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Abstract. Increasingly, caregiving to senior citizens and patients
requires monitoring of vital signs like heartbeat, respiration, and blood
pressure for an extended period. In this paper, we propose a multimodal
synchronized biological signal analysis using a deep neural network-based
model that may learn to classify different anomalous patterns. The pro-
posed cepstral-based peak fusion technique is designed to model the
robust characterization of each biological signal by combining the list
of dominant peaks in the input signal and its corresponding cepstrum.
This works as an input to the following multimodal anomaly detection
process that not only enables accurate identification and localization of
aberrant signal patterns but also facilitates the proposed model to adopt
an individual’s unique health characteristics over time. In this work,
we use Electrocardiogram (ECG), Femoral Pulse, Photoplethysmogram
(PPG), and Body Temperature to monitor an individual’s health condi-
tion. In both publicly available datasets as well as our lab-based study
with 10 participants, the proposed cepstral-based fusion module attains
around 7 to 10% improvement over the baseline of time-domain analysis
and the proposed deep learning classifier reports an average accuracy of
95.5% with 8 classes and 93% (improvement of 3%) with 17 classes.
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1 Introduction

Vital biological Signals, such as heart and respiratory rate, are some of the first-
level means to evaluate an individual’s physical health scenario. For example,
cardiac motion, which is a primary indicator of an individual’s well-being, is
often a unique identifier for each person as no two individuals have the same
size, anatomy, or position of heart. While there are scientific tools to estimate
basic health conditions from such biological signals, being bulky and hard to
use in nature, they are primarily used within a clinical environment, under the
supervision of a health professional. Hence, it is typical that these signs are only
checked rarely at the annual doctor’s visit or when the patient’s physical health
has already drastically deteriorated and symptoms are too prevalent to ignore.
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Fig. 1. The proposed multimodal anomalous pattern recognition framework

The situation becomes more complicated in a COVID-19 like pandemic scenario,
where common people around the world, specifically the elderly patients, who
are amongst the most vulnerable sections of the community, are trying hard to
stay away from the hospitals and clinics to ensure safety. So, the probability
of missing the regular health check process is now higher than ever. In fact, to
address the criticality, an intensive and expensive medical procedure often turns
out to be imperative or unavoidable. However, with early detection and regular
monitoring processes in place, such exorbitant events may be circumvented.

Unconstrained means to monitor these vital body signals have rapidly
emerged as a popular alternative to the conventional health check process in
the last decade [1–6]. However, these appliances require frequent charging and
are mostly wearable, making the patient uncomfortable (like causing skin irrita-
tion), specifically the elderly population. Many times, they also find it awkward
due to the devices’ external visibility often compromising the privacy of their
personal health information. All these pose severe challenges in continual and
accurate data collection. A set of works employ unobtrusive devices, which can
be easily installed in frequently used furniture that often appears in closed body
contact with the patients [7–12]. However, the quality of the signal recorded using
such devices often may relies on the frequency of the direct contact between the
device surface and the patient’s body.

As such, an obvious way to inconspicuously monitor a person’s physical
health is to embed sensors into objects most frequented by an individual. Stud-
ies have shown that people usually spend most of their day doing activities that
require the person to be seated such as sitting while attending meetings, sitting
while eating, sitting in cars, sitting while watching television [13]. A set of recent
works [14–20] which mainly focus on building a hardware system like a chair,
often rely on measurements obtained from only one type of signal and thereby
have an access to only a limited amount of user’s health information. Addi-
tionally, frequently their prediction models derive aggregated decisions on the
user’s health condition without allowing enough personalization. On the other
hand, works [21–25] focusing primarily on its recognition sub-task tend to fail
in a real-life problem setting, where signals collected from the patients are often
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too noisy for these machine learning-based systems to make an accurate predic-
tion. Toward this, we aim to develop a generic signal processing and anomaly
detection framework that may be deployed both in obtrusive and unobtrusive
environments to measure and analyze vital signals of humans in real-time. While
the proposed algorithm is invariant to its deployment environment, the proposed
system has been installed within a SmartChair for real-life evaluation, as such
a chair-like setting is known to be a complex application setting in this problem
scenario. The extensive set of experiments demonstrate the effectiveness of the
proposed cepstral-based peak fusion module by reporting 7 to 10% improvement
over the baseline of a time-domain analysis. Furthermore, the proposed deep
anomaly detection reports an average accuracy of 95.3% with 8 classes and 93%
(improvement of 3%) with 17 classes.

An overview of the proposed method is illustrated in Fig. 1. In our experi-
ments, we have used three vital body signals: respiratory rate, heart rate, and
femoral pulse [10,18,26–28]. The primary contributions of the proposed system
include:

1. Generic Machine Learning Based Framework that may analyze both uni-
and multi-modal signals within an integrated noise-tolerant framework. The
proposed algorithm develops a robust peak detection module by fusing peaks
in time and cepstral domain to identify an exhaustive and accurate peak
list, which works as an input to the proposed deep learning-based prediction
model to predict an individual’s personalized health pattern in an automated
manner.

2. Deep Anomaly Detection Strategy, which enables a continual deep learning-
based monitoring process to precisely localize the anomalies in the time
domain.

3. Real-life Demonstration in an Unobtrusive Experiment Setting, wherein the
proposed multimodal signal processing and analysis framework is deployed
with a SmartChair health monitoring system that may simultaneously cap-
ture different types of vital signals from different parts of the seat occupant’s
body (over a wide range of ages) without forcing an interruption in their daily
work schedule.

4. Extensive Evaluation and Comparative Study demonstrates an improved per-
formance both in the publicly available datasets as well as our real-life lab
experimental settings.

The rest of the paper is organized as follows: Sect. 2 briefly describes related
works. The proposed method is explained in Sect. 3. Section 4 and 5 respectively
present the experimental results and conclusion.

2 Related Works

In this section, we will briefly describe a set of related research, which can be cate-
gorized in parts: (1) Methods focusing on building an intelligent software system,
wherein authors assume that a good quality annotated data collection is always
available for training a sophisticated machine learning model and the quality of
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the signals captured during test time may also be considered to be reasonably
noise-free, and (2) Methods aiming to build a hardware system that will collect
the streaming data for further analysis using machine learning-based methods.

2.1 Health Anomalous Pattern Recognition

Traditional machine learning methods, like Multi-Layer Perceptron (MLP) [29–
31], Support Vector Machine (SVM) [32–35], and K nearest neighbors (KNN)
[30,31,36,37] have already been used extensively to analyze vital health signals.
A set of recent works introduce deep learning models [38–43] for improved per-
formance. Deshmane and Madhe [44] have shown some impressive results on
ECG Based biometric human identification using the Convolutional Neural Net-
work model. In contrast to the traditional neural networks, Recurrent Neural
Network (RNN) can be used for processing sequential data (e.g., cardiac signal)
due to their internal state of memory and connection between the nodes. To
explore the temporal granular details, RNN and its variant Long Short Term
Memory (LSTM) [45–48] based models have also been introduced for the task.
Given the prior knowledge of adjustment between input and output, it can map
various sequences with sequences. However, in a practical scenario, specifically
in a home-based computationally constrained setting, it is challenging to apply
RNN-based methods for continual monitoring tasks, due to its scalability issues.
In contrast to these methods, to ensure computational tractability, we use a
small set of hand-crafted features to compute a compact feature descriptor that
is passed as an input to the subsequent neural network-based prediction module.
This not only helps attain a scalable prediction module but also ensures easy
adaptability to an individual’s personalized health signal patterns.

2.2 Vital Signal Sensing Modality

Vital signals like ECG have been widely used to determine the health condi-
tion in many works [42,49–51]. Kim et al. [52] studies of ECG measurement on
the toilet seat for ubiquitous health care. Wu et al. [53] use a capacitive cou-
pling ECG sensor to obtain the signal. While the signal capturing module for
many of these methods is unobtrusive in nature, they may still demand the seat
occupant’s attention to ensure a perfect connection between the body and the
sensor and accurate angular arrangement, which may cause interruption to the
seat occupant’s daily routine. A set of recent works have installed multi-channel
ECG signals in a chair-based acquisition system to identify the motion artifacts
[54]. Important to note that the system either requires the physiological activity
in the same fashion as the enrollment stage or periodical resampling of the train-
ing dataset [55]. Therefore, the signal capturing process fails to be sustainable
enough to ensure long-term usage.

Another set of works design the radio frequency (RF) methods [56] based
on the signal reflection, require an off-body reader with the antenna in the far
fields, while making the signal acquisition process for a single individual from
multiple points, more challenging. A few research have utilized femoral pulse as
a component of an active near-field coherent sensing (NCS) system [26,57–59].
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However, the arterial blood pressure is dependent on individual’s personal char-
acteristics (e.g., age, height, gender), health conditions, and the administration
of vasoactive drugs on the patient. Therefore, it is important to have a person-
alized prediction model that may effectively utilize the femoral pulse as a vital
health signal to evaluate a patient’s health condition. In this paper, we use the
ECG, PPG, and SCG vital signals to evaluate the subject’s physical condition.
These specific vital signals are chosen as other possible signal resources such as
Phonocardiography and Echocardiography are either obtrusive or require high
expenses and are difficult to install on chairs.

3 Methodology

We design a generic machine learning-based classification model that performs
a comprehensive and synchronized vital health signal analysis both in a uni-
modal or multi-modal environment, wherein each mode may represent a signal
generated from a unique body part of the participant and make a comprehensive
prediction on the health condition of the individual. More specifically, given an
annotated data collection D = {(sj , yj)}j , where each vital body signal sj is
described using a m-mode (m ≥ 1) representation, i.e., sj = {xj

l }m
l=1 and the

corresponding label yj is the label for the signal sj . As shown in Fig. 1, each
mode-specific signal is pre-processed via the proposed signal processing module
in parallel and later may get combined through feature fusion. In this section,
we will describe the process in detail.

3.1 Signal Preprocessing

Noise Filtering. In the real-life setting, the signals received via the sensors are
often noisy, due to the individual’s movements or shifts during measurements,
dampening and noise from clothing, and noise introduced by the sensor itself.
Therefore, any raw input signal is somewhat noisy. To address this challenge,
we perform an initial noise filtering using Butterworth filter [60] to process each
incoming signal to ensure an accurate prediction performance.

The Butterworth Filter is a filter that separates the high-frequency noise
from the signal, such that frequency values within the range of the frequency
boundaries are reflected in the signal without a significant amount of change.
Also, the impact of higher frequencies is reduced by a significant factor, which
is dependent on the filter order, in the filtered out signal. The sharpness of the
transition from stopband to passband is controlled by the order, a predefined
constant in our experiments. The low-pass Butterworth filter is designed as a
rational function, defined as follows:

|H(jω)|2 =
H0

(1 + ω/ω0)2n
, (1)

where H0 = 1 the maximum passband gain and ω0 = 1 rad/sec. In our exper-
iments, we have filtered the signal with a cutoff at 2.5 Hz and a fifth-order
Butterworth filter, i.e. we have n = 5. The filtered signal x is treated as an input
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for further analysis. Unless mentioned otherwise, any reference of the signal x in
the latter part of the paper will assume it as a filtered signal. We use the Scipy
Python library [61] to implement the Butterworth filter.

Peak Identification. In order to analyze the signal characteristic, the first
objective of this paper is to propose a robust peak detection scheme that may
identify an exhaustive peak list within a signal against the different types of
noise resources (e.g. non-stationary effects, low SNR, or several environmental
settings of the patient like high heart rate exhibited after exercise) with min-
imum false positives. In this work, we compute a moving average based on a
one-sided window proportional to the sampling frequency, where the propor-
tionality constant is constant and user-defined. In all our experiments, we have
chosen the proportionality factor as 0.75 and the sampling frequency as 100.
Within each window, any heart rate lying above moving average (where the sig-
nal demonstrates a sharp change in gradient) is considered as a peak. While this
approach works well in an ideal signal, in presence of a low SNR ratio, the preci-
sion performance may still deteriorate significantly resulting in the generation of
some false peaks or end up losing some significant peaks in the input signal. An
intuitive approach to mitigate the risk of false peak identification is to raise the
moving average threshold. However, selecting a universal threshold that would
work for all possible noisy signal settings, is difficult and may not be chosen
automatically. Therefore, we employ an adaptive approach to dynamically set
the threshold by computing the standard deviation of RR intervals [62,63]. In
general, the standard deviation of RR intervals is not large. Marking an extra
peak or misplacing a R peak may increase the standard deviation significantly,
which indicates the possibility of some false peak identification. Therefore, min-
imizing RRSD will be key to finding a threshold that finds the most accurate
number of peaks. However, if RRSD is zero, then there can be two possibilities:
either we have a perfect signal or we are seeing the consequences of undetected
noises. So, to provide for the best solution, we choose a threshold from a prede-
fined range that would satisfy both min(RRSD) > 1 and RRSD > 1. We use
Heartpy [64] Python library function for the implementation task.

Peak Identification in the Cepstral Domain. Note that the peak detection
in the input signal x is similar to detecting pitch from an audio signal. However,
identifying peaks from x directly may not be sufficient in isolation, due to having
the chance of missing some important peaks. In fact, this may in turn impact
on deteriorating the following feature extraction task. Toward this end, for an
improved peak detection performance, we use Cepstrum of the signal x for a
granular-level peak analysis. As such, Cepstrum analysis, which is a nonlinear
signal processing technique, is typically used for pitch detection (similar in some
aspects to peak detection) in audio and speech. The real cepstrum of a signal x
[65] is calculated as follows:

cx(t) =
1
2π

∫ π

−π

ln|X(ω)|ejωt dω, (2)
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Fig. 2. Peak fusion process: an arrow displays the corresponding peak positions in the
input signal (displayed in graph at the top), and the Cepstrum signal (displayed in
graph at the bottom.

where X(ω) is the Fourier transform of the sequence x(t). The proposed peak
detection scheme (as described in Sect. 3.1) is employed to parallelly capture a
set of peaks in the cepstral domain representation cx of the input signal x.

Note that in order to ensure an accurate heart rate prediction, we aim to first
identify the peaks in an input signal, which will later be used for identifying sev-
eral key features like beats-per-minute (BPM), Inter-beat-interval (IBI), Root
mean square of the successive differences (RMSSD), etc. We will discuss these fea-
tures more in Sect. 3.2. As such in the cepstral domain, the magnitude of the cep-
stral coefficient is naturally related to the periodicity of the signal, which is the
focus in heart rate estimation and higher values of the cepstrum coefficients reflect
increased Signal to Noise Ratio (SNR). A fusion of signal peaks at the cepstrum
domain is advantageous to produce amore exhaustive and accurate peak list,which
forms the basis of the following feature fusion module (Fig. 2).

Peak Fusion Algorithm. The cepstrum signal cx is used as a derived represen-
tative for the original unimode input signal x. The proposed method uses both
cx and x to identify sets of peaks which are fused to obtain a more exhaustive
set of peaks in the signal x.

Given P as the set of identified peaks in x, as shown in Fig. 5, for every peak
at Ci ∈ P with co-ordinate (ti, x(ti)) in the signal x, there is a set of peaks in
the corresponding time-domain neighborhood Nti around ti for the cepstrum
signal, cx. Intuitively multiple such peaks in cx within the close neighborhood
Ntiaround ti do not provide any new peak information. Therefore, while fusing
we eliminate all such redundant peaks within Nti retaining only the common
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peak identified at Ci. This is the scenario, which we refer to as Remove Upward.
This process is repeated for all peaks in P, resulting in retaining only those peaks
in cx, which were not captured within any neighborhood Nti for any Ci ∈ P.
The set of these remaining peaks in cx is denoted as Pcx . As illustrated in Fig. 5,
to capture these missing peaks within the fused peak list for x, we analyze a
close neighborhood Ntj around every remaining peak in Pcx . The time instant
tj within Ntj at which the signal magnitude cx[tj ] is maximum is mapped down
to identify an additional peak Dj with magnitude x[tj ] in x. This process is
referred to as Add Downward. The process is repeated for all elements of Pcx .
The combined peak list obtained at the end of a sequence of Remove Upward
followed by a sequence of Add Downward is treated as the fused peak list that
is used as the input to the following feature extraction module.

3.2 Multimodal Feature Extraction

Given the fused peak list obtained from the processed signal x, we derive sev-
eral handcrafted signals including RRSD; RMSSD; BPM; IBI; SDNN; SDSD;
NN20; NN50; PNN20; and PNN50 to represent the incoming signal in terms of
a compact feature descriptor fx ∈ R

d. RRSD can be computed as the standard
deviation between the RR intervals (difference in time between the R-peaks) of
a heart signal. RRSD can be computed as the standard deviation between the
RR intervals (difference in time between the R-peaks) of a heart signal. RMSSD
is defined as the root mean square of successive RR-Intervals and calculated by
squaring each RR-interval. Then, the resulting values are averaged before the
square root of the total is obtained. BPM can be calculated as the total num-
ber of peaks divided by the amount of time passed. IBI, the inter beat interval,
can be calculated as the overall average of the RR Intervals. SDNN reflects the
changes in heart rate due to cycles longer than 5 min. SDNN can be measured by
computing the standard deviation of the time between the consecutive R-peaks.
SDSD can be computed as the standard deviation of the successive differences
between adjacent RR intervals. NN20 and NN50 can be computed by measur-
ing the number of successive RR intervals that differ by more than 20 and 50
milliseconds respectively. PNN20 and PNN50 can be obtained by dividing NN20
and NN50 by a total number of RR intervals respectively.

In a multimodal environment, feature descriptor collection {f j
xl

}m
l represent-

ing multiple unimode signals sj = {xj
l }m

l=1 is transformed into a fused feature
f = φ({f j

xl
}m

l ). In this work, we use vector concatenation function [66] as φ to
produce md dimensional fused feature f j .

3.3 Anomalous Pattern Recognition

Given an input signal x, we feed the feature vector fx (as defined above) into a
Neural Network model consisting of 3 fully connected (FC) layers with rectified
linear unit (ReLU) activation function. The activation of the last FC layer is fed
into a softmax layer to obtain the probabilistic category membership scores for
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Fig. 3. Peak detection performance in the OHSU ECG signal dataset [67] (shown in
(a)) and our in-house dataset with 13 participants (shown in (b)).

the incoming signal’s anomaly score. While adding more layers makes the net-
work more expressive, it simultaneously becomes harder to train due to increased
computational complexity, vanishing gradients, and model over-fitting. The stan-
dard backpropagation algorithm is employed to update the fully connected layer
weight parameters.1 The loss function L is defined as follows:

L(W) = −
∑

y∈Y
∑|D|

j=1(1(yj = y))log(p(yj = y|sj ;W)
|D| , (3)

where 1. is the indicator function, W represents the neural network weight
parameters and log(p(yj = y|sj ;W) computes the probabilistic score of the
sample xi for the class y ∈ Y. The learning task is formulated as solving the
minimization problem defined as: min

W
L(W).

4 Experiments

The proposed method is evaluated from two different perspectives: 1) accuracy
evaluation of the peak detection module and 2) the effectiveness of its two-class
neural network based prediction module, where the goal is to precisely identify
the ‘anomalous’ signal characteristics of a participant in near real-time. Different
datasets are used to evaluate the performance of the model.

4.1 Dataset

To evaluate the performance of our peak detection algorithm, which forms the
core of the subsequent prediction module, we use two datasets: the publicly
available Oregon Health and Science University (OHSU) ECG signal dataset
with 28 participants [67] and our in-house dataset with 13 participants. The

1 https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364585.

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364585
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OHSU dataset has recorded its signals at a sampling rate of 200 Hz and at an
amplitude resolution of 4.88 muV. We have used only the health signals from 26
participants. As for the remaining 2 participants, the ECG signals were missing
at several time instants. Therefore, we have not used these 2 participants’ data.
In our in-house dataset collected via the prototype VitalChair (which has sensors
at different positions for recording signals from the seat occupant and details to
follow in Sect. 4.2), the synchronized Femoral pulse (FP), Wrist Pulse (WP), and
ECG signals are collected from 13 participants sitting at 7 different positions in
a chair for 30 seconds. Among the participants, 4 are high school students, 6 are
healthy functioning adults, and 3 are senior adults who have gone through heart
surgeries in the past year. The system performs sensor fusion, analyzing the
signal patterns to highlight potential anomalous patterns if any. Tests include
two scenarios: 1) heart rate of a person at ‘calm’ state, 2) excited state after
30 min of ‘after exercise’.

To evaluate the performance of the proposed neural network model that
uses a compact feature descriptor derived from the identified fused peak list
as input to predict the participant’s health condition, we use Mendeley ECG
1000 Fragments Dataset [25] and our in-house dataset. The Mendeley ECG 1000
Fragments Dataset [25] is the publicly available dataset that we have used to
evaluate our framework. This dataset has data from 45 different patients in differ-
ent health conditions, which comprise of: 2 types of normal rhythms including a
pace-maker rhythm and a normal sinus rhythm; 15 types of cardiac dysfunctions
including Atrial premature beat, Atrial flutter, Atrial fibrillation, Supraventricu-
lar tachyarrhythmia, Pre-excitation (WPW), Premature ventricular contraction,
Ventricular bigeminy, Ventricular trigeminy, and Ventricular tachycardia. All the
recorded signals are documented at a sampling rate 360 Hz and a gain of 2200
[adu/mV]. In our experiments we have used the above-mentioned 2 types of nor-
mal rhythm signal collection as our ‘normal’ class, which combined together is
referred to as Class 8, while all the other classes are treated as a specific type of
‘anomalous’ classes. The class population ratio between two types of classes (i.e.
‘normal’ and ‘anomalous’) are highly skewed and the Class 8 population has
size 14, 000. So, we refrain from using any ‘anomalous’ class with samples less
than 1, 000. Therefore, in our derived dataset, we have only samples from Class 8
forming the ‘normal’ class population and 7 different ‘anomalous’ classes. In our
binary prediction module, we reiterate the experiments several times. At each
session, Class 8 is used as the ‘normal’ class and one of the remaining 7 classes
is treated as the ‘anomalous’ class. Also to note that the signals in this collec-
tion are typically high-sampled and the ratio of the anomaly to non-anomaly
classes is still very low. Therefore, to further balance the class population at
every experimental session, 50 randomly selected sub-sampled signals (of length
500) from the entire signal comprising of nearly 3600 samples, are randomly
selected to form the larger training collection. To maintain the balance we just
randomly select an equal-sized subset of sub-sampled normal signals to represent
the Class 8 population.
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Fig. 4. Comparing the peak detection performance using the processed signal x against
that achieved using Fused peak list by combining the peaks from x and the cepstrum
signal cx.

Note that in Mendeley Dataset [25], there are 7 anomaly classes and 1 nor-
mal class (namely, Class 1: Ventricular Bigeminy, Class 2: Ventricular Trigeminy,
Class 3: Supraventricular Tachyarrhythmia, Class 4: Atrial Fibrillation, Class 5:
Left Bundle Branch Block Beat, Class 6: Atrial Premature Beat, Class 7: Prema-
ture Ventricular Contraction, and Class 8: Normal Sinus Rhythm) and the ratio
of the anomalies to the normal classes is exceptionally low. For the training and
testing of the neural network, 50 randomly selected segments of 500 samples for
every 3600 samples of the ECG signal were randomly selected. This procedure of
subsampling was performed to ensure that the neural network produced by train-
ing on this data is not biased or overfitted due to the lack of anomaly-class data.
Furthermore, this act of subsampling allows the neural network to produce a more
fine-grained interval in which the anomalies are prevalent.

4.2 Prototype Implementation: VitalChair

The custom-built circuit used for the Vitalchair used in our experiments for real-
life study, consists of several capacitors, resistors, and photodiodes2. It includes
Arduino UNO; Breadboard; USB Cable; Power supplies; Jumper-wires (M/M,
M/F); 1.0 M/4,7M Ohm Resistors; Piezoelectric; DS18B20 1-wire waterproof
Temperature Sensors; Heart Rate pulse-sensors; different colored LEDs. To build
the software module, I have used Arduino IDE and Python. Multiple biological
signals including Electro-Cardiogram (ECG), Photoplethysmogram (PPG) from
the wrist, Femoral Pulse (FP) are recorded using its corresponding sensor placed
at different parts of the chair as illustrated in Fig. 1. The resulting signal from
each sensor is passed onto an Arduino microcontroller attached to the bottom of
2 https://cdn.shopify.com/s/files/1/0100/6632/files/PulseSensorAmpd - Schematic.

pdf?1862089645030619491.

https://cdn.shopify.com/s/files/1/0100/6632/files/PulseSensorAmpd_-_Schematic.pdf?1862089645030619491
https://cdn.shopify.com/s/files/1/0100/6632/files/PulseSensorAmpd_-_Schematic.pdf?1862089645030619491
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Fig. 5. A custom-built prototype of VitalChair, where vital signals are represented
as: WP = Wrist Pulse, FP = Femoral Pulse, ECG = Electro-Cardiogram signal, and
Temp = Body Temperature

the chair to collect readings from each sensor. Data was acquired onto a server
connected to the Arduino over USB and analyzed using the Arduino software in
real-time. The outputs of the sensors at different positions on the SmartChair
are collected in a synchronized fashion for a comprehensive understanding of the
seat occupant’s overall wellbeing.

4.3 Performance Evaluation

Peak Detection Accuracy Metric. The results of the first type of experiments,
evaluating the peak detection module of the proposed method, use Accuracy as
the evaluation metric. Given g as the number of hand-picked peaks by an inde-
pendent evaluator and p is the number of system-identified peaks, we compute
the Accuracy = 1 − |p−g|

g The quantitative results obtained in the OHSU ECG
signal dataset and our in-house dataset are reported in Fig. 3(a) and (b) respec-
tively. As observed in Fig. 3(a), the average accuracy achieved by the proposed
prediction module over 28 participants is around 94.18%. Specifically for the
participant id 26, the accuracy (approx 75%) is considerably lower compared to
the rest, which is due to the missing data at several time instants that resulted
in missing some significant peaks. The deteriorated peak detection performance
propagated to influence the performance of the subsequent prediction module.

Peak Detection Performance. In Fig. 3(b), we notice that the accuracy of the
‘calm’ state is usually greater than the after exercise accuracy. This is the case
because, after exercise, an individual’s heart rate increases significantly, which
causes many additional consecutive peak occurrences. However, the system per-
ceives this extra flow of peaks as noises and thus, some of the peaks are not
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Fig. 6. The performance of the proposed prediction module on the Mendeley dataset,
reported using class specific ROC Curves (in (a)) and the classification accuracy (in
(b)), wherein Class 1: Ventricular Bigeminy, Class 2: Ventricular Trigeminy, Class 3:
Supraventricular Tachyarrhythmia, Class 4: Atrial Fibrillation, Class 5: Left Bundle
Branch Block Beat, Class 6: Atrial Premature Beat, and Class 7: Premature Ventricular
Contraction with their AUC scores respectively as: 0.98, 0.98, 0.97, 0.95, 0.94, 0.95,
and 0.92.

counted. This results in missing peaks that impact reducing the overall accu-
racy of the prediction module. However, this high-frequency heart-rate period
only lasts for a couple of minutes and the individual (if indeed ‘healthy’) quickly
regains their normal heart rate. To mitigate this noise impacted response, we
pause the prediction task during the initial minute, so that any alert regarding
the participant’s health condition is generated only if it has been more than a
minute since their seat occupancy.

As observed in Fig. 4, combining peaks from the processed signal x and the
cepstrum signal cx have been useful to improve the resulting peak detection
performance of the proposed method by an average of 3%. In fact, in several
instances (like participants 1, 8, 15, 22, and 23) the improvement reported was
around 7–10%.

Anomaly Detection Performance Metrics. The Classification Accuracy and Sen-
sitivity score are used as the compact evaluation metrics computed by relating
FP (False Positives), FN (False Negatives), TP (True Positives) and TN (True
Negatives) and defined as:

Classification Accuracy =
( N∑

i=1

TP + TN

TP + TN + FP + FN

)
.100%/N, (4)

Sensitivity =
( N∑

i=1

TP

TP + FN

)
.100%/N, (5)

where the scores are computed based on N -fold cross-validated test process, In
our experiments, we have used N = 5. We also report the performance details
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using Area Under the Receiver Operating Curve, known as AUC score [68]. This
metric is significant as the population distribution across different classes varies
widely. While Classification Accuracy (or Sensitivity) may provide an overall
performance at a given experimental parameter setting, the AUC metric provides
greater insight on the class-specific performances of the proposed method. Also,
Sensitivity score is used to report the comparative performance of the proposed
method.

Anomaly Detection Performance. Figure. 6 reports the performance of the pro-
posed method using ROC Curves, AUC Scores as the total area under the ROC
curve, and the Classification Accuracy as the evaluation metrics [69]. As seen
in the figure, note that, the average performance on all seven anomalous classes
is around 95.29%. While the performance on Class 5 is approximately 87.22%,
it is primarily attributed to the sparse signal (with also missing ECG values)
obtained from participants.

4.4 Comparative Study

The performance of the proposed method is compared against that of several
methods reported in [25], and the result is reported in Table 1. To attain an equiv-
alent experimental setting, for this experiment, we combine all the 17 cardiac
disorders into an anomaly class, while the healthy signals form the second class.
As seen by comparing the results reported in the table, the proposed method
shows an improved performance by reporting 3% increased Sensitivity score. An
equivalent experiment is also performed using only 8 classes and as shown in
the table, the proposed method attains an impressive performance gain of 2.5%
compared to the best result reported on the data-set.

Table 1. A comparative study on the binary classification task performed using the
Mendeley ECG 1000 Fragments Dataset [25].

Methods Number of classes Sensitivity score

Linear discriminant classification [22] 5 93%

Domain transfer SVM [21] 5 92%

Decision level fusion [23] 5 87%

Disease-specific feature selection [24] 5 86%

Morphological and dynamic features
of ECG signals [70]

5 86%

Evolutionary neural system [25] 17 90%

Proposed method 8 95.5%

Proposed method 17 93%

Also in this scenario, it is also important to note that the performance varies
from class to class (please refer to Fig. 6(b)). So, such course-level overall perfor-
mance evaluation may not be sufficiently insightful in terms of getting sufficient
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insight on the effectiveness of the proposed model. For example, accurate identi-
fication of samples from Class 5 samples is harder than that of Class 6. Moreover,
the above-mentioned paper obtains the accuracy in an obtrusive manner, which
significantly reduces the amount of noise corrupting the signal. Therefore, the
applicability of these methods is limited in various real-life environments, where
signals can only be received in an unobtrusive manner. In contrast, the pro-
posed method, which is generic and sufficiently robust to handle the noisy signal
inputs, and allows for sequential learning by continual signal capturing process,
is more effective and efficient. As described earlier, to further investigate the
robustness of the method, we perform experiments in a real-life environment
by deploying the software in the SmartChair, which collects signals by placing
sensors at different parts of the chair. Also, the method is evaluated at different
levels of stress and physical activity state of the participants to investigate the
efficacy of the signal filtering and feature extraction methods.

5 Conclusion

In this paper, we have presented a framework that is able to accurately classify
multiple input signals like ECG, PPG, and Femoral Pulse from a specific individ-
ual into two categories: healthy or unhealthy. Having been able to continuously
monitor the patient’s vital signals, this system has several life-changing effects,
including the ability to identify pathology conditions before they can turn into
a serious threat to the human’s life or severe measures are required to cure them
such as amputations. To demonstrate our proposed model’s real-life feasibility,
we have physically implemented this framework into a chair. However, the pro-
posed method is sufficiently generic to be deployed into other frequently used
furniture items like beds, sofas, etc. We plan to extend this work to include other
means of extracting pathological information, like vocal signals, and synchronize
them all to make a smart home system that will be able to accurately classify
the disease-specific pathological condition the individual has using multi-modal
information.
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