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Abstract. Population ageing has become a severe problem worldwide. Human
activity recognition (HAR) can play an important role to provide the elders with
in-time healthcare. With the advantages of environmental insensitivity, contact-
less sensing and privacy protection, radar has been widely used for human activity
detection. The micro-Doppler signatures (spectrograms) contain much informa-
tion about human motion and are often applied in HAR. However, spectrograms
only interpret magnitude information, resulting in suboptimal performances. We
propose a radar-based HAR system using deep learning techniques. The data
applied came from the open dataset “Radar signatures of human activities” created
by theUniversity of Glasgow.A new type of hybridmapwas proposed, which con-
catenated the spectrograms amplitude and phase. After cropping the hybrid maps
to focus on useful information, a convolutional neural network (CNN) based on
LeNet-5 was designed for feature extraction and classification. In addition, the
idea of transfer learning was applied for radar-based HAR to evaluate the classifi-
cation performance of a pre-trained network. For this, GoogLeNet was taken and
trained on the newly-produced hybrid maps. These initial results showed that the
LeNet-5 CNN using only the spectrograms obtained an accuracy of 80.5%, while
using the hybrid maps reached an accuracy of 84.3%, increasing by 3.8%. The
classification result of transfer learning using GoogLeNet was 86.0% .

Keywords: Human activity recognition · Convolutional neural network ·
Transfer learning · Radar ·Micro-Doppler · Hybrid maps

1 Introduction

1.1 Context

The development of public health and disease control has contributedmuch to increasing
human life expectancy. However, along with the decreased average fertility rates, human
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longevity has resulted in the global issue of population ageing.World Population Ageing
Report 2019 by the United Nations [1] summarised the previous trend of the population
distribution in the world for the past two decades and estimated the trend for the next
30 years, from 2019 to 2050. The result showed the proportion of the global population
for the old (aged over 65) had experienced a continuous increase, from around 6% in
1990 to 9% in 2019. Following the growing trend, the projected ageing population in
2050 would account for nearly 16%.

Human Activity Recognition (HAR) aims at conducting classification tasks to accu-
rately identify human activities for further promoting proactive and timely healthcare
[2]. Up to now, the most common methods of human activity detection are vision-based
detection like using cameras and sensor-based detection such as using wearable sensors,
radar and smartphone sensors [3, 4]. Among all the methods, radar technology out-
performs the other for the following aspects [5–8]. Environmental insensitivity: radar
detection is not influenced by harsh light; Contactless Sensing: users do not need to
wear or connect with any devices, which provides a high capability of comfort and
convenience; Privacy Protection: radar technology collects human activity data without
showing their actual images, ensuring the privacy of individuals.

Much of the research [3, 9–11] around radar-based human activity recognition
revolves around micro-Doppler signatures (spectrograms) [12], which provide rich
information for classification.

1.2 Current Research Progress

Feature Extraction
In the research on HAR, it is apparent that one essential part is to extract features from
the spectrograms and identify the movements represented in them. It can be found in
previous research works that the features commonly used can be divided into several
categories:

Physical Characteristics
Physical characteristics are characteristics with physical meanings. For instance, Kim
[13] selected six features from a micro-Doppler map. Six features were extracted from
the spectrogram, including the torso frequency where the scattering is strongest, the total
bandwidth, the overall frequency shift, the Doppler bandwidth without micro-Dopplers,
the normalised standard deviation (STD) of the signal intensity and the activity period.
These are then used for classification. Further examples can be found for healthcare and
animal welfare applications with physical characteristic extraction [3–5, 14–21].

Micro-doppler Maps (Spectrograms)
One main inconvenience of the feature extraction method based on extracting hand-
crafted features is that it relies heavily on the know-howof the radar engineer.Asmachine
learning developed, many researchers began to directly consider the grayscale of RGB
images of spectrograms as features. Then, convolutional neural networks derived from
vision-based classification were applied to those images for classification [3–7, 10, 22].
Compared with the conventional hand-crafted feature extraction approaches, the use of
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deep learning technology can increase the accuracy in classification. Through training
and testing of a large number of data samples, deep learning seeks out the mapping
relationship between data features and labels [23].

Classification Approaches
There havebeennumerous researchworks in solvingHAR tasks.Because themovements
of the human body are complex and each micro-motion can produce a unique micro-
Doppler signature, many researchers have delved into extracting specific features from
the micro-Doppler spectrograms and using classifiers to perform specific classification
tasks.

At the start, conventional machine learning techniques, such as random forest,
support vector machine (SVM) and K-nearest neighbour classifiers, were commonly
researched. In 2009, Kim’s team firstly used a support vector machine to identify activ-
ities from human micro-Doppler features [13]. In the experiment, the volunteers were
asked to perform seven different activities. Then, they designed a variety of empiri-
cal features for each movement and extracted parameters according to those features.
Finally, the team classified those seven activities by training a support vector machine
model and received an average classification accuracy of 91.4%. In [24], a random forest
was performed to classify the data information in a real-time manner. As a result, the
average gesture recognition precision reached over 90%.

In recent years, with the development of GPU and deep neural networks, they have
been applied to the human activity classification based on micro-Doppler characteristics
as a powerful classifier. Deep learning technology can implement feature extraction
and activity classification simultaneously, with minimal input from the human operator.
In [25], the authors detected the micro-motion information of drones and obtained the
micro-Doppler maps. They then carried out frequency-domain transformation to the
Doppler features and obtained the cadence-velocity diagram (CVD). The two feature
maps were merged and classified by the deep convolutional neural network. As a result,
the accuracy reached more than 90% in drone classification. Kim [26] directly applied
a deep convolutional neural network to the raw radar micro-Doppler spectrograms for
classifying seven human activities. An accuracy of 90.9% was achieved.

Compared with traditional machine learning techniques, neural networks can inde-
pendently extract features from the input data and reach higher classification accuracy.
Deep learning techniques do not depend on the prior knowledge of the input data and
tend to obtain better classification performance in more complex situations, at the price
of increased need of labelled data amount for proper training.

At present, most of the research on radar-based HAR utilise the micro-Doppler map
for feature extraction and activity classification.However, for some activitieswith similar
movements, one map can be easily identified as the other map, producing the wrong pre-
diction. Therefore, research attention on alternative or complementary radar data repre-
sentations such as hybrid 2Dmaps to reduce the rate of false alarms increases. In [27], the
authors incorporate the three-domain maps, time-Doppler map (micro-Doppler), time-
range map and range-Doppler map. Three stacked auto-encoders were used to extract
features and then fed the features into three softmax classifiers. The results showed that
the classification accuracy gained after combining the three classifiers reached 96%,
increasing from 93.3% using the micro-Doppler map, 95.4% using the range map and
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90% using the range-Doppler map. From the study, it can be observed that though the
micro-Doppler spectrograms contain rich information of the raw radar data, the possi-
bility of false alarms is a challenge in radar-based HAR. Therefore, it is necessary to
combine more information with the micro-Doppler maps to improve the HAR system
performance.

For a raw radar echo received, the data contain I and Q channels, which can be
synthesised into a complex signal. After the radar signal processing, the result is still
in the complex form [8, 28], through which the magnitude and phase information can
both be extracted. However, the majority of the researches on radar-based HAR only
investigate the effect of the magnitude information but ignore the effect of the phase
information. In [29], the authors use Histogram Oriented Gradient features from range
maps exploiting both the phase information showed superior classification performance
compared to amplitude range maps.

Hence, the question arises on whether processing the phase of the data can bring any
benefit for classification. In order to increase the activity classification performance and
reduce confusion between activities, we propose a novel approach by jointly processing
the amplitude and the phase information of micro-Doppler patterns for recognition.

The remainder of this article is organised as follows. Section 2 - Methodology and
Implementation - introduces the implementation of the HAR system in detail. With the
hybrid maps created after radar signal processing, the implementation procedures of
the self-designed CNN and GoogLeNet are explained in detail. Section 3 - Results and
Discussion - describes the hardware and software environments for the experiment and
presented the classification results in three situations. Then, it discusses the classification
performances, the results of the classification will be presented and analysed. Finally,
Sect. 5 - Conclusions and Future Work - summarises the contents and major contribu-
tions. Then, based on the discussion section, it identifies possible directions for further
research.

2 Methodology and Implementation

2.1 Dataset Information

The data used in this paper come from an open dataset recorded by the University of
Glasgow, “Radar signatures of human activities” [30]. The team used an FMCW radar,
SDR-KIT-580B, produced by Ancortek with waveform generation and transmission
modules, transmitting and receiving antennas, RF cables and other accessories, as shown
in Fig. 1. The radar was operated at C-band (5.8 GHz), and the bandwidth was set as
400 MHz [22]. During the experiment, ten activities were performed by volunteers, as
shown in Table 1. This is one of the largest dataset in radar-based HAR. The full details
of the experiment are described in [22, 30].

2.2 Pre-processing

The chirps have a pulse repetition period of 1 ms with 128 samples per sweep. A fast
Fourier transform is applied on the collected I&Q signal to extract the range information

https://doi.org/10.1007/978-3-030-95593-9_1
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Fig. 1. The left shows the radar systems used by the radar team at the University of Glasgow.
They used the rightmost radar, SDR-KIT-580B of Ancortek, to create the open dataset. The right
shows four examples of the experiment environments for data collection adapted from [3, 22].

Table 1. 10 Activities recorded in the open dataset with their according duration. Note that the
class “Not interested” includes four different tasks that the software should classify as not of
interest for the classification to emulate an open dataset containing a multitude of classes and the
detection of the classes of interest from all the activities that could be performed in front of the
radar.

Number of 
samples Activity Name Duration [s]

250 Walking 10
316 Sitting on a chair 5 
313 Standing up from a chair 5 
314 Bending down and pick up a pen 5 
314 Drinking couple of sips 5 
226 Falling down 5 

284 Not interested

Checking under the 
bed 10

Moving objects 10
Answering a phone 

call 5 

Bending and tying 
shoelaces 5 

for each sweep (fast time) to obtain a range profile. A moving target indicator is used to
suppress static targets from the radar returns. After collecting enough range profiles, a
short-time Fourier transform is applied over each range bin (slow time). Thewindow size
is set to 200ms, the overlap factor to 95% for a smooth spectrogram, and the zero-padding
factor to 4 for a finer Doppler resolution. After this pre-processing, the spectrogram
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amplitude and phase can be extracted, as shown in Fig. 2. Before extracting features
from micro-Doppler patterns, it is necessary to concatenate the phase information with
the amplitude information. Also, from the micro-Doppler signature shown below. To
further improve the performance, the spectrogram is cropped to contain the actions with
the maximum Doppler and discarding the Doppler bins at higher and lower frequencies
not containing the target signature. The resulting concatenated image is 120× 340× 3.
The 120× 340 corresponds to the number of pixels per channel, and there are 3 channels
for Red, Green and Blue.

Fig. 2. The processing chain of micro-Doppler signatures and phase plots. Firstly, combine the
two plots into one. Then, extract the main information inside the red dashed box by cropping the
resulting image (Color figure online)

The hybrid maps of the 10 activities are shown in Fig. 3. Some activities can be
easily distinguished, like moving objects and falling, while others are more difficult
to tell apart because of the similarity of the micro-Doppler amplitude patterns, like
answering a phone and picking up a pen. In total, there were 2017 images used in this
project, and the number of samples per class is shown in Table 1.

2.3 Feature Extraction and Classification

The processed data inputs are in the form of RGB images. Thus, convolutional net-
works (CNN) normally used for image recognition were selected to extract features
automatically and classify the data.

CNN Based on LeNet-5
Derived from [31], the key parameters of the convolutional and pooling layers are sum-
marised in Table 2, where all units are pixels, for the proposed CNN based on LeNet5.
The dropout layer was put to prevent data overfitting during the training process. After
each convolutional layer, batch normalisation is implemented to normalise the output
produced. The purpose of this layer is to speed up the convergence of model perfor-
mance. The drop rate was set to be 0.5 to avoid overfitting. In this implementation,
ReLU was used as the activation function for all nodes except in the output layer, which
uses Softmax.

Transfer Learning – Use Pre-trained Model GoogLeNet
Transfer learning utilises a pre-trained model of one task to accomplish another task.

https://doi.org/10.1007/978-3-030-95593-9_1
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Fig. 3. Hybrid maps of the ten activities recorded in the open dataset, which concatenate micro-
Doppler amplitude and phase.

Fig. 4. Layout of the LeNet5-based CNN

Table 2. Parameters of the self-designed CNN about convolutional and pooling layers
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The main reasons for applying transfer learning are as follows. Pre-trained models like
VGG [32], GoogLeNet [33] and ResNet [34] have been tested on large datasets and
performances have been optimised. The second reason is that sometimes there is insuf-
ficient data to generalise from, so using a pre-trained model can prevent data overfitting
[35]. In this study, transfer learning with GoogLeNet is also tested.

The data samples were divided into three sets, where a fixed 10% of data composed
the test set. For the remaining dataset, because the dataset is not large and to prevent
overfitting, five-fold cross-validation was applied. Hence, 80% of the remaining data
were set as the training set, while the other 20% were the validation set.

3 Results and Discussion

3.1 Hardware and Software Environment

The radar signal processing, feature extraction and image classification were all imple-
mented using Matlab. With the help of a GPU, the networks were developed and trained
using the Deep Learning Toolbox and Parallel Computing Toolbox in MATLAB. The
hardware and software environments are introduced in Table 3.

Table 3. Hardware parameters and software versions

3.2 Classification Results

Firstly, the HAR system was tested with training the CNN based on LeNet5.As for
the hyperparameters, the initial learning rate for training was set as 0.0001, and the
maximum epoch number was 20, as this was enough for convergence. There were 16
data samples in each mini-batch, and the training and validation data would be shuffled
for every epoch. This guaranteed complete training with all data inputs. In terms of
the validation process, one validation operation was performed every 20 iterations. The
stochastic gradient descent with momentum (SGDM) optimiser was chosen to update
the weights.

To evaluate the improvement over amplitude only classification, spectrograms
(amplitude only size 120 × 340 × 3) and the new hybrid images (120 × 340 × 3)
were both trained using the CNN based on LeNet5. The confusion matrix for amplitude
only is shown in Fig. 5 top left and for the hybrid maps in Fig. 5 top right.

For Transfer learning, the hybridmapswere resized to 224× 224× 3. In addition, the
last layers of GoogLeNet were replaced by new layers designed to fit the classification

https://doi.org/10.1007/978-3-030-95593-9_3
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task. The confusion matrix is shown in Fig. 5, bottom left. A comparison of the overall
performances of the 3 methods is shown in Fig. 5 bottom right.

3.3 Discussion

From Fig. 5, note that the hybrid maps which concatenate the magnitude and phase
information produce higher accuracy than the spectrograms (amplitude only), with the
classification accuracy increasing by 3.8%. The pre-trained GoogLeNet performed 1.7%
better than the CNN based on LeNet5 at the cost of increased computational require-
ments. From the three confusion matrices, it is clear that compared with other activities,
the activities labelled “Not interested” and “Picking up a pen” are confused for one
another. After concatenating the spectrograms with phase plots, the average classifica-
tion accuracy improved in these two categories by 20.9% and 0%, respectively, for the

Fig. 5. Confusion matrix obtained using, (top left) the self-designed CNN on spectrograms, (top
right) the self-designed CNN on hybrid maps, (bottom left) the pre-trained GoogLeNet, (bottom
right) comparison of different methods for radar-based HAR.
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CNN based on LeNet 5, and 15.6% and 15.1% for the GoogLeNet implementation.
Thus, the proposed hybrid patterns can enhance the radar-based HAR performance.

Also, it is worth noting that through the training progress of GoogLeNet, though
the mini-batch training accuracy converged to near 100% as the training went by, the
validation accuracy was smaller than 100% (86–89% in the five folds), and so did the
test accuracy. This may be caused by data overfitting. One possible reason is that the
depth of GoogLeNet in MATLAB is 22, and the parameters are around 7 million [36]
as opposed to 60k for LeNet5.

4 Conclusions and Future Work

In this study, the micro-Doppler amplitude and phase were combined to produce hybrid
maps of radar signatures. After cropping the images onto the Doppler bins contain-
ing target signature, the proposed CNN based on LeNet5 improved the classification
accuracy by 3.8% compared to amplitude only and 5.5% with GoogLeNet via transfer
learning. These results show that exploiting the complex nature of the signals is essen-
tial in improving performances, as suggested in [37] calling to use complex numbers in
machine learning architectures.

Future directions for this project would look at data augmentation to increase the size
of the dataset for better model generalisation. Popular augmentation methods include
image rotation, reflection and scaling along the x or y axis, cropping and translation [38,
39]. However, in radar, not all those techniques are valid as radar images have physical
meaning. For example, rotation is not valid as this would never be produced by a radar
system.

The raw radar data is typically processed to obtain information in three domains:
range, time and velocity (can be described by Doppler shift) [3–5]. The spectrograms
and phase plots were combined as a hybrid map. Range-time and range-Doppler maps
could also be used to create hybrid maps containing amplitude and phase information
either by concatenation or by adding the phase information as supplemental channels in
CNN. These could be combined with deep fusion to further improve performance [40,
41].
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