
An Open-Source Hardware/Software
Architecture for Remote Control
of SoC-FPGA Based Systems

Werner Florian1,2(B), Bruno Valinoti1,2,3, Luis G. Garćıa1,2, Marcos Cervetto3,
Edgardo Marchi3, Maria Liz Crespo1, Sergio Carrato2, and Andres Cicuttin1

1 The Abdus Salam International Centre for Theoretical Physics—MLAB,
Strada Costiera, 11, 34151 Trieste, TS, Italy

{wflorian,bvalinot,lgarcia1,mcrespo,cicuttin}@ictp.it
2 Università degli Studi di Trieste—Dipartimento di Ingegneria e Architettura,

v. Valerio 6/1, 34127 Trieste, TS, Italy
carrato@units.it

3 Instituto Nacional de Tecnoloǵıa Industrial, Av. Gral. Paz 5445, 1650 San Mart́ın,
BA, Argentina

Abstract. We present an open hardware/software architecture for
remote control of Field Programmable Gate Array (FPGA) based Sys-
tems on Chip (SoC). These systems, which integrate embedded proces-
sors, FPGA fabric, memory blocks and other resources, usually need
to be controlled from a computer. The proposed architecture comprises
a set of commands, instructions for data movement, and standardized
data packets. A minimal set of specifications and design guidelines will
effectively separate hardware and software developments granting com-
patibility to the different subsystems. A simple architectural approach
ensures compatibility of computer resident software, embedded processor
software, and FPGA designs. The implicit structured design methodol-
ogy associated with the proposed architecture facilitates remote control
as well as maintenance, debugging, and portability among SoC-FPGA
vendors. We describe a concrete implementation in order to show how
data and instructions can be moved across the whole system.

Keywords: Hardware-software codesign · System-on-chip · Embedded
software · FPGA design · Real-time systems · Reconfigurable virtual
instrumentation · Data acquisition systems

1 Introduction

Modern complex electronic devices are characterized by the growing integration
of different functional units such as multicore microprocessors (µP), random
access memory blocks (BRAM), digital signal processors, and FPGA fabrics.
The integration of these units in the same chip includes a high degree of internal

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Saponara and A. De Gloria (Eds.): ApplePies 2021, LNEE 866, pp. 69–75, 2022.
https://doi.org/10.1007/978-3-030-95498-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95498-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-95498-7_10


70 W. Florian et al.

interconnection. Systems based on SoC-FPGA provide a great number of com-
putational services, low latency responses and high throughput online data pro-
cessing, making them very attractive, if not mandatory, for advanced instrumen-
tation and specialized supercomputing infrastructures [1,2]. The huge amount
of reconfigurable logic and computational resources allow the implementation of
very complex systems, which often require remote control from a computer [3–5]
through a standard communication link such as USB or Ethernet.

Despite the complexity of these heterogeneous systems, they can be described
in a simple unified way by means of an abstract model [6]. It is then possible to
implement a suitable hardware/software architecture along with a set of services
and remote control activities.

Although there are some commercial solutions for remote control of systems
based on FPGA [7,8], they have severe limitations such as closed sources, lim-
ited functionality, and no portability. Furthermore, most of the time SoC-FPGA
based system developers implement their custom procedures for remote control.
Both commercial and custom solutions are typically incompatible among them
due to lack of standards. In order to cope with these problems we propose an
open source hardware/software architecture for remote control of systems based
on SoC-FPGA.

2 Hardware/Software Architecture

The proposed architecture follows a simple modular approach that foresees the
encapsulation of certain aspects that are specific of the target devices, e.g.,
adopted standard communication links, operating systems, and external hard-
ware.

This architecture requires the whole system to be abstractly represented by
a set of functional blocks interconnected via ports associated with a unique
address in a global memory map, divided into non-overlapping domains. The
activity of such a system can be described by a set of concurrent data exchanges
among its functional blocks. The movement of data from one place to another
of the global system is described by a special instruction called Universal Direct
Memory Access (UDMA).

A generic UDMA instruction can then be expressed as follows:

UDMA <src addr> <dst addr> <src inc> <dst inc> <N>

where the associated parameters are respectively: the addresses of the source
and destination, the address step increments at the source and destination, and
the number of 32-bit words to be transferred.

Even though a global memory map abstracts some implementation details
showing addresses contiguously, in general the corresponding functional blocks
may be physically distant, belonging to different hardware components.

Special entities are in charge of executing the data movements. Each of these
entities, called Local Resource Agent (LRA), has direct and exclusive access to
one memory domain of the global map and can modify its content. All LRAs



Applications in Electronics Pervading Industry, Environment and Society 71

are interconnected, have a unique ID, and exchange data among them by means
of packets. Inside every LRA, a UDMA processor is in charge of executing the
UDMA instructions.

In Fig. 1 the common packet structure is shown.
The header contains a common keyword that announces the start of packet

for asynchronous communication, the protocol number, the packet type, the
priority, and the source and destination IDs of the LRAs.

Fig. 1. Common packet structure.

Three essential packet types were identified for the basic operation of the
system, as described below:

– Command Packet : It consists of a single word containing a code associated
with a predefined activity (START, STOP, RESET, etc.) or error messages.
It has a reduced size allowing a faster transmission and lower latency.

– Raw data Packet : This is the packet used for moving data among LRAs. It
contains the data to be written and the destination-related part of a UDMA
instruction. Given that the data may require more than one packet, indexing
may be used to keep an order throughout the multiple transactions required to
complete a data exchange. A data integrity check such a CRC and checksum
is implemented for these packets.

– UDMA Packet : This packet contains a UDMA instruction which is passed to
the UDMA processor inside the LRA. Depending on the source and destina-
tion, the instruction might trigger a cross-LRA exchange that will require a
single or multiple raw data packets.

3 Single SoC-FPGA Based System

We consider a typical heterogeneous system [9] based on a single SoC-FPGA
device connected on one side to a standard PC for remote control and user inter-
face, and on the other side to external hardware, which in general will be specific
to the application [2]. The FPGA, the µP and the PC offer different but com-
plementary computational resources. Maximum performance can be achieved if
the whole computational activity is distributed among these three subsystems
taking into account their specific characteristics.



72 W. Florian et al.

Figure 2 schematically shows a typical SoC-FPGA system with its control
PC.

Following a modular approach, the SoC-FPGA can be seen as the combina-
tion of a µP and a FPGA, interconnected by vendor specific SoC bus.

The FPGA is subdivided into three main modules: (i) an external hardware
controller, (ii) a Communication Block (ComBlock) [10], and (iii) the core FPGA
design. These modules should have standardized interfaces to facilitate their
interconnection and the communication among them. For the internal ports of
the modules, the Wishbone (WB) standard bus interface [11] is proposed; the
ComBlock is used to interact with the µP, abstracting the SoC bus complexities.

Fig. 2. Block diagram of a typical system based on SoC-FPGA.

Similarly, the implementation of the µP software separates the µP core pro-
gram from the communication services with the PC and the FPGA. The µP
relies on the UDMA firmware [12] for the communication with the PC and the
FPGA. The PC resident software consists of a Python based Command Line
Interpreter (CLI) to manage the communication and the interaction between
the PC and the µP. The control software benefits from Python by relying on its
scriptability and wide cross-platform support.

3.1 Implementation Example

To illustrate the proposed architecture we implemented a demonstrative system
to move data among different components according to instructions generated
in the PC. Figure 3 shows a simplified block diagram of this system composed
by two LRAs: the PC and the SoC-FPGA.

Three type of memories were implemented in the FPGA: one BRAM, two
FIFOs, and the True Dual Port Ram (TDPRAM) of the ComBlock. These mem-
ories along with the Python UDMA CLI assigned memory defined the global
memory map. The PC and the µP communicated via packets over TCP-IP.
Inside the FPGA, a WB Interconnect was used to interface the UDMA proces-
sor with the FPGA memory resources. The ComBlock registers were used by the



Applications in Electronics Pervading Industry, Environment and Society 73

UDMA firmware to control the state of the UDMA processor. When a packet
arrived from the CLI, the µP interpreted the header and extracted the payload.
According to the type of the packet and its content, the µP performed differ-
ent operations. It executed a command or a UDMA instruction, or it passed
a UDMA instruction to the FPGA through the ComBlock should the affected
memory domain lay on the FPGA subsystem. In this last case, the UDMA pro-
cessor executed the instruction to move the data as prescribed and, once finished,
it used the reserved registers to communicate to the UDMA firmware that the
operation was successfully completed.

UDMA 
Processor

BRAM WB Interconnect

FPGA μP

UDMA 
Instruc�on

UDMA 
Firmware

TCP-IP 
Packet

Python 
UDMA CLI

Comblock

FIFOs

TDPRAM

Registers
SoC
Bus

PC

LRA 1: SoC-FPGA LRA 2:

Fig. 3. Block diagram of the implemented system showing LRAs and inner blocks.

A test application was developed on the implemented system. The test con-
sisted of writing data in the BRAM from the PC, and then verifying the written
data. This was done by first sending a data packet from the UDMA CLI to
the µP. The µP wrote the data in the ComBlock’s FIFO and sent a UDMA
instruction. Next, the UDMA processor interpreted the UDMA instruction and
moved the data from the ComBlock’s FIFO to the BRAM. To verify the suc-
cess of the operation, a UDMA instruction was sent from the UDMA CLI to
retrieve the data. The UDMA processor moved the data from the BRAM to the
ComBlock’s FIFO. Finally, the data was sent to the PC in a data packet by
the UDMA firmware. With these mechanisms it was possible to arbitrarily move
data between the instantiated memory resources.

The system has been successfully tested in two different FPGA based SoC
development boards: the ZedBoard [13] and the CIAA-ACC [14]. The FPGA
resources utilization of the WB Interconnect, the UDMA processor, and the
ComBlock are shown in Table 1 for the CIAA.

The system has been developed to be multi-platform and communication
protocol independent following the proposed architecture. Due to the UDMA
processor encapsulation, the user can easily add more resources to the global
memory map by just connecting them to the WB Interconnect.



74 W. Florian et al.

Table 1. Resource utilization on a CIAAa (less than 1% of the total)

LUT LUTRAM Flip-flops Slices BRAM tiles

WB interconnect 91 0 4 0 0

UDMA processor 193 0 506 87 1

Comblock 221 48 510 126 1
a The utilization on the Zedboard was practically identical.

4 Conclusions

The proposed hardware/software architecture has shown to be an effective
solution for the remote control and debugging of systems based on SoC-
FPGA devices. A reduced number of commands and instructions allows moving
data across the entire system involving memory elements, microprocessors, re-
configurable functional blocks, and a standard computer for remote control.

The architecture modular structure also facilitates the porting of complex
designs among different SoC-FPGA vendors and device families. The open source
approach enables FPGA designers and embedded software programmers to ben-
efit from the freely available IP blocks and software routines to implement their
designs, saving valuable time in dealing with and debugging complex communi-
cation mechanisms such as those involving Ethernet connections and SoC-Buses.

The proposed approach seems to be suitable not only for advanced instru-
mentation but also for high performance computing based on multiple intercon-
nected SoC-FPGA based platforms. The presented architecture is appropriate
to efficiently exploit scalable platforms such as clusters of SoC-FPGAs.

References

1. Cicuttin, A., Crespo, M.L., Mannatunga, K.S., Samarawickrama, J.G., Abdallah,
N., Sabet, P.B.: HyperFPGA: a possible general purpose reconfigurable hardware
for custom supercomputing. In: 2016 International Conference on Advances in
Electrical, Electronic and Systems Engineering (2016)

2. Gazzano, J., Crespo, M., Cicuttin, A., Calle, F.: Field-Programmable Gate Array
(FPGA) Technologies for High Performance Instrumentation. Advances in Com-
puter and Electrical Engineering. IGI Global (2016). ISBN:9781522502999

3. Cicuttin, A., Crespo, M.L., Mannatunga, K.S., et al.: A programmable system-
on-chip based digital pulse processing for high resolution x-ray spectroscopy. In:
2016 International Conference on Advances in Electrical, Electronic and Systems
Engineering, pp. 520–525 (2016)

4. Mannatunga, K.S., Ali, S.H.M., Crespo, M.L., Cicuttin, A., Samarawikrama, J.:
High performance 128-channel acquisition system for electrophysiological signals.
IEEE Access 8, 366–383 (2020)

5. Velmurugan, S., Rajasekaran, C.: A reconfigurable on-chip multichannel data
acquisition and processing (DAQP) system for multichannel signal processing. In:
2013 International Conference on Pattern Recognition, Informatics and Mobile
Engineering, pp. 109–114 (2013)



Applications in Electronics Pervading Industry, Environment and Society 75

6. Mannatunga, K.S., et al.: Design for portability of reconfigurable virtual instru-
mentation. In: 2019 X Southern Conference on Programmable Logic (SPL), pp.
45–52 (2019)

7. National Instruments. CompactRIO Systems. https://www.ni.com/it-it/shop/
compactrio.html (2020)

8. Opal Kelly. FrontPanel. https://opalkelly.com/products/frontpanel/
9. Crespo, M.L., Cicuttin, A., Gazzano, J., Calle, F.: Reconfigurable virtual instru-

mentation based on FPGA for science and high-education. In: Fagerberg, J., Mow-
ery, D.C., Nelson, R.R. (eds.) Field-Programmable Gate Array (FPGA) Technolo-
gies for High Performance Instrumentation, chap. 5, pp. 99–123. IGI Global (2016)

10. ICTP MLAB and INTI CMNT. The Core Comblock. https://gitlab.com/
rodrigomelo9/core-comblock (2021)

11. Free and Open Source Silicon Foundation. WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores (2010)

12. ICTP MLAB. Universal Direct Memory Access - UDMA. https://gitlab.com/
brunovali/udma (2021)

13. AVNET. ZedBoard. https://www.avnet.com/wps/portal/us/products/avnet-
boards/avnet-board-families/zedboard/

14. INTI. CIAA-AAC A Open Hardware Card for HPC and Industrial Applications.
https://github.com/ciaa/CIAA ACC Support

https://www.ni.com/it-it/shop/compactrio.html
https://www.ni.com/it-it/shop/compactrio.html
https://opalkelly.com/products/frontpanel/
https://gitlab.com/rodrigomelo9/core-comblock
https://gitlab.com/rodrigomelo9/core-comblock
https://gitlab.com/brunovali/udma
https://gitlab.com/brunovali/udma
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://github.com/ciaa/CIAA_ACC_Support

	An Open-Source Hardware/Software Architecture for Remote Control of SoC-FPGA Based Systems
	1 Introduction
	2 Hardware/Software Architecture
	3 Single SoC-FPGA Based System
	3.1 Implementation Example

	4 Conclusions
	References




