
Experimental Results of Vectorized
Posit-Based DNNs on a Real ARM SVE
High Performance Computing Machine

Marco Cococcioni1 , Federico Rossi1(B) , Emanuele Ruffaldi2 ,
and Sergio Saponara1

1 Department of Information Engineering, University of Pisa, Pisa, Italy
{marco.cococcioni,sergio.saponara}@unipi.it, federico.rossi@ing.unipi.it

2 MMI s.p.a., Calci, Pisa, Italy
emanuele.ruffaldi@mmimicro.com

Abstract. With the pervasiveness of deep neural networks in scenar-
ios that bring real-time requirements, there is the increasing need for
optimized arithmetic on high performance architectures. In this paper
we adopt two key visions: i) extensive use of vectorization to accelerate
computation of deep neural network kernels; ii) adoption of the posit
compressed arithmetic in order to reduce the memory transfers between
the vector registers and the rest of the memory architecture. Finally, we
present our first results on a real hardware implementation of the ARM
Scalable Vector Extension.

Keywords: ARM SVE · Vectorization · Alternative representation of
reals · Posit arithmetic · HPC

1 Introduction

Nowadays, Deep Neural Networks (DNNs) face new problems and challenges: on
one hand, there is a need to reduce network design and computation complexity
in order to better accomplish real-time tasks in resource-constrained devices.
On the other hand, the trend is to address specific platform accelerators (for
example, NVIDIA cuDNN for NVIDIA Graphics Processing Units (GPUs)) to
significantly accelerate neural network processing in both the training and infer-
ence phases.

DNNs extensively use matrix multiplications, dot products and convolutions,
highlighting the need for vectorization routines capable of increasing throughput
for these operations. Although the use of GPUs in this field is important, high
implementation costs and low-power requirements may prevent such components
from being used. Several implementations of vector CPUs are available in most
of the common processor architectures: i) Intel/AMD AVX2/SSE for ×86 pro-
cessors, ii) RISC-V “V” vector extension for the RISC-V architecture, iii) ARM
SVE for the ARMv8 architecture. In [1–3] we were able to produce binaries that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Saponara and A. De Gloria (Eds.): ApplePies 2021, LNEE 866, pp. 61–68, 2022.
https://doi.org/10.1007/978-3-030-95498-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95498-7_9&domain=pdf
http://orcid.org/0000-0002-7020-1524
http://orcid.org/0000-0002-4906-6997
http://orcid.org/0000-0001-6084-6938
http://orcid.org/0000-0001-6724-4219
https://doi.org/10.1007/978-3-030-95498-7_9


62 M. Cococcioni et al.

employ, respectively, ARM SVE and RISC-V vectorization. In particular, for the
ARM SVE platform we were able to enable vectorization in two different tiers:
one tier was the auto-vectorization approach that relies on automatic optimiza-
tion from the compiler (for example, loop unrolling). The second tier involved
was the use of intrinsic functions that allowed us to explicitly use ARM SVE
instructions in the C++ code.

The idea behind vector extensions is to fit as much data as possible in the
vector registers, that acts as very low latency memory for the vector processor.
In order to increase the data we can fit in the registers and reduce the memory
transfer, it is crucial to minimize the number of bits used to represent the weights
of the DNNs. Several alternatives to the standard IEEE 754 32-bit floating point
have been proposed: Google (Brain Float—BFloat16—[4]), Intel (Flexpoint—
FP16—[5,6]) have already suggested several concepts. BFloat8 [7] is also very
interesting, adding the support for stochastic rounding.

The positTM format [8–10] is one of the most promising representations that
deviates from the IEEE 754 standard. In machine learning, this kind has been
shown to be a great drop-in replacement for 32-bit IEEE 754 floats, using only 16
bits [11–16]. Furthermore, it has been successfully used in low-precision inference
down to 8-bit posit representation with minimal network inference accuracy
degradation. Moreover, as explained in [12], this number system can be used to
create quick, approximated, and efficient activation functions for neural networks
such as the sigmoid function by simply using the already existing CPU integer
arithmetic operations.

While in [1] we were not able to profile our code on a real hardware (we used
the ARM Instruction Emulator for SVE (ARMIE)), in this paper we will instead
evaluate the performance of the vectorized extension of the cppPosit C++ posit
arithmetic library targeting a real hardware implementation of the ARM SVE
architecture.

2 Posit Number and cppPosit Library

Posit numbers are represented by a fixed length format. The overall length
(nbits) and exponent length (esbits) can be modified. The posit format can
have a maximum of 4 fields as in Fig. 1. Hereafter we describe the format fields:
– Sign field: 1 bit;
– Regime field: variable length, composed by a string of bits equal to 1 or 0

ended, respectively by a 0 or 1 bit;
– Exponent field: at most esbits bits (it can even be absent);
– Fraction field: variable length mantissa (it can even be absent too).

Given a posit〈nbits, esbits〉, represented in 2’s complement signed integer X
and let e and f be exponent and fraction values, the real number r represented
by X encoding is:

r =

⎧
⎪⎨

⎪⎩

0, if X = 0
NaN, if X = −2(nbits−1)

sign(X) · useedk · 2e · (1 + f), otherwise



Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE 63

Where useed = 22
esbits

and k is strictly related to the regime length l and
bitstring (b is the bit that composes the string of identical bits, e.g. in 00001
b = 0). If b = 0 the k is negative, otherwise the k is positive:

k =

{
−l, if b = 0
l − 1, otherwise

In [17] we proved some interesting properties for the configuration (esbits =
0). Under this configuration, we could implement fast and approximated ver-
sions of common operations. We could evaluate these operations only using the
arithmetic-logic unit (ALU) making them faster than the original ones computed
using the FPU. These operations are the double and half operators (2x and x/2),
the inverse operator (1/x) and the one’s complement (1−x). In [1] we combined
this idea with vectorization, obtaining several posit operations such as ELU and
Tanh, exploiting the already existent vector integer operations in the ARM SVE
vector environment.

We provide the software support for posit numbers through the cppPosit
library, developed in Pisa and maintained by the authors of this work. We exploit
templatization to configure the posit format. We classify posit operations into
four different operational levels, identified with (L1–L4). Each level has increas-
ing computational complexity (see [17]).

When in levels L3–L4 we need to use three different back-ends to accelerate
posit operations that cannot be directly evaluated via ALU (waiting for proper
posit hardware support):

– FPU back-end;
– Fixed back-end, exploiting big-integer support (64 or 128 bits) for operations;
– Tabulated back-end, generating lookup tables for most of the operations (suit-

able for 〈[8, 12], ∗〉 due to table sizes).

3 The Advantages of Vectorized CPUs

The newly introduced ARM SVE is a modern Single Instruction, Multiple Data
(SIMD) for the 64-bit ARMv8 instruction set. It is intended as an evolution of
the older ARM Neon vector instruction engine. The power of SVE lies in the
Vector Length Agnostic (VLA) nature of the engine; indeed, there is no need to
specify, at compilation time, the size of the vector registers. This dimension can
be retrieved at run-time using a single assembly instruction. This design highly
enhance portability of code across different ARM SVE platforms and revisions.

The VLA design is very similar to the one adopted RISC-V vector extension.
The main differences between the RISC-V “V” extension and ARM SVE that
we believe worht mentioning are:

– Maximum register size: while ARM SVE can only reach 2048-bits, RISC-V
“V” can reach up to 16384-bits



64 M. Cococcioni et al.

– Register grouping: when dealing with different element sizes in the same vec-
tor loops, RISC-V can handle the wider element grouping registers so that it
can be indexed as it was smaller (e.g. if we want to convert a vector of 16-bit
posits to a vector of 32-bit floats).

13 03 92 82 72 62 52 42 32 22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

S Regime(1..rebits) Exponent
(0..esbits) Fraction (0...)

Fig. 1. Illustration of a posit〈32, 9〉 data type. Both the exponent and the fraction field
can be absent, for specific configurations having a regime field particularly lengthy.

3.1 Vectorized CPUs and Deep Neural Networks

The most recurrent computations in deep neural networks are [1,2,17]:

– GEMM (general matrix-matrix multiplication) (training phase)
– matrix-vector multiplication (inference phase)
– matrix-matrix convolution product (both training and inference phases)
– vector-vector dot product (both training and inference phases, for computing

the activations)
– non-linear activation function (both training and inference phases), computed

over a vector of activations.

In this work we have used posit, since they allow to save memory for storing the
weights. Moreover we and other authors have proved that posit16 is as accurate
as 32-bit IEEE Floats for machine learning applications. In machine learning
application even a posit8 can be accurate enough compared to 32-bit floats,
thus saving 4× storage space (both on disk and, more importantly, on RAM and
caches) with minimal accuracy loss.

4 Test-Bench, Methodologies and Benchmarks

In [1] we tested ARM SVE capabilities using the ARM Instruction Emulator.
We ran the emulator on a HiSilicon Hi1616 CPU with 32@2.4 GHz ARMv8
Cortex-A72 cores. This emulator was able to trap all the illegal instruction
interruptions coming from the execution of binaries compiled using the SVE
instruction set extension. These instructions were then executed via software by
the ARM Instruction Emulator. During emulation we were able to modify the
vector register length from 128-bit to 2048-bit.

Instead, in this work we were able to use an actual hardware implementation
of the ARM SVE architecture using the HPE Apollo80 machine available at
University of Pisa. The Apollo80 is based on the ARMv8 A64FX core [18], the
first commercial implementation of the ARM SVE architecture. In particular,
the ARMv8 A64FX is the first processor to support the full feature set of the
ARM SVE architecture without emulating any instruction.



Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE 65

This platform is particularly interesting since it will be employed in the Euro-
pean Processor Iniative framework [19], and it will be used as a base computing
platform for the EUPEX and TEXTAROSSA EuroHPC projects.

In detail, this platform consists of 4 different blades equipped with 48 ARMv8
A64FX Cores with 512-bit vector registers, running, respectively, at 1.8 and 2.0
GHz. Each blade has access to 32 GB of High Bandwidth Memory.

In order to evaluate SVE-related performance on this machine, we used fol-
lowing benchmarks: i) vectorized activation functions only using posits and
integer vector instructions, ii) vectorized matrix-matrix multiplication and
convolution.

Moreover, we employed posit numbers to compress and decompress data
across the kernels, in order to reduce memory transfers by a factor 4 (with
posit〈8, 0〉) or 2 (with posit〈16, 0〉). Also compression and decompression phases
were implemented using vectorization, exploiting vector integer arithmetic.

Benchmarks were compiled using the armclang++ 20.3 compiler, based on
LLVM 9.0.1 and executed on the aforementioned Apollo80 machine, running
CentOS Linux release 7.9.2009.

5 Experimental Results and Discussion

Figure 2 shows the performance of the activation function benchmarks on the
Apollo80 machine. The benchmarks consisted in the computation of sigmoid
and extended linear unit (ELU) on 4096-wide vectors (even if the hardware only
supports 512-bit). Each computation was repeated 100 times and the average
computation time was reported.

As reported, the computation of the two activation functions using posit〈8, 0〉
benefits from the reduction in size of the format. This is because most of the steps
of the activation function computation is performed using int8 t for posit〈8, 0〉
and int16 t for posit〈16, 0〉.

Fig. 2. Processing time of vectorized activation functions on a 4096-element vector
with a 512-bit vector register length.

Figure 3 shows the performance of the kernel benchmarks, using posit〈8, 0〉
and posit〈16, 0〉. These benchmarks consisted in the computation of: i) dot prod-
uct between vector of 4096 elements, ii) convolution on a 128×128 image with a



66 M. Cococcioni et al.

3×3 filter, iii) matrix-matrix multiplication between square matrices of 128×128
elements.

As reported, the benefit in reducing the information size is not as effective as
in the previous case. The issue is that in this case, we could not use posits in every
step of computation (of course ARM SVE lacks dedicated posit instructions).
This means that we used posits just for data compression and decompression at
the start and at the end of the kernels. For example, in the convolution kernel,
we decompress the posit input to float using our vectorized routine, then we
compute the convolution using native vectorized float support from ARM SVE
and finally we compress the result back to posits.

Fig. 3. Processing time of vectorized DNN kernels with a 512-bit vector register length
(DOT: vector-vector dot product, CONV: matrix-matrix convolution, GEMM: General
matrix matrix multiplication).

Figures 4 and 5 show the measured speedup from the emulated machine to
the real hardware implementation. The speedup is computed as tHPE80/tARMIE.
Since we already proved that we can get better timing performance using
posit〈8, 0〉 instead of posit〈16, 0〉, we reported the speedup relative to posit〈8, 0〉
computations. As reported, the speedup spans from at least ∼11, in the case of
the GEMM function, up to ∼1500 in the case of the ELU function.

Fig. 4. Relative speedup of activation
functions with 512-bit vector register
length.

Fig. 5. Relative speedup of DNN kernels
with a 512-bit vector register length.



Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE 67

6 Conclusions

In a previous work, we designed posit-based and vectorized operations on an
ARM 64bit SVE emulator. The operations considered are the most time con-
suming ones in deep neural networks. In the present work we compared the
impact of vectorization on a real machine. By using such machine, we were able
to assess the true speedup due to vectorization, which turned out to be remark-
able (with a speedup factor from 11× to 1500×, depending on the executed task).
Future works will involve the combination of presented algorithms with MPI, to
enable multi-processor or multi-node computation of deep neural networks (e.g.
exploiting all the blades and cores of the HP80).

Acknowledgments. Work partially supported by H2020 projects (EPI grant no.
826647, https://www.european-processor-initiative.eu and TEXTAROSSA grant no.
956831, https://textarossa.eu) and partially by the Italian Ministry of Education and
Research (MIUR) in the framework of the CrossLab project (Departments of Excel-
lence). We thank the personnel of the Green DataCenter of the University of Pisa
(https://start.unipi.it/en/computingunipi). In particular, we thank Prof. P. Ferragina,
Dr. M. Davini and Dr S. Suin, for having provided us with the computational resources
that have been used in the experimental section.

References

1. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast deep neural networks for
image processing using posits and ARM scalable vector extension. J. Real-Time
Image Process. 17(3), 759–771 (2020). https://doi.org/10.1007/s11554-020-00984-
x

2. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Vectorizing posit oper-
ations on RISC-V for faster deep neural networks: experiments and com-
parison with ARM SVE. J. Neural Comput. Appl. 33, 575–585 (2021).
https://doi.org/10.1007/s00521-021-05814-0

3. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Faster deep neural network
image processing by using vectorized posit operations on a RISC-V processor, In:
Real-Time Image Processing and Deep Learning 2021, Kehtarnavaz, N., Carlsohn,
M.F. (Eds.,) International Society for Optics and Photonics. SPIE, vol. 11736, pp.
19–25 (2021). https://doi.org/10.1117/12.2586565

4. Burgess, N., Milanovic, J., Stephens, N., Monachopoulos, K., Mansell, D.: Bfloat16
processing for neural networks. In: 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), pp. 88–91 (2019)

5. Koster, U., et al.: Flexpoint: an adaptive numerical format for efficient training of
deep neural networks. In: Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017) (2017)

6. Popescu, V., Nassar, M., Wang, X., Tumer, E., Webb, T.: Flexpoint: predictive
numerics for deep learning. In: Proceedings of the 25th IEEE Symposium on Com-
puter Arithmetic (ARITH 2018), pp. 1–4 (2018)

7. Mellempudi, N., Srinivasan, S., Das, D., Kaul, B.: Mixed precision training with
8-bit floating point (2019)

https://www.european-processor-initiative.eu
https://textarossa.eu
https://start.unipi.it/en/computingunipi
https://doi.org/10.1007/s11554-020-00984-x
https://doi.org/10.1007/s11554-020-00984-x
https://doi.org/10.1007/s00521-021-05814-0
https://doi.org/10.1117/12.2586565


68 M. Cococcioni et al.

8. Gustafson, J.L.: The End of Error: Unum Computing. Chapman and Hall/CRC
(2015)

9. Gustafson, J.L.: A radical approach to computation with real numbers. Supercom-
put. Front. Innov. 3(2), 38–53 (2016)

10. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomput. Front. Innov. 4(2), 71–86 (2017)

11. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Novel arithmetics to accelerate
machine learning classifiers in autonomous driving applications. In: Proceedings
of the 26th IEEE International Conference on Electronics Circuits and Systems
(ICECS 2019)

12. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: A fast approximation of
the hyperbolic tangent when using posit numbers and its application to deep
neural networks. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE,
vol. 627, pp. 213–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
37277-4 25

13. Cococcioni, M, Ruffaldi, E, Saponara, S.: Exploiting posit arithmetic for deep neu-
ral networks in autonomous driving applications. In: 2018 International Conference
of Electrical and Electronic Technologies for Automotive, pp. 1–6. IEEE (2018)

14. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L.,
Kudithipudi, D.: Conference exhibition (DATE), pp. 1421–1426. IEEE (2019)

15. Langroudi, H.F., Carmichael, Z., Gustafson, J.L., Kudithipudi, D.: Positnn frame-
work: tapered precision deep learning inference for the edge. In: 2019 IEEE Space
Computing Conference (SCC), pp. 53–59. IEEE (2019)

16. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S., de Dinechin, B.D.: Novel
arithmetics in deep neural networks signal processing for autonomous driving:
challenges and opportunities. IEEE Signal Processing Magazine. 24, 38(1), 97–
110 (2020)

17. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast approximations of acti-
vation functions in deep neural networks when using posit arithmetic, Sensors,
20(5) (2020). www.mdpi.com/1424-8220/20/5/1515

18. Fujitsu Processor A64FX. www.fujitsu.com/global/products/computing/servers/
supercomputer/a64fx/ Accessed 4 June (2021)

19. European Processor Initiative, an H2020 project. www.european-processor-
initiative.eu/ (2019)

https://doi.org/10.1007/978-3-030-37277-4_25
https://doi.org/10.1007/978-3-030-37277-4_25
https://www.mdpi.com/1424-8220/20/5/1515
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/

	Experimental Results of Vectorized Posit-Based DNNs on a Real ARM SVE High Performance Computing Machine
	1 Introduction
	2 Posit Number and cppPosit Library
	3 The Advantages of Vectorized CPUs
	3.1 Vectorized CPUs and Deep Neural Networks

	4 Test-Bench, Methodologies and Benchmarks
	5 Experimental Results and Discussion
	6 Conclusions
	References




