
Foundations of Graph Path Query
Languages

Course Notes for the Reasoning Web Summer School 2021

Diego Figueira(B)

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
33400 Talence, France

diego.figueira@labri.fr

Abstract. We survey some foundational results on querying graph-
structured data. We focus on general-purpose navigational query lan-
guages, such as regular path queries and its extensions with conjunc-
tions, inverses, and path comparisons. We study complexity, expressive
power, and static analysis. The course material should be useful to any-
one with an interest in query languages for graph structured data, and
more broadly in foundational aspects of database theory.

A graph database is an umbrella term for describing semi-structured data
organized by means of entities (i.e., nodes) and relations (i.e., edges) between
these entities. In other words, as a finite graph, which emphasizes the holistic,
topological aspect of the model, where there is no order between nodes or edges.
This is a flexible format, usually with no ‘schemas’, where adding or deleting
data (or even integrating different data sources) does not imply rethinking the
modeling of data. Data can be typically stored both in nodes and edges, but the
shape of the graph itself is an essential part of the data. Querying mechanisms
on this kind of data focus on the topology of the underlying graph as well as
in the data contained inside the edges and nodes. This flexibility comes at a
cost, since relations between entities have to be found in a possibly complex
topology, most notably as paths or sets of paths in some specific configuration.
Indeed a path in a graph database can be then seen as a first-order citizen. The
most basic querying mechanism is then the problem of finding a “pattern” in
the database, given as nodes and paths relating them with certain properties.
This is, precisely, the kind of languages we will survey here, sometimes called
“path query languages”.

Example 1. Consider, for example, a very basic database of academic staff. This
can be seen as a graph database, as shown in Fig. 1. The kind of queries we’re
interested in are those which exploit the topology of graph, such as “are there
two persons with the same supervisor at friend distance at most 5?” or “find all
pairs of co-authors with a common ancestor in the supervisor-relation”. �

c© Springer Nature Switzerland AG 2022
M. Šimkus and I. Varzinczak (Eds.): Reasoning Web 2021, LNCS 13100, pp. 1–21, 2022.
https://doi.org/10.1007/978-3-030-95481-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95481-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-95481-9_1

2 D. Figueira

Fig. 1. A simple bibliometric graph database.

Graph databases are relevant to a growing number of applications in areas
such as the Semantic Web, knowledge representation, analysis of Social Net-
works, biological and scientific databases, and others. This data model encom-
passes formats such as RDF [38], or property graphs. This is why in the last
years there has been many theoretical and practical developments for querying
graph databases (see [1,2,6,45] for surveys).

One of the most important research trends has hinged on the development of
graph query languages that can reason about topological aspects of the graph.
They are also known as path query languages, because topological information
in the database typically amounts to querying the existence of paths satisfy-
ing certain constraints. The most basic form of navigation consists of querying
whether there is a path with a certain property between two nodes. This type
of queries have been introduced as Regular Path Queries, or RPQ [40], and it
has laid the foundations of many more expressive query languages, including
Conjunctive Regular Path Queries (CRPQ) [28] or Extended CRPQ (ECRPQ)
[9].

Outline. This brief survey concerns the computational task of querying graph
databases via navigational query languages. We focus on the language of regular
path queries and its standard extensions. We study the complexity of evaluation
and static analysis tasks, and its expressive power.

1 Preliminaries

We will assume familiarity with some basic automata theory notions such as
non-deterministic finite automata (NFA), regular languages, regular expressions
and its paradigmatic problems of containment, emptiness and equivalence. We
use A, B to denote finite alphabets. In our examples, we use the standard syntax
for regular expressions over a finite alphabet A

regexp ::= ∅ | ε | a | regexp · regexp | regexp + regexp | regexp∗ | regexp+ a ∈ A

Foundations of Graph Path Query Languages (Course Notes) 3

with the semantics [[]] : regexp → 2A
∗

[[∅]] = ∅, [[ε]] = {ε}, [[a]] = {a}, [[e1 + e2]] = [[e1]] ∪ [[e2]],

[[e+]] = {u1 · · · un : n ≥ 1 and ui ∈ [[e]] for every i},

[[e∗]] = {ε} ∪ [[e+]], [[e1 · e2]] = {u · v : u ∈ [[e1]], v ∈ [[e2]]}.

We use the word orderings of

– prefix: u is a prefix of v if v = u · w for some w;
– suffix: u is a suffix of v if v = w · u for some w;
– factor (a.k.a. infix, subword): u is a factor of v if v = w ·u ·w′ for some w,w′;
– subsequence (a.k.a. scattered subword): u is a subsequence of v if u is the

result of removing some (possibly none) positions from v.

We also use its “proper” versions: u is a proper prefix of v if it is a prefix of v
and u �= v; and similarly for the other orderings.

We also assume an elementary understanding of some fundamental complex-
ity classes such as PTime, NL, PSpace, ExpSpace, the polynomial hierarchy,
etc.

We often blur the distinction between an NFA A over A and the language
L(A) ⊆ A

∗ it recognizes; and we do similarly for regular expressions. In the
sequel we may hence write w ∈ c∗ · (a+ b)∗ or w ∈ A. We denote by ε the empty
word. We also assume some familiarity with the query language of Conjunctive
Queries (CQ) and Unions of CQ (UCQ).

Graph Databases. We consider a graph database over a finite alphabet A to
be a finite edge-labelled directed graph G = (V,E) over a finite set of labels A,
where V is a finite set of vertices and E ⊆ V ×A×V is the set of labelled edges.
We write u

a−→ v to denote an edge (u, a, v) ∈ E. It should be stressed that this is
often an abstraction for formats such as RDF [38] or property graphs (adopted,
e.g., by Neo4j). For example, the patterns used in SPARQL [32] (the W3C query
language for RDF) are triplets rather than edges, but this can often be abstracted
away by means of extra vertices and edges, without much loss of generality. Also,
for most graph database formats, A may be from a complex infinite domain, and
further nodes may be labelled also with data. Graph databases, as defined here,
are then a basic abstraction of these models which allows us to focus on querying
the topology of the graph.

A (directed) path π of length n ≥ 0 in G is a (possibly empty) sequence of
edges of G of the form (v0, a1, v1), (v1, a2, v2), . . . , (vn−1, an, vn). There is always
an empty path starting and ending at the same node. The label label(π) of π is
the word a1 · · · an ∈ A

∗ . When n = 0 the label of π is the empty word ε.

2 Conjunctive Regular Path Queries

In graph databases, a fundamental querying mechanism is based on the existence
of some paths in the database with certain properties. These properties include

4 D. Figueira

that the label of a path must belong to a certain language, or that the starting
or terminal vertices of some paths must be equal. This gives rise to the much
studied class of Regular Path Queries (RPQ) and Conjunctive Regular Path
Queries (CRPQ) [21].

Example 2. An example of a CRPQ query is

Q1(x) = x
a∗b−−→ y ∧ x

(a+b)∗c−−−−−→ y.

It outputs all vertices v having one outgoing path with label in a∗b and one
outgoing path with label in (a + b)∗c. Further these paths must end at the same
vertex. �
Conjunctive Regular Path Queries (CRPQ) can be understood as the general-
ization of conjunctive queries with a very simple form of recursion. CRPQ are
part of SPARQL, the W3C standard for querying RDF data [38], including well
known knowledge bases such as DBpedia and Wikidata. In particular, RPQs are
quite popular for querying Wikidata. They are used in over 24% of the queries
(and over 38% of the unique queries), according to recent studies [16,37]. More
generally, CRPQ constitute a basic building block for query languages on graph-
structured data [6].

A Regular Path Query (RPQ) over the alphabet A is a query of the form

Q(x, y) = x
L−→ y (1)

where L is a regular language over A, specified either as an NFA or a regular
expression (we will not make a distinction here). Given a graph database G and
a pair of node (v, v′) therein, we say that the pair (v, v′) satisfies Q if there
exists a path π from v to v′ such that label(π) ∈ L. The result of evaluating Q
on G is then the set of all pairs (v, v′) of G satisfying Q.

Example 3. Consider the RPQ

Q(x, y) = x
coauthor∗
−−−−−−→ y.

It retrieves all pairs persons related by a coauthorship. In particular on the graph
database defined in Example 1 it retrieves (Anna,Lise), among other pairs. �

A conjunctive regular path query (CRPQ) is the closure under projection
(i.e., existential quantification) and conjunction of RPQ queries. That is, CRPQ
is to RPQ what Conjunctive Queries is to first-order atoms. Concretely, a Con-
junctive Regular Path Query (CRPQ) is a query of the form

Q(x1, . . . , xn) = A1 ∧ · · · ∧ Am

where the atoms A1, . . . , Am are RPQ. We call the variables x1, . . . , xn occurring
on the left-hand side the free variables. Each free variable xj has to occur also
in some atom on the right-hand side, but not every variable on the right-hand
side needs to be free.

Foundations of Graph Path Query Languages (Course Notes) 5

A homomorphism from a CRPQ Q as above to a graph database G =
(V,E) is a mapping μ from the variables of Q (free and non-free) to V . Such
a homomorphism satisfies an RPQ A(x, y) if (μ(x), μ(y)) satisfies A; and it
satisfies Q if it satisfies every RPQ atom of Q. The set of answers Q(G) of a
CRPQ Q(x1, . . . , xn) over a graph database G is the set of tuples (v1, . . . , vn) of
nodes of G such that there exists a satisfying homomorphism for Q on G that
maps xi to vi for every 1 ≤ i ≤ n. We say that a CRPQ is Boolean if it has no
free variables, in which case Q(G) = {()} (where () denotes the empty tuple) if
there exists a satisfying homomorphism or Q(G) = {} otherwise. We often write
G |= Q instead of Q(G) = {()}. Most of the results we will present hold also
for expressive extensions of CRPQ with finite unions and two-way navigation,
known as UC2RPQ [18]. However, for simplicity of presentation, we will focus
on CRPQ.

Example 4. Consider the (Boolean) CRPQ

Q1() = x
supervise+−−−−−−−→ x

It checks if the supervisor relation has cycles (i.e., it is true whenever there are).
Another CRPQ could be

Q2(x) = x
supervise+−−−−−−−→ y ∧ x

friend−−−→ y

retrieving all persons being friends with some descendant in the supervisor
genealogy. �

It is worth observing that in the context of graph databases, a Conjunctive
Query (CQ) is a CRPQ whose every regular expression denotes a language
of the form {a} for some a ∈ A. Thus, CQ is included in CRPQ in terms of
expressive power.

Alternative Semantics. For some applications such as transportation problems
or DNA matching (see [5] for a more complete list of application scenarios)
there is a need to require that the considered paths have no repeated nodes
or no repeated edges. In this way, alternative semantics arise if we change the
definition of “satisfaction” of an RPQ atom x

L−→ y for a given homomorphism
μ. In the default (a.k.a. arbitrary path) semantics, we ask for the existence of
any (directed) path from μ(x) to μ(y) with label(π) ∈ L. In the trail semantics,
we demand that the path has also no repeated edges, and in the simple path
semantics, we further enforce that the path must be simple (i.e., no repeating
vertices). It then follows that if x̄ ∈ Q(G) under simple path semantics, then
x̄ ∈ Q(G) under trail semantics; and if x̄ ∈ Q(G) under trail semantics then
x̄ ∈ Q(G) under arbitrary path semantics. But the converse directions do not
hold in general. In the sequel we assume that we work with the default (i.e.,
arbitrary path) semantics unless otherwise stated.

6 D. Figueira

Structural Fragments of CRPQ. A standard way to define fragments of conjunc-
tive queries is via their underlying graph (a.k.a. Gaifman graph). In a similar
way, one can define fragments of CRPQ via its underlying multi-graph. Con-
cretely, for any set X, let ℘2(X) denote the set of non-empty subsets of X of
size at most 2. The underlying multi-graph of a CRPQ Q is the directed
multi-graph (V,E, ν) where: V is the set of variables of Q, E is the set of atoms
of Q, and ν : E → ℘2(V) is defined as ν(x L−→ y) = {x, y} for every RPQ atom
x

L−→ y in Q. For a given class C of multi-graphs, let CRPQ(C) be the set of
CRPQ whose underlying multi-graph is in C.1 In the sequel we will rather use
the term graph to denote the underlying multi-graph of a CRPQ.

Example 5. Consider, for example, the CRPQ

Q(x, z) = x
a∗
−→ y ∧ y

a+b∗
−−−→ y ∧ x

b∗
−→ z ∧ z

(b+c)∗
−−−−→ x

In Fig. 2 there is its graphic representation and its underlying graph.
�

Fig. 2. Underlying graph of a CRPQ.

3 Evaluation of CRPQ

The evaluation problem is the most fundamental decision problem on databases:
the problem of whether a given data is retrieved by a query on a database.

Problem Evaluation problem for a class Q of (graph database)
queries (Eval-Q)

Given Q ∈ Q, a graph database G, a tuple x̄ of nodes
Question Is x̄ ∈ Q(G)?

1 Why multi-graphs and not just graphs? It turns out that, contrary to what happens
to Conjunctive Queries, the multiplicity of edges makes a difference for some prob-
lems, such as the containment problem. We need, hence, to have a more fine-grained
notion than a simple graph.

Foundations of Graph Path Query Languages (Course Notes) 7

Observe that the evaluation problem has two kind of inputs of very differ-
ent nature: the query and the database. In terms of size, one should expect
the query to be several orders of magnitude smaller than the database, which
raises the question of, for example, whether different algorithms running in time
O(2|Q| · |D|), O(|Q| · 2|D|) or O(|D||Q|) should be justly placed in the same
“complexity class”. This is the reason why several complexity variants are often
considered, useful to understanding the various aspects of the complexity for the
evaluation problem. The default one is the combined complexity, where one
considers both the query and database as being part of the input. The com-
plexity when one considers the input query Q to be of constant size it is the
data complexity [44]. Hence, an algorithm running in O(2|Q| · |D|) would have
exponential combined complexity but linear data complexity. If, on the other
hand, one considers the database D to be of constant size we obtain the query
complexity. There is, on the other hand, the parameterized complexity
version of this problem in which the ‘parameter’ is the query, we will not give
details here about parameterized complexity, and we refer the interested reader
to [29]. On the parameterized complexity, the classes ‘FPT’ (for Fixed Parame-
ter Tractable) and ‘W[1]’ are often considered as the PTime and NP analog of
classical non-parameterized complexity classes, respectively. The idea is that an
algorithm is FPT if it runs in time O(f(|Q|) · |D|c) for any computable f and
constant c. Thus, an algorithm running in time O(|D||Q|) is not (in principle)
FPT, but an algorithm running in time O(2|Q| · |D|) is FPT.

Theorem 1 (Folklore). Eval-CRPQ is

– NP-complete in combined complexity,
– NL-complete is data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.

Eval-RPQ is

– NL-complete in combined complexity,
– NL-complete in data complexity,
– NL-complete in query complexity,
– FPT in parameterized complexity.

That is, the combined complexity follows the same behavior as that of Conjunc-
tive Queries, with the exception that evaluating the ‘atoms’ is an NL-complete
task —essentially, the classical graph problem of existence of a source to tar-
get path. In other words, the lower bounds for combined and parameterized
complexities follow from the following classical result for CQ.

Theorem 2. [19] Eval-CQ is

– NP-complete in combined complexity,
– in LogSpace (and in AC0) in data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.

8 D. Figueira

As discussed before, a standard way to define subclasses of CRPQ is by
means of its underlying graphs. In the light of the results of Theorem 1 above,
one natural concern is whether the combined and parameterized complexities
can be improved by considering queries of some ‘simple’ structure. The question
is then: given a class C of graphs, is Eval-CRPQ(C) tractable? Or rather: For
which C is Eval-CRPQ(C) tractable?

As it turns out, by straightforward reductions to and from the Conjunctive
Query case, we obtain that the RPQ complexity extends to any class of CRPQ
defined by a bounded treewidth class.2 This notion, in fact, characterizes the
tractable complexity classes.

Theorem 3 (consequence of [31]). Assuming W[1] �= FPT, for any class C
of graphs the following are equivalent:

– Eval-CRPQ(C) is in polynomial time in combined complexity,
– Eval-CRPQ(C) is FPT in parameterized complexity,
– C has bounded treewidth.

The tractable cases of evaluation has been also extended to larger classes, in
which either queries need to be equivalent to queries of bounded treewidth
(obtaining FPT tractability) or they have to be homomorphically equivalent3

to queries of bounded treewidth (obtaining polynomial time tractability) [42].

Alternative Semantics. Under alternative semantics, things are more complex,
since Eval-RPQ is already an NP-complete problem.

Theorem 4. Eval-RPQ is NP-complete both under trail and simple path
semantics. Both in data and in combined complexity.

In fact, NP-completeness under simple path or trail semantics already holds if

we fix the query to be x
(aa)∗
−−−→ y or x

a∗ba∗
−−−−→ y [40]. Interestingly, both these

semantics enjoy a trichotomy characterization in terms of data complexity: for
any fixed query Q = x

L−→ y the evaluation problem for Q is either NP-complete,
NL-complete, or in LogSpace (even in AC0, the data complexity of evaluating
first-order formulas). What is more, given a query Q, one can effectively decide
in which of these three cases falls (for each semantics).

Theorem 5 ([5,39]). For each fixed regular language L ⊆ A
∗ and for each

� ∈ {simple-path, trail}, the data complexity of Eval-RPQ for x
L−→ x under �-

semantics is either NP-complete, NL-complete or in AC0. Further, these char-
acterizations are effective (and different for each semantics).

2 Intuitively, a graph with small treewidth resembles a tree (e.g., trees have treewidth
1 and cacti have treewidth 2). Many results for trees can be generalized to bounded
treewidth classes.

3 For some suitable notion of homomorphism between queries.

Foundations of Graph Path Query Languages (Course Notes) 9

4 Containment for CRPQ

As databases become larger, reasoning about queries (e.g., for optimization)
becomes increasingly important. One of the most basic static analysis prob-
lems on monotone query languages is that of query containment: is every result
returned by query Q1 also returned by query Q2, for every database? This can
be a means for query optimization, as it may avoid evaluating parts of a query,
or reduce and simplify the query with an equivalent one. It falls in what is com-
monly known as query reasoning or static analysis, since it involves reasoning
only about the query, and it may give rise to optimization tasks that can be
carried out at compile time (rather than at running time). Furthermore, query
containment has proven useful in knowledge base verification, information inte-
gration, integrity checking, and cooperative answering [18].

Concretely, given two CRPQ Q1, Q2, we say that Q1 is contained in Q2,
denoted by Q1 ⊆ Q2, if Q1(G) ⊆ Q2(G) for every graph database G, which
raises the following decision problem for any fragment Q of CRPQ.

Problem Containment problem for a class Q of (graph database)
queries (Cont-Q)

Given Q1, Q2 ∈ Q
Question Is Q1(G) ⊆ Q2(G) for every graph database G?

We say Q1 is equivalent to Q2, denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.
The containment problem for RPQ and CRPQ are decidable in PSpace and

ExpSpace respectively.

Theorem 6 (Folklore). Cont-RPQ is PSpace-complete.

In fact, for any two RPQ Q1 = x
L1−−→ y and Q2 = x

L2−−→ y it is easy to see that
Q1 ⊆ Q2 if, and only if, L1 ⊆ L2. Hence RPQ containment is reducible from
and to language containment. Since regular language containment is a PSpace-
complete problem, it follows that Cont-RPQ is PSpace-complete. On the other
hand, the bounds for CRPQ are somewhat more involved.

Theorem 7 ([18,28]). Cont-CRPQ is ExpSpace-complete.

It is interesting to remark that the above hardness result holds even for con-
tainment of CRPQ Q1 ⊆ Q2 where Q1 is of the form Q1 = x

L−→ y and Q2

is of the form Q2 =
∧

i x
L1−−→ y. In other words, Cont-CRPQ(C) is already

ExpSpace-hard for the class C of multigraphs having exactly two nodes, and
even for Boolean queries.

However, in certain circumstances, the ExpSpace-hardness of the contain-
ment problem can be avoided. That is, there are fragments F of CRPQ whose
containment problem is in PSpace or even in lower classes. Which are these
fragments? There are two natural systematic ways to define fragments of CRPQ,
namely

1. as discussed before, by restricting the “shape” of the query, as in the under-
lying multigraph when regular expressions are abstracted away; or

10 D. Figueira

Fig. 3. Examples and non-examples of bridges.

2. by restricting the class of regular expressions that may occur in the queries
RPQ atoms.

1. Restricting the Shape. Here we ask the same question as we did for the
evaluation problem: given a class of multigraphs C, is Cont-CRPQ(C) tractable?
Of course here ‘tractable’ cannot be any better than PSpace, since it is the
complexity of Cont-RPQ, corresponding to the graph having two vertices and
one edge. It turns out that, just as in the case for Eval-CRPQ(C), one can
characterize the classes of graphs C under which Cont-CRPQ(C) is in PSpace.
However, the graph measure is not treewidth but bridgewidth, which we define
next.

A bridge of a (multi)graph is a minimal set of edges (in the sense of inclusion)
whose removal increases the number of connected components (see Fig. 3 for
some examples). The bridge-width of a graph is the maximum size of a bridge
therein. Bridge-width is more restrictive than treewidth, in the sense that if a
graph has bridge-width at most k then it also has treewidth at most k, but the
converse does not necessarily hold. Let us define a class C of graphs to be non-
trivial if it contains at least one graph with at least one edge; and let us call
it bridge-tame if either C has bounded bridge-width or there is a polynomial
time function f : N → C such that f(n) has bridgewidth ≥ n for every n.

Theorem 8 ([25]). For every non-trivial bridge-tame class C of graphs,

– if C has bounded bridge-width, then the containment problem for CRPQ(C) is
PSpace-complete;

– otherwise, the containment problem for CRPQ(C) is ExpSpace-complete.

2. Restricting the Regular Expressions. As we have remarked before, the lower
bound construction of Theorems 7 and 8 make use of CRPQ which have a simple
and regular shape (if seen as the underlying graph) but contain rather involved
regular expressions, which do not correspond to CRPQ how they typically occur
in practice. In fact, a large majority of regular expressions of queries used in
practice are of a very simple form [16,17]. This motivates the study of CRPQ
containment on fragments having commonly used kinds of regular expressions.
The goal here is to identify restricted fragments of CRPQ that are both common
in practice and have a reasonable complexity for query containment.

Foundations of Graph Path Query Languages (Course Notes) 11

For a class of regular expressions L, let CRPQ(L) be the set of CRPQ whose
every RPQ atom uses an expression from L.

Let Ls be the set of regular expressions of the form ‘s’ for each symbol s of
the finite alphabet. Let LS be the set of expressions of the form ‘a1 + · · · + an’
for a1, . . . , an ∈ A (i.e., it corresponds to unions of Ls). Finally, for α ∈ {s, S},
let Lα∗ be the set of regular expressions of the form ‘r∗’ where r ∈ Lα. We
next write Lα,β as shorthand for Lα ∪ Lβ .4 Following this notation, observe
that CRPQ(Ls) corresponds to the class of CQ (on graph databases), and that
CRPQ(LS) is contained in UCQ in terms of expressive power.

Theorem 9 ([23,26]).

1. The containment problem for CRPQ(LS,S∗) and CRPQ(Ls,S∗) are
ExpSpace-complete.

2. The containment problem for CRPQ(Ls,s∗), CRPQ(LS,s∗), and for
CRPQ(LS) are all Πp

2 -complete.

Observe that CRPQ(L) is closed under concatenation in the following sense:
Let Lconc be the closure under concatenation5 of L, then CRPQ(L) and
CRPQ(Lconc) are equi-expressive (and there is a linear time translation from
one to the other). This means that, for example, the Πp

2 upper bound for
CRPQ(LS,s∗) also holds for CRPQ having concatenations of expressions of LS,s∗

in the RPQ atoms, like x
(a+b)·b∗·(b+c)−−−−−−−−−→ y. Notice also that, in light of the previ-

ous Theorem 8, the ExpSpace lower bound of Theorem 9 uses —necessarily—
queries of arbitrarily large bridge-width.

5 Boundedness of CRPQ

Boundedness is another important static analysis task of queries with a fixed-
point feature. At an intuitive level, a query Q in any such logic is bounded if
its fixed-point depth, i.e., the number of iterations that are needed to evaluate
Q on a database D, is bounded (and thus it is independent of the database
D). In databases and knowledge representation, boundedness is regarded as an
interesting theoretical phenomenon with relevant practical implications [14,35].
In fact, while several applications in these areas require the use of recursive
features, actual real-world systems are either not designed or not optimized
to cope with the computational demands that such features impose. Bounded
formulas, in turn, can be reformulated in ‘non-recursive’ logics, such as first-order
logic, or even as a union of conjunctive queries (UCQ) when Q itself is positive.
Since UCQs form the core of most systems for data management and ontological
query answering, it is relevant to understand when a query can be equivalently
translated to a UCQ as an optimization task. It has also been experimentally
verified in some contexts that recursive features encountered in practice are often
4 The choice of the fragments Ls, LS , Ls∗ , and LS∗ is based on recent studies on

SPARQL queries on Wikidata and DBpedia [13,16,17].
5 That is, Lconc = {s1 · · · sn : for n ∈ N and s1, . . . , sn expressions from L}.

12 D. Figueira

used in a somewhat ‘harmless’ way, and that many of such queries are in fact
bounded [33]. We say that a CRPQ query is bounded if it is equivalent to some
UCQ.

Example 6. Consider the following three Boolean CRPQ Q1, Q2, Q3 over the
alphabet A = {a, b, c, d} such that

Q1 = (x Lb−→ y ∧ x
Lb,d−−−→ y),

Q2 = (x Ld−−→ y ∧ x
Lb,d−−−→ y),

Q3 = (x Lb+Ld−−−−→ y ∧ x
Lb,d−−−→ y),

where Lb = a+b+c, Ld = ad+c+, and Lb,d = a+(b+d)c+. As it turns out, Q1 and
Q2 are unbounded. However, Q3 is bounded, and in particular, it is equivalent
to the UCQ φ1 ∨ φ2, where

φ1 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

b−→ x2) ∧ (x2
c−→ x3)

φ2 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

d−→ x2) ∧ (x2
c−→ x3).

�

Problem Boundedness problem for a class Q of (graph database)
queries (Bound-Q)

Given Q ∈ Q
Question Is there a UCQ Q′ such that Q ≡ Q′?

For an RPQ Q(x, y) = x
L−→ y it is easy to see that the boundedness problem

is really the finiteness problem of L: Q is bounded if, and only if, L is finite (i.e.,
an NL-complete problem). However, if some of the variables are existentially
quantified the problem is not as trivial. For example, a CRPQ of the form ∃y x

L−→
y is bounded if, and only if, the language

Lprefix = {w ∈ L : there is no proper prefix of w in L}

is finite [8]. Likewise a CRPQ of the form ∃x, y x
L−→ y is bounded iff

Lfactor = {w ∈ L : there is no proper factor of w in L}

is finite. Both these problems are already PSpace-complete [8]. For general
CRPQ it turns out that the problem is related to the boundedness problem for an
extension of finite automata which associate to each word in the language a nat-
ural number or ‘cost’, called Distance Automata [34] (a.k.a. weighted automata
over the (min,+)-semiring [24], min-automata [15], or {ε, ic}-B-automata [20]).
The resulting complexity for the boundedness problem for CRPQ is, just as for
the containment problem, ExpSpace-complete.

Foundations of Graph Path Query Languages (Course Notes) 13

Theorem 10 ([8]). Bound-CRPQ is ExpSpace-complete. If a CRPQ is
bounded, then it is equivalent to a UCQ of triple exponential size; and this bound
is optimal.

Contrary to the containment problem, very little is known when restricting
either the shape or the languages of the CRPQ with regards to the boundedness
problem.

6 Semantic Membership for CRPQ

As we have seen before, natural classes of CRPQ with tractable evaluation arise
from considering bounded treewidth classes C. However, this is a syntactic prop-
erty, which begs the following question for any fixed class C of bounded treewidth:
given a CRPQ Q, is it equivalent to some query Q′ from CRPQ(C)? If so, we
can replace the costly query Q with Q′, or adapt the strategy for the (polyno-
mial) evaluation of Q′ to Q. The idea behind this optimization task is —as for
boundedness— that the time needed to compute Q′ may be comparatively small
to the gain of having a polynomial time algorithm for the evaluation problem.
Let Tk be the set of all multigraphs of treewidth at most k. We can then consider
the following family of decision problems.

Problem Treewidth-k semantic membership (Mem-twk)
Given a CRPQ Q

Question Is there a query Q′ in CRPQ(Tk) such that Q ≡ Q′?

For the case where the input query turns out to be a Conjunctive Query his is
a studied problem which is decidable, NP-complete [22] (basically, it reduces to
testing treewidth of the core of a graph). However, for CRPQ this problem turns
out to be more challenging. It has been shown to be decidable only for k = 1,
that is, for ‘trees’, where trees should be understood as the class of multigraphs
whose every simple cycle is of length 1 (i.e., a self-loop) or 2 (i.e., a cycle between
a parent and a child).

Theorem 11 ([11]). Mem-tw1 is decidable, ExpSpace-complete.

It is however unknown if Mem-twk is decidable for any other k.

7 Extending CRPQ with Union and Two-Wayness

Two-wayness. Observe that semantics of RPQ and CRPQ are based on the
notion of directed path. This means that the query cannot “freely” move around
the graph edges, but it has to comply with the direction of edges. Remark that
not even the reachability query “x and y belong to the same connected compo-
nent in the underlying undirected graph” is expressible as a CRPQ. A standard
extension of CRPQ and RPQ that palliates this lack of expressive power, consists

14 D. Figueira

in adding the ability to navigate the graph database with inverse relations, and
it is known as C2RPQ and 2RPQ, respectively (2 for “two-way navigation”).

For any alphabet A, let us define the alphabet A
± := A ∪̇ A

−1 that extends A

with the set A
−1 := {a−1 | a ∈ A} of “inverse” symbols. For a graph database G

over A, let G± be the result of adding an edge (v, a−1, v′) for every (v′, a, v) ∈ E.
Now the regular expressions of a (C)2RPQ are defined over the extended

alphabet A
±. The semantics of a 2RPQ is extended as expected: a pair (v, v′)

of vertices of G satisfies a 2RPQ x
L−→ y if there is a path π in G± from v to

v′ such that label(π) ∈ L (remember, now L is a regular subset of (A±)∗). The
semantics of C2RPQ follows the same definition based on 2RPQ.

Example 7. Consider the following 2RPQ

Q(x, y) = x
(supervise · supervise−1)∗
−−−−−−−−−−−−−−−−−→ y.

On a graph database as the one of Example 1, Q returns pairs of people related
by a “co-supervision” chain. �

Union. A CRPQ, contrary to a CQ, has some restricted built-in union by the
simple fact that regular languages are closed under union. However, the general
structure of the query is fixed.

Example 8. Consider the following two Boolean CQs

Q1 = x
a−→ y

Q2 = x
b−→ x

It can be shown that there is no CRPQ expressing Q1 ∨ Q2. �
As for Conjunctive Query, it is a rather standard extension to add the possi-

bility to have finite unions of queries, and it is known as UCRPQ. A UCRPQ
is thus a query of the form Q = Q1 ∨ · · · ∨ Qn, where every Qi has the same set
of free variables. We then define x̄ ∈ Q(G) for a graph database G if x̄ ∈ Qi(G)
for some i.

Finally, the extension including both possibilities of having two-way naviga-
tion as well as unions is denoted by UC2RPQ, and its semantics is as expected.

As it turns out, most known results extend to UC2RPQ in a seamless way:
it just turns out that upper bound techniques (involving invariably some classes
of automata) can extend to handle UC2RPQ (involving classes of two-way
automata). In particular, the results on the containment and evaluation prob-
lems of Theorems 1, 3, 6, 7, 8, 10, and 11 extend to UC2RPQ while preserving
the stated upper bounds.

8 Extending CRPQ with Path Comparison

Another studied extension of CRPQ conveys the ability to compare paths for
certain relations on the labels. In comparison, one can think of CRPQ as testing
for unary relations.

Foundations of Graph Path Query Languages (Course Notes) 15

Example 9. Observe that the query Q1 from Example 2 could be equivalently
written as

Q1(x) = ∃y ∃π1, π2 x
π1−→ y ∧ x

π2−→ y ∧
label(π1) ∈ La∗b ∧ label(π2) ∈ L(a+b)∗c

Where L� is the language given by the expression �. With this notation in mind,
consider the following query

Q2(x) = ∃y ∃π1, π2 x
π1−→ y ∧ y

π2−→ x ∧
(label(π1), label(π2)) ∈ R

where R ⊆ A
∗ × A

∗ is now a word relation such as, for example, the equality
relation R = {(u, v) ∈ A

∗ × A
∗ : u = v}. Such query Q2 would then output all

vertices v having one cycling path with label w w for some w ∈ A
∗. �

Indeed, some scenarios require the ability to “compare paths”, i.e., to relate the
words given by the labels corresponding to the existentially quantified paths in
CRPQ. For example, when handling biological sequences, querying paths con-
strained under some similarity measure between paths is of great importance.
See [9] for a more detailed discussion on the applicability of these features. The
extension of CRPQ with non-monadic word relations gives rise to several expres-
sive extensions which have been studied lately [3,4,7,9,10,43]. For a class of finite
word relations K one can consider “CRPQ+K”, the result of extending CRPQ
with testing of K relations on path labels.

Concretely, for any class K of finite word relations, the query language of con-
junctive regular path query with K-relations (CRPQ+K) is a pair (Q,R)
where R ⊆ K is a finite set of relations, each R ∈ R having arity arity(R) ≥ 1.
A CRPQ+K query Q, possibly having some free variables x̄, is a query of the
form

Q(x̄) = ∃ȳ ∃π̄ γ(x̄ȳπ̄) ∧ ρ(π̄). (2)

It is a query over two sorts of (infinite, disjoint) sets of variables: node variables
(denoting nodes of the graph database) and path variables (denoting paths).
In (2), x̄, ȳ span over node variables and π̄ over path variables. The idea is
that γ tells how node variables are connected through path variables, while ρ
describes the properties and relations between path variables in terms of the
regular languages and relations of R. Concretely, the subformula γ(x̄ȳπ̄), which
we may call the reachability subquery, is a finite conjunction of reachability
atoms of the form z

π−→ z′, where z, z′ are from x̄ȳ and π is from π̄, with the
restriction that every path variable π from π̄ appears in exactly one reachability
atom. That is, node variables may repeat in γ, but path variables may not. Let
us call the subformula ρ(π̄) the relation subquery, which is a finite conjunction
of atoms of the form R(π1, . . . , πr), were R ∈ R, r = arity(R) and π1, . . . , πr are
pairwise distinct path variables from π̄.

For the classes of relations K we will consider here, we can think of each
relation R ∈ K of arity k ≥ 1 over an alphabet A as being described by an NFA

16 D. Figueira

over the alphabet of k-tuples (A ∪̇{⊥})k. The underlying idea is that a word
w ∈ ((A ∪̇{⊥})k)∗ describes the k-tuple (w1, . . . , wk) ∈ (A∗)k, where each wi is
obtained from w by (1) projecting onto the i-th component and (2) replacing each
⊥ with the empty word ε. Thus, for example (a,⊥,⊥)(b, b,⊥)(⊥,⊥, a)(c,⊥,⊥)
describes (abc, b, a). In this way, any such NFA A denotes the k-ary relation R
consisting of all tuples described by the words in the language of A. Among
the most basic classes of finite word relations are the classes of Recognizable,
Synchronous (a.k.a. Automatic or Regular), and Rational relations [12]. The
class of Rational relations is the set of all relations which are recognized by
such automata, and it includes relations such as factor or subsequence. Syn-
chronous relations are those that can be recognized by automata whose every
word satisfies that, for every i ≤ k, if a position has a ⊥-symbol in its i-th
component, then the next position (if it exists) must also have ⊥ in its i-th com-
ponent. For example, prefix or equal-length are synchronous relations. Finally,
Recognizable relations are equivalent to finite unions of products of regular
languages, i.e., relations of the form R =

⋃
i∈I Li,1 × · · · × Li,k for a finite I,

where the Li,j ’s are all regular languages over A. They can also be defined in
terms of NFA over (A ∪̇{⊥})k restricted to only accepting words such that: (1)
no position contains more than one symbol from A and (2) every component
projects onto a word from ⊥∗ · A

∗ · ⊥∗. An instance of a recognizable relation is
{(u, v) : u, v start with the same letter} or {(u, v) : |u| + |v| = 3 mod 7}. These
three classes form a proper hierarchy: Recognizable � Synchronous � Rational.
Observe that any of the three classes of word relations contains the class of reg-
ular languages as (unary) relations. We refer the reader to [12] for more details
on these classes.

Given a graph database D = (V,E) over an alphabet A and an assignment
fn of x̄ȳ to V and an assignment fp of π̄ to paths of D, we say that (fn, fp) is
a satisfying assignment if

1. for every reachability atom z
π−→ z′ of γ, fp(π) is a directed path from fn(z)

to fn(z′) in D; and
2. for every r-ary atom R(π1, . . . , πr) of ρ the tuple

(label(fp(π1)), . . . , label(fp(πr))) ∈ (A∗)r

is in the relation R ∈ R.

Assuming x̄ = (x1, . . . , x�), the answers Q(D) of the CRPQ+K query Q to
the database D is the set of all (fn(x1), . . . , fn(x�)) ∈ V � for every satisfying
assignment (fn, fp).

It is plain to see that CRPQ+Recognizable is not more expressive than
UCRPQ. On the other hand, the evaluation of CRPQ+Rational queries
is undecidable, even for very simple rational relations. On the contrary,
CRPQ+Synchronous seems to enjoy a good tradeoff of complexity and expres-
sive power. This is partly because Synchronous relations constitute a very robust
class, closed under Boolean operations and enjoying most of the decidability and
algorithmic properties inherited from regular languages. CRPQ+Synchronous,
commonly known as ECRPQ (‘Extended’ CRPQ).

Foundations of Graph Path Query Languages (Course Notes) 17

Theorem 12.

– (Folklore) CRPQ+Recognizable is contained in UCRPQ in terms of expressive
power.

– [9] Eval-CRPQ+Recognizable and Eval-CRPQ+Synchronous (a.k.a.
ECRPQ) are both PSpace-complete [resp. NL-complete] in combined
[resp. data] complexity.

– [9] Eval-CRPQ+Rational is undecidable.
– [7] Eval-CRPQ+(Synchronous ∪ {R}) is undecidable, for any R ∈

{suffix, factor}; Eval-CRPQ+(Synchronous ∪ {subsequence}) is decidable
and non-multiply-recursive hard.6

– [10] Eval-CRPQ+{factor} is PSpace-complete (both in data and combined
complexity); Eval-CRPQ+{subsequence} is NExpTime-complete [resp. NP-
complete] in combined [resp. data] complexity.

Observe that the data complexity for the evaluation of ECRPQ queries is
the same as for CRPQ (i.e., NL), but the combined complexity jumps from NP

to PSpace. In the same spirit as done for CRPQ in Theorem 3, there exists a
characterization of the underlying structures C for which Eval-ECRPQ(C) has
better complexity. While the underlying structure of a CRPQ is the result of
abstracting away its languages, the underlying structure of an ECRPQ is the
result of abstracting away its relations. In contrast to the evaluation problem
for CRPQ, the complexity of Eval-ECRPQ(C) can be, depending on C, either
PTime, NP, or PSpace in combined complexity, and either XNL, W[1], or
FPT in parameterized complexity [27]. Further, the FPT and PTime cases do
not coincide.

While the evaluation problem for ECRPQ remains decidable, the contain-
ment and equivalence problems turn out to be (roubstly) undecidable.

Theorem 13. Cont-ECRPQ is undecidable [9]. Further, undecidability holds
even for the fragment CRPQ+(RL ∪ {eq-len}), where eq-len is the equal length
binary relation and RL is the class of regular languages (seen as unary relations).
In fact, this undecidability results even holds when one of the two inputs is a plain
CRPQ (which is the same as CRPQ + RL) [30].

Other Extensions

A different extension to CRPQ with an expanded ability for path relational
querying, consists in having “xregex” regular expressions with string variables
(a.k.a. backreferences) [43], which is incomparable, in terms of expressive power,
to ECRPQ.

As we remarked before, these graph query languages we have covered oper-
ate on an abstraction over a finite alphabet A of graph databases. However,
6 In particular, this means that the time or space required by any algorithm decid-

ing Eval-CRPQ+(Synchronous ∪ {subsequence}) grows faster than the Ackermann
function.

18 D. Figueira

graph databases carry so called “data values” in the nodes and/or edges, that is,
values with concrete domains, such as strings or numbers, and practical query
languages can of course make tests on these data values, not only for equality
but also using some domain-specific functions and relations. There have been
proposals for querying mechanisms combining the ability to test for data val-
ues and query the topology [36]. In particular, one can explore different forms of
querying paths while constraining the way data in paths changes. However, the
theory of querying “data graphs” (i.e., graph databases carrying elements from
infinite domains) remains insofar a largely unexplored terrain.

The graph pattern languages here are based on a very simple form of recur-
sion, namely applying regular expressions on paths. Another possible extension is
by allowing a more complex form of recursion, such as nested regular expressions
or Datalog-like rules, which increases the expressive power while often preserving
complexities of CRPQ (see, e.g., [41] and references therein).

9 Conclusions

We have explored some fundamental ways of querying graph databases via the
concept of ‘paths’ on a simple abstraction of graph databases, that of edge-
labelled graphs. One can draw a parallel between formalisms of CRPQ and its
extensions and Conjunctive Queries, in the sense that these correspond to the
most basic form of querying, using existentially quantified “patterns”, by means
of languages closed under homomorphisms. However, in this scenario, one deals
with two-sorted languages dealing with nodes and paths, inheriting from the
theory of words (or word relations) and of testing patterns (i.e., Conjunctive
Queries).

References

1. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1-68:40 (2017). https://doi.org/10.1145/3104031

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1-1:39 (2008). https://doi.org/10.1145/1322432.1322433

3. Anyanwu, K., Maduko, A., Sheth, A.P.: SPARQ2L: towards support for subgraph
extraction queries in RDF databases. In: Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007,
pp. 797–806. ACM (2007). https://doi.org/10.1145/1242572.1242680

4. Anyanwu, K., Sheth, A.P.: ρ-queries: enabling querying for semantic associations
on the semantic web. In: Hencsey, G., White, B., Chen, Y.R., Kovács, L., Lawrence,
S. (eds.) Proceedings of the Twelfth International World Wide Web Conference,
WWW 2003, Budapest, Hungary, May 20–24, 2003, pp. 690–699. ACM (2003).
https://doi.org/10.1145/775152.775249

5. Bagan, G., Bonifati, A., Groz, B.: A trichotomy for regular simple path queries on
graphs. J. Comput. Syst. Sci. 108, 29–48 (2020). https://doi.org/10.1016/j.jcss.
2019.08.006

https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1242572.1242680
https://doi.org/10.1145/775152.775249
https://doi.org/10.1016/j.jcss.2019.08.006
https://doi.org/10.1016/j.jcss.2019.08.006

Foundations of Graph Path Query Languages (Course Notes) 19

6. Barceló, P.: Querying graph databases. In: ACM Symposium on Principles of
Database Systems (PODS), pp. 175–188. ACM (2013)

7. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Logic.
Methods. Comput. Sci. (LMCS) 9(3), 1 (2013). https://doi.org/10.2168/LMCS-
9(3:1)2013

8. Barceló, P., Figueira, D., Romero, M.: Boundedness of conjunctive regular path
queries. In: International Colloquium on Automata, Languages and Programming
(ICALP). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132,
pp. 104:1–104:15. Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/
LIPIcs.ICALP.2019.104

9. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst. (TODS) 37(4),
31 (2012). https://doi.org/10.1145/2389241.2389250

10. Barceló, P., Muñoz, P.: Graph logics with rational relations: The role of word
combinatorics. ACM Trans. Comput. Log. 18(2), 10:1–10:41 (2017). https://doi.
org/10.1145/3070822

11. Barceló, P., Romero, M., Vardi, M.Y.: Semantic acyclicity on graph databases.
SIAM J. Comput. 45(4), 1339–1376 (2016) https://doi.org/10.1137/15M1034714

12. Berstel, J.: Transductions and context-free languages, Teubner Studienbücher :
Informatik, vol. 38. Teubner (1979). https://www.worldcat.org/oclc/06364613

13. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via SPARQL:
the case of wikidata. In: Workshop on Linked Data on the Web (LDOW) (2018)

14. Bienvenu, M., Hansen, P., Lutz, C., Wolter, F.: First order-rewritability and con-
tainment of conjunctive queries in horn description logics. In: International Joint
Conference on Artificial Intelligence (IJCAI), pp. 965–971 (2016)

15. Bojańczyk, M., Toruńczyk, S.: Deterministic automata and extensions of weak
MSO. In: IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 4, pp. 73–84. Leibniz-Zentrum für Informatik (2009).
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2308

16. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of Wikidata query logs.
In: World Wide Web Conference (WWW), pp. 127–138 (2019)

17. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. VLDB J. 29, 655–679 (2019). https://doi.org/10.1007/s00778-019-00558-9

18. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: Principles of Knowledge Represen-
tation and Reasoning (KR), pp. 176–185 (2000)

19. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.)
Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May
4–6, 1977, Boulder, Colorado, USA, pp. 77–90. ACM (1977). https://doi.org/10.
1145/800105.803397

20. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02930-1 12

21. Consens, M.P., Mendelzon, A.O.: Graphlog: a visual formalism for real life recur-
sion. In: Rosenkrantz, D.J., Sagiv, Y. (eds.) Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April
2–4, 1990, Nashville, Tennessee, USA, pp. 404–416. ACM Press (1990). https://
doi.org/10.1145/298514.298591

https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.4230/LIPIcs.ICALP.2019.104
https://doi.org/10.4230/LIPIcs.ICALP.2019.104
https://doi.org/10.1145/2389241.2389250
https://doi.org/10.1145/3070822
https://doi.org/10.1145/3070822
https://doi.org/10.1137/15M1034714
https://www.worldcat.org/oclc/06364613
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2308
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/298514.298591

20 D. Figueira

22. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 310–326. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46135-3 21

23. Deutsch, A., Tannen, V.: Optimization properties for classes of conjunctive regular
path queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp.
21–39. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46093-4 2

24. Droste, M., Kuich, W., Vogler, H.: Handbook of weighted automata. Springer Sci-
ence & Business Media, Heidelberg (2009)

25. Figueira, D.: Containment of UC2RPQ: the hard and easy cases. In: Interna-
tional Conference on Database Theory (ICDT). Leibniz International Proceedings
in Informatics (LIPIcs), Leibniz-Zentrum für Informatik (2020)

26. Figueira, D., Godbole, A., Krishna, S., Martens, W., Niewerth, M., Trautner, T.:
Containment of simple conjunctive regular path queries. In: Principles of Knowl-
edge Representation and Reasoning (KR) (2020). https://hal.archives-ouvertes.fr/
hal-02505244

27. Figueira, D., Ramanathan, V.: When is the evaluation of Extended CRPQ
tractable? (2021). https://hal.archives-ouvertes.fr/hal-03353483. (working paper
or preprint)

28. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries
with regular expressions. In: ACM Symposium on Principles of Database Systems
(PODS), pp. 139–148. ACM Press (1998). https://doi.org/10.1145/275487.275503

29. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

30. Freydenberger, D.D., Schweikardt, N.: Expressiveness and static analysis of
extended conjunctive regular path queries. J. Comput. Syst. Sci. 79(6), 892–909
(2013) https://doi.org/10.1016/j.jcss.2013.01.008

31. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive
queries tractable? In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, July 6–8, 2001, Her-
aklion, Crete, Greece. pp. 657–666. ACM (2001). https://doi.org/10.1145/380752.
380867, https://doi.org/10.1145/380752.380867

32. Gyssens, M., Paredaens, J., Gucht, D.V.: A graph-oriented object database model.
In: Rosenkrantz, D.J., Sagiv, Y. (eds.) Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, April 2–4,
1990, Nashville, Tennessee, USA, pp. 417–424. ACM Press (1990). https://doi.
org/10.1145/298514.298593

33. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic EL and beyond. In: International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 3034–3040 (2015)

34. Hashiguchi, K.: Limitedness theorem on finite automata with distance functions.
J. Comput. Syst. Sci. (JCSS) 24(2), 233–244 (1982)

35. Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Tools for datalog
boundedness. In: ACM Symposium on Principles of Database Systems (PODS),
pp. 1–12 (1991)

36. Libkin, L., Martens, W., Vrgoc, D.: Querying graphs with data. J. ACM 63(2),
14:1–14:53 (2016). https://doi.org/10.1145/2850413

37. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph.
In: International Semantic Web Conference (ISWC), pp. 376–394 (2018)

https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1007/3-540-46093-4_2
https://hal.archives-ouvertes.fr/hal-02505244
https://hal.archives-ouvertes.fr/hal-02505244
https://hal.archives-ouvertes.fr/hal-03353483
https://doi.org/10.1145/275487.275503
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jcss.2013.01.008
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/298514.298593
https://doi.org/10.1145/298514.298593
https://doi.org/10.1145/2850413

Foundations of Graph Path Query Languages (Course Notes) 21

38. Manola, F., et al.: Rdf primer. W3C Recommend. 10(1–107), 6 (2004)
39. Martens, W., Niewerth, M., Trautner, T.: A trichotomy for regular trail queries.

In: Paul, C., Bläser, M. (eds.) 37th International Symposium on Theoretical
Aspects of Computer Science, STACS 2020, March 10–13, 2020, Montpellier,
France. LIPIcs, vol. 154, pp. 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.7, https://doi.org/10.
4230/LIPIcs.STACS.2020.7

40. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph
databases. SIAM J. Comput. 24(6), 1235–1258 (1995) https://doi.org/10.1137/
S009753979122370X

41. Reutter, J.L., Romero, M., Vardi, M.Y.: Regular queries on graph databases. Theory
Comput. Syst. 61(1), 31–83 (2017) https://doi.org/10.1007/s00224-016-9676-2

42. Romero, M., Barceló, P., Vardi, M.Y.: The homomorphism problem for regular
graph patterns. In: Annual Symposium on Logic in Computer Science (LICS), pp.
1–12. IEEE Computer Society Press (2017). https://doi.org/10.1109/LICS.2017.
8005106

43. Schmid, M.L.: Conjunctive regular path queries with string variables. In: Suciu, D.,
Tao, Y., Wei, Z. (eds.) Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA,
June 14–19, 2020, pp. 361–374. ACM (2020). https://doi.org/10.1145/3375395.
3387663

44. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, May 5–7, 1982, San
Francisco, California, USA, pp. 137–146. ACM (1982). https://doi.org/10.1145/
800070.802186

45. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012) https://doi.org/10.1145/2206869.2206879

https://doi.org/10.4230/LIPIcs.STACS.2020.7
https://doi.org/10.4230/LIPIcs.STACS.2020.7
https://doi.org/10.4230/LIPIcs.STACS.2020.7
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.1145/3375395.3387663
https://doi.org/10.1145/3375395.3387663
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/2206869.2206879

	Foundations of Graph Path Query Languages
	1 Preliminaries
	2 Conjunctive Regular Path Queries
	3 Evaluation of CRPQ
	4 Containment for CRPQ
	5 Boundedness of CRPQ
	6 Semantic Membership for CRPQ
	7 Extending CRPQ with Union and Two-Wayness
	8 Extending CRPQ with Path Comparison
	9 Conclusions
	References

