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Foreword

Synergetics is a rather strange scientific endeavour. It doesn’t belong to the traditional
scientific disciplines, but has ties to many of them. It doesn’t deal with the large-
scale phenomena of cosmic dimensions nor with the micro world of elementary
particles/quantum fields. Rather, Synergetics is interested in phenomena that are
mostly accessible to our senses, phenomena that we experience in our daily life
that—quite often—we take for granted.

The world surrounding us abounds of all sorts of structures. A number of them
are man-made, but many have come into existence without human help—they have
come into existence by self-organization. Here many parts, elements,… cooperate
to form highly ordered structures or to perform highly ordered actions. Synergetics
aims at unearthing general principles/mechanisms that underlie self-organisation
irrespective of the nature of the individual parts. An attempt to deal with this problem
may have seemed absurd in view of the different nature of parts. But such principles
have been found as substantiated by numerous examples.

One result is an important insight into the “mechanisms” of self-organization: It
doesn’t work by direct interventions (e.g., by putting atoms together “by hand”, as
it is done by force electron microscopy) but by suitable external conditions.

Actually, this book by Peter J. Plath, a pioneer of Synergetics since its early days,
gives us a deep insight into a variety of processes. To unearth general principles
across different disciplines requires, of course, a “look over the fence”. At the early
days of the Synergetics’ enterprise, the situation in science was well characterised
by my late friend, the eminent Russian scientist Juri Klimontovich who compared
scientists with miners working in different mines, digging deeper and deeper, and
having no contact among each other. He was a strong supporter of the idea to bring
the different scientific disciplines together. Synergetics provides a common ground
for such a joint enterprise—the deep problem of self-organization.

This book presents an excellent selection of characteristic phenomena of the
formation of spatial, temporal and spatio-temporal patterns mainly in chemical
systems, and sheds light on the history of their generation and discovery. The
phenomena dealt with are Liesegang rings, Runge pictures, different kinds of dissipa-
tive structures/Turing patterns and fractal structures, tomention a few. Also, structure
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viii Foreword

formation in social systems is considered. The authors include phenomena that are
rarely studied such as the dynamics of beer foam.

I am intrigued by the discussion on “creativity”. The authors don’t share the
general belief that only creative acts by individuals play the decisive role nor the
joint action of a group, but what counts is the amplification of the creative idea of an
individual by a group.

Nevertheless, the creative act itself remains an enigma: who would think of
a snake biting into its own tail (Kekulé). And who would have thought that the
central concept of thermodynamics, namely entropy, is no more essential for self-
organization processes? Actually, in physical, chemical and biological systems, it is
the power/matter input into a system.

I am sure this book will find a broad audience of researchers and students in
synergetics.

Sindelfingen, Germany
November 2021

Hermann Haken



Preface

Flow behavior below a rotating disk without chemicals being involved (Photo P. J. Plath and
P. Dembowski)

When I started in Bremen in 1973, the new university was renowned for its interdisci-
plinary project-based courses called “project studying”. All my colleagues accepted
these constraints, and we developed a corresponding curriculum for studying chem-
istry.My first research topics in this new positionwere the logic of chemical formulae
and zeolite chemistry. During this time, we have organized project-orientated student
research courses for both undergraduate and graduate students. This was a very new
way of studying chemistry. The Roskilde University in Denmark was one model for
us. Together with my colleague Nils I. Jaeger, we started our first student research
project in synergetics with electrochemical investigations of the dissolution of iron
andwith the catalytic oxidation ofmethanol using Pd-supported catalysts. Especially
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x Preface

this part of our student project became 1977 the starting point of a long and fruitful
research period for both of us.

Thiswork, in conjunctionwith very engaged students, convincedme that it became
necessary to develop a special lecture course for chemists on synergetics in order to
continue research and teaching on the high level which we had now achieved. I have
been teaching mathematics for chemists, mathematical and physical chemistry for
10 years, but I had never taught synergetics before. This opportunity opened up to
me for the first time in the winter semester of 1981/1982.

In the fall of 1981, I was invited to Yale University by the theoretical chemist
OktaySinanoğlu and byErwinHiebert, professor of theHistory of Science atHarvard
University. I was very much surprised to receive these invitations since I had never
met these colleagues before. I remember verywell the famous guest house ofHarvard
Universitywhere I stayed for the time of our discussions. Before returning toBremen,
I spent some days in Cambridge, Massachusetts, sitting in a coffee shop preparing
my first lectures on chemical synergetics.

To get some inspirations for developing my first lectures in synergetics, I took the
famous book of Werner Ebeling and Rainer Feistel “Physik der Selbstorganisation
und Evolution” [1]. They described the development of the universe after the “big
bang” from the point of self-organisation. For the creation of the geological as well as
the biological structure of the earth, they used successfully their idea of the “photonic
mill”. But the physical way inwhich they arguedwas hard to understand for chemists,
although they did not use too many mathematical formulae in the beginning of their
book.

I was impressed by this way of thinking. However, working with my students,
I recognized very soon that they could not simply translate the physical language
into their chemical way of thinking. How could they understand that the atoms were
created by the expansion of the universe by self-organisation? I had to learn very
quickly that I had to expressmyself in the chemical languagewhen talking to students
of chemistry. I had to use the ideas they were familiar with, so to speak, like chemical
formulae and chemical kinetics. Moreover, I had to illustrate all my statements with
meaningful pictures, graphs and photos if I wanted to gain their attention. It was a
long and asymptoticway to understand these problems and to create suitable pictures.

I have to thank allmy students and co-workers for their patience and their efforts to
understandmy attempts to explain to them the new and amazingworld of synergetics.
Now, that I have not been teaching at the university for many years, the distance to the
daily problems that were current at that time has grown and all what remains are the
many inspiring ideas which we pursued in the projects or later research internships
and one huge abundance of beautiful photographs and project reports. They testify to
the enthusiasm andwealth of ideas with which student research is directly connected.
It is important to me to revive this with a few selected contributions in this book.

In Ernst-Christoph Haß, I was lucky enough to find a congenial partner for
the publication of this book, with whom I have been scientifically and amicably
connected for more than 50 years since his diploma thesis.

From time to time, I heard something from W. Ebeling, H. Engel and L. Kuhnert
about the very interesting and idiosyncratic work—e.g., about the light-sensitive
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Belousov-Zhabotinsky reaction—by H. Linde from the Central Institute for Physical
Chemistry of the Academy of Sciences of the GDR. When the opportunity arose,
I invited him to speak about his recent work at one of my winter seminars on the
Zeinisjoch. At that time, he was talking about his trip to Egyptian mountain desert,
where he met Bedouins who showed remarkable sculptured stones. He was already
retired. In his old age, he agreedwithme that hewouldwrite nicely illustrated articles
for this book from his large pool of unconventional works. His material given to me
was processed by us for this purpose.

While writing the last chapters of this book, the question arose again, “What is
synergetics?”, to which Hermann Haken answered so precisely in the foreword of
his book “Synergetics—an Introduction”[2]:

What we investigate is the joint action of many subsystems (mostly of the same or of few
different kinds) so as to produce structure and functioning on a macroscopic scale. On the
other hand, many different disciplines cooperate here to find general principles governing
self-organizing systems.

That is the guiding principle under which this book is written as well.
The idea for this book came up shortly after my retirement from the university.

But it took me a long time to get around to implementing it. The book “Contributions
to the History of Synergetics” [3, 4], which I wrote together with Hermann Haken,
Werner Ebeling and Yuri M. Romanovsky, initially required my full attention. And
as time went on, it became more and more difficult for me to immerse myself in the
old subjects and experiments in such a way that I could think and write about them in
new ways. The original texts had to be rethought and revised, formulae recalculated
and numerous images recreated.

To my great pleasure, I was supported by former companions from long ago, such
as Prof. Wolfgang Lefèvre with valuable hints on Jean.-B. Lamarck and the anti-
quarian bookseller Cornelia Albrecht from Lychen, who provided me with valuable
old books for many chapters. Professor Stefan Müller helped me with critical hints
to the chapter on Runge images and Dr. Jan K. Plath provided us with the program
MeVisLab 3.4 for test purposes and used it to develop cellular automata to simulate
the patterns on sea shells. We are indebted to all of them!

I would like to thank Springer Verlag, especially Dr. Thomas Ditzinger and
the staff members Holger Schaepe and Rajangam Ramamoorthy, also on behalf of
Dr. Ernst-Christoph Haß, many times for their understanding and almost unlimited
patience and help with the completion of this book.
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Flow behavior just beneath a rotating disc electrode while chemical reactions are involved (left: flow
pattern; right: resulting etching pattern of the electrode disc): dissolution of iron in concentrated
FeCl3 solution [5]. (Photo P. J. Plath and M. Baune)

Lychen, Germany
September 2021

Peter J. Plath
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Chapter 1
Images from the History of Synergetics

Peter J. Plath

Fig. 1.1 Waves and phase waves at the Belousov–Shabotinsky reaction (BZR) in a Petri dish.
Both are purely chemical waves. They move with quite different velocities and shape of their fronts
(photo: P. J. Plath).With the discovery of oscillations and waves in the BZR, the ideas of synergetics
by Hermann Haken became popular in chemistry too

1.1 Introduction

The number of publications dealing with the basic idea of synergetics and its applica-
tion is enormous. There are also a large number of publications devoted to the work
of Hermann Haken, the father of synergetics, as well as the history of synergetics
[1]. In this post, I will not deal with the well-known and very illustrative examples of
synergetics, such as limit cycle behaviour, BZ-reaction, scroll waves, Feigenbaum
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2 1 Images from the History of Synergetics

Fig. 1.2 Left Experimental setup for executing a pulsating mercury heart in nitric acid solution.
The mercury drop starts to beat if it is touched by an iron wire ([3] with friendly permission); right
Excerpt from the film “Das Quecksilberherz” by “Prof. Blume’s Tip of the Month March (2007)”
(with friendly permission of R. Blume) [4]

scenario, reconstruction of α-waves, Rayleigh-Bénard convection, Rössler’s chaos
attractor, Mandelbrot set, etc. (see for illustration Fig. 1.1).

I will primarily deal hopefully with such phenomena of synergetics which, at least
today, should not always be familiar to those interested in synergetics.

For example, let me refer to the remark of Ferdinand Runge in 1829 on the
“strange behavior of mercury in contact with nitric acid and iron” [2]. Going back to
the prehistory of synergetics, A. Volta (1800), W. Henry (1800) and R. Ritter (1802)
had investigated the beating mercury heart [3, 4] first (Fig. 1.2). At this time the
pattern formation of the mechanically pulsating mercury drops in nitric acid created
disturbing images indeed [2].

1.2 Historical Experiments

For very long time nobody had been interested in these experiments. However when
synergetics saw the light of day one needed illustrative experiments to explain the
new scientific vision pupils and students. It was the merit of Möllenkamp et al. [5] to
rediscover the beating mercury heart and to repeat the historical experiments using
modern equipment. J. Berkemeier und H. G. Purwins have made this experiment on
the internet in 2011 [3].

To my knowledge the beating mercury heart was the first known system in which
a chemical reaction creates not only an electrical oscillation but a mechanically
oscillation with different geometric patterns of the mercury drop as well.

Later on, when F. Runge worked as chemist and entrepreneur near Oranienburg
near Berlin he was interested in dyeing of fabrics and paper with the new Alizarin
staining and tar colors. Correlated to this work he investigated the spreading of
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Fig. 1.3 Self organized
pattern formation of Berliner
Blau (Turnbulls Blue) and
insoluble Turnbulls Blue in
filter paper (originally
produced by Lothar Kuhnert
(1985); a present to the
author 1988 at the occasion
of the Wartburg conference
“Dynamical Networks”). F.
R. Runge selected a similar
picture as his personal
“chemical coat of arms”

chemically reacting droplets in filter paper. In our days this is well known by the
term “Runge Pictures” (Fig. 1.3). He published two very exiting books, full of a
variety of examples of such reactions [6, 7].

F. Runge was very much fascinated by the self organization of these reactions:

“This picture above is my chemical coat of arms (Wappen). It is not artificially produced but
it emerged naturally”. … “I name the creative force of these pictures the ‘Bildungstrieb der
Stoffe’ (impulsion of formation of substances).” [6]

Lothar Kuhnert and U. Niedersen from the Academy of Science GDR brought
back this long-lost knowledge into consciousness again with the rise of synergetics
in 1987 [8].

Gelbes Blutlaugensalz yields Lösliches Berliner Blau (Turnbulls Blau)

Fe3+ + K4
[
FeII(CN)6

] → 3K+ + K
[
FeIIIFeII(CN)6

]

Rotes Blutlaugensalz yields Lösliches Berliner Blau (Turnbulls Blau)

Fe2+ + K3
[
FeIII(CN)6

] → 2K+ + K
[
FeIIIFeII(CN)6

]

Excess of Fe3+ or Fe2+ yields Unlösliches Berliner Blau (insoluble Turnbulls Blue)

FeIII
[
FeIIIFeII(CN)6

]
3 · 14 − 16H2O

(1.1)

The early work of Wetzlar [9] and Fechner [10] on the oscillations of discharging
electrochemical cells or accumulators respectively have been often cited in electro-
chemical review articles. At those times chemistry and physics were not so strongly
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divided as in our days. So, it is not so surprising that investigations on oscillating
discharge phenomena were not restricted to chemical batteries of electrochemical
cells but extended on general phenomena of electrical discharge processes. In the
second part of the nineteenth century physicists likeHelmholtz, Thomson,Kirchhoff,
Hertz, and A. J. von Oettingen (1836–1920) were very much interested in the oscil-
lating discharges of electric capacitors like batteries of Leyden bottles (Fig. 1.4). In
his magister thesis (1862) A. J. von Oettingen fromDorpat (Dorpat: in our days Tartu
in Estland) investigated very carefully the oscillating behaviour of these discharge
processes [11]. Referring to his thesis he published his investigations on the inter-
ferences of oscillating electric discharges of Leidens batteries in 1888 and 1890 [12,
13]:

Schon seit 27 Jahren kennt man den oscillatorischen Charakter der Batterieentladung und
niemand zweifelt daran, dass auch zwei solcher oscillatorischer Entladungen in ein und
demselben Drahte sich superponieren können….

Chemical, electrical and thermodynamic phenomena were fascinating research
topics and they formed the basis for the technical revolution in the nineteenth century.
The dynamics of those processes, especially oscillating phenomena were widely
discussed in the society. So, it is not surprising that the economists K. Marx and F.
Engels looked for such phenomena in industrial and finance processes too [14].

Es verhält sich mit den industriellen Zyklen so, daß derselbe Kreislauf, nachdem der
erste Anstoß einmal gegeben, sich periodisch fortsetzen muß.”… “Die akute Form des
periodischen Prozesses mit ihrem bisherigen zehnjährigen Zyklus scheint in eine mehr
chronische, länger gezogene, sich auf die verschiedenen Industrieländer verschiedenzeitig
verteilende Abwechslung von relativ kurzer, matter Geschäftsbesserung mit relativ langen
entscheidungslosem Druck gewichen zu sein.

Fig. 1.4 A. J. von
Oettingen: Doctor Thesis
1862: Oscillatory discharge
of Leiden bottles 1862 [11]
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Vielleicht aber handelt es sich nur um eine Ausdehnung der Dauer des Zyklus des
Welthandels, 1815–1847 lassen sich annähernd fünfjährige Zyklen nachweisen; von 1847 –
67 ist der Zyklus entschieden zehnjährig; sollten wir uns in der Vorbereitungsperiode eines
neuen Weltkrachs von unerhörter Vehemenz befinden?...

Translation:

With industrial cycles, the same cycle has to continue periodically after the first impetus has
been given. … The acute form of the periodic process with its previous ten-year cycle seems
to be a more chronic, longer drawn period to have given way to the different industrialized
countries, alternating between a relatively short,weak business improvementwith a relatively
long, undecided pressure. …

But perhaps it is only an extension of the duration of the cycle of world trade, 1815 - 1847
almost five-year cycles can be demonstrated; from 1847-67 the cycle was decidedly ten
years long; should we be in the preparatory period of a new world crash of unheard of
vehemence?...

Economists are engaged in the study of these cyclic processes until today. C. Suter
investigated the indebtedness of the third world for example [15] (see Fig. 1.5 left).

For given actual reason, i.e. the indebtedness of the third world [15, 16], it should
be remembered that the idea of social classes has been developed first by Karl
Marx and Friedrich Engels. In his book “Die Abstiegsgesellschaft” (“The Relegation
Society”) O. Nachtwey [16] poses the politically incorrect question in 2016:

Kehren mit der Abstiegsgesellschaft die soziale Frage und der damit verbundene (Klassen-)
Konflikt zurück?

Do the relegated society return the social question and the (class) conflict associated with it?

And he answered:

Um einen Teil der Antwort vorwegzunehmen: Ja, die soziale Frage kehrt zurück, aber nicht
in der Form, in der man sie früher gekannt hatte. … Neue kollektive Akteure entstehen erst

Fig. 1.5 Left Suter Christian, (Neuchâtel), “Indebtedness of the third world”. Frankfurt am Main,
Anton Hain [15] (with friendly permission of Ch. Suter); right Friedrich Engels (1820–1895) http://
gutenberg.spiegel.de/autor/friedrich-engels-147

http://gutenberg.spiegel.de/autor/friedrich-engels-147
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in größeren, über mehrere Episoden verlaufenden Konflikten, in denen sich gemeinsame
Praktiken und Deutungen entwickeln.

To anticipate part of the answer: yes, the social question is returning, but not in the form in
which it was known before. … New collective actors only emerge in larger, multi-episode
conflicts in which common practices and interpretations develop.

However, the politically incorrect nature of the question does not mean that the
question is scientifically not correct.

The idea of K.Marx and F. Engels involves that the class formation as well as their
decay depends on the size of the inequality of income or wealth respectively. Classes
have been defined in their book “Die Deutsche Ideologie” (written: 1845–1846)
by the cooperative actions of individuals [17] which indeed means social pattern
formation:

Die einzelnen Individuen bilden nur insofern eine Klasse, als sie einen gemeinsamen Kampf
gegen eine andere Klasse zu führen haben; im übrigen stehen sie einander selbst in der
Konkurrenz wieder feindlich gegenüber

Individuals only form a class insofar as they have to fight together against another class;
otherwise they are hostile to each other even in the competition. (translated by the author)

They also formulate in the next sentence for the first time the principle of cyclic
causality where the classes act as folders.

Auf der anderen Seite verselbständigt sich die Klasse wieder gegen die Individuen, so daß
diese ihre Lebensbedingungen prädestiniert vorfinden, von der Klasse ihrer Lebensstel-
lung und damit ihre persönliche Entwicklung angewiesen bekommen, unter sie subsumiert
werden.

On the other hand, the class becomes independent again against the individuals, so that they
find their living conditions predestined, i.e. they are instructed by the class of their position in
life and thus their personal development, is subsumed under them. (translated by the author)

At the end of the nineteenth century two chemists R. Liesegang (1869–1946)
and Wi. Ostwald (1853–1932) emerged with quite fascinating works. R. Liesegang
discovered periodic patterns during executing precipitation reactions with inorganic
substances in gels 1896 [18] (Fig. 1.6).

Ostwald [20] investigated carefully the oscillating gas production during the disso-
lution of the new produced chromium in mineral acids (Fig. 1.7). For this purpose
he developed the first analog recorder and the first thermostat which have ever been
produced.

Letme emphasize that none of these fantastic discoveries in the nineteenth century
resulted from main stream research at the time they were created. In this sense these
discoveries were industrially and scientifically meaningless except the work of K.
Marx and F. Engels which got political relevance. There was no theory at all, which
could explain these surprising observations. Moreover, there did not exist practical
applications at those times.

This situation changed at first in 1910 by the work of A. Lotka (1880–1949) [21],
since A. Lotka in 1925 and one year later V. Volterra (1860–1940) applied these
differential equations to biological problem of the robber booty type:
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Fig. 1.6 Rhythmic precipitation reactions in gels: a spiral of silver chromate [19]

Fig. 1.7 a Piece of the original chromium which has been used by Wi. Ostwald. b Galvanostatic
current oscillation with just this piece of chromium during its dissolution in mineral acids (executed
by Th. Rabbow and P. Plath in 2002)

chemical equations

A + X1
k1−→ 2X1

X1 + X2
k2−→ 2X2

X2
k3−→F

A → F

(1.2)

kinetic equations

dc1
dt

= k1cac1 − k2c1c2

dc2
dt

= k2c1c2 − k3c2

(1.3)
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Fig. 1.8 The Kondratieff wave: wholesale prices as a function of time/years. Peaks and troughs
are associated with major political or cultural events (quantumpranx.wordpress.com) [23]

At the same time when A. Lotka and V. Volterra worked on the population
dynamics, the Soviet economist Nicolai Kondratieff (Kondratjew) (*1892–†1938
(executed), rehabilitated 1987) developed his idea of the cyclic development of the
economy [22]. After empirical investigations of two long waves he predicted right
the third wave at the end of the twenties of the twentieth century (stock market
crash, Black Friday, Great Depression). His ideas were taken up by J. Schumpeter
(1883–1950) when he took the lecture on mathematical economic theory at Harvard
in 1932. Schumpeter called the long waves of economic life: Kondratieff cycles [23]
(see Fig. 1.8).

In the fortieth and early fiftieth of the twentieth century two major steps in the
prehistory of synergetics have been made. Both of them resulted from pure basic
research:

(a) The discovery of electro-chemical waves 1941 by the famous electrochemist
K. F. Bonhoeffer (1899–1957) [24]. Bonhoeffer was familiar with the work of
Lotka which is documented in a series of his publications on the oscillations of
the dissolution of iron in nitric acid. He described his observed electrochemical
oscillations by the zero isoclines of the well known system of differential
equations (1.4) (Bonhoeffer K. F.). This way he used the idea of limit cycle
behaviour to describe periodic chemical reactions.

dx

dt
= −ax3 + bx + c

dy

dt
= dx2 + ex − f

(1.4)

(b) The discovery of the oscillations of the Cer-catalysed Bromation of citric acid
(1950/1959) [25] by B. P. Belousov (1893–1970); (Fig. 1.9)
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Fig. 1.9 Scheme of the
oscillations Belousov
reaction, which have been
observed in a closed system
(batch reactor) and could be
observed visually by the
transition between the
yellow CeIV and the
colorless CeIII ions

A. M. Zhabotinsky (1938–2008) [26], animated by S. E. Scholl (1961), followed
up the work of Belousov. Zhabotinsky replaced the original system of Belousov by
the well known bromation of malonic acid catalysed by ferroine indicator. In his first
works he let the reactants flow into the stirred tank reactor realizing a quasi open
system (Fig. 1.10), which enables him to observe oscillation with almost constant
amplitude for a while. A detailed description of the history of this discovery is given
by A. T. Winfree [27], L. Kuhnert and U. Niedersen [8] and the author [1].

Fig. 1.10 a Scheme of the ferroine catalysed bromation of malonic acid which has been developed
by A. M. Zhabotinsky. b Oscillations occurred in a 3 ml cuvette recorded by light transmission;
[26] and [8, pp. 83–89]
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Working on the conflict between classical thermodynamics and real life evolution
and pattern formation Ilya Prigogine (1917–2003) [28, 29] developed the concept of
the export of entropy from a system under consideration to its surrounding (1967/68).
This way, regarding open systems (1.5) and (1.6) (where A is an equal constant
flow and E can grow without limitation) I. Prigogine developed in 1977 a set of
kinetic equations which have an auto-catalytic reaction step: 2X + Y → 3X in its
corresponding set of chemical equations [30], which is well known as Brüsselator
model (Eqs. 1.5 and 1.6).

A → X

2X + Y → 3X

B + X → Y + D

X → E

(1.5)

dX

dt
= A + X2Y − BX − X

dY

dt
= BX − X2Y

(1.6)

Such an auto-catalytic equation was very unusual for a chemist, who would never
write: 2X +Y → 3X, but Y → X. Let me emphasise that his system of differential
equations is very similar to those of Bonhoeffer. The new true was his chemical
interpretation: the autocatalytic chemical system:

So it was very hard to understand the chemical background of this model at those
times. However, he introduced this description for constructing the non-linear ordi-
nary differential equation, which he needed for creation of a limit-cycle (Fig. 1.11).
Nevertheless, in the eighties, Prigogine’s fruitful Ansatz inspired a lot of chemists to
look for similar auto-catalytic reactions.

Fig. 1.11 Original drawing
of the limit cycle behaviour
of the Brüsselator [31] (see
Eqs. (1.5) and (1.6))
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1.3 The Early Days of Synergetics [32]

Remembering all this convincing findings it is astonishing that it took about hundred
years from its beginning that these ideas became united under one roof by Hermann
Haken when he created “Synergetics” in the early seventies.

In April 1972 Hermann Haken organized the first international “Symposium
on Synergetics” in Schloß Elmau, which is documented in the proceedings “Syn-
ergetics—Cooperative Phenomena in Multi-Component Systems” which appeared
1973 by B. G. Teubner, Stuttgart [33]. It needed some years more that this idea matu-
rated in the scientific community. In May 1977 Hermann Haken organized a second
international workshop on synergetics at Schloß Elmau. There he stated “Synergetics
is a rather new field of interdisciplinary research which studies the self-organized
behaviour of systems leading to the formation of structures functioning’s” [34].

Summer 1977 was just the date, when N. Jaeger and me at the physical chem-
istry department of Bremen University got acquaintance with the ideas of structure
formation in irreversible processes by the small book of Werner Ebeling which just
appeared [35].

Two years later U. F. Franck and E. Wicke organized the first meeting of the
Bunsen-Gesellschaft für Physikalische Chemie on chemical oscillations in Aachen
[36] (Fig. 1.12). Meanwhile a lot of physical-chemists came up with ideas like chem-
ical oscillations, structure formation in irreversible processes, etc. and they presented
their first results on these topics to a wide spread auditorium. Among them there
were P. Gray (England), A. Zhabotinsky (USSR), and from Germany U. F. Franck,
E. Wicke and O. E. Rössler, who brought the term chaos to the chemists mind at
first. He formed the powerful idea: “Chaos … can be realized in simple chemical
systems” [37] (see Fig. 1.13). This was very stimulating and inspiring to look for
experimentally too.

ẋ = x(a1 − k−1x − z − y) + k−2y
2 + a3

ẏ = y(x − k−2y − a5) + a2
ż = z(a4 − x − k5z) + a3

(1.7)

For this set of three non-linear kinetic equations he offered a set of five chem-
ical equations which can be interpreted conventionally by bi-molecular reactions
(Eq. 1.8). Thiswas a very important step for chemists to better understand the coupled
differential equations of the type of Eq. (1.7), as it was in line with their ideas about
the molecular process.

A few months earlier, O. E. Rössler published in Springer Series in Synergetics
“Synergetics—Far from Equilibrium” his ideas on chaos and strange attractors in
chemical kinetics [38]. With this book of A. Pacault and C. Vidal the term “far
from equilibrium” became a winged word characterizing selforganized structure
formation.
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Fig. 1.12 U. F. Frank (very left) and O. E. Rössler (left on top) at the DiscussionMeeting “Kinetics
of Physicochemical Oscillations”, Aachen 1979

Fig. 1.13 Chaotic oscillations of Eq. (1.7). Stereoscopic display (two parallel projections). This is
a copy of the original figure published by O. E. Rössler et al. [37]
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A1 + X
→k1

←
k−1

2X

Y + X
→k2

←
k−2

2Y

A5 + Y
→k3

←
k−3

A2

Z + X
→k4

←
k−4

A3

A4 + Z
→k5

←
k−5

2Z

(1.8)

As a result, rapid development of Synergetics continued in all scientific disci-
plines. Working on the BZ reaction, Richard Noyes 1919–1997 and Kenneth
Showalter observed truly sustained chemical oscillations in continuously stirred tank
reactors (CSTR). They postulated [39] and observed (Fig. 1.14):

Most of the initial studies were done in closed batch reactors. … Truly sustained oscillations
are possible in principle with - an open – continuously stirred tank reactor (CSTR)

1.3.1 Chemical Waves in the BZ Reaction

We remember the great potential of Fick’s second law for structure formation if some
critical values get overstepped. Now, combining Fick’s second law with reaction
equations a great variety of new structure formations should arise. Such reaction–
diffusion equations (1.9) played a very import role in development of synergetics,
since a local oscillation in an excitable chemicalmediumbecomes a chemicalwaveby
diffusion. The term f1(c1, c2, · · · , cn) stands for any kind on non diffusion processes
like classical chemical kinetics. The most exciting example for this kind of structure
formation was the Belousov–Zhabotinsky reaction (see Fig. 1.1).

∂ci
∂t

= fi(c1, c2, · · · , cn) + Di∇2ci (1.9)

Haken used a picture of this kind of pattern formation in BZR for the cover of his
famous and wide spread book “Erfolgsgeheimnisse der Natur” [42]. Self exciting
cyclic waves, so-called target patterns (see Fig. 1.1), cyclic waves in excited media
and spiral waves can be observed, if one execute this reaction in a thin layer for
example in a Petri-dish. With enormous effort this reaction has been studied in all
details theoretically as well as experimentally since decades. The waves in BZR
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Fig. 1.14 Original drawings
of the oscillating BZ reaction
under CSTR conditions
[39–41] taken from R. A.
Schmitz, K. R. Graziani and
J. L. Hudson and reported by
Showalter et al. as well as
Noyes

became a key phenomenon for a huge variety of similar pattern formation processes
[43, 44].

All these different patterns can be summarized by the idea of a solitary chemical
wave. In earlier times they have been named by V. I. Krinsky as auto-waves [43].
Such waves annihilate if they collide and they cannot be reflected if they touch a
wall. Hans Meinhardt demonstrated the wide occurrence of chemical waves in his
very illustrative book “The Algorithmic Beauty of Sea Shells” [45].

These waves have been simulated successfully by reaction diffusion equations
of type of the activator–inhibitor model for example, but also by cellular automata
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Fig. 1.15 Spirals during
single crystal catalysis of
CO-oxidation on Pt(110)
[49]

models [46–48]. However, the question remains what are the cooperative subsystems
which lead to the observed patterns.

G. Ertl and his group [49] observed spiral waves on the surfaces of Pd single crys-
tals during the catalytic oxidation of CO (Fig. 1.15). Although only a few atoms
and molecules respectively are the acting subsystems, these processes could be
modelled successfully by the reaction diffusion systemswhich are based on the Lang-
muir–Hinshelwood mechanism expanded to surface sub-layers acting as storages for
oxygen.

There is a huge number of very careful studies on the formation of chemical
spirals and their movement especially in BZ-like systems [50]. However, it should
be mentioned that there is a very important detection of C-Amp spirals in the
communication of Dictyostelium dicoideum cells by C. J. Weijer et al. [51].

According to my opening paragraph I shall restrict myself on those discoveries
of synergetics which developed slightly beside the well known mainstream.

For example there is the detection of ripples occuring during abrasive water-jet-
cutting by G. Radons and R. Friedrich [52] (Fig. 1.16 left). Cutting processes of quite
different nature are accomplished very often by such pattern formation in the cutting
face. Cutting processes are of enormous importance in production techniques. This
work of Radons and Friedrich encouraged us to look for similar pattern formation in
micro-etching processes. We found formation of ripples during laser-jet etching as
well [53] (Fig. 1.16 right).

Moreover in the last two decades the investigation of turbulence made great
progress. The new results in this field are strongly correlated to the ideas of syner-
getics [54]. Again the results are of importance for technical processes especially in
wind turbines [55, 56] and in electro-polishing [57].
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Fig. 1.16 Ripple formation in cutting processes; left water jet cutting [52]; right laser jet etching
[53]

1.3.2 Outlook—Ongoing Problems Which Could Be Solved
by Synergetics

During the symposiumComplexity and Synergetics 2015 [58] I have been askedwhat
are the future problems on which synergetics could be applied successfully.

Two actual problems on which I am working personally are reported in
special contributions of the proceedings of “Complexity and Synergetics”: aging
of accumulator batteries [59] and oxidation of CO on supported catalysts [60, 61].

Very briefly I shall mention two further problems only:
Going back in the past F. Runge worked on chemical reactions occurring in filter

paper. The dynamics of these wonderful pictures (Figs. 1.3 and 1.17) are not well
understood until today.

Let me give you a small example of a common ongoing investigation in coopera-
tion with St. C. Müller. Taking a sheet of filter paper and let a potassium dichromate
solution diffuse continuously into the paper, a more or less cyclic, dark yellow fleck
occurs. After drying, water diffuses into the fleck from a centered spot forming a
cyclic front again, which is followed by an instable “washing out front” of the potas-
sium salt crystals. It looks like a displacement pattern in a Hele-Shaw arrangement
[62]. For sure this kind of research topic belongs to the very fundamental topics of
basic research in synergetics.

Another very actual task of research in synergetics could be to investigate the
movement of large groups of peoples. Regarding the ancient transmigration into the
Roman Empire (Fig. 1.18) there are indications that it could be understandable in
the framework of the ideas of an economic basin of attraction. Tribes surrounding
the Roman Empire were attracted by the strength of its economy, since their own
economy was very pure in comparison. The decay of the social and still matriarchal
structures of their original societies created the well known varying warring groups
which fought against the Roman Empire. Following the synergetic principle of cyclic
causality they did not only destroy theEmpire but their own original societies creating
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Fig. 1.17 Front instability during displacement of potassium chromate in soaked and dried filter
paper. Left: (photo: P. J. Plath); right: the water is coming from the right side of the photo; a very
sharp black front on the windward side (German: Luv Seite) is created whereas the leeward side
(German; Lee) goes slower into the original yellow area of the again wetted paper; (photo: St. C.
Müller)

more and more fighters. At least they settled being integrated in the Roman Empire
which dissolved itself.

Today’s transmigration of refugees into the European Union seems to be very
similar to the migration of the ancient tribes into the Roman Empire. Again Europe
acts as economic basin of attraction for peoples of more or less the surrounding
countries. Again their emigration destroys their own countries. Againwefight against
the “rebels” so-called terrorists, again we let them settle in Europe and we try to
integrate them. I shall stop here to continue to list the similarities. We should try to
understand the socio-dynamics of these processes!

Fig. 1.18 Left Transmigration to the Roman Empire [63]; right Transmigration of refugees to
Europe 2015 [64]
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Chapter 2
The Swinging Chromium

Oscillations During Dissolution of Metals with Local
Cells

Thomas Rabbow and Peter J. Plath

Fig. 2.1 Photo of an original piece of chromium thatWilhelm Ostwald used for his experiments on
the swinging chromium and that also served us today to repeat his experiments (photo: P. J. Plath,
T. Rabbow)

Dedicated to Margarete (Gretel) Brauer, Eberhard and Grete Brauer, and Wilhelm Ostwald.
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2.1 Introduction

Hundred years ago, in 1900, Wilhelm Ostwald published his two guiding arti-
cles on “periodic appearances during the dissolution of chromium in acids” (Peri-
odische Erscheinungen bei der Auflösung des Chroms in Säuren) in the “Zeitschrift
für physikalische Chemie” [1, 2]. This extraordinary work belongs to the first
comprehensive scientific articles on the complex dynamics of chemical processes.

Within the last few decades a great variety of pattern forming processes in electro-
chemical systems have been described scientifically by use of synergetics the theory
of dynamic systems. By chance, one of us met the very honest person G. Brauer
who takes as a granddaughter of Wilhelm Ostwald great care on her grandparent’s
heritage and the impressive small exhibition appertaining to their house. She espe-
cially loves her grandfather’s [1, 2] and her father’s [3] experiments on the oscillating
dissolution of chromium in hydrochloric acid. Next to the worldwide first thermostat,
a small but heavy carton with the handwritten inscription “Schwingendes Chrom” is
the heart of this originally exhibition. And indeed, in this carton there were pieces of
the first chromium ever been produced on which Wilhelm Ostwald and his former
co-worker E. Brauer had studied the oscillatory behaviour of the acidic dissolution
of chromium. It is worthwhile visiting the Wilhelm Ostwald museum in his “Haus
Energie” in Großbothen and to talk to all the nice and helpful people who take care
on Wilhelm Ostwald’s life work.

It was very fascinating to repeatWilhelmOstwald’s experiments using his original
chromium and our day’s equipment. Mrs. G. Brauer (Fig. 2.1) agreed in this idea
and gave us one piece of this historical chromium (Fig. 2.2).

Fig. 2.2 Margarete (Gretel)
Brauer (Photo: Beate
Bahnert),“Gretel Brauer”
Mitteilungen der Wilhelm-
Ostwald-Gesellschaft zu
Großbothen e.V. 13. Jg.
2008, Heft 2; ISSN
1433–3910
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2.2 Historical Remarks

Since thework ofG.Th. Fechner in 1828 [4] one canfind reports on periodic chemical
reactions.WilhelmOstwaldmentioned all these phenomena in his textbookLehrbuch
zur “Elektrochemie—IhreGeschichte und Lehre” in 1896 [5] as well as in his famous
articles on the oscillating dissolution of chromium in 1900 [1, 2].

Based on the work of J. Keir (1790; 1828) [6], and G. Wetzlar (1827) [7] on the
passivity of iron and CuO in HNO3 respectively, G. Th. Fechner used a galvanometer
for his investigations on the system iron/silver in a solution of AgNO3 in nitric acid.
He was the first scientist who recognized electrochemical oscillations.

Ich habe jedoch bei wiederholten Versuchen bemerkt, daß die Erscheinung hierbei gewöhn-
lich noch nicht stehenblieb, vielmehr das Auflösen des Eisens undWiederblankwerden nebst
Auflösung des gefällten Silbers wohl vier bis sechsmal, oft sehr schnell hintereinander,
abwechselten, wobei jedesmal die Ablenkung der Magnetnadel auf das entgegengesetzte
übersprang, bis das Eisenstäbchen zuletzt unwirksam liegenblieb, cited concerning Ref [4].

In 1833 J. F. W. Herschel [8] observed electrochemical oscillations during the
dissolution of iron in nitric acid, the concentration of which was in the range that
neither passivation nor activation of iron would be a stable process. He is the first
who observed passivation waves on the iron. During this time many scientists were
fascinated by electrochemistry which appeared as a new and exciting branch of
physics. The chemist C. F. Schönbein [9] was interested in the oscillations during
corrosion of iron in nitric acid, wherefore he coupled directly several iron wires
getting synchronous oscillations

Bringt man aber die Drähte entweder innerhalb oder außerhalb der Säure in leitende
Verbindung, so findet an dem ganzen Drahtsystem die Pulsation haarscharf gleichzeitig statt,
und tritt dauernde Indifferenz an einem Drahte ein, so erfolgt die nämliche in demselben
Augenblicke an allen übrigen Drähten, cited concerning Ref [9].

The physicist J. P. Joule investigated coupling phenomena of oscillating electro-
chemical systems as well [10]. This first period of interest in the dynamic behaviour
of electrochemical systems is characterized by the collection of new and fasci-
nating phenomena but not by systematic physico-chemical investigations. More than
half a century later Wilhelm Ostwald introduced quite another view to these new
phenomena. As an excellent experimentalist he developed all the tools to understand
the oscillating electrochemical systems based on the fundamental ideas of the new
interdisciplinary science: physical chemistry.

He got one of the first pieces of metallic chromium (Fig. 2.1), produced in 1894
by H. Goldschmidt by aluminothermics. In order to record the oscillations in the
hydrogen production during the dissolution of chromium in acids, he constructed the
“Chemograph” [1, p. 36, 2, p.212], which was the first x-t-recorder. Moreover, he
developed the first thermostat [2, p. 216] for his measurements.

In order to study the acidic dissolution he collected some pieces of chromium
in a bag of net-veil putting it in an aqueous 2 N HCl solution. He recognized that
oxidising agents like HNO3 or KBrO3 act as activators which are shortening the
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period length of the oscillations [1, p. 71],whereas reducing agents like formaldehyde
H2CO, rhodanide SCN−, or iodide J− work as inhibitors, enlarging the period length.
Summarizing, he observed periods between one minute and one hour in the cyclic
behaviour. Increasing temperature the frequency of the oscillations increases as well,
and for strong cooling all oscillations vanish.

When his chromium had used up, because of the extensive investigations, he got
a second contingent of new and very pure chromium by Goldschmidt (1894?). But
with these new samples he could not achieve oscillating behaviour again wherefore
he concluded

… daß die auffallende Eigentümlichkeit meines Metalls von irgend einer Beimischung
herrührt, welche sich in den älteren Proben befand und in der neuen nicht mehr vorkam,
cited concerning ref. [1, p. 52].

Some additive substances in the first pieces of chromium might be responsible
for the oscillatory behaviour of this first sample, although he could not support this
assumption by documentary evidence.

This was the starting point for our own investigations. On the one hand, one
can get very pure chromium in our days and on the other hand we got pieces of
chromium of the very first sample of Wilhelm Ostwald. Moreover, well established
electrochemical methods are of our disposal.

2.3 Experiments

2.3.1 Pure Chromium

The metal chromium is well known with respect to the formation of a stable oxide
surface layer. This layer is protecting the less noble pure metal from dissolution.
Concerning the fundamental work of K. F. Bonhoeffer [11–14] and Franck [15–
17] the current voltage function reflects this typical behaviour of electrochemical
systems. In the region of the Flade-potential [18] which is the turning point in
the function I = f (E) between the region of active dissolution and passivation,
oscillations can be observed usually.

For this reason we recorded these I = f (E) function carrying out a cyclic volta-
mogram (Fig. 2.3) with our days chromium of high purity (99.99%, Heraeus). The
chromium anodewas coatedwith epoxy resins. Freemetal surfaces of 13mm2 and 30
mm2 respectively remain for being dissolved in 2 N hydrochloric acid HCl. Wilhelm
Ostwald used a 2 N HCl solution as well. We used a silver sheet (23 mm × 43 mm)
as counter electrode. The distance between both electrodes had been fixed to 7 cm.

The scanning rate of the potential sweep (potentiostat WENKING HP 72) was
11 mV/s. An Ag/AgCl electrode (E0 = 222 mV) with a Haber Luggin capil-
lary had been used as reference electrode in our three electrode arrangement. To
compare different chromium samples the surface had always been grinded before
the experiment.
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active 
region 

passivation 

passive region 

Fig. 2.3 Hysteresis in the cyclic voltamogram I = f (E) of pure chromium in 2 N HCl (scan rate
11 mV/s)

Figure 2.3 shows the typical hysteresis behaviour of a metal which can be passi-
vated at higher potential. Such kind of current voltage diagrams strongly indicate
the possibility to achieve electrochemical oscillations close to the Flade potential.
For potentials less than –0.8 V there is an cathodic polarization of the chromium
electrode where hydrogen is formed. In the “active” range from approx. −0.75 V to
approx. −0.46 V no formation of hydrogen is observed and the strong increase in
the current is correlated with the dissolution of the chromium.

Cr → Cr3+ + 3 e−

Which is correlated to the formation of the green complex.

[
CrIIICl3(H2O)3

] ∗ 3H2O

At E = −460 mV versus Ag/AgCl ( or E = −238 mV vs. NHE) the maximum is
reached and correspondswell with the Flade-potential which sometimes is defined by
the maximum of the current–voltage relation. The dependence of the Flade-potential
from pH of the electrolyte was experimentally determined by Kolotyrkin [19] as:

EFlade = −250 − 58 · pH

Passing this maximum, the current reaches a very low level again, indicating the
passive behaviour which is caused by the formation of oxidic layers on the metal
surface. Turning back the scan a hysteresis behaviour can be observed [20, 21] as it
has been explained in detail by R. Otterstedt [22]. Repeating this cyclic voltamogram
several times, no strong quantitative reproducibility could be achieved. Especially
between the first and the second cycle strong deviations can be observed.
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2.3.2 Oscillations at the Active Passive Transition
of Chromium

Two different kinds of oscillations could be observed depending on the history of the
electrochemical system. On the one hand oscillations occur if the active system is
shifted into the passive state. These oscillations differ very much from those which
are generated by shifting the system from the passive state into the direction to the
active state.

Scanning very slowly through the potential one can observe damped oscillations
already at about E = −440 mV versus Ag/AgCl. Increasing the potential step by
step, oscillations with a strong drift in their average appear.

At E = −428 mV versus Ag/AgCl one can observe stable characteristic oscil-
lations (Fig. 2.4) of a very low main frequency f = 4.5*10–3 Hz (period length T
= 222 s). The system oscillates at a level of I ≈ 30 mA with an amplitude of
about 3 mA. Within one large saw-tooth current oscillation cycle the system is often
interrupted by sharp increases of the current with small amplitudes.

Especially in his first article [1] on the periodic dissolution of chromium in acids,
Wi. Ostwald reported on quite similar patterns of the oscillations (Fig. 2.5). For sure,
he carried out his experiments in another way. He could not use a potenstiostatic
equipment. First he passivated totally the chromium metal in an acid (HCl) solution
of K2Cr2O7 for several days. During this time chromium did not loose his metallic
brightness. Before his experiments he mostly activated the sample by touching it
with cadmium metal in the 2 N HCl solution. Then he recorded the hydrogen devel-
opment. The main difference of his procedure to the potentiostatic treatment is that
his system could freely choose potential and current by itself, whereas in our system
the voltage was fixed or varied in a controlled way. So, we have really two different
experimental conditions, wherefore one cannot expect similar time series. However,
both experiments have in common strong activation within a very short time. The
deactivation takes a much longer time.

Using potentiostatic conditions this deactivation process is often interrupted
by smaller activation peaks (Fig. 2.5). Therefore it is very interesting to
compare these results with the experiment in which Wi. Ostwald investigated the
coupling/decoupling [1] of two pieces of chromium in just the same HCl solution
(Fig. 2.6). Figure 2.6 shows the superposition of the hydrogen production of two
decoupled pieces of chromium. In that case he also observed interruptions of the

Fig. 2.4 Oscillations at the transition from active to passive state at E = -428 mV versus Ag/AgCl
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1
h
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Fig. 2.5 Original time series for the dissolution of chromium in 2 N HCl measured by Wilhelm
Ostwald [1]. The ordinate represents the pressure of the gas which was developed during the
dissolution

oscillations cycle by small peaks that are caused by the smaller piece of chromium.
It seems that the smaller activation peaks in our experiments are caused by small
areas of the electrode surface which are somehow decoupled from the other parts of
the surface.

Indeed, deactivation means that the metallic surface of the electrode will be
covered with an oxidic layer protecting the metal from being solved. Obviously,
this layer is not formed in a homogeneous way, covering the whole surface at the
same time. Small parts of this layer can suddenly be destroyed. It seems, as if they
split of the surface. Immediately this freshly created metallic area contributes to the
current and one can observe small but sharp increases of the current in the time series

1
h

2
h

3
h

Fig. 2.6 Original time series for the dissolution of chromium in 2 N HCl measured by Wilhelm
Ostwald [1]. Two pieces of chromiumhave been placed in the same solution. The ordinate represents
the pressure of the gas which was developed during the dissolution
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while the overall system becomes slowly deactivated. This means that the deactiva-
tion process of the surface causes a heterogeneous process since it is decomposed in
several areas acting differently.

In correspondence to this procedure the very large jumps in the current can be
correlated to the activation of the whole surface at one time. This activation process
synchronizes all area. This is equivalent to a phase-transition in the surface behaviour.
The whole system acts as a unity during this activating phase transition whereas the
system decomposes during the deactivation process.

2.3.3 Oscillations at the Passive Active Phase Transition

Scanning the potential stepwise from the passive state at−200mV(vs.Ag/AgCl)with
10 mV/min between each step into the cathodic direction, the system gets unstable
at about E = −350 mV. The system shows very fast chaotic oscillations with the
main frequencies of about 0.088 Hz and 0.097 Hz (period lengths T = 10 s–11 s) at
E = −370 mV and low current (6–9 mA) instead of frequencies in the range of 0.02
to 0,0045 Hz (period lengths T = 50 s–222 s) during the active passive transition
discussed above (Fig. 2.7).

Especially the shapes of the oscillations differ strongly during both scanning
directions. In case of the passive active scan one can always observe a strong drift in
the time series towards higher current i.e. towards the active state of the electrode.
The oscillating system cannot be stabilized in this region.

2.3.4 Ostwald’s Original Chromium

In order to compare the measurements ofWilhelm Ostwald and Eberhard Brauer, we
have carried out cyclic voltamograms with the original piece of Ostwald’s chromium
which we got from Mrs. G. Brauer in 1 N and 2 N HCl solutions. These cyclic
voltamograms (Fig. 2.8a, d)were recordedwith the rawpiece ofOstwald´s chromium
without epoxy resin and also with a raw piece of pure chromium of undefined size
(blue indicates a forward scan, while red shows the backward scan).

Fig. 2.7 Oscillations at the passive active transition at the potential E= −370 mV versus Ag/AgCl
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Fig. 2.8 Cyclic voltamograms of chromium taken with a scanning velocity of 1 mv/s: a Ostwald’s
chromium in 1 N HCl; b Ostwald’s chromium in 2 N HCl; c pure chromium in 1 N HCl; d pure
chromium in 2 N HCl

Surprisingly the cyclic voltamograms of Ostwald’s chromium (Fig. 2.8a, b)
obey some remarkable features in the active region at about-0,5 V versus Ag/AgCl
compared to the cyclic voltamograms of the very pure chromium showed in (Figs. 2.3
and 2.8c, d).

Pregnant maxima in the active region can be detected in case of Ostwald´s
chromium which might be responsible for the oscillations which he observed. These
maxima are missing in the cyclic voltamograms of pure chromium (Fig. 2.8c, d).
In addition there is a strong development of hydrogen in the first active region
of Ostwald´s chromium whereas no hydrogen production in this region could be
observed with pure chromium.

Furthermore, potential oscillations which are accompanied with the oscillation of
the hydrogen production occur by its own if we put Ostwald´s piece of chromium in
2 N HCl solution. Figure 2.9 shows the time series of the potential versus Ag/AgCl.

In theminima of the potential oscillations (Fig. 2.9b) at about E=−0.58V (versus
Ag/AgCl) a strong hydrogen production takes place. In order to compare the original
time series of W. Ostwald (e.g. Fig. 2.5) with the potential oscillations which we got
from his piece of chromium (Fig. 2.10b) shows the negative potential as a function
of time.

Thus there is a strong correlation between the hydrogen production and the
maxima of the time series in (Fig. 2.9b). Only the shape of the oscillations is not
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Fig. 2.9 a Development of the potential oscillations with Ostwald´s piece of chromium in 2 N
HCl. bMagnified part of the potential oscillations with Ostwald´s piece of chromium in 2 N HCl

quite the same since he measured directly the hydrogen production. Also they have a
different period length of T= 354 s (Ostwald´s experiment) and T= 175 s (potential
oscillations).

Figure 2.10a shows the time series of W. Ostwald´s experiment. By digitising
a scanned image (Fig. 2.5) it was possible to analyse the data and reconstruct the
attractor of his original hydrogen oscillations.

Figure 2.11 shows both the attractor of Ostwald´s experiment and the attractor of
the potential oscillations. Both have in common the typical structure of relaxation
oscillations.

Fig. 2.10 a Digitised and rectified time series of hydrogen pressure oscillations of Ostwald´s
experiments (compare Fig. 2.5). b Inverse representation of the magnified part of the potential
oscillations (Fig. 2.9b) with Ostwald´s piece of chromium in 2 N HCl, whereby the maxima are
correlated directly with the hydrogen production
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Fig. 2.11 Left: Attractor of Ostwald´s experiment of oscillating hydrogen pressure (compare
Fig. 2.10a, Fig. 2.5) with τ = 21 s. Right: Attractor in the delay phase space with τ = 8 s of
the potential oscillation of Ostwald´s original piece of chromium the time series of which is shown
in (Fig. 2.10b)

The time series of the pure chromium in 2 N HCl differs strongly from the time
series of Ostwald´s original piece of chromium (see Fig. 2.12). For example, the
potential forwhich the current is zero of the intermittent oscillations is placed at about
E = −0.71 V instead of E = −0.57 V in case of Ostwald´s chromium. Nevertheless,
oscillations in the active region of the current—potential function occur also in case
of the pure chromium. But they differ a lot in their position, shape, and character
(Fig. 2.12) from those of Ostwald’s original piece of chromium.

Fig. 2.12 Time series of pure chromium in 2 N HCl solution a An overview of the very small
oscillation, and b an amplified representation of this oscillations
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2.4 Oscillating Local Cells

It is obvious that the oscillations which have been observed by Wi. Ostwald and E.
Brauer are not related to the electrochemical oscillations of metals dissolved in acids
which are normally discussed in the framework of the active passive transition close
to the Flade potential.

As can be seen from (Fig. 2.8a, b) there is a region of negative slope in the current
voltage function at about E = −0.57 V which means that there exist a negative
differential resistance which is responsible for the occurrence of the oscillation in
this region [23, 24]. But there is no region like this in case of the pure chromium
metal if one scans this metal with a velocity of 1 mV/s (Fig. 2.8 c and Fig. 2.8d).

Since it is known that the scanning velocity will influence the shape of the current
voltage function we determined experimentally the two variable function ∂ I

∂E with v
equals the scanning velocity for the three situations: a the pure chromium in 1 N
HCl, and Ostwald´s chromium in b 1 N HCl and c in 2 N HCl solution. Fig. 2.13
shows the surface I = f (E, v) in the range from v = 10mV/sec to v = 1mV/s for
the pure chromium in 1 N HCl.

The partial derivative ∂ I
∂E of function I = f (E, v) is positive semi-definite in

the whole range up to the maximum but a shoulder is developing if one goes to
smaller scanning velocities v. This shoulder might develop to a saddle point or even
a maximum for the for the limit point v → 0. This can be assumed because of
the occurrence of intermittent oscillations on the pure chromium in 2 N HCl (see
Fig. 2.12a, b).

Fig. 2.13 The function I = f (E, v) for the dissolution of pure chromium in 1 N HCl. v is the
scanning velocity



2.4 Oscillating Local Cells 35

Fig. 2.14 The function I = f (E, v) for the dissolution of Ostwald´s piece of chromium in 1 N
HCl. v is the scanning velocity

In case of Ostwald´s piece of chromium one can observe a cusp catastrophe in
the surface I = f (E, v) for the 1 N HCl solution. A strong maximum arises if
one diminishes the scanning velocity even only down to v = 1mv/s (Fig. 2.14).
Moreover a very complicated structure developes in the surface I = f (E, v) with a
cascade of cusp catastrophes.

For higher concentrations of the acid the main cusp catastrophe is not so well
developed but it still remains and we can take it for sure that for the limit point
v → 0 the system posses a strong negative resistance ∂ I

∂E (see Fig. 2.15).
In any case the potential oscillations as well as the oscillations in the hydrogen

production are due to the occurrence of the negative slope in the derivation ∂ I
∂E for

very slow scanning velocities v = 0. It is obvious that Ostwald and Brauer could
not choose any other scanning velocity than v = 0 since they put their pieces of
chromium simply in the acid solution. Repeating their experiment we could proof
that their hydrogen oscillations are strongly correlated with the potential oscillations
in the region of the negative slope of the derivation ∂ I

∂E in the range of the potential
E = −0.57 V up to E = −0.49 V.

From the synergetic point of view the question is not essential what is the chem-
ical mechanism which might cause the occurrence of the cusp folding in the surface
I = f (E, v). An explanation for this behaviour could be the assumption that in the
chromium metal there are involved for example some metallic impurities forming
local cells at the surface of the chemically inhomogeneous surface parts of the
chromium alloys [25]. Another possibility could be that the surface is physically
inhomogeneous because of different crystallographic planes which are exposed to
the electrolyte [Vetter p. 599]. In any case the local excess voltage of hydrogen will
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Fig. 2.15 The function I = f (E, v) for the dissolution of Ostwald´s piece of chromium in 2 N
HCl. v is the scanning velocity

be influenced differently compared to the homogeneously acting metallic surfaces.
This scenario becomes visible if the local systems have time enough to develop itself,
i.e. for very slow scanning velocities.

Let us assume that the surface is divided into two different areas which are
distributed among each other randomly. The behaviour of the local cells can be
described schematically by the addition of the current voltage functions of the
processes which are involved. [25, 26]. Furthermore, the total current should be
zero, as in case of Ostwald´s experiments, i.e. the mixing potential Em. Em can be
estimated as the potential for which the sum of all partial currents becomes zero.

The dissolution of the chromium is accompanied by the production of hydrogen;
i.e. there are at least two independent electrode processes for example:

Me → Mez + + z ∗ e−

and

H+ + 2 ∗ e− → H2

contributing to the total current which can be observed in the cyclic voltamogram.
The potential for which the total current is zero is called the mixing potential Em [25,
26]. For this potential both current flows are equal in their absolute values.

Figure 2.16 shows a sketch of the overvoltage of hydrogen during the dissolution
of a less noble metal in an acid. The distance between the zero points of the metal
curve and the total current curve is called the anodic overvoltage η1of the hydrogen
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Fig. 2.16 Sketch for the
construction of the mixing
potential Em for a less noble
metal accompanied by the
production of hydrogen
[Vetter P. 589]

current

total current

metal dissol.

potential

hydrogen develop.

andη2 the cathodic overvoltage is the distance between the corresponding zero points
of the hydrogen curve and the total current curve.

Such a total current function I = f(E) could be observed in principle for the
dissolution of the pure chromium in the cyclic voltamograms (Fig. 2.8c, d).

In this framework one may understand now the behaviour of the pure chromium
as well as Ostwald’s piece of chromium in hydrochloric acid.

Figure 2.8c shows a typical total current function I = f(E) for the less noble metal
of the pure chromium in 1 N HCl with the development of hydrogen. For higher
concentrations of the acid (Fig. 2.8d), the partial function Ihydr. = f(E) is shifted to
more positive values whether the total current function gets a shoulder and is slightly
shifted to more positive potentials as well.

However, this description does not correlate totally with the observations for
Ostwald´s pieces of chromium. There we can find a non monotonous behaviour of
the total current function in the active region of the cyclic voltamogram (Fig. 2.8a,
b).

Assuming, that the surface of the very polycrystalline chromium (see Fig. 2.2)
is composed at least of two different kind of surfaces—never mind what is their
chemical composition—one can describe approximately (Fig. 2.17) the experimental
curves (Fig. 2.14). The partial surface—of the less noble metal 1—is dissolving very
fast at a lower potential and gets passivated very soon (metal 1 curve in Fig. 2.17)
with increasing potential.

The metal 2 surface is dissolved remarkably only for higher potential. Therefore
there exists a range in the potential for which the anodic current is converted into a
cathodic one because of the excess in the hydrogen production. In the region forwhich
the potential causes a stronger dissolution of themetal 2 surface the hydrogen produc-
tion is strongly diminished. This is just in correspondence with our observations in
case of Ostwald´s piece of chromium.
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Fig. 2.17 Sketch of the total current function I = f(E) (red) during corrosion of a chemical or
physical inhomogeneous surface assuming equilibrium for each involved process

This statement can only be taken as a hypothesis but not as a proofed explanation.
Indeed we observed not only one maximum in the total current function but several
one.

This could mean that maybe several different surfaces participate to the total
current. On the other hand slow scanning velocities enable Ostwald´s system to
develop transient states of self organised oscillations which can also be observed
in the cyclic voltamogram. The strong first maximum in the surface I = f(v,E) See
Figs. 2.14 and 2.15 indicates that our hypothesis is valid at least for this area of the
scanning velocity v and the potential E.

However, all thesemodels do not explain sufficiently the oscillations. The assump-
tion of Traud and Wagner [26] on the balanced currents is based on the equilibrium
of the system, but not on a situation far from equilibrium as in case of oscillations.

Although we observed potential oscillations during the dissolution of Ostwald’s
chromium the overall current is zero since there does not exist an electronic circuit
beyond the electrolyte in this experiment. So, we are forced to assume local currents
based on the existence of local cells as in case of corrosion. We can compare this
situation with the galvanostatic potential oscillation—in case of I = 0—of a system
with a N-shaped current voltage function.

Up to now, we dicussed only the situation at very slow scanning velocities. Now,
regarding the (Figs. 2.14 and 2.15), one can observe a folding in the surface I = f(E,
v). For higher scanning velocities ν no negative differential resistance NDR [27] is
observable in the surface whereas a NDR occurs if the scanning velocity becomes
small enough. Such aNDRmight be caused by the development of hydrogen bubbles.
The velocity of this bubble creation process is obviously in the range of the slow
scanning velocities used in the our experiments. For higher scanning velocities the
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system gets out of the range producing enough hydrogen to form hydrogen gas
bubbles whether the NDR becomes hidden [27].

The produced hydrogen creates very small hydrogen bubbles at the metal surface.
The bubbleswill grow,while hydrogen is produced and theywill undergo coalescence
if they touch each other. If the bubbles reach a critical size they will suddenly leave
the surface and they will rise up in the electrolyte because of buoyancy. This is a
collective phenomenon and will create a big jump in the H2 pressure as observed
by Wi. Ostwald. Afterwards the surface gets almost cleaned of hydrogen and the
potential is raising again. Suddenly a big jump in the potential can be observed
caused by the active/passive phase transition of the less noble metal 1 and the visible
hydrogen production stops totally.

During creation and coalescence of bubbles the hydrogen pressure and the poten-
tial decrease slowly according to an increase of the anodic overvoltage on the noble
metal 2. Meanwhile metal 1 becomes activated from its passive state.

In the framework of U.W. Franck’s model for the oscillating anodic dissolution of
metals in acid electrolytes the pH—dependency of the Flade potential is responsible
for the oscillations. The hydrogen development diminishes strongly the acidity in
front of the metal 1, i.e. the pH-value is increasing while hydrogen is produced.
Assuming that the growing pH-value will shift the Flade potential EFl of the metal 1
to lower values the metal 1 gets passivated [20] (Fig. 2.18).

After reaching its minimum, the. acidity will increase again in the vicinity of the
metal surface because of diffusion of hydrogen ions from the bulk electrolyte towards
the less acid region close to the metal surface.

Following the arguments given by R. Otterstedt [20] the H+ concentration h0 close
to the metal surface can be identified with the constants of the current voltage curve
for the metal dissolution

f = p1ϕ
3
0 exp

(−p2ϕ
2
0

)
(2.1)

Current passage overvoltage = Faraday current

current

Flade potential EFl

higher pH value 

lower pH value 

EFl,low EFl,high

Fig. 2.18 Sketch of the pH dependency of the current on the Flade potential EFl concerning
gA(ϕ, h0)[20]
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2.5 Phenomenological Two Variable Model

But up to now, this hypothesis does not at all describe the oscillations in the hydrogen
production which have been observed by Wi. Ostwald [1, 2] and E. Brauer [3].
As we have shown (Fig. 2.10a, b) these oscillations are strongly correlated with
the oscillations in the potential. If we have a strong negative potential at about −
0.58 V in 2 N HCl one can observe a strong hydrogen production. The oscillations
in the potential form a limit cycle (Fig. 2.11) which strongly reminds to relaxation
oscillations which can simply be described by the well known types of two variable
models. Since the potential is one of the variables and the total current is fixed to
zero we have to find a second variable of physical meaning which is not linearly
dependent on the potential.

It is well known that local cells exist in the surfaces of alloys. Assuming that in the
original piece of chromium such local cells occur as impurities. Local currents would
be the consequence. Since potential oscillations could be observed (see Fig. 2.9)
during the dissolution of Ostwald´s original piece of chromium but not at all in pure
chromium we have to assume accompanying local current oscillations in local cells.
But all these oscillating local cells have to be coupled because of the experimental
observations.

Ostwald´s measurements of the oscillating hydrogen production is just the proof
for this hypothesis.Now,wecan conclude that these hydrogenoscillations correspond
to the oscillating dissolution of metal ions as well.

One can use the attractor reconstruction of the potential oscillations in the delay
phase space (Fig. 2.19) to find out a simple two dimensional phenomenological
mathematical description of these oscillations.

For this purpose we have chosen a generic value of the delay time τ. The “x-axis”
E(t) represents the measured potential. The “y-axis” E(t + τ) may symbolizes the
mean value of the coupled local cell currents or th H+ concentration h0 just in front
of the dissolving metal surface. Based on this attractor one can find the non-linear
zero iso-clines of the system just by fitting a function to the run of the curve. In order
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Fig. 2.19 left: Attractor of the potential oscillations (Ostwald´s original piece of chromium) in the
two-dimensional delay phase space (delay-time τ = 8 s). right: same attractor with possitive E(t +
τ) axis

to obtain a zero iso-cline with a negative slope of the function E (t + τ) = F(E(t))
the attractor was reconstructed with positive values for E(t + τ) (Fig. 2.19 right).

The second zero iso-cline could just be derived, assuming a linear differential
equation. A simple phenomenological two dimensional systems which enables to
reconstruct qualitatively well the dynamics of the observed system by the following
equations:

ε
dx

dt
= −2abx exp(−bx2) + c exp(x) − kx − y (2.6)

dy

dt
= mx − y (2.7)

Using this set of equations (Eqs. 2.6 and 2.7) one can try to find the best
approximation of the reconstructed limit cycle (Fig. 2.20).The constants of this fit
are:

a = 1b = 3 c = 0,1
k = 1m = 10ε = 1
For sure, these constants will change with the chosen value of the delay time

constant τ, but nevertheless since we have chosen a generic value of τ, the slightly
different values of the constants will correspond to topological equivalent represen-
tations of the limit cycle. Figure 2.20 shows the attractor of the dynamics of the two
variable model concerning the chosen set of constants for these equations.

To compare the dynamics of the phenomenological two variable model and the
potential oscillations (Fig. 2.21) shows both time series. They have in common
thypical shape of relaxation oscillations, i.e. a fast activation and deactivation which
is mainly determined by the slope of the second linear differential equation and two
parts of a much slower development of the sysem. In this slower part the system runs
along the non-linear zero iso-cline.According to the value of the time scale separation
ε the system runs more (small ε) or less (bigger ε) close to the zero iso-cline (Eqs. 2.6
and 2.7).
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Fig. 2.20 Sketch of the limit cycle dynamics (red) which may describe the observed potential
oscillations and zero-isoclines (blue) of the correlated attractor concerning (Eqs. 2.6 and 2.7).

Fig. 2.21 a Time series of potential oscillations of Ostwald´s original piece of chromium. b Time
series of x(t) from the two-variable model (Eqs. 2.6 and 2.7)

Although our phenomenological two variable model does not reproduce the orig-
inal frequency of oscillations, which is a question of correct values of the parameter
pair m and ε, it is qualitatively in accordance with the shape of potential oscillations.

2.6 Conclusions

It is a pity that these fundamental works of Wi. Ostwald [1, 2] and E. Brauer [3] on
the great variety in the dynamics of electrochemical systems got almost lost in the
actual scientific knowledge since about 100 years.
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For a long time one could not really understand the very complicated dynamics of
this electrochemical system. Especially because of the fact thatWi.Ostwald could not
reproduce his experiments with more pure samples of chromium one put these excel-
lent scientific results either into the box of failed experiments because of impurities
or in the box of scientific curiosities which are of no generic meaning.

It was a great luck that some pieces of Ostwald´s original chromium survived
for 100 years in the protection of Mrs G. Brauer. So we were able to repeat really
Ostwald´s and Brauer´s original experiments. Using our days equipment we proofed
that impurities were responsible for their results.

But in contrast to common meaning these “impurities” did not make worthless
these historical experiments. Instead of being neglectable these “impurities” form
local cells indeed which cause the observed oscillations.

So, what Wi. Ostwald and E. Brauer really detected that were the oscillations of
local cells during dissolution of chromium. These detections open a new way in the
understanding of corrosion, since they enable us to get much deeper knowledge on
the dynamics of this complex phenomenon of great technical importance.

Acknowledgements In recognition of the untiring work of Mrs. Dr. Grete Brauer in the Wilhelm
Ostwald Gesellschaft and Mrs Prof. Katharina Krischer (University of Munich) who rescued these
works from oblivion we were enabled to bring back to our days scientific consciousness the
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Chapter 3
Liesegang Structures

Peter J. Plath

Fig. 3.1 Self-organized helicoid precipitation patterns of lead chromate in agar–agar gel in a test
tube (size in diameter 1.56 cm). (Photo W. Jacobi, P.J. Plath)

This chapter onLiesegang structures [1] is largely based on thework ofmy coworkers
Werner Jacobi [2],whoprepared the famousLiesegang screwsurfaces in the test tubes
as shown in Fig. 3.1 Claudia Müller, Uwe Sydow [3], Robert Lipski, Bernd Görtler,
and A. Fiedler whom I thank for their fruitful cooperation and the carefully executed
experiments. Special thanks are due to S. Hollatz and T. Plikat, whom I owe to the
experimental elucidation of the three-dimensional Liesegang structures, which are
reported for the first time in detail in this book. A. Deutsch and K. Koblitz, I would
like to thank for providing the photos on the Figs. 3.2 and 3.3 respectively.

Almost half a century later than F.F. Runge (1896), Raphael Eduard Liesegang
(bornNovember 1, 1869 inDüsseldorf, 13November 1947 in BadHomburg) worked
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Fig. 3.2 Formation of
Liesegang rings during the
precipitation of KJ
(potassium iodide) in a Petri
dish. Inner Electrolyte:
Pb(NO3)2; outer electrolyte:
solid KJ (Photo W. Jacobi,
P.J. Plath—in 1984).
Liesegang named such ring
structures A-lines

in the company of his father, which he took over together with his two brothers in
the same year when his father died. They produced light-sensitive gel-like silver
chlorate layers on glass plates for photographic purposes. He applied a drop of silver
nitrate solution to a thin layer of gelatine which had already been solidified on a glass
plate and soaked with potassium dichromate. After one day, he observed an annular
periodic precipitation of slightly soluble silver dichromate with a diameter of 5 cm
(Figs. 3.2 and 3.3).

In the light of the new structures found in physics executing gas evacuations in
“evacuated” gas-discharge tubes, “in which often stratifications of light” occur, he
named his discovery “A-lines” and published them with success.

The analogies that led Raphael Liesegang to call his discovery of the cyclic,
periodic structures in precipitation reactions in gels “A-lines” is not at all as outlandish
as they may seem to many readers today, and I present them here as his working
hypotheses:

In den Crookesschen Röhren, welche seit der Röntgenschen Entdeckung auch für die
Photographie von Bedeutung erlangt haben, kommen häufige Schichtungen des Lichtes vor,
welche wie stehende Wellen aussehen. … Bei meinen Gallerten-Versuchen habe ich einige
Erscheinungen beobachtet, welche vielleicht zu einer Erklärung dieser Lichtschichtungen
führen können.

In the Crookes tubes, which have also become important for photography since Röntgen’s
discovery, frequent layers of light appear, which look like standing waves. ... In my jelly
experiments I have observed some phenomena, which may perhaps lead to an explanation
of these layers of light.
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Fig. 3.3 No reflection of the precipitationwaves at the vessel rim of the Petri dish (PhotoW. Jacobi,
P.J. Plath (1984)) b internal electrolyte: 5·10–3 Mol/l Pb(NO3)2; external electrolyte: crystals of KJ
(potassium iodide)

The precipitation patterns he discovered are indeed waves, so called “chemical
waves” or as V.I. Krinsky calls tthem: “autowaves”. [4]

However, “autowaves differ fundamentally from waves in traditional (conservative) media.
They propagate at the expense of energy taken from the active media and therefore cannot be
considered as conservative systems. The shape and amplitude of autowaves remain constant
during propagation, whereas the amplitude of classical waves rapidly falls with the distance
and the waveform is distorted by dispersion. In the case of autowaves, there is no reflection
from either the medium boundary or inhomogeneities. Unlike waves in conservative media
(solitons and soliton-like solutions) two colliding autowaves annihilate rather than penetrate
one another, and, therefore no interference takes place.”

If you bring the outer electrolyte not in the center of the Petri dish, but near its
edge, then you can see very well that the precipitation waves are not reflected on the
edge of the Petri dish but extinguished as shown in Fig. 3.3.

If the experimental arrangement is changed in such away that the outer electrolyte
is applied to two opposite positions of the Petri dish, the propagating precipitation
waves must inevitably strike. As shown in Fig. 3.4, the precipitation waves are not
superimposing, but the precipitating waves which strike are annihilating themselves.

The precipitation waves are therefore attributable to the class of chemical waves
or autowaves. This does not change the fact that in these experiments they are not
stable in their shape, and indeed lose intensity even with the distance from their place
of origin. That’s because in these closed systems the “chemical energy reserve” is
used up by the precipitation reaction, namely the ions involved in this reaction were
used up and cannot be replenished arbitrarily. The shape of the waves, however,
depends on the particular local concentration conditions (Figs. 3.3 and 3.4).

Bringing the outer and inner electrolytes together, then strong concentration gradi-
ents can occur in the boundary region of the inner electrolyte, whereby structures are
possible, leading in the further course of the diffusion and precipitation process, for
example, to rings, discs or spirals.
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Fig. 3.4 a Annihilation of colliding precipitation waves (Photo W. Jacobi, P.J. Plath in 1984); b
Enlarged detail of (a)

This can lead to very confusing precipitation patterns, which are strongly reminis-
cent of turbulent flows. Out of such turbulent precipitation patterns, classic Liesegang
rings can develop in the further diffusion of the outer electrolyte into the inner
electrolytes (see Fig. 3.5).

There are known a lot of sparingly soluble salts with which one can create similar
precipitation patterns in gels. For example if one dilutes Pb(NO3)2 in 0.5 … 1.5%
agar–agar in a Petri dish and places some crystals of potassium iodide in the center
of the dish after the gel has been cooled, then concentric precipitations of lead iodide
are obtained after a few hours.

He also carried out many experiments on these spatial patterns, which are now
known as Liesegang structures, in the test tube and observed fantastic pattern forma-
tions such as periodic slices, helical surfaces and spirals. But his beautiful structures
had no further significance for the development of photochemistry. These patterns
seemed to be an exceptional case in the precipitation reactions, just curious curiosi-
ties occurring only in gels, and so they had no further influence on the development
of physical chemistry except colloid-chemistry.

In his later work, Raphael Liesegang turned to the structures of the beautiful
agates, where he could show that his “Liesegang structures” are at least of decisive
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Fig. 3.5 Turbulent precipitation patterns. The inner electrolyte consists of crystals that dissolve in
their immediate environment by partially destroying the gel there. Gel and the highly concentrated
solution form a relatively sharp border. The precipitation then takes place in a turbulent manner
only at some distance from this borderline in a wide range. (Photos W. Jacobi, P.J. Plath in 1984)

Fig. 3.6 Cut through a three-dimensional spiral occurring in a flint bulb. (Photo P.J. Plath)

importance in the formation of rocks from the viewpoint of mineralogists and geol-
ogists (Fig. 3.6) [5]. That they also occur in mountain formation, in a much larger
range of scales, was only shown by Karl-Heinz Jacob (TU-Berlin) in the 1990’s [6].
It should be noted at this point that his ideas on the role of Liesegang structures in
electric fields have contributed to violent controversies in today’s discussion on earth
crust formation and continental shifts [7].

Both, Runge’s and Liesegang’s works as well as the publications of Beloussov
and Zhabotinsky are portrayed quite carefully in their scientific-historical context,
and described by Lothar Kuhnert and Uwe Niedersen in their book, “Selbstor-
ganisation chemischer Strukturen”, in the series “Ostwalds Klassiker der exakten
Wissenschaften” [8].
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Raphael E. Liesegang published his first papers on pattern formation in gelatine in
1896 [1–3]. In general, the experimental preparation runs as follows: a gel is prepared
which contains an ionic species (inner electrolyte) that can later be precipitated by a
suitable counter ion (outer electrolyte).

The experiment is usually carried out in a one- or two-dimensional arrangement,
e.g. in a test tube or in a Petri dish; the precipitation reagent is then placed as a solid
or in concentrated solution on to the gel column or in the middle of the gel layer
respectively. During the diffusion of the counter ion into the gel, the precipitation
reaction occurring sometimes produces concentric rings or sharp disks of precipitate.
These structures are commonly referred to in the literature as Liesegang rings.

Moreover, it is a very simple chemical experiment, which is still full of surprises.
A lead-salt solution is prepared in a 100 ml graduated flask (2–4 ml,10–1 Mol Pb
(N03)2), add 25 ml of a 3% hot agar-gar solution (filiform agar–agar DAB6 from
Riedel de Haen) which is cooked until clear and then fill with distilled water until
mark is reached. Now cook the resulting lead-containing sol again (one hour on a
boiling water bath) so that all streaks disappear and fill some test tubes with the hot
sol.

Now, leave it in the test tube sol is allowed to gel under room temperature. Over-
laying carefully the solidified lead containing gel with a saturated solution of potas-
sium iodide which still contains several grains of potassium iodide in order to obtain
a saturated solution throughout the experiment.

If the test tube prepared in this way is left to stand for several hours, sometimes
at least days, one observes slowly emerging gorgeous structures in the precipitation
reaction which begins. This includes the formation of periodically occurring discs
(rings) and also of helical surfaces (spirals).

3.1 Historical Notes

Since their first observation by R. E. Liesegang (1896), the occurring of these
highly symmetric patterns during precipitation reactions in gels were a challenge
for Chemists and physicists.

As mentioned above, in 1896 R. E. Liesegang coated a glass plate with gelatin,
to which he had previously added to K2Cr207. After forming the gel, he added a few
drops of AgN03 and after one day he observed the formation of circular patterns
(compare Fig. 3.2).

In 1914, for the first time, Liesegang also reported on the development of helical
surfaces in special test tube tests. Also Wo. Ostwald (1925) and R. Fricke (1926)
found in their experiments, in addition to the periodic disks, the hard-to-understand
helical surfaces (Fig. 3.7).

The first attempt to interpret Liesegang’s structures—especially the periodic
formation of the disks (rings), Ostwald (1897) made already a year after their
discovery. According to his hypothesis, a supersaturated state occurs, from which
the spontaneous precipitation takes place. The ions still remaining in the vicinity are



3.1 Historical Notes 51

Fig. 3.7 Discs (often called
rings) and helicoids (often
called spirals) precipitation
patterns of lead chromate in
agar–agar gel. (Photos W.
Jacobi, P.J. Plath)

then diffused in the direction of the condensation nuclei in order to be precipitated
there aswell. Thus, in the direct vicinity of the respective precipitation ring, depletion
occurs at the ions of the inner electrolyte which is dissolved in the gel. Through this
zone of low concentration of the inner electrolyte, the ions of the outer electrolyte
have to first diffuse before reaching a zone of sufficient concentration of the inner
electrolyte, so that super-saturation and then again precipitation may take place.

With this hypothesis one succeeded in understanding the steady increase of the
distance between the rings qualitatively, but there are also systems from which
this “distance law” is not followed. Moreover, extra condensation nuclei added
had no significant influence on ring formation. Other observed phenomena could
also be identified which cannot be satisfactorily described by this “super-saturation
hypothesis”:

• The presence of artificially supplied nuclei does not have a significant influence
on ring formation

• There are a number of systems which do not obey the “ring distance law”, but
rather the distance between them decreases with increasing distance from the
point of application of the external electrolyte.
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• Ostwald’s theory does not provide any explanation for the often very pronounced
fine structure of the rings.

As a result, further attempts have been made to investigate the interesting
phenomenon of Liesegang’s structure-formation to understand better.

Thus, Bradford [9] stood out in 1916 with his “theory of adsorption” trying to
explain the often clear zones between the precipitation rings by an adsorption of the
ions of the inner electrolytes on the precipitation just formed. Only in 1954 Stern [10]
contradicted to this attempt to explain, and assignedonly a tendency for the adsorption
of the ions to reinforce structure formation, but did not regard it as its cause. Dhar
[11] on the other hand, already represented, in 1922, the very strong assumption
that the formation of the visible precipitate precedes the formation of a colloidal
dispersion. The appearance of such dispersions was experimentally confirmed by J.
Ross and his co-workers in 1982 [12]. The ring formation occurs according to N. R.
Dhar by coagulation of the colloidal particles.

Already Ostwald [13] referred to the solubility products in his “diffusion wave
theory” of the participating ions. In his opinion, the structure formation is based on
the interaction of diffusion waves of the internal and external electrolyte as well as
of the colloidal precipitate.

All these hypotheses are based solely on equilibrium thermodynamics thus the
Liesegang phenomena were not conceived as a consequence of self organization of
the system far from equilibrium. This is achieved by J. Ross and his co-workers.
They assumed that the formation of nuclei first begins homogeneously, and only
later coagulation starts accompanied by the formation of the clear zones. In doing
so, they are assuming “autocatalytic” growth of the nuclei beyond a certain particle
size.

It was only by the work of Ortoleva [14] and Ross [15] that interest became
apparent at the Liesegang structures again. It was recognized that these structures are
particularly impressive examples of the pattern formation processes in reaction diffu-
sion systems in addition to the well-known structures in the Beloussov-Zhabotinsky
reaction.

The peculiarity of the Liesegang system is that it is the spatial one and temporally
largely stationary formation of patterns in the precipitation of a sparingly soluble salt
in the gel.

If the precipitation of lead iodide PbJ2 is carried out in the usual, every beginner
of chemistry trusted way in aqueous solution in the test tube, the familiar form of
the cloudy, yellow precipitate is obtained, which is slow on the ground (Fig. 3.8).

So, for a well trained chemist it is really unbelievable that the presents of a gel in
the water will change the situation so dramatically!

Is the test arrangement for the Liesegang experiments as is often customary, from
a test tube in a vertical arrangement, filled with lead—containing agar–agar gel
for example, as already mentioned, in addition to the “periodic” ring patterns also
spiraling patterns, which Liesegang pointed out as early as 1914. Strictly speaking,
these patterns are not rings and spirals, but disks and helical surfaces. How to
understand this?
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Fig. 3.8 Precipitation reaction of lead chromate in aqueous potassium chromate solution. (Photo
P.J. Plath)

Among other things, it is just the occurrence of these helical surfaces—even
Ross [16] regarded them as curiosities still in 1986—which questioned the earlier
statements (Fig. 3.9).

But not only classical geometric forms occur in Liesegang’s pattern formation,
but also finely branching precipitation patterns can be seen, filling the test tube like
the web of the roots of a tree.

Such patterns are a clear note that fractal geometries might be of importance in
the formation of the precipitation patterns (Fig. 3.10).
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Fig. 3.9 In addition to the simple screw surfaces, two of these elements can also be twisted—so
called double helical surfaces. Even within one test tube, sometimes transitions can be observed
from double helical surfaces to simple helical surfaces, to discs and even into regions of granular
precipitation (Photos; W. Jacobi, P.J. Plath)

3.2 Walking on a Fractal Network?

In the case of the precipitation of the sparingly soluble lead or else silver salts, it is
easy to follow the shift of the readily recognizable precipitation front as a function of
time in the test tube experiments since the experiment lasts up to oneweek. Liesegang
had already carried out such measurements.

During the precipitation of lead chromate the starting position for the diffusion of
the chromate ions of the external electrolyte is the boundary between the solid lead
gel and the supernatant saturated solution of the potassium dichromate. Over the test
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Fig. 3.10 Fractal, crazy root
similar precipitation pattern
of lead iodide in agar- agar
gel at 5 °C (6 mM PbNO2 in
0,75% agar–agar).; walking
dimension:
dw = 2, 11 ± 0, 02 (the
fractal dimension dw of a
random walk on an
aggregate). The finger-like
structure visible in the upper
part of the test tube was first
formed bottom –top as a
white, amorphous,
finger-like precipitate after
the formation of the yellow
spin, probably consisting of
K(PbJ3) which was stable at
5 °C but changed to yellow
PbJ2 at room temperature

time this boundary layer is not shifted for several days. However, this limit follows
slowly the precipitation front after in case of the precipitation of lead iodide by using
a saturated potassium iodide solution as the outer electrolyte. The reason for this
shift of the phase boundary solution/gel is the hygroscopic character of potassium
iodide (Fig. 3.10).

The mean displacement r of the front, which takes place by diffusion, thus results
from the difference of the front displacement r f and the displacement of the starting
position of the diffusion rl : r = (

r f − r0
) − (rl − r0) = r f − rl , where rl is the

distance of the phase boundary solution / Gel from the original starting position r0
at time t = 0.



56 3 Liesegang Structures

The precipitation tests extend over several days. If we determine the slope of the
straight line (linear regression function) over these long test times from the double-
logarithmic plot: log(r) = f (log(t)) of the system the lead iodide/agar–agar, the
mean of the scaling exponent could be determined to dw = 2.25 (Fig. 3.9 centered).

Now, plotting the logarithm of the mean shift r as a function of the logarithm of
time, the slope of the resulting straight lines yields the inverse 1/dw of the exponent
dw of the displacement law: xdw ≈ t. In the case of diffusion in a homogeneous
medium or on a regular lattice, dw = 2, independent of the topological dimension
d of the space in which the diffusion takes place; this can either be d = 1, 2 or 3.
It follows for the latter case the known formulation of the Einstein–Smoluchowski
diffusion law: r2 = 2dDt = 6Dt , where dw = 2 is set. The value of r reaction is
difficult to measure (at least at the beginning of the precipitation) so that when the
hygroscopic potassium iodide is used, the function rl = rl(t) has to be estimated
using the Einstein–Smoluchowski relation: r2 = 6Dlt . Dl is the estimated effective
diffusion coefficient for those diffusion processes, which lead to the dissolution of
the gel and thus to the displacement of the phase boundary solution/gel (Figs. 3.10
and 3.11).

This is a very surprising result! This is a value as it is typical for the impeded
diffusion on fractal networks of the percolation cluster type. The exponent dw > 2
is the dimension of the random migration on a fractal network embedded in three-
dimensional space. With the help of the Alexander-Orbach conjecture that the ratio
of the walking dimension dw to the dimension of the network d f on which the
random migration takes place, is equal to 3/2, the dimension d f of the underlying
spatial fractal can be estimated: it is for the observed case d f = 1.51. However,
for an extended percolation cluster in the three-dimensional space, the following

Fig. 3.11 Piecewise linear representation (thick line) of the function log(r) = f (log(t)) for the
Liesegang experiment depicted in Fig. 3.8 with the patterning of a web in the precipitated lead
iodide system at T = 5 ◦C. The thin line is the linear regression function. The walking dimension
of the migration is dw = 2, 25, the Stokes radius for r = 10 has the value r

∧ = 1, 14 Å, and the
diffusion coefficient for the redissolution of the gel was estimated to be Dl = 5.55∗10−6cm2s−1
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dimension should apply: d f = 2.5. This apparent disproportion of the dimensions
is to be understood if one considers that only those movements of the diffusing
particles are of importance for the displacement of the precipitation front, in which
the particle does not get lost in a dead end. But this is precisely the path of a single
particle under Brownian motion. The dimension of such a path is just d f = 1.5.
On the other hand, this is also the dimension of the set of all paths in a percolation
cluster, leading from one point of the clusters to another point of the same cluster,
without taking notice of the dead-ends. The amount of all these paths is called the
“backbone” of the percolation cluster.

A particle that falls into a dead end will be trapped in this for a long time, and
with subsequent particles it will most likely form a no more movable crystal in such
a dead end. According to this assumption a movement of the diffusing particles
happens only on the backbone of the percolation cluster, provided they are important
for the measurement of the front displacement.

This concept of the structure of the space in which the diffusion takes place,
derived from the determination of the scaling exponent dw, suggests inter alia that
the role of agar–agar in the transition from the sol to the gel is the formation of a
whole vessel-filling percolation cluster, still containing many sol particles.

Between this agar–agar percolation cluster and the agar–agar sol particles, a
further percolation cluster extends to the aqueous phase solution in which the migra-
tion processes of the ions and nuclei’s still to be discussed take place. This percolation
cluster consists of the system of holes and pores of the gelmaterial—in our case agar–
agar. In this sense, agar–agar gel allows the formation of the aqueous percolation
cluster on which the migration takes place, but it also forms the “solid” framework
which keeps hold on largely the precipitation products at their sites of formation, for
example in the “dead ends”.

3.3 Diffusion of the Ions or Crystal Nuclei?

The question now arises as to which particles are actually involved in their diffusion
is considered here? Let us estimate the order of magnitude of the diffusing particles
starting from the modified Einstein–Smoluchowski relation and our experiments.
Forming the logarithm of this relation yields the value for the axis section C of the
straight line equation in the three-dimensional case with the topological dimension
d = 3 of the embedding space:

rdw = 2dDt = 6Dt

log r = 1/dw log t + 1/dw(log D + log 6)

C = 1/dw(log d − log(2d))
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The experiments show that this constant C assumes values between C =
−1 to C = +1 under our conditions i.e. using the natural logarithm and the time
unit: hours. This gives values for the diffusion coefficient in the range between:

D = 5·10−6cm2s−1 to D = 5·10−4cm2s−1.

logD = dwC − log(2d)

D = exp(dwC − log(2d))

If dw > 2, let us write dw = 2+ϑ, then r2/t is no longer a constant, but a function
of r:

r2+ϑ = r2rϑ = 2dDt

r2/t = 2dD/rϑ

D = D/rϑ .

The further the diffusion front moves away from its starting point, the smaller
becomes this diffusion functionD, the more diffusion appears to be inhibited. If the
migrating front has covered the distance of 1 cm, the classical diffusion coefficient
is formally returned. Thus, at a greater distance, the value of the diffusion function
D is less than the diffusion coefficient D; At distances r , which are less than 1 cm,
the value of D is therefore greater than the diffusion coefficient D.

From the knowledge of the diffusion coefficient D or of the diffusion functionD
the radius r of the diffusing particles assumed to be ideal spheres can be estimated
by use of Einstein’s relation for diffusion in the three-dimensional space:

D = kT

6πηr
or D = kT

6πηr
respectively.

η denotes the dynamic viscosity of the medium through which the diffusion takes
place. Assuming that the viscosity η of the water at 20° Celsius, is approximately
η = 1 ·10−2gcm−1s−1 and using the equation given by Einstein (1905) for the radius
r of the particles

r = kT/6πηD and r = kT/6πηD

respectively, the order of magnitude of 0.5 to 3 · 10−8 cm can be estimated for the
radius r of the walking particles depending on the distance r traveled. For the average
radius of the diffusing particles is, of course, a function of the distance traveled: the
radius r increases for dw > 2 as the distance increases.

These values r are typical for ionic radii in diluted aqueous solutions, if these are
determined from measurements of the ion mobility or from diffusion measurements
of the type described here with the aid of the Stokes law. At the temperature of 18
°C where the dynamic viscosity of water is η = 1.041 · 10−2Poise (g cm−1s−1), the
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following Stokes radii r of the ions are obtained: J−: 1, 16Å, CrO2−
4 : 1.08Å, and

K+: 1.21Å [17]. These stokes radii are considerably smaller than the crystal radii of
the ions, e.g. for J−1: 2.16Å, Pb2+: 1.32Å and for K+: 1, 33Å [18]. The Stokes radii
are an expression of the mobility of the ions in the solvent. The smaller the Stokes
radius, the more mobile is the ion. The above-mentioned estimation of the function
rl = rl(t) with r2 = 6Dt for the displacement of the solution / gel phase boundary
in the re-dissolution of the gel due to the use of e.g. KJ is now carried out in such a
way that at a distance of r = 10cm, the Stokes radius of the observed anion comes
out,—which in this case is the iodide ion—which is known from the literature (cf.
Fig. 3.11).

If dw = 2, then for every ionic species in a particular solvent is obtained a specific
radius. A remarkable fact of the Liesegang experiments is that for dw > 2 a Stokes
radius r is obtained which increases steadily with time or with the distance from
the starting point, whereas for dw < 2 a constantly decreasing Stokes radius r is
obtained.

As a consequence, in the Liesegang experiments, the Stokes radius is thus no
longer an ionic- and solvent-specific constant.

A growing Stokes radius r of the ions at dw > 2 could be understood if it is
assumed that in the course of the experiment more and more slowly growing nuclei
of the precipitous sparingly soluble salt are involved in the diffusion. This would
make it possible to describe the disabled diffusion which we previously tried to
understand with the help of the idea of a hike on a fractal percolation cluster.

3.4 Accelerated Diffusion—Chemical Turbulence

However, those experiments generate problems for the interpretation for which dw <

2—at least at the beginning of the experiment. At the beginning for r < 1cm,
unusually large stokes radii r are observed, which are rapidly becoming smaller
as time passes. This could be explained by the fact that the diffusion here begins
with many but relatively small instable nuclei, which then decay with time so that
the mean Stokes radius decreases steadily. In this way, an accelerated diffusion is
realized, since with any decay of a nucleus more and more diffusing particles are
formed at the respective point of decay. The diffusing and subsequently dissolving
or disintegrating nuclei lead in this way temporarily to a correlated movement of the
later on still smaller nuclei or ions respectively resulting from the dissolution.

This correlated movement takes place only for short periods, and is caused by
the chemical process of the resuscitation of even still very small nuclei of the spar-
ingly soluble salt. With good reasons one can describe this temporarily correlated
movement which is caused by the dissolution process as chemical turbulence. In
this context, turbulence means nothing but the fact that particles for a certain time
perform a correlated movement whereby they become smaller and smaller and thus
accelerate the diffusion of the ions or molecules of the precipitate.
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This explanation, however, appears to be at odds with the assumptions of nuclei
growth in inhibited diffusion. How can one assume at one time of a growing nucleus
radius r, but the other time from a shrinking nucleus radius r? The experiment might
help us out of this dilemma.

In a series of experiments one has to distinguish, as Liesegang remarked already,
between the initial phase with accelerated diffusion (dw < 2) and a final phase with
impededdiffusion (dw > 2).Within the frameworkof the approachoutlined here, this
behaviour, which combines the two approaches described above, can be explained
as follows:

At the beginning of the diffusion process, when the external electrolyte is brought
into contact with the internal electrolyte, very many small nuclei of the sparingly
soluble salt are created spontaneously, i.e., on a very short time scale and in a very
small region �r direct at the contact zone, i.e. at the phase boundary solution / gel
due to a situation of local over-saturation therein. Their radius is so small that they
can still diffuse into the gel at a sufficient rate.

On the other hand, they are thermodynamically unstable because of their small-
ness, provided that their radius has not yet reached the critical radius for autonomous
crystal growth.

In this way an accelerated diffusion (dw < 2) is to be expected at the beginning
of the Liesegang experiment. In the later course the diffusion is then taken over more
and more by the ions.

Of course, one has to take into account the fact that some stable nuclei are formed
over time,whichmay have a considerable influence on the diffusion during the course
of the experiment so that the average Stokes radius gradually increases again after a
sufficiently long period of time. For this assumption, however, it must be assumed
that very small crystal nuclei can already be stabilized.

Starting from the results of a group of theoretical physicists in Rostock around
Ulbricht et al. [19], it is justifiable to assume that even very small nuclei can be
thermodynamically stabilized by blocking them in sufficiently small cavities. Due
to its porous structure, a gel has a large number of differently sized pores, including
those which are sufficiently small to stabilize the very small nuclei. In this way we
can also describe the slow growth of the Stokes radii in the inhibited diffusion.

In the fractal description of these phenomena, these stabilized small nuclei serve
to produce more and more dead-end roads, so that the diffusion of the ions and of
the small crystal nuclei on the percolation cluster is more and more hindered.

3.4.1 Processes in the Precipitation Front

We find out a lot about the diffusing particles and the structure of the space in
which the diffusion takes place by use of the Einstein–Smoluchowski relation of the
mean shift of the precipitation front in diffusion processes and the Stokes–Einstein
interpretation of the diffusion coefficient. However, the question remained open to
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what role the nucleation plays for the formation of the visible aggregation cluster in
the area of the shifting front some time after the beginning of the experiment.

Diffusion of the small ions of the external electrolyte, e.g. the iodide ions, is faster
than the diffusion of the nuclei and also much faster than the diffusion of the stable
crystals or even the aggregation clusters, due to the lower Stokes radii, as we have
seen above. For example, if such a crystal or cluster would have a radius of about
100 · 10−8cm, its diffusion coefficient would be smaller by a factor of 10−2 than that
of the ions. It is therefore reasonable to assume that large nuclei or crystals diffuse,
if at all, only slowly, so that they are not important for the frontal shift. Moreover,
the relatively few small nuclei that develop in the precipitation front, as long as they
do not dissolve immediately on account of their small size, migrate only so long as
they come together with other particles and are localized in a kind of agglomeration
cluster or crystals in the agar–agar gel—for example in the dead-ends of the agar–agar
percolation cluster, or even forming new dead-ends.

The very small nuclei that are created in the area of the front have only one a
relative short lifetime in which they contribute to the shift of the front next to the
ions. In space, far behind the fast-moving front area these small nuclei are caught by
the already existing germinating aggregates.

Moreover, in the space behind the front, there are hardly any free ions of the
internal electrolytes, so that, if nuclei do not make cause for the formation of ions
again, there is scarcely any nuclei formation, so that this space can be filled with the
ions of the external electrolyte almost unimpeded.

For the displacement of the front, in addition to the diffusion of the nuclei, are
only those diffusion processes of the ions of the external electrolyte of importance,
which take place within the front in the direction of the concentration gradient of the
internal electrolyte. Moreover, they are only of importance as long as they have not
yet fallen into germination or cluster formation, which occurs immediately in front
of the front and thus marks the front boundary of the front area.

In other words, only those diffusing particles contribute to shift of the precipi-
tation front, which traveled the distance �r in the in the mean time �t within the
precipitation front. Thus, the path from the starting zone of the experiment (i.e. from
the front to the time t0 = 0) just to the actual front is not covered by a single diffusing
particle, but by a large number of particles, which travel this path in common only for
a short distance �r or a short time �t long respectively—until their destruction as a
nuclei. If �r and �t are small enough, the set of these many partial paths is exactly
comparable to the motion of a particle on the backbone of a percolation cluster, or
the Brownian motion of a particle.
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3.5 Pattern Formation

The fractal patterns mentioned at the outset, which, like root splints, evenly pass
through the test tube, are very illustrative examples of a diffusion of the nuclei which
have led to the formation of structures by an aggregation mechanism. In the light
of this discussion, it is also quite clear that fractal spheres are formed in a three-
dimensional reaction arrangement (Fig. 3.12). If one wishes to understand the macro
scopic structure formation, in particular also the formation of helical surfaces and
periodic disks, it seems unavoidable to start from these aggregation clusters and the
mechanism of their formation.

The concentration of the inner electrolyte determines to some extent the concen-
tration of the nuclei of the sparingly soluble salt which are formed in the front region
of the diffusion. In a critical region of the number of these nuclei, formation of aggre-
gation clusters occurs due to the diffusion of the nuclei. These clusters, which are
formedby themechanismof “diffusion-limited aggregation” (DLAmechanism), also

Fig. 3.12 Fractal PbJ2 Liesegang ball created in 5% agar–agar gel at 20 °C using a test tube of
3 cm in diameter; a left: at the beginning; b right: after almost one week, so that one can observe
the formation of diffuse “rings” and granulated collections of crystals. (Photo … P.J.Plath)
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stabilize the still very small nuclei when they cling to the clusters [20]. These aggre-
gation clusters then form a more or less dense, random fractal network in the front
region [21]. Depending on the prevailing concentration ratios in the front area and the
mobility of the nuclei in the gel, the formation of largely “homogeneous” webs can
occur (see Figs. 3.7 and 3.9) or one gets an almost dense, precipitation without any
periodic structure, for example if one works with a high concentration of the internal
electrolyte (Figs. 3.10 and 3.13). One can also observe a granular precipitation struc-
ture of the only rarely occurring, locally strongly limited DLA clusters, which can

Fig. 3.13 Fractal onion-shaped Liesegang sphere of PbJ2. The outer electrolyte diffuses by a capil-
lary into the agar–agar gel. Care has been taken to ensure that there is no overpressure to flow of the
outer electrolyte into the gel so that hydrodynamic effects can be precluded. (Photo … P.J. Plath)



64 3 Liesegang Structures

be transformed into well-formed crystals under certain circumstances (Figs. 3.5 and
3.9 right).

Now, however, these fractal spheres usually consist of a multitude of delicate
fractal spherical shells, which, like the shells of an onion or, more precisely, how the
fractal leaves of the savoy cabbage surround the center of the diffusion, what needs
to be explained as well (Fig. 3.13).

By the formation of the “diffusion-limited aggregation cluster” (DLA cluster)
which stabilize the nuclei via adsorption, the area of the front depletes over time
with free-diffusing nuclei. Only when a sufficient number of new nuclei have formed
again at some distance a new formation of a layer of DLA-clusters of aggregating
nuclei can occur (Fig. 3.14).

As a result, in a specific range of the concentration of the internal electrolyte, a
spatially periodic structure formation occurs in the precipitation patterns in the form
of concentrically successive ball shells. In the test tube experiment, segments of this
series of ball shells are cut out, like cutting out the housing of an apple with the
apple drill. Ball clusters are formed into disc-shaped segments which pass through
the test tube in a periodic arrangement. However, the spherical shells themselves,
or their corresponding segments, consist more or less two-dimensional of fractal
precipitation patterns (see Fig. 3.15).

Interestingly, the three-dimensional test arrangement also shows that a series of
helixes, helical surfaces or helicoids, which are becoming increasingly larger, extend
from the diffusion center, on which one can pass from one fractal ball shell to the

Fig. 3.14 A gel disc taken from the center of a Liesegang sphere (see Fig. 3.15) zig-zag patterns
connecting neighbored ball shells. The experiment has been executed in a beaker glass of about
10 cm in diameter. The potassium iodide has been placed before in a small soluble capsule in the
center of the beaker glass at the beginning. (Photo: S. Hollatz, T. Plikat, U. Sydow, P.J. Plath)
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Fig. 3.15 a Left: Segment from a ball shell of a Liesegang ball, which reveals the fractal character
of the concentric precipitation. This segment was obtained by a suitable cut from the periphery
of the Liesegang sphere; b right: A disc-shaped segment produced by a test tube experiment. The
fractal structure of this disc is clearly recognizable. (Photos: S. Hollatz, T. Plikat, U. Sydow, P.J.
Plath)

next, as on spiral flights or spiral staircase in the tower respectively. On the more
or less two-dimensional sections (Fig. 3.14) these spirals can be recognized on the
sharp zig-zag patterns, which connectmutually displaced circular arcs. It appears that
such helical surfaces are the result of random “disturbances” in the form of special
accumulations of DLA clusters. The screw surfaces, as well as the disk surfaces, can
be of a fractal struture (see Fig. 3.15), or even appear almost homogeneous to the
observer at the macroscopic level. If the test tube is again used to cut sections from
the three-dimensional structures, it may happen that a screw surface is more or less
concentric with the axis of the test tube (Fig. 3.7). In the test tube such a structure can
then form the dominant structure, because of the spatial restrictions which is very
typically for structure formation in synergetic systems.

However, it is not always the case that only one or the other structure—helical
surfaces, disk surface or granular precipitation—are formed, but these structures can
be transformed into each other within only one test tube for example (Fig. 3.9).
The distance from the starting point of the diffusion process acts as a bifurcation
parameter with respect to the patterns. Of particular interest in this context are test
tube experiments in which a transition from intertwined double spirals to single
spirals is found.
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3.6 Simulation

In all the previous explanations on the experimentally observed situation on
Liesegang systems, the macroscopically observable structure formation was only
explained in an unsatisfactory way. This is caused in the difficulties of modeling,
which, if it is to be computationally verifiable, often have to make so simplifying
assumptions that it is difficult to interpret chemically, or restricted only to certain
partial aspects, e.g. the nucleation in the precipitation front. Whatever a model
is designed today, the patterns observed in the chemical experiment must not be
included in the modeling process, but these structures must also result in the model
as a result of the self-organization of the system. In order to illustrate this, a simple
simulation is to be presented herewhich is based on the experiments for the formation
of a structure in a cylindrical vessel between two test tubes of different diameters
(see Fig. 3.16).

For this purpose, let us imagine a cylindrically closed cellular automaton, where
the state of a cell is described by a vector−→z = (J, Pb, PbJ )with three components.
The temporal development of a cell is co-determined by the states of the cells which
correspond in the square lattice of a vonNeumann neighborhood. The components of
the vector −→z represent the iodide and lead ion content as well as the amount of lead
iodide nuclei in the spatial area of the cylinder mantle reactor which is represented

Fig. 3.16 Liesegang structure formation in the cylindrical vessel between two test tubes concen-
trically arranged about their longitudinal axis. a left: ring patterns; b right: spiral formation in the
lower centre. (Photos: U. Sydow, R. Lipski, P.J. Plath)
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by the cell: J, Pb, PbJ ∈ N
+. This one vector automaton can also be understood as

a superposition of three cylindrically closed two-dimensional scalar automata—an
iodide, a lead and a lead iodide automaton—with one-component (scalar) states of
the cells.

In the so-understood scalar “lead automata”, the cells are randomly and homo-
geneously filled with lead ions, which then can diffuse almost unhindered on this
two-dimensional automaton. Diffusion is understood here to mean the transition of
the lead component of a cell from the value Pb(t) at time t to the value Pb(t) − 1
at the time t + 1: Pb(t + 1) = Pb(t) − 1 when during this time step the state
Pbad j (t) of a randomly selected, adjacent “von Neumann cell” changes by one with
the probability wPb,ad j ≤ 1: Pbad j (t + 1) = Pbad j (t) + 1.

In the scalar “iodide automaton” the iodide ions “diffuse” only from one side (the
upper) in the corresponding way “upside down” with the probabilitywJ = 1 into the
“empty” automaton.When all cells of the lead and the iodide component have carried
out the diffusion process at time t, a question is asked whether the two components
J and Pb have values different from zero in each cell. According to the minimum
of the two components in each cell, the third component PbJ of the state vector
(J, Pb, PbJ ) now receives an additional assignment by the value min{J, Pb} at
time t . If a cell has thus obtained a non-zero value of the PbJ component, it also
undergoes diffusion in the next time step, provided the PbJ value is still small
enough. The probability wPbJ of the diffusion of the PbJ component decreases
with increasing value of this component and becomes zero when a randomly selected
threshold value PbJc = crystal is reached which corresponds to the transition from
the unstable nucleus to the stably growing crystal.

The acceleration of the diffusion at the start of the experiment is simulated by a
larger “jump distance” during the first diffusion step of the iodide component away
from the starting line.

When a “crystal” has arisen in the cell, i.e. when the PbJ component over-stepped
the threshold of crystal formation: PbJ ≥ cryst this cell represents an insuperable
obstacle for the diffusion of Pb and J component. However, if a PbJ component
with 0 > PbJ < cryst joints a cell with PbJ ≥ cryst it will agglomerate with a
certain probability.

It is of particular interest that in this simulation, which is based on a simple model,
structure formation in the form of rings and spirals on the cylindrical automaton
perpendicular to themain diffusiondirection of the iodide component canbeobserved
(Fig. 3.17). In addition, if the front-shift of the PbJ component is measured as a
function of time, the simulation results surprisingly with scaling exponents dw dw

of a similar size to the chemical experiments (Fig. 3.11).
The role of the particular, fractal structure of the gel is neglected here, or is taken

over by the formation of the PbJ cluster components. This raises a very interesting
question from a chemical point of view, which has not yet received sufficient atten-
tion: towhat extent does the fractal of the resultingDLAcluster of thePbJ2 lead iodide
agglomerates influence the reaction diffusion process in the chemical experiment?
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Fig. 3.17 Formation of spirals composed of DLA clusters in the simulation of experiments with
cylindrical symmetry by means of a two-dimensional, cylindrically closed three-component vector
automaton. The black points in PbJ2 test tube represent bigger Clusters of PbJ2, which are already
fixed in the gel, whereas the white points reflect small cluster which can diffuse yet, up to the
moment where they touch each other or the bigger clusters

3.7 Twisted Scroll Waves—Much Too Early is Already Too
Late

In 1988 I came together with my wife directly to Eisenach from the “8th Winter-
Seminar at Zeinisjoch” (27.2.–6.3. 1988) to take part at the workshop “Dynamics
of Networks” (6.3.–11.3. 1988). We were invited by Prof. Werner Ebeling from the
Humboldt University of Berlin.

The Eisenach workshop was extraordinarily impressive for us in every respect.
On the rice to the nearby wintry Wartburg it was icy cold, slightly snowy and

partly very slippy. Up on the Wartburg I met Harald Engel again and we agreed to
continue our joint work on the Liesegang structure-building phenomena.With a joint
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lecture at the 8th Winter Seminar on the Zeinisjoch, this work had already begun
to be promising. Harald Engel assumed that the model of Panfilov et al. [22] on
the instability of twisted scroll waves might be a way to understand and describe
mathematically the Liesegang spirals and screw surfaces in the test tubes (Fig. 3.18)
I found this idea quite interesting and liked to go to his offer of further cooperation
because I had known Harald Engel for several years, among others, of his stay in
1986 in my working group in Bremen.

For me, however, this meant that we first of all had to greatly expand and improve
the experimental base. However, only chemistry students of the 7th and 8th semester
were available to me in their research internships. The work dragged on. As the
study progressed, students’ interests changed and most of them did their diploma
theses in other fields of research. Thus, the experimental know-how could not be
accumulated fast enough to be able to trace the formation of the spiral formation
sufficiently precisely and repeatably, as hoped.

When I finally gained the above-mentioned insights in 1992 and submitted them to
the popular science journalWissenschaft und Fortschritt, which was continued after
1990 by H. Haken and W. Ebeling as the new editors. However, the science-political
agenda in Germany changed completely. The magazine ceased its publication. The
GDR did not existed anymore since 1990, its scientific organizations were dissolved,
my local cooperation partners now worked in precarious employment relationships.

But finally, I got a diploma student—Claudia Müller, who was able to devote
herself to the topic of the Liesegang structural formations. But she found no spirals,
but precipitation patterns, reminiscent of slightly rolled leaves. She called that tongue
formation. She worked out everything experimentally very carefully, but now we

Fig. 3.18 Panfilov’s Models for twisted Scroll waves
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lacked the cooperation with the theoretical physicists, especially with Harald Engel.
Panfilov’s work had been forgotten, or simply it did not seem to be applicable. His
twisted scroll waves did not move like our Liesegang leaves and above all they did
not “grow” in the Liesegang way. In our opinion there was no explanation at that time
for the observed phenomena and thus no prospects for further work in this area. The
works of K-H. Jacob had not yet appeared. Claudia Müller went after her diploma
thesis quite other ways.

However, we had found with the “tongues”-structures a whole new kind of pattern
formation in precipitation reactions in gels (Figs. 3.19 and 3.20)!

The idea for her diploma thesis originated with the preliminary experiments in
the delivery systems potassium chromate and potassium dichromate respectively as
external electrolyte and lead nitrate as inner the electrolyte.

Fig. 3.19 Example for the
new precipitation pattern in a
test tube: tongues-formation:
inner electrolyte 0,21 M
Pb(NO3)2; external
electrolyte: saturated
potassium chromate KCrO4
solution; maturing time of
the gel < 10 h. a side view:
splitting of the tongue, b
frontal view: the same tongue
viewed from a perpendicular
position. (Photo: C. Müller,
P.J. Plath, 1993)
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Fig. 3.20 Examples for twisted “tongue”-structures; Photos (5) und (6), experiment A.1.10a;
inner electrolyte: 0.29 M Pb(NO3)2, external electrolyte: saturated potassium chromate solution;
maturation time of the gel: t < 10 h; (Photos C. Müller, P.J. Plath, 1993)

It turned out that a very high concentration of lead nitrate in agar–agar led to
completely novel patterning of lead chromate precipitates.

Compared with the known ligaments or spirals in gels, so-called “tongues”
appeared here, which exerted not only influence on the agar–agar, which was
dissolved in places, but showed completely different growth behaviour.

The experiments with “tongue” formation lasted longer than 60 days, so they last
longer than those at lower levels of lead nitrate.

Thus, the question arose as to which lead nitrate concentration the transition from
the known bands to the new “tongue” structures occurs and how the pattern behaviour
is in the nearer concentration environment. Furthermore, the dependencies of growth
rate and different “tongues” species on the concentration of lead nitrate should be
investigated.

In the experiments, themain focuswas on the differentiation of structure formation
in the case of potassium chromate or potassium dichromate as external electrolyte.

The only experimental parameter that varies to a greater extent andwhich has been
shown to be dependent on structure formation is the concentration of the internal
electrolyte lead nitrate.
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Other parameters such as the water temperature of 18° Celsius, the concentration
of the outer electrolyte, the gel strength and the light conditions were kept constant,
only the maturation time of the gel was between one and two days.

In the test series with potassium dichromate as external electrolyte, the lead
nitrate concentration was between 0.1025 M and 0.13 M, in addition, experiments
were also performed with 0.2 molar solutions.

When using potassium chromate, the range was more diversified, the concentra-
tions were between 5·10–3 M and 0.35 M lead nitrate. In doing so, some concise
observations could be made:

• The plots of the progressive diffusion front or the “tongue” tip versus time
gave characteristic curves for banding with potassium chromate or potassium
dichromate and for the formation of the tongues

All potassium dichromate experiments show macroscopic growth of the lead
chromate crystals.

• Both in the range of 5·10–3 M to 0,13 M lead nitrate in the experiments with
potassium chromate and in all other experiments with potassium dichromate,
only bands developed. In no case rings were visible.

From a concentration of 0.12 M lead nitrate, the hitherto unknown “tongues”
structures were formed with potassium chromate as the outer electrolyte.

This is truly a complex system in the sense that its dynamics cannot be described
only by several coupled equations of chemical kinetics, but that also crystal formation
and thus phase transitions play a role, and moreover, that the agar–agar gel which
serves as a “solvent” is structurally altered by the reaction. For example, the fact
that these “tongue” structures only occur when using potassium chromate, but not
potassium dichromate, is a clear indication that the acid concentration in the gel plays
a very crucial role:

2CrO2−
4 − 2H+
yellow

� Cr2O
2−
4 + H2O
orange

The acidity determines the form in which the chromate ion is present, as chromate
ion or as dichromate ion. In a slightly alkaline solution at pH = 8, especially CrO2−

4
ions are present, in very dilute, whereas in practically neutral aqueous solutions at
pH = 6.2 almost exclusively the hydrogenchromate ion HCrO−

4 is to be found. In
strongly acidic solutions at pH values below two: pH < 2 also H2CrO4 are present.
However, hydrogen chromate ions dimerizes easily by dehydration to the dichromate
ion even in aqueous solutions at room temperature:

2HCrO−
4 ↔ H2O + Cr2O

2−
7

Thus, every chromate solution also contains dichromate ions Cr2O
2−
7 and each

dichromate solution in turn also contains chromate ions CrO2−
4 . The equilibria are

distributed as follows [23]:
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pH > 7 → CrO2−
4 ; 2 < pH < 6 → HCrO−

4 and Cr2O
2−
7 ; pH < 1 → CrnO

2−
3n+1

The saturated solutions used for the experiments resulted a pHof 9.6 for potassium
chromate K2CrO4 and the value for pH = 3.8 for potassium dichromate K2Cr2O7

at room temperature.
Thus, the agar–agar gel is dissolved in the experimentswith potassium dichromate

already during the overlaying with the outer electrolyte. The germs, from which
subsequently macroscopic crystals are formed, remain partly in the resulting larger
cavities and find an environment conducive to their crystal growth.

However, the precipitation reactions

2Pb2+ + Cr2O
2−
7 + H2O → 2PbCrO4 ↓ +2H+

and

Pb2+ + CrO2−
4 → PbCrO4 ↓

take place in a gel loadedwith lead nitrate Pb(NO3)2 as the inner electrolyte. Aqueous
solutions of lead nitrate, however, are acidic! (see Fig. 3.21).

In these experiments, we are dealing with a chemical system that itself already
has a very complicated kinetics. In particular, at a higher lead nitrate concentration,
the precipitation event will certainly be largely determined by the experimantally
observed pH value of the internal electrolyte.

Fig. 3.21 pH values of aqueous Pb(NO3)2 solutions in the concentration range of the experiments
from 0.05 M to 0.35 M
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Here, in the case of potassium chromate as the outer electrolyte, the new “tongue”
structures occur, at 0.21 M Pb(NO3)2 as straight growing tongues filled with potas-
sium chromate solution and at 0.29 M Pb(NO3)2 correspondingly twisted, likewise
filled tongues.

3.8 Agates and Other Mineralogical Liesegang Structures

As early as 1914, R. Liesegang [27] wrote his book on the agates, referring directly
to his experiences with pattern formation in precipitation reactions in gelatin. The
agates, consisting essentially of cavities enclosed in cavities, which may occur in
the modifications chalcedony, quartzin, quartz or opal and silicate gelatin, must have
been formed from aqueous silica sols:

Die Kieselsäure kann nämlich ursprünglich eine gallertige Beschaffenheit gehabt haben und
erst später in die dichte, wasserarme Form übergegangen sein. Diese Anschauung erleichtert
dann zugleich die Erklärung der Bänderung. Denn inzwischen hat die physikalische Chemie
festgestellt, daß solche gerade in Gallerten leicht entstehen können, wenn man chemische
Prozesse darin sich abspielen läßt.

The silicic acid may have originally been of a gelatinous nature and only later changed into
the dense, water-poor form. This view facilitates then also the explanation of the banding.
In the meantime, physical chemistry has established that such bands can easily be formed
in jellies if chemical processes are allowed to take place in them.

As an example, he cites the precipitation reaction of silver chromate in gelatin and
in ealso react with water to form hydroxilicxplaining the resulting pattern formation,
he refers in detail to Wi. Ostwald’s supersaturation theory of 1896 (Fig. 3.22).

The decisive difference between the precipitation reactions in the jellies and the
pattern formation in the agates, especially in the fortress agates, is that the latter is a
transformation of the various modifications of the silicates or the crystallization from
silicate suspensions or galenics and not the classical, ionic precipitation reactions in
which the gelantine is only the diffusion-inhibiting carrier for the reaction and the
resulting germs.

Thus, the classical agates are usually not colored and their banding is only recog-
nizable by the different optical behaviour of the variousmodifications of the silicates,
which varies between white and different shades of gray (Fig. 3.23).

When comparing undyed agates with images of two-dimensional Liesegang
precipitation patterns, however, it is also quite clear that the banding is due to the
formation of “chemical waves” or “autowaves” which annihilate each other. In case
the “fortress agates” (see Fig. 3.23) the essential processes seems to be crystalliza-
tion or recrystallization instead of a precipitation. The waves migrate from the outer
sphere of the agates into their inside. Liesegang already points out that, at the time
of the formation of the agates, the available cavity had to be filled with not yet
crystallized silica jelly [24].
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Fig. 3.22 a imitation of the agate structure with silver chromate on a glass plate; Copy from “Die
Achate” by R.E. Liesegang (1915), inner electrolyte Ammonium dichromate (NH4)2Cr2O7 in citric
acid gelatin; outer electrolyte silver nitrate solution 25 percent. b blue colored agate
(Photo P.J. Plath)

Fig. 3.23 Undyed agates of the type “fortress agate” (“Festungsachat”); left: with a cavity covered
with quartz (Quarzdruse). (Photo: P. Plath)

Das Vorkommen von weicher Kieselsäuregallerte in den Hohlräumen von Gesteinen ist gar
nicht so selten. Zuerst fand G. Spezia sie (1899) in einer Spalte des Gneises beim Bau des
Simplontunnels. Dann wies besonders J.H. Levings (1912) auf ihr Vorkommen in einigen
australischen Minen hin, als in einer Diskussion über die Gold-Quarz Arbeit von Hatschek
und Simon daran gezweifelt wurde.

In den Blasenräumen der Basalte, welche denMelaphyren (Gestein vulkanischen Ursprungs
und porphyrischer Struktur mit großen Einschlüssen, d. Autor) sehr nahe verwandt sind,
findet man zuweilen Opale. Man nimmt gegenwärtig an, daß diese nur aus Kieselsäure-
gallerten hervorgegangen sein können. Von besonderer Wichtigkeit ist in dieser Beziehung
die Tatsache, daß die Dreher-Sammlung desMineralogischenMuseums in Berlin zwei große
Brasilianer Achate enthält, deren Inneres Opal ist.

The occurrence of soft silicic acid gallates in the cavities of rocks is not so rare. At first
G. Spezia found them (1899) in a fissure of gneiss during the construction of the Simplon
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tunnel. Then especially J.H. Levings (1912) pointed out their occurrence in some Australian
mines, when it was questioned in a discussion about the gold-quartz work of Hatschek and
Simon.

In the vesicular cavities of basalts, which are very closely related to melaphyres (rocks of
volcanic origin and porphyritic structure with large inclusions, author’s note), sometimes
opals are found. At present, it is assumed that they can only have been formed from silicic
acid gallates. Of particular importance in this regard is the fact that the Dreher collection
of the Mineralogical Museum in Berlin contains two large Brazilian agates, the interior of
which is opal.

Silica gels now belong to the large group of hydrophilic colloids [25] the aging of
which is due to dehydration. Intermolecular dehydration produces higher molecular
weight silicic acids In this case, higher molecular weight silicic acids H2n+2SinO3n+1

are formed, for example ortho-di-silicic acid from ortho-silicic acid.

2H4SiO4 → H6Si2O7 + H2O

Finally, the meta-silicic acids (H2SiO3)n with n > 3 which are formed as ring-
shaped, linear, band or sheet-shaped polymers, and at the end, with complete
elimination of the chemically bound water, quartz.

But how are the silicic acids inclusions in the igneous rocks formed? The double
silicate or alumosilicate potassium feldspar or orthoclase K(AlSi3O8) is the main
constituent of the igneous rocks such as e.g. Basalt and porphyry. With molten
alcalicarbonate (e.g., soda), it is easy to produce sodium silicate and carbon dioxide
[26].

KAlSi3O8 + 3 Na2CO3 → 3 Na2SiO3 + KAlO2 + 3 CO2

Wässerige Lösungen von Alkalisilikaten reagieren stark basisch. Die Silikate sind in diesen
Lösungen weitgehend hydrolytisch gespalten.

2 Na2SiO3 + H2O → Na2Si2O5 + 2 NaOH

Säuert man die Silikatlösungen an, so wird zwar die Kieselsäure sofort in Freiheit gesetzt,
aber sie fälltmeist nicht gleich aus, sondern bleibt zunächst in Lösung. Erst nach längerer Zeit
beginnt Ausflockung. Es beruht dies zum Teil darauf, daß die Kieselsäure in einer wasser-
löslichen, monomolekularen Form auftreten kann, die sich je nach Versuchsbedingungen
schnell oder langsam unter Wasseraustritt zu höhermolekularen, schließlich zu praktisch
unlöslichen hochmolekularen Aggregaten kondensiert. Aber auch, nachdem die Kieselsäure
vollständig in unlösliche Form übergegangen ist, braucht noch keine Ausfällung zu erfolgen,
da sie kolloid in Lösung bleiben kann. Die Neigung der Kieselsäure, kolloide Lösungen
(Kieselsole) zu bilden, ist außerordentlich groß. Sowohl in sauren, wie in schwach basis-
chen Lösungen ist Kieselsäure in kolloidaler Form beständig. Durch Elektrolytzusatz erfolgt
meist keine Ausflockung, sondern, wenn die Lösung nicht zu verdünnt ist, ein langsames
Erstarren der gesamten Lösung zu einer Gallerte. Aus verdünnten Lösungen setzen sich
schleimige Niederschläge ab.
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Frisch dargestellte Kieselgallerte können bis zu 330 Mole H2O auf 1 Mol SiO2 erhalten.
Bei längerem Stehen (an mit Wasserdampf gesättigter Luft) beginnen sie allmählich
einzuschrumpfen, indem Wasser ausgepreßt wird, eine Erscheinung, die sich auch bei
anderen Gallerten findet (z.B. bei der Synthese von Zeolithen aus Alumosilikatgallerten;
Bemerkung des Autors) und die man als Synärese (see Remy p. 583).

In Form von kompakten Xerogelen (getrocknete Kieselgele; d. Autor) findet sich Silizium-
dioxid in der Natur als Opal. Das in gewöhnlicher Weise gefällte Siliziumdioxid und dessen
Gele liefern imallgemeinenkeine auf kristallineStruktur hinweisendeRöntgeninterferenzen.
Entsprechendes gilt auch für durch Ausscheidung von SiO2 aus Wasser bei gewöhnlicher
Temperatur gebildete Opale. Aus heißen, magmatischen Wässern gebildete Opale dagegen
geben, je nach ihrer Herkunft, für Christobalit oder für Quarz charakteristische Frequenzen.
Chalzedon ist ein gealterter Opal. Er ist demgemäß wasserärmer als dieser (oft ganz wasser-
frei) und weist schon mit gewöhnlichen Hilfsmitteln erkennbare kristalline Struktur auf.
Bei mikroskopischer Betrachtung, besonders im polarisierten Licht, zeigt er faserigen Bau.
Abarten des Chalzedons sind Achat, Onyx, Karneol, Heliotrop und Jaspis, … sowie der
Feuerstein, … (Remy p. 580)

Aqueous solutions of alkali silicates react strongly basic. The silicates in these solutions are
largely hydrolytically decomposed.

2 Na2SiO3 + H2O → Na2Si2O5 + 2 NaOH

If the silicate solutions are acidified, the silicic acid is immediately freed, but it usually
does not precipitate immediately, rather it remains in solution for some time. Only
after a longer time flocculation starts. This is partly due to the fact that the silica
acid can occur in a water-soluble, monomolecular form which, depending on the
experimental conditions, condenses rapidly or slowly under water outflow to higher-
molecular, finally to practically insoluble highly molecular aggregates. But even after
the silicic acid has completely converted into an insoluble form, precipitation need
not yet occur because it can remain colloidal in solution. The tendency of silicic
acid to form colloidal solutions (silica sols) is extremely high. In both acidic and
weakly alkaline solutions, silica is stable in colloidal form.The addition of electrolytes
usually does not cause flocculation, but, if the solution is not too dilute, the entire
solution slowly solidifies to forma jelly.Mucilaginous precipitates settle out of diluted
solutions.

Freshly prepared silica gels can contain up to 330 moles of H2O per 1 mole of SiO2.
During a longer period of standing (in air saturated with water vapor) they gradually
begin to shrink by squeezing out water, a phenomenon which is also found in other
gels (e.g., in the synthesis of zeolites from aluminosilicate gels; author’s note) and
which is called syneresis. (Remy -p. 583).

In the form of compact xerogels (dried silica gels; the author), silica is found in nature
as opal. Silicon dioxide precipitated in the usual way and its gels generally do not
provide X-ray interferences which indicate a crystalline structure. The same applies
to opals formed by precipitation of SiO2 from water at normal temperature. On the
other hand, opals formed fromhotmagmaticwaters provide frequencies characteristic
of either cristobalite or quartz, depending on their origin. Chalcedony is an aged
opal. Accordingly, it is less hydrous than the latter (often completely anhydrous)
and exhibits a crystalline structure that can be recognized even with ordinary tools.
Microscopically, especially in polarized light, it shows fibrous structure. Varieties of
chalcedony are agate, onyx, carnelian, heliotrope and jasper, ... as well as the flint...
(Remy p. 580).
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So at the beginning we have a silicate jelly in the cavities (comp. Fig. 3.24). It
is formed by hydrolysis of the salts of the adjacent igneous rocks and leads to an
alkaline reaction.

Themonomeric silicic acid anions also react with water to form hydroxilic cations
and the formation of OH− ions.

(SiO4)
4− + HOH → (SiO3(OH) )3− + OH−

The jelly or the forming gel ages, whereby the condensation process of the anions
of the poly-acids with elimination of water is the crucial process. But especially
the low-molecular meta-silicic anions can be hydrolytically split again by water.
However, if it is already higher molecular weight poly-hydroxo-silicates, then an
acidic reaction may occur:

Si4O11(OH)2)
8− + 3 HOH → 4(SiO3(OH) )3− + 4 H+

Fig. 3.24 An illustrative example of the filling of a cavity in the igneous rock with the silicate sol
or gel respectively via the filling channel visible above. The agate formation process begins only
after the filling of the cavity of all sides evenly
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Due to this constant regression of the monomeric hydroxysilicate ions, this aging
process is very slow!

The competition reaction is the condensation of the hydroxysilicate ions with the
release of water, which leads to the polymerization:

2(SiO3(OH))3− → (Si2O7)
6− + H2O

Due to the fact that locally high levels of proton can be formed, the polymerization
is enhanced, leading to a three-dimensional, fully amorphous and finally solid silicate
gel, the opal.

This causes shrinkage of the gel and partly contributes to the formation of cavities
in the interior of the resulting agate. The dehydration also happens in the presence
of non-chemically bound water!

In order to convert the purely silicate gel into the amorphous, but partially crys-
talline chalcedony, it would require OH− ions, formed almost exclusively in the “out-
side” of the igneous rock by dissolution of the alumo-silikates which are contained
therein. Penetrating by diffusion into the interior of the opal, they may dissolve the
amorphous structure of the opal “superficially” and in this way create low-molecular-
weight silicates which diffuse themselves and can thus partially transform the amor-
phous structure into a crystalline structure, the chalcedony. This “recrystallization”
then leads to the characteristic of the agates band structure.

Especially in the interior of the not yet fully polymerized jelly but caused by
the very slowly progressing polymerization constantly new protons are created that
neutralize the hydroxyl ions and propel the opalescence. This way enough water is
formed so that OH− ions can diffuse from the outside again.

If there are any other precipitable substances present in this whole event—or
even afterwards—it may come even to colorings of the tapes, like R.E. Liesegang
in his work “The Agates” describes in detail. The role of the local change in the pH
value described here is likely to be of importance for the location of the respective
precipitation reaction, which is very closely linked to the formation of chalcedony
ribbons.

3.9 Rhythmically Banded Sandstone

In his book “The Agates” R.E. Liesegang also described the occurrence of rhythmic
precipitations of iron compounds in sandstone.

In der Nähe von Münzenberg (im Sandsteinbruch Rockenberg, in der Wetterau gelegen; d.
Autor) findet man im Sandstein wundervolle braune, rote und gelbe Bänderungen, welche
von mehr oder weniger wasserhaltigen Eisenoxyden bewirkt sind. Sie gleichen oft, wenn
man von der viel gröberen Körnigkeit des Sandsteins absieht, ganz auffallend Achaten.
Dabei sind sie auch chemisch sehr nahe mit diesen verwandt. Denn die Grundmasse ist
bei beiden Kieselsäure, allerdings in verschiedener Verteilung. Und das färbende Prinzip
sind Eisenverbindungen und zwar diese in gleicher Verteilung. Dieses Gestein sei deshalb
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hier angeführt, weil es ganz besonders geeignet ist, uns zu zeigen, daß wenigstens in diesen
“natürlichenAchatNachahmungen” gar keine andereErklärungsartmöglich ist, als diejenige
durch eine rhythmische Fällung des Eisensalzes. [27]

In the vicinity of Münzenberg (in the Rockenberg sandstone quarry, located in the Wetterau;
the author) one finds in the sandstone wonderful brown, red and yellow bandings, which are
caused bymore or less hydrous iron oxides. They often look strikingly similar to agates, if one
disregards the much coarser granularity of the sandstone. Thereby they are also chemically
very closely related to them. This is because the basic mass in both is silicic acid, but in
different distribution. And the coloring principle consists of iron compounds, and these in
equal distribution. This rock is mentioned here because it is particularly suitable to show
that at least in these “natural agate imitations” there is no other possible explanation than
that of a rhythmic precipitation of the iron salt. [27]

These rhythmic precipitates of iron oxides in the sandstone are evidently also
typical Liesegang structures, which are due to the fact that iron ions diffuse from the
outside into the solid sandstone and precipitated as oxides in accordance with the
respective prevailing pH values become.

The crucial difference to the agates is that it is a sedimentary rockwith a proportion
of at least 50% grains of sand, i.e. of grains which, according to the general definition
of grain size, are between 0.063 and2mm in size. The grains of sand consist of various
minerals, but mostly of quartz with additives, e.g. of feldspar and lime [28].

The Bentheim sandstone type Gildehaus is a fine to medium-grained quartz sand-
stone which consists of at least 90% quartz grains, and whose grain binding is largely
caused by grain intergrowth. These sandstones can absorb a lot of water due to

Fig. 3.25 Liesegang’s ring formation (60 to 80 cm in size of the ring shown here) in the Bentheim
sandstone of the quarry near Gildehaus. (Photo: P. Plath) The “Gildehaus” type sandstone is known
for its distinctive Liesegang structures
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their porous structure (water absorption (atm.) 7.1 wt.-%;). Its yellowish Liesegang
structures are due to precipitated Limonite (brown iron ore) [29, 30].

The granular but porous structure of the sandstone requires that the penetrating
aqueous solutions must “flow” between the grains. These become in part “dissolved”
on their surfaces or “re-crystallized”. Thin superficial silicate gel layers similar to the
agate, are it formed around the quartz grains. These layers are the actual environment
for the Liesegang precipitation but also lead to grain intergrowth (Fig. 3.25).
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Chapter 4
Runge Pictures

Peter J. Plath and Ernst-Christoph Haß

Fig. 4.1 Runge picture (Experiment executed by C. Baum, October 1995) [1]

“Runge pictures belong to the group of fascinating gadgets whose aesthetics are
subject to the strictness of physical and chemical laws.” With this slightly pathetic
sentence, the former student Christof Baum at the University of Bremen begins his
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protocol to the experiments he carried out, with which he used his approach to the
old experiments of F.F. Runge wanted to prove (see Fig. 4.1).

But of course, he is absolutely right, exactly this approach, to make these
fascinating structures understandable with today’s methods and the knowledge of
synergetics that is our goal.

When Runge no longer carried out the precipitation reactions customary in inor-
ganic chemistry for determining a wide variety of chemical compounds in test tubes,
but instead started to carry them out on filter paper, he was also extremely fascinated
by the patterns that occurred. In his book “Zur Farbenchemie [2]”, published in 1850,
he wrote [3]:

Man macht diese Mischungen gewöhnlich in röhrenförmigen Glasgefäßen, die man
Probegläser nennt, und hat besonders darauf zu achten, daß von dem einen oder dem
anderen nicht zu viel oder zu wenig hinzugemischt werden, sonst kann es kommen, dass dem
Beobachter etwas sehr Wichtiges entgeht und er einen Stoff nicht entdeckt oder auffindet,
der bei abgeänderter Mischungsmenge sein Prüfungsmittel kenntlich gemacht haben würde.

Da mir bei meinen Arbeiten diese Unsicherheit zuletzt zu unbequem wurde, so sann ich auf
Abhilfe und fand sie imWechsel der Gefäße oder vielmehr in Beseitigung jedes eigentlichen
Gefäßes.

Ichmischte nämlich dasAufeinanderwirkensollende nichtmehr inGlasröhren und gußweise,
sondern tropfenweise auf Papier, und zwar auf Löschpapier.

Hier zeigte sich nun mit einem Male eine neue Welt von Bildungen, Gestaltungen und
Farbenmischungen, wie ich sie mir natürlich nicht gedacht hatte und die wohl auch nicht zu
vermuten war, deren Wirklichkeit daher um so mehr überraschte.

Bald lernte ich die Bedingungen kennen, unter welchen Bedingungen diese Bilder am schön-
sten undmannigfaltigstemnicht nur ausfallen, sondern auchwie esmöglich ist, sie inwillkür-
licher Menge zu vervielfältigen. Dies zu ermitteln war mir besonders wichtig, denn dadurch
gewann diese Entdeckung außer dem chemischen Wert auch noch einen für die bildende
Kunst, und es wurde mir möglich, diese Bilder zu Tausenden als Musterbilder in die Welt
zu schicken.

The most important sentence from this interesting train of thought for under-
standing the formation of the Runge pictures is:

I no longer mixed what was supposed to interact in glass tubes and castings, but dropwise
on paper, on blotting paper.

Ferdinand Runge has produced a multitude of wonderful pictures with his drop
method. Although his methodical approach was born entirely from the idea of being
able to carry out chemical detection reactions with less material and even faster, the
“Musterbilder” and five years later also the pictures in his book “Der Bildungstrieb
der Stoffe” were largely determined by aesthetic criteria (see Fig. 4.2).

In the book “Naturkunden No. 12” published by Judith Schalansky [4], all these
and other Runge pictures are combined in excellent colors and well documented.
There is also an extensive representation of the Runge pictures with much more
chemicals in the book by Günter Harsch and Heinz Bussemas “Bilder, die sich selber
malen—Pictures that paint themselves” [5] and a comprehensive project from the
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Fig. 4.2 Two examples for Runge pictures that have been produced mainly for esthetic purposes.
left gift to the author by L.Kuhnert on the occasion of theWartburgmeeting in 1988 (PhotoP. Plath);
right produced by F.F. Runge himself. (Reproduced with friendly permission; “Der Bildungstrieb
der Stoffe” edited by J. Schalansky, Naturkunden No. 12) p. 31) [4]

Institute Dr. Flad “Runge und Kapillarbilder” by Muriel Dupré and Mirjam Jaenisch
under the guidance of Peter Menzel [6].

This aesthetic approach is undoubtedly very fascinating and suitable for
approaching questions of pattern formation on a very emotional basis, but the under-
lyingmethod of successively dripping different chemicals onto the filter paper makes
understanding the underlying processes of pattern formation very difficult.

4.1 A More Analytical Approach

Drops on the filter paper can be of different sizes. They can lead to convection currents
on the paper, especially since the moistened paper has a different tension than dried
filter paper. This inevitably leads to valley and mountain formation, even if the filter
paper has been carefully stretched on a frame beforehand. The resulting patterns are
not influenced insignificantly by this.

In order to avoid all the associated problems, we have decided that the liquids are
only drawn into the filter paper by the capillary forces of this. For this purpose, the
liquid is continuously fed through a capillary that sits flat on the filter paper. On the
other hand, the capillary is connected to a large reservoir of the liquid in such a way
that the hydrostatic pressure at the point of contact on the filter paper can practically
be neglected.

If we now let a solution of potassium dichromate soak up by the filter paper in
this way, a more or less circular spot will appear. The paper will be dried at 100 °C



86 4 Runge Pictures

afterwards. What will happen if we just give up water in the center of the spot in the
same way? Will the water also spread out in a circle in the potassium dichromate
stain on the filter paper? The answer is a clear “yes and no”. We were very much
surprised! For the right answer, see Fig. 4.3.

Obviously, one can observe a second cyclic spreading of the waterfront within the
dried potassium dichromate stain! This front can be recognized by the change from
the darker surroundings to the subsequent lighter, more yellow area. However, what
was most surprising was the structure formation in the subsequent white area, which
was completely washed out by the water.

This fingering pattern is very reminiscent of the images of frontal instabilities that
arise when thinner liquids displace denser liquids in two-dimensional test arrange-
ments, in so-called Hele-Shaw arrangements [7]. In Fig. 4.3 one can observe patterns
which remind strongly to stable and unstable finger formation of immiscible Newto-
nian fluids during the displacement of the more viscose fluid by the much weaker
one (see Figs. 4.3 and 4.4).

From this point of view, we can understand the filter paper as a kind of Hele-Shaw
cell. From this point of view, we can understand the filter paper as a kind of Hele-
Shaw cell. However, what are the two immiscible Newtonian liquids, of which the
one with the lower viscosity replaces the one with the higher viscosity?

As already mentioned, when the water penetrates the dried potassium dichromate
stain, a stable, almost cyclical front forms. This means that the resulting solution of
potassium dichromate acts as a liquid of higher viscosity compared to the air in the
still dry stain, which is already loaded with potassium dichromate crystals.

Fig. 4.3 Water spreads out in a circle in the potassium dichromate stain on the filter paper. However,
in its rare pattern formation occurs which reminds strongly to fingering front instabilities in Hele-
Shaw experiments, especially one can observe splitting of fingers
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inlet 

Fig. 4.4 Sketch of a radial Hele-Shaw arrangement [8]. The less viscose fluid from the inlet is
displacing the more viscose fluid (yellow) between the two parallel flat plates separated by an
infinitesimally small gap

The water that now constantly penetrates this salt solution is obviously of a much
lower viscosity than the solution that was created by the re-dissolution of the potas-
sium dichromate crystals in the filter paper. The consequence of this difference in
viscosity and the immiscibility is the observed frontal instability, whichwe recognize
in the fingering pattern.

The question that arises here, however, is whether this description fully describes
what happened?Obviously, it does not understand that eachof these fronts themselves
are colored differently in their radial course. Thus, frontsmust therefore be structured
differently too.

Fig. 4.5 shows a photograph and Fig. 4.6 displays four corresponding transmission
micro scans of the three important front processes discussed here. On the left-hand
side of the graphs of the four micro scans, the sharp reduction in transmission shows
the sharp front formation between the displacing water and the displaced solution of
potassium dichromate. This is hard to understand, since water on the one side and an
aqueous solution of potassium dichromate are by no means immiscible fluids, on the
contrary, they are extremely easy to mix. Furthermore, the graph of the micro scan of
the neighbored area of the first front, which should reflect the potassium dichromate
solution, has a strong irregular structure. This does not fit the idea of a fluid in the
filter paper.

Many questions arise; for example: What kind of front is it actually? What are
the fluids that form a front here?

The small crystals in the dried stain are attached to the paper fibers. Along the
fibers of the filter paper, the water is drawn into the paper by adhesion or by capillary
forces between closely adjacent fibers. These swell when they are wetted with the
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water. The crystals dissolve and locally highly concentrated solutions are formed.
However, ho w can we combine all this questions and statements?

It seems that the situations in the fronts are much more complex than we have
discussed before. So, let us start with the first of all these questions.

Figure 4.7 shows how the penetrating water forms the sharp, structured front. In
a sense, the “water” pushes an up-dividing wave in front of it.

The crystals in the rare of the front dissolve.A situation arises inwhichmany small
and the incoming water (see Fig. 4.8) pushes large crystal chunks together in a highly
saturated solution. Here the pure water meets a locally limited, constantly renewing,
highly concentrated and viscous solution. “A liquid in which a large number of small
solid particles is suspended (suspension) can be treated as a homogeneous medium if
the phenomena of interest are characterized by distances which are large compared
to the dimensions of the particles. Such a medium has an effective viscosity η which
is different from the viscosity η0 of the base liquid.” [9] (translated from German by
the author) That is exactly the prerequisite for the formation of the observed structure
formation of the front.

However, the question remains, what happens just behind the circular second
front, which penetrates into the area of the previously dried potassium dichromate. It
is reasonable to assume that the water, after passing the large front of the suspended
crystals, now penetrates in the form of a highly concentrated solution along the
fibers of the filter paper into the area that was previously dried but already loaded
with potassium dichromate. In this solution, larger crystals can also grow at suitable
points on the fibers, see Fig. 4.9.

Fig. 4.5 Microscopic
photograph of the front
instabilities in case of the
displacement of a potassium
dichromate stain by water.
The fronts are numbered in
the order in which they were
created. The water “flows”
from the left to the right side.
The arrows indicate the way
in which the gray values of
the photograph (see Fig. 4.6)
are recorded. (Photo K.
Guttmann and S.C. Müller,
University of Magdeburg
(2015)) 1  

2

3  
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Fig. 4.6 Transmissionmicro scans at four different position of the fronts as indicated with the same
colors by the as indicated in Fig. 4.5 (these scans have been executed by S.C. Müller and Katja
Guttmann, University of Magdeburg, in 2015)

Fig. 4.7 Formation of the front (negative finger) between the penetrating water (coming from the
left) and the area of the partially dissolved Potassium dichromate crystals. (PhotoK. Guttmann and
S.C: Müller, University of Magdeburg (2015))
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Fig. 4.8 Dissolving of the
former front of crystals and
agglomeration of the
resulting fragments. The
water is coming from right
above corner (magnification
of the lens: 6.3). (Photo K.
Guttmann and S.C. Müller,
University of Magdeburg
(2015))

Fig. 4.9 Larger crystals
(dark dots in the photo) grow
in suitable places on the
paper fibers in the more
concentrated solution after
the water has passed the third
front. (Photo K. Guttmann
and S.C: Müller, University
of Magdeburg (2015))

Above all, however, immediately behind the front penetrating into the dry area,
the many small crystals that formed during the dry phase dissolve again, so that the
filter paper becomes more translucent again. Similar to the case discussed above, the
crystals that have just been loosened are only pushed onto one another directly in
the front, as if melting pieces of ice were being pushed together to form larger and
more compact chunks of ice. The result is a sharp drop in light transmission, which
reveals itself as a front.

The experiment discussed here is, if we compare it with the beautiful Runge
pictures, extremely simple: we let water penetrate into a dry spot of potassiumdichro-
mate on filter paper by capillary forces alone. In order to understand the observable
phenomena, we have discussed the interplay of many different processes, such as
the capillary flows along the fibers, the dissolution and growth of crystals and the
formation and accumulation of large crystal agglomerates.



4.1 A More Analytical Approach 91

Fig. 4.10 Left 3D visualization of the macroscopic structure formation by gray values of micro
scanning the right photograph of the Runge picture during washing out experiment of a dried
potassium dichromate stain in the filter paper. The fronts are correlated with the very sharp changes
gray values in transmission. (PhotoK. Guttmann and S.C:Müller, University ofMagdeburg (2015))

As in theHele-Shaw experiment, the pattern formation observed during themigra-
tion of the unstable front, which ultimately also fascinates us so much in the Runge
pictures, is largely only described by quantities such as the density of different fluids,
theirmiscibility and the resulting surface tension. Figure 4.10 shows thismacroscopic
structure formation, which is based on complex microscopic processes, but which
it makes sense to describe on a macroscopic level. This is exactly the subject of the
science of synergetics and its great advantage.

4.2 Some Additional Measurements

When working with students, care must be taken to ensure that everyone wants to
examine their own system. For C. Baum it was potassium ferricyanide (red prus-
siate of potash). (cf. Fig. 4.1) He investigated the speeds with which the displacing
water penetrated into K3[Fe (CN)6] loaded filter paper which had previously been
impregnated with solutions of different concentrations (Fig. 4.11).

For sure, the potassium ferricyanide III K3[FeIII (CN)6] stain should look red but
not green or blue. However, the time that has passed since these experiments were
carried out (October 1995) until this chapter was written in 2020 has left its mark.
The red potassium ferricyanide III, which is a light oxidizing agent, was partially
reduced to the yellow potassium ferrocyanide II K4[FeII (CN)6], which then reacted
with the remaining iron II salt to giveBerlin blue (Turnbulls blue)K[FeII FeIII (CN)6].
All this changes happened in the past.

It is noteworthy that the pattern formation in the third front differs slightly from
that in the potassium dichromate experiment. One can detect a fracture-like shape
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Second front 

Third front 

First front 

Fig. 4.11 Water spreads out in a circle in the potassium ferricyanide III (K3[Fe (CN)6]) stain on the
filter paper. However, in its rare pattern formation occurs which reminds strongly to fingering front
instabilities in Hele-Shaw experiments. The original concentration of the ferrocyanine solution with
which the filter paper was impregnated was c = 1.32 mol/l

of the fingers.[7] This indicates that the front, which is displaced by the water, has
visco-elastic properties. VanDamme observed something similar in the displacement
of clay suspensions by water [10].

4.3 Impregnation of Filter Paper with Water
and Potassium Ferricyanine III

4.3.1 The First Front

Up until now, the attention was clearly directed to the quite spectacular structure
formations such as the fingering in the third front. But why is there a sharp formation
at all on the first and second fronts? Shouldn’t the solution diffusing into the filter
paper gradually diffuse into the paper according to Fick’s second lawwithout a visible
front formation?

To answer this question, let’s take a closer look at the first step of our experi-
ments—impregnating the filter paper. We can even go one step back by examining
only the penetration of water into the filter paper, because this process is also already
connected with the formation of a sharp front (Fig. 4.12). Besides, those who like to
drink filter coffee andmake it themselves can certainly confirm all of this observation
through their own experience.

In order to be able tomake quantifiable statements about the behavior of the fronts,
we determined the temporal course of the respective front both for the water spot
and for different concentrations of the potassium ferricyanide III K3[FeIII (CN)6]
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Fig. 4.12 First step in the
experiment: Impregnation of
the filter paper with
potassium ferricyanide III
K3[FeIII (CN)6] with
concentration c = 0.66 mol/l.
A sharp front (the first front)
of the stain is formed, which
over time spreads more and
more without losing its
sharpness and shape

spots. We cannot present here the water stain here because the water has evaporated
meanwhile and nothing was left on the dried white filter paper to be photographed
or scanned.

For our experiments, we used Selecta, Schleicher & Schüll brand filter paper for
analytical paper chromatography of 185 cm in diameter.

Incidentally, it should be mentioned at this point that, as Harsch and Bussemann
mention [5], Runge’s “Musterbilder” [2] ultimately led to paper chromatography,
an analytical method that is of great importance today in environmental and food
chemistry aswell as in clinical chemistry. After all, thin layer chromatography, which
is widely used today, is closely related to it.

Using a graphite pencil, the paper scales from the centerat 0.5 cm intervals and
fixed on a cork ringwith pins afterwards. The filter paper impregnatedwith potassium
ferricyanide III K3[FeIII (CN)6] was dried in a drying oven at 80° C for five minutes.
The time is measured with a stopwatch when the liquid has passed the respective
interval of 0.5 cm. The time is measured with a stopwatch when the liquid has passed
the respective interval of 0.5 cm. The amount of liquid absorbed by the filter paper
was determined by weighing the moistened paper whenever the radius of the stain
had increased by a further 0.5 cm.

Assuming that the radius is proportion to tα

R ∝ tα (4.1)

If one transform this relation to a linear one

lnR ∝ αlnt (4.2)

one gets for α the value α = 0.6173 see Fig. 4.13b.
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Fig. 4.13 Left The radiusR of the circularwater stain as function of time.Right double logarithmic
plot of the experimental data: radius R versus time t with linear regression. The first point at R =
0.5 cm was neglected because of the uncertainty of its measurement

Thus, we can write the relation:

R ∝ t0.6173 (4.3)

The velocity v(R) of the radius R of the front can be estimated by differentiation.

v(R) = dR

dt
∝ 0.6173t0.6173−1 = 0.6173t−0.3827 (4.4)

The speed of the waterfront decreases with increasing radius or with advancing
time respectively.

On the other hand, the amount m of water with density ρ absorbed by the filter
paper with thickness h should be a quadratic function of the radius R.
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Fig. 4.14 LeftAmount of water in the filter paper as a function of the radius of thewaterfront; right
double logarithmic plot of Fig. 4.14 left. The slope of the linear plot ln(m) = βln(R) + ln(ρπh)

leads to β = 0,893
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m = ρπhR2 (4.5)

However, if we consider the amount of water absorbed by the filter paper as
a function of the radius of the water spot, then there is no quadratic relationship
according to Eq. 4.5. Instead of the integer exponent β = 2 we get a fractional
exponent β = 0.893 (see Fig. 4.14).

m ∝ R0.893 (4.6)

In terms of water absorption, the filter paper does not act like a compact volume,
but like a fractal. This is of great importance for understanding the dynamics of
pattern formation in the Runge images. The water does not fill the spaces between
the fibers of the paper, but as it penetrates the paper, it is bound to its fibers by
adhesion or by their swelling.

Since the radius R of the waterfront itself is a function of time, we can also
formulate the amount of water absorbed by the filter paper as a function of time.

m ∝ (
t0,6173

)0,8931 = t0.5513 (4.7)

4.3.2 Some Basics of Synergetics

Some basics of synergetics may help to understand our simple experiments.
In the beginning of his book “Foundation of Synergetics I” [11]. Alexander

Mikhailov describes the behaviour of bistable media.” Bistable media consist of
elements that have two steady states which are stable under sufficiently small
perturbations.”

So let us describe the filter paper as a one-component bistable media (see
Fig. 4.15). The filter paper itself acts as an active element in relation to the uptake of
water. The dry state u1 is the one stable state of the paper and the fully soaked paper
(Fig. 4.12) is the other stable state u3. If one disturb the dry state u1 by putting a very
small drop of water or any aqueous solution in the center of the paper the drop will
vanish by diffusing into the paper and evaporation. However, if the perturbation is
large enough, the system will get into its second stable state u3 in this local area of
the paper. In this case, the localized initial perturbation will evolve to a homogeneous
steady state while forming a circular front that spreads out over the paper (Fig. 4.12).

The setup of our experiments is done in a way that the water or solution supply
practically does not change during the time of the experiment “because its store is
so large, that we can neglect the decline due to consumption.” [11] This way we
create a sufficient large perturbation of the state u1 of the dry paper at the beginning
of the experiment. The consumption of the water or the solution is associated with
wetting of the filter paper with this aqueous solution. We know from experience
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Fig. 4.15 Evolution of
localized initial perturbations
of a homogeneous steady
state in a bistable system.
The stable states are u1 and
u3, whereas the state u2 is
instable. This figure is taken
from A. Mikhailov’s book
“Foundations of Synergetics
I” [11] and has been redrawn

that especially in hot summers with long dry seasons, the parched soil can absorb
practically no water. The same applies to the filter paper.

4.4 Water Treatment of Dried Filter Paper Impregnated
with Potassium Ferricyanide III

4.4.1 The Second Front

What we have just discussed for the first front also applies in principle to the second
front. By drying the filter paper soaked with the aqueous potassium ferricyanide III
K3[FeIII (CN)6] solution in the oven at 80° C, our system has become “excitable”
again, because it returned in its dry state u1 again (Fig. 4.15).

But now, something has changed compared to the previous condition of the
untreated filter paper. The paper treated with the iron solution and dried now contains
iron crystals of various sizes that adhere to the fibers of the filter paper. These crystals
have to be dissolved, which affects the swelling of the fibers and certainly also the
front speed of the now highly saturated and viscous solution. The partially dissolved
crystals form a highly viscous suspension behind the advancing front, which only
slowly dissolves in the water that follows. This can be observed particularly well
when the concentration of the iron solutionwith which the filter paper was previously
impregnated was particularly low (see Fig. 4.16).

If one compares the speeds of the first and the second front, it can be seen clearly
that the second front of the water penetrating the impregnated filter paper is signif-
icantly slower than the first front of the solution or the pure water penetrating the
untreated filter paper (see Figs. 4.11 and 4.12).
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Fig. 4.16 Formation of the second front: left water penetrates the dried filter paper, which has
previously been soakedwith a very dilute solution of an aqueous potassium ferricyanide III, K3[FeIII

(CN)6] with c = 0.04 Mol/l; right enlarged section from the adjacent figure. A sharp front can be
seen with a diffuse, irregular decay in the area of the water pushing into the filter paper

In the case of the impregnation into driedfilter paperwhichwas previously impreg-
nated with potassium ferricyanide III solutions of low concentrations (e.g., c =
0.04 mol/l, see Fig. 4.17), the time development of the radius of the aqueous second
front follows the approach R ∝ tα with α < 1 as in the case of the first front or
the simple water front, so that the front speed decreases as the radius of curvature
increases.

A slight deviation of the approach R ∝ tα with α < 1 occurs when considering
the variation of the velocity of the aqueous second front, where the filter paper
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Fig. 4.17 Temporal development of the second front spreading in the filter paper which was previ-
ously impregnated with aqueous potassium ferricyanide III K3[FeIII (CN)6] solution of concentra-
tion c = 0.04 mol/l. left Radius of the front as a function of time. right Double logarithmic plot of
the radius versus time. Concerning the ansatz R ∝ tα , α gets α = 0.5907



98 4 Runge Pictures

0

1

2

3

4

0 100 200 300

ra
di

us
  [

cm
]

me [sec]

spreading of second 
front; c = 1.32  mol/l

y = 0.6754x - 2.522
R² = 0.9698

0

0.5

1

1.5

0 2 4 6

ln
 (r

ad
iu

s)

ln(t)

spreading of second 
front; 

c = 1,32 mol/l

Fig. 4.18 Temporal development of the second front spreading in the filter paper which is previ-
ously impregnatedwith aqueous potassium ferricyanide III solution of concentration c= 1.32mol/l;
left the radius R of the front as a function of time with a polynomial trend line of third degree;
right Double logarithmic plot of the radius R versus time. Concerning the ansatz R ∝ tα , α gets α

= 0.6754 using linear regression, if the value pair for the smallest radius is not taken into account.
Otherwise, the spreading velocity is much higher because of the development in the earlier stages

was previously impregnated with a high potassium ferricyanide III concentration of
1.32 mol/l (see Fig. 4.18).

Fig. 4.19 3D bar diagram of the time dependence of the aqueous second front upon the impreg-
nating potassium ferricyanide III concentrations c and the distances d from the centre of filter
paper
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To summarize the experimental results, Fig. 4.19 illustrates in a three-dimensional
representation the timedevelopment of the second front of spreadingwater depending
on the impregnation concentrations and the distances from the center of the filter
paper. From this, it can clearly be seen that in the case of a very low concentration
the second front moves fast in the beginning and slows down at increasing distances,
while in the case of higher concentrations this behavior reverses, i.e., the second
front is comparatively slow in the beginning and moves relatively faster at larger
distances.

4.4.2 The Third Front

Behind the second front, an area that is getting wider and wider is created, which is
separated from the purely watery area by the third, strongly structured, sharp front
(Fig. 4.20). The generation of this third front, which we discussed in detail at the be-
ginning in the potassium dichromate experiment, is therefore a direct consequence
of the increase in concentration during the previous impregnation.

If we look again at Fig. 4.11 in this context, then with the concentration c =
1.32 mol/l of potassium ferricyanide III used, not only a simple fingering of the third
front can be seen, but the visco-elastic front brakes through in some places [10].

From the strong blue coloration of this third front, we can see that this is the
poorly soluble Berlin (Prussian) blue or Turnbull’s blue, of which the highly viscous
suspension consists now.

However, if the concentration of the impregnating potassium ferricyanide III is
increased, the patterns and the time dependence of the front shift change significantly.
The second front is spreading faster and faster. Behind the second front, an area that
is getting wider and wider is created, which is separated from the purely watery area
by the third, strongly structured, sharp front (Fig. 4.20). The generation of this third
front, which we discussed in detail at the beginning in the potassium dichromate

Fig. 4.20 Influence of the potassium ferricyanide III concentration with which the filter paper
is impregnated on the structure formation of the third front. Left c = 0,16 mol/l; centered c =
0,33 mol/l; right c = 0,66 mol/l
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experiment, is therefore a direct consequence of the increase in concentration during
the previous impregnation.

4.4.3 Chemical Interpretation of the Observed Colours

The question that remains is what is happening in the area between the second and
third fronts. The yellow-green color of this area today indicates that the formerly red
iron salt K3[FeIII (CN)6] [12] had possibly changed into the yellow iron salt K4[FeII

(CN)6] [13] in the back of the second front (Fig. 4.21).
However, the aqueous solution of K3[FeIII (CN)6] is yellow in color itself and

decomposes in the light to form iron (III) hydroxide Fe(OH)3 [14] or Fe2O3·3H2O
and several oxy-hydroxides respectively. This can possibly also be responsible for
the partly yellowish-brown color in the area between the first and the second front.

Today, after 25 years, it is difficult to judgewhatwas taking place chemicallywhen
these experiments were carried out, since potassium ferricyanide III in particular
changes over these periods and thus changes the colors. Lothar Kuhnert also draws
attention to this fact [15].

In einigen Fällen scheinen sich die Bilder (Runges Originale, Anm. der Autor) durch die
lange Lagerzeit durch Luftoxydation verändert zu haben. Beispielsweise besteht Bild 1 der
Musterbilder nach Runges Angaben nur aus einem Flecken gelben Blutlaugensalzes. Heute,
nach 135 Jahren, hat sich dieser in Berliner Blau umgewandelt. … Bei der Berliner-Blau-
Reaktion ist auch immermit demAuftreten eines grünenNiederschlages zu rechnen:Berliner
Grün. Wie beim eigenen Nachgestalten einiger Bilder festgestellt wurde, hängt dies stark
von den jeweiligen Arbeitsbedingungen ab.

In some cases, the pictures (Runge’s Origiale, author’s note) seem to have changed due to
air oxidation due to the long storage time. For example, according to Runge’s information,
picture 1 of the “Musterbilder” consists only of a patch of “yellow prussiate of potash” i.e.,
potassium ferricyanide II K4[FeII (CN)6]. Today, after 135 years, it has been transformed into
Berlin Blue K[FeII FeIII(CN)6]. … In the case of the Berlin-Blue reaction, the occurrence
of a green precipitate is always to be expected: Berlin Green. As we found out when we
created some pictures ourselves, this depends heavily on the respective working conditions.

Fig. 4.21 Left potassium ferricyanide III K3[FeIII (CN)6]; right potassium ferricyanide II K4[FeII

(CN)6] 17 mm × 15 mm und 9 mm; (Photos are made by Kathrin Götz [12] and Hubert [13])
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Even if we start with potassium ferricyanide III K3[FeIII (CN)6], we have to
consider a corresponding Prussian blue reaction (i.e. Berlin-Blue reaction). Baum
[1]writes about his direct observations: “If water penetrates into an impregnated filter
paper, an increasingly large ring forms around the penetration point with increasing
concentration of potassium ferricyanide III. After a short time, three areas can be
distinguished: (a) a central area empty of potassium ferricyanide III, (b) an approxi-
mately 0.5 mm light yellow zone and (c) a dark yellow zone. The dark yellow zone
appears centripetally fingered with spikes of several orders. The light-yellow zone
is sharply delimited against the dark yellow zone and blurred towards the center. It
follows the lower order spikes.”

If we look at today’s coloring of the pictures with this description, then it is
difficult to interpret them correctly, apart from the mention of fingering, which we
identifywith the third front. As in photography, we can regard the chemical reactions,
which, after the actual experiment, lead to the colors and patterns we see today as
the development of the original patterns.

It is particularly noticeable that the color change from blue to deep green in the
area between the first and the second front depends on the concentration of the
potassium ferricyanide III K3[FeIII (CN)6] originally used (see Figs. 4.11, 4.15, and
4.17). In other words: soluble Berlin Blue K[FeII FeIII(CN)6] and Berlin Green [16]
developed from pale yellow solution of potassium ferricyanide III K3[FeIII (CN)6].
This presupposes that the trivalent iron in the potassium ferricyanide III has been
partially reduced to the divalent iron in Berlin Blue K[FeII FeIII(CN)6] or Berlin
Green.

Potassium ferricyanide III K3[FeIII (CN)6] is known to be a weak oxidizing agent
for organic synthesis [14]. Moreover, it has a strong oxidizing effect, especially in
alkaline solutions, whereby it is reduced to the more stable potassium ferricyanide
II K4[FeII (CN)6] [17]. Since it is easy to see that Berlin blue and Berlin green
appear in our experiments, we must assume that the K3[FeIII (CN)6] is reduced to
K4[FeII (CN)6], for example by a slight oxidation of parts of the filter paper, and then
with the remaining K3[FeIII (CN)6] molecules react to the beautiful, brightly colored
connections.

In our opinion, all of these reactions take place to some extent in the beginning
while the experiments are being carried out. Therefore, it is not only the dissolution
and crystallization processes and the sponging out of the loosened crystals that are
important for the pattern formation, but also the associated chemical reactions.
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4.5 Runge Pictures—Chemical Reactions Going
on in Filter Paper

4.5.1 Treatment of Impregnated Filter Paper First with Iron
III and then with Copper Sulfate

If, instead of pure water, one chooses a solution that reacts with potassium ferri-
cyanide III K3[FeIII (CN)6], then this should result in a change in the second front
speed and perhaps also in the shape of the front. In any case, this increases the
complexity of the reaction in thefilter paper and approaches the typicalRunge images.

Since the filter paper was originally impregnated with Potassium ferricyanide III
K3[FeIII (CN)6], it makes sense to use an iron II salt solution such as iron sulfate
FeSO4 as the second reagent. As is well known, the charge transfer complex of the
soluble Berlin blue K

[
FeIIFeIII(CN)6

]
is formed during the reaction of the two iron

salts.

K3
[
FeIII(CN)6

]
+ FeIISO4 � K

[
FeIIFeIII(CN)6

]
(4.8)

Iron sulphate FeIISO4 penetrates the filter paper impregnated with potassium
ferricyanide III K3[FeIII (CN)6] (c = 0,33 mol/l) and forms a dark green front, which
is followed by a strong blue rear made of insoluble Berlin blue FeII

[
FeIIFeIII(CN)6

]
2

(see Fig. 4.22).
Subsequently, blue copper sulphate CuIISO4 of high concentration (hot saturated)

enters the filter paper from the center and forms a two-front system: a very narrow,

Fig. 4.22 Left Iron sulphate penetrates the filter paper impregnated with Potassium ferricyanide III
K3[FeIII (CN)6] (c = 0.33 mol/l) and forms a front and a strong blue rear made of insoluble Berlin
blue. When copper sulfate subsequently flows into the filter paper, a two-front system is formed: a
very narrow, almost circular purple front and a red-brown-purple, slightly modulated rear, behind
which an almost uniform red-brown tinted spot remains. Right Detail from the adjacent picture
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almost circular front and a red-brown and purple, slightly modulated rear, behind
which an almost uniform red-brown tinted spot remains.

Only then, does blue copper sulphate of high concentration (hot saturated) pene-
trate again from the center into the filter paper and forms a two-front system: a very
narrow, almost circular front and a red-brown and purple, slightly modulated rear,
behind which an almost uniform red-brown tinted spot remains.

The formation of two-front systems, which occurs when water or an aqueous
solution penetrates a previously impregnated filter paper, appears to be a very general
phenomenon. In the case of the penetration of water into a filter paper impregnated
with potassium dichromate solution or a solution of red Prussiate of potash, this
phenomenon was described in detail at the beginning. New in the example discussed
here is that the penetrating FeSO4 solution reacts chemically with the previously
added impregnating compound K3[FeIII (CN)6] to form the soluble Prussian blue
K

[
FeIIFeIII(CN)6

]
and even forms a poorly soluble complex, namely the insoluble

Prussian blue FeII
[
FeIIFeIII(CN)6

]
2.

In general, it can be said that the higher the concentration of the impregnating
solution, the more crystals and the larger crystals of the impregnating agent are
present in the dry impregnated filter paper. These crystals are partially solved by the
newly penetrating aqueous solution. This creates an increased concentration and in
some cases a suspension in the front, so that the front has an increased viscosity and,
in keeping with the Hele-Shaw experiment, penetrates the dried filter paper with a
smooth, unstructured front.

However, the dissolution process takes some time, the greater the larger and more
crystals of the impregnating compound have to be dissolved. The front moves on
in the meantime. The area between the second and the third front, the rear front,
increases with increasing concentration of the impregnating solution. However, the
liquid that is pushed into the filter paper is no longer afflicted with the dissolved
products or the resulting suspension, i.e., less viscous and thus penetrates into the
more viscous suspension with structure formation such as fingering, also in the sense
of Hele -Shaw experiment.

Now chemistry also comes into play. During the dissolution process of the crystals
of the impregnating compound, this reactionwith the penetrating solution takes place
in a very complex way. Soluble Berlin blue is formed. This only works if the crystals
have already dissolved, or are partially or superficially dissolved. The unpolluted
subsequent flowing solution of the iron II sulfate provides additional iron II ions, so
that the insoluble Berlin blue can be formed from the soluble one. The suspension
that forms in the process consists primarily of these newly formed, insoluble Berlin
blue crystals. Since they are formed very quickly in large quantities, they are very
small and can be sponged up to the original front when fingering if the visco-elastic
front cracks (see Fig. 4.22).

Of course, these truly complex processes in the area between the fronts do not
occur in all places at the same time and to the same extent. Mainly because diffusion
processes are associated with it, and the filter paper is also fractally structured. So,
it is not surprising that this intermediate area is heavily spotted in color.
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Fig. 4.23 LeftDouble front systemof the copper sulphate solution,which penetrates the previously
dried filter paper as the third solution.Right Radius of the most for-ward front of the copper sulfate
front system, described by R = 0.96 lnt—4.18 or R ∝ t0.96 according to the logarithmic approach

Let us now briefly look at the double front system of the copper sulphate solution,
which now penetrates the previously dried filter paper as the third solution. This
creates a very sharp blue-violet, largely smooth, circular front in contact with the
iron (II) sulfate remaining after drying or the remnants of the soluble Berliner blue,
(see Fig. 4.23 left). For the extremely slow expansion of the copper sulfate front
system, the radius of its most forward front is described by R = 0.96lnt − 4, 18 or
R ∝ t0.96 according to the logarithmic approach (see Fig. 4.23 right).

Ifwe assume that the crystals remaining in thefilter paper are only slowlydissolved
and remain behind the moving front, we can expect a highly viscous suspension of
copper-iron-cyanide complex compounds again. This is displaced by the penetrating
copper (II) sulfate solution, which has a far lower viscosity. Fingering structure
formation according to the Hele-Shaw experiment is the result.

Interestingly, a pattern also forms in the central area in front of the rear of the
penetrating CuSO4 solution (Fig. 4.24). The patterns become more pronounced with
increasing distance from the center. It appears that the pattern formation in the rear
of the double front system of the CuSO4 solution has already occurred here. It is
however rather caused by the remains of the previous rear fronts, which repeatedly
broke through, since they were not yet strong enough. Such breakthroughs through
the rear front, even through the leading front of the double front regime of the CuSO4

solution, can also be seen in the “last” front when the experiment was stopped. This
observation confirms the assumption about the origin of the patterns in the central,
inner area.
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Fig. 4.24 Pattern formation
in the central area. In the
lower left corner, there is the
starting point from which the
solutions penetrate the filter
paper

4.5.2 Modifying Runge’s Drop Method to Understand Its
Effect on Pattern Formation

In all of our experiments described here so far, we have carefully ensured that the
individual liquids could only penetrate into the filter paper because of the absorbency
of the filter paper. In order to understand Runge’s drop method and its effect on the
pattern formation, we will slightly increase the pressure with which the last solution
flows out of the capillary and penetrates the filter paper. For this purpose, we lift
the storage vessel, for example by 20 mm, in relation to the exit of the capillary.
Figures 4.1 and 4.25 show examples in which a CuSO4 solution is “pressed” in
this way into the filter paper which was impregnated before at first with Potassium
ferricyanide III (K3[Fe (CN)6] (c = 0.33 mol/l) and afterwards with FeSO4.

The effect of the pressure on the CuSO4 solution, which is the last component to
enter the filter paper, is mainly that the pattern on the rear side of the double-front
system of the CuSO4 solution is particularly strong. The front system also moves
faster away from the center than if no additional pressure is applied. If theCuSO4 front
system approaches the front system of the previously penetrated FeSO4 solution, it
is slightly compressed and the pattern formation in its rear front is reinforced.
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Fig. 4.25 Left A CuSO4 solution flows under a very small pressure in the filter paper which
was first impregnated with potassium ferricyanide III (K3[Fe (CN)6] (c= 0.33 mol/l) and then with
FeSO4.Right Double–logarithmic plot of the radius R of the leading front of the CuSO4 solution as
a function of time neglecting the first point withR= 0.5 cm; ln(R) = 0.55ln(t)−1, 77; or R ∝ t0.55

4.6 Reversal of the Order of the Solutions Penetrating
into the Impregnated Filter Paper

4.6.1 Treatment of with Potassium Ferricyanide III
Impregnated Filter Paper with Only Copper Sulfate

Another interesting color option is to let a blue copper sulphate solution CuSO4 run
into the filter paper that has been impregnated before with potassium ferricyanide
III K3[FeIII (CN)6]. Ch. Baum reports that a brown reaction product is formed. This
reddish-brown spot is still clearly visible today, so it is quite stable, (see Fig. 4.26
left). In the literature [18], one finds a corresponding product with such a color only
for divalent iron:

[
FeII(CN)6

]4−
+ 2Cu2+ � Cu2

[
FeII(CN)6

]
. Such a formulation

wouldmean, however, that in an aqueous solution this compoundwould form a bluish
hexaquo complex, i.e., it would by no means be brown in color. Brown and yellow
colors of copper in connection with iron are known from the sulfidic copper ores,
such as the copper pyrites CuFeS2, the colored copper ore Cu3FeS3 and the copper
luster Cu2S. This reaction will involve the formation of a metal–metal Cu-Fe bond,
whether with trivalent or divalent iron. A copper complex similar to the insoluble
Berlin Blue would also come into question, for example: CuII

[
CuIIFeIII(CN)6

]
2.

K4
[
FeII(CN)6

]
+ 2CuIISO4 � CuII

[
CuIIFeII(CN)6

]
+ 2K2SO4 (4.9)
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Fig. 4.26 Left Filter paper impregnatedwith potassium ferricyanide III K3[FeIII (CN)6] of concen-
tration c = 0.04 mol/l and dried at 80 °C. A concentrated copper sulfate solution flows into the
impregnated paper, and a brown complex is formed. A slightly irregular blue front of the penetrating
copper sulfate solution can be observed; right Temporal development of the front of the copper
sulfate solution

Anyway, it is very likely that this reaction presupposes that part of the potassium
ferricyanide III K3[FeIII (CN)6] might need to be reduced. Therefore, we are dealing
with a chemically extremely complex reaction process.

Similar to the attempt to displace the potassium ferricyanide III with water, with
the very low concentration of c = 0.04 mol/l of the impregnating K3[FeIII (CN)6]
solution used for impregnation, there is only a single front and no double front (see
also Fig. 4.16).

The single blue front of the copper sulfate solution is formed slightly irregular.
In addition, the front spreads very slowly with almost the same speed. The exact
time dependence of the front spread is described with strong accuracy (correlation
coefficient: R2 = 0.9996) by the power function R = 0.012t0.8524 where R is the
radius of the circular front.

Wherever the copper sulphate has penetrated, it leaves an almost uniformly
distributed brown color. This means that the impregnation with potassium ferri-
cyanide III is not completely washed out by the copper sulphate solution, but that as
soon as the contact with the potassium ferricyanide III material occurs, it is converted
into the insoluble copper-iron complex and more or less precipitates on the spot.

4.6.2 Treatment of with Potassium Ferricyanide III
Impregnated Filter Paper First with Copper and then
with Iron II Sulfate

But if an iron sulfate solution is allowed to flow as a further component into the
filter paper which was previously impregnated with red prussiate of potash and then
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Fig. 4.27 An iron sulphate solution spreads in the filter paper, which was previously impregnated
with red prussiate of potash and then with a copper sulphate solution; left Overview of the resulting
Runge picture; right enlargement of the section which shows the double front system

treated with a copper sulfate solution and dried, we observe a very complex process
(Fig. 4.27).

The result is a double front system in which the leading white front is heavily
perforated and the rear is bizarre jagged. Trailing iron II sulfate FeSO4 changes color
to purple. Prussian blue, also known as Berlin Blue K[FeIIFeIII (CN)6] forms at the
edges of contact with Potassium ferricyanide III K3[FeIII(CN)6], also called the red
prussiate of potash.

A closer look at the double front system shows that the leading front surprisingly
consists of white spots, around which dark brown plumes run (Fig. 4.27 right). This
means that these white spots act as barriers to the spread of the FeSO4 solution. The
simplest explanation for this would be that these obstacles are white or colorless
crystals, but of which compound? It cannot be the white potassium sulfate K2SO4,
since its solubility in water is 111 g/l. These crystals form the front between the
newly inflowing iron sulfate and the red-brown copper-iron cyanide

(
Cu2FeII(CN)6

)

still present there. Furthermore, we should not forget that both the CuSO4 (CuSO4:
3,5 < pH < 4,5 at 20 °C and c = 50 g/l) [19] which has flowed in before and the
FeSO4 (FeSO4: 2.5 – < pH < 3.8 at 20 °C and c = 50 g/l) react acidic [20]. Because
of the large excess of FeII ions, the formation of the colorless K2[FeIIFeII (CN) 6]
complex could also be considered [21]. But also this statement should be taken into
account: “By protolysis of hexa-cyanides II, the hexacyanide II acid H4[FeII(CN)6]
is obtained in the form of a white powder.” [22].

In their very detailed report “Precipitation of Cyanide as Cu2Fe(CN)6 Compounds
from Cyanidation and Detoxification Circuits” [23] Adams and Kyle discuss the
many different copper-iron cyanide compounds. It is important in this context that
there are other insoluble compounds in addition to the brown Cu2Fe(CN)6, such as
e.g. copper I ferricyanide Cu3 Fe(CN)6 and copper II ferricyanide Cu3

[
Fe(CN)6

]
2 ·

14H2O.
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The back of this double front system shows a strong structure in the form of
fingering. At the points where this visco-elastic front reaches and breaks through
the leading, white front, the already mentioned flags of the poorly soluble, brown
Cu2Fe(CN)6 appear. In the area between the source of the inflowing FeSO4 solution
and the rear side, a dirty blue coloration remains in the filter paper. This indicates
that only part of the original Cu2Fe(CN)6 reacts with the penetrating iron ions and
is later oxidized to Prussian Blue by air.

4.7 Concluding Remarks

Today, after almost 25 years, it is difficult to reconstruct all the details of the complex
chemical processes, which often works well, but sometimes remain vague.

Be that as it may, the synergetics view enable a fairly good classification of the
pattern formations that occur, such as the fractality of the filter paper medium, the
simple front formation, the fingering when water or corresponding solutions pene-
trates the impregnatedfilter paper and the non-uniformchemical reaction.The student
Ch. Baum probably also sensed that all this was possible when he enthusiastically
recorded his experiments on the Runge pictures.

References

1. Baum, C.: Versuchsprotokoll zur Lehrveranstaltung “Selbstorganisation in chemischen und
biologischen Systemen” bei Peter Plath und Michael Vicker, SS 1995, Universität Bremen

2. Runge, F.F.: Zur Farbenchemie. Musterbilder für Freunde des Schönen und zum Gebrauch für
Zeichner, Maler, Verzierer und Zeugdrucker, dargestellt durch chemische Wechselwirkung.
Verlag E.S. Mittler & Sohn, Berlin (1850)

3. Kuhnert, L., Niedersen, U.: Ostwalds Klassiker der exakten Wissenschaften, Band 272. (F.F.
Runge, R.E. Liesegang, B.P. Belousov, A.M. Zhabotinsky) – Selbstorganisation chemischer
Strukturen, Akademische Verlagsgesellschaft Geest & Portig K.G. Leipzig (1987) p. 51

4. Schalansky, J.: Naturkunden No. 12. Matthes & Seitz Berlin (2014)
5. Harsch, G., Bussemas, H.H.: Bilder, die sich selber malen. Der Chemiker Runge und seine

“Musterbilder für Freunde des Schönen.” Anregungen zu einem Spiel mit Farben. Dumont
Buchverlag Köln (1985)

6. Dupré, M., Jaenisch, M.: Runge und Kapillarbilder, Institute Dr. Flad, “Project work under the
guidance of Peter Menzel”, Lehrgang 62, Schuljahr 2012 /2013; https://www.chf.de/eduthek/
projektarbeiten/Runge-Kapillarbilder.pdf (download 2020-09-11)

7. Van Damme, H.: Flow and Interfacial Instabilities in Newtonian and Colloidal Fluids (or The
Birth, Life and Death of a Fractal). In: Avnir, D. (ed.) The Fractal Approach to Heterogeneous
Chemistry. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore (1989)
199–226; see also: Böckmann, M., Müller, S.C.: Coarsening in the buoyancy-driven instability
of a reaction-diffusion front. Phys. Rev. E 70, 046302 (2004)

8. Shaw, H.S.H.: Investigation of the nature of surface resistance of water and of stream-line
motion under certain experimental conditions, Inst. N.A. OCLC 17929897 (1898) (https://
www.worldcat.org/oclc/17929897).

https://www.chf.de/eduthek/projektarbeiten/Runge-Kapillarbilder.pdf
https://www.worldcat.org/oclc/17929897


110 4 Runge Pictures

9. Landau, L.D., Lifschitz, E.M.: Lehrbuch der Theoretischen Physik, vol. VI. Hydrodynamik,
Akademie-Verlag Berlin, 3rd edn., p. 85 (1974)

10. VanDamme, H., Laroche, C., Gattineau, L., Levitz, P.: Viscoelastic effects in fingering between
miscible fluids. J. Phys. France 48(7), 1121–1133 (1987)

11. Mikhailov, A.S.: Foundation of synergetics – distributed active systems. In: Haken, H. (ed.)
Springer Series in Synergetics, vol. 51. Springer-VerlagBerlin, Heidelberg, NewYork, London,
Paris, Hong Kong, Barcelona (1990)

12. http://daten.didaktikchemie.uni-bayreuth.de/experimente/effekt/photo_kristalle.htm
13. https://www.mikroskopie-forum.de/index.php?topic=33128.15
14. https://de.wikipedia.org/wiki/Kaliumhexacyanidoferrat(III)
15. Kuhnert, L., Niedersen, U.: Ostwalds Klassiker der exakten Wissenschaften, Band 272. F.F.

Runge, R.E. Liesegang, B.P. Belousov, a.M. Zhabotinsky – Selbstorganisation chemischer
Strukturen, Akademische Verlagsgesellschaft Geest & Portig K.G. Leipzig, p. 101 (1987)

16. Gmelin, L.: Handbuch der Chemie: Handbuch der organischen Chemie. Organische Chemie im
Allgemeinen, Organische Verbindungen mit 2 und 4 Atomen Kohlenstoff“, Heidelberg, Jan.,
pp. 358–359 (1848)

17. Remy, H.: Lehrbuch der Anorganischen Chemie, Bd. II, 11th edn., Akademische Verlagsge-
sellschaft Geest & Portig K.G., Leipzig, pp. 339–340 (1961)

18. http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/6/ac/bibliothek/_vlu/kaliumhexacyano
ferratii.vlu/Page/vsc/de/ch/6/ac/bibliothek/kaliumhexacyanoferratii/reaktivitaet.vscml.html

19. http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templatesfn=default.htmvid=
gestisdeu:sdbdeu3.0, Kupfersulfat

20. http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templates$fn=default.htm
$vid=gestisdeu:sdbdeu$3.0, Eisen(II)-sulfat

21. Röder, J.-K.: Zweikernkomplexe multifunktioneller Pyrazolatliganden als bimetallische
Analoga von N-Chelatkomplexen - Synthese, Koordinationschemie, Eigenschaften“, Disser-
tation, Ruprecht-Karls-Universität, Heidelberg, p. 15 (2001)

22. https://www.spektrum.de/lexikon/chemie/cyanoferrate/2114
23. Adams, M.D., Kyle, J.H.: Precipitation of Cyanide as Cu2Fe(CN)6 Compounds from

Cyanidation and Detoxification Circuits. In: Conference: Minprex at Melbourne, Australia
(September 2000). https://www.researchgate.net/publication/314286234_Precipitation_of_C
yanide_as_Cu2FeCN_6_Compounds_from_Cyanidation_and_Detoxification_Circuits

http://daten.didaktikchemie.uni-bayreuth.de/experimente/effekt/photo_kristalle.htm
https://www.mikroskopie-forum.de/index.php?topic=33128.15
https://de.wikipedia.org/wiki/Kaliumhexacyanidoferrat(III
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/6/ac/bibliothek/_vlu/kaliumhexacyanoferratii.vlu/Page/vsc/de/ch/6/ac/bibliothek/kaliumhexacyanoferratii/reaktivitaet.vscml.html
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templatesfn=default.htmvid=gestisdeu:sdbdeu3.0
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templates$fn=default.htm$vid=gestisdeu:sdbdeu$3.0
https://www.spektrum.de/lexikon/chemie/cyanoferrate/2114
https://www.researchgate.net/publication/314286234_Precipitation_of_Cyanide_as_Cu2FeCN_6_Compounds_from_Cyanidation_and_Detoxification_Circuits


Part II
Fractal Structure in Chemistry and Biology



Chapter 5
Fractal Metal Zinc-Trees

Diffusion-Limited or Ballistic Aggregation?

Peter J. Plath

Fig. 5.1 Growth of the metal zinc-tree in a Petri dish at a voltage of 6 V. The 2 N zinc sulfate
solution was covered with a layer of n-butyl acetate. For this picture the zinc tree has been removed
from the Petri dish and placed and dried on a grey cardboard. (Photo taken by Thomas Rabbow)

5.1 Introduction

With the publication of his book “The fractal geometry of nature” in 1977 [1],
which was soon translated into other languages, Benoit B. Mandelbrot succeeded
in making his ideas of objects with a broken dimension (or fractional dimension)
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known to a wide audience. It had three English editions until 1983. A German
translation appeared by Akademie-Verlag Berlin and Birkhäuser Verlag Basel in
1986 [2]. However, his book was mainly of a mathematical nature and difficult for
non-mathematicians to understand. L. Pietronero and E. Tosatti published “Fractals
in Physics” [3] in 1986 and thus considerably expanded the circle of readers. A
big breakthrough came with Heinz-Otto Peitgen and Dietmar Saupe with their richly
and colorfully illustrated book “The Sciences of Fractal Images” [4], which was even
topped by their books “Fractals for the Classroom; Part I” (and “Bausteine des Chaos
Fractals”, German edition) 1992 [5]. In 1989 David Avnir published his book “The
Fractal Approach toHeterogeneousChemistry—Surfaces, Cololloids, Polymers” [6]
and thus opened this wonderful idea of objects with broken dimensions even to very
application-oriented chemists (Fig. 5.1).

In this book you can find the inspiring article of Mitsugu Matsushita on “Exper-
imental Observations of Aggregations” from which we got the basic ideas of the
experiments reported here.

If a carbon electrode is immersed in the interface of an aqueous zinc sulfate
solution which has been covered with an immiscible liquid (n-butyl acetate) and a
voltage of a few volts is applied so that the electrode becomes the cathode, zinc
is deposited here off (Fig. 5.2). However, this happens in such a way that fractal
metal deposition takes place in the boundary layer of the two liquids. A “zinc tree” is
created.With the growth of the fractal structure, the current strength increases, so that
one can infer the fractal dimension of the resulting structure from the dependence of
the current strength or the “radius” on time.

The process described here can be described in broad areas according to the
Witten and Sander model as “diffusion-limited aggregation” (DLA model). This
model is based on a stochastic, spatio-temporal discrete process that takes place
on a two-dimensional grid. A state moves randomly across the grid and is fixed as

zinc anode zinc anode

graphite cathode 

butyl acetate 

2 N zinc sulfate solution 

Fig. 5.2 Schematic representation of the experimental set up
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soon as it touches the aggregation cluster. The dimension of the resulting structure
corresponds in a very good approximation to the dimension of the zinc tree that can
be experimentally determined in a chemical experiment. The aim of the experiment is
to characterize the different structures of the zinc trees growing at different voltages
by means of their fractal dimension and to simulate them using the DLA model.

5.2 Experimental Arrangement and Procedure

In this experiment metallic zinc in the form known as zinc metal-leaves was grown two-
dimensionally. The experimental procedures used to grow zinc metal-leaves are as follows.
A glass vat of diameter ca. 20 cm and depth ca. 10 cm is filled with 2 M ZnSO4 aqueous
solution (depth 4 cm), on to which butyl acetate CH3COO(CH2)3CH3 is floated to make an
interface (Fig. 5.2). A tip of a carbon cathode (pencil core of diameter 0.5 mm) is polished
carefully so as to make it flat perpendicular to the axis. The cathode is then set at the center
of the vat so that the flat tip is placed just on the interface (Fig. 5.2). The electrodeposition is
initiated by applying a d.c. voltage between the carbon cathode and a zinc ring plate anode
of diameter ca. 17 cm, width ca. 2.5 cm and thickness ca. 3 mm placed in the vat.

A zinc metal-leaf grows two-dimensionally at the interfaces between the two liquids from
the edge of the flat tip of the cathode towards the outside anode with an intricately branched
random pattern (Fig. 5.1).

If the cathode tip is rounded or is immersed in the ZnSO4 solution the deposit grows three-
dimensionally into the solution.

Usually, the zinc metal-leaves grow to a size of 10 cm after about 10 min by applying a
constant d.c. voltage of about 5 V. The temperature of the system was kept fixed, e.g. at
15 °C.[7]

If one looks at the fractal zinc structures that arise in these experiments, it is
difficult for the author to compare them with the image of a tree leaf. During a pre-
winter walk through the Uckermark in Germany, he saw defoliated oak trees and
robidia, which reminded him very much of the fractal zinc deposits although they
differ in their dimensions (Fig. 5.3). The author therefore suggests choosing the term
tree and branches instead of leaves for the metal deposits structures observed.

5.3 Comments on the Theory

The procedure mentioned above looks very simple and can be executed easily. But
indeed, one has to prepare the tip of the cathode carefully.

However, a lot of questions arise if one try to understandwhyone get nearly perfect
fractal zincmetal-tree in the two-dimensional boundary layer between the two immis-
cible liquid phases. Why does the heavy zinc metal (specific weight 7.130 g cm−3)
does not sink down in the aqueous solution?
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Fig. 5.3 Left: a defoliated oak tree in the foreground in pre-winter time which reminds the author
on the fractal metal zinc deposition at higher voltages. right: hanging branches of a bare robidia
which resembles the metal zinc-tree at low voltages. (Photos the author, January 2020)

First of all, if the cathode touches thewater surface at first, we can assume a special
adhesion wetting of its surface. For sure, the zinc ions deposit where the local field
is largest. This is initially the case at the circular edge of the electrode because of its
curvature, but not on its planar surface. The authoritative part of the electric field is
orientated parallel to the interfacial layer. So, starting from the one-dimensional line
of the cathode edge only those zinc ions, which are located in the intermediate zone
of the interface, will be deposited at this circle line being discharged at the cathode.

This way the fractal metal zinc-tree is growing radially and spreading themselves
along the two-dimensional interface layer.

The metal tree behaves like a steel needle on water—while growing gently it
touches the water, but it does not set in the water.

But what is the role of butyl acetate in this game? The solubility of the butyl
acetate in water is very low. Their volume fraction in water is only 7.300·10–3, which
is why both liquids can be regarded as immiscible to a good approximation. Further-
more, the interfacial tension between butyl acetate and water is 11.5·10–3 N m−1. In
contrast, the surface tension of water, i.e. the interfacial tension of water and air, is
72.75·10–3 N m−1. The surface tension of von butyl acetate is 26·10–3 N m−1. When
the aqueous zinc salt solution is covered with butyl acetate, the interfacial tensions of
the water as well as butyl acetate are considerably reduced. In addition, the contact
angle measurement on flat V4A steel for butyl acetate results in values of 99° and 83°
for the advance angle θV and the withdrawal angle θR, respectively. All these data
were measured by R.Magiera in his dissertation in 1995 [8]. But all these data reflect



5.3 Comments on the Theory 117

the equilibrium states at 20 °C. However, our growing system is indeed a complex
electro-chemical reaction system in which the new phase of the metal zinc-leaf is
generated and growing all the time. Hence, one has to look at it as a system far from
equilibrium rather than trying to describe it in terms of equilibrium.

The metallic zinc, for which one can assume at the similar contact angle of the
butyl acetate, now pushes into this interface during its growth. The zinc ions deposit
where the local field is largest. This is initially the case at the circular edge of the
electrode. In the course of the experiment the ions will be deposited only at the edge
of the zinc-leaf growing in the two—dimensional space of the interface between the
two liquids.

5.4 Experimental Estimation of Fractal Dimension
of the Zinc Deposits

The structure thus created from the initial circle has a highly complex, fractal geom-
etry, which can be characterized best following the history of its growth via regarding
the development of the current over time, as is common in electrochemistry. If
the voltage is kept constant, the current strength changes over time, since this is
proportional to the amount of zinc ions deposited per unit of time.

According to the classic description of electrochemical processes, at constant
voltage the current is proportional to the size of the area on which the discharge of
the ions takes place.

Now, as we have just determined, the deposition does not take place so much
on the surface as on the edge of the zinc-tree, so the current intensity should be
proportional to the length L of the edge rather than to the size of the electrode surface
F. However, that would be a statement that does not conform to the well-founded,
classic, electrochemical view.

Due to the complex geometry of the zinc tree, we cannot specify the length of
the edge of the growing cathodic zinc electrode or its surface at any time without
prejudice, i.e. without specifying the scale used. On the other hand, we can measure
the change in radius r of the smallest circle (radius of gyration, see Fig. 5.4) over
time, which concentric to the origin, in which our graphite cathode is located, also
includes the most distant branch of the zinc tree. This radius r must then grow over
time.

r = f (t) (5.1)

If the entire circular area described by r were completely filled with zinc metal, it
would be well known that the circumference U is

U = 2π r (5.2)
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Fig. 5.4 Fractal metal
zinc-tree together with its
surrounding radius of
gyration (red circle) and the
centered graphite electrode
(red dot in the center). The
experiment has been
executed at 3 V. (Photo Plath
/ Koblitz 30.3. 1994)

and the circular area F

F = π r2 (5.3)

This is certainly not the case in the case of the highly branched, “two-dimensional”
zinc tree, since its edge is certainly longer than that of the circle circumscribing the
zinc tree, and its area is certainly smaller than the area enclosed by this circle.

We nowwant tomathematically write the terms circumference and area somewhat
more generally, by assuming fromaflat, geometric object—be it an arbitrarily shaped,
edged structure—that a size L assigned to it is proportional to the Dth power of the
radius r of the surrounding circle:

L ∝ r D (5.4)

where the still unknown exponent D has the character of a dimension. We want to
admit that D need not be an integer, but can also be a fractional number. In this
case, according to B. Mandelbrot (1977), D is called a fractional dimension and the
structure characterized by this number is called a fractal. If D = dtop is an integer,
one speaks of a topological dimension. If for example dtop = 1, then the size L is the
circumference as it is well known from the circle; accordingly, dtop = 2 means that
we are dealing with a two dimensional surface that is connected everywhere, like a
circular disk.

A simple transformation of relation (5.4) now leads to the double logarithmic
form
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log L ∝ D logr (5.5)

The discussion ended earlier with the question of whether the current strength I is
more proportional to the edge length of the 2D zinc tree or rather to the surface area of
the zinc tree electrode. We already know from the experiment the function I = g(t)
which describes the temporal dependence of the current. We want to assume that it
is of the form

I ∝ tα (5.6)

or, after appropriate transformation, the expression results:

log I ∝ α log t (5.7)

We have also measured the function r = f (t) of the development over time of the
radius of the circle comprising the zinc tree (radius of gyration) (Fig. 5.4). Here, too,
we want to assume an exponential relationship, so that the following applies:

r ∝ tβ (5.8)

and

log r ∝ βlogt (5.9)

respectively.
With a simple transformation one gets:

log I ∝ α

β
logr (5.10)

or (Figs. 5.5 and 5.6)

I ∝ r
α/β (5.11)

If we plot logI as a function of logr we get a straight line whose slope has the
value D = α/β. We can therefore decide the above mentioned question experimen-
tally. We herewith connect directly the fractal Dimension Dwith the electrochemical
deposition process, rather the width the geometrical shape of its resulting fractal
metal zinc tree. The current intensity I is therefore largely proportional to the length
of the edge, provided that D is much more similar to the topological dimension of
the one-dimensional edge than the topological dimension dtop = 2 of a surface.
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Fig. 5.5 An example: experimental estimations of the values α and β for the metal zinc deposition
at the voltage of 3 V. The measurement has been executed by the students Olesya Kazakova and
Marina Voropaeva during the practical training in physical chemistry—chemical synergetics under
the guidance of Prof. Plath at the University of Bremen in 2005

The exponent D then expresses the accessibility of the locally one-dimensional
electrode edge for the discharge of the zinc cations on the electrode (zinc cathode).
The more or less accessible parts of the edge are, so to speak, perceived as gaps
in the margin, which then takes on a fractional dimension, which is less than
one:D < dtop = 1, the topological dimension of a “smooth”, not fissured edge. The
fractional dimension of the fractal object enclosed by this edge—the zinc electrode—
is obtained by increasing D by one: Delectrode = D + 1. This additional dimension
“one” corresponds to the local topological dimension of the circular edge of the
graphite electrode from which the fractal growth started into the two-dimensional
space of the interface (Fig. 5.7).
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Fig. 5.6 The example of Fig. 5.3: experimental estimations of the value of d and D respectively
form the log–log plot of the current I versus the radius of gyration for the metal zinc deposition at
the voltage of 3 V. The measurement has been executed by Olesya Kazakova andMarina Voropaeva
during the practical training in physical chemistry—chemical synergetics under the guidance of
Prof. Plath at the University of Bremen in 2005

Depending on the voltage applied between the zinc tree electrode and the zinc
counter electrode there are different patterns for the zinc trees as is shown in Figs. 5.4,
5.8 and 5.9. The field strength at the electrode increases with the voltage and it is
understandable at this level of argumentation that the patterns become increasingly
dense. If one measures the dimension of the fractal zinc trees here, too, it shows that
this remains constant Delectrode = 1.66± 0.03V up to a certain voltage Uk ≈ 8.2V ,
but also increases approximately linearly up to Delectrode = 2, as Matsushita (1984)
could show (Fig. 5.7). So there is a thresholdUk value of the voltage, which basically
signals two different processes that take place below and above this threshold value.
Above the threshold value Uk the discharge of the zinc ions also continues to take
place at the edge of the electrode, so that D satisfies the condition: 0.66 < D < 1.

5.5 Experiments with 4 and 8 V

Figures 5.9 and 5.10 shows clearly that the assumption on which Eq. 5.10 is based
does not apply in the case of a constant voltage of 8 V. ln(I ) = F(ln(r)) is by no
means a linear function. But if we split the function into two parts, we can detect
two linear functions intersecting each other (Eq. 5.9). This indicates two different
processes taking place in the course of fractal zinc deposition (Figs. 5.4, 5.8, 5.9,
5.12, and 5.14).
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Fig. 5.7 Values of the fractal dimension of many zinc metal trees grown independently at various
electrodeposition voltages. The solution depth and temperature are always fixed as 4 mm and
15 °C, respectively.” (reproduced by friendly permission of Phys. Rev. Lett.) The data have been
evaluated by measuring “the density–density correlation function C(r) ∼ r−A where the exponent
A is related to the fractal (Hausdorff) dimension D = d − A(d is the Euclidian dimension) [9].
D = (d2 + 1)/(d + 1). For this purpose Matsushita et al. analyzed scanned photographs of the
metal zinc trees

Fig. 5.8 Growing metal zinc-tree at 4 V; left: after 2:50 min. right: after 10:18 min. The fractal
Dimension of the zinc electrode is Delectrode = 1.698 if one averages over the entire time of 875 s
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Fig. 5.9 Growing metal zinc-tree at 8 V; left: after 1:30 min. right: after 10:31 min. The fractal
Dimension of the zinc electrode is is Delectrode = 1.861 if one averages over the entire time of
668 s
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Fig. 5.10 Bi-logarithmic plot of current versus radius of gyration (see Eq. (5.10) at a constant
voltage of 8 V

For lower radii the fractal dimension is D = 0.707 or Delectrode = 1.707
(Fig. 15.11a) and fits very well with the fractal dimension of the two dimensional
Witten-Sander-Model [10] for diffusion limited aggregation (DLA) (D = 1.71) by
randomly walking zinc ion particles as shown by Paul Meakin [11] theoretically.

However, if the zinc tree continues to grow, the fractal dimensions changes. For
the 8 V-experiment the dimension becomes about D = 1.1 or Delectrode = 2.1
(Fig. 5.11b). Since the zinc ions don’t aggregate during their walk to the fractal
zinc cathode one can exclude a fusion of them before reaching the cathode being
discharged. But a growing radius of gyration causes an increase of the electric field
gradient, so that the ions move more and more in a random straight-line trajectories
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Fig. 5.11 a Low radii with
is Delectrode = 1.707 if one
averages over the time of the
first 198 s and b larger radii
is Delectrode = 1.100 if one
averages over the time
between 200 and 668 s;
bi-logarithmic function of
current versus radius of
gyration

a)

b)

y = 0.7067x - 0.4708
R² = 0.9958

-1

-0.5

0

0.5

-0.5 0 0.5 1

ln
(I)

ln(radius)

zinc-tree 8V (first 6 val.)

Series1

Linear
(Series1)

y = 1.0909x - 0.8971
R² = 0.9883

0

0.5

1

1.5

0 1 2

ln
(I)

ln(radius)

zinc-tree 8V (from 7. 
val.)

Series1

Linear
(Series1)

towards the cathode. This kind of movement reminds of the ballistic aggregation,
which results in higher fractal dimension then in case of classical DLA processes
[12]. That Delectode oversteps the value 2 might be related to the fact that the three-
dimensional Euclidian space has to be taken into account for aggregation if the tip
of the tree approaches the wide anode.

5.6 Experiment with 12 V

Now, let’s consider the results of the experiment at 12 V (Fig. 5.12). Taking into
account the set of all data, the double logarithmic plot of the current versus the radii
of gyrations results is a straight line whose slope is almost one, D = 1. This means
that the envelope of the metal zinc fractal has practically the dimension one, so acts
as a one-dimensional closed line with regard to the discharge of the zinc ions and
their deposition as zinc atoms. Inspecting the photo of the zinc tree at 7:31 min one
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Fig. 5.12 Growing metal zinc-tree at 12 V; left: after 0:41 min. right: after 7:31 min. The fractal
dimension of the zinc electrode is D = 1.01 or Delectrode = 2.01 taking the basis of all data up to
6:18 min. Only in the very beginning, the fractal dimension is Delectrode ≈ 1.7

can perceive this conclusion. However, we know and see that this is only a rough
approximation (Fig. 5.12).

R.C. Ball and T.A.Witten [13] emphasize that theway inwhich the particlesmove
determines the fractal dimension of their aggregates. “Diffusion-limited aggregates,
where the constituent particles move in random walks have a fractal dimension of
about 2.4” in a space with the Euclidian dimension d = 3. “In ballistic aggregation,
where the particles move in random straight-line trajectories” the fractal dimension
becomes larger.

Due to the large field strength at the edge of the electrode, the zinc ions will
hardly migrate erratically, but will follow the field lines and hit the edge in a kind of
ballistic flight, if the applied constant voltage exceeds the critical value Vc ≈ 8, 2V
as M. Matsushita et al. have shown. (see Fig. 5.7). However, the measured value of
Delectrode = 2.01 for the 12V experiment is unexpectedly high.Matsushita explained
this situation referring to the theoretical work of Paul Meakin in 1983 [14].

In fact, applying higher voltage (V > VC ) gives rises to a larger inner core with dense
radial structure, which causes larger Hausdorff dimension, as seen in (Fig. 5.7, this work, the
author). Recent computer simulations (see ref. 14, the author) demonstrate that the particle
drift really entails uniform structures (D ∼ 2.0) on the cluster formation. We conjecture,
therefore, that the crossover at V ∼= VC in (Fig 5.7 this work, the author) comes from the
dominance of the drift effect.

In their paper “Aggregation in a mixture of Brownian and ballistic wandering
Particles”, S.G. Alves and S.C. Ferreira analyzed the scaling properties of a model
that has as limiting cases the diffusion-limited aggregation (DLA) and the ballistic
aggregation (BA) models [15].

The particles added to the cluster (the fractal metal zinc cathode; the author) can follow
either ballistic trajectories, with probability Pba, or random ones, with probability Prw = 1
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Fig. 5.13 Theoretical results of S.G. Alves and S.C. Ferreira [15]: Growth of fractal patterns for
distinct values of the probabilities for random walk Prw and ballistic walk Pba. (with friendly
permission of…Phys. Rev. E)

− Pba. … The fractal dimension as a function of Pba continuously increases from df ≈ 1.72
(DLA dimensionality) for Pba = 0 to df ≈ 2 (BA dimensionality) for Pba = 1.

However, the lacunarity and the active zonewidth exhibit a distinct behavior: they are convex
functions of Pba with amaximumat Pba ≈ 1/2. Through the analysis of the angular correlation
function, we found that the difference between the radial and angular exponents decreases
continuously with increasing Pba and rapidly vanishes for Pba − 1ex , in agreement with
recent results concerning the asymptotic scaling of DLA clusters (Fig. 5.13).

5.7 Experiment with 14 V

The bi-logarithmic plot of current versus radius of gyration (see Eq. (5.10)) in the
experiment at constant voltage of 14 V (see Fig. 5.15) shows a very surprising and
dramatic event in the first seconds. Inspecting the photographs (see Fig. 5.14) one can
detect large pieces of fractal metal zinc flowing just beneath the borderline between
the organic phase and the aqueous zinc solution towards the anode.

In the vicinity of the fractal zinc tree, which was still small at the beginning, a very
strong field gradient is formedwhen a high voltage is applied. As a result, particularly
exposed parts of the fractally growing zinc tree are torn off like the branches of a
tree in a storm. These small metal branches form the exposed parts of the metal zone
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Fig. 5.14 Growing metal zinc-tree at 14 V; left: after 0:16 min. right: after 1:29 min. The fractal
Dimension of the zinc electrode is D = 0.709 or Delectrode = 1.709
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Fig. 5.15 Bi-logarithmic plot of current versus radius of gyration (see Eq. (5.10)) at a constant
voltage of 14 V. The linear spline function for all data up to 128 s seems to result a dimension
of Delectrode = 1.709. This dimension is the ideal value for a DLA process, but that is obviously
misleading

tree will take with them an excess of electrons (negative charges) and thus they will
move away from the negative charged cathode.

These free moving fractal zinc branches are polarized in the electric field. In
the direction of the ring-shaped positive zinc anode, they become the cathode and
continue to grow, while in the direction of the original negative graphite cathode,
they themselves become the anode that supplies zinc ions.

In their article “Distinct dynamics on both sides of a metallic work piece elec-
trode”M. Buhlert et al. describe such bivalent character of metal pieces in an electro-
chemical cell, which are unconnected to the external power supply [16]. Electrical
connection of the unconnected metal sheet is established only via the electrolyte.
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Theywrote:“Depending on the polarisation of an electrochemical cell, ametalwork-
piece will be either electroplated or metal will be electrochemically removed. Posi-
tioning the workpiece electrode between an anode and a cathode without connecting
it to the external electrical circuit leads to removal of metal on one side of the
workpiece and electrodeposition of metal on the other side.”

That is exactly what we observed (see Fig. 5.16). We observed fractally growing
metal zinc particles in the direction of the anode whereas we observe dissolution of
the zinc particle on their back side which is directed to the original graphite cathode.
This way the free zinc particles moves in direction of the anode of the system while
growing on their front side and dissolving on their back side (see Fig. 5.16).

After the dramatic event of detachment of the exposed parts of the original
fractal has been overcome, the typical DLA process of diffusion-limited aggregation
continues. The typical fractal dimension Delectrode = 1.723 results (see Fig. 5.17).

This was the most surprising that despite the high voltage of 14 V, the dimension
of the fractal zinc cathode returned to the value for the diffusion-limited aggregation!

To understand this, we look at the aggregation process very early on. First of all,
what we have overseen looking at the bi-logarithmic plot of current versus radius of
gyration, the real disaster occurred almost at the beginning. Small parts of the just
aggregated metallic zinc are repelled by the cathode. In Fig. 5.18a one can detect
them as dark grey shadows around the fractal zinc deposition on the graphite cathode.
It looks like spreading particles in an explosion. These parts are growing at their front
and dissolving in their rare. That is the way they are moving in the interlayer between
the aqueous and the organic phase towards the anode as described above.

Fig. 5.16 Disconnected
Zinc particle moving freely
towards the ring anode via
fractal growing at the front
side and dissolving in its
rare. Experiment with 14 V
at 1:29 min after starting
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Fig. 5.17 Bi-logarithmic plot of current versus radius of gyration (see Eq. (5.10)) at a constant
voltage of 14 V. The linear spline function for all data from 32 s up to 109 s the dimension
D = 0.723andDelectrode = 1.723 results again

b)a)

Fig. 5.18 Electrodeposition of metal zinc at 14 V just at the very beginning of the experiment: a
after 3 s. b after 10 s

But we can also see that in the center of the radially moving zinc particles, the zinc
stuck to the cathode develops in the form of a typical DLA cluster (see Fig. 5.18b).
Obviously the corona of these zinc particles noticeably weakens the globally applied
field opposite the cathode. This voltage drop at the zinc particle corona is the reason
that the zinc deposition on the cathode also occurs practically completely in the
further development over time by diffusion-limited aggregation (DLA), so that the
typical fractal dimension of about D = 1.7 is measured.
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Chapter 6
The Fractal Character of Modified
Zeolites

The Formation of Cobalt (II)-Phthalocyanine Fractals
Inside Zeolites and the Dynamic Dimension
of the Reverse Cobalt Ion Exchange

Peter J. Plath, Erwin Ignatzek, Ernst-Christoph Haß, and Uwe Hündorf

Fig. 6.1 Fractal river-like structure of CoPc in a zeolite-X disk (diameter about 70 µm) (Photo, H.
Diegruber/P. J. Plath) A black and white version of this picture has been published by the authors
in Z. phys. Chem, Leipzig in 1987
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6.1 Preliminaries, Which are Worth Knowing Beforehand

To introduce you to the topic (Fig. 6.1), we will briefly describe what a zeolite
mineral is: zeolites form a group of alumino-silicate minerals with a microporous
framework structure made of negatively chargedAlO−

4 and SiO4 tetrahedra. The
negative grid charge is compensated by freely moving cations. They have a regular
arrangement of cavities and channels and in general an extraordinarily large inner
surface, sometimes well over 1000 m2/g. The special zeolite subgroup of faujasite
(zeolite-X)

(
Na,Ca0.5,Mg0.5,K

)
x (AlxSi12−x ) · 12H2O has an octahedral costume

(shape) and an inner structure based on cages, super-cages and channels between
them as shown in Fig. 6.2.

Such zeolite single crystals with a diameter up to 50 µ (Fig. 6.2b) have been
synthesized in our laboratories under hydrothermal conditions from aqueous solu-
tions of sodium silicate and sodium aluminate in the presence of triethanolamine
keeping the gels under 80 °C [1]; the Si/Al-ratio was about 1.1 to 1.0 as determined
by X-ray fluorescence analysis of the synthesized zeolite powder.

Aswe know from the textbooks, crystals are characterized by the translation group
of their unit cells. These are described by the point group assigned to them. This also
applies to the zeolite crystals with their rather complicated structure.

The various cavities in faujasite are of atomic/molecular order of magnitude a few
Ångström. If we ignore the quantum character and see the system itself on this scale
as a classic system, then we can say that there is a strictly deformed inner surface of
the pores in the zeolites. But this deformation is by nomeans self-similar. However, if

Fig. 6.2 a Faujasite crystal of about 40 µm; b Crystal structure of faujasite. The small cages
are connected via hexagonal channels, forming a supercage. These supercages are tetragonally
connected to each other. The edges of this graph represent the covalent bondings between the Si
and/or Al atoms via oxygen atoms O in between. The vertices of the graph represent the Si or Al
atoms
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Fig. 6.3 a Schematic representation of a cobalt phthalocyanine (CoPc) complex in the supercage
of a faujasite crystal; b two bottle-ships (Photo P. Plath)

we use molecules or atoms of different sizes, the measured surface size would differ
indicating the roughness of the surface. Although real crystals, especially zeolites,
always have dislocations, Pfeiffer and Avnir were able to show that ordinary zeolites
do not have an internal surface that is fissured on all sizes.Wewere able to essentially
confirm this statement [2].

But what happens if, after the primary ion exchange of the relatively free-moving
sodium ions Na+ of the faujasite with equally free-moving cobalt ions; are these Co2+

ions transformed to metal chelate complexes so that their mobility is then fixed in
the zeolite lattice? If, for example, Dicyanobenzene (Dcb) is used as the reactant,
the large, planar cobalt phthalocyanine CoPc is formed. It can be assumed that the
large, bulky CoPc molecules each completely fill a large cavity—a supercage—of
the zeolite (Fig. 6.3).

Such systems gained importance as so-called bottle-ship catalysts. For example,
CoPc-loaded zeolite-X crystals catalyze the oxidation of ethyl benzene, while crys-
talline CoPc alone or supported on amorphous silicate carriers does not catalyze this
reaction or at least not so effectively.

If one measures the inner surface of these CoPc-zeolite-X catalysts according to
the BET-N2 method (Brunauer-Emmet-Teller method) [3], as is usually done for the
characterization of catalysts, it is found that this does not grow as expected, square or
cubic with the edge length of the crystals however with an odd power. The dimension
of the system can be determined from this dependency: it is D = 2.71 or, D = 2.58
depending on the synthetic method used. This has been described in detail in our
previous work [2].

Figure 6.4 shows two images of CoX zeolites of 17 µm diameter which were
dehydrated at different temperatures (60 °C and 122 °C, respectively). In the first
case the crystal is whitish/grey translucent, but in the second case it shows a slightly
bluish irregular coloration (compare the formation of cobalt blue glass). In both cases,
however, there are some random fluctuations—due to the smallness of the crystals.
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Fig. 6.4 Light-microscopic images of CoX zeolites of 17 µm diameter which were dehydrated at
different temperatures: a at 60 °C and b at 122 °C. These photographs as well as those of Figs. 6.1
and 6.19 were taken by H. Diegruber and P. J. Plath in connection with the Doctoral thesis of H.
Diegruber [4].

For CoX-zeolites, inwhich theCo2+ ionswere not complexedwithDcb (Benzene-
1,2-dicarbonitrile=Dicyanonobenzene), themeasurement of the inner surface using
the BET method results, as expected, in a dimension of D = 2.97, but not three
(D �= 3). In the picture of the fractal description of this phenomenon, one would
say that the surface of the CoX is so fissured that it fills practically the entire three-
dimensional volume of the crystal, whereby every partial volume is accessible for
the N2 molecules. This result is largely in line with the classic ideas. But a zeolite
chemist would not talk about the inner surface of the zeolites in terms of fractal
geometry.

However, if the CoPc-loaded zeolites have a very rugged inner surface of dimen-
sion, D ≈ 2.7, how should one imagine the distribution of the CoPc molecules?
Furthermore, is such a CoPc-loaded zeolite crystal still a crystal? In such a case,
does there exist a crystallographic unit cell that is translation-invariant? Or, is it just
the mimicry of an amorphous system that occurs in the costume of an octahedral
crystal?

Most of the non-transparent CoPc-loaded zeolite crystals look uniformly blue
or green from the outside and the intensity of the color distribution rarely shows a
slight structure. From this, it was generally concluded that there is also a uniform
distribution of the CoPc molecules loaded zeolites over the individual supercages,
in accordance with the bottle-ship concept of the CoPc.

In the synthesis or growth of the zeolite-X crystals, however, it happens often
enough that individual octahedra are not fully formed but only form crystal disks,
since other crystals prevent them from growing regularly. Easily removable crystal
twins are created in the form of disk-shaped crystals, which are only accessible
from their freely accessible sides for Dcb molecules or Co2+ ions. As a result, they
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Fig. 6.5 Light-microscopic view onCoPc-loaded zeolite-X crystals; a blue colored fully developed
crystals; b zeolite-X disc (thickness of the microscopic cut: 5 µm) strongly patterned (stardust like)
by CoPc

correspond to crystal disks thatwould have been cut out of the fully formed octahedral
zeolite single crystal. So, one can see from them, like from a tomogram, what it
looks like inside the CoPc-loaded zeolites. Such “cuts” by no means show an even
distribution of the CoPc loading, but awonderful pattern as can be seen in the pictures
Figs. 6.1 and 6.5.

It looks like blue CoPc rivers which run through the Zeolite-X crystal. Their
appearance, whether visible river structures or their cuts (stardust structure), depends
entirely on the accessibility of the crystal interior during reactive loading. They
make it understandable that a non-integer dimension is determined in the BET-N2

measurements on CoPc-loaded zeolites.
If one looks at this flow structure of the CoPc then the question naturally arises,

how can such a flow system be formed in the zeolite crystal? Where does it take
the space from for its spreading? Obviously, the individual CoPc molecules are not
isolated one from each other in its own supercage, but they form almost fractal
structures of crystalline stacks of overlying CoPc molecules.

It is well known that faujasites are very sensitive to acids. If protons H+ are formed
during the formation of the cobalt-phthalocyanine, an increased acid concentration
could occur locally, which leads to the partial dissolution of the crystal lattice of the
faujasite. This would create the space necessary for the formation of the CoPc stacks.
A similar process of locally dissolving the zeolite crystal lattice by acid formation
in faujasites also takes place when palladium or platinum ions are reduced to larger
metal single crystals within the zeolite [5]. They also urgently need more space than
the individual super cages of the faujasite can provide.
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(6.1)

→Co
2+

+ 2 H
+ (6.2)

The reaction mechanism of Cheng-Hui Li, Xiao-Zeng You et al. [6] shown in
reaction Eq. (6.1) for the formation of Phthalocyanine (Pc) from Dicyanobenzene
(Dcb) was developed in a completely different context. However, if the substituent R
in the formulas is replaced, for example by the hydrogen atom of the faujasite crystal
water or by a docking point on the crystal lattice of the zeolite, then you get a very
clear picture of the possible molecular reaction even in the case of this reaction in
faujasite.

The reaction Eq. (6.2) shows formally, how the formation of the CoPc from Co2+

ions and Phthalocyanine Pc results in the hydrogen ion H+ concentration necessary
for the acid-related local destruction of the zeolite lattice. In this way, the resulting
CoPc system creates the space it needs for its own creation.

If an ion exchange of the still free, not complexed Co2+ ions with Na+ ions is
carried out within these CoPc-loaded zeolites, this process also proves to be fractal:
the dimension of the resulting CoPc-structure in the zeolite framework is D = 2.71
[2].

Now we are regarding the apparent total surface area A to be dependent on the average
diameter of the crystals as A ∝ dD−3 or logA ∝ (D − 3)logd + const . For the CoX
crystals, A does not depend upon d (see Fig. 6.6a). Therefore, the dimension becomes
D = 2.97 (correlation coefficient cc = −0.537). In any case, all cavities of the zeolite can
be totally filled with N2 molecules.

In contrast to this, there is a strong dependence of theN2 physisorption capacity on the crystal
size in case of CoPc-loaded zeolites CoPcX (see Fig. 6.6b)). The observed dimension isD=
2.71 (cc = −0.894). This means, such systems actually form fractals. Therefore, one should
expect areas of any size distributed stochastically in the zeolite framework, which are not
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Fig. 6.6 Logarithmic plot of N2-pysisorption data versus the diameter of the samples [2]; a in the
case of CoX crystals; b in the case of CoPc-loaded zeolites CoPcX

accessible for N2-molecules. Large crystals should have even bigger inaccessible areas than
smaller ones. Figure 6.1 shows the formation of systems of not self-avoiding CoPc-rivers in
a faujasite crystal filled from the outer sphere into the middle of the crystal” [2].

Barnsley [7] now had a very interesting idea for creating fractal structures in the
plane, which can be used to simulate a diffusion process.

He sets three striking attractive points on the plane and let a fourth point move
between those attracted by these three points. This hiker between the three points
uses the shortest route to the selected attractive point and stops at the location that
divides the distance between his current location and his new destination in a certain
predetermined ratio. The new point created in this way now becomes the starting
point for iteration (see Fig. 6.7).

Fig. 6.7 Sierpinsky gaskets generated by an iterative random process. The division ratio between
the randomly selected attractive corner point and the iterated, wandering point is d = 0.5; a with
a low number of iterations; b with a high number of iterations, for which the set of iterated points
has come very close to its attractor
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For better understanding, the pictures of the non-uniform distribution of the CoPc
inside the zeolite crystals are compared with the graphs of the attractors of different
iterated function systems inside octahedrons with respect to the idea of Barnsley [7].

6.2 Introduction

A new method of synthesizing Cobalt (II)-phthalocyanine (CoPc) inside X-type
zeolite crystals (faujasite) is reported. The reactants Dicyanobenzene (Dcb) and Co2+

ions are both incorporated in the zeolite crystals before reaction. TheCo2+ ions,which
remainunused inside the crystals, are ion re-exchanged afterwards.The reactionorder
of this reverse ion exchange depends upon the crystal size and reaches unexpectedly
high values. This dependency can be expressed by the “dynamic fractal dimension”
of the correlated ion exchange process.

In earlier works, especially by G. Zumofen, A. Blumen and J. Klafter, the idea of
fractal geometry [8] has also been applied to chemical reactions [9]. To calculate the
fractal dimension of faujasite type zeolites, D. Farin, D. Avnir and P. Pfeifer used data
form adsorption measurements of small alkanes. They took the saturation volume
of these n-alkanes as a function of their molar volume of bulk or liquid adsorbate,
respectively. In this way, the dimension of the zeolite is about D ∼= 2. They assumed
amonolayer of linear alkanemolecules forming parallel head-to-tail chains in zeolite
cavities. The obtained value D = 1.95 ± 0.01 is very close to D ∼= 2, wherefore
they concluded that the channel structure of zeolites may form an almost smooth
two-dimensional sur-face [10].

However, some years later, they re-investigated experimental catalytic results and
introduced the concept of a fractal reaction dimension. Their basic scaling law reads
as follows [11, 12]:

a ∝ RDR−DT (6.3)

where a is any kind of reaction rate, 2R is the size of the catalytic activemetal particle,
DR is the reaction dimension andDT the topological dimension of the space to which
is referred.

For this interpretation, it is fundamental to assume, that the reaction rate is a
characteristic measure for the catalytic reaction under the prevailing conditions. This
means that the essential geometry of the reaction system does not change during the
reaction.

But there are chemical systems in which the rate of the reaction changes while the
reaction proceeds. Poisoning, for instance, will change the activity of the catalyst. In
this case, one can usually spread the whole reaction into two widely separated time
scales and for each of them one may estimate its own reaction dimension.
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If of course both time scales are of the same order of magnitude, they are no longer
separable. This is the case if the reaction creates and varies the fractal structure by
which it can be characterized.

Studying the ion exchange of Na+ ions versus the Co2+ ions which remain in the
zeolite crystals after synthesizing Cobalt (II)-phthalocyanine inside the crystals, we
obtained reaction orders n in the range between n = 6.6 and n = 11.6 depending
upon the edge length of the zeolite crystals [2]. But, if the reaction order changes
with respect to the size of this crystalline reactor, chemistry should also change with
the crystal size. This can also be understood as a particle size effect of the reaction
with respect to the zeolite crystal size. We have observed similar particle size effects
using CoPc-loaded zeolites as a catalyst for the oxidation of ethanethiol [13].

To study the dependency of chemistry on the crystal size, we investigated the
reaction of the Co2+ ions with Dicyanobenzene (Dcb) both inside the zeolite crys-
tals. In large zeolite crystals Cobalt (II)-phthalocyanine is formed, whereas mainly
the yellow by-product Tris (2-cyanophenyl)-1,3,5-triazine (in short: Triazine) is
produced in the smaller crystals (see Fig. 6.8).

We have no desire to mention all possible fractal dimensions, but since the term
reaction dimension is occupied by the definition of Farin and Avnir [11, 12], we
propose the term dynamic dimension in order to express the dependence of the
reaction order on the size of the crystalline reactor. The reaction order determines
the mostly non-linear character of the dynamic system.

Two additional experimental observations are of great interest with respect to
the fractal character of the distribution of the products. The first phenomenon is the
river-like non–uniform distribution of the Cobalt (II) phthalocyanine in the zeolite
crystal (see Fig. 6.1), which was first reported in our work in 1987 [2]. The second

Fig. 6.8 Zeolite-X crystals
in which the blue CoPc as
well the yellow Triazine as a
by-product is produced. In
the big and bulky crystals,
mainly CoPc can be
observed (dark blue crystals)
whereas in the small
green–blue looking crystals
both products are present.
The eye-catching crystal disk
shows the internal structure
of the distribution of both
products in one zeolite
crystal
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phenomenon is the local separation of the two products—the blueCobalt (II) phthalo-
cyanine (CoPc) and yellow Triazine insight the zeolite framework (see Fig. 6.8). For
both phenomena, models are suggested to simulate the observations.

The models are founded on the idea that an iterated function system proposed by
Barnsley in1986 [7]might produce similar pictures as canbeobserved inphotographs
of the product-loaded zeolite crystals (see Figs. 6.5 and 6.21).

6.3 Experimental Part

6.3.1 Preparation of the Samples

In the present paper we are talking about Cobalt (II)phthalocyanine loaded faujasite
crystals in a range of crystallite size from 15 to 105 microns using two different
preparation techniques.

One of these preparation methods (named the oldmethod) is already described in
our previous paper in 1987 in detail [2]. For the synthesis ofCobalt (II)phthalocyanine
loaded zeolites by the new method, the same Cobalt (II) ion-exchanged faujasites as
for the old method are used. The Co2+ ion amount of the zeolite charges is 4.4 wt %,
i.e., one Co2+ ion per supercage on average.

For the new method, mixtures of 8 mmol benzene-1,2-dicarbonitril (Dcb) and
1 mmol of the different charges of partially dehydrated Co/NaX zeolites (referred to
as Co(II); 24 h, 573 K) are filled into glass ampoules which are sealed under special
conditions [2]. After a so called “pre-heating” at 423 K for 3 h (10 °C/min) the glass
ampoules are allowed to cool down to room temperature. At the end of this procedure
the materials are put into the oven at 573 K for 18 h.

In both methods, exhaustive treatment of the products with acetone and pyridine
follows to remove unreacted Dcb by-products and CoPc formed on the outer surface
of the zeolite [13] (CoPc amounts and turnover numbers of the samples synthesized
with the old and the new methods are listed in Table 6.1 A, B [14]).

To remove those Co2+-ions which have not formed CoPc-complexes and in order
to observe re-exchange kinetics, all samples are treated with 1 N sodium-acetate
solutions. For this, 0.25–1 g of the Cobalt (II) phthalocyanine loaded faujasites (dried
for 24 h at 475 K) are placed in 100 ml one-necked flasks and 50 ml portions of the
1 N sodium acetate solution are added. Then the mixtures are shaken thoroughly.
The residual Co2+ ions were determined before the ion’s re-exchange procedure by
complexometric measurements. For this purpose, the zeolite framework is destroyed
in HN03. During the ion-exchange procedure, the Co2+ ion amounts which remain in
the sample are determined by measuring the concentration of outcoming Co2+ ions
into the sodium-acetate solutions with atomic absorption Spectroscopy (AAS).

The total time for the re-exchange is 10 h. The sodium-acetate solutions are
renewed every two hours (see Table 6.2) [13]. To remove the acetate after completed
re-exchange, the samples are washed 25 times with 50 ml portions of bi-distilled
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Table 6.1 Physical characterization of the zeolite samples

Old method
sample

Diameter (µm) Spec. N2 surface
(m2/g) before after
work off

Pc amount
(w%)

Turnover (%)

A 1 14.67 445 1.5 5.1

2 22.67 451 1.1 3.6

3 71.74 245 0.5 1.5

4 105.00 294 1.1 3.6

B New method sample Before after work off

5 14.67 10 449 0.3 1.0

6 22.67 519 546 0.4 1.4

7 71.74 361 483 2.9 9.5

8 105.00 260 368 2.8 8.7

Table 6.2 Co2+ ion re-exchange with Na+ ions after the formation of CoPc in the zeolites

Samplea Residual amount of Co2+ ions in the zeolites (mg/g)

0 h 2 h 4 h 6 h 8 h 10 h

1 25.18 18.23 16.45 15.46 15.04 14.56

2 28.38 20.69 19.25 18.03 17.10 16.40

3 21.13 18.11 17.30 16.68 16.16 15.80

4 18.13 15.47 14.65 14.05 13.45 13.12

5 20.00 17.90 16.90 16.40 15.20 14.60

6 9.80 8.30 7.80 7.50 6.90 6.60

7 18.70 17.30 16.60 16.20 15.30 14.90

8 7.90 7.40 7.20 7.00 6.60 6.40

aThe sample numbers correspond to the numbers in Table 6.1 A, B

water. Additionally, the re-exchange behavior of the Co/NaX charges are studied
and reported [2].

6.3.2 Characterization of the Samples

The method for calculating the average diameter of the different zeolite charges
used and their distribution functions are described in our previous work [2]. To char-
acterize the samples, instrumental analytic investigations are carried out observing
the morphology and surfaces of the crystals (scanning electron microscopy), the
crystallinity of the products (X-ray diffraction spectroscopy), the distribution of the
CoPc formed inside the faujasites (cross-cuts in Light-Microscopy), the amount
of CoPc in the samples as well as the semi-quantitative amount of by-products
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(UV/VIS-spectroscopy), the spectra of products inside the zeolite crystals after reac-
tion (FTIR-spectroscopy) and the amount of Co(II) ions by AAS spectroscopy and
complexometric measurements (UV/VIS range).

To study the arrangement of the cobalt chelates, EPR-measurements are carried
out [13, 15]. Determinations of the nitrogen physisorption capacities of the samples
are done by a dynamic method at 77 K, as described in the work of G. Schulz-Eckloff
et al. in 1982 [16].

6.4 Results

During the 10 h of successive ion re-exchange, continuous non-linearly decreasing
contents of Cobalt ions in the zeolite charges are observed. The rates of the re-
exchange depend upon the diameters of the zeolites.

As in the case of N2 physisorption for the specific surface area, we obtain
decreasing values for totally exchanged ions with increasing diameter of the crystals
of the catalyst charges (see Table 6.2 and Fig. 6.9). As inmany other observations, the
sample with the smallest diameter (about 15 microns) does not match this sequence.
We explain this with the different morphology of this sample compared with the
others, as we mentioned already [17].

Figure 6.9 shows an example for the “concentration” of the remaining Co2+ ions
in the zeolites during ion re-exchange as a function of time.

The shape of this graph (Fig. 6.9) reminds us strongly to an exponential decay of
the Co2+ ion concentration in the CoPc crystals. This encouraged us to describe the
Co2+ ion re-exchange by a first order reaction kinetic (see Eqs. (6.4) and (6.6)).
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Fig. 6.9 “Concentration” of the remaining Co2+ ions in the small zeolites of the averaged diameter
d = 14.67 µm (new synthesis method) during ion re-exchange as a function of time. The “concen-
tration” of the Co2+ ions is calculated as the ratio of the weight of the Co2+ ions (in mg) and the
related zeolite weight (in g). For better presentation, this ratio is diminished by the summand s =
−15
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Fig. 6.10 The logarithm of the remaining Co2+ ion concentration as a function of time concerning
Eq. (6.6). The mean crystal diameter of the zeolites of the sample (XXI) used here is d = 14.67 µm

dc

dt
= −kc (6.4)

The well-known solution of this linear differential equation is:

c = c0e
−kt (6.5)

which can be transformed into the linear function ln(c) = f (t):

lnc = −kt + lnc0 (6.6)

Obviously, this is not a linear function (see Fig. 6.10) wherefore the approach of
a linear differential Eq. (6.4) does not hold. This conclusion is not restricted to the
sample with the smallest mean crystal diameter, but as Fig. 6.11 shows, is observed
in all samples, regardless of whether the synthesis method used is the old or the new
one.

For the other samples that were prepared with the new method, the total amounts
of re-exchanged Cobalt ions after 10 h exchange time vary from 32.65% for the 23
microns sample through 20.32% for the 72 µm zeolites and to 18.79% for the 105
micron charges.

In contrast to these relatively low total exchange rates as mentioned above, nearly
the whole Co2+ ion amounts could be exchanged back with the Na+-ions in all the
samples which were also used for the loading with Pc.

A logarithmic plot of the Co2+ ion amounts of the different samples as a function
of time does not lead, as could be expected for “normal” ion exchange, to a linear
function. This shows that the mechanism on which this particular ion exchange
(CoPc- loaded zeolites) is based differs from the mechanism of the exchange with
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Fig. 6.11 Decadic logarithm of the “concentration” of the remaining Co2+ ions in the zeolites
during ion re-exchange as a function of time. The “concentration” of the Co2+ ions is calculated as
the ratio of the weight of the Co2+ ions (in mg) and the related zeolite weight (in g); a old and b
new synthesis method

only Co2+ ion loaded samples as have been shown earlier [2]. Because of the non-
linear logarithmic plot, we are not able to calculate the reaction order of the described
ion re-exchange using the familiar equations, which can be taken out of basic text
books on chemical kinetics.

XDS-measurements (Seifert lSO Debyeflex 1001) of the samples are carried out
before and after the described synthesis of CoPcX. There is no detectable loss of
crystallinity as E. Ignatzek has shown in his thesis [13]. Only those signals, which
are typical for the zeolite framework can be found, but no CoPc signals occur. This
is a hint that no significant amounts of crystalline CoPc are formed in the zeolite
framework.

EPR-spectra (Bruker ER 200 D-SRC) of the CoPc-loaded faujasite taken in
vacuum and in air show hyperfine structures. One can conclude that major parts of
the CoPc are so-called mono-molecularly distributed. It is proposed that the arrange-
ment of the macro cycles forms one-dimensional chains penetrating the crystals as
it was already discussed for Ni-dmg (Ni-dimethylglyoxime) in faujasites [18].

Additionally, it has been proven that the uptake of small molecules like O2 and
H2O by the chelates is reversible.

6.5 New Synthesis Method

Taking up the idea of obtaining greater amounts of Cobalt-phthalocyanine in the
zeolites by other synthesis parameters as mentioned in our earlier work, CoX crys-
tallites mixed with Dcb (Dicyanobenzene) in sealed glass ampoules are pre-heated
in such a way that the Dcb could get into the gas phase and diffuse in the faujasites,
but could not cyclo-tetramerize with Co2+ ions to CoPc. The Dcb distributed in the
zeolite supercages begins to react at the moment the filled glass ampoules are put in
an oven at 573 K (new synthesis method).
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As a result of quantitative CoPc determination, one should detect—in comparison
with the values taken from the “old synthesis method”—higher CoPc amounts in the
worked off reaction products. As shown in Table 6.1 A and B, the CoPc amounts are
higher in the case of the bigger crystals, whereas in case of the small zeolites (15
and 23 microns) the values are smaller compared to those we obtain for the samples
synthesized by the old method.

These data are applicable when looking at the pyridine UV/VIS spectra of the
samples (the zeolite matrix was destroyed by stirring in 1 N HN03): The smaller the
crystallites the greater the amount of substances absorbing in the shortwave region.
Taking into account that, in general, extinction coefficient values of this region are
in the order of 103 to 104 l mol−1 cm−1, the amount of substances absorbing in
the short-wave region should be higher by at least one order of magnitude in the
case of the 15-micron crystallites than the CoPc-amount: E(CoPc)654 nm = 1.19 ·
105 l mol−1 cm−1 (thesis U. Hündorf) [14].

In the case of the small 15-micron samples, the substances which absorb in the
short-wave range could be isolated and identified by FTIR-measurements and mass
spectroscopy as tris(2-cyanophenyl)-1,3,5-triazine (Triazine:major by-product, yield
more than 30 times as high as the yield of CoPc).

Usually, Triazine is synthesized from Dcb and catalytic amounts of water by
cyclo-trimerization under strict exclusion of transition metal ions. The chemistry of
the Triazine group was developed by Snow et al. [19] and Ross et al. [20]; in detail: if
transitionmetal ions are present in the educt mixture even in very low concentrations,
the metal ion traces lead to 100% turnover of these ions with Dcb yielding Pc by
cyclo-tetramerization.

Contrary to this known reaction behavior in the case of the 15-micron faujasite
crystals, we obtain Triazine as the major product although sufficient amounts of Co2+

ions are present in the applied zeolite compound. As was expected for all crystallite
charges, the conversion of the Dcb to the reaction products is greater in the case of
the new synthesis method as compared with the old one.

Likewise, for both the methods of synthesis discussed, the determined N2 BET
surfaces of the worked off CoPcNaX zeolite increases with decreasing crystal diam-
eters. The 15-micron crystallites, synthesized by the new method, must be seen as
an exception (as also mentioned for many things in the work of E. Ignatzek); before
Co(II) ion re-exchange (see below), the N2 physisorption value was 10 m2/g and
afterwards 44.9 m2/g. For the N2 molecules the previously non-accessible regions
of the raw product become accessible after the Co(Il)-ion re-exchange. Thus, the
Co(II) ion re-exchange should be a very complex reaction. It might be better to
understand this reaction as an extremely hindered diffusion reaction, induced by the
fractal structure of the CoPc- loaded zeolites. This assumption will be discussed later
on.

The relatively low N2 BET surface of the 15-micron CoPcX zeolite sample seems
to be causally related to their high Triazine loadings. For the other crystallite sizes,
the difference between the N2 BET surface values before and after the Co(II) ion
re-exchange was not as remarkable as in the case of the 15-micron samples (see Table
6.1B). This correlates with the interpretation of the UV/VIS-spectra, which say that
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taking the 23-, 72- and 105-micron crystallites less or even indetectable amounts of
by-products are formed, in comparison with the 15-micron CoPcNaX.

6.6 Catalytic Behavior of CoPcX

The preparation of the described samples is done following the concept of hetero-
genization of homogeneous catalysts [21]. Phthalocyanines are known to be good
catalysts for oxidation reactions [22, 23] and the oxidation of thiols yielding disul-
fides (Eq. (6.7)) are important reactions in the oil processing industry [24], for which
reason we have chosen the oxidation of ethanethiol in heptane as a model reaction
for the following process:

2RSH + 1

2
O2 → RS − SR + H2O (6.7)

Into a 250 ml static reactor 100 ml heptane with 165 ppm ethanethiol is filled. The
reaction temperature is 298 K. The total reaction time is set to 22 h. The amount of
the added catalyst which is stirred into the solution is chosen to be 1.24 · 10−5 mol
of CoPc in the zeolite sample as described by Plath 1988 [17]. Blank experiments
with NaX samples and with CoPc alone do not show noticeable amounts of turnover
to the product after 22 h reaction time.

The values we received for the catalysts, which are prepared with the old synthesis
method, are listed in Table 6.3 and the conversion of the thiol as a function of time
is shown in Fig. 6.12. It can be seen that in catalysis, too, the reaction velocity is
a function of the catalyst diameter. The crystals with the greater diameters show
higher reaction rates. The turnover numbers listed in Table 6.3 are calculated using
the converted amounts of ethanethiol at 0.5 h because this time could be taken as the
initial reaction rate (see Fig. 6.12). Therefore, the fractal character of the catalyst,
which is expressed in the BET values and the ion re-exchange is also viewed in its
catalytic behavior.

Table 6.3 Catalytic behavior
of CoPcX (old synthesis) on
thiol oxidation

Sample Turnover number at 0.5 [h−1]

1 9.4

2 8.4

3 28.6

4 13.8
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Fig. 6.12 Influence of the zeolite crystal size on the activity (thiol consumed in percent) of the
zeolite catalysts (produced according to the old synthesis method) in the ethane-thiol oxidation in
the batchwise stirred tank reactor. (There is practically no thiol conversion observable in pure NaX
zeolites.)

6.7 Analysis of the Results

The amount of Co2+ ions remaining in the CoPc-loaded zeolite crystals after ion-
exchange with Na+ ions diminishes step by step with time (see Figs. 6.9 and 6.10,
and the corresponding doble logarithmic plot in Fig. 6.13). Let us assume that time
dependence for the decrease in the Co2+ content of the crystals is in accordance with
a reaction law of first order as shown in Eq. (6.5).

However, the experimental well verified function lnc = αlnt is without any doubt
a linear function in all cases, especially in the case of the new synthetic method.

Fig. 6.13 Double
logarithmic plot of the
concentration of the
remaining Co2+ ions in the
CoPc-loaded zeolite crystals
(new synthesis method) with
the mean diameter d =
14.67 µm as a function of
time (compare Figs. 6.8 and
6.9). The result is the
function
lncCo2+ = −0.0461ln(t) +
2.8935, R2 = 1 y = -0,0461x + 2,8935

R² = 1
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The question arises how the factor α in the linear function or in the corresponding
relation c ∝ tα is to be interpreted. Since the linearity in Fig. 6.13 is so excellent
(R2 = 1), this must be the starting point of any further interpretation. For this
purpose, two possibilities are discussed in the following: Interpretation via kinetics
and interpretation via diffusion.

6.8 The Interpretation Based on Chemical Kinetics

Instead of the first order reaction law (Eq. (6.4)) let us take the more general reaction
law:

−dc

dt
= kcn; n �= 1 (6.8)

with unknown reaction order n, to describe the decrease of the amount of Co2+ ions in
the zeolite crystals with proceeding ion exchange. Solving this equation, one obtaines
after a few steps:

c = [(n − 1)k]−1/(n−1)t−1/(n−1) (6.9)

The logarithmic transformation of c in Eq. (6.9) now gives the linear function
logc = f (logt):

logc = − 1

n − 1
logt − 1

n − 1
[(n − 1)k] (6.10)

Plotting the experimental data this way (Fig. 6.14), fairly good straight lines are
obtained in the case of the old method and points which fit a straight line very well
using the data of the new synthesis method. From the slopes m of these lines,

Fig. 6.14 Estimation of the reaction order in Eq. (6.10). Here, the logarithm of the “concentration”
is plotted versus the logarithm of time; a old and b new synthesis method
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Table 6.4 Estimation of the reaction order n = −1/(m + 1) and the constant k of the formation of
CoPc inside zeolite-X crystals according to Eq. (6.10). For comparison, the values for the CoNaX
are also mentioned

Mean zeolite crystal size (µm) Old synthesis
method

New synthesis
method

Unloaded CoNaX
zeolite

Order
n

Constant
k

Order
n

Constant
k

Order
n

Constant
k

14.67 8.09 8.24*10–11 22.94 1.72*10–29 2.34 2.34*10–2

22.67 7.92 5.91*10–11 25.03 3.81*10–24 1.67 4.03*10–1

71.74 12.76 6.31*10–17 29.16 3.90*10–37 1.85 1.81*10–1

105.00 10.70 1.40*10–13 35.55 2.21*10–32 1.98 0.86*10–1

m = −1/n − 1, or n = 1 − 1/m (6.11)

one can estimate the reaction orders n concerning Eq. (6.8). The value of n obviously
depends upon the size of the zeolite crystals (see Table 6.4). The smaller the crystal
size, the larger is the reaction order n. The reaction constant k does not depend upon
time any more, but it also depends upon the value of the zeolite crystal size, as
expected.

The surprisingly high value of the reaction orders n ≈ 10 and n ≈ 28 for the old
and the new synthesis method, respectively, reflects the complexity of the reaction
inside the CoPc-loaded zeolites, which results in the observed ion exchange. In
contrast, one gets a reaction order of about n ≈ 2, as one could expect, for the ion
re-exchange of the Co2+ ions in the case of the CoNaX-zeolites which are unloaded
with CoPc. Although one can observe a dependency of the reaction rate on the crystal
size even in this case, one has to recognize the dramatic change of the reaction order
of the Co2+ ion re-exchange if CoPc is formed in the zeolite crystals.

Does it really make sense to think seriously about a reaction order of 10 to 30?
Before answering this question, let us try to find any tendency whichmight be hidden
in the sequence of these numbers. For this purpose, one may express the dependency
of the reaction rate on the zeolite crystal size by its fractal dimension D.

Executing the log–log plot of the reaction order n versus the crystal size d, one
can estimate a fractal dimension of D = 2.763 (cc = −0.8606) and D = 2.786 (cc
= −0.9838) for the old and the new synthesis method, respectively (Fig. 6.15).

This dimension has been evaluated by regarding the change of the reaction order
n for varying crystal sizes. For this reason, we call this dimension the dynamic
dimensionD of our chemical system. However, if the reaction order changes in such
a dramatic way, chemistry should change as well. Therefore, chemistry also depends
upon the size of the crystalline micro-reactors. This way one can understand that
Triazine is the main product within the small crystals, whereas CoPc is the main
product in the larger ones.
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Fig. 6.15 Double logarithmic plot of the slopes of the straights shown in Fig. 6.14 and the mean
crystal sizes in order to estimate the “dynamic dimension” D; a old synthesis method (D = 2.763,
cc = −0.8606); b new synthesis method (D = 2.786, cc = −0.9838)

If we do not fix the reaction order, its resulting value reflects this temporal change
of the molecular surroundings of the reacting species. But there is no unique tradi-
tional way of interpreting a reaction order of about 10 or 28. Does this really mean
that ten or even thirty molecules have to come together? And what does it mean in
case of the ion exchange procedure? Moreover, how can we understand this manner
of dependence of the reaction order on the size of the zeolite crystals? We no longer
believe that we can follow the trustworthy line of the traditional interpretation.

These results raise the question of a coherent interpretation of the underlying
chemistry and physics. We are forced to ask the fundamental question: how do
we have to define a molecule in a zeolite framework if we wish to understand the
unexpected high values of the reaction order? To answer this question, let us go
back to H. Haken’s principle of slaving [25, 26]. In a dynamic system, one or only
a few dynamic modes will slave all other possible dynamic variables, depending
upon the constraints. In a chemical system, molecules are just the representatives
of these leading modes [27]. Now, if we change the size of the zeolite crystals,
we are modifying the constraints of the reaction and other modes may become the
leading ones, whereas the former ones become slaved. Therefore, varying the crystal
size from 14 to 105 microns, our system might pass many dynamic instabilities,
undergoing several dynamic phase transitions. Different “molecules “, which are
represented by different reaction orders—if we are referring to the concentration
variables—characterize the various leading variables.

This consideration firstly leads to the conclusion that we cannot define a molecule
inside the zeolite without specifying the correlated reaction and, secondly, even for
the “primitive” ion exchange we have to consider non-trivial “molecules” of high
complexity, represented by high values of the reaction order.

The question remains as to howwe can imagine themanner inwhich the restriction
of the volume of the crystalline reactor can influence the leading chemical reaction
mode and the shape of the molecules. Of course, this can happen if the underlying
space has a fractal structure. We have previously shown by BET measurements that
CoPc-loaded zeolites are fractals [2]. Therefore, it should not be surprising that we
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can observe a change in the reaction order while varying the zeolite crystal size. This
dependence will reflect the fractal character too.

6.9 An Interpretation Based on Fick’s Second Law
of Diffusion

We have seen that the approaches largely based on simple chemical kinetics to
describe the temporal behavior produced completely unsatisfactory results in the
case of Co2+ ion re-exchange. If we hold to the condition of a first-order reaction,
then this inevitably leads to a very artificial time dependence of the reaction constant.
If, on the other hand, we consider the reaction order n > 1 as the quantity to be
determined, then completely unrealistically large reaction orders result.

However, if we abandon the assumption that the reaction rate depends on the
concentration of the Co2+ ions present in the zeolite crystals, then a completely new
possibility opens up.

Let us assume, for example, that the concentration of the Co2+ ions remaining in
the zeolite only depends on the time according to relation (6.12):

cCo2+ ∝ tα (6.12)

Then, there is a linear relationship,

ln
(
cCo2+

) ∝ αln(t) (6.13)

which describes our observations excellently with unexpectedly good correlation
coefficients, R2 = 1, in all cases, as can be seen in Fig. 6.16b for example.

For the example shown in Fig. 6.16b, we get the linear equation.

ln(cCo2+) = −0.0342 ln(t) + 2.8582 (6.14)

for the zeolites with themean diameter d = 71.74µm,where α = 0.00342, according
to Eq. (6.14).

Since this linearity is no exception, the question arises, what is the physical reason
for these observations: Is the process of the ion re-exchange simply a diffusion of
the Co2+ ions out of the zeolite crystals? Then, according to the 2nd Fick’s law, the
following should apply,

∂c

∂t
= D

(
∂2c

∂t2

)
(6.15)

where D is the diffusion coefficient.
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Fig. 6.16 a Concentration
of the remaining Co2+ ions
in the zeolite crystals with
the mean diameter d =
71.74 µm as a function of
time; b double logarithmic
plot of Fig. 6.16a
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For the sake of simplicity, let us consider an octahedral zeolite X crystal as a
sphere. Let us also assume that the total Co2+ ion concentration in a zeolite crystal is
concentrated at the origin of the sphere at time t = t0. Outside this sphere of radius
rs , the concentration is zero at this time. Furthermore, the outer sphere should be
in an infinite volume, so to speak. These assumptions allow a more or less simple
solution of the partial differential equation of Fick’s 2nd law:

c(r, t) = N0

8(πDt)
3
2

e (6.16)

However, what we measure is not the concentration c(r, t) of the Co2+ ions inside
or outside the zeolite crystals, but the integral I of this concentration over the space
within the crystal sphere of radius rs after a certain time (see Eq. (6.17)). That is,
what we are calling the remaining amount of the Co2+ ions in the zeolite crystals
after re-exchange with Na+ ions after a given time interval.
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I =
rs∫

0

c(r, t)dr = N0

(4πDt)
3
2

rs∫

0

e−r2
/
4Dt

dr (6.17)

In order to solve the integral over the exponential function e, we develop this
function into the well-known Taylor polynomial of order n at the expansion point
a = 0, which is defined by,

Tn( f (x, a)) =
n∑

k=0

f (k)(a)

k! (x − a)k (6.18)

where in our case f (x) = f (r) = e−br2 and b = 4dt .
If we restrict ourselves to the 2nd order in the Taylor series expansion, then we

can write the integral expression (Eq. (6.17)) as follows:

I = N0

(π4Dt)
3
2

∫ rs

0

(
1 − br2

)
dr (6.19)

Emphasizing the dependence on time, the solution of this integral can be
transformed into Eq. (6.20):

I = N0rS

(π4D)
3
2

t−1.5 − N0r3s
96π

3
2 D

5
2

t−2.5 (6.20)

In view of the very small crystal radii on the one hand, and in view of the strict
linearity of the experimentally determined function ln

(
cCo2+

) ∝ αln(t) (Eq. (6.13))
as well as the comparatively long times, it is justified that we limit ourselves here
to the first term of the integral. Thus, we obtain Eq. (6.21) in double logarithmic
representation:

lnI = −1.5lnt + lnrs + ln
N0

(π4D)
3
2

(6.21)

The constant factor −1.5 = −3/2 in the logarithmic term lnt is the exponent of
time t

3
2 (see Eqs. (6.20) and (6.21)) and reflects the assumption that this is a space

with the topological dimension dt = 3 in which the diffusion takes place. A factor
of -0.0342 would mean that this diffusion would be based on a space with the fractal
dimension d f = 0.0684. This could be reminiscent of the diffusion of the ions in the
gel in the Liesegang experiments (see chapter ‘Liesegang structures’ in this book)
which takes place on the “backbone” [28] of the fractal gel body. There, themeasured
fractionated dimension was d f = 1.5. But, a dimension as small as d f = 0.0684
cannot be a hike on a fractally jagged path, because then it must be greater than one.
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This is also the case if Euclidean obstacles or tremas, for example in the form of
spheres, would partially block the path of the ions on the fractal [29].

A dimension between zero and one can only mean that it is a matter of “dust”, i.e.,
an incoherent, possibly slightly clumped set of points or arbitrarily small distances.
However, how can we imagine a migration of the Co2+ ions on such an incoherent
dust? Again B. B. Mandelbrot gives mathematical examples of such processes. He
refers to Lévy Flights. “A Lévy flight is roughly a sequence of jumps separated by
stopovers (with Brownian trails; the authors). Only the latter are of direct interest
in this chapter, but jumps are a necessary part of the construction. … Decreasing
of D (dimension; the authors) by subordination makes the Lévy clusters become
increasingly separate” [30]. However, how do we generate a chemical process from
these ideas that fits our experiment?

Let us assume that the formation of the CoPc molecules leads to a fractal that
extendsmore or less over the cavities of the zeolite. Figure 6.1 illustrates this assump-
tion., Whether or not the CoPc molecules are always isolated only as single ones in
a supercage of the zeolite, i.e., whether or not the supercages are partially destroyed
by the incorporation of the planar CoPc molecules, is not discussed further here. It
is important that the typical color of the crystalline CoPc is due to the interaction of
the co-molecules lying on top of each other. The CoPc molecules in the zeolite are
also colored blue, but with a slight color shift, so that corresponding stacks or towers
of CoPc molecules must have formed [31, 32].

If a free, isolated, not complexed Co2+ ion begins its “Brownianmigration” during
the ion re-exchange, it will soon encounter a branch of the CoPc fractal. Using the
example of Newton’s cradle, with which the conservation of momentum can be
demonstrated excellently, it can be made clear what can happen to the Co2+ ions that
hit a stack of CoPc molecules. Like the steel ball in Newton’s cradle that hits the row
of balls and at the other end repels the previously quietly hanging ball, the Co2+ ion
can transfer its charge to the metal-like, “one-dimensional” …–Co–Co–… chain of
the CoPc molecule stack. Somewhere at any “end” of this fractal CoPc structure, a
Co2+ ion is then formed and repelled. In this way one can interpret the “jumps” in
the Lévy flight. Therefore, it’s not one and the same ion that migrates, because its
identity has changed; however, that does not matter here.

But this is where the analogy to the mechanical model of Newton’s cradle ends,
because in the case under consideration not only the charge is transferred from atom
to atom, but also a mass transport or a shift of the central Co atoms from one CoPc
to the neighboring CoPc molecule takes place.

Anyway, there is an ion that walks, and the fractal CoPc stack passes on the baton
of charge to the next ion. In this way, the CoPc in the zeolite framework serves as
fractal tremas in the sense of Mandelbrot’s explanations [33]. They are “cutting out”
the jumps in the underlying Lévy flight, so to speak. In this manner, an unbound Co2+

ion moves in the zeolite crystal, which is permeated by CoPc fractals according to
the new synthesis method. The ion tumbles erratically in a stopover from one point
of the Levy dust to another and then, changing its identity, jumps as another ion to
another stopover.
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Fig. 6.17 The exponents of
time in Eq. (6.12) are plotted
versus the radius Rs of the
spheres which represent the
zeolite crystals
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The result of this movement of the Co2+ ion re-exchange is a “migration move-
ment” from point to point, the dimension of which is considerably smaller than
one.

After all these explanations about the ion exchange of the Co2+ ions, it is not
surprising that the dimensions of the space for this ion migration depend on the
mean crystal size of the zeolites. Figure 6.17 shows that this dependence of the
dimensions on the radius of the mean crystal size is linear in form d f = 0.0004 and
Rs − 0.0473.

6.10 An Iterated Function Model for the Formation
of Fractals by Diffusion in Octahedral Zeolites

Besides the dynamics of the ion re-exchange, we have to understand the formation of
the fractal shape of the CoPc distribution within the zeolite crystals. At the beginning
of the synthesis, we should have randomly distributed Co2+ ions as well as Dcb
molecules:

Co2+ + 4 Dcb + 2 H2 → CoPc + 2 H3O
+ (6.22)

Therefore, the CoPc product should be randomly distributed as well. But this
conclusion, which seems to be obvious, includes some strong assumptions about the
diffusion process of the reactants inside the zeolite crystals.

If one assumes a Brownian-like diffusion, as it occurs in gases and liquids, where
all directions in space are of equal probability, then the products shall also be equally
distributed in a stochastic manner. However, there arises the question as to whether
this assumption is justifiable in the case of zeolites.

On the contrary, in the zeolite crystals one should assume a diffusion process
in which some directions in space are favoured, because of concentration gradients
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between the inner parts of the crystals and their outer surface. Under those circum-
stances, a stochastic and equal distribution of the products requires only very short
paths of diffusion, if the stochastic character of the initial distribution of the reactants
is not to change during the diffusion process. This means the reactants should not
move but react where they are localised.

However, if the reactants can move “freely” for a while within the preferable
direction before reaction, clustering of the products should occur.

These statements can easily be evaluated using an iterated function system [7].
Let us assume that the diffusion is favoured into the direction of the six corners of
the octahedral zeolite (faujasite) crystals. The huge number of starting points of the
diffusing reactants might be equally and stochastically distributed. Now an erratic
diffusion process may begin [17, 18], This means that, in contrast to the truly free
motion of a spheric symmetry, not all points of the sphere are target points of the
diffusion, but only the six corners of the octahedron. These target points are randomly
chosen in a coin toss algorithm.

The reactants only move directly one part of the total distance between their
position x(t) at time t and the chosen target point. This fraction of the distance
depends on the attracting strength of the randomly chosen target point. This way we
have established an erratic diffusion process based on an exponential law:

yi,m(t − 1) = |(i − yi (t))|a−1; a−1 ∈ [0, 1] (6.23)

yi,m(t) vector of the iterated point at time t.
t discrete time,
i vector of the chosen target point and.
m starting point.

This can easily be evaluated, if i remains constant for a successive amount of time
steps. Then Eq. (6.23) can be transformed into:

yi,m(t + 1) = ∣∣i − yi,m(t)
∣∣a−1 (6.24)

After a given number T of time steps t, the diffusion of the reactants may be
finished by a successful reaction. The products should not diffuse any more. Let us
mark these last points y(T ). If T goes to infinity: T → ∞, the set of all points yi,m(T )

forms the attractor of this erratic diffusion process. But if we have many starting
points, ym(0);m → ∞, we need only very few time steps to reach the attractor, i.e.,
to come sufficiently close to nearly all points of the attractor. Figure 6.18a–d shows
some computed attractors for various fractions 1/a. For small values of 1/a; (a ≈ 2)
one obtains only slightly structured distributions of the points y(T ), which reminds
us of the product distribution of the CoPc inside the zeolite crystals.

Nevertheless, these numerical distributions are of fractal geometry and differ
essentially from the stochastic and equal distribution of the starting pointsy(0). If
1/a = 2, one gets the ‘three-dimensional’ SIERPINSKY-like octahedron [8]; and if
1/a > 1

2 , isolated clusters occur (see Fig. 6.18).
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Fig. 6.18 Attractors for different iterated function systems (IFS)7 within an octahedron. The IFS’s
are characterized by various divisors a: a a = 1.4, 1/a = 0.713, b a = 1.8, 1/a = 0.556, c
= 2, 1/a = 0.5, and d a = 2.2, 1/a = 0.455. The fractal structures within the octahedron can only
be guessed at as very diffuse stripe-like structures in Fig. 6.18c, d

To get a visual impression of the CoPc distribution in the zeolite, fractal CoPc
rivers in thin CoPcX zeolites are shown in Fig. 6.19a, b which are obtained by
light-microscopic transmission photography.

To simulate real crystals and images of crystal disks, we have truncated the octa-
hedron at the apexes of the two opposite pyramids (see Fig. 6.20a, b) or ground two
opposite sites forming a thin slice in each case.

But these numerical pictures differ from the experimental ones; they do not show
the river-like structure which we observed (Fig. 6.19) and discussed earlier [2]. To
create pictures which correspond to the experimental photographs (c.f. Figure 6.21)
to a greater degree, we have to change our iterated function system a little. We have
to use affine mappings [7].

This means that we have to add a vector, which shifts y(t + 1) in a desired direc-
tion. This requires an additional chemical interpretation. One may imagine that the
reactants are turned away from their straight path of diffusion by the tetrahedrally
structured systemof channels inside the zeolite crystals. Figure 6.22 shows the images
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Fig. 6.19 Light-microscopic transmissionphotographs ofCoPc-loaded zeolite-X-crystals;a fractal
CoPc rivers within thin CoPcX crystals; b thin grown crystal with a fractal CoPc river-like structure.
(Photos H. Diegruber/P. J. Plath)

Fig. 6.20 Attractors of an iterated function system (IFS) [7] with the divisor a = 2.0 in different
slices of an octahedron (a) and (b). The IFS works in the whole octahedron. So, these pictures
may represent CoPc-loaded zeolite-X crystals which are ground after finishing the CoPc synthesis
within the whole octahedral crystal

of such an iterated function system. These pictures resemble better the photographs
of the CoPc-loaded zeolite crystals [2], showing the river-like structure of the product
distribution of CoPc which is represented by the set of y(T ) points.
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Fig. 6.21 Light microscopy transmission photograph of slices (thickness: 5 µm) of CoPc-loaded
zeolite-X crystals with an average diameter of 22.7 µm (see Table 6.1) at 100 times objective
magnification. (PhotosH.Diegruber/P. J. Plath). Using this method, CoPc rivers are usuallymapped
as dots or small blue clouds as they are sliced by the cut formation

Fig. 6.22 Attractor of an iterated function system (divisor a = 2) with a tetrahedral shift. Again,
the iteration takes place in the whole octahedron, where the slices (a) and (b) give an insight into
the internal structure of the three-dimensional pattern of the attractor of the IFS
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6.11 Conclusion

The previous results achieved by N2-BET measurements [2], that the formation
of CoPc inside zeolite crystals results in a fractal distribution, could be confirmed
following the reverse ion exchange of the Co2+ ions which remain unused during the
reaction.

The two synthesis methods which are reported firstly differ in the distribution of
the reactants between the inner and the outer part of the zeolites: either both the Co2+

ions and the Dcb molecules are inside (newmethod), or only the Co2+ ions are inside
the crystals at the starting point of the reaction (old method).

Secondly, both distributions of CoPc differ extremely in the order of their reaction
rates with respect to the reverse ion exchange. However, both orders are of unexpect-
edly high values (nold ≈ 10; nnew ≈ 28), whereas the reaction order for the Co2+ ion
re-exchange using CoNaX-zeolites unloaded with CoPc is of about 2.

Moreover, the reaction order depends upon the size of the zeolites which can be
expressed by the correlated dynamic dimension which is in the range of 2.7–2.8.
Accompanying the dependence of the order of the reaction rate on the crystal size,
there can be observed a change of the chemistry inside the crystals. Within the small
crystals mainly Triazine is produced, whereas CoPc is the main product in the large
crystals.

These results require a new interpretation of what a molecule inside a zeolite
crystal means and of what a reaction order of the value of 10 to 30 means in this
case. We are convinced that the slaving principle of Haken [25] and Wunderlin [26]
leads to a better understanding of the ideas mentioned above. Following their ideas, a
molecule represents the leading mode of the reacting structured ensemble of atoms.
This set of atoms can even be of macroscopic size and it is assumed to be of fractal
shape. Then, reaction means a complicated rearrangement of this structured unit.
Translating this idea into the ion exchange procedure, this rearrangement becomes a
strongly hindered diffusion process of the Co2+ ions and the Na+ ions, respectively,
and the great order of the reaction rate reflects the complexity of this rearrangement.

One question remains: how can a reaction diffusion process of the reactants lead
to a fractal distribution of the CoPc products inside the zeolite crystals? This can
really be understood if one assumes a diffusion process of the reactants, which is
erratically orientated, whereas the products remain almost located where they are
produced.

To evaluate this idea, we have simulated this process by an iterated function
system in a three-dimensional space spanned by the six corners of an octahedron,
which correspond to the octahedral symmetry of the zeolite-X crystals. There is a
qualitative correspondence between themicroscopic photographs of theCoPc-loaded
zeolite crystals and the two-dimensional projections of the attractors of the iterated
function systems in the octahedron.
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Chapter 7
Pattern of Sea-Shells Modelled
by One-Dimensional Automata

Collision-Particles

Peter J. Plath, Ernst-Christoph Haß, and Jan K. Plath

Fig. 7.1 Sea shell Cymbiola (Volutocorona) imperialis, not uncommon occurrence in the Philip-
pines (height 12 cm), The shell grows from top to bottom. The growth front is perpendicular to the
direction of growth (Photo P. Plath), (compare: Documentaires alpha: les Coquillages) [1]

7.1 Introduction

The patterns on tropical mollusk shells of quite different spatial structure are extraor-
dinarily rich in colors and shapes (see e.g. Fig. 7.1). There is a great fascination with
the sight of them, which is not only related to the fact that these mollusk shells
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exert an exotic charm on us; rather they are—because these patterns, despite their
seemingly arbitrary nature—subject to strict principles of their formation.

7.2 Historical Remarks

However, we cannot avoid briefly addressing the great cultural significance of the
mussel shells, which goes back a long way into prehistoric times. This meaning is of
course also based on the fascination with the pattern formation of these objects and
their relative rarity.

Hoffman and Pike analyzed the artifacts of the Neanderthals discovered by the
Portuguese paleontologist João Zilhão [2]: pierced and painted shells, which he
discovered among other things in a cave in southern Spain in 2008 (see Fig. 7.2).
They concluded that the processed shells were at least 115,000 years old [3, 4].

Shells made into jewelry chains were also suitable for ritual exchanges. When
referred to as a kula or kula ring ritual exchange system with delayed reciprocity
among the inhabitants of the Pacific Trobriand Islands, shell necklaces or shell
bracelets are still used today [5]:

These Melanesian islands are arranged almost in a circle, between them soulava, neck-
laces made of small red mussel plates, are exchanged clockwise. In the other direction,
counterclockwise (in the mill direction), mwali, bracelets made from a white shell ring, are
exchanged. The individual chains and maturities have a sacred character, each with its own
orally transmitted story. All gifts must be exchanged after a while. [5]

In 2007, the sociologist R. Ziegler presented a simulation of this complex
economic and ceremonial exchange system in his book “The Kula Ring of Bronislaw
Malinowski” [6].

Fig. 7.2 Shell jewelry of the Neanderthals2; perforated and colored sea shells from the southern
Spanish cave Cueva de los Aviones, which were used about 115,000 years ago
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In a long-lasting social development process, the shell ring or the individual shell
becomes an independent object that can be exchanged for other objects. The shell
becomes money.

However, if instead the emphasis of exchange is placed on the sacred character,
the conch shell can develop as an object for ritual use. In this way, it can be turned
into a music or a signaling instrument.

As an object of science, the mussels and mollusks first appear as their fossils in
Leibniz’s geological treatises Protogea (Gottfried Wilhelm Leibniz (* 21. Juni/ 1.
Juli 1646 in Leipzig; † 14. November 1716 in Hannover) [7]:

Wennwir nunderÜberbleibsel desMeeres beyunsgedenkenwollen, somüssenwir zuerst die
Seemuscheln anführen, die hin und wieder in unseren Steinen sind. Es hat schon vorlängst
der vortreffliche braunschweigische und hildesheimische Arzt Valerius Cordus von dem
Argicola das meiste gehört, bey unseren Fossilien in den hannöverischen und hildesheimis-
chen Steinbrüchen und Schachten und Kellern angemerkt, daß die Meermuscheln in unserer
Gegend, auch bei Alfeld sehr häufig sind. ...

Der Kammstein, steinern Jacobsmuschel (ctenitits) hat Spalten, und ist wirklich wie ein
Kamm geformt. Insgemein ist er aschenfarbig, und wird in den Steinbrüchen, jenseits des S.
Moritzberges gefunden.Agricol. BeydemGeßner S. 165 ist ein hildesheimischerKammstein
in Form eines Walfischmauls.”[7] (compare: Fig. 7.3b Scallop)

The Protogea was conceived between 1691 and 1693 as a contribution to the
history of the House of Hanover (German: Welfen), but it was not published during
his lifetime. However, Protogea has made known by Eckhard [8] in 1719 and was
translated into German by Scheid [7] in 1749.

Fig. 7.3 a Illustration of the 1749 edition of Protogaea by Leibniz. File: Houghton
GC6.L5316.749p—Leibniz, Svmmi polyhistorias, tab III.jpg [9]; b Scallop (German: Jakob-
smuschel) (pecten maximus) Edible scallops are found in the Mediterranean and on the European
Atlantic coast; (size: 14 cm; photo: P. Plath)
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If you leaf through the wonderful, richly illustrated books about mussels and sea
snails (mollusks) today, the names of Linnaeus, Lamarck and Gmelin appear very
often as the scholars from the eighteenth century who first described these animals.
How was that possible at that time?

Carl Nilsson Linnaeus (*May 23, 1707 in Råshult near Älmhult; †January 10,
1778 in Uppsala) was a Swedish scholar who worked with the binary nomenclature
the basics of modern botanical and zoological taxonomy.

He owes his knowledge of the shape and appearance of seashells and mollusks
to the possibility of viewing the collections of the Prussian princess and Swedish
queen Luise Ulrike von Prussia (*July 24, 1720 in Berlin; † July 16, 1782 at Svartsjö
Castle in Sweden) to study rare and exotic animals [10].

It was the French Revolution of 1789 that enabled the botanist and naturalist
Jean-Baptiste de Lamarck (1744–1829) to become the founder of the “invertebrate”.
Wolfgang Lefèvre wrote a remarkable study on this [11].

By decision of the National Assembly of June 1793, a fundamental reorgani-
zation of the scientific institutions of France was carried out. The former “royal
natural history cabinet” together with the former “royal Jardin des Plantes” and the
former “royal manegerie” were combined to form the “Muséum national d’histoire
naturelle”.

Since Lamarck was among other things an outstanding collector and classifier of
mussels, he received a professorship for the Linnaeus classes of insects and worms
at this new national museum.

Lamarck had thus received a position that offered him the best conditions for his
work. “For his descriptive, comparative and classifying studies of invertebrates, he
would hardly have been able to find such excellent zoological collections anywhere
else as at the Paris Muséum, although these holdings were considerably expanded
during the Revolutionary Wars through confiscations of objects from natural history
cabinets—especially in Holland [11].”

7.3 A Basic Model—Coupled Reaction Diffusion Equations

We were interested in developing models for the complex dynamics of the catalytic
oxidation of carbonmonoxide on supported catalysts containing palladium,whenone
of us got to know Hans Meinhardt’s impressive results on the formation of pigment
patterns on cochlea and mollusk shells at a conference in Leeds/England in 1989.
What was astonishing for us was that the pigment patterns he showed were very
similar to the reaction patterns of the catalyst in the oxidation of carbon monoxide.

Based on his biologically founded activator-inhibitor approach, H.Meinhardt had
developed a continuous mathematical, spatially one-dimensional model—consisting
of coupled non-linear differential equations—with which he could describe many
of the known pigment patterns. His approach of the activator-inhibitor system of
differential equations shows Eq. (7.1).
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∂a

∂t
= s

(
a2

b
+ ba

)
− raa + Da

∂2a

∂x2

∂b

∂t
= sa2 − rb + Db

∂2b

∂x2
+ bb

(7.1)

This system describes a possible interaction between the concentrations of the
autocatalytic activator a(x) and its antagonist b(x) at the point x in the one-
dimensional space. sa2/b is the production rate and−raa the rate of removal, Da and
Db are the respective diffusion coefficients of the activator and the inhibitor. ba and
bb are the basic activator and inhibitor productions. With only minor variations of
this basic system of equations, H. Meinhardt succeeds in simulating a considerable
variety of pigment patterns in seashells.

Meinhardt’s use of spatial one-dimensional reaction–diffusion equations goes
back to the fundamental work of Alan M. Turing “The Chemical Basis of
Morphogenesis” [12] in 1952:

“It is suggested that a system of chemical substances, called morphogens, reacting together
and diffusing through a tissue, is adequate to account for themain phenomena ofmorphogen-
esis. Such a system, although it may originally be quite homogeneous, may later develop a
pattern or structure due to an instability of the homogeneous equilibrium, which is triggered
off by random disturbances. Such reaction-diffusion systems are considered in some detail
in the case of an isolated ring of cells, a mathematically convenient, though biologically
unusual system. The investigation is chiefly concerned with the onset of instability. It is
found that there are six essentially different forms which this may take.” [12]

The great merit of Hans Meinhardt in simulating patterns of sea shells patterns
using reaction–diffusion equations is undeniable [13]. Steven Wolfram’s extensive
work on “Universality and Complexity in Cellular Automata” [14] and the phantastic
book “Cellular Automata machine” by Tommaso Toffoli and NormanMargolus [15]
are also among the fundamental early works on cellular automata and opened up a
true universe for modeling and simulations.

Figure 7.4 shows a section from the shell ofOlivia porphyria (Linné) and its simu-
lation by Hans Meinhardt. The shells of the mollusks only grow on their outer edge.
We can therefore assume that the pigmentation takes place exclusively within this
edge of growth. Therefore, the pattern formation should be describable with a “box
model”. This fact is also the reason why H.Meinhardt uses a spatial one-dimensional
model. The mollusk shell grows by forming new edges—arranged parallel to each
other, so to speak.

If a wave propagates in a one-dimensional system, the corresponding excitation
moves along the one-dimensional space. If this space is mapped parallel to each other
at the various time intervals, then the wave “runs” in the two-dimensional space–time
structure created in this way on a straight line diagonally through this space, which
can be clearly seen in Fig. 7.4.
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Fig. 7.4 a Section from the shell of Olivia porphyria, Linné; b simulation by Hans Meinhardt:
In both cases the pattern grows from top to bottom. In other words, the arrow of time is directed
downwards. The growth front, or location coordinate of the one-dimensional space, runs perpen-
dicular to it from left to right. Travelling waves are observed, which are annihilated if they meet,
and branching occurs in both cases (Photo Gift from Hans Meinhardt on the occasion of our joint
discussion in Leeds)

7.4 Mapping a Texture onto Spatial Models of Sea Shells

A separate problem with the simulation of the pattern formation of and on sea shells
is on the one hand the modeling of the three-dimensional structure of the shells and
on the other hand the joining of these spatial structures with the pigment patterns.
Ingo K. Hunsinger [16] and Frieder Nake [17] as well as Hans Meinhardt [13] dealt
with this problem of modeling the three-dimensional geometry of the seashells and
the mapping of texture maps onto the seashells almost simultaneously (see Fig. 7.5):

Growing shells accumulate material forming whorls. New whorls <wrap up> atop older
ones, producing spiral shapes. Often, an additional displacement can be observed along the
direction of the spiral axis. This resulting trajectory is then called a helico-spiral. Modelling
the shape of a snail incorporates the use of a generating curve that is swept along the helico-
spiral, resulting in a snail-like surface. We employ parametric curves of the Bézier type [18].
In order to properly reveal the whorls and the aperture as well as to adhere to the gradual
growth of shells, the generating curves must be rotated and scaled suitably. Illert applied the
special coordinate system which, in differential geometry, is tied to the curve [19].

However, not all seashells have a smooth shape. The seashell Cymbiola (Voluto-
corona) imperialis (Fig. 7.1), for example, has horns that become larger and larger
as the shell grows. It is really difficult to find simple mathematical functions for this,
because they would also have to oscillate with increasing amplitude. As excellent
as the simulations by Meinhardt and Hunsinger/Nake are, they are not originally
derived from the growth of the animals. The geometric shape of the seashells, like
the pigment pattern, would have to result from the different increase in cells in the



7.4 Mapping a Texture onto Spatial Models of Sea Shells 169

Fig. 7.5 a Mollusk shell Olivia porhpyria and b its simulation of the pigment pattern which is
mapped onto the geometrically seashell shape (with friendly permission of Nake [17])

superimposed cell layers of the growth edge. In his book “A new kind of science”
[20], which is very rich in new ideas, Stephen Wolfram uses discrete mathemat-
ical models to show possibilities of capturing even such complex growth structures,
which are strongly reminiscent of rearing waves.

Certainly, one can assume a diffusion in a one-dimensional space and thereby
disregard the cellular structure of the biological system. This is just an abstraction
that finds its justification in success. However, this abstraction is not necessary.

A one-dimensional cellular automaton is certainly suitable to take into account
the cellular structure of the biological system. We replace diffusion in continuous
space by considering the neighborhood of cells. In other words, how a cell behaves
in the next time (t + 1) also depends on the state of its neighbors at time t . However,
Plath, Plath and Schwietering [21] raised the basic question: “How can we construct
a cellular automaton model, discrete in space and time, which is able to show the
patterns being observed in the animals?”.

To answer this question, they first asked: “What does diffusion mean in a cellular
system?” Moreover, they asked whether random events are necessary in order to
understand diffusion. Let us give a very first and rough answer to both questions.
In the linear case, one does not need randomness to describe isotropic diffusion
processes, because the linear space is isotropic by definition. So, diffusion becomes
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any kind of spatial averaging. For example, let us take Fick’s second law (Eq. (7.2)):

∂c

∂τ
= Dc

∂2c

∂x2
(7.2)

As usual, one can rewrite the Laplacian term by the well-known spatial
discretization (Eq. (7.3)):

∇2c = c(x − 1, τ ) − 2c(x, τ ) + c(x + 1, τ ) (7.3)

So, Fick’s law can be formulated by an iterative equation, where t is the discrete
time and c the concentration. Let us call this discrete formulation of Fick’s second
law the Laplacian diffusion (Eq. (7.4)):

c(x, t + 1) = c(x, t) + Dc[c(x − 1, t) − 2c(x, t) + c(x + 1, t)]

with x ∈ Z, t ∈ N (7.4)

Figure 7.6a shows an example of how this iterative equation works.
On the other hand, there is the well-known binomial smoothing procedure of a

discrete function Z(i, n) wi th i ∈ N (Eq. (7.5)):

Z(i, n + 1) = 1

4
[Z(i − 1, n) + 2Z(i, n) + Z(i + 1, n)], n = 0, 1, 2, 3, · · · (7.5)

where n is the number of smoothing generation.
Interpreting this number n as discrete time t , this smoothing procedure formally

represents a temporal averaging. One can easily rewrite this smoothing procedure in
terms of the diffusion Eq. (7.6), replacing Z(i, n) by c(x, t):

c(x, t + 1) = 1

4
[c(x − 1, t) + 2c(x, t) + c(x + 1, t)] + 2

4
c(x, t) − 2

4
c(x, t)

= c(x, t) + 1

4
[c(x − 1, t) − 2c(x, t) + c(x + 1, t)]

= c(x, t) + Dc[c(x − 1, t) − 2c(x, t) + c(x + 1, t)] (7.6)

with the diffusion coefficient Dc = 1
4 . Let us call this special procedure the binomial

diffusion (Fig. 7.6b).We can now state that, in the case of a linear cellular automaton,
diffusion means any kind of a spatial averaging of the states of the cells over time.

In order to deal with natural numbers only, we define integral states z(i, t) by
means of the Gaussian-brackets notation [u] going back to the temporal smoothing
algorithm (Eq. (7.7)):

z(i, t + 1) = [
z
∧

(i, t)
]

(7.7)
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Fig. 7.6 a Graphs of the Laplacian diffusion of a sharp rectangular concentration profile at the
beginning; b Graphs of the binomial diffusion of a sharp rectangular concentration profile at the
beginning (Pictures were first published in Plath, Plath, Schwietering [21])

with

z
∧

(i, t) = 1

4
(z(i − 1, t) + 2z(i, t) + z(i + 1, t)) (7.8)

where [u] is the largest natural number that is less or equal to u:

[u] ≤ u and [u] + 1 > u (7.9)

This expression also represents a kind of diffusion, which we call Gaussian diffu-
sion due to the Gaussian brackets notation (see Fig. 7.7b). In contrast to the binomial
diffusion (Fig. 7.7a), however, it does not spread out the quantities all over the space.
If we set a very sharp initial concentration profile, it does not run but stays in a
restricted domain, although it shrinks over time.

Taking into account Eq. (7.7), one can easily express this iterative equation in
the form of a transformation rule of a cellular automaton with the abbreviation �

according to Eq. (7.10),

Fig. 7.7 Comparison between a binomial diffusion according Eq. (7.6) and b binomial Gaussian
diffusion according Eq. (7.7)
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Table 7.1 State rule for Gaussian binomial diffusion according Eq. (7.10)

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

z(i, t + 1) 0 0 0 0 1 1 1 1 2 2 2 2 3 3 …

� ≡ g−1z(i − 1, t) + g0z(i, t) + g+1z(i + 1, t) (7.10)

with the weights g−1 = g+1 = 1 and g0 = 2 as shown in Table 7.1:
Introducing an additive term b in the Eq. (7.7), z(i, t + 1) = [

z
∧

(i, t)
]
, leads to the

expression (7.11):

zb(i, t + 1) = [
z
∧

(i, t) + b
]

(7.11)

This iterative equation describes a spatially restricted diffusion as well, but the
parameter b can now be interpreted chemically. For b > 0, one may think of a
production and for b < 0 of a destruction, which is added to the diffusion. For
example, if b = 0.25, diffusion will be stopped after some time by the production
(Fig. 7.8b).

One obtains a stationary spatial distribution of states, z(i, t + 1) = [
z
∧

(i, t) + b
]
,

for all cells i . Let us call G the sum of weights of states of the neighboring cells
(Eq. (7.12)):

G =
∑+1

k=−1
gk (7.12)

Increasing b, the stationary state is reached if b becomes larger or equal to 1/G
(Eq. (7.13)):

1

G
≤ b ≤ 1 (7.13)

Fig. 7.8 Comparison between a productive binomial Gaussian diffusion (b > 0) and b destructive
binomial Gaussian diffusion (b < 0)
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Table 7.2 State rule for Gaussian binomial diffusion with b = 1

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

z(i, t + 1) 0 1 1 1 2 2 2 2 3 3 3 3 4 …

Fig. 7.9 Temporal development of front-waves from two starting points concerning the automaton
rule of Table 7.2 using cyclic boundary conditions. The front-waves realize the transition from
z( j , t) = 0) (dark blue) to z( j , t) = 1 (turquoise)

Setting b = 1, it generally means a shift of the z(i, t + 1)-row of Table 7.1 to the
left by four digits (see Table 7.2).

The production now exceeds the diffusion and the states would grow anywhere,
even if z(i, t) = 0.

Table 7.2 already represents a rule for a cellular automaton. If one sets the value
z(i, 0) = 1 for the i-th cell at time t = 0, then it becomes the starting point of two
front waves running in opposite directions (see Fig. 7.9).

The automaton of Table 7.2 realizes in the simplest way a one-dimensional,
active, bistable medium in which an initial distribution spreads like A. S. Mikhailov
describes in the introduction of his work Foundation of Synergies [22].

Introducing a lower limit L for opening the state growth of a cell (Eq. (7.14)),

z(i, t + 1) =
{
0; if z(i, t) = 0 and � ≤ L[

z
∧

(i, t) + b
]
otherweise

}
(7.14)

the states of those cells which have an appropriate neighborhood start to grow (see
Fig. 7.10b).As a result,Gaussian diffusion is not spatially restricted almost anywhere.

If b equals minus one, b = −1, the future states become

z−1(i, t + 1) = [
z
∧

(i, t) − 1
]

(7.15)

and the lower row of the transformation rule (Table 7.1) is shifted to the right.
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Fig. 7.10 a Graph of the spatially restricted Gaussian diffusion; b development of the productive
Gaussian diffusion with the limitation of the state growth if z(i, t) = 0 and � ≤ L

This value of b causes a destruction, which is added to the normal Gaussian
diffusion.

7.5 The Vector Automaton Model

Both look-up tables (Tables 7.2 and 7.3) realize classical cellular automata. One
can combine these automata with each other, constructing a new type of automata:
cellular vector automata [23–26]. The advantage of such cellular vector automata is
that one can select different rules within one expression by selecting different values
of b.

Themathematicalmodel for our simulation is a one-dimensional vector automaton
[23]. This means, we take.

• Topology: a path graph Pl or a circular graph Cl with l vertices.
• Cell: each vertex is labelled by a vector in a two-dimensional concentration/ phase

space, called a cell; the two components of the vector of the i-th cell at time t ∈ N

are: the concentration c(i, t) ∈ N and the phase p(i, t) ∈ {0, 1}.
• Neighborhood: With respect to the temporal development of the cell a local

neighborhood is defined consisting of the actual cell i and its adjacent vertices or
cells, respectively.

• Transformation rule: Various transformation rules can be formulated which will
transform both components of the vector from t to t + 1: c(i, t) → c(i, t + 1)
and p(i, t) → p(i, t + 1), depending upon the neighboring cells.

Table 7.3 State rule for Gaussian binomial diffusion with b = −1

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

Z(i, t + 1) 0 0 0 0 0 0 0 0 1 1 1 1 2 …
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These formal aspects define a one-dimensional cellular vector automaton. Let
us now translate these ideas into a simplified model of the biological system under
consideration.

If we now localize the state of the automaton at time (t + 1) directly next to its
state at time t , as is generally the case, then a two-dimensional spatiotemporal pattern
results, which reproduces the movement in a one-dimensional space. The patterns
created in this way are very similar to the pigment patterns of sea shells. However,
the pigment patterns on the mussel shells are not about the movement in the one-
dimensional space of the lip or the growth edge, but about each new growing edge,
which consists of different, new biological cells, which, however, have emerged from
their “mother cells”. This means that the patterns on the snail shells are inheritance
patterns.

Let us assume that the incorporation of pigments into a new cell, which occurs
through cell division within an outer edge that is just being formed, is determined
by:

• the concentration of pre-pigments, i.e., those substances from which the color
pigments are synthesized in the mother cell (located within the “old” edge) and

• how high the concentration of these pre-pigments is in those cells that are adjacent
to the mother cell.

Furthermore, it is certainly reasonable to assume that the cells can take over at
least two different states of activity (phases) with regard to their ability to form pre-
pigments: an active phase with p = 0 and a passive phase p = 1. This is their
characteristic feature regarding the formation of pre-pigments during cell division.
However, the transfer of the activity phase of the mother cell to the daughter cell
should be also dependent on the activity phases of the cells neighboring the mother
cell.

The behavior of the biological cells in these two phases should be characterized
by a production (p = 0, b > 0) in the active state, and a destruction (p = 1; b ≤ 0)
in the passive state. So, the phases may be used to construct a switch between the
different rules. But it should be an internal switch, the position of which should again
depend on the sum � of states of the neighboring cells.

For example, if p(i, t) = 0, then one obtains for instance Table 7.4:
And if p(i, t) = 1, results Table 7.5.

Table 7.4 Phase rule for Gaussian binomial diffusion with b = 1 and p(i, t) = 0

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t + 1) 0 0 0 0 0 0 0 0 1 1 1 1 1 …

Table 7.5 Phase rule for Gaussian binomial diffusion with b = 0 and p(i, t) = 1

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t + 1) 0 0 0 0 1 1 1 1 1 1 1 1 1 …
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Now, the state vector −→z (i, t) of a cell at time is represented by two different
quantities: the integral concentration z(i, t) and the phases p(i, t) (Eq. (7.16)):

−→z (i, t) =
(
z(i, t)
p(i, t)

)
(7.16)

The example shown in Tables 7.4 and 7.5 is well suited to show how the internal
switch we require works: The production rule (Table 7.4) works up to

∑ ≤ 7,
whereas the destruction rule (Table 7.5) governs the region for

∑ ≥ 8. However, if
the cell is in the phase p(i, t) = 1 and the concentration sum � of the neighbours
exceeds 3,

∑ ≥ 4, the destruction rule is responsible for the development of the
vector state. Only if

∑ ≤ 3, the production rule starts to work again. This means
that the cellular vector automaton displays a hysteresis loop.

Moreover, since the graph of our map F : �z(i, t) 	→ �z(i, t + 1) is composed of
two tent-like staircases, which are shifted against each other, we have a many-to-one
map, which is essentially dissipative. Since the general transformation rule of the
vector state �z(i, t) realizes a dissipative map, the cellular vector automaton becomes
a powerful tool for modelling the patterns of a natural system such as mussel and
mollusk shells.

Of course, we are not limited to the binomial averaging, but can also use the more
common arithmetic diffusion (see Fig. 7.11). In this way, we increase the influence
of the neighboring cells �z(i − 1, t) and �z(i + 1, t) on the development of the i-th
cell. If we use arithmetic averaging instead of binomial averaging, then Table 7.6 is
realizing an excitable automaton system.

Starting with all cells being in the vector state z(i, 0) at t = 0 (Eq. (7.17)),

−→z (i, 0) =
(
z(i, 0)
p(i, 0)

)
=

(
0
0

)
(7.17)

Fig. 7.11 Comparison between a arithmetic diffusion and b arithmetic Gaussian diffusion



7.5 The Vector Automaton Model 177

Table 7.6 Excitable automaton system with arithmetic diffusion (1/6–8/4 rule)

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t) = 0 z(i, t + 1) 0 1 1 2 2 2 3 3 3 4 4 4 5 …

p(i, t) = 1 z(i, t + 1) 0 0 0 0 0 0 1 1 1 2 2 2 3 …

p(i, t) = 0 p(i, t + 1) 0 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t + 1) 0 0 0 0 1 1 1 1 1 1 1 1 1 …

and excluding the cells j, k, l, . . . , which are in the vector state z(i, 1) at t = 0
(Eq. (7.18)), for example,

−→z ( j , 0) =
(
z( j , 0)
p( j , 0)

)
=

(
1
0

)
(7.18)

one obtains “chemical waves” or “reaction–diffusion waves”, respectively, in this
one-dimensional excitable cellular system, which annihilate if they meet each other
and are extinguished at the edge of the automaton (see Fig. 7.12a, b). V. Krinsky
called this kind of waves “auto-waves” [27] which are well known in Belousov-
Zhabotinsky reaction system.

While, as the example of diffusion shows, it is quite clear what function the state-
component z(i, t) of the state vector �z(i, t) has, this is not so easy to see for its phase-
component p(i, t). In order to be able to understand better the function of the phase
component, the area of the active phase is enlarged: p(i, t)) = 0 for� ≤ 11, i.e., we
shift the transition from the active to the passive phase p(i, t) = 0 → p(i, t + 1) = 1

Fig. 7.12 Space–time representation of reaction diffusion waves in a one-dimensional vector
automaton concerning the rule of Table 7.6. The automaton represents an excitable system, which
is excited by two cells in the state shown in Eq. (7.18). Time runs from top to bottom, while the
cells are arranged horizontally forming a one-dimensional space. a The state-component z(i, t) of
the vector-state −→z (i, t) is shown; the waves annihilate each other. On the left side one can detect
the annihilation of the wave on the edge of the automaton. b The photo shows the phase-component
p(i, t) of the vector state −→z (i, t). The white waves represent the phase-states with p(i, t) = 1
(Photos are taken from Atari computer by P. Plath, Sept. 1990)
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by four digits from � = �a = 8 to � = �a = 12 (compare Tables 7.6 and 7.7).
Furthermore, the back-transformation from the passive to the active phase will now
take place at � = �d = 3 (Table 7.7) instead of � = �d = 4 as shown in Table
7.6. An example for an automaton with this phase shift is depicted in Fig. 7.13.

Let us call the parameter � = �a the activation parameter for which holds
p(i, t) = 0 → p(i, t + 1) = 0 for all � < �a and p(i, t) = 0 → p(i, t + 1) = 1
for � ≥ �a . In a similar way, we denote � = �d the deactivation parameter,
which meets the conditions:p(i, t) = 1 → p(i, t + 1) = 0 for all � < �d and
p(i, t) = 1 → p(i, t + 1) = 1 for � ≥ �d .

Doing so, there is no structural change detectable between the excitability of both
the automata of Tables 7.6 and 7.7. Single solitary reaction–diffusion waves occur,
which annihilate each other when they meet. This means, the parameters �a and �d

span a space in which the system can be excited in a way that solitary waves are
created.

Table 7.7 Excitable automaton system with arithmetic diffusion (1/6–12/3 rule)

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t) = 0 z(i, t + 1) 0 1 1 2 2 2 3 3 3 4 4 4 5 …

p(i, t) = 1 z(i, t + 1) 0 0 0 0 0 0 1 1 1 2 2 2 3 …

p(i, t) = 0 p(i, t + 1) 0 0 0 0 0 0 0 0 0 0 0 0 1 …

p(i, t) = 1 p(i, t + 1) 0 0 0 1 1 1 1 1 1 1 1 1 1 …

Fig. 7.13 Wave of the state component z(i, t) in an excitable automaton system concerning Table
7.7, which is cyclically closed (Photo P. Plath)
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However, if we change the parameters in away, as it is shown inTable 7.8 choosing
�a = 12 but �d = 5 and Table 7.9 with �a = 12 and �d = 9, the situation changes
drastically. The automaton becomes self-exciting. In two-dimensional experiments
like Belousov-Zhabotinsky reactions in a Petri-dish, these patterns are called target
pattern (see Fig. 7.14).

The comparison of Figs. 7.13 and 7.14 shows that �a and �d become control
parameters of our system. They control the change from the excitable system to the
self-exciting system and control also the frequency of the sequence of waves as one
can see comparing Fig. 7.14a, b. However, there is one major difference between the
patterns in Fig. 7.14a, b. While in Fig. 7.14a all waves that meet cancel each other,
as is also the case with chemical waves in the BZ reaction, slowdown of the wave
velocities can be observed (Fig. 7.14b) by the waves that develop over time before

Table 7.8 Self-exciting automaton system (1/6–12/5 rule)

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t) = 0 p(i, t) = 0 0 1 1 2 2 2 3 3 3 4 4 4 5 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 1 1 1 2 2 2 3 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 0 0 0 1 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 1 1 1 1 1 1 1 1 …

Table 7.9 Self-exciting automaton system (1/6–12/9 rule)

� 0 1 2 3 4 5 6 7 8 9 10 11 12 …

p(i, t) = 0 p(i, t) = 0 0 1 1 2 2 2 3 3 3 4 4 4 5 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 1 1 1 2 2 2 3 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 0 0 0 1 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 0 0 1 1 1 1 …

Fig. 7.14 Self-exciting automaton systemswith one-dimensional target patterns of travellingwaves
with time running from top to bottom and cyclic closure, a concerning Table 7.8 with �a = 12 and
�d = 5 (1/6–12/5 rule); b concerning Table 7.9; �a = 12 and �d = 9 (1/6–12/9 rule) (Photos. P.
Plath)
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Fig. 7.15 a Wavy patterns with “triangles” occur in the automaton “1/6–25/7” with �a = 25 and
�d = 7 and circular boundary conditions (Photo P. Plath); b Notovoluta perplicata, Headley 1902
(Photo by P. Plath with friendly permission by Charles E. Tuttle, Company) [28]

they meet and extinguish each other. Obviously, the space of the control parameters
is much more complicated than that it only consists of the areas of excitability and
self-excitability.

If you enlarge the excitation area even further, e.g., to �a = 25, and leave the
deactivation almost unchanged, the behavior of the automaton becomes even more
noticeable. More or less wavy wave trains arise perpendicular to the direction of
propagation (Fig. 7.15a). But interestingly, “triangles” are formedwithin thesewaves
if the number of original excitations is increased only slightly. Amazingly, one finds
quite similar pattern formations among the specimens ofmarine snails, as the example
of the sea shell Notovoluta perplicata, Headley 1902, shows (Fig. 7.15b).

It seems that we are on the right track to describe the patterns on the sea shells
with the help of our vector automata. But we still need an important addition to our
toolbox: the color of the patterns, because depending on the value of �, the color of
the samples could change.

One has to define a further discrete function, which maps the vector components
z(i, t + 1) onto a color: z(i, t + 1) 	→ c(i, t + 1) (see Fig. 7.16). In this way, a
large variety of colored patterns can be produced, some of which may resemble the
observed seashell patterns.

Figure 7.16 shows that the coloring of the states not only represents an aesthetic
moment, but also provides further information. For example, the sudden breaks of
the waves in Fig. 7.16a remain completely incomprehensible, while in Fig. 7.16b it
becomes clear that they are due to the collision with remaining “stripes” parallel to
the direction of growth.

Furthermore, if one regards carefully the famous fractal like patterns of Oliva
porphyria L. (L.: Linné)) or Cymbiola vespertilio (Aulicina) (Fig. 7.17), one might
get the impression that new Sierpinsky triangles occur during growing of the seashell
even though no global disturbance of the growing front can be recognized. We
consider these events to be rare, accidental occurrences, which, however, are no
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Fig. 7.16 Purely deterministic pattern created by three exposed cells at the beginningwith (i1, 0) =
1, z(i2, 0) = 2, andz(i3, 0) = 1. a c(i, t) 
= 0, if z(i, t) = 4, in this case the colour black has
been chosen; b c(i, t) 
= 0, if z(i, t) = 4(black) or z(i, t) = 3(gre y)

Fig. 7.17 Cymbiola vespertilio (Aulicina) (height 9,5 cm); (Photo P. Plath)

less necessary, such as mutations in living cells or organisms. For this reason, such
improbable events might occur in each generation or time step of the automaton,
respectively. So, “we ask for a random number in the range of 0 to 99. If this number
is less than a chosen threshold n, one of the cells of the t’s generation will be selected
randomly [23].” The value of n is in the order of n ∼ 5. This means that the corre-
sponding probability is in the range of one-twentieth and thus, on average, the state
z(i, t + 1) of a cell of the automaton is likely to be changed every twentieth time step.
Furthermore, the deterministic value z(i, t + 1) of the chosen i th cell will randomly
increased by one with the probability of one half.

In this context, it is interesting to look again at Fig. 7.4 in more detail. In the
photograph (Fig. 7.4a) of Olivia porphyria, one can discover such rare events from
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which waves spontaneously emanate. But this is not the case in Hans Meinhardt’s
modeling (Fig. 7.4b). However, in both cases, the real seashell and its modelling
based on reaction–diffusion differential equations, new waves are suddenly born
from travelling waves. Sometimes one only discovers the incomplete approach of
such a detachment of a new wave from an already running wave. The places where
these new waves seem to arise spontaneously are, as far as this can be recognized,
directly “below” previous events, such as the creation or annihilation of wave pairs.
It is therefore reasonable to assume that “relics” of these previous events in the form
of “invisible” stripes parallel to the direction of growth lead to this “spontaneous”
emergence of new wave trains (compare Figs. 7.16 and 7.18).

Another detail in Fig. 7.4 is worth mentioning: not all waves cancel each other out
when they meet. Some of them cross each other and at least in the modeling, dark
“spots” can be seen both in the formation of the wave pairs and in the “crossing”
of the wave trains, which certainly have nothing to do with a possible blurring of
the images. When we model these patterns with vector automata, we observe this
behavior in detail (Fig. 7.19).

The vector automaton in Fig. 7.19 shows solitary waves, which annihilate each
other like autowaves (Krinsky [27]), but also those which cross each other with a
delay of one cell like solitons. This raises the question of whether there are other
types of solitary waves between the autowaves and the solitons, to which we will
come back later. But for now, we still want to continue with the simple patterns which
arise from the above discussed automata of the arithmetic Gaussian structure type
governed by the 1/6–8/4 rule (compare Table 7.6 and see Fig. 7.20).

Fig. 7.18 Probabilistic automaton initialized, governed and colored by the rules of the automaton
shown in Fig. 7.16, but with n = 6
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Fig. 7.19 a Probabilistic vector automaton created by two exposed cells at the beginning with:
z(i1, 0) = 1, and z(i2, 0) = 2 and with n = 6. The circular boundary conditions are z(l + 1, t) =
z(1, t) andz(0, t) = z(l, t). New, improbable events occur; waves annihilate or passes each other
with a phase shift like solitons; b Oliva porphyria LINNAEUS (1758) with waves that annihilate or
cross each other; enlarged section from the photo (with friendly permission; Grange Batelière–Paris
(1969) p. 59, Fig. 102) [1]

Starting with only one cell j with −→z ( j, 0) =
(

z( j, 0)
p( j, 0)

)
=

(
1
0

)
(Eq. (7.18)),

while all the other cells i 
= j are in the vector state −→z (i, 0) =
(

z(i, 0)
p(i, 0)

)
=

(
0
0

)

(Eq. (7.17)), the 1/6–8/5 rule creates a very interesting pattern: the result is a self-
exciting automaton (compare 1/6–12/5 rule, see Table 7.8 and Fig. 7.14). The wave
pairs behave as a typical auto-wave with respect to their mutual annihilation when
they touch each other. However, with every further excitation, which occurs strictly
periodically, the center changes into a fractal in one-dimensional spatial domain.
This creates a spatiotemporal Sierpinsky-like fractal in the core of the propagating
wave pattern (Fig. 7.20).

So far, we had not changed the basic structure of the automata. All vector automata
which we considered so far were of the structure of the 1/6–a/b rule, which describes
a diffusion based on the arithmetic mean. In practice, only the values a = �a and
b = �b have been changed, which regulate the transitions from the active to the
passive phase and vice versa. Let us see what a change in this diffusion does by
simply playing a little with the rules of the automata.

The correspondence of the Sierpinsky-like pattern of the automaton (Fig. 7.21a)
and the shell of the snail Cymbiolacca wisemani B. (1870) (Fig. 7.21b) is very
surprising indeed. In both cases, we have white triangles of different sizes with dark
dots in their baselines.

Figure 7.21a shows a very simple automaton based on Table 7.10, all cells of
which are in their active state p(i, t) = 0 which cannot change. Only in the case that
three neighbored cells are in the same state z(i − 1, t) = z(i.t) = z(i + 1, t) = 4,
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Fig. 7.20 a Phase pattern p(i, t) which arise from the 1/6–8/5 rule; b and the 1/6–11/4 rule; time
runs from top to bottom and space from left to right; cVolutidae;Cymbiola nobilis nobilis, Lightfoot
(1786) (hight: 8 cm) (PhotoP. Plath) showing a patternwhich very is similar to the ends of Fig. 7.20a,
b

Fig. 7.21 a Automaton with a spatial–temporal Sierpinsky-like fractal pattern; b Cymbiolacca
wisemani Brazier (1870); in this photograph the shell is growing from bottom to top (Photo by
P.Plath with friendly permission of Charles E. Tuttle Company INC [29])
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Table 7.10 Automaton for a Sierpinsky-like fractal distribution

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 0 2 2 2 4 0 0 0 0 0 0 0 5 0 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

the sum � = 12 can be realized with the consequence that z(i, t + 1) = 5. In this
special case, the cells are colored dark brown. The numbers for higher values of �

which can be seen in Fig. 7.21a are relicts of former automata used before which
have no more effect on the automata of Table 7.10. They have no function on the
current events like those parts of the genome, which remained as relicts from former
developments.

This obvious comparison between the rules of our vector automata and the genetic
code had also fascinated our colleague R. Neth when J. Schwietering and P. J. Plath
presented it at the conference for Leukemia in Wilsede (1992) [30]. All blood cells
are created by division and differentiation from stem cells that are located in the bone
marrow. This also applies to blood cancer cells. The neighborhood rule encoded in
the genome would therefore be responsible for cell differentiation, and in the case
of mutations, also for the development of blood cancer cells.

Another exciting example are the pigment patterns of the shells like Conus
gloriamatis CHEMNITZ (1777) and the related mollusk’s shells of Conus textile
LINNAEUS (1758) and Conus aulicus LINNAEUS (1758) [28].

Table 7.11 shows the rule table for vector automata which create soliton-like
crossing waves, and Fig. 7.22 depicts some patterns of automata generated by this
rule. Some examples of sea shells with patterns consisting of soliton-like crossings
of waves can be seen in Fig. 7.23.

At the end of this section let us present the shell of the very tasty Sea Alomond
(french: l’ amande de mer) (Fig. 7.24a, b) which is very common at the Bay of
Biscay (french:Golfe deGascogne). The scientific name of thismussel is Glycyremis
glycyremis LINNAEUS (1758). Playing around, we found a very curios automaton
(Fig. 25a and b) the pattern of which is very reminiscent of these beautiful seashells.

Table 7.11 Vector automaton which creates soliton-like crossing waves

� 0 1 2 3 4 5 6 7 8 9 10 11

p(i, t) = 0 p(i, t) = 0 0 1 1 2 2 2 2 2 2 0 0 …

p(i, t) = 1 p(i, t) = 1 0 0 0 1 1 1 3 3 0 0 0 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t) = 1 0 0 0 1 1 1 1 1 1 1 1 …
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Fig. 7.22 a Pattern of the automaton according to Table 7.11, starting from four accidently chosen
points with−→z ( j , 0) = ( z( j ,0)

p( j ,0)

) = (1
0

)
,while all the other cells are in the starting position−→z (i, 0) =( z(i,0)

p(i,0)

) = (0
0

)
. The waves cross each other with a remarkable soliton-like phase shift.; b Pattern

of a very similar automaton as shown in Fig. 7.22a), however, one can also detect waves which
annihilate each other (both photos from P. Plath 1990)

Fig. 7.23 Soliton-like crossing of waves in pattern of seashells: a Conus textileLINNAEUS (1758)
from theGreat Barrier Reef (photo: K. Gillett) [31, 32]; bConus archiepiscopusHwass in Bruguière
(1792) (found in Madagascar 2018 in Toliara) (Photo P. Plath)

7.6 Collision Patterns

In the early days of Synergetics V.I. Krinsky gave an overview of “Autowaves:
Results, Problems Outlooks” at the Symposium on “Self-Organization—Autowaves
and Structures Far from Equilibrium” in Pushino, USSR 1983 [27]. He wrote:
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Fig. 7.24 L ‘Amande de mer or Sea Almond (Photo P. Plath 1990)

Fig. 7.25 Automaton rule and a Pigment pattern z(i, t) and b pattern of the corresponding phases
p(i, t) (Photos from Atari computer: P. Plath 1990)

Autowaves differ fundamentally from waves in traditional (conservative) media (Table 7.12
in this article; the authors). They propagate at the expense of energy taken from an active
media, and, therefore, cannot be considered as conservative systems. The shape and ampli-
tude of autowaves remain constant during its propagation, whereas the amplitude of classical
waves rapidly fallswith the distance and thewaveform is distortedbydispersion. In the case of
autowaves, there is no reflection from either the medium boundaries or inhomogeneities.….

The term autowaves, which has become historical today, has been replaced by
other terms and updated with regard to different areas. Today, instead, we often
speak of solitary waves and in special cases of solitons of many different kinds
depending on the differential equation whose solution they represent. These waves
differ in their properties. However, its heuristic value is unaffected.

With the seashells as well as with our automata, however, waves also occur,
which at the same time have the properties of “autowaves” as well as of “solitons”.
We are sure that in the differential equations with which Hans Meinhardt describes
the pattern formation on the seashells, such hybrid situations also occur in his waves,
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Table 7.12 Properties of waves and autowaves [27]

Properties Waves Autowaves

Conservation of energy + −
Conservation of amplitude and waveform − +

Reflection + −
Annihilation − +

Interference + −
Diffraction + +

see Fig. 7.4. We want to consider their behavior when they meet as a decisive crite-
rion for differentiating between the different types of waves. Do the waves overlap
(superposition principle) or cancel each other out (annihilation) or do they penetrate
each other with a certain time delay (solitons)?

7.7 Stable Collision Particles

We consider waves as the spatial propagation of an excitation in particular, as the
transmission of an excitation from cell to cell of the automaton. If two waves meet,
a more or less large area of cells is formed in which excitations of the cells are
generated, which can differ significantly from those in the waves themselves. We
therefore regard this area of impact of the colliding waves as a new entity that can,
for example, disintegrate instantaneously or only after a while or not at all. Thus, we
assume that this area of impact is characterized by its stability. In an earlier work, we
named this entity a collision particle [21]. We do not think that this is a misleading
term, since we found a striking example for a stable entity, which emerges by the
collision of waves of excitations on cells. In Fig. 7.26 the yellow line parallel to the
direction of time represents such a stable collision particle. Besides the “yellow”
particles, there are “red” particles as well, which are also created by the collision
of the same waves. But they can furthermore be generated directly by a simple
excitation of a cell, as a relic of the original excitation, so to speak, from which
two oppositely leaching waves arise (Fig. 7.26). It should not go unmentioned that
Stephen Wolfram, too, can create stripes using his rules No. 4, 12, 44, 76, 100 or
108 for one-dimensional automata parallel to the direction of growth starting from a
simple cell [33]. However, these streaks are not the result either of colliding waves,
nor of the decay of a starting particle.

In any case, the particles that are generated by the collision of the waves but also
by the arbitrarily set initial excitations are surrounded by matching vector states in
the neighboring cells. The collision-particles are very often stabilized to a certain
extent by this simultaneously created environment. The original black-colored basic
state z(i, 0) = 0 of the cells to be observed becomes dark red (Fig. 7.26) or yellow
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Fig. 7.26 A two-component vector automaton according to Table 7.13 that creates stable collision
particles marked in yellow and red

Table 7.13 Two-component vector automaton which creates stripes by collision of waves

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 0 1 1 2 2 2 3 3 3 4 5 5 6 6 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t) = 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 …

Fig. 7.27 a An automaton that creates stripes parallel to direction of time according to Table 7.14;
b Conus (Cleobula) figulina LINNAEUS (1758), which is characterized by a lot of fine stripes
parallel to the direction of growth (Photo P. Plath)
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Table 7.14 Vector automaton that creates stripes parallel to direction of time

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 3 3 3 4 4 4 5 5 5 6 6 6 7 7 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 1 1 1 2 2 2 3 3 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 …

p(i, t) = 1 p(i, t) = 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 …

or green (Fig. 7.27) according to the new corresponding state of the cells adjacent to
the cells of the collision particle.

The coloring selected in Fig. 7.27a largely corresponds to the shell of the striped
snail “Cepaea nemoralis”, which is frequently encountered in Germany. The alter-
nation of wide and narrow stripes in the automaton also corresponds to the pattern
on these snail shells.

At this point, it is advisable to take a closer look at the structure of the collision
particles using a few examples. Figure 7.28a shows the emergence and disintegration
of the collision particle on the bases of a class of automata already discussed above
in its basic structure, for example with the 1/6—12/3 rule.

The state profile z(i, t) at an appropriate time t of
such a generating wave is moving from right to left
(le f tside · · · , 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 3, 2, 1, 0, · · · rightside). Moreover,
this figure demonstrate also how the waves that arise annihilate themselves again.
Their profile z(i, t) is (le f tside · · · , 01, 1, 2, 3, 5, 4, 3, 2, 1, 0, · · · rightside) for
waves moving from left to right.

A small variation in the activity structure of the 1/6 – 12 /3 rule cellular automaton
(Fig. 7.28a) leads to the 1/6 – 12/2 rule automaton (Fig. 7.28b), which shows a
completely different behavior of the colliding waves. The result is a larger, unstable

Fig. 7.28 a 1/6—12/3 rule automaton.: while two waves are colliding, an instable “collision parti-
cle” is created that breaks down into two new waves, which differ from the waves that generate
them. These new waves annihilate themselves when they meet their own kind; b 1/6—12 /2 rule
automaton: the collidingwaves form an instable “collision particle” which decomposes with a phase
shift into two new waves and a stable particle that is localized at the collision space
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collision particle, which also splits into two diverging waves, but leaves a smaller,
stable particle at the collision point. The space–time structure of this particle is
parallel to the time axis (see Fig. 7.28b). Furthermore, it is surprising to see that
waves of the type of these newly emerging waves unite with the stable particle,
giving it an outer skin, so to speak.

It almost seems as if these stable collision particles act as attractors. But then
do they have to be attractors with a fixed-point character? Could not oscillating
structures also be possible? For sure, there is an analogy to John H. Convay’s Game
of Life developed in 1970 [34]. With special rules of this two-dimensional cellular
automaton, one can create static as well as oscillating objects like beehive, blinker
and glider. Meanwhile there exists a zoo of such inspiring cellular objects.

Figure 7.29 shows the space–time pattern of the cellular vector automaton
according to Table 7.15, which answers exactly this question.

Let us regard at first the left part of both the Fig. 7.29a, b.When twowaves collide,
collision particles are created, which partially disintegrate again and emit pulsating

Fig. 7.29 a Colliding waves, which create strings of pearls for waves and collision particles
according to Table 7.15; b segment of Fig. 7.29a; the right pattern shows the occurrence of a
periodic sequence of pearls which emerge as annihilation areas of colliding waves

Table 7.15 Automaton rule for collision pattern with string of pearls

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 0 1 1 2 2 2 3 3 3 4 5 5 6 6 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 10 0 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t) = 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 …
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Fig. 7.30 a Conus betulinusLinnaeus, (1758); Periodic strings of brown dots are observable on this
seashell (size ca. 7,5 cm) (Photo: P. Plath); b Architectonica perspectiva Linnaeus (1758), (5.5 cm
in diameter) (Photo P. Plath); strings of periodically structured pearls and strings of brown dots are
observable

waves within themselves, but also leave a particle as a relic of the collision that
remains localized, but constantly oscillates over time. The velocity of the resulting
waves is about one third of that of the colliding waves.

These oscillating waves, but especially the remaining oscillating collision-
particles, are very reminiscent of strings of pearls with pearls of different sizes in
an arbitrary sequence. The diverging pulsating waves in turn generate waves that
travel into the interior of the sector they enclose. If the waves generated in this way
meet, they are annihilated in a remarkable collision particle. In Fig. 7.29a, b, these
annihilation points light up like pearls, which form a periodic temporal system. Two
examples of seashells with periodic pearls and strings are shown in Fig. 7.30.

The Sierpinsky triangle is a well-known example of the fascinating spatiotem-
poral fractal structure formation in one-dimensional cellular automata, as Stephen
Wolfram’s Rule No. 22 shows [35, 36]. But we have also found these structures in the
course of the catalytic oxidation of carbon monoxide over time. Here, the conversion
of CO to CO2 at certain temperatures collapsed fractally to a considerable extent
[37–39]. Variations of the Sierpinsky triangle can also be found frequently in the
snail patterns. We have shown this at the beginning with the example of the seashell
Cymbiolacca wisemani B. (1870) (Fig. 7.21a, b). In this section, it is important for
us to show that such fractal patterns can also be the result of a collision of waves (see
Fig. 7.31).

However, the same waves create stripes if they meet in different way, depending
on the number of cells at time t = 0 being even or odd and the structure of the wave
just before the collision is of appropriated manner (Fig. 7.32).

The original waves arise from excitations with a very complex structure. The
excitation not only generates the two waves, but also two pairs of small particles,
which are recognizable as red double stripes parallel to the direction of growth.
When the growing Sierpinsky triangles hit these stripes, a chaotic shower is triggered



7.7 Stable Collision Particles 193

Fig. 7.31 a Collision of waves create a Sierpinsky pattern as well as stripes parallel to the direction
of growth according to the rules of Table 7.16; b Partial enlargement of Fig. 7.31a: colorful showers
arise when the Sierpinsky triangles meet the red lines originally created from the excitation at the
beginning

Fig. 7.32 Two waves that meet in different ways. This results in completely different collision
particles. The corresponding automaton is described in Table 7.16

surprisingly (see Fig. 7.31). The complexity of the corresponding automaton is much
higher than it is shown in Table 7.16. The arithmetic sum � of the neighboring cells
in this automaton may go at least up to � = 59.

Again, the question arises whether such chaotic showers, which can also be found
in the patterns of the seashells (compare Fig. 7.1), cannot also arise as the result of
a collapsing impact particle. The cellular automaton in Table 7.17 (see Fig. 7.33)
implements an example of this.
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Table 7.16 First part of the automaton rule that creates Sierpinsky gaskets from colliding waves
and stripes, which trigger showers if they hit the Sierpinsky pattern

� � 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 0 2 1 1 2 2 3 3 4 4 5 8 12 12 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 1 1 1 2 2 3 3 4 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t) = 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 …

Table 7.17 Automaton, the waves of which create chaotic showers if they met each other

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(i, t) = 0 p(i, t) = 0 0 2 1 2 2 2 3 3 3 4 4 5 5 6 …

p(i, t) = 1 p(i, t) = 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0 …

p(i, t) = 0 p(i, t) = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 …

p(i, t) = 1 p(i, t) = 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 …

Fig. 7.33 Colorful chaotic showers as result of an impact of two solitary waves according to Table
7.17
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7.8 Concluding Remarks

Mussel and snail shells are a very old cultural asset. The relative rarity of these
objects and their fascinating shapes and pigment patterns let them to become jewelry
and barter objects very early in human history. That did not change when them
became objects in royal collections and later in scientific museums and in biological
institutes, and is still the mainspring of great interest in them today.

Wonderful books about seashells in all seaswere created and offered an illustrative
overview of the diversity of this fascinating world. In the early days of synergetics,
HansMeinhardt impressed with his simulations of the patterns of seashells [13]. The
reaction–diffusion equations he used were an excellent fit for the development of the
theory of pattern formation in complex systems.

However, the question of what reality his equations described remained unan-
swered. How should a diffusion take place in the lip of the shells? Classical diffusion
presupposes a continuum that is not created from one “time step” to another by new
biological cells and therefore does not constitute a continuum. It remained a miracle
how his wonderful simulations nevertheless described the reality of the pigment
patterns on the seashells.

On the other hand, the cellular automata became a subject of mathematical
research almost at the same time and were successfully used in the simulation of
pattern formation processes. One of the many convincing results is the work of
Stephen Wolfram [20], who also examined one-dimensional cellular automata and
their possibilities. In our opinion, the cellular approach corresponds much more to
the cell-biological process when the patterns in the seashells grow.

We assume that our rules, according to which the patterns develop from one time
step to another, correspond to essential aspects of the genetic code that is inherited
during cell division. In our opinion, this code says that cell division is a process
in which cell communication between neighboring cells has a decisive influence.
Hence, we consider these patterns to be inheritance patterns.

These neighborhood rules, which constitute the cellular automata, can be under-
stood as a discrete variant of diffusion. In biological systems, where communication
between individuals or individual cells is important, this neighborhood rules take on
the role of diffusion, which works in continuous systems.

The typical classification of Krinsky [27], who distinguishes autowaves from
other solitary waves and especially from waves to which the superposition principle
applies, was of great heuristic value for us. Waves are also central to the patterns of
inheritance. However, they are much richer in their characteristics than the classic
waves. For this reason, it was important for us to highlight the typical characteristics
of these new waves of inheritance. The concept of collision particles [21] was of
crucial importance for the classification of the different types of waves.
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Part III
Dissipative Structures



Chapter 8
Waves Which Move Uphill

Granular Gases, Fluids and Convective Solids of Quartz

Peter J. Plath, Ernst-Christoph Haß, and Sonja Sauerbrei

Fig. 8.1 Vibrated granular quartz (Rutile) layer (2 mm) at 66.4 Hz and an acceleration b ≈ 10.1 g.
The wave is moving uphill the faraday heap which has been formed at the wall of the vessel (photo:
P.J. Plath).

8.1 Introduction

Structure formation on surfaces of vertically vibrated fluids and granular media are
well known phenomena since the fundamental investigations of Faraday [1] and
Chladni [2]. At present, these phenomena are commonly called Faraday instabilities.
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In recent years, extensive research on granular media has been carried out in order
to understand and simulate this kind of structure formation [3–19]. Many exper-
iments and numerical calculations are performed for systems with comparatively
large heights of the layer measured in units N of particle diameters d, i.e. N = h/d,
where h is the height of the layer. The containers being used are cylindrical boxeswith
relatively small diameters of up to 5 cm. Under these conditions, granular convection
is usually observed if N ≥ 10 [16]. In these investigations, the movement of single
particles within the granular material was of particular interest. Other studies were
focused on the influence of the air on the formation of granular heaps [17]. The
characteristic diameters of such heap patterns are in the range of some millimeters
up to centimeters.

In a previous article, we reported briefly about our first results of vibrated granular
quartz and rutile fillings (Fig. 8.1) [20]. The most striking observation was a strong
change of the response function, which is correlated to the acceleration of the whole
vibrating system in a rather short time. We suggested describing this phenomenon
with a jerk caused by the non-linear, collective behaviour of the jumping particles
which also leads to the formation of the Faraday hill. In the following, we discuss the
observed patterns of vibrating quartz granulates and the corresponding acceleration
curves depending on the frequency and amplitude of the driving force inmuch greater
detail.

In our studies, we used a cylindrical container of a fairly large inner diameter
and granular layers of low ratios N ≤ 2 in the beginning of the experiments. We
are interested on the one hand on the spatio-temporal development of the granular
medium, which we recorded by camera photos and movies. On the other hand,
we investigated the behaviour of the system as a whole—including the granular
matter as well as the vertically oscillating container—by picking up the responding
acceleration signal with an oscilloscope and analyzing its structure by a computer.

Surprisingly, startingwith these thin granular layers, we observed structure forma-
tion in the layers as well as formation of granular hills building convective solids
which show a characteristic length of about 5–10 cm and heights of 2–3 cm. More-
over, special patterns are observed on the surface of these Faraday hills, in particular
“waves moving uphill”. These structures are reflected by characteristic shapes of the
corresponding response function of the acceleration signal in the oscilloscopedisplay.
The different patterns resulting by varying the vibration frequency and excitation
amplitude are in detail discussed in the following.

We emphasize that our experimental investigations are directed towards the
primary technical use of Faraday instabilities in granular media, wherefore our
description is purely phenomenological but not based on brilliant theory using
statistical physics as for example by Brilliantov and Pöschel [18, 19].
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8.2 Experimental Setup

In order to describe the motion of the granular layer, we have carried out two
kinds of investigations, i.e. measurement of the instantaneous acceleration following
the driving force and visual inspections of the pattern formations by films and
photographs. A sketch of the used experimental setup is provided in Fig. 8.2.

The container with a thin granular layer of quartz particles is vertically vibrated by
means of a shaker system GW-V20/PA100E of Data Physics (Deutschland) GmbH
which was extended by a head expander to carry a cylindrical box with a compara-
tively large diameter. The shaker in turn is fed by a VOLTCRAFT® frequency gener-
ator 8202, the periodic voltage signal Ud of which is the stimulating frequency f of
the vibrated system. The height of its amplitude A and thus the strength of the driving
force have been regulated by the power amplifier PA100E of the shaker system. In
our experiments, we have varied the frequencies f in the range of 40–110 Hz and
the amplitudes up to resulting peak accelerations apk of about 5 g (gravity g =
9.807 m s−2).

The acceleration is measured with a shear-type accelerometer KS 76C-100 of
Metra Mess- und Frequenztechnik in Radebeul e.K., which is attached to the top of
the container. Taking advantage of the piezoelectric effect, a low voltage signal is
generated which is proportional to the acceleration of the whole vibrating system.
This signal is pre-amplified by a conditioning module and picked up by a digital
storage oscilloscope HM408 of ©HAMEG GmbH, where it is displayed as voltage
curveUa(t). According to themanufacturer, the voltage sensitivity is the factorBUa =
10.10 mV/m s−2 = 99.05 mV/g. For comparison, also the signalUd of the frequency
generator is monitored by the oscilloscope display. In order to further processing the
measured data, the oscilloscope is connected to a computer.

According to our test setup, we do not get our information about the vibrating
system by relying on the amplitude A of the driving force, which we do not know

Fig. 8.2 Schematic representation of the experimental setup. A similar test arrangement was used
by Pastor et al. [15, 16]
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exactly, but rather by directly measuring the actual acceleration of the whole system,
i.e. we keep strictly with the observed phenomena. Since the acceleration apk-pk
between the reversal points of a vibration is most important to explain the observed
experimental phenomena, we applied the formula (8.1)

apk−pk = Ua,max −Ua,min [mV]

BUa
[
mV/g

] = Ua,max −Ua,min

99.05

[
g
]
, (8.1)

whereUa,max andUa,min are two succeedingmaxima andminima of the voltage curve
Ua(t), respectively. This correlates to the acceleration, which occurs within the time
interval of a half period length T /2 of the oscillation. In order to be comparable
with literature data of other authors (see e.g. [16] and references therein), we used
a dimensionless quantity � according Eq. (8.2) to state (All subsequent equations
must be increased by the value 2) the peak acceleration, where

� = apk−pk

2g
= Ua,max −Ua,min

2 ∗ 99.05
. (8.2)

The mean Ua,max−Ua,min

2 takes account for the experimental observation that the
absolute values of Ua,max and Ua,min are different at higher amplitudes of the driving
force.

The obtained acceleration data comprise the motion of the rigid container as well
as the separate movement of the granular particles and thus allows insight into the
behaviour of the vibration system as a whole. In this way it is possible to distinguish
between the system response, on the one hand, if the granular matter follows rigidly
the driving force, and on the other hand, if particles can loose from the bulk fulfilling
a jump and falling back to the continuously vibrating container. In other words, the
directly measured acceleration reflects the fact that the whole system behaves as non-
linear weakly coupled oscillators. On the contrary, the amplitude of the driving force
cannot be separated from the measured acceleration, for which reason the correct
measure of both, the separate movements of the driven container and the granular
medium, cannot be determined with our setup, which is simplified for its technical
usage.

The behaviour of the granular matter, in particular the formation of Faraday hills,
phase separation, hot spots and uphill moving waves, was photographed and filmed
by adigital cameraMinoltaDimageE50,which always provided sufficiently resolved
pictures. For further analysis of these shots, the camera was connected to a computer.

Almost any granular matter can be used to observe pattern formation if the grains
are sufficiently small. On the other hand, the single globules should not be too small
to prevent undesirable side effects if cohesive forces due to humidity and electrostatic
forces exceed the weight of the grain. Based upon these considerations, we used thin
layers of 100 g quartz grains with a particle size d from 0.6 to 1.2 mm enabling us to
observe Faraday instabilities; the density of the quartz crystals is ρSiO2≈ 2.7 g/cm3.
It should be pointed out that the quartz grains being used are no spherical particles
or balls, respectively.
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The container is a fairly large cylindrical aluminium box weighting about 1.7 kg
with an inner diameter of about 18 cm, so that its diameter is much larger than that of
a single quartz globule. The height h of the layer in the beginning of the experiments
is about 1.5–2 mm and thus we start with low ratios N = h/d ≤ 2. The total weight of
container and granulate (1.8 kg) allows a free vibration path between maximal and
minimal elongation of the shaker.

8.3 Results

8.3.1 Phase Separation—Convective Solid

Starting with a vibration frequency of 50 Hz with very small excitation amplitudes,
the thin layer of granular bulk follows exactly the driving forcewith only a small phase
shift of the response signal as compared to the excitation signal. Accordingly, no
structure formation of the granular medium is observable in case of tiny excitations.
In Fig. 8.3 a photo of the reposing quartz layer (a) and the respective oscilloscope
display (b) is shown.

Increasing the amplitude of the driving force such that it just exceeds the threshold
for structure formation in the granular medium, the layer very slowly begins to
contract forming a Faraday hill close to a partial region of the cyclic vessel wall.

For a better understanding it should be mentioned that we use the term “Faraday
hill” for those relative high and extended granular convective patterns which are
formed close to the walls of the vessel. We herewith refer to the work of Garcimartín

Fig. 8.3 Vertically vibrated thin quartz layer, driven by a frequency of 50 Hz and tiny excitation
amplitude with resulting apk-pk ≈ 1.9 g and� ≈ 0.95 just below the threshold for structure formation
(� ≥ 1). a Photo of the reposing quartz layer, i.e. the whole button of the container is equally covered
with a thin layer of h < 2 mm; b corresponding oscilloscope display of the excitation function Ud
= U1 and the response function Ua = U2
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et al. [16] who showed that the properties of the wall will not influence essentially
the granular convective dynamic of the layer as a whole. This dynamic is caused by
the air-grain interaction induced convection mechanism [21] of the vibrated granular
media as documented extraordinarily by Akiyama et al. [22, 23]. Within this work
we will not report on the well known small Faraday heaps far from the boundaries
of the container which are discussed everywhere.

If the system is reaching its stationary state, almost no single particles remain
at the flat bottom of the vertically shaken container. On the contrary, all particles
are now collected in the Faraday hill which peaks a height of about 2.5–3 cm. The
formation of these Faraday hills starting from a layer with N < 2 could either been
caused by a not completely plain container bottom or friction with the wall or a
combination of both. There is the interesting work of Miao et al. [24] on formation
and transport of a sand heap in an inclined and vertically vibrated container showing
that very fine quartz sand with grains of 0.15–0.20 mm in diameter forms a heap
which moves towards the wall of the container. This effect is very similar to our
observation of forming Faraday hills.

Almost all particles of this Faraday hill seem to remain in a fixed position, i.e.
only a few globules tumble down the relatively steep slope of the hill. However, if a
particle reaches the foot of the hill at the bottom of the vessel, it will immediately
attracted and caught by the hill. A photo of this situation and the corresponding
oscilloscope display is shown in Fig. 8.4a, b.

As a consequence, we observe a clear phase separation between the hill—which
acts as a convective solid—and the almost empty bottom of the container. Only in the
direct vicinity of the foot of the hill very few particles form a diluted (highly evac-
uated) two-dimensional granular gas. This situation is very similar to a sublimation
state, i.e. a solid with a low vapour pressure.

At the oscilloscope display this situation is characterized by a shoulder at the
periodic response signal on its left edge (see Fig. 8.4b).

8.3.2 Phase Separation—Convective Solid—Liquid—Gas

If one slightly increases the excitation amplitude of the driving force, the particles
on the slope of the Faraday hill start to fall down more and more rapidly. In addition,
avalanches can be observed and—finally by reaching a stationary state—the whole
slope is rolling down continuously. In this stationary state, also a “granular liquid” at
the foot of the Faraday hill can be observed (see Fig. 8.5). Both phases, the convective
solid and the granular liquid, are separated by a sharp phase-boundary (red coloured
dotted line in Fig. 8.5a). Beyond this granular liquid, a third phase of fast jumping
particles emerges, which is behaving as a “granular gas”. This phase is spreading
over the remaining part of the container at its plain bottom, such that the density of
its particles diminishes almost exponentially with increasing distance from the sharp
phase boundary to the granular liquid (magenta coloured dotted line in Fig. 8.5a).
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Fig. 8.4 Vertically vibrated thin quartz granulate, driven by a frequency of 50 Hz and excitation
amplitude just over the threshold for structure formation with resulting apk-pk ≈ 2.7 g and � ≈ 1.35.
a Photo of the Faraday hill together with the diluted granular gas; b corresponding oscilloscope
display of the excitation function Ud = U1 and the response function Ua = U2. The response curve
shows a shoulder at the left side (see also [5, 16])

(a)

(b) 

(c)

Δ
U

U

Fig. 8.5 Vertically vibrated thin granulate of quartz, driven by a frequency of 50 Hz and higher
excitation amplitudes. a Photo of the stationary state of three coexisting phases, i.e. convective solid
(the Faraday hill), granular liquid and granular gas (the phase boundaries are marked with red and
magenta coloured dotted lines, respectively); b oscilloscope display of the excitation function Ud =
U1 and the response function Ua = U2 corresponding to the intermediate situation of permanently
rolling downparticles, but no significant phase separation (apk-pk ≈3.4 g and� ≈1.7); c oscilloscope
display at stationary state with three phases (apk-pk ≈ 4.8 g and � ≈ 2.4)
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For brilliant theoreticians this observation might not be surprising, since they
may expect such coexistence of granular liquid or granular gaseous phases beside
the granular convective solid phase, but we proofed this idea experimentally and
demonstrated that there exist phase boundaries between all these three phases.

At the oscilloscope display, the increase of the excitation amplitude is reflected
by growing of the shoulder at the left edge of the response signal until an almost
symmetric double maximum is reached (see Fig. 8.5b). This corresponds to the
situation where particles are permanently falling down the Faraday hill, but the
phase separation is just beginning. If one further increases the excitation amplitude,
the double peak becomes asymmetric, such that the leftmaximumgrowths higher and
broader and the right maximum is shrinking significantly. The oscilloscope display
which is associated to the stationary state with three phases is depicted in Fig. 8.5c.

8.3.3 Hot Spots as Sputtering Sources in Convective Solids

Shifting up the excitation amplitude (acceleration) at higher frequencies (≥60Hz), at
first structure formation and phase separation proceeds in the same way as in the case
of lower frequencies, which we have discussed above. But working with frequencies
between 60 and 70Hz, remarkable new phenomena arise at even higher accelerations
of the vibration system. Note that this is just the frequency range where Garcimartín
et al. [16] have observed Faraday heaps using larger values of particle diameter units
(N ≥ 10) and small cylindrical containers. In our experiments using a frequency of
66.4 Hz we found hot spots in the Faraday hill which are developing in time. They
seem to act as sputtering sources of much smaller quartz grains which eject particles
all over the time. The diameter of these sources is about 1–2 cm. Depending of the
driving amplitude and thus the acceleration of the vibrating system, there exist on the
one hand stationary states with locally fixed hot spots (see Fig. 8.6a) and otherwise
smaller dynamic hot spots (0.5–1 cm) which are moving around. All these hot spots
form small heaps at the slope of the Faraday hill. By further increasing the excitation
amplitude, the formation of these hot spots is suppressed.

The corresponding picture on the oscilloscope display (see Fig. 8.6b) is character-
ized by vanishing of the double maximum leaving a broader asymmetric peak with
two small shoulders on its right edge. The broader peak arises from the left peak of
the former double maximum whereas the shoulders are a rudiment of the right one.
This statement is the outcome of stepwise careful variations of the driving frequency
in a lot of experiments.

8.3.4 Convective Solids—Waves Moving Uphill

If one boosts the excitation amplitude at the same frequency (66.4 Hz) to a very
high level, which is significantly beyond the situation where hot spots occur, a new
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Fig. 8.6 Vertically vibrated thin quartz granulate, driven by a frequency of 66.4 Hz and a high
excitation amplitude with resulting apk-pk ≈ 8.4 g and � ≈ 4.2. a Photo of the granular convection
solid with a hot spot; b corresponding oscilloscope display of the excitation function Ud = U1 and
the response function Ua = U2

stationary state is reached which is characterized by uphill moving waves. These
waves originate periodically at the phase boundary between the convective solid and
the granular fluid or even the granular gas and move from the foot of the Faraday
hill up to the crest of the hill where they vanish. The lifetime of such a moving
wave and hence the periodic length of the wave migration process is about 8 s. A
snapshot of this situation together with the respective oscilloscope display is shown
in Fig. 8.7a, b. The observed particle flow on the surfaces of the hill and a moving
wave is discussed in more detail in Sect. 8.5. It is remarkable that in our experimental
setup the occurrence of both, hot spots and uphill moving waves, are only observed

(a) (b) 

Δ
U
2

U2

U1
Δ
t

Fig. 8.7 Vertically vibrated thin quartz granulate, driven by a frequency of 66.4 Hz and a very high
excitation amplitude with resulting apk-pk ≈ 10 g and � ≈ 5. a Photo of the granular convection
solid with a wave moving uphill; b corresponding oscilloscope display of the excitation function
Ud = U1 and the response function Ua = U2
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in the frequency range from 60Hz to about 70–80 Hz, but never at frequencies higher
than 80 Hz.

The response signal at the oscilloscope display shows a broad periodic peak
with an extended flat maximum the slope of which is varying periodically slightly
downwards and upwards (see Fig. 8.7b). This may be due to the fact that at large
excitation amplitudes the acceleration is limited at the maximum expansion on the
upper and lower side of the vertically vibrating system.

8.4 Discussion

8.4.1 Collective Behaviour of the Granular System

It is our opinion that the cooperative movement, i.e. the jerk, of many particles in a
granular medium is responsible for both, the spatio-temporal structure formation of
the vertically vibrating bulk of quartz globules as well as the corresponding shapes
of the acceleration response function at the oscilloscope display.

The granulate is neither a rigid body nor a smooth and flexible system of loosely
connected particles, which are linked via hinges or springs or movable parts, respec-
tively, but rather a conglomeration of small grains which are coupled by collisions
and the associated impulse transmissions. It can also be considered as a system of
inelastic clashing spherules which are freely movable in a stream of air and can
interact with adhesive forces [9].

If the system is accelerated sufficiently strong against gravity of earth, after a
temporary decrease of gravitational acceleration single particles can move from the
granular bed and jump upwards. This results into a low-pressure at the remaining bulk
whereby more particles of the granular medium are drawn up. A similar explanation
was already suggested by Faraday in his pioneering work [1].

The downward falling particles in turn are striking onto the flexible amorphous
granular base material which again leads to an impact on the whole bulk. This in
turn causes a change of the acceleration of the vibrating system. At certain values
of acceleration, cooperative behaviour by a large number of particles of the granular
system seems to occur such that these particles are jumping upwards synchronously
and also falling down concertedly onto the underlying granular material. This impact
can be observed as an abrupt alteration of acceleration, i.e. as a jerk. Since the
system is driven by a periodical sinusoidal force, the sudden change of acceleration
also appears as a periodic pulse reflection—the jerk. In a sense, the system of the
granular medium together with the synchronously jumping and falling particles in
the air-filled space can be compared to an air-cushioned residuum.

The strength and the time of the collective jumps of many particles are obviously
depending on the acceleration caused by the sinusoidal excitation amplitude. In the
case of only a few jumps of single particles at low acceleration of the driving force,
only a shoulder at the left edge of the sinusoidal response curve is observed. This
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corresponds exactly to the situation where the Faraday hill begins to emerge from the
bulk which is a smooth thin layer (N ≤ 2) in the beginning of the experiments. Below
this threshold, i.e. the formation of a shoulder, the granular medium only follows the
sinusoidal excitation of the driving force with a small time difference.

If one gets more and larger collective jumps at somewhat higher accelerations,
the impact and thus the retroaction of the air-filled residuum, i.e. the underlying
convective bulk, also plays a major role. In this situation, one can observe a strong
movement of single grains which are rolling down on the surface of the Faraday hill.
Furthermore, a multiphase system emerges consisting of the granular “convective
solid”, a “granular liquid” and a “granular gas”, respectively (see Fig. 8.5a, c). This
state is reflected at the oscilloscope display by appearance of a double maximum in
the response curve of the acceleration.

Hot spots in form of sputtering sources as well as waves which move uphill
occur only if a large number of particles are fulfilling high jumps collectively. But
one should keep in mind that the upstroke of the vibrating system is limited for
technical reasons such that the excitation is no longer purely sinusoidal, but occurs
with truncated elongation at its extreme points.

8.4.2 Response Behaviour of the System as a Whole

As described in the experimental setup (see Sect. 8.2), we monitored the voltage
signalUa(t) of themeasured accelerationon anoscilloscopedisplay and subsequently
recorded and evaluated it on a computer. It should be mentioned that the accelerom-
eter does neither measure the time-dependent path, i.e. the displacement z(t) of the
vibrating system from the rest position, nor the current velocity v(t) = d z(t)

d t , but

rather the acceleration a(t) = d2 z(t)
d t2 of the driven system at time t.

As described in detail in Sect. 8.2, the oscilloscope serves to control the periodic
driving signal which is stimulating the shaker. This signal is generated by an external
frequency generator and simultaneously transferred to the oscilloscope where the
periodic driving voltage Ud(t) is displayed as well as to the power amplifier of
the vibratory system. The amplification magnitude can roughly be ascertained from
the position of the adjustment button of the power amplifier. On the other hand—
as described above, the response behaviour of the whole vibrating system allows
determining exactly the acceleration which results from the periodic excitation. In
this way, one gets a reliable measure of the acceleration by evaluating the voltage
curveUa(t) of the response signal. In order to understand the influence of the vibration
behaviour of the empty container and to separate it from the excitation of the whole
systemcontaining the bulk,we have also studied the acceleration of the vesselwithout
any granular material at all frequencies and excitation amplitudes in comparisonwith
the other experiments.

Starting from the time series of the voltage curves Ud(t) and Ua(t), which are
displayed at the oscilloscope and recorded on a computer, we suggest in the following



212 8 Waves Which Move Uphill

a mathematical description which does not refer to the motion of a single particle, but
to the moving granulate as a whole. The granular system is stimulated by a sinusoidal
driver function Ud(t) according to Eq. (8.3) (see Fig. 8.8),

Ud(t) = Ud,0 +Ud,1 sin
(
ωd,1t

) = Ud,0 +Ud,1 sin

(
2π

Td,1
t

)
(8.3)

where Ud,0 represents the zero excitation amplitude at a constant voltage offset
assigned to a starting time t = 0 of a period, Ud,1 the maximum amplitude, ωd,1

the angular frequency and Td,1 the duration of an excitation period, respectively.
In the case of driving functionsUd(t) with small excitation amplitudes, the system

responses also with a sinusoidal voltage function Ua(t) as shown in Eq. (8.4) (see
Fig. 8.8) which is proportional to the measured acceleration. This function is only
slightly phase-shifted as compared to the excitation function Ud(t):

Ua(t) = Ua,0 +Ua,1 sin
(
ωa,1t + ϕa,1

) = Ua,0 +Ua,1 sin

(
2π

Ta,1
t + ϕa,1

)
(8.4)

with Ua,0 = excitation amplitude at t = 0, Ua,1 = maximum amplitude, ωa,1 =
angular frequency, Ta,1 = duration of a period of the acceleration cycle and φa,1

= phase shift, respectively. As expected, in all experiments applies ωa,1 ≈ ωd,1 or
Ta,1 ≈ Td,1, respectively.

If the amplitude of the driving function Ud(t) exceeds the threshold, at which
particles begin to jump simultaneously, we extend Eq. (8.4) by a series of periodic

Fig. 8.8 Experimental and fitted driving functions Ud(t) and response functions Ua(t) in the case
of no moving particles, i.e. the system follows exactly the driving force. There is only a slight phase
shift between Ud(t) and Ua(t) (see also Fig. 8.3b)
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Gaussian functions such that our approximation for the voltage curve Ua(t) of the
acceleration takes the form of Eq. (8.5) (see Fig. 8.9):

Ua(t) = Ua,0 +Ua,1 sin
(
ωa,1t + ϕa,1

) +
n∑

i=2

{
Ua,i exp

[−αa,i sin
2
(
ωa,i t + ϕa,i

)]}

= Ua,0 +Ua,1 sin

(
2π

Ta,1
t + ϕa,1

)
+

n∑

i=2

{
Ua,i exp

[
−αa,i sin

2

(
2π

Ta,i
t + ϕa,i

)]}

(8.5)

where Ua,i means the maximal amplitude and αa,i a dimensionless ansatz coefficient
related to the half-width of the i-th Gaussian function. The parameters ωa,i and Ta,i,
respectively, describe the periodicity of the i-th Gaussian function and the variable
φa,i its phase shift relative to the driving function Ud(t). We like to emphasize that
the single terms (8.6) of periodic Gaussian functions,

exp
[−αa,i sin

2
(
ωa,i t + ϕa,i

)]
and exp

[
−αa,i sin

2

(
2π

Ta,i
t + ϕa,i

)]
, respectively,

(8.6)

are taking in account the effect of the jerk which we discuss more detailed in the
following section.

Fig. 8.9 Experimental and fitted driving functions Ud(t) and response functions Ua(t) in the case
of simultaneously jumping particles. A pronounced double peak on the maxima and a broadening
of the minima of function Ua(t) can be observed (see also Fig. 8.5b)
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In our approximations of Eq. (8.5), we have used at most 2 periodic Gaussian
functions (n = 2, 3, see e.g. Fig. 8.10). The resulting fits show also that ωa,i =
1/2ωa,1 = 1/2ωd,1 and Ta,i = 2 Ta,1 = 2 Td,1, respectively, due to the addition
theorems of trigonometric functions. The phase shifts which are obtained from the
approximations are in the range of 0 ≤ ϕa,i ≤ π and act generally in such a way
that the periodic Gaussian functions are almost not overlapping. This leads to the
conclusion that during one oscillation period the granular system experiences several
jerks of probably unequal intensity which occur at different times within the period.

As an alternative to the periodic Gaussian functions (8.6), one can also use series
of terms given by Eqs. (8.7) and (8.8), respectively, in order to approximate the
impact of the jerk at higher excitation amplitudes:

Ua,i
[
sin

(
ωa,i t + ϕa,i

)]2βa,i
, Ua,i

[
sin

(
2π

Ta,i
t + ϕa,i

)]2βa,i

(8.7)

exp
[−γa,i cos

(
ωa,i t + ϕa,i

)]
, exp

[
−γa,i cos

(
2π

Ta,i
t + ϕa,i

)]
(8.8)

In the case of the exponentially sinusoidal approach (Eq. 8.7), one obtains suitable
fits of the voltage curve Ua(t) of the acceleration only if 2βa,i > 100, and—as a
consequence—this approximation was not pursued any more. On the other hand, the
approach of Eq. (8.8) can be converted into Eq. (8.6) due to the addition theorems
of angular functions; but because of the better interpretability of Gaussian functions
we have exclusively worked with Eq. (8.6).

Fig. 8.10 Experimental und fitted response functions Ua(t) in the case of simultaneously jumping
particles and the split of Ua(t) into its constituent functions Ua_1(t), Ua_2(t) and Ua_3(t), respectively
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8.4.3 Excitation and Jerk of the Vertically Vibrating System
Containing Granular Quartz

Since the whole vibrating system is stimulated by a sinusoidal driving function,
its response function is also a sinusoidal curve proportional to the acceleration,
and hence its temporal alteration ej is proportional to the third derivative of the
displacement z(t) of the vibrating system from the rest position with respect to time
(Eq. 8.9):

e j ∼ dUa(t)

d t
∼ d3z(t)

d t3
(8.9)

The third derivative of change of position in time or—equivalently—the derivative
of the acceleration with respect to time is usually denoted by the term jerk (German:
Ruck). In the common usage of language, however, the notion jerk describes the
sudden movement or change of acceleration. We prefer to adapt this definition of the
term jerk and suggest denoting the change of acceleration in time more generally as
excitation (German: Erregung). Based upon this interpretation, the time-dependent
alteration of acceleration ej—observed at the oscilloscope display—is in the case of
small driving amplitudes a sinusoidal excitation which gets superimposed by a jerk
if the amplitude of the driving function increases.

Based upon these considerations, the approximation approach of Eq. (8.5) was
chosen, which resulted in excellent fits (R2 > 0.99), such that all subtleties of the
response function Ua(t) could be reproduced. According to the time-dependent
derivative of the acceleration, also the derivatives of these approximation functions in
time describe the excitation and the jerk, respectively, in the sense explained above
(see Fig. 8.11). Referring to Eq. (8.5), these two aspects of the response function
Ua(t) can be separated on a time scale. On the one hand, the excitation function,
given by Eq. (8.10),

dUa,1 sin
(
ωa,1t + ϕa,1

)

d t
(8.10)

corresponds to the time-dependent change of acceleration of the whole vibrating
system which occurs on a long time scale. On the other side, the different jerk
functions (Eq. 8.11),

dUa,i exp
[−αa,i sin2

(
ωa,i t + ϕa,i

)]

d t
= dUa,i exp

[−αa,i sin2
(ωa,1t

2 t + ϕa,i
)]

d t

dUa,i exp
[
−αa,i sin2

(
2π
Ta,i

t + ϕa,i

)]

d t
=

dUa,i exp
[
−αa,i sin2

(
π
Ta,1

t + ϕa,i

)]

d t
(8.11)
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Fig. 8.11 Deduced acceleration function a(t) and its derivation ej(t) describing excitation and jerk
in the case of simultaneously jumping particles. It should be noted that the function a(t) is of opposite
sign as compared to the function Ud(t) of the driving force and the displacement z(t). In this diagram
the acceleration function a(t) was intentionally mirrored by the time axis as compared to Figs. 8.5b,
8.9 and 8.10. The reason is that the acceleration is proportional to the back driving force of the
oscillation system and thus of opposite sign with respect to the stimulating force and the elongation
z. Hence, if one plots Ud(t) and z(t) in positive direction of the vertical coordinate axis (not shown
here for simplicity), a(t) must correctly be drawn in the opposite—i.e. negative—direction

take place on a rather short time scale as compared to the period length T. This can
be demonstrated by calculating half-widths t_half a,i of Ua,i(t) (i ≥ 2) according to
Eq. (8.12):

t_hal fa,i = 2Ta,i

π
arcsin

(√
ln 2

αa,i

)

(8.12)

In the case of the fitted jerk functions shown in Figs. 8.9 and 8.10, one obtains
t_half a,2 = 1.31 ms and t_half a,3 = 2.125 ms, respectively, which is significantly
below the period length T = 19.95 ms. As a consequence, the slope of the derivation
function ej of the acceleration changes almost suddenly within a very short time
interval. This is the jerk!

8.4.4 Power Spectrum of Response Function Ua(t)

For the sake of completeness, the power spectrum of the discussed response function
Ua(t) (Figs. 8.9 and 8.10) was generated by fast Fourier transform (FFT). Figure 8.12
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Fig. 8.12 Power spectrum of the response functions Ua(t) in the case of simultaneously jumping
particles. a Representation in Cartesian coordinates; b representation in semi-logarithmic coordi-
nates

shows this spectrum in Cartesian (a) and semi-logarithmic (b) representation, respec-
tively. This power spectrum exhibits in addition to the main frequency 50 Hz of the
driving force a sub-harmonic frequency of about 25 Hz with much lower magnitude.
This corresponds to a slight modulation of the amplitudes within two subsequent
periods. Beside this sub-harmonic, no further significant frequency is observable in
Fig. 8.12. The subtleties, which we have found by decomposition of the function
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Ua(t) into a pure sinusoidal term and a sum of periodic Gaussian terms is only
reflected by the different heights of the harmonic frequencies.

8.4.5 Flow of Granular Quartz Beats

Gerner et al. [17] described in 2007 the interplay of air and sand. They showed by
numerical simulation that the flow of granular media in a Faraday heap is connected
with the flow of air through this heap. Some years ago, Laroche, Douady, and Fauve
[5] executed excellent experiments in which they observed formation of a Faraday
hill close to the lateral boundary of the container dimension 100 * 12 mm2 as stable
configuration. They reported also on an avalanche flow along the surface of the heap
which they assumed to be compensated by an internal circulation of the particles from
the bottom towards the top of the heap. Akiyama et al. [22] presented spectacular
snapshots of this internal convective flow of the particles in heaps of a vertically
vibrated granulate.

Laroche et al. [5] stated, that the convective regime is not observed when the
granular layer is too thin, i.e. if N = h

d is too small. The experiments which they
reported have been carried out for 10 < N < 140 and particle diameter dispersions
of 0.63 – 0.80 mm. For N ≈ 45 at the starting point of the experiment, they observed
a hill, the height between top and valley of which was about 30 mm. This is just the
height of the Faraday hills which we have investigated. But in contrast, we started
with N ≤ 2. However, we observed also the formation of a convective solid which
is the Faraday hill. We found that in case of the driving frequency f = 66.4 Hz and
an acceleration of � ≈ 5 not only avalanches are running down the hill, but also
waves are moving uphill, starting from the foot of the hill, where N ≈ 1. By visual
inspection and recording movies we observed the flow of the grains within both, the
body of the hill and the uphill moving waves. The result of these observations is
sketched in Fig. 8.13.

The sketched flow of grains inside the Faraday hill (Fig. 8.13) is based on the
ideas of Miao et al. [24] and the measurements of Akiyama on the convex flow of
grains in vertically vibrated granular beds [23].

In our experiments, the hill is always formed close to the border of the container
as earlier observed by Laroche et al. [5]. A steady downhill flow of beats is created
on top of the hill as well as on top of the wave moving uphill. At the line in which
the surface of the moving wave meets the slope of the hill, the beats which move on
both the surfaces vanish into the bulk of the convective solid.

Caballero and Melo [25] observed uphill running droplets of fine silica particles
of 0.1 mm in diameter on convex surfaces of curvature radius Rc = 57 mm vibrating
vertically at f = 20 Hz. The surface on which the droplets are running belongs to
the container. In contrast, the uphill moving waves we observed are formed on the
slope of the Faraday hill but not on a specially curved ground of the container.

In case of a somewhat lower amplitude of the sinusoidal driving force and hence
the acceleration (� ≈ 4.2), we observed the formation of sputtering sources on the
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Fig. 8.13 Schematic representation of the observed particle flow and the moving wave on the
Faraday hill (for comparison see also Fig. 8.7a, c)

slope of the Faraday hill. If they are located close to the foot of the hill, they remain
stable in space and time, whereas they walk around and vanish after some minutes,
if they are created far away from the foot of the hill. The resulting flow of the quartz
beats on the surface of the hill and within the sputtering sources which we observed
visually and by recording films leads us to the proposal for the granular convection
as shown in Fig. 8.14.

In the centre of the small circular source heap, the beats are sputtering to the surface
and flow down in radial direction away from the centre. In order to understand this
flow, we suggest that there exists a toroidal vortex beneath the surface of the source
and hence an underlying saddle point (see Fig. 8.14).

8.5 Summary and Outlook

It was our interest to study the behaviour of thin granular layers in an enlarged
container under vertical vibrations which might be useful for technical purpose.
Furthermore, our container should be large enough to observe granular pattern forma-
tion almost undisturbed by its boundaries. Because of the lack of accuracy in the
inclination of the vertically driven container as compared to the apparatus of de
Bruyn et al. [26], the large Faraday hills move incidentally to an arbitrary higher part
of the inclined container wall. A similar effect was already observed in case of the
studies carried out by Laroche et al. [5].

In contrast to other authors, we started the experiments with small ratios N = h
d ≤

2 of almost equally distributed grain particles. As a result, the symmetry breaking at
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Fig. 8.14 Schematic representation of the experimentally observed surface flow of beats in the
case of sources on slopes. The arrows symbolize the flow of the grains on the surfaces as well as in
the body of the convective solid (see for comparison also Fig. 8.6a)

higher amplitudes (Γ ≥ 1) enabled us to detect a variety of phenomena which have
not yet been carefully investigated, i.e.

• “phase-separations” between the “granular convective solid”, the “granular
liquid” and the “granular gas”, respectively, and the sublimation of the “convective
solid” without avalanches,

• “granular waves” which move uphill, starting at the foot of the Faraday hill, and
• stable sputtering sources located close to the phase separation line at the foot of

the Faraday hill.

The described experiments on inert quartz particles serve us as a starting point to
obtain the basic physical properties of vertically shaken systems in an air flow with
Faraday instabilities.

It was our aim to use an experimental setup with technical relevance like mining,
fine chemicals and pharmaceutical processes.

In 1997 Linz [27] wrote:

“On the macromechanical level, however, the collective dynamics of the grains is often
comparably simple, although often very surprising since we have not reached an intuitive
understanding yet. Facing the fact that theories from first principles are not analytically
manageable at present, it is nevertheless worthwhile to study how much we can learn about
granular systems without knowing the micromechanical details of the problem.”

We agree with the statement of Linz. Technical development is not depending
on deep theoretical understanding of all the problems which are connected with the
implementation of a new technology. Therefore, the intuitive understanding of the
processes which are inherent in the technical procedures are of great importance.
Our work should serve this purpose.



8.5 Summary and Outlook 221

In a future work, we intend to apply the results to carry out tribochemical reactions
[28] in vertically vibrated reactors under atmospheric pressure and low temperatures
(room temperature or only slightly above).
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Chapter 9
Dissipative Sculpturing of Beige Jasper
of the Eastern Desert of Egypt

Hartmut Linde

Fig. 9.1 We found also a stone, at which by chance and disturbance a banana-like center was
created

9.1 Introduction

H. and G. Linde found these stones first gathered by Bedouins in their camp and
later with help of them directly at the spot of their origin, a chalk-like hill (between
the 26th and 28th parallel of latitude and the 33th and 34th degree of longitude) in
the eastern mountain-desert of Egypt (Fig. 9.1). Figure 9.2 shows the biggest found
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Fig. 9.2 Prof. Hartmut
Linde, sitting as a human
sale on a sculptured stone
with a fragment of a relief
(see arrow) of four
concentric rings with a
“wavelength” of 5 upto 8 cm

stone with H.L. as scale (and the chalk-like hill as background) with a fragment of
a relief of four concentric rings with a “wavelength” of 5 upto 8 cm (See also in
Fig. 9.3 other big stones with fragments of the relief).

The surface of the hill is covered with many of these stones, of which the bigger
ones are mostly broken. At cliffs these stones are embedded in the walls of the chalk-
like ground. A part of the stones shows the relief in view. Stones laying at the surface
of the hill show at their top a crackled brown desert lacquer of Fe/Mn-compounds
at their top, the underside is beige like freshly broken stones or if they are taken
immediately out of the wall.

The analysis of the chalk yields 93.3% CaCO3 and 6.7% of clay. We identified
different small marine organisms (including silica-algae) and nearby a fossil coral
reef, thus we claim the chalk-like hill for an uplifted fossil marine sediment—after
geologic studies—of the Nummulite-formation of the lower Eocene. The as jasper
identified nodules have a micro-crystal quartzite-like structure with narrow packed
quartz-grains of 0.005 mm and are scarcely polluted by clay or chalk [1, 2]. After
the far-reaching destroying of this formation, the nodules of jasper are destroyed and
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Fig. 9.3 Another stone with sculptured patterns of quite different sizes: on the upper side
wavelengths of cm scale; in the middle and lower part with in mm scale

fragmented by thermal and sand-born erosion and cover now also areas of the gravel-
desert (Sserir) in the desert [2]. These fragments exhibit very seldom such small
traces of the relief in view, that we could identify them only afterwards only with the
knowledge of the intact stones. Such fragments—we found afterwards also in the
desert—are available in the mineral collection—misunderstood as “Nilkiesel”—of
the “Mineralogische Sammlung des Naturkundemuseums der Humboldt Universität
zu Berlin”3 but without any knowledge of the intact relief and its origin. We did not
found such intact stones with reliefs in other mineral collections. Likewise we found
neither their description nor a relevant theoretical background to these phenomena
in the literature [3–6]. Thus we were encouraged to select (and to buy) a well-aimed
series from the most simple up to the most complex stones (already gathered in the
camp of the Bedouins and offered to visitors). We did this for the reconstruction of
a physico-chemical process in the far past finished at casual intermediate states by
external influences.

9.2 Stones, Successions, Concretions and Reliefs Over
a Broad Range of Sizes

The smallest stones found are often spherical (with diameters in the range 0.5–2 cm)
without surface relief. Figure 9.4 shows e.g. examples of a small, unbroken stone
and a broken one. Yet, inside the last exhibits at the sectional view one concentric
ring with the outer surface, discriminated by its colour relative to the background
material. This shows evidence of a superposed layer due to growth in two steps
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Fig. 9.4 Smallest spherical stones with surface reliefs

forming a succession. (Larger stones of 15 cm can indicate until eight internal levels!)
Further, we see three steps of two or three united nodules as concretions, of which a
dumbbell-shaped one is superimposed around the waist with a flat layer.

One broken part of another bigger dumbbell is also superimposed around the
broken waist but with a relief consisting of one and a half concentric ring (a second
similar ring-system at its backside and signs of over-layered inner levels at the broken
side exist but are here not shown. (The other broken part of the dumb-bell is not
available). Such favoured over-layering of the concave waist even with the fine-
sculpture (reliefs with elliptical rings and spirals at one stone) are also shown in
Fig. 9.5a, b).

Larger stones found (in the range of 10 cm diameter) have mostly disc-shaped or
parabolic, egg-shaped forms. Figure 9.6a–c shows three sides of a large concretion
of two egg-shaped parts. Figure 9.6a looks like Bismarck with a smooth and bald
neck and with a destroyed armor. At its backside (Fig. 9.6b) we see the continuation
of the bulges from the first side, coming from a central disc with disturbed central
ring-bulges, visible from the side at Fig. 9.6c. The second bald part of the head shows
a smooth basic surface of this part and at least three sources of irregular bulges.

Another big stone (Fig. 9.7) shows—as expected when cut—in its sectional view
elliptic rather than circular rings inside. Such stones are often both, successions and
concretions, here connected with three parts. Also as units looking stones are often
composed of several parts unified by a common layer, as one can see at the sectional
view.
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Fig. 9.5 a, b Another larger dumbbell is also placed around the broken waist, but with a relief
consisting of one and a half concentric ring

Fig. 9.6 a, b c Larger stones found (in the range of 10 cm diameter) have mostly disc-shaped or
parabolic, egg-shaped forms
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Fig. 9.7 Also stones, looking as units, are often composed of several parts unified by a common
layer, as it is to seen at its sectional view

9.2.1 An Imaginable Basis Relief

In relatively large stones (10 cm diameter or higher) a layer with a relief may be
cover just one or several areas not all regular although illustrating a common origin
as we shall discuss below. We have found surface reliefs with concentric rings as
regularly formed bulges around a central disk. Figure 9.5b shows also two elliptical
central discs, which created elliptical bulges and an elliptical spiral. (At this stone,
we see further the traces of strongly eroded reliefs as a proof that too late created
reliefs could not harden before the final stop of the physical processes by external
geological reason.) Figure 9.8a shows a stone covered with regular concentric rings
at the one side, while the other side shows according to Fig. 9.8b regular spiral-
shaped bulges both around a central disc. The spiral occurs, when the central disc is
disturbed accidently by a step sideways of the surround. Figure 9.8b imposes also
additionally by two nucleating half-spheres discussed later.

The concentric ring-shaped relief arounda central disc impresses as the imaginable
basic form of the relief. Figure 9.9 shows a stone with the smallest “wavelength” with
0.08 cm and a second stone with a wavelength of 1.5 cm. The largest wavelength
found was about 8 cm (Fig. 9.2) at the largest found stone in 80 cm diameter range.
The radius of the central disc is about two times larger than the wavelength in first
order approximation, and these values, radius and wavelength, are related to the
thickness of this layer.

On occasion when a stone is disc-shaped or paraboloid, the relief layer is mostly
localizedwith the central disc at the less convex sides. At dumb-bell shaped stones the
over-layering—with or without reliefs—prefers the waist between the both spheres
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Fig. 9.8 The same stone with quite different structures: a concentric rings on the foreside, but b a
spiral on its rare

Fig. 9.9 Concentric rings on a very small scale; partially with period doubling (right above)
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that is the most concave line (Figs. 9.4 and 9.5a, b). (The central disks appear prefer-
ably at the most concave spots by heterogeneous nucleation at the hardened surfaces,
as later discussed).

9.2.2 The Variability of the Relief by Deformations,
Dislocations and Bounds

Often the central disks are deformed, e.g. to elliptical discs, then also surrounded by
elliptical bulges. There are also bounds, whichmake the discs un-complete so that the
bulges are also un-complete and cover only one side of the disc. Figure 9.10 shows
an overview about some concentric ring-bulges and spirals-bulges for comparison.
However, a dislocation at the periphery of the disc is connected with both left- and
right-handed spirals and even with two-armed ones.

The spirals can be regular (Figs. 9.8b and 9.11) but also deformed around an
elliptical disc (Fig. 9.5a) or as wrinkled spiral (Fig. 9.12) restricted by bounds. See
in Fig. 9.12 also two banana-like nucleation plots in the groove between bulges
at the sculptured surface. (Usually nucleation spots are half-spherical, as visible
in Fig. 9.8b). That can be caused by the additional over layering over an already
sculptured layer (with a modification of the sculpture, see the concluding remarks).
There are also simple side step dislocations of the bulges, see e.g. both sides of a stone
in Fig. 9.13b. The bulges can stepwise surround bounds, or penetrate gaps in them

Fig. 9.10 Overview on some concentric ring-bulges and spirals-bulges for comparison
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Fig. 9.11 Regular spirals

Fig. 9.12 Wrinkled spiral with two banana-like nucleation plots in the groove between bulges (have
a look at the arrows)

and can even be unified afterwards when before separated by a bound (Fig. 9.14).
When more than one relief area appears at a stone, no interference or overlapping
is recognizable when they touch each other (Fig. 9.15). Many peripheral bulges
are irregularly covering large parts of the stone, showing a lot of the mentioned
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Fig. 9.13 Simple side step dislocations of the bulges. a Front side, b back side, c right side of (a)

Fig. 9.14 Separated bulges can unify
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Fig. 9.15 Bulges do not interfere

dislocations. There are also boundary-lines as well between the reliefs coming from
different leading centers as even inside of reliefs coming from only one disc.

9.3 Growth of an Amorphous Body When Diffusion,
Geometry and Physical-Chemical-Thermodynamic
Conditions Play Together

It seems to be plausible that silica-gel accumulates as precursors of jasper had orig-
inated at first by local homogeneous nucleation in the chalk-like sediment when
formed at the ground of the shallow sea covering North Africa in the early Eocene.
The necessary supersaturated solution of Si(OH)4 in this sediment can be produced
by simultaneously sedimented silica algae because of their highly solubility and
metastable SiO2-skeletons as un-equilibrium crystals. This source of soluble Si(OH)4
can be maintained over long time intervals.

Then for the overall process the porosity of the amorphous silica-gel, internal
diffusion and accumulation of Si(OH)4 are expected to play a crucial role in the
growth of the stone found without to shrink. The chalk particles do not participate
as nucleation points they are separated from the silica-nodules and are not bounded
by silica bridges. Rather the homogeneous and heterogeneous nucleation seems to
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be a local spontaneous phase separation of the silica-gel from the aqueous chalk-like
sediment with an inter-phase between them. This local accumulation of Si(OH)4
forms at first growing spherical accumulates and increases locally in the gel the
accumulation pressure and helps overcoming the expected yield shear-stress of the
expandable chalk-like sediment.

On thisway, only at critical values of shear stress the nodule tends to keep growing.
Neighbouring nodules when touching each other during growing can be backed
together to units called concretions (see Figs. 9.5a, b, 9.6a–c and 9.7). Soon after
an insulated nucleation point a nucleus starts to grow in the bulk of the sediment,
centripetal diffusion helps spherical growth of the small silica nodules. This process
can be seen approximately as the growth of a spherical Newtonian drop (easily
deformable silica gel with negligible Bingham-behaviour [7]) in extended sediment
with Bingham-behaviour. The latter corresponds to a continuous medium in which
besides the viscosity η and the shear-stress τ and also a critical shear-stress τB
gradient of the so-called Bingham-behaviour is important for the possibility of an
elastic deformation or of a flow [8]. When the applied shear-stress remains below the
critical value τB , there is only elastic deformation following Hooke‘s law, but once
this limit is exceeded, the Bingham body flows—in first order approximation—as a
Newtonian liquid. Note also that at variance with the Newtonian flow, the flow of a
Binghambody in a tube does not follow a parabolic velocity profile but rather exhibits
a flat front with very sharp decline to the zero velocity at the wall. Accordingly, the
shear-stress at solid boundaries is quite high. This behaviour influences just as the
Bingham-flow at other solid surfaces and prefers a similar more easy expansion
along solid walls, when there the pressure is coming from an at this wall sitting
nucleus of an expanding second phase. (Possibly, the maximal shear-stress near the
solid surface—later additionally increased at corners and grooves and working at
molecular-smooth surfaces of the hardened accumulate—can explain the favoured
wall-led and groove-led expansions.)

9.3.1 The Grow-Stop Dynamic Due to Decreasing Shear
Stress with Increasing Radius of the Nodule

For a growing nodule, the shear stress in the surrounding quasi-solid sediment is
relatively high for lower radii. This phenomenon—confirmed by model-calculation
of the shear stress [9, 10]—is also well known to occur at the tip of a needle or
when using knifes both with very small radii at the tip or blade cutting butter or
clay, two Bingham-like materials. (It needs a much higher pressure to deform these
materials with a tennis ball). Thus depending on these shapes we may locally be
above or below the critical radius respectively yield stress and therefore the growth
of the nodule is possible or not. Thus, the form-constant growth of spherical nodules
stops very soon when the critical radius is reached and the shear stress remains below
the critical value. Remember, that the accumulation-pressure is limited! Other-sides,
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an instability during growing leads mostly to the mentioned eggs and discs (and
finally also to a layer) because a growing disc can preserve at their circumference an
under-critical radius.

9.3.2 The Diffusion-Controlled Accumulation Pressure
Leads also to the Grow-Stop Dynamic, Which Limits
the Volume Increase of the Silica Body

As noted earlier [11, 12], diffusion controls the supply and eventual accumulation of
Si(OH)4, which increases for instance the spherical volume Vn, and, consequently,
the outer spherical surface of the silica nodules, An. As time proceeds, pressure
evolves proportional to the relative volume increase

dPacc

dt
= dV

V
dt (9.1)

An estimate can be obtained if we take into consideration in the diffusion law

dn

dt
= −DA

dc

dx
(9.2)

the relative volume increase of one gmol SiOH4 by multiplication with Vgmol/V .
Then we have:
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)
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(
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)(
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)
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(r is the radius of the spherical accumulate). Assuming that the in the time scale
considered diffusion coefficientD, the concentration-gradient dc/dr andVgmol remain
constant, then the rate of pressure increase is proportional to the ratio of surface to
the volume in a nodule, thus it scales

An

Vn
= 4πr2

3
4πr

3
∼ 1

r
(9.4)

Thus dPacc/t is decreasing if the spherical nodule gets bigger. That is on principle
in similar form also valid for other shapes of the growing nodules and even for
growing cover layers with andwithout the reliefs. This is a secondmechanism of stop
in the growth of the nodule, when the accumulation pressure Pacc becomes to short.
As mentioned before, the very un-ripe accumulate exhibits already during its slow
growing a steady solidification by internal diffusion and accumulation of Si(OH)4,
what is a competing process against the external diffusion and accumulation. The
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complete volume Vn of the freshly formed nodule works therefore as additional sink
for the diffusion of Si(OH)4.

Thus the above diffusion controlled stop of growth is additionally supported.
Furthermore, this internal diffusion and accumulation is maintained after stop of

growing of the nodule until the next solid intermediate phase of silicate is reached.
Thus the restoring of a sufficient high concentration gradient of Si(OH)4 necessary for
a further accumulation is prevented and delayed. The resulting long enough time of
rest enables other-sides an effective solidification process of the attained intermediate
state of the nodule as precondition for the following local heterogeneous nucleation
and for the facilitated expansions along a solid surface.

These considerations are sustained by the following findings: In some cases
with several relief patches at the same surface we can recognize that one relief is
completely preserved while nearby another relief is very much eroded, see Fig. 9.5b.

It is obvious that the eroded relief is the last developed relief, which has had
no time enough for complete solidification because of the final stop of internal and
external accumulation due to the final stop of diffusion by external geological reason.
(The nearly same “wavelengths” and thickness of the ring-bulges show, that this final
stop is not caused by a higher Bingham yield or viscosity of the sediment, because
this would likely change the wavelength!).

This diffusion-controlled accumulation pressure limits not only the radius respec-
tively volume of the spherical primary accumulate body—but also the radius (and
volume) of other shaped bodies—and even of nuclei created at the surface of the
basic body. It influenced also the complete or un-complete over-layering, the last
responsible for the development of the relief.

9.3.3 The Role of Heterogeneous Nucleation with Respect
to the Creation of Local Leading Centers for Further
Growing by Over-Layering and Fine-Sculpturing

It is not sure, whether the already mentioned first point-like nucleation is a homoge-
neous or heterogeneous one. More important is, that with the occurring of already
solidificated silica nodules as intermediates, local heterogeneous nucleation of the
accumulate (the less condensed phase) are possible and favoured at these higher
condensed and not more deformable surfaces. This is well known from thermo-
dynamic criteria, which favour in addition the most concave spots of this surface
for nucleation. This enables the locally selected restart of expansion—with falling
favour—at grooves, concave corners, and plane surfaces, because here at more
concave surfaces the volume of the initial nucleus and therefore the nucleation work
can be minimized [13]. We have found evidence of such behaviour e.g. by studying
the localization of the leading centers of the reliefs at the surface of the solid silica
bodies. At Fig. 9.5a, b, we recognize in addition an incomplete over-layering of the
waist of the dumb-bell. In addition, a leading center is stopped in the early state of



9.3 Growth of an Amorphous Body When Diffusion, Geometry … 237

growing—at one side in the groove at Fig. 9.5a (see the arrow)—because of external
influences. In the photos of Fig. 9.8b, such two nuclei restarting in over-layering
at different spots, are visible, marked by the arrows. Generally, we see at the most
disc-shaped stones that the central discs as the leading centers for concentric rings
and spirals of the sculptures localized near the flattest and most concave sides.

9.3.4 Concentric Spheres Inside of Spherical Silica-Stones
by Over-Layering Due to Facilitated and Therefore
Preferential Tangential Slide-Way Expansion Along
the Solidificated Surface of Their Precursor Bodies,
in Short: Wall-Led Expansion

Let us have, e.g., a perfect spherical intermediate solidificated by internal accumu-
lation after the growth has been stopped plus an adequate residence-time until the
supersaturated concentration of Si(OH)4 is restored. As there is a supersaturated
medium and heterogeneous nucleation is possible this may well occur at any point
of the sphere. However, as a half-spherical nodule expands along solid walls then
soon or later, as noted above, the shear-stress decreases as the radius of these half-
sphere increases, the shear stress finally takes on values below the yield threshold
τB at the calotte thus stopping there locally the growth of the nodule. (This growth
process is finished, when due to the diffusion dPacc ∼ 1/r and dPacc ∼ 1/Vn , we
reach locally or for the whole volume a value below the yield stress.) However, the
remainingmaximal shear stress at the corner of the nodulewith the basic wall enables
a remaining tangential expansion along the wall. This process is called “tangential
wall-led expansion”.

Note, that the stop of the further expanding at the calotte is ruled by τB . A low
τB : has to lead to a large thickness of over-layering and wavelength, respectively,
and vice versa, whereby the velocity of over-layering, which is anyhow very slow
because of the diffusion, is here seemingly without influence.

The over-layering can continue until the surface of the initial spherical nodule is
completely covered and the growth stops because the condition for the facilitated
wall-led expansion is not more given. That is an additional stop mechanism.

This can provide after repeated solidifications followed by heterogeneous nucle-
ation—multiple layer structures, one kind of the so-called successions. We have
found stones with up to eight layers! Only small ones can be concentrically over-
layered by regular spheres, because the above-mentioned instability leads also to
discs and ellipsoids consisting of several covering layers (compare Fig. 9.7). These
over-layering are not very regular because of inhomogeneous conditions.

An over-layering can also be seen in Fig. 9.16a.
There exist also typical successions looking like discs, which show additionally a

relatively thicker layer—like a unique very thick ring-bulge—around the peripheral
border (Fig. 9.16a). (From Fig. 9.16b it can be seen that the backside of this stone
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Fig. 9.16 a Typical consequences that look like discs, forming a relative thick layer—like a single,
very thick ring bulge—around the circumference, b (right one) back of the sculpture (a)

is a large concretion backed together from at least 6 parts.) The common periphery
ring-bulge is the extreme result of the fact, that reliefs covering whole discs show
relatively larger wavelengths of the bulges at this peripheral border, which is more
convex. Though this border is not favoured for nucleation, the over-layering from
a nearby occurring nucleation seems to be facilitated and only stopped at a larger
thickness. The reason may be the maintaining of a constant boundary-angle of
about 120° between bulge and the basic wall, which influences the radius of the
growing accumulate surface. It can be shown, that the very convex radius of the
border induces a relative smaller radius of the spherical surface of the accumulate
nucleus during growing under the influence of this constant boundary angle of about
120°, which is estimated between nuclei and the basic surface, between bulges and
the basic surface and even between the touching ring-bulged themselves. See also
Fig. 9.14a–c, showing the different wavelengths and thicknesses of the relief at the
flat and at the convex sides of the same stone.

9.3.5 Concentric Ring-Bulges Around the “Central Disc”
Due to Repeated Local Over-Layering by Facilitated
Slide-Way Expansion Along the Grooves at the Border
of the Central Disc and Equally at the Border
of the Consecutively Step-Wise Developed Ring-Bulges,
in Short: Groove-Led Expansion

As above mentioned, the premature stop of such over-layering due to Pacc ∼ 1/r
respectively Pacc ∼ 1/V leads to an disc-like layer (central disc!) sitting at the
surfacewhich is also subjected by the following solidification and later heterogeneous



9.3 Growth of an Amorphous Body When Diffusion, Geometry … 239

nucleation. Now, the heterogeneous nucleation is preferred in the groove around
the—in the regular case circular—central disc, because this is the most concave line.

The nucleus find here two solid walls linked each other also with an angle of
about 120°. That leads to a stronger shear stress along this groove than along an
only flat surface. Thus, the so-called “tangential groove-led expansion” is favoured
against the tangential expansion led only from one wall. Consequently, this groove-
led expansion is restricted to a near region of the groove and forms there a ring-shaped
bulge around the central disk. Only in seldom cases—obviously of disturbances at
the grooves—the area-covering over-layering according to the tangential—of only
one—wall led expansion was observed too, instead of this kind of forming a ring
bulge.

The unifying by coagulation of the two fresh fronts of the bulges (at the side
opposite to the nucleation spot at the central disk) complete a ring-bulge and this
kind of facilitated expansion is also stopped. This is again an additional growth-stop
mechanism, as mentioned also before with respect to the complete over-layering of
a nodule. Thus, the immediate further expansion is prevented and after solidification
of the ring-bulge and following favoured nucleation at its external groove, the next
ring-bulge can be developed. In an analogical way as multiple concentric layers,
also numerous concentric ring-bulges around the central disc can by formed at the
surface.

The forming of the central disc with the concentric ring-bulges initiates the devel-
oping of the basic relief at the surface. Note, that the formation of these typical
concretions and successions and of the basic relief rules by the same principles.

9.3.6 Possible Reasons for the Increase of Variability
of Concretions and Successions and Especially
of the Complex Relief (Dissipative Sculpture)

It plays obviously a crucial role for the variability of the relief, whether touching
fronts of bulges—either during surrounding the central disk or when they came
from different central discs—are able to coagulate or not. There are—deduced from
topological images of the reliefs—three possibilities:

1. Both fronts are liquid-like fresh and coagulate to a unified form. The circum-
stantial evidence for this is the existence of completely regular concentric ring-
bulges and of two-times over-layered spherical nodules, both without traces of
the unification.

2. One front e.g. of a bulge is already stopped and aged and the other colliding
bulge is fresh enough and follows thewrinkled groove by a side-step dislocation,
see Fig. 9.14b.

3. Both fronts e.g. of colliding bulges are just before they are forced to a stop by the
diffusion controlled dynamic.We expect in this case not a change of wavelength
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but a deceleration of the growing velocity leading to an already premature aging
and solidifying of the surface.

That can prevent an easy coagulation and can lead to an incompletely unified
thinner spot of the bulge or to a complete stop of both fronts with a sharp
grooved boundary in between. Such examples are bodily available shown e.g.
in Fig. 9.14a–c.

4. A break or shearing of the expanding front of the central disc is responsible for
the origination of spiral-shaped bulges and the two possible directions of the
shearing break correspond to the two directions of the spirals (Figs. 9.8b, 9.10
and 9.12).

That can be caused by local differences of the expansion velocity possibly
by very local differences of the yield value and/or the viscosity of the Bingham-
body. But if these material properties are only small and wide spread, they
can be discussed as reasons for the deformation of the—under homogeneous
conditions—regular circular central discs with circular concentric bulges. (They
are often elliptically or un-regularly deformed).

5. Other-sides can very sharp local material properties can lead to the bounds as
not penetrable boundary lines for the expanding elements of the relief. Typical
examples show Figs. 9.14a–c and 9.16.

6. Simultaneous nucleation—a random process preferred in the most concave
places—can help develop reliefs that are more complex. This process also takes
place on extensive surfaces such as grooves along bulges. Together with prema-
ture stops of expanding elements of the relief, these processes can also contribute
to the development of complex reliefs (Figs. 9.14, 9.15 and 9.16).

7. Note, that a regular ring-bulge system contains very defined convex backs of the
bulges and sharp grooves between them (also with an touching angle of about
120 °C). The slope of the backs looking into the direction of the central disc
is a little bit steeper than the slop looking to the periphery. This can help to
understand the origin of disturbed and un-complete sculptures.

These dislocations together with the concentric rings and the different kinds
of spirals can show—at larger stones—a higher variability of the relief than of
fingerprints.

9.3.7 Concluding Remarks

In our search of the literature, we have found neither evidence of the sculptured
silica stones descript in this report, nor a theory that could be used to explain the
sculpturing phenomena we have discussed here. However in the Catalogue by A.
Seilacher [14, 15] there is an interesting photo concerning a

--huge block (length 184 cm) of Upper Jurassic limestone fallen into a clay-filled fissure (see
Fig. 9.17). This is surprising, because karst fissures are results of limestone dissolution, while
themicritis crust bearing these ornaments originated certainly by precipitations. Even though
the origin of sculptures is still problematic, they clearly belong to the family (morphospace)
of zebra-patters found in very disparate situations.--
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That is really very far from a try of explanation of this fascinating sculpture.
Here we are immediately forced to compare the origin of the sculptures of this

stone with the principles developed for the understanding of our stones from the
eastern desert of Egypt.

Maybe this—in German: “Gedankenexperiment”—intellectual game can moti-
vate the search for the physical and chemical conditions of the origination of this
fascinating sculpture in view. (Every theory is in the beginning an intellectual game
like also in our try to understand the sculptures originated in Egypt and we cannot
avoid the following speculations).

This stone (Fig. 9.17) contains obviously at the complete—also as flat assumed
surface—the basic sculpture as reported here of silica-concretions. However, this
sculpture is only at one endof about 1/3 of the surface of the stone visible recognizable
with the two typical central disks surrounded by concentric rings. The middle part
of the big stone is additionally over-layered at the second time finally the other end
of the stone is again—at the third-time—over-layered both with a very similar but
typically modified sculpture.

These modified sculptures can be explained—with our intellectual speculation
corresponding to our above problem—by a starting with banana-like nucleation-
germs in the bended grooves of the foregoing sculptures. These germs are growing
for a short time by favoured expansion along the groove originating than the banana-
like shape. Than follows at the backside of the banana—and further at the backside
of the horse-shoe-like bended bulges new nucleation, which form finally a heard-
like sculpture, when the open ends of bended bulges are unified. That is the result
of the same groove-lead lateral expansion as explained also in our above problem.
(The grooves around the half-concentric bulges have a dominant influence on the
expansion in comparison with the grooves of the already sculptured basic surface).

It was a help for this speculation, that we found in our stones two Banana-like
nucleation-points at already with the basic-sculpture covered surface (Fig. 9.13, see
the arrows). We checked also a long series of other photos of gathered sculptured
stones (which we did not buy) and fund no signs of a secondary over-layering. There
was in the far past obviously no enough time for creating the modified sculpture by
secondary over-layering. However, we found also a stone, at which by chance and
disturbance a banana-like center—as part of the first overlaying—was created for
the following developing, see Fig. 9.18. We recognize at least the horseshoe open
bended (half-concentric) bulges.

By the way, there exist also concentric-ring-sculptures observed at SiO2 and
Cornelian Chalcedon. Here we would now not exaggerate the speculation.
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Fig. 9.17 The stone that gives rise to our speculation. It contains obviously at the complete—also
as flat assumed surface—the basic sculpture as reported here of silica-concretions
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Fig. 9.18 A stone, at which by chance and disturbance a banana-like center—as part of the first
overlaying—was created

Appendix

Finally, it isworth to speak about a simple experiment,which shows, that the so-called
nonlinear behaviour of a Bingham-body is able to form a dissipative sculpture by its
deformation.You take a knifewith a not dentate but sharp side and push it into vertical
direction one or two mm deep into the flat surface of not to warm butter or margarine
or clay. Those are Bingham-bodies because of the a little bit stable packing of small
droplets or particles. Then move the knife sideward along the horizontal surface of
this body. That results in a wavy system of this material, which climb upwards at
the blade. The usually visible dislocations depend on different wavelengths caused
by different deep pushing of the knife into the paste. That is a proof for a two-
dimensional periodic flow-stop behaviour, which deforms the Bingham-body and
moves them along the slide even against the gravity (see Fig. 9.19a, b).

Very surprising is a rough analogy to our problem:
The pressure—working by the moving knife—forms at first a bulge, but the

growing of the bulge stops at a definite size of the bulge. That corresponds to the stop-
dynamic of the silica-accumulate in the Bingham-sediment because of the not over
a critical value increasing pressure. Then the bulge moves along the blade surface
even against the gravity. That corresponds to the favoured wall-led expansion of
the silica-accumulate. Simultaneously follows further inflations of bulges and their
moving along the blade, respectively wall, and that in repetition.
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Fig. 9.19 a, b Butter proof for a two-dimensional periodic flow-stop behaviour, which deforms
the Bingham-body and moves them along the slide even against the gravity
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Fig. 10.1 An impression of collective behavior due to wave-like relaxation oscillation
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10.1 Introduction

Well-known—and often to see in the daily weather forecast—are the chaotic macro-
scopic flow-systems of air and sea-water in one’s own land and occasional also
about the whole world. Both flow systems, the first of air and the second of water,
are coupled mutually to a partially ordered and also chaotic disordered spatial and
temporal system (see e.g. Fig. 10.1, demonstrating collective behavior). The physical
reason for these dissipative structuring’s is the energy-input by the sunshine resulting
into temperature differences of the air- and water-phase. Even the solid crust of the
earth respectively their parts are subjected to breaks, uniting’s and migrations, in all
cases with a large time scale. In the last case the driving force is the heat-production
deep in the earthwith heat-transfer to the surface, resulting in dissipative structures of
flows in the melted mineral area. Lastly, we are confronted with Rayleigh-Instability
under geometric inhomogeneous conditions. (In the last-mentioned case we can
roughly make out systems of convection-cells similar to Fig. 10.4 but with such roll
cells in only one liquid phase and of course driven by buoyancy forces because of a
vertical gradient of temperature.)

At first, we show here partially similar but also more complex—however small-
scaled—hydrodynamic dissipative structures at liquid/liquid and liquid/gas inter-
phases under the driving force of interfacial tension differences by mass- or heat-
transfer. (In the report about the dissipative sculpturing of jasper—the deformation
of the plastic Bingham-sediment by microscopic breaks is a little bit similar to the
macroscopic breaks during the deformation of the solid crust of the earth also by
hydrodynamic forces).

10.2 Dissipative Structures by Heat- and Mass-Transfer
Through Liquid/Liquid and Liquid/Gas Inter-Phases
Driven by Self-Organized Differences
of the Surface-Tension

Let us start with the Bénard experiment [1], reported in 1900. Figure 10.2 (mass-
transfer from 5% butanol + cyclohexanol/water, 4 s after start) shows such Bénard
cells (respectively roll cells of first order (RCI) by mass-transfer of surface-active
agents from the higher viscose liquid phase into a lower viscose phase—or by heat-
transfer from a liquid into air). The heating of the fluid lowers also its surface-tension
dσ
dc , which is together with the concentration-gradient dσ

c · dc
dx the driving force for

the interfacial-convection of Marangoni-instability [2].
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Fig. 10.2 Bénard cells, respectively roll cells of first order (RCI); mass-transfer from 5% butanol
+ cyclohexanol/water, 4 s after start

Bénard believed, that the convection due to the difference of the density was
the driving force, but Rayleigh showed 1916, that the driving force of the density-
difference was in this case not yet sufficient as driving force. Marangoni described
1865 on the other hand the observation, that the periodic occurring of the well-
known rows of tears of wine results from an instable surface-tension distribution at
the meniscus: That gives the name Marangoni-instability!
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Fig. 10.3 First observations of surface convections given by Weber [3] above 1854

However, the first observations of—but not understood—surface convections gave
Weber [3] 1854 with Fig. 10.3 “Microscopic observations of very low-governed
movements (convections) which occur during the formation of the solution of resin
into spirit”. Spirit (ethanol) is the surface-active solvent and resin the matter of
higher surface-tension! We see mainly circulating flows typical also for Marangoni
instability [4–9].

Figure 10.4 shows the convection system of Fig. 10.2 in both phases in the side
view in a capillary split of 320 µm with very small particles made 2 s after the
start. (The other pictures are made with shadow-graph technique). The system is
1% C16H33 OSO3Na+ iso-pentanol/water. The flow to the inter-phase occurs at the
center of the roll cells and the flow back occurs at the border lines of the cells, see
the arrows. The convection flows from spots at the interface with low surface tension
to spots with higher surface tension.
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Fig. 10.4 Two convection systems of 1% C16H33 OSO3Na+ iso-pentanol/water with both phases
in a capillary split of 0.32 mm 2 s after start of mass transfer

The—in the meantime in same cases outdated theory—of the so-called stationary
regime contains not only stationary roll-cells of first order: they are hierarchically
ordered of I. order (not sub-structured), second order (one times sub-structured) and
third order (two-times sub-structured), see the sketch Fig. 10.5. It shows, that with
increasing driving force the roll cells of first order transits into roll cells of second
order and finally into roll cells of third order. (But there exist also chaotic and wave-
like relaxation oscillations in such hierarchic system ordered and depending on the
driving force and on the physical properties of the systems, as we show here.)



250 10 Complex Dissipative Structures Mainly at Liquid …

Fig. 10.5 Schematic representation of roll-cells of first order (RCI), second order (RCII) and third
order (RCIII)

A typical RCII-system shows Fig. 10.6a with the system acetone/glycerin+12%
water+1%CH3COOH 4min after start. In Fig. 10.6b we find also in a capillary split
of 320 nm roll cells of second order in form of a central big roll cell surrounded by
a chaotic oscillatory eddy-street, visualized by small particles. Figure 10.6c shows
with a shadow-graph photo qualitatively the distribution of the concentration of the
diffusing matter. Fig. 10.6d shows the streamlines and the calculated interfacial-
tension distribution. Used systems are air/glycol saturated with chloroform 5 min
after start or also 1% C16H33OSO3Na/water at 7 min after start. (The central roll cell
can show also relaxation oscillation.)

Furthermore, we show with Fig. 10.7 the center of an irregular RCIII with
centrifugal flow from the center to the periphery. The system uses strong heat-transfer
from a liquid sulphury layer with a temperature of 162 °C into nitrogen. Figure 10.8
shows at very strong driving force RCIII of the P-type, that means: with the flow
from the periphery to the center of the RCIII! The system is 2% C12H25OSO3Na+
iso-pentanol/water 25 s after the start.

With exhausting of driving force by the intense interfacial convection, we find
at first regular relaxation oscillations: a periodic breakdown for instance of a single
RCI suitable in a small facility like a capillary was observed. Breakdowns of RCI of
a collective of RCI in a larger vessel appear not simultaneously but chaotically, and
that happens for instance also with RCIII in large containers. Then the breakdowns of
every unites of RCIII are independent from each-other developing a chaotic behavior.
In a container for photometrywith themeasures height=3 cm,widths=2 cm×1 cm,
a single RCIII is possible with the mass-transfer system 1% C15H31OSO3Na + iso-
pentanol/H2O 45 min after start, shortly before the next breakdown, see Fig. 10.9a.
Complete breakdowns of this single RCIII are observed at 12min, 27min and 39min
etc. after the start and the relaxation-times are 3–7 min. The striations in the photo
are caused by the flows of the substructures.
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Fig. 10.6 a Typical RCII-system with the system acetone/glycerin+12% water+1% CH3COOH
4 min after start; b capillary split of 320 nm roll cells of second order; c distribution of the
concentration of the diffusing matter (shadow-graph photo); d streamlines and the calculated
interfacial-tension distribution
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Fig. 10.7 Center of an irregular RCIII with centrifugal flow from the center to the periphery (strong
heat-transfer from a liquid sulphury layer with a temperature of 162 °C into nitrogen)

Figure 10.9b explains this behavior with a scheme containing chaotic RORCI,
chaotic RORCII and chaotic RORCIII. Figure 10.10a,b depicts snapshots of a chaotic
RORCI, system 0,25% technical alkyl sulfate+ iso-pentanol /water, 3 min after start.
Figures 10.11 and 10.12 show chaotic RORCII and chaotic RORCIII with the system
benzene / 20%dioxan+water 5min and7min after the start.Note, that the twohigher
levels of the chaotic relaxation oscillation are one-times respectively two-times sub
structured.

Figure 10.13 shows with a scheme the three hierarchical levels of wave-like relax-
ation oscillation: ROW I, ROW II and ROW III. a1 until a7 are ROW I from simple
linear waves, which can be created with lowering of driving force from RCI (see
a3), which occur also as concentric waves and also as substructures of RCII (see a5
and a7). These waves react at broken wave-fronts with spinalization (see a2) and can
finally also form collective systems like a6.
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Fig. 10.8 System 2% C12H25OSO3Na + iso-pentanol/water 25 s after the start with a very strong
driving force RCIII of the P-type flowing from the periphery to the center of the RCIII

Figure 10.14a,b shows simple linear waves created from RCI, system 5% butanol
+ cyclohexanol/water; Fig. 10.15a,b shows the trend to spinalization by disturbance
and breaking the wave-fronts with the system 0,25% technical alkyl sulfate + iso-
pentanol/water 19 s after start; Fig. 10.16 (small picture) shows collective behavior of
ROWI (system butanol/5% CuCl2 + water), (large picture) also collective behavior
of ROWI (system air/CS2 at 45 °C. In the bottom part Fig. 10.13 is shown, that ROW
III starts “childlike” with ROW I at a1, develops with one substructure then to ROW
II at b1, b2, b3 and finally at b5 to ROW III. In Fig. 10.13, bottom part, we see in
b5 two substructures as well of RCI as of ROW II. With the scheme of b4 we gave
our expected streamline system of ROW II: The rotating convection system is not
symmetric—because of a zone of relaxation of the driving force-, so that we have a
travelling of the system.

Figure 10.17 shows at the right side ROW II, which travels to the left side under
developing ROW III, which contains additionally also ROWII as substructure. The
system is 20% CH3OH (or acetone) + iso-pentanol/water.
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Fig. 10.9 a Single RCIII with the mass-transfer system 1% C15H31OSO3Na + iso-pentanol/H2O
45 min after start, shortly before the next breakdown; b scheme containing chaotic RORCI, chaotic
RORCII and chaotic RORCIII
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Fig. 10.10 Snapshots of a chaotic RORCI, system 0,25% technical alkyl sulfate + iso-
pentanol/water, 3 min after start

Very fascinating is, that two (or even three) regimes can have in a hyper-cycle an
alternating co-existence. For instance, this last regime in Fig. 10.17 (and some other
systems too) can develop at first RCIII (but only over a childlike developing over
RCI and RCII!) RCIII needs a relatively height critical driving force, however the
effective convective transport of this regime leads after somemin to the under-critical
condition. Then the regime ROW III uses the opportunity to drive out respectively
to displace RCIII (mostly by starting of ROW at the periphery) and develops (over
the childlike forms ROW I and ROWII) finally ROW III! However, this regime is
less intensive in using the driving force, which therefore can again increase and
overcoming the critical value of RCIII. Then RCIII starts again—over RCI and
RCII- mostly inside the ROW III-sculpture and displaces the ROW III-structure.
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Fig. 10.11 Chaotic RORCII and chaotic RORCIII with the system benzene / 20% dioxan + water
5 min after the start

The analogue behavior happens in the system benzene/10–20% dioxan+water (and
some others too), but this hyper-cycle alternates from RORCIII (from RORCI over
RORCII to RORCIII) and then to ROW III (developed over ROW I and ROW II to
ROW III) and that alternately.

We can arrange for demonstrating the hierarchical system of the “stationary”
system of Marangoni instability in a scheme: Fig. 10.18, in which the actual driving
force (a.d.f.) decreases stepwise—after our experience—in the regimes from the RC
over RO to ROW and just as in the orders from the third order III over the second
II to the first order I. I means not sub-structured, II means one-times sub-structured
and III means two times sub-structured. The actual driving force decrease little on
the way from RC over RO to ROW however stronger on the way of these regimes
from the third order over the second order to the first order after our estimation.
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Fig. 10.12 Chaotic RORCII and chaotic RORCIII with the system benzene / 20% dioxan + water
7 min after the start

Figures 10.19 and 10.20 show the schemes of two hyper-cycles. In Fig. 10.20 the
arrows as intersecting lines and as short lines show the paths of the regimes during
the hyper-cycles.

From the theoretical point of view, we have here two extended Lotka-Volterra-
systemswith twopredators (two the driving force consuming hydrodynamic regimes)
and one prey (the driving force). Lotka and Volterra analyzed the phase-shifted
alternating up and down of the number of coats of lynxes (the predator) and snow
hares (the prey) found in the accounts of the Hudson’s Bay.
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Fig. 10.13 Scheme with the three hierarchical levels of wave-like relaxation oscillation: ROW I,
ROW II and ROW III
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Fig. 10.14 Simple linear relaxation oscillation waves of first order created from RCI, system 5%
butanol + cyclohexanol/water; a 6–7 min after start; b 7 min after start

Fig. 10.15 System 0,25% technical alkyl sulfate+ iso-pentanol/water showing the trend to spinal-
ization by disturbance and breaking the wave-fronts (planar waves change into spirals); a spiral
chaos following the breaks of fronts of waves; b transition from chaotic RORCI into ROWI
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Fig. 10.16 Collective behavior of ROWI; large picture: system air/CS2 at 45 °C; small picture
bottom left: system butanol/5% CuCl2 + water

Fig. 10.17 ROWII at the right side travels to the left side developing ROWIII and ROWII as
substructure (system 20% CH3OH (or acetone) + iso-pentanol/water)
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Fig. 10.18 Scheme of the regimes of the “stationary” regimes of Marangoni instability

Fig. 10.19 Scheme of the hypercycle in the system like 20% CH3OH + iso-pentanol/water. The
alternating regimes are underlined

Fig. 10.20 Scheme of the hyper-cycle in the system like benzene / 10–20% dioxan + water. The
alternating regimes are underlined
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Fig. 11.1 Coupling of meniscus flow and Marangoni instability. The roll cell boundaries are
displayed
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An overview of articles concerning flow instabilities can be found exemplarily in
[1–7] and the literature cited therein (see also Fig. 11.1).

11.1 Flow Instabilities with Streaks and Langmuir
Circulation

The flow of gas or liquid along a flat solid surface—or of gas along a liquid surface—
lead to streaks—produced by counter rotating longitudinal rolls—directed along the
flow. These are observable by streaks of snow along a flat surface and as swimming
lines of bubbles at the surface of lakes or of the sea. Figure 11.2a shows swimming
artificial foams—and other sides also leaves and bubbles (see Fig. 11.2b)—at a lake
ordered to streaks with distances of about 75–150 cm. These swimming particles are
gathered at lines of convergent flow at the liquid surface, at which also the surface-
active pollution is gathered and forms by damping of waves visible flat streaks by a
better reflection of the sky. At higher velocity of the wind, the bubbles are unified to
foam-streaks as shown in Fig. 11.3 with radial orientation due to the radial ordered
wind of a helicopter.

This “Langmuir circulation” [8] consist of a pattern of counter rotating vortices
orientated downwind and is a key process in the ocean or lake surface layer. After
my own observation, there can be a hierarchical system, for instance observed at
polluted lakes with foam-streaks of first order with streak-width of 0.5–1.5 m, of
second order with streak-width of 50–75 m (with one sub-structure of first order)
and of third order with streak-width of 200–300 m (with two substructures of second
and first order). A sideways expanding of the streaks of lower order possibly forms
the streaks of higher order. Figure 11.4 shows the row of surged sea grass at the beach
by these streaks called also Langmuir circulation.

11.2 Flow Instabilities at Small Surfaces

At small by walls restricted surfaces of with surfactants polluted water a similar
convection—but with hairpin-like convection—was observed at low flow velocity
of air above the surface, see Fig. 11.5, which develops to turbulence with higher
flow velocity, see Fig. 11.6. In a region of tailback of a smooth surface-flow of a
lake, this kind of surface-turbulence forms an interesting collective behavior of such
circulating flows at the surface. A radial laminar flow of water jet from below to a
circular surface of the polluted water surface loses his radial flow at the surface and
forms surface rotations like Fig. 11.7.Mostly we observe 4 vortices, but also 2, 3, and
5 vortices are observed, which remain their rotation direction at slow flow velocity.
However, with increasing flow velocity, the rotation direction can be regularly and
later irregularly changed and then transits into turbulent behavior.
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Fig. 11.2 Swimming lines of bubbles at the surface of lakes; a artificial foam-particles induced by
wind-drift with a wavelength of about 75–150 cm; b flat streaks by a better reflection of the sky

11.3 Flow Instabilities at Coated Films and Solid Sheets

Coating of flat films or solid sheets like electronic wafers—for instance with a proce-
dure like Fig. 11.8a—leads also to longitudinal rolls. v means here the velocity of
over layering with the moving shaft. Narrow streaks at a thin liquid layer of these
flow instabilities can be first increased by coupling with Marangoni-instability and
then visualized by the shadow-graph technique like Fig. 11.8b and later developed
to ladder-structures like Fig. 11.8c. Finally, even more complicated structures like
Figs. 11.8d and 11.9 can result, if wide streaks are filled with small roll cells.
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Fig. 11.3 Foam streaks by the radially ordered wind of a helicopter at the sea (downwash under
helicopter); published in the Public Domain by the Defense Media Activity Enterprise Customer
Services (DVIDS) of the US Department of Defense (DoD) [9]

Fig. 11.4 Row of surged sea grass at the beach possibly formed by a sideways expanding of
higher-ordered streaks of lower order (Langmuir circulation [8])
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Fig. 11.5 Hairpin-like convection at low flow velocity (flow direction left) of air above the surface
of water polluted with Stearic acid C17H35COOH. (The photo was exposed for 5 s.)

Fig. 11.6 Same system as Fig. 11.5, but with higher flow velocity (flow direction left) developing
to turbulence. (The photo was exposed for 5 s.)

Fig. 11.7 Experimentally observed vortex rotation of 4 vortices and its schematic representation;
two adjacent vortices are directed in opposite directions
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Fig. 11.8 Longitudinal rolls at coated films and solid sheets induced by flow instabilities; a
schematic representation; b narrow streaks at a thin liquid layer of these flow instabilities visu-
alized by the shadow-graph technique; c ladder-structures developed by coupling with Marangoni-
instability; d complicated structure due to cooperation of flow instabilities with wide streaks filled
with small roll cells

11.4 Meniscus Instability

Another easy to realize flow instability is the meniscus-instability, occurring if a
meniscus is travelling by procedures like Fig. 11.10. (This instability is already used
for the decoration of buildings!!) The travelling meniscus develops a wavy-structure
and finally also a wavy substructure, resulting with the procedures of Fig. 11.10a,b
finally by flowing into thickness structures like Figs. 11.11 and 11.12. The using of
the procedure of Fig. 11.10c results into the structure of Fig. 11.13.

Nowweopen two round superimposed discs like Fig. 11.10a,which are filled in its
gap with a liquid lacquer able to developMarangoni-instability by the evaporation of
the surface-active solvent. Then we observe first in Fig. 11.14a—15 s after start—the
rough flow due to the meniscus-instability with the longitudinal streaks amplified by
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Fig. 11.9 Another
complicated structure
generated by cooperation of
flow instabilities

Fig. 11.10 Schematic
representation of producing
Meniscus-instability by a
travelling meniscus; a and b
flowing into thickness
structures (see Figs. 11.11
and 11.12); c air displaces
the liquid radially from the
slit (see Fig. 11.13)
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Fig. 11.11 Meniscus-instability due tomultiple branching by a randomprocess (travelling velocity:
8 cm s−1)

Fig. 11.12 Another illustrative example of Meniscus-instability with wavy structures and wavy
substructures by flowing into thickness structures

Marangoni-instability. In Fig. 11.14bMarangoni-instability dominates further—20 s
after start—and leads to ladder-structures, while 35 min after start in Fig. 11.14c the
roll cells are everywhere visible. Figure 11.15 shows finally a kind of relaxation–
oscillation by Marangoni-instability dominating the drying of lacquer. The coupling
of meniscus flow and Marangoni-instability is illustrated in Figs. 11.1 and 11.16. In
Fig. 11.1, the roll cell boundaries are displayed, and in Fig. 11.16, the center of the
roll cells is shown.
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Fig. 11.13 Meniscus-instability resulting from the procedure of Fig. 11.10c; air displaces the liquid
radially from the slit

Fig. 11.14 Two round superimposed discs like Fig. 11.10a filled in its gap with a liquid lacquer
developing Marangoni-instability by the evaporation of the surface-active solvent; a 15 s after start:
rough flow due to the meniscus-instability with the longitudinal streaks amplified by Marangoni-
instability; b 20 s after start: further dominating Marangoni-instability leading to ladder-structures;
c 35 s after start: roll cells are visible everywhere
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Fig. 11.15 Structure
formation during stepwise
drying of a lacquer: chaotic
relaxation oscillations due to
Marangoni-instabilities are
observed

Fig. 11.16 Coupling of
meniscus flow and
Marangoni-instability. The
center of the roll cells is
displayed (compare also
Fig. 11.1)
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11.5 Further Examples of Flow Instabilities

Interesting and versatile structure types of flow instabilities are also ripple struc-
tures produced by the periodic wave wash overs on sandy beaches or dune struc-
tures in the desert sand generated by the wind. Figure 11.17a illustrates the sand
waves of Mesquite Flat-Dunes in the Death Valley National Park in California and
in Fig. 11.17b is shown the wonderful dunes of the Victoria Crater on the surface of
the planet Mars. The flow intensity at Garni Crater on Mars, depicted in Fig. 11.18,
is also remarkable. Possibly, this is a Langmuir-instability. In the past, before the
time of the snow groomers, skiers could create ripple structures in the snow without
wanting to, as the example in Fig. 11.19 from my own past shows.

Fig. 11.17 Ripple structures due to flow instabilities; a sand waves of Mesquite Flat-Dunes in
the Death Valley National Park in California generated by the wind. (Photo provided with kind
permission by the U.S. National Park Service); b dunes of the Victoria Crater on the surface of the
planet Mars (published in the Public Domain by National Aeronautics and Space Administration—
NASA, USA [10])
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Fig. 11.18 Garni Crater on Mars with streaks of remarkable flow intensity, possibly caused by
Langmuir-instability (photo (published in the Public Domain by National Aeronautics and Space
Administration—NASA, USA [11])

Fig. 11.19 a Ripple structures in the snow caused by skiers without wanting to; b the author’s wife
creating Marangoni-instabilities

References

1. Gumerman, R., Homsy, G.: convective instabilities in cocurrent two phase flow: Part I, linear
stability. AIChE J. 20(5), 981–988 (1974). Part II, Global Stability. AIChE J. 20(6), 1161–1167
(1974)

2. Linde, H., Friese, P.: Experimenteller Nachweis einer neuen hydrodynamischen Instabilität.
Phys. Chem. 247(5/6), 225–232 (1971)

3. Linde, H., Shulewa, N.: Eine neue hydrodynamische Instabilität an einer mit einem Tensidfilm
bedeckten Wasseroberfläche bei Strömungen zur Oberflächenerneuerung, Monatsberichte der
Deutschen Akademie der Wissenschaften zu Berlin, Band 12, Heft 11/12, 883–894 (1970)

4. Wassmut, F., Laidlaw,W.G., Coombe,D.A.: Interfacial instabilities: the linde instability. Chem.
Eng. Sci. 45(12), 3483–3490 (1990)

5. Linde, H.: Komplexe dissipative Strukturbildung durch Kopplung von Instabilitäten. Z. Chem.
27(4), 154–155 (1967)



References 275

6. Linde, H.: Sequential action and simultaneous coupling of dissipative structures with complex
structural interaction and memory effect. In: Velarde, M.G. (ed) Synergetics, order and chaos,
pp. 301–306. World Scientific Pub., Singapore (1988)

7. Linde, H., Friese, P.: Experimenteller Nachweis einer neuen hydrodynamischen Instabilität. Z.
Phys. Chem. 247, 225–232 (1971)

8. Langmuir, I.: Surface motion of water induced by wind. Science 87, 119–123 (1938)
9. Internet address of photo. https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/

MISSIONS_DAY_DVIDS1081996.jpg/1024px-MISSIONS_DAY_DVIDS1081996.jpg.
Accessed 28 June 2021

10. Internet address of photo. https://upload.wikimedia.org/wikipedia/commons/thumb/d/de/
Victoria_crater_from_HiRise.jpg/477px-Victoria_crater_from_HiRise.jpg. Accessed 28 June
2021

11. Internet address of photo. https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/
Garni_crater_Mars_HiRISE_Sep2015.jpg/800px-Garni_crater_Mars_HiRISE_Sep2015.jpg.
Accessed 28 June 2021

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/MISSIONS_DAY_DVIDS1081996.jpg/1024px-MISSIONS_DAY_DVIDS1081996.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/d/de/Victoria_crater_from_HiRise.jpg/477px-Victoria_crater_from_HiRise.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Garni_crater_Mars_HiRISE_Sep2015.jpg/800px-Garni_crater_Mars_HiRISE_Sep2015.jpg


Chapter 12
The Oscillatory Regime
of Marangoni-Instability

Hartmut Linde

Fig. 12.1 Traces of head-on collisions in a liquid–liquid system with mass transfer and chemical
reaction; dispersion-free oscillation of hexane +15 Vol. % propionic acid/water

An overview of articles concerning flow instabilities can be found exemplarily in
[1–9] and the literature cited therein (see also Fig. 12.1).

Figures, captions and additional supplements inserted by E. C. Haß according to templates of H.
Linde.
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12.1 Introduction

As we have reported on the recently discovered wave-like behavior of the relaxation
oscillation ROWI, ROWII and ROWIII in the so-called stationary regime, there
exists according to the theory of Sternling and Scriven a “direct” oscillatory regime,
theoretically predicted by Sternling and Scriven and experimentally discovered byH.
Linde, E. Schwarz, K. Loeschcke and completed by A.Wieschem andM.G. Velarde.
This oscillation occurs, if a surface-active vapor (like pentane or even heat) becomes
absorbed by a liquid of higher surface tension (like benzene) or, if a liquid of higher
surface tension (like benzene) is desorbing from a liquid with lower surface tension
(like octane).

There exist three kinds of waves: The first theory predicted an oscillatory regime
showing (roughly spoken) waves with anomalous dispersion (decrease of wave-
length with increasing velocity), the dispersion-free regime (constant wavelength
with increasing velocity) found later by A. Wierschem in mass-transfer and even
by H, Linde in K. Loeschcke’s heat-transfer experiments. Furthermore, internal
gravity waves occur in the density-stable liquid phase, which dominate the two
waves above by coupling (“enslavement” after Haken) only at low driving force to
normal dispersion (increase of wavelength with increasing velocity), see the scheme
in Fig. 12.2.

12.2 Angle Crossing and Phase Shifts

At high driving force, both kind of waves—those with anomalous dispersion and
dispersion-free ones—show surprisingly nonlinear behavior like “dissipative soli-
tons”, that means, with residence-time behavior with negative phase-shift at acute
angle crossings or waves reflecting at the wall. At obtuse angle crossing or at under
corresponding waves reflecting on the wall, we see a positive phase-shift with the
Mach-Russel-third wave, see Fig. 12.3. In the first row of four pictures, the crossing
of one indifferent angle and an acute angle (negative phase-shift) leads to a crossing
of an also acute angle and an obtuse angle (with positive phase-shift) and with
the Mach-Russel-third wave, which is also shown with four similar experimental
examples.
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Fig. 12.2 Scheme of regions of different type of waves: anomalous dispersion, dispersion-free
waves and internal gravity waves

Figure 12.4a–d again show the indifferent crossing with an angle near 90° (a),
with acute angle (b), and for c, d with obtuse angle crossing and the corresponding
reflection both with Mach-stem, known from ultrasound interactions. After these
collision-behaviors, the waves continue their way with the pre-collision velocity if
the intensity is not too strong.

Figure 12.5 shows a desorption experiment with dσ
dc > 0 with irregular reflections

at the wall showing both kinds of crossings.
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Fig. 12.3 Marangoni-waves due to absorption of hexane vapor into a benzene liquid and observed
phase-shifts
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Fig. 12.4 Indifferent crossing with a an angle near 90°, bwith acute angle, and c and dwith obtuse
angle crossing and the corresponding reflection
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Fig. 12.5 Change of travelling direction and the position of waves observed at desorption of
benzene from nonane into air

Figure 12.6 shows the same, but less chaotic and with network-forming behavior
with negative and positive phase-shift-systems.

Figures 12.7 and 12.8 show waves with acute angle crossings at relative strong
driving force: the waves fade away after crossing because of too much energy-
dissipation. In Fig. 12.8, the waves that extinguishes after crossing produce damped
internal gravity waves.
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Fig. 12.6 Circular container with 49 mm diameter and corresponding networks with both angle
crossings showing negative and positive phase-shifts; a and b desorption from nonane, and c
desorption of carbon disulfide from nonane

12.3 Rotating and Counter-Rotating Waves

Figure 12.9 shows the start of the experiment of Fig. 12.10. The round surface of
the circular facility was a little polluted by a fingerprint forming a thin film at the
surface. Because the surface-active pentane vapor came not only from above, but also
over the circular boundary, surface convection of the liquid from the boundary to the
center compressed this film and has cleared a clean annular ring at the surface. This
internal borderline, later called “Langmuir-ridge”, arranged half-way to the center
is originally circular, but here deformed as well by the surface-convection to the
center with streaks as by the counter-rotating waves with counter-rotating light lines.
Figure 12.9 already shows 5 andFig. 12.10 even 6waves rotating against each other in
both directions (see the arrows) with periodic head-on collisions with residence-time
behavior. The system is absorption of pentane-vapor into toluene. (The residence-
time by these head-on-collisions wasmeasurable.) The additional dark and light lines
belong to triggered internal gravity waves which are soon damped.
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Fig. 12.7 Waves with acute
angle crossings at relatively
strong driving force: At
relative strong Ma-stress:
Strong disturbances after
acute-angle crossings can
lead to fading away of the
after-collision waves, see (c).
Also, in the case of obtuse
angle crossings with the
Mach-Russel third waves,
the after-crossing waves can
fade away due to loss of
energy by the produced
disturbances

Figure 12.11 shows different geometric forms of travelling waves in circular
containers: Besides waves travelling in random direction as in Fig. 12.11a,b (and also
in Figs. 12.7 and 12.8), we also found ring-formedwaves starting from the borderline
and disappearing in the center (Fig. 12.11c). There are also counter-rotating waves in
one direction (Fig. 12.11d) and in two directions (Fig. 12.10). An extreme behavior
was found at a wide annular channel in Fig. 12.11e: A short wave parallel to the
walls works as an oscillator (see the arrows) and sends obliquely reflected counter-
rotating waves around the channel with interesting interactions. The system is as in
Fig. 12.10.
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Fig. 12.8 Waveswith acute angle crossings at relatively strong driving force:Absorption of diethyl-
ether vapor into dichloroethane at relative strongMa-stress, 8 s after start, shows on a scale of about
1:5 both the splitting of the after-collisionwaves and the triggering of damped internal gravity-waves

12.4 Structures With Completely Chaotic Behavior

Figure 12.12 shows in the acetone-vapor/octane system 5 s. after the start that there
exist also oscillations (see the arrows in the scheme) with a substructure of RCI
and RCII in the left column; 3 min later we observe a completely chaotic behavior,
see the right column of pictures! That happens also at strong driving force with
oscillations without substructure; see Fig. 12.13 with absorption of hexane-vapor
into nonane. We see in motion pictures—to be read like a book—the rebirth of
waves colliding with acute angle and their turbulent collapse by the same acute angle
oblique collisions after they got too much energy over time. Such experiments (and
mainly other experiments with unstable density distribution with chaotic behavior)
gave the first—not correct—name”interfacial turbulence” to Marangoni-instability
by Sternling and Scriven.
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Fig. 12.9 Absorption of
pentane-vapor into toluene at
a circular facility which was
a little polluted by a
fingerprint forming a thin
film at the surface. 5 waves
rotating against each other in
both directions with periodic
head-on collisions with
residence-time behavior can
be seen
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Fig. 12.10 From the wall to the center spreading of pentane (vapor) partially cleans the polluted
surface of a circular container filled with the pentane-absorbing toluene. The cleaned ring-shaped
channel shows six counter-rotating wave-trains. Traces after the head-on collisions indicate quickly
damped internal gravity waves as disturbances
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Fig. 12.11 (Periodic)wave trains in circular containers. a acute angle crossingswith negative phase
shift, b obtuse angle crossings with positive phase-shift at the third wave, (a) and (b) are able to
developing dynamic patterns, c cylindrical waves travelling into the center, where they disappear,
d single clock-wise rotating wave train, e two oblique counter-rotating wave trains, originated by
an “oscillator”
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Fig. 12.12 System acetone-vapor/octane, 5 s after start, showing oscillations with a substructure
of RCI and RCII roll cells (right column), schematically illustrated by the arrows in the middle
column; 3 min later, a completely chaotic behavior is observed (right column)
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Fig. 12.13 Absorption of hexane vapor into liquid nonane at strong Ma-stress with 0.24 s/picture
time-distance, at the scale 1:4.3, with collapses after collisions with negative phase-shift. New
colliding waves are re-amplified after the collapses
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Chapter 13
Creativity—Comments to the Scientific
Process

Knowledge Production Referring to Traditional
Knowledge

Ernst-Christoph Haß and Peter J. Plath

Fig. 13.1 Restricted creativity with a long-term discourse to previous knowledge—resulting
toroidal boosts. Iterated function system based on an extended Lotka model where xi (t) means
the actual knowledge and yi (t) are the problems which are aware of the i-th group at time t
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13.1 Introduction

13.1.1 Creativity in the Scientific Process

In the general understanding, the word creativity primarily means the property of an
individual creating something that is new or original and useful [1–3]. This reference
to the individual—especially the “genius”—leads tomanyproblems in understanding
the phenomenon of creativity. In particular, the attempt to understand creativity as a
quality of an introverted, quiet and secluded working person, who is excellent and
full of unusual ideas, seems to us to be very misleading [4].

But also the opposite thesis of brainstorming byAlex F. Osborn [5] does not work:

People inspire each other to come up with new ideas and with the number of suggestions
also their quality increases. You only have to put together a group and encourage them to
express their ideas freely and without prohibiting thoughts.

Translated from German:

Menschen inspirieren sich gegenseitig zu neuen Ideen und mit der Menge der Vorschläge
steige auch derenQualität.Manmüsse bloß eineGruppe zusammensetzen und sie ermutigen,
ihre Ideen frei und ohne Denkverbote zu äußern. (Bund&Rohwetter, DIE ZEIT, 2019, p. 23)

Tomas Chamorro-Premuzic [6] found that

Brainstorming in large groupswas a ‘waste of time’.…Responsible was the group’s intrinsic
urge to mediocrity, the so-called regression towards the middle. As a result, the most imag-
inative minds soon expressed only average thoughts. They adapted to the mediocre level of
their colleagues.

Translated from German:

Brainstorming in großen Gruppen sei‚ Zeitverschwendung’. … Verantwortlich sei der grup-
penimmanente Drang zur Mittelmäßigkeit, die sogenannte Regression zur Mitte. Die führe
dazu, dass die einfallsreichsten Köpfe bald nur noch durchschnittliche Gedanken äußerten.
Sie passten sich dem mediokren Niveau der Kollegen an. (Bund & Rohwetter, DIE ZEIT,
2019, p. 23)

To be able to express and implement deviating and thus new ideas only works if
committed confidants in the immediate vicinity of the idea provider take up this idea
and work it out together [7, 8].

As a consequence, a protective and inspiring atmosphere is needed to develop
new ideas and let them mature. In this sense, creativity is neither the property of a
genius nor that of a brainstorming group, but a necessary nucleation phenomenon
as with every phase transition [9]. In order for a new idea to spread into society,
the society must also be excitable by the stimulation of this nucleus; i.e. the phase
transition must be possible too, otherwise the nucleus of creativity vanishes.

Nuclei in this sense can be scientific institutes (e.g. the Center of Synergetics
of H. Haken at the University of Stuttgart) or regular conferences (e.g. the Elmau
conferences on Synergetics between 1972 and 1990 organized by H. Haken or the
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Zeinisjoch seminars in Galtür/Austria between 1979 and 2008 organized by P. Plath);
and the excitability of society can be achieved, for example, by appropriate research
funding.

In their recent publication “Modellierungskonzepte der Synergetik und Theorie
der Selbstorganisation”, Ebeling and Scharnhorst [9] emphasize that the occurrence
of innovations on the level of an overall system is always connectedwith destabilizing
the current state and re-stabilizing the new one, i.e. the instability of the present
system is a necessary pre-condition for the New. Then, an (external) impetus of a
new invention into the pool of behavioral possibilities of the system may lead to a
phase transition, and an innovation can prevail—or even not.

With respect tomodel various creativity approaches, we suggest to slightlymodify
the concept of Ebeling and Scharnhorst in a way that we consider a self-excitable
system capable of an arbitrary number of impulses for new knowledge and new
problems. In this context, we assume that knowledge and problems are arising again
and again according to a Lotka-Volterra system, i.e. we consider a chain of (system-
inherent) excitations which lead always to something new.

As already mentioned, such a system seems to be feasible only in a group of
committed confidants, in which everyone can spontaneously bring in their ideas,
without suppressing or deriding dissenting opinions in any way, e.g. in a relaxed tea
or coffee round.

13.1.2 Modelling Creativity by a Lotka-Volterra Approach

This chapter is based on our presentation “Innovation und Interdisziplinarität”, held
in March, 2010, as part of the seminar “Interdisziplinarität und Institutionalisierung
derWissenschaft” at theHumboldt-Universität zu Berlin. In this lecturewe presented
an extended function system originating from the Lotka-Volterra [10–12] model in
order to investigate the production of knowledge taking in account interdisciplinary
cooperation. A remarkable result of this study was the occurrence of “bursts” in
connection with innovations due to interdisciplinary cooperation (Fig. 13.1). The
idea to use a generalized Lotka-Volterra system goes back to the work of Müller
[13] in Greifswald who described the dynamics of the mutual dependence between
problems and knowledge in the scientific process for the first time.

The suggestions from the discussion which followed our presentation lead us
to the problem of “creativity”. It seemed obvious to us that the approach taken by
F. Müller, that the “current problems” and the “current knowledge” of a scientist
or a group of scientists, or even of a whole scientific discipline, were the decisive
variables of the dynamics of creation of new knowledge, that is knowledge capable
of publication. Thus, they are very closely related to the problem of creativity.

To be clearly distinguished from current knowledge is the “previously known
knowledge”, which already exists in publications and is therefore no longer available
for publishing.
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In this way, we have created a rather operational approach to the idea of creativity,
since the current, publishable knowledge is the new, just emerging knowledge, which
has to be distinguished from the already known knowledge.

Analogously, the patent law is based on a very similar concept, i.e. a procedure is
only patentable if the underlying idea is new, in other words it may not be considered
as already known in lectures or publications including other patents.

In contrast to Amabile [14], however, we are not distinguishing between an oper-
ational definition and a conceptual one. For us, the process of generating new knowl-
edge coincides with the newly identified product—the new knowledge. In other
words, the process of creating new knowledge and new problems, as well as solving
them, is itself a part of the problem and thus the object of our investigation.

For us it is crucial that the periodic process of the Lotka-Volterra system is
limited by the “lifetime” of the researcher or research group, which can be achieved
by an accordingly strong damping of the periodic function. In summary, it can be
formulated:

In a first approximation, we consider creativity as a periodic process of creating
new knowledge by solving problems.

For a group of scientists or a scientific institute headed by a scientific institute
leader (usually a professor), creativity should be described by the classical equation
system (13.1) of Lotka and Volterra, in which the problem function yi (t + 1) is
extended by the term (+dxi (t + 1)) corresponding to the damping caused by the
current knowledge.

(13.1)

Here, xi (t) is the current knowledge and yi (t) are the current problems of i-th
scientist or i-th group of scientists.

The concept of creativity also contains inherently the moment of surprise, i.e. the
unexpected New. This goes beyond the conventional idea of the New, in which the
New is indeed new, but somehow to be expected, since the problems from which it
arises are certainly known.

But referring back to quite different problem areas, the New should no longer be
associated with the omen of the already known. This can be accomplished by not
only limiting to problems of the own discipline or of the own research group [15] as
we have shown in the case of interdisciplinary and the innovations resulting from it
[16], but by trying to tackle also problems of other disciplines or groups and treating
them with the own methods. Then, one may obtain completely unexpected, eruptive
events in the production of the New.

But one can also refer again to quite old problemswhich are almost forgotten. Then
the resulting New is no longer the expected, foreseeable future, but the unexpected
New, which no one seriouslywould have counted; and in this sense it is also emergent.
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The technique of handling this recourse to previous problem areas is based on the
use of the delay time τ . Instead of the current problem x(t) at the actual moment—
i.e., at time t—the problems x(t − τ) at time (t − τ) are now also taken into account,
where τ should be sufficiently large.

13.2 Knowledge Reduces Problems

13.2.1 Natural Creativity

If one reduces the problem curve by a—negative—damping factor dxi = 1.4 ∗ 10−6

(or even smaller), one obtains only a single maximum for xi (t) or yi (t), respectively,
as the result ofEq. (13.1) (seeFig. 13.2).Wewill call this kindof creativitynatural (or
ordinary, normal) creativity. Then, the amount of the generated knowledge (integral)
or the height of themaximum or themaximum slope of the knowledge function could
serve as a quantitative measure of this type of creativity.

A crucial issue is how much the problem development of this leader or of his
closest collaborators in their youth or during their studies has been—including their
precocious, childhood or adolescent generation of problems. In this sense we speak
here—without further differentiation, which would be quite possible—of natural
creativity, since it is based on this natural creation of problems.

Fig. 13.2 Natural (ordinary, normal) creativity. Knowledge reduces the emergence of new prob-
lems. Time series of the problem and knowledge functions according to Eq. (13.1). The damping
by the actual knowledge is so large in this case that only one problem/knowledge cycle is traversed
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In the publications by Dobrov [17] and by Müller [13] an empirical investigation
can be found of important scientists from the USSR and the USA regarding their
“productivity”, which comes fairly close to our conception of “natural creativity”.

13.2.2 Autonomous Creativity

If the damping—i.e. the negative influence onto the problems due to the just created
knowledge—decreases, several maxima (damped oscillations) can arise as well—
even in the case of only one scientist/scientific leader. These multiple maxima of
knowledge production correspond to the same number of maxima of problem gener-
ation. They cannot only be ascribed to the creativity or problem generation in the
youth of the scientist, but correspond to further creative shifts due to the scientific
process in which the scientist is involved. For this type of creativity we use the term
autonomous creativity. An appropriate experimental evidence of such a behavior
can be found in an article by Plath and Haß [16], where the “productivity” of selected
scientists from the University of Bremen—which was just founded at that time—was
studied.

An excellent example therefore is the group aka (angewandte Katalye = applied
catalysis) which was part of the Physical Chemistry Department of the University of
Bremen.

The principle course of knowledge production via autonomous creativity is
exemplarily represented in Fig. 13.3 for a damping factor dxi = 5 ∗ 10−7.

At first, the actual knowledge stimulates the process of knowledge produc-
tion before its damping character comes into effect. We consider the damping
term inevitable for knowledge generation of a single scientific group or a single
scientist, because the corresponding problem function reflects the life cycle of the
group/individual.

13.3 Classical Lotka-Volterra Model

13.3.1 Forced Creativity—Pulsating Creativity

If one considers a scientific institute such as the one of the Max-Planck-Society,
creativity is artificially enforced by the “forced” change of the institution leader
(forced creativity), due to the principle that the research area of that institute is
personally connected to its associated leader (i.e. until the retirement of the former
leader, who leaves due to age, and is replaced by a new leader). This practice is
intended to ensure a constant—even though pulsating—creativity of the respective
institute. It seems therefore obvious to describe this approach approximately by the
classical Lotka-Volterra system.
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Fig. 13.3 Autonomous creativity. Knowledge reduces the emergence of new problems. Time series
of the problem and knowledge functions according to Eq. (13.1). The damping by the actual knowl-
edge is small in this case, such that several cycles of the problem and knowledge functions are
passed through before the time series breaks down. The curves of maxima of the time series increase
exponentially in the beginning before finally the damping prevails

In the ideal case of no damping (dxi = 0), our equation system takes the form of
the classical Loka-Volterra model and leads to a periodic solution for arbitrarily long
times (Fig. 13.4). Let us denote in the following the distance between two knowledge
maxima as a period of problem/knowledge interaction (about 30,000 time steps in
the example shown in Fig. 13.4).

It is quite clear that there exists no damping in the principle of the Max-Planck-
Society, since upon a change of the institution leader no accumulation of knowl-
edge by means of knowledge transfer to the new leader occurs. The accumulated
knowledge of the institute and the formerly existing problems are almost completely
negated if the leadership of the institute is altered. At the best, old contracts continue
until they end.

13.3.2 Large, Free Systems—Fully Developed Creativity

It looks totally different if we consider a society with a sufficiently large, diverse,
and highly developed science landscape (e.g. the old Federal Public of Germany), in
which parallel research—at different institutions—is possible. This would also lead
to a periodic solution of the Lotka-Volterra system (no damping, see Fig. 13.4) and
would thus correspond to a highly creative knowledge production.
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Fig. 13.4 Forced creativity/fully developed creativity. Classical periodic solution of the Lotka-
Volterra model. As an example, the second period of problem/knowledge interaction is marked

13.4 Knowledge Enhances Problems

13.4.1 Restricted Creativity

A different situation exists, if—based on the argument of “comparability”—a canon
of knowledge is in introduced with general obligation, as—for example—in the case
of the unification of the education system by the Bologna and Pisa reforms in the
new FRG or as practiced in the former GDR.

Then, a certain accumulation of knowledge and problems may happen, which
leads to a positive damping of the systemby the damping term (+dxi (t + 1); dxi > 0)
(see Eq. (13.2)).

(13.2)

In such a case, the system oscillates to a fix point (first quadrant in the x/y space)
which is different from the zero point. This takes place the faster the stronger the
damping factor dxi is, i.e. the more the system is forced to constrain itself (see
Figs. 13.5 and 13.6).

It would not produce anything new with respect to creativity or it could be even
counterproductive, if one would modify the above-mentioned MPG principle, so
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Fig. 13.5 Restricted creativity—weak damping: d = 1, 7∗10−7. Knowledge reinforces the emer-
gence of newproblems. Time series of the problem and knowledge functions according to Eq. (13.2).
The strengthening by the actual knowledge is quite small in this case, such that the maxima of the
problem and knowledge curves diminish only slowly

that the previous research is continued during an age-related change of the institution
leader (e.g. by electing a suitable new successor) and thus the accumulated knowledge
and the—thereby resulting—established problems are passed on the new leader. The
damping cannot be avoided by this approach (see Fig. 13.6).

This is also true if one extends the function xi (t + 1) of the knowledge production
by an additional term pxyi xi (t)yi (t)v yi yi (t) which is quadratic with respect to the
problems (see Fig. 13.7).

.

xi (t + 1) = xi (t) + pxyi xi (t)yi (t)
(
1 + vyi yi (t)

) − lxi xi (t)

yi (t + 1) = yi (t) − pyxi xi (t + 1)yi (t) + cyi yi (t) + dxi xi (t + 1);
yi (t) ≥ 0, dxi > 0.

(13.3)

Such an additional term could be justified by the assumption that the knowledge
production (generation of new knowledge) does not only result by the simple product
of knowledge and problems x(t)y(t), but is also affected to a certain degree by
higher powers of y(t), e.g. in form of the product x(t)y2(t). This would mean that
an intensified pressure of problems is created which contributes to a higher solution
capability, i.e. creativity.

However, it results—as expected—that thereby the activity of knowledge produc-
tion in the first period is increased (and also the frequency of the decaying creativity
is slightly larger), but—on the other hand—the damping is strengthened and thus
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Fig. 13.6 Restricted creativity—strong damping: d = 2∗10−5. Knowledge reinforces the emer-
gence of new problems. a Time series of the problem and knowledge functions according to
Eq. (13.2). The enhancement by the actual knowledge is fairly large in this case, such that the
maxima of the problem and knowledge curves diminish fast, b Phase diagram of the time series
above. The trajectory clearly shows the oscillation to a fix point (red). It is also possible to expo-
nentially approximate the decay curves of the maxima; for t → ∞ these approximation functions
approach values greater than zero of knowledge and problems, the value for the knowledge being
greater than that for the problems
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Fig. 13.7 Restricted creativity with enhancement of knowledge production by an additional term
which is quadratic with respect to the problems. Knowledge reinforces the emergence of new prob-
lems. Time series of the problem and knowledge functions according to Eq. (13.3). The enhance-
ment by the actual knowledge is quite large in this case, such that the maxima of the problem and
knowledge curves diminish very fast

the fix points of the knowledge and problem functions are reached in less time t
(compare Figs. 13.6 and 13.7).

13.4.2 Restricted Creativity with Recourse to Previous
Knowledge

13.4.2.1 General

Let us now consider the question, how the system behavior is changed if the quadratic
term

x(t)y2(t)

is replaced by the expression

x(t)y(t)y(t − τ)

according to Eq. (13.4):
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.

xi (t + 1) = xi (t) + pxyi xi (t)yi (t)

(
1 + vyτ i

{
0, t ≤ τ

yi (t − τ), t > τ

})

−lxi xi (t)yi (t + 1)

yi (t + 1) = yi (t) − pyxi xi (t + 1)yi (t) + cyi yi (t) + dxi xi (t + 1);
yi (t) ≥ 0, dxi > 0.

(13.4)

This corresponds to a partial recourse to previous problems by the time difference
(t − τ). If the delay time τ is quite small, one cannot observe a noteworthy change
as compared to a situation without time delay, i.e. τ = 0.

But if one increases the delay time τ sufficiently, then situations can be found
in which the time behavior of the problem and knowledge curves are significantly
changed. This corresponds to a recourse to earlier questions which are now taken
up again, for example to document previous results in an overview article or in an
appropriate textbook.

Of course, this requires that such recourse to former problems is possible at all.
Problems of this type must therefore be published as open questions, which—in
contrast to very old publications from the 19th and in the early twentieth century—is
rather unlikely in the modern scientific publishing process.

Another possibility to recourse to former problems is to talk with scientists who
are retired from the actual academic activities or to read their books or memoirs. In
this way, senior scientists could play an important role—not so much as consultants,
but rather as preserver of problems—a fascinating perspective. This could certainly
be an interesting aspect of gerontology—virtually a cultural gerontology.

13.4.2.2 Short-Term Recourse to Previous Knowledge

If a delay time τ is chosen such that the recourse occurs between the two maxima
of the knowledge and problem curves, one obtains a (transient) oscillation behavior
to a limit cycle. This is shown exemplarily in Fig. 13.8 for the first occurrence of
this situation after one period of problem/knowledge interaction (after about 39,000
time steps using the parameters chosen in the previous examples). We propose to
describe this kind of knowledge production as (restricted) creativity with short-term
recourse to previous knowledge.

As an exception, an oscillation behavior to a limit cycle is also obtained if the
recourse takes place shortly after the first maximum of the knowledge curve when the
problem curve already falls to a minimum (see Fig. 13.9 as an example for τ = 8000
time steps). In contrast to the previous case, the second maximum of the knowledge
curve is significantly smaller and the convergence to the limit cycle occurs faster.

Such a recourse shortly after the first knowledge maximum may correspond to
the fact that other researchers or research groups immediately take up a new idea and
expand it with additional results.

On the other hand, if the number of iteration steps is selected in a way that the
recourse takes place close to the minima of the problem and knowledge curves, the
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Fig. 13.8 Restricted creativity with enhancement of knowledge production by a quadratic problem
term referring to problems which go back to about one period of problem/knowledge interaction.
a Time series of the problem and knowledge functions according to Eq. (13.4) with τ = 9000
time steps. A transient oscillation behavior of the knowledge production into a limit cycle can be
observed. b Phase diagram of the time series above. The trajectory clearly shows the oscillation to
a limit cycle (where the red point is located). Note that the trajectory exhibits a kink at delay time t
when the recourse takes place
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Fig. 13.9 Restricted creativity with enhancement of knowledge production by a quadratic problem
term if the recourse occurs shortly after the first maximum of the knowledge curve, i.e. just after the
invention of a new idea. Time series of the problem and knowledge functions according to Eq. (13.4)
with τ = 8000 time steps. A transient oscillation behavior of the knowledge production into a limit
cycle can be observed with fast convergence to a limit cycle

system oscillates fast to a fix point as exemplarily shown in Fig. 13.10 for τ = 23,000.
This oscillation occurs much faster (only three periods of problem/knowledge inter-
action) than in the case of strong damping without recourse to previous knowledge
or problems (see Fig. 13.6).

One may interpret this case as a (fast) loss of memory. This may occur if a new
idea is strongly opposed by other scientists or by science policy reasons. It is not
unusual that a new idea then ends in a drawer.

13.4.2.3 Long-Term Recourse to Previous Knowledge

A new situation results if τ is an n-fold (n > 1) of iteration steps between twomaxima
(or minima) of the knowledge or problem curve, respectively. Figure 13.11 shows
exemplarily the corresponding time series for n = 3 and τ = 104.000. After an
initial decrease of the maximum values of both curves, a renewed amplification of
the maxima is obtained after the time τ—in particular of the maximum value of the
knowledge curve—followed by a rapid transient oscillation to a limit cycle.

This could be interpreted in such a way that, at the end of the creation process of
a scientist, once again a creativity push takes place whereby the problem situation
has changed only slightly.
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Fig. 13.10 Restricted creativitywith enhancement of knowledge production by a quadratic problem
term if the recourse occurs close to the first minima of the problem and knowledge curves. a Time
series of the problem and knowledge functions according to Eq. (13.4) with τ = 23,000 time steps.
A very fast decay behavior of the knowledge production into a fix point can be observed. b Phase
diagram of the time series above. The trajectory shows that the fix point (red) is reached after only
three periods of problem/knowledge interaction



310 13 Creativity—Comments to the Scientific Process

Fig. 13.11 Restricted creativitywith enhancement of knowledge production by a quadratic problem
term referring to problems which go back to about three periods of problem/knowledge interaction.
Time series of the problem and knowledge functions according to Eq. (13.4) with τ = 104.000
time steps. After an initial decrease of the maxima of both curves, a significant enhancement of
the knowledge function takes place accompanied with a weaker increase of the problem function.
Subsequently, a fast oscillation into a limit cycle occurs

The effect of a renewed amplification of the knowledge and problem curves
becomes even more pronounced if far back reaching problems and questions—that
were raised long time ago—are taken up again, but now under modified conditions.

The Renaissance, the revival of the ancient Greek atomic hypothesis in the refor-
mulation of the atomic concept by Dalton, the questioning of the idea of “simultane-
ously” by Albert Einstein—these all are well-known examples of such “recourses”
to very old problems in modern times, all of them combined with high creativity.

In our iterative model approach, this leads to a toroidal transient behavior at very
large values of τ (for example: τ = 470.000), where after a decrease of the problem
and knowledge curves to almost fix point behavior, a newboost of knowledge produc-
tion takes place according to a second, small circular frequency on a long-term scale
(Fig. 13.12). In the (toroidal) transient range of this long-term oscillation, themaxima
of the problem and knowledge curves oscillate similarly to a superimposed beat
rhythmwith a larger frequency due to the periods of problem/knowledge interaction.
This may be interpreted as a toroidal creativity process.

The long-term behavior of the toroidal transient processes becomes particularly
clear when the time series are extended over a considerably longer time interval, e.g.
ten periods of long-term oscillations (see Fig. 13.13).

This long-term behavior which results from our model approach is indeed math-
ematically of interest, but it has probably no meaning for the modeling of creativity
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Fig. 13.12 Restricted creativitywith enhancement of knowledge production by a quadratic problem
term referring to far back reaching problems. Time series of the problem and knowledge functions
according to Eq. (13.4) with τ = 470.000 time steps over two periods of long-term oscillation. A
toroidal transient behavior of the creativity can be observed, where—similarly to a superimposed
beat rhythm—the problem and knowledge curves oscillate with a larger frequency within the small
frequency of the long-term oscillation

Fig. 13.13 Restricted creativitywith enhancement of knowledge production by a quadratic problem
term referring to far back reaching problems. Time series of the problem and knowledge functions
according to Eq. (13.4) with τ = 470.000 time steps over a very long time (about ten periods of
long-term oscillation). As an example, the fourth period of (toroidal) log-term oscillation is marked
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Fig. 13.14 Restricted creativitywith enhancement of knowledge production by a quadratic problem
term referring to far back reaching problems. Time series of the problem and knowledge functions
according to Eq. (13.4) with τ = 470.000 time steps over two periods of long-term oscillation. As
can be seen in comparison with Fig. 13.12, an increase of parameter vyτ i from 5 to 20 leads to an
enhancement of the first amplitude by a factor three after recourse at time τ

in the real, present science process, since the conditions in our social system are
nowadays no longer at least approximately constant over such long time periods.

Rather, the toroidal transient processes are here of essential meaning. In
this context, the variation of weight vyτ i in the quasi-quadratic problem term
pxyivyτ i x(t)y(t)y(t − τ) which modifies the knowledge function is of particular
influence. To the same extent as the parameter vyτ i grows, the amplitudes of the
knowledge curve of the transient (oscillatory) creativity process increase signifi-
cantly after recourse at time τ , whereas the corresponding amplitudes of the problem
function are slightly diminishing. This is impressively demonstrated in Fig. 13.14
where in particular the first of these knowledge amplitudes is about three times larger
if vyτ i increases from 5 to 20 (compare Fig. 13.12).

This all corresponds to a higher creativity and is thus of central importance for
the understanding of the social process which is described with our model approach.

13.5 Summary and Outlook

As a consequence of our previous discussion, we propose the following classification
of the concept of creativity:

• Natural creativity: negative damping by knowledge
→ Fix point (0|0) in the origin
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• Social creativity: positive damping by knowledge
→ Fix point (x∞|y∞)wi thx∞, y∞ > 0

• Cultural creativity: positive damping with recourse to previous knowledge after
time τ

→ Fix point, limit cycle, toroidal oscillations

With a suitable choice of time delay τ � 0, it is possible to transfer a systemwhich
is running to afixpoint into a new state inwhich it can – oscillatory self-exciting – take
the form of a limit cycle or a toroidal oscillation.

Finally, let us conclude with some general remarks about the concept of creativity.
Usually, creativity is conceived as a property of an individual person, whose

respective thinking and action is targeted at producing originary, mostly unexpected,
changes or solutions in the scientific process. Csikszentmihalyi [18] goes beyond
this in so far as he considers domains which have to be changed, but which them-
selves—or the therefore responsible authorities—have to agree too. In this sense,
he introduces a social component—the socially responsible environment—into the
concept of creativity.

Steiner [19, 20] goes even one step further by granting creativity also to a group or
to a network—more general to a cooperative system. This is similar to our approach
which we are pursuing in our paper, although we distinguish between natural, social
and cultural creativity, respectively. For us, Steiner’s approach is particularly inter-
esting in that it also attributes creativity to a network. The inclusion of networks opens
up the possibility—analogous to our perception—to describe global processes in the
field of sciences or arts in terms of creativity.

As an example for such processes, we consider highly networked and globally
distributed groups of scientists who, on the one hand, are in close, almost direct
exchangewith each other—e.g. associated by public funding programs—andwho, on
the other hand, communicate and cooperate with groups far-away in other countries
or cultural regions, but with a certain, noticeable temporal delay. First thoughts in
this direction, based upon cellular automata, we have presented 2006 at a winter
seminar in Galtür/Austria. These results were also published online in a short form
[21].

Due to the abstract nature of our approach, however, it is also possible to treat
any highly cross-linked network, where, apart from the direct neighborhood, there
exist also areas, which are “temporally far-away” and which thus communicate only
with a considerable delay. Such systems are of central importance in brain research,
where appropriate networks have been discovered by Deco et al. [22] only a few
years ago.
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Chapter 14
Mother Hulda and the Blue Sky
Catastrophe

Literary Coding of Deep, Ancient Knowledge of Social
Dynamics

Peter J. Plath and Ernst-Christoph Haß

Fig. 14.1 Visual representation of the complex dynamics of the fairy tale “Mother Hulda”. Attrac-
tive chaotic trajectory in the three-dimensional sub-space of the four-dimensional space of the
socio-economic dynamics with an instable Blue-Sky-Catastrophe in between the two anti-cyclic
partial attractors in the upper and lower half spaces

14.1 Some Introductory Remarks

This chapter is largely a direct translation of the corresponding section on “Frau
Holle” and the associated “mathematical appendix” in the book “Vom Märchen zur
Mär” by Peter J. Plath [1], which was published in 2012 by Logos Verlag Berlin. The
translation was done after consultation with Dr. Volkhard Buchholtz, the managing
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director of LogosVerlagBerlinGmbH. Since it was first published,many discussions
and public readings have meant that a number of more in-depth changes, particularly
with regard to the interpretation of mathematical modeling, have become necessary.
Many of the graphics that were still carried out on Atari computers at that time
have also been recreated. On the other hand, a number of mathematical details and
etymological comments have been omitted here.

When the Brothers Grimm collected fairy tales at the beginning of the nineteenth
century, they turned to peoplewhowere known to be able to tell old stories. Of course,
they told them the fairy tales in their ownway, for there was no fixed canon how to tell
them. Moreover, these ancient stories varied from person to person and with the area
where these narrators lived. The Brothers Grimm then also told fairy tales in their
very own way. The old stories now became their fairy tales. However, they were able
to concentrate on the essential features of the stories of the old storytellers, because
they not only collected old fairy tales but also began to collect old legends [2] (1816
and 1818) around the same time, and started to work on the”German Mythology”
[3] (1835–1878) and the “German Grammar” [4] (1819) [5].

Instead of capturing complex social processes in their abstractness, they are gener-
ally mapped in a simplistic way to high-ranking people or gods and their actions.
In this way they are understandable and comprehensible. If one follows the events
described in the myths in the corresponding realm of gods, then, conversely, conclu-
sions can be drawn about corresponding events in the respective societies. Robert
von Ranke Graves demonstrates this using the example of the Greek worlds of gods
[6].

With all personification of social events, it is precisely this that makes it possible
to disregard the concreteness of the historically acting people in order to extract the
underlying dynamics (Fig. 14.1).

We follow this approach here in our interpretation of the fairy tale by Frau Holle.
To do this, we have to makeMother Hulda’s (Frau Holle’s) world of gods visible, i.e.,
understand her as a goddess in the first place. The concept of meme is an excellent
tool for this purpose.

When designing a socio-economic model of ancient societies, we use the order
parameter approach of synergetics [7]. In addition to the resources and tools, the
knowledge inherent in the use of the tools and the abstract knowledge developed in
the priestesses’ colleges and their academies play the decisive, regulating role.

14.2 The Great Goddess Mother Hulda—Frau Holle

From our point of view, it was possible for them to combine the memes contained in
the various stories in a certain, logical and poetic form in their fairy tales.

We understand by a meme an encrypted, highly concentrated information that
is independent of the carrier or transmitter of the information. Memes can be
deciphered. A meme is a generating system, a logic or dynamic of a social process.
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In connection with Frau Holle’s story, for example, the sentence: “If you make my
bed good and that you shake it up diligently so that the feathers fly, then it will snow
on the world: I am Frau Holle” is a meme in the sense understood here.

Among all the fairy tales recorded by the Brothers Grimm, “Frau Holle” or
“Mother Hulda” [8] occupies a special position: This is the story about the great
goddess—and she frankly reveals herself as the “old woman with the big teeth”
when Marie met her first:

Endlich kam es (Marie) zu einem kleinen Haus, daraus guckte eine alte Frau, weil sie aber
so große Zähne hatte, wurde ihr Angst, und es wollte fortlaufen. Die alte Frau aber rief ihr
nach:

Fürchte Dich nicht, liebes Kind, bleib bei mir, wenn du alle Arbeit im Hause ordentlich tun
willst, so soll es dir gut gehen. Du mußt nur recht darauf achtgeben, daß du mein Bett gut
machst und es fleißig aufschüttelst, daß die Federn fliegen, dann schneit es auf der Welt: Ich
bin die Frau Holle.

At last, it (Marie) came to a small house, an old woman was peeping out of it, but because
she had such big teeth it was afraid and wanted to run away. But the old woman called after
it:

Don’t be afraid, dear child, stay with me, if you want to do all the work in the house properly,
you should be fine. You just have to make sure that you make my bed good and that you
shake it up diligently so that the feathers fly, then it will snow on the world: I am Frau Holle.

However, who still thinks today that Frau Holle—the “old woman with the big
teeth”—was a goddess? What kind of goddess was she anyway? No day of the week
is named after her, such as Thursday bears the name of the godDonar (Thor) (English
Thursday). However, there is no fairy tale in which Donar plays such a prominent
role as the goddess Frau Holle, but there are a number of legends about Donar and he
also appears powerfully in the Edda. Frau Holle must have been a very old goddess
even at that time, since she was no longer taken into account with a day name in the
new world of the gods of the Aesir, to which Donar belonged.

What was known to the Brothers Grimm, who collected this fairy tale and wrote
it down, that Frau Holle was a goddess? But of course, Frau Holle was known to
them as a mighty goddess, as “Mother Earth” and goddess of Fire or as the mother
of the god Thor, as Jakob Grimm describes her functions and appearances in every
detail in the three-volume edition (1835) of his “German Mythology” [9].

Frau Holle: “Aus dem, was uns die Tradition noch bewahrt hat, ergeben sich folgende Züge:

Frau Holle wird als ein himmlisches, die Erde umspannendes Wesen vorgestellt; wenn es
schneit, macht sie ihr Bett, dessen Federn fliegen. Sie erregt den Schnee wie Donar den
Regen; die Griechen legen ihrem Zeus die Hervorbringung des Schnees und Regens bei, …
Holda erscheint darum als hehre Göttin. Die Vergleichung der Schneeflocken und Federn ist
uralt, die Scythen erklärten die nördliche Weltgegend, weil sie mit Federn angefüllt sei, für
unnahbar. Holda muß sich also durch die Lüfte bewegen können, wie Frau Herke.

Sie liebt den Aufenthalt in See und Brunnen; zur Mittagsstunde sieht man sie, als schöne
weiße Frau, in der Flut baden und verschwinden, dieser Zug stimmt zu Nerthus. Sterbliche
gelangen durch den Brunnen in ihre Wohnung, vgl. die Benennung wazzerholde.“ [10]
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Mother Hulda: ”The following features emerge from what tradition has preserved for us:

Frau Holle (Mother Hulda) is presented as a heavenly being that encompasses the earth;
when it snows, she makes her bed, the feathers of which fly. She excites the snow as Donar
excites the rain; the Greeks attribute the production of snow and rain to their Zeus ..., Holda
therefore appears as a noble goddess. The comparison of snowflakes and feathers is ancient,
the Scythians declared the northern part of the world to be inaccessible because it was filled
with feathers. Therefore, Holda must be able to move through the air like Frau Herke.

She loves staying in the lake and the well; At noon you can see her, as a beautiful white
woman, bathing in the flood and disappearing, this trait agrees with Nerthus. Mortals get
into her home through the well, see the name wazzerholde.”

The Brothers Grimm retell the fairy tale of Frau Holle or Mother Hulda (Hluodana),
respectively, by combining the many different and scattered aspects of this goddess,
some of which can be found as memes, as good narrators to form a self-contained
representation.

14.3 The Spinning Meme

Wilhelm Grimm also takes this knowledge into account in the later editions of the
fairy tale collection in the 7th edition of “Last Hand” (1857) by inserting correspond-
ingly clear additions—e.g., at the beginning of the fairy tale, with an almost overly
clear reference to Frau Holle as a goddess:

Das arme Mädchen mußte täglich bei einem Brunnen sitzen und dort so viel spinnen, daß
ihm das Blut aus den Fingern sprang. Nun trug es sich zu, daß die Spule einmal ganz blutig
geworden war. Da bückte sich das Mädchen und wollte die Spule im Brunnen abwaschen.
Sie sprang ihm aber aus der Hand und fiel hinab.

The poor girl had to sit by a well every day and spin there so much that the blood leapt from
her fingers. Now it happened that the spool had once become quite bloody. Then the girl
bent down and wanted to wash the spool in the well. But it jumped out of her hand and fell
down.

The girl sits with a spindle or coil at the well, the entrance to the world of Mother
Hulda (Frau Holle), and thereby performs a function that was very important for
society at that time—she spins. Spinning is also an activity that is under the special
care and protection of the goddess Frau Holle. This addition by Wilhelm Grimm
only reinforces what is already laid out in the old story.

Holla, die spinnende Frau: “Holla wird wiederum als spinnende Frau dargestellt, der
Flachsbau ist ihr angelegen. Fleißigen Dirnen schenkt sie Spindeln und spinnt ihnen nachts
die Spule voll; faulen Spinnerinnen zündet sie den Rocken an und besudelt ihn. Dem
Mädchen, dessen Spindel in ihren Brunnen fiel, lohnte sie durch Begabung. Wenn sie Weih-
nachten im Land einzieht, werden alle Spinnrocken reichlich angelegt und für sie stehen
gelassen; Fastnachts aber, wenn sie heimkehrt, muß alles abgesponnen sein, die Rocken
stehen dann vor ihr versteckt; trifft sie alles an, wie es sich gehört, so spricht sie Segen aus,
im Gegentheil ihren Fluch; … [11]”
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Holla, the spinning woman: “Holla is shown as a spinningwoman, growingflax is important
to her. She gives spindles to hard-working young woman and spins them the spools full at
night; lazy spinners she lights the skirt and sullies it. She rewarded the girl whose spindle
fell into her well with her talent. When she moves into the country at Christmas time, all
distaffs are laid out in abundance and left for her; But at Shrovetide, when she returns home,
everything must be spun off, the distaffs are then hidden from her; if she finds everything as
it should be, she pronounces a blessing, on the contrary her curse; ...”

The girl falls or jumps into the well—the entrance to the second world, the world
of Mother Hulda (Frau Holle). This statement alone is completely clear.

As a boy who liked to swim and dive in the lake in the Jungfernheide in Berlin,
it always seemed completely unbelievable to me (P. Plath) that if you jump into the
water of a well, you wake up on a meadow and can walk on it. I just didn’t get it.

Let us therefore take jumping into the well as a metaphor for the transition from
the “local” first world to the “otherworldly” second world. It is only important that
at the time when Frau Holle reigned unchallenged as the goddess, one had an idea
of the second world that was neither a hell nor a heaven in the Christian sense.

However, what kind of world was this, the world of Frau Holle? This is exactly
what is described in the fairy tale, which is almost an important tale even today:

In the meadow the girl went away and came to an oven that was full of bread, but the bread
called: "Oh, pull me out, otherwise I’ll burn, I’ve long since baked!" Then she came diligently
and took everything out.

Bread is baked here; but let’s consider what was meant by that!
Bread (in German: Brot), as we know it today, which only appeared in the Iron

Age, is “bread” baked with sourdough, in contrast to “unleavened bread”, the “loaf”
(in German: Laib), which was baked as early as the Neolithic Age. But already in
Old High German, the word bread is also used for the loaf. Today, we only know
the word loaf in terms such as “a loaf of bread” (ein Laib Brot) or “loaf of cheese”,
as a specially shaped bread or cheese. The loaf, which is baked only from water and
flour, is better known to us today as flatbread.

In the English-speaking world, the terms Lady (Lady: Herrin, Frau, originally
aengl. Hlaef-dige: “Bread Kneader”) and Lord (Lord: Herr, originally hlaford,
hlafward, bread protector) go back to the great cultural and religious significance
that the baking of the loaf also took place in our culture up to the Bronze Age and
probably also into the Iron Age. Terms for flat dishes such as plinsen, blini and bread
(Russian, Xleb, chleb) show that the unleavened bread, the flatbread or the loaf was
of central importance in Indo-European languages.

We can and must therefore assume that the story with the oven in the realm of
Frau Holle, the goddess, is actually about the sacred act of baking unleavened bread.

The term oven (vessel for cooking or storing embers) does not refer to the stove
(charcoal hearth), but originally to the device or the stone plate/the stone shape on
or in which the loaf was baked (Fig. 14.2).

Baking the loaf was, of course, a woman’s business, but muchmore important—in
the realm of Frau Holle—it was a priestly activity; and the product—the loaf—was
used for ritual purposes in the service of Frau Holle as the goddess of fertility and
rebirth.
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Fig. 14.2 a “Temple, from the Cucuteni culture in theMoldovan Sabatinivka, whichwas dedicated
to the snake goddess; from the period 4800–4600 B.C.E. The building took up 70 m2 and contained
(1) a stone slab floor, (2) a bread oven, (3) a pedestal/altar, (4) a clay chair, (5) statuettes (6) several
vessels grouped around the oven. Next to the altar was a seat of normal size, the back of which
is decorated with horns, and which was presumably used by the priestess who directed the cult
activities. b Examples of the figurines found in the temple of Sabatinivka. Sixteen snake-headed
figures were found on the altar at the front of the room, sitting on chairs with horn backs” [12].

Goddess of fertility: “The pregnant goddess who unfolds and dies with the vegetation is
a metaphor for death and the renewal of plant life. She was venerated as a bread donor in
the courtyard or in the house.” [13](Marija Gimbutas, “The civilization of the goddess”,
publisher: Zweausendeins, Frankfurt / Main (1996) p. 342)

14.4 The Apple Tree Meme

But in the fairy tale the girl went on and came to an apple tree.

“Then she went on and came to a tree that was full of apples that called out to him:

<Oh, shake me, shake me! We apples are all ripe together!>

Then she shook the tree, so that the apples fell as if they were raining, until no one was up,
and went away.”
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Fig. 14.3 aOldest crab apple tree (malus sylvestris) inGermany from themunicipalityStubbendorf
(Mecklenburg-Vorpommern), age 400–500 years, Trunk circumference 4.42 m (Photo D. Antoni,
2006) [14]; b Crab apple from the garden of P. Plath (Lychen, Brandenburg), (Photo P. Plath, 2021);
the fingers demonstrate the smallness of the apple

Does this apple tree episode go back to a similar old story as the bread story?
The apple can be found in Germany in a settlement near Heilbronn at the time of the
band ceramic culture (4000 B.C.E.). Furthermore, in archaeological investigations
of the pile dwellings in Switzerland and on Lake Constance—from the time of the
Cortaillod culture (3800–3600 B.C.E: location on Lake Neuchâtel, Switzerland)—
apples were found. Among them were not only wild crab apples, but also apples that
are much larger than crab apples (diameter of the crab apple approx. 3 cm), which
proves that this is not one of the wild crab apple varieties (Fig. 14.3).

In addition, some of these fruits were found to contain substances that are only
found in cultivated apples.

Cultivated apples: “The fruits found in Mondsee were found to contain anthocyanins, a
substance that occurs exclusively in cultivated apple varieties” [15]. (Marija Gimbutas, “The
civilization of the goddess”, publisher: Zweitausendeins, Frankfurt / Main (1996) p. 196)

Whether the cultivated apple varieties from the local culture come from the many
variants of the crab apple (malus sylvestris) or were imported from the Kazakh-
Persian region as apples that were already cultivated under the influence of the
Kurgan I culture, is irrelevant for the time being. It is crucial for understanding the
fairy tale that the apple was already at the end of the 5th millennium B.C.E. was
cultivated as a cultivated plant in the realm of Frau Holle, i.e., during the transi-
tion of the people living in the foothills of the Alps from the Mesolithic culture to
the Neolithic horticultural culture [16]. (Marija Gimbutas, “The civilization of the
goddess”, publisher: Zweiausendeins, Frankfurt/Main (1996) p. 195).

The cultivation of the European wild apple (crab apple) or the cultivation of
already cultivated apple varieties (e.g., from the former Kazakh wild apple malus
sylvestris) always required the protection of the young plants against browsing by
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wild animals by means of hedges (hedge: thorn bushes, fencing, enclosure), fences
(fence: enclosure, enclosure, garden) or palisades. Protected apple groves—as sacred
groves (grove: thorn bushes, enclosed space) of Frau Holle—were probably suitable
forms for cultivating this important fruit (as well as other fruits such as plums and
pears).

It is ultimately the Garden of Eden (garden: cattle corral; Indo-European: wattle,
fence, enclosed), the paradise (paradise: loan word from Persian—fencing), which
is described in the fairy tale by Frau Holle. However, the people (Adam and Eva), or
the women here are not driven out of paradise and replaced by guardians (kerubime)
or gardeners; but rather the “white goddess” Frau Holle invites girls to stay with her
in the garden and serve as priestesses, i.e., to cultivate, raise and harvest the apple.
The cultivation of a plant is truly a priestly function.

But what made the apple so important for people 6000 years ago? It could—well
stored or dried (dried apples)—also be kept inwinter (from the harvest in autumnuntil
spring) and thus provided essential substances (e.g., vitamins) for healthy survival.

14.5 The Meme of Divine Snowmaking: It Snows When
Frau Holle Shakes the Feather Beds

The girl finally comes to Frau Holle’s house and is frightened by the old woman. As
already mentioned, however, the old woman immediately identifies herself as Frau
Holle and invites the girl to take care of her household.

Do not be afraid, dear child, staywithme. If youwant to do all thework in the house properly,
you should be fine: You just have to be careful that you make my bed good and that you
shake it up diligently so that the feathers fly, then it will snow in the world: I am Frau Holle.

Above all, she should shake up the beds well so that it will snow in the world!
Here, Frau Holle appears in her function as a snowmaker—as the protector of the
new life that is just emerging—the germinating seeds in the earth are protected by
the snow from drying out and being destroyed by the frost—so that a new year can
arise from the dead year.

The loaf has to be baked, the apples have to be harvested and dried and the snow
has to fall so that people can relive the cycle of life-death-life over and over again.

14.6 The Well Meme or the Second World

So far, the jump into the well has been completely ignored. The girl jumps into the
well and wakes up on a meadow in another world. It is a second world, the existence
of which, at least for the people of the time, in which the fairy tale originated, must
have seemed completely natural.
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In his book about the beginnings of intelligence, J. Kuczinski [17] states—quoting
V. G. Childe [18]—, that the cave art originating from the Paleolithic Age, as it was
found in the caves of Aurignac (Haute Garonne, France), only makes sense if one
assumes that it served a magical purpose. “For the way of thinking of pre-scientific
minds, such a creation (of the artist, the authors) had to have a counterpart in the
outside world that one could both taste and see. Just as certain as the artist drew a
bison in the dark cave, so sure would be a living bison out in the steppes, which his
comrades could kill and eat.”

The basic idea of this highly abstract conceptual construction is that one assigns a
twofold reality to the thought or the creative activity that expresses it: the creation of
the artistic product is itself a reality and at the same time creates a second reality in
one other world. When the worlds are exchanged by going into the cave, the second
reality of artistic activity arises in the world from which one came, namely the real
world known to us. For these people the world consisted of this duality of the two
conditioned worlds that were interwoven through creative activity.

This second world was—and still is today—necessary from a physical point of
view, as O.E. Rössler explains in his book on endophysics [19]. It is practically
our known world, but a second time, and in constant change with the first world
indissolubly connected to it.

The exciting thing now is how one—according to the ideas at the time of the
creation of the fairy tale—could get into this second world, which both the “golden
girl” (Goldmarie) and the “dirty girl” (Pechmarie) of the fairy tale succeeded in
doing.

The solution is the “well mystery”, the remnant of which we still encounter today
in baptism (baptize: actually “deepen”, i.e., immerse and submerge), but also in a
completely degenerate form during “waterboarding”.

Access to the “secondworld”was nothingmore than the acceptance into the secret
covenant of Frau Holle’s priestesses, because this was seen as the realization of the
second world through which it can be experienced and grasped.

This, of course, can only happen through a secret mystery in which the female test
person has to pass a difficult test that can change and re-shape her consciousness.
Submersion or immersion in the well—and a proper resuscitation of the almost
drowned people would certainly be an effective part of this secret mystery, about
the secret aspects of which we know nothing. However, Robert Grave refers to the
secret initialization ritual of the Orphic priests in Crete, which the mathematician
Pythagoras underwent, according to the biographer Porphyrius, in order to get their
secret knowledge. For this he had to be included in the group of these priests.

Secret Mysteries - Pythagoras “According to his biographer Porphyrius he (the Pelasgian
Pythagoras from Samos; the authors) went to Crete, the seat of the purest Orphic doctrine,
for initiation by the Idaean Dactyls. They ritually purified him with the thunderbolt, that
is to say they made him pretence of killing him with either a meteoric stone or a neolithic
axe popularly mistaken for a thunderbolt; which he lay face-downwards on the sea shore
all night covered with black lamb’s wool; then spent ‘three times and nights nine hallowed
days in the Idaean Cave’; finally emerged from this initiation. Presumably he then drank
the customary Orphic cup of goat’s milk and honey at dawn (the drink of Cretan Zeus who
had been born in that very cave) and was garlanded with white flowers. Porphyrius does not



324 14 Mother Hulda and the Blue Sky Catastrophe

record exactly when all this took place that Pythagoras saw the thrown annual decorated
with flowers for Zeus; which suggests that the twenty-eight days that intervened between
this thunderbolt death and his revival with milk and honey were the twenty-eight-day month
R, (R = Ruis; Irish: elderberry the 13th tree of the Irish tree calendar, the last, 13th month of
the tree year; the authors), the death-month ruled by the elder or myrtle; and that Pythagoras
was reborn at the winter solstice festival as an incarnation of Zeus – a sort of Orphic Pope or
Aga Khan – and went through the usual mimetric transformation: bull, hawk, woman, lion,
fish, serpent, etc” [20].

The meadow on which the girls wake up after the “baptism” is the garden or the
real apple grove of Frau Holle, the sacred grove that her priestesses tend and cherish
(cherish: make a fence around, around-fence). In this academy of priestesses, the
priestesses, like the novices, lack nothing, provided that they follow the rules of the
academy, the rules of a very own “second world”.

The stay in this academy of Mother Hulda (Frau Holle) is limited in time for the
novices and ends with an evaluation of their work by Frau Holle. This work includes
baking the sacred bread, tending to the apple orchard and shaking the beds so that it
snows.

MotherHulda (FrauHolle) or her priestesses lead the girls to the gate of paradise—
this is not the well through which they entered paradise—and release them back into
the familiar “first world” with a corresponding reward.

Golden Girl (Goldmarie):

“She then took it (Marie) by the hand and led it to a large gate. It was opened, and as the girl
was standing under it, a tremendous golden rain fell, and all the gold clung to her, so that
she was covered all over with it."

Dirty Girl (Pechmarie):

“Frau Holle also led her to the gate, but when she stood under it, instead of the gold, a large
kettle full of pitch was poured out. <This is to reward your services>, said Frau Holle and
closed the gate."

GoldenGirl (Goldmarie) receives the promise to continue to count on the full support
of the priestesses of Frau Holle, the Dirty Girl (Pechmarie), however, goes with their
contempt or even hostility.

Butwe have serious doubts that the two girls could have left the secondworld quite
differently, but in a very simple way. That sounds a bit simplistic and harmonizing.
After all, after their stay in FrauHolle’s realm, they are the bearers of secrets, and they
are not simply allowed to run without any further examination! Even today, passing
a thorough examination is a necessary prerequisite for leaving higher educational
institutions.

It is a wonderful portrayal of religious life and the importance of Paradise
6000 years ago, but is that the whole story? Wouldn’t that, despite all the truth
that lies in this fairy tale, be a little too simple, too specific to this time, to survive
6000 years in almost pure form—that is, as a fairy tale—until today?

There are good and not so good people—some the goddess rewards, others
she despises. That would be just a moral story that would soon be forgotten or
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strongly adapted to the respective circumstances. The former story would no longer
be recognizable today.

Goldmarie and Pechmarie go through the same initiation rite, experience the same
mystery, with both then their social position in the first world is completely reversed
due to these experiences.

They come from the same house:

"A widow had two daughters, one of whom was beautiful and hardworking, the other ugly
and lazy."

Therefore, they had the same upbringing. The only small difference that made
the big difference in later life was that one was hardworking and unloved by the
mother, the other lazy and loved by the mother. And happiness should now be with
the hardworking but unloved girl? Is that what the fairy said?

This can not be it!

14.7 Dynamics of the Tale

But let’s look at the same situation in a somewhat more abstract way.
Two young, closely related people walk the path that leads them to the second

world of Frau Holle’s academy, behave very differently there and then return to the
first world, whereby their future paths in life develop completely differently than
could predicted before the event of the Fountain Mystery.

Small differences in the upbringing of children can have big consequences for
their future life!

This is a social observation that people were able to make in the Neolithic, and
they found a very abstract logical term for it—chaos—and a very common, under-
standable, linguistic description of this very term—the tale, i.e., the meaningful story
of the triple goddess Frau Holle, who is the basis of the fairy tale of Frau Holle.

One of the central findings of the chaos theory is the “sensitivity to the initial
conditions”. Sometimes this finding is referred to as the “butterfly effect” in an
advertising but misleading way. It means that there are situations in a chaotic system
where the paths (trajectories) of the system are so close to each other, that minimal
disturbances of the system lead to initially hardly distinguishable situations—the
system is thrown off the track on an immediately adjacent track. However, in their
further development this leads to completely unpredictable, completely different
paths or results.

Such an “initial situation” is created in the Fountain Mystery and the first subse-
quent tests—on the oven and on the apple tree—with the result developing from it,
the Golden Girl (Goldmarie) and Dirty Girl (Pechmarie).

It is most remarkable that this highly abstract mathematical concept of “Chaos”
was preserved as early as in the Neolithic, in a story told over six millennia. One
might therefore be inclined to regard this as a newfangled over-interpretation.
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We want to consider, however, that at the same time with the elliptical solar
observatory in Meisternthal (see also the tale of Sleeping Beauty) a highly abstract
mathematics for calculating calendars had been developed—whynot also the concept
of chaos in a form which corresponds to our today’s conception of chaos to a large
extent.

In addition, through Pliny and Hesiod, we know the creation stories from the
Neolithic, non-Indo-European, pre-Greek society, in which “chaos” was a central
logical term:

Pelasgian creation myth: “In the beginning there was Eurynome, the goddess of all things.
She rose naked from the chaos. But she found nothing solid to put her feet on. Therefore, she
separated the sea from the sky and danced lonely on its waves. She danced southwards…”.
(Pliny, natural history; quoted from R. von Ranke-Graves [21])

Philosophical creation myth: “Some say that there was darkness first and that chaos arose
from darkness. From the pairing of darkness and chaos arose the night, the day, Erebos and
the air. ... ". (Hesiod, Theogony; quoted from R. von Ranke-Graves [22])

Back then, people were not more stupid than we are. They were excellent at
observing their environment and describing it mathematically, and that included
not only the movement of the stars, but also that of their own society. This was
probably themost complicated systemavailable to themat that time,which they could
observe and describe, trained on the mathematical descriptions of their astronomical
observations.

In northernGermany there is the “Geest” (Geest: “high-lying dry land” as opposed
to thewetmarshland)—which is, etymologically, theGerman aswell as Englishword
for “chaos”. These are the areas of land where after the last ice age strongly loamy
soils remained, which, after getting wet, when dried resulted in a cracked earth crust
(in spring and summer) that evaporated in the sun. To designate such a region as
chaos—geest is nothing more than a further way of making the difficult, abstract
term tangible: chaos—just as the tale of Frau Holle is an illustration of this term.

This term was so central and significant that it could only be explained in connec-
tion with the great “white goddess”, Frau Holle, in her mysteries and even survived
albeit not understood.

We know we will be immediately contradicted here, as the term “chaos” is nowa-
days very strictly defined. It could not be assumed that at the time of the Neolithic
goddess Frau Holle one already understood what we mean by it today—and anyway,
what does our current concept of chaos have to do with religion?

But let us remember that in the 1970s the choice of the word “chaos” for certain
physical phenomena was not made without recourse to pre-Greek and Hebrew
mythology. The mathematical term “chaos” [23] was first introduced by Li and
York [24] in 1975.

Modern concept of chaos: “’Chaos’ is the canonic translation into Greek of the Hebrew
term ‘tohu-wa-bohu’ found in the first chapter of the Bible. ‘wa’ means ‘and’, and ‘bohu’
certainly means the same thing as ‘bohu’. However, since the word appearce only once in
the bible, and there is no continuous oral tradition, one can only guess, what ‘tohu’ means.
A possible English analogue is ‚topsy(-and-)turvy.‘ (Tohowabohu: in German “Wirrwarr,
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Durcheinander”; Duden Etymologie; “wüst, öd“ und “leer“ im gesellschaftlichen Sinn; in
English: Tohuwabohu: “confusion, disorder”; Duden Etymology; “Desolate, dreary” and
“empty” in the social sense; the. authors).Amathematical redefinition thus seems admissible.
This has beendonebyYorke,whoproposed theword ‘chaos’ as a label for a kindof dynamical
behaviour characterised by the triad: infinite number of periodic trajectories; uncountable
number of non-periodic trajectories; hyperbolicity (instability) of all (or the overwhelming
majority of; as is proposed here) trajectories in the regime.” (Cited from O.E. Rössler:
“Chaos”23)

Let us also consider that our sixteenth-centuryword “gas” also represented a delib-
erate use of the Greek mythological term “chaos”—as empty space. Later, under the
influence of Maxwell and Boltzmann, it was understood as the “confusing, irregular
movement of gas molecules” in analogy to the reception of the concept of chaos
in the Olympic creation myth in the sixteenth century as a “disordered, confusing
movement”. And, it should be noted here, it is very reasonable to understand gas
as a system of colliding, more or less spherical, rigid bodies, the molecules, which
all move chaotically in the sense of today’s mathematical-physical understanding.
However, that was not known neither in the 16th nor in the nineteenth century!

In addition, something else should be noted. The reception of the concept of
chaos in the Olympic creation myth of the already at that time much older concept
of chaos, corresponding to mathematical logic, was a contemporary reception in
its time, reflecting the patriarchal misunderstanding of the matriarchal concept of
chaos. This misinterpretation, which was modern at that time, can also be found in
the Germanic language area. Chaos was understood as an incomprehensible tangle
and assigned to the goddess Frau Werre, but later also to Frau Holle in the fairy tale,
as the old woman with the tousled, tangled hair.

Older chaos term: “Some say that there was darkness first and that chaos arose from
darkness. From the pairing of darkness and chaos arose the night, the day, Erebos and the
air.” (Hesiod; Theogenie 211-232, quoted from: R. von Ranke-Graves [25])

But what could one have understood by chaos in Mrs. Holle’s time? The tired
yawning with a gaping throat? Or did it mean the evaporation of the morning mist,
from the wet clay soils of northern Germany that cracked when drying—the Geest,
or the gas emissions from the Omphalos in the Greek Temple of Apollo in Delphi,
the former temple of the “White Goddess” Gaja? [26]

All of these were only images of strong symbolic meaning for the much more
abstract concept of chaos!

Frau Holle was the triune goddess, the not yet childbearing woman or the virgin
Hulda, the woman Holle of childbearing potential and the old woman Hel in one
person, who carries out these transformations anewwithin each year, just as a woman
in her biological development goes through these stages within their life. These
metamorphoses of Frau Holle, or her trinity, represent the concept of becoming,
the transition from being to non-being [27], whereby each transition is one of her
emanations in itself, represented by its own goddess or fairy, e.g., the Mechte known
in Northern Germany.

But that includes the idea of rebirth—the transition from death to life, which is
symbolically represented in connection with Frau Holle in a variety of ways (see
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e.g., frog prince, frog goddess, the birth process, or the mystery of birth). Both, the
concept of becoming, as well as that of death or nothingness, as they are described
in the preface of my book “Vom Märchen zur Mär” (From Fairy Tale to Tale), were
often regarded asmeaningless concepts in the development of philosophy. Thus,Kant
knows the concept of time [28] but not that of becoming. Both terms are, however,
inseparably linked with the matriarchal, ancient European philosophy through the
creation myths and thus also with the logical unfolding of the old concept of chaos,
which clearly relates to the idea of development.

Let us ask ourselves once again what was meant by chaos at the time of the great
goddess Frau Holle. It is obvious to understand by it, for example, the miracles or
the changes in the path of life caused by the oracle or the secret mysteries, which
were provided with the metaphor/the promise of rebirth, the emergence of life from
death. To make this tangible, we have to try to translate the dynamics of the fairy
tale into the language of mathematics.

If one want to grasp the dynamics of Frau Holle’s fairy tale in the language of
today’s mathematics, you have to note that the two girls, golden girl (Goldmarie)
and dirty girl (Pechmarie) enter the second world through the same well mystery.
However, they leave the second world through the judging gate that leads out of the
garden, and return to the first world.

We must also bear in mind that it was essential for Frau Holle’s second world
that it was—albeit isolated—a real world in which other values applied, in which
life was the other way around, since the simple works are sanctified in it. These
are demands on the dynamic description of this complex social system, which are
met quite well by the assumption of a symbolic, four-dimensional, socio-economic
world. The system of equations with the four variables x, y, z and w (14.1), has the
required chaotic dynamics [29].

ẋ = −(y + z)w + g

ẏ = (x + ay)w

ż = −cz2 + xz + b

ẇ = dxy + zy − ew + f

(14.1)

The three-dimensional subspaces {x, y, z} and {x, y, w} of the four-dimensional
phase space {x, y, z, w} have the desired properties. In the 3D sub-space {x, y, w}
with the variables x, y, andw (see illustration in Fig. 14.4), the space can be divided
into two half-spaces {x, y, w ≥ 0}and{x, y, w < 0}, which can be entered or exited
via different paths and which are symbolically represented in the fairy tale by the
well mystery and the gate rating.

In the context of this picture, the life path of a single person would only constitute
a relatively small part of the infinitely long path of the chaotic trajectory. But many
people, who all, each for himself, only go through such a short section at completely
different times, would all taken together cover a long way on this trajectory. For
example, some would pass through the well mystery on their way, others as priests
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„First world“

„Second world“ 

Gate rating

Well mystery

Fig. 14.4 Chaotic trajectory of the system of equations in the {x, y,w}-subspace with the two
half-spaces above and below the x/ y-plane. If you look upwards in the direction of the w-axis,
the trajectories in the two half-spaces are traversed in opposite directions, with ↑ indicating the
direction of the gate rating and ↓ indicating the well mystery

would practically only move in this second world for almost their entire life, others
again never enter the sacred area (see e.g. Fig. 14.5).

Fig. 14.5 A “girls’s trajectory” in the three-dimensional subspace, which represents a possible
section from the infinite traction of the system of equations
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The two Girls, who of course only symbolize a dual girl (pars pro toto), pass
through both worlds in different ways in their ideal life and thus symbolize the
complexity of this dynamics.

From the perspective of the {x, y, z}-subspace it almost seems like amiracle that a
trajectory or a life path suddenly turns around aftermany circulations and almost runs
back into itself. This obvious reversal corresponds to the gate rating when leaving the
“second world”. Through the goal evaluation, Golden girl and Dirty Girl go through
completely different social paths than they would have done without a stay in the
realm of Frau Holle and the wondrous goal evaluation. But of course, the trajectory
is also reversed in its direction of rotation while passing the well mystery.

The inversion of the movement almost in itself only appears as a miracle in the
“non-religious {x, y, z}-space” (Fig. 14.6), since here, according to experience, the
processes are not reversed: The water does not suddenly flow up the mountain. The
sea does not divide, in order to be able to cross it with dry feet, the rock does not
open of its own accord to get to the cave of Mother Hulda (Frau Holle), and the shot
arrow does not suddenly turn around to hit the archer.

The divine miracle is not understood differently in Christianity either: it is God
who intervenes in human history and, as if by a miracle, reverses his future path in
life. The path of suffering, godly life and the miracle take over the function of the
well mystery, the stay in the paradise of Frau Holle and the gate evaluation.

The almost reversal of the trajectory or its “reflection” should also be noticeable
in the time series of the individual variables (Fig. 14.7).

You go back your way, so to speak, but in a new way—by revaluing previous
values. In addition, the whole dynamic is chaotic, i.e., no part of the trajectory can be
copied or is repeated; in the sense of the “panta rhei” (Greek:πάντα ·ε‹, “everything
flows”) everything is in flow, i.e., is structurally identical with itself in that it is always
different.

One could now ask whether such a model dynamic is not very far-fetched.
However, there is an experimentally verifiable reference to reality in dynamics with

Fig. 14.6 Chaotic
trajectory—“miracle
trajectory”—of the system of
equations in the
non-religious
{x, y, z}-subspace. The
trajectory almost returns to
itself at the turning points of
the “Fountain Mystery”,
visible on the right, but also
at the turning points that lie
inside this “disc” and
correspond to the “gate
assessment”



14.7 Dynamics of the Tale 331

time

Gate rating

Well mystery Well mystery

x

Fig. 14.7 Chaotic time series (excerpt) of the x-variable of the system of equations. The time series
is almost “reflected” both on the well and on the gate

Fig. 14.8 Electrochemical dissolution of copper in alcoholic phosphoric acid (85%). Time series
of the electrochemical potential, measured with an Ag/AgCl reference electrode. The chaotic time
series shows an unusual “mirror symmetry” (Experiment: by U. Sydow/P. Plath, March 2000)

the term trajectory, which can be represented as a “time series”. The reversal of the
trajectory in the phase space “almost in itself” corresponds to a very characteristic
“mirror structure” of its time series.

At least in electrochemistry, there is a system in which we have been able to
detect a “mirror structure” of its time series (see Fig. 14.8) and which could there-
fore be described with a symbolic dynamics—expressed by corresponding kinetic
equations—as we have given them here.



332 14 Mother Hulda and the Blue Sky Catastrophe

Even if we do not want to claim that all of this was known in this way to people
in the Neolithic “at the time of Frau Holle”, they were well aware of the complex
social, psychological and economic processes that made up their lives. They could
also express this linguistically in the form of stories. A fairy tale like that of Frau
Holle could therefore also be understood as poetic mathematics.

It should be emphasized at this point that neither the molecules in chemical
systems nor the people of today, as well as those in the Neolithic, need to know
anything about the equations that describe the formation of their chemical structures
or their social-economic structures, respectively. Nevertheless, such structures arise
and can be observed.

In the various systems, the individuals enter into corresponding relationships with
each other. The molecules react chemically, people plant, bake, weave, produce,
trade, etc. Structures result from self-organization, without any awareness of these
processes in the respective individuals.

However, unlike molecules, people can perceive and recognize the structures in
principle. When they report about it coded in memes or tales respectively, then they
are aware of these structures in their societies.

The capture of such a complex, social structure, that is the extraordinary, the
astonishing achievement, which is evident here in the tale of Frau Holle.

This is the unique key function of this fairy tale for the basic understanding of
other fairy tales as well.

14.8 Reflections on the Socio-Economic Dynamics in Frau
Holle’s Fairy Tale

As beautiful as the mathematical model presented here phenomenologically grasps
the events in Frau Holle’s fairy tale, it seems to be alien to the nature of the fairy tale
and the underlying tale.

This system of equations was developed by one of us in the nineties of the last
century in connection with the discussion as to whether and, if so, which new proper-
ties attractors could have in four-dimensional space that go beyond the well-known
chaos of three-dimensional space. As physical chemists, we were convinced that
chemistry possessed the necessary complexity to realize such structures. Even then,
we thought social structures or social myths were just as suitable to provide examples
of such a complex dynamic.

In this context, we called the structures that can be generated with this system
of equations: “Wirrwarr” [30] (English: tangle or confusion) with reference to the
goddess “Werre”, who, like FrauHolle (MotherHulda), confuses the not yet spun flax
or the hair of the “lazy” spinners at Christmas. Unfortunately, this term “Wirrwarr”
for the differential equation system is slightly misleading in this context, because this
system has a trajectory. However, the Wirrwarr should no longer have a trajectory or
it should not be able to be embedded in one. But this is another story.
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At the beginning of the nineties, especially in physics, the question was discussed
whether and how social systems could be described with mathematical-physical
models [31]. Above all, the question of the appearance of new properties (emergence
problem) played a decisive role [32]. All of these problems are closely related to
the development of synergetics [33, 34], and the processes of self-organization and
self-structuring [35] it deals with, which from the beginning were also applied to
economic and other social issues.

In addition, it is of great interest for our question that in the recently published
book by Wolfgang Wildgen, “Myth and Religion—Semiotics of the Transcendent”
[36], the dynamic semiotics of religion plays a central role in the description of the
emergence and self-organization of religious forms.

14.9 Cyclic Dynamic of Resources and Tools for Their Use

Now, the system of equations discussed here, consisting of four coupled, nonlinear
differential equations, is very abstract and one would like to know what is hidden
behind the variables x , y, z and w. What might these variables represent in a social
context?

An attempt should be made here to describe at least qualitatively, which socio-
economic content could be assigned to these abstract variables.

Let us consider a very simple social structure inwhich people process the resources
x available to them and thus use them to produce the products of daily life, i.e., food,
clothing and shelter, but also the necessary tools y. These wear out during work and
always have to be repaired or replaced with new ones.

Then the expression dx
dt describes the temporal change of the resources due to the

working process as the processing of the resources. The greater the intensity of the
work, the more tools are used up and destroyed. It is therefore true that the change
in resources is proportional to the number of tools used: dx

dt ∝ y or:

dx

dt
= −y (14.2)

where the minus sign refers to the consumption of tools by work. The proportionality
constant is set to one here for the sake of simplicity and is not mentioned any further.

One could imagine this process in such a way that, for example, during the winter
the tillage tools, hunting weapons and fishing nets were repaired and recreated and
then in the summer slowly used up again in the garden and for hunting and fishing.
The less intact hunting equipment is still available, the fewer animals can be killed
with it. However, this model would also apply to nomadic farming societies who
only practiced simple agriculture or horticulture for a short time and then moved on.

Therefore, the number of tools also changes over time dy
dt in the course of the work

process. They wear out, break and tear, and always have to be repaired or replaced.
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To simplify matters, the more accessible resources x are available, the more tools y
can be developed (Eq. 14.3).

dy

dt
= x (14.3)

It is not the edible dishes, the ingestible food that determines this process, but the
resources and the production of the necessary tools. They form the decisive variables
for the dynamics. Only what can be turned into tools in the most general sense are
resources! Examples of such resources are, e.g., animalswhose bones or antlers could
be used to make hoes and arrows. The flint mines [37] in north-western Europe also
play an important role as a resource for flint, from which a myriad of different tools
could be produced.

A C14 dating of Charcoal in a shaft showed an age of 3,150 years before the calendar. A
display board in the research tunnel mentions C14 dates between 3750 and 3940 B.C. The
pits can thus be clearly placed in the Neolithic. The Neolithic in Europe covers the period
between about 5500 and 2000 BC. Metal tools were not yet known at that time. The mining
industry in Rijkholt is estimated to have lasted around 500 years. Longer interruptions are not
to be accepted. The mining period was likely sometime between around 3950 and 2650 B.C.
It may also be possible to assume several periods. The scientifically investigated area covers
an area of 2436.6 square meters with 75 shafts. The flint obtained was transported upstairs
and the unusable pieces were sorted out. Usable material was turned into weapons and tools.
For example, smaller blades and larger axes were produced. Only rough forms were made
on the spot. Fine machining and possible grinding of the tools took place elsewhere. The
tools and weapons from the Rijkholter flint were coveted trade items and have been proven
within a radius of 400 km.

The production process outlined here in a greatly simplified manner is thus
described by the coupled system of Eqs. (14.4):

dx

dt
= −y

dy

dt
= x

(14.4)

The system of Eqs. (14.4) also describes the movement of a rigid, undamped
pendulum at location x at time t with velocity dx

dt = v and acceleration dv
dt . Its

solution is a circle in the two-dimensional x
y - or x/v-phase space (see Fig. 14.9).

The speed v of the pendulum thus corresponds to the quantity y of tools in the
socio-economic process.

A simple transformation of the two equations leads us immediately to the well-
known pendulum Eq. (14.5):

dy

dt
= d

dt
y = d

dt

(
−dx

dt

)
= −d2x

dt2
= x

d2x

dt2
= − x with the solution x = sint (14.5)
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Fig. 14.9 The cyclic
movement of the entity’s
resources and tools in the
x/y-phase space
corresponding to Eq. (14.4)

As already indicated, the production process of a Paleolithic society of Homo
Sapiens or Neanderthals can possibly be described in a simplified manner using this
system of equations.

With the already patriarchally structured society of the Sioux, the prairie Indians
of North America, one finds the circle as the decisive symbol in rituals such as the
sun dance, and they say: ‘Everything moves in circles’. This may be an indication
that in much older societies these circular structures of production are carried out in
the simple way just described by the pendulum equation.

The model could also be refined somewhat by taking into account that a small
but largely constant excess g is always produced due to the work, and that the
production of new tools y depends on the number of tools available. These results in
the differential equation system (14.6):

dx

dt
= −y + g

dy

dt
= x + ay

(14.6)

The solution of this system of equations leads to an expanding spiral (Fig. 14.10),
which is narrower the smaller the constants a and g are. The system is therefore
unstable, which, on the other hand, is also a requirement for the development possi-
bility of a system [38]. If the spiral is narrow enough, i.e., if the additional tool product
generated is hardly recognizable, and tool production is practically not dependent on
the number of tools available, the spiral will hardly differ from the circle for a long
time. Such a society, which develops only very slowly, would appear to its members
to be completely stable (circularly stable), although it is unstable.
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Fig. 14.10 The coupled differential equation system (14.6) has an unstable solution for a, g > 0,
which moves away from the circular solution with a = g = 0 towards infinity in the form of an
outgoing spiral. The system explodes

14.9.1 Inherent Information Bounded in the Tools Arise
from Their Use

The manufacture of tools in turn requires the tools, which presupposes that informa-
tion has accumulated and been objectified in the tools and their use. Let us call this
bounded information “inherent information” z(for example: handicraft knowledge).
In this way, the tools are used to store information that arises in the working process
with the tools.

The change of this information dz
dt over time is proportional to the product of the

change of the tools dy
dt = x with the available information z that is required for their

operation (Eq. 14.7):

dz

dt
∝ xz (14.7)

However, it decreases quadratically with the amount of information. This is due
to the fact that wear and tear of the tools during work results in a loss or destruction
not only of the tools, but also of the information inherent in them. Due to the aging of
the tools and the associated aging of their manufacturing processes, the information
embodied in the tools disappears. In other words, even if the tools are not used, the
information contained in them is also forgotten and destroyed.

The fact that the destruction process of the inherent information is assumed
to be quadratic means that when there is little information, the destruction of the
information increases only sub-proportionally and only above a threshold value
super-proportionally.

dz

dt
∝ −z2 (14.8)
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In order to keep the inevitable destruction process of inherent information as low
as possible, appropriate social structures had to be developed. It was safest if the
relevant workshops were located in the holy districts, as in the fairy tale by Frau
Holle, or the carriers of the information, toolmakers themselves became demigods
or even gods.

Awell-knownexampleof this is the storyof the limping sacral king andblacksmith
Hephaestus [39], who lived in the cave of the “Vulkanon” on Lemnos or Mount Etna
in Sicily, according to mythographers, as the “blacksmith god”. The three “ring-
or one-eyed” Cyclopes, sons of “Mother Earth”, are said to have been there his
blacksmiths journeymen. The production of general tools with the help of special
tools, as operated by the blacksmiths, was in a sense a “divine” affair. Therefore,
Hephaestus is thrown out of Olympus by the gods and then brought back into it [40].

The blacksmith Wieland was also such a limping sacred king as Hephaestus [39].
He had learned his blacksmithing from the divine blacksmith Mimir and named
his famous “steely” sword “Mimung” after him [41]. He was also famous for his
knowledge of runic writing and acted as an advisor to Odin from the Aesir family.
The Aesir lost the battle against the Vanes. According to mythographers, Mimir was
beheaded as a scourge by the Vanes gods. His head was given back to the Aesir and
continued to be venerated by Odin as his counselor.

It is about the highly complex inherent knowledge of the manufacture of tools
using suitable tools. This absolutely had to be protected and could not be distributed
and thus lost. Such a loss of information would have been too great for the respective
society. This is expressed by the quadratic term “−z2”. Such a loss of information has
certainly taken place in Europe, for example when the blacksmiths of the Early Iron
Age who lived and worked in the “castles” left the castles with their new material,
“iron”.

The historical development in Europe knows further structures of the necessary
secrecy of this inherent knowledge. It is the monasteries and later the guilds, and
today the confidentiality agreements and patents, which ensure that the inherent
knowledge that has been developed at great expense is not lost to the respective
social structures.

The example of the patent release for corona vaccines shows how central it is to
avoid the loss of inherent knowledge even today. Interestingly, the fact that knowledge
about themanufacture of corona vaccines cannot be released is justifiedwith the argu-
ment that the complex practical-technical “know-how” of the chemical-biological
processes does not allow the patents to be released quickly.

However, beside this loss of inherent knowledge, there will also be a constant
influx b of information due to new inventions, so that ultimately the following
Eq. (14.9) applies to the change in information over time:

dz

dt
= xz − cz2 + b (14.9)

The information naturally has an influence on the work process itself, i.e., on
the processing of the resources, so that altogether the three-dimensional differential
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equation system (14.10) results:

dx

dt
= (−y − z) + g

dy

dt
= x + ay

dz

dt
= xz − cz2 + b

(14.10)

The resulting three-dimensional differential equation system has an unstable limit
cycle (see illustration in Fig. 14.11), so that the endeavors of a society that wants
to remain “stable” must always be directed towards balancing this unstable state
through constant, minimal readjustments.

Thus, the conscious development of the tools beyond their simple use, does not
stabilize the social system, but it creates the possibility of skillfully keeping it in the
balance of the unstable limit cycle.

However, if the social conditions change too quickly and seriously, for example
due to internal developments or external influences such as contact with other
cultures, it will be inevitable that the unstable system will lose its balance and
either “perish” (trickle) or undergo a stormy, very dangerous development—the
system explodes in a spiral. Such a foreign contact could either completely destroy
the previous production structure (e.g., reduce c) or enable new, more productive
manufacturing processes (e.g., increase c). The decisive factor will therefore be the
influence that the new culture has on the dynamics of information processing.

Fig. 14.11 The solution of the differential equation system Eq. (14.10) has an unstable limit cycle
from which the system moves away only very slowly when it is in its immediate vicinity. For
< 1.55 the system swirls into a fixed point inside the limit cycle (it collapses) (see also Fig. 14.13,
Fig. 14.2), for c > 1.55 it explodes (see also Fig. 14.12). For c ∼= 1.55, it can be balanced
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Fig. 14.12 Expiring spiral of the unstable limit cycle for c = 1.8; the system (see Eq. 14.10)
explodes in a spiral

Fig. 14.13 Incoming spiral of the unstable limit cycle for c = 0.7; the system (see Eq. 14.10)
collapses by approaching a fixed point

14.10 Abstract Knowledge, Freely Available Can Stabilize
Unstable Systems Via Transformation Into Chaotic
Ones

14.10.1 Paradise is the Birthplace of Science

In the long run, internal and external influences will cause any system, no matter
how well balanced, to collapse or explode. Since the problem lies in the developing
information z, a structure must be created whose dynamics automatically “balance”
the information z without directly influencing its development. On the other hand,
it must be similar to the essence of information in the sense that it is a type of
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“information” that is not inherent in the tool itself and only comes to light through
its use, but exists separately from it. Current, but “abstract knowledge” w has such
a structure.

Usually, socio-economic systems are described by order parameters such as
resources x and tools y. Here, however, we are using order parameters of a completely
different kind: inherent knowledge z and abstract knowledge w. Nevertheless, these
are order parameters, entirely in the sense of the synergetics with which the social
dynamics can be described successfully.

The social solution to this problem is the creation of a real “second world”, the
creation of paradise parallel to the already known “first world”, and the possibility of
switching between these two worlds. This second world—paradise—is the system
of conscious creation of the possibility to acquire “abstract knowledge” in the form
of academies of priestesses, the garden of Eden, philosophical schools and seminars,
monasteries and universities. In short, paradise is the birthplace of science.

The originally unstable system becomes chaotic as a result, but it also becomes
stable and, in this way, retains great variability in order to be able to react in different
ways to new situations over and over again.

Accordingly, this development of abstract knowledge dw
dt is to a very high degree

religious or ideological, but, and this is essential, it is not completely detached from
the development of the production process and the creation of tools and information.
In the form of the two products xyandzy, these have a positive effect on the devel-
opment of abstract knowledge. At the same time, an internal, independent scientific
development f is required and a necessary dismantling of traditional knowledge
(forgetting), represented by the term −ew in Eq. (14.11), that would only stand in
the way of the development of knowledge.

dw

dt
= dxy + zy − ew + f (14.11)

It finally results in the four-dimensional system of non-linear differential
Eqs. (14.12):

dx

dt
= (−y − z) + g

dy

dt
= x + ay

dz

dt
= xz − cz2 + b

dw

dt
= dxy + zy − ew + f

(14.12)

However, this system is incomplete because it does not contain any reaction of
abstract knowledge w on the production process. As a result, it is unstable and
explodes: the inherent information z grows exponentially in an oscillating manner.
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The retroactive effect of the abstract knowledge solely on the work process
alone according to equation: dx

dt = (−y − z)w + g with the same parameters as
in Eq. (14.12), e.g., a = 0.2; b = 0.2; c = 3.5; g = 0.5; d = 0.63; e = 0.1; f =
1.2—leads to a fixed-point behavior of the overall system and does not allow any
further development. In this sense, the system collapses or congeals respectively.

On the other hand, if the feedback only affects the generation of the tools dy
dt =

(x + ay)w with the same parameter set, the highly unstable system will explode
momentarily.

Onlywhen the abstract knowledgew acts back on both, dxdt and
dy
dt , a stable chaotic

system is obtained by two re-injections of the system onto itself:

dx

dt
= (−y − z)w + g

dy

dt
= (x + ay)w

dz

dt
= xz − cz2 + b

dw

dt
= dxy + zy − ew + f

(14.13)

This is the system of equations (Eq. 14.13, see also Eq. 14.1) that has the desired
behavior and that is suitable for interpreting the fairy tale by Frau Holle.

It should be emphasized once again at this point that the mathematical model
describes the dynamics of a society, but not that of an individual of its members.
In other words, it does not describe what happens to an individual in society. The
characters acting in fairy tales are projections of social events onto hypothetical
persons and gods or goddesses. However, these hypothetical people do not exist in
this way.

It seems strange that the chaotic system has an infinite trajectory that never returns
to itself, and that it should describe social life as well as the life of the individual.
The twoMary’s of the fairy tale only get to Frau Holle’s second world once and then
come back to the first world again. Each of them therefore only traverses a small part
of the infinite trajectory of the chaotic system. Such a section, i.e., an excerpt from
the trajectory of the 4D system of equations in the 3D subspace {x, y, w}, is shown
as an example in Fig. 14.5, and only this is described as a typical event in the fairy
tale.

It cannot be seen from the figure whether the x/y plane divides the new, four-
dimensional “world” into two half-spaces, which was the basic assumption for the
interpretation of the fairy tale.

However, a (n − 1)-dimensional subspace divides a (n)-dimensional metric space
into two (n)-dimensional half-spaces. Thus, the three-dimensional subspace {x, y, z}
of the real world should be used as the space with which the new four-dimensional
world is intersected.

According to the fairy tale, we demand that the description of the real “first world”
as the {x, y, z}-subspace of the newworld also allows for “miracles”. For this reason,
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Fig. 14.14 The chaotic movement in the three-dimensional {x, y, z}-subspace only takes place in
the positive half-space {x, y, z > 0}. The variable z is always positive definite: z > 0

it is necessary to take a closer look at the movement in the {x, y, z}-subspace (see
Fig. 14.14).

The movement in the 3D subspace {x, y, z} takes place only in the positive
half-space {x, y, z > 0}. With small values of x and y, the direction of rotation
of the trajectory is reversed and the incoming spiral becomes the outgoing spiral.
Conversely, for “large” values of z, the outgoing spiral becomes an incoming spiral
again. We now suspect that these turning points in the directions of rotation of
the trajectory are related to their crossing from one to the other four-dimensional
half-space {x, y, z > 0, w ≥ 0} ↔ {x, y, z > 0, w < 0} (see Fig. 14.15).

Fig. 14.15 Excerpt from the trajectory of the 4D systemofEq. (14.13) in the 3D subspace {x, y,w}.
The sign of the variable w of the abstract knowledge decides in which of the two subspaces
{x, y, z > 0,w ≥ 0}or{x, y, z > 0,w < 0} the system (14.13) is located
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The movement of the system in four-dimensional space mostly takes place in the
two half-spaces and the transition from the positive to the negative half-space occurs
quite suddenly. During the “gate evaluation” (transition from {x, y, z > 0,w < 0}
to {x, y, z > 0, w ≥ 0}), there may be temporary multiple changes of the partial
system’s stay in the two half-spaces or the twoworlds. In a sense, the system staggers
between the two worlds which may be comparable with the autonomous flip-flop of
spin orientation in quantum physics.

The change between the two half-spaces is a consequence of the feedback of
the abstract knowledge w on the work process, i.e., on the resources dx

dt and on the
creation of the tools dy

dt . In this way, the entire production process is divided into
two sub-processes: the non-sacred area of “normal life” {x, y, z > 0, w ≥ 0} and
the equally real, but sacred area of “paradise”{x, y, z > 0,w < 0}.

A decoupling of abstract knowledge from the production process leads either to
an overall unstable system or to a fix-point behavior, i.e., to a rigid, stagnant system,
as shown above.

All well and good, but how can we understand “negative abstract knowledge”?
Perhaps, the answer given by bankers and economists will help us here when asked.
“Where did themoney actually come from?”Then they say: “Debt generatesmoney.”
However, for the common person, debts are not money, at most negative money.

Does this answer help us further? Well, we might understand negative abstract
knowledge as a lack of the knowledge we need to solve problems at hand. For
example, we lack the necessary social knowledge to reverse or avoid the climate
changes caused by today’s lifestyle.

An interesting conclusion emerges from what has been said: the second world of
paradise is not a sunken world of meditation, but a highly productive working world
in which abstract knowledge is increased and becomes the essential moment of the
overall process. Nothing else describes the fairy tale of Frau Holle with the stay of
the two girls in the realm of Frau Holle—it is a hard-working life, this service to the
goddess.

14.10.2 Chaos, Hyper-Chaos and the Blue-Sky Catastrophe

In his article, “Chaos”, Otto E. Rössler [42] describes the creation of a contin-
uous chaos in the three-dimensional space with the help of the reinjection principle.
It is based on the fact that an unstable system in a two-dimensional space swirls
“outwards” and is thrown back onto itself via the third dimension.

There is an unstable spiral ‘downstairs’ on a Z -shaped slow manifold. The same spiral,
only somewhat displaced in a direction parallel to the edges of the slow manifold, applies
‘upstairs’. As a result, a ‘reinjection loop’ is formed which, depending on the geometry of
the arrangement, may have the form shown in the figure. In Fig. 14.10b (Fig. 14.16b in this
chapter, the author’s) we see a paper model (of the kind considered in the preceding section)
that fits right into the flow of Fig. 14.10a (Fig. 14.16a in this chapter, the author’s).

The flow of Fig. 14.10a (Fig. 14.16a, the author’s) and the paper generalization
(Fig. 14.10b (Fig. 14.16b, the author’s)) were described … as an implementation of a ‘soft
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a) b) c)

Fig. 14.16 a An abstract dynamical system of relaxation type and b corresponding paper flow; c
continuous chaos in Eq. (14.14), compare Fig. 14.16a

watch’. A simple differential equation of the system of Fig. 14.10a (Fig. 14.16a, the author’s)
is [42]:

ẋ = −y − z

ẏ = x + 0.15y

εż = (
1 − z2

)
(x − 1 + z) − δz

(14.14)

He also successfully applies this principle to four-dimensional space and in this
way creates a form of chaos that he describes as ‘hyper chaos’ [43].

4D Hyperchaos: “In analogy with the construction of Eq. (14.2) Eq. (14.14) in this chapter,
the author’s), perhaps a, (this time 3-variable) linear system plus switching variable can be
found as a straight forward realization of the paper flow. The following equation is more
simple (although its cross-section involves a few additional folding’s):

ẋ = −y − z

ẏ = x + 0.25y + w

ż = 2.2 + xz

ẇ = −0.5z + 0.05w

(14.15)

Eq. (14.4) (Eq. (14.15) in this chapter, the author’s) contains only one nonlinear (quadratic)
term. A simulation is presented in Fig. 14.20 (Fig. 14.17 in this chapter, the author’s). The
bottom line shows the excitable (‘switching’) variable z as a function of t. It is activated
only from time to time, namely, whenever the linear ‘main flow’ (in x,y,w-space, presented
stereoscopically on top) exceeds z’s threshold (at x = 0) from below. During the brief periods
of activation of z, a ‘reinjection event’ takes place in the main flow.”

Here, an outward swirling system that is unstable in three-dimensional space is
thrown back onto itself via the four-dimensional space.
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Fig. 14.17 “Continuous ‘hyperchaos’ in Eq. (14.4) (Eq. 14.15 in this chapter, the author’s) … The
flow in x,y,w-subspace is shown in two different parallel projections (stereoplot) …” [43]

In the case of the “Frau-Holle differential equation system”, Otto Rössler’s rein-
jection principle is applied twice, so to speak. For positive values of w, the system
swirls “outward” and is thrown back via the four-dimensional space to another,
now “inward” swirling sub-system, from which it “escapes”—again over the four-
dimensional space—in the direction of the positive w-axis into the original, outward
swirling sub-system.

This reversal of the direction of rotation seems to us to be one of the new properties
that may characterize chaos in four-dimensional space and that does not appear in
three-dimensional chaos. It therefore seems to us to be appropriate to give this special
attractor its own name: “the miracle attractor” or the “Frau Holle attractor”.

If one only considers the {x, y, z}-subspace of the generally known craft
world, then the trajectory describes a “miracle”—it almost returns to itself at the
transition from the {x, y, z, w ≥ 0}-half-space to the complementary half-space
{x, y, z, w < 0}. It is a “miracle” because in this {x, y, z}-space one cannot observe
and understand the reason of turning back—the change of the {x, y, z, w}-half-
spaces.

For a closer examination of the chaotic behavior of the 4-dimensional Frau-Holle
equation system (14.13), we should actually examine the correlated 7-dimensional
parameter space with the parameters a, b, c, d, e, f, andg of this equation system.
However, that would go completely beyond the scope of this article and contradict
our intention. In the following, we will largely limit ourselves to an examination of
the system against a variation of the parameter c. This parameter c played already
a decisive role in the 3-dimensional system of equations. It was responsible for the
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decrease of the inherent knowledge z and thus for the stability of the system. It may
also play a comparable role in the Frau-Holle system of Eqs. (14.10).

If one changes the parameter c in the 4D space {x, y, z > 0, w}, which in the 3D
system (Eq. (14.10)) caused this to collapse (c < 1.55, see Fig. 14.13) or to explode
(c > 1.55, see Fig. 14.12) or else described an unstable limit cycle (c ≈ 1.55, see
Fig. 14.11), then one recognizes in the 3D subspace {x, y, z > 0} of the 4D space
{x, y, z > 0, w} that the trajectory for small values c also approaches a fixed point
here, i.e., the system almost collapses, but avoids the collapse at the last moment and
escapes it (see Fig. 14.18).

In Shilnikov’s language of qualitative theory of dynamic systems [44], the 3D
system {x, y, w} is a trajectory between two heteroclinically connected saddle foci,
a stable saddle focus O1 in the stable manifold Ws

1 and an unstable saddle focus O2

in the unstable central manifold Wc
2 (Fig. 14.19).

For small values of the parameter c, 0.2 <≈ c <≈ 0.45, the whole system
approaches a fixed point F between the two saddle foci O1 and O2 (red point in the
Fig. 14.20). This lies at the intersection of the heteroclinic orbit �1, the connection
between the two saddle foci with the stable manifold Ws

0 .
If we change the initial conditions a little bit, for example by choosingw0 = −2.5

as starting value for the variable w, and slightly varying the start values for the
other variables, then we can see for otherwise quite similar parameters (c = 0.45)
that the system still runs towards a stable fixed point in the end, but that this point
is additionally surrounded by an unstable cycle Lu (limit cycle) in its immediate
vicinity (see Fig. 14.21).

It is well known that a fixed point located on a surface, for example, is always
surrounded by an unstable limit cycle. All trajectories that lead to the stable fixed-
point start from it. This limit cycle can be located in infinity or it can have a finite

Fig. 14.18 The reversal points (w < 0) → (w ≥ 0) are particularly emphasized by an enlarged
representation. The reversal points for (w ≥ 0) → (w < 0) are not shown in the illustration
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Fig. 14.19 Sketch of the
qualitative description of the
“Frau Holle-system of
equations” for the
three-dimensional
{x, y, w}-subspace. The
transitions � = {�1,�2}
between the manifolds Ws

1
and Wc

2 with the saddle
focus points O1 and O2 are
shown symbolically

Fig. 14.20 For c = 0.4, the system runs onto a stable node F (fixed point, marked red)

radius, as in the present case. If such a fixed point becomes unstable, a stable limit
cycle is usually generated in its immediate vicinity.

For c ≈ 0.5, this fixed point F becomes unstable and turns to a “limit cycle” of
period one in the three-dimensional {x .y.w}-space. However, as the further analysis
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Fig. 14.21 The starting values for the variables x, y, zundw are set to lie almost exactly on an
unstable cycle that surrounds the stable fixed point. In this way, the system circles for a short time
in the immediate vicinity of the unstable limit cycle and in this way makes it “visible”

will show, this is not a simple Hopf bifurcation, i.e., fixed point → limit cycle. It
seems that the stable fixed point, which is a knot, breaks up into a saddle knot and a
stable limit cycle in the immediate vicinity (bifurcated), see Fig. 14.22.

This “limit cycle” L itself (Fig. 14.22a) becomes unstable as the c-value increases
and in the case of a three-dimensional system a saddle node could arise on it (see
Fig. 14.23). Now the system of equations discussed here is a system with four vari-
ables or dimension four, respectively. In such a case, a “blue-sky catastrophe” can
develop, i.e., the limit cycle L (Fig. 14.23b) becomes instable.

If you now increase slightly the parameter c, a “limit cycle” of the period of two
seems to develop. Considering the possibility of a blue-sky catastrophe, this does not
seem to be a classic limit cycle of period two, but rather the first stage of the blue-sky
catastrophe, which is also suggested by the “fuzzy” representation of the trajectory
in the {x, y, w}-subspace.

Shilnikov gives in his book a nice sketch for the shape of a trajectory of the “blue-
sky catastrophe” (Figs. 14.23 and 14.24), which we find again in our model for the
value c = 0.62 almost one to one as shown in Fig. 14.25.

As an autonomous region, the blue-sky catastrophe is stable for a certain, small
range of c-values. As the c-values increase slightly, the blue-sky catastrophe gets
bigger and bigger (see Figs. 14.26, 14.27 and 14.28) and reaches upward to the
unstable center manifold Wc

2 and downward to the stable manifold Ws
1 .

If you increase the c-value even further, e.g., c = 1.55 or up to c = 3.7, the blue-
sky catastrophe no longer exists as an autonomous, stable structure in the vicinity of
the former fixed point; it has long since become unstable. But even as an unstable,
non-autonomous structure, it still has a strong effect on the system. If the trajectory
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L

a)

b)

Fig. 14.22 a Creation of a “limit cycle” of period one instead of the former fixed point, which has
now become unstable or has turned into a saddle node and a stable limit cycle. This stable limit
cycle L is still surrounded by the unstable limit cycle, not shown here, the existence of which has
already been documented above. b Another situation in three-dimensional space: Here the fixed
point can only become unstable in one dimension. It becomes the saddle node to which a stable
limit cycle is immediately adjacent; this is surrounded by an unstable cycle that includes the saddle
knot

Fig. 14.23 Transition from
the knot a to the saddle knot,
b with an adjacent limit
cycle. (Graphics from. L.P.
Shilnikov et al. (2001) p. 543
and p. 811 [45])
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Fig. 14.24 A sketch of the
trajectory of the blue-sky
catastrophe. The shape of the
periodic orbit looks like a
helix that seems to contract
onto a two-dimensional
cycle in the immediate
vicinity of the saddle node.
(L.P. Shilnikov et al. (2001)
p. 810 [46])

Fig. 14.25 Two different situations (a) and (b), in which the blue-sky catastrophe arises in the area
of the former fixed point on the way between the stable and the unstable saddle focus

comes close to this unstable structure, then it follows it for a while. This leads to
strange movements in the heteroclinic transition from the stable manifold WS

1 to the
unstable manifold WC

2 (see Figs. 14.29 and 14.30).
In this situation, namely for values c >≈ 0.6335, the chaotic movement of the

heteroclinic transition from stable saddle focus O1 to the unstable saddle focus
O2—with the dynamic uncertainty of “staggering” caused by the unstable blue-sky
catastrophe—is entirely stable!
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Fig. 14.26 Still autonomous blue-sky catastrophe for c = 0.63347. The area of the blue-sky catas-
trophe almost touches the catchment area of the unstable central manifold Wc

2 above and below the
stable manifold Ws

1

Fig. 14.27 The upper limit for autonomous blue-sky catastrophes is the value c ≈ 0.63349905. At
this c-value, the blue-sky catastrophe is barely autonomous in the context of this test

This staggering movement, when the trajectory briefly comes into the catchment
area of the unstable blue-sky catastrophe, shortly before it reaches the unstable mani-
fold describes the “indeterminacy of theworld change” that an initiate or a test subject
of the mystery experiences.

As long as the system ends in a fixed point, a limit cycle or in the stable blue-sky
catastrophe (for c <≈ 0, 6335), the observable chaotic transition �2 from the upper,



352 14 Mother Hulda and the Blue Sky Catastrophe

Fig. 14.28 Captured blue sky catastrophe for the value c = 0.63349906. With this value, the
previously autonomous blue-sky catastrophe is captured by the unstable manifold WC

2 in the fifth
period, i.e., in this case it runs through a cycle in the immediate vicinity of this manifold, which
can be easily recognized by the positive w-values in the time series w = w(t)

Fig. 14.29 The staggering movement in the {x, y,w}-sub-space with c = 1.55: For the same set
of parameters, the inner turning points, which make up the staggering motion, were shown in the
{x, y, z}-subspace above

unstable saddle focus O2 to the lower, stable saddle focus O1 was itself unstable as
a whole system.

It is a quite astonishingly complex, albeit unstable, world that surrounds these
stable structures.
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Fig. 14.30 The staggering movement in the {x, y,w}-sub-space with c = 3.7: The trajectory
“staggers” and then finally leads with the opposite direction of rotation into the area of the unstable
saddle focus O2 located above. The whole chaotic system is stable as such!

But it is even more astonishing that this previously unstable world changes to
stability with further increased complexity if the c-values are increased and the
formerly stable, thoroughly complex world, e.g., the blue-sky catastrophe, now
becomes unstable in turn. Of course, one can observe similar processes also with
variation of the other parameters (see, for example, the variation of parameters d and
e in Fig. 14.31) and not only with that of the c-value, where they can admittedly be
observed very nicely.

“d” is the parameter that determines the growth of abstract knowledge due to
the work with the tools y on the resources x : dw

dt ∝ xy. The slight reduction in
d (d = 0.63 → d = 0.60) leads to a change in the chaotic behavior with negative
values of w, i.e., in the second world. However, it does not significantly change the
staggering motion. The whole chaotic system remains stable.

As already mentioned above, the parameter “e” is the one that controls the neces-
sary degradation of the abstract knowledge by “forgetting”, dw

dt ∝ −w, which would
prevent the development of new knowledge (compare Chap. 13, “Creativity” of this
book). Increasing e from e = 0.1 → e = 0.15, the unstable blue-sky catastrophe is
intensified while the chaotic overall system is more banded.

But what is the c-value all about?What does this parameter stand for? It describes
the strength of the information change dz

dt through the loss of information due to the
work itself, thewear and tear of the tools and the forgetting of techniques, in short, the
lifetime of the tools and processes dz

dt ∝ −z2; “c” is the corresponding proportionality
constant.

This makes it clear how changes in the world of work can have a structure-
forming effect on the flow of information in society and its structures, which is of
great importance not only for the time of Frau Holle, but also for our time, even if a
system of equations for our time will certainly look a little different.
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Fig. 14.31 Comparison of the attractors with variation of the parameters d and e with the same
critical value of c = 1.55; a d = 0.60, e = 0.1 and b d = 0.63, e = 0.15
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Part V
Kaleidoscope

Peter J. Plath
Ernst-Christoph Haß

Introductory Remarks

“Kaleidoscope”, could also be called “Research Splinter” because it contains short
research papers on synergetics in chemistry and biology and many new suggestions
that require further intensive research. All the more, all this work testifies to the
enthusiasm that filled the young or older researchers when they successfully dealt
with these questions. It waswonderful to experience how positive the actors are about
their almost forgotten works when we told them that we shall write about it in our
book.

We would like to particularly emphasize the contribution byMs.MonikaWalters-
dorf to the Chap. 15 on the blue wonder. Years later, in her long forgotten and
hidden documents, she found photos of the experiments that she had taken during
her research internship with Prof. Plath at the University of Bremen. These photos
were important for our reworking of the pattern formation in the methylene blue
catalyzed oxidation of sulfides in polyacryle amide gel (PA-MBO-S system).

While we were working on the contribution to the fractal structure of the aggre-
gating Dictyostelium discoideum cells (Chap. 16), we managed to find the former
students Inga Hense and Olaf Kniemeyer. They were both very pleased that we were
unearthing their previous work, but they had unfortunately no further documentation
on it.

Special mention should also be made of Ms. Gesa Patzelt, whose data and tables
provided to us as part of her diploma thesis served as the basis for our calculations
of the kinetics of foam decay.

Working through the old documents in this way, we were faced with many new
questions that we had to answer and we felt like presenting new problems ourselves
in a short and concise manner.

This applies above all to the question of the description of the decay of beer foam
using kinetics (Chap. 17) that correspond to a consecutive reaction with feedback.
On the other hand, by chance we became aware of the fascinating structures in the

https://doi.org/10.1007/978-3-030-95607-3_15
https://doi.org/10.1007/978-3-030-95607-3_16
https://doi.org/10.1007/978-3-030-95607-3_17
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granite kitchen top of the Plath family, which in our opinion represent very, very old
crystallized Liesegang structures in the cold magma (Chap. 18). With the help of the
stonemason Olaf Borwig, who made this slab from the Parakiwi granite Karelia red
20 years ago, we were able to clarify a number of questions about the origin and
crystallinity of the structures in these granites, for which we thank him very much.

https://doi.org/10.1007/978-3-030-95607-3_18


Chapter 15
The Blue Wonder

The Methylene Blue-Oscillator (MBO-Sytem)

Peter J. Plath

Fig. 15.1 Structure formation in the blue miracle in a Petri dish after 2 min. The glucose gel was
produced from 20 ml glucose 2 M to 10 ml NaOH 2M and then covered with 20 ml methylene blue
10–3 M. The resulting layer height was approx. 9 mm. (Photo: S. Huth, N. Tobias and P.J. Plath)
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15.1 Introduction

This striking title “The Blue Wonder” (Fig. 15.1) (also named as Blue Bottle experi-
ment) [1] is not an advertising slogan for a new product on the market, although it is
not infrequently found there, but rather it describes a well-known experiment from
the inorganic beginners’ lecture, which H.W. Roesky describes in his “Chemische
Kabinettstücke” as follows [2]:

Set up: 1,000 ml Shaking cylinder, pipette.

Chemicals: Glucose, Sodium hydroxide pills NaOH, Methylene blue

Preparations: Prepare the following solutions:

A: 0.4 g of methylene blue in 200 ml of water

B: 10 g sodium hydroxide and 80 g glucose in 800 ml water

Procedure: Solution B and 10 ml of solution A are added to the 1 L shaking cylinder. The
shaking cylinder is then closed. After a short time, the solution is colorless. If the colorless
solution is shaken vigorously, it will turn blue again. This color will disappear again after
about a minute. When shaken again, the color reappears. This process can be repeated until
the oxygen in the cylinder is used up. If you ventilate, then the game can begin again.

Explanation: The discoloration of the methylene blue by reduction is based on the conver-
sion into the leucomethylene blue, the aldehyde group of the grape sugar is oxidized to the
carboxyl group.

R − CHO + H2O + Methylene blue → R - COOH + Leukomethylene blue
(15.1)

Leukomethylene blue + 1/
2O2 → Methylene blue + H2O (15.2)

Schneider and Münster describe this reaction in their book “Nonlinear Structures
in Chemistry” [3] in the chapter “Turing structures: chemical morphogenesis” a
little less spectacular than the “PA-MBO system”, better called PA-MBO-S System.
They replaced the gel-forming glucose with sodium sulfide and instead introduced
acrylamides as a gel-forming agent, which is polymerized into polyacrylamide (PA).
In this way they could better control the gelation process.

In this PA-MBO-S reaction, the sulfide ions (S) of the sodium sulfide are oxidized
by the oxygen present in the solution with the aid of the catalyst methylene blue MB,
whereby the colorless leuco-methylene blue MBH is formed by reduction (Eqs. 15.3
and 15.4). This is a radical reaction mechanism.

It was very likely that the response of theBlueWonderwould also lead to chemical
oscillations. In 1984 Maria Burger and Richard Field published a new oscillating
chemical reaction that contained nometal ions catalysts [4]: “The chemical oscillator
is composed of sulfide ion, sulphite ion, methylene blue (which serves as catalyst)
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Fig. 15.2 One of the mesomeric structures of methylene blue cation MB+ (left formula) with
absorption maxima at 668 nm which is the transformed into colorless leuko-methylene blue MBH
(right formula)

and dissolved oxygen. During the reaction, the methylene blue catalyst oscillates
between its oxidized, coloured form (MB+) and its reduced, leuko form (MBH).”

2SH− + O2 → 2S + 2HO− (15.3)

“This new oscillator was intentionally designed by the expedient of coupling an
apparent autocatalytic reaction with a return mechanism. Reaction (Eq. 15.4), the
reduction of MB+ by HS−, is the apparent autocatalytic reaction” (Burger and Field
[4])

HS− + MB+ → MBH + S (15.4)

The reduction of the methylene blue MB+ to leuko-methylene blue MBH is
understood as a pH-dependent process (Eq. 15.5) (Fig. 15.2).

MB+ + e− � MB

MB + e− + H+ � MBH
(15.5)

Although the oscillations in this system (oxidation of sulfide by oxygen using the
catalyst methylene blue in alkaline solution) only occur in a fairly small range of
flow rates through the reactor, this discovery of a new oscillating system by Burger
and Field led to numerous further systematic investigations in the continuous stirred
tank reactor (CSTR) [5]. Based on these investigations, a rather complicated proposal
for a mechanism of the Methylene-Blue-HS−-O2 oscillator was developed based on
corresponding investigations in the Belousov–Zhabotinsky reaction (BZ reaction)
[6].

This system was then examined in detail in the groups of Field (Montana, USA)
and Schneider (Würzburg, Germany), regarding the development of a mechanism
for an oscillating reaction without autocatalysis [7] and the effect of fluctuations on
the oscillating system [8], respectively.
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15.2 Spatial Pattern Formation in the PA-MBO-S system

Since the MBO-S system is an oscillating reaction, it is not surprising that, as in
the case of the Belousov–Zhabotinsky reaction, attempts were made to create spatial
patterns in the Petri dish by immobilization using a gel. The gel was created by
polymerizing acrylamide (c.f. Figs. 15.4 and 15.12). Watzl and Münster from the
Würzburg Institute were quite successful in creating transient Turing-like spatial
structures [9]. Since ionic components are involved in the reaction (Eqs. 15.3 and
15.4), the reaction should also be able to be influenced by electrical fields. This leads
to controllable Turing-like structures [10, 11].

Two groups of students [12, 13] took up the production of Turing-like struc-
tures (Fig. 15.3) in the polyacrylamide-methylene blue-sulfide-oxygen system in the
winter semesters 1996/1997 and 1997/1998. This work was part of my practical
courses on chemical synergetics and discrete chemistry.

The group of Thorsten Kaese and Carsten Knapp used the following procedure
for their investigations:

Solution 1: 20% solution of Acrylamide (20 g in 100 mL aqueous solution)

Solution 22% solution of N.N-Methylene-bisacrylamide (0.5 g in 25 mL water)

Solution 3 20% solution of Ammonium peroxodisulfate (2 g in 10 mL water)

Solution 4 30% solution of Tris-ethanolamine (3 g in 10 mL water)

Solution 5Methylene blue chloride solution MBCl: 0.006–0.03 mol/L

Solution 6Sodium sulfide (Na2S*9 H2O) solution: 0.03–0.5 mol/L

Solution 7 Sodium sulfite solution: 0.01 mol/L (0.03 g in 25 mL water)

The solutions are mixed as follows:

Fig. 15.3 Turing-like patterns in the polyacrylamide-methylene blue-sulfide-oxygen system. a
Irregular stripes, MBCl 0.012 mol/L, Na2S 0.09 mol/L, 0.90 ml solution 3; b irregular dark dots
MBCl 0.03 mol/L, Na2S, 0.036 mol/l, 0.20 ml solution 3: (photos: T. Kaese, C. Knapp, and P.J.
Plath)
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Fig. 15.4 Sketch: mechanism of polymerization of acrylamide and cross-linking of their polymer-
ization chains [14]

Mixture a: 5.5 mL sol. 1 + 0.47 mL sol. 2 + 0.43 mL sol. 4

Mixture b:0.5 mL sol. 5 + 4.0 mL sol. 6 + 1.5 mL sol. 7

The mixtures a and b are placed in a stand-alone Petri-dish. The polymerization
is then started with 0.18 mL sol. 3. After approx. 10 min, the gel is covered with a
small amount of Methylene blue chloride solution. After a further five minutes, the
gel is carefully lifted off the floor.

The group ofMonikaWaltersdorf and JanKaiser took a slightly different approach
by increasing drastically the concentration of the polymerization starter Ammonium
peroxodisulfate (sol. 3) in the final solution [12]. For their experiments reported here,
they used 0.38 mL (experiment 17) and 1.0 mL (experiment 18) (sol. 3). For sodium
sulfide, they used the concentration 0.5 M.

For their experiments, they used a Plexiglas Petri dish (diameter 8.5 cm) with a
lid. The petri dish was placed over a light table. A thick Plexiglas pane between the
light table and the Petri dish prevented the solution from heating up from below in
order to prevent the formation of Bènard structures.

The components (except the Triethanolamine and Sodium sulfate) were arranged
side by side in the Petri dish using disposable syringes and pipettes. This should
prevent the individual components from reacting prematurely with one another. If all
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a) b)

Fig. 15.5 “Mini-eruptions” a occur 20 s after starting the reaction; b about 10 s later (size of the
Petri-dish 8.5 cm in diameter) (Photo: M. Waltersdorf, P.J. Plath)

species are arranged in the Petri dish, they are all homogenized together by carefully
shaking. After homogenization, solution 3 (sol. 3) of the polymerization initiator was
added.

“Mini-eruptions” can be seen after just 20 s (Fig. 15.5). The gel has a thickness
of approx. 2 mm. After about 10 min, a gel has formed and after a further hour a
Turing-like pattern can be observed.

In addition to the expected Turing-like structures, two further, very interesting
observations were made: About 20 s after the components had been homogenized,
bright spots were suddenly observed in the otherwise blue solution. Larger spots
showed a dark spot in the middle. All spots occur spontaneously and locally and
usually have one round to oval shape. (Fig. 15.6) We call them “mini eruptions”.
It is also very nice to see that an area develops around the “center of the eruption”
that remains colorless for a longer period of time. It could be that the light spots in
Fig. 15.3a are comparable to the “micro eruptions” described here.

This indicates a spontaneous reduction of the methylene blue to MBH, which
is prevented from re-oxidation to MB+. A blue border surrounds the area, which is
darker than the rest of the solution. In the further course, a labyrinth-like pattern
formation takes place. After a while, the pattern becomes blurred.

Fig. 15.6 Various Turing-like structures of the PA-MBO-S system, such as a hexagonal patterns
and stripes and b tractor tire tracks. (diameter of petri-dish 8.5 cm) (Photo: M. Waltersdorf, P.J.
Plath)
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Fig. 15.7 Wavy surface of
the polyacrylamide gel. The
turing-like structures of the
PA-MBO-S system, such as
hexagonal patterns and
stripes, can also be clearly
seen on the surface structure
of the gel. (Photo: M.
Waltersdorf, P.J. Plath)

Figure 15.6a shows one of the well-known zigzag patterns made with the PA-
MBO sulfide system. The second interesting observation we were able to make, is
the formation of a pattern that looks like tractor tire marks. The formation of this
pattern is probably due to an overlay of dot patterns (Fig. 15.6b). The surface structure
of a hexagonal dot pattern can be seen in Fig. 15.7. The reflection of the chemical
processes within the gel in the wavy surface structure of the gel indicates that the
differences in the local surface tension are caused by the different concentrations of
the substances involved in the reaction.

15.3 The Blue Wonder (MBO-G-System) and the Catalytic
Memory [15]

Stefan Braun, Jörg Mühlisch and Torsten Ueckert examined the “Blue Wonder”
presented by Roesky [2] (1984) in their research internship in 1992 and 1993 [16].
They investigated the kinetics of the methylene blue-catalyzed oxidation of glucose
by oxygen in an alkaline solution in the continuously stirred tank reactor (CSTR).

If you carry out the classic “Blue Wonder” experiment of Roesky by adding the
components methylene blue, sodium hydroxide and glucose to the Petri dish and
stirring them with a glass rod, you immediately get a homogeneously looking blue
solution (Fig. 15.8a).

Immediately after the mixture has been homogenized by stirring, the solution
begins to discolor, as the methylene blue is reduced to leuko-methylene blue by the
glucose in the solution. However, this discoloration does not take place uniformly.
In some places, the solution remains a strong blue color. These blue lines represent
the old flow pattern of stirring the solution, which has long since ceased to flow in
this way, but is completely stationary now (Fig. 15.8b).

Along these blue lines, the leuko-methylene blue that occurs everywhere else is
oxidized again tomethylene blue by the supply of oxygen from the adjacent air. In the
viscous glucose solution, when stirring, oxygen-rich areas were created where layers
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Fig. 15.8 After stirring the mixture of methylene blue, glucose and sodium hydroxide. a 1 min
after combining the various solutions by stirring; the solution appears completely homogeneous;
b Another minute afterwards, the patterns of stirring of the viscose solution dominate the picture,
while the methylene blue in the rest of the solution has already been considerably reduced. (Photos:
M. Schröder and P.J. Plath)

of liquid of different viscosity and speed flowed past one another. At these former
borderlines, there is also an increased transport of oxygen into the now completely
“solidified” gel layer for a long time. In this way, due to the catalytic oxidation of
the glucose and the leuko methylene blue taking place on these lines, the former
flow pattern remains recognizable. It seems as if the gelled solution has retained a
“catalytic memory” of the former flow pattern for a while.

After about two hours, however, all the methylene blue that was still present is
now reduced to leuko methylene blue by the glucose (Fig. 15.9a).

The surface of the solution is continually exposed to atmospheric oxygen and
the glucose gel “ages”. In this way, oxygen slowly enters the gel again. However,
this does not happen in a homogeneous way; instead a very fine-grained convection
structure is formed (Fig. 15.9b). Like a string of pearls, small punctiform centers
emerge from which often several fine blue lines emanate. The oxygen reaches all
these points in the aging gel and oxidizes the leuko-methylene blue back tomethylene
blue.

Fig. 15.9 One hour and 51 min after the start of the experiment. a New structures emerge in the
aging gel. b Contrast-enhanced enlargement of (a) for a better visualization of the newly occurring
reaction convection patterns in the aging gel. (Photos: M. Schröder and P.J. Plath)
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The pattern formation described here is very complex. The gradient of the chem-
ical potential, e.g. of the oxygen penetrating the layer, could be a driving force in this
structure formation in the very complex reaction process. Unfortunately, the avail-
able data do not allow a decision about the reason for this structure formation at the
moment.

Based on the attempts by M. Schröder [15] (1990) and the work of Stefan Braun,
Jörg Mühlisch und Torsten Ueckert [16] in 1992/93, the student group Stefan Huth
and Niels Tobias carried out again the MBO-Glucose system (MBO-G system) in
the Petri dish in the winter-semester 1997/1998 [17].

The viscosity of the glucose solution depends on the pH-value of the solution.
Moreover, the reduction of methylene blue to leuko methylene blue requires an
alkaline solution. That is why Stefan Huth and Niels Tobias have changed both the
concentration of the methylene blue and the glucose content. Morever, they varied
the alkaline pH-values drastically in their attempts to perform the blue miracle in the
Petri dish.

They observed interesting pattern formation in the blue miracle in a Petri dish
after 2 min (Fig. 15.1). The glucose gel was produced from 20 ml glucose 2 M to
10 ml NaOH 2M and then covered with 20 ml methylene blue 10–3 M. The resulting
layer height was approx. 2.8 mm.

Even 30 s after starting the reaction, the homogeneously blue solution began
partially structuring (see Fig. 15.10a), but a few minutes later this structure disin-
tegrated again (see Fig. 15.10b). S. Huth and N. Tobias related their observations
to the formation of rolling cells in the Bénard experiment, which is schematically
represented in Fig. 15.11.

Fig. 15.10 Structure formation in the blue miracle in a petri dish of 15 cm in diameter; a after
0.5 min and b after 4 min. The glucose gel was produced from 20 ml glucose 2 M to 10 ml NaOH
2 M and then covered with 20 ml methylene blue 10–3 M. The resulting layer height was approx.
2.8 mm. (Photo: S. Huth, N. Tobias and P.J. Plath)
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Fig. 15.11 Sketch of the transport and reaction processes in the glucose gel layer the height of
which is almost 2.8 mm, which is in the order of magnitude of the cells between the limiting
reaction lines from colorless leuco-methylene blue to methylene blue (see Figs. 15.9b and 15.10b)

n

n

Fig. 15.12 Symbolic description of the polymerization of Acrylamide to Polyacrylamide with n
subunits

15.4 Some Final Remarks

First of all, it is absolutely clear that for all the experiments reported here which
are carried out in Petri dishes or, as in Roesky’s case, in a shaking funnel, it is
true that they represent closed systems with regard to the substances to be oxidized,
be it sulfides or glucose. This means that none of the structures observed here can
be stable. At most, they can be viewed as relatively stable for a certain period of
time. The long-term tests carried out over almost two hours prove this very clearly.
However, this does not mean that such transient structures should not be regarded
as scientifically interesting. After all, all living structures only exist as temporary
structures.

Gel formation through the polymerization of acrylamide or of glucose in alkaline
solution is crucial for what is happening and the structures that can be observed.
The respective gel not only serves to suppress undesired convection but is itself an
essential reaction partner.

The polymerization of acrylamide in aqueous solution is known to be a radical
chain reaction (see Fig. 15.12). Ammonium peroxodisulfate (NH4)2S2O8 serves as a
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radical starter [18] (see also Fig. 15.4). On the other hand, the oxidation of the sulfide
(Eq. 15.3) catalyzed by the methylene blue is also a thoroughly radical reaction, as
Resch, Field, Schneider and Burger already show in their reaction mechanism for
the MBO-S system [6] published in 1989. Fechner, Strasser Eiswirth, Schneider and
Münster (1999) also emphasize this in their simplified chemical mechanism for the
same MBO-S system if acrylamide is also taken into account explicitly [19]. The
observed very local “mini-eruptions” seem to be a typical structure which is closely
connected to the radical character of both the reactions together. Something similar
applies to the coupling between the surface tension and the chemical reaction, in
particular the polymerization of the acrylamides.

In the articles from 1989 and 1991, Field et al. assume that the methylene blue
is essentially involved in the oxidation of the sulfide ions via a radical reaction
mechanism, for example via Eq. 15.6:

MB+ + HS− → MB
◦ + HS

◦
(15.6)

We assume that this is also the case with the oxidation of glucose in a similar way.
The essential radical reaction mechanism is closely related to any gel formation.
The gel is part of the overall reaction process! However, this makes it difficult to
understand the process of the blue miracle on the basis of classical chemical kinetics,
because if the gel is involved, essential requirements for its use are omitted: the space
is no longer homogeneous, or the space plays a decisive role in the reaction.
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Chapter 16
Fractal Aggregation of Dictyostelium
discoideum

Peter J. Plath

Fig. 16.1 Aggregation cluster of NC4 Dictyostelium discoideum at the beginning of the aggrega-
tion, which marks the starting point of the measurements. Left Photo of the aggregation cluster
(R. Herbst, O. Kniemeyer (2021) Leibniz-HKI, with friendly permission); right black and white
transformation of a similar photo for better graphical evaluation

“The aggregation of Dictyostelium represents a very interesting phase in the life of
this organism, as it shows the transition from single cells to a multicellular organism”
[1].

This way, the biology students Inga Hense, Olaf Kniemeyer and Astrid Mielke
formulated their motivation in the project “Self-organization in chemical and biolog-
ical systems” supervised by Michel Vicker and the author in 1994/1995 to deal with
the “determination of the fractal dimension during the aggregation of Dictyostelium
discoideum”. For mathematical support, they worked together with the computer
science student Jan K. Plath.
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The transition from single cells tomulticellular organism is still very topical today
[2, 3].

At that time, the leading groups studying Dictyostelium discoideum were inter-
ested in the issues of information transfer between cells that lead to aggregation.
Particularly of interest was the formation of spiral waves that started from the
aggregation moud that formed in the center of the aggregation.

However, if one looks at the structure of the “rivers” of cells (see Fig. 16.1) that are
formed during the aggregation of cells, then these images have a great similarity with
the structures of corresponding source systems of rivers all over the world. There are
also certain undeniable similarities with the images of electrolytic zinc deposition
discussed in Chap. 5—“Fractal Zinc tree” of this book.

Therefore, the question we asked ourselves was: “Is it possible to describe the
temporal change of the structures during the aggregation of the Dictyostelium cells
in a similar way?” Are these also fractal structures?

16.1 Way of Life of Dictyostelium

As part of our work, we used two strains ofDictyostelium discoideum: the wild strain
NC4 and a laboratory strain AX2, which can grow in a liquid nutrient medium.

The wild strain lives in the litter layer of the forest floor as a single, freely moving
amoeba. As long as bacteria in the soil serve as food for the dictyostelium cells, they
multiply through cell division. If the food source is exhausted, the individual cells
gather to form strands, move radially to a self-organized center and thereby form
so-called aggregates.

The initially solitary amoeba aggregate in initially random centers when there is
a lack of nutrition. The formation of the aggregates is mediated by a chemotactic
signal. This happens through the messenger substance cAMP, a universal second
messenger within eukaryotic cells. After about five hours of “starvation”, some cells
release cAMP every 6–8 min [4].

The cells detect the cAMP and migrate in the direction of the signal for a few
minutes, after which they themselves release cAMP into the environment and remain
insensitive to a new signal for a few minutes. They are in the refractory state. The
refractory period means that the signal can only migrate away from the center; the
neighboring cells, which are closer to the center, are still refractory when the cell
they are stimulating releases its cAMP.

Since we carried out these investigations, many of the questions that we asked
ourselves at that time and those thatwe could not even ask have been comprehensively
answered for example by Michael Vicker [5–8], Stefan C. Müller [9, 10], Martin
Falcke [11], Cornelius J. Weijer [12, 13] and many other groups. In 2019, Cornelius
J. Weijer described more or less the current status in detail in a very readable review
article [14]. I will not go into this any further, but will instead focus on the aspects
that were of particular interest to us at the that time.
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16.2 The Fractal Dimension of the Aggregation
of Dictyostelium discoideum

The aggregation of Dictyostelium represents a very interesting phase of the life of
this organism, as it shows the transition of the single cells to a multicellular, differ-
entiated organism. If our assumption is correct that we can describe the aggregation
patterns with the methods of fractal geometry [15], then the temporal change in
these structures should be able to be described as the temporal variation of the fractal
dimension during the aggregation phase of the cells.

16.2.1 Preparation of the Samples

A SM5 agar was used as the nutrient medium for the NC4 strain, which was then
diluted in a ratio of 1:5 with KK2 buffer. This dilution is necessary because otherwise
the bacteria would grow too quickly and thus displace Dictyostelium discoideum in
the phase that is not yet exponential. First, an E-coli bacteria suspension was spread
onto the plates. This was followed by inoculation with a few spores of the NC4 strain.
These plates were then stored at room temperature in the dark for 48 h.

The liquid medium HL5 was used as a food source for the cells of the AX2 strain.
These cells nourish themselves by absorbing the nutrients from this medium.

In order to achieve aggregation in both the NC4 and AX2 strains, the cells were
carefully “washed”: The cells were rinsed with KK2 buffer with the agar into a
centrifuge tube and centrifuged for two minutes. The supernatant was poured away
and the pellet was redissolved with KK2 buffer.

This is necessary to remove all bacteria from themedium. The cells only aggregate
after a certain period of starvation. The washed cells can also be better observed and
documented.Afterwashing three times, the cellswere placedonplates thinly streaked
with KK2 agar. After 4–6 h, aggregation began in the AX2 strain. In the case of the
NC4 strain, the incubation period was 48 h on a SM5 agar with E. coli bacteria.

The following cell number concentrations were used for the aggregation:

1. NC4 378 cells/mm2

Due to the poor yield after centrifugation, the aggregation could only be carried
out with this number of cells. In spite of this low cell concentration, aggregation
occurred.

2. AX211,000 cells/mm2 (compare Hall et al. 1988) [16]

16.2.2 Observation of the Aggregation

The aggregations of the wild strain NC4 and the cultivated strain AX2 were recorded
directly from the microscope with the aid of a video camera (CCD-500). Individual
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structures were then selected from the video film and photographed with a reflex
camera. The time interval between the recordings was adapted to the rate of aggrega-
tion. These photographs were enlarged to photographs measuring 10 × 15 cm. The
photos of the aggregates were then copied onto an overhead transparency that could
be attached directly to the computer screen. With the help of the computer mouse,
the individual structures were circumnavigated and transferred to the computer for
numerical evaluation.

We used the box-counting method to determine the fractal character of the
aggregations [17].

Let N (s) be the number of squares with side length s, which are necessary to fill
a square area F in parquet, then it is known that the following applies.

N (s)s2 = F (16.1)

This can easily be transformed into the double-logarithmic expression:

ld(N (s)) = −2ld(s)+ ldF (16.2)

or more general:

log(N (s)) = −Dlogs + log f (16.3)

where D is the dimension of the space to be measured. But D does not have to
be a natural number. D can also be a positive rational number. Then the structure
examined is a fractal. This is the case when, as in the case of the aggregation images,
the area is not uniformly filled and, for example, only the squares in which there are
Dictyostelium cells are counted.

In order to determine the fractal dimension of the aggregation structure, square
grids of various mesh sizes with s = 4, 5, 6, 8, 10, 12, 15, 20, 40and 60 pixels are
placed over the structures. N (s) is now the number of boxes with the side length
of s pixels, in which cells are located. This box is then called a black box and
accordingPeitgen et. al. the fractal dimension D becomes now the special designation
box-counting dimension Db.

For the twoDictyostelium discoideum cell strains NC4 and AX2 in Figs. 16.2 and
16.3, each show only one aggregation structure and the associated calculations of its
fractal box-counting dimension Db.

Table 16.1 shows an overviewof the time course of the obtained fractal dimensions
of the aggregation structures in the two cell strains. The fractal dimension Db of NC4
is in the range of approx. 1.46–1.41, but for AX2 it is in the range of 1.71–1.59. This
suggests that the fractal dimension could be characteristic of the aggregation ability
of the respective cell strain. This is also suggested by the visual impression of the
aggregation pattern.

Moreover, a monotonous decrease in the box-counting dimension could be
expected in the course of continued aggregation. A decrease in dimension occurs
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Fig. 16.2 a Aggregation
cluster of NC4 Dictyostelium
discoideum 30 min after the
first photo (see Fig. 16.1). b
Estimation of the fractal
dimension of the aggregation
cluster shown in
(a) concerning Eq. (16.3); D
= 1. 414

over the entire observed period of aggregation in both cell lines, but it is not mono-
tonic. However, the correlation coefficients “cc” are in all cases so good with 0.999
or 0.998 that they cannot explain the fluctuations that occur over time. The question
of whether this is due to a lack of professionalism in the handling of these systems
or the complexity of the experimental system itself can best be answered by looking
at the relevant recent literature.

Using the example of STO-MEF cells, Bitter [18] shows in his doctoral thesiswhat
influence cell density has on aggregation and thus on the experimentally determined
fractal dimension. Strong variations of the fractal dimensions are observable within
time especially for lower cell concentrations P. Bitter claims that the mean particle
size of the aggregates are also responsible for the estimated fractal dimensions. For
sizes lower than20µmhegot dimensionof about 1.7which are close to the dimension
of the Witten & Sander model of diffusion limited aggregation [19].

Although P. Bitter investigated a different cell system and a different aggregation
pattern, his results given here can be understood as an explanation for our own results
regarding the Dictyostelium aggregation.
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Fig. 16.3 a Aggregation
cluster of AX2 Dictyostelium
discoideum; (the first photo,
i.e. arbitrary setting of the
starting point t = 0). b
Estimation of the fractal
dimension of the aggregation
cluster shown in
(a) concerning Eq. (16.3); D
= 1.677

Table 16.1 Comparison of the fractal dimensions Db of the aggregation structures of NC4 and
AX2 Dictyostelium discoideum cell strains

Aggregation phases Time (min) NC4
Db

Time (min) AX2
Db

1 0 1.457 0 1.677

2 30 1.414 12 1.69

3 60 1.44 32 1.707

4 90 1.408 78 1.587
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Chapter 17
Segregation and Growth—Consecutive
Kinetics of Beer Foam Decay
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Fig. 17.1 Beer foam in a glass: Does a good beer take seven minutes to froth? (Photo: P.J. Plath)
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17.1 Introduction

The decay of beer foam is observed millions of times a day (Fig. 17.1), but hardly
ever studied scientifically. An exception to this is the work of Leike [1] as well as of
Dale,Walker and Lyddiatt [2]. Sauerbrei [3, 4] was the first to present careful physic-
ochemical studies on the course of beer foam decomposition by standardizing the
start-up conditions using ultrasonic foaming and paying careful attention to temper-
ature constancy, defined foam volume, etc. She could show that the time evolution
of the foam volume during the foam decay can be described by a formula of the type
given in Eq. (17.1):

V (t) = V0e
−at ebt

−2.5
or, equivalently,

ln(V (t)) = ln(V 0) − at − bt2.5
(17.1)

V0 represents the foam volume at t = 0, i.e., immediately after foaming up; a is the
coefficient at the beginning of the exponential foam decay which is mainly caused
by drainage of the liquid beer, and b corresponds to diffusion due to rearrangement
of the bubbles in the further course of the foam decay.

Furthermore, she observed the formation of Apollonian structures in the reor-
ganization phase and determined for the first time the evolution of the bubble size
distribution functions during the decay of the foam. The main focus of this work was
to investigate the development of these distribution functions. However, in order to
formulate kinetics of the evolution of the individual bubble size classes, the amount
of available data was too small.

In her student research project (Forschungspraktikum) [5] and her diploma thesis,
Patzelt [6] continued this work to investigate the kinetics of individual bubble size
classes based on a sufficient amount of data. In doing so, she emphasized on deter-
mining the differences in the temporal development of foam decay at uncoated and
coated glass surfaces, i.e., in addition to the hydrophilic surface, the influence of a
hydrophobic surface is also investigated. The latter serves as a model for detergent
residues on a beer glass.

17.2 Experimental Results

The measurements were carried out in the rectangular glass vessel of 92 mm ×
51 mm × 150 mm (length × width × height) shown in Fig. 17.2, which was coated
with a hydrophobic silane layer on the right side (see red arrow). This coated glass
vessel was manufactured by the company Krüss GmbH and given to the working
group of Prof. Plath for these experiments.

Themeasuringglasswasfilledwith 140ml beer (HaakeBeckPils) at a temperature
of 24± 1 °C. In order to produce as little foamas possible and to prevent the formation
of a monolayer of beer foam, the vessel was tilted and the neck of the beer bottle was
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Fig. 17.2 Side view of the
glass vessel provided by
Krüss GmbH with silane
coating on the side indicated
by the red arrow. (Photo: P. J.
Plath)

held against the edge of the vessel. After filling, the beer in the vessel was foamed up
in an ultrasonic bath to achieve an approximately completed foaming. After foaming,
the vesselwas placed on a laboratory jack as quickly as possible and image acquisition
was started on the computer using the G&View® program. To record the temporal
development of foam decay, several image series were taken on both, the uncoated
and the coated, sides of the vessel using a CCD-camera horizontally pointing to each
side. Each image series consisted of 30 photos taken at a time interval of 10 s from
each other.

To demonstrate the foam decay, Fig. 17.3a, b show exemplarily two snapshots at
the beginning and after 100 s taken on the uncoated glass wall. In these images, one
can already see the increase in bubble sizes and the decrease in the number of bubbles

Fig. 17.3 Snapshots during beer foam decay taken at the uncoated wall of the glass; a immediately
after frothing up, b after 100 s. (Photo: G. Patzelt, P. J. Plath)
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Fig. 17.4 a Snapshot during beer foam decay taken at the uncoated wall of the glass after 230 s;
(Photo: G. Patzelt, P.J. Plath) b schematic representation of an Apollonian gasket (published by
Mathematica Stack Exchange [9])

during the first time-intervals. When the foam decay is progressing, rearrangement
becomes dominant and many smaller bubbles are replaced by few large bubbles.

At the end of the beer foam decay, several small bubbles arrange themselves in
the spaces between large bubbles (see Fig. 17.4a), which roughly corresponds to
an Apollonian arrangement. (The Apollonian packing of bubbles was shown even
more pronounced in earlier publications [4, 7].) In the Apollonian construction of
surface coverage by circular packings, circles are embedded close together by an
infinite process, with another circle drawn in each space between three touching
circles [8]. A finite set of Apollonian or Leibniz packings constructed in this way is
called ‘Apollonian gasket’ (see Fig. 17.4b).

17.3 Temporal Development of Individual Bubble Size
Classes

Using the foam analysis program FoamStar [10], developed from the MIRChem
GmbH in the group of Prof. Plath, the first 26 images of each series were evaluated
with respect to the bubble size distribution within the individual bubble size classes.
For this purpose, the bubble sizes were divided into 11 size classes of 50 µ each, i.e.,
the size class with the smallest bubbles covered the size range 0–50 µ, the next one
>50–100 µ etc., and that with the largest bubbles contained all ones with a diameter
larger than 500 µ.

Automatic foam analysis as well as semi-automatic identification by drawing
bubble diameters into the bubble picture was used to detect the individual bubbles,
determine their size and then classify them into the respective size class. The resulting
absolute bubble size distribution in the case of an uncoated glass wall is shown
exemplarily in Fig. 17.5 using 3-D images in two different views.

If one denotes the number of counted bubbles in the k-th size class at time t by
Nk(t) and the number of all counted bubbles at time t by N (t), the relative frequency
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Fig. 17.5 3D-diagram of the bubble size distribution Nk(t) of bubble sizes as a function of bubble
size classes k and time t , obtained from images of beer foam decay at uncoated side of the glass
vessel; a view from time axis and b view from axis of bubble size classes k

pk(t) at time t of bubbles in this interval is given by Eq. (17.2):

pk(t) = Nk(t)

N (t)
, k = 1, · · · , 11 (17.2)

The bubble size distribution pk(t) as a two-dimensional function of bubble size
classes k and time t is shown in Fig. 17.6a, b for the time series of beer foam decay
photographed on uncoated and coated walls, respectively.

From Fig. 17.6a, b, it can roughly be seen that the number of bubbles N1(t) in the
first size class k = 1, which contains all bubbles immediately after foaming, is more
or less monotonically decreasing within time. In the size classes with the next higher
bubbles, the number of bubbles initially increases and then decreases again to some
extent, while in the size classes with the largest bubbles, the number of bubbles is
comparatively low over time. In particular, in the case of time series of photographs
taken at the uncoated glass wall, the number of bubbles is slightly increasing again
in the end of foam decay.

To get a better idea of the reaction kinetics of foam decay, the function curves
of the relative frequencies pk(t) as a function of time are presented in multi-line
diagrams for selected bubble size classes k, see Fig. 17.7a, b, which reproduces the
time behavior described above.

17.4 Kinetic Modelling By A Multi-Step Consecutive
Reaction

The time dependence of the curves shown in Fig. 17.7 can be compared with that of
the concentration curves of the reaction kinetics of a multi-step consecutive reaction
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Fig. 17.6 3D-diagram of the relative frequency pk(t) of bubble sizes as a function of bubble size
classes k and time t , obtained from images of beer foam decay, a at uncoated side of the glass vessel
and b at coated side

A → B → C → D → . . . with no fundamental difference between the curves for
foam decomposition on the uncoated and the coated vessel side.

The reaction rates of a simple consecutive reaction of first order A
k1→ B

k2→ C
with the starting substance A, the intermediate B and the end product C as well as
the reaction constants k1 and k2, where the sum of concentrations cA + cB + cC is
constant, are given by the well-known differential equation system (17.3),
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Fig. 17.7 Temporal development of the relative frequency pk(t) of bubble sizes for selected size
classes k, a in the case of uncoated side of the glass vessel and b in the case of coated side

dcA
dt = −k1cA

dcB
dt = k1cA − k2cB

dcC
dt = k2cB

(17.3)

The solution of this equation system is shown in Eq. (17.4):

cA = cA0e−k1t

cB = cA0
k1

k2−k1

(
e−k1t − e−k2t

)

cC = cA0
(
1 − k2e−k1 t−k1e−k2 t

k2−k1

) (17.4)
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Fig. 17.8 Example for the reaction kinetics of a simple consecutive reaction. The sum of
concentrations cA + cB + cC is constant (= 1) at each time point t

with the initial concentrations cA0 > 0 and cB0 = cC0 = 0 at t = 0. The concentra-
tion curves cA, cB and cC of a simple consecutive reaction are shown as an example
in Fig. 17.8.

If one extends the simple consecutive reaction of first order A
k1→ B

k2→ C to

a multi-step consecutive reaction of first order according to A
k1→ B1

k2→ B2
k3→

B3
k4→ · · · kn→ Bn, n ≥ 2, the differential equation system of Eq. (17.3) is extended

by the further concentration curves, as indicated in Eq. (17.5):

(a)
dcA
dt

= − k1cA

(b)
dcB1
dt

=k1cA − k2cB1

(c)
dcB2
dt

=k2cB1 − k3cB2

(d)
dcB3
dt

=k3cB2 − k4cB3

...

(e)
dcBn
dt

=kncBn−1, n ≥ 2 (17.5)

This corresponds formally to the reaction kinetics of the consecutive intermediates
B1, B2 and B3 and the final product Bn. Here, again the sum of all concentrations
is constant and the concentration of the final product approaches this constant at the
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Fig. 17.9 Consecutive kinetics with feedback; a to initial bubble size class k = 1 and b to bubble
size classes k = 1, 2. The sum of all concentrations is constant

end of the reaction for large t-values, whereas those of the other substances converge
to zero (compare Fig. 17.8.)

On the other hand, the time developments of the relative frequencies pk(t) of the
bubble size classes k tend to constant values greater than zero at the end of foamdecay
and, especially in the case of the uncoated wall, increase slightly again for small k.
To reproduce this time behavior with consecutive kinetics, we introduce feedback of
the concentration of the final bubble size class to that of the initial classes (see e.g.,
Fig. 17.9).

The rows (a) and (e) or (a), (b) and (e) of Eq. (17.5) then change according to
Eqs. (17.6) and (17.7), respectively.

(a)
dcA
dt

= − k1cA + kn+1cBn

...

(e)
dcBn
dt

=kncBn−1 − kn+1cBn (17.6)

(a)
dcA
dt

= − k1cA + kn+1
/
2cBn

(b)
dcB1
dt

=k1cA − k2cB1 + kn+1
/!2cBn

...

(e)
dcBn
dt

=kncBn−1 − kn+1cBn (17.7)

Examples for both, Eqs. (17.6) and (17.7), are shown in Figs. 17.10 and 17.11,
where all reaction constants ki are set to 1.0; the sum of all concentrations is constant
equal cA(t = 0).

Figures 17.10 and 17.11 show that the temporal developments of the relative
frequencies pk(t) of bubble size classes k can in principle be described by consecutive
kinetics with feedback. By varying the reaction constants ki , a more detailed fit to
the reaction patterns is possible as demonstrated in Fig. 17.12.
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Fig. 17.10 Example for the consecutive reaction kinetics with feedback of bubble size class k = 6
to bubble size class k = 1 and all reaction constants ki = 1.0. The sum of all concentrations is 1.0
for all STEPS dt

Fig. 17.11 Example for the consecutive reaction kinetics with feedback of bubble size class k = 6
to bubble size classes k = 1 and k = 2 and all reaction constants ki = 1.0. The sum of all
concentrations is 1.0 for all STEPS dt

17.5 Segregation and Agglomeration of Bubbles

We would like to emphasize at this point that the temporal developments of foam
decay shown in Figures 17.6 and 17.7 are not due to concentrations of chemical
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Fig. 17.12 Example for the consecutive reaction kinetics with feedback of bubble size class k = 6
to bubble size class k = 2 with varying reaction constants ki . The sum of all concentrations is 1.0
for all STEPS dt

substances, but rather to time dependencies of the relative frequencies pk(t) of the
bubble size distribution in the bubble size classes k.

Another method of visualizing the evolution of such distributions is applying
diagram or partition lattices according to Ruch [11] which we have already used
extensively in our previous work [4, 12–14]. Figure 17.13 shows exemplarily the
11-dimensional partition lattice with the time sequence of the rounded bubble size
distributions determined from the relative frequencies pk(t) and normalized to k =
11 at the individual time points t during foam decay on the uncoated glass walls.

From both, the kinetics and the course in the partition lattice, one can see that the
numbers of small bubbles decrease in the beginning of foam decay, but increase again
at the end. Furthermore, as the bubble sizes grow in the initial time intervals, they
are more uniformly distributed than at the end of the foam decay where segregation
and agglomeration of bubbles takes place. These effects are particularly pronounced
when decaying on uncoated glass walls.

In our previous publication, we explained this behavior by drainage in the begin-
ning of foam decay and reorganization of bubbles to Apollonian arrangements at the
end. But what could be the reason that bubbles grow to a certain size or agglomerate
and in the spaces in between many smaller bubbles are distributed (see Fig. 17.14)?

We assume that during foam decay, especially on uncoated glass walls with a
surface that is not smooth at all, a few large bubbles will burst at the defects of the
glass surface, i.e., they will simply be broken. The bursting of these large bubbles
then leads to the formation of many small bubbles again. It should be emphasized
that this only happens at the end of the foam decay, making the difference between
uncoated and coated glass walls. In our kinetic model of a multi-step consecutive
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Fig. 17.13 11-Dimensional partition lattice with the time sequence of the rounded bubble size
distributions at each time points t during beer foam decay on the uncoated glass walls. The partitions
of bubble size distributions are shown in the boxes with red background; the numbers of the time
steps t are indicated above or to the right of the boxes. The red arrows denote the transition between
the different time steps
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Fig. 17.14 Detailed
representation of an
Apollonian bubble size
arrangement at the end of
foam decay. (Photo
processed by P. J. Plath)

reaction, this effect of segregation is simulated by the feedback of bubble size classes
with larger k-values to those of smaller k-values. In the case of the partition lattice,
this corresponds to transitions to higher ordered distributions.

Furthermore, we suppose that this decay of single large bubbles into many small
bubbles occurs spontaneously and is a fractal event. Referring to a work by Schwi-
etering on fractal sounds [15], wewould like to compare this process with an ice cube
thrown into a liquid producing a strange sequence of cracking sounds, or with a drop
of water falling into a hot pan where it explodes into many smaller drops, then these
drops fall back into the oil and explode again, etc., until everything is vaporized.

The beer foam decay of the liquid enriched with CO2 bubbles, which is character-
ized by increasing bubble sizes at its beginning and spontaneous decay of individual
large bubbles at its end, can also be interpreted as a liquid/gas system that segregates
itself . In the following Chap. 18 of this book, we discuss another self-segregating
system in which alkali feldspar and plagioclase are separated in the liquid granitic
magma under suitable pressure/temperature conditions.

Well then, cheers!
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Chapter 18
Rapakiwi Granite—An Ancient
Fossilized Liesegang Experiment?

Peter J. Plath

Fig. 18.1 Karelian red—a Rapakivi granite in our kitchen, with the inner ellipse diameters 5.3 and
6.2 cm (Photo P.J. Plath)

When we bought our old house, which stands on large granite stones as is customary
in the country, we had a kitchen buffet made of red granite built into it (Fig. 18.1).
It matched the style of the house and we liked it. I hadn’t thought about the pattern
of this granite. However, when I was writing the chapter on Liesegang structures,
one day I noticed the special structures in our kitchen buffet: are this also Liesegang
patterns? So, first I asked our stonemason what kind of granite he had sold us at the
time. “That’s Karelian Red” he told me. This not exactly comprehensive information
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still helped me. The granite “Karelia red” occurs on the border between Finland and
Russia and is a popular granite for representative buildings.

The Karelia red granite belongs to the group of Rapakivi granites [1] (rapakiwi,
Finnish: bad or rotten stone) which are named this way because of its light weath-
ering. It contains oval inclusions made from orthoclase feldspars, which are often
surrounded by a plagioclase fringe. They originated in the Young Algonkian at the
end of the Precambrian [2].

However,KarelianRed, also calledBalticRed [3], in our kitchen is a frost-resistant
and polishable natural stone which is distributed worldwide. Baltic Red was created
1.2 billion years ago in the Precambrian. The large, rounded potash feldspar deposits
are randomly distributed in the granite and usually contain biotite crystals. Around
the large ovoide, there is a border of red potassium feldspars, quartz and biotite [4].

There is a rather extensive geological literature on the formation of Rapakivi
granite, especially of the Wyborg type (Wyborgite), which also includes the Baltic
Red Granite [5]. In particular, the question of how the round alkali feldspar crystals
(ovoid) come about, which are quite often surrounded by plagioclase and quartz
crystals, is discussed. The other question deals with the formation of rings, e.g. from
quartz crystal, in the feldspar ovoides.

It is assumed that “the cores of the investigated feldspars and quartz crystals were
formed under pressures of 5–6 kbar (at a depth of around 20 km) and temperatures of
around 680–720 °C. The outer parts of the same crystals only formed at pressures of
1–2.5 kbar, i.e. in the uppermost crust of the earth and at temperatures of 650–750 °C
[5, 6].”

In order to explain such a sequence of rings in the ovoid as shown in Fig. 18.2 in
this way, an extremely complicated sequence of geological events is required, which,
however, seems to me to be quite unlikely.

“To explain such formations, the alkali feldspars must have been repeatedly
exposed to changing environmental conditions. Presumably these crystals got into
different hot or chemically differently composed areas through convection move-
ments within the magma. An intense movement of the crystals in the magma until
shortly before solidification would also make the juxtaposition of ovoides with and
without fringes and the appearance of ovoides in the midst of idiomorphic crystals
more understandable [5].”

In my kitchen countertop, there are a large number of very different, large and
small ovoides with none or several rings, and they are close together. Looking on
our own experiments on Liesegang ring formation (compare Chap. 3 in this book), I
come to the assumption that there has to be a much simpler explanation for the rings
in the feldspar ovoides!

I just see my granite countertop as my very, very old experimental laboratory. The
Wiborg Parakivi granite, i.e. my Karelia red granite slab, is approx. 1.45–1.65·109

years old [5]. I can’t change anything about the experiments that were carried out in
the ascending magma at that time. However, I can compare them with experiments
that could be carried out today.
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Fig. 18.2 Karelian Red ovoide with several internal plagioclase rings and grey plagioclase areas
in the outer part (top left) and dark brown red quartz crystals around the ovoide. The central alkali
feldspar ovoide is by no means a monolithic single crystal but consists of many crystals. (Photo P.
J. Plath)

18.1 Segregation of a Fluid and Subsequent Ostwald
Ripening

When I see how densely and irregularly the many different sized feldspar ovoides
lie in front of me on the kitchen worktop, an image immediately comes to my mind:
a liquid that segregates itself.

The liquid granitic magmawill segregate at a suitable pressure and/or temperature
if the conditions overstep a critical point. If this process runs slowly enough (very
carefully slowing down the parameters, otherwise segregation would not appear to
such an extent), according to the process of Ostwald ripening, the many very small
droplets that were created first will dissolve again in favor of fewer larger droplets,
which will grow more and more. At the end of this process, only the more or less
large feldspar ovoides will remain.
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18.2 Transformation to a Liesegang System

In this way, the feldspar ovoides are created as large droplets of liquid with a high
surface tension compared to the surrounding silicate liquid. It is easy to imagine
that an amorphous, very tough feldspar gel is created from the liquid feldspar in the
ovoides when the pressure and temperature conditions change slightly.

In the areas between the feldspar ovaries transformed into a gel, i.e. their surround-
ings, there is still the other, may be still liquid, silicate part of the now separated
granitic magma. That would be an almost classic Liesegang arrangement, as we
know it from test tube experiments. In the case of the corresponding 2D Petri dish
experiments, the electrolyte outside the gel system is usually in the center. This
electrolyte can definitely be present in solid form as a salt, as the original experi-
ments by Liesegang show. In our case, the “outer electrolyte” is located in the spaces
between the feldspar gel ovaries. This is an inverse Liesegang arrangement. The
“outer electrolyte” is really outside the gel body.

In the classic Liesegang experiment, ions of the “outer electrolyte” diffuse into
the gel and react there with the ions of the “inner electrolyte” present here, causing
a precipitation reaction. These reaction diffusion systems, in which locally fixed
pattern formation of the precipitates occurs, usually has ring disks in the test tube
or a sequence of rings around the center of the external electrolyte in the 2D case
of the Petri dish experiments or spherical shells around the center of the sphere in
suitable 3D experiments. (See Chap. 3 in this book).

If in case of inverse Liesegang arrangement, ions migrate from the surface of the
ovoid into the center, which lead to precipitation reactions, then this should also lead
to the formation of ovoid surfaces or spherical surfaces in the body of the ovoid as
well. Of course, these do not have to be closed areas. They can also have a fractal
structure, so that local accumulation of precipitation products can occur within the
respective areas.

Now the gel itself is a thermodynamically unstable arrangement. The gel will
crystallize if it only has enough time for it, e.g. if it does not dry out in the meantime.
But the precipitated products will also change from the amorphous to the crystalline
state for the same reason because of their instability. This would happen primarily
in the places where the larger accumulations in the fractal spherical surfaces were
previously.

What kind of “electrolyte” could it be in this case? The alkali feldspars found in the
basic body of the ovoid can be described by the general formula: NaxK1−xAl Si3O8,
while the plagioclase feldspars, which especially form the edges of the ovides, are
classified by the formula: NaxCa1−xAl2−xSi2+xO8. If the potassium ions of the alkali
feldspar are exchanged by calcium ions, then the alkali feldspars cum grano salis
are converted into plagioclase feldspars. Figure 18.3 shows that this is not a simple
process, but is accompanied by a variety of conversions. Even more, there can be
miscibility gaps and associated segregations! In addition, the alkaline feldspars and
the plagioclase feldspars differ in their crystal dress [7, 8].



18.2 Transformation to a Liesegang System 397

Fig. 18.3 Ternary phase diagram of the feldspars (at 900 °C) modified from N.N. Greenwood, A.
Earnshaw—Chemistry of Elements (1998) - S. 357, Pergamont Press (1990)-S. 414 [9]

The phase diagram inFig. 18.3 shows the situation in the rising and coolingmagma
only in a very simplified manner, because it only takes into account the situation at
900 °C and does not take the pressure into account. If the two physical quantities
pressure and temperature are explicitly taken into account, further miscibility gaps
occur.

The Parakiwi Karelia red, however, shows a lot of well-developed biotite
crystals in the edge of the ovoides. These are also known under the
names magnesium iron mica or dark mica with the general formulae:
K(Mg,Fe2+,Mn2+)3[(OH,F)2|(Al,Fe3+,Ti3+)Si3O10] (Fig. 18.4).

Biotite crystallizes from rising igneous rock melt just before feldspar and quartz
when the magma cools to around 800–700 °C (phase of main crystallization). It
forms paragneses with potassium feldspar and plagioclase. So it is geologically often
associated with these minerals [11]. The biotite belongs to the leaf or sheet silicates
where one silicon atomof the underlyingSi4O10 unit is replacedby an aluminumatom
[12]. Even if the biotites according to Strunz are no longer regarded as independent
minerals but as mixed crystals of the phlogopite KMg3[(F,OH)2|AlSi3O10] [13], this
does not change our argumentation.

Now I have almost all the necessary ingredients together to explain the idea of
the self-organized Liesegang structures of the Rapakiwi Karelian Red on my kitchen
table in a comprehensible way. The leafy aluminosilicate biotite contains, among
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(a) (b)

Fig. 18.4 a Rapakiwi Karelian red; biotite crystals surround the alkaline feldspar ovoid. The inner
grey Liesegang ring made of plagioclase also contains some biotite crystals. (Photo P. J. Plath); b
Biotite crystal [10]

other things, very easily mobile divalent ions that are required to balance the charge
for the aluminum atoms built into the layered silicate. They represent the source
for the diffusion of calcium ions or magnesium ions, which are responsible for the
formation of the pagioclase rings in the feldspar gel or in the tough, just liquid alkali
feldspar.

The precipitation of compounds insoluble in aqueous gels, which is so typical
for the Liesegang structures, is replaced in the Parakiwi by the precipitation or crys-
tallization of plagioclase in the still liquid or gel-like alkali feldspar. Under these
conditions, there is a strong miscibility gap between alkali feldspar and plagioclase,
which corresponds to the insolubility of the precipitation products in the classic
Liesegang experiment.

18.3 Special Plagioclase Liesegang Patterns

It is plausible to assume that when the solutions of alkali feldspar and plagioclase
are separated, the previously crystallized biotite mica is localized in the plagioclase
solution.

The segregation of the liquid igneous rock can be compared well with the forma-
tion of the beer foam (see Chap. 17). If the beer bottle is opened, the beer/CO2

solution separates and the CO2 gas bubbles are created, which are surrounded by the
liquid lamellae of the beer. This is the beer foam. It is well known that foams of this
type are very well suited to separating wettable particles from non-wettable ones,
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which is used in the many flotation processes in engineering and in the household.
An example of this is ore enrichment through flotation, e.g. of low-grade copper
ores, where the valuable copper ore in the lamellae of the foam is separated from the
lighter gangue, which sinks to the bottom [14].

In our case of the separating igneous liquid, the still liquid alkali feldspar ovaries
are comparable to the gas bubbles and the still liquid plagioclase fringes correspond
to the liquid lamellae of the foam. The previously crystallized biotite mica crystals
are held in them (see Fig. 18.5).

Like the plagioclase lamellae, these biotite mica crystals now represent the reser-
voir for the diffusion of divalent cations such as Ca2+ and Mg2+, Fe2+ into the alkali
feldspar.

A first precipitation or crystallization of plagioclase in the interior of the alkali
feldspar gel occurs when the “solubility product” is exceeded, i.e. when the alkali
cations Na+ and K+ present there are exchanged by the divalent alkaline earth cations
in a sufficient number of alkali-feldspar units. Since these compounds are notmiscible
with the alkali feldspar, they must precipitate as separate very small plagioclase and
biotite crystals.

If the process proposed here, which is very similar to the Liesegang precipitation
process, describes the situation largely correct, the corresponding pattern formation
phenomena as in the classic Liesegang experiments should also be observed. This
includes in particular the formation of several consecutive rings. In Figs. 18.1 and
18.2, this form of pattern formation can be seen quite well and thus fully confirms
our assumptions.

Fig. 18.5 Karelian red; the gray plagioclase hem of the alkali feldspar ovoides (size of the axes
of the inner ellipse are 1.5 cm and 2.0 cm) can be seen as the “zeroth Liesegang ring”. This ring
is surrounded on the outside by biotite crystals. The “first” plagioclase Liesegang ring inside the
ovoid is also clearly recognizable, especially since it is associated with the biotite mica. Several
neighboured alkali feldspar ovoides separated by plagioclase lamellae containing biotite crystals
mark the picture. (Photo P. J. Plath)
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18.4 Fixation of the Pattern by Crystallization

It is regarded as an unmistakable sign of the presence of a single crystal in granite
when the accessible surface reflects light as a compact surface [5]. Figure 18.6 shows,
using the example of an unworked or unpolished surface of Karelian Red Granite,
that it only reflects light at a certain angle, while otherwise it appears to the observer
as a rough, red surface. In Fig. 18.6a the hexagonal structure of the single crystal
of alkali feldspar is clearly recognizable. However, there are no Liesegang pattern
observable.

The formation of such large single crystals is possible if the time for the trans-
formation of the gel or the viscous liquid is long enough and if no other crystal
formation, such as e.g. by the formation of plagioclase or biotite, the formation of
the feldspar crystals disturbs. An alkali feldspar single crystal that fills the entire
ovoid and at the same time contains one or more plagioclase rings with biotite crys-
tals is a contradiction in terms. Of course, three-dimensional lattice defects can also
occur in single crystals, but these would not take on macroscopic dimensions.

“Inclusions are solid foreign phases that belong to this type of three-dimensional
lattice defects in the crystal. Excretions (precipitates) are special cases of inclusion,
in which the foreign phase from the crystal itself is formed. This is the case, for
example, when the minority component in the interior of the crystal forms its own
phase when a solid solution cools. Since volume defects distort the surrounding

a) b)

Fig. 18.6 Just the same unpolished Karelian red granite slab: a two larger, separate areas of alkali
feldspar can be seen, only the biotite mica flakes glitter in the light; b by varying the angle of
incidence of light, one of the two alkali feldspar areas can be recognized as a single crystal through
the reflection. The length of the reflecting single crystal is about 2.0 cm (Photo P. J. Plath)
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crystal, they are surrounded by a zone of higher concentration of low-dimensional
lattice defects [15].”

However, if these three-dimensional lattice defects reach macroscopic sizes, this
should no longer be understood as a disruption of the original crystal lattice, whose
lattice should have the translational symmetry on the length scale of the unit cells
of the crystal. In the macroscopic case of the disturbance, however, this translation
symmetry is no longer given, not even piece by piece. In the case of Fig. 18.7a, the

a) 

b) 

Fig. 18.7 Just the same Alkali feldspar ovoide of unpolished Karelian Red with a Liesegang ring
in the ovoid; a glimpse of reflections on the different crystals; b no reflection at all; However, one
can detect all the different single crystals of alkali feldspars and plagioclase and biotite
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slight degree of reflection shows that the orientation of the crystal planes is never-
theless retained in individual sub regions. Nevertheless, due to the “free” orientation
of a large number of small crystals in the ovoid to a certain extent, these can be filled
in practically any shape without the need for a previous melting of these areas, as is
sometimes claimed [5].

These considerations show, however, that the Liesegang pattern formation
precedes the crystallization and cannot only take place in its aftermath. Liesegang’s
crystallization of plagioclase in the alkali feldspar gel is therefore also the reason
for the three-dimensional lattice disorder and, as a result, the poly-crystallinity. The
formation of the biotite crystals fits into this picture of the crystalline Liesegang
pattern formation, because the “easy” displaceability of the crystal planes in the
mica enabled them to adapt to the occurring shear forces particularly well. Biotite or
phlogopite is still stable even at a pressure of 70 kbar, which corresponds to a depth
in the earth of over 200 km.

“Biotite or phlogopite is still stable even at a pressure of 70 kbar, which corre-
sponds to a depth in the earth of over 200 km” [13]. “Biotite and other phyllosili-
cates tend to recrystallize laterally when exposed to hot pressure, while quartz and
feldspars tend to remain granular. The cleavage areas correspond to the direction of
the maximum tectonic shear forces [11].”

18.5 Three Dimensional Plagioclase Hems of the Alkali
Feldspar Ovoides

Three dimensional plagioclase hems of the alkali feldspar ovoides.
There is a discussion about why the plagioclase fringes of the alkali feldspars are

present one time and completely absent another time, even in the same stone [5].
It seems that the disputants are completely overlooking that the feldspar ovaries

are obviously three-dimensional, not two-dimensional structures, and that the plagio-
clase hems, whether thin or thick, have a certain width. If you now carry out corre-
sponding flat cuts, spherical sections can arise that sometimes showvery thick plagio-
clase hems (cf. Fig. 18.8) while others hardly show such rings. The plagioclase hems
should not be imagined as closed spherical shells, because the liquid plagioclase
lamella ruptures when it crystallizes.

Furthermore, it can happen that the cuts are so close below the plagioclase border
that no Liesegang rings are affected, but this does not mean that there was no
Liesegang structure formation here (cf. Fig. 18.8a).

Fortunately,whencuttingmy2.8 cm thickRapakiwiKarelian redkitchenworktop,
a few larger alkali feldspar ovaries were cut through in such a way that the three-
dimensional shape of the Liesegang structures was clearly preserved (see Fig. 18.9).

It seems to be certain that the structure formation in the alkali feldspar ovides of
the Rapakiwi granites of the Karelian Red type but also in the Karelian Brown type
can be understood as a Liesegang pattern formation. However, much remains to be
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a) b)

Fig. 18.8 Plagioclase hems of the alkali feldspar ovoides with sections in which the stonemason
accidentally ground off only the outer shell of the alkali feldspar ovoides located in the center of
the figures. a Visible part of the ovoide, length 1.5 cm, width 0.7 cm; b visible part of the ovoide,
length 1.5 cm, width 1.2 cm

a) b)

Fig. 18.9 “Pseudo three dimensional picture” of Rapakiwi granite Karelian Red in my kitchen
with an alkali Feldspar ovoid with up to five Liesegang shells of plagioclase and Biotite; the granite
slab was photographed (Size of the ovoid along the edge; 4.5 cm; the thickness of the worktop is
2.8 cm); a from above and b from the side

researched, e.g. the acidity has not been discussed here, nor has the complex temper-
ature, pressure and mixing behavior of the many components been comprehensively
discussed. This open ending is perfectly in the spirit of this book.
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