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Abstract. Gait analysis is widely used for human disability level assess-
ment, physiotherapeutic and medical treatment efficiency analysis. Wear-
able motion sensors are most widely used gait observation devices today.
Automated detection of gait abnormalities, namely incorrect step pat-
terns, would simplify the long term gait assessment and enable usage
of corrective measures as passive and active physiotherapeutic assistive
devices. Automatic detection of gait abnormalities with wearable devices
is a complex task. Support Vector Machines (SVM) driven machine learn-
ing methods are quite widely used for motion signals classification. How-
ever, it is unknown how well actual implementations work for specific
gait deviations of partially disabled people. In this work we evaluate
how well SVM method works for detecting specific incorrect step pat-
terns characteristics for the most frequent neuromuscular impairments.
F1 score from 66% to 100% were achieved, depending on the gait type.
Gait pattern deviations were simulated by the healthy volunteers. Angu-
lar speed motion data as an input to SVM was collected with a single
Shimmer S3 wearable sensor.

Keywords: Gait analysis · Machine learning · SVM · Wearable
sensors · Medical applications

1 Introduction

According to World Health Organisation (WHO) report about one billion per-
sons are affected by neurological disorders worldwide [2]. Neurological diseases
ranging from migraine to stroke and Alzheimer are the leading cause of Dis-
ability Adjusted Life Years (DALY) loss [8]. For example, there is a high risk of
falling down for patients with gait impairments from neurological disease [20,24].
Therefore it is important to assess neurological disease patient gait deviations
and, if possible, correct step patterns using certain assistive devices. It is shown
that even simple mechanical devices like ankle-foot orthoses certainly can reduce
the risk of falling [27]. However, it is shown that Functional Electrical Stimula-
tion (FES) devices that activate in proper moments corresponding muscles, are
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more effective for fall prevention [14] and generic gate improvements [16]. Essen-
tially, long term gate deviation analysis and efficient run-time control of FES
devices requires automated recognition of “incorrect” steps or other gate devia-
tions. According to our previous research [22] we have concluded that Support
Vector Machines (SVM) based methods are most widely used ones for auto-
mated gait analysis, followed by Convolutional Neural Networks (CNN). The
benefits of SVM include capability to operate with relatively small data sets and
high computational efficiency [10,11]. For human activity recognition has been
reported by Almaslukh et al. [1] quite impressive accuracy, close to 97%. There
are several other results indicating 90% accuracy, listed in [22]. However, there is
a very limited research conducted of analysing how well machine learning meth-
ods, particularly SVM, performs in detecting realistic gait deviations, caused by
actual neural diseases. Current work focuses on describing test results collected
by us in this domain, that are still relying on simulated gait deviations.

Gait of each person is virtually unique. It can be described by a set of param-
eters such as: step length, length of individual step phases, muscle force and etc.
[18]. Especially high variability and deviations from the “normal” gait pattern
can be seen in persons gait, who are suffering from neuromuscular diseases [15].
Therefore it is extremely difficult to analyze patients’ gate patterns. Certain
diseases cause jumpy gait changes - like freezing episodes of Parkinson Disease
(PD) [4], other diseases, like Multiple Sclerosis (MS) may contain long duration
relapse episodes with individual impact and have slow progression [23]. From
the perspectives of physiotherapists, each person has own “normal” (or target)
gate that has to be used as a reference in gate assessment procedure.

Various stationary (3D camera systems), portable (pressure mats) and wear-
able (motion sensors) instrumental solutions are used for gait analysis. How-
ever, wearable motion sensors, containing multidimensional Inertial Motion Units
(IMUs), are the most widely used gait assessment devices in the recent years [25].
IMUs are also used for gait assessment of neurological disease patients [12,19,21].

Main goal of this research work is to detect abnormality in the gait, caused
by some kind of disease, as fast as possible, to prevent person from falling.
Current paper proposes analysis of gait using SVM, to classify the normal and
abnormal steps. Even if such a full step classification does not solve the main goal,
abnormality estimation in the real-time, it will be used as pre-processing stage
to produce reference set of good steps for the real-time abnormality detection
algorithm. Therefore the current paper proposes time series based “good” and
“bad” steps SVM classifier implementation, which is built on the tslearn Python
library [26] and applied to the time-series gyroscope gait data, which is different
from feature based SVM classification, used in other works. Thus, it is possible
to compare achieved results to the feature based approach, found in other works.

This paper consist of 5 sections: after the introductory state-of-art overview in
Sect. 2 the motion data collection methodology is described; in Sect. 3 proposed
application of the SVM based algorithm implementation, applied to the time-
series gait data, is presented; the results are presented in the Subsect. 4 and
discussion and conclusion are in the Sect. 5.
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2 Gait Data Collection

The fundamental part of each instrumented gait analysis is collection of human
walking patterns, which provide relevant information about the gait changes of
the subjects. The human gate contains of seven phases [3] (Fig. 1). The ultimate
long term goal is to detect deviations of each phase separately for fastest gate
corrections. However, current study focuses on classification of whole steps only.

Fig. 1. The seven phases of human gait cycle [3]

During the current study, Shimmer S3 (Dublin, Ireland) wearable sensors
were used for lower limb motion data capture. Sensors were configured to work
256 Hz sampling rate, measurement data was recorded on device’s memory, later
modulus was calculated from three-dimensional 16-bit gyroscope signal to reduce
the amount of data feed to machine learning algorithm. Two different sensor
placements were initially tested (Fig. 2): right below of the knee that is the
location of foot drop FES devices directly stimulating the most important lower
limb muscles, namely tibialis anterior and fibularis longus, and on forefoot, which
is the most widely used placement of inertial sensors for gate cycle monitoring
[9]. According to initial visual analysis of recorded signals, forefoot data was
selected for the further analysis.

During the data collection, correct (“good”) and incorrect (“bad”) steps were
mixed according to following procedure:

1. Normal gait + one abnormal step
2. Normal gait + one abnormal step + normal gait
3. Normal gait + N · abnormal step + normal gait + N · abnormal step, where

N = 0, 1, 2, 3, 4 . . .
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Fig. 2. Sensor placement for data collection

To add more variability to the test data, recording was performed on two
types of surfaces: hard and soft (sand) surface. Each recording contains devi-
ations of one specific disability type that is described below. Recordings were
annotated using a semiautomatic tool: all correct and incorrect steps were labeled
in the data file.

2.1 Data Collection of Simulated Gait Abnormalities

The ultimate goal of present study is to evaluate how well an actual SVM imple-
mentation can detect gait deviation caused by neurological impairments. Abnor-
malities were simulated by 2 healthy persons of different gender, both 23 years
old. Simulations were replicating actual patients’ videos and instructions of a
professional physiotherapist. The chosen, most frequent, gait abnormalities were
following:

Steppage gait - seen in patients gait with foot drop (weakness of foot dorsiflexion).
This is caused due to an attempt to lift the leg high enough during walking,
so that the foot does not drag on the floor [3]. This disability is most widely
targeted with foot drop assistive devices.

Hemiplegic gait - includes impaired natural swing at the hip and knee with leg
circumduction. The pelvis is often tilted upward on the involved side to permit
adequate circumduction.
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Diplegic gait - a specific subcategory of the wide spectrum of motion disorders
gathered under the name of cerebral palsy.

Ataxic gait - commonly defined as a lack of coordination in body movements or
a loss of balance, which is not due to muscle weakness.

Parkinsonian gait - is a feature of Parkinson’s disease in later stages. It’s often
considered to negatively impact the quality of life more than other Parkinson’s
symptoms. Parkinsonian gait is usually small, shuffling steps.

Hyperkinetic gait - is seen with certain basal ganglia disorders, including Syden-
ham’s chorea, Huntington’s Disease, and other forms of chorea, athetosis, or
dystonia. The patient will display irregular, jerky, involuntary movements in
all extremities. Walking may accentuate their baseline movement disorder [3].

Comparative analysis of applying SVM algorithm to data is in the next
section.

3 SVM Performance Assessment

Considering that the SVM is well known in classification applications and, par-
ticularly, in gait analysis [1,5,13,17,28], this method, however, can not be used
directly with time series (output of IMU motion sensor), where the input vec-
tors can be of different lengths (feature dimensions). Therefore, time series ori-
ented implementation (tslearn [26]) of the SVM classifier (call it as tsSVM)
was selected for the current research work and applied to the human gait steps
ensemble extracted from the time series data to classify correct and anomaly
(incorrect) steps.

TsSVM implementation uses Global Alignment Kernel (GAK) [6], which
allows to apply the SVM classifier to time-series data with different duration of
samples.

The GAK is related to the soft-Dynamic Time Warping (soft-DTW) [7]
through Eq. (1), which is used to align time series samples in time. In ker-
nel equation, x = (x0, . . . ,xn−1) and y = (y0, . . . ,ym−1) are two time series of
respective lengths n and m. Hyper-parameter γ is related to the bandwidth
parameter σ of GAK through γ = 2σ2.

k(x, y) = exp(
softDTWγ(x, y)

γ
) (1)

In Eq. (2) soft-DTW could be observed with hyper-parameter γ, that controls
smoothing of the resulting metric (squared DTW corresponds to the limit case
γ → 0), where (a1, . . . ,an) is time series.

soft − minγ(a1, . . . , an) = −γlog
∑

i

e−ai/γ (2)
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The GAK’s smoothing hyper-parameter γ was experimentally chosen
depending on the data set to get the best actual performance. Usually it was
between 20 and 150. Tslearn toolbox was used to convert one-dimensional mag-
nitude, calculated from gyroscope data from data set into time series with same
length. Then data set was divided into training and test sets with proportion of
70% to 30% respectively. After that, training was performed and the following
results were achieved.

First some preprocessing was required to be able to use the algorithm. Data
was divided into individual steps, using timestamps in labels. After that they
were combined into required form and normalized in duration by adding Nan’s
to the shorter steps. Then proper hyperparameter γ was chosen by iteration over
potential numbers.

4 Results

In proposed approach 3D gyroscope angular velocity data was used as the ini-
tial input, which then was transformed into the magnitude time series format.
Assuming that gyroscope axes are called gX, gY and gZ, the magnitude is calcu-
lated as in Eq. 3, where ti is given moment of time, and normalized by Min-max
feature scaling 4 for every time series instance:

gM(ti) =
√

gX(ti)2 + gY (ti)2 + gZ(ti)2 (3)

gM(t)norm =
gM(t) − gM(t)min

gM(t)max − gM(t)min
(4)

Calculated gyroscope magnitude time series (Eq. 3) is used as an input for
the tsSVM algorithm.

To understand the results lets observe support vectors on Fig. 3 for two
classes, they represent common step forms, corresponding to a particular class.
For each class support vectors looks similar, only for class 2 excess vectors could
be observed, what affects results. Ataxic gait test data set had 14 samples: 6
abnormal steps (positive) and 8 normal steps (negative). After training the SVM
on 32 samples, two false positives were detected using test data set (Table 1).

This could have happened due to residual “abnormality” in normal steps
following abnormal steps. On the Fig. 8c noisier step could be seen than the step
on the Fig. 8a. Similar situation could be observed for steppage gait test 1, where
there is to much deviation for normal steps (Fig. 5a and Fig. 5c), what could be
considered as data collection error. This leads to misclassification of abnormal
steps which result in 0% f1 score (Fig. 4). On the other hand, if normal steps are
consistent, as for steppage gait test 2 (Fig. 7), classification of abnormal steps is
preformed correctly and f1 score of 100% is achieved (Fig. 6).

Lets have closer look at step shapes. For example on Fig. 8a first peak rep-
resents a moment, when toe is starting to move in the end of stance phase
(40%–60% of phase on Fig. 1), then it is start of a swing phase, till the second
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Table 1. Classification quality for data. Where, TP is True Positive, TN is True
Negative, FP is False Positive and FN is False Negative

Gait type, test number TP TN FP FN F1 score

Ataxic, test 2 4 8 2 0 80%

Diplegic, test 1 3 7 0 0 100%

Diplegic, test 3 2 9 0 0 100%

Hemiplegic, test 2 1 9 0 1 67%

Hyperkinetic, test 2 4 8 0 2 80%

Parkinsonian, test 1 7 8 0 1 93%

Parkinsonian, test 2 6 7 1 0 92%

Steppage, test 1 0 10 0 2 ∗0%

Steppage, test 2 2 10 0 0 100%
∗This test has bad data samples, reasons are described
in results section.

Fig. 3. Support vectors for ataxic gait, test 2. X-axis is the time [ms], Y-axis is nor-
malized gyroscope magnitude values (see Eq. 4).

peak (60%–100%), which represents toe movement, to prepare for initial contact
and third peak is, when toe lands on the ground flat (0%–20%), after that it is a
stance phase between the toe movement (20%–40%). For abnormal step (Fig. 8b)
clear separation between peaks is lost. According to description of ataxic gait
type, clear swing phase is lost, what could be observed.

As it was mentioned above, on Fig. 8 and Fig. 10 peaks for normal and abnor-
mal gait steps are located differently and have different amplitudes. F1 score for
ataxic gait was 80% (Fig. 3) and for diplegic gait it was 100%, (Fig. 9) that
shows SVM capability of classifying steps. Good results could be observed also
for parkinsonian and hyperkinetic gaits, 93% and 80% respectively, because nor-
mal and abnormal steps have very different magnitude and shape. For diplegic
gait abnormal step (Fig. 10b) it could be seen, that third peak is unclear, that
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Fig. 4. Support vectors for steppage gait, test 1. X-axis is the time [ms], Y-axis is
normalized gyroscope magnitude values (see Eq. 4).

Fig. 5. Normal (left) and abnormal (right) steps for steppage gait, test 1. X-axis is the
time [ms], Y-axis is normalized gyroscope magnitude values (see Eq. 4).
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Fig. 6. Support vectors for steppage gait, test 2. X-axis is the time [ms], Y-axis is
normalized gyroscope magnitude values (see Eq. 4).

Fig. 7. Normal (left) and abnormal (right) steps for steppage gait, test 2. X-axis is the
time [ms], Y-axis is normalized gyroscope magnitude values (see Eq. 4).



204 J. Rostovski et al.

Fig. 8. Normal (left) and abnormal (right) steps for ataxic gait, test 2. X-axis is the
time [ms], Y-axis is normalized gyroscope magnitude values (see Eq. 4).

Fig. 9. Support vectors for diplegic gait, test 1. X-axis is the time [ms], Y-axis is
normalized gyroscope magnitude values (see Eq. 4).
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shows that there is no full contact of toe with ground on that gait type (Figs. 4,
6 and 9).

Fig. 10. Normal (left) and abnormal (right) steps for diplegic gait, test 1. X-axis is the
time [ms], Y-axis is normalized gyroscope magnitude values (see Eq. 4).

Also for diplegic gait type it could be observed, that normal steps have more
common features and abnormal steps have different number of peaks and mag-
nitude. That helps tsSVM to differentiate them better and gives higher score.
Because of the nature of this anomalous gait, several abnormal steps were per-
formed in the row, that means that number of abnormal steps was more than in
some other data sets.

Normal and abnormal steps for hemiplegic gait can be observed in the Fig. 12.
They have similarly placed local maximums but with different amplitudes. This
is due to abnormal movement, mainly affecting upper body, thus sensor have
little impact by that movement. Normal steps have some variation, especially
after abnormal step. This leads to misclassification and f1 score of 67% (Fig. 11).
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Fig. 11. Support vectors for hemiplegic gait, test 2. X-axis is the time [ms], Y-axis is
normalized gyroscope magnitude values (see Eq. 4).

Fig. 12. Normal (left) and abnormal (right) steps for hemiplegic gait, test 2. X-axis is
the time [ms], Y-axis is normalized gyroscope magnitude values (see Eq. 4).
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5 Discussion and Conclusion

Ready made tsSVM could be well used for step classification, even using rather
small amount of training data (tens of steps), as can be seen in results. The
issues still occur, when the dataset is too small, and/or major variability in nor-
mal steps is present. As mentioned before, this situation is quite likely to appear
with actual patient data. Some issues may arise, if gait deviation is happen-
ing in the upper part of the body. That would only lead to small deviations in
forefoot placed sensor data, and could easily lead to misclassification of steps.
A straightforward solution would be to add more body sensors, but that would
increase systems cost and significantly reduce comfort of usage of this system.
Obtained results could be useful in determining how different gait types abnor-
malities affect quality of classification of machine learning algorithms. It is clear,
that good reference data presence (correct steps) is crucial for SVM, and, most
likely for the other ML based classification methods as well.

Type of gait deviation has significant affect on quality of chosen algorithm
results. Achieved average step classification accuracy was near to 80%, what is
below the numbers published in literature. We assume, that classification perfor-
mance of real patient data would be even worse. However, besides of performance
improvements, with better training data selection and usage, we would develop
an algorithm, that can detect anomalies during the gait phases instead of the
whole steps. That is crucial to be able to correct gait on basis of needs. In the
future we estimate, that applying certain ML techniques, possibly SVM, during
the real-time operation of the next generation of FES devices, would make them
less intervening and increase patients’ comfort.

In real life human gait steps can not be modelled by using two class classifiers,
thus multi-class classifier is crucial to distinguish the abnormal steps, related to
some kind of disease, from normal steps. Normal steps could be divided into
several classes as well, e.g. normal walking steps, turning steps and etc.

Thus, the further work will be focused on the construction of the multi-
class classification algorithm for reference step obtaining. That would be used to
develop real-time abnormality detection algorithm, that is able to detect abnor-
mal gait in different contexts.
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