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Abstract. The increasing integration of information technology with
operational technology leads to the formation of Cyber-Physical Sys-
tems (CPSs) that intertwine physical and cyber components and connect
to each other. This interconnection enables the offering of functionality
beyond the combined offering of each individual component, but at the
same time increases the cyber risk of the overall system, as such risk prop-
agates between and aggregates at component systems. The complexity of
the resulting systems in many cases leads to difficulty in analyzing cyber
risk. Additionally, the selection of cybersecurity controls that will effec-
tively and efficiently treat the cyber risk is commonly performed manu-
ally, or at best with limited automated decision support. In this paper,
we extend our previous work in [1] to analyze attack paths between CPSs
on one hand, and we improve the method proposed therein for selecting
a set of security controls that minimizes both the residual risk and the
cost of implementation. We use the DELTA demand-response manage-
ment platform for the energy market stakeholders such as Aggregators
and Retailers [2] as a use case to illustrate the workings of the pro-
posed approaches. The results are sets of cybersecurity controls applied
to those components of the overall system that have been identified to
lie in those attack paths that have been identified as most critical among
all the identified attack paths.

Keywords: Attack paths · Cyber risk aggregation · Cyber security
controls · Power grid

1 Introduction

The increasing proliferation of cyberphysical systems (CPSs) in critical domains
including industrial control systems, energy, transportation and healthcare
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increases automation and facilitates operations. On the other hand, the increased
interoperability and interconnectivity of CPSs increase the attack surface, allow-
ing potential adversaries to perform sophisticated cyber attacks by following
attack paths that comprise CPSs as stepping-stones [3].

In particular, the realization of the industry 4.0 paradigm in the power indus-
try increases the interconnectivity and complexity of power grids, rendering them
prone to cyber attacks. Indeed, several cyber incidents have been reported in
the power industry in the past decade [4], and existing system vulnerabilities in
power grids have been identified and analyzed [5].

In an infrastructure comprising networked assets, an attack path describes an
ordered sequence of assets that can be used as stepping stones by an adversary
aiming to attack one or more assets on the path [6]. By analyzing attack paths,
the analysis of the risk propagation and the identification of optimal controls are
facilitated. Although the analysis of attack paths is well studied in the literature
[7,8], most of the approaches focus on the vulnerabilities of the targeted ecosys-
tem; hence, crucial elements of the cyber risk such as impact and likelihood are
not considered.

Contemporary CPS-based infrastructures are characterized by complex infor-
mation and control flows between their constituent CPSs. These flows can be
direct, where the components cause immediate change in the node transition, or
indirect, that can directly or indirectly influence the change in the node transi-
tion. These information and control flows provide useful insights to the analysis
of cyber risk aggregation, risk analysis, and risk treatment between CPSs. By
leveraging different security controls cyber risks are retained, minimized, trans-
ferred, or avoided. Although several studies have examined the optimal selection
of security controls, most are based on empirical analysis, whose results highly
depend on the analyst or domain expert and are, therefore, subjective.

In a previous work of ours [1] we proposed an approach for analyzing risk
propagation in complex cyber-physical systems comprising other CPSs as com-
ponents and leveraged the aggregated risk of the overall system to identify the
set of security controls for each component by means of a genetic algorithm app-
roach. In this paper, we extend our previous work in [1] to analyze attack paths
between CPSs on one hand, and we improve the method proposed therein for
selecting a set of security controls that minimizes both the residual risk and the
cost. We have used the DELTA demand-response management platform for the
energy market stakeholders such as Aggregators and Retailers [2] as a use case
to illustrate the workings of the proposed approaches.

The remainder of this paper is structured as follows: In Sect. 2 we review the
related work. In Sect. 3 we briefly review our previous work in [1], so as to both
ensure the self-sustainability of this work and to facilitate the assessment of its
contribution and of its added value over [1]. Section 4 presents our proposal for
analyzing attack paths, and Sect. 5 presents our proposed approach to selecting
the optimal set of security controls. Section 6 illustrates the workings of the
proposed approaches to the DELTA platform [2]. Finally, Sect. 7 summarizes
our conclusions and sets out some future research paths.
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2 Related Work

Several approaches have been proposed in the literature to study attack graphs
and the analysis of attack paths within IT infrastructures [9]. The ADversary
VIew Security Evaluation (ADVISE) meta modeling approach was used in [10]
to facilitate the understating of attack paths within cyber-physical systems. A
set of algorithms were proposed in [11] to facilitate the analysis of attack paths
and to prioritize them taking into account the system’s vulnerabilities. A method
for analyzing attack paths in CPSs that takes into account the cyber-risk of the
involved components was proposed in [6]. Further, an approach for cyber-physical
attack path analysis, based on Common Vulnerabilities and Exposures (CVE),
and the Common Vulnerability Scoring System (CVSS), and leveraging a threat
modeling technique, was proposed in [12]. The propagation of cyber-attacks in
a power grid infrastructure was analyzed in [13], taking on the chronological
perspective and considering the interrelationship between the grid side and the
information side. The analysis focuses on the survivability aspect.

A quantitative risk assessment model that considers the risk propagation
among dependent CPSs was proposed in [14]. The risk propagation and pre-
diction have been studied in [15] using Markov chains. The method utilized
prediction graph theory and percolation theory to analyze the risk propaga-
tion within cyber physical systems in the power domain. The risk propagation
between CPSs is examined in [16] based on logical equations and using attack
trees; the examined relationships are between parent and children nodes. The
risk propagation within a transport network under various types of attacks was
analyzed in [17], using the percolation theory. The risk and threat propagation
in Unmanned Aerial Vehicles and in particular the aggregation process of the
threats from the cyber to the physical domain were discussed in [18].

Cyberattacks cause both safety- and cybersecurity-related damage to CPSs.
Accordingly, failure propagation has been also examined in the literature. Specif-
ically, failure propagation in interdependent supply chain networks was studied
in [19]; the focus of the analysis was to study the robustness of the supply chain
network. Cascading failures within an interdependent network were examined
in [20], using an Erdos-Renyi (ER) model, again to study the robustness of the
network. In the power domain, cascading failures in a power grid and communi-
cation network were analyzed in [21].

3 Background

In [1] we proposed an approach that enables the optimal selection of cybersecu-
rity controls for complex cyberphysical systems, i.e. CPSs that have other CPSs
as components. This approach processes the likelihood and impact values for
each one of the system’s components and, by means of an analysis of how risk
propagates through information and control flows components, it calculates the
overall, global system risk. It then applies a genetic algorithm workflow that
enables the identification of the set of optimal controls for each component.
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The identified set minimizes the global system residual risk, and also minimizes
the cost of implementation of the controls. The analysis in [1] is conducted on
a per-threat basis, for each of the six threats of the STRIDE model. Thus, the
approach produces six different control sets, that need to be applied concurrently.

The method assumes a CPS consisting of N interconnected components, each
denoted by ci, i = 1, ...N . This system can be represented by a directed graph of
N + 1 nodes, the system itself being one of the nodes, denoted as c0. The edges
of the graph represent information and control flows between the nodes. An edge
from node A to node B indicates the existence of either an information flow or a
control flow, from A to B. A consequence of the existence of such an edge is that
a cybersecurity event at node A affects node B, as well. The effect coefficient
measures the effect that components may have on each other. Figure 1 depicts
a simple graph, where a security event in node A influences node B, while a
security event in B influences both nodes A and C. The total effect coefficient
effT

AB is computed as a function of effI
AB and effC

AB to represent the inverse
of the in degree centrality measure, as shown in Eq. 1.

Fig. 1. Effect relationship

effT
AB = f(eff I

AB , eff
C
AB), (1)

where effI
AB = 1

IDCI
B

, effC
AB = 1

IDCC
B

.

3.1 Risk Analysis

The risk value R associated with each STRIDE threat t ∈ {S, T,R, I,D,E} for
system s is calculated by using the following formulas [22–24]:

Impactst =
Damage + Affectedsystems

2
, (2)

Likelihoodst =
Reproducibility + Exploitability + Discoverability

3
, (3)

Riskst =
(Impactst + Likelihoodst )

2
. (4)

Impactst describes the effect of a cyber attack realizing specific threat t upon
a component s, while Likelihoodst describes the probability of the specific threat
t being realizing in s.
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3.2 Risk Propagation

The aggregate risk R
aggcj
t of component cj is calculated by using Eq. 5.

R
aggcj
t = max(R

dircj
t , R

propcj

t ), (5)

where direct risk R
dircj
t is the risk of cj without considering the possible con-

nections with other components and it is estimated using Eqs. (2)–(4), while
the propagated risk R

propcj

t is calculated considering the connections to other
components that cj has. The fraction of the impact that an event has on any ck
on any path pl from ci to cj is represented by effT

pl
and is calculated as

effT
pl

=
j−1∏

i=1

effT
cici+1

. (6)

The risk propagated over path pl, originating at component ci and terminat-
ing at component cj , is calculated by:

R
prop

pl
cj

t =
eff

Tpl
cicj ∗ Impactcit + Lci

t

2
. (7)

The whole system is described by c0 and the global risk of threat t for the
system is calculated by:

Rs
t = R

aggc0
t = max(Rdirc0

t , R
propc0
t ), (8)

where the direct risk for the system is not applicable (Rdirc0
t = 0) and the

propagated risk for the system is calculated as for any other node (Rpropc0
t =

maxpl
R

prop
pl
c0

t ), thus

Rs
t = max

pl

R
prop

pl
c0

t (9)

Further details about the method used and the aforementioned equations are
omitted in the interest of saving space and can be found in [1].

4 Attack Path Analysis

When the risk of each of a complex CPS components and the propagation of
such risk through the interconnection of its components have been analyzed, it is
feasible to identify critical attack paths that can potentially induce high risk to
the system. Identified critical attack paths can be leveraged by system operators
to enhance attack detection measures along the critical paths and to enhance
the security of highly interconnected nodes.

The propagation of risk in the system through its components mainly depends
on two factors: (a) the structure of the system and (b) the risk to each compo-
nent. Conceptually, a system can be at high risk because of its components both
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because it has high risk components and because there exist high correlation
paths along the system structure that may propagate such risk to the overall
system.

The approach presented herein analyzes both factors, in order to detect crit-
ical attack paths. The approach aims at:

– Detecting critical attack paths according to the relationships (correlation)
between components, and

– Prioritizing these paths according to the risk to each component in them.

The first step of the approach can be used to assess the risk propagation
potential in a complex cyberphysical system, while the second can be used to
gain additional insight, giving more information about the components of the
system.

Initially the graph of the system is parsed from the system node backwards,
to detect and collect paths that are characterized by a high product of the
effcicj values of the nodes on the path (designated as effpath) along the path.
Algorithm 1 outputs a set of critical attack paths, i.e. attack paths that accu-
mulate an eff value larger than a threshold efflimit.

Algorithm 1: Identification of critical attack paths
Result: Critical attack paths cps
Function process node(cj, eff , path):

foreach edge from ci to cj do
if ci �∈ path then

path = path ∪ {ci};
effpath = effpath ∗ effcicj ;
if effpath > efflimit then

cps = cps ∪ {path};
process node(ci, effpath, path);

end

end

end

cps = {};
process node(c0, 1, {c0});

The second step of the approach, described in Algorithm 2, prioritizes the
attack paths that were identified in step 1, by considering the risk of each com-
ponent in each path.
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Algorithm 2: Prioritization of critical attack paths
Result: Prioritized critical attack paths pri cps
Function calc risk(path):

R =
Lpath[0]+Ipath[0]

2
;

i = 0;
eff = 1;
while i < pathlength do

i = i + 1;
eff = eff ∗ effpath[i],path[i−1];

R = max(R,
Lpath[i]+Ipath[i]∗eff

2
)

end
return R;

Function select paths(cps):
foreach path in cps do

Rpath = calc risk(path);

if Rpath > Rlimit
path then

pri cps = pri cps ∪ {path};
end

end

pri cps = {};
select paths();

5 Optimal Control Set Selection

5.1 Cybersecurity Controls

The proposed approach requires a pool of controls that are appropriate for the
targeted system. The effectiveness of the controls depends on the effect that each
control has per threat and per component ci. The effect influences the values of
Impactcit and Likelihoodcit and hence the cyber-risk to the components and to
the overall system.

An important feature of each control m is the cost Costm of its implementa-
tion. For a system with N components and a list with M controls with the cost
vector C = [cost1, cost2, ..., costM ], the following binary matrix AC compactly
depicts the applied controls throughout the system:

AC =

⎡

⎢⎢⎣

ac1,1 ac1,2 ... ac1,N
ac2,1 ac2,2 ... ac2,N
... ... ... ...

acM,1 acM,2 ... acM,N

⎤

⎥⎥⎦ , (10)

where

aci,j =

{
0, if control i is not applied to component j
1, if control i is applied to component j

. (11)

The total cost TCAC of the applied controls solution AC is TCAC = AC ∗C.
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5.2 Selection of the Optimal Set

The approach in [1] produced a separate optimal set of controls for each STRIDE
threat, and did not take into account that those controls could be possibly com-
bined, to achieve a more efficient, from a global perspective, solution. For exam-
ple the application of a single control to a specific component could result in
reduction of the overall system risk for more than one threats, but this was not
taken into account.

To remedy this, the present work proposes a cascading application of the
genetic algorithm approach, in which each step (for each different threat) takes
as granted that the controls that have been identified in the previous steps are,
indeed, implemented. This approach enables the elicitation of controls that are
effective for more than one threats. Therefore the selection is more efficient with
respect to the global implementation cost. The proposed scheme supports the
identification of the set of controls that minimizes the risk over all threats and
the implementation cost for the system as a whole.

The concept upon which the approach is based is depicted in Fig. 2. After
applying the genetic algorithm for each threat, the resulting controls are fixed
in the set of available controls that is used as input for the rest of the threats.
After all threats have been analyzed, the resulting controls are being unified as
the optimal set of cyber-security controls for the system as a whole.

Fig. 2. Cascading GA process

The above methodology uses a global AC∗ matrix, which has fixed values for
the combinations of components/controls that have been defined for all threats.
Specifically, the AC∗ matrix is an instance of the AC matrix defined in Eq. 10,
each element aci,j of which is related to the application of control i to component
j and is:

– either a binary variable whose value can be set according to risk reduction
and application cost.
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– or a fixed value variable (equal to 1) if control i has been decided to be applied
to component j for countering a threat analyzed previously.

This approach fixes the application of controls to components between dif-
ferent threats of the STRIDE model. It will only allow controls to be considered
for threat T only if these further reduce the risk for threat ti, given that controls
decided for each threat tj , i > j have already been applied.

The proposed methodology is significantly more efficient in terms of applica-
tion cost, while it retains residual risk on a similar level as the per threat analysis
in [1].

6 DELTA System Use Case

6.1 The DELTA System

DELTA is the short title of the EU-funded H2020 R&D project “Future tamper-
proof Demand rEsponse framework through seLf-configured, self-opTimized
and collAborative virtual distributed energy nodes”1. DELTA has developed
a demand-response management platform that distributes parts of the Aggre-
gator’s intelligence into lower layers of its architecture, in order to establish a
more easily manageable and computationally efficient Demand-Response (DR)
solution. This approach aims to introduce scalability and adaptivity into the
Aggregator’s DR toolkits; the DELTA core engine is able to adopt and integrate
multiple strategies and policies provided from its administrative stakeholders,
making it an authentic modular and future-proof solution.

An overview of the DELTA architecture can be found in [25] and a detailed
description of it in [26]. A graph-based representation of the DELTA architecture
is depicted in Fig. 3. The nodes of the graph represent DELTA building blocks,
as follows:

Node S - System: it represents the whole DELTA system.
Node D - DVN: DVN stands for “DELTA Virtual Network”, a virtual layer

that clusters consumers/prosumers/producers sharing key characteristics,
such as a similar consumption/generation pattern, kind of (smart) contract,
existence (or not) of Energy Storage Systems (ESS); the disposition to par-
ticipate into DR strategies; or their resulting behavior during a DR signal
based on the award system, following the guidelines/strategies provided by
the Aggregator.

Node F - FEID: FEIDs are actual devices which are connected to smart meters
to measure energy-related data. Through an intelligent lightweight toolkit
they compute real-time flexibility to provide as input to the DVN. FEIDs
provide aggregated metering from multiple IoT devices that are connected to
customer assets, and they report issuance and interpretation of OpenADR-
based DR request signals.

1 https://www.delta-h2020.eu/.

https://www.delta-h2020.eu/
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Fig. 3. DELTA components

Node P - P2P Network: it represents the communications backbone of the
entire DELTA framework. The use of the peer-2-peer network guarantees
a certain resilience to attacks/malfunctions, and greater modularity in the
management of the tasks performed by each of the entities that make up
DELTA. DELTA’s P2P network allows the use of OpenADR to interface
with FEIDS in order to manage DR requests and uses the OpenFIRE as a
communication broker, in addition to implementing Access Controls security.

Node A - Aggregators: Aggregators are entities, generally TSOs or DSOs,
which supply energy to users, but also acquire it from users known as pro-
sumers. They balance network loads through DR or other traditional load
shedding methods, and they collect data from smart meters for statistical
purposes, control and pricing.

Node B - Blockchain: it is a block used to ensure the security of the
energy information exchange within the DELTA energy network, enabling
both energy data traceability and secure access for stakeholders. Technolo-
gies employed include certificates, blockchain, smart contracts, and state of
the art security and privacy algorithms.

6.2 Risk Analysis

In order to apply the proposed approach, a risk analysis of the targeted system
is required. To this end, the STRIDE [27] and DREAD [22] methodologies have
been used. The impact and likelihood values for each of the STRIDE threats
have been estimated and are depicted in Table 1. Each line of Table 1 represents
one of the STRIDE threats, indicated by the corresponding initial (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of
privileges). Each column of Table 1 represents an individual DELTA component
as described in Sect. 6.1. The values in the cells are the corresponding impact
and likelihood values per STRIDE threat and per individual component; these
have been calculated by means of Eqs. (2) and (3), respectively. These values
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are subsequently used as input to Algorithm 2, to calculate the aggregate risk
of each component. Table 2 depicts the values of the effcicj coefficients for all
pairs of components.

Table 1. Initial security analysis

System Impact System Likelihood

FEID DVN Aggregator P2PNetwork Blockchain FEID DVN Aggregator P2PNetwork Blockchain

S 0 1.5 2.5 2.5 2.5 1.5 0 2 1.66 2 1.66 1.66

T 0 1.5 2 2.5 2.5 1 0 2 1.33 1.66 2 1

R 0 1.5 1.5 2.5 2.5 1 0 2 1.33 2 2 1

I 0 1 1.5 1.5 2 1 0 1.66 1 1.66 1.33 1.66

D 0 2 3 1.5 3 2 0 2.33 1.66 2.33 3 1.66

E 0 1.5 2 2.5 2.5 1 0 1.66 1.66 2 1.66 1

Table 2. Effect coefficients

System FEID DVN Aggregator P2PNetwork Blockchain

System 0 0 0 0 0 0

FEID 0.3 0 0.1 0 0.3 0.3

DVN 0 0.2 0 0.2 0.2 0.2

Aggregator 0 0 0.1 0 0.2 0.2

P2PNetwork 0.3 0.3 0.3 0.3 0 0

Blockchain 0 0.3 0.3 0.3 0 0

6.3 Attack Path Analysis

The proposed attack path analysis methodology was subsequently applied to the
DELTA system. The results of the first step of the approach (identification) are
depicted in Table 3. Each line in Table 3 contains the path ID, the attack path,
and the corresponding value of effpath, calculated using the values of the effect
coefficients in Table 2. The paths that can potentially enable the propagation
of high risk to the system (hence they are the most critical) are the ones that
are characterized by the highest effpath values; these are the first five paths of
Table 3.

The results of the second step of the approach (prioritization) are depicted
in Table 4. Each line in Table 4 contains the path ID, the attack path, and the
corresponding value of the cyber-risk of the path, taken to be the highest among
the risks of the nodes in the path, as in [1].

6.4 Selection of the Optimal Security Controls

In order to select the set of optimal controls we applied both the approach in
our previous work [1] and the one proposed herein, to validate the claim that the
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Table 3. List of attack paths

Path ID Affected CPSs effpath

1 FEID → System 0.3

2 P2P Network → System 0.3

3 P2P Network → FEID → System 0.09

4 Blockchain → FEID → System 0.09

5 FEID → P2P Network → System 0.09

6 DVN → FEID → System 0.06

7 DVN → P2P Network → System 0.06

8 Aggregator → P2P Network → System 0.06

9 Blockchain → FEID → P2P Network → System 0.027

10 P2P Network → DVN → FEID → System 0.018

11 Blockchain → DVN → FEID → System 0.018

12 DVN → P2P Network → FEID → System 0.018

13 Aggregator → P2P Network → FEID → System 0.018

14 DVN → Blockchain → FEID → System 0.018

15 Aggregator → Blockchain → FEID → System 0.018

latter is more effective and that it results in a larger ratio of reduction of risk vs
control implementation cost. The controls in the NIST guidelines for Industrial
Control Systems security [28] have been used as the pool of available controls.
As in [1], the effectiveness and the cost of each security control are estimated on
the basis of its applicability, the extent to which it reduces the impact or/and
the likelihood, and the resources needed to implement it. Table 5 presents the
results obtained with the initial method [1], whilst Table 6 presents the results
obtained with the improved method proposed herein.

From these results it is obvious that the improved method proposed herein
can produce the same effect with respect to residual risk for all threats, whilst
it reduces the application cost from 70 to 61. In other words, the improved
method increases the risk reduction per application cost ratio by 12.9%. We
note that the selected controls differ between the two executions, because of the
different approach used, but also because there exist multiple controls that have
the same effect, and it is normal for the proposed (randomized search) approach
to randomly choose among those in each run.
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Table 4. Prioritized attack paths per threat and risk level

Attack path Cyber risk

Path ID Spoofing

2 P2P Network → System 1.45

1 FEID → System 1.225

3 P2P Network → FEID → System 1.135

4 Blockchain → FEID → System 1.135

Path ID Tampering

2 P2P Network → System 1.375

1 FEID → System 1.225

3 P2P Network → FEID → System 1.1125

8 Aggregator → P2P Network → System 1.09

Path ID Repudiation

2 P2P Network → System 1.375

1 FEID → System 1.225

3 P2P Network → FEID → System 1.1125

8 Aggregator → P2P Network → System 1.09

Path ID Information disclosure

1 FEID → System 1.54

2 P2P Network → System 1.45

5 FEID → P2P Network → System 1.2775

6 DVN → FEID → System 1.24

Path ID Denial of service

1 FEID → System 1.45

2 P2P Network → System 1.45

3 P2P Network → FEID → System 1.135

5 FEID → P2P Network → System 1.135

Path ID Elevation of privileges

2 P2P Network → System 1.615

1 FEID → System 1.465

3 P2P Network → FEID → System 1.3

5 FEID → P2P Network → System 1.255
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Table 5. Optimal cybersecurity controls - per threat

Initial global risk Cybersecurity controls Residual global risk Overall cost

Component Spoofing

Aggregator 1.3 Awareness and training 0.864 14

P2P Awareness and training

DVN Security assessment and authorization

BC Security assessment and authorization

FEID Configuration management

Component Tampering

BC 1.3 Access control 0.65 17

P2P Security assessment and authorization

Aggregator Risk assessment

FEID System and services acquisition

DVN System and communications protection

Component Repudiation

DVN 1.3 Security assessment and authorization 0.864 6

Aggregator Security assessment and authorization

P2P Security assessment and authorization

FEID Maintenance

Component Information disclosure

BC 1.514 Privacy controls 0.65 17

FEID Security assessment and authorization

P2P Planning

DVN System and services acquisition

Aggregator System and services acquisition

DVN System and information integrity

Component Denial of service

FEID 1.3 Security assessment and authorization 0.65 7

DVN Security assessment and authorization

Aggregator Security assessment and authorization

P2P Risk assessment

BC System and communication protection l

Component Elevation of privileges

P2P 1.514 Audit and accountability 1.079 9

BC Audit and accountability

DVN Security assessment and Authorization

Aggregator Security assessment and authorization

FEID Risk assessment

Overall cost

70
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Table 6. Optimal cybersecurity controls - global

Initial global risk Cybersecurity controls Residual global risk Cost per threat

Component Spoofing

P2P 1.3 Awareness and training 0.864 16

DVN Configuration management

FEID Identification and authentication

BC Identification and authentication

Aggregator Incident response

Component Tampering

P2P 1.3 Audit and accountability 0.65 20

DVN Security assessment and authorization

FEID Configuration management

Aggregator Identification and authentication

Aggregator Risk assessment

BC System and communications protection

Component Repudiation

Aggregator 1.3 Audit and accountability 0.864 3

P2P Audit and accountability

FEID Configuration management

DVN Configuration management

Component Information disclosure

BC 1.514 Access control 0.65 13

Aggregator Audit and accountability

FEID Configuration management

DVN Configuration management

P2P Maintenance

FEID Risk assessment

DVN System and services acquisition

Component Denial of service

P2P 1.3 Awareness and training 0.65 3

P2P Audit and accountability

FEID Security assessment and authorization

DVN Security assessment and authorization

FEID Configuration management

DVN Configuration management

Aggregator Incident response

BC System and communications protection

Component Elevation of privileges

P2P 1.514 Audit and accountability 1.079 6

BC Audit and accountability

DVN Security assessment and authorization

FEID Configuration management

DVN Configuration management

FEID Contingency planning

Aggregator Incident response

Overall cost

61

7 Conclusions

The increasing dependence of critical infrastructures, such as power grids, on
interconnected CPSs increases the attack surface and makes them prone to
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cyberattacks. The analysis of attack paths facilitates the comprehensive under-
standing of the attack propagation towards the selection of the most appropriate
security controls. By leveraging the proposed methods for attack path analysis
and optimal control selection, all the elements of cyber risk can be studied,
towards defining a security architecture. As future work we intend to develop an
automated tool that supports the proposed methods. Additionally, the utiliza-
tion of the proposed approaches in several instances of the DELTA system will
facilitate the development of secure power grids.
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