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Abstract Mangrove systems act both as sink and source of GHGs including methane
(CHy), carbon dioxide (CO,), and nitrous oxide (N,O). Mainly, it acts as a sink
for CO, because of its high biomass production. The higher source of organic
carbon and rapid nutrient turnover are the key features of these systems. Mangrove
systems facilitate methanogenesis and denitrification processes due to the domi-
nance of anoxic conditions by frequent tidal water intrusions. Apart from these,
mangroves provide significant ecological services including maintenance of biodi-
versity (mammals, birds, fish, algae, microbes), enhancing carbon (C) sequestration,
protecting the coastal bank and sustaining economical profits. However, approxi-
mately, 40% of tropical mangrove forest was lost in the previous century primarily
due to sea level rise, climate change and human-induced activities. About 10.5% of
green was lost from Sundarban, India during 1930-2013. Major land use changes
were from mangrove to rice and aquaculture-based agriculture. In last three decades,
degraded mangrove, rice and aquaculture systems co-exists side by side and represent
a typical ecology in Sundarban, India. This ecology has its unique carbon dynamics,
GHGs emission pattern, microbial diversities and soil physiochemical dimensions. A
distinct variations of the soil bacterial and archaeal diversities related to GHGs emis-
sions and labile C-pools of degraded mangrove-rice system in wetland ecology exist.
Soil physico-chemical properties (like high salinity, more available sulphur, sodium,
iron) and the related microbial community (methanotrophs, methanogens, SRB) play
an important role in carbon dynamics and to mitigate CH4 emission in the mangrove-
rice system. The ratios of methanotrophs: methanogens and sulphur reducing bacteria
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(SRB): methanogens are important indicators to net methane emission. Those are
higher in mangrove mean the methane oxidation was dominant over methane produc-
tion resulting less CH4 emission from mangrove than rice. Similarly, continuous
application of nitrogen fertilizer and more nitrifiers and denitrifiers community in
rice, resulting in more N,O emission as compared to degraded mangrove. Hence,
the soil properties and the microbial community make mangrove a green production
system as compared to the rice ecology in Sundarban, India. However, recent threats
of climate change related issues like sea level rise, soil erosion and coastal bank
degradation also make this mangrove-rice system vulnerable. So, soil conservation,
mangrove restoration and regeneration and coastal bank protection of this system are
the need of the hour.

Keywords Mangrove-rice system + Soil labile carbon pools - GHGs emission *
Microbial diversity - Sundarban, India

50.1 Introduction

Mangroves in coastal wetlands are found in the subtropical and tropical region
that provide a significant ecological service including maintenance of biodiver-
sity (mammals, birds, fish, algae, microbes), enhancing carbon (C) sequestration,
protecting coastal bank and sustaining economical profits (Ray et al. 2011; Chambers
etal. 2014; Bhattacharyya et al. 2019). The highest area under mangrove is observed
in Asia (42%), then in Africa, followed by North-Central America, Oceania and least
in South America (20, 15, 12 and 11%, respectively) (Giri et al. 2011; Padhy et al.
2021). Globally, the characteristics of mangrove ecosystems are primarily driven by
tidal behaviour, salinity and temperature. However, at regional level, the biomass
and area of mangroves vary in relation to tidal intrusion, sea level rise, waves, rain-
fall, rivers-flow and anthropogenic activities. Specifically, the stability of mangrove
ecosystem is considerably affected by the soil type, soil physico-chemical proper-
ties, nutrient status, predation and physiological tolerance to extreme environmental
conditions like salinity, temperature and wind tidal intrusion. Mangroves play a key
role in maintenance and establishment of coastlines and mediating the carbon (C)
cycle and food chain (Marcial Gomes et al. 2008; Giri et al. 2011). However, sea
level rise has strongly influenced the mangroves as well as mangrove-agriculture
ecologies (Gilman et al. 2008; Day et al. 2008). Mangrove systems act both as sink
and source of GHGs (Mukhopadhyay et al. 2002), including methane (CHy), carbon
dioxide (CO,) and nitrous oxide (N,O). The CHy4, N,O and CO; contribute 20-25%,
5-10% and 40-50%, respectively, towards the warming of the globe. The recent rates
of increase of these three GHGs per annum are 0.41, 0.25 and 0.42%, respectively
(NOAA 2012; TPCC 2018). Tidal mangrove ecosystems are typical source of CHy
and N,O (Chauhan et al. 2008; Chen et al. 2010; Padhy et al. 2020, 2021). Mainly,
it acts as a sink for CO, because of its high biomass production (Wang et al. 2016).
The higher source of organic carbon and rapid nutrient turnover are the key features
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of these systems. Mangrove systems facilitate methanogenesis and denitrification
processes due to the dominance of anoxic conditions by frequent tidal water intru-
sions (Rennenberg et al. 1992; Krithika et al. 2008; Bhattacharyya et al. 2020a; Padhy
et al. 2021). So, eventually, the system function as a good source of N,O and CHy.

The world’s biggest contiguous mangrove presents in Sundarban situated at the
delta of three major rivers, namely the Ganga, Meghna and Brahmaputra. The total
area under Sundarban-mangrove is around 10,000 km?; out of which 38% present
in India and the majority of 62% is in Bangladesh (Spalding et al. 2010). The major
district in India is “South 24 Parganas” in the state, West Bengal. About 1678 km? area
under “Reserve Forest” and 2585 km? under “Sundarban Tiger Reserve”. Approxi-
mately, 40% of tropical mangrove forest was lost in previous century primarily due
to sea level rise, climate change and human-induced activities. About 10.5% of green
was lost from Sundarban, India, during 1930-2013. Major land use changes were
from mangrove to rice and aquaculture (Chauhan et al. 2017). In last three decades,
degraded mangrove, rice and aquaculture systems co-exist side by side and represent
a typical ecology in Sundarban, India. This ecology has its unique carbon dynamics,
GHGs emission pattern, microbial diversities and soil physiochemical dimensions.
Recent threats of climate change-related issues like sea level rise, soil erosion and
coastal-bank degradation also make this mangrove-rice system vulnerable. So, soil
conservation, mangrove restoration and regeneration and coastal bank protection of
this system are need of the hour.

50.2 Mangrove and Lowland Rice Paddy as an Effective
Carbon Sink

Mangroves have higher C production and sequestration capacity (882,200 Mg C
km™2) as compared to other forest ecology (102,300 Mg C km~2), globally (Bouillon
etal. 2008; Donato et al. 2011). It acts as an effective C sink, thereby sequester higher
amount of C (100 t CO, ha=' ~ 27 t C ha™!) and also reduce soil erosion. This is
the most C-rich vegetation among coastal forests. Both above and below ground
C storage capacity of mangroves are significantly higher than other forest in the
tropics, hence could be considered as effective C sink. Wetting—drying conditions
of the mangrove sediments favour the rapid litter decomposition rate which leads
to rapid C influx to sediment and thereby enhancing soil C content. Soil organic C
accounted for 49-98% of the total C storage and mostly found at the depth of 0.5 m
to more than 3 m (Donato et al. 2011). However, mangrove deforestation emits 0.02—
0.12 Pg C year™!, which is around 10% of the total global C emissions (Donato et al.
2011). It has also been reported that lowland rice in tropics acts as C sink (0.93 t
ha~! year~!) (Bhattacharyya et al. 2014), but much lesser quantity than that of pure
mangrove ecosystem. Therefore, mangrove-agriculture (specifically rice) in coastal
wetland have the potential to sink C provided managed properly.
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50.2.1 Soil Labile Carbon Dynamics in Mangrove-Rice
Systems

Large amount of soil organic carbon (SOC) is stored in mangrove soil due to higher
litre deposition which subsequently sequestered in soil (Kauffman et al. 2013). Tidal
pattern in mangrove system causes water stagnation, consequently lowering the rate
of SOC decomposition that leads to less CO, production and higher C sequestration
(Wang et al. 2016). But, small changes in the total organic carbon are difficult to
detect as there are high background levels of total carbon in mangrove (Liang et al.
2012). Hence, the labile soil carbon pools are often selected as sensitive indicators
to determine the C dynamics in degraded mangrove ecologies (Tian et al. 2013). We
know that the labile C pools are significantly related to GHGs emission and nutrient
dynamics in mangrove soils and a small change of which can be noticed precisely
(Wohlfart et al. 2012). Similarly, in the rice rhizosphere, the soil labile fractions of C
play a crucial role for regulating microbial metabolic activities. Soil labile C pools
such as readily mineralizable C (RMC), microbial biomass C (MBC), water soluble
carbon (WSC), potassium permanganate oxidizable C (KMnO4-C) and dissolved
organic carbon (DOC) are considered as soil quality indicators in mangrove as well
as rice ecologies (Wohlfart et al. 2012; Bhattacharyya et al. 2013; Padhy et al. 2020).

In arecent study, the soil labile C fractions of soils, viz., MBC, RMC and KMnO,—
C were recorded in mangrove-rice ecology, at three different sites (Sadhupur:
22.12 N, 88.86 E; Dayapur: 22.14 N, 88.84 E and Pakhiralaya: 22.14 N, 88.84
E) in Gosaba block of Sundarban, India during four seasons, i.e., winter, summer,
pre-monsoon and monsoon. The labile carbon fractions were significantly higher
during summer compared to other seasons. The RMC varied from 326.2 to 434.3;
307.0 to 446.6 and 333.3 to 409.3 jLg carbon g~! in soils at Pakhiralaya, Sadhupur
and Dayapur, respectively (Table 50.1). The MBCs were also significantly higher in
summer like RMC. The lowest MBC was found during monsoon (Table 50.1). Similar
to RMC and MBC, the KMnO4—C contents were also more in summer followed by
winter, pre-monsoon and monsoon. Those were in the range of 795.8—-1275.9; 847.9—
1318.3 and 779.1-1263.8 g C g~ in soils at Pakhiralaya, Sadhupur and Dayapur,
respectively (Table 50.1).

However, the labile C pools in rice soil were higher in monsoon season as
compared to other seasons (Table 50.1). The RMC and MBC contents ranged from
255.8 t0 316.4 pg C g~! and 684.6 to 723.8 wg C g~! during monsoon in all the
sites (Table 50.1). Similarly, the KMnO4—C was in the range of 1159.9-1308.0 g
C g~! during monsoon which was higher followed by summer (1021.5-1234.7 p.g
C g1, winter (660.1-1197.0 pg C g~!) and pre-monsoon (562.5-580.5 pg C g~ 1),
respectively (Table 50.1). So overall, the average labile C pools contents were higher
in mangrove as compared to rice.
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Fig. 50.1 Relative percent distribution of soil labile C pools under mangrove and adjacent rice
ecology at three different sites of Sundarban, India. Source Dash et al. (2020)

50.2.2 Soil Labile Carbon Distribution in Mangrove-Rice
Systems

The percentage of soil labile C pools distribution were estimated in mangrove and
rice soil. Among the three labile C pools, KMnO4—C percentage was higher (between
22 and 30%), followed by RMC and MBC (Fig. 50.1). The remaining portion of other
labile C pools (considering 40% of TOC), which were not estimated in this study may
include water-soluble C, dissolved organic C, etc. The KMnOy oxidizable carbon
are labile in nature; this fraction also includes readily decomposable humic-material
and few polysaccharides (Blair et al. 1995; Jiang and Xu 2006).

50.3 Greenhouse Gas Emission from Mangrove-Rice
Systems

The GHGs emissions from sediments to the atmosphere in the mangrove ecology
occur through three different pathways. Majority of emissions are taken place
through the aerenchyma of mangrove-pneumatophores (it is the negatively geotropic
breathing-roots of mangrove); diffusion through the sediments/soil by ebullition (as
bubble, in soil water interphase) and exchanges through air—water interphases (as
dissolved GHGs in stagnant or tidewater) in mangrove (Purvaja et al. 2004; Dutta et al.
2015). While, in rice ecology, emission takes place mainly through the aerenchyma
of rice plant from soil to atmosphere and very negligible amount of gas emitted
through other sources (10-15%) (Bhattacharyya et al. 2019, 2020b, 2020c¢).
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50.3.1 Greenhouse Gases Fluxes from Sundarbans’
Mangrove: Captured by Manual Chamber

The GHGs (CH4, CO, and N,O) fluxes were quantified in mangrove-rice system
from soil to atmosphere by manual gas chamber method for four seasons in
all the three sites. Seasonal methane flux was higher during monsoon (0.235 =+
0.04 mg m~2 h™"), followed by pre-monsoon (0.089 & 0.02 mg m~2 h~!), summer
and winter (Fig. 50.2a). During monsoon, CH, fluxes were higher in pneumatophore
as compared to sediments that did not have pneumatophore (0.254 £ 0.05, 0.377
+ 0.04, 0.269 + 0.07 mg m~2 h™! and 0.164 + 0.02, 0.120 £ 0.01, 0.228 +
0.02 mg m~2 h~! in pneumatophore and without pneumatophore at Sadhupur, Pakhi-
ralaya and Dayapur, respectively). However, higher N, O fluxes were observed during

0.5
El ® Winter ® Summer Pre-monsoon Monsoon

0:4 I

02 SM(®) M(WP) PM(®P) PM(WP) DYM(P) DN¥M (WP)

b | 150 m Winter ® Summer Pre-monsoon Monsoon

L2100 - I T
= =
=
o E -
ZN 2 50 -
O II
-50 (WP) !.rM (P) [IM (WP)

 SM(P)  SM(WP) PM (P)

-100 -

Fig. 50.2 (a) Methane and (b) Nitrous oxide fluxes estimation in three locations of mangrove
(Sadhupur: SM; Pakhiralya: PM and Dayapur: DYM) during four seasons (winter, summer, pre-
monsoon and monsoon) from mangrove sediments. P: in the presence of pneumatophore; WP:
without pneumatophore. Source Padhy et al. (2020)
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summer (103.7 & 6.0 ug m~2 h™!) followed by monsoon (85.2 + 12.8 ugm~2h~!)
and pre-monsoon (51.3 £+ 9.4 pwg m~2 h™!') (Fig. 50.2b). In nut shell, higher
GHGs fluxes were recorded in the presence of pneumatophore compared to without
pneumatophore (Padhy et al. 2020).

50.3.2 GHGs Fluxes in Ebullition Process

The GHGs fluxes in ebullition were higher “during the time of tide” than “before
tide” (Fig. 50.3a, b). The CH4 and N,O fluxes were ranged from 0.021 £ 0.005

= Monsoon B Pre-monsoon

CH, flux
(mg m? )

b | 16 -  Monsoon  Pre-monsoon

SM PM DYM

Fig. 50.3 (a) Methane and (b) Nitrous oxide emission through ebullition in three locations
(Sadhupur: SM; Pakhiralya: PM and Dayapur:DYM) during two seasons (pre-monsoon and
monsoon) from mangrove sediments. BT: before tide; DT: during tide. Source Padhy et al. (2020)
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to 0.103 #+ 0.009 mg m~2 h™!, and 4.39 4 0.37-6.49 4 0.43 pug m~2 h~! in pre-
monsoon and 0.028 + 0.005 to 0.128 4 0.009 mg m~> h~'and 6.34 £ 0.43 to 8.12

+ 0.38 ug m~2 h~! in monsoon at Sadhupur, Pakhiralaya and Dayapur, respectively
(Padhy et al. 2020).
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Fig. 50.4 (a) Methane and (b) Nitrous oxide concentration of surface water in three locations
(Sadhupur: SM; Pakhiralya: PM and Dayapur: DYM) during four seasons (winter, summer, pre-
monsoon and monsoon) from mangrove. SW: stagnant tide water; DT: during water and AT: after
tide water. Source Padhy et al. (2020)
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50.3.3 Dissolved GHGs Concentration in Surface Water
in Mangrove

Tide plays the key role in regulating dissolved GHGs concentration in surface water.
The dissolved GHGs concentrations were more in “stagnant-water” as compared to
“during tide-water” and “after tide-water”. Dissolved CH,4 concentration was more
during monsoon than other season irrespective of sites and time of collection of
surface water (Fig. 50.4a). Dissolved CH4 concentrations were higher in “stagnant-
water” (1341.2 £ 19.7, 1125.4 + 23.0 and 327.2 % 13.3 nmol L") (nanomoles per
litre) as compared to “during tide-water” (126.9 £ 12.1, 114.6 £ 5.5 and 105.7 +
13.1 nmol L~1) and “after tide-water” (85.7 £ 2.1, 71.7 & 16.4 and 83.8 & 3.9 nmol
L~!) during monsoon at Sadhupur, Pakhiralaya and Dayapur, respectively. However,
the seasons had no significant effect on the dissolved N,O concentration in surface
water, and these were ranged from 8.0 &+ 1.6 to 19.6 & 1.4 nmol L 100+13
t0 189+ 1.6 nmol L™'; 12.7 £ 1.9t022.7 £ 0.8 nmol L~ ! and 13.4 &+ 1.3 t0 23.6
+ 2.0 nmol L™! during winter, summer, pre-monsoon and monsoon, respectively
(Fig. 50.4b) (Padhy et al. 2020).

50.3.4 Greenhouse Gases Fluxes Through Rice Aerenchyma

The CH4 and N, O emission in rice was more during monsoon followed by summer,
winter and pre-monsoon (Fig. 50.5a). In the monsoon season, CH4 and N, O fluxes
were ranged from 0.313 to 0.663 mg m~> h~! and 103.0 to 134.7 pg m—2 h~" in all
the sites. Higher CH4 and N, O emission during monsoon and summer is due to the
vegetative/flowering crop growth stages of rice.

50.4 Drivers of GHGs Emission from Mangrove-Rice
System

50.4.1 Soil Physico-Chemical Properties

The bacterial and archaeal community structure responsible for GHGs production
and emissions is primarily driven by the capability of microbes to withstand the
prevalent environmental conditions like oxic/anoxic states of soil, soil texture, active
salinity, nutrient dynamics and dominant plant type (Ikenaga et al. 2010; Padhy et al.
2020). The degraded mangrove and lowland rice situated side by side in Sundarban,
India, representing a unique ecology with respect to salinity, nutrient dynamics,
carbon pools, tidal pattern and oxic/anoxic conditions (Padhy et al. 2021). These
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Fig. 50.5 (a) Methane and (b) Nitrous oxide fluxes estimation in three locations of rice system
(Sadhupur: SM; Pakhiralya: PM and Dayapur: DYM) during four seasons (winter, summer, pre-
monsoon and monsoon) in Sundarban, India

features have considerable impacts on the microbial community structures and func-
tions. Lower CH4 emission from mangrove than rice systems is generally due to
higher salinity and greater availability of sulphate ions in the mangrove to that of
rice (Padhy et al. 2021). While, higher N,O emission was noticed from rice as
compared to mangrove. In rice soils, the higher nitrogen substrate availability in
the rhizosphere because of application of nitrogenous fertilizer can favours the N,O
emission. Also, the ammonium oxidizers, nitrifiers and denitrifiers abundance were
higher in rice systems. Significant positive correlations existed among ammonium
oxidizers, nitrifier and denitrifier that indicated that both nitrification and denitrifi-
cation processes occurred simultaneously in degraded mangrove-rice ecology that
triggers N, O flux (Bhattacharyya et al. 2013; Padhy et al. 2021). However, Chauhan
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et al. (2017) reported that the average N,O emission from the mangrove sediment
was significantly higher than the rice paddy soil.

50.4.2 Methanotrophs, Methanogens and Sulphur Reducing
Bacterial Community and Their Ratios

The relative methanogen population was found higher in rice compared to mangrove
causing less CHy emission from mangrove. Further, in rice soil, Methanosarcina
was identified as the dominant genus that is the specific methanogens which could
produce CHy by all the three major metabolic pathways of methanogenesis (i.e.,
acetoclastic, hydrogenotrophic, methylotrophic) (Jing et al. 2016; Bhattacharyya
et al. 2016, 2017). The ratios of methanotrophs: methanogens and sulphur reducing
bacterial (SRB): methanogens were higher in degraded-mangroves that causes less
CH, emission in mangrove. These two ratios were relatively less in rice, suggesting
the methanogens were dominant over SRB and methanotrophs. Therefore, CH4 emis-
sion was relatively more in rice compared to degraded mangrove in studied area of
Sundarban. Sulphur reducing bacteria were predominant in mangrove. It plays a
primary role in mineralization and decomposition of organic sulphur in mangrove
ecology (Zhuang et al. 2020). The predominance of SRB in degraded mangrove
suggested the potential resiliency and bioremediation of the system (Jing et al. 2016).
Further, the AMO (ammonia monooxygenase) + nitrifier and denitrifiers ratio were
higher in mangrove, resulting in less N,O emission than that of rice. Though nitri-
fiers: denitrifiers ratios were higher in mangrove, but both the bacterial communities
were significantly higher in rice compared to mangrove. This resulting in more nitrate
production as well as higher N, O emission from rice than that of mangrove.
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