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Abstract

In these lecture notes we will discuss recent progress in extracting spectral and
transport properties from lattice QCD. We will focus on results of probes of
the thermal QCD medium as well as transport coefficients that are important
ingredients for hydrodynamic and transport models that describe the evolution
of the produced medium. These include electromagnetic probes, like the rates
of emitted photons and dileptons, quarkonium spectral functions, and transport
coefficients, like the electrical conductivity or heavy flavor diffusion coefficients,
of the quark gluon plasma (QGP). All these real-time quantities are encoded
in the vector meson spectral functions. A direct determination of the spectral
functions is not possible in Euclidean lattice QCD calculations. Fortunately
the spectral functions can be analytically continued from imaginary to real
time, i.e., they are even equivalent in real and imaginary time. Therefore
it is possible to relate the spectral function to the corresponding Euclidean
correlation functions, although this requires a spectral reconstruction to obtain
it from the corresponding correlation functions. In the following sections we
will discuss the procedure to determine the required correlation functions and
the extraction of the spectral functions from lattice QCD correlators. We will
illustrate the concepts and methods to obtain spectral functions and related
physical observables. We will focus here on results obtained from continuum
extrapolated correlation functions, which requires large and fine lattices, which
so far was only possible to obtain in the so-called quenched approximation,
where the effects of dynamical degrees of freedom in the medium are neglected.
We will only give a brief introduction to lattice QCD and refer to the textbooks
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[1–4] and lecture notes [5] for more detailed introductions to lattice field theory.
For the topics addressed in this lecture note we also like to refer to the overview
articles on QCD thermodynamics and the QCD phase transition [5–7] and
quarkonium in extreme conditions [8].

8.1 Motivation

Direct photons and leptons are produced in all stages of the heavy-ion collision
and the subsequent evolution of the produced medium. Therefore they are good
probes that carry information of the evolving medium, including information on the
quark gluon plasma phase. As a matter of fact, these two objects form the basis
for the electroweak interaction. Since their coupling to the QGP constituents is
weak [9], once produced they escape from the interaction region hardly changed.
The experimental quantities characterizing the thermal production rate of these two
objects are called thermal dilepton rates and thermal photon rates. Figure 8.1 (left)
shows an example of experimentally measured dilepton yields, in this case from
electron–positron pairs detected at the PHENIX experiment [10], compared to
the expected contributions from various hadronic decays. The excess in the low-
mass region below 1 GeV/c2, which is expected to originate from the in-medium
modification of the ρ-meson, may be related the restoration of chiral symmetry.
Figure 8.1 (right) shows a sketch [11] of the expected photon rates from different
stages of the medium produced in heavy-ion collisions. At intermediate photon
energies thermal radiation from the QGP may be a dominant source that allows
the study the thermal medium using photons.
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Fig. 8.1 Thermal dilepton rates from the PHENIX experiment (left), from [10]. A sketch of
different sources of photons (right), from [11]
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As these electromagnetic probes are produced in all stages of the evolution of the
system, the experimentallymeasurable dilepton and photon rates are integrated over
the whole life-time of the dynamical evolving system. In lattice QCD calculations
contributions can be extracted for individual (equilibrium) stages of the thermal
medium. This can provide important input for model calculations of the evolution
of the system and the resulting integrated rates.

The dilepton and photon rates could be determined from the vector meson
spectral functions. For the thermal dilepton rate the relation is [12]

d��−�+(ω,k)

dω d3k

= 2e4
∑

f Q2
f θ(M2 − 4m2

�)

3(2π)5M2

(

1 + 2m2
�

M2

)(

1 − 4m2
�

M2

) 1
2

nB(ω)ρV (ω,k),

(8.1)

while for the thermal photon rate the formula reads

d�γ (k)

d3k
= e2

∑Nf

f =1 Q2
f

(2π)3k
nB(ω)ρV (ω = k,k). (8.2)

Here Qf is the electric charge of flavor f in units of the elementary charge e and
M is the invariant mass M2 = ω2 − k2, k = |k|. Note the vector channel spectral
function in our notation is defined as

ρV (ω,k) ≡ ρii (ω,k) − ρ00(ω,k)

≡
∫

d4x ei(ωt−k·x)〈1
2

[
V i(t, x) , V i(0)

]− 1

2

[
V 0(t, x) , V 0(0)

]〉

c
,

(8.3)

where 〈. . .〉c means only the connected part is considered and V i
f ≡ ψ̄f γ iψf .

In addition to the information on dilepton and photon rates, the vector meson
spectral function discussed has another contribution, which allows to extract
transport coefficients, i.e., diffusion coefficients and the electrical conductivity.
The lattice determination of the transport coefficients relies on a Kubo formula,
which establishes the connection between the low frequency regime of the spectral
function and transport properties of the system from linear response theory. The
derivation of Kubo formula can be found in common textbooks [13–15] and review
papers [16–18].

As an example the flavor diffusion coefficient can be obtained from the frequency
to zero limit of the slope of the vector meson correlation functions,

D = 1

3χq
lim

ω→0+

3∑

i=1

ρii (ω, 0)
ω

(8.4)
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from which the electrical conductivity can also be obtained as

σ = e2
Nf∑

f =1

Q2
f χqD , (8.5)

where χq is the quark number susceptibility defined by the temporal component of
the vector meson correlator,

χq =
∫ β

0
dτ

∫

d3x〈V 0(τ, x)V 0(0)〉 . (8.6)

Other transport coefficients could be expressed in similar ways from different corre-
lation functions. Transport coefficients are important ingredients for hydrodynamic
and transport model descriptions of the evolution of the system. Examples are
the heavy quark diffusion constant D [19], the heavy quark momentum diffusion
coefficient κ [20], and for light quarks the electrical conductivity [21, 22].

In the following we will discuss how to calculate the corresponding hadronic
correlation functions on the lattice and how to determine spectral functions from
these. This will include a discussion on spectral reconstruction methods, i.e.,
inversion methods, as well as perturbative constraints on the spectral functions
that allow to improve the extraction of spectral properties from lattice correlation
functions.

8.2 Hadronic Correlation Functions

The correlation function of interest is defined as the expectation value of a two point
function of the meson current

GH(τ, x) = 〈JH (τ, x)J †
H(0, 0)〉 , (8.7)

with the meson current defined as

J (τ, x) = 2κZHψ̄(τ, x)�H ψ(τ, x) . (8.8)

The matrix �H = 1, γ5, γμ, γ5γμ determines the scalar, pseudo-scalar, vector, and
axial vector mesons, respectively. κ is called hopping parameter responsible for
the quark mass

κ = 1

2(amq + 4)
. (8.9)



8 Spectral and Transport Properties from Lattice QCD 311

ZH are the renormalization constants that can be found in [23–26]. The quark
mass should be tuned in lattice calculations to set the hadron mass to the desired
value. Making use of the integral property of Grassmann number Eq. (8.7) can be
rewritten as

〈GH (m|n)〉 = − 1

Z
∫

D[U ]e−SG[U ]∏

f ′
det[Df ′ ]

× {
Tr[�HD−1

f (m|n)�HD−1
f (m|n)]

− 2Tr[�H D−1
f (n|n)]Tr[�HD−1

f (m|m)]},

Z =
∫

D[U ]e−SG[U ]∏

f ′
det[Df ′ ], (8.10)

where m and n are the positions of the two currents and f , f ′ denote the flavor of
quarks. U are gauge links constructed from the gauge fields.

When calculating mesonic correlators Eq. (8.10) on the lattice, one usually only
considers the connected part, i.e., the first term of Eq. (8.10). The disconnected parts
are expensive to calculate, and according to OZI suppression their contribution is
small so are neglected in most calculations. Furthermore they do not contribute
to iso-vector mesons. Since the lattice simulations are carried out at finite lattice
spacings, there are lattice cut-off effects in the calculated quantities. To eliminate the
cut-off effects one usually simulates the same physics at different lattice spacings
(and lattice extensions), and then performs the so-called continuum extrapolations
to reach the continuum limit. The Ansätz used in the extrapolation must respect the
order of errors in the observables considered.

In this lecture we will focus mainly on vector mesons. Performing the Fourier
transform along the spatial directions we obtain the correlator in a mixed represen-
tation

G(τ,p) =
∫

d3xe−ipx〈J (τ, x)J †(0, 0)〉. (8.11)

Spectral functions are related to the corresponding correlators by an integral
equation1

G(τ,p) =
∫ ∞

0

dω

2π
ρ(ω,p, T )K(τ, ω, T ) , (8.12)

1 There are different conventions in the definition of ρ in the literature (also in these lecture notes
from chapter to chapter), for instance sometimes G(τ,p) = ∫∞

0
dω
π

ρ(ω,p, T )K(τ, ω, T ) is used.
In this case the definition of transport coefficient via spectral function also changes accordingly but
the physics remains unchanged.
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with the kernel function

K(τ, ω, T ) = cosh(ω(τ − 1
2T ))

sinh( ω
2T )

(8.13)

respecting the periodic boundary condition.
As mentioned above, coefficients like thermal dilepton/photon production rate,

electrical conductivity, and heavy quark diffusion coefficient, all can be obtained
from the vector current–current correlators. But one should be clear in mind what
valence quark should be used when calculating the vector correlators. For thermal
dilepton/photon production rate, one should use light quarks. As for the electrical
conductivity, in principle it should be a summation of all possible flavors (but
usually only u, d , and s are considered). And for heavy quark diffusion, obviously
only heavy flavors, i.e., charm and beauty will be considered. And in different
scenarios, different prior information can be obtained from perturbative theories
for the spectral function. This information imposes strong constraint on the shape
or structure of the spectral function and makes the spectral reconstruction possible.
In the following sections after a short introduction to the reconstruction methods we
will show some lattice results to the fore-mentioned transport coefficients case by
case based on different spectral reconstruction strategies.

8.3 Inversion Methods

To infer the spectral function within lattice QCD methods one needs to invert
Eq. (8.12). Since numerical data is only available for a finite number of points this
procedure cannot be unique, i.e., there are infinitely many spectral functions leading
to the same correlator. This is the famous known ill-posed problem. And to solve
this problem, there are many different methods on the market. In this section we
give a brief introduction to some of them.

First we introduce a very commonly used method: Maximum Entropy Method
(MEM) [27]. It is based on Bayes’ theorem and the solution is obtained by maxi-
mizing the probability of having the solution ρ from the given lattice correlators G

and the prior information known about the solution D

P [ρ|G,D, α] = P [G|ρ,D, α]P [ρ|D,α]
P [G|D,α] . (8.14)

Here P [G|ρ,D, α] and P [ρ|D,α] are the likelihood function and the prior
probability, respectively. The likelihood function can be obtained purely from our
lattice data

P [G|ρ,D, α] ∝ exp(−χ2/2) (8.15)
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based on the Gaussian distribution of our lattice data. While the prior probability is
given by

P [ρ|D,α] ∝ exp(αS) (8.16)

where S is the Shannon–Jaynes entropy defined as

S[ρ] =
∫ ∞

0

dω

2π
[ρ(ω) − D(ω) − ρ(ω) ln

ρ(ω)

D(ω)
], (8.17)

where α is a regularization parameter that controls contributions to the reconstructed
image from the prior information relative to the data. The final solution is obtained
by integrating out α with special solution at each α and weights constructed from
the above ingredients. Lattice studies using this method can be found in [19, 28–
31]. And later on we will show the charmonia and bottomonia spectral functions
obtained from this method. Recently a novel Bayesian approach was proposed by
replacing the entropy in MEM by a different term in [32]

SMEM [ρ] 	⇒ SBR[ρ] ≡
∫ ∞

0

dω

2π
[1 − ρ(ω)

D(ω)
+ ln

ρ(ω)

D(ω)
]. (8.18)

Studies using this method can be found in [33–36].
Recently two approaches based on stochastic sampling of spectral images were

introduced to extract the spectral functions from the correlators [37], namely
stochastic optimization method (SOM) and stochastic analytical inference (SAI).
SOM has the advantage that no default model is needed while SAI is proven to be a
generalization of MEM and reduces to MEM in mean field approximation. And for
a specific choice of the prior SAI can also be proven to be equivalent to SOM. Other
available methods include Backus–Gilbert method [20, 38], which manipulates in
the local vicinity of some frequency range in a model-independent way, Tikhonov
method with Morozov discrepancy principle [39], and sparse modeling [40]. Apart
from all these methods, a classic approach that is widely used is χ2-fitting. In
this method one usually needs extra physical constraints imposed on the spectral
function to guarantee meaningful results. And a few fit parameters are introduced
to account for the uncertainties when adapting perturbative based Ansätz to non-
perturbative lattice data. In the following sections we will show results based on
some of the above methods.

8.4 Thermal Dilepton Rate and Electrical Conductivity

In this section we will describe the procedure to determine estimates for the thermal
dilepton rate and electrical conductivity of the QGP using light vector meson
correlation functions calculated on the lattice. We will first discuss the comparison
to the correlators in the free non-interacting limit, which is also used to normalize
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the lattice correlators. Continuum extrapolated vector meson correlation functions
will then provide the basis for the spectral reconstruction, where a perturbatively
inspired Ansätz in the UV part and a transport peak in the IR part of the spectral
function is used to fit the continuum vector meson correlation function. As this study
requires large and fine lattices together with a subsequent continuum extrapolation,
the lattice calculations were done in the quenched approximation, where dynamical
fermionic degrees of freedom have been neglected in a deconfined gluonic medium.
The lattice setup and other details for this study can be found in [22]. For a recent
review on the determination of the electrical conductivity from lattice QCD see [41].

8.4.1 Continuum Extrapolated Vector Meson Correlation
Functions

As an example for light quark meson correlators in the vector channel we show
results on finite lattices at some lattice spacing a with lattices extents Nt corre-
sponding to three different temperatures above the critical temperature in Fig. 8.2.
The correlation functions show exponential damping behavior up to the midpoint
of the lattice. Note that the Euclidean correlation functions are periodic around the
midpoint, τT = 0.5, where the temperature is given by T = 1/aNτ and τa is the
separation in the temporal direction. On this scale no temperature effects are visible,
and the correlators are close to the non-interacting free correlator.

To see the thermal effects we normalize the correlation functions by the massless
non-interacting (free) correlator,

Gfree
V (τ, ω, T ) = 6T 3

(

π(1 − 2τT )
1 + cos2(2πτT )

sin3(2πτT )
+ 2

cos(2πτT )

sin2(2πτT )

)

,

(8.19)
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Fig. 8.2 Lattice results of the vector meson correlation functions for three different temperatures
compared to the free continuum correlator, from [42]
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Fig. 8.3 Normalized lattice correlators and the resulting continuum extrapolated correlators in the
vector channel. Taken from [22]

which is also shown in Fig. 8.2. In general the correlators calculated on finite lattices
need to be renormalized before extrapolating to the continuum. For the vector
channel it is more suitable to use renormalization independent ratios by dividing
by the quark number susceptibility χq/T 2 = −G00/T 3, which is obtained from the
(constant) temporal component of the vector meson correlator and shares the same
renormalization as the spatial component. In this way any ambiguities stemming
from renormalization are absent.

Two examples of the lattice correlation functions normalized in this way are
shown in Fig. 8.3(top). When comparing the results for the three different lattices
strong cut-off effects are visible especially at small τT . To remove the cut-off
effects a continuum extrapolation was performed in 1/N2

τ for all distances τT

down to around τT � 0.1. The results of the continuum extrapolated vector
meson correlation functions for three temperatures in the QGP are shown in
Fig. 8.3(bottom). For the bottom right plot the continuum extrapolated values for
χq were used to remove the dependence on the quark number susceptibility.
The temperature effects observed in the lower left plot are mainly caused by the
normalization with χq/T 2 and disappear in the lower-right plot.

Note that in the lower-right panel of Fig. 8.3, for τ → 0, the ratio Gii/Gfree
V

approaches unity, which manifests that at small distance the correlator is dominated
by the UV part of the spectral function, which should approach to the free spectral
function according to asymptotic freedom.At large τ one sees substantial deviations
from the free case reaching up to around 50%. This is already an indication
for non-perturbative contributions and has an impact on the determination of the
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transport coefficients and thermal dilepton rates as will be discussed in the following
section. In this temperature window the only scale is the temperature and no
resonance contributions, e.g., a rho meson, are expected in the gluon plasma at
these temperatures. Therefore the weak temperature dependence already indicates
that temperature effects in the temperature scaled dilepton rates and the electrical
conductivities will be rather small.

8.4.2 Lattice Estimate on the Thermal Dilepton Rate and Electrical
Conductivity

We will now discuss the spectral reconstruction in terms of a phenomenologically
inspired Ansätz for the spectral function and show results for the thermal dilepton
rate and electrical conductivity based on the continuum extrapolated vector meson
correlation functions discussed in the previous section. These results obtained from
continuum correlators are only available in the quenched approximation, as only in
this case the required large temporal extents of the lattice could be achieved so far.
Nevertheless, this already allows to study these observables in a gluonicmedium and
provides a methodology that can be extended to a more realistic medium including
light dynamical degrees of freedom in the future.

In principle the spectral function can be split into different parts. Due to asymp-
totic freedom, at asymptotically large frequencies the correlation functions should
approach their free continuum limit, which at large frequencies gets perturbative
corrections. At intermediate frequencies possible contributions from bound states
may arise at low temperatures, but are not expected in the temperature region
discussed here, as already indicated by the discussion on the correlator level in
the previous section. Since in this study all correlators are obtained at above Tc

temperature, even the lightest meson, e.g., the ρ meson in the vector channel, can
be neglected. At very low frequencies transport contribution i.e., a transport peak, is
expected in the vector channel.

Due to asymptotic freedom the high temperature limit of the spectral function
should approach the free particle limit. The latter can be computed analytically [43,
44],

ρfree
00 (ω) = 2πωT 2δ(ω) , (8.20)

ρfree
ii (ω) = 2πωT 2δ(ω) + 3

2π
ω2 tanh(ω/(4T )) (8.21)

and eventually ρV (ω) = ρii(ω) − ρ00(ω) so that delta contributions cancel. When
one includes interactions the delta function in the temporal component is protected,
but the one in the spatial components gets smeared out due to interactions leading
to a transport peak at low frequencies. This motivates the following Ansätz:

ρ00(ω) = 2πχqωδ(ω) , (8.22)
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ρii(ω) = 2πχqcBW
ω�/2

ω2 + (�/2)2
+ 3

2π
(1 + κ)ω2 tanh(ω/(4T )) , (8.23)

with the quark number susceptibility χq , two parameters for the transport peak,
cBW and �, and a coefficient κ which attributes to perturbative corrections of the
continuum part of the spectral function. At the leading order in perturbation theory
κ = αs/π . The electrical conductivity, σ , is given by the frequency to zero limit
(Kubo formula) and can be expressed by the parameters introduced in the Ansätz as

σ

T
= Cem

6
lim
ω→0

ρii (ω,p = 0, T )

ωT
= 2

3

χq

T 2

T

�
cBW Cem , (8.24)

where Cem = ∑
f Q2

f is the sum of the square of the elementary charges of the
quark flavors f . This rather simple Ansätz for the spectral function can be fitted
to the continuum extrapolated vector meson correlator and already describes the
data rather well [22]. Nevertheless to study systematic uncertainties of the resulting
spectral functions, one can further modify this Ansätz accounting for effects in the
frequency regions where the transport peak and the continuum part overlap. As the
continuum part contributes also in the low frequency regime we modify this part in
such a way that the small ω contribution is smoothly removed,

ρii (ω) = 2πχqcBW
ω�/2

ω2 + (�/2)2
+ 3

2π
(1 + κ)ω2 tanh(ω/(4T ))�(ω0,�ω) ,

(8.25)

with

�(ω,ωi ,�i) =
(

1 + exp(
ω2

i − ω2

ω�i

)

)−1

. (8.26)

The effect of this modification can be seen in the right panel of Fig. 8.4, which shows
the corresponding result of the fit.

As the Ansätz 8.23 and the modified Ansätz 8.25 contain a real transport peak,
the corresponding fits are not sensitive to a behavior where the small frequency
part is rather flat. Therefore we consider an additional ansatz that explores the small
frequency behavior to examine the appearance of a flat frequency to zero limit rather
than a real transport peak,

ρflat
ii (ω) = aχqω(1 − �(ω,ω0,�0)) + (1 + k)ρfree(ω)�(ω,ω1,�1) . (8.27)

This is motivated by the strongly coupled results of the AdS/CFT correspondence
where a rather featureless and flat low energy behavior is generic [45]. The fitted
shape of Eq. (8.27) to lattice data is presented in left panel of Fig. 8.4.
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Fig. 8.4 Fitted shape of the vector spectral function to the continuum lattice correlation function.
Upper-left panel shows results for Eq. (8.27). The other panels show results for Eq. (8.23). Also
shown is the hard thermal loop (HTL) result. Taken from [22]

Another region of changing or improving the Ansätz is in the UV behavior of
the spectral function. So far we have used the leading order perturbative correction
to the free behavior incorporated by constant, i.e., not running coupling constant.
At very high frequencies the spectral function can be determined from perturbation
theory, and furthermore thermal effects should be suppressed at sufficiently large
frequencies. Therefore vacuum perturbation theory is expected to become reliable
and can be used to improve the model in the high frequency regime. The five loops
vacuum spectral function [46, 47] reads

ρV (ω) = 3ω2

4π
R(ω2) , (8.28)

where

R(ω2) = r0,0 + r1,0αs + (r2,0 + r2,1l)α
2
s + (8.29)

+ (r3,0 + r3,1l + r3,2l
2)α3

s +
+ (r4,0 + r4,1l + r4,2l

2 + r4,3l
3)α4

s + O(α5
s ) .

Using 3-loop running coupling αs and l = log(μ2/ω2) with μ = 1.5max(πT , ω)

and taking into account the leading effects of the temperature this perturbative
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vacuum behavior can be incorporated in the Ansätz [48] for the spectral function
and one obtains

ρ
(T )
ii (ω) = 3ω2

4π
[1 − 2nF (ω/2)]R(ω2) + πχ free

q ωδ(ω) . (8.30)

Using this as an Ansätz for the high frequency part together with the Breit–Wigner
description for the non-perturbative, low frequency part one gets an excellent
description of the lattice data

ρR(ω) = ρBW(ω) + 3ω2

4π
[1 − 2nF (ω/2)]R(ω2) , (8.31)

where

ρBW = 2πχqcBW
ω�/2

ω2 + (�/2)2
. (8.32)

The fit strategy using these three Ansätz for the spectral function and the results
of the fits to the continuum extrapolated vector meson correlation functions are
explained in [22] in more detail. All three Ansätz of the spectral functions reproduce
the continuum extrapolated lattice data at the three temperatures T = 1.1, 1.3, and
1.5Tc with high accuracy and χ2/dof of order unity. While all spectral functions
converge at high frequencies, they differ substantially in the infrared region as
can be seen in Fig. 8.5. This indicates the general difficulties in the extraction of
transport coefficients from lattice QCD. Comparing the three Ansätz, we see that
the area under each peak of the spectral functions is very similar, but the sensitivity
to the shape of the spectral in this region is limited. Nevertheless these results
allow for an estimate of the electrical conductivity, and the discrepancy in the zero
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Fig. 8.5 Result for the spectral function fitted to the continuum extrapolated correlator at 1.1 Tc

for the three Ansätz of the spectral function [22]
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the electrical conductivity incorporating the full systematic uncertainties, i.e., the minimum and
maximum conductivities, respectively, of ρans and ρR. Taken from [22]
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frequency limit acts as a measure of the systematic uncertainty in the results for the
electrical conductivity, shown in Fig. 8.6 (right), which is estimated by the respective
minimum and maximum of the two Ansätz ρans and ρR .

The resulting thermal dilepton rates, obtained from the spectral function ρR
inserted in Eq. (8.1) are shown in Fig. 8.6 (left) for all three temperatures. The
results are qualitatively comparable to the rate obtained by a hard thermal loop
(HTL) calculation [49] in the large frequency region, as well as to the leading order
(Born) rate. However, compared to the HTL computation, the lattice results show
an enhancement in the intermediate region ω/T ∼ 2 and a qualitatively different
behavior for small frequencies.

Figure 8.7 shows a collection of available results for the electrical conductivity
in quenched (left) and full QCD (right). More details and discussions on this topic
can be found in the review [41]. Although the full QCD results shown in the
right plot are obtained on rather coarse lattices and not continuum extrapolated
yet, a qualitative comparison to the quenched results indicates different behavior
when approaching small temperatures. While the quenched results show no clear
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temperature dependence down to the critical temperature, the conductivity in full
QCD shows a decreasing trend toward smaller temperatures. This may be attributed
to the change of the transition from first order in quenched to a cross-over in
full QCD and the system becoming more non-perturbative and more interacting
when dynamical fermion degrees of freedom are included. Final conclusions on this
remain for the future when calculations on larger and finer lattices become available
allowing for continuum extrapolations also in full QCD.

Taking the limit of zero frequency in Eq. (8.2) allows to estimate the soft photon
rate, which can be written in terms of the electrical conductivity,

lim
ω→0

ω
d�γ

d3k
= αemCem

2π2

(
σ

CemT

)

T 2. (8.33)

In the following section we will discuss how to obtain the full thermal photon rate
from vector meson correlators at non-zero momenta.

8.5 Lattice Estimate of Thermal Photon Rate

In the previous section we discussed how to obtain thermal dilepton rates and
estimates on the electrical conductivity from continuum extrapolated vector meson
correlation functions at zero momentum.We will now extend this discussion to finite
momentum, k. Extracting the spectral function at finite k allows to use Eq. (8.2) to
calculate the thermal photon rate. We will follow here [12] where the same lattice
setup is used as the one in previous section. The calculation of the photon requires
the extraction of the spectral function at the photon point (ω = |k|), meaning that
the momentum dependence of the spectral function has to be carefully studied.
Compared to the extraction of the electrical conductivity we are now interested in
frequencies of the order of k. At larger k it is expected that the spectral function
becomes more perturbative and perturbatively constraining the spectral function in
the large frequency region becomes more effective and provides a cleaner extraction
of the spectral information.

We start with a discussion about the perturbative knowledge on the behavior
of the spectral function in different regimes. At high frequencies and in the
(asymptotically) large invariant mass limit, M 
 πT , with M2 = ω2 − k2 the
non-interacting spectral function is known analytically [44] as

ρV (ω,k) = NcT M2

2πk

{

log

[
cosh(ω+k

4T )

cosh(ω−k
4T )

]

− ωθ(k − ω)

2T

}

. (8.34)
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Perturbatively, at finite temperature a logarithmically enhanced term has been
worked out analytically [50, 51] for the photon rate,

ρV (k,k) = αsNcCF T 2

4
log

(
1

αs

)

[1 − 2nF (k)] + O(αsT
2) . (8.35)

Non-logarithmic terms are only known in numerical form [52, 53]. Recently, these
results have been extended to O(α

3/2
s T 2) both at vanishing [54] and non-vanishing

photon masses (|M| � gT , where g ≡ √
4παs) [55], which we will use in the

following for the large frequency part of the spectral function.
For M 
 πT , the spectral function goes over into a vacuum result [56] which

is known to relative accuracy O(α4
s ) [46, 57] and can directly be taken over for a

thermal analysis [48, 58]. Such precisely determined results play an essential role
in the investigation as they constrain the UV behavior and lead to more reliable
extractions of the small and intermediate frequency parts.

In the low frequency limit the form of the spectral function can be deduced
from the so-called hydrodynamic regime, where the general theory of statistical
fluctuations applies and for k � α2

s T , the spectral function has the form,

ρV (ω,k)

ω
=
(

ω2 − k2

ω2 + D2k4
+ 2

)

χqD , (8.36)

with the diffusion coefficient,

D = 1

3χq

lim
ω→0+

3∑

i=1

ρii (ω, 0)
ω

, (8.37)

which is related to the electrical conductivity and the soft photon rates as already
discussed in the previous section.

Knowing the form of the spectral function in the two regimes of low frequencies
from hydrodynamics and high frequencies from perturbation theory, one still has to
model the spectral function in the intermediate frequency regime incorporating this
knowledge. In [12] a high order polynomial Ansätz,

ρfit(ω) = βω3

2ω3
0

(

5 − 3ω2

ω2
0

)

− γω3

2ω2
0

(

1 − ω2

ω2
0

)

+
nmax∑

n=1

δnω
1+2n

ω1+2n
0

(

1 − ω2

ω2
0

)

,

(8.38)

was used with the constraint to smoothly match the perturbative result at ω = ω0

ρV (ω0) = β, ρ′
V (ω0) = γ , (8.39)
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and nmax + 1 free parameters starting with a linear behavior for ω � T . The
matching frequency is defined as ω0 � √

k2 + (πT )2 and nmax = 0 and nmax = 1
was used. More details on the Ansätz and the fitting strategy can be found in [12].

Results from this procedure are shown in Fig. 8.8 for a temperature of 1.1 Tc and
three momenta k in comparison to the best estimate from perturbation theory. While
at τ → 0, all correlators approach the perturbative result, at larger values of τ non-
perturbative effects are clearly visible. This deviation becomes smaller for larger
values of k, i.e., the lattice results approach the perturbative behavior for increasing
momenta.

The spectral function at the photon point ω = k

Deff(k) =
⎧
⎨

⎩

ρV (k,k)
2χqk

, for k > 0

limω→0+ ρii (ω,0)
3χqω

, for k = 0
(8.40)

can be used to compute the thermal photon rate

d�γ (k)

d3k
= 2αemχq

3π2 nB(k)Deff(k) + O(α2
em) . (8.41)

While this equation is perturbative with respect to electromagnetic interactions, the
function Deff contains all non-perturbative information from strong interactions.
The results are shown in Fig. 8.9. The results approach the NLO perturbative
prediction (valid for k 
 gT ) for large momenta, while for momenta k/T < 3
non-perturbative effects become visible. The electrical conductivity could also be
obtained in the k → 0 limit, but the available momenta are not small enough for
such a determination from Deff. The value shown in the plot at k = 0 was calculated
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from the result obtained at zero k from [22], see previous section. The AdS/CFT
value is DT = 1/(2π).

The results of this study show the potential for obtaining results for the photon
rates obtained from continuum extrapolated lattice QCD correlation functions
incorporating perturbative knowledge in the spectral reconstruction. Obtaining
results at even smaller momenta would be very interesting for future studies. In a
finite-size box momenta are given by k = 2πn/(aNs), where a is the lattice spacing
and n is an integer and aNτ = 1/T , i.e., in units of temperature,

k/T = 2πn × Nτ

Ns

, (8.42)

whereNτ and Ns are the temporal and spatial lattice extents, respectively. Therefore
going to small momenta requires to do the calculations at larger extents and
therefore become more expensive in terms of numerical calculations.

First results on the photon rate obtained in full QCD using a different method to
extract the photon rates can be found in [60] and are shown in Fig. 8.10. This study
is based on the difference between the spatially transverse and longitudinal parts of
the vector meson spectral function, which has the advantage that UV contributions
are exponentially suppressed.

In addition to improving the lattice QCD results, e.g., obtaining continuum
results also in full QCD including realistic dynamical fermion degrees of freedom,
combining different methods for the spectral reconstruction, including perturbative
models, special combinations of different operators, reconstruction methods dis-
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Fig. 8.10 Lattice result for the effective diffusion coefficient Deff from the 2-flavor lattice QCD
calculation from [60]

cussed in Sect. 8.3, or machine learning techniques may improve the determination
of spectral properties from lattice QCD correlation functions in the future.

8.6 Charmonia and Bottomonia Spectral Function from
Lattice QCD

So far we have discussed the light quark correlation and spectral functions and
related observables. In the following sections we will discuss meson correlation
functions in the heavy flavor sector. We focus on charmonium and bottomonium
in the vector channel, namely J/ψ and ϒ . We perform lattice calculations on very
large and fine lattices so that charm and bottom quarks can be treated relativistically.
The results given below are based on [31]. As preparation we first give a brief
introduction to free spectral functions that will be used in the spectral analysis.

8.6.1 Free Spectral Function

The non-interacting spectral functions for massive free quarks, including the one
in the continuum and on the lattice, can be analytically calculated in the high
temperature limit [43, 44]. At zero momentum, the continuum free meson spectral
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function reads

ρH (ω) =�(ω2 − 4m2)
Nc

8πω

√
ω2 − 4m2 [1 − 2nF (ω/2)]

[
ω2

(
a

(1)
H − a

(2)
H

)

+ 4m2
(
a

(2)
H − a

(3)
H

) ]
+ 2πωδ(ω)Nc

[ (
a

(1)
H + a

(2)
H

)
I1

+
(
a

(2)
H − a

(3)
H

)
I2

]
, (8.43)

with

I1 = −2
∫

k
n′

F (ωk), I2 = −2
∫

k

k2

ω2
k

n′
F (ωk). (8.44)

Here nF is the fermi distribution and n′
F the partial derivative with respect to ωk.

The coefficients a
(1)
H , a(2)

H , and a
(3)
H can be found in Table 8.1. We could see that in

the pseudo-scalar channel, the δ function sitting at zero frequency vanishes because
of the coefficients. So there will be no transport peak in this channel. While for
vector channel it does not.

The free spectral function can also be calculated on the lattice using the lattice
propagators in momentum space as a sum over lattice momenta. For the Wilson
fermion discretization of the fermionic action, it is given by

ρWilson
H (P ) = 4πNc

L3

∑

k

sinh
( ω

2T

)

{[

a
(1)
H S4(k)S

†
4 (r) + a

(2)
H

∑

i

Si (k)S
†
i (r) + a

(3)
H Su(k)S†

u(r)
]

δ(ω + Ek − Er)

+
[

a
(1)
H S4(k)S

†
4 (r) − a

(2)
H

∑

i

Si (k)S
†
i (r) − a

(3)
H Su(k)S†

u(r)
]

δ(ω − Ek − Er)

+(ω → −ω)

}

. (8.45)

Table 8.1 Coefficients a
(i)
H

for free spectral functions in
different channels H taken
from [44]

�H a
(1)
H a

(2)
H a

(3)
H

ρS 11 1 −1 1

ρPS γ5 1 −1 −1

ρ00 γ 0 1 1 1

ρii γ i 3 −1 −3

ρV γ μ 2 −2 −4

ρ00
5 γ 0γ5 1 1 −1

ρii
5 γ iγ5 3 −1 3

ρA γ μγ5 2 −2 4
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Here L = aNσ is the spatial extent of the lattice. And the lattice propagators are
given by

S4(k) = sinh(Ek/ξ)
2Ek cosh(Ek/2T )

,

Si(k) = 1
ξ

i sin ki

2Ek cosh(Ek/2T )
,

Su(k) = − 1−cosh(Ek/ξ)+Mk
2Ek cosh(Ek/2T )

, (8.46)

where ε = a/aτ is the anisotropy parameter which allows for different lattice
spacings in temporal and spatial direction and ε = 1 is for an isotropic lattice.
Relevant quantities are defined as

Kk = 1
ξ

∑3
i=1 γi sin ki,

Mk = 1
ξ

[
r
∑3

i=1 (1 − cos ki) + m
]

Ek = (1 + Mk) sinh (Ek/ξ) , (8.47)

and the energy of a single particle Ek is determined by the following equation:

cosh (Ek/ξ) =
√

1 + K2
k + (m/ξ)2. (8.48)

Figure 8.11 shows the free particle spectral function in the continuum and
on the lattice (Wilson fermion discretization) calculated according to Eqs. (8.43)
and (8.45). The lattice spectral functions approach the continuum one at small
frequencies but differ at large frequencies and even vanish above a cut-off around
aω � 4, which is dictated by the lattice spacing. The peaks and cusps in the lattice
spectral functions correspond to effect of the so-called Wilson doublers. If one

Fig. 8.11 Free meson spectral functions in the continuum (dotted) and on the lattice (solid) in
different channels calculated according to [44] taken from [61]. In left panel the quark mass is
am = 0 and in the right panel the quark mass am = 0.01. Nτ = 64 in both panels
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would scale the x-axis to physical units or units of temperature, i.e., ω/T = aωNτ ,
it becomes clear that these lattice discretization and cut-off effects move to larger
frequencies with increasing Nτ and disappear in the Nτ → ∞ limit, and the lattice
spectral functions approach their continuum values in this limit.

In the interacting theory these discretization effects are also present and can lead
to cut-off effects in the spectral function in the physically interesting frequency
regions when the lattice spacings are not small enough, especially for heavy quarks,
e.g., for a typical inverse lattice spacing of a−1 = 3.6GeV (which corresponds to
a = 0.055 fm) the peak in the lattice spectral function will be of the order of the
bottomonium ground state and would influence any studies of this state. Note that
according to Eq. (8.45) these discretization effects stem from finite spatial lattice
spacing effects. Therefore on anisotropic lattices, where the temporal extend is
chosen to be smaller as the spatial one, e.g., to improve the spectral reconstruction
at fixed temperatures using larger Nτ , these effects are given by the coarser spatial
lattice spacing.

Next we will consider the small frequency part of the vector meson spectral
function, i.e., the transport peak. In the non-interacting limit (and also infinite
temperature limit), at zero frequency a δ-function appears, [43, 44]

ρii (ω � T ) ∼ 2χ00
T

M
ωδ(ω). (8.49)

When the interaction is turned on, this δ peak in the spatially polarized vector
channel gets smeared into a Breit–Wigner distribution [18]

ρii (ω � T ) ∼ 2χ00
T

M

ωη

ω2 + η2
, (8.50)

with η = T/MD with the quark mass M and diffusion coefficient D. Note that
the temporal vector channel, ρ00 is protected by the conservation of particle number
to remain a delta function at zero momentum. For the moment we ignore possible
bound states or resonance peaks in the intermediate frequency range and construct a
spectral function with only a transport peak and a free continuum spectral function.
This would correspond to a system at very high temperatures where any bound
states are already melted. An example of such a spectral function is shown in the
top panel of Fig. 8.12. In the lower plots the contributions of the spectral function,
including a transport peak (left) and delta peak (right), to the correlators according
to Eq. (8.12) in parts is shown. Here one can observe that the correlation function at
different distance τT is sensitive to different parts of the spectral function due to the
existence of the kernel function Eq. (8.13). At small τT the correlator is dominated
by the high frequency part of the spectral function while the transport region mainly
contributes at large τT .

At lower temperatures additional bound state or resonance contributions will
appear. At zero temperature bound states, i.e., ground and excited states for
charmonium and bottomonium, are known and can be well approximated as series
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Fig. 8.12 Upper: a sketch showing different parts of the spectral function. Lower: the contribu-
tions of different parts of the spectral function to the correlators. All three figures here are taken
from [62]

of δ-like functions. At finite temperature, these resonance peaks will probably
broaden and their peak locations may change. An important question is at which
temperatures which states dissociate and if at sufficient high temperatures all bound
states are melt and merge into the threshold to a continuum region in the spectral
function. Figure 8.13 shows a sketch of the spectral function in the vector channel
at different temperatures. From the previous discussions we already learned that
disentangling all these contributions to the spectral function is difficult as they
contribute to the correlation function at all distances and a spectral reconstruction
is required. Therefore it is important to remove the lattice discretization effects
by performing the continuum limit of the correlation functions and implement as
much prior information as possible into Ansätz for the spectral function, e.g., from
perturbation theory in the high frequency part. We will follow this strategy in the
next sections for charmonium and bottomonium correlation and spectral functions,
first in the pseudo-scalar channel where not transport contribution appears and then
in the vector channel including a discussion on the transport contribution.
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Fig. 8.13 A sketch of the spectral function in the vector channel at different temperature [62]

8.6.2 Spectral Functions of Charmonia and Bottomonia in the
Pseudo-Scalar Channel

In this section we will discuss the determination of charmonium and bottomonium
spectral functions in the pseudo-scalar channel based on comparing continuum
extrapolated lattice correlation functions to perturbative spectral function, where
resummed thermal effects around the threshold and vacuum asymptotics above the
threshold are incorporated [63]. The pseudo-scalar channel has the feature that the
transport peak is absent, making the spectral analysis much easier compared to the
vector channel.

The strategy is to fit a perturbatively inspired model to the lattice data. The
model spectral function consists of two parts: the thermal contributions around
the threshold and the vacuum contribution above the threshold. The former can be
obtained by pNRQCD calculations [64]:

ρ
NRQCD
P = M2

3
ρ
NRQCD
V , (8.51)

where

ρ
pNRQCD
V (ω) = 1

2

(
1 − e− ω

T

) ∞∫

−∞
dt eiωT C>(t, 0, 0). (8.52)

C> is a Wightman function solvable for a real-time static potential from hard
thermal loop resummation. And at frequencies well above the threshold, ultraviolet
asymptotics says that the spectral functions are

ρP(ω)

ω2m2(μ̄)

∣
∣
∣
∣

vac

≡ Nc

8π
R̃

p
c (ω, μ̄), (8.53)
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where R̃
p
c (ω, μ̄) and the running mass m2(μ̄) with scale μ̄ can be found in [63].

These two parts are combined by matching ρ
pNRQCD
V smoothly to the vacuum

asymptotics. More discussion on the resulting perturbative spectral function, ρpert
P

can be found in [63].
With this perturbative knowledge we can form a model spectral function,

ρmodel
P (ω) ≡ A ρ

pert
P (ω − B) (8.54)

that contains two fit parameters A and B. A accounts for the uncertainties in the
renormalization and B for the uncertainties in the determination of the pole mass.

This model spectral function can be used to fit the lattice correlators, which have
been first interpolated to the physical meson masses and then extrapolated to the
continuum. We show the fit results in Fig. 8.14. We could see that continuum lattice
correlators are well described by this model. The corrections to the fit parameters
turn out to be small and χ2/d.o.f<1, see Table 8.2. We show the resulting spectral
functions in Fig. 8.15. From our analysis we conclude that for charmonium no
resonance peaks are needed for representing the lattice data even at 1.1 Tc. Only
modest threshold enhancement is sufficient in the analyzed temperature region.
For bottomonium the thermally broadened resonance peak could survive up to
temperatures around 1.5Tc.

Note that the results here are obtained in the quenched approximation for a
gluonic system without dynamical fermion degrees of freedom. It remains to be seen
if such a perturbative model still is able to describe charmonium and bottomonium
systems when extending these studies to full QCD or if non-perturbative effects will
become stronger in a more realistic QGP medium.

8.6.3 Spectral Functions of Charmonia and Bottomonia in the
Vector Channel

In this section we discuss lattice results on quarkonium spectral functions in the
vector channel obtained from lattice QCD simulations at different temperature T ∈
[0.75, 2.25]Tc. Same as previous section, the simulations are performed in quenched
approximation on large and fine isotropic lattices. The results in this section are
obtained from the finest available lattice with a lattice spacing of a � 0.009 f m. The
spectral functions are reconstructed using theMaximum EntropyMethod, discussed
in Sect. 8.3, with default models constructed using the ingredients mentioned in
Sect. 8.6.1. Some reconstructed spectral functions (solid lines) for different default
models (dashed lines) are summarized in Fig. 8.16 taken from [31]. In these studies,
the determination of the spectral modifications and dissociation temperatures
requires carefully examination. For instance the dependence of the results on the
default model needs to be checked. The deformation of the spectral function with
temperature could also come from the reduction of the number of data points of the
correlators with increasing temperature, which also needs to be taken into account.



332 O. Kaczmarek and H.-T. Shu

0.0 0.1 0.2 0.3 0.4 0.5
τ T

1

2

3

4

5
perturbative

model
lattice

M1S ~ 1.5 GeV, T ~ 1.1 Tc

0.0 0.1 0.2 0.3 0.4 0.5
τ T

1

2

3

4

5

G
P 
  
  
/ 
G

P
la

tt
fr

ee

G
P 
  
  
/ 
G

P
la

tt
fr

ee
G

P 
  
  
/ 
G

P
la

tt
fr

ee

G
P 
  
  
/ 
G

P
la

tt
fr

ee

perturbative

model
lattice

M1S ~ 1.5 GeV, T ~ 1.3 Tc

0.0 0.1 0.2 0.3 0.4 0.5
τ T

1

2

3

4

5
perturbative

model
lattice

M1S ~ 1.5 GeV, T ~ 1.5 Tc

0.0 0.1 0.2 0.3 0.4 0.5
τ T

1

2

3

4

5
perturbative

model
lattice

M1S ~ 1.5 GeV, T ~ 2.25 Tc

Fig. 8.14 A comparison of lattice correlators, correlators integrated from the model spectral
functions, and the resummed perturbative predictions for charmonium in the pseudo-scalar channel
[63]

Table 8.2 Best fit
parameters of the model
spectral function Eq. (8.54) to
our lattice data

Charmonium Bottomonium

T /Tc A B/T χ2/d.o.f. A B/T χ2/d.o.f.

1.1 1.04 0.52 0.01 0.85 −0.11 0.02

1.3 1.04 0.37 0.01 0.87 −0.13 0.04

1.5 1.02 0.33 0.02 0.87 −0.11 0.10

2.25 1.06 0.16 0.08 0.93 −0.04 0.28

Furthermore the resolution of spectral properties, e.g., the width of spectral peaks,
usually is limited when using Bayesian spectral reconstruction approaches, even for
very large lattice extents and high statistics data.

The heavy quark diffusion coefficient for charm quarks, which requires precise
reconstruction of the transport peak, still remains unclear. One of the difficulties is
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Fig. 8.15 A comparison of the perturbative pseudo-scalar spectral functions (dash–dotted curves)
and their modifications (solid curves) for charmonium (left) and bottomonium (right) [63]

Fig. 8.16 Charmonium spectral functions in the vector channel at different temperatures obtained
by MEM with different default models (dashed curves) [31]

that the transport contribution is much smaller than the other contributions to the
spectral function leading to only a small curvature in the transport contribution for
different distances τT in the correlator. A Breit–Wigner distribution with different
width could describe the lattice data equally well, forming a linear relation between
2πT D and T/η, see Fig. 8.17. Although the method seems to be sensitive to the
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Fig. 8.17 Linear relation between 2πT D and T /η at 1.10, 1.25 and 1.50Tc for charmonia [31]

integral over the transport peak, a resolution of the shape of the transport peak is
limited.

In the bottomonium channel, due to the large scale separation, it is always
difficult to directly reconstruct the full spectral functions with methods like MEM.
A common work around is to use the difference correlator Gdiff(τ/a) ≡ G(τ/a) −
G(τ/a + 1), which is believed to be able to effectively remove the tiny transport
contribution. With this method the intermediate and large frequency part of the
spectral function can be obtained, see Fig. 8.18. Also here some default model
dependencies are visible and the width of the spectral peaks, where the ground state
may correspond to the ϒ state, can not be reliably extracted. This is furthermore
hindered by the fact that estimating the statistical and systematic uncertainties in
such Bayesian analyses is difficult.

Recently a similar study in the vector channel on the same data set as in the
pseudo-scalar channel (Sect. 8.6.2) using same strategy, i.e., χ2-fitting based on
perturbatively inspired models, has been carried out. Some preliminary results are
reported in [65]. But in the vector channel one has to solve the transport peak and
will have similar difficulties resolving details of the shape of it as seen in the MEM
analysis discussed above, also shown in Fig. 8.17. Possible ways to improve on this
problem are making use of estimating the heavy quark mass and using the Einstein
relation to eliminate one free parameter or analyzing the so-called thermal moments
of the spectral function. Furthermore, combining different spectral reconstruction
methods will help to improve the extraction of spectral functions and also allow to
better estimate and reduce systematic uncertainties in the spectral reconstruction.
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Fig. 8.18 Bottomonia spectral functions at different temperatures obtained by MEM with differ-
ent default models [31]

8.7 Heavy QuarkMomentum Diffusion Coefficient

As we have learned in the previous sections, the reconstruction of the transport
peak from the vector channel of current–current correlation functions is challenging.
Especially for cases where this peak is expected to be very narrow and possible
bound states contribute to the spectral function, like in the heavy quark sector, the
sensitivity of the correlation function to the transport contribution is small, hindering
a reliable spectral reconstruction. In this section we will discuss results for the heavy
quark momentum diffusion coefficient that can be determined from an operator that
is more sensitive to the transport contribution, as the corresponding spectral function
contains no bound states and the small frequency limit is expected to be approached
in a smooth way.

In 2009 Moore, Laine, and Caron-Huot proposed to measure a purely gluonic
Euclidean correlator, i.e., color–electric correlators that can be related to the heavy
quark diffusion [67]. The idea is to construct a kinetic mass dependent momentum
diffusion coefficient κ(M) within the heavy quark effective theory that can be related
to the heavy quark diffusion coefficient D via Einstein relation D = 2T 2/κ(M). To
get rid of the mass dependence, one carries out the large quark mass limit in the
Langevin theory. In this limit the force–force correlator appears in the definition of
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κ could be expanded in inverse powers of the heavy quark mass, leading to a gluonic
correlation function of the following form:

GE(τ) = −1

3

〈ReTr
[
U( 1

T
, τ )gEi(τ, 0)U(τ, 0)gEi(0, 0)

]
〉

〈ReTrU( 1
T

, 0)〉 , (8.55)

where Ei is the color–electric field. Then after analytic continuation a heavy quark
momentum diffusion coefficient free of quark mass can be defined by

κ

T 3 = lim
ω→0

2TρE(ω)

ω
, (8.56)

where ρE(ω) is the spectral function encoded in the color–electric correlators.
The advantage of studying the color–electric correlators is that this correlator

is much less computation demanding than the current–current correlators as one
does not need to calculate the inverse Dirac matrix. Furthermore, the corresponding
spectral function related to this correlator has less structures than the one from
the current–current correlators, and a smooth behavior at small ω is expected.
Perturbative computations of κ/T 3 showweak convergence in the range of coupling
of interest, and hence a non-perturbative approach like lattice QCD is required to
make realistic prediction. In the following we show a lattice study of this quantity
taken from [66], where the gradient flow [68, 69] method is used to improve the
signal of the correlators measured.

In Yang–Mills gradient flow method the gauge field is evolved with respect to a
fifth dimension, which is called flow time τF. The gauge action will be driven to its
saddle point according to a diffusion equation

Bμ

∣
∣
∣
τF=0

= Aμ,
∂Bμ

∂τF
= DνGνμ, (8.57)

where Bμ(τF, x) is the flowed gauge field and Aμ the ordinary gauge field. The
covariant derivative Dν respecting the gauge invariance could be easily constructed
as

Dμ = ∂μ + [Bμ, ·] (8.58)

and the field strength tensor could also be constructed with the flowed gauge fields.
Since a fifth dimension is introduced in this method, to obtain the physical

quantities, one needs to extrapolate the flow time τF to zero. For this one could make
use of the small-flow-time-expansion proposed in perturbation theory: the flowed
local operator O(x, τF) can be expanded in τF-dependent coefficients ci and the
corresponding renormalized, unflowed operator [70]

O(x, τF) −−−→
τF→0

∑

i

ci(τF)O
R
i (x). (8.59)
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Fig. 8.19 The comparison of nonperturbatively renormalized continuum color–electric correlator
extrapolated to continuum limit and zero flow time obtained using gradient flow method [66] and
revised continuum correlator from multilevel method taken from [20]

The amount of flow that can be applied to a gauge field can be estimated from
perturbative theory. For instance [71] shows the maximum flow that should be
used in the color–electric and energy–momentum tensor correlators at leading order,
before the flow destroys the correlation function.

Figure 8.19 shows the color–electric correlators obtained from using gradient
flow method [66] and multilevel algorithm [20], respectively. We could see the
error sizes in both cases are comparable, which suggests that gradient flow is
powerful in improving the signal. Besides, there is a small overall shift between
the results obtained from these two methods, which could be explained as the
difference in the renormalization: In the frame work of gradient flow, the correlators
are automatically renormalized while in the multilevel algorithm the perturbative
renormalization constant has been used.

With the data obtained above one could try to reconstruct the spectral function.
The spectral function could be constrained by using physical arguments in different
regions. For small frequencies, i.e., ω � T there is a linear behavior as predicted
by hydrodynamics

ρIR(ω) = κω

2T
. (8.60)
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For large frequencies,ω 
 T , the behavior is constrained by perturbation theory

ρUV(ω) = [ρUV(ω)]T =0 + O

(
g4T 4

ω

)

. (8.61)

Using a renormalization scale μ̄ω = ω for ω 
 �MS the leading order expansion
gives

ρUV(ω) = �UV(ω)

[

1 + O

(
1

log(ω/�MS)

)]

, (8.62)

with

�UV(ω) = g2(μ̄ω)CF ω3

6π
, (8.63)

where the running coupling constant could be determined up to 4-loop order at
scale μ̄ω = max(ω, πT ). Combining these two parts with interpolation in the
intermediate frequencies one could have various Ansätz to fit the correlator via

Gmodel(τ ) =
∫ ∞

0

dω

π
ρmodel (ω)

ω

T

cosh( 12 − τT )

sinh( ω
2T )

. (8.64)

The fitted spectral function and correlators are shown in Fig. 8.20. The resulting
diffusion coefficient is then (see Fig. 8.21)

κ

T 3 = lim
ω→0

2TρE(ω)

ω
= 2.31 . . .3.70 . (8.65)
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Fig. 8.20 The fitted spectral functions (up) and correlators (down) using χ2 fits based on different
perturbatively inspired models and Backus–Gilbert method [20]
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Fig. 8.21 The heavy quark momentum diffusion coefficient obtained from different fit models
and strategies based on correlators obtained from using gradient flow method [66]

This quantity is related in the non-relativistic limit to the diffusion coefficient D
and the drag coefficient ηD

T D = 4π
T 3

κ
= 0.54 . . .0.87 , (8.66)

ηD = κ

2MkinT

(

1 + O

(
α
3/2
s T

Mkin

))

. (8.67)

From this one estimates the timescale for kinetic equilibration of heavy flavors

τkin = 1

ηD

= (2.31 . . .3.70)

(
T c

T

)2 (
M

1.5GeV

)2

fm/c . (8.68)

Close to Tc the estimated time is τkin = 1fm/c, which is close to the equilibration
time for light flavors. This may help to explain the flow behavior for the D meson
recently observed in experiment.

Recently the TUMQCD collaboration studied the temperature dependence of
the heavy quark momentum diffusion coefficient using multilevel algorithm in a
wide temperature range 1.1 < T/Tc < 104 [72]. Figure 8.22 shows the results
and a comparison with other studies. At 1.5Tc the results are consistent with those
obtained using gradient flow method given above.
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Fig. 8.22 The temperature dependence of heavy quark diffusion coefficient extracted from color–
electric correlators obtained using multilevel algorithm and comparison with other studies. Taken
from [72]

8.8 Conclusions

Recent progress in the determination of spectral and transport properties has been
discussed. Combining continuum extrapolated correlation functions from Lattice
QCD with phenomenologically inspired and perturbatively constrained Ansätz,
allows to extract transport and spectral properties of the QGP medium. In the light
quark sector, continuum estimates for the electrical conductivity, thermal dilepton
rate, and thermal photon rate have been obtained. Results for charmonium and
bottomonium correlation functions in the gluonic medium can be well described
by perturbative models. While for charmonium no resonance peaks are needed at
temperature above Tc in these spectral functions, thermally broadened resonance
peaks persist up to around 1.5 Tc. While the extraction of heavy flavor diffusion
coefficients from hadronic correlation functions is still challenging, in the heavy
quark mass limit, based on calculations of the color–electric field correlator,
estimates for the heavy quark momentum diffusion coefficient can be extracted.

The methodology developed in these studies so far was applied in the quenched
approximation for a pure gluonic medium. The extension to full QCD calculations
is essential for a realistic description of the QGP medium since the influence of
dynamical fermions will become important especially at temperatures close to Tc.

Exercises

Exercise 1

Construct free meson spectral functions using Eq. (8.43) and discuss the spectral
functions for different channels and different quark masses. Discuss the behavior of
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the kernel function Eq. (8.13) as a function of τT for differentω and the contribution
of different frequency regions of the free spectral functions to the correlation
functions in Eq. 8.12.

Exercise 2

Calculate the free meson correlation functions using a numerical integration (e.g.,
using Gaussian integration) of Eq. (8.12)). Check your result for m = 0 against
Eq. 8.19. Discuss the mass dependence of the vector meson correlation functions
and the contribution of different frequency regions of the spectral function to the
correlators.

Exercise 3

Construct model spectral functions using the free spectral functions at vanishing as
well as charm quark masses and add a transport peak as discussed in Sects. 8.4
and 8.6. Discuss the influence of the transport contribution to the correlation
functions. In which cases are the correlation functions sensitive to this contribution,
assuming that a typical statistical error of lattice correlation functions is of the order
of one percent.

Exercise 4

Repeat the previous exercise by adding a resonance peak and discuss the different
contributions of the transport and resonance peak and the free continuum contribu-
tions.

Acknowledgments O.K. would like to thank Chihiro Sasaki, David Blaschke, Krzysztof Redlich
and Ludwik Turko, the organizers of the 53rd Karpacz Winter School of Theoretical Physics, for
very kind hospitality. The authors acknowledge support by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) through the CRC-TR 211 “Strong-interaction matter under
extreme conditions” – project number 315477589 – TRR 211.

References

1. C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice, vol. 788 (Springer, Berlin,
2010). https://doi.org/10.1007/978-3-642-01850-3

2. I. Montvay, G. Munster, Quantum Fields on a Lattice. Cambridge Monographs on Math-
ematical Physics (Cambridge University Press, Cambridge, 1997). https://doi.org/10.1017/
CBO9780511470783

3. H.J. Rothe, Lattice Gauge Theories: An Introduction, vol. 43 (World Scientific Publishing,
Singapore, 1992)

https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/10.1017/CBO9780511470783
https://doi.org/10.1017/CBO9780511470783


342 O. Kaczmarek and H.-T. Shu

4. T. DeGrand, C.E. Detar, Lattice Methods for Quantum Chromodynamics (World Scientific
Publishing, Singapore, 2006)

5. F. Karsch, E. Laermann, Thermodynamics and in medium hadron properties from lattice QCD.
arXiv:hep-lat/0305025

6. H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from
Lattice QCD. Int. J. Mod. Phys. E 24(10), 1530007 (2015). https://doi.org/10.1142/
S0218301315300076. arXiv:1504.05274 [hep-lat]

7. J.N. Guenther, Overview of the QCD phase diagram – recent progress from the lattice.
arXiv:2010.15503 [hep-lat]

8. A. Rothkopf, Heavy quarkonium in extreme conditions. Phys. Rept. 858, 1–117 (2020). https://
doi.org/10.1016/j.physrep.2020.02.006. arXiv:1912.02253 [hep-ph]

9. G. David, R. Rapp, Z. Xu, Electromagnetic probes at RHIC-II. Phys. Rept. 462, 176–217
(2008). https://doi.org/10.1016/j.physrep.2008.04.003. arXiv:nucl-ex/0611009

10. PHENIX Collaboration, A. Adare et al., Detailed measurement of the e+e− pair continuum
in p + p and Au+Au collisions at

√
sNN = 200GeV and implications for direct photon

production. Phys. Rev. C 81, 034911 (2010). https://doi.org/10.1103/PhysRevC.81.034911.
arXiv:0912.0244 [nucl-ex]

11. F. Fleuret, Recent relativistic heavy ion collider results on photon, dilepton and heavy quarks.
Pramana 72, 23–36 (2009). https://doi.org/10.1007/s12043-009-0003-1

12. J. Ghiglieri, O. Kaczmarek, M. Laine, F. Meyer, Lattice constraints on the thermal pho-
ton rate. Phys. Rev. D 94(1), 016005 (2016). https://doi.org/10.1103/PhysRevD.94.016005.
arXiv:1604.07544 [hep-lat]

13. M.L. Bellac, Thermal Field Theory. Cambridge Monographs on Mathematical Physics (Cam-
bridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511721700

14. K. Yagi, T. Hatsuda, Y. Miake, Quark-gluon plasma: from big bang to little bang. Camb.
Monogr. Part. Phys. Nucl. Phys. Cosmol. 23, 1–446 (2005)

15. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications. Cam-
bridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2011).
https://doi.org/10.1017/CBO9780511535130

16. H.B. Meyer, Transport properties of the quark-gluon plasma: a lattice QCD perspective.
Eur. Phys. J. A 47, 86 (2011). https://doi.org/10.1140/epja/i2011-11086-3. arXiv:1104.3708
[hep-lat]

17. J. Hong, D. Teaney, Spectral densities for hot QCD plasmas in a leading log approx-
imation. Phys. Rev. C 82, 044908 (2010). https://doi.org/10.1103/PhysRevC.82.044908.
arXiv:1003.0699 [nucl-th]

18. P. Petreczky, D. Teaney, Heavy quark diffusion from the lattice. Phys. Rev. D 73, 014508
(2006). https://doi.org/10.1103/PhysRevD.73.014508. arXiv:hep-ph/0507318

19. H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, W. Soeldner, Charmonium properties
in hot quenched lattice QCD. Phys. Rev. D 86, 014509 (2012). https://doi.org/10.1103/
PhysRevD.86.014509. arXiv:1204.4945 [hep-lat]

20. A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, H. Ohno, Nonperturbative estimate of the
heavy quark momentum diffusion coefficient. Phys. Rev. D 92(11), 116003 (2015). https://doi.
org/10.1103/PhysRevD.92.116003. arXiv:1508.04543 [hep-lat]

21. H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Thermal dilepton
rate and electrical conductivity: An analysis of vector current correlation functions in quenched
lattice QCD. Phys. Rev. D 83, 034504 (2011). https://doi.org/10.1103/PhysRevD.83.034504.
arXiv:1012.4963 [hep-lat]

22. H.-T. Ding, O. Kaczmarek, F. Meyer, Thermal dilepton rates and electrical conductivity of the
QGP from the lattice. Phys. Rev. D 94(3), 034504 (2016). https://doi.org/10.1103/PhysRevD.
94.034504. arXiv:1604.06712 [hep-lat]

23. A. Skouroupathis, H. Panagopoulos, Higher loop renormalization of fermion bilinear opera-
tors. PoS LATTICE2007, 254 (2007). https://doi.org/10.22323/1.042.0254. arXiv:0708.4087
[hep-lat]

http://arxiv.org/abs/hep-lat/0305025
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1142/S0218301315300076
http://arxiv.org/abs/1504.05274
http://arxiv.org/abs/2010.15503
https://doi.org/10.1016/j.physrep.2020.02.006
https://doi.org/10.1016/j.physrep.2020.02.006
http://arxiv.org/abs/1912.02253
https://doi.org/10.1016/j.physrep.2008.04.003
http://arxiv.org/abs/nucl-ex/0611009
https://doi.org/10.1103/PhysRevC.81.034911
http://arxiv.org/abs/0912.0244
https://doi.org/10.1007/s12043-009-0003-1
https://doi.org/10.1103/PhysRevD.94.016005
http://arxiv.org/abs/1604.07544
https://doi.org/10.1017/CBO9780511721700
https://doi.org/10.1017/CBO9780511535130
https://doi.org/10.1140/epja/i2011-11086-3
http://arxiv.org/abs/1104.3708
https://doi.org/10.1103/PhysRevC.82.044908
http://arxiv.org/abs/1003.0699
https://doi.org/10.1103/PhysRevD.73.014508
http://arxiv.org/abs/hep-ph/0507318
https://doi.org/10.1103/PhysRevD.86.014509
https://doi.org/10.1103/PhysRevD.86.014509
http://arxiv.org/abs/1204.4945
https://doi.org/10.1103/PhysRevD.92.116003
https://doi.org/10.1103/PhysRevD.92.116003
http://arxiv.org/abs/1508.04543
https://doi.org/10.1103/PhysRevD.83.034504
http://arxiv.org/abs/1012.4963
https://doi.org/10.1103/PhysRevD.94.034504
https://doi.org/10.1103/PhysRevD.94.034504
http://arxiv.org/abs/1604.06712
https://doi.org/10.22323/1.042.0254
http://arxiv.org/abs/0708.4087


8 Spectral and Transport Properties from Lattice QCD 343

24. A. Skouroupathis, H. Panagopoulos, Two-loop renormalization of vector, axial-vector and
tensor fermion bilinears on the lattice. Phys. Rev. D 79, 094508 (2009). https://doi.org/10.
1103/PhysRevD.79.094508. arXiv:0811.4264 [hep-lat]

25. M. Gockeler et al., Perturbative and nonperturbative renormalization in lattice QCD. Phys.
Rev. D 82, 114511 (2010). https://doi.org/10.1103/PhysRevD.82.114511. arXiv:1003.5756
[hep-lat] [Erratum: Phys.Rev.D 86, 099903 (2012)]

26. M. Lüscher, S. Sint, R. Sommer, H. Wittig, Nonperturbative determination of the axial current
normalization constant in O(a) improved lattice QCD. Nucl. Phys. B 491, 344–364 (1997).
https://doi.org/10.1016/S0550-3213(97)00087-4. arXiv:hep-lat/9611015

27. M. Jarrell, J.E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time
quantum Monte Carlo data. Phys. Rep. 269, 133–195 (1996). https://doi.org/10.1016/0370-
1573(95)00074-7

28. M. Asakawa, T. Hatsuda, Y. Nakahara, Maximum entropy analysis of the spectral functions
in lattice QCD. Prog. Part. Nucl. Phys. 46, 459–508 (2001). https://doi.org/10.1016/S0146-
6410(01)00150-8. arXiv:hep-lat/0011040

29. G. Aarts, C. Allton, M.B. Oktay, M. Peardon, J.-I. Skullerud, Charmonium at high temperature
in two-flavor QCD. Phys. Rev. D 76, 094513 (2007). https://doi.org/10.1103/PhysRevD.76.
094513. arXiv:0705.2198 [hep-lat]

30. A. Ikeda, M. Asakawa, M. Kitazawa, In-medium dispersion relations of charmonia studied
by maximum entropy method. Phys. Rev. D 95(1), 014504 (2017). https://doi.org/10.1103/
PhysRevD.95.014504. arXiv:1610.07787 [hep-lat]

31. H.-T. Ding, O. Kaczmarek, A.-L. Kruse, R. Larsen, L. Mazur, S. Mukherjee, H. Ohno,
H. Sandmeyer, H.-T. Shu, Charmonium and bottomonium spectral functions in the vector
channel. Nucl. Phys. A 982, 715–718 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.075.
arXiv:1807.06315 [hep-lat]

32. Y. Burnier, A. Rothkopf, Bayesian approach to spectral function reconstruction for euclidean
quantum field theories. Phys. Rev. Lett. 111, 182003 (2013). https://doi.org/10.1103/
PhysRevLett.111.182003. arXiv:1307.6106 [hep-lat]

33. A. Rothkopf, A first look at Bottomonium melting via a stochastic potential. JHEP 04, 085
(2014). https://doi.org/10.1007/JHEP04(2014)085. arXiv:1312.3246 [hep-ph]

34. Y. Burnier, O. Kaczmarek, A. Rothkopf, Quarkonium at finite temperature: towards real-
istic phenomenology from first principles. JHEP 12, 101 (2015). https://doi.org/10.1007/
JHEP12(2015)101. arXiv:1509.07366 [hep-ph]

35. Y. Burnier, A. Rothkopf, A gauge invariant Debye mass and the complex heavy-quark
potential. Phys. Lett. B 753, 232–236 (2016). https://doi.org/10.1016/j.physletb.2015.12.031.
arXiv:1506.08684 [hep-ph]

36. Y. Burnier, O. Kaczmarek, A. Rothkopf, Static quark-antiquark potential in the quark-gluon
plasma from lattice QCD. Phys. Rev. Lett. 114(8), 082001 (2015). https://doi.org/10.1103/
PhysRevLett.114.082001. arXiv:1410.2546 [hep-lat]

37. H.-T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno, H.T. Shu, Stochastic reconstructions of
spectral functions: application to lattice QCD. Phys. Rev. D 97(9), 094503 (2018). https://doi.
org/10.1103/PhysRevD.97.094503. arXiv:1712.03341 [hep-lat]

38. B.B. Brandt, A. Francis, B. Jäger, H.B. Meyer, Charge transport and vector meson dissociation
across the thermal phase transition in lattice QCD with two light quark flavors. Phys. Rev. D
93(5), 054510 (2016). https://doi.org/10.1103/PhysRevD.93.054510. arXiv:1512.07249 [hep-
-lat]

39. D. Dudal, O. Oliveira, P.J. Silva, Källén-Lehmann spectroscopy for (un)physical degrees of
freedom. Phys. Rev. D 89(1), 014010 (2014). https://doi.org/10.1103/PhysRevD.89.014010.
arXiv:1310.4069 [hep-lat]

40. E. Itou, Y. Nagai, Sparse modeling approach to obtaining the shear viscosity from smeared
correlation functions. JHEP 07, 007 (2020). https://doi.org/10.1007/JHEP07(2020)007.
arXiv:2004.02426 [hep-lat]

41. G. Aarts, A. Nikolaev, Electrical conductivity of the quark-gluon plasma: perspective from
lattice QCD. arXiv:2008.12326 [hep-lat]

https://doi.org/10.1103/PhysRevD.79.094508
https://doi.org/10.1103/PhysRevD.79.094508
http://arxiv.org/abs/0811.4264
https://doi.org/10.1103/PhysRevD.82.114511
http://arxiv.org/abs/1003.5756
https://doi.org/10.1016/S0550-3213(97)00087-4
http://arxiv.org/abs/hep-lat/9611015
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1016/S0146-6410(01)00150-8
http://arxiv.org/abs/hep-lat/0011040
https://doi.org/10.1103/PhysRevD.76.094513
https://doi.org/10.1103/PhysRevD.76.094513
http://arxiv.org/abs/0705.2198
https://doi.org/10.1103/PhysRevD.95.014504
https://doi.org/10.1103/PhysRevD.95.014504
http://arxiv.org/abs/1610.07787
https://doi.org/10.1016/j.nuclphysa.2018.09.075
http://arxiv.org/abs/1807.06315
https://doi.org/10.1103/PhysRevLett.111.182003
https://doi.org/10.1103/PhysRevLett.111.182003
http://arxiv.org/abs/1307.6106
https://doi.org/10.1007/JHEP04(2014)085
http://arxiv.org/abs/1312.3246
https://doi.org/10.1007/JHEP12(2015)101
https://doi.org/10.1007/JHEP12(2015)101
http://arxiv.org/abs/1509.07366
https://doi.org/10.1016/j.physletb.2015.12.031
http://arxiv.org/abs/1506.08684
https://doi.org/10.1103/PhysRevLett.114.082001
https://doi.org/10.1103/PhysRevLett.114.082001
http://arxiv.org/abs/1410.2546
https://doi.org/10.1103/PhysRevD.97.094503
https://doi.org/10.1103/PhysRevD.97.094503
http://arxiv.org/abs/1712.03341
https://doi.org/10.1103/PhysRevD.93.054510
http://arxiv.org/abs/1512.07249
https://doi.org/10.1103/PhysRevD.89.014010
http://arxiv.org/abs/1310.4069
https://doi.org/10.1007/JHEP07(2020)007
http://arxiv.org/abs/2004.02426
http://arxiv.org/abs/2008.12326


344 O. Kaczmarek and H.-T. Shu

42. H.-T. Ding, O. Kaczmarek, F. Meyer, Vector spectral functions and transport properties
in quenched QCD. PoS LATTICE2014, 216 (2015). https://doi.org/10.22323/1.214.0216.
arXiv:1412.5869 [hep-lat]

43. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, Infinite temperature limit of meson spectral
functions calculated on the lattice. Phys. Rev. D 68, 014504 (2003). https://doi.org/10.1103/
PhysRevD.68.014504. arXiv:hep-lat/0303017

44. G. Aarts, J.M. Martinez Resco, Continuum and lattice meson spectral functions at nonzero
momentum and high temperature. Nucl. Phys. B 726, 93–108 (2005). https://doi.org/10.1016/
j.nuclphysb.2005.08.012. arXiv:hep-lat/0507004

45. D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in
N=4 Yang Mills theory. Phys. Rev. D 74, 045025 (2006). https://doi.org/10.1103/PhysRevD.
74.045025. arXiv:hep-ph/0602044

46. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Order alpha**4(s) QCD corrections to Z and tau
decays. Phys. Rev. Lett. 101, 012002 (2008). https://doi.org/10.1103/PhysRevLett.101.012002.
arXiv:0801.1821 [hep-ph]

47. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, R(s) and hadronic tau-Decays in order alpha**4(s):
technical aspects. Nucl. Phys. B Proc. Suppl. 189, 49–53 (2009). https://doi.org/10.1016/j.
nuclphysbps.2009.03.010. arXiv:0906.2987 [hep-ph]

48. Y. Burnier, M. Laine, Towards flavour diffusion coefficient and electrical conductivity without
ultraviolet contamination. Eur. Phys. J. C 72, 1902 (2012). https://doi.org/10.1140/epjc/
s10052-012-1902-8. arXiv:1201.1994 [hep-lat]

49. E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys.
B 337, 569–634 (1990). https://doi.org/10.1016/0550-3213(90)90508-B

50. J.I. Kapusta, P. Lichard, D. Seibert, High-energy photons from quark - gluon plasma versus hot
hadronic gas. Phys. Rev. D 44, 2774–2788 (1991). https://doi.org/10.1103/PhysRevD.47.4171
[Erratum: Phys.Rev.D 47, 4171 (1993)]

51. R. Baier, H. Nakkagawa, A. Niegawa, K. Redlich, Production rate of hard thermal photons and
screening of quark mass singularity. Z. Phys. C 53, 433–438 (1992). https://doi.org/10.1007/
BF01625902

52. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. JHEP
11, 057 (2001). https://doi.org/10.1088/1126-6708/2001/11/057. arXiv:hep-ph/0109064

53. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete
leading order results. JHEP 12, 009 (2001). https://doi.org/10.1088/1126-6708/2001/12/009.
arXiv:hep-ph/0111107

54. J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore, D. Teaney, Next-to-leading order thermal
photon production in a weakly coupled quark-gluon plasma. JHEP 05, 010 (2013). https://doi.
org/10.1007/JHEP05(2013)010. arXiv:1302.5970 [hep-ph]

55. J. Ghiglieri, G.D. Moore, Low mass thermal dilepton production at NLO in a weakly
coupled quark-gluon plasma. JHEP 12, 029 (2014). https://doi.org/10.1007/JHEP12(2014)029.
arXiv:1410.4203 [hep-ph]

56. S. Caron-Huot, Asymptotics of thermal spectral functions. Phys. Rev. D 79, 125009 (2009).
https://doi.org/10.1103/PhysRevD.79.125009. arXiv:0903.3958 [hep-ph]

57. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, J. Rittinger, Adler function, sum rules and crewther
relation of order O(α4

s ): the singlet case. Phys. Lett. B 714, 62–65 (2012). https://doi.org/10.
1016/j.physletb.2012.06.052. arXiv:1206.1288 [hep-ph]

58. M. Laine, NLO thermal dilepton rate at non-zero momentum. JHEP 11, 120 (2013). https://
doi.org/10.1007/JHEP11(2013)120. arXiv:1310.0164 [hep-ph]

59. G. Policastro, D.T. Son, A.O. Starinets, From AdS / CFT correspondence to hydrodynamics.
JHEP 09, 043 (2002). https://doi.org/10.1088/1126-6708/2002/09/043. arXiv:hep-th/0205052

60. M. Cè, T. Harris, H.B. Meyer, A. Steinberg, A. Toniato, Rate of photon production in the quark-
gluon plasma from lattice QCD. Phys. Rev. D 102(9), 091501 (2020). https://doi.org/10.1103/
PhysRevD.102.091501. arXiv:2001.03368 [hep-lat]

61. H.-T. Ding, Charmonium correlation and spectral functions in quenched lattice QCD at finite
temperature. PhD thesis, U. Bielefeld (main) (2010)

https://doi.org/10.22323/1.214.0216
http://arxiv.org/abs/1412.5869
https://doi.org/10.1103/PhysRevD.68.014504
https://doi.org/10.1103/PhysRevD.68.014504
http://arxiv.org/abs/hep-lat/0303017
https://doi.org/10.1016/j.nuclphysb.2005.08.012
https://doi.org/10.1016/j.nuclphysb.2005.08.012
http://arxiv.org/abs/hep-lat/0507004
https://doi.org/10.1103/PhysRevD.74.045025
https://doi.org/10.1103/PhysRevD.74.045025
http://arxiv.org/abs/hep-ph/0602044
https://doi.org/10.1103/PhysRevLett.101.012002
http://arxiv.org/abs/0801.1821
https://doi.org/10.1016/j.nuclphysbps.2009.03.010
https://doi.org/10.1016/j.nuclphysbps.2009.03.010
http://arxiv.org/abs/0906.2987
https://doi.org/10.1140/epjc/s10052-012-1902-8
https://doi.org/10.1140/epjc/s10052-012-1902-8
http://arxiv.org/abs/1201.1994
https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1103/PhysRevD.47.4171
https://doi.org/10.1007/BF01625902
https://doi.org/10.1007/BF01625902
https://doi.org/10.1088/1126-6708/2001/11/057
http://arxiv.org/abs/hep-ph/0109064
https://doi.org/10.1088/1126-6708/2001/12/009
http://arxiv.org/abs/hep-ph/0111107
https://doi.org/10.1007/JHEP05(2013)010
https://doi.org/10.1007/JHEP05(2013)010
http://arxiv.org/abs/1302.5970
https://doi.org/10.1007/JHEP12(2014)029
http://arxiv.org/abs/1410.4203
https://doi.org/10.1103/PhysRevD.79.125009
http://arxiv.org/abs/0903.3958
https://doi.org/10.1016/j.physletb.2012.06.052
https://doi.org/10.1016/j.physletb.2012.06.052
http://arxiv.org/abs/1206.1288
https://doi.org/10.1007/JHEP11(2013)120
https://doi.org/10.1007/JHEP11(2013)120
http://arxiv.org/abs/1310.0164
https://doi.org/10.1088/1126-6708/2002/09/043
http://arxiv.org/abs/hep-th/0205052
https://doi.org/10.1103/PhysRevD.102.091501
https://doi.org/10.1103/PhysRevD.102.091501
http://arxiv.org/abs/2001.03368


8 Spectral and Transport Properties from Lattice QCD 345

62. H.S. Sandmeyer, Hadronic correlators from heavy to very light quarks: spectral and transport
properties from lattice QCD. PhD thesis, U. Bielefeld (main) (2019). https://doi.org/10.4119/
unibi/2936264

63. Y. Burnier, H.T. Ding, O. Kaczmarek, A.L. Kruse, M. Laine, H. Ohno, H. Sandmeyer, Thermal
quarkonium physics in the pseudoscalar channel. JHEP 11, 206 (2017). https://doi.org/10.1007/
JHEP11(2017)206. arXiv:1709.07612 [hep-lat]

64. M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD.
JHEP 05, 028 (2007). https://doi.org/10.1088/1126-6708/2007/05/028. arXiv:0704.1720 [hep-
-ph]

65. A.-L. Lorenz, H.-T. Ding, O. Kaczmarek, H. Ohno, H. Sandmeyer, H.-T. Shu, Thermal
modifications of quarkonia and heavy quark diffusion from a comparison of continuum-
extrapolated lattice results to perturbative QCD. PoS LATTICE2019, 207 (2020). https://doi.
org/10.22323/1.363.0207. arXiv:2002.00681 [hep-lat]

66. L. Altenkort, A.M. Eller, O. Kaczmarek, L. Mazur, G.D. Moore, H.-T. Shu, Heavy quark
momentum diffusion from the lattice using gradient flow. Phys. Rev. D 103(1), 014511 (2021).
https://doi.org/10.1103/PhysRevD.103.014511. arXiv:2009.13553 [hep-lat]

67. S. Caron-Huot, M. Laine, G.D. Moore, A way to estimate the heavy quark thermalization
rate from the lattice. JHEP 04, 053 (2009). https://doi.org/10.1088/1126-6708/2009/04/053.
arXiv:0901.1195 [hep-lat]

68. R. Narayanan, H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators.
JHEP 03, 064 (2006). https://doi.org/10.1088/1126-6708/2006/03/064. arXiv:hep-th/0601210

69. M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. Phys.
293, 899–919 (2010). https://doi.org/10.1007/s00220-009-0953-7. arXiv:0907.5491 [hep-lat]

70. M. Lüscher, P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories.
JHEP 02, 051 (2011). https://doi.org/10.1007/JHEP02(2011)051. arXiv:1101.0963 [hep-th]

71. A.M. Eller, G.D. Moore, Gradient-flowed thermal correlators: how much flow is too
much? Phys. Rev. D 97(11), 114507 (2018). https://doi.org/10.1103/PhysRevD.97.114507.
arXiv:1802.04562 [hep-lat]

72. N. Brambilla, V. Leino, P. Petreczky, A. Vairo, Lattice QCD constraints on the heavy quark
diffusion coefficient. Phys. Rev. D 102(7), 074503 (2020). https://doi.org/10.1103/PhysRevD.
102.074503. arXiv:2007.10078 [hep-lat]

https://doi.org/10.4119/unibi/2936264
https://doi.org/10.4119/unibi/2936264
https://doi.org/10.1007/JHEP11(2017)206
https://doi.org/10.1007/JHEP11(2017)206
http://arxiv.org/abs/1709.07612
https://doi.org/10.1088/1126-6708/2007/05/028
http://arxiv.org/abs/0704.1720
https://doi.org/10.22323/1.363.0207
https://doi.org/10.22323/1.363.0207
http://arxiv.org/abs/2002.00681
https://doi.org/10.1103/PhysRevD.103.014511
http://arxiv.org/abs/2009.13553
https://doi.org/10.1088/1126-6708/2009/04/053
http://arxiv.org/abs/0901.1195
https://doi.org/10.1088/1126-6708/2006/03/064
http://arxiv.org/abs/hep-th/0601210
https://doi.org/10.1007/s00220-009-0953-7
http://arxiv.org/abs/0907.5491
https://doi.org/10.1007/JHEP02(2011)051
http://arxiv.org/abs/1101.0963
https://doi.org/10.1103/PhysRevD.97.114507
http://arxiv.org/abs/1802.04562
https://doi.org/10.1103/PhysRevD.102.074503
https://doi.org/10.1103/PhysRevD.102.074503
http://arxiv.org/abs/2007.10078

	8 Spectral and Transport Properties from Lattice QCD
	8.1 Motivation
	8.2 Hadronic Correlation Functions
	8.3 Inversion Methods
	8.4 Thermal Dilepton Rate and Electrical Conductivity
	8.4.1 Continuum Extrapolated Vector Meson Correlation Functions
	8.4.2 Lattice Estimate on the Thermal Dilepton Rate and Electrical Conductivity

	8.5 Lattice Estimate of Thermal Photon Rate
	8.6 Charmonia and Bottomonia Spectral Function from LatticeQCD
	8.6.1 Free Spectral Function
	8.6.2 Spectral Functions of Charmonia and Bottomonia in the Pseudo-Scalar Channel
	8.6.3 Spectral Functions of Charmonia and Bottomonia in the Vector Channel

	8.7 Heavy Quark Momentum Diffusion Coefficient
	8.8 Conclusions
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	References


