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Abstract. Device-to-Device (D2D) communication is a potential tech-
nology that efficiently reuses spectrum resources with CMUs in a fifth-
generation (5G) underlay and even beyond the network. It improves net-
work capacity and spectral efficiency at the cost of co-channel interfer-
ence. Moreover, massive connectivity has not been fully exploited for
efficient spectral efficiency usage in the existing solutions. To resolve
the aforementioned issues, we combine non-orthogonal multiple access
(NOMA) approaches with cellular mobile users (CMUs) in order to
improve their throughput while preserving the signal-to-interference
noise ratio (SINR) offered by CMUs and D2D mobile pairs (DMPs).
The problem of power allocation is formulated as mixed-integer non-
linear programming, which is then transformed to machine learning using
the markov decision process (MDP). Then, a deep reinforcement learn-
ing (DRL) approach is proposed for solving the continuous optimisation
problem in a centralised fashion. Furthermore, to achieve better perfor-
mance and a faster convergence rate, the higher proximal policy opti-
mization (PPO) scheme is employed. Numerical results reveal that the
proposed algorithm outperformed state-of-the-art schemes in terms of
throughput.
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1 Introduction

The explosive growth in the use of smart phones, smart devices, and internet-
based services is causing massive data traffic on wireless networks. D2D com-
munication is a key candidate that increases network spectrum efficiency by
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sharing radio resources between DMPs and CMUs in the underlay scenario [1].
D2D communication uses the concept of low power transfer, which enhances
energy efficiency. Also, in D2D enabled networks, network throughput increases
due to sharing of frequency spectrum. Despite the many advantages of D2D
communication, its performance has deteriorated in ultra-dense networks due to
in-cooperation between nearby BSs and intra-user interference.

To improve the network performance, the authors proposed a promising tech-
nique called NOMA for 5G and beyond. The NOMA scheme serves more than
one user at the same time and same frequency via power domain multiplex-
ing [2]. Different CMUs get different power from BS based on their channel
gain conditions. CMUs having high channel gain get low power signals, and
users having low channel gain get high power signals. However, NOMA causes
intra-user interference among CMUs. Successive interference cancellation (SIC)
is used to decode and compensate for intra-user interference at the receiver end
[3]. Therefore, integrating the NOMA scheme with the D2D network improves
SE, throughput, sum rate, and capacity of the entire network at the cost of
additional interference. Some challenges in implementing the NOMA scheme are
degradation in bit error rate, complexity at the receiver side, CMUs location,
and physical security.

Reinforcement Learning (RL) is a subfield of machine learning in which an
agent can make decisions on a regular basis, track the outcomes, and then change
its strategy automatically to obtain the best policy [4]. It has been proven that
the learning process in RL converges, but it takes a very long time to arrive at
the best policy. The reason for this is that RL must explore and learn about
the whole system. So RL becomes unsuitable and inappropriate for large-scale
networks. As a result, RL implementations in practise are extremely limited in
ultra-dense networks.

DRL schemes are used to overcome RL’s limitations by combining RL and
deep learning. DRL schemes take advantage of deep neural networks to improve
the learning process. The RL algorithm learns faster and performs better using
DRL schemes. Therefore, DRL schemes are used in a variety of RL applications,
including speech recognition, natural language processing, computer vision, and
robotics [5]. DRL schemes are widely used in the field of wireless communication
and networking to handle different challenges and issues.

1.1 Related Work

The authors proposed incorporating the DRL scheme DQN into an overlay D2D
communication network in order to reduce mutual interference among DMPs
and improve the SE [6]. In [7], the authors solved the energy-efficiency resource
allocation issue for underlay D2D networks to maximise the user experience by
using deep queue learning (DQL), Double DQL and Duelling DQL DRL tech-
niques. The authors solved the problem of power allocation for underlay D2D
communication networks in a changing environment and proposed a DRL-based
approach, DQN, to improve the capacity of the system and user experience qual-
ity for the entire network [8]. Ji et al. [9] studied the issue of resource allocation
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in underlay D2D networks, for which the DRL based scheme DQN was used to
improve energy efficiency with respect to network throughput. The authors used
a DRL-based technique named deep deterministic policy gradient (DDPG) to
study an energy efficiency (EE) maximisation problem in terms of mode selec-
tion and resource allocation for an uplink D2D scenario and achieved greater
EE and a faster convergence rate than state-of-the-art schemes [10]. Chen et al.
[11] addressed the issue of channel allocation in the overlay D2D communica-
tion network and then developed the DRL scheme, DQN, to maximise the sum
rate. The authors mitigate the co-channel interference in overlay D2D commu-
nication networks via a distributed DRL-based algorithm [12]. To optimise the
aggregate of the fairness utility function with respect to scheduling of RB and
power control, the authors combined the traditional computational scheme with
the DDPG [13]. Tang et al. [14] suggested DQL and DQN algorithms for D2D-
assisted cache-enabled IoT to reduce the energy cost of efficient traffic.

1.2 Motivation and Contributions

In contrast to the previous work, we only employ the NOMA technique in this
work to schedule a set of CMUs on the RBs, while DMUs reuse these resource
blocks (RBs) in an orthogonal manner for the cellular tier, subject to interference
protection. The motivation for using traditional DMPs rather than NOMA-based
DMPs is to minimise the computation on the resource-constrained D2D devices,
hence making it more feasible. Furthermore, if interference is adequately handled,
then more DMPs can join the network, because in the NOMA scheme, two or
more DMPs can be scheduled to sustain minimal SIC receiver complexity. This
inspires us to work on a solution for underlay DMPs that coordinates with
NOMA-based CMUs. Furthermore, the delay in the centralised learning and
the processing time in their optimisation algorithms is huge for real-time use
cases. To get the better of these aforementioned shortcomings, in this paper, we
propose efficient DRL algorithms by optimising the power allocation of the BS
and the DTs for maximising the network throughput.

The main contributions of this paper are as follows:

– The throughput problem is formulated for the downlink scenario with the
power restrictions. To optimise the throughput network performance, we pro-
pose a centralised DRL technique for solving the power allocation at the BS
and DTs.

– To improve the network performance, we introduced the PPO algorithm with
a new better sampling technique.

– The numerical results demonstrated that the proposed methods efficiently
solve the optimisation problem with the dynamic environmental setting and
outperform the other benchmarks.

1.3 Organization

The remainder of the paper is arranged in the following manner. The
system model and problem formulation are described in Sect. 2. Section 3
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demonstrates the suggested scheme. The suggested scheme’s performance was
evaluated in Sect. 4. Section 5 contains the conclusion.

2 System Model and Problem Formulation

Consider a model comprising a BS, a set of I CMUs as I = {1, 2, ...i...I}, a set
of J D2D mobile pairs (DMPs) as J = {1, 2, ...j...J}, and a set of N RB as
N = {1, 2, ...n...N} shown in Fig. 1. The BS provides service to a group of CMUs
through the NOMA scheme in a downlink scenario. On the other hand, D2D
transmitters and receivers communicate with each other through the orthogonal
multiple access (OMA) scheme. In this model, CMUs and DMPs share the same
RB.

In this model, the BS used NOMA to schedule with the CMUs through a RB,
and the D2D transmitter communicates with the D2D receiver using the OMA
scheme in each DMP. The CMUs and DMPs form a cluster. Furthermore, the
total number of users can vary from 2 to |I| + |J | in each cluster. In NOMA based
systems, if the number of users increases in the same RB, then SIC implemen-
tation complexity at the receiver increases. So, to keep the receiver complexity
to a minimum, this model considers only two CMUs in each cluster. There is no
limit on DMPs on a RB. Let N represent the clusters set with each RB assigned
to one of them. Let N is the set of clusters, i.e., each RB is allocated to each
cluster. Also, assume that the BS is aware of the channel state information (CSI)
of all CMUs and DMPs. Furthermore, this model considers quasi-static Rayleigh
fading, in which each channel’s gain is constant and follows a Gaussian complex
distribution.

2.1 Channel Model

Assume that CMU and DMP on the rth cluster are represented by In and Jn,
respectively. Let PT represent the power transmitted by the BS and Pi represent
the power assigned to CMU. The received message at CMUs i from BS in the
nth cluster is given as:

yn
b−i =

√
Pn

i gn
i xn

i +
∑

i′ �=i,i′∈In

√
Pn

i′ g
n
i′xn

i′

+
∑

j∈Jn

√
Pn

j gn
j−ix

n
j + ζn

i , (1)

where xi represent the transmitted symbol for CMUs, gn
j−i represent the channel

gain between CMUs i and DP j. Pn
j is the power of DP j and ζn

i is the additive
white noise.

Let an
i is the channel coefficient for CMU i and bn

i is the channel coefficient
for D2D user j and is defined as:

an
i =

{
1 if CMU i is scheduled on the nth RB,
0 otherwise.

(2)
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bn
j =

{
1 if DMP j is scheduled on the nth RB,
0 otherwise.

(3)

Fig. 1. System architecture.

2.2 Throughput Calculation

The desirable throughput for ith CMU in the nth cluster using (1) is given as:

Dn
i = B log2

[

1 +
Pn

i |gn
i |2

IFn
i′−i + IFn

j−i + ξn
j

]

, (4)

where B represents the amount of bandwidth allotted to every one RB and
IFn

i′−i is the intra-user interference produced by other CMUs on CMU i and
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can be given as:
IFn

i′−i =
∑

i′ �=i,i′∈In

αn
i Pn

i |gn
i |2. (5)

and IFn
j−i is the interference produced by DMP j on CMU i is specified as

follows:
IFn

j−i =
∑

j∈J

βn
j Pn

j |gn
j−i|2. (6)

Similarly, the desired throughput for DMP j on the nth cluster is specified as:

Dn
j = B log2

[

1 +
Pn

j |gn
j |2

IFn
j′−j + IFn

BS−j + ξn
j

]

, (7)

where IFn
j′−i is the co-tier interference caused by other DMPs on DMP j which

is given as:
IFn

j′−i =
∑

j′ �=j,j′∈Jn

βn
j′Pn

j′ |gn
j′ |2. (8)

and IFn
BS−j represents the cross-tier interference produced by BS on all DMPs

and is defined as:
In
BS−j =

∑

j∈J

βn
j Pn

j |gn
BS−j |2, (9)

where gn
BS−j represent the channel gain between BS and jth DMP.

Now, the total throughput of the overall network obtained from (4) and (7)
is given as:

Dn
T =

N∑

n=1

⎡

⎣
I∑

i=1

Dn
i +

J∑

j=1

Dn
j

⎤

⎦ . (10)

2.3 Problem Formulation

The aim of this paper is to increase the total network’s throughput by reducing
interference. The following is the problem’s mathematical formulation:

max
P n

i ,P n
j

Dn
T , (11)

s.t. V1 : Pn
i ≤ Pn,max

i ,

V2 : Pn
j ≤ Pn,max

j ,

V3 : Pn
i , Pn

j ≥ 0,

V4 : 2 ≤
J∑

j=1

bn
j ≤ |I| + |J |,

V5 :
J∑

j=1

bn
j,iPj |gj,i|2 ≤ Ithresholdi ,
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where the constraints V1 and V2 ensure that the power transmitted by the BS and
the DT must be less than the maximum transmission power. Constraint V3 shows
that the transmitted power must be a non-negative integer. The constraints V4

shows that the total number of users can vary from 2 to |I|+ |J | in each cluster.
The highest interference threshold assigned by CMUs to a resource block is
represented by Constraints V5.

3 Proposed Solution

3.1 Centralised Optimisation

In this model, consider that information is processed at a centralised location in
a centralised manner (e.g., at the base station). In each sharing resource block,
the next action for each system element will be transferred. As a result, we
consider the central processing point as an agent (BS) for optimising throughput
at CMUEs and DMPs. The optimisation problem can be defined by MDP as:

MDP = (S,A,P,R,
L

) . (12)

With respect to the above model, the game with a centralised optimisation
approach is described as:

State Space: In order to achieve maximum throughput, the agent interacts
with the environment. Therefore, the agent is solely aware of local information
such as different channel gains and interferences. The state space is defined as:

S =
[
gn

i , gn
BS−j , g

n
j−i, IFn

j−i, IFn
BS−j , IFn

i′−i

]
. (13)

Action Space: In NOMA based systems, our aim is to optimise the throughput
at BS. So, action space is represented as:

A =
[
(Pn

1 , Pn
2 , . . . , Pn

i ); (Pn
1 , Pn

2 , . . . , Pn
j )

]
. (14)

At the state st, agent perform the action at. After performing action at, agent
moves at the next state st+1.

Reward Function: To maximise the throughput, the reward function is
expressed as:

R =
I∑

i=1

J∑

j=1

Dn
T . (15)

After defining the throughput model, a DRL approach is proposed to identify
the optimal policy. The DDPG is a hybrid model with a value function-based
actor component and a policy search-based critic component. To enhance the
convergence speed and reduce unnecessary calculations, we apply experienced
replay buffer and target network approaches to the DDPG algorithm. A finite
memory of capacity C is utilised to store the executed transition

(
st, at, rt, st+1

)
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in the experience replay buffer. We select a small batch E at random from the
finite size memory C after collecting enough samples. This small batch trains
the neural network. For updating the new sample and deleting the old ones,
memory C is assigned to a finite size. The target value is estimated by using
target networks for both the critic and the actor network.

Let Q(s, a;φx) represents the critic network along with variable φx and
Q

′(s, a;φx′) represents the target critic network along with variable φx′ . Sim-
ilarly, ν(s, a;φν) represents the actor network along with the variable φν and
ν′(s, a;φν′) represents the target actor network along with variable φν′ . Stochas-
tic gradient descent (SGD) is used to train the actor and critic network over a
small batch of E samples. Now the critic is updated by minimising

M =
1
E

E∑

i

(
yi − Q(si, ai, φx)

)2
. (16)

with the target

yi = ri(si, ai) +
L
Q(si+1, ai+1;φx′ |i+1

a = ν′(si+1;φν′). (17)

The actor network parameter is updated as follows:

�∇φν
K ≈ 1

E

E∑

i

�∇aiQ(si, ai;φx)|ai=ν(si)
�∇φν

ν(si;φν). (18)

Soft target updates are used to update the target actor network parameters
φx and the target critic network parameters φ′

ν as follows:

φx′ � χφx + (1 − χ)φx′ (19)

φν′ � χφν + (1 − χ)φν′ , (20)

where χ is defined as a hyperparameter and has a range between 0 and 1.
The deterministic policy is trained in an off-line manner in the DDPG app-

roach. So, a noise process is added and defined as Z[0, 1]. Therefore, the target
actor network is defined as follows:

ν′(st;φt
ν′) = ν(st;φt

ν) + Zχ (0, 1) . (21)

In the suggested algorithm, we give the of the DDPG algorithm-based method
for power allocation and the NOMA-based BS in the downlink scenario. In
the proposed algorithm, Θ represent the number of maximum episodes and T
denotes time step.

3.2 Proximal Policy Optimization

In order to achieve better performance, we consider a policy approach denoted
as proximal policy optimization (PPO) in this model. Current and obtained
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Algorithm 1. Throughput Maximzation for D2D Users Using Centralised Opti-
mization Technique.
Input

– Environment: (a) DMPs (b) CUEs (c) NOMA-integrated BS.
– Dn

i ≥ Dn,min
i : Minimum requirement of CUE

– Dn
j ≥ Dn,min

j : Minimum Requirements of DPs

Initialization:

– Q(s, a, φx) = Critic network along with variable φx.
– ν(s; φν) = Actor network along with variable φν .
– Q

′(s, a, φ′
x) = Target critic network along with variable φx′

– ν′(s; φν′) = Target actor networkalong with variable φν′ .
– C = Experience Replay

Output: α, β

1: for episode = 1,. . . ,Θ do
2: Begin a process of action exploration
3: Obtain the starting state of observation s0

4: for iteration = 1,. . . , T do
5: Execute the action at achieved at state st

6: Modify the reward rt in accordance with (27)
7: Notice the next state st+1

8: save the transition
(
st, at, rt, st+1

)
in the

9: replay buffer
10: Sample randomly a mini-batch of E transitions
11:

(
si, ai, ri, si+1

)
from C

12: Update critic parameter by stochastic gradient
13: descent using loss function in (27)
14: Update the actor policy parameter in (30)
15: Update the target critic network parameters
16: (φx′ , φν′) according to (31) and (32)
17: Update the state st = st+1

18: end for
19: end for

policies are compared in the PPO algorithm and then the objective function is
maximised as:

F (s, a;φ) = E
[

π(s, a;φ)
π(s, a;φold

Wπ(s, a)
]

= EP t
φWπ(s, a), (22)

where P t
φ represents the probability ratio and Wπ(s, a) = Q

φ(s, a) − V πs is a
function that approximates the advance function in. To maximise the goal, SGD
is applied for training networks with a mini-batch E. As a result, the policy is
updated via
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φt+1 = arg max E [
F (s, a;φt)

]
(23)

To avoid excessive changes, we employ the clipping method function clipp (pt
π, 1−

λ, 1 + λ) in this work to limit the objective value as follows:

F clipp(s, a;φ)

= E
[
min(pt

φ,Wπ(s, a), clipp(pt
φ, 1 − λ, 1 + λ)Wπ(s, a)

]
, (24)

where λ is a constant of low value. When the advantage Wπ(s, a) is greater than
zero then upper bound is defined as 1 + λ. In this condition, the objective is
defined as:

F clipp(s, a;φ) = min
[

π(s, a;φ)
π(s, a;φold

, (1 + λ)
]
Wπ(s, a). (25)

When the advantage Wπ(s, a) is less than zero then lower bound is defined as
1 − λ. In this condition, the objective is defined as:

F clipp(s, a;φ) = min
[

π(s, a;φ)
π(s, a;φold

, (1 − λ)
]
Wπ(s, a). (26)

In (25), if advantage Wπ(s, a) is greater than zero, then the value of the
objective increases. But the minimum term puts a limit on the increased value.
When π(s, a;φ) > (1 + λ)π(s, a;φold), then factor (1 + λ)Wπ(s, a) limits the
objective value within the range.

Similarly, in (26), if advantage Wπ(s, a) is less than zero, then the value of
the objective decreases. But the maximum term puts a limit on the decreased
value. When π(s, a;φ) < (1 − λ)π(s, a;φold), then factor (1 − λ)Wπ(s, a) limits
the objective value. Thus, the minimum and maximum terms put conditions on
the objective in such a way that the new policy does not deviate from the old
policy. An advantage function is denoted as [15]:

Wπ(s, a) = rt +
L
V π(st+1) − V π(st). (27)

4 Performance Evaluation

The performance of the suggested strategy is examined and described in this
section. It is divided into two sections: (i) Numerical Settings (ii) Results and
Discussion.

4.1 Numerical Settings

Simulation Parameters for DMPs and CMUs. The BS is considered to
be deployed at a fixed location in the simulation, and I CMUs and J DMPs
are deployed according to a homogeneous Poisson point process (PPP). The
main parameters used in simulations are taken from [3,13] and are presented in
Table 1.
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Table 1. Underlay D2D network simulation parameters.

Parameters Values

Cellular radius of a cell 300 m

The distance between D2D links 20 30 m

Count of CMUs 20

Count of RBs, (N) 20

Count of DMPs 10, 20, 30, . . . , 180

Each RB’s bandwidth 180 kHz

Frequency of carrier 2 GHz

Density of noise power spectrum −174 dBm/Hz

D2D pathloss exponent 4

Shadowing standard deviation 8 dB

CMU highest power, (P n
i ) 25 dBm

DMP highest power, (P n
j ) 10–25 dBm

CMU links pathloss model 128.1 + 37.6 log d

DMP links pathloss model 148 + 40 log d

DRL Simulation Parameters. A totally connected neural system is used
in the DQN learning model. There are three layers in this network system:
an input layer, a hidden layer, and an output layer. There are 250 neurons
in the input layer, 250 neurons in the hidden layer, and 150 neurons in the
output layer, respectively. The ReLu is employed as an activation function in
the suggested model, while the adaptive moment is used as an optimizer. In the
PPO algorithm, we use the learning rate = 0.00001. Table 2 contains the other
parameters associated with the DQN model. Tensorflow 2.23 on the Python 5
platform is used to simulate the model.

4.2 Results and Discussion

The performance of the entire network’s throughput is evaluated in relation to
several factors, such as the number of DMPs, the number of CMUs, and the
interference threshold.

The convergence behaviour of the proposed algorithm in relation to the num-
ber of iterations is shown in Fig. 2(a). Our suggested algorithm obtains maximum
throughput in fewer than 30 iterations. The cause for this behaviour is that the
proposed algorithm maximises the power of both the CMU and the DT, minimis-
ing co-channel interference. As a result, each agent educated themselves multiple
times and utilised previously trained networks to acquire the best policy in less
time.

The change in the throughput of the entire network in relation to the number
of DMPs is shown in Fig. 2(b). The statistics suggest that as the number of
DMPs increases, the network’s throughput decreases due to increased co-channel
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Fig. 2. Comparative Analysis (a) Network Throughput v/s number of Iterations (b)
Network Throughput v/s number of D2D pairs (c) Network Throughput v/s number
of CUEs (d) Network Throughput v/s Minimum SINR requirement

interference among DMPs. Figure 2(b) also shows the comparison of the PPO
algorithm with other algorithms. The results suggest that the existence of multi-
DQN and prioritised experience replay in PPO reduces the size of the action
spaces and eliminates redundant samples, resulting in increased throughput.
Also, when the number of DMPs in a cell reaches 100, the suggested scheme
achieves 10.25%, 18.97%, and 32.34% higher throughput than the compared
algorithms.

The network throughput is shown in Fig. 2(c) in relation to the number of
CMUs. The results suggest that as the number of CMUs increases, the network’s
throughput decreases due to an increase in the number of RBs, with constant
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Table 2. DRL simulation parameters.

Parameters Values

Learning rate of actor network 0.01

Learning rate of critic network 0.01

Discount factor 0.9

Exploration in the starting 1

Final exploration 0.01

Number of exploratory steps 1000

Capacity of the replay buffer 1000

Size of mini-batch 32

In every epoch, number of steps 20

Reward function weights 1, 1

Discretization level of power l 10

Updated interval of weights 10

Activation function ReLu

Optimizer Adam

DMUs. Thus, DMPs have the option of obtaining the best RBs in order to meet
their data rates with less interference.

Figure 2(d) depicts the throughput variation in relation to the lowest SINR
requirements for DMPs. The result indicates that while the SINR need of DMPs
is low, the network’s throughput is likewise high. However, when the SINR need
of DMPs is high, the network’s throughput begins to fall at a quicker rate.
This occurred as the number of D2D transmission pairs increased in response
to increased SINR requirements, resulting in increased co-channel interference
between the DMPS. Furthermore, the results reveal that the suggested algorithm
gives improved results than the compared existing algorithms because, in existing
approaches, transmission power is solely managed by the DDPG.

5 Conclusion

In this paper, our main goal is to optimise the total network throughput while
keeping the SINR of the CMUs and DMPs as high as possible. To achieve the
target, a power allocation scheme is designed. First of all, the centralised opti-
misation scheme is applied across the NOMA-based BS and DTs to reduce cross
channel and co-channel interference. Next, to achieve better performance, train
the model quickly, and faster convergence rate, the PPO is used to optimise
the power of the BS and DTs. The evaluated results reveal that the proposed
approach accomplishes better throughput than the state-of-the-art schemes.
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