes to deploying 
and utilising advanced information technology (IT) [35].

As the Marketing Authorisation Holders (MAHs), that is, a company or other 
legal entity that has the authorisation to market a medicine, set up their global PV 
strategies, more effective PV processes are required [35]. ICSR is an adverse event 
report for an individual patient and a source of data in PV. ICSRs are reports origi-
nating from healthcare providers and consumers [36]. These are collected, organ-
ised, formatted and assessed in accordance to set standard processes as shown in 
Fig. 14.1 [36].

HIT provides an opportunity to add value to the traditional, paper-based PV pro-
cesses. To better manage PV activities, MAHs require technologies to collect, char-
acterise and evaluate ADR reports.

14.3.1.1  Big Data

This includes the large and growing volumes of computerised medical information 
available within electronic health records, drug monitory registries or even medical 
claims data [34]. These are generally collected routinely during administrative pro-
cesses and clinical practice by different healthcare professionals, for example, 

Fig. 14.1 Typical workflow process of an ICSR for a MAH (Reprinted from Lewis, D.J., & 
McCallum, J.F. [36]. Utilizing Advanced Technologies to Augment Pharmacovigilance Systems: 
Challenges and Opportunities. Ther Innov Regul Sci. 54:888–899, Figure 1. https://doi.org/10.1007/
s43441- 019- 00023- 3, licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/))
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clinicians recording their patient’s medical history, healthcare claims or pharmacists 
dispensing prescriptions. Other sources of big data may include, social media, 
online channels and informative systems for spontaneous ADR. The development 
of powerful computerised tools that can process and analyse big volumes of infor-
mation for predictive purposes offers great opportunities to study and monitor, drug 
use and safety on wider scales and in greater detail [34].

14.3.1.2  Natural Language Processing

Big data by itself is useless; for it to be useful, it has to be correctly analysed and 
interpreted. Therefore, MAHs have to filter the high volumes of noise to stay on top 
of all the post-marketing safety signals that emerge across the Internet and digital 
resources [37]. This can be done through the use of artificial intelligence (AI), a 
branch of Natural Language Processing (NLP) that helps computers understand, 
interpret and manipulate human language [36, 38]. Therefore, NLP can help to 
identify adverse events, risk factors or health outcomes from the data available 
within sources such as EMRs, scientific literature, patient forums, social media and 
other online communities. It is important to remember that findings generated using 
big data require robust clinical interpretation and critical judgment. In no way can 
the process of drug safety signal detection, refinement and validation be fully auto-
mated without expert assessments [38].

14.3.1.3  Cloud-Based Solutions

As the volume of data continues to grow, pharmaceutical companies will need tech-
nological solutions that can allow them to quickly scale up and manage large data-
sets [36, 38]. This can be achieved and simplified by cloud-based technology that 
allows MAH to benefit from the ability to store and analyse the large amounts of 
data stored. This provides better cost efficiencies, by enabling MAH to work with 
large amounts of data without compromising the quality, security and data pri-
vacy [39].

14.3.2  Automation: The Way Forward

Automation of PV processes can provide quick and effortless high-quality safety 
data, thereby improving the evidence available for timely assessment [36]. This 
requires MAHs to evaluate their operations and their impact on productivity, opera-
tional costs, quality, compliance, audit readiness and then implement IT systems 
aimed at addressing process improvements [39]. These technological solutions 
should enable the MAH to make end-to-end safety processes more efficient and 
eliminate redundant steps that add no value [36].
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The PV automation process involves several stages or levels. This can start with 
basic automation, robotic process automation, to cognitive computing and ulti-
mately AI, with each transformation requiring less human involvement [39].

14.3.3  Stages of PV Automation Process for a MAH

 1. Basic Process Automation
This involves automatically tracking and monitoring set tasks or continuous metrics 

collection, for example, literature tracking tools [39].
 2. Robotic Process Automation
This involves reducing or eliminating any manual task, resulting in automatic entry, 

processing and analysing safety of data into a safety database or system [39].
 3. Cognitive Process Automation
This is often combined with robotic process automation. To provide the required 

outcome it leverages on NLP to help humans drive the final decisions [39].
 4. Artificial Intelligence (AI)
This involves very minimal or no human interaction, allowing data scientists and 

analysts to construct algorithms that can enable them to learn to make predic-
tions through Machine Learning (ML). These algorithms detect patterns in big 
data, improving over time and learning from the data feeds [36, 39].

14.3.4  Leveraging Technology for PV Transformation

While IT systems and applications can automate ICSR processing, reporting activi-
ties and offers a great opportunity for digital transformation in PV, the overall pro-
cess still requires much human intervention and manual effort, particularly in the 
areas of case intake and data entry [36]. It should be noted that many of the issues 
surrounding PV systems are not entirely IT problems, but rather issues in the man-
ual processing or the users managing the systems, for example, the repetitive and 
deterministic nature of these processes [39]. Tools, including IT solutions, must be 
implemented in the context of addressing such process improvements and organisa-
tional needs. Therefore, technologies such as robotic process automation leveraging 
(NLP and ML) through AI to move beyond basic automation thereby limiting the 
amount of human intervention needed, provide great opportunities. Utilising auto-
mation in processing ICSR will not only result in costs reduction and accelerate 
processing, but also eliminate the chance of human error and improve quality and 
accuracy [39].
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14.4  Role of PV Systems in Healthcare

One of the most common interventions in the healthcare systems is the use of medi-
cine, which comes with associated problems and misadventures [35]. Two signifi-
cant factors contributing to medicine misadventure are gaps and time delays in 
communication; however, digital transformation can provide the necessary tools to 
piece together a fragmented healthcare system [35].

It is well recognised that IT has entered and transformed the world of healthcare 
and medicine, connecting health information, ensuring that information is accessi-
ble to patients, HCPs and caretakers on time and ensuring work proceeds with 
higher quality, efficiency and at a lower cost [40]. The integration of PV databases 
within healthcare systems appears to be an effective way to improve the knowledge 
of drug safety as Electronic Health Records (EHR) contain a lot of information 
about ADRs, which is not always shared with the MAH or regulatory authori-
ties [36].

ADR underreporting from HCP is a major issue undermining the effectiveness of 
PV, resulting in latency and inconsistency, despite this, it is still considered as the 
most valuable method to detect drug safety problems [18]. Most of the drug safety 
decisions made by the Regulatory Authorities are triggered by spontaneous ADR 
reports made by HCP [9]. Therefore, it is important to achieve the greatest number 
of ADR reports possible together with high-quality data.

The promotion of ADR reports among HCPs is key and requires regular remind-
ers as well as the development of tools to facilitate this duty [1]. Tools used in PV 
are continually evolving, worldwide information systems (IS) to promote ADR 
reporting or to detect ADRs in healthcare institutions have been tested and used, 
these include the development of online reporting forms, the inclusion of electronic 
reporting systems into the hospital Information, direct hyperlinks to online report-
ing forms, software’s that allow voluntary and automated detection of ADRs, tools 
that analyse clinical databases or web sites that actively inform healthcare profes-
sionals [1].

There are clinical and economic benefits to incorporating information systems in 
patient care. However, user dissatisfaction and resistance to health information tech-
nology can prevent optimal use of such systems [41].

14.4.1  Health Information Technology 
in Community Pharmacy

Community pharmacists started to use computer systems as early as the 1970s [42]. 
The first systems were designed for dispensing, billing and reimbursement pur-
poses. Since then, applications have been extended to include a wide range of 
administrative and medication management functions such as identifying and inter-
vening drug-related problems, for example, drug interactions, dosages, ADRs or 
compliance [42].
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Patient care services in community pharmacies are divided into three main 
categories:

 1. Electronic health records, including electronic prescribing and clinical decision 
support systems.

 2. Health information technology in medication management.
 3. Additional community pharmacy applications, including the internet and use of 

social media in communication on medicines [43].

Community pharmacies in Australia have shown a great willingness to adopt 
innovative technologies to offer the highest standard of pharmacy and healthcare 
services, whether those innovations are technological, systematic or strategic in 
nature. Some technologies that have been adopted include [44]:

14.4.1.1  PBS Online

Online claiming for Pharmaceutical Benefits Scheme (PBS) was piloted by a small 
number of pharmacies in 2004 and was followed by an independent evaluation. 
Medicare implemented the recommendations of the evaluation report and rolled out 
Online Claiming for (PBS) medicines with 99.4% of pharmacies utilising PBS 
online daily [44].

14.4.1.2  eRx Script Exchange

This is an industry-driven partnership focused on Electronic prescribing and trans-
fer of prescriptions, designed and built for doctors, pharmacists and patients. With 
over two hundred million prescriptions dispensed every year in Australia, and phar-
macists dispensing on average 100–200 scripts a day, electronic prescriptions pro-
vide a significant opportunity to strengthen patient safety and confidence in 
dispensing medication [44].

14.4.1.3  My Health Record

In recent years, Australia’s health system has embarked on an ambitious transfor-
mation journey, a patient-controlled electronic health record system, which for 
pharmacists involved genuine, online, real-time interconnectivity with consumers 
and other healthcare providers [45].

In the area of digital health, no other profession has done more than community 
pharmacy in terms of investing its funds to support the challenging transition to a 
Digital Health model [44]. However, the Australian government also has a key role 
in ensuring that disruption in the health sector is managed in a way that delivers 
maximum benefit for patients and is sustainable for healthcare providers.
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As such for community pharmacies, it is imperative that business processes are 
streamlined with effective change management and adequate resources to ensure 
the digital transformation can deliver optimal benefits to community pharmacies 
and these can be passed onto the consumers. As mentioned earlier, PBS Online is a 
great example of innovation reinforced with effective and incentivised change man-
agement [44].

14.4.2  Current PV Technology Available to Australian 
Community Pharmacies

In Australia digital disruptors of the healthcare system are being driven by the 
opportunity to enhance a patient’s access to the health system through the new 
healthcare ecosystem, that is, shifting from an organisation to a patient-centric 
model of healthcare service delivery to facilitate collaborative, multidisciplinary 
and cross-organisational healthcare delivery processes medication [44].

Spontaneous ADR reports made by HCPs can be made using paper, telephone 
and by e-mail to the TGA or online through the TGA website [25, 46]. To allow for 
a faster and more convenient way for community pharmacists to report ADRs 
directly to the TGA via their dispensing software instead of having to manually 
complete a separate ADR reporting form. In June 2014, GuildLink, an Australian 
pharmacy software company created a program called GuildCare [25, 47].

Through electronic recording, the program is designed to assist pharmacists with 
the delivery of professional services and support, including medication manage-
ment programs, compliance and adherence programs. The GuildCare programs 
achieve this by helping pharmacists guide their patients to take the right medicines, 
at the right time, for the right length of time, helping medication compliance and 
adherence to their prescribed treatment [48].

To assist with spontaneous ADR reporting, GuildLink created an Adverse Events 
Recording module within GuildCare. This enables pharmacists to electronically 
document and submit ADEs presented within pharmacy to the TGA [25, 47]. The 
GuildCare module is linked to the TGA’s adverse event reporting web service; as 
such, pharmacists can easily record ADEs with all the necessary information and 
where required can also submit to a patient’s medical practitioner almost instantly 
[25]. GuildCare Adverse Events Recording module can record three types of 
Adverse Events:

• Adverse Drug Reactions
• Problems with Medical Devices
• Medicine Deficiencies or Defects

Soon after the availability of GuildLink in June 2014, the TGA received 254 
reports from community pharmacists by September 2014 via the GuildLink portal. 
The rate of reporting was almost as high as the total number of reports received from 
community pharmacists for the entire year of 2013 [25]. This suggests the measures 
to simplify the ADR reporting process using information systems may have been 
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well received. However, the total number of ADR reports made by pharmacists fell 
again in 2015, indicating the need for constant encouragement and reminders to 
maintain ADR reporting rates, and possible system evaluations [25]. It is important 
to note, measures to encourage and facilitate ADR reports, for example, setting 
reminders in the dispensing software were considered a popular method in addition 
to education programs and having patient information automatically populated from 
the dispensing software into a form ready for submission [25].

14.4.2.1  Assessment of GuildCare Adverse Events Recording Module

To date, the GuildCare Adverse Events Recording module is the only HIT that pro-
vides early and spontaneous electronic reporting of ADRs to the TGA through the 
engagement of community pharmacists with consumers in the pharmacy [49]. As 
discussed earlier, in June 2014 after its release, the reporting rates from the TGA 
indicated GuildCare was well-received, as the total number of reports by commu-
nity pharmacists to the TGA between June 2014 and September 2014 was nearly as 
high as that for the entire year of 2013. However, despite the positive start, the 
numbers declined again in 2015 [25]. To date, there has been little discussion about 
factors affecting the adoption and/or long-term use of the GuildCare Adverse Events 
Recording module.

There are several challenges and concerns when it comes to the integration and 
adoption of patient care services and information technology into community 
pharmacies.

Organisational Some of these include, the lack of IT skills and proficiency; dif-
ferentiation of the community pharmacies; some pharmacies may focus their busi-
ness model on increasing dispensing and product sales, and other pharmacies may 
choose to develop their business through the provision of cognitive pharmaceutical 
services (professional services) [50]. Furthermore, whilst HIT is often said to 
improve “quality of care” or improve “work efficiency”, obtaining detailed out-
comes resulting from specific HIT functionalities are hard to measure and anticipate 
as the implementation of innovative tools often require fundamental changes to 
operational processes and many organisations do not attempt this [51].

Technical These include factors such as HIT that don’t fit the community pharma-
cists’ needs. Here, it’s important that the system not only fits the organisational 
purpose and business strategy but also the clinical need of the end-users. For many 
community pharmacists, time is of the essence and any initiative that slows down 
key clinical tasks or work practices is likely to be strongly resisted, despite improv-
ing overall organisational efficiency. Another factor influencing HIT adoption may 
be the lack of standardisation of systems across multiple institutions [50]. 
Furthermore, it’s important to note despite national and international guidelines for 
ADR reporting and management, in Australia, there is no gold standard system that 
has been established at the individual healthcare facility level, which may result in 
significant interinstitutional variability with respect to the timing and/or nature of 
ADR reporting [52].
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Social Often not a focal point, however, the expectations and benefits/values of the 
HIT can influence the end-user’s (community pharmacists) attitude and motivation 
to use the tool. Therefore, understanding the user’s concerns or resistance and incor-
porating this input into the design, training and support, could influence user 
acceptance.

Taking the aforementioned into account, a contributing factor leading to HITs 
that don’t appropriately meet the needs of community pharmacists or limit their use 
within organisations could be the lack of usability testing during implementation. 
This is crucial for system improvements and a vital step for end-users, as it exam-
ines, for example, community pharmacist’s workflow and how they achieve their 
end goals, thereby ensuring the usability of systems, HITs or business intelligence 
systems, remain optimal for end-user and organisational purpose [53].

14.4.2.2  Sociotechnical Theoretical

To understand the factors that influence the diffusion of innovation, adoption or 
users’ perceptions of value towards digital health, several sociotechnical theories on 
how humans use technology must be considered [54]. Many of the theories are 
drawn from other disciplines such as sociology, each theory focuses on different 
aspects of the users’ experience of technology [54].

Activity Theory and Task Technology Fit (TTF) are the contending theories that 
appear to best assist with providing an appropriately rich theoretical lens in which 
to analyse the key aspects of GuildCare Adverse Events Recording Module and 
ADR reporting by community pharmacists.

 1. ADR reporting
Activity Theory is a descriptive approach that explains human practices in the social 

context. Since the design of information systems should consider the viewpoints 
and behaviors of users in a social context, Activity Theory has been demon-
strated to be valuable in the field of information systems [55]. As shown in 
Table 14.1 Researchers may use information system as a tool, the user as the 
subject, the user’s goal as the object and the user’s workplace environment as the 
community when using Activity Theory [56]. This perspective can be adopted in 
this study when analysing the reporting of suspected ADRs to the TGA. Activity 
theory can also be used to explain the dynamics of the pharmacy and the 
stakeholders.

 2. GuildCare Adverse Events Recording Module
The tools component of activity theory can be further explained through the theo-

retical lens of task technology fit (TTF). This theory argues that technology 
needs to be willingly accepted as well as fit well with the users and their corre-
sponding tasks to prove its effectiveness. This is a powerful model as this analy-
ses the adoption and behavior use of innovative technology [57]. In the context 
of the GuildCare Adverse Events Recording module (the tool), we can assess the 
Tool component of Activity theory through the lens of TTF. The tool needs to 
help with the task at hand, that is, reporting suspected ADRs by community 
pharmacists and if it does the job really well then there is a strong fit.
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14.5  The Future

In the Raymond Li et  al., pharmacovigilance survey, community pharmacists in 
Australia suggested a way to shorten the ADR reporting time would be to have the 
reporting forms electronic and provide auto-population features from within the 
dispensing software and automatically populated patient information from the dis-
pensing software into an ADR report ready for submission, with 91.8% of respon-
dents, that is, “community pharmacists”, agreeing with this statement [25]. Despite 
this, considering GuildCare Adverse Events Recording module, had an initial posi-
tive response (adoption), attributed to the increase in the number of ADR reports to 
the TGA by community pharmacists between June 2014 and September 2014 [25]. 
The reporting rates were nearly as high as that for the entire year of 2013. However, 
despite this the reporting rates fell again a year later, suggesting the measure by 
GuildLink may have initially been well accepted by the end-users, however, further 
investigation is needed to understand the subsequent drop in reporting rates, to iden-
tify strategies to increase and maintain the ADR reporting. As discussed previously, 
several strategies have been studied and shown to have positive results in reporting 
rates by HCP. Yet the evidence of sustained improvements after these interventions, 
remains a significant challenge [49].

Further research to identify specific barriers to ADR reporting by pharmacists, 
for example, in the community pharmacy setting, would be crucial, as they provide 
opportunities for the development of interventions. These include mobile apps and 
software that integrate within existing databases. First, usability studies to assess 
pharmacist acceptance or use PV technologies can be done to better understand the 
strengths, weaknesses, facilitators and barriers to technology acceptance and long- 
term use [58]. Second, as new technologies roll out, implementation activities gen-
erally take priority; however, although time-consuming and costly, investments in 
evaluation activities to monitor real-time, longitudinal data and continuously assess-
ing existing and anticipated organisational needs and user workflow are always ben-
eficial for long-term use and success of HIT [51]. This can allow technology 
companies to capture user feedback and problems as they arise and respond to them 
on time, and to identify when systems need improvements or when they have 
become obsolete and need new solutions [51].

Table 14.1 GuildCare ADR reporting through the lens of activity theory

Components Activity theory

Subject Reporting suspecting ADRs to the TGA pharmacist and patients
Objects Pharmacist and patients
Outcome Patient safety
Tools (TTF) – Computer

– GuildCare—Adverse events recording module and internet = connecting tools
– Community pharmacy work

Community Physical collaboration occurring in the pharmacy between the pharmacist and 
patient. Community face-to-face with interaction

Rules TGA/WHO
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14.6  Conclusion

Pharmacovigilance has the potential to meet the challenges of new therapeutics 
(including vaccines) with increasing range and potencies; however, there are chal-
lenges, issues and concerns involved in implementing and adopting modern phar-
macovigilance systems. As drug experts who are specifically trained in this field, 
community pharmacists are the most accessible health professionals and play a cru-
cial role in maintaining health systems by ensuring rational and safe use of 
medications.

ADR reporting rate by community pharmacists in Australia is low even though 
the vast majority believe they have a professional obligation to report. The most 
significant barrier to reporting ADRs is lack of time and this can be addressed by 
simplifying the current reporting procedures and utilising information systems. It is 
important to understand community pharmacists’ requirements and needs when 
developing HIT systems for ADR reporting, including the theories which could 
contribute to making the innovation and development process work better and iden-
tify internal and external factors influencing its adoption.

The successful adoption of HIT by community pharmacists for ADR prom-
ises to deliver improved post-marketing surveillance, improved public health 
safety and reduced global health costs through early signal detection, efficient 
and timely reporting of ADRs, process automation and better data management. 
Therefore, careful planning and ongoing critical evaluation of processes are cen-
tral to the successful implementation of major health information technology in 
pharmacovigilance.
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Scoping Mobile Clinical Decision Support 
Systems to Enhance Design and Recording 
of Usage Data Effectively: A Suggested 
Approach

Nalika Ulapane and Nilmini Wickramasinghe 

15.1  Introduction

Clinical decision-making is a unique process that involves the interplay between 
knowledge of pre-existing pathological conditions, explicit patient information, 
nursing care and experiential learning [1]. Through literature, it can be seen that 
clinical decisions can mainly be viewed through two categories: (1) Diagnostic 
decisions (i.e. determining “what is true?”); and (2) Treatment planning decisions 
(i.e. determining “what to do?”) [2]. Clinical decision-making involves high cogni-
tive and critical thinking capabilities and mistakes in clinical decisions can contrib-
ute to medical errors. Medical errors are often described as human errors in 
healthcare [3]. According to a 2016 study from Johns Hopkins Medicine [4], medi-
cal errors are the third-leading cause of death in the United States. The projected 
cost of these errors to the US economy has been approximately $20 billion, 87% of 
which are direct increases in medical costs of providing services to a patient affected 
by medical errors [5]. Medical errors have been said to increase average hospital 
costs by as much as $4769 per patient [6]. Thus, clinical decision-making stands out 
as a crucial factor contributing to quality healthcare and it is of importance to sup-
port making the best clinical decisions.

An established way of supporting clinical decision-making is the implementa-
tion of Clinical Decision Support Systems (CDSS). CDSS of various capacities 
have emerged over time, and as of now, some systems that function in the form of 
Smartphone apps even have emerged [7]. Currently, various CDSS of different 
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functionalities such as diagnostic assistance, treatment planning assistance and 
diagnostic plus treatment planning assistance have been introduced to healthcare 
[2]. The majority of these CDSS are technology-enabled and present some unique 
technology-related as well as socio-technical challenges, such as concerns about 
performance and fitness for purpose, cost of implementation, privacy and data secu-
rity, surveillance capitalism, scalability and expandability, policy and legislative 
challenges and slow adoption and uptake [7, 8]. Moreover, some clinical practice- 
related concerns regarding CDSS, such as having the best information available, 
avoiding alert and trigger fatigues and enabling ease and efficiency in updating sys-
tems, and more generally, having seamless integration with clinical workflows have 
also been identified [2]. As such, it becomes important to design CDSS in ways such 
challenges are alleviated. Moreover, alongside the emergence of diverse CDSS and 
also increasing demand for better quality healthcare, there tends to be a rise in the 
need for the use of digital health capabilities to not only support making better clini-
cal decisions and making CDSS smoothly integrate with clinical workflow, but also 
to enable the capture of data to lay the foundation and support data-driven advance-
ments in healthcare [9].

To facilitate the better design of CDSS and also to enable data capture to be 
meaningful for data-driven advancements in healthcare, an important first step we 
see necessary is to have a structured approach to scope out different CDSS we 
encounter according to their limits and capabilities. Such a scoping can serve as a 
useful guide for designing, improving and also planning meaningful use of data that 
may be produced. However, such a scoping strategy has not yet been well estab-
lished in extant literature. As such, we attempt to contribute to that void by present-
ing in this chapter a strategy to scope (or classify) CDSS based on criteria we find 
useful by trying to answer the following research question: How can CDSS be 
scoped (or classified) according to their limits and capabilities, in a way that is 
meaningful to guide the CDSS design and development and also enable exploitation 
of CDSS usage data?

We try to answer the aforesaid research question by first taking a perspective that 
views CDSS as “Inquiring Systems” [10]. As an Inquiring System can essentially be 
viewed as a System having clear and well-defined Inputs and Outputs, our perspec-
tive helps us to construct a useful scoping (or classification) of CDSS, by making 
use of the differences of the components that compound the CDSS we view as an 
Inquiring System. We then go on to pick certain criteria we see as useful from litera-
ture, and also our experience in an ongoing Australian study [11] involving a 
Smartphone App-based CDSS [12], to draw up a systematic criterion through which 
CDSS can be scoped. Next, we demonstrate how the scoping can be put into prac-
tice via a case study using the CLOTS Smartphone App-based CDSS [12, 13], and 
we conclude by mapping out the available data capture opportunities for CLOTS 
and also discussing some noteworthy limitations.
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15.2  A Perspective of Viewing CDSS as Inquiring Systems

Inquiring Systems studied at length by Churchman [10] can be interpreted as 
“Systems” that can be put into practice to solve a problem or to find a satisfactory 
answer to a question. Going with that interpretation of “Systems”, Inquiring Systems 
will have Inputs, Outputs and a Process in between. The Output of an Inquiring 
System is “true knowledge”, or at least knowledge that is best agreed upon. A dis-
tinctive feature of Inquiring Systems is that they contain elaborate mechanisms for 
“guaranteeing” that only “valid” knowledge is produced as Outputs.

CDSS, too, can in a way be interpreted in an architecture similar to that of 
Inquiring Systems. A CDSS will have a user (i.e. a clinician) who will be providing 
some inputs into some information system comprising of hardware and software 
components, and when the system is designed, implemented and used accurately, 
this information system will produce some “verified” and “valid” knowledge or 
recommendations and the likes as the output that is most appropriate to the input 
provided by the user (i.e. the clinician). Along this line, we propose the perspective 
illustrated in Fig. 15.1 that characterises CDSS analogous to the three components 
of an Inquiring System (i.e. (1) Input; (2) Process and (3) Output) in accordance 
with what was described earlier. In the next section, we discuss how the components 
of a CDSS as per Fig.  15.1 can be used to scope out different types of CDSS 
encountered.

15.3  A Strategy for Scoping CDSS

To propose our strategy of scoping CDSS, we draw links from the Chapter written 
by Wasylewicz et  al. [2] and our experience gained in working with an ongoing 
Australian study [10] involving the CLOTS App. As part of their work, Wasylewicz 
et al. [2] have summarised the different types of CDSS that can be encountered. 
Wasylewicz et al. [2] is one of several articles we reviewed in search of such knowl-
edge, and we found that our views that have been partly shaped through our experi-
ence with the CLOTS App-related work, found considerable overlap with what is 
reported by Wasylewicz et al. [2]. Therefore, we base our strategy of scoping CDSS 
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Fig. 15.1 A perspective of viewing CDSS as Inquiring Systems

15 Scoping Mobile Clinical Decision Support Systems to Enhance Design…



212

on how CDSS have been classified by Wasylewicz et al. [2], and for a couple of 
points, we propose strengthening factors coming from our experience with CLOTS 
App. Thereby, we present in this chapter a fairly robust strategy of scoping CDSS 
according to their attributes and capabilities, and limitations, as such a scoping will 
be a beneficial foundational step in planning out the design and development of 
CDSS and also improvements to existing CDSS.

The classification of a CDSS as per Wasylewicz et al. [2] spans mainly across 
four themes. The themes are: (1) System Function; (2) Way of Communication; (3) 
Decision-Making Process; and (4) Human–Computer Interaction. We provide 
details of the four themes in the coming paragraph, and we provide a rubric sum-
marising the scoping strategy at the end of this Section in Table 15.1.

Under the System Function theme, Wasylewicz et al. [2] identify that a CDSS can 
be classified to be a (a) Diagnostic Assistant tool; (b) Treatment Planning Assistant 

Table 15.1 Rubric depicting the strategy for scoping CDSS. Normal text shows points drawn 
from Wasylewicz et al. [2]. Bold text shows the points added by us

Theme 
number Theme Categories Description

Theme 1 System Function Diagnostic Assistant Tool A tool that assists in the diagnosis
Treatment Planning 
Assistant tool

A tool that assists in treatment 
planning

A Diagnostic as well as 
Treatment Planning 
Assistant tool

A tool that assists in both diagnosis 
and treatment planning

Theme 2 Way of 
Communication

Passive Communication A tool that comes to play only if and 
when a user (i.e. a clinician in this 
context) needs to use the tool and calls 
upon it

Active Communication A tool that has the capability to issue 
triggers and can tell users (i.e. 
clinicians in this context) what to do

Theme 3 Decision-Making 
Process

Flowchart based A tool that produces outputs governed 
by a Flowchart-based architecture

Decision tree based A tool that produces outputs governed 
by probability driven Decision 
tree-based architecture

AI-based decision 
support based

A tool that produces outputs governed 
by some form of Artificial Intelligence

Other forms of decision- 
making processes

A tool that produces outputs by a 
means that cannot be classified 
according to the above three

Flexibility to add more 
classifications

Numerous classifications can be 
drawn within this theme, and the 
above three listed out are not the 
only provisions. Practitioners will 
have the flexibility to draw out 
classifications of different form

(continued)
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tool; or (c) Diagnostic as well as Treatment Planning Assistant tool. Our experience 
with CLOTS finds good agreement with that classification. A key difference we see 
between Diagnostic Assistant tools and Treatment Planning Assistant tools aligns 
with the components Input and Output we identified in our Inquiring System per-
spective in Fig. 15.1. We see that if a CDSS is a Diagnostic Assistant tool, it is quite 
likely to take Symptoms of patients as a part of the Input, and provide a Diagnosis 
as part of the Output, which means, on the contrary, a Treatment Planning Assistant 
tool may not rely too much on Symptoms as part of input and might not output a 
Diagnosis. That could be a useful hint for someone to determine whether a CDSS 
they look at is more toward the Diagnostic Assistant side, or whether it is more 
towards the Treatment Planning Assistant side, as there could be key differences in 
the Inputs and also the Outputs of CDSS depending on which category a CDSS 
falls into.

Table 15.1 (continued)

Theme 
number Theme Categories Description

Theme 4 Human–
computer 
interaction

Connected to EMRs A tool that can pull out data from an 
EMR and/or can push data into an 
EMR

Not Connected to EMRs A tool that is in no way connected to 
an EMR

Has facility to record 
CDSS usage activity

A tool that is connected to some 
form of electronic memory and the 
memory is enabled to record the 
usage activity of the CDSS

No facility to record 
CDSS usage activity

A tool that may or may not be 
connected to some form of electronic 
memory and has no way to record 
the usage activity of the CDSS

Accessible on Mobile/
Handheld devices

A tool that makes the CDSS 
accessible on Mobile/Handheld 
devices only (including the likes of 
Smartphone Apps)

Accessible on 
Stationary devices

A tool that makes the CDSS 
accessible on Stationary devices 
only (e.g. Desktop computers)

Accessible over a 
combination of both 
Mobile/Handheld 
devices and Stationary 
devices

A tool that makes the CDSS 
accessible on both Mobile/Handheld 
devices as well as Stationary devices

Flexibility to add more 
classifications

Similar to Theme 3, numerous 
classifications can be drawn within 
this fourth theme as well. 
Practitioners will have the flexibility 
to draw out classifications of 
different form
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The second theme is Way of Communication. In this theme, Wasylewicz et al. [2] 
identify two classes to which a CDSS can be classified into as to say a CDSS might 
belong to either the (a) Passive Communication class or (b) Active Communication 
class. Passive Communication here means that a clinician consults a CDSS in ques-
tion when they need it. Active Communication on the other hand simply means that 
the CDSS has the capability to issue triggers and can tell clinicians what to do. This 
classification too coming under the theme Way of Communication can be considered 
fairly clear cut and straightforward similar to the classification under the first theme.

The third theme is Decision-Making Process. In this theme, Wasylewicz et al. [2] 
focuses primarily on the inside of the Process part of a CDSS we identified in our 
Inquiring Systems perspective in Fig. 15.1. As such, Wasylewicz et al. [2] identify 
several classes such as (a) Flowchart-based; (b) Decision tree-based; (c) AI-based 
decision support-based; and (d) other forms of decision-making processes that can 
be comprised within this theme. While our experience and learnings agree to a good 
extent with this theme and classes as Wasylewicz et al. [2] have seen, we would like 
to also add that given the advancements of Computer Science of late, there can be 
numerous other classifications that can be formed under this very theme, and there-
fore the classes can have flexibility going beyond the four classes (a), (b), (c) and (d) 
listed in this paragraph.

The last theme is Human–Computer Interaction. This theme, too, like the third 
theme Decision-Making Process, or rather, even more than the third theme, can be 
quite broad and can have the flexibility to have different classifications within. It is 
not very straightforward to give a clear-cut classification within this theme, as this 
theme relates to the technological aspects, capacities and limitations of a 
CDSS. Thus, we can only give indicative examples of some classifications that can 
be formed within this theme. Wasylewicz et al. [2] give the following example, as to 
whether a CDSS is: (a) Connected to Electronic Medical Records (EMRs); or 
whether a CDSS is (b) Not Connected to EMRs. We agree with that example. But, 
since we also see the flexibility within this theme, we also would like to introduce 
the following classification. One classification is based on whether a CDSS has: (a) 
Facility to record CDSS usage activity or (b) No Facility to record CDSS usage 
activity. Another classification is based on the devices on which users can access the 
CDSS. Here we would like to introduce a case for Smartphone Apps. Therefore, we 
would introduce our next classification based on whether a CDSS is accessible on 
(a) Mobile/Handheld devices, (b) Stationary devices or (c) a combination of Mobile/
Handheld devices and Stationary devices.

Table 15.1 summarises the aforesaid scoping criteria, forming somewhat a rubric. 
This table can be useful for practitioners to use as a guide to scope our CDSS to help 
plan and manage design, development and improvements to CDSS. In Table 15.1, 
what appears in the normal text is what we have picked from Wasylewicz et al. [2]. 
What appears in Bold are the additions we propose. In Sect. 15.4, we present a case 
study in which we apply the proposed scoping strategy to the CLOTS App- 
based CDSS.
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15.4  Case Study (CLOTS Smartphone App) on Using 
the Proposed Scoping

In this section, we report the results of a case study we conducted with the CLOTS 
Smartphone App-based CDSS [12, 13] that is involved with an ongoing Australian 
study [11]. In this case study, we demonstrate how the scoping strategy proposed in 
Sect. 15.3 is applied to the CLOTS App and what comes forth as the result. At the 
end of this section, we also map out an outline showing what kinds of data can be 
captured from this system.

15.4.1  CLOTS App Overview

CLOTS is a Smartphone App functional on both Android and iOS platforms. The 
App has been developed by the Peter MacCallum Cancer Centre in Victoria, 
Australia, CLOTS [12, 13] and provides easy-to-follow (flowchart based) algo-
rithms for: (a) calculating surgical thromboembolism risk of perioperative patients; 
(b) pre- and post-surgery anticoagulant drug management; (c) warfarin reversal; and 
(d) haematological optimisation. As such, CLOTS is essentially a four-model sys-
tem, that supports clinical decision-making for the prevention of thromboembolism 
in perioperative patients. This App is currently used by the Peter MacCallum Cancer 
Centre in Victoria, Australia. The App is based on a risk-stratified thromboprophy-
laxis protocol of which the development and assessment have been published 
in [13].

15.4.2  Scoping of CLOTS App

In this subsection, we demonstrate the application of our scoping criteria (in 
Table 15.1) to the CLOTS App.

Firstly, as said in [12], CLOTS is designed to be used surrounding surgery. By 
using and redeveloping the App ourselves, our experience too affirms that view. 
Through using the App, we have seen that this App is quite clearly, none other than 
a “Treatment Planning Assistant” tool according to our scoping criteria described 
before. As a justification to our judgment, we can confirm that the App does not take 
as input any details about “Symptoms” of patients, for example, and does not pro-
duce as the output any “Diagnosis”, going along with our explanation in Sect. 15.3 
in which we argued that whether or not “Symptoms” being taken as input to a CDSS 
and “Diagnosis” being produced as the output can be a distinctive feature in deter-
mining whether a CDSS is more of a “Diagnostic Assistant” tool or more of a 
“Treatment Planning Assistant” tool.
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Second, we can confirm that CLOTS plays a role only when clinicians take out 
their smartphones and decide to consult CLOTS, and CLOTS in no way generates 
anything of the nature of triggers or warning alarms that would interfere with clini-
cal workflow. As such, CLOTS can quite easily be scoped as a “Passive 
Communication” CDSS.

Thirdly, on having closely studied each of the four models embedded in CLOTS, 
we see the underlying decision-making process of CLOTS to be “Flowchart” based. 
CLOTS App does not have within itself any probability calculation-based Decision 
Tree architecture or any other Artificial Intelligence or Other Forms of decision- 
making according to our scoping criteria.

Coming onto the last theme, CLOTS in its current form can be confirmed to have 
“No Connection to EMRs”. Then, along the same theme, we can confirm that 
CLOTS in its current form does not record any data or usage activity. Thus, CLOTS 
falls under the “No facility to record CDSS usage activity” category. Lastly, the most 
obvious point we can conclude on is the last point of whether CLOTS is a “Mobile/
Handheld” tool, or a “Stationary” tool, or a mix of the two. CLOTS being a 
Smartphone App, the CDSS created by CLOTS essentially becomes a “Mobile/
Handheld” tool-based CDSS.

As such, the scoping of the CLOTS App-based CDSS can be presented as in 
Table 15.2. Thus, Table 15.2 stands as an example of what an output looks like when 
the proposed scoping strategy is applied to any CDSS.

15.4.3  A Data Capture Outline for CLOTS App

In this section, we further discuss how the proposed scoping strategy can be used to 
make improvements to CDSS and also even be used to design and develop new 
CDSS. We take the same case of the CLOTS App to demonstrate this case.

Now, we have presented the current scoping of the CLOTS App in Table 15.2. 
Now suppose, we intend to improve CLOTS App and this targeted improved ver-
sion of CLOTS would fall into a different scope to that in Table 15.2. Table 15.3 
shows the new scoping of the targeted improved version of CLOTS. Simply said, 

Table 15.2 Scoping of the CLOTS App-based CDSS by applying the scoping criteria presented 
in Table 15.1

Theme number Theme Categories

Theme 1 System Function Treatment Planning Assistant tool

Theme 2 Way of Communication Passive Communication

Theme 3 Decision-Making Process Flowchart based

Theme 4 Human–Computer Interaction Not Connected to EMRs
No facility to record CDSS usage 
activity
Accessible on Mobile/Handheld 
devices
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the intended improvement is to enable recording of App usage data, in contrast to 
having no provision to record data in the original scoping shown in Table 15.2.

With the aid of the new scoping and our perspective of viewing CDSS as 
Inquiring Systems (recall from Fig. 15.1), we now go on to show a mapping of data 
capture opportunities for the CLOTS App as an example.

Recall from Sect. 15.4.1 that CLOTS is essentially a system that supports clinical 
decision-making for the prevention of thromboembolism of perioperative patients. 
Thus, CLOTS App is a tool to be used by perioperative clinicians to support in their 
clinical decision-making in regard to managing thromboembolism in surgery 
patients. As per our Inquiring Systems perspective, we find that the CLOTS App can 
be mapped out as in Fig. 15.2.

According to the mapping in Fig. 15.2, and our scoping in Table 15.3 targeted at 
improving the CLOTS App, we can conclude that there is no data to be recorded in 
the Process component as per the structure of the CLOTS App since the Process 
within the app is a simple flowchart-based input to the output mapping process. 
Thus, the process of decision-making has already been coded into the App and also 
can easily be verified.

Then, the data that is available to be recorded happen to be what is entered as 
Input, and also for the sake of completeness, what the App gives as the Output. In 
addition to those, since CLOTS is a Smartphone App, there is an additional data 
point that is available for recording, which is the mobile device identifier of the 
device in which a clinical uses the CLOTS App. CLOTS App is quite likely to be 
used in a clinician’s personal Smartphone they use at work. In that case, it needs to 
be clear that the device identifier will only be a string of characters unique to a 

Table 15.3 An example improvement for CLOTS App-based CDSS by changing its scoping 
compared to that in Table 15.2

Theme number Theme Categories

Theme 1 System Function Treatment Planning Assistant tool

Theme 2 Way of Communication Passive Communication

Theme 3 Decision-Making Process Flowchart based

Theme 4 Human–Computer Interaction Not Connected to EMRs
Has facility to record CDSS usage 
activity
Accessible on Mobile/Handheld devices
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particular device (e.g. a particular Smartphone), but that does not necessarily mean 
that the identifier will be able to reveal the identity of the clinician user. Thus, if the 
device identifier is recorded, the clinician user will still remain anonymous. Further 
special arrangements will be required to reveal the identity of the clinician user.

With that additional data point which is available to be collected about the clini-
cian user, we see two human stakeholders about whom data will be available. The 
two human stakeholders are: (1) The Clinician User and (2) The patient. We propose 
any other data that is being generated outside in relevance to those two human stake-
holders to be categorised into one category; in the light of the CLOTS App, we 
name that third category “Clinical Data”. Along with that breakdown, we can now 
categorise data types coming from the CLOTS App to be threefold: (1) Data about 
clinician users; (2) Data about patients; and (3) Clinical data. With that breakdown, 
in Fig. 15.3 we illustrate some example data points that are available to be collected 
from the CLOTS App. It should be noted that Fig. 15.3 does not show all the data 
points and it is not possible for authors to list all the data points because there are 
too many. In this example, the authors only report some selected data points as 
examples. With those data points, since we take into account the data available 
about the clinician users, we will also be able to record the timestamp of clicks in 
the App performed by clinician users. Since that timestamp also becomes a data 
point that is recordable, that data point is indicated as “user click timestamps” in 
Fig. 15.3.

The data breakdown in Fig. 15.3 leads to a clinician-centric data model for the 
CLOTS App. This data model could be extended and generalised for other 
Smartphone App-based CDSS or even outside the scope of Smartphone Apps. A 
simple representation of this clinician-centric data model is given in Fig.  15.4. 
Figure 15.4 shows the data model only with respect to one clinician user. A database 
that records this data can have the facility to save data according to such a model for 
multiple users. In the next section, we go on to discuss the critical issues, barriers 
and enablers that come to the picture when pursuing such a direction of data 
recording.

Data about clinician 
users

-Clinician’s device 

identifier 

-User click timestamps 

Data about patients

-Patient specific identifier number

-Date of Birth

-Weight, Height, BMI 

-Data from bloodwork

-….

-….

Clinical Data

-Surgery type

-Bleeding risk

-Final recommendation

- ….

- ….

Fig. 15.3 Example data points available for recording from the CLOTS App-based CDSS; colour 
codes are given to be consistent with Fig. 15.4
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Data about Clinician 1 (Device ID and click timestamps)

Data about Patient 1

Clinical Data for Patient 1

-Scenario 1

-Scenario 2

-Scenario 3

-….

-….

Data about Patient 2

Clinical Data for Patient 2

-….

-….

Data about Patient 3

Clinical Data for Patient 3

-….

-….

….

….

….

Fig. 15.4 Illustration of cascaded clinician-centric data model for CLOTS App. Interpretation 
should be: Under one clinician there can be several patients saved, and under each patient there can 
be several scenarios saved according the what the clinician has queried in the CDSS
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15.5  Discussion

One of the first questions that usually gets asked when endeavouring a direction of 
data recording like this is, why is this done and what is the purpose behind this. To 
answer that question, we have to look comparatively at the option of not recording 
data versus the option of recording data.

The issue with not recording data is that when a CDSS tool such as the CLOTS 
App is introduced, we will have no way of finding out whether the tool is actually 
being used by the intended users (clinicians in this instance). Now, since a technol-
ogy innovation is usually invested in healthcare to achieve some improvement in 
healthcare delivery, if the intended users end up not using the technology, which 
altogether undermines the effort on improvement. Therefore, it is important to have 
some objective and independent measure to learn about the usage (or lack of it) 
when a technology innovation has been introduced. Data recording in the proposed 
manner becomes a key enabler of having such an objective measure. On having 
such an objective measure, we can think of many incremental developments to 
improve even further. However, if not having an objective measure to start with, 
there will be no measurable available to even think of further developments, 
improvements, or even collecting evidence to support a reversal of technology solu-
tion that may be not suiting the intended purposes. Thus comes the rationale behind 
supporting recording data against the option of not recording data.

It is also well known that data recording adds whole new layers of complexity 
and risk as well, which could altogether be avoided if we decide to not record data 
at all. Previous works have found out that with data recording comes some critical 
issues such as concerns about performance and fitness for purpose, cost of imple-
mentation, privacy and data security, surveillance capitalism, scalability and 
expandability, policy and legislative challenges and slow adoption and uptake [7, 8]. 
However, with the rationale presented just before, we see that recording of data has 
benefits as well by creating the launchpad for potential further improvements as 
well. Thus, the more beneficial way forward seems to be a support of data collec-
tion, along with maximum efforts to counter the risks and limitations, and also the 
effort puts into advocacy of awareness about risks and limitations and not resorts to 
the simpler and less progressive option of not recording data at all.

Then, coming back to the work of this chapter, what we presented was a way to 
scope CDSS of different capacities. Our scoping strategy was bounded by four 
themes, namely: (1) System Function; (2) Way of Communication; (3) Decision- 
Making Process and (4) Human–Computer Interaction. We presented subcategories 
under each of those themes along which a CDSS can be scoped and also presented 
an example of how scoping of a CDSS can be done across those themes and catego-
ries using the CLOTS App as a case study. Although the four themes in the scoping 
strategy are fairly rigid, the subcategories coming under the themes can be fairly 
flexible and has space of tailoring to match a wide variety of CDSS. The purpose 
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behind introducing this way of scoping is to facilitate a more systematic approach 
to the design, development, assessment and improvement of different types of 
CDSS. On one side, our way of scoping enables a better understanding of the limits 
and capabilities of an existing CDSS, and on another side, the scoping can be used 
as a guide to design, develop and assess new CDSS, and also propose improvements 
to existing ones.

Along that direction of proposing improvements to an existing CDSS, we 
selected a case study which is carried out under a presently undergoing Australian 
study that involves the CLOTS App-based CDSS [11]. The existing version of 
CLOTS App has no facility to record data or usage activity. Therefore, the improve-
ment we scoped was enabling the recording of data. We presented the existing and 
proposed (or improved) scoping in Tables 15.2 and 15.3 respectively. Then we went 
on to view CLOTS App aligning with the Information Systems perspective (recall 
from Fig. 15.1) we discussed initially and thereby went on to identify the data points 
which can be collected. The data points coming from CLOTS App were then identi-
fied under a threefold categorisation. This categorisation included the three catego-
ries: (1) Data about clinician users; (2) Data about patients and (3) Clinical data. 
Although this categorisation is quite tailored to the CLOTS App, this categorisation 
has some main themes that are quite generic providing the ability for this categori-
sation to be tweaked and adoptable to apply to different types of CDSS.  In the 
remainder of this Discussion, we discuss some critical issues and ways to work 
around them when recording data under the threefold categorisation presented in 
this work. The next phase of our discussion unfolds as Subsections devoted to: (1) 
Issues regarding capturing data about clinician users; (2) Issues regarding capturing 
data about patients and (3) Issues regarding capturing clinical data. We discuss the 
issues and possible solutions under the socio-technical perspective of Technology, 
Process and People issues.

15.5.1  Issues Regarding Capturing Data About 
Clinician Users

Technological Issues: A connection to an external database storage will be neces-
sary. Alongside external data storage, the risks of data theft will have to be accepted, 
and evolving countermeasures will have to be adopted. A primary measure doable 
will be ensuring the stored data are de-identifiable. Another crucial issue will be that 
a reliable wireless data connection will be required when connecting to an external 
database. In case the wireless data connection is lost, using the CDSS may be still 
possible, but data recording will not happen.

Process Issues: No major process issues are foreseen. No interference to clinical 
workflow will be caused as recording clinicians’ information (i.e. user’s device 
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identifier and usage timestamps) can be automated. However, users may have to 
accept some usage terms and conditions on their first time of using.

People Issues: People issues might arise regarding consent to recording CDSS 
usage activity. Since this is a CDSS, it is desirable to mandate recording usage activ-
ity and not allow an option to opt out. As said before, personal human identifiers 
should not be recorded for privacy.

15.5.2  Issues Regarding Capturing Data About Patients

Technological Issues: A connection to an external database storage will be neces-
sary. Alongside external data storage, the risks of data theft will have to be accepted, 
and evolving countermeasures will have to be adopted. A primary measure doable 
will be ensuring the stored data are de-identifiable. Another crucial issue will be that 
a reliable wireless data connection will be required when connecting to an external 
database. In case the wireless data connection is lost, using the CDSS may be still 
possible, but data recording will not happen.

Process Issues: There can be points where clinicians have to manually enter data 
points and that will take some additional time. The alternative to spending that addi-
tional time, will be recalling something from memory, and risking any uncertainty 
or memory fog. But, since using a CDSS, in any case, will be optional, if a clinician 
is certain about a decision or can recall from memory, they will not have to spend 
time on the CDSS. In the event of such certainty or memory is absent, investing that 
extra bit of time in manually inserting data can be seen as a worthwhile investment.

People Issues: Since we are dealing with CDSS and the sole users are expected 
to be clinicians, there can be errors in manually entering data into the CDSS. A way 
to alleviate that challenge is to link with an EMR and cross-check or import the 
necessary data points required for the CDSS. However, there can be systems that do 
not have the facility to connect to a CDSS, for example, the CLOTS App (see scop-
ing in Tables 15.2 and 15.3). In such instances, there can be errors in manually 
entered data. In the event of having no connection to EMR, the responsibility of the 
accuracy of entered data would lie on the clinician users. In regard to recording, the 
database will record all and any data entered into the CDSS, and the database will 
have no way of verifying accuracy. Therefore, in the technology design, overriding 
any data in the database or recalling data into the CDSS from the database should 
not be allowed because we have no guarantee that the data that have been entered 
manually into the CDSS by a single clinician, is error-free. Instead of overriding and 
recalling, manual data entry should be allowed every time the CDSS is used, and 
data entered and every single time should be recorded independently. Recording 
data in that manner may help in post-analysis-based auditing and identifying trends 
of mistakes and usage habits that can evolve, and countermeasures can eventually 
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be advocated via persuasion and/or training. Since this involves recording data 
about patients, the question about patient privacy would arise as well. To address 
that concern, the data available to record about patients should not involve personal 
identifiers. That measure will be a strong factor to ensure privacy to patients.

15.5.3  Issues Regarding Capturing Clinical Data

Technological Issues: A connection to an external database storage will be neces-
sary. Alongside external data storage, the risks of data theft will have to be accepted, 
and evolving countermeasures will have to be adopted. A primary measure doable 
will be ensuring the stored data are de-identifiable. In the context of clinical data, 
they by default are unlikely to have personal human identifiers. Another crucial 
issue will be that a reliable wireless data connection will be required when connect-
ing to an external database. In case the wireless data connection is lost, using the 
CDSS may be still possible, but data recording will not happen.

Process Issues: There can be points where clinicians have to manually enter data 
and that will take some additional time. The alternative to spending that additional 
time, will be recalling something from memory, and risking any uncertainty or 
memory fog. But, since using a CDSS, in any case, will be optional, if a clinician is 
certain about a decision or can recall from memory, they will not have to spend time 
on the CDSS. In the event of such certainty or memory is absent, investing that extra 
bit of time in manually inserting data can be seen as a worthwhile investment.

People Issues: As said under issues regarding capturing data about patients, 
errors can occur where manual data entry is necessary. In regard to clinical data, not 
all points may be verifiable through an EMR either in an instance there is the ability 
to connect to an EMR. But as said before, examples like CLOTS App will not have 
the ability to connect to an EMR. Furthermore, when it comes to clinical data, there 
can be some decision points where the clinician has to make on their own. In such 
instances, technology-wise in the design aspect, factors like screen clutter or over-
populating the screen, or providing too many options at once, have to be avoided. In 
a backdrop such aspects are addressed through design, once again; if a mistake hap-
pens, the responsibility will once again direct towards the user clinician. In regard 
to recording, the database will record all and any data entered into the 
CDSS. Overriding any data in the database or recalling data into the CDSS from the 
database should not be allowed. Instead of overriding and recalling, manual data 
entry should be allowed at every time the CDSS is used, and data entered and every 
single time should be recorded independently. Recording data in that manner may 
help in post-analysis-based auditing and identifying trends of mistakes and usage 
habits that can evolve, and countermeasures can eventually be advocated via persua-
sion and/or training.
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15.6  Conclusion

This chapter proposes a way of scoping CDSS. The purpose of proposing this scop-
ing is to facilitate a more systematic means to understand different types of CDSS 
and also to enable designing, development, assessment and improvement of 
CDSS. The proposed scoping involved viewing CDSS in an Inquiring Systems [10] 
perspective (recall from Fig. 15.1), and also scoping out under different categories 
listed under four themes (recall from Table 15.1). We also present a case study with 
the CLOTS Smartphone App-based CDSS [12] to show how the proposed scoping 
can be applied to CLOTS App and also scope out an improved version of the App. 
The scoped out improved version of the CLOTS App in our case study involved 
enabling recording CDSS usage data. We then went on to discuss how such a data 
capture task can be mapped and analysed through the scoping as well as the 
Inquiring Systems perspective and concluded by presenting how issues and chal-
lenges can be foreseen, and also mitigation tactics can be planned guided by the 
structure provided by our proposed scoping and perspectives. Some noteworthy 
issues and also prospects in regard to recording usage activity were discussed under 
the socio-technical metric of Technology/Process/People issues. We expect the pre-
sented scoping and perspectives can help technology designers/developers and also 
clinicians in better understanding different types of CDSS and also to plan the 
design, development, assessment and improvements to CDSS in a more system-
atic manner.
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Chapter 16
Better Pandemic Preparedness 
with the Intelligence Continuum

Nilmini Wickramasinghe 

16.1  Introduction

COVID-19, the global pandemic that has caused devastation and chaos around the 
world in 2020 and continues to plague nations in 2021, is an example of yet another 
emergency and disaster scenario that has been poorly managed. These scenarios 
necessitate rapid and effective crisis management, including appropriate hospital 
and emergency/trauma in-hospital medical services, firefighting, disaster-related 
law enforcement operations, coupled with superior decision-making capabilities 
[1–3]. Different local or national agencies typically provide such services which in 
turn result in a variety of operating plans, rules, standards and regulations that gov-
ern them [4]. This creates a significant problem with respect to gathering and storing 
of data as they reside in disparate databases (ibid). In contrast, there is an interde-
pendent nature with respect to such scenarios and decision-making which is only 
based on a few of these data elements that will only provide a partial picture at best, 
resulting in suboptimal decision-making (ibid). It is vital to collect multi-spectral 
data, analyse these data in aggregate to develop a comprehensive picture if one is to 
facilitate superior, prudent and timely decision-making (ibid). The critical success 
factors in such an approach include embracing the tools, techniques, tactics and 
technologies of the knowledge economy [3–11].

This chapter, thus, serves to examine how we can apply the tools, techniques and 
processes of the knowledge economy, supported by digital health solutions, to be 
better prepared to contend with pandemics in the future. To do this, previous work-
around knowledge management and the intelligence continuum must be presented 
and its relevance to the current focus outlined.
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16.2  Background

To understand and appreciate the role for applying the tools, techniques and pro-
cesses of the knowledge economy, it is necessary to first understand the intelligence 
continuum [12] and related aspects of data mining and knowledge discovery.

16.2.1  The Intelligence Continuum

The Intelligence Continuum, developed by Wickramasinghe and Schaffer [12], con-
sists of an assembly of crucial tools, techniques and processes of the knowledge 
economy, such as data mining, business intelligence/analytics and knowledge man-
agement which, when taken together and then applied to a generic socio-technical 
system of people, process and technology in a systematic and ordered fashion, will 
enable superior decision-making to ensue [4, 12].

The power of this approach is drawn from the ability to systematically analyse 
multispectral data simultaneously. The intelligence continuum (developed by 
Wickramasinghe and Schaffer, 2010), which essentially applies in a systematic 
fashion key artificial intelligence and machine learning tools to disparate and multi-
spectral data sets, can be applied to the output of any generic information system 
[4]. By doing so, the results can then be reintroduced into the system and combined 
with further inputs to develop a continuum of analysis (ibid). This means that the 
intelligence continuum not only supports the generation of data and its analysis to 
provide a “diagnosis” but it can also, through the ability to reintroduce findings into 
the cycle, provide a “prescriptive” solution (ibid).

This unique model supports and enables the ability to analyse large volumes of 
disparate, multi-spectral data with the specific focus of supporting superior decision- 
making (ibid). This is made possible by combining key tools, technologies and tech-
niques of the knowledge economy with advances in machine learning and analytics 
so that the model can indeed provide the necessary support (ibid). Further, this 
model supports the interaction with domain experts to ensure appropriate results 
and the best solutions can ensue. Hence, it is logical to apply the intelligence con-
tinuum to emergency and disaster scenarios such as pandemics. Such scenarios are 
typically complex, unstable and unpredictable environments where there are many 
unknowns or the decision-maker is in a position of information inferiority and yet 
must make decisions that have profound and long-term implications. In dynamic 
and complex scenarios, as we are witnessing with COVID-19, because events are 
chaotic and haphazard, decision-making is typically suboptimal. In such a context, 
by applying key tools and techniques around knowledge discovery, as is the case 
when the intelligence continuum is used, it is possible to extract critical insights 
from large and multispectral data in a timely fashion (ibid). By doing so, it is also 
possible that decision-makers can make better decisions and thus chaos is reduced 
with the result that the disaster is lessened or eliminated [4].
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16.2.2  Data Mining

As the Information Age continues, we are generating more and more volumes of 
data. Data are the essential raw material; however, to make these data valuable and 
meaningful it is essential to mine and process the data; much like raw minerals and 
gold need to be refined and processed to provide their full value and utility. Data 
mining is a technical process that utilises techniques from computer science, spe-
cifically artificial intelligence and machine learning, and applies them to data to 
assist with sense-making and extraction of critical information from heterogeneous 
databases and data sets [13–16]. Such multispectral data are often present in emer-
gency contexts such as with COVID-19, when data were being generated in real- 
time in many different contexts. Hence, the ability to quickly make sense of and 
identify key insights from these data in a timely fashion is essential and thus the 
reason why data mining can be useful in such contexts.

Typically, data mining consists of traversing several steps from identifying target 
data to cleaning it, processing it and then utilising it for decision-making [16–20].

Thus, succinctly stated data mining is the non-trivial process of identifying valid, 
novel, potentially useful and ultimately understandable patterns from data [16].

16.2.3  Business Intelligence/Analytics

A more sophisticated technology-centric approach, like data mining, is the area of 
business intelligence and business analytics [12]. These are knowledge-generating 
and support the cyclic nature of the intelligence continuum [12]. Business intelli-
gence (BI) involves a combination of a variety of analytic decision-support tools to 
identify meaningful insights into data [5, 12]. Often BI utilises a hierarchy approach 
with regard to using these respective tools in which the first layer consists of extrac-
tion and formatting tools often called data-extraction tools [12]. These tools are 
typically used to collect data from existing databases for inclusion in data ware-
houses and data marts. The next level of the BI hierarchy is known as warehouses 
and marts [12]. Because the data come from so many different, often incompatible 
systems in various file formats, the next step in the BI hierarchy consists of format-
ting tools that are used to “cleanse” the data and convert it to formats that can easily 
be understood in the data warehouse or data mart [12]. Next, tools are needed to 
support the reporting and analytical techniques that are known as enterprise report-
ing and analytical tools [12]. OLAP (online analytical processing) engines and ana-
lytical application-development tools that make up this layer are used to analyse 
data and perform modelling and trend analysis [12]. The next layers include intel-
ligence tools to work with people and support their decision-making [12].
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16.2.4  Knowledge Management

Knowledge management (KM), a management discipline that has become signifi-
cant in today’s knowledge economy, focusses on resolving business problems prin-
cipally concerned with trying to increase efficiency and efficacy of core business 
processes while concurrently enabling and fostering innovation [3, 5]. Specifically, 
KM focusses on combining germane organisational data, information and knowl-
edge to create business value and enable an organisation to capitalise on its intan-
gible and human assets so that it can effectively achieve its primary business goals 
as well as maximise its core business competencies [3, 5, 6]. This is done by relying 
on various tools and techniques [3, 5]. Many note that knowledge creation or gen-
eration is the critical step and has the most impact on supporting superior decision- 
making [3, 5].

16.3  Knowledge Generation and Dynamic Environments

In dynamic, complex and unpredictable environments, data, information and knowl-
edge are essential to make sense of and support sound decision-making [21, 22]. In 
this regard, the gathering of information precedes the transformation of information 
into useable knowledge [21, 22], while the rate of information collection and the 
quality of the collected information have a major bearing on the quality (usefulness) 
of the generated knowledge [23] and ultimately the soundness of the decisions made 
[24, 25]. Thus, to be meaningful, the widely dispersed and apparently disconnected 
(or irrelevant) data must be processed into coherent information so that the latter 
must then be rapidly converted into a knowledge-base which in turn, serves as the 
foundation for goal-oriented interactions with the environment within which deci-
sion must be made (e.g. [5, 24, 26–29]).

To achieve an appropriate or optimal level of awareness requires appropriate and 
timely extraction of key insights from multi-spectral data [29]. An efficient and 
effective method to do this systematically is via a network-centric perspective [30]. 
Specifically, network-centric operations simultaneously support action space aware-
ness and information superiority and have been found to be particularly beneficial 
in healthcare contexts when too often time is of the essence to save lives [30]. To 
understand the fundamentals of network-centric operations, one needs to under-
stand the OODA Loop (Fig. 16.1), the cornerstone and driving philosophy of all 
network-centric operations [29, 31, 32]. The application of the OODA Loop and the 
connected concept of OODA thinking is particularly beneficial for effective, effi-
cient and real-time extraction of critical multi-spectral data and have been used in 
many contexts such as healthcare, business and military operations [1–3, 31–34] 
and thus are proffered in this chapter as being equally suitable for decision-making 
as well as enabling a state of better preparedness in the context of pandemics.
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The OODA Loop consists of four interrelated stages: Observe, Orientate, Decide 
and Act, which has a temporal dimension [12]. Stage 1 Observe requires the gather-
ing of multispectral, implicit and explicit inputs [ibid]. Stage 2 Orientate then con-
verts these inputs into coherent information [ibid]. Then the sequential Decide 
(knowledge generation) stage identifies appropriate courses for action, and finally 
the Act (practical implementation of knowledge) stage is where the chosen decision 
is enacted [12]. The outcome of the decision impacts, in turn, the starting point 
(Observe) of the next revolution in the forward progression of the loop [12].

16.4  Application of IC and OODA Loop to COVID-19

The COVID-19 pandemic has caused catastrophic devastation to the world in 2020 
with more than ten million Coronavirus cases in the United States and over a quarter 
of a million deaths [35] by the end of 2020. Moreover, this virus has caused signifi-
cant impacts on the economy and healthcare facilities. The first clusters of pneumo-
nia related to COVID-19 were reported in the Hubei province, China in December 
2019 followed by a declaration of public health emergency of international concern 
(PHEIC) by the World Health Organization (WHO) in January 2020 [36–41], and 
on 11 March 2020, the WHO declared the COVID-19 outbreak as a global pan-
demic. As noted by the Centers for Disease Control and Prevention (CDC) in March 
2020 [36, 37], older adults comprised a significant number of hospitalisations and 
ICU admissions. While older adults contributed to 31% of the infected population, 
they accounted for 45% of hospitalisations and 53% of ICU bed occupancy [36, 37]. 

Fig. 16.1 The OODA Loop adapted from [12, 31, 32]
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Aside from prevention, the most commonly used treatment for COVID-19 patients 
is considered to be supportive care [38–40]. Furthermore, since the start of the pan-
demic, COVID-19 has not only spread globally to all areas of the world but several 
mutations also have already occurred.

Many studies confirm that more comprehensive data are required regarding 
COVID-19 patients to best optimise resource planning and identify vulnerable pop-
ulations [38–41]. Deploying accessible applications for self-reporting of symptoms 
and identifying avoidable hotspots rely on robust data gathering systems [38–41]. 
Due to limited resources and the extent of COVID-19 spread, many countries do not 
have the opportunity to experiment with different strategies and they must adopt 
methods that will produce the most optimal outcomes [38–41]. Clearly, the world 
was caught by surprise, and efforts to control the COVID-19 pandemic have all 
been reactionary.

On closer examination of the events in 2020, what is a unifying and concerning 
aspect is how unprepared the world in general was to deal with the pandemic and 
how slow decision-makers globally were to take necessary steps. In short, sub- 
optimal decision-making took place and there was an inability to identify rapidly 
critical data, pertinent information and germane knowledge. This chapter proffers 
the previous model of the intelligence continuum coupled with Boyd’s OODA Loop 
as an appropriate framework to assist decision-makers in such emergence and disas-
ter scenarios.

Specifically, the first step of Observe would ensure that key decision-makers, by 
applying the intelligence continuum to data and information that was being gener-
ated about cases of pneumonia and its rapid spread in Wuhan in December 2019, 
could evaluate the level of a potential threat. By doing so objectively and with robust 
analysis of critical data, it would then be possible to move to the Orient stage of the 
OODA Loop. In this stage decision-makers would start to evaluate relative risks and 
consequences; for example, should borders be closed, what public health informa-
tion and warnings should be shared and what resources need to be made ready. 
From the Orient stage the next step is to formulate Decisions to be made at the 
macro, meso and micro levels regarding policy, deployment of resources and sup-
port, need to develop a vaccine and how best to contain the spread and eradicate the 
virus. Finally, in the Action stage, sound and appropriate courses of action 
would result.

However, when we analyse the recent COVID-19 pandemic and how it has been 
handled to date, we notice a common theme being a lack of preparedness and readi-
ness. Clearly, we cannot go back in time but moving forward there are key lessons 
to learn and hopefully a better state of preparedness will ensue for the future.

N. Wickramasinghe
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16.5  Discussion and Conclusion

The impact of COVID-19 will likely be felt across the world for several years after 
the pandemic. While the pandemic was unexpected, it should not mean countries 
are unprepared for emergency and disaster events like pandemics and it is para-
mount that part of the recovery process focusses on having a better state of pre-
paredness in the future.

The preceding has proffered the intelligence continuum model coupled with 
OODA Loop thinking as a suitable framework to enable a better state of prepared-
ness to be reached. Given the advancement of our digital technologies, especially 
with Industry 4.0 including mobile and wireless, analytics, sensors and platforms, it 
should be possible for countries and communities to not only build back better but 
also to establish a better state of preparedness not just for pandemics but also for all 
emergency and disaster events. The Intelligence Continuum offers the perfect 
organising framework to strategically and systematically apply these technological 
solutions to enable the full benefits of knowledge extraction and prediction to ensure 
and thereby support better preparedness and readiness as well as decision support, 
especially in the context of a pandemic Such an approach should be considered a 
strategic necessity for all governments and policy-makers since one thing is for 
certain: COVID-19 will not be the last pandemic, emergency or disaster scenario to 
impact the globe.
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COVID-19 Response in Australia 
and the United States (March–August 
2020) and the Key Role for Digital Health: 
A Tale of Two Countries

Foluke Ajiboye and Nilmini Wickramasinghe 

17.1  Introduction

Coronaviruses are a family of RNA viruses that usually cause mild respiratory dis-
ease in humans. In December 2019, a cluster of pneumonia cases of unknown aeti-
ology centred in Wuhan, China, was reported by Chinese authorities. The first case 
diagnosed with the novel coronavirus (2019-nCOV) in the United States was on 21 
January 2020, and by 4 February 2020, a total of 293 persons were under investiga-
tion for nCOV in the United States (see Fig. 17.1). Eleven of those were confirmed 
nCOV cases [2]. According to US Food and Drug Administration (FDA) (2020), 
“CDC activated its Emergency Operations Center for COVID-19  in the US on 
January 21, 2020. Using an incident management structure, CDC works in coordi-
nation with World Health Organization and other countries as well as with state and 
local partners in response to the pandemic”. The Centers for Disease Control and 
Prevention (CDC) issued a Level 3 travel ban for nonessential travel to Mainland 
China on 27 January 2020. Since then the number of cases has increased. The first 
case of 2019-nCOV in Australia was announced to the general public through a 
media release on 25 January 2020 (see Fig. 17.2). The patient had just arrived from 
mainland China. The Department of Health further informed the public of the plans 
implemented to reduce the risk of transmission such as educating the general public 
about the possible pandemic and that officials will be stationed at the airport to sup-
port and inform passengers arriving from China. A telephone line for reporting to 
the authorities was made public by the time the second case was identified on 29 
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January 2020. Timely reporting of new cases, contact tracing and surveillance are 
crucial in preventing the spread and mortality from COVID 19, hence the need for 
technological tools to create awareness and facilitate timely reporting of new cases 
to trigger response systems put in place by the healthcare authorities.

17.2  Methods

Review of the literature, grey literature and social media on COVID-19. Google 
searches were performed for relevant articles on government responses on 
COVID-19 as well as websites of public health organisations such as CDC, WHO, 
FDA and Australian Government Department of Health. References from identified 
publications were reviewed. Key themes, identified a priori, such as the spread of 
virus, number of cases and strategies to prevent spread, and then many emergent 
themes, such as contact tracing and telehealth, were used to help identify and anal-
yse the literature in a systematic fashion. The goal was to develop a set of guidelines 
that would ensure we can be more prepared to combat future pandemics and thereby 

Fig. 17.1 Initial case report date of COVID-19 cases in the United States. Patient-level COVID- 
positive cases reported to US states and territories reflecting the earlier of the Clinical Date (date 
related to the illness or specimen collection) or the Date Received by CDC. (Source: CDC [1] 
[https://covid.cdc.gov/covid- data- tracker/#demographics])
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answer the research question, “how can we best prepare ourselves to be ready to 
combat pandemics and other emergency and disaster scenarios?”

17.3  Background

The recent coronavirus infection, COVID-19, is a SARS-CoV-2 disease that causes 
mild to severe respiratory illness, especially in immunocompromised individuals. 
Studies show that transmission is through respiratory droplets that are produced 
when an infected person coughs, sneezes or talks, droplets are subsequently inhaled 
or contacted by another person nearby to the infected individual. The virus is easily 
spread from person to person, the spread is facilitated through shorter distance, less 
than 6 feet apart and longer contact time. The virus may also be transmitted through 
other ways such as touching a surface or through an object that has the virus on it. 
According to the CDC [2], symptoms reported include fever, cough, shortness of 
breath or difficulty in breathing, fatigue, muscle or body aches, headaches, new loss 
of taste or smell, sore throat, congestion or runny nose, nausea or vomiting and diar-
rhoea. Patients become symptomatic 2–14 days after exposure to the virus. Testing 
for COVID-19 can be done by a diagnostic viral test to determine if a person has a 

Fig. 17.2 Daily confirmed COVID-19 cases in Australia. Patient-level COVID-positive cases 
reported to national authorities showing a sharp increase from January 2020 to March 2020. 
(Sources: Johns Hopkins University CSSE [3]; Ritchie et  al. [4]. Published online at 
OurWorldInData.org, licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/))
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current infection. This includes molecular tests like the RT-PCR test that detects the 
genetic material of the virus and the antigen test that identifies proteins on the sur-
face of the virus. Past infection can be detected through antibody tests [5]. There is 
currently no treatment for the disease, and prevention is the main strategy to control 
the spread of the disease. This is done by avoiding close contact with infected peo-
ple, the use of a face mask to prevent droplet inhalation and spread, frequent hand 
washing and rigorous cleaning and sanitising of surfaces that are frequently touched. 
There are ongoing clinical trials to develop vaccines for COVID-19. The use of 
monoclonal antibodies and antivirals to hasten recovery is also being explored.

17.4  Assessments and Evaluations

Based on the literature reviewed the following summarises key assessments and 
evaluations for both the Australian and the US actions towards addressing and try-
ing to stem the spread of COVID-19.

In both countries, the total number of cases has seen a steady increase since 
March 2020, as seen in Table 17.1.

The aim is to determine why these numbers have continued to increase and to 
examine response strategies and policies in place in the United States to prevent this 
rise in number of cases. Australia, on the other hand, was shown to have had a better 
control of the curve initially, in which a plateau was reached between April and June 
2020. In July 2020, the cases started to increase again, doubling the number of cases 
recorded in June (see Figs. 17.2, 17.3, 17.4, 17.5, and 17.6). The increase in number 
was mostly attributed to people not observing the lockdown measures in place as 
seen in Melbourne (BBC, 2020). A review of Australia’s COVID-19 response 
showed that in March 2020, as the cases began to increase Australia created a 
National Cabinet to coordinate and deliver a consistent response to COVID-19. 

Table 17.1 Total number of cumulative cases of COVID-19 (monthly): United States versus 
Australia

Month

United States
Total number of cumulative cases, 
monthly

Australia
Total number of cumulative cases, 
monthly

31 Mar 
2020

164,620 4557

30 Apr 2020 1.04 million 6746
31 May 
2020

1.77 million 7185

30 Jun 2020 2.59 million 7767
31 Jul 2020 4.5 million 16,303
31 Aug 
2020

6 million 25,670

Source of data: EUROPEAN CDC [6]
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“The Australian Prime Minister and all state and territory leaders (the equivalent of 
governors) agreed that the ‘wartime’ cabinet would meet regularly (sometimes 
daily) via secure video-conferencing to make decisions about health, education, 
public safety, social services, and infrastructure. Its members are all elected officials 
responsible to their own parliaments and constituents (the nation’s Chief Medical 
Officer also participates in meetings). Members come from both major parties but 
have agreed to work together as a united team to protect the lives of Australians” 
[7]. Within a week of the formation of the National Cabinet, restrictions on social 
gatherings began, followed by business shutdowns a couple of days afterwards. 
According to Duckett and Stobart [8], four key ways in which Australia achieved 
some success in flattening the curve during the timeframe studied were by: 
“Formation of national cabinet that set the same standard for the country regardless 
of state, Closure of international border and setting a mandatory two-week quaran-
tine for all international arrivals, Public acceptance of spatial distancing and the use 
of Telehealth”.

The Australian system is not without its shortcoming as the largest single source 
of initial infection was from the cruise ship that was allowed to un-board passengers 
showing symptoms of the virus. The 700 cases constituted 10% of the nation’s 
COVID cases at the time [8]. Other shortcomings noted by Duckett and Stobart [8] 
are that Australia was slow to close its border to other nationals except for foreign 

Fig. 17.3 Daily new confirmed COVID-19 cases. Shows the COVID-19 curve for Australia and 
the United States, with a plateau/decrease in new cases between April 2020 and June 2020. 
(Sources: Johns Hopkins University CSSE [3]; Ritchie et  al. [4]. Published online at 
OurWorldInData.org, licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/))
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nationals coming from China, the health system was also not prepared for a pan-
demic scale response and, finally, there was an unclear strategy resulting in con-
fused messages such as sending children back to school a month after the initial 
short closure.

In the United States, some have argued that the response to the pandemic was 
slow, resulting in the high number of cases seen from the beginning of the pandemic 
to date (see Table  17.1). According to Just Security [9], “in late November to 
December 2019 U.S intelligence warned of a cataclysmic and out of control disease 
in Wuhan, China”. It appeared that no actions were taken immediately to prepare in 
the event of spread into the country or to prevent spread into the country. Even after 
the first COVID case in the United States, strategies were not immediately imple-
mented to mitigate the spread of the disease, for example, the mandatory use of face 
masks in public places did not go into effect until 31 May 2020. The healthcare 
structure in the United States may have also played a role in the rapid spread of the 
disease. In the United States, policy responses regarding COVID-19 are being made 
at the state and local/county levels resulting in different levels of restrictions across 
the country with interstate travel restrictions not necessarily in place in the initial 
months of the pandemic. This resulted in further spread of the disease from places 
with little restrictions to places that have strict restrictions in the United States, thus 
increasing the spread of the disease and curve. The numbers continued to rise in the 
United States due to issues such as lack of healthcare insurance for all citizens, 

Fig. 17.4 Daily confirmed new cases showing the COVID-19 curve for Australia and the United 
States, with a significant drop in new cases in Australia between April 2020 and June 2020 com-
pared to the United States. (Sources: Johns Hopkins University CSSE [3]; Ritchie et  al. [4]. 
Published online at OurWorldInData.org, licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/))
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resulting in reduced or no access to healthcare for some individuals even prior to 
COVID-19. There is also a disproportionate increase in COVID-19 cases among 
minority groups in the United States, and according to the CDC [2], “Long-standing 
systemic health and social inequities have put some members of racial and ethnic 
minority groups at increased risk of getting COVID-19 or experiencing severe ill-
ness, regardless of age” (see Fig. 17.7).

17.5  Key Policy Responses

Government policy responses were also reviewed using the Oxford COVID-19 
Government Response Tracker (OxCGRT). It uses 18 indicators to measure govern-
ment policy responses (see Box 17.1). According to Hale et al. [10], in the United 
States, this is further subdivided into the following: “(1) containment and health 
index [see Fig. 17.9] showing how many and how forceful the measures to contain 
the virus and protect citizen health are (this combines ‘lockdown’ restrictions and 
closures with health measures such as testing policy and contact tracing); (2) an 
economic support index, showing how much economic support has been made 
available (such as income support and debt relief); (3) a stringency index [see 

Fig. 17.5 Cumulative confirmed COVID-19 cases—Australia. An initial rise in the number of 
cases in March 2020 and a flattening of the curve between April 2020 and June 2020; thereafter, a 
steady rise in the number of COVID-19 cases. (Source: European CDC [6]; Ritchie et  al. [4]. 
Published online at OurWorldInData.org, licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/))
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Fig. 17.8] that records the strictness of ‘lockdown style’, closure and containment 
policies that primarily restrict people’s behavior; (4) an overall government response 
index which records how the response of states has varied over all indicators, cap-
turing the full range of government responses”.

A higher score indicates a stricter response; for example, a score of 100 equals 
the strictest response (Fig.  17.8). According to Hale et  al. [10], “this does not 

Fig. 17.6 Cumulative confirmed COVID-19 cases—USA. A steady rise in the number of cases 
from March 2020 to August 2020. (Source: European CDC [6]; Ritchie et al. [4]. Published online 
at OurWorldInData.org, licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/))

Box 17.1 OxCGRT Indicators—Policy Indices of COVID-19 
Government Responses
Containment and closure

C1 School closing
C2 Workplace
C3 Cancel public events
C4 Restrictions on gathering size
C5 Close public transport
C6 Stay at home requirements
C7 Restrictions on internal movement
C8 Restrictions on international travel

(continued)
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Fig. 17.7 Cases by race or ethnicity in the United States. There is a proportionate increase in 
COVID-19 among minority groups due to long-standing systemic health and social inequities in 
the United States (Source: CDC [1] [https://covid.cdc.gov/covid- data- tracker/#demographics])

Economic response

E1 Income support
E2 Debt/contract relief for households
E3 Fiscal measures
E4 Giving international support

Health systems

H1 Public information campaign
H2 Testing policy
H3 Contact tracing
H4 Emergency investment in healthcare
H5 Investment in COVID-19 vaccines

Miscellaneous

M1 Other responses
(Source: Oxford COVID-19 Government Response Tracker (OxCGRT). 

https://github.com/OxCGRT/covid- policy- tracker/blob/master/documenta-
tion/codebook.md)

Box 17.1 (continued)
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Fig. 17.9 COVID-19: Containment and Health Index. Graphs indicate a robust response based on 
the containment and health index score in both countries after June 2020. (Sources: Hale et al. [10]; 
Ritchie et al. [4]. Published online at OurWorldInData.org, licensed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/))

Fig. 17.8 COVID-19: Government Response Stringency Index. In the United States, varying 
policy responses at the subnational level may be responsible for the difference in score after July 
2020 compared to Australia. (Sources: Hale et  al. [10]; Ritchie et  al. [4]. Published online at 
OurWorldInData.org, licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/))
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measure or imply the appropriateness or effectiveness of a country’s response. A 
higher score does not necessarily mean that a country’s response is ‘better’ than 
others lower on the index”.

Robust responses in the United States are defined as those states that achieve a 
Containment and Health Index score of at least 60 (Fig.  17.9). While a lasting 
response was one in which the Containment and Health Index score remains within 
10 points of the maximum value achieved by the state for at least 60 days [10].

17.6  Contact Tracing

Contact tracing is one of the mitigation measures adopted to control the spread of 
the virus. The concepts are to “trace and monitor contacts of infected people to 
notify them of their exposure and support the quarantine of contacts” [2]. Trained 
professionals begin case investigation by supporting patients suspected or con-
firmed cases of infection by the virus. Those patients are required to recall close 
contacts to them who would also have to be immediately contacted, notified and 
tested for the virus. It is important that everyone involved in the process is educated 
about the disease, mode and risk of transmission and the need to separate them-
selves from other people to prevent further spread of the disease. The process of 
contact tracing can be overwhelming for everyone involved and can be faster and 
more efficient using digital contact tracing tools for COVID-19. They could be tools 
for case management or exposure notification [2]. Case management tools can help 
the healthcare professional to generate a notification to contacts and electronic sur-
veys for patients to self-report recent contacts triggering other contact tracing pro-
cesses. They are also used to manage notification workflows along with other alert 
health systems. Exposure notification tools are used to notify people about potential 
exposure by sending messages or alerts on their smartphones. It provides referrals 
for patient follow-up. It also reminds the patient of locations or recent events. 
Aggressive efforts in contact tracing are one of the best strategies to reduce spread 
in workplaces and schools. The creation of exposure monitoring devices or smart-
phone apps for use in these places is essential for accurate identification of contacts. 
These devices transmit encrypted short-range wireless signals which are picked up 
when individuals wearing them are within range, they vibrate team members are too 
close to each other. Such devices are already available for use at workplaces by team 
members who wear small wireless device to remind them to stay at least 6-feet apart 
from others by vibrating when too close. According to Estimote [11], “these devices 
remember direct contact interactions, when an employee develops symptoms, they 
can push a button which is interconnected to a contact tracing dashboard to report 
their status. The organization can generate a report to protect team members by 
notifying direct contacts of possible exposure and need for quarantine”. As schools 
reopen, easing of lockdown measures and restrictions, there is an urgent need to 
invest in exposure monitoring and notification devices for use among students and 
team members in workplaces. The Apple-Google exposure notification system is 
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being adapted by states in the United States, for sending COVID-19 exposure alerts 
to smartphones. It is important to highlight here that without advances in digital 
health, it would not be possible to design, develop and rapidly deploy the types of 
contact tracing that have been used.

17.7  The Role of Telehealth

Telehealth can be defined as the use of videoconferencing technologies to conduct 
a medical consultation where audio and visual information is exchanged in real time 
between the healthcare provider and patient. Remote communication technologies 
include apps such as FaceTime, Telephone, Google Hangouts, Skype and Zoom. In 
the United States, the Coronavirus Preparedness and Response Supplemental 
Appropriations Act was signed into law on 6 March 2020, and among other expan-
sions in healthcare during the Pandemic, it allowed Medicare beneficiaries access to 
telehealth services in the United States. The Centers for Medicare & Medicaid 
Services issued an 1135 waiver that relaxed rules regarding virtual visits allowing 
more access to healthcare and promoting social distancing.

In a press release by the Australian government on 11 March 2020, through 
which a comprehensive $2.4 billion health package was unveiled to protect its citi-
zens, $100 million of the fund was allocated for telehealth services. The Australian 
government identified that telehealth service will help reduce the spread of the virus 
and immediately implemented it starting 13 March 2020. This timeliness of this 
intervention has been attributed to the initial containment of the spread in the coun-
try. As the pandemic continues to ravage, telehealth services is one of the strategies 
to deliver healthcare to most of the population and contain the spread of the virus. It 
is also a means of protecting patients and healthcare providers.

17.8  Conclusion

The preceding review of literature is neither exhaustive nor complete. This is mainly 
due to the fact that the analysis was timed almost in real time as things were devel-
oping. However, in spite of these limitations, the reviewed literature serves to pro-
vide us with key insights from which we can develop guidelines from the lessons 
learned to date.

The initial response during a pandemic is one of the determinants of the level of 
containment of the spread of the disease. Upon notification of any outbreak, an 
immediate unified nationwide response plan must be implemented, this should 
involve notification of the general public about the disease through the media, 
healthcare facilities and over the internet. This calls for a healthcare reform in some 
parts of the world to require enforcement of a unified nationwide strategy during 
pandemics such as COVID-19. An overview of the response plan should be rolled 
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out to the public in a timely fashion with proper education of the public through 
articles, pamphlets and relevant websites. Smartphone apps for education and self- 
reporting should be made available once an outbreak has been confirmed. Adequate 
funds must be provided to execute the proposed mitigation plan. Public health sur-
veillance must begin immediately to identify cases and possible contacts. The use of 
technological tools to enhance this process is crucial to the success of the strategies 
to combat the disease. Telehealth will expand access to healthcare for more people 
and it will protect patients and healthcare providers from the risk of exposure. The 
issue of stigmatisation is also reduced as patients with symptoms can secretly seek 
medical attention without fear of others around them being aware of clinic visits. 
Funds must be promptly released for large-scale production of case management 
and exposure notification tools for public use. In certain instances, there may be a 
need to provide telephone service to the elderly, at-risk individuals with co-morbid 
conditions and people of low socioeconomic status that otherwise cannot afford 
such smartphones.

In the United States, there was a delay in the implementation of mandatory use 
of face masks, due in part to unclear messages from politicians to the public rather 
than strict guidelines from public health officials about the use of face masks. There 
must be a strong coalition of public health officials nationwide who would stand 
firm and enforce guidelines to be followed during pandemics such as this. 
Governments must ensure the provision of personal protective equipment (PPE) to 
the public at little or no cost. Test kits must be readily available and test centres 
accessible nationwide, which is key to early identification of cases especially in 
asymptomatic patients. It is important to ensure that contact tracing is enhanced by 
the use of case management and exposure notification tools. Tracing every case 
contact and ensuring mandatory quarantine or self-isolation is one of the effective 
strategies to contain disease spread. School and workplace closure should be man-
dated until the disease spread is under control as easing these restrictions was shown 
to bring about another increase in the curve. Even with a mitigation plan in place, 
school reopening for in-person attendance has been another avenue for the spread of 
the disease. Remote learning through virtual classes is effective in reducing the 
spread of the disease among students worldwide. The same can be said of adults in 
the workforce, as most companies have transitioned employees to work remotely. 
COVID-19 cases have continued to rise worldwide despite efforts to contain the 
virus. The world is waiting for an answer to end the pandemic. The answer comes 
through science and technological innovations such as vaccines. There are ongoing 
clinical trials to develop a vaccine that gives hope to end this pandemic.

As 2021 approaches, the rollout of several vaccines has begun. This is clearly a 
key step in the journey to conquer COVID-19. Indeed, the need for a vaccine is 
vital; however, it should not be at the expense of developing robust, effective and 
efficient strategies and protocols to ensure communities, nations and the world are 
prepared and ready to combat pandemic and emergency and disaster scenarios. 
What has been evident is the critical role for digital health at multiple levels includ-
ing contact tracing, telehealth, support to rapidly develop and mass produce a 
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vaccine and then to the efficient logistic support needed to rapidly deploy the vac-
cine to all populations whether in rural, remote or metro locations.

This chapter has served to capture key findings from various sources of literature 
during the 2020 COVID-19 pandemic. In so doing, it has enabled the development 
of important guidelines to be developed from the lessons learned that can serve as 
an essential resource for the future in the pandemic, emergency and/or disaster sce-
narios. We close by calling for further work in this regard so we can ensure we are 
always as prepared and ready as possible to meet such devastating and deadly chal-
lenges as COVID-19.
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Chapter 18
Digital Tools as Optimising Enablers 
of Quantitative Medicine and Value-Based 
Healthcare in a SARS-CoV-2/COVID-19 
Pandemic World

Duane F. Wisk

18.1  Introduction

SARS-CoV-2 is the virus responsible for the disease COVID-19. It is the most sig-
nificant global pandemic since the 1918 influenza (Spanish flu). Starting in 2019 
and to the present in 2021, we have seen the SARS-CoV-2 virus spread rapidly. 
Now, more contagious variant mutations have continued to spread across the globe. 
As the population vaccination rate continues to rise in the United States, it is now 
becoming a pandemic of the unvaccinated. As of this writing, there are five variants 
of concern (VOC) [1]. These include the Alpha (B.1.1.7, emerged in the U.K.), the 
Beta (B.1.351, emerged in South Africa), the Gamma (P.1, emerged in Brazil), the 
Delta (B.1.617.2, emerged in India) and most recently Omicron (B.1.1.529). Delta 
has two mutations, the L452R and like the Beta a K417N. It is up to 115% more 
transmissible. It is the dominant variant worldwide as of this writing, but Omicron 
is rapidly displacing Delta in Africa. Early data suggest that Omicron may more 
effectively evade immunity as evidenced by the reinfection rate. Of concern with 
Omicron over Delta are the changes in the Receptor Binding Domains (RBD of 
G339 D, S371L, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, 
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G496S, Q498R, N501Y, Y505 H) and 19 other changes that also are where mono-
clonal antibodies bind [2]. In addition, there are emerging Variants of Interest (VOI) 
and Variants of High Consequence. These include the Epsilon (B.1.427, B.1.429), 
Zeta (P.2), Eta (B.1.525), Theta (P.3), Iota (B.1.526), Kappa (B.1.617.1) and Lambda 
(C.37). The longer the large pools of unvaccinated populations continue, the greater 
the opportunity for these mutations to occur. These mutations are suspected to 
decrease in the efficacy of binding by antibodies and vaccines while increasing the 
R0. This global pandemic has shaken the very core of global healthcare and econo-
mies as we know it. Unlike the United States, developing countries are struggling to 
get a supply of vaccines to their populations. The pandemic is taxing the global 
system to the point of collapse during the peak of cases has caused a serious rethink-
ing of the fundamental care delivery system itself. Omicron is now creating a sec-
ond major wave and may again, as in 2020, tax the hospital system, but this time in 
two ways. First, bringing new Omicron admission to the hospital, and second, the 
backlog of patients with non-COVID illnesses, when combined together may again 
stress test the system to a failure point. So it begs the question in 2022 whether the 
current system is prepared to manage this and future pandemics? It has also caused 
an intensive retrospective examination of the structural underpinnings of this sys-
tem and whether it is capable of meeting sudden unforeseen capacity demands.

18.1.1  Form Follows Function

The phrase “form follows function” was coined in 1896 by architect Louis 
H. Sullivan to refer to tall office buildings [3]. It still has utility today when referring 
to the design, planning, construction and implementation of digital healthcare struc-
tural tools to improve healthcare functional processes. Unfortunately, all too often 
in healthcare, the reality is that this truism is inverted. The function is forced to fol-
low bad form. With the advent of the American Reinvestment and Recovery Act 
(ARRA) in 2009, the movement to modernise healthcare information systems 
resulted in the enactment of a measure called the Health Information Technology 
for Economic and Clinical Health (HITECH) Act. It proposed the meaningful use of 
interoperable electronic health records as a key national priority. During the subse-
quent three-stage implementation program, incentives and penalties led to a pleth-
ora of electronic health record (EHR) vendors flooding the U.S. marketplace. 
Providers rushed to avoid Medicare reimbursement reductions for failure to achieve 
milestones. This, in turn, led to billions of dollars in EHR deployments, whose form 
often failed to meet the functional needs of physician providers or add advanced 
(artificial intelligence [AI]-driven) clinical decision support (CDS). In Fig. 18.1, the 
top workflow shows a manual (non-CDS) clinical process. The bottom workflow 
demonstrates insertion points for AI to provide an opportunity to optimise a clini-
cian’s workflow.

While digitisation has many potential upsides, there are several functional pro-
cess mismatches that persist as a result of inadequate digital infrastructure form. 
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They include inconvenience and inefficiency leading to a significant loss in produc-
tivity, loss of time and money, increased malpractice exposure, increased anxiety on 
the part of patients leading to degraded communication, and flawed data entry and 
corrupted patient records, as well as privacy breaches and network cybersecurity 
gaps. In the case of flawed data, patient-matching technology shortfalls and the 
universal patient identifier (UPI) dilemma have led to patient errors due to identity 
confusion. For example, if John Doe, Sr. is confused with John Doe, Jr., this can 
lead to serious morbidity or even mortality. Suppose that John Doe, Sr. has no drug 
allergies, but John Doe, Jr. is allergic to penicillin. John Doe, Jr. is having a surgical 
procedure that is preceded by the administration of IV penicillin as a matter of pre-
operative guidelines. If he has an anaphylactic reaction to penicillin, it can be poten-
tially fatal. This demonstrates how an operative procedure, which is considered 
routine in a patient with a low-risk profile, has the potential for a catastrophic medi-
cal error.

This process gap described in the previous example that led to the medical error 
has many root causes. One of the most significant contributors is system design. 
Such designs can be traced back to the evolution of the collection of healthcare data, 
the primary function of which was billing. Subsequent digitisation efforts, including 
electronic medical records, were a by-product of the primary function. Early 
attempts at standardising medical record data elements began with the American 
College of Surgeons in 1928 [4]. With the introduction of Medicare and Medicaid 
in 1965, healthcare systems were needed to keep track of the billing and 
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reimbursement demands of this new form of government health insurance. This was 
made possible by the advancements in computer systems in the 1960s, and as a 
result, the first hospital-based electronic medical records systems burst onto the 
scene in 1965 [5]. Some physician systems emerged in the early 1970s.

However, the advent of the personal computer in the early 1980s was another 
inflection point. With a much smaller form factor and lower cost, these features led 
to the more widespread use of billing systems in physician offices by the late 1980s. 
The rapid growth of these systems into the clinical area did not occur right away. 
This delay in expansion to areas other than billing and finance was hampered by 
issues of security, lack of standards and cost. The HITECH Act, combined with 
advances in computer technology, led to accelerated development and adoption of 
EHRs, with a sevenfold increase in usage from 2008 to 2015  in general medical 
hospitals [6]. The key takeaway is that software designers served financial process 
goals. Clinicians have been and are still largely forced to deal with systems whose 
workflow is not matched to how they ideally practice day-to-day. This creates a 
dysfunctional workflow for them that does not optimise patient care. Furthermore, 
the lack of content standards between EHR software vendors significantly retards 
interoperability efforts as of this writing. Finally, this chasm between the workflow 
process of providers (e.g. physicians as expensive data entry clerks, rather than 
medical decision-makers) and software design limits acceptance and advancements 
of digital clinical tools. These tools need to be reengineered from the ground up to 
be provider process and patient-centric, to optimise value-based care.

18.1.2  Digital Structure Can Enable the Healthcare Process 
Through Quantitative Medicine Leading 
to Value-Based Purchasing

The lesson experienced, but not learned, is that form still does not optimally follow 
function. Form or digital structure is not optimally driven by process. Clinicians 
must design software and make the rules for how they are best utilised. The govern-
ment’s push for meaningful use resulted in EHR vendors hastily jamming clumsy 
systems into the workflow of healthcare providers. The care process was digitised 
but often exacerbated the mismatch between a normal manual workflow and new 
forced digital workflow processes. This caused significant industry-wide loss of 
productivity [7]. Provider throughput of patients fell off. Such mismatches can not 
only lead to substantial reductions in productivity but also reduced effectiveness of 
patient interactions (e.g. clinical staff staring at screens and not giving attention and 
eye contact to patients) and, at worst, medical errors. The doctor–patient interaction 
suffered. Medical scribes have emerged as workforce multipliers, thereby offload-
ing the data entry task for clinicians. Once trained, these scribes enhance provider 
productivity and the quality of the doctor–patient interaction. This process is not 
perfect, but a step in the right direction as clinicians become more comfortable with 
these process dynamics and training of such staff advances. In addition, voice 
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recognition systems such as Dragon have continued to advance in speed and accu-
racy. This acts to supplant data entry tasks, especially for narrative clinical summa-
ries that are primarily free text, unstructured data.

Challenges remain, however. Workflow function, as expressed in day-to-day 
clinical patient care processes, must become the primary directive in designing 
next-generation EHR systems. Billing should be a subordinated function of the 
clinical workflow. It can always be derived from a well-documented clinical care 
process record. The reverse is not true. Advances in artificial intelligence and 
machine learning have created text search engines to look at text or search billing 
records for patterns that may portend significant clinical conclusions. However, 
this method makes such knowledge engineering possible but not highly effica-
cious. As an industry, healthcare is on the verge of a major inversion of not only the 
healthcare information technology (IT) sector but also in how care is delivered and 
paid for. Armed with disruptive innovation, asymmetric competitors will start 
delivering solutions that arise out of the clinical process as the central driver. In the 
medical software design world, the patient is the sun with other stakeholders as the 
planets. Only then will digital structure truly enable the care process. As this medi-
cal software technology inversion emerges, with it comes the structure to drive 
value-based care and medical care advances in ways not imagined.

One of those unimagined ways is through a new field formally defined as 
Quantitative Medicine (QM). Bits and pieces of this field are and have been done 
for years. However, it should now be a separate and distinct field of study that 
brings multiple skill sets to bear with a focused purpose. The Science Council 
(sciencecouncil.org) defines a scientific methodology to include the following: 
“Objective observation: Measurement and data (possibly although not necessarily 
using mathematics as a tool)”. Live Science (livescience.com) defines mathemat-
ics as the science that deals with the logic of shape, quantity and arrangement. 
When the science of mathematics is overlaid upon the science of medicine, the 
combination is a new field of medicine. This will formally become a separate dis-
cipline and field called Quantitative Medicine. This field is defined as the science 
of objective observation that includes measurement, data and the expression of 
clinical care processes as mathematical expressions. As with all mathematical 
expressions, they will be objects that can be manipulated and studied through 
research. The power of appropriately leveraged digital tools will permit the rapid 
development and growth of quantitative medicine in a way that allows for the 
widespread application of quantitative comparisons of care outcomes. Therefore, 
meaningful development of quantitative medicine is a prerequisite structure for 
the execution of effective value-based care outcomes and the remuneration sys-
tems that pay for such care.
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18.2  The U.S. Healthcare System Today

The U.S. system of financing healthcare is routinely viewed as the bogeyman of health 
policy—as an example of how not to structure a nation’s health system. Uwe E. Reinhardt [8]

18.2.1  SARS-CoV-2/COVID-19 Pandemic’s Impact on Public 
Health, Health Information Behaviour, Research 
and Clinical Care

The world as we knew it ended in 2019. This world was one where defects in the 
system, although glaring and widely discussed, did not get exposed as the “canary 
in the coal mine” as an impending system collapse. This did not happen until the 
pandemic system stress test. Public health systems have, over recent years, seen 
their funding cut, while concurrently being asked to deliver more services with 
fewer resources. This reduction in public health, population health and preventive 
services has resulted in the system being already taxed at a time of a pandemic 
emergency when it needed to be functioning optimally. Today, in general, health 
information-seeking behaviour has been kicked into high gear by users worldwide. 
This desperate search for medical information has risen dramatically at this global 
level due to a once-in-a-100-year pandemic. Research into the natural disease his-
tory, pathophysiology, diagnosis, treatment and vaccine development has been rap-
idly energised at a governmental level last seen with the “Manhattan Project” during 
World War II [9]. This research has, in turn, fuelled the diagnostic and treatment 
knowledge base of the clinical care guidelines. Despite this rapid acceleration of 
research and the disease knowledge base, during the pandemic, this dissemination 
of diagnostic and treatment information has been sporadic, inconsistent and often 
contradictory. This tendency holds true even in the medical community, which was 
sprinkled with misinformation. Information dissemination was not optimised 
locally, regionally, nationally or globally since the onset of this disease. Some 
reports have placed the start of the pandemic in Wuhan, China as early as August 
2019. Although much progress has been made in the utilisation of digital records to 
improve the value of care, the SARS-CoV-2/COVID-19 pandemic sheds light on 
just how much farther we need to go in the global medical community.

18.2.2  Healthcare: A Commodity-Based 
Reimbursement System

As discussed, healthcare IT is not structured around the care process as the first 
order of business. Therefore, it has no way to accurately derive the value of the care 
process and the subsequent value of the outcomes. As a result, despite the U.S. 
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legislative foundation and mandates, there is no way that successful value-based 
purchasing programs can be fully operationalised. This means that the current sys-
tem of commodity-based payment will continue, along with a smattering of unsuc-
cessful or minimally successful experiments in value-based purchasing. The Center 
for Medicare and Medicaid Innovation (CMMI) was a division spawned from the 
ACA as a foray into the experimental world of new payment and care delivery mod-
els for Centers for Medicare & Medicaid Services (CMS). The primary goal has 
been to lower costs without taking a hit on care quality, also known as value (Quality/
Cost) [3]. There has been a steady upward trend of prices in the U.S. healthcare 
system. These price increases have arrived without concomitant care outcomes that 
are superior to other developed countries that spend far less of their gross domestic 
product (GDP) on healthcare. This is when comparing benchmarks of leading qual-
ity indicators (e.g. maternal and infant mortality). It is the mission of CMMI to 
reverse that trend. The enigma is to design new models that increase quality, while 
either cutting costs or at least holding costs at the same levels. The Congressional 
Budget Office projected billions in savings from these care delivery and payment 
models by 2026, but of the 37 tested by CMMI, only two have been certified by 
CMS for expansion.

The result is that the long-standing current market reimbursement mechanisms, 
largely driven by CMS first, remain largely unchanged. Therefore, the predominant 
mechanism of a commodity approach to healthcare services and products remains 
unchanged [4]. Medicine is a highly complex and individualised service industry, 
and no two patients are alike. Yet, all providers are compensated like purchasing 
coal. In this commodity-based healthcare marketplace, all providers are treated as 
equal, all outcomes are the same, all patients share the same preferences, medicine 
is one service line, and therefore, all payments for those services in a fee-for-service 
market should be the same. The same procedure gets paid the same for every pro-
vider. In other industries (e.g. cars, appliances, etc.), you can go online and check 
ratings that benchmark the value of the product or service. In healthcare, the tech-
nology is not in place structurally to deliver such “Consumer Reports”-style guid-
ance on who should take out your gallbladder given your unique clinical presentation. 
That’s not to say one shouldn’t be able to or that there is not the technology to cal-
culate that type of outcome comparison. In a patient-centric design, one should be 
able to compare outcomes uniquely matched to the demand of the individual patient.

18.2.3  Zero-Sum Healthcare Competition Is “SICK”

When thinking about the characteristics of a market governed by zero-sum competi-
tion, it is easy to remember by using the acronym “SICK”. “S” stands for shifting 
costs to other stakeholders. “I” stands for increasing bargaining power against other 
stakeholders. “C” stands for cost reductions when patients self-ration (e.g. due to 
high deductible). Self-rationing reduces costs by not consuming services against 
reserves in the short term, lowering quality and ultimately increasing long-term 
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costs. These long-term cost increases occur when diseases progress farther before 
an intervention is begun. “K” stands for keeping restrictions on patients and their 
choices, which again often reduces the quality of care in the long term.

There is much debate about how to accurately compare the healthcare systems of 
developed countries globally. The U.S. system has been much maligned for its very 
high-cost relative to the size of its economy [10]. This is because these high invest-
ment costs do not return proportionately high outcome returns on key care bench-
marks, when compared to other countries. There continues to be an ongoing 
dialogue about the best financing mechanism for care globally. The socialised, 
single- payer, societal-level of medical care versus a combination of government and 
private insurance financing of healthcare is a debate that continues to rage on. The 
truth never seems to reside in either of the two extremes, but often the debate is 
based on the wrong issue. The question is not which entity structure is the correct 
financing mechanism, but rather are the funds being spent to purchase high-value 
services or products? The problem is that there is no current way to easily measure 
total aggregate cost while simultaneously measuring the actual quality of the out-
comes. Therefore, it is impossible to measure the overall value at an individual or 
population level by a single disease or with multiple comorbidities grouped together. 
The digital technological capacity is there to answer these questions, but it has not 
been applied in this way. Figure 18.2 demonstrates the dynamic between those that 
receive healthcare, the entities that fund that care and the flow of funds to the pro-
viders of care. The default mechanism to pay or insure individuals or populations is 
to pool funds that are sufficient to absorb the risk for a risk pool or population of 
patients. A discussion of these different pooling mechanisms is beyond the scope of 
this writing, but the takeaway is that historical use of actuarial tables is only an 
educated guess about the probability that the reserve pools are sufficient to cover all 
claims for the insured population.

Although new models are constantly being proposed and tested, Fig. 18.3 illus-
trates the stakeholder relationships from Fig.  18.2 with respect to three specific 
variables. Those variables are on the left y-axis represent the degree to which sav-
ings accrues to the payers of care. The x-axis demonstrates the level of provider 
financial risk incurred. Finally, the right y-axis reflects the level of restriction on 
patient freedom of choice. These historical models have revealed how trying to 
purely restrict care or have providers share risk has temporarily reduced costs (the 
denominator in the value equation) by restricting care to patients or shifting risk 
onto providers. However, this low-hanging fruit in the cost reduction quest has run 
its course. Now the real work begins in adding value by improving quality (the 
numerator in the value equation). This requires that the relationship between stake-
holders in a healthcare commodity-based payment marketplace shift to a value- 
based approach. Since a value-based purchasing system is yet to be implemented, 
the result is a continuation of cost-shifting among stakeholders.

Ideally, the patient is looking for freedom in choosing providers and care options. 
The providers want to deliver care for services rendered without financial risk. The 
payer has insurance pools or reserves they want to protect. This is the push-pull 
dynamic that exists among stakeholders. Figure 18.4 illustrates that for for-profit 
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insurance companies to maximise profits, it must minimise the consumption of 
reserves that reflect unused premium dollars. The most effective way to do that is to 
invest in preventive care for members. The difficulty is that the insurance company 
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Fig. 18.3 Cost-shifting relationships between U.S. healthcare stakeholders (source: author)
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may not maintain the relationship with the member beyond a year. Any investment 
in wellness may be recouped by another insurance company that may insure the 
patient the following year. As a result, this market dynamic will remain a cost- 
shifting dynamic, until the value of care outcomes is rewarded in a meaningful way 
so that providers provide the continuity of care that insurance companies may not 
be able to. This will occur when actual outcomes can be measured, analysed, 
reported and paid for to align the incentives of all stakeholders around the actual 
value of the care provided. The digital tools, process structure and people orienta-
tion need to be put into a value-based model for this to occur. This is a complex, 
tedious and long-term implementation process. However, it is possible today with 
current digital technology, applied appropriately to the care process and managed 
by individuals with the correct vision and skillset to operationalise it.

18.3  Value-Based Healthcare in a Population

The health of an individual is a complex physiologic interplay. Measuring the value 
of that interplay is even more complex. When you scale such adequate measurement 
and precisely quantify it for a population, the level of complexity seems daunting 
and, at first glance, insurmountable. That is, of course, if your expectation is to do it 
right. If your expectation, however, is to get it mostly right or close enough, then 
you have the current system of global medicine, measurement and monetisation of 
that medicine. In the final analysis, it is about managing expectations.
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Fig. 18.4 Care continuum and the emphasis on maintaining insurance reserves (source: author)
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18.3.1  Understanding Value in a Healthcare Context 
for a Population

The complexity of a population is daunting but seemingly incalculable for all the 
numerous relationships in a marketplace. Figure 18.5 illustrates the bidirectional 
transactions that occur in a marketplace between payers of healthcare and providers 
of healthcare services and products. As alluded to previously, aggregate total costs 
of care are impossible to calculate with current infrastructure. This diagrammatic 
transaction schematic illustrates all the dynamic process relationships that exist for 
a population. Each arrow refers to a process that entails a resource transaction. To 
adequately account for total costs, all those monetary exchanges in the marketplace 
have to be accounted for in a reliable way. In this way, the value of each of those 
individual populations can be tracked and then aggregated to calculate the total cost 
and net value. This means that the purchasers understand what exact value they are 
receiving on the demand side. On the supply side, hospitals, doctors and suppliers 
are measured for actual value created and compete with each other based on the 
quantifiable value. As such, value accrues to the purchasers (value-based purchas-
ing) and the value rises among competitors, with weak competitors falling out. New 
digital tools must be utilised to measure, analyse, report and calculate remuneration 
proportionate to the actual level of value-based outcomes achieved. This then 
becomes a very simple conceptual virtuous continuous cycle of the three R’s: 
Record, Report and Reward.
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HospitalSupplier
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Doctor
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Fig. 18.5 Representation of all the bidirectional relationships and transactions between market-
place stakeholders relative to a value coordinator (source: author)
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18.3.2  Value-Based Competition Is Positive Sum

For the first time since the passage of the PPACA, value-based purchasing programs 
can actually be operationalised when powered by digital tools driven by disruptive 
innovations. Commodity is replaced by value-based. An entirely new generation of 
leaders will emerge to look at the healthcare industry through an entirely new lens. 
They will cut ties with legacy technology that must be swept aside and rebuilt de 
novo with the right architecture for the user. Asymmetric competitors with no ties to 
such systems are solely focused on solving the “Rubik’s Cube” of how to design, 
build and operationalise a new ecosystem based upon this architecture. This indus-
try inflection point will create a domino effect on all stakeholders simultaneously by 
enabling value-based outcomes measurement. The switch is suddenly flipped for 
value-based competition and the jettisoning of a commodity-based zero-sum game 
marketplace. The result is a positive-sum environment that fosters competition on 
measurable outcomes. Figure 18.6 shows the stark contrast between a commodity 
and a value-based marketplace for patients and providers. In this environment, the 
best competitors rise to the top and patients benefit. As these competitors improve, 
they earn even more market share because they are delivering a better quality of care 
at a lower cost (quality-adjusted prices fall) [11]. These competitors work to dif-
ferentiate themselves through their products and service offerings. The market 
expands and more patient needs are met and more effectively. Niches in the market 
are filled with disruptive innovators that use new technologies and business method-
ologies to create differentiation and superior user value.

18.3.3  Characteristics of a Value-Based Global 
Healthcare Marketplace

This model will spread precipitously and globally as it is discovered that the cost 
curve can finally be substantially bent upstream. Unending cost escalations were the 
norm for the past four decades, with per capita spending increasing 31-fold. This 
pattern can be traced back to the cost-plus reimbursement system for hospitals, cost 
insensitivity by providers and patients and significant growth in treatment options, 
which led to a steady escalation in prices. Price was equated with quality, but with-
out precise quantification and accountability, there were no checks and balances in 
the system. The healthcare industry evolved in a way unlike other industries in a 
capitalistic value-based product or service society. As a result, healthcare follows a 
traditional “Field of Dreams” view of supply-side economics, where you build it 
and they will come. This means to keep producing more products and capacity, then 
market those products and services like crazy to drive consumption. In the United 
States, the certificate of need (CON) program was established first in New York in 
1964 and then advanced federally in 1974 [12]. This process requires a legal docu-
ment justifying the need for acquisitions, expansions or creations of healthcare 
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facilities. Despite this gating legislation, facilities mushroomed along with volume, 
prices, and, consequently, costs.

Fast forward to today, and we live amid an economy in which globalisation has 
produced global competition for goods and services in all other industries [13]. 
Measurement of the value of these goods and services leads to quantification of 
value and, therefore, competition based on those value features. With the proper 
process-enabling digital tools, healthcare will be pushed in the direction of globali-
sation. Once strictly a local business, healthcare will no longer be governed by local 
or even regional benchmarks of performance, but rather global ones. Once adjusted 
for severity of illness criteria and other factors, the postoperative infection rate in 
Memphis, Tennessee, will be the same expected top benchmark rate in Memphis, 
Egypt. In other words, value-based outcomes as equally measured by digital tools, 
then analysed and reported, will be a global standard of excellence benchmark.
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18.3.4  Access Barriers, the “Triple Aim”, and the PPACA

Access to care has been a serious problem in the United States despite great wealth 
and care. Poor access takes three forms. Access can be limited due to geographic 
constraints, where there is a limited number of providers, other services or facilities 
(e.g. critical access hospitals). Despite the passage of the PPACA, another serious 
access issue relates to being uninsured. As of 2019, 10.9% of the population, or 44 
million adults in the United States, did not have health insurance [14]. Furthermore, 
another 38 million adults in the United States do not have adequate insurance. In 
total, it means that one in five Americans, or 20% of the U.S. adult population, has 
either no insurance or is underinsured. For those that are underinsured, high out-of- 
pocket costs result in these patients self-rationing. These populations are not getting 
the “Triple Aim” that Dr. Donald Berwick and the group articulated in 2008: 
improving the patient experience of care, improving the health of populations and 
reducing the per capita cost of healthcare. The “Triple Aim” was core to the PPACA 
passed in 2010. Again, the progress, despite a legislative mandate spearheaded by 
CMMI, has not been significant. It is another cornerstone in the argument that struc-
tural changes in medicine, measurement and money are necessary to reinvigorate 
the execution of value-based care. The lack of structure is the key barrier and major 
explanation for the lack of progress towards value-based care when seemingly every 
other barrier has been eliminated.

18.3.5  An Effective Sequence for Successful Healthcare 
Market Change

So just what are those structural changes and what sequence of structural imple-
mentation is required? Putting the medical, measurement and monetisation infra-
structure in place is foundational to successfully facilitating disruptive value-based 
medical care outcome innovation. Such innovation will allow the reorganising of 
existing market processes around a new, value-based service paradigm. It can be 
matched up with the traditionally thought of three key business process areas of 
people, process and product. First, the people are the patients and the providers. In 
an E-Health marketplace, the patient is the key user and therefore driver of a pull 
economy. Patient-centric care must be the primary focus in value-based care. 
Physicians must be reorganised around patients, care guidelines, outcomes mea-
surement and continuous improvement in a quantifiable structure that enables the 
process. Second, the process is the complete care cycle. The industry must pivot to 
precisely quantify care outcomes and that starts with precise measurement. New 
disruptive measurement systems must exactly codify an audit trail of what care was 
actually provided. A global healthcare industry must answer questions of how the 
care conformed or diverged from the global guidelines. If care does diverge, is the 
care approach incorrect, or if there are improved outcomes, is this due to innovation 

D. F. Wisk



267

or advancement of the guidelines? Third, the product is a measurable, analysable 
and fairly compensatable care outcome. These separate processes are really three 
categorically distinct initiatives that synergise to optimise the overall value-based 
care process scaled to any population or market size, including global.

18.4  Global Healthcare Transformation

In his award-winning 2005 book, The World Is Flat: A Brief History of the Twenty- 
First Century, Thomas Friedman outlined how globalisation has changed core eco-
nomic concepts [13]. That same flattening is on the horizon for the healthcare 
industry, which historically lags behind other traditional industries in advancement. 
This is ironic, given how we think of medicine as so technologically advanced. 
Despite this general public notion of medicine, it is still by and large a fragmented, 
siloed and information technology-impaired industry. Digitisation of electronic 
medical records did not become more widespread in the United States until a law 
made it happen. Even that digitisation is a very rough start. This digitisation was the 
first pillar to be put in place in the globalisation process. The second pillar was a 
global pandemic that, by necessity, forced contactless interaction with providers in 
the seeking of medical services. The table has been set for a significant global inflec-
tion point.

18.4.1  Globalisation of Healthcare Value

As mentioned, the healthcare economy will increasingly become a globalised 
healthcare ecosystem. Reorganisation of providers, digital measurement, analysa-
tion and the payment systems that emerge from that knowledge engineering will 
together catalyse that evolution. Specifically, healthcare will begin to take the form 
of other industries that have long functioned under a value-based competitive model. 
As such, healthcare competition will gradually shift to a global playing field until it 
finally reaches a tipping point and exponentially emerges into this completely new 
value-based global order. A significant impetus in achieving this tipping point has 
and will be the advancement of digital tools. These tools will, for the first time, 
permit widespread big data measurement, storage, analysis and reporting of the 
exponentially burgeoning terabytes of healthcare data.
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18.4.2  Movement Away from the View of Healthcare 
as a “Local Business”

Medical care has always been thought of as a service you obtain and measure qual-
ity and cost locally. For many years, this was true due to proximity, familiarity and 
traditional doctor–patient relationships. Slowly, that doctor–patient bond has been 
eroded. Maybe your doctor joined a larger single or multispecialty group to share 
calls or overhead. Maybe the physician joined a big health system or academic 
teaching centre. In some cases, your doctor just retired. You may get on a plane to 
have a special surgery only performed at a major academic centre of excellence in 
another state. The SARS-CoV-2 and COVID-19 pandemic caused restricted access 
and you may have had to resort to a telehealth visit with a doctor you don’t even 
know. Whatever the reason, medical care has evolved from the general practitioner 
who may have delivered all of your kids to a telehealth ear, nose and throat doctor 
thousands of miles away. It’s not your grandparent’s pure local business anymore.

18.4.2.1  Pull Economics

Globalisation and digital technology advancement go hand-in-hand. Supply-side 
economics has given way to demand-side economics and the consequent shift to a 
pull economy. In such a market, the producers of healthcare services and products 
are increasingly responding rapidly to consumer demands on a direct basis. This 
response is facilitated by the growth of digital tools. The SARS-CoV-2/COVID-19 
pandemic further pushed digitisation a quantum leap forward in just 1  year. 
Suddenly, in response to the face-to-face restrictions of the care process, CMS made 
significant regulatory changes that loosened restrictions on interstate commerce to 
healthcare providers across the United States. CMS modified rules for coverage and 
payment of virtual services [15]. A new page was quickly turned in the digital trans-
formation and a telehealth story, characteristic of a two-sided E-Health marketplace 
[16]. Pull economics demand a precise understanding of customer needs. This 
understanding can only be gained through optimised communication with the cus-
tomer. The growth of social media and digital communications tools has accelerated 
that process.

18.4.2.2  The Two-Sided E-Health Market

In healthcare, that customer is the patient and represents one side of the rapidly 
expanding, two-sided E-health marketplace. The other dominant side of that market 
is the provider—specifically, the physician and their workforce multipliers. These 
two sides will once again restore the doctor–patient bond from decades ago, just not 
via the same structure. As with social media platforms, users will form the core 
symbiotic relationship that is used to embody the relationship with your general 
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practitioner. As digital tools permit a more accurate measurement of the value gen-
erated by each side of a two-sided E-health market, the value of this two-sided 
E-health relationship will only increase. This is not to say that other stakeholders 
will not still play a part in this marketplace but rather that they will no longer play 
the central role. Hospitals may actually move from a central health system part of 
the marketplace to becoming commodities in a global ecosystem. The patient- 
centric model will finally become a full-blown market reality as a result of advance-
ments in digital tools that effectively enable and optimise it. As the marketplace 
evolves through digitisation and telehealth offerings, the patient/doctor symbiosis 
will evolve and grow into an even more symbiotic form. Just as social technology 
has eliminated physical boundaries, this E-Health evolution will also have no geo-
graphic limitations. Genomics, epigenetics, precision medicine, medical tourism 
and a whole host of as-yet-undiscovered offerings will further globalise into an 
ecosystem similar to platforms in other industries. The measurement of how well 
providers make an effective interpersonal connection with their patients will be a 
yardstick by which patients judge their providers. For example, effective follow-up 
with patients by clinical staff makes a big difference in outcomes. This followup 
used to be a phone call from the provider’s staff. Now communication has broad-
ened to many vehicles, such as text, email, chat, video conferencing and telehealth 
visits. There will be no limit to how successful providers and their staff try to con-
nect with their patients. AI and other digital tools can be leveraged to drive remind-
ers to caregiving and clinical staff as to when and how is the best way to connect 
with the patient.

18.4.2.3  From PCs to Platforms to Global Healthcare 
Multi-platform Ecosystems

As described earlier, information technology has come a long way from the billing 
PC found in physician offices in the 1980s. Today, we see the emergence of many 
more platforms and network-centric solutions. These are all initial steps to the 
development of a sophisticated Global Healthcare Multi-platform Ecosystem 
(GHME) [6]. The advancement of this E-health world will produce an environment 
where precision medicine will result in bespoke diagnostics and therapeutics. Such 
interventions will optimise the value of healthcare for the individual patient. Patients 
will have access to information customised to their individual needs in such a way 
that reduces medical errors resulting from “cookie-cutter” approaches to therapeu-
tics or inaccurate diagnoses. Patients will be precisely matched to not only the exact 
treatment they need but also to the best providers to deliver that precise treatment 
that they individually require. For example, if a patient has a workup that indicates 
a very specific condition requiring an orphan drug or a rare procedure only per-
formed successfully at a certain medical centre in the world, then that patient can be 
matched with that provider and treatment. This happens similarly with the organ 
donation and matching process. This is optimal value-based care. Resources are 
always limited in some way, so this optionality will still have economic implications 
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and therefore financial constraints that once again gate access. This scenario is pos-
sible with available technology, but this technology is not structurally in place or 
applied to this customised approach.

18.4.3  Structural Change and the Three Process Spheres

Structural change will ultimately touch the three spheres of people, process and 
product. The core people are the patient and provider. Patients will be reorganised 
to be placed with their health information at the centre of the ecosystem. Pull eco-
nomic rules dictate how and when they are connected to anyone (users and partners) 
they choose in the ecosystem [17], but they will be the gating function to availability 
of their health information. That information will be their medical avatar or “digital 
double”. Providers will be reorganised through digital connectivity into second- 
generation clinically integrated global networks. This structural reorganisation is 
also about information reorganisation that is reshaping the business world as 
machines, platforms and crowds [18]. It will occur efficiently as driven by pull- 
economic forces within the GHME environment. The digital structure will allow for 
rapid dynamic and organic changes within that ecosystem that adjust interactions as 
driven by demand from users [19]. Again, this is not a new business dynamic, just 
new to the healthcare industry. Finally, this will rapidly drive remuneration that 
naturally arises from a more exact calculation of risk through actual measurement, 
rather than probability approximations from actuarial tables. Insurance plans can be 
more customised at not only a group level but also down to an individual level. 
Patients will demand an improved premium structure that naturally emerges from 
more accurate data used to more precisely calculate member risks for consuming 
certain services and incurring costs.

18.4.4  The Three Spheres of Process Change

The functional domains of medicine exist in three worlds. World one is where medi-
cal care is delivered. World two is where care is measured. World three is where care 
is paid for. All three of these worlds have their roots intertwined, but these interre-
lated processes remain stagnated relative to other industries with respect to the rate 
of advancements. The SARS-CoV-2/COVID-19 pandemic proved that the industry 
could make great advancements in a surprisingly short period of time. Operation 
Warp Speed surprised the medical community and general public with its unprece-
dented short-term success for vaccine development and deployment. This initiative 
proved that rapid change can occur under the right environmental circumstances. 
This success was a harbinger for an industry inflection point in the three spheres of 
process change.

D. F. Wisk



271

18.4.4.1  Sphere 1: Medical Care Outcomes

The idea of integrated clinical care teams is not a new one, but advanced digital 
tools will take this to another level. Human beings make mistakes due to errors in 
thinking and doctors, as people are no different. Doctors are not machines and as 
such have feelings that influence decision-making [20]. Machines with no feelings, 
on the other hand, cannot replace a doctor’s intuitive cognition, but they can aug-
ment it to help mitigate errors. Specifically, Augmented Clinical Intelligence 
Decision Support (ACIDS) will take early decision-support solutions to an addi-
tional level. These solutions combine the intelligence of the medical community as 
a collective genius to support an individual provider’s medical decision-making at 
the point and moment of care [21]. The next generation of electronic medical 
records will be a further inversion of current systems. This system will mean a reen-
gineering from process inhibitor to process facilitator. The EHR will now closely 
mirror care processes and facilitate productivity. Additionally, EHRs will more 
accurately reflect a complete audit trail of what actually happened in the care pro-
cess. ACIDS will not only be at the point of care but more importantly at the moment 
of medical decision-making to facilitate increasingly more accurate diagnosis and 
treatment. That accuracy is driven by a process that mitigates medical errors. Placed 
in the middle of the workflow, it will serve to increase the efficiency and therefore 
velocity of the care process. Overall, the medical care outcomes will be put into a 
virtuous continuous improvement cycle that is the goal of interaction management 
interventions.

18.4.4.2  Sphere 2: Measurement of Care Outcomes

Next-generation EHRs will be designed to create a more precise audit trail to deter-
mine an accurate value of the care process with respect to quality and cost. Ideally, 
there will be a reciprocal relationship between quality and cost, whereas when qual-
ity improves, then the cost will decline. This can result from many process interven-
tions, but the most notable will be the result of error mitigation methodologies. 
Human beings are not perfect machines and as such our ideal goal is to reduce errors 
down to as low of a level as is humanly possible. It all starts with measurement, as 
you cannot correct process errors of which you are not aware. Therefore, EHRs 
must first mirror processes precisely, and the measurement systems must collect 
complete and accurate data about that process. Quality improvement efforts then 
undertake ongoing evaluations and audits of those processes to promote continuous 
improvement through process change. The next generation of EHRs will perform 
this task at a higher level of accuracy.
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18.4.4.3  Sphere 3: Monetising Care Outcomes and Competing 
on the Value of the Outcomes

You can only bill and collect for what you actually perform. Therefore, you must 
first perform the best care, then measure that care precisely and then be paid fairly. 
Such a payment system will incentivise providers to continue to raise the perfor-
mance bar. The sequence of changing the current system and driving out unneces-
sary costs starts with providing the best care, followed by measuring completely and 
paying accurately and fairly for what care outcomes are achieved. Providers have 
for decades achieved phenomenal care, but then are guilty of not recording that 
performance completely. This made billers frustrated when trying to code for writ-
ten charts that did not properly reflect what was done. The pendulum swung a little 
in the other direction since EHRs offered an “exception charting” feature. If you felt 
that you did a complete exam, you could press a complete exam button that would 
spit out a voluminous amount of text reflecting the most complete history or exam 
you could imagine. This was easy to bill for, but sometimes a press of a button pro-
duces documentation of actions (historical or examination-related), all of which 
were not necessarily performed. This led to inaccurate records, overbilling and 
increased liability. Although systems are improving in this regard, they still do not 
accurately or smoothly reflect or facilitate the optimal care processes.

18.4.5  Prerequisite Structural Changes

The medical community wants to cross the river to a world of value-based medicine. 
The river represents the obstacle or gap to bridge to process change. A structural 
bridge will be required. That bridge is measurement technology. Advances in infra-
structure that adequately measure the care process will permit care and payment 
advancements. This bridge has yet to be adequately built. Therefore, adequate mea-
surement systems are not yet in place and there is as of yet no crossing that river to 
a value-based care shore.

18.4.5.1  A Patient-Centric Model as the Key Function

A key design element to this structure is overlaying an immutable template of a 
patient-centricity to the design process. For example, if a new measurement tech-
nology is being designed, then each feature of that technology should be checked 
against an ideal template of patient-centricity. It should first pass this checklist as to 
whether it improves the adequacy of measuring the patient’s experience throughout 
the care process. A patient-centric, functionally driven process must have the patient 
at the centre of all activities. All of those activities must be geared toward making 
all aspects of the healthcare experience clearly and unequivocally better for patients. 
For example, patients are suffering from the disease but also from the costs causing 

D. F. Wisk



273

illness to their financial health. Sixty percent of personal bankruptcies in the United 
States resulted from medical bills [22]. All activities, both medical and financial, 
will be increasingly judged by patients in a pull economy and those judgments will 
be posted on social media. All stakeholder processes will be driven by the litmus 
test of patient-centricity. Doctors, hospitals, insurers, government employers and 
suppliers do not exist without the patient. Now is the time when the market com-
pletes its inversion from a non-patient-centric structure.

The explosion of social media further emphasises the power of the consumer in 
today’s marketplace. These social technologies that facilitate network relationships 
among users are a powerful factor in a patient-centric marketplace. Websites and 
applications are appearing all the time for patients with chronic diseases. They serve 
their users from multiple dimensions. They can be a support group, allow for the 
exchange of treatment experiences or may simply just help to uplift spirits and pro-
vide hope. In general, this dimension of the marketplace has driven a growing need 
for channels for health information-seeking behaviour. The result is raising the bar 
on health literacy. In a Global Healthcare Multi-Platform Ecosystem, many of these 
patient networks will grow and become an increasingly powerful force in shaping 
care globally. Mutual support, in general, expands population and individual 
empowerment. These users pull technology and technological advancements to 
them, causing significant and often rapid market shifts. The needs and desires of 
users shape the market. For the first time, patient-users shape the market directly, 
actively and in near real-time. An entire chapter can be devoted solely to the social 
technology digital solutions and their effect on E-health and healthcare in general. 
For now, we will note that these social technologies will play an instrumental part 
in a truly patient-centric marketplace.

A Patient-Centric Model Drives Building New Care Infrastructure

We have talked about how the actual care process must be improved from a pro-
vider’s standpoint, but we have not described improving the patient experience. A 
patient-centric model has often been aspired to, but rarely accomplished. A view 
from the patient’s functional standpoint must be utilised to reengineer all structural 
care processes. In most cases, this will involve abandoning old inadequate struc-
tures and starting completely de novo. Inpatient and outpatient systems rarely reflect 
a patient’s health information-seeking behavioural process. In addition, bilateral 
communication is not well reflected and the patient historical information acquisi-
tion process is still too one-size-fits-all. These functional and process challenges 
remain because the primary immutable directive is still not “the patient comes first”. 
Systems often remain inflexible. As a result, patients are forced to participate in a 
process that is often quite different depending on the setting. The settings vary not 
only from inpatient to outpatient, but also from one inpatient or outpatient health 
system to another, as patients may increasingly drift from one organisation to the 
next for their various care needs. Patient loyalty has been on a steady decline over 
the years. This is a major factor in how many different organisations you may 
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interface with, especially in large urban settings. E-health will further enable this 
migratory behaviour in the near future, until a new Global Healthcare Multi- 
platform Ecosystem takes a firm hold. Pull economic forces will mold this new 
healthcare world order, to closely match a patient’s day-to-day functional healthcare 
process needs. Providers that are deaf to this new order will find patients increas-
ingly deaf to them. The competitors that best match their services to a patient’s 
functional care needs will draw disproportionate market share to them.

18.4.5.2  The Form and the Three M’s of Infrastructure

The three M’s of infrastructure begin with the three functional processes that the 
infrastructure is built to serve. These are the three spheres previously described that 
include Medicine, Measurement and Monetisation. Each of these functional process 
spheres requires infrastructure that supports a patient’s unique needs and catalyses 
the care process. Medicine, or the medical care process, requires structure. Doctors 
need stethoscopes or ECG machines to assess the heart’s function. They also need 
digital infrastructure tools, such as clinical decision support, as much as a stetho-
scope. An ECG checks the heart’s electrical function, whereas the clinical decision 
support tools augment the physician’s cognitive function. Likewise, the measure-
ment process, so instrumental in quality improvement processes, requires infra-
structure to collect data from the care process. A cardiothoracic surgeon replaces a 
heart valve and the echocardiogram measures the ejection fraction of blood as a 
quantitative measure of cardiac muscle function post-surgery. This number is 
reported as a percentage and can be used to compare the effectiveness of surgical 
intervention or the surgeon’s performance as compared to their peers. Finally, the 
care process and the costs associated with it must be transformed through monetisa-
tion as remuneration to providers of care. The functional payment process needs 
infrastructure to perform a conversion of the above care process to a functional bill-
ing and payment process. This functional conversion process (quantitative medi-
cine) requires sophisticated digital tool infrastructure to make this complex 
transformation a reality. This technology infrastructure is the least mature and there-
fore has the potential for the most growth and impact.

Medical Infrastructure

What kind of medical care is produced by the top-performing competitors? The 
answer: exactly the care that each patient needs and wants. The medical process 
needs to be supported by a structure that optimises this demand from the consumer 
in a pull economy. For example, patient histories will be tailored to the needs of the 
individual. This means eliminating barriers of language, vernacular and terminol-
ogy, advocacy, billing, diagnosis explanation, procedure risks and benefits, learning 
the track record of performance information and so on. Although it sounds exten-
sive, this level of information infrastructure is readily available in other 
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transactions, including repairing your automobile or online banking. Sometimes the 
medical service bar is so low that individual patients have lowered their expecta-
tions for what reasonable care and care-related services look like. Cancer patients 
are often desperate and afraid to challenge the system because they are afraid of not 
getting the life-saving attention they need. Therefore, every structural component 
that supports the patient’s functional needs must be designed, built and operated 
with those needs at the centre. This means building waywardness, web applications, 
patient gowns, biometrics, wearables and so on [23]. Yes, technology must be built 
to help providers to offer better care, but it must also be designed first to help 
patients receive the best care and care experience.

Measurement Infrastructure

An adequate measurement process has features of precision, accuracy, reliability, 
validity, repeatability and reproducibility [24]. Medicine currently lacks the infra-
structure to perform all these functions at a granular level for all patients, in all set-
tings, even for a handful of key diseases that drive most healthcare costs. Such a 
ubiquitous and widespread measurement system infrastructure must be built to 
advance care and reimbursement methodologies. The significant presence of 
unstructured data in medicine is here to stay for the foreseeable future. Although not 
an impenetrable barrier to precise measurement and knowledge engineering, it does 
mitigate an efficient and effective process. Continuing innovation in digital tools 
(e.g. AI-driven text search engines) has begun to break down barriers, but they are 
not going away in the near term. Drop-down menus for patient histories still do not 
match the nuances and complexities of a well-dictated patient narrative. As a result, 
there are blind sides and gaps in the measurement of care processes and patient 
experiences that innovations will solve. With respect to the patient-centric approach, 
measurement must get much better. Patients still by and large are resigned to taking 
what they are given. In the SARS-CoV-2/COVID-19 world, we have experienced 
significant public health-driven restrictions not only to movement, but also access to 
care [25]. This access extended to significant restrictions while receiving care (e.g. 
deliveries without the expectant father present). The patient experience took a sig-
nificant hit in 2020, as did the accurate measurement of that functional process. This 
will now spark accelerated change through innovation.

Monetisation Infrastructure

The complexity of financial markets today is astounding, and the technology infra-
structure that underpins these markets is similarly impressive. These transactions 
are based on a more than adequate measurement and reporting process. Healthcare 
infrastructure lags far behind the financial industry with respect to leveraging infor-
mation technology. Monetisation must be based on outcomes that are produced as a 
result of an accurate audit trail of the care process. Unfortunately, an individual can 
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get a more precise audit trail of their 401 K performance than they can with their 
care performance. For this to become a reality, providers need to have their care 
outcomes accurately measured and fairly compensated for. In addition, provider 
care outcomes are also significantly affected by patient compliance. The best diag-
nostic and treatment process is only as effective as the patient’s will to accept and 
optimally participate in it. Patients must also have skin in the game. With the devel-
opment of vaccines for COVID-19 and the continuing work on vaccines for the 
rapid development of variants, it would seem that the journey to herd immunity is 
well on its way [26]. The problem is that acceptance, even by healthcare workers, is 
irregular. Therefore, compliance directly affects outcomes for which providers are 
being compensated and not necessarily in control. This makes the monetisation 
methodology more complex. It emphasises digital tools to assist in facilitating and 
improving the patient communication and education process. It also means that an 
accurate measurement process should account for the lack of patient compliance in 
calculating remuneration for the provider care outcomes. A similar system is in 
place for calculating the severity of illness within a patient.

18.4.6  A Patient-Centric Model as an Immutable 
Operational Mandate

A patient-centric approach cannot merely be a marketing slogan or casual intention. 
It must be an aggressive industry-wide immutable mandate. This mandate is 
cemented by payment systems that reward providers that do this well. It is also 
cemented by the demand for an educated user that can compare provider service 
values. These are the pull economic forces that govern other industries today. In 
healthcare, this will be the emerging E-health marketplace. Although in its infancy 
as a strategy, this slogan is gaining momentum as an operational plan.

18.4.6.1  From Buzzword to Operational Obsession

Buzzwords do not drive functional care improvements or profits. In the near future, 
for providers to survive or thrive, they must deliver value-based care and it must be 
patient-centric by definition. Those competitors that grasp this will have organisa-
tions where this operational obsession permeates every aspect of patient care deliv-
ery. Social media will mirror those organisations that succeed or fail in this 
obsession. The market will reward or punish those providers proportionate to their 
level of success or failure in this pursuit.
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Patient-Centric Medical Care

The discussion thus far has pointed out the significant impact of the role that a 
patient garners in a pull economy. The emergence of this two-sided E-health market 
will drive care to be measurable, ratable and therefore comparable. Optimising the 
care process is tantamount to a provider’s success. This significance has been under-
emphasised beyond talk in the operational setting, to the extent that care is not pri-
marily driven with the patient at the centre of the process, even at the date of this 
writing. The justifications and arguments to do so are numerous and compelling, 
including that patient-centric care should be an immutable operational mandate. 
Successful organisations in the future will do just that and use advanced digital tools 
to enable it. Functional care processes will look and perform much differently in 
10 years. In the value equation, technical quality is in the numerator, but so is patient 
satisfaction. We can improve the medical care outcomes by more accurately mea-
suring both and using that improved measurement process to drive improved medi-
cal care quality improvement efforts.

Patient-Centric Measurement of Care

Patients are increasingly seeking metrics of the care process. Patients cannot know 
if the right intravenous solution is administered at the right rate or for the right prob-
lem, but they do know whether or not their providers are kind, personable and thor-
ough. They also know whether their broken leg gets better and when they can again 
walk normally. Simple tests of the accuracy of the care measurement systems are 
still failing today. This is not an indictment of healthcare professionals, who are 
dedicated, compassionate and experts at what they do. Instead, this is a reflection 
primarily of the tools and the system within which they provide care. That system is 
still broken, as reflected by continually rising costs. Measures to cut costs by elimi-
nating the low-hanging fruit and restrictions of care have largely already been done. 
The remaining frontier in cost reduction will come from improvements in the care 
itself. All quality improvement efforts start with good measurement systems. These 
effective measurement systems still are largely absent in healthcare, as opposed to 
other industries. For instance, take a tour of an automotive assembly plant and 
observe digital boards next to lines that reflect production rates, error rates, safety, 
injury rates, and so on. The feedback is measured, in real time, instantly reported 
and reflected in “just-in-time” production processes. Finance does this similarly, but 
at breakneck speeds compared to healthcare systems. Millions of stock trades occur 
each second, and a fraction of a second is meaningful in a war where competitors 
play a nanosecond game. The more volatile markets are, the more important time 
becomes. Healthcare does function under these constraints, but could borrow les-
sons learned. This high-speed technology can be co-opted to improve measurement, 
analysis and reporting of the clinical care process.
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Money Paid to Providers That Optimises Patient-Centric Care Value

Providers need to be paid proportionately to how closely they meet patient expecta-
tions. These expectations should be the highest quality care at the lowest cost. As 
prices become more transparent and care outcome results more readily available, 
patients will expect accountability from providers. Part of this accountability, espe-
cially as copays and deductibles continue to rise, will also be in the form of feed-
back when a patient’s expectations are not met. System infrastructure will be built 
in the near future to make this a reality. Extending the lesson from traditional finance 
further into healthcare finance is a logical step. In finance, computer systems make 
buying and selling decisions in split seconds, then execute them in the precise order 
required and track the entire transaction process precisely [27]. These exchanges are 
global, so transactions must be time-stamped from different time zones. That order 
is critical to the sorting and profit-making process in trading. Wall Street, therefore, 
is obsessed with time, because time is money. These systems are 10–12 years ahead 
of healthcare computing systems. Again, nonetheless, the lessons learned from 
manufacturing and finance can be applied to healthcare. These systems can be built 
de novo around the patient and the delivery of value-based care. These measure-
ments, ordering, analysing and reporting methodologies are a natural fit for health-
care. Healthcare is a complex system, but amenable to the same types of financial 
engineering as Wall Street. Conversion of a care process to a mathematical repre-
sentation of that process is the next frontier and therefore the main challenge for 
healthcare. Digital tools will enable and be a catalyst for this conversion as provid-
ers navigate that brave new world called quantitative medicine.

18.5  Clinical Care Transformation

Providers of medical care are dedicated and caring individuals. The job of a clini-
cian is a very difficult one to do well and requires a special skill set that not all 
people have the capacity to perform, even if they wanted to. However, providers are 
human. Human error is an inevitable reality because people are not perfect and, as 
such, do not perform perfectly every time. This is not to say that perfection should 
not be strived for in the care of human life. The reality is that errors will happen and 
the goal should be to mitigate them as much as possible, by any means possible. 
This is where a system’s view of the error mitigation process is useful. Digital sys-
tems can be designed and implemented, so as to assist the human provider to reduce 
the existence and severity of medical errors. Such infrastructure can transform the 
care process as we know it and improve overall value.
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18.5.1  IOM Report, Medical Errors and Bending 
the Outcomes Curve

For the medical industry to transition to a fundamentally value-based structured 
marketplace, a transformation will be required. One of the biggest transformations 
will occur in the advancement of root cause analysis in care quality improvement 
efforts. Figure  18.7 illustrates the multifaceted nature of human process errors. 
Tracking is impossible without digital measurement systems. Care process redesign 
is then accelerated by accurate root cause analysis and system changes. Putting 
excellent people into a broken system is not an optimal use of resources. It is better 
to train excellent people to work within an excellent and constantly improving sys-
tem enabled by digital measurement tools. The system should be constantly evolv-
ing, so as to optimise the care process from both sides of the two-sided E-health 
relationship. The 1999 Institute of Medicine report “To Err is Human” triggered 
efforts nationwide to improve patient safety. Medical errors require rework to fix 
them, which is more expensive than getting it right the first time.

Fig. 18.7 Categorical representation of human error root causes (source: author)
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18.5.2  Mitigating Medical Errors Improves Value by 
Improving Quality

In a commodity-based reimbursement system, there is not a strong provider incen-
tive to radically improve care. That is because irrespective of the medical care out-
comes, remuneration will be the same. Coal, as a commodity, is created the same 
and therefore economically equal. Imagine if suddenly all care is measured and the 
error rate for care by each disease is reported by every provider to purchasers. 
Additionally, their entire compensation was based on a rank order of performance. 
Now, the payment system is restructured around a value-based meritocracy. Care is 
tracked for outcomes. Outcomes, specifically, are measured and root causes of poor 
outcomes are tracked back to medical errors that may have triggered a cascade or 
domino effect as illustrated in Fig. 18.8. What flows from an error in the care pro-
cess is rework to fix that error. That error lowers the quality of the care, the satisfac-
tion of the patient with their care experience, raises the risk of morbidity and 
mortality and ultimately produces higher costs associated with rework, morbidity 
(e.g. short- and long-term disability) or even death.

The market is suddenly “cardioverted” or shocked into an obsession with ways 
to improve value. The best way to do that is upstream, where the most profound 
effect on bending the quality and cost curve resides. This then converts the entire 
care supply chain to innovate to this new reality. Just as the HITECH Act and the 
PPACA shocked the system into looking at value rather than just volume, so the 
emergence of reimbursement systems that demand this model drive technology. In 
the 1980s, we saw the PC revolution in doctors’ offices and the emergence of digi-
tisation, albeit primarily with respect to billing systems. After the HITECH Act and 
the PPACA, we saw a rapid rollout of EHRs that primarily just recorded care and, 
in some cases, improved certain aspects of it [28]. In the future, we will see these 
digital tools assist in the migration to a value-based care market, where technology 
is a strategic and competitive weapon linked to provider survival. Therefore, the 

Fig. 18.8 Cascade of downstream process issues that result from a medical error (source: author)
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future is high value-based outcomes that are produced by the most technically 
skilled providers utilising the most advanced digital toolsets.

18.5.3  A Proposed Error Reduction Methodology

The advanced digital toolset must focus on quantifying the idealised care process as 
it would exist absent artificially imposed constraints from poorly designed technol-
ogy. Today, this technology is often workflow-adverse. The result is the introduction 
of inefficiency, as a result of clumsy data collection tools. These tools often assign 
data entry tasks to people whose training is optimised not for these tasks, but rather 
for medical decision-making. Picture for a moment a courtroom, where it was sud-
denly decided that meaningful use of courtroom documentation meant mandatory 
digitising of those records. Furthermore, to prevent poor translation of the spoken 
word, it was decided that transcription should be assigned to the lawyer as the origi-
nating author. What would be the ensuing workflow issues? Analogously, why did 
anyone think that adopting this process in the field of medicine would go much bet-
ter? Instead, the tools need to be designed to dovetail smoothly into an idealised 
manual process, so as to not impair that process, but rather to improve it. Let people 
do what they are best trained to do. That process consists of the three main process 
components of diagnosis, treatment and the velocity of those two functions. The 
workforce of providers and their workforce multipliers should be the first to have 
this manual process optimised. Then, the manual process should be viewed by clini-
cians to decide what tools and in what part of the process those toolsets could be 
introduced to improve it.

The improvement in the clinical care process should focus on the three key ele-
ments of care. Those are diagnostic accuracy, treatment accuracy and the velocity of 
those two combined processes. The rows in Fig.  18.9 list these three variables 
against three interventions in the columns. These interventions are workforce reor-
ganisation (e.g. integrated practice units, workforce multipliers, etc.), interaction 
management (e.g. lean, six sigma, constraints and change management) and aug-
mented clinical intelligence (e.g. combining AI tools to create a clinical decision 
support layer of the EHR). The last column of Fig. 18.9 suggests the potential ben-
efits of combining these interventions (columns) with the three categorical aspects 
of the clinical care process (rows) to produce superior patient care outcomes (e.g. 
improved value of care).

The four traditional improvement processes of Lean, Six Sigma, Constraints and 
Change Management (less utilised in healthcare) can then be optimised by the digi-
tal data collection platform. This platform produces the needed information to fuel 
those quality improvement methods. These methods are people tools that collec-
tively serve as an Interaction Management System (IMS) that works together to 
improve people processes. Accurate data is critical to making good decisions with 
these methods and digital tools are critical to accurate data collection. In that regard, 
diagnosis and treatment are improved with augmented clinical intelligence tools 
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that are built into the EHR to enhance these two care processes. This assists with 
error mitigation by attacking errors upstream at the point and moment of care that 
results from provider medical decision-making.

18.5.4  The Clinically Integrated Network (CIN) 
and the SARS- CoV-2/COVID-19 Pandemic

The healthcare industry has seen a flurry of mergers and acquisitions (M&A) over 
the years, but the proclaimed benefits of improved quality and reduced costs have 
largely failed to materialise. Instead, in a zero-sum commodity-driven market, these 
moves have primarily served to increase market share, increase bargaining power, 
more effectively cost-shift, control patients and their choices, maintain broadline 
strategies and raise prices. Physicians have been increasingly forming larger groups 
and becoming employees of health systems or publicly traded companies. This is all 
about to reverse, as the provider/clinical integration adapts to the patient-centric 
marketplace on a local, national and global level. The SARS-CoV-2/COVID-19 
pandemic, out of necessity, pushed interstate care rule changes that marked a tip-
ping point in E-health. The domino effect of this tipping point has not begun to fully 
manifest itself.

Fig. 18.9 The interplay between medical care process (left column) and interventions (top row) 
and net outcome effects (right column) (source: author)
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18.5.4.1  The Magic of Collective Clinical Digital Genius (CCDG)

Innovation is a team sport. No one genius usually sits in a lab where a “Eureka” hits 
them nor does a solitary person produce a revolutionary breakthrough [29]. Nobel 
prizes are often given to groups that simultaneously or collaboratively make break-
through discoveries. Medicine has evolved from ambulatory solo practices at the 
turn of the last century to hospital and ambulatory, to large physician groups and 
multi-specialty practices, to mega groups (for-profit and non-profit) and health sys-
tems. Mergers and acquisitions in healthcare have yet to produce clear and unequivo-
cal benefits in quality improvement, cost savings or the general public good. CINs 
have the opportunity to do just that. Digital infrastructure can catapult a new form of 
collaborative physician group into the forefront. This is the second generation of 
Clinically Integrated Network (CIN). The SARS-CoV-2 and COVID-19 pandemic 
has ripped off the Band-Aid on system flaws, thereby exposing inefficiencies and 
limitations. Lockdowns did buy enough time by flattening the curve on disease trans-
mission, thereby reducing the number of potential hospital admissions to a level just 
below a system breaking point. However, there were significant gaps and irregulari-
ties in diagnostic and therapeutic information dissemination. Granted, this was a 
novel virus and the learning curve was steep at first. It also reminded us that public 
health is an amalgamation of medical, social, economic and political influences. The 
net effect on medical care is a function of the balancing act of those influences. The 
existence of multiple CINs could have assisted in the more efficient management of 
this pandemic, especially if powered by advanced digital tools. This second genera-
tion of CIN will emerge from within and upon a new healthcare digital multi- platform 
ecosystem. The ecosystem is not the CIN but rather the enabler of advancement in 
CIN functionality. This enabling will be the “magic dust” that enhances the effec-
tiveness of provider collaboration and serves as the glue to integration through func-
tional and structural interoperability. Each provider’s genius contribution to the 
whole CIN is multiplied through a symbiotic new order of provider integration.

18.5.5  CIN Implementation and Functional 
Care Transformation

The concept of integrated care teams or units is not new. When taken at scale, this 
concept is represented by a CIN.  The scale can be local, regional and national. 
There have been examples of this already with insurance models (e.g. Kaiser, 
Intermountain Health, etc.), health systems (e.g. Trinity, HCA, Mayo Clinic, 
Cleveland Clinic, etc.) and non-profit and for-profit physician groups (e.g. The 
Permanente Medical Group, Mayo, Team Health, etc.). These groups represent 
business and technology platforms that have made strides in clinical and operational 
efficiency. However, although there has been progress, no group or group model has 
emerged as a shining example of how to unlock the enigma of operationalising 
value-based purchasing.
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18.5.6  The CIN and a Value-Driven Disease 
Market Architecture

Architectures, such as those illustrated in Fig. 18.10, have attempted to solve the 
seamless and interoperable integration of providers and care processes. The organ-
isational, process and digital platforms have still fallen short in moving the needle 
on significant value-based or purchasing-based organisational outcomes. Care is 
still, by and large, fragmented and siloed. Progress has been iterative, but isolated 
and in very small increments. As alluded to by the reports from CMMI initiatives, 
the quality and cost needle has not made a quantum leap to a new level. Otherwise, 
we would have seen widespread adoption of that breakthrough model. Each of us 
today has a story that reflects this reality about the care we or loved ones received. 
Insiders in the industry, likewise, have their own bevy of examples of when the 
proverbial right and left hand did not know what the other was doing. More times 
than not, this is a system error and not a provider error. For example, assume that Dr. 
Smith provided perfect care regarding their piece of Mrs. Jones’ care process. 
However, Dr. Smith did not convey those results perfectly to Dr. Brown, who was 
responsible for another portion of Mrs. Jones’ care process. The care by Drs. Smith 
and Brown, although perfect in their own right in isolation, may affect their other 
provider’s decision making, so as to not be ideal when looking at Mrs. Jones overall 
health status. Net value-based care is not only the aggregate of total costs, but also 

Fig. 18.10 Hypothetical CIN architecture that is patient-centric utilises quantitative medicine, 
with a focus on value-based outcomes (source: author)
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more importantly the aggregate of total quality of care provided to each individual 
patient throughout the full cycle of their care. The CIN should be of such a provider 
architecture, so as to facilitate the highest care value.

18.5.7  The CIN, Value-Based Care and SARS-CoV-2/
COVID-19

Taking this analogy and applying it to the ongoing pandemic has significant utility 
in understanding current gaps in the U.S. healthcare system and provides insights on 
the ways to bridge those gaps. As mentioned, a well-oiled CIN would have offered 
utility in providing value-based care for COVID-19 patients. This did not happen, 
so gaps occurred and these gaps became newsworthy stories. The CIN would have 
been useful in one major area: the dissemination of consistent and up-to-date infor-
mation about diagnosis and treatment.

18.5.7.1  Testing, Measuring COVID-19 Natural Disease Progression 
and the Utility of Provider Integration

The natural disease history from SARS-CoV-2 (the virus) exposure to COVID-19 
(the disease) through convalescence can be tracked through testing. Figure 18.11 
represents a matrix with columns consisting of exposure day, symptomatic or 
asymptomatic, status-stage or significance, type of test and conclusions. Of note, 
the antigen test is not included in this chart, as not all these tests were available at 
the onset of the pandemic. As time passed, more options for disease testing were 
developed and made available. There was enormous variability across the two-sided 
market of patient and provider about what the natural disease history looked like, 
what tests were available when to use them, how to interpret them, how to act on 
those results, when to act on those results and how that action may actually impact 
the patient with respect to the natural course of the disease. Although a plethora of 
research was conducted and prepublication, preliminary and published results 
flowed in a continuous stream, its effective dissemination was a totally different 
issue altogether. There was also significant variation in how the information was 
utilised by both the patient and provider. This variation led to disparities in care as 
a result of not only information dissemination but also of a uniform approach on the 
part of providers. Furthermore, disparities are exacerbated by the issues of access, 
testing and social determinants of health. A well-functioning CIN powered by state- 
of- the-art digital tools can go a long way in closing the gap in these disparities.
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18.5.7.2  The CIN, Prevention and SARS-CoV-2

Such a well-functioning system composed of a CIN and its IT platform can be uti-
lised to analyse how to best address a disease like SARS-CoV-2 and COVID-19. To 
do this, it is helpful to look at the entire spectrum of patient care not only for an 
individual but also from a public health and population perspective [30]. This is a 
longitudinal view along the natural disease historical course. Figure  18.12 illus-
trates a public health view of disease management. This view is one of prevention. 
There are three categories of prevention. The first is primary prevention, which 
means preventing the occurrence of disease in the first place. The current pandemic 
is a race to vaccinate the population and achieve herd immunity that will ultimately 
extinguish the disease. The second type of prevention is secondary prevention. This 
is the early detection and intervention before much of the significant disease effects 
can express themselves as serious morbidity. Finally, tertiary prevention is when the 
disease is well established and these morbidities require medical interventions 
aimed at reducing the severity of illness.

In the case of SARS-CoV-2, the battery of patients cared for by the CIN is tracked 
for risk factors to contracting a moderate or severe case of COVID-19. As COVID-19 
is a disease affecting the ACE-2 receptor, all patients in the network with ACE-2 
receptor-vulnerable organ system diseases (e.g. lungs, cardiac, brain, kidneys, etc.) 
should be culled from the relational database, flagged and alerts sent to the primary 
care and other treating clinicians. They should be more closely monitored for early 
disease symptoms, patient education about the disease and benefit from vaccination 
and tracking of completion of vaccine dosing. Vaccine acceptance and rates among 
various patient populations, as well as the healthcare workers who treat them, are 
variable. The highest death rates have been in nursing homes. Of the overall mortal-
ity numbers, nursing home residents have made up 40–70% of the deaths before 
vaccine distribution. This contribution to overall mortality statistics did not drive 

Day Symptoma�c Asymptoma�c Status-Stage/Significance RT-qPCR Paper IgM IgG Comments
No exp - - No exposure to SARS-CoV-2 - - - - Virus naïve
-27 to -2 Pre-symptoma�c New SARS-CoV-2 exposure - - - - False nega�ve
-3 to 0 Pre-symptoma�c New Early infec�on + + - - Shedding virus
0 to 14 Symptoma�c Current Current Infec�on - Recent + + +/- - Shedding virus
12 to 26 Symptoma�c Current Current Infec�on - Mid-stage +/- + +/- - Worsening
12 to 21 Symptoma�c Current Current Infec�on - Late-stage +/- - +/- + Not shedding transmissible virus
14 or later Recovering Recovered Previous Infec�on - Recent +/- - - + Not shedding transmissible virus
96 or later Recovered Recovered Previous Infec�on - Recovered +/- - - + 12% of symptoma�c & 40% of 

asymptoma�c no longer have IgG

Assump�ons:
Day 0 is day of symptom onset in group that gets symptoms.
Asymptoma�c never develops symptoms and shed virus an average of 19 days.
Presymptoma�c becomes the symptoma�c group.
You'll get some overlap in days because not everyone has the same course.
97% of presymptoma�c develop symptoms in 14 days, average 5-6 days a�er exposure
A few % of tests are false posi�ves.  PPV depends on popula�on prevalence of the disease. 
 If 5% of the popula�on has disease, and test is 99% specific, 20% will be false posi�ve

5

Fig. 18.11 Temporal relationships between patient SARS-CoV-2 exposure, symptoms, disease 
stage and testing (source: author)
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nursing home-ancillary medical staff vaccination acceptance and compliance. 
Healthcare workers in nursing homes have vaccination rates of only between 30 and 
60%. The CIN patient population, as well as the healthcare workers that staff their 
office, can be part of the primary, secondary and tertiary preventive process only if 
the digital tools are leveraged to optimise this continuum. Digital tools that enable 
process, when utilised in conjunction with change management methods, have a 
higher potential to drive stakeholder acceptance of key initiatives.

18.6  Measurement Transformation

People measure what they care about, whether it’s stepping on the scale in the morn-
ing to check your weight or checking your tire pressure before a big road trip. The 
accuracy of the measurement process is of great importance with certain critical 
metrics. Radiation levels in a nuclear power plant control room or blood pressure in 
patients in intensive care units reflect critically important metrics. To enable value- 
based care outcomes, we must transform current measurement systems of the care 
processes.

INDIVIDUALHEALTH 
PROMOTION

SPECIFIC 
PROTECTION

SCREENING

DISABILITY 
LIMITATION

REHABILITATION

Pre-Disease
Primary Preven�on

Latent SARS-CoV-2 Infec�on
Secondary Preven�on

Clinical COVID-19 Disease
Ter�ary Preven�on

Symptoms:  dyspnea, 
feverishness, sore throat
Signs: Temp, Cough, Plethys, 
HR, RR, cyanosis, contact with 
infected person

Test: 
PCR, 
IgM, 
IgG

Barriers:  Handwashing, 
Disinfec�ng, Masks, Social 
Distancing, reduced �me 

of close contact

SARS-CoV-2 to COVID-19

Interven�ons:  
Remdisivir, 
Famo�dine, 
Plaquenil, 

Azithromycin, 
Surveillance, 

Hospital

No Clinical 
Signs or 

Symptoms

Vaccination
“Long-Haulers”

Fig. 18.12 Relationship between SARS-CoV-2 and COVID-19 disease natural history and the 
three phases of prevention (source: author)
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18.6.1  Measurement as a Value Enabling Information 
Tool (VEIT)

Specifically, those tools are leveraged to measure the actual care process. That mea-
surement should be part of a premeditated quality improvement process, which uses 
the data to quantify which care process elements are value accretive and which are 
devaluing. Since care is longitudinal and continuously cyclical, accurate measure-
ment should occur continuously all along the entire cycle of care. Measurement in 
medicine is being exponentially accelerated in both the inpatient and outpatient 
settings, catalysed by changes in regulations (CMS) and advances in technology. 
CMS is changing remuneration to accommodate Remote Patient Monitoring (RPM) 
[31]. Technology is advancing to allow for precise, accurate and timely remote 
monitoring through sophisticated sensor development coupled with AI embedded in 
the devices, which are independent and integrated with cloud-based analytics. The 
independent distribution of technology into the IT environment is creating a 
“distributed- intelligence” web of devices. Driving measurement, data storage and 
machine learning down to the patient’s wearable device level will elevate the effec-
tiveness of the measurement process. Immediate change is now distributed down to 
a real-time sensor response level that was not previously technologically possible. 
Such a scenario would be with a patient that receives a cardiac medication, such as 
a beta-blocker. This medication to reduce blood pressure affects heart rate. Wearable 
devices that can detect the person’s heart rate usually make on-demand measure-
ments. These are discrete, rather than continuous. However, the medication is best 
adjusted using measurements that may be best detected at night during sleep, when 
the heart rate may drop the most. To accurately determine the heart rate trend line 
necessary for dosing adjustment, measurements must be at night when the patient 
can’t voluntarily trigger a reading. A sensor that can be triggered into a continuous 
mode when an intermittent read detects a drop below an acceptable benchmark level 
would be of major clinical value. It is far more beneficial to the clinician to thera-
peutically adjust medication dose to know the lowest heart rate. Clearly, the usual 
method of adjusting medication every 3 months as a recheck in the office with a 
single discrete measurement is not ideal.

18.6.2  Measurement of a Disease’s Longitudinal 
Natural History

Measurement of various physiologic parameters should be aggregated to obtain not 
only a more complete view of the patient’s health status at a moment in time for a 
single body system, but also over time for multiple systems. Public health informa-
tion systems would benefit from a population-level automatic data collection and 
aggregation by information technology [32]. Again, let’s use the cardiovascular sta-
tus of a patient as an example. A patient with heart failure may reach a tipping point 
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and require hospital intervention. Once discharged, a significant concern for the 
patient, treating physician, hospital and insurance company is readmission within 
30 days. Although RPM is utilised with heart failure, the RPM has just begun to 
scratch the surface of what is possible. It is not only important to monitor such 
patients for a “stack” of multiple physiologic parameters, but also for medication 
compliance, understanding of treatment regimen and communication with the 
safety net of care providers. That said, there are other factors that have come into 
play with the SARS-CoV-2/COVID19 pandemic. Infectious disease plays a signifi-
cant role in the exacerbation of cardiac disease and there are more heart attacks 
during influenza season [33]. The pandemic has also correlated with an uptick in 
cardiac events. It would be helpful to have other physiologic indicators in addition 
to the usual cardiac metrics that would be a signal of a change in physiologic status. 
This signal could be for infectious diseases that could be detected even before stan-
dardised laboratory testing. This signal could portend not only of infectious disease, 
but also an infectious disease that significantly increases the probability of a new 
cardiac event or an exacerbation of a pre-existing cardiac condition, such as heart 
failure. Figure 18.13 shows the relationship of primary (green), secondary (blue) 
and tertiary (red) prevention along a disease timeline of the natural disease course. 
The goal is to prevent the disease from occurring, thereby improving the quality of 
care the most. If this is not possible (e.g. a vaccine is not developed for the infec-
tious agent), then emphasising detection as early in the preclinical time period as 
possible has the greatest chance to mitigate the rate of disease progression, as well 
as its severity. This saves costs to the system by improving the quality of clinical 
care. Therefore, in the population or individual health longitudinal schema, the best 
strategy for significant improvement in quality of life, health status and therefore 
cost reduction, is putting more emphasis on primary and secondary preventive 
efforts.

18.6.3  Measurement and the Population Clinical Care Process

As wearables take over the individual measurement process, data on each person 
will increase significantly. Ultimately, it will create a more and more detailed digital 
representation of who we are as unique physiologic beings. Each of us will have our 
“digital double” or “medical avatar”. At a population health level, this will be a col-
lection of anonymised digital representations that enable population and public 
health to be better optimised. Often this optimisation is focused on a single disease. 
The purpose is to study the effectiveness of a provider or institution’s compliance 
with treatment guidelines and the associated performance benchmarks. These mea-
surements are disease-oriented for a discrete period, such as postoperative infection 
rate or readmission. They can also be used for discrete testing, such as HbA1c for 
the measurement of longitudinal control of therapy in patients or populations with 
diabetes. The problem is that patients are complex. Therefore, discrete, finite and 
episodic measurement, even though longitudinal, does not contain enough data 
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points of a single metric (or metrics in general) to paint a complete picture of the 
patient’s health status. AI and machine learning can connect some of the dots, but 
such inferential statistical methodologies have significant limitations with accurate 
predictions. The more accurate path is to add more metrics with more continuous 
data measurement. It would also be helpful to add more metrics that are shown to be 
symbiotic in accurately measuring a patient’s overall health status, physiologic 
equilibrium and early dysregulation of that equilibrium.

18.6.4  An Integrated Healthcare Measurement Model

An integrated healthcare measurement model is the answer and it must be multi- 
system and multivariate. As we have described, it should be longitudinal along the 
full cycle of a patient’s care process. In short, this is a complex measurement sys-
tem. Figure  18.14 illustrates primary, secondary and tertiary care phases from 
another perspective. This is the more traditional nomenclature of acute illness, 

Fig. 18.13 Relationship between the natural disease course of SARS-CoV-2 and the use of an 
advanced ArcGlobal™ wearable technology to detect disease prior to traditional laboratory testing 
and close to actual biologic onset of COVID-19 (Source: Gordis Epidemiology, 6th ed., David 
D. Celentano and Moyses Szklo. Copyright © 2019 by Elsevier, Inc. All rights reserved. Adapted 
with permission of Elsevier B.V. through PLSclear)
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chronic illness, outpatient and inpatient care. It also overlays a scale of acuity. The 
“phase transition” is the result of the failure of secondary prevention efforts to pre-
vent a physiologic tipping point from acute self-limiting low acuity of illness to 
chronic higher acuity debilitating illness of tertiary prevention. The division between 
the three phases of prevention is not distinct boundaries, but rather a continuum of 
iterative subtle physiologic changes over time in each unique individual. The goal is 
to build a system of remote patient monitoring (RPM) digital tools that collectively 
make up an individual surveillance system for each person. Patients are a unique 
and complex system. To advance secondary prevention we need better digital syn-
dromic surveillance tools that push early detection farther into the beginning of the 
pre-clinical phase. In doing so, we can detect early changes in the physiologic pat-
tern or rhythms unique to each human being. This is their digital energy or homeo-
static fingerprints. This early detection of a disruption in one’s normal rhythm can 
lead to significantly earlier interventions that bend the secondary prevention curve 
much farther upstream. Consequently, it is not an intellectual stretch to imagine that 
each of our individual physiologic systems expresses disease initiation and progres-
sion differently. This depends on our genomics, age, race, sex, environmental expo-
sures, lifestyle, nutrition, stress and a myriad of other factors that influence disease 
expression. The digital future of medicine involves improved monitoring, a mea-
surement that will significantly influence diagnostic accuracy, treatment accuracy 
and velocity of these two aforementioned processes.

Again, our human systems are complex, and no two patients are exactly alike. 
We cannot manually track these unique nuances of each patient due to the limita-
tions of the human mind. However, augmented intelligence will marry the human 

Fig. 18.14 Measurement of the clinical care process and the outcomes that result from that pro-
cess in multiple settings and patient states (source: author)
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mind and machine to permit a journey into a better understanding of how to better 
customise care to each individual patient.

The medical care diagnostic and treatment process is filled with reductionism 
and heuristic thinking that is often a by-product of the search to make the practitio-
ner’s life faster and more efficient. “Cookie-Cutter Medicine” is a reflection of this 
tendency. Depending on the setting, such an approach works most of the time. 
However, in an emergency room (ER) setting, unless the practitioner maintains a 
high index of suspicion, an outlier will be missed and lead to diagnostic or treatment 
error and/or reduction in care velocity. As patients move from care setting to care 
setting, the risks and complications in the care process vary widely. A complex 
patient, such as one with multiple comorbidities, can magnify their risk signifi-
cantly. For example, if they land in a complex care setting, such as a busy trauma 
ER on a Saturday evening in the summer, the recipe for escalating error is present.

18.6.5  Complex Systems Demand Precise Measurement

We have established that patients are complex systems and that different settings 
have their own inherent complexity. In medicine and with the treatment of patients, 
we are constantly dealing with the physics of physiology. The material goes through 
phase transitions, such as from liquid to gas, or in general a change between differ-
ent states of matter. Figure 18.15 is another representation of primary, secondary 
and tertiary prevention. This diagram combines the variables of acuity, cost, com-
plexity and setting. This model can be used at an individual or population health 
level to analyse the continuum of care and a natural disease course. This becomes 
even more challenging when viewed from the perspective of a patient with multiple 
co-morbidities. Physiologic systems and materials move through different “states”. 
In the prevention model of public health and medicine, we try to deal with individu-
als and populations in the primary prevention stage. The goal with primary preven-
tion is to avoid a transition from a disease-free state to the development of early 
disease, but without clinical manifestations (secondary prevention). The goal of 
secondary prevention is to limit or slow disease progression from asymptomatic 
disease to chronic symptomatic disease state. In each case, the mission is to slow the 
disease progression. When viewed at such a system level, an individual or popula-
tion’s health status must be accurately measured to fully grasp a snapshot of their 
current physiologic state and design measures to slow the development of the dis-
ease or disease progression once a disease manifests itself. For instance, pancreatic 
cancer is a very rapidly progressing disease once diagnosed. The reason is that it is 
not detected until the late stages of the disease. Imagine if a multi-metric physio-
logic measurement system could detect a dysregulation that was statistically predic-
tive of early pancreatic cancer. Under these circumstances, treatments could be 
devised and applied at a time when the disease may be curable or its natural history 
curve bent upstream to slow progression and prolong the number of quality life 
years. Genomics and epigenetics, when coupled with such a precise physiologic 
process measuring system, could become a bellwether for a new field of diagnosis 
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and treatment. Together, all these realities speak to the need for better digital tools 
to collect, measure, analyse and report on the status of both the individual health and 
that of a collective population. It also demonstrates that health status functions on a 
primary, secondary, tertiary prevention continuum. The current healthcare system 
emphasises interventions of the tertiary prevention phase. We must shift to a broader 
view of the longitudinal clinical care continuum.

18.6.6  Measurement of the Full Longitudinal Clinical Care 
Cycle (LCCC)

There are technologies currently in the developmental stages to deliver exactly such 
a system. Results are preliminary but promising. Such a system should be integrated 
closely with an individual patient and population’s full cycle of care longitudinally 
throughout a lifetime. At the centre of the care cycle is measurement. The measure-
ment process includes not only data collection and storage but also analysis all 
along the entire continuous process. These digital tools can provide the patient with 
precise feedback at any step in this virtuous cycle. This is where medicine is opti-
mised by advanced digital tools that promote knowledge engineering and directly 
impact patient lives.

Fig. 18.15 The complexity of the constant balancing in physiologic systems between maintaining 
wellness, repairing and system failure in the form of chronic disease (source: author)
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Figure 18.16 represents a continuous cycle that could involve an acute, self- 
limiting illness that has a finite end. This has been the case with most patients that 
have had COVID-19. Most patients have asymptomatic or mild symptoms with a 
short LCCC. Other patients with COVID-19 may be “long haulers” or Post-Acute 
Sequelae of SARS-CoV-2 (PASC) that suffer a trigger of a viral-induced autoim-
mune process, resulting in persistent symptomatology and a long LCCC [34]. They 
will need ongoing monitoring and treatment until hopefully liberated from that 
cycle by a new therapeutic discovery that breaks the autoimmune cycle. In the 
interim, continued precise measurement contributes to an accurate assessment of 
the patient’s health status, optimises available treatment and maintains the patient in 
the best health status, while awaiting definitive treatment. This, consequently, rep-
resents a virtuous and continuous optimal cycle of value-based care.

Fig. 18.16 The continuous virtuous cycle of care and its relationship to centralised and continuous 
measurement, analysis and reporting of that care process (Adapted from Appendix B The Care 
Delivery Value Chain, Delineating Types of Care Delivery Activities, from “Redefining Healthcare” 
by M.E. Porter & E.O. Teisberg (2006) [product# 7782-HBK]. Republished by permission Harvard 
Business Publishing)
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18.6.7  The Necessity of Clinical Decision Support 
Systems (CDSS)

Future medical school candidates go through a rigorous admission process that 
screens a candidate for general intelligence, memory, aptitude for the sciences and 
people skills. Medicine combines math, physics and social science with practical, 
in-the-field problem-solving about life and death issues for a real person. Being a 
doctor means balancing all these skills. The greatest challenge of medical school is 
not the depth of the subject matter in each field, but rather the breadth and sheer 
volume of the material covered. No physician, regardless of how brilliant, retains 
and is able to regurgitate all that learned knowledge all the time. As the old Chinese 
proverb states, “The faintest ink is more powerful than the strongest memory”. In 
addition, collective genius outperforms singular genius. This reinforces the case for 
Clinical Decision Support (CDS) becoming standard fare and embedded in 
all EHRs.

18.6.8  Augmented Clinical Intelligence (ACI) Plus CDSS 
Equals Augmented Clinical Intelligence Decision 
Support (ACIDS)

Going forward, CDSS (Clinical Decision Support Systems) will become defined as 
Augmented Clinical Intelligence Decision Support or ACIDS. One of the clearest 
ways this assumption was tested was with chess. Figure 18.17 illustrates the clear- 
cut advantage of man plus machine. The “Deep Blue” competition proved to be the 
beginning of the end for human-versus-computer matches [35]. Today, most chess 
grand champions play computers only to train for competitions, because humans 
never win. Although playing chess is different from treating patients, there are a few 
key takeaways. First, computers are unbound by any habits, whereas people bring 
preconceptions or biases to the problem-solving table. The example of heuristic 
thinking or taking mental shortcuts is a prime example. Heuristic thinking is a 
double- edged sword. It can lead to efficiency and speed in daily patient care, but at 
the same time, it can lead to oversight by making a false assumption about the array 
of presenting symptoms. Augmented intelligence brings together the best of 
both worlds.

In this world, the domain expertise of both is brought to the table. The computer 
partner utilises computational speed, mathematical skills, multiple deep domains 
and large data sets. The human partner brings visualisation and intuitive reasoning. 
Computers of today are just not, and may never be, capable of intuition, given that 
computers are only as good as the human programmer. This ACIDS support tool, 
embedded into the clinical measurement and analytical processing component of 
differential diagnosis and treatment selection, will augment medical decision- 
making to improve accuracy, precision and velocity in a way not possible without it. 
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It will also improve interoperability between clinicians and patients and between 
clinicians themselves. It will be a two-sided E-health workflow optimiser. More 
accurate diagnosis and treatment, especially with patients that have multiple comor-
bidities, will improve the value of care.

18.6.9  ACIDS and the Complex Patient

The benefit of marrying augmented intelligence and clinical decision support is no 
more poignant than in patients with multiple chronic conditions. From a healthcare 
economics standpoint, 5% of the patient population makes up 50% of the spending 
[36]. Twenty-five percent of spending occurs in the last 3 years of a person’s life. 
The question becomes how much of this spending is high value? The answer is 
made more straightforward when one considers that most of this spending is on 
patients with chronic medical conditions. A single chronic medical condition can be 
a complex case-management challenge all by itself. However, when one adds three, 
four or five chronic conditions to the same patient, the optimal care guidelines for 
the management of simultaneous comorbidities become a challenge. Figure 18.18 
shows a hypothetical patient with three chronic conditions. In this case, the comor-
bidities are diabetes, congestive heart failure and emphysema. This is not an unusual 
patient scenario. It is not very difficult to look up evidence-based guidelines for 

Fig. 18.17 The featured advantages of man, machine and man + machine in an augmented clinical 
intelligence decision support (ACIDS) model (source: author)
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each of these diseases. It becomes much more difficult to find an evidence-based 
guideline that combines all these diseases into a combined algorithm or pathway. 
The final challenge is to customise this pathway to the individual patient who may 
present in such a way that is not familiar and challenges the intellect of even the 
most astute primary care provider or specialist.

Quantitative medicine is defined as the use of advanced mathematics and physics 
in the analysis of patient disease care. As was alluded to earlier, medical school is 
more about volume than delving into the physics of physiology at a graduate level. 
The complexity of the math and physics of a PhD in the subject can border on what 
very few people can abstractly comprehend. Doctors in their daily patient care prac-
tice do not regularly delve into this area. That does not mean advances in mathemat-
ics and physics cannot be leveraged in medicine and embedded into everyday 
clinical decision-making by the ACIDS approach. The following example is of a 
clinician whose patient presents with diabetes, congestive heart failure and emphy-
sema. He is seeing this patient in his office for a follow-up from hospitalisation for 
congestive heart failure. The patient’s hospitalisation occurred after his wife passed 
away, when he started eating salty and sugary snacks, stopped using his inhaler for 
his emphysema and took his medication intermittently. His regular visiting nurse 
had COVID-19 and he had not been visited by anyone since his discharge from the 

Fig. 18.18 The complex patient, the physician, ACID tool, plus digital tools of telehealth, genom-
ics EHR integration and machine learning-driven literature search (source: author)
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hospital. He was supposed to have RPM equipment installed in his house, but the 
system did not have automated alerts. It also relied on the visiting nurse, who had 
been sick, to check on the patient. The physician is running behind for the day and 
does not have the time to organise the case, review the discharge notes, check on 
medication or check the status of the visiting nurse’s notes.

As a result, the physician spends most of the visit typing his own notes into a 
tablet computer without even looking up at the patient. This is a complex patient 
with diagnostic, treatment and social issues and his treatment requires homework 
before the patient hits the exam room door. RPM, patient communication tools, 
integration of hospital discharge summary and visiting nurse and pharmacy alerts 
are tasks that can be done in the background by clinical decision support systems. 
These systems can provide recommendations to the clinician at each step of the pre- 
visit, visit and post-visit follow-up. Documentation into these systems can be built 
for use by scribes that are specially trained to work with a given physician to opti-
mise the documentation process. This frees the physician to be the medical decision- 
maker by reviewing visit summaries, labs, radiology reports and other pieces of 
summary data and then drilling down as necessary. As a general internist, he may 
wish to do a telehealth consult with the cardiologist or endocrinologist. The ACIDS 
may present him with recent research articles cross-referenced as relevant to this 
patient’s precise clinical conditions and presentation. The clinician will use clinical 
deductive and inductive reasoning and experience to reach the best conclusions 
diagnostically and therapeutically. If the clinician functions within a second- 
generation CIN, then this scenario results in a care process integrated seamlessly 
with the digital infrastructure, provider network and interaction management 
resources to optimise the care process.

18.6.10  GHME with Seamless Integration and Interoperability

The Global Healthcare Multi-Platform Ecosystem (GHME) is an environment 
within which the CIN functions. There are many healthcare platforms today, but no 
common network-centric architecture that systematically binds them all together 
into a process, care and two-sided pull economic environment. The CIN may be 
local, regional, national or global. The GHME will provide the infrastructure to 
digitally bind providers and patients together at any scale. It will invert the current 
market completely away from a view of medicine as a local business. The pandemic 
led to the near absence of volume in a face-to-face setting, thereby forcing the 
dependence on telehealth and telemedicine. This spawned an explosion of telehealth 
providers in an already crowded market. Seamless integration and interoperability 
remain primarily intra-network to an individual vendor and there isn’t much inter- 
network integration and interoperability.

Figure 18.19 demonstrates a hypothetical architecture that blends multiple plat-
forms into a single interoperable ecosystem. At one layer you have the data ware-
house layer in the cloud. In another platform, you may have the machine learning 
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and AI tools from one or more vendors. Another platform may be the EHR vendors 
that seek to perform some or all of the aforementioned functions and provide a 
bundled solution. The actual full cycle of care, both inpatient and outpatient, may 
represent one or more of these EHR vendors. HIEs may function in one or more 
states in an effort to provide a repository for this disparate patient data. Another 
platform may help manage the interaction management efforts (e.g. lean, etc.) that 
seek to optimise the care process. Another platform may manage the RPM and tele-
health components that attempt to integrate with some of the EHR vendors. 
Meaningful use has certainly accelerated this adoption of digital platform solutions. 
And yet we continue to fax patient information between providers and health sys-
tems. Even today, patients continue to start their care encounters by filling out 
patient histories, signing authorisation forms for procedures and billing in some of 
the largest health systems and in the largest cities in the United States. The siloed 
and fragmented care continues and is accompanied by siloed and fragmented plat-
forms. This is digitisation, but not optimisation.

A number of start-ups are seeking to build platforms that meld all these diverse 
platforms or networks with “patchwork” solutions that will create temporary fixes 
to fundamentally flawed architecture. The Office of the National Coordinator for 
Health Information Technology (ONC) began to make strides in 2020 towards stan-
dardisation and therefore interoperability [37]. However, the vision and path are still 
not clear. What is clear is that for a given CIN, all the providers must be functioning 
on a common information multi-platform ecosystem, where interoperability and a 

Fig. 18.19 A small slice of the interoperable multi-platform ecosystem, interaction management 
layer, digital physician multiplier layer and the continuous cycle of care (source: author)
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seamless environment are given. Within that environment, the ACIDS system is the 
keeper of care guidelines for single and multiple diseases, or, in other words, the 
clinical glue for the network of clinicians. This glue binds not only primary care 
providers together, but also specialists to primary care providers and specialist to 
specialist. This is the seamless reference in an operational sense to day-to-day func-
tioning. As CINs become global and compensation mechanisms less geographically 
constrained, the globalisation of medicine will be accelerated, as well as value- 
based global healthcare purchasing.

18.6.11  GHME Architecture and Security

Earlier, it was mentioned that social media could be a chapter all by itself. The same 
holds true with security threats to a global healthcare ecosystem. We have all heard 
stories of hospitals being held hostage by cyber-criminals locking information sys-
tems down and demanding ransoms for their release. The healthcare industry is 
particularly prone to such attacks primarily because it contains so much valuable 
information [38]. These systems contain medical records, insurance information, 
financial information, prescription information and other very personal data. What 
also makes these systems a prime target is all the chinks these systems have in their 
cyber armour. First, many of these systems are outdated. Second, as such, they lack 
tight access controls. Third, devices (e.g. laptops, tablets and mobile devices) are 
appearing everywhere within these systems, thereby creating a sieve in the wall of 
cybersecurity. Fourth, due to poor protections on email addresses, phishing attacks 
are prevalent. Fifth, information security awareness is low, and attitudes about secu-
rity are loose. Therefore, the overall process, no matter how tightly built, is not fol-
lowed by many key people. The security is only as good as the weakest link, that 
being people. As a result, security will remain a serious issue in the development of 
any healthcare platform. EHRs are an enormous development in the pursuit of digi-
tisation. They also remain a major blind spot for security. These systems, unfortu-
nately, do not have the same regulations and standards regarding privacy and 
security among all vendors. Consequently, security in the evolution of a global 
healthcare multi-platform ecosystem will have major security and privacy issues 
along the way of planning, development, implementation and maturation of these 
systems for the foreseeable future.

18.6.11.1  The Hierarchal Emphasis

The Global Healthcare Multi-Platform Ecosystem, with its embedded Augmented 
Clinical Intelligence Decision Support system layer, forms the foundation upon 
which a global CIN will be built. Such a seamless, interoperable system does not 
exist today. The two-sided E-health market, combined with the COVID-19 pan-
demic, was the first domino in a market paradigm shift. It has provided the 
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functional impetus for the form to follow. It will be created by the demands of a pull 
economic setting that was kickstarted by the pandemic. Figure  18.20 illustrates 
some of the components of that ecosystem that will eventually form a worldwide 
multi-platform network-centric interoperable ecosystem. It will shape the new 
infrastructure through iterative change created by disruptive technology companies 
that have the vision to match patient-centric needs to care workflow products. These 
products will simultaneously match the needs of the other side of the market, which 
is the provider. Structured and unstructured data will be reorganised and optimised. 
As a result, it will then be efficiently utilised by big data structure, artificial intelli-
gence, relational database demands, optimised user interface and the changing 
nature of human medical information-seeking behaviour in a post-pandemic world. 
The additional major factor is that all stakeholders’ needs and transactions on both 
the supply and demand side will be quantified. This is the age of Quantitative 
Medicine. A patient-centric marketplace and the measurement of all the ensuing 
interactions will be measured and quantitatively analysed. This quantification of 
care, resulting from precise measurement, will finally lead to a standardised moneti-
sation model of the quantified care outcomes and the dawn of true value-based 
purchasing.

18.6.12  The GHME and the Globalisation of Healthcare

Standardisation of quantified care outcomes will not belong to one government or 
be geographically constrained, any more than E = mc2 is one nation’s unique equa-
tion. Instead, the globalisation of medicine requires the standardisation of 

Fig. 18.20 Reciprocal relationship between digital solutions, stability and strategic value in the 
overall longitudinal information architecture (source: author)
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measurement methodologies, the systems to execute those methodologies and the 
remuneration mechanism to cement such process and system change. The overall 
marketplace will be made possible by the emergence of a GHME. The CIN can 
operate globally if the infrastructure enables that geographic functional reach. 
Financial systems have achieved this for global markets, and medical transactions 
and operations will follow suit. The technological capacity is there, just not the 
operational application of that technology. Again, the process must be measured 
with precision and validity in a way not much functionally different than a financial 
trade. What’s lacking with the emergence of a GHME, unlike the financial markets, 
are agreed-upon standards that will catalyse interoperability. With interoperability, 
measurement can become more widespread. The final hurdle will be the movement 
towards Quantitative Medicine (QM). Quantitative Medicine, or “mathematical 
medicine”, will be a new discipline or scientific methodology, by which the care 
clinical process is translated into a mathematical expression of that process. The 
care process can then be numerically represented. This numerical representation 
can be utilised to rate outcomes and compare provider or product performance. 
Medicine now is liberated from the commodity-based competition. Current high- 
level comparisons of care outcomes are just crude proxies for a precise measure-
ment of actual care outcomes. These crude provider ratings of today will be replaced 
by precise mathematically based performance indexing. This then allows the cre-
ation of an accurate and fair payment system that spurs a care outcomes meritocracy 
as well as a value-based purchasing environment.

18.7  Monetisation Transformation

Paying for value is baked into the DNA of most industries, but medicine is not one 
of them. It is not that payors don’t want to pay, especially the government. After all, 
value-based purchasing is codified in the PPACA. Rather, current systems aren’t 
designed to calculate what that value is. That’s because measurement systems can’t 
measure it. You can’t pay for what you don’t know, so you guess and put aside 
enough in reserves to make sure you can pay all the claims that are made against 
those reserves. Also, since you don’t really know the value of the service delivered 
quantitatively, you pay everyone the same amount, like a commodity. Everyone 
knows what a commodity is, because all commodities (e.g.,  copper, crude oil, 
wheat) are the same. Is medicine a service commodity? If it were, then medicine is 
all just one business, all doctors are equally as competent, they all produce exactly 
the same outcomes and all patients need and want exactly the same things. If this 
were true, then paying all providers the exact same amount would make sense. The 
reality is that this is just not the case. So, what’s stopping the industry from trans-
forming into a value-based purchasing marketplace? The answer is Quantitative 
Medicine (QM) and the structure that supports it.
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18.7.1  The Complexity of Healthcare Measurement

The human organism and its multiple physiologic processes are very complex. 
Measurement of these processes is also an extremely complex task. Therefore, 
transforming the scientific measurement into a financial calculation is likewise 
daunting. However, without this transformation, there is no tangible way to calcu-
late the value of a single disease outcome. So, too, there is no real way to compare 
providers’ performance in producing diagnostic and treatment outcomes. This pro-
vides a partial explanation for the failure of healthcare to transition to quantitative 
medicine. There are primarily four main reasons why this transition has not occurred. 
First, to repeat, medicine is very complex. That complexity is driven by the com-
plexity of individual human physiology, even without the presence of one or more 
diseases. This complexity is greatly magnified at a population health level. The 
industry has to have ample motivation to begin to take on the wholesale precise 
measurement of this complexity and there has not yet been such ample motivation. 
So, second, there has been no incentive to do so. That has begun to change with the 
passage of the PPACA. The problem is that the incentives with pilot CMMI pro-
grams have not been sufficient. Simply put, the reward to overcome the costs of 
resources expended in value-based purchasing programs has not been a driver of 
change. Even the penalties have not been sufficient incentive. Third, even if the 
rewards are sufficient, there has not been sufficient infrastructure in place to enable 
the transition to QM. The discussion of measurement points out that the technology 
is certainly sophisticated enough to enable this transition and is just not being uti-
lised in healthcare to any large extent. That said, the cost of abandoning sunk costs 
in existing legacy technology implemented post-meaningful use is greater than 
financial rewards associated with investing in entirely new infrastructure. Fourth, 
the vision for reassembling those technologies into a new GHME is not clear to a 
majority of stakeholders, even with sufficient resources to begin that investment in 
infrastructure. Without the vision, infrastructure, significant incentives and long- 
haul motivation to tackle the complexity, the QM era will not begin in earnest.

18.7.1.1  The Individual Perspective

The individual patient should by now have accrued more benefits in the post-PPACA 
era. Having insurance is not a guarantee that you will use it, especially if there is a 
financial barrier to do so. For example, it is discovered that you need your gallblad-
der removed due to worsening gastrointestinal symptoms. Previously you did not 
have insurance, but now you have gone to the healthcare marketplace and purchased 
a high-deductible policy. The laparoscopic surgery is quoted at $8300, but you have 
a $5000 deductible health plan and decide to wait. In the meantime, you have an 
acute attack of cholecystitis that was not initially diagnosed. By the time you’re 
admitted to the hospital, you’ve developed pancreatitis as a complication and are 
admitted to the intensive care unit. You survive, but are left with chronic pancreatitis 
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and a total hospitalisation cost of over $100,000. Just having insurance is not the 
entire picture if the patient has a high deductible and is underinsured.

18.7.1.2  The Public Health and Population Health Perspective

Penny-wise and pound-foolish applies not only to the vulnerable individual, but 
also at scale. Insuring populations takes the individual problems and magnifies them 
for a population. Insurance reserves are that company’s way of hedging that risk. 
The public health perspective is also a population health view from a governmental 
agency standpoint. So, the insurance company and public health agency both have 
a population perspective, but with different long-term incentives. The long-term 
view of a public health department has numerous other variables that make its over-
all view much broader in scope than the profit-driven population health view of an 
insurance company. The SARS-CoV-2/COVID-19 pandemic has brought that real-
ity into very clear focus. As a governmental agency, a public health department’s 
scope of responsibilities includes preparing for and responding to an emergency, 
such as a global pandemic, where the focus is to prevent the spread of disease (e.g. 
a salmonella outbreak at an egg producer). In addition, the responsibilities include 
providing adequate infrastructure, promoting healthy communities (including 
healthy behaviours), assuring health services (e.g. immunisations) and protecting 
against environmental hazards. As funding had been gradually declining for health 
departments prior to the pandemic, the monitoring and measurement that goes 
hand-in-hand with these activities become more challenging [39]. Effective and 
adequate monetisation of population and public activities have been highlighted as 
critical during the current global crisis. How we can and need to do that better as a 
global society has been brought to the forefront.

18.7.1.3  The Research Perspective

The process of producing multiple effective vaccines within a year has been nothing 
short of remarkable during this global pandemic. The groundwork for this “over-
night” success was laid over years of research into mRNA and viral vector technolo-
gies [40]. The reality is that vaccines are not huge profit-makers for pharmaceutical 
companies. Overall, the global vaccine industry, which is research-intensive, was 
just $24 billion prior to the current pandemic. That number is only 2–3% of the 
trillion-dollar worldwide pharmaceutical industry [41]. By contrast, the comple-
mentary and alternative medicine market, much of which is not well-researched and 
therefore unproven, is valued at well over $82.27 billion globally in 2020 [42]. 
Without governments “pre-paying” for COVID-19 vaccine research and develop-
ment, the world would not be in such an optimistic position today. There have not 
been a lot of new antibiotics developed in recent years. Antibiotic development also 
does not have significant financial incentives for the pharmaceutical industry and as 
a result, many large companies have left that industry [43]. This is, despite the large 
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uptick in antibiotic resistance, both in the inpatient and outpatient settings. 
Conducting Phase 1, 2 and 3 studies is an expensive proposition for many reasons, 
not least of which is that even after billions in investment, a promising drug in early 
trials may turn out to be unusable and need to be abandoned after later testing. The 
research industry must undergo a new phase of digital infrastructure development in 
coordination with the provider community that improves the efficiency of research 
and ultimately the monetisation of scientific advancement.

18.7.1.4  The Financial Perspective

Medical care, public health and research are all inexorably linked by the ability to 
finance all these activities. The financing must be cost-effective to produce a posi-
tive return on investment for all stakeholders concurrently in the short and long 
term. These stakeholders include patients, employers, insurers, providers, hospitals 
and product suppliers. To accomplish this, the market must convert to a value-based 
monetisation model, also referred to as value-based purchasing. We have already 
discussed that this means that value-based outcomes have to be measured. The last 
piece of the puzzle is the transition to quantitative medicine. The mathematical 
translation of medical care processes from a value-based measurement perspective 
will transform the financial perspective of the medical industry. This is the next 
great frontier to be explored and conquered. The GHME will provide the nexus 
between medicine, mathematics and physics in quantifying medicine. The digital 
audit trails of the care process that exist today will be considered neophytic and 
archaic in 10 years. The healthcare industry estimates its costs because no one really 
knows or is walking the path to calculating the true total costs of the care process.

18.7.2  The Total Cost of Care

The total cost of a service or product is not a complex concept. For example, say you 
get into an automobile accident. You escaped injury, but your vehicle was not so 
lucky. You take it to the repair shop and the insurance company sends an estimator. 
They estimate the total cost of repairs. The body shop accepts that estimate and 
begins work, or they refute it, line item by line item, in great detail. They know the 
exact cost of replacement parts and the labour required to complete the repair with 
those parts. As the work is begun and progresses, it may require additional unfore-
seen labour or parts. The cost of a healthcare service or product, on the other hand, 
is a very complex answer to a simple concept. Of course, the human body is much 
more complex than a car repair. If your “body” gets into an accident and needs body 
work, you may get some estimates, depending on your insurance. If you don’t even 
have insurance, you may get a “cash” discount. At the end of the day, no one really 
knows how much all your “body” repairs cost by the end of the care process. In the 
healthcare industry, it’s all just continuous “estimates”.
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18.7.2.1  Calculation Across the Entire Care Delivery Value Chain

The path to QM goes through calculating the total cost of care, and the path to cal-
culating the total cost of care goes through the measurement of every step of clinical 
care. That means measurement of every step, irrespective of the care setting. That 
requires interoperability of measurement systems, which at present are EHRs. The 
lack of content standards impedes such interoperability and therefore comprehen-
sive and meaningful value-based process measurement [44]. Figure 18.21 demon-
strates that everything starts with the continuous care cycle. This cycle is the 
longitudinal process of a patient’s life. It is the embodiment of patient-centricity. 
Interconnected to the cycle should be the continuous monitoring of a patient’s phys-
iologic status. This status is the internal ecosystem of a person’s body. Each of the 
different systems works in a complex interplay to maintain homeostasis. Infectious 
disease, cancer or trauma can disrupt this intricate interplay of systems. The moni-
toring systems of yesterday and today are not real-time in that monitoring. As tech-
nology dives deeper into the wearable world, this monitoring will detect not only 
what we have come to know as the usual metrics, but also new metrics yet undiscov-
ered that will detect dysregulation of these systems far in advance of current mea-
surement and detection devices.

This current lack of infrastructure provides a significant barrier to measuring 
disease and care processes. This makes calculating accurate total costs of care cur-
rently incalculable. Without a representation of the longitudinal aggregation of all 
discrete costs along the value chain of care, outcomes cannot be compared and 
value for that outcome cannot be assigned. The absence of calculated care values 
will be an ongoing barrier to effectively and fairly operationalising value-based 
provider compensation models that have widespread acceptance.

18.7.2.2  Every Value Chain Step Must Add Value

If the GHME were in place and mature, then the focus should be to ensure that the 
entire care value chain is measured. The value chain shown in Fig. 18.21 lines up 
well with the public health view of the primary, secondary and tertiary prevention 
diagram discussed previously. The difficulty in practice is not identifying the steps, 
but rather instituting and maintaining an adequate measurement process. Although 
there are many quantitative components to the care process in the form of structured 
data, there is also a large degree of qualitative and unstructured data. Therefore, in 
measuring the care process value-chain, we are measuring nominal, ordinal, interval 
and ratio data. For the care measurement process to be adequate, it must produce 
data that are valid, accurate, reliable and precise. Anyone with experience in the 
healthcare quality improvement process knows that achieving an adequate measure-
ment process with current infrastructure is challenging for many of the reasons 
already articulated in this chapter. Therefore, it follows that if the care-value chain 
process is not well measured, then creating accountability and improvement of the 
value-creation process is difficult.

D. F. Wisk



307

18.7.2.3  Interconnecting the Care Value Chain to Value Creation 
and Clinical Care Outcomes Remuneration System (CCORS)

The ultimate question is if we can’t adequately measure the process or optimally 
improve it, how can we pay the top-performing providers fairly and equitably? The 
answer is that we can’t and won’t until such infrastructure is in place to adequately 
measure the value chain, the value creation process, move the provider market away 
from commodity to a value-based purchasing model and consequently strongly 
incentivise innovation and improvement around value-based care outcomes. 
Figure 18.22 illustrates the simultaneous three processes in an ideal value-based 
care model. That cycle drives the next concentric circle: the continuous caring for an 
individual longitudinally across their entire life-cycle. At the centre lies an adequate 
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Fig. 18.21 The clinical care process value–chain relationship between patient and provider 
(Adapted from Appendix B The Care Delivery Value Chain, Delineating Types of Care Delivery 
Activities, from “Redefining Healthcare” by M.E. Porter & E.O. Teisberg (2006) [product# 7782- 
HBK]. Republished by permission Harvard Business Publishing)
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measurement process. Finally, the outermost circle represents the virtuous market-
place cycle when you aggregate all the individual patients to a population and mar-
ketplace level where value-based competition occurs. Such a cycle is well- established 
in other industries, but for reasons previously outlined, has not emerged as the domi-
nant healthcare model. Value-based competition aligns incentives in the entire mar-
ketplace around value. Cost shifting, possible when prices and processes are not 
transparent, will not happen in a highly measured and performance outcomes- 
reported market. In this environment, purchasers of care are fully aware of what they 
are getting for the money. This is especially true in a fully functioning two- sided 
E-health marketplace. If a hospital or provider has a high infection rate, or worse yet 
mortality rate, for a given surgical procedure, then why would enlightened patients, 
employers or governments continue to sanction and purchase that care?

18.7.2.4  The Carrot, Stick or Something Else: The CMS 
and CMMI Enigma

The answer is that purchasers still haven’t figured out a working value-based pur-
chasing alternative. We have alluded to failed or modest CMS pilot outcomes tested 
by its innovation arm of CMMI [45]. More than 40 pilots later, the U.S. healthcare 
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Fig. 18.22 The interrelationship between the clinical care process, quantitative medicine and the 
resultant value-based care marketplace (Adapted from Appendix B The Care Delivery Value 
Chain, Delineating Types of Care Delivery Activities, from “Redefining Healthcare” by M.E. Porter 
& E.O.  Teisberg (2006) [product# 7782-HBK]. Republished by permission Harvard Business 
Publishing)
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market has not figured this out. This is despite carrots (bonus incentives) and sticks 
(performance penalties). Much has been written about how anaemic the incentives 
and penalties were. If the incentives are weak, providers largely ignore signing up 
for such bonus programs because they are more work than they are worth. The same 
thing goes for the penalties. If, however, the penalties are too harsh, then providers 
vehemently protest and the resultant uproar crushes such initiatives. The reality of a 
paradigm shift is in part the size of incentives and penalties, but also the necessary 
infrastructure to create successful change. There is an argument that substantial 
incentives and disincentives will spur such change, but only if enough foundational 
infrastructure is in place to allow successful disruptive innovators to force the mar-
ket into a value-based paradigm shift.

18.7.2.5  Value-Based Payment Methodology

Measurement infrastructure should be adequate all along the value-creation chain. 
Figure 18.23 lists the categories to be measured, which of course represent the full 
cycle of care that involves any stakeholder that influences that care process. As 
stated, the measurement should be longitudinal. It should cover the entire supply 
side. It should be present in every setting where the patient receives care. It should, 
therefore, measure the diagnoses, treatment and speed of treatment for each disease, 
and, if indicated, for more than one disease in an individual patient.

If the value of the care outcomes is precisely measured, analysed and reported 
for every provider, then downstream payment methodologies become less relevant. 
Most of the more recent payment models, such as capitation, act as proxies for a true 
value-based payment system in action. Since the care measurement process is inad-
equate, cost becomes the focus. This is because the goal of insurance profit- making 
is to collect premiums, stockpile reserves, keep operating costs at a minimum and 
mitigate claim payments as the primary mechanism to preserve reserves. In a com-
modity-based fee-for-service market, the more a provider does, the more they get 
paid. The danger is the provider’s incentive to push too many services (e.g. blood 
draws in a cancer patient) on their patients. With capitation, on the other hand, 

Fig. 18.23 The functional categories of a monetisation model (source: author)
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providers are at risk for cost overruns and are therefore incentivised to not push 
services (e.g. too few blood draws in a cancer patient). If, however, all care out-
comes are closely measured, analysed, tracked, reported and compared to ideal 
guidelines, then payment can be structured in a variety of ways. That is because the 
payment model is not cost-driven, but rather driven by outcomes that are of the 
highest measurable value. This is what quantitative medicine will mean.

18.7.2.6  Outcomes, the Total Cost of Care, Pricing and Payment

This brings the argument back full circle to the measurement of outcomes, calculat-
ing the total cost of care, creating a premium pricing model and restructuring pro-
vider payment accordingly. This also requires the revisiting of diagnosis, treatment 
and velocity of care. Figure 18.24 diagrammatically illustrates the influence of each 
of the care process variables on true aggregate costs. Today we can only make 
guesstimates about what those total costs of care are. This is the pseudo-science of 
actuarial tables that are probability estimates (guesses) about costs and diseases in 
populations [46]. These guesses try to predict medical loss ratios and premium price 
points [47]. Revisiting these three components of the care process also leads us back 
to the root causes of human error. Assume an ideal world, where the care process is 
quantified by an adequate measurement system. This digital environment has a 
measurement system that is valid, accurate, reliable and precise. This measurement 
system continuously measures the accuracy of diagnosis, treatment and velocity of 
care. The results are aggregated in time.

Fig. 18.24 An overview of the complexity in accounting for the total cost of care in relationship 
to the three variables impacting quality (source: author)
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This diagram illustrates how these three variables of the care process are compre-
hensively tracked to create an audit trail. That audit trail leads to a cost aggregation 
and total cost calculation representing the quantitative financial component of 
money invested in caring for a patient or a population by each disease. Note that 
total costs include not only direct medical costs, but also indirect costs that are often 
overlooked or never calculated. In the United States, there are four different payor 
categories of care, which are government (e.g. Medicare, Medicaid), commercial 
health insurance, workers’ compensation and auto insurance. With respect to the 
impact of indirect costs, take an example of a worker injured on the job. This falls 
under workers’ compensation insurance. The small contributor to costs is the pri-
mary treating provider. From a medical cost standpoint, specialists (e.g. orthopae-
dics), imaging (e.g. MRI) and procedures (e.g. surgery) make up the largest share of 
medical costs. Lost time and therefore lost wages due to total disability (temporary 
or permanent) are also a major portion of costs. However, indirect costs in the form 
of partial disability are major, but often unmeasured costs. For example, an employer 
runs a ten-person machine shop. One of the workers injures his dominant right arm. 
He has run a CNC machine for the past 20 years that requires the use of his right 
arm. He is 10% of the workforce, but his machine represents 30% of the company’s 
revenue. No one else in the company can do his job and training a replacement 
could take up to a year, provided they can find the right person. This loss of produc-
tivity costs the company a significant loss in revenue, and, potentially, a customer. 
This is an unmeasured indirect cost in healthcare.

18.7.2.7  Costs Flow Directly from Care Outcomes

The total cost of this CNC machine operator is dramatically reduced by high-value 
care. Taking the example further, let’s consider two opposite scenarios with two 
outcomes and calculate the impact on a company’s cost for each. In scenario one, 
the patient goes to the clinic. The patient is 55 years old. He is diagnosed with a 
right shoulder strain. He is put on over-the-counter medication and asked to recheck 
in 2 days. In 2 days, he returns, but is not feeling better and is put on partial restric-
tions for the use of his right arm. He is told to recheck in a week. In a week, he 
returns and complains that he feels much worse. The restrictions are continued and 
he is put in physical therapy for 3 weeks and placed on prescription medication. He 
returns in 3 weeks and is worse yet. He is told to not use his right arm at all and to 
continue therapy for another 3 weeks. He returns to find his shoulder “frozen” with 
limited movement. He is sent to a specialist who performs surgery and the patient is 
left with a permanent disability, for which he receives a settlement from the com-
pany. This scenario equates to hundreds of thousands of dollars of true aggregate 
costs. In the other scenario, the patient is seen Monday, the day of the injury. The 
primary care doctor diagnoses a rotator cuff tear, labral tear and biceps tendon tear. 
The patient is sent for a magnetic resonance angiography (MRA) that confirms this 
diagnosis the next day. The primary care doctor refers the patient to an orthopaedic 
surgeon, who does surgery on Friday of that same week. The patient makes a full 
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recovery with total cost of care at $40,000—a significant savings in both direct and 
indirect costs. These two scenarios poignantly illustrate how costs flow directly 
from value-based outcomes, good or bad. The probability calculation of the risk for 
future similar patients in a population risk pool is much more accurate if the entire 
care measurement process is adequate, thereby creating a methodology for quantita-
tive medicine.

18.7.2.8  The Journey from Measurement to the Mathematical 
Representation of Care Outcomes as a Basis for Care Outcomes 
Performance System (COPS) and Provider Performance 
Indexing (PPI)

Quantitative medicine will become a field in and of itself that bridges the gap from 
where medicine is today to the world of a value-based outcomes medical market-
place. As has been outlined, that journey begins with the construction of the first 
pillars of a GHME. One of those pillars is an EHR with inverted architecture from 
current offerings. The next generation of EHRs will be designed, built and imple-
mented with an architecture that enables patient-centric care, optimally matches 
provider clinical workflow, maximises an adequate care measurement process and 
supplies data to artificial intelligence and machine learning digital tools that can 
translate clinical care processes into mathematical expressions of value-based care 
outcomes. These expressions of disease outcomes will form the basis of a Care 
Outcomes Performance System (COPS). This system will calculate mathematically 
the actual value of the outcome of care by one or more providers involved in the 
patient’s entire care process. Such measurement and analysis will be both discrete 
(e.g. a self-limited episode of care such as a surgery) and longitudinal. This system 
will produce a provider performance indexing (PPI) by a single disease or in a 
patient with multiple comorbidities. With such a system in place, performance 
between providers and hospitals can be compared. This ushers in the dawn of a true, 
fair rating of provider performance. These formulas will adjust for concrete factors 
that directly affect such indexing, such as the severity of illness. Ratings will settle 
into a standardised comparison that will pass through continuous and multiple itera-
tions of adjustment as they evolve into a de-facto standard for the healthcare indus-
try. As in other industries, such a value-based payment system will promote value 
by rewarding excellent providers. Patients will benefit in a way and at a scale that 
they have not before. Excellent providers will draw more market share to them. As 
with the previous case example, as care quality improves, errors are reduced, rework 
declines and costs go down. Low-value providers will fall out of the market. 
Providers will seek to differentiate themselves from other competitors as the old 
commodity structure melts away. The two-sided E-health market will exponentially 
increase, fuelled by disruptive innovation and asymmetric competition. Customers 
will pull more and more value to them as their needs are more carefully assessed 
and met by providers. All of this is catalysed by a value-based quantitative medicine 
driven by the “New Math” of healthcare.
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18.7.2.9  The Emergence of the “New Math” 
of Value-Based Reimbursement

Quantitative medicine is by definition mathematically based. Everything in the 
environment around us can be represented by mathematics and physics, provided 
the discoveries of those processes have been made. Medicine has lagged behind 
other disciplines and industries. In 1970, per capita spending was $363 per person. 
In 2019, that number had risen to $11,582 [48]. As a result of the social distancing 
and delay or cancellation of elective services necessitated by the SARS-CoV-2/
COVID-19 pandemic, there was a historic decrease in health services spending. The 
issue of access again came into play, but just not due to inadequate supply, lack of 
health insurance or self-rationing due to high out-of-pocket costs. As we emerge 
from this global pandemic, digital health has gotten a jump-start to a new level, due 
to access issues. This will, in fact, be a rapid segue into the GHME, depending on 
whether digital healthcare providers recognise and seize the shift. If they see it as a 
way to change care, through a measurement and remuneration paradigm shift, then 
change will be rapid. If, however, vendors merely see this as an extension of the 
current commodity-based market and do not advance products and services to a 
value-based methodology [49], then the rate of change will plateau or even stagnate. 
Wall Street is obsessed with providing data with a competitive advantage and com-
petitive promotion to drive investment activity. That advantage drives spending on 
technology that buys transactional processing speed. These investments in technol-
ogy are at least 10 years further along than in healthcare. “Machine” trading driven 
by artificial intelligence and machine learning can be co-opted to the healthcare 
industry. These digital tools will power the “New Math” of quantitative medicine. 
This new math will become the field of Quantitative Medical Mathematics (QMM). 
QMM is required to power a reliable calculation of the value of care outcomes. 
These calculations will enable the development of new value-based care outcome 
remuneration. This will trigger tangible, reproducible and sustainable value-based 
reimbursement. In a market where incentives for all stakeholders are aligned around 
standardised value, value-based competition will finally, in a real sense, cut the 
chains of commodity-based reimbursement. Once free, the two-sided E-health mar-
ket will lead to global competition for patients and, thus, the globalisation of 
healthcare.

18.8  Conclusion

 1. The U.S. Healthcare System is pricing itself out of the market of the average 
patient, leading to reduced access and self-rationing of care.

 2. Value-Based Healthcare has been the law of the land since the passage of the 
PPACA in 2010, but the major barrier is that there isn’t the necessary infra-
structure to deploy value-based purchasing programs.
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 3. Current legacy infrastructure serves as a barrier to the widespread adoption of 
a quantitative medicine approach to transformation.

 4. To facilitate a global healthcare transformation, the form must follow function 
and the functional goal is a patient-centric healthcare system supported by the 
transformation of the three M’s of Medicine, Measurement and Monetisation.

 5. Quantitative Medicine will facilitate the transformation of medical care, mea-
surement and monetisation.

 6. The three M’s are linked to the three R’s of Record medical care, Report the 
results of that measurement and Reward by monetising value-based care out-
comes that create a marketplace meritocracy.

 7. Medicine requires clinical care transformation, which in turn requires the struc-
ture of a CIN to reorganise providers and their care process around the patient 
and value-based outcomes utilising a quantitative medicine approach and 
advanced digital measurement tools.

 8. Measurement transformation requires the structure of a healthcare platform 
ecosystem that is seamlessly interoperable for all stakeholders and functions 
through the lens of quantitative medicine to measure, analyse, index and report 
value-based care outcomes by disease.

 9. Monetisation transformation requires the structure of disruptive innovative 
payment mechanisms that are enabled by the cutting-edge technology of the 
platform ecosystem to utilise a quantitative medicine approach optimised by 
digital measurement tools.

 10. Finally, it is necessary that the Medicine (CIN), Measurement (Platform 
Ecosystem)  [50] and Monetisation (Value-Based Purchasing Systems) be 
deployed as separate, but combined parts of a single larger quantitative medi-
cine system that works in unison to facilitate and transform the delivery of 
healthcare to individuals and populations.
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Chapter 19
The Internet Hospital in the Time 
of COVID-19: An Example from China

Jianqiu Kou, Zhengzhong Yan, and Nilmini Wickramasinghe 

19.1  Introduction

With the spread of COVID-19 across the world, many countries are currently expe-
riencing cases of respiratory disease, severe pneumonia and even death caused by 
the outbreak of this virus [1]. Since the sudden outburst of COVID-19, the original 
off-line medical treatment model has been threatened, and a great deal of demand 
for remote medical treatment has emerged. On 4th February 2020, the National 
Health Commission of China issued the “Notice regarding the high quality delivery 
of Internet diagnosis and consultancy services in the prevention and control of the 
pandemic”, which encouraged the adoption of information technology to assist the 
COVID-19 epidemic research and diagnosis [2]. The support role of telemedicine in 
terms of strengthening data collection and analysis, innovative diagnosis and treat-
ment models, and improving service efficiency had been strengthened [2]. 
Furthermore, more attention should be paid to the regulation and security issues in 
promoting Internet treatment and consultation. Many hospitals were also actively 
engaged in the Internet hospital diagnosis and treatment business and have achieved 
certain benefits. In the prevention and control of COVID-19, Internet hospitals 
showed unique advantages in maximising the use of medical resources, reducing 
the gathering of people and avoiding cross-infection. Its construction, transforma-
tion and application are of great significance for public health [3].
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19.2  Background

In recent years, the Internet hospital as an emerging innovation delivering outpatient 
service has been developed rapidly in China [4]. Internet hospitals were launched in 
2013 and there were already 68 Internet hospitals by March 2017 in China [5]. The 
Internet hospital model has the potential to improve the quality and accessibility of 
medical services [6]. On the other hand, many Internet hospitals were not mature 
and there were also some problems such as the scarcity of online doctors, medical 
quality supervision and medical insurance coverage [5].

19.2.1  The Contents of Internet Hospital

“Internet + medical” refers to the integration of the traditional medical industry and 
the new generation of information technologies represented by the Internet, cloud 
computing, Internet of Things (IoT) and Artificial Intelligence (AI) [7]. This formed 
a new service format to improve the innovation ability and efficiency of the medical 
industry [7]. The Internet hospital is a kind of medical service model which is based 
on the Internet platform [5]. It can provide online medical consultation, electronic 
medical records, online prescription, medicine delivery, medical assessment, remote 
rehabilitation, medical education and health information [5].

In China, with the popularisation of the Internet and the smartphone, the Internet 
hospital model is a kind of emerging innovation to provide a convenient medical 
solution to overcome physical obstacles and time limitations [4, 5]. Some Internet 
hospitals were operated by Internet companies and pharmaceutical supply compa-
nies, whereas some Internet hospitals were operated by traditional physical hospi-
tals [5]. From the perspective of patients, they have a high degree of satisfaction 
with Internet hospitals because of the convenience, low cost and free choice to clini-
cians [4].

19.2.2  Related New Technology

Some emerging technologies such as the Internet of things, cloud computing tech-
nology, Big Data, 5G Communication Technology and Artificial Intelligence are in 
the application or trial stage for the construction of Internet hospitals [7]. From the 
perspective of medical institutions, the application of Internet of Things is very 
important to hospital informatisation construction. Through the scientific use of the 
Internet of Things technology, some of the innovations of hospital management and 
clinical treatment mode can be realised. For example, there were some innovative 
attempts in clinical assessment and nursing care management adopting the Internet 
of Things technology [8]. As an emerging technology, cloud computing technology 
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can realise the flexible deployment that cannot be realised in traditional hospital 
information systems. In the process of constructing the Internet hospital, cloud 
computing technology is used to improve service efficiency so as to enable patients 
to acquire high-quality and convenient medical services [9]. Big data is a fast and 
diverse mass information asset that requires cost-effective and innovative forms of 
information processing to enhance insight and decision-making and has shown its 
significance in the healthcare field [10]. 5G refers to the fifth generation of mobile 
communication technology. It is an extension of 4G and also the latest generation of 
cellular mobile communication technology [11]. With features such as high speed, 
large broadband and low delay, 5G will bring great changes to medical treatment 
[11]. Artificial Intelligence (AI) is a branch of information technology that intends 
to imitator human thought and learning processes as well as information storage 
processes. Artificial intelligence also has the possibility to improve medical qual-
ity [12].

19.3  An Example of an Internet Hospital Case Against 
COVID-19

In the situation of the global spread of COVID-19, people turn to Internet hospitals 
to solve their health issues. This section demonstrates the application of Internet 
hospitals against COVID-19 with a case example. The selection of the case study 
was based on the objective of this research which is to explore the research ques-
tion: How can Internet hospitals be used in response to COVID-19 and their effec-
tiveness? The selected case is the Internet hospital of Jiangsu Province Hospital of 
Chinese Medicine which has the largest number of cases of Internet diagnosis and 
treatment in Jiangsu Province by May 2020.

19.3.1  The Case Hospital

The case study for the application of the Internet hospital was launched in Jiangsu 
Province Hospital of Chinese Medicine (Affiliated Hospital of the Nanjing 
University of Chinese Medicine). This hospital was founded in 1954 and is a well- 
known, large-scale, first-class comprehensive hospital of traditional Chinese medi-
cine in China. This hospital is the National Clinical Base of Traditional Chinese 
Medicine and the International Training Center of Acupuncture and Moxibustion. 
There are 58 clinical wards and 2500 beds for inpatients. In 2019, the number of 
outpatient visits had exceeded 5.85 million, ranking seventh among all the hospitals 
in China.

The difficulties and problems encountered in the daily operation of the hospital 
forced the hospital management to seek new ways of development. The first 
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problem was to resolve the contradiction between the large amount of outpatient 
service and the relatively inadequate service capacity. The outpatient volume of the 
hospital was very large, and the outpatient building has been used for nearly 
20 years, which is far from matching the huge outpatient volume in terms of physi-
cal conditions. Therefore, it was necessary to provide online channels to expand 
time and space and improve the patient experience. The second problem was the 
contradiction between the scarcity of high-quality medical resources and the 
increasing demand. In recent years, hospitals have established the medical consor-
tium, and all the member units of the medical consortium have a great demand for 
grassroots services provided by skilled experts. However, the resources of experts 
were very limited, so the hospital hoped to build a platform. Therefore, medical 
resources can be effectively allocated to the real needs through the platform to alle-
viate the imbalance of resources to a certain extent.

19.3.2  The Construction of the Internet Hospital

Based on the physical hospital and with the adoption of Internet technology and the 
mode of “Internet + medical treatment”, the Internet Hospital of Jiangsu Provincial 
Hospital of Chinese Medicine has built a service platform combining off-line and 
online. The Internet hospital was launched in August 2017, and now patients can 
receive online consultation, online prescription, online payment, medicine delivery 
and other services through the Internet hospital with their computers or smartphones.

The functional modules of the Internet hospital of Jiangsu Provincial Hospital of 
Chinese Medicine included platform service, outpatient process optimisation, 
online consultation, management service, outreach service and other modules. 
According to different application scenarios, the web, WeChat and APP versions 
were provided. According to the roles of users, versions for patient, doctor and 
management were provided. The function design diagram is shown in Fig. 19.1.

The optimisation of the outpatient process fully integrated online and off-line 
processes and minimised the invalid waiting time of the patients while improving 
patient satisfaction. Before the patients see a doctor, they will make an appointment 
through various online channels and then come to the hospital at the scheduled time. 
After the medical treatment, the patient can pay directly online. Afterwards, the 
patient has the option of medicine home delivery and the medical examination 
report can be checked through the mobile phone.

The online consultation module realised the remote diagnosis and treatment for 
patients. A doctor communicates with the patient via the online video at the 
appointed time. The doctor may prescribe medicine for the patient and the medicine 
can be delivered to the patient’s home. If the patient needs further examination, the 
system can make an appointment automatically, so the patient can go to the hospital 
for examination at the appointed time. This function saves substantial time for 
patients and improves patient satisfaction. The whole process of online consultation 
is shown in Fig. 19.2.
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Remote consultation for medical institutions included domestic and international 
consultation. In China, remote consultation is mainly aimed at community hospi-
tals, assistance hospitals and cooperative hospitals. International remote consulta-
tion is one of the highlights of the Internet Hospital of Jiangsu Provincial Hospital 
of Chinese Medicine. By the end of 2019, the hospital had launched remote consul-
tation cooperation with TCM clinics in nearly 20 countries, including Switzerland, 
Australia and the United Kingdom.

19.3.3  Applications Against COVID-19

This Internet hospital has played a major role in the COVID-19 prevention and 
control. Clinicians cooperated with the frontline medical teams in Hubei Province 
and carried out academic exchanges with medical professionals overseas through 

Fig. 19.1 Function design diagram of the Internet hospital
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the Internet hospital platform. Many patients with chronic illnesses had received 
medical consultation and medicine delivery through online consultation.

Affected by COVID-19, the medical consultation and medication for patients 
with chronic diseases had become a serious problem. In February 2020, at the early 
stage of the outbreak of COVID-19, Professor Wu, the vice president of Jiangsu 
Provincial Hospital of Chinese Medicine said:

The epidemic in Nanjing, Jiangsu province is not very serious. Therefore, in addition to 
focusing on the diagnosis and treatment for COVID-19 patients, it is important to pay more 
attention to the treatment and medication of patients with chronic diseases. After all, there 
are a large number of patients with chronic diseases. They cannot go to the hospital because 
of the epidemic, so it is urgent to consider how to solve their actual difficulties and ensure 
their health.

Jiangsu Province Hospital of Chinese Medicine had taken many measures to 
increase the service capacity and quality of online consultation. First of all, more 
skilled doctors were arranged for online treatment every day to meet the needs of 
patients. Second, the procedure of online consultation had been optimised continu-
ously, including the express delivery of substitutes of traditional Chinese medicine, 
online payment for health insurance, electronic invoices and online medical record 
inquiry. All these actions had improved the satisfaction and experience of patients 
with online consultation. Meanwhile, the number of patients treated through online 
consultation per day had already surpassed 300 while the number was only around 
50 in 2019.

19.4  Discussion and Conclusion

The Internet hospital is developing rapidly and will provide more intelligent func-
tions such as big data analysis, artificial intelligence application and precision medi-
cal service in the future [5]. This innovative mode has shown its significance for 
public health especially during the period of COVID-19 pandemic. Internet hospi-
tals in China provide examples for other countries to follow. On the other hand, the 
Internet hospital mode is not mature at this stage and there are still a lot of issues 
needed to be resolved. Medical quality supervision and medical insurance coverage 
are all problems that need the government to offer a solution. For the patients, they 
need to familiarise themselves with making appointments before medical consulta-
tions. In addition to this, due to the scarcity of skilled doctors, the question of bal-
ancing doctors’ workload and patients’ needs also should be paid attention to [13].
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 Epilogue

Our book has served to present a miscellany of papers that focus on notable exam-
ples of utilising, incorporating, designing and conceptualising roles for technology 
to enable and support superior healthcare delivery and wellness management. The 
rapid pace of the advancements in technology is exciting and a hallmark of this 
decade and century. Never more than now has healthcare delivery needed to draw 
upon these developments to provide high-fidelity, high-quality and high-value care 
to all. The recent COVID-19 pandemic has served to highlight for us all how fragile, 
dynamic and uncertain our healthcare systems can be. However, our digital health 
solutions hold the promise and potential for a better tomorrow.

Clearly, this is still a very nascent domain and many issues around health liter-
acy, policy, privacy and security, not to mention the direct and subtle as well as far- 
reaching implications for the various stakeholders (patients, clinicians, healthcare 
organisations, regulators, payers and the community at large), are yet to be fully 
understood or identified. Moreover, it is impossible, in one book, to capture all 
activities even slightly, let alone unpack critical issues in depth. We do hope, how-
ever, that this volume serves as a catalyst to ignite and inspire more thinking, 
research and focus as well as funding to support key initiatives in digital health from 
idea to realisation.

These are challenging times as we come out of the COVID-19 pandemic and 
begin to operate in a new normal. None of us know with certainty what the future 
will hold, but it is safe to suggest that technology will play a central role, and digital 
health holds many possibilities, often only limited by our imagination, for deliver-
ing high-value, patient-centred quality care for all. The future is, thus, both exciting 
and challenging. We can participate to ensure that superior technology solutions can 
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provide high-value, patient-centred quality care. We trust that on the completion of 
this book, researchers, scholars, practitioners, consultants and the general public 
will all have a better understanding of how the technologies of the Internet of Things 
(IoT) can be harnessed to provide superior healthcare delivery and wellness man-
agement and will rise to the challenge of starting to build a better health and well-
ness environment for tomorrow, today.

Nilmini Wickramasinghe
Suresh Chalasani

Elliot Sloane
May 2022
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