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Preface

The Reasoning Web (RW) series of annual summer schools has become the prime
educational event in reasoning techniques on the Web. Since its initiation in 2005 by
the European Network of Excellence (REWERSE), RW has attracted both young and
established researchers. As with the previous edition of RW, this year’s school was part
of Declarative AI (https://declarativeai2021.net), which brought together the 5th
International Joint Conference on Rules and Reasoning (RuleML+RR 2021), Deci-
sionCAMP 2021, and the 17th Reasoning Web Summer School (RW 2021). As a result
of the COVID-19 pandemic, Declarative AI 2021 was held as an online event.

This year’s school covered various aspects of ontological reasoning and related
issues of particular interest to Semantic Web and Linked Data applications. The
invitations to teach at the summer school as well as to submit lectures for publication
were carefully vetted by the Scientific Advisory Board, consisting of six renowned
experts of the area. The following eight lectures were presented during the school
(further details can be found at https://declarativeai2021.net/reasoning-web):

1. Foundations of graph path query languages
by Diego Figueira (CNRS, France)

2. On combining ontologies and rules
by Matthias Knorr (Universidade Nova de Lisboa, Portugal)

3. Modelling symbolic knowledge using neural representations
by Steven Schockaert and Victor G. Basulto (Cardiff University, UK)

4. Mining the Semantic Web with machine learning: main issues that need to be
known
by Claudia d’Amato (University of Bari, Italy)

5. Belief revision and ontology repair
by Renata Wassermann (University of São Paulo, Brazil)

6. Temporal ASP: from logical foundations to practical use with telingo
by Pedro Cabalar (University of A Coruña, Spain)

7. SHACL: from data validation to schema reasoning for RDF graphs
by Paolo Pareti (University of Winchester, UK)

8. Explanations in data management and classification in machine learning via
counterfactual interventions specified by answer-set programs
by Leopoldo Bertossi (Adolfo Ibáñez University, Chile)

The present volume contains lecture notes complementing most of the above lec-
tures. They are meant as accompanying material for the students of the summer school
in order to deepen their understanding and serve as a reference for further detailed
study. All articles are of high quality and have been peer-reviewed by members of the
Scientific Advisory Board as well as additional reviewers.

We want to thank everybody who helped make this event possible. Since teaching is
the main focus of a summer school, we first thank all the lecturers; their hard work and

https://declarativeai2021.net
https://declarativeai2021.net/reasoning-web


commitment ensured a successful event. We are also thankful to all members of the
Scientific Advisory Board; their timely feedback concerning the technical program and
submitted lecture notes helped us organize a high-quality event. Finally, we want to
express our gratitude to the organizers of Declarative AI 2021 and those of the previous
edition of RW for their constant support. The work of Mantas Šimkus was supported
by the Vienna Business Agency and the Austrian Science Fund (FWF) projects P30360
and P30873.

October 2021 Mantas Šimkus
Ivan Varzinczak

vi Preface
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Foundations of Graph Path Query
Languages

Course Notes for the Reasoning Web Summer School 2021

Diego Figueira(B)

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
33400 Talence, France

diego.figueira@labri.fr

Abstract. We survey some foundational results on querying graph-
structured data. We focus on general-purpose navigational query lan-
guages, such as regular path queries and its extensions with conjunc-
tions, inverses, and path comparisons. We study complexity, expressive
power, and static analysis. The course material should be useful to any-
one with an interest in query languages for graph structured data, and
more broadly in foundational aspects of database theory.

A graph database is an umbrella term for describing semi-structured data
organized by means of entities (i.e., nodes) and relations (i.e., edges) between
these entities. In other words, as a finite graph, which emphasizes the holistic,
topological aspect of the model, where there is no order between nodes or edges.
This is a flexible format, usually with no ‘schemas’, where adding or deleting
data (or even integrating different data sources) does not imply rethinking the
modeling of data. Data can be typically stored both in nodes and edges, but the
shape of the graph itself is an essential part of the data. Querying mechanisms
on this kind of data focus on the topology of the underlying graph as well as
in the data contained inside the edges and nodes. This flexibility comes at a
cost, since relations between entities have to be found in a possibly complex
topology, most notably as paths or sets of paths in some specific configuration.
Indeed a path in a graph database can be then seen as a first-order citizen. The
most basic querying mechanism is then the problem of finding a “pattern” in
the database, given as nodes and paths relating them with certain properties.
This is, precisely, the kind of languages we will survey here, sometimes called
“path query languages”.

Example 1. Consider, for example, a very basic database of academic staff. This
can be seen as a graph database, as shown in Fig. 1. The kind of queries we’re
interested in are those which exploit the topology of graph, such as “are there
two persons with the same supervisor at friend distance at most 5?” or “find all
pairs of co-authors with a common ancestor in the supervisor-relation”. �

c© Springer Nature Switzerland AG 2022
M. Šimkus and I. Varzinczak (Eds.): Reasoning Web 2021, LNCS 13100, pp. 1–21, 2022.
https://doi.org/10.1007/978-3-030-95481-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95481-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-95481-9_1


2 D. Figueira

Fig. 1. A simple bibliometric graph database.

Graph databases are relevant to a growing number of applications in areas
such as the Semantic Web, knowledge representation, analysis of Social Net-
works, biological and scientific databases, and others. This data model encom-
passes formats such as RDF [38], or property graphs. This is why in the last
years there has been many theoretical and practical developments for querying
graph databases (see [1,2,6,45] for surveys).

One of the most important research trends has hinged on the development of
graph query languages that can reason about topological aspects of the graph.
They are also known as path query languages, because topological information
in the database typically amounts to querying the existence of paths satisfy-
ing certain constraints. The most basic form of navigation consists of querying
whether there is a path with a certain property between two nodes. This type
of queries have been introduced as Regular Path Queries, or RPQ [40], and it
has laid the foundations of many more expressive query languages, including
Conjunctive Regular Path Queries (CRPQ) [28] or Extended CRPQ (ECRPQ)
[9].

Outline. This brief survey concerns the computational task of querying graph
databases via navigational query languages. We focus on the language of regular
path queries and its standard extensions. We study the complexity of evaluation
and static analysis tasks, and its expressive power.

1 Preliminaries

We will assume familiarity with some basic automata theory notions such as
non-deterministic finite automata (NFA), regular languages, regular expressions
and its paradigmatic problems of containment, emptiness and equivalence. We
use A, B to denote finite alphabets. In our examples, we use the standard syntax
for regular expressions over a finite alphabet A

regexp ::= ∅ | ε | a | regexp · regexp | regexp + regexp | regexp∗ | regexp+ a ∈ A
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with the semantics [[ ]] : regexp → 2A
∗

[[∅]] = ∅, [[ε]] = {ε}, [[a]] = {a}, [[e1 + e2]] = [[e1]] ∪ [[e2]],

[[e+]] = {u1 · · · un : n ≥ 1 and ui ∈ [[e]] for every i},

[[e∗]] = {ε} ∪ [[e+]], [[e1 · e2]] = {u · v : u ∈ [[e1]], v ∈ [[e2]]}.

We use the word orderings of

– prefix: u is a prefix of v if v = u · w for some w;
– suffix: u is a suffix of v if v = w · u for some w;
– factor (a.k.a. infix, subword): u is a factor of v if v = w ·u ·w′ for some w,w′;
– subsequence (a.k.a. scattered subword): u is a subsequence of v if u is the

result of removing some (possibly none) positions from v.

We also use its “proper” versions: u is a proper prefix of v if it is a prefix of v
and u �= v; and similarly for the other orderings.

We also assume an elementary understanding of some fundamental complex-
ity classes such as PTime, NL, PSpace, ExpSpace, the polynomial hierarchy,
etc.

We often blur the distinction between an NFA A over A and the language
L(A) ⊆ A

∗ it recognizes; and we do similarly for regular expressions. In the
sequel we may hence write w ∈ c∗ · (a+ b)∗ or w ∈ A. We denote by ε the empty
word. We also assume some familiarity with the query language of Conjunctive
Queries (CQ) and Unions of CQ (UCQ).

Graph Databases. We consider a graph database over a finite alphabet A to
be a finite edge-labelled directed graph G = (V,E) over a finite set of labels A,
where V is a finite set of vertices and E ⊆ V ×A×V is the set of labelled edges.
We write u

a−→ v to denote an edge (u, a, v) ∈ E. It should be stressed that this is
often an abstraction for formats such as RDF [38] or property graphs (adopted,
e.g., by Neo4j). For example, the patterns used in SPARQL [32] (the W3C query
language for RDF) are triplets rather than edges, but this can often be abstracted
away by means of extra vertices and edges, without much loss of generality. Also,
for most graph database formats, A may be from a complex infinite domain, and
further nodes may be labelled also with data. Graph databases, as defined here,
are then a basic abstraction of these models which allows us to focus on querying
the topology of the graph.

A (directed) path π of length n ≥ 0 in G is a (possibly empty) sequence of
edges of G of the form (v0, a1, v1), (v1, a2, v2), . . . , (vn−1, an, vn). There is always
an empty path starting and ending at the same node. The label label(π) of π is
the word a1 · · · an ∈ A

∗ . When n = 0 the label of π is the empty word ε.

2 Conjunctive Regular Path Queries

In graph databases, a fundamental querying mechanism is based on the existence
of some paths in the database with certain properties. These properties include
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that the label of a path must belong to a certain language, or that the starting
or terminal vertices of some paths must be equal. This gives rise to the much
studied class of Regular Path Queries (RPQ) and Conjunctive Regular Path
Queries (CRPQ) [21].

Example 2. An example of a CRPQ query is

Q1(x) = x
a∗b−−→ y ∧ x

(a+b)∗c−−−−−→ y.

It outputs all vertices v having one outgoing path with label in a∗b and one
outgoing path with label in (a + b)∗c. Further these paths must end at the same
vertex. �
Conjunctive Regular Path Queries (CRPQ) can be understood as the general-
ization of conjunctive queries with a very simple form of recursion. CRPQ are
part of SPARQL, the W3C standard for querying RDF data [38], including well
known knowledge bases such as DBpedia and Wikidata. In particular, RPQs are
quite popular for querying Wikidata. They are used in over 24% of the queries
(and over 38% of the unique queries), according to recent studies [16,37]. More
generally, CRPQ constitute a basic building block for query languages on graph-
structured data [6].

A Regular Path Query (RPQ) over the alphabet A is a query of the form

Q(x, y) = x
L−→ y (1)

where L is a regular language over A, specified either as an NFA or a regular
expression (we will not make a distinction here). Given a graph database G and
a pair of node (v, v′) therein, we say that the pair (v, v′) satisfies Q if there
exists a path π from v to v′ such that label(π) ∈ L. The result of evaluating Q
on G is then the set of all pairs (v, v′) of G satisfying Q.

Example 3. Consider the RPQ

Q(x, y) = x
coauthor∗
−−−−−−→ y.

It retrieves all pairs persons related by a coauthorship. In particular on the graph
database defined in Example 1 it retrieves (Anna,Lise), among other pairs. �

A conjunctive regular path query (CRPQ) is the closure under projection
(i.e., existential quantification) and conjunction of RPQ queries. That is, CRPQ
is to RPQ what Conjunctive Queries is to first-order atoms. Concretely, a Con-
junctive Regular Path Query (CRPQ) is a query of the form

Q(x1, . . . , xn) = A1 ∧ · · · ∧ Am

where the atoms A1, . . . , Am are RPQ. We call the variables x1, . . . , xn occurring
on the left-hand side the free variables. Each free variable xj has to occur also
in some atom on the right-hand side, but not every variable on the right-hand
side needs to be free.
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A homomorphism from a CRPQ Q as above to a graph database G =
(V,E) is a mapping μ from the variables of Q (free and non-free) to V . Such
a homomorphism satisfies an RPQ A(x, y) if (μ(x), μ(y)) satisfies A; and it
satisfies Q if it satisfies every RPQ atom of Q. The set of answers Q(G) of a
CRPQ Q(x1, . . . , xn) over a graph database G is the set of tuples (v1, . . . , vn) of
nodes of G such that there exists a satisfying homomorphism for Q on G that
maps xi to vi for every 1 ≤ i ≤ n. We say that a CRPQ is Boolean if it has no
free variables, in which case Q(G) = {()} (where () denotes the empty tuple) if
there exists a satisfying homomorphism or Q(G) = {} otherwise. We often write
G |= Q instead of Q(G) = {()}. Most of the results we will present hold also
for expressive extensions of CRPQ with finite unions and two-way navigation,
known as UC2RPQ [18]. However, for simplicity of presentation, we will focus
on CRPQ.

Example 4. Consider the (Boolean) CRPQ

Q1() = x
supervise+−−−−−−−→ x

It checks if the supervisor relation has cycles (i.e., it is true whenever there are).
Another CRPQ could be

Q2(x) = x
supervise+−−−−−−−→ y ∧ x

friend−−−→ y

retrieving all persons being friends with some descendant in the supervisor
genealogy. �

It is worth observing that in the context of graph databases, a Conjunctive
Query (CQ) is a CRPQ whose every regular expression denotes a language
of the form {a} for some a ∈ A. Thus, CQ is included in CRPQ in terms of
expressive power.

Alternative Semantics. For some applications such as transportation problems
or DNA matching (see [5] for a more complete list of application scenarios)
there is a need to require that the considered paths have no repeated nodes
or no repeated edges. In this way, alternative semantics arise if we change the
definition of “satisfaction” of an RPQ atom x

L−→ y for a given homomorphism
μ. In the default (a.k.a. arbitrary path) semantics, we ask for the existence of
any (directed) path from μ(x) to μ(y) with label(π) ∈ L. In the trail semantics,
we demand that the path has also no repeated edges, and in the simple path
semantics, we further enforce that the path must be simple (i.e., no repeating
vertices). It then follows that if x̄ ∈ Q(G) under simple path semantics, then
x̄ ∈ Q(G) under trail semantics; and if x̄ ∈ Q(G) under trail semantics then
x̄ ∈ Q(G) under arbitrary path semantics. But the converse directions do not
hold in general. In the sequel we assume that we work with the default (i.e.,
arbitrary path) semantics unless otherwise stated.
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Structural Fragments of CRPQ. A standard way to define fragments of conjunc-
tive queries is via their underlying graph (a.k.a. Gaifman graph). In a similar
way, one can define fragments of CRPQ via its underlying multi-graph. Con-
cretely, for any set X, let ℘2(X) denote the set of non-empty subsets of X of
size at most 2. The underlying multi-graph of a CRPQ Q is the directed
multi-graph (V,E, ν) where: V is the set of variables of Q, E is the set of atoms
of Q, and ν : E → ℘2(V ) is defined as ν(x L−→ y) = {x, y} for every RPQ atom
x

L−→ y in Q. For a given class C of multi-graphs, let CRPQ(C) be the set of
CRPQ whose underlying multi-graph is in C.1 In the sequel we will rather use
the term graph to denote the underlying multi-graph of a CRPQ.

Example 5. Consider, for example, the CRPQ

Q(x, z) = x
a∗
−→ y ∧ y

a+b∗
−−−→ y ∧ x

b∗
−→ z ∧ z

(b+c)∗
−−−−→ x

In Fig. 2 there is its graphic representation and its underlying graph.
�

Fig. 2. Underlying graph of a CRPQ.

3 Evaluation of CRPQ

The evaluation problem is the most fundamental decision problem on databases:
the problem of whether a given data is retrieved by a query on a database.

Problem Evaluation problem for a class Q of (graph database)
queries (Eval-Q)

Given Q ∈ Q, a graph database G, a tuple x̄ of nodes
Question Is x̄ ∈ Q(G)?

1 Why multi-graphs and not just graphs? It turns out that, contrary to what happens
to Conjunctive Queries, the multiplicity of edges makes a difference for some prob-
lems, such as the containment problem. We need, hence, to have a more fine-grained
notion than a simple graph.
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Observe that the evaluation problem has two kind of inputs of very differ-
ent nature: the query and the database. In terms of size, one should expect
the query to be several orders of magnitude smaller than the database, which
raises the question of, for example, whether different algorithms running in time
O(2|Q| · |D|), O(|Q| · 2|D|) or O(|D||Q|) should be justly placed in the same
“complexity class”. This is the reason why several complexity variants are often
considered, useful to understanding the various aspects of the complexity for the
evaluation problem. The default one is the combined complexity, where one
considers both the query and database as being part of the input. The com-
plexity when one considers the input query Q to be of constant size it is the
data complexity [44]. Hence, an algorithm running in O(2|Q| · |D|) would have
exponential combined complexity but linear data complexity. If, on the other
hand, one considers the database D to be of constant size we obtain the query
complexity. There is, on the other hand, the parameterized complexity
version of this problem in which the ‘parameter’ is the query, we will not give
details here about parameterized complexity, and we refer the interested reader
to [29]. On the parameterized complexity, the classes ‘FPT’ (for Fixed Parame-
ter Tractable) and ‘W[1]’ are often considered as the PTime and NP analog of
classical non-parameterized complexity classes, respectively. The idea is that an
algorithm is FPT if it runs in time O(f(|Q|) · |D|c) for any computable f and
constant c. Thus, an algorithm running in time O(|D||Q|) is not (in principle)
FPT, but an algorithm running in time O(2|Q| · |D|) is FPT.

Theorem 1 (Folklore). Eval-CRPQ is

– NP-complete in combined complexity,
– NL-complete is data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.

Eval-RPQ is

– NL-complete in combined complexity,
– NL-complete in data complexity,
– NL-complete in query complexity,
– FPT in parameterized complexity.

That is, the combined complexity follows the same behavior as that of Conjunc-
tive Queries, with the exception that evaluating the ‘atoms’ is an NL-complete
task —essentially, the classical graph problem of existence of a source to tar-
get path. In other words, the lower bounds for combined and parameterized
complexities follow from the following classical result for CQ.

Theorem 2. [19] Eval-CQ is

– NP-complete in combined complexity,
– in LogSpace (and in AC0) in data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.
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As discussed before, a standard way to define subclasses of CRPQ is by
means of its underlying graphs. In the light of the results of Theorem 1 above,
one natural concern is whether the combined and parameterized complexities
can be improved by considering queries of some ‘simple’ structure. The question
is then: given a class C of graphs, is Eval-CRPQ(C) tractable? Or rather: For
which C is Eval-CRPQ(C) tractable?

As it turns out, by straightforward reductions to and from the Conjunctive
Query case, we obtain that the RPQ complexity extends to any class of CRPQ
defined by a bounded treewidth class.2 This notion, in fact, characterizes the
tractable complexity classes.

Theorem 3 (consequence of [31]). Assuming W[1] �= FPT, for any class C
of graphs the following are equivalent:

– Eval-CRPQ(C) is in polynomial time in combined complexity,
– Eval-CRPQ(C) is FPT in parameterized complexity,
– C has bounded treewidth.

The tractable cases of evaluation has been also extended to larger classes, in
which either queries need to be equivalent to queries of bounded treewidth
(obtaining FPT tractability) or they have to be homomorphically equivalent3

to queries of bounded treewidth (obtaining polynomial time tractability) [42].

Alternative Semantics. Under alternative semantics, things are more complex,
since Eval-RPQ is already an NP-complete problem.

Theorem 4. Eval-RPQ is NP-complete both under trail and simple path
semantics. Both in data and in combined complexity.

In fact, NP-completeness under simple path or trail semantics already holds if

we fix the query to be x
(aa)∗
−−−→ y or x

a∗ba∗
−−−−→ y [40]. Interestingly, both these

semantics enjoy a trichotomy characterization in terms of data complexity: for
any fixed query Q = x

L−→ y the evaluation problem for Q is either NP-complete,
NL-complete, or in LogSpace (even in AC0, the data complexity of evaluating
first-order formulas). What is more, given a query Q, one can effectively decide
in which of these three cases falls (for each semantics).

Theorem 5 ([5,39]). For each fixed regular language L ⊆ A
∗ and for each

� ∈ {simple-path, trail}, the data complexity of Eval-RPQ for x
L−→ x under �-

semantics is either NP-complete, NL-complete or in AC0. Further, these char-
acterizations are effective (and different for each semantics).

2 Intuitively, a graph with small treewidth resembles a tree (e.g., trees have treewidth
1 and cacti have treewidth 2). Many results for trees can be generalized to bounded
treewidth classes.

3 For some suitable notion of homomorphism between queries.
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4 Containment for CRPQ

As databases become larger, reasoning about queries (e.g., for optimization)
becomes increasingly important. One of the most basic static analysis prob-
lems on monotone query languages is that of query containment: is every result
returned by query Q1 also returned by query Q2, for every database? This can
be a means for query optimization, as it may avoid evaluating parts of a query,
or reduce and simplify the query with an equivalent one. It falls in what is com-
monly known as query reasoning or static analysis, since it involves reasoning
only about the query, and it may give rise to optimization tasks that can be
carried out at compile time (rather than at running time). Furthermore, query
containment has proven useful in knowledge base verification, information inte-
gration, integrity checking, and cooperative answering [18].

Concretely, given two CRPQ Q1, Q2, we say that Q1 is contained in Q2,
denoted by Q1 ⊆ Q2, if Q1(G) ⊆ Q2(G) for every graph database G, which
raises the following decision problem for any fragment Q of CRPQ.

Problem Containment problem for a class Q of (graph database)
queries (Cont-Q)

Given Q1, Q2 ∈ Q
Question Is Q1(G) ⊆ Q2(G) for every graph database G?

We say Q1 is equivalent to Q2, denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.
The containment problem for RPQ and CRPQ are decidable in PSpace and

ExpSpace respectively.

Theorem 6 (Folklore). Cont-RPQ is PSpace-complete.

In fact, for any two RPQ Q1 = x
L1−−→ y and Q2 = x

L2−−→ y it is easy to see that
Q1 ⊆ Q2 if, and only if, L1 ⊆ L2. Hence RPQ containment is reducible from
and to language containment. Since regular language containment is a PSpace-
complete problem, it follows that Cont-RPQ is PSpace-complete. On the other
hand, the bounds for CRPQ are somewhat more involved.

Theorem 7 ([18,28]). Cont-CRPQ is ExpSpace-complete.

It is interesting to remark that the above hardness result holds even for con-
tainment of CRPQ Q1 ⊆ Q2 where Q1 is of the form Q1 = x

L−→ y and Q2

is of the form Q2 =
∧

i x
L1−−→ y. In other words, Cont-CRPQ(C) is already

ExpSpace-hard for the class C of multigraphs having exactly two nodes, and
even for Boolean queries.

However, in certain circumstances, the ExpSpace-hardness of the contain-
ment problem can be avoided. That is, there are fragments F of CRPQ whose
containment problem is in PSpace or even in lower classes. Which are these
fragments? There are two natural systematic ways to define fragments of CRPQ,
namely

1. as discussed before, by restricting the “shape” of the query, as in the under-
lying multigraph when regular expressions are abstracted away; or
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Fig. 3. Examples and non-examples of bridges.

2. by restricting the class of regular expressions that may occur in the queries
RPQ atoms.

1. Restricting the Shape. Here we ask the same question as we did for the
evaluation problem: given a class of multigraphs C, is Cont-CRPQ(C) tractable?
Of course here ‘tractable’ cannot be any better than PSpace, since it is the
complexity of Cont-RPQ, corresponding to the graph having two vertices and
one edge. It turns out that, just as in the case for Eval-CRPQ(C), one can
characterize the classes of graphs C under which Cont-CRPQ(C) is in PSpace.
However, the graph measure is not treewidth but bridgewidth, which we define
next.

A bridge of a (multi)graph is a minimal set of edges (in the sense of inclusion)
whose removal increases the number of connected components (see Fig. 3 for
some examples). The bridge-width of a graph is the maximum size of a bridge
therein. Bridge-width is more restrictive than treewidth, in the sense that if a
graph has bridge-width at most k then it also has treewidth at most k, but the
converse does not necessarily hold. Let us define a class C of graphs to be non-
trivial if it contains at least one graph with at least one edge; and let us call
it bridge-tame if either C has bounded bridge-width or there is a polynomial
time function f : N → C such that f(n) has bridgewidth ≥ n for every n.

Theorem 8 ([25]). For every non-trivial bridge-tame class C of graphs,

– if C has bounded bridge-width, then the containment problem for CRPQ(C) is
PSpace-complete;

– otherwise, the containment problem for CRPQ(C) is ExpSpace-complete.

2. Restricting the Regular Expressions. As we have remarked before, the lower
bound construction of Theorems 7 and 8 make use of CRPQ which have a simple
and regular shape (if seen as the underlying graph) but contain rather involved
regular expressions, which do not correspond to CRPQ how they typically occur
in practice. In fact, a large majority of regular expressions of queries used in
practice are of a very simple form [16,17]. This motivates the study of CRPQ
containment on fragments having commonly used kinds of regular expressions.
The goal here is to identify restricted fragments of CRPQ that are both common
in practice and have a reasonable complexity for query containment.
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For a class of regular expressions L, let CRPQ(L) be the set of CRPQ whose
every RPQ atom uses an expression from L.

Let Ls be the set of regular expressions of the form ‘s’ for each symbol s of
the finite alphabet. Let LS be the set of expressions of the form ‘a1 + · · · + an’
for a1, . . . , an ∈ A (i.e., it corresponds to unions of Ls). Finally, for α ∈ {s, S},
let Lα∗ be the set of regular expressions of the form ‘r∗’ where r ∈ Lα. We
next write Lα,β as shorthand for Lα ∪ Lβ .4 Following this notation, observe
that CRPQ(Ls) corresponds to the class of CQ (on graph databases), and that
CRPQ(LS) is contained in UCQ in terms of expressive power.

Theorem 9 ([23,26]).

1. The containment problem for CRPQ(LS,S∗) and CRPQ(Ls,S∗) are
ExpSpace-complete.

2. The containment problem for CRPQ(Ls,s∗), CRPQ(LS,s∗), and for
CRPQ(LS) are all Πp

2 -complete.

Observe that CRPQ(L) is closed under concatenation in the following sense:
Let Lconc be the closure under concatenation5 of L, then CRPQ(L) and
CRPQ(Lconc) are equi-expressive (and there is a linear time translation from
one to the other). This means that, for example, the Πp

2 upper bound for
CRPQ(LS,s∗) also holds for CRPQ having concatenations of expressions of LS,s∗

in the RPQ atoms, like x
(a+b)·b∗·(b+c)−−−−−−−−−→ y. Notice also that, in light of the previ-

ous Theorem 8, the ExpSpace lower bound of Theorem 9 uses —necessarily—
queries of arbitrarily large bridge-width.

5 Boundedness of CRPQ

Boundedness is another important static analysis task of queries with a fixed-
point feature. At an intuitive level, a query Q in any such logic is bounded if
its fixed-point depth, i.e., the number of iterations that are needed to evaluate
Q on a database D, is bounded (and thus it is independent of the database
D). In databases and knowledge representation, boundedness is regarded as an
interesting theoretical phenomenon with relevant practical implications [14,35].
In fact, while several applications in these areas require the use of recursive
features, actual real-world systems are either not designed or not optimized
to cope with the computational demands that such features impose. Bounded
formulas, in turn, can be reformulated in ‘non-recursive’ logics, such as first-order
logic, or even as a union of conjunctive queries (UCQ) when Q itself is positive.
Since UCQs form the core of most systems for data management and ontological
query answering, it is relevant to understand when a query can be equivalently
translated to a UCQ as an optimization task. It has also been experimentally
verified in some contexts that recursive features encountered in practice are often
4 The choice of the fragments Ls, LS , Ls∗ , and LS∗ is based on recent studies on

SPARQL queries on Wikidata and DBpedia [13,16,17].
5 That is, Lconc = {s1 · · · sn : for n ∈ N and s1, . . . , sn expressions from L}.
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used in a somewhat ‘harmless’ way, and that many of such queries are in fact
bounded [33]. We say that a CRPQ query is bounded if it is equivalent to some
UCQ.

Example 6. Consider the following three Boolean CRPQ Q1, Q2, Q3 over the
alphabet A = {a, b, c, d} such that

Q1 = (x Lb−→ y ∧ x
Lb,d−−−→ y),

Q2 = (x Ld−−→ y ∧ x
Lb,d−−−→ y),

Q3 = (x Lb+Ld−−−−→ y ∧ x
Lb,d−−−→ y),

where Lb = a+b+c, Ld = ad+c+, and Lb,d = a+(b+d)c+. As it turns out, Q1 and
Q2 are unbounded. However, Q3 is bounded, and in particular, it is equivalent
to the UCQ φ1 ∨ φ2, where

φ1 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

b−→ x2) ∧ (x2
c−→ x3)

φ2 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

d−→ x2) ∧ (x2
c−→ x3).

�

Problem Boundedness problem for a class Q of (graph database)
queries (Bound-Q)

Given Q ∈ Q
Question Is there a UCQ Q′ such that Q ≡ Q′?

For an RPQ Q(x, y) = x
L−→ y it is easy to see that the boundedness problem

is really the finiteness problem of L: Q is bounded if, and only if, L is finite (i.e.,
an NL-complete problem). However, if some of the variables are existentially
quantified the problem is not as trivial. For example, a CRPQ of the form ∃y x

L−→
y is bounded if, and only if, the language

Lprefix = {w ∈ L : there is no proper prefix of w in L}

is finite [8]. Likewise a CRPQ of the form ∃x, y x
L−→ y is bounded iff

Lfactor = {w ∈ L : there is no proper factor of w in L}

is finite. Both these problems are already PSpace-complete [8]. For general
CRPQ it turns out that the problem is related to the boundedness problem for an
extension of finite automata which associate to each word in the language a nat-
ural number or ‘cost’, called Distance Automata [34] (a.k.a. weighted automata
over the (min,+)-semiring [24], min-automata [15], or {ε, ic}-B-automata [20]).
The resulting complexity for the boundedness problem for CRPQ is, just as for
the containment problem, ExpSpace-complete.
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Theorem 10 ([8]). Bound-CRPQ is ExpSpace-complete. If a CRPQ is
bounded, then it is equivalent to a UCQ of triple exponential size; and this bound
is optimal.

Contrary to the containment problem, very little is known when restricting
either the shape or the languages of the CRPQ with regards to the boundedness
problem.

6 Semantic Membership for CRPQ

As we have seen before, natural classes of CRPQ with tractable evaluation arise
from considering bounded treewidth classes C. However, this is a syntactic prop-
erty, which begs the following question for any fixed class C of bounded treewidth:
given a CRPQ Q, is it equivalent to some query Q′ from CRPQ(C)? If so, we
can replace the costly query Q with Q′, or adapt the strategy for the (polyno-
mial) evaluation of Q′ to Q. The idea behind this optimization task is —as for
boundedness— that the time needed to compute Q′ may be comparatively small
to the gain of having a polynomial time algorithm for the evaluation problem.
Let Tk be the set of all multigraphs of treewidth at most k. We can then consider
the following family of decision problems.

Problem Treewidth-k semantic membership (Mem-twk)
Given a CRPQ Q

Question Is there a query Q′ in CRPQ(Tk) such that Q ≡ Q′?

For the case where the input query turns out to be a Conjunctive Query his is
a studied problem which is decidable, NP-complete [22] (basically, it reduces to
testing treewidth of the core of a graph). However, for CRPQ this problem turns
out to be more challenging. It has been shown to be decidable only for k = 1,
that is, for ‘trees’, where trees should be understood as the class of multigraphs
whose every simple cycle is of length 1 (i.e., a self-loop) or 2 (i.e., a cycle between
a parent and a child).

Theorem 11 ([11]). Mem-tw1 is decidable, ExpSpace-complete.

It is however unknown if Mem-twk is decidable for any other k.

7 Extending CRPQ with Union and Two-Wayness

Two-wayness. Observe that semantics of RPQ and CRPQ are based on the
notion of directed path. This means that the query cannot “freely” move around
the graph edges, but it has to comply with the direction of edges. Remark that
not even the reachability query “x and y belong to the same connected compo-
nent in the underlying undirected graph” is expressible as a CRPQ. A standard
extension of CRPQ and RPQ that palliates this lack of expressive power, consists
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in adding the ability to navigate the graph database with inverse relations, and
it is known as C2RPQ and 2RPQ, respectively (2 for “two-way navigation”).

For any alphabet A, let us define the alphabet A
± := A ∪̇ A

−1 that extends A

with the set A
−1 := {a−1 | a ∈ A} of “inverse” symbols. For a graph database G

over A, let G± be the result of adding an edge (v, a−1, v′) for every (v′, a, v) ∈ E.
Now the regular expressions of a (C)2RPQ are defined over the extended

alphabet A
±. The semantics of a 2RPQ is extended as expected: a pair (v, v′)

of vertices of G satisfies a 2RPQ x
L−→ y if there is a path π in G± from v to

v′ such that label(π) ∈ L (remember, now L is a regular subset of (A±)∗). The
semantics of C2RPQ follows the same definition based on 2RPQ.

Example 7. Consider the following 2RPQ

Q(x, y) = x
(supervise · supervise−1)∗
−−−−−−−−−−−−−−−−−→ y.

On a graph database as the one of Example 1, Q returns pairs of people related
by a “co-supervision” chain. �

Union. A CRPQ, contrary to a CQ, has some restricted built-in union by the
simple fact that regular languages are closed under union. However, the general
structure of the query is fixed.

Example 8. Consider the following two Boolean CQs

Q1 = x
a−→ y

Q2 = x
b−→ x

It can be shown that there is no CRPQ expressing Q1 ∨ Q2. �
As for Conjunctive Query, it is a rather standard extension to add the possi-

bility to have finite unions of queries, and it is known as UCRPQ. A UCRPQ
is thus a query of the form Q = Q1 ∨ · · · ∨ Qn, where every Qi has the same set
of free variables. We then define x̄ ∈ Q(G) for a graph database G if x̄ ∈ Qi(G)
for some i.

Finally, the extension including both possibilities of having two-way naviga-
tion as well as unions is denoted by UC2RPQ, and its semantics is as expected.

As it turns out, most known results extend to UC2RPQ in a seamless way:
it just turns out that upper bound techniques (involving invariably some classes
of automata) can extend to handle UC2RPQ (involving classes of two-way
automata). In particular, the results on the containment and evaluation prob-
lems of Theorems 1, 3, 6, 7, 8, 10, and 11 extend to UC2RPQ while preserving
the stated upper bounds.

8 Extending CRPQ with Path Comparison

Another studied extension of CRPQ conveys the ability to compare paths for
certain relations on the labels. In comparison, one can think of CRPQ as testing
for unary relations.
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Example 9. Observe that the query Q1 from Example 2 could be equivalently
written as

Q1(x) = ∃y ∃π1, π2 x
π1−→ y ∧ x

π2−→ y ∧
label(π1) ∈ La∗b ∧ label(π2) ∈ L(a+b)∗c

Where L� is the language given by the expression �. With this notation in mind,
consider the following query

Q2(x) = ∃y ∃π1, π2 x
π1−→ y ∧ y

π2−→ x ∧
(label(π1), label(π2)) ∈ R

where R ⊆ A
∗ × A

∗ is now a word relation such as, for example, the equality
relation R = {(u, v) ∈ A

∗ × A
∗ : u = v}. Such query Q2 would then output all

vertices v having one cycling path with label w w for some w ∈ A
∗. �

Indeed, some scenarios require the ability to “compare paths”, i.e., to relate the
words given by the labels corresponding to the existentially quantified paths in
CRPQ. For example, when handling biological sequences, querying paths con-
strained under some similarity measure between paths is of great importance.
See [9] for a more detailed discussion on the applicability of these features. The
extension of CRPQ with non-monadic word relations gives rise to several expres-
sive extensions which have been studied lately [3,4,7,9,10,43]. For a class of finite
word relations K one can consider “CRPQ+K”, the result of extending CRPQ
with testing of K relations on path labels.

Concretely, for any class K of finite word relations, the query language of con-
junctive regular path query with K-relations (CRPQ+K) is a pair (Q,R)
where R ⊆ K is a finite set of relations, each R ∈ R having arity arity(R) ≥ 1.
A CRPQ+K query Q, possibly having some free variables x̄, is a query of the
form

Q(x̄) = ∃ȳ ∃π̄ γ(x̄ȳπ̄) ∧ ρ(π̄). (2)

It is a query over two sorts of (infinite, disjoint) sets of variables: node variables
(denoting nodes of the graph database) and path variables (denoting paths).
In (2), x̄, ȳ span over node variables and π̄ over path variables. The idea is
that γ tells how node variables are connected through path variables, while ρ
describes the properties and relations between path variables in terms of the
regular languages and relations of R. Concretely, the subformula γ(x̄ȳπ̄), which
we may call the reachability subquery, is a finite conjunction of reachability
atoms of the form z

π−→ z′, where z, z′ are from x̄ȳ and π is from π̄, with the
restriction that every path variable π from π̄ appears in exactly one reachability
atom. That is, node variables may repeat in γ, but path variables may not. Let
us call the subformula ρ(π̄) the relation subquery, which is a finite conjunction
of atoms of the form R(π1, . . . , πr), were R ∈ R, r = arity(R) and π1, . . . , πr are
pairwise distinct path variables from π̄.

For the classes of relations K we will consider here, we can think of each
relation R ∈ K of arity k ≥ 1 over an alphabet A as being described by an NFA
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over the alphabet of k-tuples (A ∪̇{⊥})k. The underlying idea is that a word
w ∈ ((A ∪̇{⊥})k)∗ describes the k-tuple (w1, . . . , wk) ∈ (A∗)k, where each wi is
obtained from w by (1) projecting onto the i-th component and (2) replacing each
⊥ with the empty word ε. Thus, for example (a,⊥,⊥)(b, b,⊥)(⊥,⊥, a)(c,⊥,⊥)
describes (abc, b, a). In this way, any such NFA A denotes the k-ary relation R
consisting of all tuples described by the words in the language of A. Among
the most basic classes of finite word relations are the classes of Recognizable,
Synchronous (a.k.a. Automatic or Regular), and Rational relations [12]. The
class of Rational relations is the set of all relations which are recognized by
such automata, and it includes relations such as factor or subsequence. Syn-
chronous relations are those that can be recognized by automata whose every
word satisfies that, for every i ≤ k, if a position has a ⊥-symbol in its i-th
component, then the next position (if it exists) must also have ⊥ in its i-th com-
ponent. For example, prefix or equal-length are synchronous relations. Finally,
Recognizable relations are equivalent to finite unions of products of regular
languages, i.e., relations of the form R =

⋃
i∈I Li,1 × · · · × Li,k for a finite I,

where the Li,j ’s are all regular languages over A. They can also be defined in
terms of NFA over (A ∪̇{⊥})k restricted to only accepting words such that: (1)
no position contains more than one symbol from A and (2) every component
projects onto a word from ⊥∗ · A

∗ · ⊥∗. An instance of a recognizable relation is
{(u, v) : u, v start with the same letter} or {(u, v) : |u| + |v| = 3 mod 7}. These
three classes form a proper hierarchy: Recognizable � Synchronous � Rational.
Observe that any of the three classes of word relations contains the class of reg-
ular languages as (unary) relations. We refer the reader to [12] for more details
on these classes.

Given a graph database D = (V,E) over an alphabet A and an assignment
fn of x̄ȳ to V and an assignment fp of π̄ to paths of D, we say that (fn, fp) is
a satisfying assignment if

1. for every reachability atom z
π−→ z′ of γ, fp(π) is a directed path from fn(z)

to fn(z′) in D; and
2. for every r-ary atom R(π1, . . . , πr) of ρ the tuple

(label(fp(π1)), . . . , label(fp(πr))) ∈ (A∗)r

is in the relation R ∈ R.

Assuming x̄ = (x1, . . . , x�), the answers Q(D) of the CRPQ+K query Q to
the database D is the set of all (fn(x1), . . . , fn(x�)) ∈ V � for every satisfying
assignment (fn, fp).

It is plain to see that CRPQ+Recognizable is not more expressive than
UCRPQ. On the other hand, the evaluation of CRPQ+Rational queries
is undecidable, even for very simple rational relations. On the contrary,
CRPQ+Synchronous seems to enjoy a good tradeoff of complexity and expres-
sive power. This is partly because Synchronous relations constitute a very robust
class, closed under Boolean operations and enjoying most of the decidability and
algorithmic properties inherited from regular languages. CRPQ+Synchronous,
commonly known as ECRPQ (‘Extended’ CRPQ).
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Theorem 12.

– (Folklore) CRPQ+Recognizable is contained in UCRPQ in terms of expressive
power.

– [9] Eval-CRPQ+Recognizable and Eval-CRPQ+Synchronous (a.k.a.
ECRPQ) are both PSpace-complete [resp. NL-complete] in combined
[resp. data] complexity.

– [9] Eval-CRPQ+Rational is undecidable.
– [7] Eval-CRPQ+(Synchronous ∪ {R}) is undecidable, for any R ∈

{suffix, factor}; Eval-CRPQ+(Synchronous ∪ {subsequence}) is decidable
and non-multiply-recursive hard.6

– [10] Eval-CRPQ+{factor} is PSpace-complete (both in data and combined
complexity); Eval-CRPQ+{subsequence} is NExpTime-complete [resp. NP-
complete] in combined [resp. data] complexity.

Observe that the data complexity for the evaluation of ECRPQ queries is
the same as for CRPQ (i.e., NL), but the combined complexity jumps from NP

to PSpace. In the same spirit as done for CRPQ in Theorem 3, there exists a
characterization of the underlying structures C for which Eval-ECRPQ(C) has
better complexity. While the underlying structure of a CRPQ is the result of
abstracting away its languages, the underlying structure of an ECRPQ is the
result of abstracting away its relations. In contrast to the evaluation problem
for CRPQ, the complexity of Eval-ECRPQ(C) can be, depending on C, either
PTime, NP, or PSpace in combined complexity, and either XNL, W[1], or
FPT in parameterized complexity [27]. Further, the FPT and PTime cases do
not coincide.

While the evaluation problem for ECRPQ remains decidable, the contain-
ment and equivalence problems turn out to be (roubstly) undecidable.

Theorem 13. Cont-ECRPQ is undecidable [9]. Further, undecidability holds
even for the fragment CRPQ+(RL ∪ {eq-len}), where eq-len is the equal length
binary relation and RL is the class of regular languages (seen as unary relations).
In fact, this undecidability results even holds when one of the two inputs is a plain
CRPQ (which is the same as CRPQ + RL) [30].

Other Extensions

A different extension to CRPQ with an expanded ability for path relational
querying, consists in having “xregex” regular expressions with string variables
(a.k.a. backreferences) [43], which is incomparable, in terms of expressive power,
to ECRPQ.

As we remarked before, these graph query languages we have covered oper-
ate on an abstraction over a finite alphabet A of graph databases. However,
6 In particular, this means that the time or space required by any algorithm decid-

ing Eval-CRPQ+(Synchronous ∪ {subsequence}) grows faster than the Ackermann
function.
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graph databases carry so called “data values” in the nodes and/or edges, that is,
values with concrete domains, such as strings or numbers, and practical query
languages can of course make tests on these data values, not only for equality
but also using some domain-specific functions and relations. There have been
proposals for querying mechanisms combining the ability to test for data val-
ues and query the topology [36]. In particular, one can explore different forms of
querying paths while constraining the way data in paths changes. However, the
theory of querying “data graphs” (i.e., graph databases carrying elements from
infinite domains) remains insofar a largely unexplored terrain.

The graph pattern languages here are based on a very simple form of recur-
sion, namely applying regular expressions on paths. Another possible extension is
by allowing a more complex form of recursion, such as nested regular expressions
or Datalog-like rules, which increases the expressive power while often preserving
complexities of CRPQ (see, e.g., [41] and references therein).

9 Conclusions

We have explored some fundamental ways of querying graph databases via the
concept of ‘paths’ on a simple abstraction of graph databases, that of edge-
labelled graphs. One can draw a parallel between formalisms of CRPQ and its
extensions and Conjunctive Queries, in the sense that these correspond to the
most basic form of querying, using existentially quantified “patterns”, by means
of languages closed under homomorphisms. However, in this scenario, one deals
with two-sorted languages dealing with nodes and paths, inheriting from the
theory of words (or word relations) and of testing patterns (i.e., Conjunctive
Queries).
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1. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1-68:40 (2017). https://doi.org/10.1145/3104031

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1-1:39 (2008). https://doi.org/10.1145/1322432.1322433

3. Anyanwu, K., Maduko, A., Sheth, A.P.: SPARQ2L: towards support for subgraph
extraction queries in RDF databases. In: Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007,
pp. 797–806. ACM (2007). https://doi.org/10.1145/1242572.1242680

4. Anyanwu, K., Sheth, A.P.: ρ-queries: enabling querying for semantic associations
on the semantic web. In: Hencsey, G., White, B., Chen, Y.R., Kovács, L., Lawrence,
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Abstract. Ontology languages, based on Description Logics, and non-
monotonic rule languages are two major formalisms for the representa-
tion of expressive knowledge and reasoning with it, that build on funda-
mentally different ideas and formal underpinnings. Within the Semantic
Web initiative, driven by the World Wide Web Consortium, standard-
ized languages for these formalisms have been developed that allow their
usage in knowledge-intensive applications integrating increasing amounts
of data on the Web. Often, such applications require the advantages of
both these formalisms, but due to their inherent differences, the integra-
tion is a challenging task. In this course, we review the two formalisms
and their characteristics and show different ways of achieving their inte-
gration. We also discuss an available tool based on one such integration
with favorable properties, such as polynomial data complexity for query
answering when standard inference is polynomial in the used ontology
language.

1 Introduction

Though the central idea of Artificial Intelligence (AI) – creating autonomous
agents that are able to think, act, and interact in a rational manner [69] – is far
from being fullfilled, the results of the scientific advances of this major endavour
already affect our daily lifes and our society. Such applications of AI technolo-
gies include, among others, clinical decision support systems in Healthcare, fraud
dectection in financial transactions, (semi-)autonomous vehicles, crop and soil
monitoring in agriculture, surveillance for border protection, but also in the form
of personal assistants in cell phones. In these cases, technologies from different
subareas of AI are applied, such as Learning, Vision, Reasoning, Planning, or
Speech Recognition, but common to them is the requirement of efficiently pro-
cessing and taking advantage of huge amounts of data, for example, for finding
patterns in a data set, or for determining a conclusion based on the given data
to aid making a decision.

Knowledge Representation and Reasoning (KRR) [14] in particular is an
area in AI that aims at representing knowledge about the world or a domain
of interest, commonly relying on logic-based formalisms, and that allows the
usage of automated methods to reason with this knowledge and draw conclu-
sions from it to aid in the beforementioned applications. Due to the structured
formalization of knowledge, technologies based on KRR provide provenly correct
c© Springer Nature Switzerland AG 2022
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conclusions and are commonly amenable to complement these with justifications
or explanations for such derived results, which is important for accountabilility
in applications where critical decisions need to be made, such as in Healthcare
or in the financial sector. Yet, though KRR formalisms are responsible for many
early success stories in the history of AI, namely in the form of expert systems,
it has been pointed out that creating such formalizations often requires a major
effort for each distinct such application [69].

As it turns out, a solution to the latter problem can be found in the area of
the Semantic Web [39]. The central idea of the Semantic Web can be described
as extending the World Wide Web, mainly targetted at human consumers, to
one where data on the internet would be machine-processable, giving rise to
advanced applications [12]. To achieve that goal, web pages are extended with
machine-processable data written in standardized languages developed by the
World Wide Web Consortium1 (W3C) that allow the specification and iden-
tification of common terms in a uniformized way. In this context, the Linked
Open Data initiative appeared leading to the publication of large interlinked
datasets, utilizing these standardized languages, that are distributed over the
Web. The resulting Linked Open Data Cloud2 covers areas such as geography,
government, life sciences, linguistics, media, scientific publications, and social
networking, including data from, e.g., DBpedia [52], containing data extracted
from Wikipedia, and prominent industry contributers such as the BBC, with
accounted industry adopters, such as the New York Times Company or Face-
book.

These developments facilitate the access and reuse of data and knowledge
published on the Web in these standardized languages and thus also the creation
of knowledge-intensive applications. The standards include the Resource Descrip-
tion Framework (RDF) [70] for describing information on directed, labelled and
typed graphs, based on XML syntax; the Web Ontology Language (OWL) [40] for
specifying shared conceptualizations and taxonomic knowledge; the Rule Inter-
change Format (RIF) [60] for expressing inferences structured in the form of
rules, and SPARQL [38] for querying RDF knowledge. Among them, two are of
particular interest for the representation of expressive knowledge, namely ontol-
ogy languages and rule languages with different characteristics.

Ontology languages are widely used to represent and reason over formal concep-
tualizations of hierarchical, taxonomic knowledge. OWL in particular is founded
on Description Logics (DLs) [5], which are commonly decidable fragments of
first-order logic. Due to that, DLs are monotonic by nature, which means that
acquiring new information does not invalidate previously drawn conclusions.
Also, they apply the Open World Assumption (OWA), which means that no
conclusions can be drawn merely based on the absence of some piece of infor-
mation. They also allow us to reason over abstract relations between classes of
objects, without the need to refer to concrete instances or objects, as well as to

1 http://www.w3.org.
2 https://lod-cloud.net/.
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reason with unknown individuals, i.e., objects that are inferred to exist though
they do not correspond to any known object in the represented knowledge. Dif-
ferent DLs are defined based on varying combinations of logical operators that
are admitted to be used, which allows one to choose a concrete language that
balances between the required expressiveness of representation of the language
and the resulting complexity of reasoning with it. This is why, in addition to
the language standard OWL 2, which is very expressive but also comes with a
high worst-complexity of reasoning, so-called profiles [61] of OWL 2 have been
defined, each with different application areas in mind, that limit the admitted
operators, but allow for polynomial reasoning.

Rule languages. There is a large variety of rule languages, which in their essence
can be described as expressing IF - THEN relationships. They are commonly
divided into production rules, that can be viewed as describing conditional
effects, and declarative rules that describe knowledge about the world. This
is reflected in RIF in the sense that it is actually not a single language standard,
but rather a number of different formats, so-called dialects, that can be inte-
grated by means of RIF. Here, our interest resides on declarative languages to
represent knowledge and reason with it, in that they represent inferences from
premises to conclusions, commonly on the level of concrete instances. Among
these languages, nonmonotonic rules as established originally in Logic Program-
ming (LP) [10] are of particular interest. Such nonmonotonic rules employ the
Closed World Assumption (CWA), i.e., if something cannot be derived to be
true, it is assumed false. These conclusions may be revised in the presence of
additional information, hence the term nonmonotonic. Nonmonotonic rules are
thus well-suited for modelling default knowledge and exceptions, in the sense
that commonly a certain conclusion can be drawn unless some exceptional char-
acteristic prevents the conclusion, as well as integrity constraints that allow us
to ensure that certain required specifications on the data are met.

Integration. Due to the different characteristics of the two formalisms, their
integration is often necessary in a variety of applications (see e.g., [1,45,55,65,
74]). To illustrate these requirements, we present some examples of such use
cases, starting with an example which we will revisit throughout the paper.

Example 1. Consider a customs service that needs to assess incoming cargo in
a port for a variety of risk factors including terrorism, narcotics, food and con-
sumer safety, pest infestation, tariff violations, and intellectual property rights.
The assessment of the mentioned risks requires taking into consideration exten-
sive knowledge about commodities, business entities, trade patterns, government
policies and trade agreements. While some of this knowledge is external to the
considered customs agency, such as the classification of commodities according
to the international Harmonized Tariff System (HTS), or knowledge about inter-
national trade agreements, other parts are internal, such as policies that help
determine which cargo to inspect (under which circumstances), as well as, for
example, records on the history of prior inspections that allow one to identify
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importers with a history of good compliance with the regulations and those that
require closer monitoring due to previous infractions.

In this setting, ontologies are a natural choice to model among others the
international taxonomy of commodities, whereas rules are more suitable to
model, e.g., the policies that determine which cargo to inspect. Notably, the
distinct characteristics of the two formalisms are important to represent differ-
ent parts of the desired knowledge. On the one hand, when reasoning about
whether a certain importer requires close monitoring, the fact that we cannot
find any previous infractions suffices to conclude by default that this importer is
not a suspect. This aligns well with the CWA usually employed in nonmonotonic
rules. On the other hand, the fact that we do not know whether a certain product
is contained in a cargo container, should not allow us to conclude that it is not
there. Here, the OWA of ontology languages is more suitable. At the same time,
with ontology languages we are able to reason abstractly with commodities, for
example listed in the manifest of a container without having to refer to concrete
objects.

Another example can be found in clinical health care, where large ontolo-
gies, such as SNOMED CT,3 are used for electronic health record systems and
clinical decision support, but where nonmonotonic rules are required to express
conditions such as dextrocardia, i.e., that the heart is exceptionally on the right
side of the body. Also, when matching patient records with clinical trials criteria
[65], modeling pharmacy data of patients using the CWA is cleary preferable (to
avoid listing all the medications not taken), because usually it can be assumed
that a patient is not under a specific medication unless explicitly known, whereas
conclusions on medical conditions (or the absence of them) require explicit proof,
e.g., based on test results. A further use-case can be found in the maintainance
of a telecommunications inventory [45], where an ontology is used to represent
the hierarchy of existing equipment (with a uniform terminology used for such
equipment in different countries), and nonmonotonic rules are applied to detect
different failures based on current sensor data.

However, the combination of ontologies and nonmonotonic rules is difficult
due to the inherent differences between the underlying base formalisms and the
way how decidability of reasoning is achieved in them (see, e.g., [27,28,62]). This
raises several questions, such as:

– How to achieve such an integration given the inherent technical differences?
– What is a suitable topology, i.e., should both formalisms be on equal terms or

should one’s inferences only serve as input for the other (and not vice-versa)?
– How and when should Open or Closed World Assumption be applied?
– How to ensure decidability for the integration?
– Can we obtain efficient reasoning procedures?

In this lecture, we discuss how to answer these questions. For this purpose,
after giving an overview on the two base formalisms, we review major approaches

3 http://www.ihtsdo.org/snomed-ct/.
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that have been introduced in the literature to tackle this problem, and we identify
essential criteria along which these (and many other such) integrations have been
introduced. These criteria may also help choose the most suitable appproach
among them for a concrete application. We then also discuss an available tool
based on one such integration with favorable properties along the established
criteria, including efficient reasoning procedures.

The remainder of this document is structured as follows. We provide neces-
sary notions on Description Logic ontologies and nonmonotonic rules in Sects. 2
and 3, respectively. We then discuss the principles along which integrations
between the two formalisms have been developed in Sect. 4, and show, in Sect. 5
four such integrations in more detail. We proceed with presenting a tool for
answering queries over such an integration in Sect. 6 and finish with concluding
remarks in Sect. 7.

2 Description Logic Ontologies

Description Logics (DLs) are fragments of first-order logics for which reasoning is
usually decidable. They are commonly used as expressive ontology languages, in
particular as the formal underpinning for the Web Ontology Language (OWL)
[40]. In this section, we provide an overview on DLs to facilitate the under-
standing of the remaining material and refer for more details and additional
background to text books in related work [5,41].

On a general level, DLs allow us represent information about objects, called
individuals, classes of objects, called concepts, that share common characteris-
tics, and relations between objects as well as between classes of objects, called
roles. For example, Bob is an individual, Person a concept, and hasSSN a role
abbreviating “has social security number” allowing us to state that Bob is a
person and that he has a specific social security number.

More formally, DLs are defined over disjoint countably infinite sets of con-
cept names NC, corresponding to classes of individuals, role names NR, that
express relationships, and individual names NI, corresponding to objects, which,
in terms of first-order logic, match unary and binary predicates, and constants,
respectively.

Complex concepts (and complex roles) can be defined based on these sets
and logical constructors (indicated here in DL syntax), which include the stan-
dard Boolean operators, i.e., negation (¬), conjunction (�), and disjunction (�),
universal and existential quantifiers (∀ and ∃), as well as numeric restrictions on
(binary) roles (≤ mR and ≥ nR for numbers m,n and role R), and inverses of
roles (R− for role R).

For example, we can define concepts that represent persons that have a social
security number (Person�∃hasSNN.�), or those whose heart is on the left- or
on the right-hand-side of the body (HeartLeft � HeartRight), or those having
at most one social security number (≤ 1HasSNN.�) or the role “is the social
security number of” as the inverse of the role of having a social security number
(hasSSN−).
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Fig. 1. Syntax and semantics of role and concept expressions in SROIQ for an inter-
pretation I with domain ΔI , where C, D are concepts, R a role, and a ∈ NI.

It should be noted that each DL, i.e., each fragment of first-order logic, can be
distinguished by the admitted constructors, by means of which complex concepts
and roles are inductively formed. An overview on the admitted constructors in
the DL underlying the OWL 2 language, i.e., the description logic SROIQ [42],
can be found in Fig. 1.

Based on complex concepts and roles, we can define an ontology contain-
ing axioms that specify a taxonomy/conceptualization of a domain of interest.
Such axioms allow us to indicate that a concept is subsumed by another, i.e.,
corresponding to a subclass relation, or that two concepts are equivalent (≡)
as a shortcut for subsumption in both directions, and likewise that some role is
subsumed by (or equivalent to) another role, as well as assertions indicating that
some individual is an instance of a class (or a pair of individuals an instance of
a role), and even certain role characteristics, such as transitivity, reflexivity or
symmetry of roles.

For example, the following set of axioms

Person 
 HeartLeft � HeartRight (1)
Person 
 ∃hasSNN.� (2)

isSSNOf ≡ hasSSN− (3)
Person(Bob) (4)

indicates that every person has the heart on the left or on the right-hand-side
(1), every person has a social security number (2), the relation referring to the
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person corresponding to an SSN is the inverse of the relation indicating the SSN
of a person (3), and that Bob is a person (4).

Formally, an ontology O is a set of axioms divided into three components, a
TBox, an RBox, and an ABox. A TBox is a finite set of concept inclusions of the
form C 
 D where C and D are both (complex) concepts. An RBox is a finite
set of role chains of the form R1 ◦ . . . ◦ Rn 
 R, including role inclusions with
n = 1, where Ri and R are (complex) roles, and of role assertions, allowing us to
express that a role is transitive (Tra), reflexive (Ref), irreflexive (Irr), symmetric
(Sym) or asymmetric (Asy), and that two roles are disjoint (Dis). Finally, an
ABox is a finite set of assertions of the form C(a) or R(a, b) for concepts C,
roles R, and individuals a, b.

The semantics of DL ontologies, i.e., their meaning, is defined in terms of
interpretations I = (ΔI , ·I) consisting of a non-empty set ΔI , its domain, and a
mapping ·I that specifies how the basic language elements are to be interpreted.
More concisely, such a mapping ensures that

– aI ∈ ΔI for each a ∈ NI;
– AI ⊆ ΔI for each A ∈ NC; and
– RI ⊆ ΔI × ΔI for each R ∈ NR.

That is, every individual is interpreted as one domain element, every concept as
a subset of the domain, and every role as a set of pairs of domain elements. This
mapping can be extended to arbitrary role and concept expressions as indicated
in Fig. 1 for the constructors usable in SROIQ.

The semantics of axioms α is based on a satisfaction relation w.r.t. an inter-
pretation I, denoted I |= α, which is presented in Fig. 2. In this case, we also
say that I is a model of α, and likewise that I is a model of ontology O if I
satisfies all axioms in O. It should be noted that an alternative way to define the
semantics of ontologies is obtained by a direct translation into first-order logic.
For example, (2) can be translated into

∀x.(Person(x) → (∃y.hasSNN(x, y)))

Note that the syntax of DLs does not explicitly mention the variables introduced
in their first-order translation. They are left implicit, and, due to the restriction
to unary and binary predicates (concepts and roles) and their particular struc-
ture, no ambiguity exists. We refer for the details of this translation to [5].

Based on the semantics in place, we can consider reasoning and what kinds
of inferences can be drawn. For example, from

Person 
 ∃has.SpinalColumn (5)
∃has.SpinalColumn 
 V ertebrate (6)

we can conclude that Person 
 V ertebrate holds and we can draw this con-
clusion without needing to know any particular individual person. In addition,
together with (4), we can also conclude that Bob in particular is a vertebrate,
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Fig. 2. Semantics of SROIQ axioms for an interpretation I with domain ΔI , where
C, D are concepts, R, S are roles, and a, b ∈ NI.

and, by (2) and (4), that there is some object which is a social security number,
although we do not know precisely which one.

In more general terms, a number of standard inference problems are defined
for DLs. For example, we can test if a DL ontology O is consistent by determining
if it has a model. We can also determine if a concept is satisfiable by finding a
model I in which the interpretation of C is not empty (CI �= ∅). Also, concept C
is subsumed by concept D w.r.t. O, i.e., C is a subclass of D, if CI ⊆ DI holds for
all models I of O. Moreover, we can check whether an individual a is an instance
of a concept C w.r.t. O, if aI ∈ CI holds for all models I of O. Frequently,
these reasoning tasks can be reduced to each other, e.g., C is subsumed by D
iff C � ¬D is unsatisfiable, which means that it suffices to consider only one
of them. Also, based on these standard inference problems, advanced reasoning
tasks are considered, such as classification which requires the computation of the
subsumptions between all concept names in the ontology, or instance retrieval
which determines all individuals that are true for a given concept.

Decidability is achieved by carefully restricting the admitted constructors
such that models satisfy certain desirable properties. This is necessary, as the
domain of an interpretation ΔI may be infinite. Note that DLs only allow the
usage of unary and binary predicates which together with the admitted con-
structors ensures that basic DLs satisfy the tree-model property, i.e., domain
elements in a model are related in a tree-shaped manner, which avoids cycles,
and thus ensures decidability. For more expressive DLs such as SROIQ this
does not suffice. In fact, if we were allowed to use the constructors in Figs. 1 and
2 without additional restrictions, reasoning in SROIQ would be undecidable.
Instead, role hierarchies, i.e., essentially axioms involving role inclusions, are
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restricted to so-called regular ones, which intuitively limits the usage of certain
roles in, e.g., qualified number restrictions and role chains, so that a strict order
can be established in between the roles. We refer for the details to [42].

While the applied restrictions ensure that SROIQ is decidable, this DL
underlying the W3C standard OWL 2 is still very general and highly expressive,
which in turn implies that reasoning with it is highly complex, in fact, it is
N2ExpTime-complete [46]. But general purpose DL reasoners exist for this highly
expressive language such as FaCT++ [79], Pellet [71], RACER [37] or Konclude
[75]. Still, one of the central themes in DLs is the balance between expressiveness
and the computational complexity for the required reasoning tasks. This is why
the profiles OWL 2 EL, OWL 2 QL and OWL 2 RL have been defined [61], i.e.,
considerable restrictions of the admitted language of OWL 2, for which reasoning
is tractable. Here, we briefly overview these languages.

The DL underlying OWL 2 EL is EL++ [6]. Often, EL+
⊥, a large fragment of

it is used that only allows conjunctions and existential restrictions of concepts,
hierarchies of roles, and disjoint concepts. EL+

⊥ is tailored towards reasoning
with large conceptual models, i.e., large TBoxes, and used in particular in large
biomedical ontologies, and specifically tailored, highly efficient reasoners such as
ELK [47] exist.

DL-LiteR, one of the languages of the DL-Lite family [4] which underlies
OWL 2 QL, admits in addition inverse roles and even disjoint roles, but, in
exchange, it only allows for simple role hierarchies, no conjunction (on the left-
hand side of axioms), and it imposes limitations on the usage of existential
restrictions in particular on the left-hand side of inclusion axioms. The focus of
this profile is on answering queries over large quantities of data, and combining
relational database technology in the context of ontology-based data access [81].

Finally, OWL 2 RL, which builds on Description Logic Programs [36], is
defined in a way that avoids inferring the existence of unknown individuals (e.g.,
a social security number though we do not know which) as well as nondetermin-
istic knowledge, for the sake of efficient reasoning. OWL 2 RL allows more of
the available DL constructors than the other two OWL profiles, but their usage
is often restricted to one side of the inclusion axioms. This makes efficient RDF
and rule reasoners applicable such as RDFox [64].

3 Nonmonotonic Rules

Nonmonotonic rules in Logic Programming (LP) have been intensively studied
in the literature and a large body of theoretical results for different semantics of
such rules has been presented (see e.g. [59]). Among them, the most widely used
today are the answer set semantics [32] and the well-founded semantics [31], for
which efficient implementations exist. In this section, we give a brief overview on
nonmonotonic rules and these two semantics in particular, as they are essential
for the integration of ontologies and rules.

In a broad sense, rules are used to represent that if a certain condition is
true, then so is the indicated consequence. This includes the usage of default
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negation (in the condition) using operator not, which can be used to represent
that something holds unless some condition is verified. We can for example state
a rule that indicates that, for any vertebrate, the heart is on the left-hand-side
of the body unless it is explicitly known to be on the right-hand-side:

HeartLeft(x) ← V ertebrate(x),not HeartRight(x) (7)

This rule is in principle applicable to arbitrary individuals due to the usage
of variables, in this case x, and it intuitively allows us to infer for any x that
HeartLeft(x) holds unless HeartRight(x) holds.

In terms of syntax, we note that the basic building blocks of rules are rather
easy to define. All we need is a set of predicates of some arity, i.e., the number
of arguments they admit, and a set of terms over constants and variables as
these arguments. These, in turn, allow us to define rules as implications over
such atoms possibly with default negation in the condition.

More formally, we consider disjoint sets of constants Σc, variables Σv, and
predicate symbols Σp.4 Then a term is a constant c ∈ Σc or a variable v ∈ Σv,
and an atom is of the form p(t1, . . . , tn), where p is an n-nary predicate symbol
in Σp and the ti, for i = 1, . . . , n and n ≥ 0, are terms. Atoms with n = 0 are
also commonly called propositional. Such atoms allow us to express that certain
n-nary relations hold, or, using default negation not, that they do not hold in
absence of information to the contrary. Atoms and default negated atoms are
also called literals.

Logic programs then consist of rules that combine literals in logic formulas
of a specific form. More precisely, a disjunctive (logic) program P consists of
finitely many (implicitly universally quantified) disjunctive rules of the form

H1 ∨ · · · ∨ Hl ← A1, . . . , An,not B1, . . . ,not Bm (8)

where Hk, Ai, and Bj are atoms. Such a rule can be divided into the head
H1∨· · ·∨Hl and the body A1, . . . , An, not B1, · · · ,not Bm, where “,” represents
conjunction. Hence such a rule is to be read as “If A1 and . . . and An are true
and B1 and . . . and Bm are not, then (at least) one of H1 to Hl is”.

We also identify the elements in the head and in the body of a rule with
the sets H = {H1, . . . , Hl}, B+ = {A1, . . . , An}, and B− = {B1, . . . , Bm}, where
B = B+ ∪ not B−, and we occasionally abbreviate rules with H ← B+,not B−

or even H ← B. Note that, in line with this set notation, the disjunction in the
head and the conjunction in the body are commutative, i.e., the order of the
elements in the head and in the body does not matter.

There are a number of different kinds of rules which yield a different expres-
siveness depending on how many and which literals are allowed in the head and
the body of each rule, and we recall them in the following, as different integra-
tions of ontologies and nonmonotonic rules admit different kinds of such rules.

4 Please note that often also function symbols are introduced in the literature of LP,
but since they jeopardize decidability of reasoning, and usually are not considered
in integrations of ontologies and nonmonotonic rules, we do omit them here.
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Normal rules do only admit one atom in the head, whereas positive rules do
not admit default negation, and normal and positive programs can be defined
accordingly. In particular, if the body of a rule is empty, i.e., n = m = 0, the rule
is called a fact, and if, alternatively, the head is empty, i.e., l = 0, a constraint.

Constraints are an interesting modelling feature of nonmonotonic rules, as
they allow to impose restrictions on the presence of certain information:

SSN OK(x) ← hasSSN(x, y) (9)
← Person(x),not SSN OK(x) (10)

This states that if x has a (known) social security number y, then x’s social
security number status is fine (9), and that there can be no person x whose
social security number status is not fine (10). Note that the DL axiom (2) is not
an alternative as it does not impose a restriction, but rather allows us to infer
that there is a social security number, though we do not know which.

Here, unlike for DLs, no restriction on the syntax of predicates is made, which
means that reasoning with such programs would be undecidable when working
with an infinite domain. Commonly, this is prevented by ensuring that variables
in the rules can only be instantiated with “known values”, i.e., that are known
in the program. Such rules are called safe which, formally, is the case if each
variable in a rule of the form (8) occurs in an atom Ai for some i, 1 ≤ i ≤ n,
and we assume in the following that all rules are safe. For example, the rules
(7), (9), and (10) are safe, whereas the rule

← Person(x),not hasSSN(x, y)

is not due to y not occurring in any positive literal in the rule body.
This restriction to known individuals seems arguably severe in comparison to

DLs where we can reason over an infinite domain and unknown individuals. On
the other hand, the following example rule taken from the context of Example 1

CompliantShpmt(x) ← ShpmtCommod(x, y),HTSCode(y, z),
ShpmtDeclHTSCode(x, z)

states that x is a compliant shipment, if x contains y whose harmonized tariff
code is z and x is declared to contain z. This can be easily expressed as a rule,
whereas a representation via DLs proves difficult due to the fact that, if viewed
as a graph, the variable connections established in the rule provide one link from
x to z via y and one direct link, which is not tree-shaped. Hence, both formalisms
indeed differ as to what can be represented.

We next proceed by giving an overview on the two standard semantics for
such nonmonotonic rules, answer set semantics and well-founded semantics.

3.1 Answer Set Semantics

Answer Set Programming (ASP) is a declarative programming paradigm tailored
towards the solution of large combinatorical search problems. The central idea is
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to encode the given problem in a declarative way using rules and use one of the
efficient answer set solvers available, such as clasp [29] or DLV [3], to determine
the answer sets corresponding to the solutions of the problem. The approach
builds on the answer set semantics [32] which is a two-valued nonmonotonic
declarative semantics for logic programs with close connections to other logic-
based formalisms such as SAT, Default Logic, and Autoepistemic Logic.

While the full ASP language comes with a number of additional syntactic
constructs beyond the syntax of programs we have presented so far (cf. the
ASP-Core-2 Input Language Format [18]), we limit our considerations to normal
programs for the sake of readability and since this suffices to convey the main
ideas.

The models considered in this semantics, called answer sets, are represented
by a set of atoms occurring in a given program, that are true. Those atoms
from the program not occurring in the answer set are false. Since rules may
contain variables, rules are grounded first, i.e., all variables are instantiated with
constants occurring in the program in all possible ways, and the set of all ground
instances of the rules of a program P is denoted by ground(P ).

Example 2. Consider program P consisting of rule hasSSN(Bob, 123) ←
together with (9). Then ground(P ) consists of:

SSN OK(Bob) ← hasSSN(Bob, 123)
SSN OK(Bob) ← hasSSN(Bob,Bob)
SSN OK(123) ← hasSSN(123, Bob)
SSN OK(123) ← hasSSN(123, 123)

hasSSN(Bob, 123) ←

Of course, state-of-the-art ASP solvers will only keep the first of the grounded
rules in such a situation, as the body atom in the other rules can never be true
anyway. Either way, it is clear that {SSN OK(Bob), hasSSN(Bob, 123)} is a
model if we treat these rules as implications in first-order logic.

Now, the main idea of answer sets builds on guessing a model and checking
that it satisfies a certain minimality criterion, namely, that there is some rule
that supports the truth of some atom in an answer set (which is not the case,
e.g., for hasSSN(Bob,Bob) in Example 2). In more detail, based on the guessed
model, a reduct of the (ground) program is created which does not contain
default negation, and for which it can be checked whether the originally guessed
model is a minimal model of the resulting reduct.

Given a program P and a set I of atoms, the reduct P I [32] is defined as

P I = {H ← B+ : H ← B+,not B−in ground(P ) such that B− ∩ I = ∅}.

Intuitively, rules that contain an atom in I (assumed to be true) in the negative
body are removed. In the remaining rules, all negated atoms are removed.
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The resulting program is positive, and for normal programs, we can determine
all necessary consequences of this program using the following operator TP :

TP (I) = {H | H ← B ∈ P and B ⊆ I}
Basically, all rule heads are collected whose body atoms are true given I.

This operator can be iterated as follows, starting with TP ↑ 0, thus allowing
to compute the deductive closure Cn of such a positive normal program P :

TP ↑ 0 = ∅ TP ↑ (n + 1) = TP (TP ↑ n) Cn(P ) = TP ↑ ω =
⋃

n

TP ↑ n

Then, a set of atoms X is an answer set of program P iff Cn(PX) = X.
For normal programs without negation, this closure in fact amounts to com-

puting all necessary consequences of the given program. For example, for the
ground program in Example 2 which does not contain default negation, clearly
{SSN OK(Bob), hasSSN(Bob, 123)} is this closure, hence its only answer set.

Example 3. Consider a normal program P containing just two rules.

HeartLeft(Bob) ← not HeartRight(Bob)
HeartRight(Bob) ← not HeartLeft(Bob)

If we consider M1 = {HeartLeft(Bob),HeartRight(Bob)}, then PM1 = {},
whose closure is ∅, hence M1 is not an answer set. If we consider M2 = {},
then PM2 = {HeartLeft(Bob) ←,HeartRight(Bob) ←} and the closure is
{HeartLeft(Bob),HeartRight(Bob)}, so M2 is not an answer set either. Now,
consider M3 = {HeartLeft(Bob)}. Then PM3 = {HeartLeft(Bob) ←}, and M3

is an answer set. The same is true for M4 = {HeartRight(Bob)} by symmetry.

Indeed, in general, a program may have several answer sets, which corresponds to
the idea that combinatorial problems may have several solutions. In particular,
a program may also have no answer sets – take Person(Bob) together with rules
(9) and (10). This is intended as we do not know the social security number of
Bob, and in more general terms combinatorial problems may have no solution.

3.2 Well-Founded Semantics

The well-founded semantics [31] was developed around the same time as the
answer set semantics, but focuses more on query answering over knowledge
expressed with nonmonotonic rules. A central idea is to avoid computing entire
models for a given program, but rather compute inferences in a top-down fash-
ion, i.e., start with a query and compute only the part of a model necessary to
obtain the answer. This is aligned with the ideas of Prolog [76], however unlike
Prolog, the well-founded semantics is fully declarative and its major efficient
implementation XSB Prolog [77] avoids undecidability caused by infinite loops
while querying, and uses tabling to avoid unnecessary re-computation of already
queried (intermediate) results.
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Unlike the answer set semantics, the well-founded semantics is based on three-
valued interpretations for which the set of truth values is extended by introducing
a third truth value representing undefined. The basic idea behind this is to stay
agnostic in situations where the knowledge encoded in a program permits a
choice, such as between HeartLeft(Bob) and HeartRight(Bob) in Example 3,
and rather leave both undefined. The benefit is that only a single well-founded
model exists which can be efficiently computed in an iterative manner and for
which corresponding querying procedures can be defined.

Formally, given a program P , a three-valued interpretation is a pair of sets
of atoms (T, F ) with T ∩ F = ∅, where elements in T are mapped to true,
elements in F are mapped to false, and the remaining to undefined. Such inter-
pretations can also be represented as T ∪ not F . For example, using the latter
notation, the well-founded model of the program in Example 3 can be rep-
resented as {} corresponding to both HeartLeft(Bob) and HeartRight(Bob)
being undefined, whereas the sets {HeartLeft(Bob),not HeartRight(Bob)}
and {not HeartLeft(Bob),HeartRight(Bob)} correspond to the two answer
sets in Example 3, respectively.

We can determine the truth value of a set of atoms involving undefined atoms
by defining that, for an atom A undefined w.r.t. some three-valued interpretation,
not A is again undefined and that for a conjunction of atoms, its truth value is
the minimum of the truth values of the involved elements with respect to the
order false < undefined < true.

Based on this, we can define the well-founded model and show how it can be
computed. Here, we only do the latter and refer for the formal definition of the
well-founded model to [31]. Essentially, the well-founded model can be computed
by starting with an empty set (recall that this corresponds to everything is
undefined), and iteratively add, based on the program, atoms that are necessarily
true and necessarily false.

Regarding necessarily true information, the operator TP defined previously
for computing the closure Cn can be used, only now I is a three-valued inter-
pretation.

For negative information, so-called unfounded sets are used, that refer to a
set of atoms that given a program P and an interpretation I can never become
true (nor undefined). Formally, such a set U is unfounded w.r.t. program P and
interpretation I if each atom A ∈ U satisfies the following condition. For each
rule A ← B in ground(P ) at least one of the following holds:

(Ui) Some literal in B is false in I.
(Uii) Some (non-negated) atom in B occurs in U .

The idea is that A is unfounded if all rules with head A either contain some
false literal in the body or an atom which is also unfounded. For example, given
I = ∅ and program P composed of the two rules:

hasSSN(Bob, 123) ← isSSNOf(123, Bob)
isSSNOf(123, Bob) ← hasSSN(Bob, 123)
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{hasSSN(Bob, 123), isSSNOf(123, Bob)} is an unfounded set w.r.t. P and I.
The union of all unfounded sets of P w.r.t. I is the greatest unfounded set,

denoted UP (I) which together with TP can be used to define an operator WP

for programs P and interpretations I:

WP (I) = TP (I) ∪ not UP (I).

This operator can be iterated to obtain the well-founded model Mwf , i.e., all
atoms that are necessarily true and false, respectively.

WP ↑ 0 = ∅ WP ↑ (n + 1) = WP (WP ↑ n) Mwf (P ) = WP ↑ ω =
⋃

n

WP ↑ n

Example 4. Consider the following program P .

Person(Bob) ←
hasSSN(Bob, 123) ←

SSN OK(x) ← hasSSN(x, y)
check(x) ← Person(x),not SSN OK(x)

We obtain:

WP ↑ 0 = ∅
WP ↑ 1 = {Person(Bob), hasSSN(Bob, 123)}
WP ↑ 2 = WP ↑ 1 ∪ {SSN OK(Bob)}
WP ↑ 3 = WP ↑ 2 ∪ {not check(Bob)}

An alternative equivalent definition exists, called the alternating fixed-point [30],
which computes this model based on the reduct of the program used for deter-
mining answer sets, and SLG resolution [20] provides a corresponding top-down
procedure for the well-founded semantics implemented in XSB.

Regarding a comparison between the well-founded semantics and the answer
set semantics, we note that in terms of computational complexity, the former
is preferrable as the unique well-founded model can be computed in polynomial
time (w.r.t. data complexity, i.e., only the size of the number of facts varies),
whereas guessing and checking answer sets is at least in NP. In addition, when
querying, we only require the part of the knowledge base that is relevant for
the query, which aids efficiency in comparison to answer sets. For example,
when querying for the medication of a specific patient, we certainly do not care
about the medication of possibly thousands of other patients. Moreover, the
well-founded model (for normal programs) always exists. On the other hand, if
the considered problem is at least partially combinatorial, answer sets are clearly
preferred. In fact, the answer set semantics is more expressive in general: take
the two rules from Example 3 together with the following two rules.

LivingBeing(Bob) ← HeartLeftBob)
LivingBeing(Bob) ← HeartRight(Bob)
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Then, in the unique well-founded model everything is undefined, whereas both
answer sets contain LivingBeing(Bob). Thus, ultimately the choice between the
depends on the intended application.

4 How to Integrate Ontologies and Rules?

Having reviewed the two formalisms, DL ontologies and nonmonotonic rules
in detail, and their differing characteristics and benefits w.r.t. what kind of
knowledge can be represented and reasoned with, the question arises what to do
if we want to use the favorable characteristics of both simultaneously.

This question has been tackled in the literature and a plethora of differ-
ent approaches has been presented. Discussing all these proposals here in detail
would not be possible for the sheer amount of them, however, common char-
acteristics and criteria have emerged along which these proposals have been
defined, and we want to discuss these here to provide a better idea on the main
considerations to take into account when providing such an integration.

Before we delve into this, let us look at a concrete, larger example that
illustrates the benefits of such an integration with more detail.

Example 5. Recall the setting described in Example 1 on a customs service need-
ing to assess incoming cargo for risks based on a variety of information. Figure 3
shows a DL ontology O and a set of nonmonotonic rules P containing part of
such information that we explain in more detail.

The ontology O contains a classification of commodities based on their har-
monized tariff information (HTS chapters, headings and codes)5, a taxonomy
of commodities (here exemplified using special kinds of tomatos), together with
indications on tariff charges depending on the kind of product and their packag-
ing, as well as a geographic classification, along with information about producers
who are located in various countries.

The program P contains data on the shipments. Here, a shipment has several
attributes: the country of origin, the commodity it contains, its importer and
producer, exemplified by (partial) information about three shipments, s1 , s2
and s3 . For importers, it also indicates if they have a history of transgressing
the regulations.

Then there is a set of rules for determining what to inspect. The first rules
provide information about importers, namely whether they are admissible (if
they are not known to be registered transgressors), for which kind of products
they are approved, and whether they are expeditable (combining the former two).
The rules also allow us to associate a commodity with its country of origin (where
it shipped from), and determining whether a shipment is compliant, i.e., if there
is a match between the filed cargo codes and the actually carried commodities.

The final three rules serve the overall task to access all the information
and assess whether some shipment should be inspected in full detail, partially,
or not at all. In particular, at least a partial inspection is required whenever
5 This is adapted from https://hts.usitc.gov/.

https://hts.usitc.gov/
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Fig. 3. Ontology O and nonmonotonic rules P for cargo assessment.

the commodity is not a LowRiskEUCommodity based on inferences in the DL
part, which n turn requires assessing further information in the rules, namely
CommodCountry and ExpeditableImporter. A full inspection is required if a ship-
ment is not compliant or if some suspicious cargo is observed, in this case toma-
toes from slovakia (you may imagine for the sake of the example that we are in
the winter period).
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Note that the example indeed utilizes the features of rules and ontologies: for
example, exceptions to the partial inspections can be expressed, but at the same
time, taxonomic and non-closed knowledge is used, e.g., some shipment may in
fact originate from the EU, but this information is just not available.

To be able to obtain the desired conclusions from the combination of the
knowledge bases written in these two formalisms, we need to find ways to inte-
grate them. As already mentioned, many proposals exist in the literature, defined
along the lines of guiding principles which we now want to discuss. In the course
of this discussion, often, these principles are inspired in their formulation by [62],
where they were used for arguing in favor of a specific approach. Here, in partic-
ular when there are several options w.r.t. a certain characteristic, it is our stance
not to argue in favor of a certain solution, but rather discuss their corresponding
advantages.

Faithfulness. The first desirable property we want to discuss is Faithfulness, i.e.,
the idea that the integration of DLs and nonmonotonic rules should preserve the
semantics of both its base formalisms. In other words, the addition of rules to
a DL should not change the semantics of the DL and vice-versa. In particular,
when either of the two components is empty, the semantics should simply be the
one of the base formalism of the non-empty component. This is beneficial for
two reasons. First, it eases its adoption for knowledge engineers knowledgable
in (at least) one of the base formalisms, that want to augment an ontology with
rules or vice-versa. Second, and maybe even more important, this is crucial to
facilitate re-using existing state of the art reasoners for each of the components,
reducing considerably the necessary effort to provide implementations. Thus,
without going into details of an actual faithful integration, for reasoning with
the knowledge bases presented in Example 5, it would in principle suffice to
choose a DL reasoner appropriate for the expressiveness used in the DL and an
ASP solver (or XSB depending on the desired rule semantics) and determine an
interface between the two to obtain all desired inferences.

Tightness. The characteristic of tightness relates to the structure/topology of
the integration in the sense that whether conclusions resulting from one of the
formalisms can be used to derive further conclusions in the other. Clearly, there
are several possible solutions. One option is to layer one formalism on top of the
other, in the sense that conclusions of one approach can be used by the other,
but not vice-versa. Such a solution is certainly easier to handle on the technical
level, since, assuming a faithful integration, this way, we can simply first compute
the conclusions within the formalism on the lower level, and pass these to the
formalism on the upper level to compute the conclusions there. On the other
hand, a tight integration requires that neither of the two formalisms is layered
on top of the other, rather, both the DL and the rule component should be able
to contribute to the consequences of the other component. This is technically
more advanced, but has the advantage that it can easily cover examples such
as the one presented in Example 5, where, e.g., LowRiskEUCommodity is used in
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the rules, but derived in the ontology, which in turn requires inferences from the
rules. Of course, in applications where such tight integration is not necessary, a
layered solution suffices. On the other hand, a tight integration is not subject to
problems when later introducing transfer of inferences from one component to
the other that was previously not present. Finally, there are also intermediate
solutions in which inferences can be passed between both components of the
integration, but under some certain restrictions.

DL Reasoning View. This characteristic refers to what kind of inferences are
passed from the DL component to the rule component of the integration. Clearly,
for layered approaches in which rules are on the lower layer, this characteristic is
irrelevant. However, the vast majority of approaches actually do pass conclusions
from the DL component to the rule component. The essential question is, given
a DL ontology, do we consider inferences on the level of individual models or
on the level of consequences, i.e., truth in all models? In other words, are the
inferences we pass from the ontology to the rules model-based or consequence-
based, i.e., is the integration a world-centric or entailment-centric approach (as
alternatively termed in [56])? The benefit of model-based inferences is that they
allow for a higher expressiveness in the sense that possible alternatives present
in the ontology can be passed to the rules resulting in more inferences there as
well. On the downside, such alternatives based on different models may not have
strong support as a conclusion obtained from the ontology. For consequence-
based approaches, the situation is exactly the converse. Any inference is true
in all models, but this limits the extent to which inferred information is passed
from the ontology to the rules. This is ultimately actually similar to the idea
of brave vs. cautious reasoning in logics, i.e., truth in one or all models, and
which one of the two views is adapted depends on the concrete application at
hand. For Example 5, this depends on whether we want to impose inspections
based on something possibly being true or an entailment, i.e., being true in all
models. For example, LowRiskEUCommodity should probably only be considered
under consequences, as discarding a partial inspection based on the fact that the
commodity in question may represent a lower risk, is probably not a good idea.

Flexibility. This characteristic deals with the question whether the same pred-
icate can be viewed under both the open and closed world assumption. The
central idea is that a flexible approach allows us to enrich a DL ontology with
non-monotonic consequences from the rules, and, conversely, to enrich the rules
with the capabilities of ontology reasoning described by a DL ontology. This
allows us to distinguish between approaches that fix to which predicates either
OWA or CWA is applied and those that do not. Again, a flexible approach is
commonly more expressive, possibly at the expense of requiring a technically
more advanced integration, since separate languages for the two components
facilitate the re-use of existing semantics for the individual components. Yet,
this may require some additional effort to ensure that corresponding predicates
(between the ontology and the rules) are appropriately synchronized. In the case
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of Example 5, an approach capturing it as is needs to be flexible as the predicates
appear simultaneously in both components.

Decidability and Complexity. Finally, a formalism that can be used in applica-
tions should be at least decidable, and preferably of low worst-case complexity.
Given the huge amount of data (on the Web), it is clearly preferable to have a
system that is not only decidable but also computationally as efficient as pos-
sible. Still, this needs to take into account the tradeoff between expressiveness
of the formalism and complexity of reasoning, and in certain situations, the
required expressiveness is more important. In any case, both base formalisms
come with established methods to ensure decidability, and this should prefer-
ably be maintained in their integration. The exact computational complexity
for desired reasoning tasks then depends on the expressiveness and semantics
applied in the two base formalisms and which of the beforementioned character-
istics have been adopted.

5 Concrete Integrations

Having reviewed the main guidelines/criteria along which the many existing
approaches for integrating ontologies and rules have been developed, in this
section, we want to give an overview of some of the more prominent such pro-
posals. While the question of prominence to some extent certainly is in the eye
of the beholder, and though we cannot discuss all existing approaches here in
more detail, we believe that the provided selection covers different aspects w.r.t.
the previously mentioned criteria and more details on the remaining approaches
can be obtained from pointers to the literature.

5.1 DL+log

One of the first combinations of non-monotonic rules and ontologies is called
r-hybrid knowledge bases [67], which subseqently has been extended to DL+log
[68]. DL+log combines disjunctive Datalog (consisting of rules of the form (8))
with an arbitrary (decidable) DL.

An essential idea is to separate the admitted predicates into DL predicates
and non-DL predicates, i.e., those that can appear in the DL part (and in the
rules), and those that only appear in the rules. A knowledge base K in this
formalism consists of an ontology O and a set of rules P, where each rule r is of
the following form:

p1(x1) ∨ . . . ∨ pn(xn) ← r1(y1), . . . , rm(ym), s1(z1), . . . , sk(zk),
not u1(w1), . . . ,not uh(wh)

such that n ≥ 0, m ≥ 0, k ≥ 0, and h ≥ 0, the xi, yi, zi, and wi are tuples
of variables and constants, each pi a DL or a non-DL predicate, each si a DL
predicate, and each ri and ui a non-DL predicate. Additionally, each variable



42 M. Knorr

occurring in a rule must appear in some yi or zi (rule safety – similar to what we
have seen in Sect. 3) and every variable appearing in some xi of r must appear in
at least one of the yi (weak safety). The latter notion is weaker/less restrictive
than DL-safety [63] applied for r-hybrid knowledge bases, which requires that
every variable (and not just those in xi) in the rule occurs in at least one yi,
since there may exist variables that only appear in a DL-atom in the body
of a rule. For example, we may assume that, in Example 5, data on registered
producers is also stored in the ontology (in the ABox), i.e., EURegisteredProducer
is a DL-predicate, and adapt the DL axiom on EURegisteredProducer as a rule:

EURegisteredProducer(x) ← RegisteredProducer(x,y),EUCountry(y) (11)

Then, this rule is weakly-safe, but not DL-safe, as, according to our assumptions,
x does not occur in the rule body in an atom built over a non-DL predicate (nor
does y). This is interesting as it allows one to pose arbitrary conjunctive queries
over DL predidates to the DL component, for which there are known algorithms
for many DLs [57]. The standard rule safety nevertheless ensures that there is
no variable only appearing in a default negated atom.

The main idea of the semantics for DL+log [68] is based on the definition
of a projection, similar in spirit to the idea of the reduct for answer sets, which
intuitively simplifies the program by evaluating the DL-atoms. Basically, given
an interpretation I, rules with DL-atoms that conflict with I are deleted and the
remaining DL-atoms are omitted. The resulting program is free of DL-atoms, and
I is a model of K if I is a model of O, and I restricted to the non-DL predicates
is an answer set of the projected program. This way, DL atoms are evaluated
under the open world assumption in the spirit of conjunctive queries to the DL
part, whereas non-DL atoms are evaluated under the closed world assumption.

Example 6. Consider a simple example composed of rule (11) together with two
ABox assertions RegisteredProducer(s4 ,GB), CountryIE(GB) and an axiom

CountryIE 
 EUCountry � NonEUCountry

representing that any country in Europe is either in the European Union or
not, and that s4 is a registered producer in Great Britain, which is a country in
Europe. Then there are two models:

M1 ={RegisteredProducer(s4 ,GB),CountryIE(GB),EUCountry(GB),
EURegisteredProducer(s4 )}

M2 ={RegisteredProducer(s4 ,GB),CountryIE(GB),NonEUCountry(GB)}

Notably, M1 and M2 correspond to the essential two models of O, and, for M2,
the evaluation of DL-atoms removes all instances of (11).

This then allows the definition for reasoning algorithms along the idea of
guessing and checking interpretations based on these projections, and it has
been shown that, in combination with O in DL-Lite, the DL underlying OWL 2
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QL, the data complexity does not increase with respect to the data complexity
of the rule component alone.

The semantics is faithful, tight, and decidable (due to the safety restrictions),
but it is not flexible, as non-monotonic reasoning is by definition restricted to
non-DL atoms, i.e., no default reasoning over information appearing in the DL
is possible. Finally, we note that this approach is indeed model-based, since it
suffices that a considered interpretation I models O, without considering entail-
ment, i.e., truth in all models of O.

5.2 Dl-Programs

Another important approach is called description logic programs (dl-programs)
[27]. Here, a knowledge base K consists of a DL ontology O and a program P
containing (non-disjunctive) dl-rules of the form

H ← A1,← An,not B1, . . . ,not Bm

where H is a first-order atom,6 and all Ai and Bj are first-order atoms or special
dl-atoms to query the ontology. Similarly to DL+log, the set of predicates is
divided into disjoint sets of DL predicates, which only appear in dl-atoms and
in O, and non-DL predicates, that only appear in the rules. Such dl-atoms are
meant to serve as interfaces between the ontology and the rules, allowing that
information derivable in the DL can be queried for in the rules, while information
in the rules can be passed to the DL in the course of this process.

As a simple example, consider that the rules contain a fact p(Bob), represent-
ing that Bob is a person, together with ontology axioms (5) and (6), from which
we can derive that every person is a vertebrate. Note that the ontology and the
rules use a different predicate to represent the concept of person. Then, a dl-
atom DL[Person�p; Vertebrate](Bob) represents a query for Vertebrate(Bob)
where Person in the ontology is enriched with the inferences for p from the rules.

More formally, such dl-atoms are of the form

DL[S1 op1 p1, . . . , Sl opl pl;Q](t)

where Si are DL predicates, pi are non-DL predicates, opi ∈ {�,∪- ,∩-}, Q is
an n-ary DL predicate, and t a vector of n terms. Such dl-atoms are used to
query the ontology for Q(t) where certain ontology predicates Si are altered by
information derived in the rules. Intuitively, � is used to augment Si with the
derived knowledge from pi; ∪- augments ¬Si with the derived knowledge from pi
and ∩- augments ¬S with what is not derived in pi. As queries, concept inclusions,
negations of concept inclusions, concept and role assertions, and equalities and
inequalities are allowed.

It should be noted that the transfer from the rules to the ontology is limited
though, in the sense that it is not stored. This means that if a certain piece
of information from the rules is to be used for each dl-query, then it has to be
added explicitly in every dl-atom.
6 Classical negation is also allowed, but we simplify here for the sake of presentation.
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Example 7. The rule from Example 5 for PartialInspection can be adapted as:

PartialInspection(x) ← ShpmtCommod(x,y),
not DL[ExpeditableImporter � e,CommodCountry � c; LowRiskEUCommodity](y)

where e and c are non-DL predicates which replace ExpeditableImporter and
CommodCountry in all the rules. In fact, to make this fully correct with the idea
of dl-programs, all predicates that appear, in Example 5, in the ontology and in
the rules need to be duplicated. This may look cumbersome at first glance, but
it allows one to use the two components in a modular fashion which facilitates
implementations, and reduces transfer of knowledge to what is necessary aiding
efficiency.

Two different answer set semantics are defined slightly varying on how dl-
atoms are preprocessed in the reduct. Both semantics may however create non-
minimal answer sets which is why it is recommended to either use canonical
answer sets based on loop formulas [80] or not to use the operator ∩- at all.

In addition, a corresponding well-founded semantics is defined for dl-
programs [26] omitting the operator ∩- , which builds on an extension of the
unfounded sets construction to such dl-programs.

The approach itself is faithful for both versions, the answer set semantics
and the well-founded semantics. The interaction with the DL component is
consequence-based as the evaluation of queries in the dl-atoms is realized based
on entailments, i.e., truth in all models of O. Due to the specific interfaces, the
dl-atoms, this approach is tight and flexible to a limited extent: rules cannot
derive new facts about DL predicates, they can only pose conditional queries to
the DL, although the operators in dl-atoms provide means to transfer knowledge
temporarily. Moreover, we can never derive nonmonotonic consequences for DL
predicates directly. Rather, we have to use the interfaces, which may appear
under default negation. It has also been shown that dl-programs are decidable
provided the considered DL is decidable. For the answer set semantics, in gen-
eral the computational complexity increases that of the individual components
(depending on the DL used and the kind of rules permitted), whereas for the
well-founded semantics this can commonly be avoided. In particular for poly-
nomial DLs, such as the tractable OWL profiles, dl-programs also maintain a
polynomial data complexity. While the modular solution limits the approach in
terms of tightness and flexibility, it facilitates its implementation. A prototype
for both semantics has been defined that utilizes RACER [37] for DL reason-
ing and DLV [3,53] for the rule processing (where the well-founded semantics
is implemented based on the alternating fixpoint). This has been subsequently
generalized in hex-programs [24,66] where interfaces in the line of dl-atoms can
be created to arbitrary external sources, thus further widening the applicability.

5.3 Hybrid MKNF

Hybrid MKNF knowledge bases [62] build on the logic of minimal knowledge and
negation as failure (MKNF) [54], which corresponds to first-order logic extended
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by two modal operators K and not, that allow us to express that something is
known and not known, respectively. Hybrid MKNF KBs essentially consist of
two components: a first-order theory, in particular a DL ontology O (translatable
into first-order logic), and a finite set of rules (similar to rules in ASP) over so-
called modal atoms of the form

KH1 ∨ . . . ∨ KHl ← KA1, . . . ,KAn,not B1, . . . ,not Bm

where the Hi, Aj , and Bk are first-order formulas. The essential idea is that such
a rule is to be read as “If all Aj are known to hold (in the sense of truth in all
models), and all Bk are not known to hold, then one of the Hi is known to hold”
(i.e., one of the Hi is true in all models). As modal operators are not admitted in
the ontology O, reasoning can still be applied within O on a per model basis as
intended. Admitting, in the rules, first-order formulas within the scope of modal
operators raises the expressivity, and allows, in such modal atoms, conjunctive
queries to the ontology.

In fact, even more general MKNF+ knowledge bases are considered in which
rules may contain atoms not in scope of any modal operator. These can however
be transformed into ordinary modal atoms provided the considered DL language
is expressive enough to encode these first-order atoms with an equivalence to a
new predicate used then in the rules in each such case.

Atoms are again divided into DL atoms and non-DL atoms, and for decid-
ability, it is required that DL-safety holds, i.e., all variables occur in at least one
non-DL atom, and that reasoning in the DL language together with the general-
ized atoms is decidable (the latter condition simplifies if no first-order formulas
occur in the rules). Note that, due to DL-safety, rules such as (11) cannot be
used, but this can be amended using a conjunctive query in a modal atom:

KEURegisteredProducer(x) ← K[∃y.(RegisteredProducer(x,y),∧EUCountry(y))]

The semantics of Hybrid MKNF knowledge bases is given by a translation
into an MKNF formula, i.e., a formula over first-order logic extended with two
modal operators K and not. This translation, essentially, conjoins all rules with
the first-order translation of O within scope of a single modal operator K. The
(integrating) semantics for such formulas is defined based on a model notion
over sets of interpretations. Such models contain all interpretations that model
a given formula, minimizing what necessarily must be known to hold, in the
sense that a larger set of models contains less atoms that are true in all models,
hence the name minimal knowledge (and negation as failure).

Example 8. Consider a simple example adapted from Example 5 containing just
CherryTomato 
 Tomato and KTomato(o1 ) ←. The corresponding formula in
MKNF is K(∀xCherryTomato(x) → Tomato(x)) ∧ KTomato(o1 ). Then, M1 =
{{Tomato(o1 )}, {Tomato(o1 ),CherryTomato(o1 )}} contains sets that model the
formula. So does M2 = {{Tomato(o1 ),CherryTomato(o1 )}}, but M2 is not the
maximal such set of sets. In fact, in M2, CherryTomato(o1 ) is true in all models,
i.e., according to this model, KCherryTomato(o1 ) holds, which clearly should not
be an inference of the given knowledge base.
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Since such a model representation is cumbersome and in general infinite,
for reasoning, a finite representation based on modal atoms is provided that
indicates which modal atoms occurring in the program are true and false. This
then allows one to use algorithms whose ideas are closely aligned with that of
answer sets – guess the true modal atoms and check whether certain conditions
are verified, namely that the result is a minimal model for the formula. For
Example 8, this amounts to determining that KTomato(o1 ) is true.

A well-founded semantics based on alternating fixpoints is defined in [48] for
hybrid MKNF knowledge bases, where no disjunction is allowed in the rule heads
and only ordinary atoms are permitted in rules, i.e., no first-order formulas.

Due to the seemless embedding in the underlying unifying formalism, the
approach is naturally flexible and tight. This allows us for example to capture
Example 5, by simply introducing the modal K operators in all the rules (the
default not is already present). It also is faithful with the respective underlying
base formalisms and decidable, provided the required restrictions are satisfied. In
terms of complexity, the semantics based on answer sets does in general increase
the data complexity of its constituents, only under considerable restrictions on
the rules, this can be avoided. For the well-founded semantics on the other
hand, and similar to dl-programs, the complexity reduces in comparison, and for
polynomial DLs, polynomial data complexity can be ensured for the integrated
formalism (for computing the model as well as answering safe queries). More-
over, the approach is consequence-based as DL atoms appear in scope of modal
operators, hence they are verified to be known, i.e., true in all models (of O).

The approach is indeed very general, and MKNF+ knowledge bases allow us
to cover many approaches in the literature [62], including the ones discussed so
far, in the sense that DL+log KBs and dl-programs without the operator ∩- can
be encoded into an equisatisfiable hybrid MKNF knowledge base.

In the latter case, a complementary formal result [28] shows that DL-safe
and ground hybrid MKNF KBs can be embedded into dl-programs essentially
by establishing the necessary transfer of information from rules to ontologies in
every single DL-atom. This confirms that Example 5 which can be straightfor-
wardly handled in hybrid MKNF, is also capturable in the case of dl-programs.
The general idea is to just introduce one new auxiliary predicate for each DL
atom, basically creating a program and a DL version of each such predicate, and
then use dl-atoms in the bodies of rules (instead of DL atoms), to query the
ontology, where, in the dl-atoms, the inferred information for all such DL atoms
from the rules is passed to the corresponding DL component each time.

5.4 Resilient Logic Programs

Resilient Logic Programs (RLPs) [56] have been recently introduced with the aim
to overcome a limitation of the existing approaches of integrations of ontologies
and rules, namely the fact that, for obtaining inferences from the ontology, they
use either model-based reasoning (e.g., DL+log) or consequence-based reasoning
(e.g., dl-programs and Hybrid MKNF), but not both. There are however prob-
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lems where this is not sufficient, and the authors argue that integration solutions
should be resilient in various scenarios.

As an example, consider that we are given a set of nodes, and we want to
determine a directed graph G such that removing one arbitrary node from G
will always result in a strongly connected graph (i.e., every vertex is reachable
from every other vertex). In this case, the choice of which node is removed
can be modeled in the ontology under the model-based view (one model per
possible removed node), whereas we can use the rules to verify whether the
corresponding resulting graph is strongly connected. However, the reachability
relation involved in this check varies for different chosen nodes, which requires
a universal quantification over the choices in the ontology (aligned with the
consequence-based view).

A resilient logic program then is a tuple Π = (P,O, Σout, Σowa, Σre) consist-
ing of a program P, an ontology/first-order theory O, and a distinct partition
of the predicates occurring in P and O, into output predicates Σout, open pred-
icates Σowa, and response predicates Σre, such that response predicates are not
allowed in O, and where output predicates and response predicates are closed.

The semantics is defined in a way that can be viewed as a negotiation between
P and O. An answer set I over Σout needs to be determined that a) can be
extended into a model of O by interpreting the predidates in Σowa, and b) no
matter how I is extended into a model of O, there always is a corresponding
interpretation of the response predicates, which together with I is justified by P
(in the sense of minimality/support by a rule as argued before, e.g., for answer
set programs). This semantics uses a reduct inspired by [9,67], which handles
default negated atoms in the rules as usual, but in addition also treats atoms
based on open predicates in a similar fashion.

Example 9. Consider the following formalization of the graph problem taken
from [56], where O is represented as a first-order theory.

For nodes n1, . . . , nk, let Π = (P,O, Σout = {V,E}, Σowa = {in, out}, Σre =
{Ē, R}), where

O ={∃x.out(x) ∀x.(V (x) → (in(x) ∨ out(x))),
∀x.(V (x) → (¬in(x) ∨ ¬out(x))),
∀x∀y.((out(x) ∧ out(y)) → x = y)}

P = {V (n1), . . . V (nk), E(x, y) ∨ Ē(x, y) ← V (x), V (y),
R(x, z) ← R(x, y), R(y, z),
R(x, y) ← E(x, y),not out(x),not out(y),
← V (x), V (y), x �= y,not out(x),not out(y),not R(x, y)}

Essentially, O allows us to choose exactly on vertex that is removed (out),
whereas P provides possible directed edges between the given vertices (E(x, y)
corresponding to a chosen edge for vertices x and y, Ē(x, y) representing one
not chosen), determines reachability (using R(x, y)), and a constraint checking
that any remaining vertex can reach any other remaining vertex. The semantics
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Fig. 4. A graph representation of the unique solution for Example 9 for 3 nodes, and
one possible solution for 4 nodes.

of RLPs then only admits the desired solutions in which removing any single
node results in a strongly connected graph. Figure 4 shows a representation of
the only possible such graph with three nodes and one possible solution with
four nodes. It is easy to see that removing any of the directed edges will result
in a graph for which the required condition is no longer satisfied.

A more extensive example is presented in [56], where a company wants to
process a fixed amount of customer orders per day. The exact configuration of
the orders is not known in advance, and the objective is to determine those
services to offer so that independently of the actual configurations of the orders,
the tasks can be assigned to employees so that each task is completed by the
end of the day. Here, the offered services are captured by the output predicates,
possible configurations are modelled in the first-order theory, and the answer
sets correspond to the viable schedules in which tasks are completed in time.

Decidability in RLPs is achieved by ensuring DL-safety [63], here w.r.t. out-
put and response predicates, and requiring that for the (DL) theory, satisfiability
under closed predicates must be decidable.

It is shown that disjunctive programs can be embedded into RLPs. Also,
under some additional restrictions, namely limiting default negation for response
predicates and restricting theories to correspond to positive disjunctive rules,
RLPs can be translated into disjunctive ASP which allows for the usage of state-
of-the-art ASP solvers when reasoning. A reduction to ∃∀∃-quantified Boolean
formulas is given, which shows that the computational complexity is higher than
that of answer sets, which is also confirmed when using concrete DLs of different
expressiveness. In the context of these concrete DLs, a relaxed safeness condition
is also provided that admits safety with respect to unknown individuals as long
as the number of these individuals is limited.

The approach is faithful w.r.t. the base formalisms and decidable under the
imposed restrictions. It also is tight as the flow of information is possible in both
directions. Similar to DL+log, the approach is not flexible as open predicates
are interpreted under the open world assumption.
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6 NoHR - Querying Ontologies and Rules

In this section, we discuss NoHR7 (Nova Hybrid Reasoner), a tool for query-
ing combinations of DL ontologies and nonmonotonic rules. It is based on the
well-founded semantics for Hybrid MKNF knowledge bases [48], due to its lower
computational complexity and amenability to top-down querying without com-
puting the entire model, which is important in the face of huge amounts of
data. Indeed, rather than computing the well-founded model for this integration
along the ideas presented in Sect. 3.2, queries are evaluated based on SLG(O),
as defined in [2]. This procedure extends SLG resolution with tabling [20] with
an oracle to O that handles ground queries to the DL-part of K by returning
(possibly empty) sets of atoms that, together with O and information already
proven true, allows us to derive the queried atom. We refer to [2] for the full
account of SLG(O) and present the idea in the following example.

Example 10. Consider again Example 5 and the query PartialInspection(x). Then,
the query procedure would find the rule whose head matches the queried atom
and proceed by querying for the respective body elements ShpmtCommod(x,y)
and not LowRiskEUCommodity(y). We find ShpmtCommod(s1 , c1 ), then the
remaining query is not LowRiskEUCommodity(c1 ), which is verified with a query
LowRiskEUCommodity(c1 ). Now, LowRiskEUCommodity is a DL-predicate and
this can be handled by the oracle to O. In fact, LowRiskEUCommodity(c1 ) can be
inferred from O if we find ExpeditableImporter(c1 ,x) and CommodCountry(c1 ,y)
and EUCountry(y). Querying for ExpeditableImporter(c1 ,x) in particular results
in a query AdmissibleImporter(i1 ) which fails as i1 is a registered transgressor.
Therefore, LowRiskEUCommodity(c1 ) eventually fails, and one answer for the ini-
tial query is a partial inspection is required for s1 .

While this idea works from a semantic point of view, it leaves open the
question of efficiency, as in general there are exponentially many such sets of
atoms that together with the ontology allow us to derive the queried atom. The
solution applied in NoHR is to transform relevant axioms/logical consequences
of the considered ontology into rules, and then take advantage of a rule reasoner
to ensure that only polynomially many answers are returned. It has been shown
that this process preserves the semantics for the different permitted ontology
fragments [21,43,55]. In addition, due to this reasoning approach, DL safety can
be relaxed to rule safety, as DL atoms now refer to the rules resulting from the
translation.

On the technical side, NoHR8 is developed as a plug-in for the ontology
editor Protégé 5.X,9 – in fact, the first hybrid reasoner of its kind for Protégé
– but it is also available as a library, allowing for its integration within other
environments and applications. It supports ontologies written in any of the three

7 http://nohr.di.fct.unl.pt.
8 The source code can be obtained at https://github.com/NoHRReasoner/NoHR.
9 http://protege.stanford.edu.

http://nohr.di.fct.unl.pt
https://github.com/NoHRReasoner/NoHR
http://protege.stanford.edu
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tractable OWL 2 Profiles, and for those combining the constructors permitted in
these profiles. Its implementation combines the capabilities of the DL reasoners
ELK [47] (for the OWL 2 EL profile), and HermiT [34] and Konclude [75] (for
combinations of constructors of different profiles – for OWL 2 QL and RL no DL
reasoner is used, rather direct translations into rules are applied) with the rule
engine XSB Prolog10. XSB comes with support for a vast number of standard
built-in Prolog predicates, including numeric predicates and comparisons, and
ensures termination of query answering.

NoHR is also robust w.r.t. inconsistencies between the ontology and the rules,
which is important as knowledge from different sources may indeed be contra-
dictory on some parts. While this would commonly render the system useless as
anything can be derived from an inconsistent knowledge base, a paraconsistent
approach is adopted, in which certain parts may be inconsistent – and querying
for them with NoHR will reveal that – but other inferences that are not related
to such an inconsistency can be inferred as if the inconistency was not present
(see, e.g., [44] for more details). This proves indeed beneficial as inconsistent data
on one shipment should not impact on determining whether to inspect another.

NoHR also provides native support for Relational Databases which is encoded
through the concept of mappings.11 Essentially, mappings are used to create
predicates that are populated with the result set obtained from queries to exter-
nal databases, which also allows one to consult tables from different databases.
A mapping for predicate p is a triple 〈p, db, q〉 where the result set from db for
the query q (defined over db) is mapped to the predicate p. The connection to
database systems is realized using ODBC drivers, thus allowing the integration
of NoHR with all major database management systems.

In the following, we describe the system architecture of the Protégé plugin
NoHR v4.0 as shown in Fig. 5 and discuss several features of its implementation.

The input for the plugin consists of an OWL file, a rule file and a mappings
file. All three components can be edited in Protégé, using the built-in inter-
face for the ontology and the custom “NoHR Rules” and “NoHR Mappings”
tabs, provided by the plugin, for the rule and mapping components. The for-
mer (as well as the query panel) comes with a dedicated parser to support the
creation of correctly formed rules and queries. The latter allows the creation of
mappings based on the user’s specification of what columns from which tables
of which database should be combined, where the underlying SQL queries are
dynamically generated, based on the structure of the schema, which allows the
automatic application of several optimizations to the generated queries. Alterna-
tively, arbitrary SQL queries can be written to take advantage of the capabilities
of the specific DBMS at hand for the sake of, e.g., benefiting from using advanced
joins and the associated performance gains when querying.

After the inputs (which can be empty) and the first query are provided, the
ontology is translated into a set of rules, using one of the provided reasoners,

10 http://xsb.sourceforge.net.
11 Similar concepts have been used before for adding database support to rule systems,

such as DLV DB [78], and in ontology based data access, such as in ontop [19].

http://xsb.sourceforge.net
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Fig. 5. System architecture of NoHR v4.0 with native database support

ELK [47], HermiT [34] or Konclude [75], depending on the DL in which the ontol-
ogy is written. The resulting set is then combined with the rules and mappings
provided by the input. This joined result serves as input to XSB Prolog via Inter-
Prolog,12 which is an open-source Java front-end, allowing the communication
between Java and a Prolog engine, and the query is sent via the same inter-
face to XSB to be executed. During the execution, mappings are providing facts
from the external databases as they are requested in the reasoning process. This
procedure is supported by the installed ODBC connections and handled within
XSB, thus providing full control over the database access during querying and
taking advantage of the built-in optimization to access only the relevant part
of the database. Answers are returned to the query processor, which displays
them to the user in a table (in the Query Tab). Figure 6 provides an example
for the query FullInspection(?X), where we note that variables are denoted
with a leading “?” to facilitate distinguishing them from constants, similar to
SPARQL. The user may pose further queries, and the system will simply send
them directly to XSB, without any repeated preprocessing. If the knowledge
base is edited, the system recompiles only the component that was changed.

Different versions of NoHR have been evaluated focussing on different aspects
[21,43,45,55], and the main observations are summarized in the following.

Different ontologies can be preprocessed for querying in a short amount of
time (around one minute for SNOMED CT with over 300,000 concepts), and
increasing the number of rules only raises the time for translation linearly. As the
preprocessing commonly only needs to be done once before queryin, this is less
important for the overall performance. In terms of performance of the different
used reasoners for preprocessing, it has been shown [55] that ELK is indeed
always fastest, so whenever the ontology fits EL+

⊥, the dedicated translation
module should be used. In between the to general purpose reasoners, HermiT is
faster than Konclude on all instances where it does not time out when classifying

12 http://interprolog.com/java-bridge/.

http://interprolog.com/java-bridge/
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Fig. 6. Cargo assessment example in the NoHR Protégé plugin

the given ontology. Konclude then is preferred in the cases where HermiT fails
to classify an ontology that does not fit the OWL 2 EL profile (in which ELK
cannot be used either).

In comparison to preprocessing times, querying time is in general neglectable.
It has been shown that NoHR scales reasonably well for query answering without
non-monotonic rules (only slowing down for memory-intensive cases), even for
over a million facts/assertions in the ABox, despite being slightly slower on
average for OWL QL in comparison to to the other cases, as part of the OWL
inferences is encoded in the rule translations directly, and adding rules scales
linearly for pre-processing and querying, even for an ontology with many negative
inclusions (such as DL-LiteR).

In addition, with respect to the database component, it has been shown that,
if the data is stored in a database and accessed directly during querying instead
of being loaded into memory in the form of facts or ontology assertions, prepro-
cessing time and memory consumption substantially reduces, in particular for
tuples of higher arity. In terms of querying, on average querying becomes slightly
slower, as the connection via ODBC adds an overhead to the query process. How-
ever, if advanced mappings are used, which allow outsourcing certain joins over
data from XSB to the DBMS, then improvements of considerable margin can
be achieved, in particular when advanced database joins reduce the amount of
data that needs to be sent to XSB for reasoning.

7 Conclusions

In this course, we have provided an overview on the integration of Descrip-
tion Logic ontologies and nonmonotonic rules. For that purpose, we have first
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recalled the two formalisms and reviewed in detail their characteristics and inher-
ent differences. We have then discussed main criteria based on which such an
integration can be achieved and argued that often the right choice depends on
the application at hand. To illustrate these ideas, we have presented four con-
crete approaches and compared them with the help of these established criteria.
We note that many existing approaches were left out from our presentation. We
refer the interested reader to the references mentioned so far (e.g., [27,62] pro-
vide detailed discussions of related work), as well as the material from previous
Reasoning Web lectures with a different focus [25,50]. We have complemented
our considerations on different approaches for such an integration with a more
detailed description of one of the reasoning tools, NoHR, that comes with sup-
port for databases, robustness to inconsistencies, and fast interactive response
times (after a brief preprocessing period), even for larger knowledge bases.

There exists a lot of related work that rather than combining both formalisms
aims at combining open and closed world reasoning, by extending one of the two
base formalisms with some features from the other. Namely, there is a lot of
work on enriching DLs with nonmonotonic reasoning. Description Logics have
been extended with default logic [7], with modal operators [23,49] similar to
those used in the rules of Hybrid MKNF KBs, circumscription [13,51], as well
as defeasible logics [16], and rational closure [33]. On the other hand, rules have
been extended with existentials in the head, resulting in Datalog+− [17]. While
such rule are undecidable in general, a plethora of different restricted such rule
fragments has been defined (see, e.g., [8]) allowing to cover a considerable part of
the OWL 2 profiles, and for which answer sets semantics [58] and well-founded
semantics [35] have been defined.

For future work, considering dynamics in such combinations of DL ontologies
and nonmonotonic rules building on previous work [72–74], in particular in the
presence of streams [11] and possibly incorporating heterogeneous knowledge
[15,22] seems promising given the huge amounts of data and knowledge that are
being created with ever increasing speed and in a variety of formats, for which
knowledge-intensive applications are desirable that take advantage of all that
information. This certainly is an ambitious objective, but interesting nonetheless.
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Abstract. Symbolic reasoning and deep learning are two fundamen-
tally different approaches to building AI systems, with complementary
strengths and weaknesses. Despite their clear differences, however, the
line between these two approaches is increasingly blurry. For instance,
the neural language models which are popular in Natural Language Pro-
cessing are increasingly playing the role of knowledge bases, while neural
network learning strategies are being used to learn symbolic knowledge,
and to develop strategies for reasoning more flexibly with such knowl-
edge. This blurring of the boundary between symbolic and neural meth-
ods offers significant opportunities for developing systems that can com-
bine the flexibility and inductive capabilities of neural networks with the
transparency and systematic reasoning abilities of symbolic frameworks.
At the same time, there are still many open questions around how such
a combination can best be achieved. This paper presents an overview of
recent work on the relationship between symbolic knowledge and neural
representations, with a focus on the use of neural networks, and vector
representations more generally, for encoding knowledge.

1 Introduction

Artificial Intelligence (AI) is built on two fundamentally different traditions, both
of which go back to the early days of the field. The first tradition is focused on
formalising human reasoning using symbolic representations. This tradition has
developed into the Knowledge Representation and Reasoning (KRR) sub-field.
The second tradition is focused on learning from examples. This tradition has
developed into the Machine Learning (ML) sub-field. These two different tradi-
tions have complementary strengths and weaknesses. Due to the use of symbolic
representations, KRR systems are explainable, often come with provable guar-
antees (e.g. on correctness or fairness) and they can readily exploit input from
human experts. Moreover, due to their use of systematic reasoning processes,
KRR systems are able to derive conclusions that require combining numerous
pieces of knowledge in intricate ways. However, symbolic reasoning is too rigid
for many applications, where predictions may need to be made about new situ-
ations that are not yet covered in a given knowledge base. On the other hand,
ML systems often require little human input, but lack explainability, usually
come without guarantees, and tend to struggle in applications where systematic
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reasoning is needed [1–3]. Accordingly, there is a growing realisation that future
AI systems will need to rely on an integration of ideas from ML and from KRR.

The integration of symbolic reasoning with neural models already has a
long tradition within the context of neuro-symbolic AI [4,5]. However, our main
focus in this overview is not on the integration of symbolic reasoning with neu-
ral network learning, but on the ability of neural network models, and vector
space encodings more generally, to play the role of knowledge bases. First, in
Sect. 2, we focus on the use of neural models for capturing knowledge graphs
(i.e. sets of dyadic relational facts). Knowledge graphs play an important role
in research fields such as Natural Language Processing, Recommendation and
Machine Learning, essentially giving AI system access to factual world knowl-
edge. The interest in studying the relationship between neural models and knowl-
edge graphs is two-fold. On the one hand, learning vector representations of
knowledge graphs makes it easier to use these resources in downstream tasks.
On the other hand, existing pre-trained neural language models, trained from
large text collections, implicitly capture a lot of the information that is stored
in open-domain knowledge graphs. Neural models can thus also play an impor-
tant role in constructing or extending knowledge graphs. In Sect. 3, we then
look at the ability of neural models to capture rules, e.g. the kind of knowledge
that would normally be encoded in ontologies. Studying this ability is impor-
tant because it can suggest mechanisms to combine traditional strategies for
rule-based reasoning with neural network learning. Moreover, large pre-trained
neural language models can also be used as a source of ontological knowledge, at
least to a certain extent. Finally, in Sect. 4 we look at cases where neural models
and symbolic knowledge are jointly needed. This includes, for instance, the use
of existing rule bases, along with traditional labelled examples, for training neu-
ral models. Moreover, symbolic representations are also used for querying neural
representations. As a final example, we look at mechanisms to exploit neural
representations for making symbolic reasoning more flexible or robust.

2 Encoding Knowledge Graphs

A knowledge graph (KG) is a set of triples of the form (h, r, t) ∈ E × R × E ,
with E a set of entities and R a set of relations. A triple (h, r, t) intuitively
expresses that the head entity h and tail entity t are in relation r. For instance,
(Cardiff, capital-of,Wales) asserts that Cardiff is the capital of Wales. KGs are
among the most popular frameworks for encoding factual knowledge. Open-
domain KGs such as Wikidata [6], YAGO [7] and DBpedia [8], can be seen as
providing a structured counterpart to Wikipedia. Such KGs are commonly used
as a source of factual encyclopedic information about the world, for instance to
enrich neural network models for Natural Language Processing (NLP) [9]. Com-
monsense KGs such as ConceptNet [10] and ATOMIC [11] are similarly used as
a source of knowledge that may otherwise be difficult to obtain. Furthermore, a
large number of domain-specific KGs have been developed, for instance covering
the needs of a specific business. We refer to [12,13] for a comprehensive overview
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about knowledge graphs. Here we focus on neural representations of KGs. The
aim of using neural representations is to generalise from the facts that are explic-
itly asserted in a given KG and to make it easier to take advantage of KGs in
downstream tasks. In Sect. 2.1, we first discuss KG embedding (KGE) methods,
i.e. strategies for learning vector representations of entities and relations that
capture the knowledge encoded in a given KG. Such methods have seen a lot
of attention from the research community throughout the last decade, having
the advantage of being conceptually elegant and computationally efficient. In
Sect. 2.2 we then discuss the use of Contextualised Language models (CLMs)
such as BERT [14] for capturing knowledge graph triples.

2.1 Knowledge Graph Embeddings

Let a knowledge graph K ⊆ E × R × E be given. The aim of knowledge graph
embedding (KGE) methods is to learn (i) a vector representation e for each
entity e from E , and (ii) the parameters of a scoring function fr : E × E → R

for each relation r ∈ R, such that fr(h, t) reflects the plausibility of the triple
(h, r, t). The main focus is usually on the task of link prediction, i.e. given a head
entity h and relation r, predicting the most likely tail entity t that makes (h, r, t)
a valid triple. Embeddings are typically real-valued, i.e. e ∈ R

n, but other choices
have been considered as well, including complex embeddings [15–17], hyperbolic
embeddings [18] and hypercomplex embeddings [19]. In most models, the scoring
function fr is parameterised by a vector r of the same dimensionality as the entity
vectors. For example, in the seminal TransE model [20], we have:

fr(h, t) = −d(h + r, t)

where d is either the Euclidean or Manhattan distance. In other words, relations
are viewed as vector translations, and (h, r, t) is considered plausible if applying
the translation for r to h yields a vector that is similar to t. As another popular
example, in DistMult [21], the scoring function is defined as follows:

fr(h, t) = h � r � t

where � denotes the component-wise product of vectors. To learn the entity
vectors and the scoring functions fr, several loss functions have been considered,
which are typically based on the idea that fr(h, t) should be higher than fr(h, t′)
whenever (h, r, t) ∈ K and (h, r, t′) /∈ K. An important lesson from research
on KGE is that the performance of different methods often crucially depends
on the chosen loss function, the type of regularisation that is used, how the
negative examples (h, r, t′) are chosen, and hyper-parameter tuning [22]. This
has complicated the empirical comparison of different KGE models, especially
given that these models are typically only evaluated on a small set of benchmarks.

Leaving empirical considerations aside, an important question is whether
KGE models have any theoretical limitations on the kinds of KGs they can
encode. In other words, is it always possible to find entity vectors and scoring
functions such that the triples (h, r, t) which are predicted to be valid by the
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KGE model are exactly those that are contained in a given KG? Formally, a
KGE model is called fully expressive [23] if for any knowledge graph K, we can
find entity vectors and parameters for the scoring functions such that fr(h, t) > γ
if (h, r, t) ∈ K and fr(h, t) < γ otherwise, for some constant γ ∈ R. In other
words, a fully expressive model is capable of capturing any knowledge graph
configuration. It turns out that basic translation based methods such as TransE
are not fully expressive (see [23] for details). However, many other methods have
been found to be fully expressive [15,23], provided that vectors of sufficiently
high dimensionality are used. This also includes BoxE [24], which is translation
based but avoids the limitations of other translation based models by using a
region based representation.

2.2 Contextualised Language Models as Knowledge Bases

In recent years, the state-of-the-art in NLP has been based on large pre-trained
neural language models (LMs) such as BERT [14]. These LMs are essentially
deep neural networks that have been pre-trained on large text collections using
different forms of self-supervision. The most common pre-training strategy is
based on masked language modelling, where the model is trained to predict
words from a given input sentence or paragraph that have been masked. Despite
the lack of any explicit supervision signal, the resulting LMs have been found to
capture a wealth of syntactic and semantic knowledge [25]. Interestingly, these
models also capture a lot of factual world knowledge. For instance, [26] found
that presenting BERT with an input such as “Dante was born in <mask>” leads
to the correct prediction (Florence). In fact, it turns out that pre-trained LMs
can be used to answer a wide array of questions, without being given acccess
to any external knowledge or corpus [27]. Rather than using KG embeddings
to provide NLP models with access to knowledge about the world, the focus in
recent years has thus shifted towards (i) analysing to what extent pre-trained
LMs already capture such knowledge and (ii) fine-tuning LMs to inject additional
knowledge. LMs thus provide a neural encoding of factual world knowledge,
although the mechanism by which such knowledge is encoded is unclear. Recent
work [28] has suggested that the feedforward layers of these LMs contain neurons
that encode specific facts. This insight was used in [29] to devise a strategy
to update the knowledge encoded by an LM, for instance when a given fact
has become outdated. Some approaches have been suggested for incorporating
KGs when training LMs [30], which provides more control about the kind of
knowledge that is captured by the LM. Other methods focus on using KGs to
reason about the output of LMs [31]. LMs have also been used to aid in the
task of KG completion. For instance, [32] designs a scoring function for KG
triples, which uses BERT for encoding entity descriptions. Most notably, LMs
have been used for link prediction in commonsense KGs such as ConceptNet
and ATOMIC. The challenge with such KGs is that entities often correspond to
phrases, which may only appear in a single triple. The graph structure is thus
too sparse for traditional KG completion methods to be successful. Instead, [33]
proposes a model in which a contextualised language model is fine-tuned on
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KG triples. They show that, after this fine-tuning step, the LM can be used to
generate meaningful new triples. Building on this work, [34] shows that focused
commonsense knowledge graphs can be generated on the fly, to provide context
for a particular task.

3 Encoding Rules

While knowledge graphs are the de facto standard for encoding factual knowl-
edge, more expressive frameworks are needed for encoding generic knowledge. In
particular, rules continue to play an important role within AI, and an increas-
ingly important role within NLP. For instance, several competitive strategies
for knowledge graph completion based on learned rules have been proposed in
recent years [35,36], having the advantage of being more transparent than KGE
methods, and the potential for capturing more expressive types of inference pat-
terns. Our focus in this overview is on the interaction between rules and neural
representations. First, we discuss the use of neural networks for simulating rule
based reasoning in Sect. 3.1. Such methods are particularly appealing, because
they are able to learn meaningful rules using standard backpropagation, and can
be naturally combined with other types of neural models (e.g. to reason about
input presented in the form of images). In Sect. 3.2, we then discuss the view
that rules can be modelled in terms of qualitative spatial relationships between
region-based representations of concepts and relations. Finally, Sect. 3.3 discusses
the rule reasoning abilities of contextualised language models.

Before moving to the next sections, we start by briefly introducing rules; for
more details, see e.g. [37]. An atom α is an expression of the form R(t1, . . . , tn),
where R is a predicate symbol with arity n and terms ti, i.e. variables or con-
stants. An rule σ is an expression of the form

B1 ∧ . . . ∧ Bn → ∃X1, . . . , Xj .H, (1)

where B1, . . . Bn and H are atoms and Xm for 1 ≤ m ≤ j are variables. We call
X1, . . . , Xj the existential variables of σ. All other variables occurring in σ are
universally quantified. We call a rule with no free variables a ground rule and a
ground rule with an empty body a fact. For example, fathertOf(john, peter),
fathertOf(peter, louise) are facts expressing that John is the father of Peter
and Peter is the father of Louise. As another example, the following rule with a
non-empty body and with variables, defines the grandfather relation in terms of
the father relation fatherOf(X,Y ) ∧ fatherOf(Y,Z) → grandfatherOf(X,Z)

3.1 Neural Networks for Reasoning with Differentiable Rules

While the discrete nature of classical logic makes it difficult to integrate with
neural networks, several authors have explored techniques for encoding differen-
tiable approximations of logical rules. For instance, [38] develops a differentiable
approach to rule based reasoning, called Neural Theorem Proving, by replacing
the traditional unification mechanism with a form of soft unification, which is
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Fig. 1. The binary relation eats is defined as a region over the Cartesian product of
two conceptual spaces. The spatial configurations capture relational knowledge such as
“carnivores only eat animals”.

computed based on the dot product between vector representations of the con-
stants and predicates involved. Taking a different approach, Lifted Relational
Neural Networks [39] rely on ideas from fuzzy logic to make rules differentiable.
In this case, the unification mechanism is the classical one, but truth values of
literals and rule bodies are evaluated on a continuous scale. Fuzzy logic connec-
tives are also sometimes used to regularise neural network models based on prior
knowledge in the form of rules [40,41]. DeepProbLog [42] is based on yet another
strategy. In this case, reasoning is done using a probabilistic logic program, where
a deep neural network is used to estimate the probability of particular literals.
Whereas the focus of the aforementioned works was to use neural network learn-
ing to discover meaningful rules, in the case of DeepProbLog, the rules themselves
are given and the purpose of using neural networks is to allow for more flexible
inputs, e.g. making it possible to reason about information presented as images.
This strategy has also been instantiated using other logical formalisms, such as
answer set programming [43–45]. Some authors have also focused specifically on
the use of neural network models for rule induction (rather than for combining
rules with neural networks). For instance, [46] presents a differentiable version
of inductive logic programming, while [36,47] propose differentiable models to
learn rules for knowledge graph completion.

3.2 Modelling Rules as Spatial Relations

The theory of conceptual spaces [48] was proposed by Gärdenfors as an interme-
diate representation framework, in between neural and symbolic representations.
The main idea is that properties are represented as convex regions, while individ-
uals are represented as points. Compared to the usual vector space models, this
region-based approach has the advantage that there is a direct correspondence
between spatial relationships in the conceptual space, on the one hand, and sym-
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bolic rules, on the other hand. For instance, the fact that individual X satisfies
property P , i.e. the fact P (X), corresponds to a situation where the geometric
representation of X belongs to the region representing P . Similarly, a rule such
as P (x) ∧ Q(x) → R(x) corresponds to the situation where the intersection of
the regions representing P and Q is included in the region representing R. While
conceptual spaces can only capture propositional knowledge, in [49] we showed
how relational knowledge can be similarly modelled by representing relations
as convex regions over a Cartesian product of conceptual spaces. Figure 1 illus-
trates this for the binary relation eats, which is defined as a convex region over
the Cartesian product of two conceptual spaces. The points in this Cartesian
product space correspond to pairs of individuals. Relational knowledge is then
modelled in terms of inclusions, intersections and projections. For the example
illustrated in the figure, among others, the following rules are captured:

carnivore(x) ∧ eats(x, y) → animal(y)
carnivore(x) → ∃y . animal(y) ∧ eats(x, y)

The framework of conceptual spaces, and their relational extension, seems like
a natural choice for settings where neural representations need to be combined
with symbolic knowledge. In practice, however, their usage is complicated by
the fact that learning regions in high-dimensional spaces is difficult, unless dras-
tically simplifying assumptions are made about the nature of the regions. For
example, box embeddings, where entities are represented by hyper-boxes, have
been successfully used in a number of contexts [50]. Cones [51,52] and linear
subspaces [53] are also common choices. A typical assumption in conceptual
spaces is that regions are defined in terms of the prototypes of the correspond-
ing concepts. Region boundaries may then arise as the cells of a (generalised)
Voronoi tessellation of these prototypes [54]. This view is appropriate whenever
a contrast set [55], i.e. a set of jointly exhaustive and pairwise disjoint concepts
is given. In [56], an approach was developed for learning concept representations
based on this idea.

3.3 Contextualised Language Models as Rule-Based Reasoners

In Sect. 2.2, we discussed how large pre-trained language models encode a sub-
stantial amount of factual knowledge. The extent to which such language models
capture rules is less clear. In [57], some evidence is provided to suggest that LMs
are indeed capable of learning some kinds of symbolic knowledge, and can be
trained to apply this knowledge, e.g. generalising an observation about a given
concept to hyponyms of that concept. In [58], the ability of transformer based
LMs to generalise observed facts is analysed in a systematic way, by training an
LM from scratch on a synthetic corpus in which various regularities are present.
They find that LMs are indeed capable of discovering symbolic rules, and capa-
ble of applying such rules for inferring facts not present in the training corpus,
although they also identified important limitations. The aforementioned works
mostly focus on one-off rule applications, although some authors have found that
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LMs can be trained to perform more sophisticated forms of rule based reasoning
[59]. Finally, the ability of transformer based LMs to discover and apply rule-like
knowledge has also been exploited in the context of knowledge graph completion.
Most notably, [60] shows how a fine-tuned BERT model can essentially be used
as a rule base for inductive KG completion.

4 Combining Symbolic Knowledge with Embeddings

In the previous section, we discussed how neural networks are able to capture
rule-like knowledge to some extent. In many settings, however, symbolic rep-
resentations also play a central role. For this reason, we now focus on frame-
works for combining symbolic and neural representations. For instance, sym-
bolic rules can be used to encode knowledge elicited from a domain expert,
hence it is of interest to study mechanisms for incorporating symbolic knowl-
edge when training or using neural models, which we discuss in Sect. 4.1. Sym-
bolic representations are also needed for specifying complex information needs.
Recently, approaches have been proposed for evaluating such complex (symbolic)
queries against knowledge graph embeddings, and other neural representations
(Sect. 4.2). Finally, in applications where interpretability is a primary concern,
symbolic knowledge is clearly preferable over neural representations. However,
the brittleness of symbolic reasoning means that purely symbolic methods often
break down. Symbolic representations are particularly limiting when it comes
to inductive reasoning, which in turn makes it difficult to provide plausible or
approximate answers in cases where exact reasoning yields no results. To address
such concerns, Sect. 4.3 discusses methods in which neural representations are
used to add inductive capabilities to symbolic frameworks.

4.1 Injecting Knowledge into Neural Models

Rules are commonly used for injecting prior knowledge when training a neural
model [41,61–63]. The most typical strategy is to approximate the rules using
differentiable functions, and to add a term to the loss function which encour-
ages the learned representations to adhere to the rules. Another strategy is to
use (heuristic) rules to automatically generate (noisy) labelled training exam-
ples [64,65]. To train a neural model from these noisy labels, the true label is
typically modelled as a latent variable, which is inferred by modelling the relia-
bility of the rules, as well as their correlations in some cases. Rather than using
symbolic knowledge during training, some approaches also use symbolic knowl-
edge to reason with the output of a neural model. For instance, [66] proposes a
model for question answering, which uses a fine-tuned BERT model to generate
a vector representation of the question context (i.e. the question and candidate
answer), and then uses a reasoning process which combines that vector with
a knowledge graph. The resulting reasoning process uses a Graph Neural Net-
work to dynamically update the question context vector based on the symbolic
knowledge captured by the KG. DeepProbLog [42] is also aimed at reasoning
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about the outputs of a neural network model, in this case based on symbolic
probabilistic rules. The general idea of adding a differentiable reasoner on top of
a deep neural network model has been explored from a number of other angles.
For instance, [67] relies on a differentiable SAT solver to enable reasoning with
neural network outputs, while [68] proposes a strategy for using combinatorial
optimisation algorithms within an end-to-end differentiable model.

4.2 Complex Query Answering

Learning knowledge graph embeddings has proven a successful approach to pre-
dict missing or unobserved edges in knowledge graphs. However, while dealing
with knowledge graphs, one is usually interested in handling complex queries
describing complex information in the form of graph patterns rather than sim-
ple atomic edge-like queries. Indeed, one of the main benefits of symbolically
encoded knowledge graphs is that they support SPARQL or conjunctive queries
(CQs) [12,13]. However, symbolically encoded KGs can only be queried for
existing facts in the knowledge graph, that is, missing entities or edges can-
not be inferred. To address this shortcoming, recently various investigations on
the use of knowledge graph embeddings to make predictions about conjunctive
queries and extensions thereof on incomplete knowledge graphs have been car-
ried out [69–75]. In this setting, for instance, given an incomplete university
knowledge graph, we might want to predict which students are (likely) attending
Math and CS modules that use linear algebra? Unlike for edge (link) predic-
tion, the query might involve several unobserved edges and entities, effectively
making this a more complex problem as there exist a combinatorial number of
possible interesting queries, and each of them could be matched to many (unob-
served) subgraphs of the input KG. In fact, it is not hard to see that a naive
approach to query prediction might be unfeasible in practice [69]. One could first
use an edge prediction model on all possible pairs of nodes, and then using the
obtained edge likelihood, and then enumerate and score all candidate subgraphs
that might satisfy a query. However, this enumeration approach is in the worst-
case exponential in the number of existentially quantified variables in the query.
As a solution, these works represent KG entities and queries in a joint embed-
ding space. For example, the seminal graph query embedding model (GQE) [69]
represents KG entities x and a query q as vectors and then cosine similarity is
used to score the plausibility of x being a possible answer to q. Most existing
query embedding approaches work compositionally by building the embedding
of a query q based on its sub-queries. For example, if the input query q is of
the form q1 ∧ q2, the embedding of q is computed based on the embeddings
of q1 and q2. A number of these works have concentrated on developing query
embeddings that support extensions of conjunctive queries, such as positive exis-
tential queries (extending CQs with disjunction) [70] or even existential queries
with negation [71]. Recently, [75] proposed a framework for answering positive
existential queries using pre-trained link predictors to score the atomic queries
composing the input query, which is then evaluated using continuous versions of
logical operators and combinatorial search or gradient descent. Importantly, this
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work shows that state-of-the-art results can be obtained using a simple frame-
work requiring only neural link predictors trained for atomic queries, rather than
millions of queries as in previous works. In all the works mentioned so far it is
assumed that queries have a unique missing entity (answer variable). To over-
come this shortcoming, [73] proposed an approach based on transformers to deal
with conjunctive queries with multiple missing entities. Finally, [72] investigates
whether some of the existing query embedding models are logically faithful in
the sense that they behave like symbolic logical inference systems with respect
to entailed answers. They show that existing models behave poorly in finding
logically entailed answers, and propose a model improving faithfulness without
losing generalization capacity.

4.3 Using Embeddings for Flexible Symbolic Reasoning

In applications where interpretability is important, using symbolic representa-
tions is often preferable. For this reason, developing rule based classifiers remains
an important topic of research [35,76,77]. One important disadvantage, how-
ever, is that rule bases are usually incomplete. Indeed, learned rules typically
only cover situations that are witnessed (sufficiently frequently) in the training
data. Neural network models, on the other hand, have the ability to interpolate
between such situations, which intuitively allows them to make meaningful pre-
dictions across a wider range of situations. When rules are manually provided by
a domain expert, beyond toy domains we can usually not expect the resulting
rule base to be exhaustive either. To address this concern, a number of methods
have been proposed which combine the inductive generalisation abilities of neural
models, to allow some form of flexible rule-based reasoning. A standard solution
is to use vector representations to implement a form of similarity based reason-
ing [78,79]. Consider, for instance, the following rule: strawberry → healthy, and
suppose that our knowledge base says nothing about raspberries. Given a stan-
dard word embedding [80], we can find out that strawberry and raspberry are
highly similar. Based on this knowledge, we can infer that raspberry → healthy
is plausible. However, it is difficult to relate degrees of similarity to the plausi-
bility of the inferred rules in a principled way. For this reason, interpolation has
been put forward as an alternative to similarity based reasoning [81–83]. The
intuition is to start from a minimum of two rules e.g. raspberry → healthy and
orange → healthy. Plausible inferences are then supported by the notion of con-
ceptual betweenness: we say that a concept B is between the concepts A1, ...An

if properties that hold for all of A1, ..., An are also expected to hold for B. If we
know that raspberry is between strawberry and orange, then we can plausibly
infer the rule raspberry → healthy from the two given ones. This interpolation
principle is closely related to the notion of category based induction from cog-
nitive science [84]. While this is a general principle, which can be instantiated
in different ways, good results have been obtained using strategies which infer
betweenness relations from word embeddings and related vector representations
[82,85].
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5 Concluding Remarks

While it seems clear that future AI systems will somehow need to combine the
advantages of symbolic and neural representations, the lack of sufficiently com-
prehensive symbolic knowledge bases, especially those which capture generic and
commonsense knowledge, remains an important obstacle. In the last few years,
the focus has somewhat shifted from embedding symbolic knowledge bases to
learning knowledge about the world by training deep neural language models.
The amount of world knowledge captured by the largest models, such as GPT-3
[86], has been particularly surprising. While by no means perfect, even the com-
monsense reasoning abilities of these models surpasses expectations1. To deal
with aspects of commonsense knowledge that are rarely stated in text, a typi-
cal strategy in recent years has been to crowdsource targeted natural language
assertions and explanations [11,87], and to use such crowdsourced knowledge for
fine-tuning language models. However, despite their impressive abilities, neural
language models still have two fundamental limitations, which suggest that sym-
bolic representations and systematic reasoning will still play an important role
in future AI systems. First, while current NLP models achieve strong results
in tasks such as question answering, it is difficult to differentiate between cases
where they “know” the answer and cases where they are essentially guessing.
Indeed, recent analysis has suggested that language models are still relying on
rather shallow heuristics for answering questions [88], which tend to perform
well on most benchmarks but offer little in terms of guarantees. Along similar
lines, neural machine translation systems are prone to “hallucinating” [89], i.e.
generating fluent sentences in the target language which are disconnected from
the source text. To use of neural models to make critical decisions thus remains
problematic. A second limitation of neural models concerns situations where
some form of systematic reasoning is needed. While neural language models can
be trained to simulate forward chaining in synthetic settings [59], in practice
considerable care is needed to extract the most relevant premises and presenting
these in a suitable way, a problem which is studied under the umbrella of multi-
hop question answering [90]. Moreover, further progress will need NLP systems
to carry out forms of reasoning that go beyond forward or backward chaining,
including reasoning about disjunctive knowledge (e.g. arising from the ambigu-
ity of language) and reasoning about the beliefs and intentions of the different
participants of a story. It seems unlikely that neural models will be able to carry
out such forms for reasoning without relying on some kind of systematic process
and structured representation. In fact, for answering questions which require
commonsense reasoning, some authors have already found that language models
can be improved by repeatedly querying them in a systematic way to extract
relevant background knowledge, before trying to answer the question [34,91].

1 https://cs.nyu.edu/∼davise/papers/GPT3CompleteTests.html.

https://cs.nyu.edu/~davise/papers/GPT3CompleteTests.html
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Abstract. The Semantic Web (SW) is characterized by the availability of a vast
amount of semantically annotated data collections. Annotations are provided
by exploiting ontologies acting as shared vocabularies. Additionally ontologies
are endowed with deductive reasoning capabilities which allow to make explicit
knowledge that is formalized implicitly. Along the years a large number of data
collections have been developed and interconnected, as testified by the Linked
Open Data Cloud. Currently, seminal examples are represented by the numerous
Knowledge Graphs (KGs) that have been built, either as enterprise KGs or open
KGs, that are freely available. All of them are characterized by very large data
volumes, but also incompleteness and noise. These characteristics have made the
exploitation of deductive reasoning services less feasible from a practical view-
point, opening up to alternative solutions, grounded on Machine Learning (ML),
for mining knowledge from the vast amount of information available. Actually,
ML methods have been exploited in the SW for solving several problems such
as link and type prediction, ontology enrichment and completion (both at ter-
minological and assertional level), and concept leaning. Whilst initially symbol-
based solutions have been mostly targeted, recently numeric-based approaches
are receiving major attention because of the need to scale on the very large
data volumes. Nevertheless, data collections in the SW have peculiarities that
can hardly be found in other fields. As such the application of ML methods for
solving the targeted problems is not straightforward. This paper extends [20], by
surveying the most representative symbol-based and numeric-based solutions and
related problems, with a special focus on the main issues that need to be consid-
ered and solved when ML methods are adopted in the SW field as well as by
analyzing the main peculiarities and drawbacks for each solution.

Keywords: Semantic Web · Machine learning · Symbol-based methods ·
Numeric-based methods

1 Introduction

The Semantic Web (SW) vision has been introduced with the goal of making the Web
machine readable [5], by enriching resources with metadata whose formal semantics is
defined in OWL1 ontologies acting as shared vocabularies to be reused. Ontologies are

1 https://www.w3.org/OWL/.
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also empowered with deductive reasoning capabilities which allow for deriving knowl-
edge that is implicitly encoded. While developing this vision, some limitations [35,67]
arose: ontology construction resulted in a time consuming task; being strongly decou-
pled, ontologies and assertions can be out-of-sync, thus resulting in incomplete, noisy
and sometimes inconsistent ontologies due to the actual usage of the conceptual vocab-
ulary in the assertions. These limitations became even more evident when pushing on
Linked Data [6,66] for enabling the actual creation of the Web of Data and nowa-
days with the progressive growth of Knowledge Graphs [36]. As a consequence, mul-
tiple necessities emerged: reasoning at large scale; managing noise, inconsistencies
and incompleteness in the data collections; (semi-)automatizing tasks such as ontology
completion, enrichment (both at schema and assertional level), link prediction; exploit-
ing alternative forms of reasoning complementing the deductive approach.

In order to fill some of these gaps, machine learning (ML) methods have been
proposed [17]. Problems such as query answering, instance retrieval and link predic-
tion have been regarded as classification problems. Suitable machine learning methods,
often inspired by symbol-based solutions in the Inductive Logic Programming (ILP)
field (aiming at inducing a hypothesised logic program from background knowledge
and a collection of examples), have been proposed [16,28,40,46,69]. Most of them are
able to cope with the expressive SW representations and the Open World Assumption
(OWA) typically adopted, differently from the Closed Wold Assumption (CWA) that is
usually assumed in the traditional ML settings. Problems such as ontology refinement
and enrichment at terminology level, e.g. assessing disjointness axioms or complex
descriptions for a given concept name, have been regarded as concept learning prob-
lems to be solved via supervised/unsupervised inductive learning methods for Descrip-
tion Logic [4] (DLs) representations [24–26,45,62,73].

Nowadays, numeric-based (also called sub-symbolic) ML methods, such as embed-
dings [14,51,56] and deep learning [21], are receiving major attention because of their
impressive ability to scale when applied to very large data collections. Mostly KG
refinement tasks, such as link/type predictions and triple classifications are targeted,
with the goal of improving/limiting incompleteness in KGs. Nevertheless, the impor-
tant gain, in terms of scalability, that numeric-based methods for the SW are obtaining
is penalizing: a) the possibility to have interpretable models as a result of a learning
process; b) the ability to exploit deductive (and complementary forms of) reasoning
capabilities; c) the expressiveness of the SW representations to be considered and the
compliance with the OWA.

In the following, the main problems and ML methods that have been developed in
the SW are surveyed along with symbol-based (Sect. 2) and numeric-based (Sect. 3)
categories, hence the fundamental peculiarities and issues are discussed. Afterwards,
considerations concerning the need for solutions that are able to provide human under-
standable explanations and, towards this direction, to come up with a unified framework
integrating both numeric and symbol-based solutions, are reported in Sect. 4. Conclu-
sions are drawn in Sect. 5.
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2 Symbol-Based Methods for the Semantic Web

The first efforts in developing ML methods for the SW have been devoted to solve
deductive reasoning tasks over ontologies under an inductive perspective. This was
motivated by the necessity of offering an alternative way to perform some forms of
reasoning when deductive reasoning was not applicable, for instance because of incon-
sistencies within ontologies, but also for supplying a solution for reasoning in presence
of incompleteness (that is when missing information with respect to a certain domain
of reference is registered, e.g. missing disjointness axioms), and/or in presence of noise
(that is when ontologies are consistent but the information therein is somehow wrong
with respect to a reference domain, e.g. missing and/or wrong (derivation of) asser-
tions). Particularly, the incompleteness of knowledge bases, both at assertional and
schema level, drove the development of ML methods trying to specifically tackle this
problem. The overall idea consisted in exploiting the evidence coming from assertional
knowledge for drawing plausible conclusions to be possibly represented with inten-
sional models. In the following, the tasks that received major attention are reported
jointly with the analysis of the main solutions for them.

2.1 Instance Retrieval

One of the first problems that has been investigated is the instance retrieval problem,
which amounts to assessing if an individual is an instance of a given concept. It has
been regarded as a classification problem aiming at assessing the class-membership
of an individual with respect to a query concept. Similarity-based methods, such as K-
Nearest Neighbor and Support Vector Machine, have been developed since they are well
known to be noise tolerant [8,16,59]. This required to cope with: 1) the OWA rather
than the CWA generally adopted in ML; 2) the non-disjointness of the classes (since
an individual can be instance of more that one concept at the same time) while, in the
usual ML setting, classes are assumed to be disjoint; 3) the definition of new similarity
measures and kernel functions for exploiting the expressiveness of SW representations.
Additionally, because of the OWA, new metrics for the evaluation of the classification
results have been defined [16]. This is because, by using standard metrics such as preci-
sion, recall and F-measure, new inductive results were deemed as mistakes whilst they
could turn out to be correct inferences when judged by a knowledge engineer. The new
metrics do not have a direct mapping to the sets of true/false positives/negatives, rather
because of the OWA, they consider the cases of unknown/unlabeled results. Particularly,
match rate, omission error, commission error and induction rate have been proposed.
The match rate measures the rate of classification results in agreement with the labels
(provided by the use of a standard deductive reasoner). The omission rate measures the
cases in which the inductive classifier was not able to provide results, due to the abun-
dance of unlabeled instances because of the OWA, whilst actual labels were available.
The commission error measures the cases in which the classifier provided results oppo-
site to the true labels (e.g. an individual being instance of the negated query concept).
The induction rate measures the cases in which the classifier was able to provide a label
whilst it was not available due to OWA. The proposed solutions experimentally proved



Mining the Semantic Web: Issues to Know 79

their ability to perform inductive instance retrieval when compared to a standard deduc-
tive reasoner. Additionally, they also proved their ability to induce new knowledge that
was not logically derivable2. Nevertheless, they were not fully able to work at large
scale.

Methods characterized by more interpretable models have also been defined [26,
63]. Inspired by the ILP literature on the induction of decision trees in clausal represen-
tation [7], a solution for inducing a Terminological Decision Tree (TDT) has been for-
malized [26]. A TDT is a tree structure, naturally compliant with the OWA, employing:
a DL language for representing nodes and inference services as corresponding tests on
the nodes. The tree-induction algorithm adopts a classical top-down divide-and-conquer
strategy with the use of refinement operators for DL concept descriptions. Once a TDT
is induced, similarly to logical decision trees, a definition for the target concept (namely
the concept with respect to which classification is to be performed) can be drawn, by
exploiting the nodes in the tree structure. This solution showed the interesting ability to
provide an interpretable model, but it turned out slightly less effective then similarity-
based classification methods.

Nevertheless, when assessing the concept membership for an individual, as recalled
above, it may result instance of more than one concept at the same time. As such a
more suitable way to regard the problem is as multi-label classification task [77], where
multiple labels (concepts in the specific case) may be assigned to each instance. Some
preliminary research has been presented in [50], focussing on type prediction in RDF
data collections where limited information from the available background knowledge
is considered. Multiple-instance learning (MIL) [11] is also a setting that would need
investigation. It deals with the problem of incomplete knowledge concerning labels
in training sets, as it happens in SW knowledge bases due to OWA. MIL is a type
of supervised learning where training instances are not individually labeled, they are
collected in sets of labeled bags. From a collection of labeled bags, the learner tries to
either (i) induce a concept that will label individual instances correctly or (ii) learn how
to label bags without inducing the concept. It may be fruitfully exploited for discovering
correlations among resources and/or emerging concepts.

Other settings that would be useful for coping with the large number of unlabelled
instances are semi-supervised learning (SSL) [12] and learning from imbalanced data.
SSL makes use of both labeled and unlabeled instances, during the learning process,
for surpassing the classification performance that could be obtained by discarding the
unlabeled data (as it would happen in a supervised learning setting). Very few research
efforts have been made in this direction. Some initial results have been presented in [52],
where a link prediction problem is solved in a transductive learning framework. In learn-
ing from unbalanced data [32,48], that is data collections where the labels distribution
is not uniform, sampling techniques are usually adopted in order to create a balanced
dataset to be successively used for the learning task. Ensemble methods, consisting in
using multiple learning algorithms to obtain better predictive performance, could be
fruitfully adopted, as illustrated in [27,63] where respectively a boosting [27] and bag-
ging [63] technique is employed.

2 The induced knowledge should be validated by ontology engineerings for the possible further
enrichment of ontologies.
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2.2 Concept Learning for Ontology Enrichment

With the purpose of enriching ontologies at terminological level, methods for learn-
ing concept descriptions for a concept name have been proposed. The problem has
been regarded as a supervised concept learning problem aiming at approximating an
intensional DLs definition, given a set of individuals of an ontology acting as posi-
tive/negative training examples.

Various solutions, e.g. DL-FOIL [24] and CELOE [45] (part of the DL-LEARNER

suite3), have been formalized. They are mostly grounded on a separate-and-conquer
(sequential covering) strategy: a new concept description is built by specializing, via
suitable refinement operators, a partial solution to correctly cover (i.e. decide a consis-
tent classification for) as many training instances as possible. Whilst DL-FOIL works
under OWA, CELOE works under CWA. Both of them may suffer from ending up in
sub-optimal solutions. In order to overcome such issue, DL-FOCL [64], PARCEL [70]
and SPACEL [71] have been proposed. DL-FOCL is an optimized version of DL-
FOIL, implementing a base greedy covering learner. PARCEL combines top-down and
bottom-up refinements in the search space. The learning problem is split into various
sub-problems, according to a divide-and-conquer strategy, that are solved by running
CELOE. Once the partial solutions are obtained, they are combined in a bottom-up fash-
ion. SPACEL extends PARCEL with a symmetrical specialization of a concept descrip-
tion.

These solutions proved their ability to learn approximated concept descriptions for
a target concept name but relatively small ontological knowledge bases have been con-
sidered for the experiments.

2.3 Knowledge Completion

Knowledge completion consists in finding new information at assertional level, that
is facts that are missing in a considered knowledge base. This task has become very
popular with the development of KGs, that are well known to be incomplete, and it is
also strongly related to the link prediction task (see Sect. 3).

One of the most well known systems for knowledge completion of RDF knowl-
edge bases is AMIE [28]. Inspired by the literature in association rule mining [2] and
ILP methods for learning Horn clauses, AMIE aims to mine logic rules from RDF
knowledge bases with the final goal of predicting new assertions. AMIE (and its opti-
mized version AMIE+ [29]) currently represents the most scalable rule mining system
for learning Horn rules on large RDF data collections and is also explicitly tailored
to support the OWA. However, it does not exploit any form of deductive reasoning. A
related rule mining system, similarly based on a level-wise generate and test strategy has
been proposed in [19]. It aims to learn SWRL rules [37] from OWL ontologies while
exploiting schema level information and deductive reasoning during the rule learning
process. Both AMIE and the solution presented in [19] showed the ability to mine useful
rules and to predict new assertional knowledge. The solution proposed in [19] showed
reduced scalability due to the exploitation of the reasoning capabilities.

3 https://dl-learner.org/.

https://dl-learner.org/
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2.4 Learning Disjointness Axioms

Disjointness axioms are essential for making explicit the negative knowledge about a
domain, yet they are often overlooked during the modeling process (thus affecting the
efficacy of reasoning services). To tackle this problem, automated methods for discov-
ering these axioms from the data distribution have been devised.

A solution grounded on association rule mining [2] has been proposed in [72,73]. It
is based on studying the correlation between classes comparatively, namely association
rules, negative association rules and correlation coefficient. Background knowledge
and reasoning capabilities are used to a limited extent.

A different solution has been proposed in [62] where, moving from the assumption
that two or more concepts may be mutually disjoint when the sets of their (known)
instances do not overlap, the problem has been regarded as a clustering problem, aim-
ing at finding partitions of similar individuals of the knowledge base, according to a
cohesion criterion quantifying the degree of homogeneity of the individuals in an ele-
ment of the partition. Specifically, the problem has been cast as a conceptual clustering
problem, where the goal is both to find the best possible partitioning of the individu-
als and also to induce intensional definitions of the corresponding classes expressed in
the standard representation languages. Emerging disjointness axioms are captured by
the employment of terminological cluster trees (TCTs) and by minimizing the risk of
mutual overlap between concepts. Once the TCT is grown, groups of (disjoint) clusters
located at sibling nodes identify concepts involved in candidate disjointness axioms
to be derived. Unlike [72,73], based on the statistical correlation between instances,
the empirical evaluation of [62] showed its ability to discover disjointness axioms also
involving complex concept descriptions, thanks to the exploitation of the underlying
ontology as background knowledge.

2.5 Capturing Ontology Evolutions

Some acquired knowledge may also evolve over time. For instance, given an ontol-
ogy, due to the insertion of new individuals and assertions, new concept formations
may emerge over time but lacking of intentional definitions (novelty detection [68]).
Similarly, existing concepts, defined by their intention, may actually evolve towards
more general or more specific concepts when looking at they extensions that again may
evolve over time (concept drift [75]).

Capturing these phenomenon may be fundamental and unsupervised as well as pat-
tern mining methods would be useful for the purpose. Some preliminary research on
capturing knowledge evolution by exploiting conceptual clustering methods has been
presented [23,25]. Particularly, a two step approach is proposed. As a first step, suit-
able distance-based and semantically enhanced clustering method are exploited in oder
to spot cases of concept that are evolving or novel concepts which are emerging based
on the elicited clusters. Afterwards, concept learning algorithms for DL representations
(see Sect. 2.2) are used to produce new concepts based on a group of examples (i.e.
individuals in a cluster) and counterexamples (individuals in disjoint clusters).

The proposed solutions proved the feasibility of the overall approach by showing
the ability to capture new and evolving concepts but also highlighted a main limitation
given by the lack of gold standards for validating the results.
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3 Numeric-Based Methods for the Semantic Web

Whilst symbolic methods adopt symbols for representing entities and relationships of a
domain and infer generalizations that provide new insights into the data and are ideally
readily interpretable, numeric-based methods typically adopt feature vector (proposi-
tional) representations and cannot provide interpretable models but they are usually
rather scalable [49].

The problem that has been mainly investigated in the SW context by adopting
numeric solutions is link prediction which amounts to predict the existence (or the
probability of correctness) of triples in (a portion of) the Web of Data. Data are con-
sidered in their graph representation, mostly the RDF representation language has been
targeted and almost no reasoning is exploited; most expressive SW languages are basi-
cally discarded. The attention towards this problem is also grown due to the increasing
availability of KGs, that are known to be often missing facts [74]. In the KG context,
link prediction is also referred to as knowledge graph completion. Methods borrowed
from the Statistical Relational Learning (SRL) [31] (having as main goal the creation of
statistical models for relational/graph-based data) have been mostly developed. In the
following the main classes of methods and solutions targeting link prediction in the SW
are analyzed.

3.1 Probabilistic Latent Variable Models

Probabilistic Latent Variable Models explain relations between entities by associating
each resource to a set of intrinsic latent attributes ( i.e. attributes not directly observ-
able in the data) and conditions the probability distribution of the relations between two
resources on their latent attributes. All relations are considered conditionally indepen-
dent given the latent attributes. This allows the information to propagate through the
network of interconnected latent variables.

One of the first numeric-based link prediction solution belonging to this category is
the Infinite Hidden Semantic Model (IHSM) [60]. It formalizes a probabilistic latent
variable that associates a latent class variable with each resource/node and makes
use of constraints expressed in First Order Logic during the learning process. IHSM
showed promising results but resulted in a limited scalability on large SW data col-
lection because of the complexity of the probabilistic inference and learning, which is
intractable in general [42].

3.2 Embedding Models

With the goal of scaling on very large SW data collections, embedding models have
been investigated. Similarly to probabilistic latent variable models, in embedding mod-
els each resource/node is represented with a continuous embedding vector encoding its
intrinsic latent features within the data collection. Models in this class do not necessar-
ily rely on probabilistic inference for learning the optimal embedding vectors and this
allows to avoid the issues related to the normalization of probability distributions, that
may lead to intractable problems.
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Particularly, KG embedding methods have received considerable attention. They
typically map entities and relations forming complex graph structures to simpler repre-
sentations (feature-vectors) and aim at learning prediction functions to be exploited for
tasks such as link prediction and triple classification. The scalability purpose motivated
the interest delved towards these models [10] which have been shown to ensure good
performances on very large KGs. Specifically, KG embedding methods aim at convert-
ing the data graph into an optimal low-dimensional space in which graph structural
information and graph properties are preserved as much as possible [10,39]. The low-
dimensional spaces enable computationally efficient solutions that scale better with the
KG dimensions. Graph embedding methods may differ in their main building blocks:
the representation space (e.g. point-wise, complex, discrete, Gaussian, manifold), the
encoding model (e.g. linear, factorization, neural models) and the scoring function (that
can be based on distance, energy, semantic matching or other criteria) [39]. In any case,
the objective consists in learning embeddings such that the score of a valid (positive)
triple is lower than the score of an invalid triple standing for a sort of negative examples.

One of the first solutions belonging to this category is RESCAL [56], which imple-
ments graph embedding by computing a three-way factorization of an adjacency tensor
that represents the multi-graph structure of the data collection. RESCAL resulted in a
powerful model, it was also able to capture complex relational patterns over multiple
hops in a graph, however, even if improving the scalability of IHSM, it was not able to
scale on very large graph-based data collections (e.g. the whole YAGO or DBPedia).
The main limitation was represented by the parameter learning phase, which may take
rather long for converging to optimal solutions. With the goal of improving the model
training phase employed by RESCAL, a solution exploiting adaptive learning rates dur-
ing training has been proposed [51]. Specifically, an energy-based embedding model
has been formalized, where entities and relations are embedded in continuous vector
spaces and the probability of an RDF triple to encode a true statement is expressed in
terms of energy of the triple, which is an unnormalized score that is inversely propor-
tional to such a probability value. It is computed as a function of the embedding vectors
of the subject, the predicate and the object of the triple. This solution experimentally
showed improvements in terms of efficiency of the parameter learning process and more
accurate results in a significantly lower number of iterations.

Nevertheless, the very first embedding model that registered very high scalability
performances has been TRANSE [9]. It introduces a very simple but effective and effi-
cient model: each entity is represented by an embedding vector and each predicate
is represented by a (vector) translation operation. The score of a triple is given by
the similarity (negative L1 or L2 distance) of the translated subject embedding to the
object embedding. The optimal embedding and translation vectors for predicates are
learned jointly. The method relies on a stochastic optimization process, that iteratively
updates the distributed representations by increasing the score of the positive triples i.e.
the observed triples, while lowering the score of unobserved triples standing as neg-
ative examples. The embedding of all entities and predicates in the KG is learned by
minimizing a margin-based ranking loss.

Despite the scalability of TRANSE, it resulted limited in representing properly var-
ious types of properties such as reflexive ones, and 1-to-N , N -to-1 and N -to-N rela-
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tions. To tackle this limitation, while keeping the ability to scale on very large KGs,
moving from TRANSE, a large family of models has been developed. Among others,
TRANSR [47] has been proposed as a more suitable model to handle non 1-to-1 rela-
tions. It adopts a score function that preliminarily projects entities and relations to the
different spaces and successively they are put together through a suitable projection
matrix. The main variation introduced by the new model regards the way the entities
are projected in the vector space of the relations, which increases the complexity with-
out compromising the overall scalability.

An important point that needs to be highlighted is that, due to tackling RDF rep-
resentations, most of the considered data collections only contain positive (training)
examples, since usually false facts are not encoded. As training a learning model in
all-positive examples could be tricky because the model might easily over generalize,
for obtaining negative examples two different approaches are generally adopted: either
corrupting true/observed triples with the goal of generating plausible negative exam-
ples or making a local-closed world assumption (LCWA) in which the data collection
is assumed as locally complete [55]. In both cases, wrong negative information may
be generated and thus used when training and learning the embedding models; hence
alternative solutions are currently investigated [3]. Even more so, existing embedding
models do not make use of the additional semantic information that may be coded when
more expressive representation languages are adopted. Indeed the need for semantic
embedding methods has been argued [20,38,57].

3.3 Semantically Enriched Embedding Models

Recently, semantically empowered embedding models, particularly targeting KG
refinement tasks, have been investigated [18,38,53] and various approaches have been
proposed that leverage different specific forms of prior knowledge to learn better repre-
sentations.

In [33] a KG embedding method considering also logical rules has been proposed,
where triples in the KG and rules are represented in a unified framework. Specifically,
triples are represented as atomic formulae while rules are represented as more com-
plex formulae modeled by t-norm fuzzy logics admitting as antecedent single atoms
or conjunctions of atoms with variables as subjects and objects. A common loss over
both representation is defined which is minimized to learn the embeddings. This pro-
posal resulted in a novel solution but the specific form of prior knowledge that has to
be available for the KG constitutes its main drawback. A similar drawback also applies
to the model proposed in [54], where a solution based on adversarial training is formal-
ized, exploiting Datalog clauses to encode assumptions which are used to regularize
neural link predictors. An inconsistency loss is derived that measures the degree of vio-
lation of such assumptions on a set of adversarial examples. Training is defined as a
minimax problem, in which the models are trained by minimizing the inconsistency
loss on the adversarial examples jointly with a supervised loss. Nevertheless, in [1] the
limitations of the current embedding models have been identified: theoretical inexpres-
siveness, lack of support for inference patterns, higher-arity relations, and logical rule
incorporation.
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Complementary solutions, besides exploiting the graph structural information and
properties, focused on exploiting also the additional knowledge available, when rich
representation languages as RDFS and OWL are employed, that is when no specific
addtional formalisms are required for representing additional prior knowledge. Partic-
ularly, [53] has proven the effectiveness of combinations of embedding methods and
strategies relying on reasoning services for the injection of Background Knowledge
(BK) to enhance the performance of a specific predictive model. Following this line,
TRANSOWL, aiming at injecting BK particularly during the learning process, and its
upgraded version TRANSROWL, where a newly defined and more suitable loss func-
tion and scoring function are also exploited, have been proposed [18]. The main focus
is on the application of this idea to enhance well-known basic scalable models, namely
TRANSE [9] and TRANSR [47]4, even if, in principle, the proposed approach could be
applied to more complex embedding methods, with an additional formalization. The
proposed solutions can take advantage of an informed corruption process that lever-
ages on reasoning capabilities, while limiting the amount of false negatives that a less
informed random corruption process may cause.

In TRANSOWL the original TRANSE setting is maintained while resorting to rea-
soning with schema axioms to derive further triples to be considered for training and
that are generated consistently with the semantics of the properties. Particularly, for
each considered axiom, TRANSOWL defines, on the score function, specific constraints
that guide the way embedding vectors are learned. It extends the approach in [53], for-
malizing a model characterized by two main components devoted to inject BK in the
embedding-based model during the training phase: 1) Reasoning: It is used for generat-
ing corrupted triples that can certainly represent negative instances, thus avoiding false
negatives, for a more effective model training. Moreover, false positives can be detected
and avoided. Specifically, using a reasoner5 it is possible to generate corrupted triples
exploiting the available axioms specified in RDFS and OWL. The following axioms are
considered: domain, range, disjointWith, functionalProperty; 2) BK Injection: A set of
different axioms, specifically equivalentClass, equivalentProperty, inverseOf and sub-
ClassOf, are employed for the definition of constraints on the score function considered
in the training phase so that the resulting vectors, related to such axioms, reflect their
specific properties. As a consequence, new triples are also added to the training set on
the grounds of the specified axioms.

TRANSROWL further evolves the approach used to derive TRANSOWL from
TRANSE by adopting TRANSR as the base model in order to handle non 1-to-1 prop-
erties in a more proper way. Indeed, the poor modeling of these relations (caused by
TRANSE) may generate spurious embedding vectors with null values or analogous vec-
tors among different entities, thus compromising the ability of making correct predic-
tions. A noteworthy case regards the typeOf property, a common N -to-N relation-
ship. Modeling such property with TRANSE amounts to a simple vector translation;
the considered individuals and classes may be quite different in terms of properties and
attributes they are involved in, thus determining strong semantic differences (according

4 TRANSR tackles some weak points in TRANSE, such as the difficulty of modeling specific
types of relationships [3].

5 Facilities available in the Apache Jena framework were used: https://jena.apache.org.

https://jena.apache.org
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to [76]) taking place at large reciprocal distances in the underlying vector space, hence
revealing the weakness of employing the mere translation. Differently, TRANSR asso-
ciates to typeOf, and to all other properties, a specific vector space where entity vectors
are projected to. This leads to training specific projection matrices for typeOf so that
the projected entities can be located more suitably to be linked by the vector translation
associated to typeOf.

These models, characterized by learning embeddings whilst exploiting prior knowl-
edge both during the learning process and the triple corruption process, have been
proved to improve their effectiveness compared to the original models, that focus on
structural graph properties with a random corruption process, on link prediction and
triple classification tasks. Nevertheless, they also showed some shortcomings since they
suffered when some of the considered schema axioms were missing, thus suggesting
that further research needs to be pursued in this direction.

3.4 Vector Space Embeddings for Propositionalization

A complementary research direction focused on the exploitation of vector space embed-
dings for obtaining a propositional feature vector representation of RDF data collec-
tions. Specifically, inspired by the data mining (DM) literature on propositionaliza-
tion [43], that is a collection of methods for transforming a relational data representation
into a (numeric) propositional feature vector representation so that scalable proposi-
tional DM/ML methods can be applied, RDF2Vec [61] has been proposed. It formal-
izes a solution for learning latent numeric representations of entities in RDF graphs
by adapting language modeling approaches. A two-steps approach is adopted: first the
RDF graph is converted into a set of sequences of entities (for the purpose two differ-
ent approaches using local information, that are graph walks and Weisfeiler-Lehman
Subtree RDF graph kernels, are exploited); in the second step, the obtained sequences
are used to train a neural language model estimating the likelihood of a sequence of
entities appearing in a graph. The outcome of the the training process provides each
entity in the graph represented as a vector of latent numerical features. DBpedia and
Wikidata have been processed. In order to show that the obtained vector representation
is independent from task and algorithm, an experimental evaluation involving a number
of classification and regression tasks has been performed.

An upgrade of RDF2Vec has been presented in [14]. The proposed solution is
grounded on the exploitation of global patterns, differently from RDF2Vec which
exploits local patterns. None of the two solutions can cope with literals.

4 On the Need for Explainable Solutions

The need to cope with the fast growing of the Web of Data and the emerging very
large KGs required the SW community to show its ability to manage such tremendous
amount of data and knowledge.

This mostly motivated the right attention towards numeric ML methods, particularly
for providing scalable solutions to manage the inherent incompleteness of the Web of



Mining the Semantic Web: Issues to Know 87

Data. Indeed, current symbolic methods are not actually comparable, in terms of scala-
bility, to numeric-based solutions. This gain is not for free. It is obtained by giving up
the expressive representation languages, such as OWL, that the SW community con-
tributed to standardize with the goal of formalizing rich and expressive knowledge, but
also by almost forgetting one of the most powerful characteristic of these languages, that
is being empowered with deductive reasoning capabilities that allow for deriving new
knowledge. This means to loose knowledge that is already available. Indeed, as illus-
trated in Sect. 3, almost all numeric methods focus on RDF as a representation language
and nearly no reasoning capabilities are exploited. Furthermore, differently from sym-
bolic methods, numeric-based solutions lack the ability to provide interpretable models
(see Sect. 3), thus limiting the possibility to interpret and understand the motivations for
the returned results. Additionally, tasks such as learning concept or disjointness axioms
cannot be performed without symbol-based methods which can certainly benefit of the
very large amount of information to provide potentially more accurate results.

Research efforts need to be devoted towards ML solutions that, while keeping scal-
ability, are able to target more expressive representations as well as to provide inter-
pretable models. As a first step, the integration of numeric and symbolic approaches
should be focused on.

Some discussions in this direction have been developed by the Neural-Symbolic
Learning and Reasoning community [30,34], which seeks to integrate principles from
neural networks learning and logical reasoning. The main conclusion has been that
neural-symbolic integration appears particularly suitable for applications character-
ized by the joint availability of large amounts of (heterogeneous) data and knowledge
descriptions, which is actually the case of the Web of Data. A set of key challenges
and opportunities have been outlined [30], such as: how to represent expressive log-
ics within neural networks, how neural networks should reason with variables, or how
to extract symbolic representation from trained neural networks. Preliminary results
for some of these challenges have been recently registered, encouraging pursuing the
research direction. An example is represented by SimplE [41], a scalable tensor-based
factorization model that is able to learn interpretable embeddings incorporating log-
ical rules through weight tying. Ideas for extracting propositional rules from trained
neural networks under SW background knowledge have been illustrated [44], showing
that the exploitation of BK allows for: reducing the extracted rule set; reproducing the
input-output function of the trained neural network. A conceptual sketch for explaining
the classification behavior of artificial neural networks in a non-propositional setting
while using SW background knowledge has been proposed [65]. This sheds the light
on another important issue, that is the necessity to provide explanations for results sup-
plied by ML methods [15], particularly when they come from very large sources of
knowledge, e.g. results for a link prediction problem.

The solution depicted in [65] is in agreement with the idea of exploiting symbol-
based interpretable models to explain conclusions [49,58]. Nevertheless, interpretable
models describe how solutions are obtained but not why they are obtained. As argued
in [22,30], providing an explanation means to supply a line of reasoning, illustrating the
decision making process of a model whilst using human understandable features. Fol-
lowing this direction, a solution providing human-centric transfer learning explanation
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has been proposed [13]. It takes advantage of ontologies (DBPedia is used) and reason-
ing capabilities to infer different kinds of human understandable explanatory evidence.
Hence, in a more broad sense, providing an explanation means to open the box of the
reasoning process and make it understandable. In a complex setting such as the Web
of Data, where knowledge may result from an automatic information acquisition and
integration process from different sources, thus potentially noisy and with conflicting
information, multiple reasoning paradigms may be required e.g. deduction (when rules
and theory are available), induction (for building models from the available knowledge),
abduction (for filling in partial models coping with incomplete theory), commonsense
reasoning etc. Large research efforts have been devoted to study each paradigm, how-
ever in the considered complex scenario, multiple paradigms could be needed at the
same time. This may require the formalization of a unifying reasoning framework.

5 Conclusions

This paper surveyed the different SW problems where ML solutions have been
employed and the progresses that have been registered from them. A major focus has
been devoted to the main issues that need to be considered and solved when ML solu-
tions are adopted in the SW field. Specifically, symbol-based and numeric-based meth-
ods have been analyzed and their main peculiarities and drawbacks have been high-
lighted. Hence, some considerations concerning the need for solutions that are able to
provide human understandable explanations and, towards this direction, to come up
with a unified framework integrating both numeric and symbol-based solutions, have
been reported.
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2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in
large databases. In: Buneman, P., et al. (eds.) Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 207–216. ACM Press (1993). https://doi.
org/10.1145/170035.170072

3. Arnaout, H., Razniewski, S., Weikum, G.: Enriching knowledge bases with interesting nega-
tive statements. In: Das, D., et al. (eds.) Proceedings of AKBC 2020 (2020). https://doi.org/
10.24432/C5101K

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Descrip-
tion Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2010). https://doi.
org/10.1017/CBO9780511711787

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001).
https://doi.org/10.4018/jswis.2009081901

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Sem. Web Inf. Syst.
5(3), 1–22 (2009). https://doi.org/10.4018/jswis.2009081901

7. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif.
Intell. 101(1–2), 285–297 (1998). https://doi.org/10.1016/S0004-3702(98)00034-4

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
https://doi.org/10.24432/C5101K
https://doi.org/10.24432/C5101K
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1016/S0004-3702(98)00034-4


Mining the Semantic Web: Issues to Know 89

8. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer,
K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76298-0 5

9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Burges, C.J.C., et al. (eds.) Proceedings of NIPS
2013, pp. 2787–2795. Curran Associates, Inc. (2013)

10. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: Problems,
techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(09), 1616–1637 (2018).
https://doi.org/10.1109/TKDE.2018.2807452

11. Carbonneau, M., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning. Pat-
tern Recogn. 77, 329–353 (2018). https://doi.org/10.1016/j.patcog.2017.10.009

12. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised Learning. The MIT Press,
Cambridge (2006). https://doi.org/10.7551/mitpress/9780262033589.001.0001
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28. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under
incomplete evidence in ontological knowledge bases. In: Schwabe, D., et al. (eds.) 22nd
International World Wide Web Conference, WWW 2013, pp. 413–422. International World
Wide Web Conferences Steering Committee/ACM (2013). https://doi.org/10.1145/2488388.
2488425
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Abstract. This document contains some lecture notes for a seminar
on Temporal Equilibrium Logic (TEL) and its application to Answer
Set Programming (ASP) inside the 17th Reasoning Web Summer School
(RW 2021). TEL is a temporal extension of ASP that introduces tem-
poral modal operators as those from Linear-Time Temporal Logic. We
present the basic definitions and intuitions for Equilibrium Logic and
then extend these notions to the temporal case. We also introduce sev-
eral examples using the temporal ASP tool telingo.

Keywords: Answer Set Programming · Linear Temporal Logic ·
Equilibrium Logic · Temporal Equilibrium Logic

1 Introduction

Answer Set Programming [4] (ASP) is nowadays one of the most successful
paradigms for declarative problem solving and practical Knowledge Representa-
tion. Based on the answer set (or stable model) semantics [18] for logic programs,
ASP constitutes a declarative formalism and a natural choice for solving static
combinatorial problems up to NP complexity (or ΣP

2 in the disjunctive case),
but has also been applied to problems that involve a dynamic component and a
higher complexity, like planning, well-known to be PSPACE-complete [5]. The
use of ASP for temporal scenarios has been frequent since its early application
for reasoning about actions and change [19]. Commonly, dynamic scenarios in
ASP deal with transition systems and discrete time: instants are represented as
integer values for a time-point parameter, added to all dynamic predicates. This
temporal parameter is bound to a finite interval, from 0 to a maximum time-
step n (usually called the horizon). Problems involving temporal search, such as
planning or temporal explanation, are solved by multiple calls to the ASP solver
and gradually increasing the horizon length.

Although this methodology is simple and provides a high degree of flexibility,
it lacks for a differentiated treatment of temporal expressions (the time param-
eter is just one more logical variable to be grounded) and prevents the reuse of
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the large corpora of techniques and results well-known from the temporal logic
literature. In an attempt to overcome these limitations, the approach called Tem-
poral Equilibrium Logic [2,7] introduced a logical formalisation that combines
ASP with modal temporal operators. This formalism constitutes an extension of
Equilibrium Logic [22] which, in its turn, is a complete logical characterisation
of (standard) ASP based on the intermediate logic of Here-and-There (HT) [21].
As a result, TEL is an expressive non-monotonic modal logic that shares the
syntax of Linear-Time Temporal Logic (LTL) [23] but interprets temporal for-
mulas under a non-monotonic semantics that properly extends stable models.
This semantics is based on the idea of selecting some LTL temporal models of
a theory Γ that satisfy some minimality condition, when examined under the
weaker logic of temporal HT (THT). Thus, a temporal stable model of Γ is a
kind of selected LTL model of Γ , and so, it has the form of a sequence of states,
usually called a trace.

In the rest of this document we will first introduce some intuitions about
Equilibrium Logic from a rule-based reasoning perspective and then shift to the
definition of its temporal extension. After that, we will provide several examples
and talk about their practical implementation in the ASP tool called telingo.
Finally, we will close with some conclusions and open topics for future work or
currently under study.

2 Rule-Based Reasoning and Equilibrium Logic

In this section, we partly reproduce the motivations included in [12] (see that
paper for further detail). ASP is a rule-based paradigm sharing the same syntax
as the logic programming language Prolog but with a different reading. Take a
rule of the form:

smoke :- fire. (1)

ASP uses a bottom-up reading of (1): “smoke is produced by fire”. That is,
whenever fire belongs to our current set of beliefs or certain facts, smoke must
also be included in that set too. On the contrary, Prolog’s top-down reading
could be informally stated as “to obtain smoke, we need fire”. That is, the
rule describes a procedure to get smoke as a goal which consists in pursuing
fire as a new goal. Regardless of the application direction, it seems clear that
rules have a conditional form with a right-hand condition (body) and a left-hand
consequent (head) that in our example (1) respectively correspond to fire and
smoke. Thus, a straightforward logical formalisation would be understanding (1)
as the implication fire → smoke in classical propositional logic. This guarantees,
for instance, that if we add fire as a program fact, we will get smoke as a
conclusion (by application of modus ponens). So, the “operational” aspect of
rule (1) can be captured by classical implication. However, the semantics of a
classical implication is not enough to cover the intuitive meaning of a program
rule. If our program only contains (1) and we read it as a rule, it is clear that fire
is not satisfied, since no rule can yield that atom, and so, smoke is not obtained
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either. However, implication fire → smoke, which amounts to the classically
equivalent disjunction ¬fire ∨ smoke, has three classical models: ∅ (both atoms
false), {smoke} and {fire, smoke}. Note that the two last models seem to consider
situations in which smoke or fire could be arbitrarily assumed as true, even
though the program provides no way to prove them. An important observation
is that ∅ happens to be the smallest model (with respect to set inclusion). This
model is interesting because, somehow, it reflects the principle of not adding
arbitrary true atoms that we are not forced to believe, and it coincides with the
expected meaning for a program just containing (1). The existence of a least
classical model is, in fact, guaranteed for logic programs without negation (or
disjunction), so-called positive logic programs, and so, it was adopted as the main
semantics [14] for logic programming until the introduction of negation. However,
when negation came into play, classical logic was revealed to be insufficient again,
even under the premise of minimal models selection. Suppose we have a program
Π1 consisting of the rules:

fill :- empty, not fire. (2)
empty. (3)

where (2) means that we always fill our gas tank if it is empty and there is
no evidence on fire, and (3) says that the tank is empty indeed. As before, fire
cannot be proved (it is not head of any rule) and so, the condition of (2) is sat-
isfied, producing fill as a result. The straightforward logical translation of (2) is
empty ∧ ¬fire → fill that, in combination with fact (3), produces three models:
T1 = {empty ,fill}, T2 = {empty ,fire} and T3 = {empty ,fire,fill}. Unfortu-
nately, there is no least classical model any more: both T1 (the expected model)
and T2 are minimal with respect to set inclusion. After all, the previous impli-
cation is classically equivalent to empty → fire ∨ fill which does not capture the
directional behaviour of rule (2). The undesired minimal model T2 is assuming
fire to be true, although there is no way to prove that fact in the program.
So, apparently, classical logic is too weak for capturing the meaning of logic
programs in the sense that it provides the expected model(s), but also accepts
other models (like T2 and T3) in which some atoms are abitrarily assumed to be
true but not “justified by the program”.

Suppose we had a way to classify true atoms distinguishing between those
just being an assumption (classical model T ) and those being also justified or
proved by program rules. In our intended models, the set of justified atoms should
precisely coincide with the set of assumed ones in T . As an example, suppose our
assumed atoms are T3 = {empty ,fire, smoke}. Any justification should include
empty because of fact (3). However, rule (2) seems to be unapplicable, because
we are currently assuming that fire is possibly true, fire ∈ T3, and so ‘not
fire’ is not acceptable – there is some (weak) evidence about fire. As a result,
atom fill is not necessarily justified and we can only derive {empty}, which is
strictly smaller than our initial assumption T3. Something similar happens for
assumption T2 = {empty ,fire}. If we take classical model T1 = {empty ,fill}
instead as an initial assumption, then the body of rule (2) becomes applicable,
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since no evidence on fire can be found, that is, fire �∈ T1. As a result, the justified
atoms are now {empty ,fill} = T1 and the classical model T1 becomes the unique
intended (stable) model of the program.

The method we have just used with the example can be seen as an informal
description of the original definition of the stable models semantics [18]. This
definition consisted of classical logic reinforced with an extra-logical program
transformation (for interpreting negation) and then using application of rules
to obtain the actually derived or justified information. We show next how it
is possible to provide an equivalent definition that exclusively resorts to logical
concepts but using a different underlying formalism, weaker than classical logic.

Although, as we have seen, our interest is focused on rules, the semantics of
Equilibrium Logic [22] can be defined on any arbitrary propositional formula.
Covering arbitrary formulas is, in fact, simpler and more homogeneous than the
original definition of stable models based on the reduct syntactic transformation.
Equilibrium models are defined by a models selection criterion on top of the
intermediate logic of Here-and-There (HT) [21], stronger than intuitionistic logic
but weaker than classical logic. The latter can be seen as a three-valued logic
where an atom can be false, assumed or proved, as we discussed before. Formally,
an HT interpretation is a pair of sets of atoms 〈H,T 〉 satisfying H ⊆ T so that:
any atom p ∈ H is considered as proved or justified ; an atom p ∈ T is considered
as assumed ; and any atom p �∈ T is understood as false. As we can see, proved
implies assumed, that is, the set of justified atoms H is always a subset of the
assumed ones T . Intuitively, T acts as our “initial assumption” while the subset
H contains those atoms from T currently considered as justified. Let At be the
collection of all atomic formulas in our given language. Then H ⊆ T ⊆ At and
all atoms in At\T are considered false in this model. An HT interpretation 〈H,T 〉
is said to be total when H = T (that is, when all assumptions are justified).

As we did for atoms, formulas can also be considered to be false, assumed or
proved. We will use a satisfaction relation 〈H,T 〉 |= ϕ to represent that 〈H,T 〉
makes formula ϕ to be proved or justified. Sometimes, however, we may happen
that this relation does not hold 〈H,T 〉 �|= ϕ while in classical logic satisfaction
T |= ϕ using the assumptions in T is true. Then, we may say that the formula is
just assumed. Finally, when ϕ is not even classically satisfied by T , T �|= ϕ, we
can guarantee that the formula is false. Formally, the fact that an interpretation
〈H,T 〉 satisfies a formula ϕ (or makes it justified), written 〈H,T 〉 |= ϕ, is
recursively defined as follows:

– 〈H,T 〉 �|= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ implies T |= ψ and (ii) 〈H,T 〉 |= ϕ

implies 〈H,T 〉 |= ψ

By abuse of notation, we use ‘|=’ both for classical and for HT-satisfaction: the
ambiguity is resolved by the form of the left interpretation (a single set T for
classical and a pair 〈H,T 〉 for HT). We say that an interpretation 〈H,T 〉 is a
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model of a theory (set of formulas) Γ iff 〈H,T 〉 |= ϕ for all ϕ ∈ Γ . We say that
a propositional theory Γ entails some formula ϕ, written Γ |= ϕ, if any model
of Γ is also a model of ϕ.

As we can see, everything is pretty standard excepting for the interpretation
of implication, which imposes a stronger condition than in classical logic. In order
to satisfy 〈H,T 〉 |= ϕ → ψ, the standard condition would be (ii), that is, if the
antecedent holds, then the consequent must hold too. In our case, the reading is
closer to an application of modus ponens in an inference rule: if the antecedent
is proved, then we can also prove the consequent. This condition, however, is
further reinforced by (i) which informally means that our set of assumptions T
classically satisfy the implication ϕ → ψ as well.

The following proposition tells us that satisfaction for total models amounts
to classical satisfaction:

Proposition 1. For any formula ϕ and set of atoms T , 〈T, T 〉 |= ϕ iff T |= ϕ
in classical logic.

We may read this result saying that classical models are a subset of HT models
(they correspond to total HT models). This immediately means that any HT
tautology is also a classical tautology. The opposite does not hold, namely, there
are classical tautologies that are not HT tautologies. We will see later several
examples.

Classical satisfaction for T allows us to keep the three-valued reading (false,
assumed or proved) also for formulas in the following way. We say that 〈H,T 〉
makes formula ϕ:

– proved when 〈H,T 〉 |= ϕ,
– assumed when T |= ϕ,
– false when T �|= ϕ.

Interestingly, as happened with atoms, formulas also satisfy that anything proved
must also be assumed. This is stated as the following property called persistence:

Proposition 2 (Persistence). For any formula ϕ and any HT interpretation
〈H,T 〉 we can show that, if ϕ is proved then it is also assumed, that is: 〈H,T 〉 |=
ϕ implies T |= ϕ.

Notice that we did not provide satisfaction of negation ¬ϕ. This is because
negation is not included above because it can be defined in terms of implication
as the formula ϕ → ⊥, as happens in intuitionistic logic. Using that abbreviation
and after some analysis, it can be proved that 〈H,T 〉 |= ¬ϕ amounts to T �|= ϕ,
that is, ¬ϕ is justified simply when ϕ is not assumed, that is, when it is false.
Apart from negation, we also define the common Boolean operators � def= ¬⊥
and ϕ ↔ ψ

def= (ϕ → ψ) ∧ (ψ → ϕ).
If we apply the persistence property to our example program Π1, this means

that any of its models 〈H,T 〉 |= Π must satisfy T |= Π as well. As we saw, we
have only three possibilities for the latter, T1, T2 and T3. On the other hand, the
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program fact (3) fixes empty ∈ H. Now, take assumption T1 = {empty ,fill}. The
only model we get is 〈T1, T1〉 because the other possible subset H = {empty}
of T1 does not satisfy (2): empty is justified, fire is false, so we should get
fill . Take T2 instead. Apart from 〈T2, T2〉, in this case we also get a model
〈H,T2〉 with H = {empty}. In such a case, fire is only assumed true, but not
proved. As a result, the rule is satisfied because its condition ¬fire is false (we
have some evidence on fire) and so 〈{empty}, T2〉 becomes a model. This is a
clear evidence that our initial assumption adding fire is not necessarily proved
when we check the program rules. In the case of T3 = {empty ,fire,fill} we have
a similar situation. Interpretations with H = {empty}, H = {empty ,fire} or
H = {empty ,fill} are also models. Note that in all of them, the only atom that
is always proved is empty , pointing out again that fire or fill are not necessarily
justified (cannot be proved using the program rules).

It must be understood that, at this point, the tag “justified” or “proved”
just refers to a second kind of truth, stronger than “assumed.” This tag will
only acquire a real “provability” meaning once we introduce a models min-
imisation. For instance, for the formula fire → smoke, we will have a model
H = T = {smoke} where smoke is being considered justified. We still miss some
minimisation criterion to consider justified or proved only those atoms and for-
mulas that we are certain to be so. This minimisation selects some particular
HT models and will follow the intuitive idea: given a fixed set of assumptions
T , minimise proved atoms H. If we additionally require that anything assumed
must be eventually proved, we get the following definition of equilibrium models
first introduced by Pearce [22]:

Definition 1 (Equilibrium Model). A total HT interpretation 〈T, T 〉 is an
equilibrium model of a theory Γ if 〈T, T 〉 |= Γ and there is no H ⊂ T such
that 〈H,T 〉 |= Γ . When this happens, we also say that T is a stable model (or
answer set) of Γ .

From the logical point of view, it is now an easy task to define a stable model.
The intuition is that we will be interested in cases where anything assumed true
in set T eventually becomes necessarily proved, i.e., H = T is the only possibility
for assumption T .

Back to our example, the only stable model of Π1 is the expected
T1 = {empty ,fill}. This is because for the other two classical models T2 =
{empty ,fire} and T3 = {empty ,fill ,fire} we could see in the previous section
that there were smaller sets H ′ that formed possible models of the program such
as 〈{empty}, T2〉 or 〈{empty}, T3〉. In the case of T1, however, the only obtained
model is 〈T1, T1〉 and no smaller H ⊂ T1 can be used to form a model.

By selecting the equilibrium models, we obtain a non-monotonic entailment
relation, that is, we may obtain conclusions that, after we add new information,
can be retracted. For instance, in our example, if we are now said that fire
has been observed and we take program Π2 = Π1 ∪ {fire}, the classical models
become T4 = {empty ,fire} and T5 = {empty ,fire,fill}. Clearly, T4 will be a
stable model, since there is no way to remove any of the two atoms empty , fire
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that are now facts in program Π2. However, T5 is not in equilibrium, since we can
form H = {empty ,fire} and 〈H,T5〉 |= Π2 because rule (2) is always satisfied,
as its body is falsified since T5 �|= ¬fire. From the only stable model we obtain,
we conclude that we cannot fill the tank any more, while this atom was among
the previous conclusions when we had no information about fire.

As said before, some classical tautologies are not HT tautologies. An inter-
esting example is the law of excluded middle a ∨ ¬a. Intuitively, this formula
means that a has to be proved or assumed and, accordingly, it has the HT coun-
termodel 〈∅, {a}〉. Therefore, if we include a ∨ ¬a for some atom in our theory,
we force that assuming a is enough to consider it proved, so p will somehow
behave “classically”. Moreover, if we add the formula a ∨ ¬a for all atoms in
the signature At , then all models are forced to be total 〈T, T 〉 and Equilibrium
Logic collapses into classical logic.

3 Temporal Equilibrium Logic

An important advantage of the definition of stable models based on Equilibrium
Logic is that it provides a purely logical characterisation that has no syntactic
limitations (it applies to arbitrary propositional formulas) and is easy to extend
with the incorporation of new constructs or the definition of new combined logics.
As happened with Equilibrium Logic, the definition of (Linear-time) Temporal
Equilibrium Logic (TEL) is done in two steps. First, we define a monotonic tem-
poral extension of HT, called (Linear-time) Temporal Here-and-There (THT)
and, second, we select some models from THT that are said to be in equilib-
rium, obtaining in this way a non-monotonic entailment relation.

We reproduce next part of the contents from [1] and [10]. The original defini-
tion of TEL was thought as a direct non-monotonic extension of standard LTL,
so that models had the form of infinite traces. However, this rules out computa-
tion by ASP technology and is unnatural for applications like planning, where
plans amount to finite prefixes of one or more traces [13]. In a recent line of
research [11], TEL was extended to cope with finite traces (which are closer to
ASP computation). On the one hand, this amounts to a restriction of THT and
TEL to finite traces. On the other hand, this is similar to the restriction of LTL
to LTLf advocated by [13]. Our new approach, dubbed TELf , has the following
advantages. First, it is readily implementable via ASP technology. Second, it can
be reduced to a normal form which is close to logic programs and much simpler
than the one obtained for TEL. Finally, its temporal models are finite and offer
a one-to-one correspondence to plans. Interestingly, TELf also sheds light on
concepts and methodology used in incremental ASP solving when understand-
ing incremental parameters as time points. Another distinctive feature of TELf

is the inclusion of future as well as past temporal operators. When using the
causal reading of program rules, it is generally more natural to draw upon the
past in rule bodies and to refer to the future in rule heads. As well, past oper-
ators are much easier handled computationally than their future counterparts
when it comes to incremental reasoning, since they refer to already computed
knowledge.
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In what follows, we present the general logics THT (monotonic) and TEL
(non-monotonic) allowing traces of any length (possibly infinite), and will later
on use the subindices ω or f to denote the particular cases where traces are
always infinite or always finite, respectively. The syntax of THT (and TEL) is
the same as for LTL with past operators. Given a (countable, possibly infinite)
set At of propositional variables (called alphabet), temporal formulas ϕ are
defined by the grammar:

ϕ ::= a ϕ1 ϕ2 ϕ ϕ1 S ϕ2 ϕ1 T ϕ2 ϕ ϕ1 UU ϕ2 ϕ1 R ϕ2 ϕ1 W ϕ2

where a ∈ At is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}.
The last six cases correspond to the temporal connectives whose names are listed
below:

Past for previous
S for since
T for trigger

Future for next
U for until
R for release
W for while

We also define several common derived temporal operators:

�ϕ
def= ⊥ T ϕ always before

�ϕ
def= � S ϕ eventually before

I def= ¬ � initial
ϕ

def= ϕ I weak previous

�ϕ
def= ⊥ RR ϕ always afterward

ϕ
def= � U ϕ eventually afterward

F def= ¬ � final
ϕ

def= ϕ F weak next

A (temporal) theory is a (possibly infinite) set of temporal formulas. Note that we
use solid operators to refer to the past, while future-time operators are denoted
by outlined symbols.

As happens with HT with respect to classical logic, logics THT and LTL share
the same syntax but, they have a different semantics, the former being a weaker
logic than the latter. The semantics of LTL relies on the concept of a trace, a (possi-
bly infinite) sequence of states, each of which is a set of atoms. For defining traces,
we start by introducing some notation to deal with intervals of integer time points.
Given a ∈ N and b ∈ N ∪ {ω}, we let [a..b] stand for the set {i ∈ N | a ≤ i ≤ b},
[a..b) for {i ∈ N | a ≤ i < b} and (a..b] for {i ∈ N | a < i ≤ b}. In LTL, a trace
T of length λ over alphabet At is a sequence T = (Ti)i∈[0..λ) of sets Ti ⊆ At .

We sometimes use the notation |T| def= λ to stand for the length of the trace. We
say that T is infinite if |T| = ω and finite if |T| ∈ N. To represent a given trace,
we write a sequence of sets of atoms concatenated with ‘·’. For instance, the finite
trace {a} · ∅ · {a} · ∅ has length 4 and makes a true at even time points and false
at odd ones. For infinite traces, we sometimes use ω-regular expressions like, for
instance, in the infinite trace ({a} · ∅)ω where all even positions make a true and
all odd positions make it false.

A state i is represented as a pair of sets of atoms 〈Hi, Ti〉 with Hi ⊆ Ti ⊆ At
where Hi (standing for “here”) contains the proved atoms, whereas Ti (standing
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for “there”) contains the assumed atoms. On the other hand, false atoms are just
the ones not assumed, captured by At \Ti. An HT-trace of length λ over alphabet
At is a sequence of pairs (〈Hi, Ti〉)i∈[0..λ) with Hi ⊆ Ti for any i ∈ [0..λ). For
convenience, we usually represent the HT-trace as the pair 〈H,T〉 of traces
H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ). Given M = 〈H,T〉, we also denote its

length as |M| def= |H| = |T| = λ. Note that the two traces H, T must satisfy a
kind of order relation, since Hi ⊆ Ti for each time point i. Formally, we define
the ordering H ≤ T between two traces of the same length λ as Hi ⊆ Ti for each
i ∈ [0..λ). Furthermore, we define H < T as both H ≤ T and H �= T. Thus, an
HT-trace can also be defined as any pair 〈H,T〉 of traces such that H ≤ T. The
particular type of HT-traces satisfying H = T are called total.

Given any HT-trace M = 〈H,T〉, we define the THT satisfaction of formulas
as follows.

Definition 2 (THT-satisfaction). An HT-trace M = 〈H,T〉 of length λ over
alphabet At satisfies a temporal formula ϕ at time point k ∈ [0..λ), written
M, k |= ϕ, if the following conditions hold:

1. M, k |= � and M, k �|= ⊥
2. M, k |= a if a ∈ Hk for any atom a ∈ At
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
5. M, k |= ϕ → ψ iff 〈H′,T〉, k �|= ϕ or 〈H′,T〉, k |= ψ, for all H′ ∈ {H,T}
6. M, k |= •ϕ iff k > 0 and M, k−1 |= ϕ
7. M, k |= ϕ S ψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= ϕ

for all i ∈ (j..k]
8. M, k |= ϕ T ψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= ϕ for

some i ∈ (j..k]
9. M, k |= ◦ϕ iff k + 1 < λ and M, k+1 |= ϕ

10. M, k = ϕ UU ψ iff for some j ∈ [k..λ), we have M, j |= ψ and M, i |= ϕ
for all i ∈ [k..j)

11. M, k = ϕ RR ψ iff for all j ∈ [k..λ), we have M, j |= ψ or M, i |= ϕ for
some i ∈ [k..j)

12. M, k = ϕWWψ iff for all j ∈ [k..λ), we have 〈H′,T〉, j |= ϕ or 〈H′,T〉, i �|=
ψ for some i ∈ [k..j) and for all H′ ∈ {H,T}. ��

In general, these conditions inherit the interpretation of connectives from
LTL (with past operators) with just a few differences. A first minor variation
is that we allow traces of arbitrary length λ, including both infinite (λ = ω)
and finite (λ ∈ N) traces. A second difference with respect to LTL is the new

connective ϕWWψ which is also a kind of temporally-iterated HT implication. Its
intuitive reading is “keep doing ϕ while condition ψ holds.” In LTL, ϕWWψ would
just amount to ψ RR ϕ , but under HT semantics both formulas have a different
meaning, as the latter may provide evidence for ϕ even though the condition ψ
does not hold.
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An HT-trace M is a model of a temporal theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ .
We write THT (Γ, λ) to stand for the set of THT-models of length λ of a theory
Γ , and define THT (Γ ) def= THT (Γ, ω) ∪ ⋃

λ∈N
THT (Γ, λ). That is, THT (Γ ) is

the whole set of models of Γ of any length. For Γ = {ϕ}, we just write THT (ϕ, λ)
and THT (ϕ). We can analogously define LTL(Γ, λ), that is, the set of traces of
length λ that satisfy theory Γ , and LTL(Γ ), that is, the LTL-models of Γ any
length. We omit specifying LTL satisfaction since it coincides with THT when
HT-traces are total.

Proposition 3 ([2,11]). Let T be a trace of length λ, ϕ a temporal formula,
and k ∈ [0..λ) a time point.

Then, T, k |= ϕ in LTL iff 〈T,T〉, k |= ϕ. ��
In fact, total models can be forced by adding the following set of excluded middle
axioms:

�(a ∨ ¬a) for each atom a ∈ At in the signature. (EM)

Proposition 4 ([2,11]). Let 〈H,T〉 be an HT-trace and (EM) the theory con-
taining all excluded middle axioms for every atom a ∈ At . Then, 〈H,T〉 is a
model of (EM) iff H = T. ��

Satisfaction of derived operators can be easily deduced, as shown next.

Proposition 5 ([2,11]). Let M = 〈H,T〉 be an HT-trace of length λ over At .
Given the respective definitions of derived operators, we get the following satis-
faction conditions:

12. M, k |= I iff k = 0
13. M, k |= •̂ϕ iff k = 0 or M, k−1 |= ϕ
14. M, k |= �ϕ iff M, i |= ϕ for some i ∈ [0..k]
15. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [0..k]

16. M, k = FF iff k + 1 = λ
17. M, k |= ◦̂ϕ iff k + 1 = λ or M, k+1 |= ϕ
18. M, k |= �ϕ iff M, i |= ϕ for some i ∈ [k..λ)
19. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [k..λ)

��
Given a set of THT-models, we define the ones in equilibrium as follows.

Definition 3 (Temporal Equilibrium/Stable Model). Let S be some set
of HT-traces. A total HT-trace 〈T,T〉 ∈ S is a temporal equilibrium model of
S iff there is no other H < T such that 〈H,T〉 ∈ S. The trace T is called a
temporal stable model (TS-model) of S. ��
We further talk about temporal equilibrium or temporal stable models of a
theory Γ when S = THT (Γ ), respectively. Moreover, we write TEL(Γ, λ)
and TEL(Γ ) to stand for the temporal equilibrium models of THT (Γ, λ) and
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THT (Γ ) respectively. We write TSM(Γ, λ) and TSM(Γ ) to stand for the corre-
sponding sets of TS-models. One interesting observation is that, since temporal
equilibrium models are total models 〈T,T〉, due to Proposition 3, we obtain
TSM(Γ, λ) ⊆ LTL(Γ, λ) that is, temporal stable models are a subset of LTL-
models.

Temporal Equilibrium Logic (TEL) is the (non-monotonic) logic induced by tem-
poral equilibrium models. We can also define the variants TELω and TELf by
applying the corresponding restriction to infinite and finite traces, respectively.

As an example of non-monotonicity, consider the formula

�(•loaded ∧ ¬unloaded → loaded) (4)

that corresponds to the inertia for loaded , together with the fact loaded , describ-
ing the initial state for that fluent. Without entering into too much detail, this
formula behaves as the logic program with the rules:
loaded (0).
loaded(T) :- loaded(T-1), not unloaded(T).

for any time point T > 0. As expected, for some fixed λ, we get a unique
temporal stable model of the form {loaded}λ. This entails that loaded is always
true, viz. �loaded , as there is no reason for unloaded to become true. Note that in
the most general case of TEL, we actually get one stable model per each possible
λ, including λ = ω. Now, consider formula (4) along with loaded ∧ ◦◦unloaded
which amounts to adding the fact unloaded(2). As expected, for each λ, the only
temporal stable model now is T = {loaded} · {loaded} · {unloaded} · ∅α where
α can be ∗ or ω. Note that by making ◦◦unloaded true, we are also forcing
|T| ≥ 3, that is, there are no temporal stable models (nor even THT-models)
of length smaller than three. Thus, by adding the new information ◦◦unloaded
some conclusions that could be derived before, such as �loaded , are not derivable
any more.

As an example emphasizing the behavior of finite traces, take the formula

�(¬a → ◦a) (5)

which can be seen as a program rule “a(T + 1) :− not a(T)” for any natural
number T. As expected, temporal stable models make a false in even states and
true in odd ones. However, we cannot take finite traces making a false at the
final state λ − 1, since the rule would force ◦a and this implies the existence of
a successor state. As a result, the temporal stable models of this formula have
the form (∅ · {a})+ for finite traces in TELf , or the infinite trace (∅ · {a})ω in
TELω.

Another interesting example is the temporal formula

�(¬◦a → a) ∧ �(◦a → a).

The corresponding rules “a(T) :– not a(T + 1)” and “a(T) :– a(T + 1)” have
no stable model [15] when grounded for all natural numbers T. This is because
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there is no way to build a finite proof for any a(T), as it depends on infinitely
many next states to be evaluated. The same happens in TELω, that is, we get
no infinite temporal stable model. However in TELf , we can use the fact that
◦a is always false in the last state. Then, �(¬◦a → a) supports a in that state
and therewith �(◦a → a) inductively supports a everywhere.

As an example of a temporal expression not so close to logic programming,
consider the formula ��a, which is normally used in LTLω to assert that a
occurs infinitely often. As discussed by [13], if we assume finite traces, then the

formula collapses to (FF a) in LTLf , that is, a is true at the final state (and
either true or false everywhere else). The same behavior is obtained in THTω

and THTf , respectively. However, if we move to TEL, a truth minimization
is additionally required. As a result, in TELf , we obtain a unique temporal
stable model for each fixed λ ∈ N, in which a is true at the last state, and false
everywhere else. Unlike this, TELω yields no temporal stable model at all. This
is because for any T with an infinite number of a’s we can always take some
H from which we remove a at some state, and still have an infinite number of
a’s in H. Thus, for any total THTω-model 〈T,T〉 of ��a there always exists
some model 〈H,T〉 with strictly smaller H < T. Note that we can still specify
infinite traces with an infinite number of occurrences of a, but at the price of
removing the truth minimization for that atom. This can be done, for instance,
by adding the excluded middle axiom (EM) for atom a. In this way, infinite
traces satisfying ��a ∧ �(a ∨ ¬a) are those that contain an infinite number of
a’s. In fact, if we add the excluded middle axiom for all atoms, TEL collapses
into LTL, as stated below.

Proposition 6. Let Γ be a temporal theory over At and (EM) be the set of all
excluded middle axioms for all atoms in At .

Then, TSM( Γ ∪ (EM) ) = LTL(Γ ). ��

4 Computing Temporal Stable Models

Let us consider a more meaningful example, taking the Yale Shooting sce-
nario [20] where we must shoot a loaded gun to kill a turkey. A possible encoding
in TEL could be:

�(loaded ∧ ◦shoot → ◦dead) (6)
�(loaded ∧ ◦shoot → ◦unloaded) (7)

�(load → loaded) (8)
�(dead → ◦dead) (9)

�(loaded ∧ ¬◦unloaded → ◦loaded) (10)
�(unloaded ∧ ¬◦loaded → ◦unloaded) (11)

In this way, under TEL semantics, implication α → β has a similar behaviour
to a directional inference rule, normally reversed as β ← α or β :− α in logic
programming notation. The last two rules, (10)–(11), encode the inertia law for
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fluents loaded and unloaded, respectively. Note the use of ¬ in these two rules:
it actually corresponds to default negation, that is, ¬α is read as “there is no
evidence about α.” For instance, (10) is read as “if the gun was loaded and we
cannot prove that it will become unloaded then it stays loaded”.

Computation of temporal stable models is a complex task. THT-satisfiability
has been classified [8] as Pspace-complete, that is, the same complexity as
LTL-satisfiability, whereas TEL-satisfiability rises to ExpSpace-completeness,
as proved in [3]. In this way, we face a similar situation as in the non-temporal
case where HT-satisfiability is NP-complete like SAT, whereas existence of equi-
librium model (for arbitrary theories) is ΣP

2 -complete (like disjunctive ASP).
There exist a pair of tools, STeLP [6] and ABSTEM [9], that allow computing (infi-
nite) temporal stable models (represented as Büchi automata). These tools can
be used to check verification properties that are usual in LTL, like the typi-
cal safety, liveness and fairness conditions, but in the context of temporal ASP.
Moreover, they can also be applied for planning problems that involve an inde-
terminate or even infinite number of steps, such as the non-existence of a plan.
In most practical problems, however, we are normally interested in finite traces.
For that purpose, TELf is implemented in the telingo system, extending the
ASP system clingo to compute the temporal stable models of (non-ground)
temporal logic programs. To this end, it extends the full-fledged input language
of clingo with temporal operators and computes temporal models incrementally
by multi-shot solving using a modular translation into ASP. telingo is freely
available at github1. For instance, under telingo syntax, our theory (6)–(11)
would be represented2 as

#program dynamic.
dead :- shoot, ’loaded.
unloaded :- shoot, ’unloaded.
loaded :- load.
dead :- ’dead.
loaded :- ’loaded, not unloaded.
unloaded :- ’unloaded, not loaded.

The telingo input language actually allows the introduction of arbitrary
LTL formulas in constraints or past formulas in the rule bodies (conditions).
The syntax extends the full-fledged modeling language of clingo by the future
and past temporal operators listed in the first and fourth row of Table 1. To
support incremental ASP solving, telingo accepts a fragment of TELf called
past-future rules (see [11] for more details). A temporal formula is a past-future
rule if it has form Hd ← Bd where Bd and Hd are just temporal formulas
with the following restrictions: Bd and Hd contain no implications (other than

1 https://github.com/potassco/telingo.
2 The left upper commas are read as previously and correspond to the past operator
dual of next ‘◦’. The � operator is implicit in all dynamic rules.

https://github.com/potassco/telingo
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Table 1. Past and future temporal operators in telingo and TELf

&initial I initial &final FF final
’p p previous p’ p next

< previous > next
<? S since >? U until
<* T trigger >* R release
<? � eventually before >? eventually afterward
<* � always before >* � always afterward

<: weak previous >: weak next

negations3), Bd contains no future operators, and Hd contains no past operators.
An example of a past-future rule is, for instance, the formula

�(shoot ∧ •�shoot ∧ �unloaded → �fail) (12)

expressing the sentence: “If we shoot twice with a gun that was never loaded, it
will eventually fail.” The past-future fragment is not only quite expressive but
also rather natural when using the causal reading of program rules by drawing
upon the past in rule bodies and referring to the future in rule heads. Considering
that, past-future rules also serve as the design guideline for telingo’s input
language.

To this end, telingo allows for enclosing a nested temporal formula ϕ in an
expression of the form &tel{ϕ}. Formulas like ϕ are formed via the temporal
operators in Line 3 to 8 in Table 1 along with the Boolean operators &, |, ~ for
conjunction, disjunction, and negation, respectively (thus avoiding nested impli-
cations). The underlying idea is to use the smaller symbol < as the basis of all
past operators, and to combine it with a question mark ? or a Kleene star *
depending on whether the semantics of the respective operator relies on an exis-
tential or universal quantification over states. This is nicely exemplified by the
always and eventually operators, represented by <* and <?. In fact, the symbols
<* and <? are overloaded due to their usage as binary and unary operators. For
a simple example, consider the formula •p ∨ �r represented as ‘&tel{< p | <?
p}’. Similarly, future operators are built with the greater symbol ‘>’ as their basis.
More generally, temporal expressions of the form &tel{ϕ} are treated like atoms
in telingo’s input language (and constitute theory atoms in clingo [17]); they
are compiled away by telingo’s preprocessing that ultimately yields present-
centered logic programs. In order to keep this translation simple, the current ver-
sion of telingo, viz 2.1.1, restricts their occurrence in temporal rules Hd ← Bd
to being positive in Hd and preceded by one or two negations in their body
Bd .4 No restriction is imposed on their occurrences in integrity constraints.

3 Recall that ¬ϕ
def
= ϕ → ⊥ in the logic of here-and-there and thus in TELf , too.

4 The extension to arbitrary occurrences is no hurdle and foreseen in future versions
of telingo.
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For example, the integrity constraint ‘shoot ∧ �unloaded ∧ •�shoot → ⊥’ is
expressible in several alternative ways.

:- &tel { shoot & <* unloaded & < <? shoot }.
:- shoot , &tel { <* unloaded & < <? shoot }.
:- shoot , &tel { <* unloaded }, &tel { < <? shoot }.

Alternatively, present-centered logic programs can be written directly by
using the alternative notation for the common one-step operators • and ◦.
Here, a quote is used either at the beginning or the end of a predicate symbol
to indicate that the literal at hand must be true in the previous or next state
in the trace, respectively. For instance, •p(7) is represented by ’p(7), while
◦q(X) is q’(X). For convenience, telingo 2.1.1 allows for using ◦ in singleton
rule heads;5 as above, this is compiled away during preprocessing.

The distinction between different types of temporal rules is done in telingo
via clingo’s #program directives [16], which allow us to partition programs into
subprograms. More precisely, each rule in telingo’s input language is associated
with a temporal rule r of form Hd ← Bd and interpreted as r, ◦̂�r, or (FF r)
depending on whether it occurs in the scope of a program declaration headed
by initial, dynamic, or final, respectively. Additionally, telingo offers always for
gathering rules preceded by � (thus dropping ◦̂ from dynamic rules). A rule
outside any such declaration is regarded to be in the scope of initial.

For illustration, we give in Listing 1.1 an exemplary telingo encoding of the
Fox, Goose and Beans Puzzle available at https://github.com/potassco/telingo/
tree/master/examples/river-crossing.

Once upon a time a farmer went to a market and purchased a fox, a goose,
and a bag of beans. On his way home, the farmer came to the bank of a
river and rented a boat. But crossing the river by boat, the farmer could
carry only himself and a single one of his purchases: the fox, the goose, or
the bag of beans. If left unattended together, the fox would eat the goose, or
the goose would eat the beans. The farmer’s challenge was to carry himself
and his purchases to the far bank of the river, leaving each purchase intact.
How did he do it?

(https://en.wikipedia.org/wiki/Fox, goose and bag of beans puzzle)

In Listing 1.1, lines 3–5 and 9–10 provide facts holding in all and the initial
states, respectively; this is indicated by the program directives headed by always
and initial. The dynamic rules in lines 14–22 describe the transition function.
The farmer moves at each time step (Line 14), and may take an item or not
(Line 15). Line 17 describes the effect of action move/1, Line 18 its precondition,
and Line 20 the law of inertia. The second part of the always rules give state
constraints in Line 24 and 25. The final rule in Line 29 gives the goal condition.

All in all, we obtain two shortest plans consisting of eight states in about 20
ms. Restricted to the move predicate, telingo reports the following solutions:

5 As above, the extension to disjunctions is no principal hurdle and foreseen in future
versions of telingo; currently they must be expressed by using &tel.

https://github.com/potassco/telingo/tree/master/examples/river-crossing
https://github.com/potassco/telingo/tree/master/examples/river-crossing
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
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Listing 1.1. telingo encoding for the Fox, Goose and Beans Puzzle

#program always.

item(fox;beans;goose).

route(river_bank ,far_bank ). route(far_bank ,river_bank ).

eats(fox ,goose ). eats(goose ,beans ).

#program initial.

at(farmer ,river_bank ).

at(X,river_bank) :- item(X).

#program dynamic.

move(farmer ).

0 { move(X) : item(X) } 1.

at(X,B) :- ’at(X,A), move(X), route(A,B).

:- move(X), item(X), ’at(farmer ,A), not ’at(X,A).

at(X,A) :- ’at(X,A), not move(X).

#program always.

:- at(X,A), at(X,B), A<B.

:- eats(X,Y), at(X,A), at(Y,A), not at(farmer ,A).

#program final.

:- at(X,river_bank ).

#show move /1.

#show at/2.

Time Solution 1 Solution 2

1

2 move(farmer) move(goose) move(farmer) move(goose)

3 move(farmer) move(farmer)

4 move(beans) move(farmer) move(farmer) move(fox)

5 move(farmer) move(goose) move(farmer) move(goose)

6 move(farmer) move(fox) move(beans) move(farmer)

7 move(farmer) move(farmer)

8 move(farmer) move(goose) move(farmer) move(goose)
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We have chosen this example since it was also used by [6] to illustrate the
working of STeLP, a tool for temporal answer set programming with TELω. We
note that STeLP and telingo differ syntactically in describing transitions by
using next or previous operators, respectively. Since telingo extends clingo’s
input language, it offers a richer input language, as witnessed by the cardinality
constraints in Line 15 in Listing 1.1. Finally, STeLP uses a model checker and
outputs an automaton capturing all infinite traces while telingo returns finite
traces corresponding to plans.

As a second example, consider the following problem6 proposed by Professor
J. Moore from the University of Texas at Austin and submitted to the Texas
Action Group (TAG) discussion group.

Consider two processes, A and B, each of which is reading and writing a
shared variable C. Each process is in an infinite loop, repeatedly executing:
C = C + C; By this we mean “read the value of C, read the value of C
again, add the two results and store the sum in C.” The two reads store the
values in “local registers” of the process. Reads and writes are atomic but
there is no synchronization between the two processes. The initial value of
C is 1. Problem: Given an arbitrary positive integer n is there an execution
that assigns C the value n?

A first possible encoding of this problem in telingo could look simply be the
one shown in Listing 1.2. In this encoding, action fetch(P) reflects the fact that
the CPU has non-deterministically decided to execute the next instruction from
process P, encoding the process interleaving in that way. This non-deterministic
choice is encoded in lines 23–26. The most significative feature of this encoding is
that we keep an auxiliary fluent i(P) to stand for the current instruction pointer
of each process P. An interesting observation is that, once we allow temporal
expressions in the rule bodies and constraints, we can sometimes replace auxiliary
fluents in favour of temporal queries about the past execution. In our example,
this leads to a second encoding shown in Listing 1.3. In this case, we have
removed the fluent capturing the instruction pointer and replaced it by the
constraints in lines 33–35. Lines 33–34 mean that if we fetch instruction I for
a process P already fetched in the past, then the last instruction fetched for P
(whenever this is located in the past) must be I+2 modulo 3 (that is, the previous
one in the cyclic order of instructions 0, 1, 2, 0, . . . ). Line 35 forces that the first
instruction to be executed by any process P is 0: we cannot fetch instructions 1
or 2 if process P has not been already fetched.

Listing 1.2. telingo basic encoding for Moore’s problem

1 #const n=19.

2

3 #program initial.

4

5 process(a;b).

6 local (0;1).

7 instruction (0..2).

6 https://www.cs.utexas.edu/users/vl/tag/jmoore discussion.

https://www.cs.utexas.edu/users/vl/tag/jmoore_discussion
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8

9 % Each process P executes:

10 % 0 assign c to r(P)

11 % 1 add c to r(P)

12 % 2 assing r(P) to C

13 %

14 % i(P)=I points to the next instruction I of process P to execute

15

16 holds(i(P),0) :- process(P).

17 holds(c,1).

18 holds(r(P),0) :- process(P).

19

20 #program dynamic.

21

22 %1 {fetch(P): _process(P)} 1.

23 {fetch(P,I): _instruction(I)} 1 :- _process(P).

24 fetch(P) :- fetch(P,I).

25 :- fetch(P,I), not _local(I), fetch(Q), P!=Q.

26 :- #count{P:fetch(P)}=0.

27

28 change(i(P),(I+1)\3) :- fetch(P), ’holds(i(P),I).

29 change(r(P),C ) :- fetch(P), ’holds(i(P),0), ’holds(c,C).

30 change(r(P),R+C) :- fetch(P), ’holds(i(P),1), ’holds(c,C),

31 ’holds(r(P),R), R+C <= n.

32 change(r(P),n+1) :- fetch(P), ’holds(i(P),1), ’holds(c,C),

33 ’holds(r(P),R), R+C > n.

34 change(c ,R ) :- fetch(P), ’holds(i(P),2), ’holds(r(P),R).

35

36 holds(F,V) :- change(F,V).

37 holds(F,V) :- ’holds(F,V), not change(F,_).

38

39 #program final.

40 :- not _testing , not holds(c,n).

41

42 #show fetch /1.

43 #show holds /2.

Listing 1.3. telingo second encoding for Moore’s problem

1 #const n=23.

2

3 #program initial.

4

5 process(a;b).

6 local (0;1).

7 instruction (0..2).

8

9 % Each process P executes:

10 % 0 assign c to r(P)

11 % 1 add c to r(P)

12 % 2 assing r(P) to C

13

14 holds(c,1).

15 holds(r(P),0) :- process(P).

16

17 #program dynamic.

18

19 {fetch(P,I): _instruction(I)} 1 :- _process(P).

20 fetch(P) :- fetch(P,I).

21 :- fetch(P,I), not _local(I), fetch(Q), P!=Q.

22 :- #count{P:fetch(P)}=0.
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23

24

25 change(r(P),C ) :- fetch(P,0), ’holds(c,C).

26 change(r(P),R+C) :- fetch(P,1), ’holds(c,C), ’holds(r(P),R), R+C<=n.

27 change(r(P),n+1) :- fetch(P,1), ’holds(c,C), ’holds(r(P),R), R+C>n.

28 change(c ,R ) :- fetch(P,2), ’holds(r(P),R).

29

30 holds(F,V) :- change(F,V).

31 holds(F,V) :- ’holds(F,V), not change(F,_).

32

33 :- fetch(P,I), &tel{< <? fetch(P)},

34 not &tel { < (~fetch(P) <? fetch(P,I’)) : I’=(I+2)\3 }.

35 :- fetch(P,I), not &tel{< <? fetch(P)}, I!=0.

36

37 #program final.

38 :- not _testing , not holds(c,n).

39

40 #show fetch /2.

41 #show holds /2.

5 Conclusions

These recent results open several interesting topics for future study. First, it
would be interesting to adapt existing model checking techniques (based on
automata construction) for temporal logics to solve the problem of existence
of temporal stable models. This was done for infinite traces in [6,8], but no
similar method has been implemented for finite traces on TELf . The importance
of having an efficient implementation of such a method is that it would allow
deciding non-existence of a plan in a given planning problem, something not
possible by current incremental solving techniques. Another interesting topic is
the optimization of grounding in temporal ASP specifications as those handled
by telingo. The current grounding of telingo is inherited from incremental
solving in clingo and does not exploit the semantics of temporal expressions
that are available now in the input language. Finally, we envisage to extend the
telingo system with features of DEL (an extension to cope with dynamic logic
operators) in order to obtain a powerful system for representing and reasoning
about dynamic domains, not only providing an effective implementation of TEL
and DEL but, furthermore, a platform for action and control languages.
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Abstract. We present an introduction and a review of Shapes Con-
straint Language (shacl), the W3C recommendation language for val-
idating rdf data. A shacl document describes a set of constraints on
rdf nodes, and a graph is valid with respect to the document if its nodes
satisfy these constraints. We revisit the basic concepts of the language,
its constructs and components and their interaction. We review the dif-
ferent formal frameworks used to study this language and the different
semantics proposed. We examine a number of related problems, from
containment and satisfiability to the interaction of shacl with inference
rules, and exhibit how different modellings of the language are useful for
different problems. We also cover practical aspects of shacl, discussing
its implementations and state of adoption, to present a holistic review
useful to practitioners and theoreticians alike.

1 Introduction

The Shapes Constraint Language (shacl) [23] is a W3C recommendation lan-
guage for the validation of RDF graphs. In shacl, validation is based on shapes,
which define particular constraints and specify which nodes in a graph should
be validated against these constraints. The ability to validate data with respect
to a set of constraints is of particular importance for RDF graphs, as they are
schemaless by design. Validation can be used to detect problems in a dataset
and it can provide data quality guarantees for the purpose of data exchange and
interoperability. A set of constraints can also be interpreted as a “schema”, func-
tioning as one of the primary descriptors of a graph dataset, thus enhancing its
understandability and usability. A set of shacl shapes is called a shapes graph,
but we refer to it as a shacl document in order not to confuse it with the graphs
that it is used to validate.

In this article we present a review of shacl, which is composed of three main
parts. In the first part, in Sects. 2 and 3, we review the shacl specification. This
part focuses on how shapes are defined, and how they are used for the purpose of
validation. We highlight the main peculiarities of this language, and discuss how
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shacl validation can be expressed either in terms of sparql queries, to facilitate
its implementation, or in terms of assignments [13], to make it amenable to
theoretical study. The syntax of shacl is outside the scope of this review, and
for the precise details on how to encode particular constraints we refer the reader
to the shacl specification [23]. We also do not discuss the process that lead to
the development of shacl, but it should be noted that this specification was
built on top of a number of previous constraint languages, the most influential
of which is Shape Expressions (ShEx) [48].

In the second part of our review, in Sects. 5 to 8, we present the formal
properties of this language. This mainly revolves around a discussion of recursion.
The semantics of recursion is not defined in the shacl specification, and thus
has been the subject of significant subsequent research [3]. The formal semantics
of shacl is given as a translation into SCL [37], a first order logic language that
captures the entirety of the shacl specification. Apart from validation, several
standard decision problems are discussed, such as satisfiability and containment,
along with an existing study on the interaction of shacl with inference rules.
We try to keep a consistent notation throughout this article and at times this
notation might be different from the one in the original articles.

In Sect. 9, we review existing implementations of shacl validators and their
integration with mainstream graph databases. We also review prominent addi-
tional tools to manage shacl documents, such as tools designed to automate
or semi-automate the process of creating shacl documents by exploiting graph
data, ontologies, or other constraint languages. These approaches provide solu-
tions to the cold start problem, and alleviate reliance on expert knowledge, which
are typical problems of new technologies. We complement a discussion of these
approaches with a review of prominent applications of shacl in several domains;
in summary, the abundance of shacl related tools and applications highlights
the remarkable level of maturity and adoption reached by this relatively new
language.

2 Preliminaries

Before discussing shacl, we briefly introduce our notation for rdf graphs [14].
With the term rdf graph (or just graph) we refer to a set of rdf triples (or
just triples), where each triple <s, p, o> identifies an edge with label p, called
predicate, from a node s, called subject, to a node o, called object. Subjects,
predicates and objects of rdf triples are collectively called rdf terms. The rdf
terms that appear as subject and objects in the triples of a graph are called the
nodes of the graph. Graphs in this article are represented in Turtle syntax using
common XML namespaces, such as sh, rdf and rdfs to refer to, respectively, the
shacl, rdf, and rdfs [7] vocabularies. Queries over rdf graph will be expressed
as sparql [42] queries.

In the rdf data model, subjects, predicates and objects are defined over
different but overlapping domains. For example, while rdf terms of the iri type
can occupy any position in a triple, rdf terms of the literal type (representing
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Fig. 1. (Left) A sample shacl document (shape graph) stating the constraint that
every employee must have at least one office number. (Right) A sample rdf graph
(data graph).

datatype values) can only appear in the object position. These differences are not
central to the topics discussed in this review, and thus, for the sake of simplifying
notation, we will assume that all elements of a triple are drawn from a single
and infinite domain of constants. This corresponds to the notion of generalized
rdf [14].

3 Overview of shacl

The main application of shacl is data validation. Data validation in shacl
requires two inputs: (1) an rdf graph G to be validated and (2) a shacl doc-
ument M that defines the conditions against which G must be evaluated. The
shacl specification defines the output of the data validation process as a vali-
dation report, detailing all the violations that were found in G of the conditions
set by M . If the violation report contains no violations, a graph G is valid w.r.t.
shacl document M . The shacl validation process can be abstracted into the fol-
lowing decision problem. Given a graph G and a shacl document M , we denote
with Validate(G,M) the decision problem of deciding whether G is valid w.r.t.
shacl document M , that we call validating G against M .

For example, the graph on the left of Fig. 1 represents a shacl document
M1, that defines the condition that every employee must have an office number.
Therefore, the validation report for a graph and M1 would list all of the instances
of :Employee in the graph that do not have an office number. The validation
report for M1 and the data graph G1 on the right of Fig. 1 contains a violation
on node rdf:Anne, since she does not have an office number. Therefore G1 is not
valid w.r.t. M1.

Formally, a shacl document is a set of shapes. Validating a graph against a
shacl document involves validating it against each shape. Shapes restrict the
structure of a valid graph by focusing on certain nodes and examining whether
they satisfy their constraints. The main components of a shape are a constraint
d and a target definition t. Constraints can be evaluated on any rdf node to
determine whether that node satisfies or not the given constraints. A node that
satisfies the constraint of a shape it is said to conform to that shape, or not-
conform otherwise. If a shape has an empty constraint, all nodes trivially conform
to the shape. Not all nodes of a graph must conform to all the shapes in the
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shacl document. The constraint definition of each shape defines which rdf
nodes, called target nodes, must conform to that shape in order for the graph to
be valid. A shape with an empty constraint definition does not have any target
nodes. Through inter-shape referencing, as we will see below, additional nodes
might be required to conform to certain shapes (or not, if negation is used) for
the validation to succeed. Further irrelevant nodes within the graph do not play
a role in validation of the shape, whether they conform to it or not. The shacl
document M1 of our previous example, contains shape :EmployeeShape, whose
constraint captures the property of “having an office number”, and whose target
definition targets only the rdf nodes of type Employee. Nodes of the Client type
do not generate violations by not having an office number.

Formally, a shape is a tuple 〈s, t, d〉 defined by three components: (1) the
shape name s, which uniquely identifies the shape; (2) the target definition t,
and (3) the set of constraints which are used in conjunction, and hence here-
after referred to as the single constraint d. As demonstrated in Fig. 1, a shacl
document is itself an rdf graph. The graph representing a shacl document is
called a shapes graph, while the graph being validated is called a data graph.
This approach to serialisation is similar to how OWL ontologies are serialised,
and it serves a similar purpose. Thanks to this approach, a shacl document
does not require any dedicated infrastructure to be stored and shared. In fact, a
shacl document can be embedded directly into the very graph it validates, thus
combining the shape graph and data graph into a single graph. Interestingly,
with this serialisation, a shapes graph, being an rdf graph, can be itself subject
to validation. The shacl specification, in fact, defines a shapes graph that can
be used to validate shapes graphs.

We will now look in more details at the two major components of shapes,
namely target definitions and constraints.

3.1 shacl Target Definitions

A shacl target definition, within a constraint, is a set of target declarations.
There are four types of target declarations defined in shacl, each one taking an
rdf term c as a parameter.
Node Targets A node target declaration on c targets that specific node.
Class-based Targets If a shape has a class-based target on c, then all the

nodes in the graph that are of type (rdf:type) c are target nodes for that
shape.

Subjects-of Targets If a shape has a subject-of target on c, then the target
nodes for that shape are all the nodes in the graph that appear as subjects
in triples with c as the predicate.

Objects-of Targets If a shape has an object-of target on c, then the target
nodes for that shape are all the nodes in the graph that appear as objects in
triples with c as the predicate.

The shape defined in Fig. 1 demonstrates an example of a class-based target tar-
geting class :Employee. Similarly, to target a subject of a property, e.g., :worksAt,
the second line of the shape definition would be substituted with:
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sh:targetSubjectOf :worksAt.

Typically, a target declaration is used to select, among all the nodes in a
graph, the ones to target for constraint validation. The node target declaration,
however, behaves differently, as it targets a particular node regardless of whether
this node occurs in the graph or not. An important implication of this is that
empty graphs are not trivially valid, since node targets can detect violations
on nodes external to the graph. If a target definition of a shape is empty, then
that shape will have no target nodes. However, this does not mean that the
constraint of that shape will not be evaluated on any nodes since, as mentioned,
other shapes can refer to it and “pass it” a node to check for conformance.

3.2 Focus Nodes and Property Paths

When a target or another node is considered against a shape for conformity,
we call it a focus node. Initially a shape focuses on its target nodes (these are
the initial set of focus nodes). Additional focus nodes are obtained by following
shacl property paths, which we also refer to as just paths. shacl property paths
are a subset of sparql property paths and, as the name suggests, define paths in
the rdf graph. The simplest type of path, called predicate path, corresponds to
a single property IRI c. This path identifies all the nodes that are reachable in
the rdf graph from the current focus node by following a single edge c. In other
words, this path identifies all the rdf nodes in the object position of triples that
have c as the predicate and the current focus node as the subject. More complex
paths can be constructed by inverting the direction of a path, by concatenating
two different paths one after the other, or by allowing the repetition of a path
for a minimum, maximum or arbitrary number of times.

Based on the use of property paths, shacl specification distinguishes shapes
into two types: node shapes and property shapes. Intuitively, the constraint of a
node shape is evaluated directly on the focus nodes of the shape. Instead, when
using a property path, shapes must be declared as a property shapes. These are
characterised by a path, and their constraints are evaluated over all of the nodes
that can be reached from the focus nodes following such path. For example, the
constraint that every employee’s password must be at least 8 characters long can
be represented by a property shape that targets employee nodes, and that has
a relation such as :hasPassword as its path. In this way, the actual nodes that
must satisfy the “at least 8 characters long” constraint are not the target nodes,
but instead those that appear as objects in triples with an employee node as a
subject, and :hasPassword as the predicate.

3.3 shacl Constraints

The majority of the shacl recommendation is dedicated to defining the different
types of constraint components that can be used in shacl constraints. The main
type of constraint components are called core constraint components. These are
the components that shacl compliant systems typically support, and where
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most of the existing literature focuses on. The other main type of components are
the sparql-based constraint components, that are used to embed sparql queries
into shacl constraints. This significantly increases the expressive power of such
constraints. However, the inclusion of arbitrarily complex sparql queries can
lead to performance issues, and can make such constraints harder to understand
and use. It is also worth noting that, outside of the shacl recommendation, a
number of additional shacl features1 are currently being designed, and some of
them might be included in further versions of shacl. In the rest of this paper
we will focus on core constraint components.

In order to better understand shacl core constraint components, we propose
a broad categorisation of these components into three main categories, depending
on how they are evaluated on the focus nodes. Notice that most constraint
components can be used in both node shapes and property shapes.

Graph Structure Components. These components define constraints that
are evaluated at the level of triples of the graph, and focus on restrictions
such as the minimum and maximum cardinality that the focus node must
have for certain paths, or the rdf class that the focus node should be a type
of. The shape defined in Fig. 1 demonstrates an example of a minimum car-
dinality constraint for predicate path :hasOfficeNumber. Two other salient
constraints in this category are the property pair equality and disjointedness,
that specify whether the two sets of nodes reachable from two different paths
must be equal or disjoint, respectively.

Filter Components. These components define constraints that are evaluated
at the level of nodes, and their evaluation is usually independent from the
triples present in the graph. Filter constraints restrict the focus node (1) to
be a particular rdf term, (2) to be of a particular type, such as IRI, blank
node or literal, or (3) to be a literal that satisfies certain properties, such
as being of the integer datatype, or a string produced by a certain regular
expression.

Logical Components. Logical components define the standard logical opera-
tors of conjunction, disjunction and negation over other constraints.

While most core constraint components fall into one of these categories, the pair
of constraints sh:lessThan and sh:lessThanOrEquals is a notable exception, as
it is combines the properties of graph structure and filter components. These
two constraints require all the nodes reachable by one path to be literals that
are less than (resp. less than or equals) to the nodes reachable by a second path.

It is worth noting that all constraints but one, namely sh:closed, are not
affected by triples with unknown predicates (i.e. predicates not occurring in
the shacl document). This means that if a graph is valid with respect to a
set of those constraints, it would still remain valid if new triples with unknown
predicates are added to the graph. Thus, given a non-empty graph G, valid w.r.t.
a SHACL document M , graph G ∪ <s, p, o> is also valid w.r.t. M if (1) p does
not occur in M and (2) M does not contain the sh:closed constraint component.
1 https://w3c.github.io/shacl/shacl-af/ accessed on 18/6/21.

https://w3c.github.io/shacl/shacl-af/
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Fig. 2. A sample shacl document stating the constraint that every employee must
have at least one 3-characters or longer office number.

Intuitively, this means that those constraints restrict the usage of terms from
a particular vocabulary, but they do not restrict in any way the graph from
containing triples described using other vocabularies. The sh:closed component,
on the other hand, restricts the predicates of the triples that have the focus node
as a subject to belong to a predetermined finite set. Effectively, the sh:closed
component can prohibit the use of unknown predicate relations for certain nodes
in the graph, and thus prevent the inclusion of terms from other vocabularies.
Interestingly, component sh:closed introduces an asymmety in shacl, since it
only affects triples where the focus node is the subject, and it is not possible to
define a similar constraint for nodes in the object position.

A major feature of shacl is that constraints can use the name of a shape
to require a particular set of nodes to conform to that shape. This is called a
shape reference. An example of a shape reference is demonstrated by the shacl
document in Fig. 2. This document contains shape :EmployeeShapeB which ref-
erences shape :OfficeNumberShape. The former shape restricts all of its target
nodes to having an edge :hasOfficeNumber to a node that conforms to the latter
shape, having a string length of at least three characters. Validating the data
graph in Fig. 1 with the shacl document in Fig. 2 results in two violating nodes
for shape :EmployeeShapeB. The first one is :Anne, who does not have an office
number, and the second one is :Bob, whose office numbers all contain fewer than
three digits.

Shape references can be recursive, that is, the constraint of a shape can
reference the constraints of a second shape which, in turn, can reference the
constraints of a third shape, and so on, creating a loop. Let Sd

0 be the set of all
the shape names occurring in a constraint d of a shape 〈s, t, d〉; these are the
directly referenced shapes of s. Let Sd

i+1 be the set of shapes in Sd
i union the

directly referenced shapes of the constraints of the shapes in Sd
i .

Definition 1. A shape 〈s, t, d〉 is recursive if s ∈ Sd
∞; else it is non-recursive.

Definition 2. A shacl document M is recursive if it contains a recursive
shape, and non-recursive otherwise.

The semantics of recursive shacl documents are not defined in the shacl
specification. In Sect. 4 we review the official semantics of non-recursive shacl
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documents, while in Sect. 5 we review the extended semantics for recursive shacl
document that have been proposed in the literature.

4 shacl Validation

In this section we present the semantics of shacl data validation, that is, the
Validate(G,M) decision problem, for any given graph G and shacl document
M . In Sect. 4.1 we review how validation is defined in the shacl specification,
with the help of sparql queries. While this query-based description of shacl
semantics can be easily translated into a concrete implementation, it does not
lend itself well to theoretical investigation. In Sect. 4.2 we will discuss an alterna-
tive approach to defining shacl semantics that is instead amenable to a formal
study.

4.1 shacl Validation by sparql Queries

The validation of an rdf graph G against a shacl document M can be per-
formed on a shape-by-shape basis. For each shape 〈s, t, d〉, this process involves
verifying the fact that every node n, targeted by target definition t, satisfies
constraint d. Intuitively, graph G is valid w.r.t. M if and only if this fact is true
for every shape in M .

Given a graph G and a target definition t, the set of target nodes for t can
be computed by evaluating a sparql query on G for each target declaration in
t, and taking the union of the values returned by these queries. Table 1 details
the corresponding sparql query for each of the four types of target declarations
defined in shacl. It should be noted that, by default, shacl does not enforce any
particular entailment regime. If an entailment regime is being adopted, then this
should be taken into account when developing a shacl validator. For example,
if the rdfs entailment regime [7] is being considered, subclass inference should
be accounted for when computing the set of entities of a given class. To accom-
modate for this entailment regime, the query for the node target in Table 1 could
be updated to the following one.

SELECT ?x WHERE {
?x rdf:type/rdfs:subClassOf* c

}

Once an rdf term has been identified as being in the target of a shape,
evaluating whether it conforms to the shape can be done using sparql queries. In
the shacl specification, in fact, several core constraint components are defined
with respect to sparql queries. Most notably, the semantics of shacl filter
components is in direct dependence to the semantics of sparql filter functions.
For example, the sh:minLength constraint component restricts a focus node to
having a string length equal or larger than a given number. Formally, a focus node
n has a sh:minLength of j if and only if the following sparql query evaluates
to true.
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Table 1. Target declarations and their corresponding sparql queries to compute the
set of target nodes on a given graph

Target declaration sparql query

Node target (node c) SELECT ?x WHERE { VALUES ?x { c } }
Class target (class c) SELECT ?x WHERE { ?x rdf:type c. }
Subjects-of target (predicate c) SELECT ?x WHERE { ?x c ?y. }
Objects-of target (relation c) SELECT ?x WHERE { ?y c ?x. }

ASK {
FILTER (STRLEN(str(n)) >= j) .

}

Not all shacl constraints, however, can be easily verified by a single sparql
query. Evaluating whether a constraint that contains shape references is satisfied
by a focus node, in fact, might involve evaluating whether other constraints are
satisfied by other nodes which, in turn, might require even further constraint
evaluations. For example, in order to evaluate whether node rdf:Carl from the
data graph in Fig. 1 conforms to shape rdf:EmployeeShapeB from Fig. 2, we
would need to evaluate whether his office number, namely rdf term “171”, con-
forms to shape rdf:OfficeNumberShape. This is especially problematic in case
of recursion, as it could generate an infinite series of constraint evaluations. For
non-recursive shacl documents, Corman et al. [12] showed that it is always pos-
sible to check the validity of a graph using a single sparql query. For example,
a graph can be checked against the shacl document of Fig. 2 by evaluating the
following sparql query.

SELECT ?x WHERE {
?x a :Employee .
FILTER NOT EXISTS {
?x :hasOfficeNumber ?y .
FILTER (STRLEN(str(?y)) >= 3) .

}
}

This query selects all rdf nodes of type Employee that do not have an office
number with at least three characters. Thus, any rdf term returned by this
query is a node violating a shape of the shacl document. If this query evaluates
to an empty set, then the graph that it is evaluated on is valid with respect to
the shacl document.

4.2 Shape Assignments: A Tool for Defining shacl Validation

The sparql-based approach to shacl validation does not provide a concise and
formal description of shacl semantics. Moreover, it does not provide us with a
terminating procedure to check graphs in the face of shacl recursion. In this
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section we review the concept of shape assignments (or just assignments) [13],
which can be used to address the above mentioned problems.

As defined in Table 1, a target declaration t is a unary query over a graph G.
We denote with G |= t(n) that a node n is in the target of t with respect to a
graph G. If t is empty, no node in any graph is in the target of t. The definition
of whether a node conforms to a shape, as we previously discussed, does not
only depend on the graph G, but it might also depend, due to shape references,
on whether other nodes conform to other shapes. Intuitively, the concept of
assignments [13] is used to keep track, for every rdf node, of all the shapes that
it conforms to, and all of those that it does not. Given a document M and a
graph G, we denote nodes(G,M) the set of nodes in G together with any extra
ones referenced by the node target declarations in M . With shapes(M) we refer
to all the shape names in a document M .

Definition 3. Given a graph G, and a shacl document M , an assignment σ for
G and M is a function mapping nodes in nodes(G,M), to subsets of shapes(M)∪
{¬s|s ∈ shapes(M)}, such that for all nodes n and shape names s, σ(n) does not
contain both s and ¬s.

Expression [[d]]n,G,σ denotes the evaluation of constraint d on a node n w.r.t. a
graph G under an assignment σ, as defined in [13]. If [[d]]n,G,σ is True (resp. False)
we say that node n satisfies (resp. does not satisfy) constraint d w.r.t. G under
σ. For any graph G and assignment σ, fact s ∈ σ(n) (resp. ¬s ∈ σ(n)) denotes
the fact that node n conforms (resp. does not conform) to s w.r.t. G under σ.
Expression [[d]]n,G,σ evaluates to True, False or Undefined values of Kleene’s 3-
valued logic, and the truth value of any shape reference in d is computed using
the assignment (it should be noted that the Undefined value never occurs in non-
recursive shapes, but it is used to define possible extended semantics in the face
of recursion). In other words, whenever a truth value in the evaluation of [[d]]n,G,σ

depends on whether another node j conforms to a shape s′, with constraints d′,
this is not resolved by evaluating [[d′]]j,G,σ, but instead it is True if s′ ∈ σ(j),
False if ¬s′ ∈ σ(j), or else Undefined. This, in turn, eliminates the problem of a
potentially infinite series of constraint evaluations.

The semantics of shacl validation can be defined with respect to a particular
type of assignments, called faithful [13].

Definition 4. For all graphs G, shacl documents M and assignments σ,
assignment σ is faithful w.r.t. G and M , denoted with (G, σ) |= M , if the fol-
lowing two conditions hold for any shape 〈s, t, d〉 in shapes(M) and node n in
nodes(G,M):

(1) s ∈ σ(n) iff [[d]]n,G,σ is True; and ¬s ∈ σ(n) iff [[d]]n,G,σ is False;
(2) if G |= t(n) then s ∈ σ(n).

Condition (1) ensures that the facts denoted by the assignment are correct;
while condition (2) ensures that the assignment is compatible with the target
definitions. Condition (2) is trivially satisfied for shacl documents where all



A Review of SHACL 125

target definitions are empty. Later we will want to discuss assignments where
the first property of Definition 4 holds, but not necessarily the second, in order
to reason about the existence of alternative assignments that are correct (as in,
they satisfy the first part of Definition 4) but that are not faithful. In fact, these
will be faithful assignments to a document that is “stripped empty” of target
definitions. Let M\t denote the shacl document obtained from substituting
all target definitions in shacl document M with the empty set. The following
lemma holds:

Lemma 1. For all graphs G, shacl documents M and assignments σ, condi-
tion (1) from Definition 4 holds for any shape s in shapes(M) and node n in
nodes(G,M) iff (G, σ) |= M\t.

The existence of a faithful assignment is a necessary and sufficient condition
for validation for non-recursive shacl documents [13]. As we will see later, this
is also necessary condition for all the other extended semantics.

Definition 5. A graph G is valid w.r.t. a non-recursive shacl document M if
there exists an assignment σ such that (G, σ) |= M .

5 shacl Recursion

The semantics of recursion in shacl documents is left undefined in the shacl
specification [23], and this gives rise to several possible interpretations. In this
section we consider extended semantics of shacl that define how to validate
graphs against recursive shacl documents. We focus on existing extended
semantics that follow monotone reasoning. These can be characterised by two
dimensions, namely the choice between partial and total assignments [13] and
between brave and cautious validation [3], which we will subsequently define.
Put together, these two dimensions define the four extended semantics of brave-
partial, brave-total, cautious-partial and cautious-total. We will not go into the
details of the less obvious dimension of stable-model semantics [3], which relates
shacl to non-monotone reasoning in logic programs.

As mentioned in the previous section, assignments can specify a truth value
of True, False or Undefined to whether a node conforms to given shape. The truth
value of Undefined, which does not occur in non-recursive shacl documents, can
instead play an important role in validating shacl under recursion. Intuitively,
this happens during validation, when recursion makes it impossible for a node n
to either conform or not to conform to a shape s but, at the same time, validity
does not depend on whether n conforms to shape s or not. Consider for example
the following shacl document, containing a single shape 〈s∗, ∅, d∗〉 (with name
:InconsistentS in this example). This shape is defined as the negation of itself,
that is, given a node n, a graph G and an assignment σ, fact [[d∗]]n,G,σ is true iff
¬s∗ ∈ σ(n), and false iff s∗ ∈ σ(n).

:InconsistentS a sh:NodeShape ;
sh:not :InconsistentS .
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It is easy to see that any assignment that maps a node to either s∗ or ¬s∗

is not faithful, as it would violate condition (1) of Definition 4. However, an
assignment that maps every node of a graph to the empty set would be faithful
for that graph and document {s∗}. Intuitively, this means that nodes in the
graph cannot conform nor not conform to shape s∗, but since this shape does
not have any target node to validate, then the graph can still be valid. The
fact of whether nodes conform or not conform to shape s∗ can thus be left as
“undefined”.

This type of validation, for recursive shacl documents, is called valida-
tion with partial assignments. More specifically, validation under brave-partial
semantics simply extends the criterion of Definition 5 to recursive shacl docu-
ments. All other extended semantics are constructed by adding additional condi-
tions to brave-partial semantics. The term “partial” should not be interpreted as
the fact that it describes only “part” of nodes of a graph, or that it describes the
relationship of a node to only “part” of the shapes. Within a partial assignment,
the conformance of every node to every shape is precisely specified by one of
three truth values, and the term “partial” only indicates that one of these three
truth values is Undefined.

Definition 6. A graph G is valid w.r.t. a shacl document M under brave-
partial semantics if there exists an assignment σ such that (G, σ) |= M .

In the shacl specification, nodes either conform to, or not conform to a given
shape, and the concept of an “undefined” level of conformance is arguably alien
to the specification. It is natural, therefore, to consider restricting the evaluation
of a constraint to the True and False values of boolean logic. This is achieved by
restricting assignments to be total.

Definition 7. An assignment σ is total w.r.t. a graph G and a shacl document
M if, for all nodes n in nodes(G,M) and shapes 〈s, t, d〉 in M , either s ∈ σ(n)
or ¬s ∈ σ(n).

For any graph G and shacl document M we denote with AG,M and AG,M
T ,

respectively, the set of assignments, and the set of total assignments for G and
M . Trivially, AG,M

T ⊆ AG,M holds.

Definition 8. A graph G is valid w.r.t. a shacl document M under brave-total
semantics if there exists an assignment σ in AG,M

T such that (G, σ) |= M .

Since total assignments are a more specific type of assignments, if a graph G
is valid w.r.t. a shacl document M under brave-total semantics, than it is also
valid w.r.t. M under brave-partial semantics. The reverse, instead, is only true
for non-recursive shacl documents. In fact, as shown in [13], if there exists a
faithful assignment for a graph G and a non-recursive document M , then there
exists also a total faithful assignment for G and M . Therefore, the definition
of validity under brave-total semantics (Definition 8), for non-recursive shacl
documents, coincides with the standard definition of validation (Definition 5).
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While total assignments can be seen as a more natural way of interpreting
the shacl specification, they are not without issues when recursive shacl doc-
uments are considered. Going back to our previous example, we can notice that
there cannot exist a total faithful assignment for the shacl document containing
shape :InconsistentS, for any non-empty graph. This is a trivial consequence of
the fact that no node can conform to, nor not conform to, shape :InconsistentS.
This, however, is in contradiction with the shacl specification, which implies
that a shacl document without target declarations in any of its shapes (such
as the one in our example) should trivially validate any graph. If there are no
target declarations, in fact, there are no target nodes on which to verify the
conformance of certain shapes, and thus no violations should be detected.

The second and last dimension that we consider is the difference between
brave and cautious validation. When a shacl document M is recursive, there
might exist multiple assignments σ satisfying property (1) of Definition 4, that
is, such that (G, σ) |= M\t. Intuitively, these can be seen as equally “correct”
assignments with respect to the constraints of the shapes, and brave validation
only checks whether at least one of them is compatible with the target definitions
of the shapes. Cautious validation, instead, represents a stronger form of valida-
tion, where all such assignments must be compatible with the target definitions.

Definition 9. A graph G is valid w.r.t. a shacl document M under cautious-
partial (resp. cautious-total) semantics if it is (1) valid under brave-partial
(resp. brave-total) semantics and (2) for all assignments σ in AG,M (resp.
AG,M

T ), it is true that if (G, σ) |= M\t holds then (G, σ) |= M also holds.

To exemplify this distinction, consider the following shacl document M1.
This document requires the daily special of a restaurant, node :DailySpecial,
to be vegetarian, that is, to conform to shape :VegDishShape. This shape is
recursively defined as follows. Something is a vegetarian dish if it contains an
ingredient, and all of its ingredients are vegetarian, that is, entities conforming
to the :VegIngredientShape. A vegetarian ingredient, in turn, is an ingredient
of at least one vegetarian dish.

:VegDishShape a sh:PropertyShape ;
sh:targetNode :DailySpecial ;
sh:path :hasIngredient ;
sh:minCount 1 ;
sh:qualifiedMaxCount 0 ;
sh:qualifiedValueShape [ sh: not :VegIngredientShape ] .

:VegIngredientShape a sh:PropertyShape ;
sh:path [ sh:inversePath :hasIngredient ] ;
sh:node :VegDishShape .

Consider now a graph G1 containing the following triple.

:DailySpecial :hasIngredient :Chicken .
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Due to the recursive definition of :VegDishShape, there exist two different assign-
ments σ1 and σ2, which are both faithful for G1 and M

\t
1 . In σ1, no node in G1

conforms to any shape, while σ2 differs from σ1 in that node :DailySpecial con-
forms to :VegDishShape and node :Chicken conforms to :VegIngredientShape.
Essentially, either both the dish and the ingredient from graph G1 are vege-
tarian, or neither is. Therefore, σ2 is faithful for G1 and M1, while σ1 is not.
The question of whether the daily special is a vegetarian dish or not can be
approached with different levels of “caution”. Under brave validation, graph G1

is valid w.r.t. M1, since it is possible that the daily special is vegetarian. Cau-
tious validation, instead, takes the more conservative approach, and under its
definition G1 is not valid w.r.t. M1, since it is also possible that the daily special
is not vegetarian. When analysing such recursive definitions, one might want to
exclude “unfounded” assignments, that is, assignments that assign certain shapes
to a node for no other reason than to allow the validation of a graph. This is
achieved by the recursive semantics for shacl proposed in [3], which is based on
the concept of stable models from Answer Set Programming.

For each extended semantics, the definition of validity of a graph G with
respect to a shacl document M , denoted by G |= M , is summarised in the
following list.

brave-partial there exists an assignment that is faithful w.r.t. G and M ;
brave-total there exists an assignment that is total and faithful w.r.t. G and
M ;
cautious-partial there exists an assignment that is faithful w.r.t. G and M ,
and every assignment that is faithful w.r.t. G and M\t is also faithful w.r.t. G
and M .
cautious-total there exists an assignment that is total and faithful w.r.t. G
and M , and every assignment that is total and faithful w.r.t. G and M\t is also
faithful w.r.t. G and M .

6 Formal Languages for shacl

In this section we review the two main formal languages that have been proposed
to model the semantics of shacl. We first discuss a complete first-order formal-
isation of shacl, which can be used to study a number of decision problems.
We then present a simplified language that effectively models shacl constraints
for the purpose of validation.

6.1 SCL, a First-Order Language for shacl

In order to formally study shacl, it is convenient to abstract away from the syn-
tax of its rdf and sparql representations. The SCL first order language [36,37] is
currently the only complete formalisation of shacl into a formal logical system.
The expressiveness of this language covers all of the shacl target declarations
and all of the shacl core constraint components, including the filter compo-
nents, which are less commonly studied. This language captures the semantics
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of whole shacl documents, and it can be used to study a number of related
decision problems, including validation. The relation between shacl and SCL
is given by translation τ [36], such that, given a shacl document M , the first
order sentence τ(M) is the translation of M into SCL. We identify the inverse
translation with τ−.

Before defining SCL and its properties, we must define how rdf graphs and
assignments are modelled in this logical framework. The domain of discourse is
assumed to be the set of rdf terms. Triples are modelled as binary relations,
with atom R(s, o) corresponding to triple <s,R, o>. A minus sign identifies the
inverse role, i.e. R−(s, o) = R(o, s). Binary relation name isA represents class
membership triples <s, rdf:type, o> as isA(s, o). Assignments are modelled
with a set of monadic relations Σ, called shape relations. Each shacl shape s
is associated with a unique shape relation Σs in SCL. Facts Σ(x) (resp. ¬Σ(x))
describe an assignment σ such that s ∈ σ(x) (resp. ¬s ∈ σ(x)). Since this logical
framework adopts boolean logic, ∀x. Σ(x)∨¬Σ(x) holds, by the law of excluded
middle. Thus shape relations define total assignments.

Given a graph G and an assignment σ, we now define their respective trans-
lations Gτ and στ into first order structures.

Definition 10. Given a graph G, fact p(s, o) is true in the first order structure
Gτ iff <s, p, o> ∈ G.

Definition 11. Given a total assignment σ, fact Σs(n) is true in the first order
structure στ iff s ∈ σ(n).

Definition 12. Given a graph G and a total assignment σ, the first order struc-
ture I induced by G and σ is the disjoint union of structures Gτ and στ . Given
a first order structure I: (1) the graph G induced by I is the graph that contains
triple <s, p, o> iff I |= p(s, o) and (2) the assignment σ induced by I is the
assignment such that, for all nodes n and shape relations Σs, fact s ∈ σ(n) is
true iff I |= Σs(n) and ¬s ∈ σ(n) iff I 
|= Σs(n).

The existence of faithful assignments using SCL and its standard model-
theoretic semantics is presented in the following theorem [37]. Trivially, this also
defines what condition, in SCL, corresponds to validation under the brave-total
extended semantics (Definition 8), which also defines validation for non-recursive
shacl documents (Definition 5).

Theorem 1. For any graph G, total assignment σ and shacl document M , it
is true that (G, σ) |= M iff I |= τ(M), where I is the first order structure induced
by G and σ.

For any first order structure I and SCL formula φ, it is true I |= φ iff (G, σ) |=
τ−(φ), where G and σ are, respectively, the graph and assignment induced by I.

Sentences in the SCL language follow the ϕ grammar in Definition 13.

Definition 13. The SHACL first order language (SCL, for short) is the set of
first order sentences built according to the following context-free grammar, where
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Table 2. Translation of a shape with name s with a target definition t, into an SCL
target axiom.

Target declaration in t SCL target axiom

Node target (node c) Σs(c)

Class target (class c) ∀x.isA(x,c) → Σs(x)

Subjects-of target (relation R) ∀x, y.R(x, y) → Σs(x)

Objects-of target (relation R) ∀x, y.R−(x, y) → Σs(x)

c is a constant from the domain of rdf terms, Σ is a shape relation, F is a filter
relation, with shape relations disjoint from filter relations, R is a binary-relation
name, � indicates the transitive closure of the relation induced by π(x, y), the
superscript ± refers to a relation or its inverse, and n ∈ N.

ϕ := � | ϕ ∧ ϕ

| Σ(c) | ∀x . isA(x, c) → Σ(x) | ∀x, y .R±(x, y) → Σ(x)
| ∀x. Σ(x) ↔ ψ(x);

ψ(x) := � | ¬ψ(x) | ψ(x) ∧ ψ(x) | x = c | F (x) | Σ(x) | ∃y. π(x, y) ∧ ψ(y)
| ¬∃y. π(x, y) ∧ R(x, y) [D]
| ∀y. π(x, y) ↔ R(x, y) [E]
| ∀y, z . π(x, y) ∧ R(x, z) → ς(y, z) [O]

| ∃≥ny . π(x, y) ∧ ψ(y); [C]

π(x, y) := R±(x, y)
| ∃z . π(x, z)∧π(z, y) [S]
| x=y∨π(x, y) [Z]
| π(x, y)∨π(x, y) [A]
| (π(x, y))�; [T]

ς(x, y) := x <± y | x ≤± y.

Symbol ϕ corresponds to a shacl document. An SCL sentence could be empty
(�), a conjunction of documents, a target axiom representing a target definition
(a production of the 3rd, 4th and 5th production rule) or a constraint axiom rep-
resenting a constraint (a production of the last production rule). Target axioms
take one of three forms, based on the type of target declarations. The translation
of shacl target declarations into SCL target axioms is summarised in Table 2.
Letters in square brackets are annotations for naming SCL components and thus
are not part of the grammar. These letters are essentially first-letter abbrevia-
tions of prominent shacl components (that together define fragments of SCL),
and are also listed in Table 3.

The non terminal symbol ψ(x) corresponds to the subgrammar of the shacl
constraints components. Within this subgrammar, � identifies an empty con-
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Table 3. Relation between prominent shacl components and SCL expressions.

Abbr. Name shacl component Corresponding expression

S Sequence Paths Sequence Paths ∃z . π(x, z) ∧ π(z, y)

Z Zero-or-one Paths sh:zeroOrOnePath x = y ∨ π(x, y)

A Alternative Paths sh:alternativePath π(x, y) ∨ π(x, y)

T Transitive Paths sh:zeroOrMorePath
sh:oneOrMorePath

(π(x, y))�

D Property Pair Disjointness sh:disjoint ¬∃y.π(x, y) ∧ R(x, y)

E Property Pair Equality sh:equals ∀y . π(x, y) ↔ R(x, y)

O Property Pair Order sh:lessThan
sh:lessThanOrEquals

x ≤± y and x <± y

C Cardinality Constraints sh:qualifiedValueShape
sh:qualifiedMinCount
sh:qualifiedMaxCount

∃≥ny . π(x, y) ∧ ψ(y) with
n �= 1

straint, x = c a constant equivalence constraint and F a monadic filter relation
(e.g. F IRI(x), true iff x is an IRI). Filters components are captured by F (x)
and the O component. The C component captures qualified value shape cardinal-
ity constraints. The E, D and O components capture the equality, disjointedness
and order property pair components. The π(x, y) subgrammar models shacl
property paths. Within this subgrammar S denotes sequence paths, A denotes
alternate paths, Z denotes a zero-or-one path and T denotes a zero-or-more path.

Translation τ results in a subset of SCL formulas, called well-formed defined
subsequently, and the inverse translation τ− only takes well formed sentences as
an input. An SCL formula φ is well-formed iff for every shape relation Σ, formula
φ contains exactly one constraint axiom with relation Σ on the left-hand side of
the implication. Intuitively, this condition ensures that every shape relation is
“defined” by a corresponding constraint axiom. The translation of the document
from Fig. 2, into a well-formed SCL sentence, via τ , is the following. Arguably,
this logic notation might seem easier to read and understand than the SHACL
syntax of Fig. 2.

(
∀x. isA(x, :Employee) → Σ:EmployeeShapeB(x)

)

∧
(
∀x. Σ:EmployeeShapeB(x) ↔ ∃y. R:hasOfficeNumber(x, y) ∧ Σ:OfficeNumberShape(y)

)

∧
(
∀x. Σ:OfficeNumberShape(x) ↔ F length≥3(y)

)

The language defined without any of these constructs is called the base lan-
guage, denoted ∅. On top of the base language different syntactic fragments of
SCL are defined by considering different combinations of features allowed. We
name these fragments by concatenating the letters that represent the features
allowed, into a single name. For example, SA identifies the fragment that only
allows the base language, sequence paths and alternate paths. This means that
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in order to write an SCL document in SA, one can only use the production rules
of Definition 13 that are not annotated with any feature (base language) or those
identified by abbreviations S and A.

The shacl specification presents an unusual asymmetry in the fact that
equality, disjointedness and order components force one of their two path expres-
sions to be an atomic relation. This can result in situations where the order
constraints can be defined in just one direction, since only the less-than and less-
than-or-equal property pair constraints are defined in shacl. The O fragment
models a more natural order comparison that includes the > and ≥ compo-
nents. The fragment where the order relations in the ς(x, y) subgrammar cannot
be inverted is denoted O’.

When interpreting an SCL sentence, particular care should be paid to the
semantics of filter relation. The interpretation of each filter relation, such as
F IRI(x), is the subset of the domain of discourse on which the filter is true.
This interpretation is constant across all models, and defines the semantics of
the filter. When considering the decision problem of validation, filter relations
in SCL must be suitably defined by interpreted relations (similarly to how the
equality operator is). When considering additional decision problems, such as
satisfiability and containment (which will be discussed in Sect. 7), the semantics
of filters can be axiomatisatised, thus removing the need for special interpreted
relations. The filter axiomatisation presented in [37] captures the semantics of
all SHACL filters with the single exception of sh:pattern, as this filter defines
complex non-standard regular expressions based on the sparql regex function
[42].

6.2 L, a Language for shacl Constraint Validation

Another major language used to study shacl is L which was presented in [13]
and paved the way to subsequent formal studies of shacl. The L language
differs from SCL in scope and purpose. While SCL sentences describe whole shacl
documents, sentences in L describe individual shacl constraints. The L language
is primarily designed to investigate the complexity of shacl validation. As such,
it relies on assumptions that do not hold when studying other decision problems
such as satisfiability and containment, which, instead, can be studied using SCL.
In particular, L assumes that all filter components can be evaluated on a node in
constant time, and thus are all equivalent, for the purposes of validation. Thanks
to this reduced scope, L seems less complex than SCL, and it is a useful formalism
to study the evaluation of shacl constraints. The semantics of an L sentence
φ is defined in [13] through the use of faithful assignments. In particular, [13]
fixes a lookup table that provides the truth value of the evaluation of φ on a
node n for a graph G and an assignment σ. Instead, SCL relies on the standard
model-theoretic semantics.

The grammar of L sentences is given next. In this grammar s is a shape
name; I is an IRI; r is a shacl property path; n is a positive integer.

φ := � | s | I |φ1 ∧ φ2 | ¬φ | ≥n r.φ |EQ (r1, r2)
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Table 4. Correspondence between an L sentence φ, and SCL ψφ(x) expressions, such
that a constraint φ is satisfied on a node n w.r.t. a graph G and an assignment σ iff
I |= ψφ(n), where I is the first order structure induced by G and σ. It is assumed that
paths are expressed using the π(x, y) subgrammar of SCL, and that r2 is an IRI.

L expression φ Corresponding SCL ψφ(x)

� �
s Σs(x)

I x = I

φ1 ∧ φ2 ψφ1(x) ∧ ψφ2(x)

¬φ ¬ψφ(x)

≥n r.φ ∃≥ny . r(x, y) ∧ ψφ(y)

EQ (r1, r2) ∀y. r1(x, y) ↔ r2(x, y)

Table 4 defines the correspondence between L and the ψ(x) sub-grammar of
SCL. It is easy to see that L sentences correspond to a subset of the ψ(x) sub-
grammar of SCL, assuming that r2 denotes a predicate path. This assumption
is required as in L both arguments of EQ(r1, r2), which captures the shacl
equality operator (sh:equals), are path expressions. This is a generalisation
of shacl, since the shacl specification requires one of the two paths to be a
simple predicate path, or in other words, an IRI. It should also be noted that L
does not model property pair order components (denoted O in SCL), and that the
sh:closed component is modelled using path expression operators not supported
by shacl paths. The shacl disjoint constraint component (denoted D in SCL) is
only implicitly included in L when considering recursion. It is possible, in fact,
to represent a disjoint constraint component in L using two auxiliary recursive
shapes [13].

7 shacl Decision Problems

Several existing pieces of work in the literature focus on shacl, and sev-
eral related decision problems have been investigated. In Sect. 7.1 we review
existing work on the core decision problem for shacl, namely validation.
Unlike validation, which studies the relationship between a shacl document
and an rdf graph, the decision problems of satisfiability and containment,
reviewed in Sect. 7.2, focus on intrinsic properties of SHACL documents and their
components.

7.1 Validation

Validation is a core decision problem for shacl, since the main application of
this language is the validation of rdf graphs. This decision problem is decidable
for all of the semantics discussed in this article, including the four extended
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Table 5. Data complexity of shacl validation, results from [12].

Fragment Data complexity of validation

shaclnon−rec NL-c
shacl+ PTIME-c
shaclrec NP-c

semantics. The complexity lower bounds for validation, however, depend on the
fragment of shacl being considered. Table 5 lists the data complexity of three
fragments of shacl given in [3,13]. The three fragments are (1) shaclnon−rec,
the fragment of non-recursive shacl documents built using L constraints; (2)
shacl+, the fragment of shacl documents built using L constraints with a
restricted use of negation, that is, substituting the ¬φ production rule of L into
φ1 ∨ φ2; and (3) shaclrec, the fragment of shacl documents built using L
constraints. The most expressive of these fragments, shaclrec, is NP-complete
in data complexity.

7.2 Satisfiability and Containment

Satisfiability and containment are standard decision problems that have been
investigated in the context of shacl. These two decision problems, unlike valida-
tion, do not take a graph as an input. Instead, they focus on shacl documents,
shapes or constraints. Given any notion of validity from one of the semantics
defined earlier, the following decision problems are defined. For simplicity, when
discussing satistiability and containment, we will assume the use of the semantics
of validation from Definitions 8 and 5.

Definition 14. A shacl document M is satisfiable iff there exists a graph G
such that G |= M . Deciding whether a shacl document is satisfiable is the
decision problem of shacl satisfiability.

Definition 15. shacl Containment: For all shacl documents M1, M2, we
say that M1 is contained in M2, denoted M1 ⊆ M2, iff for all graphs G, if
G |= M1 then G |= M2. Deciding whether a shacl document is contained in
another is the decision problem of shacl containment.

Two shacl documents M1 and M2 that are contained in each other (M1 ⊆
M2 and M2 ⊆ M1) are semantically equivalent. Two semantically equivalent
documents are not necessarily equivalent syntactically, since in shacl the same
constraint can be expressed using different sets of shapes.

The satisfiability and containment decision problems for shacl can be poly-
nomially reduced to the satisfiability decision problem for SCL, defined as follows
in the natural way [37].

Definition 16. An SCL sentence φ is satisfiable iff there exists structure Ω such
that Ω |= φ. Deciding whether a SCL sentence is satisfiable is the decision problem
of SCL satisfiability.
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Fig. 3. [37] Decidability and complexity map of SCL satisfiability. Round (blue) and
square (red) nodes denote decidable and undecidable fragments, respectively. Solid
borders on nodes correspond to theorems in this paper, while dashed borders are
implied results. Directed edges indicate inclusion of fragments, while bidirectional edges
denote polynomial-time reducibility. Solid edges are preferred derivations to obtain
tight results, while dotted ones leads to worst upper-bounds or model-theoretic prop-
erties. Finally, a light blue background indicates that the fragment enjoys the finite-
model property, while those with a light red background do not satisfy this property.
(Color figure online)

This reduction allows us to study the decidability and complexity of the
shacl satisfiability and containment problems for a given shacl fragment by
studying the decidability and complexity of SCL satisfiability, for the correspond-
ing fragments. The results of this study, published in [37], are summarised in
Fig. 3. Negative results indicate the undecidability of both the SCL fragment, and
the corresponding shacl fragment. Positive results, shown in round blue in the
figure, indicate that both satisfiability and containment are decidable, for that
fragment of non-recursive shacl, and are accompanied with complexity upper-
bounds. Starting from the negative results, shacl satisfiability and containment
is, in general, undecidable. This was shown even for several non-recursive frag-
ments, through a semi-conservative reduction from the standard domino prob-
lem [5,39,50], which is an undecidable decision problem. More specifically, the
shacl satisfiability problems for the S O, S A C, S E C, S E O’, and S Z A E fragments
are undecidable [37].

Positive results are obtained by noticing that several SCL fragments are
included in decidable fragments of first order logic. For example, the S Z A T D
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fragment of SCL is included in the extension of the unary-negation fragment of
first-order logic with arbitrary transitive relations, which can be solved in 2Exp-
Time [1,15,20]. The complexity upper bounds identified in [37] for shacl frag-
ments range from ExpTime to 2ExpTime. Both decision problems are defined
over shacl documents which, similarly to the schema of a dataset, could be
assumed to be of small or constant size.

Up until this point we considered the satisfiability and containment prob-
lems defined at the level of shacl documents. However, it is possible to study
variations of these problems at different levels of granularity. For example, the
satisfiability and containment problems at the level of shacl constraints are
defined in [37], and are shown to be reducible to the problem of shacl satisfia-
bility. An approach that uses Description Logics Reasoning is presented in [26]
to compute shape containment, that is, containment at the level of shapes, for a
restrictive fragment of shacl, which however allows recursion.

8 Inference Rules and the Schema Expansion

Datasets are often dynamic objects, which are frequently subject to modifica-
tion. When an rdf graph is modified, its validity w.r.t. a shacl document might
change. If the modifications that a dataset undergoes are completely arbitrary,
then it is not possible to make predictions regarding validity, and the dataset
might need to be re-validated after each modification. Many types of modifica-
tions that can be applied on a dataset, however, are predictable or a result of
some reasoning process. In particular, many types of modifications can be rep-
resented as inference rules B → H, where a set of facts H, called the head are
added to a dataset whenever a query B, called the body, finds a match on the
dataset. Given an rdf graph G, and a set of inference rules R, it is possible to
compute graph G′, closure of G under R, by applying the chase algorithm [4].
The chase algorithm, intuitively, consists in repeatedly applying the rules of R
on G until convergence. For simplicity, we assume that the chase algorithm is
guaranteed to terminate for the inference rules considered.

Assuming graph G is valid w.r.t. to a shacl document M , the approach
presented in [38], called schema expansion, allows us to predict whether the
graph closure G′ will still be valid w.r.t. M without having to validate G′ against
M . In particular, given a shacl document M and a set of inference rules R, the
schema expansion process computes the “maximal sub-document” of M which
will still validate G after the rule applications. That is, the schema expansion is
a shacl document M ′, called schema consequence, such that (1) M ⊆ M ′ (i.e.,
M ′ is a subset of the restrictions of M); (2) validity is preserved after closure,
that is, for any graph G valid w.r.t. M , its closure G′ under R is valid w.r.t. M ′;
and (3) M ′ is “minimally-containing”, i.e., there is no document M ′′ that satisfies
conditions (1) and (2) and such that that M ′′ ⊂ M ′. If a schema consequence
M ′ of a shacl document M under inference rules R is semantically equivalent
to M , then any graph G, valid w.r.t. M is guaranteed to remain valid w.r.t.
M after computing its closure under R. In other words, this means that the
application of rules R cannot “invalidate” graphs valid w.r.t. document M .
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Consider, for example, the following graph G1, which describes :Eve, a man-
ager of the company in the IT department, and one of her subordinates :Fiona.

:Eve a :Manager ;
:hasDepartment "IT" .

:Fiona a :Employee ;
:hasManager :Eve .

This graph is valid w.r.t. the following shacl document M1, which states that
each employee must have a manager, and each manager must have a department.

:SubordinateS a :PropertyShape ;
sh:targetClass :Employee ;
sh:path :hasManager ;
sh:minCount 1 .

:ManagerS a sh:PropertyShape ;
sh:targetClass :Manager ;
sh:path :hasDepartment ;
sh:minCount 1 .

Consider now the set of inference rules R1 = {r1, r2}, where rules r1 and r2
are defined as follows. For simplicity, we represent both the head and the body
of rules as sparql graph patterns, which are interpreted as sparql construct
queries where the where and construct clauses are the body and the head,
respectively. Rule r1 states that every manager can be inferred to be an employee,
and r2 states that everyone can be inferred to be in the same department as their
manager.

r1 = {?x rdf:type :Manager} → {?x rdf:type :Employee}
r2 = {?x :hasManager ?y . ?y :hasDepartment ?z} → {?x :hasDepartment ?z}

The closure of graph G1 under rules R1 is the following graph G2.

:Eve a :Manager ;
a :Employee ;
:hasDepartment "IT" .

:Fiona a :Employee ;
:hasManager :Eve ;
:hasDepartment "IT" .

Notice that graph G2 is not valid w.r.t. M1, since :Eve violates :SubordinateS,
but it is valid w.r.t. another document M2 which only contains shape :ManagerS.
In fact, M2 is a schema consequence of M1 and R1. Therefore, we know that the
closure under R1 of any graph valid w.r.t. M1 will validate shape :ManagerS, but
it might not validate :SubordinateS.

Two approaches to compute the schema expansion are presented in [38],
for datalog [9] inference rules without negation. The first based on the con-
cept of critical instance [30], and the second an optimisation of the first. These
approaches are only defined on a fragment of shacl that, although restricted,
is sufficient to express common constraints for rdf validation, such as the Data
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Quality Test Patterns typedep, typrodep, pvt, rdfs-domain and rdfs-
range in the categorisation by Kontokostas et al. [24]. Intuitively, the difficulty
in computing a schema expansion lies in having to consider all possible graphs
that are valid w.r.t. a shacl document, and their interactions with arbitrarily
complex inference rules.

9 Applications, Tools and Implementations

Over a few years since reaching its status as a W3C recommendation, the level
of maturity and adoption of the shacl technology has been steadily increasing.
In this section we review existing shacl implementations, tools designed to
facilitate the creation and management of shacl documents, and documented
usages of shacl in practical applications.

9.1 Tools for shacl Validation

The availability of mature tools is often a crucial requirement for the widespread
adoption of a technology. To date, shacl validation has been integrated in a
number of mainstream tools and triplestores.2 An example of this is RDF4J,3
a Java framework for managing rdf data, which now includes an engine for
shacl validation. The RDF4J framework is integrated in a number of projects,
most notably the GraphDB4 triplestore. Other shacl-enabled databases include
AllegroGraph5 by Franz Inc, Apache Jena6 by Apache, and Stardog7 by Stardog
Union Inc. A benchmark for the comparison of different shacl implementation
was proposed in [41], along with results for four different databases. A shacl
implementation is also available for Python through the pySHACL8 library.

One of the first tools to enable the validation of recursive shacl graphs was
SHACL2SPARQL [11]. Another tool, Trav-SHACL [18], implements a shacl
engine designed to optimise the evaluation of shacl core constraint components
expressible in fragments of the L language [13]. On these fragments of shacl,
Trav-SHACL was shown to achieve significantly faster validation times compared
to the SHACL2SPARQL tool.

9.2 Tools for Generating shacl Documents

While efficient tools to perform graph validation are undoubtedly essential to the
widespread adoption of shacl, it is also important to devise practical ways to

2 https://w3c.github.io/data-shapes/data-shapes-test-suite/ accessed on 18/6/21.
3 https://rdf4j.org/ accessed on 18/6/21.
4 https://graphdb.ontotext.com/ accessed on 18/6/21.
5 https://allegrograph.com/ accessed on 18/6/21.
6 https://jena.apache.org/ accessed on 18/6/21.
7 https://www.stardog.com/ accessed on 18/6/21.
8 https://pypi.org/project/pyshacl/ accessed on 18/6/21.

https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://rdf4j.org/
https://graphdb.ontotext.com/
https://allegrograph.com/
https://jena.apache.org/
https://www.stardog.com/
https://pypi.org/project/pyshacl/
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generate suitable shacl documents, without which validation would not be pos-
sible. On the one hand, shacl documents can be manually created by experts.
Tools to support this manual process can facilitate this, especially when inte-
grated with already established software. An example of this is SHACL4P [17],
a plugin for the Protégé ontology editor [31] which includes an editor to create
shacl documents, and a validator that allows users to test the document by val-
idating an ontology with it, and then visualising any constraint violations. Shape
Designer [6] is another tool to create shacl documents that combines a graphi-
cal editor, and additional algorithms to create constraints semi-automatically by
analysing the data graph. The benefits of different types of visualisations as an
aid to the creating and editing of constraints for rdf graphs was studied in [28].
Existing work also investigated the possibility of generating shacl documents
from natural language text [43].

A number of approaches have been designed to automate the creation of
shacl documents. The SHACLearner [33] approach, generates shacl documents
by learning a kind of rules called Inverse Open Path (IOP) Rules from the graph
data provided. IOP rules are strongly related to SCL and therefore shacl. An
IOP rule essentially follows the same structure as an SCL constraint axiom, both
syntactically and semantically, with the only exception that the iff operator is
replaced by a rightward implication. Another approach to automate the creation
of shacl documents is the Astrea-KG Mappings [10]. These mappings consist of
a set of manually created mappings from OWL [49] to shacl, that can be used to
automatically generate shacl documents from OWL ontologies. As described in
[34], shacl documents can also be generated from the axioms defined by ontol-
ogy design patterns [19]. The approach from [44] generates shacl documents
for the purpose of quality assessment, using the ontology design patterns and
data statistics created by the ABSTAT [45] tool as an input. Another similar
approach, presented in [8], allows the automatic extraction of shacl constraints
from a sparql endpoint, and was tested on the dataset of Europeana9.

Notably, shacl documents can also be seen as describing a desirable “schema”
for graph data. As such, they can be used as a template to generate new RDF
data. An example of this is the Schímatos [51] tool, which generates forms for
RDF graph editing based on shacl documents, in order to simplify the graph
editing task, and minimize the chance of error.

9.3 Adoption of shacl

An analysis of existing use cases of shacl can be useful to gain insights on how
this technology is used in practice, and on in its level of adoption. In a recent
review, 13 existing projects using shacl have been reviewed, and the most com-
mon constraints observed were cardinality, class, datatype and disjunction [29].
Several works investigate the use of shacl to verify compliance of a dataset
w.r.t. certain policies, such as GDPR requirements [2,35]. Other applications of
shacl include type checking program code [27] and detecting metadata errors

9 https://www.europeana.eu/en accessed on 18/6/21.

https://www.europeana.eu/en
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in clinical studies [22]. shacl is also used by the European Commission to facil-
itate data sharing, for example by validating metadata about public services
against the recommended vocabularies [46]. Notably, several approaches define
translations into shacl from other technologies, such as ontologies and other
schema and constraint languages [16,21,25,32,40,47]. These results show that
shacl tools, and in particular validators, can benefit areas where technologies
other than shacl are already established.

10 Conclusion

Within this review we examined shacl, a constraint language that can be used to
validate rdf graphs. These constraints can be used to describe the properties of
a graph, to detect possible errors in the data or provide data quality assurances.
In this review we first presented the main concepts of the shacl specification,
such as the concept of shapes, and their two main components, targets and
constraints. We discussed the primary way to perform shacl validation, using
sparql queries, and how the semantics of validation can be abstracted with the
concept of assignments.

While the shacl specification describes how validation should be performed,
its semantics is left implicit and not formally defined. We have extensively dis-
cussed studies that address this problem. In particular, we reviewed a complete
formalisation of shacl into a fragment of first order logic called SCL. This for-
malisation lays bare several properties of shacl, and provides decidability and
complexity results for several shacl-related decision problems. Another impor-
tant line of work focuses on defining potential extensions of shacl semantics
that can be used in the face of recursion. The shacl specification, in fact, allows
constraints to be recursively defined, but it does not define its semantics. We also
presented existing work studying the interaction of shacl with inference rules.
Datasets are often dynamic objects, and several questions arise when considering
the effects of this dynamism on the constraints imposed over them.

From the point of view of maturity and level of adoption of the shacl tech-
nology, we reviewed several implementations of shacl validators, which are now
integrated in many mainstream rdf databases, and several tools designed to
facilitate the creation and management of shacl documents. Several approaches,
in particular, provide automated or semi-automated ways of generating suitable
shacl documents from a diverse range of sources, such as graph data, ontologies,
or natural language texts. Existing efforts in mapping other constraint/valida-
tion languages into shacl is also worth noting, as it suggests that the usefulness
of shacl could be extended to support other existing technologies. While the
true extent of shacl adoption is hard to establish, since not all usages of shacl
are publicly documented, we found evidence of its usage in several areas, such
as to facilitate data sharing, to validate dataset against policies, and to detect
errors in datasets.

Despite the wealth of work on this topic, shacl is still a recent specification,
and a number of important directions for future work still exist. For example,
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there are opportunities to optimise shacl validators for particular type of con-
straints, or for particular scenarios, like for highly dynamic databases. More
studies are needed to properly assess the usage of shacl in practical applica-
tions, and what types of constraints are more commonly used and how. While the
full semantics of shacl has been formally defined, more work is needed to for-
mally establish its relation with other constraint languages. It is also important
to notice that most of the pieces of work reviewed in this article limit their scope
to ad-hoc subsets of the shacl specification. In addition to the custom require-
ments of each application, this is commonly done in order to avoid excessively
complex language components. At the same time, it is often difficult to under-
stand what these subsets exactly are as they are not always explicitly defined.
Therefore, there might be scope to define reusable fragments of shacl, that
could fill the role of lightweight but expressive alternatives to the full language,
similarly to how OWL fragments are defined. It might also be beneficial, for sim-
ilar reasons, to converge towards a single standard or “preferred” semantics for
shacl recursion, which could be defined in a future version of the specification.
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Abstract. We describe some recent approaches to score-based expla-
nations for query answers in databases and outcomes from classification
models in machine learning. The focus is on work done by the author
and collaborators. Special emphasis is placed on declarative approaches
based on answer-set programming to the use of counterfactual reasoning
for score specification and computation. Several examples that illustrate
the flexibility of these methods are shown.

1 Introduction

In data management and machine learning one wants explanations for certain
results. For example, for query results from databases, and for outcomes of clas-
sification models in machine learning (ML). Explanations, that may come in
different forms, have been the subject of philosophical enquires for a long time,
but, closer to our discipline, they appear under different forms in model-based
diagnosis and in causality as developed in artificial intelligence.

In the last few years, explanations that are based on numerical scores assigned
to elements of a model that may contribute to an outcome have become popular.
These scores attempt to capture the degree of contribution of those components
to an outcome, e.g. answering questions like these: What is the contribution of
this tuple to the answer to this query? What is the contribution of this feature
value of an entity to the displayed classification of the latter?

For an example, consider a financial institution that uses a learned classifier,
C, e.g. a decision tree, to determine if clients should be granted loans or not,
returning labels 0 or 1, resp. A particular client, represented as an entity e,
applies for a loan, and the classifier returns C(e) = 1, i.e. the loan is rejected.
The client requests an explanation.

A common approach consists in giving scores to the feature values in e, to
quantify their relevance in relation to the classification outcome. The higher the
score of a feature value, the more explanatory is that value. For example, the fact
that the client has value “5” for feature Age (in years) could have the highest
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score. That is, the rejection of the loan application is due mostly to the client’s
very young age.

In the context of explainable AI [39], different scores have been proposed in
the literature, and some that have a relatively older history have been applied.
Among the latter we find the general responsibility score as found in actual
causality [19,26]. For a particular kind of application, one has to define the right
causality setting, and then apply the responsibility measure to the participating
variables (see [27] for a newer treatment of the subject). In particular, in data
management, responsibility has been used to quantify the strength of a tuple as
a cause for a query result [5,36]. The Shapley value, as found in coalition game
theory [45], has been used for the same purpose [30]. Defining the right game
function, the Shapley value assigned to a player reflects its contribution to the
wealth function, which in databases corresponds to the query result.

In the context of explanations to outcomes from classification models in ML,
the Shapley value has been used to assign scores to the feature values taken
by an entity that has been classified. With a particular game function, it has
taken the form of the Shap score, which has become quite popular and influential
[34,35].

Also recently, a responsibility score, Resp, has been introduced and investi-
gated for the same purpose in [9]. It is based on the notions of counterfactual
intervention as appearing in actual causality, and causal responsibility. More
specifically, (potential) executions of counterfactual interventions on a structural
logico-probabilistic model [26] are investigated, with the purpose of answering
hypothetical questions of the form: What would happen if we change ...?.

Counterfactual interventions can be used to define different forms of score-
based explanations. This is the case of causal responsibility in databases (c.f.
Sect. 12). In explainable AI, and more commonly with classification models of
ML, counterfactual interventions become hypothetical changes on the entity
whose classification is being explained, to detect possible changes in the out-
come (c.f. [11, Sect. 8] for a more detailed discussion and references).

Score-based explanations can also be defined in the absence of a model,
and with or without explicit counterfactual interventions. Actually, explanation
scores such as Shap and Resp can be applied with black-box models, in that they
use, in principle, only the input/output relation that represents the classifier,
without having access to the internal components of the model. In this category
we could find classifiers based on complex neural networks, or XGBoost [33].
They are opaque enough to be treated as black-box models.

The Shap and Resp scores can also be applied with open-box models, with
explicit models. Without having access to the elements of the classification
model, the computation of both Shap and Resp is in general intractable, by
their sheer definitions, and the possibly large number of counterfactual com-
binations that have to be considered in the computation. However, for certain
classes of classifiers, e.g. decision trees, having access to the mathematical model
may make the computation of Shap tractable, as shown in [3,48], where it is also
shown that for other classes of explicit models, its computation is still intractable.
Something similar applies to Resp [9].
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Other explanation scores used in machine learning appeal to the components
of the mathematical model behind the classifier. There can be all kinds of explicit
models, and some are easier to understand or interpret or use for this purpose.
For example, the FICO score proposed in [18], for the FICO dataset about
loan requests, depends on the internal outputs and displayed coefficients of two
nested logistic regression models. Decision trees [38], random forests [12], rule-
based classifiers, etc., could be seen as relatively easy to understand and use for
providing explanations. In [9], the Shap and Resp scores were experimentally
compared with each other, and also with the FICO score.

One can specify in declarative terms the counterfactual versions of tuples
in databases and of feature values in entities under classification. On this basis
one can analyze diverse alternative counterfactuals, reason about them, and
also specify the associated explanation scores. In these notes we do this for
responsibility scores in databases and classifications models. More specifically,
we use answer-set programming, a modern logic-programming paradigm that has
become useful in many applications [13,24]. We show examples run with the DLV
system and its extensions [29]. An important advantage of using declarative spec-
ifications resides in the possibility of adding different forms of domain knowledge
and semantic constraints. Doing this with purely procedural approaches would
require changing the code accordingly.

The answer-set programs (ASPs) we use are influenced by, and sometimes
derived from, repair programs. These are ASPs that specify and compute the
possible repairs of a database that is inconsistent with respect to a given set
of integrity constraints [4]. A useful connection between database repairs and
actual causality in databases was established in [5]. Hence, the use of repairs
and repair programs.

In this article we survey some of the recent advances on the use and computa-
tion of the above mentioned score-based explanations, both for query answering
in databases and for classification in ML. This is not intended to be an exhaus-
tive survey of the area. Instead, it is heavily influenced by our latest research.
Special emphasis is placed on the use of ASPs (for many more details on this
see [11]). Taking advantage of the introduced repair programs, we also show how
to specify and compute a numerical measure of inconsistency of database [7]. In
this case, this would be a global score, in contrast with the local scores applied
to individual tuples in a database or feature values in an entity. To introduce
the concepts and techniques we will use mostly examples, trying to convey the
main intuitions and issues.

This paper is structured as follows. In Sect. 2 we provide some background
material on databases and answer-set programs. In Sect. 3 we concentrate on
causal explanations in databases, the responsibility score, and also the causal-
effect score [44], as an alternative to the latter. In Sect. 4, we present the
causality-repair connection and repair programs for causality and responsibility
computation. In Sect. 5, we consider causality in databases at the attribute level,
as opposed to the tuple level. In Sect. 6, we introduce causality and responsibil-
ity in databases that are subject to integrity constraints. In Sect. 7 we present
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the global inconsistency measure for a database and the ASPs to compute it. In
Sect. 8, we describe the use of the Shapley value to provide explanation scores
in databases. In Sect. 9, we describe in general terms score-based explanations
for classification results. In Sect. 10 we introduce and study the x-Resp score,
a simpler version of the more general Resp score that we introduce in Sect. 12.
In Sect. 11 we introduce counterfactual intervention programs (CIP), which are
ASPs that specify counterfactuals and the x-Resp score. In Sect. 13, and for com-
pleteness, we briefly present the Shap score. We end in Sect. 14 with some final
conclusions.

2 Background

2.1 Basics of Relational Databases

A relational schema R contains a domain of constants, C, and a set of predicates
of finite arities, P. R gives rise to a language L(R) of first-order (FO) predicate
logic with built-in equality, =. Variables are usually denoted with x, y, z, ...; and
finite sequences thereof with x̄, ...; and constants with a, b, c, ..., etc. An atom is
of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms, i.e. constants,
or variables. An atom is ground (a.k.a. a tuple) if it contains no variables. A
database (instance), D, for R is a finite set of ground atoms; and it serves as an
interpretation structure for L(R).

A conjunctive query (CQ) is a FO formula, Q(x̄), of the form ∃ȳ (P1(x̄1) ∧
· · · ∧ Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i) � ȳ. If Q

has n (free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄]
is true in D when the variables in x̄ are componentwise replaced by the values
in c̄. Q(D) denotes the set of answers to Q from D. Q is a Boolean conjunctive
query (BCQ) when x̄ is empty; and when true in D, Q(D) := {true}. Otherwise,
it is false, and Q(D) := ∅. Sometimes CQs are written in Datalog notation as
follows: Q(x̄) ← P1(x̄1), . . . , Pm(x̄m).

We consider as integrity constraints (ICs), i.e. sentences of L(R): (a) denial
constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1)∧· · ·∧Pm(x̄m)), where Pi ∈ P,
and x̄ =

⋃
x̄i; and (b) functional dependencies (FDs), i.e. of the form ϕ :

¬∃x̄(P (v̄, ȳ1, z1) ∧ P (v̄, ȳ2, z2)∧z1 �= z2).1 Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2}, and
z1 �= z2 is an abbreviation for ¬z1 = z2. A key constraint (KC) is a conjunction
of FDs:

∧k
j=1 ¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj

1 �= yj
2), with k = |ȳ1| = |ȳ2|, and

generically yj stands for the jth variable in ȳ. For example, ∀x∀y∀z(Emp(x, y)∧
Emp(x, z) → y = z), is an FD (and also a KC) that could say that an employee
(x) can have at most one salary. This FD is usually written as EmpName →
EmpSalary . In the following, we will include FDs and key constraints among the
DCs.

We will also consider inclusion dependencies (INDs), which are constraints
of the form ∀x̄∃ȳ(P1(x̄) → P2(x̄′, ȳ)), where P1, P2 ∈ P, and x̄′ ⊆ x̄.
1 The variables in v̄ do not have to go first in the atomic formulas; what matters is

keeping the correspondences between the variables in those formulas.
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If an instance D does not satisfy the set Σ of ICs associated to the schema,
we say that D is inconsistent, which is denoted with D �|= Σ.

2.2 Basics of Answer-Set Programming

We will give now a brief review of the basics of answer-set programs (ASPs). As
customary, when we talk about ASPs, we refer to disjunctive Datalog programs
with weak negation and stable model semantics [23,24]. For this reason we will,
for a given program, use the terms “stable model” (or simply, “model”) and
“answer-set” interchangeably. An answer-set program Π consists of a finite
number of rules of the form

A1 ∨ . . . ∨ An ← P1, . . . , Pm,not N1, . . . ,not Nk, (1)

where 0 ≤ n,m, k, and Ai, Pj , Ns are (positive) atoms, i.e. of the form Q(t̄),
where Q is a predicate of a fixed arity, say, �, and t̄ is a sequence of length
� of variables or constants. In rule (6), A1, . . . ,not Nk are called literals, with
A1 positive, and not Nk, negative. All the variables in the Ai, Ns appear among
those in the Pj . The left-hand side of a rule is called the head, and the right-hand
side, the body. A rule can be seen as a (partial) definition of the predicates in
the head (there may be other rules with the same predicates in the head).

The constants in program Π form the (finite) Herbrand universe H of the
program. The ground version of program Π, gr(Π), is obtained by instantiating
the variables in Π in all possible ways using values from H. The Herbrand base,
HB , of Π contains all the atoms obtained as instantiations of predicates in Π
with constants in H.

A subset M of HB is a model of Π if it satisfies gr(Π), i.e.: For every ground
rule A1∨ . . .∨An ← P1, . . . , Pm,not N1, . . . ,not Nk of gr(Π), if {P1, . . . , Pm} ⊆
M and {N1, . . . , Nk} ∩ M = ∅, then {A1, . . . , An} ∩ M �= ∅. M is a minimal
model of Π if it is a model of Π, and Π has no model that is properly contained
in M . MM (Π) denotes the class of minimal models of Π. Now, for S ⊆ HB(Π),
transform gr(Π) into a new, positive program gr(Π)S (i.e. without not), as
follows: Delete every rule A1 ∨ . . . ∨ An ← P1, . . . , Pm,not N1, . . . ,not Nk for
which {N1, . . . , Nk} ∩ S �= ∅. Next, transform each remaining rule A1 ∨ . . . ∨
An ← P1, . . . , Pm,not N1, . . . ,not Nk into A1 ∨ . . . ∨ An ← P1, . . . , Pm. Now, S
is a stable model of Π if S ∈ MM (gr(Π)S). Every stable model of Π is also a
minimal model of Π. Stable models are also commonly called answer sets, and
so are we going to do most of the time.

A program is unstratified if there is a cyclic, recursive definition of a predicate
that involves negation. For example, the program consisting of the rules a∨ b ←
c,not d; d ← e, and e ← b is unstratified, because there is a negation in the
mutually recursive definitions of b and e. The program in Example 1 below is not
unstratified, i.e. it is stratified. A good property of stratified programs is that
the models can be upwardly computed following strata (layers) starting from
the facts, that is from the ground instantiations of rules with empty bodies (in
which case the arrow is usually omitted). We refer the reader to [24] for more
details.
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Query answering under the ASPs comes in two forms. Under the brave seman-
tics, a query posed to the program obtains as answers those that hold in some
model of the program. However, under the skeptical (or cautious) semantics, only
the answers that simultaneously hold in all the models are returned. Both are
useful depending on the application at hand.

Example 1. Consider the following program Π that is already ground.

a ∨ b ← c

d ← b

a ∨ b ← e, notf
e ←

The program has two stable mod-
els: S1 = {e, a} and S2 = {e, b, d}.

Each of them expresses that the
atoms in it are true, and any other
atom that does not belong to it, is false.

These models are incomparable under set inclusion, and are minimal models
in that any proper subset of any of them is not a model of the program (i.e. does
not satisfy the program). �

3 Causal Explanations in Databases

In data management we need to understand and compute why certain results
are obtained or not, e.g. query answers, violations of semantic conditions, etc.;
and we expect a database system to provide explanations.

3.1 Causal Responsibility

Here, we will consider causality-based explanations [36,37], which we will illus-
trate by means of an example.

Example 2. Consider the database D, and the Boolean conjunctive query
(BCQ)

R A B
a b
c d
b b

S C
a
c
b

Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). (2)

It holds: D |= Q, i.e. the query is true
in D.

We ask about the causes for Q to be true: A tuple τ ∈ D is counterfactual
cause for Q (being true in D) if D |= Q and D � {τ} �|= Q. In this example,
S(b) is a counterfactual cause for Q: If S(b) is removed from D, Q is no longer
true.

Removing a single tuple may not be enough to invalidate the query. Accord-
ingly, a tuple τ ∈ D is an actual cause for Q if there is a contingency set Γ ⊆ D,
such that τ is a counterfactual cause for Q in D � Γ . In this example, R(a, b)
is an actual cause for Q with contingency set {R(b, b)}: If R(a, b) is removed
from D, Q is still true, but further removing R(b, b) makes Q false. �
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Notice that every counterfactual cause is also an actual cause, with empty
contingent set. Actual causes that are not counterfactual causes need company
to invalidate a query result. Now we ask how strong are tuples as actual causes.
To answer this question, we appeal to the responsibility of an actual cause τ for
Q [36], defined by:

ρ
D
(τ) :=

1
|Γ | + 1

,

where |Γ | is the size of a smallest contingency set, Γ , for τ , and 0, otherwise.

Example 3 (Example 2 cont.). The responsibility of R(a, b) is 1
2 = 1

1+1 (its
several smallest contingency sets have all size 1).

R(b, b) and S(a) are also actual causes with responsibility 1
2 ; and S(b) is

actual (counterfactual) cause with responsibility 1 = 1
1+0 . �

High responsibility tuples provide more interesting explanations. Causes in
this case are tuples that come with their responsibilities as “scores”. All tuples
can be seen as actual causes, but only those with non-zero responsibility score
matter. Causality and responsibility in databases can be extended to the
attribute-value level [5,8] (c.f. Sect. 5).

As we will see in Sect. 4.1, there is a connection between database causality
and repairs of databases w.r.t. integrity constraints (ICs) [4]. There are also con-
nections to consistency-based diagnosis and abductive diagnosis, that are two
forms of model-based diagnosis [46]. These connections have led to new complex-
ity and algorithmic results for causality and responsibility [5,6]. Actually, the
latter turns out to be intractable (c.f. Sect. 4.1). In [6], causality under ICs was
introduced and investigated. This allows to bring semantic and domain knowl-
edge into causality in databases (c.f. Sect. 6).

Model-based diagnosis is an older area of knowledge representation where
explanations form the subject of investigation. In general, the diagnosis analysis
is performed on a logic-based model, and certain elements of the model are iden-
tified as explanations. Causality-based explanations are somehow more recent.
In this case, still a model is used, which is, in general, a more complex than a
database with a query. In the case of databases, actually there is an underly-
ing logical model, the lineage or provenance of the query [14,47] that we will
illustrate in Sect. 3.2, but it is still a relatively simple model.

3.2 The Causal-Effect Score

Sometimes, as we will see right here below, responsibility does not provide intu-
itive or expected results, which led to the consideration of an alternative score,
the causal-effect score. We show the issues and the score by means of an example.

Example 4. Consider the database E that represents the graph below, and the
Boolean Datalog query Π that is true in E if there is a path from a to b. Here,
E ∪ Π |= yes. Tuples have global tuple identifiers (tids) in the left-most column,
which is not essential, but convenient.
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E A B

t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)

P (x, y) ← E(x, y)

P (x, y) ← P (x, z), E(z, y)

All tuples are actual causes since every tuple appears in a path from a to
b. Also, all the tuples have the same causal responsibility, 1

3 , which may be
counterintuitive, considering that t1 provides a direct path from a to b. �

In [44], the notion causal effect was introduced. It is based on three main
ideas, namely, the transformation, for auxiliary purposes, of the database into a
probabilistic database, the expected value of a query, and interventions on the
lineage of the query. The lineage of a query represents, by means of a propo-
sitional formula, all the ways in which the query can be true in terms of the
potential database tuples, and their combinations. Here, “potential” refers to
tuples that can be built with the database predicates and the database (finite)
domain. These tuples may belong to the database at hand or not. For a given
database, D, some of those atoms become true, and others false, which leads
to the instantiation of the lineage (formula) o D. This is all shown in the next
example.

Example 5. Consider the database D below, and a BCQ.

R A B
a b
a c
c b

S C
b
c

Q : ∃x∃y(R(x, y) ∧ S(y)), which is
true in D.

For the database D in our example, the lineage of the query instantiated on
D is given by the propositional formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b)), (3)

where Xτ is a propositional variable that is true iff τ ∈ D. Here, ΦQ(D) takes
value 1 in D.

Now, for illustration, we want to quantify the contribution of tuple S(b) to
the query answer. For this purpose, we assign, uniformly and independently,
probabilities to the tuples in D, obtaining a probabilistic database Dp [47].
Potential tuples outside D get probability 0.

Rp A B prob
a b 1

2

a c 1
2

c b 1
2

Sp C prob
b 1

2

c 1
2
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The Xτ ’s become independent, identically distributed Boolean random vari-
ables; and Q becomes a Boolean random variable. Accordingly, we can ask
about the probability that Q takes the truth value 1 (or 0) when an intervention
is performed on D.

Interventions are of the form do(X = x), meaning making X take value x,
with x ∈ {0, 1}, in the structural model, in this case, the lineage. That is, we ask,
for {y, x} ⊆ {0, 1}, about the conditional probability P (Q = y | do(Xτ = x)),
i.e. conditioned to making Xτ false or true.

For example, with do(XS(b) = 0) and do(XS(b) = 1), the lineage in (3)
becomes, resp., and abusing the notation a bit:

ΦQ(D|do(XS(b) = 0) := (XR(a,c) ∧ XS(c)).
ΦQ(D|do(XS(b) = 1) := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b).

On the basis of these lineages and Dp, when XS(b) is made false, the probability
that the instantiated lineage becomes true in Dp is:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1) × P (XS(c) = 1) =
1
4
.

Similarly, when XS(b) is made true, the probability of the lineage becoming
true in Dp is:

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1) =
13

16
.

The causal effect of a tuple τ is defined by:

CED,Q(τ) := E(Q | do(Xτ = 1)) − E(Q | do(Xτ = 0)).

In particular, using the probabilities computed so far:

E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) =
1
4
,

E(Q | do(XS(b) = 1)) = P (Q = 1 | do(XS(b) = 1)) =
13
16

.

Then, the causal effect for the tuple S(b) is: CED,Q(S(b)) = 13
16 −

1
4 = 9

16 > 0, showing that the tuple is relevant for the query result, with
a relevance score provided by the causal effect, of 9

16 . �

Example 6 (Example 4 cont.). The Datalog query, here as a union of BCQs, has
the lineage: ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6). It holds:

CED,Q(t1) = 0.65625,

CED,Q(t2) = CED,Q(t3) = 0.21875,

CED,Q(t4) = CED,Q(t5) = CED,Q(t6) = 0.09375.

The causal effects are different for different tuples, and the scores are much
more intuitive than the responsibility scores. �
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The definition of the causal-effect score may look rather ad hoc and arbitrary.
We will revisit it in Sect. 8, where we will have yet another explanation score in
databases; namely one that takes a new approach, measuring the contribution of
a database tuple to a query answer through the use of the Shapley value, which is
firmly established in game theory, and is also used in several other areas [43,45].

The main idea is that several tuples together, much like players in a coali-
tion game, are necessary to violate an IC or produce a query result. Some may
contribute more than others to the wealth distribution function (or simply, game
function), which in this case becomes the query result, namely 1 or 0 if the query
is Boolean, or a number if the query is an aggregation. The Shapley value of a
tuple can be used to assign a score to its contribution. This was done in [30],
and will be retaken in Sect. 8. But first things first.

4 Answer-Set Programs for Causality in Databases

In this section we will first establish a useful connection between database repairs
and causes as tuples in a database. Then, we use ASPs, taking the form of repair
programs, to specify and compute database repairs and tuples as causes for query
answers. We end this section with a fully developed example using the DLV
system and its extensions [29].

4.1 The Repair Connection

The notion of repair of a relational database was introduced in order to formalize
the notion of consistent query answering (CQA), as shown in Fig. 1: If a database
D is inconsistent in the sense that is does not satisfy a given set of integrity
constraints, ICs, and a query Q is posed to D (left-hand side of Fig. 1), what
are the meaningful, or consistent, answers to Q from D? They are sanctioned as
those that hold (are returned as answers) from all the repairs of D. The repairs
of D are consistent instances D′ (over the same schema of D), i.e. D′ |= ICs,
and minimally depart from D [2,4] (right-hand side of Fig. 1).

Notice that: (a) We have now a possible-world semantics for (consistent) query
answering; and (b) we may use in principle any reasonable notion of distance

Fig. 1. Database repairs and consistent query answers
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between database instances, with each choice defining a particular repair seman-
tics. In the rest of this section we will illustrate two classes of repairs, which have
been used and investigated the most in the literature. Actually, repairs in general
have got a life of their own, beyond consistent query answering.

Example 7. Let us consider the following set of denial constraints (DCs) and a
database D, whose relations (tables) are shown right here below. D is inconsis-
tent, because it violates the DCs: it satisfies the joins that are prohibited by the
DCs.

¬∃x∃y(P (x) ∧ Q(x, y))
¬∃x∃y(P (x) ∧ R(x, y))

P A
a
e

Q A B
a b

R A C
a c

We want to repair the original instance by deleting tuples from relations.
Notice that, for DCs, insertions of new tuple will not restore consistency. We
could change (update) attribute values though, a possibility we will consider in
Sect. 5.

Here we have two subset repairs, a.k.a. S-repairs. They are subset-maximal
consistent subinstances of D: D1 = {P (e), Q(a, b), R(a, c)} and D2 =
{P (e), P (a)}. They are consistent, subinstances of D, and any proper super-
set of them (still contained in D) is inconsistent. (In general, we will represent
database relations as set of tuples).

We also have cardinality repairs, a.k.a. C-repairs. They are consistent subin-
stances of D that minimize the number of tuples by which they differ from D.
That is, they are maximum-cardinality consistent subinstances. In this case, only
D1 is a C-repair. Every C-repair is an S-repair, but not necessarily the other
way around (as this example shows). �

Let us now consider a BCQ

Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), (4)

which we assume is true in a database D. It turns out that we can obtain the
causes for Q to be true D, and their contingency sets from database repairs. In
order to do this, notice that ¬Q becomes a DC

κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)); (5)

and that Q holds in D iff D is inconsistent w.r.t. κ(Q).
It holds that S-repairs are associated to causes with minimal contingency

sets, while C-repairs are associated to causes for Q with minimum contingency
sets, and maximum responsibilities [5]. In fact, for a database tuple τ ∈ D:

(a) τ is actual cause for Q with subset-minimal contingency set Γ iff D� (Γ ∪
{τ}) is an S-repair (w.r.t. κ(Q)), in which case, its responsibility is 1

1+|Γ | .
(b) τ is actual cause with minimum-cardinality contingency set Γ iff D � (Γ ∪

{τ}) is C-repair, in which case, τ is a maximum-responsibility actual cause.
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Conversely, repairs can be obtained from causes and their contingency sets [5].
These results can be extended to unions of BCQs (UBCQs), or equivalently, to
sets of denial constraints.

One can exploit the connection between causes and repairs to understand
the computational complexity of the former by leveraging existing results for the
latter. Beyond the fact that computing or deciding actual causes can be done
in polynomial time in data for CQs and UCQs [5,36], one can show that most
computational problems related to responsibility are hard, because they are also
hard for repairs, in particular, for C-repairs (all this in data complexity) [32]. In
particular, one can prove [5]: (a) The responsibility problem, about deciding if a
tuple has responsibility above a certain threshold, is NP -complete for UCQs. (b)
Computing ρ

D
(τ) is FPNP(log(n))-complete for BCQs. This the functional, non-

decision, version of the responsibility problem. The complexity class involved
is that of computational problems that use polynomial time with a logarithmic
number of calls to an oracle in NP. (c) Deciding if a tuple τ is a most responsible
cause is PNP(log(n))-complete for BCQs. The complexity class is as the previous
one, but for decision problems [1].

4.2 Repair-Programs for Causality in Databases

Answer-set programs (ASPs) can be used to specify, compute and query S- and
C-repairs. These ASPs are called “repair programs”. We will show the main
ideas behind them by means of an example. For a more complete treatment see
[4,17].

Example 8 (Example 2 cont.). Let us consider the DC associated to the query
Q in (2): κ(Q) : ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)).

The given database is inconsistent w.r.t. κ(Q), and we may consider its
repairs. Its repair program contains the D as set of facts, now (only
for convenience) with global tuple identifiers (tids) in the first attribute:
R(1, a, b), R(2, c, d), R(3, b, b), S(4, a), S(5, c), S(6, b).

The main rule is the properly repair rule:

S′(t1, x, d) ∨ R′(t2, x, y, d) ∨ S′(t3, y, d) ←− S(t1, x), R(t2, x, y), S(t3, y).

Here, d is an annotation constant for “tuple deleted”. This rule detects in its
body (its right-hand side) a violation of the DC. If this happens, its head (its
left-hand-side) instructs the deletion of one of the tuples participating in the
violation. The semantics of the program forces the choice of only one atom in
the head (unless forced otherwise by other rules in the program, which does not
occur in repair programs). Different choices will lead to different models of the
program, and then, to different repairs.

In order to “build” the repairs, we need the collection rules:

S′(t, x, s) ←− S(t, x), not S′(t, x, d). etc.

Here, s is an annotation for “tuple stays in repair”; and the rule collects the
tuples in the original instance that have not been deleted.
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There is a one-to-one correspondence between the answer-sets of the repair
program and the database repairs. Actually, a model M of the program deter-
mines an S-repair D′ of D, as D′ := {R(c̄) | R′(t, c̄, s) ∈ M}. Conversely,
every S-repair can obtained in this way.

In this example, the S-repair, D1 = {R(a, b), R(c, d), R(b, b), S(a), S(c)},
can be obtained from the model M1 = {R′(1, a, b, s), R′(2, c, d, s), R′(3, b, b, s),
S′(4, a, s), S′(5, c, s), S′(6, b, d), . . .}. Actually, D1 is a C-repair.

There is another S-repair, D2 = {R(c, d), S(a), S(c), S(b)}, that is asso-
ciated to the model M2 = {R′(1, a, b, d), R′(2, c, d, s), R′(3, b, b, d), S′(4, a, s),
S′(5, c, s), S′(6, b, s), . . .}. This is not a C-repair. �

For sets of DCs, repair programs can be made normal, i.e. non-disjunctive
[17]. CQA becomes query answering under the cautious or skeptical semantics
of ASPs (i.e. true in all repairs), which, for normal programs, is NP -complete
(in data). This matches the data complexity of consistent QA under DCs (c.f.
[4] for references to complexity of CQA).

Now, if we want to obtain from the program only those models that corre-
spond to C-repairs, we can add weak program constraints (WCs), as shown in
the example.

Example 9 (Example 8 cont.). Let us add to the program the WCs

:∼ R(t, x̄), R′(t, x̄, d)
:∼ S(t, x̄), S′(t, x̄, d).

A (hard) program constraint in a program [29], usually denoted as

:− P1(x̄1), . . . , P1(x̄n),

leads to discarding all the models where the join in the RHS of the constraint
holds. Weak program constraints, now preceded by a “:∼”, may be violated by a
model, buy only the models where the number of violations of them is minimized
are kept. In our example, the WCs have the effect of minimizing the number of
deleted tuples. In this way, we obtain as models only C-repairs.

In our example, we obtain C-repair D1, corresponding to model M1, but not
S-repair D2, because it is associated to model M2 that is discarded due to the
WCs. �

As we already mentioned, C-repairs are those that can be used to obtain
most-responsible actual causes. Accordingly, the latter task can be accomplished
through the use of repair programs with weak constraints. We illustrate this by
means of our example (c.f. [8] for a detailed treatment). Actually, cause and
responsibility computation become query answering on extended repair pro-
grams. In them, causes will be represented by means of the tids we introduced
for repair programs.



158 L. Bertossi

Example 10 (Example 9 cont.). The causes can be obtained through a new
predicate, defined by the rules

Cause(t) ←− R′(t, x, y, d),
Cause(t) ←− S′(t, x, d),

because they correspond to deleted tuples in a repair. If we want to obtain them,
it is good enough to pose a query under the brave semantics, which returns what
is true in some model: Π |=brave Cause(t)?

However, we would like to obtain contingency sets (for causes) and responsi-
bilities. We will concentrate on maximum-responsibility causes and their (max-
imum) responsibilities, for which we assume the repair program has weak con-
straints, as above (c.f. [8] for non-maximum responsibility causes).

We first introduce a new binary predicate, to collect a cause and an associated
contingency tuple (which is deleted together with the tuple-cause in a same
repair). This predicate is of the form CauCon(t, t′), indicating that t is actual
cause, and t′ is a member of the former’s contingency set. For this, for each pair
of predicates Pi, Pj , not necessarily different, in the DC κ(Q), we introduce the
rule:

CauCon(t, t′) ←− P ′
i (t, x̄i, d), P ′

j(t
′, x̄j , d), t �= t′.

This will make t′ a member of t’s contingency set. In our example, we have the
rule:

CauCon(t, t′) ←− S′(t, x, d), R′(t′, u, v, d),

where the inequality is not needed (for having different predicates), but also,
among others,

CauCon(t, t′) ←− S′(t, x, d), S′(t′, u, d), t �= t′.

In model M1, corresponding to C-repair D1, where there is no pair of simul-
taneously deleted tuples, we have no CauCon atoms. Had model M2 not been
discarded due to the WCs, we would find in it (actually in its extension) the
atoms: CauCon(1, 3) and CauCon(3, 1). �

Contingency sets, which is what we want next, are sets, which in general are
not returned as objects from an ASP. However, there are extensions of ASP and
their implementations, such as DLV [29], that, trough aggregations, support set
construction. This is the case of DLV-Complex [15,16], that we have used in
for running repair programs and their extensions. We do this as follows (in the
program below, t, t′ are variables).

preCon(t, {}) ← Cause(t), not Aux 1(t) (6)
Aux1(t) ← CauCon(t, t′) (7)

preCon(t, {t′}) ← CauCon(t, t′) (8)
preCon(t,#union(C, {t′′})) ← CauCon(t, t′′), preCon(t, C), (9)

not #member(t′′, C)
Con(t, C) ← preCon(t, C),not Aux 2(t, C) (10)

Aux2(t, C) ← CauCon(t, t′),#member(t′, C)
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The auxiliary predicate in rule (2) is used to avoid a non-safe negation. That
predicate is defined by rule (7). We are capturing here causes that do not have
contingency companions, and then, they have an empty contingency set. Rule
(8) is indeed redundant, but shows the main idea: a contingency companion of
a cause is taken as element into the latter’s pre-contingency set. In rule (10) we
have an auxiliary predicate for the same reason as in the first rule. The main
idea is to stepwise keep adding by means of set union (c.f. rule (9)), a contingent
element to a possibly partial contingency set, until there is nothing left to add.
These maximal contingency sets are obtained with rule (10).

In each model of the program with WCs, these contingency sets will have the
same minimum size, and will lead to maximum responsibility causes. Responsi-
bility computation can be done, with numerical aggregation supported by DLV-
Complex, as follows:

pre-rho(t, n) ← #count{t′ : CauCon(t, t′)} = n

rho(t,m) ← m ∗ (pre-rho(t,m) + 1) = 1

The first rule gives us the (minimum) size, n, of contingency sets, which leads
to a responsibility of 1

1+n . The responsibility of a (maximum responsibility)
cause t can be obtained through a query to the extended program: Πe |=brave

rho(t,X)?.
ASP with WCs computation has exactly the required expressive power or

computational complexity needed for maximum-responsibility computation [8].

4.3 The Example with DLV-Complex

In this section we show in detail the running example in Sect. 4.2, fully specified
and executed with the DLV-Complex system [15,16]. C.f. [8] for more details.

Example 11 (Example 8 cont.). The first fragment of the DLV program below,
shows facts for database D, and the disjunctive repair rule for the DC κ(Q).
In it, and in the rest of this section, R_a, S_a, ... stand for R′, S′, ... used
before, with the subscript _a for “auxiliary”. We recall that the first attribute
of a predicate holds a variable or a constant for a tid; and the last attribute of
R_a, etc. holds an annotation constant, d or s, for “deleted” (from the database)
or “stays” in a repair, resp. (In DLV programs, variables start with a capital
letter, and constants, with lower-case).

R(1,a,b). R(2,c,d). R(3,b,b). S(4,a). S(5,c). S(6,b).

S_a(T1,X,d) v R_a(T2,X,Y,d) v S_a(T3,Y,d) :- S(T1,X),R(T2,X,Y), S(T3,Y).

S_a(T,X,s) :- S(T,X), not S_a(T,X,d).

R_a(T,X,Y,s) :- R(T,X,Y), not R_a(T,X,Y,d).

DLV returns the stable models of the program, as follows:

{S_a(6,b,d), R_a(1,a,b,s), R_a(2,c,d,s), R_a(3,b,b,s),

S_a(4,a,s), S_a(5,c,s)}
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{R_a(1,a,b,d), R_a(3,b,b,d), R_a(2,c,d,s), S_a(4,a,s),

S_a(5,c,s), S_a(6,b,s)}

{S_a(4,a,d), R_a(3,b,b,d), R_a(1,a,b,s), R_a(2,c,d,s),

S_a(5,c,s), S_a(6,b,s)}

These three stable models (that do not show here the original EDB) are
associated to the S-repairs D1,D2,D3, resp. Only tuples with tids 1, 3, 4, 6 are
at some point deleted. In particular, the first model corresponds to the C-repair

D1 = {R(s4, s3), R(s2, s1), R(s3, s3), S(s4), S(s2)}.

Now, to compute causes and their accompanying deleted tuples we add to
the program the rules defining Cause and CauCont :

cause(T) :- S_a(T,X,d).

cause(T) :- R_a(T,X,Y,d).

cauCont(T,TC) :- S_a(T,X,d), S_a(TC,U,d), T != TC.

cauCont(T,TC) :- R_a(T,X,Y,d), R_a(TC,U,V,d), T != TC.

cauCont(T,TC) :- S_a(T,X,d), R_a(TC,U,V,d).

cauCont(T,TC) :- R_a(T,X,Y,d), S_a(TC,U,d).

Next, contingency sets can be computed by means of DLV-Complex, on the
basis of the rules defining predicates cause and cauCont above:

preCont(T,{TC}) :- cauCont(T,TC).

preCont(T,#union(C,{TC})) :- cauCont(T,TC), preCont(T,C),

not #member(TC,C).

cont(T,C) :- preCont(T,C), not HoleIn(T,C).

HoleIn(T,C) :- preCont(T,C), cauCont(T,TC),

not #member(TC,C).

tmpCont(T) :- cont(T,C), not #card(C,0).

cont(T,{}) :- cause(T), not tmpCont(T).

The last two rules associate the empty contingency set to counterfactual
causes.

The three stable models obtained above will now be extended with cause-
and cont-atoms, among others (unless otherwise stated, preCont-, tmpCont-,
and HoleIn-atoms will be filtered out from the output); as follows:

{S_a(4,a,d), R_a(3,b,b,d), R_a(1,a,b,s), R_a(2,c,d,s),

S_a(5,c,s), S_a(6,b,s), cause(4), cause(3), cauCont(4,3),

cauCont(3,4), cont(3,{4}), cont(4,{3})}

{R_a(1,a,b,d), R_a(3,b,b,d), R_a(2,c,d,s), S_a(4,a,s),

S_a(5,c,s), S_a(6,b,s), cause(1), cause(3), cauCont(1,3),

cauCont(3,1), cont(1,{3}), cont(3,{1})}

{S_a(6,b,d), R_a(1,a,b,s), R_a(2,c,d,s), R_a(3,b,b,s),

S_a(4,a,s), S_a(5,c,s), cause(6), cont(6,{})}
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The first two models above show tuple 3 as an actual cause, with one con-
tingency set per each of the models where it appears as a cause. The last line of
the third model shows that cause (with tid) 6 is the only counterfactual cause
(its contingency set is empty).

The responsibility ρ can be computed via predicate preRho(T,N) that
returns N = 1

ρ , that is the inverse of the responsibility, for each tuple with
tid T and local to a model that shows T as a cause. We concentrate on the
computation of preRho in order to compute with integer numbers, as supported
by DLV-Complex, which requires setting an upper integer bound by means of
maxint, in this case, at least as large as the largest tid:

#maxint = 100.

preRho(T,N + 1) :- cause(T), #int(N), #count{TC: cauCont(T,TC)} = N.

where the local (pre)responsibility of a cause (with tid) T within a repair is
obtained by counting how many instances of cauCont(T, ?) exist in the model,
which is the size of the local contingency set for T plus 1. We obtain the following
(filtered) output:

{S_a(4,a,d), R_a(3,b,b,d), cause(4), cause(3),

preRho(3,2), preRho(4,2), cont(3,{4}), cont(4,{3})}

{R_a(1,a,b,d), R_a(3,b,b,d), cause(1), cause(3),

preRho(1,2), preRho(3,2), cont(1,{3}), cont(3,{1})}

{S_a(6,b,d), cause(6), preRho(6,1), cont(6,{})}

The first model shows causes 3 and 4 with a pre-rho value of 2. The second
one, causes 3 and 1 with a pre-rho value of 2. The last model shows cause 6
with a pre-rho value of 1. This is also a maximum-responsibility cause, actually
associated to a C-repair. Inspecting the three models, we can see that the overall
pre-responsibility of cause 3 (the minimum of its pre-rho values) is 2, similarly
for cause 1. For cause 6 the overall pre-responsibility value is 1.

Now, if we want only maximum-responsibility causes, we add weak program
constraints to the program above, to minimize the number of deletions:

:~ S_a(T,X,d).

:~ R_a(T,X,Y,d).

DLV shows only repairs with the least number of deletions, in this case:

Best model: {S_a(6,b,d), R_a(1,a,b,s), R_a(2,c,d,s), R_a(3,b,b,s),

S_a(4,a,s), S_a(5,c,s), cause(6), preRho(6,1), cont(6,{})}

Cost ([Weight:Level]): <[1:1]>

As expected, only repair D1 is obtained, where only S(6, s3) is a cause, and
with responsibility 1, making it a maximum-responsibility cause. �
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5 Causal Explanations in Databases: Attribute-Level

In Sect. 4.1 we saw that: (a) there are different database repair-semantics; and
(b) tuples as causes for query answering can be obtained from S- and C-repairs.
We can extrapolate from this, and define, as opposed to only reobtain, notions
of causality on the basis of a repair semantics. This is what we will do next in
order to define attribute-level causes for query answering in databases.

We may start with a repair-semantics S for databases under, say denial
constraints (this is the case we need here, but we could have more general ICs).
Now, we have a database D and a true BCQ Q. As before, we have an associated
(and violated) denial constraint κ(Q). There will be S-repairs, i.e. sanctioned as
such by the repair semantics S. More precisely, the repair-semantics S identifies
a class RepS(D,κ(Q)) of admissible and consistent instances that “minimally”
depart from D. On this basis, S-causes can be defined as in Sect. 4.1(a)–(b). Of
course, “minimality” has to be defined, and comes with S.

We will develop this idea, at the light of an example, with a particular repair-
semantics, and we will apply it to define attribute-level causes for query answer-
ing, i.e. we are interested in attribute values in tuples rather than in whole tuples.
The repair semantics we use here is natural, but others could be used instead.

Example 12. Consider the database D, with tids, and query Q : ∃x∃y(S(x) ∧
R(x, y) ∧ S(y)), of Example 2 and the associated denial constraint κ(Q) :
¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)).

R A B
t1 a b
t2 c d
t3 b b

S C
t4 a
t5 c
t6 b

Since D �|= κ(Q), we need to consider
repairs of D w.r.t. κ(Q).

Repairs will be obtained by “minimally” changing attribute values by NULL,
as in SQL databases, which cannot be used to satisfy a join. In this case, min-
imality means that the set of values changed by NULL is minimal under set
inclusion. These are two different minimal-repairs:

R A B
t1 a b
t2 c d
t3 b b

S C
t4 a
t5 c
t6 NULL

R A B
t1 a NULL
t2 c d
t3 b NULL

S C
t4 a
t5 c
t6 b

It is easy to check that they do not satisfy κ(Q). If we denote the changed val-
ues by the tid with the position where the changed occurred, then the first repair
is characterized by the set {t6[1]}, whereas the second, by the set {t1[2], t3[2]}.
Both are minimal since none of them is contained in the other.

Now, we could also introduce a notion of cardinality-repair, keeping those
where the number of changes is a minimum. In this case, the first repair qualifies,
but not the second.



Score-Based Explanations in Data Management and Machine Learning 163

These repairs identify (actually, define) the value in t6[1] as a maximum-
responsibility cause for Q to be true (with responsibility 1). Similarly, t1[2] and
t3[2] become actual causes, that do need contingent companion values, which
makes them take a responsibility of 1

2 each. �

We should emphasize that, under this semantics, we are considering attribute
values participating in joins as interesting causes. A detailed treatment can be
found in [8]. Of course, one could also consider as causes other attribute values
in a tuple that participate in a query (being true), e.g. that in t3[1], but making
them non-prioritized causes. One could also think of adjusting the responsibility
measure in order to give to these causes a lower score.

5.1 ASPs for Attribute-Level Causality

So as in Sects. 4.2 and 4.3, we can specify attribute-level causes via attribute-
based repairs, and their ASPs. We show this at the light of an example that is
given directly using DLV code (c.f. [8] for more details).

Example 13. Consider the database instance

D = {S(a), S(b), R(b, c), R(b, d), R(b, e)},

and the BCQ Q : ∃x∃y(S(x) ∧ R(x, z)), which is true in D, and for which we
want to find attribute-level causes.

We consider the DC corresponding to the negation of query, namely

κ : ¬∃x∃y(S(x) ∧ R(x, z)).

Since D �|= κ, D is inconsistent. The updated instance

D2 = {S(a), S(NULL), R(b, c), R(b, d), R(b, e)}

is consistent (among others obtained by updates with NULL), i.e. D2 |= κ.
In the DLV program below, R_a, and S_a are the auxiliary predicates associ-

ated to R and S. They accommodate annotation constants in their last argument.
The annotation constants tr, u, fu and s stand for “in transition” (i.e. initial
or updated tuple, that could be further updated), “has been updated”, “is final
update”, and “stays in repair”, resp. The tuples already contain tuple-ids. Here,
T, T2, X, Y, ... are variables.

S(1,a). S(2,b). R(3,b,c). R(4,b,d). R(5,b,e).

S_a(T,X,tr) :- S(T,X).

S_a(T,X,tr) :- S_a(T,X,u).

R_a(T,X,Y,tr) :- R(T,X,Y).

R_a(T,X,Y,tr) :- R_a(T,X,Y,u).
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This part of the program so far provides, as facts, the tuples in the database
with their tids. It also defines each of these tuples as “in transition”. The same
for those that have been updated.

The updates themselves come in the following portion of the program. In it,
null is treated as any other constant, and can be compared with other constants
(as opposed to their occurrence as NULL in SQL, where any comparison involving
it is considered to be false).

The first two rules capture, in the first three atoms in the body, a violation
of the constraints, i.e. a join through a non-null value, for X. The last atom in
the body of the first rule says that the value for X in R is not updated to null ,
then, as specified in the head of the rule, it has to be updated in S. The second
rule is similar, but the other way around.2

S_a(T,null,u) :- S_a(T,X,tr), R_a(T2,X,Y,tr), X != null,

not R_a(T2,null,Y,u).

R_a(T,null,Y,u) :- R_a(T,X,Y,tr), S_a(T2,X,tr), X != null,

not S_a(T2,null,u).

In R_a(t,m,n,fu) below, annotation fu means that the atom with tid t
has reached its final update (during the program evaluation). In particular,
R(t,m,n) has already been updated, and annotation u should appear in the
new, updated atom, say R_a(t,m1,n1,u), and this tuple cannot be updated
any further (because relevant updateable attribute values have already been
replaced by null if necessary). This is captured by the next five rules:

S_a(T,X,fu) :- S_a(T,X,u), not auxS1(T,X).

auxS1(T,X) :- S(T,X), S_a(T,null,u), X != null.

R_a(T,X,Y,fu) :- R_a(T,X,Y,u), not auxR1(T,X,Y), not auxR2(T,X,Y).

auxR1(T,X,Y) :- R(T,X,Y), R_a(T,null,Y,u), X != null.

auxR2(T,X,Y) :- R(T,X,Y), R_a(T,X,null,u), Y != null.

The final six rules collect what stays in a repair, as annotated with s:

S_a(T,X,s) :- S_a(T,X,fu).

S_a(T,X,s) :- S(T,X), not auxS(T).

auxS(T) :- S_a(T,X,u).

R_a(T,X,Y,s) :- R_a(T,X,Y,fu).

R_a(T,X,Y,s) :- R(T,X,Y), not auxR(T).

auxR(T) :- R_a(T,X,Y,u).

Two stable models are returned, corresponding to two attribute-based
repairs: (we skip the atoms without annotation s)

2 Those two normal rules could be replaced by a single disjunctive rule:
S a(T,null , u) ∨ R a(T,null , Y, u) ← S a(T,X, tr), R a(T2, X, Y, tr), X �= null . For
this kind of disjunctive repair programs one can show that the normal and disjunc-
tive versions are equivalent, i.e. they have the same models. This is because, the
disjunctive program becomes head-cycle free [20].
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{S_a(1,a,s), S_a(2,b,s), R_a(3,null,c,s), R_a(5,null,e,s), R_a(4,null,d,s)}

{S_a(1,a,s), R_a(3,b,c,s), R_a(4,b,d,s), R_a(5,b,e,s), S_a(2,null,s)}

The second model corresponds to the repair D2 given at the beginning of
this example.

We could extend the program with rules to collect the attribute values that
are causes for the query to be true:

cause(T,1,X) :- R(T,X,Y), R_a(T,null,Z,s).

cause(T,2,Y) :- R(T,X,Y), R_a(T,Z,null,s).

cause(T,1,X) :- S(T,X), S_a(T,null,s).

Here, the second argument indicates the position where the cause, as a value,
appears in a tuple. Remember that the tids are global, so having them in the
first body atom in these rules will always make these rules to be evaluated with
different tids, which come from the original database.

Here, we are assuming the original database does not have nulls. If it does,
it is good enough to add the extra condition X != null in the body of the first
rule, and similarly for the other rules. Each model will return some causes. If we
want them all, and we have no interest in the repairs or the complete models, we
can just pose a query under the brave semantics: :- cause(U,V,W)? We will
obtain all the cause-atoms that appear in some of the models of the extended
program, e.g. cause(3,1,b), i.e. the value b in the first attribute, “1”, of tuple
with id 3. �

6 Causes Under Integrity Constraints

In this section we consider tuples as causes for query answering in the more
general setting where databases are subject to integrity constraints (ICs). In
this scenario, and in comparison with Sect. 3.1, not every intervention on the
database is admissible, because the ICs have to be satisfied. As a consequence,
the definitions of cause and responsibility have to be modified accordingly. We
illustrate the issues by means of an example. More details can be found in [6,8].

We start assuming that a database D satisfies a set of ICs, Σ, i.e. D |= Σ. If
we concentrate on BCQs, or more, generally on monotone queries, and consider
causes at the tuple level, only instances obtained from D by interventions that
are tuple deletions have to be considered; and they should satisfy the ICs. More
precisely, for τ to be actual cause for Q, with a contingency set Γ , it must hold
[6]:

(a) D � Γ |= Σ, and D � Γ |= Q.
(b) D � (Γ ∪ {τ}) |= Σ, and D � (Γ ∪ {τ}) �|= Q.

The responsibility of τ , denoted ρD,Σ
Q(ā)

(τ), is defined as in Sect. 3.1, through
minimum-size contingency sets.

Example 14. Consider the database instance D as below, initially without addi-
tional ICs.
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Dep DName TStaff

t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName TStaff DName

t4 COM08 John Computing
t5 Math01 Kevin Math
t6 HIST02 Patrick Philosophy
t7 Math08 Eli Math
t8 COM01 John Computing

Let us first consider the following open query: (The fact that it is open is
not particularly relevant, because we can instantiate the query with the answer,
obtaining a Boolean query).

Q(x) : ∃y∃z(Dep(y, x) ∧ Course(z , x , y)). (11)

In this case, we get answers other that yes or no. Actually, 〈John〉 ∈ Q(D),
the set of answers to Q, and we look for causes for this particular answer. It
holds: (a) t1 is a counterfactual cause; (b) t4 is actual cause with single minimal
contingency set Γ1 = {t8}; (c) t8 is actual cause with single minimal contingency
set Γ2 = {t4}.

Let us now impose on D the inclusion dependency (IND):

ψ : ∀x∀y (Dep(x, y) → ∃u Course(u, y, x)), (12)

which is satisfied by D. Now, t4 t8 are not actual causes anymore; and t1 is
still a counterfactual cause.

Let us now consider the query

Q1(x) : ∃y Dep(y, x). (13)

Now, 〈John〉 ∈ Q1(D), and under the IND (12), we obtain the same causes as
for Q, which is not surprising considering that Q ≡ψ Q1, i.e. the two queries
are logically equivalent under (12).

And now, consider the query:

Q2(x) : ∃y∃zCourse(z, x, y), (14)

for which 〈John〉 ∈ Q2(D).
For this query we consider the two scenarios, with and without imposing

the IND. Without imposing (12), t4 and t8 are the only actual causes, with
contingency sets Γ1 = {t8} and Γ2 = {t4}, resp.

However, imposing (12), t4 and t8 are still actual causes, but we lose their
smallest contingency sets Γ1 and Γ2 we had before: D � (Γ1 ∪ {t4}) �|= ψ,
D � (Γ2 ∪ {t8}) �|= ψ. Actually, the smallest contingency set for t4 is Γ3 =
{t8, t1}; and for t8, Γ4 = {t4, t1}.

We can see that under the IND, the responsibilities of t4 and t8 decrease:
ρD

Q2(John)
(t4) = 1

2 , but ρD,ψ
Q2(John)

(t4) = 1
3 . Tuple t1 is not an actual cause, but it

affects the responsibility of actual causes. �
Some results about causality under ICs can be obtained [6]: (a) Causes

are preserved under logical equivalence of queries under ICs, (b) Without ICs,
deciding causality for BCQs is tractable, but their presence may make complexity
grow. More precisely, there are a BCQ and an inclusion dependency for which
deciding if a tuple is an actual cause is NP -complete in data.
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6.1 Specifying and Computing Causes Under Integrity Constraints

ASPs for computation of causes and responsibilities under ICs can be produced.
However, Example 14 shows that contingency sets may be affected by the pres-
ence of ICs.

Example 15 (Example 14 cont.). Database D violates the DC κ2 :
¬∃zCourse(z, John) associated to query Q2 and its answer John. Without con-
sidering ψ, its only minimal repair is D′ = D � {τ4, τ8}. However, if we accept
minimal repairs that also satisfy ψ (when D already did), then the only minimal
repair is D′′ = D � {τ1, τ4, τ8}. �

This example shows that, in the presence of a set of hard ICs Ψ , the repairs
w.r.t. to another set of ICs Σ that also satisfy Ψ may not be among the repairs
w.r.t. Σ without consideration for Ψ . So, it is not only a matter of discarding
some of the unwanted repairs w.r.t. Σ alone.

The example also shows that, in the presence of a hard set of ICs Ψ , the
characterization of causes in terms of repairs (as in Sect. 3.1) has to be revised.
Doing this should be relatively straightforward for repairs of D w.r.t. the DCs
Σ that have origin in UBCQs, and are maximally contained in D under set-
inclusion, and also satisfy the hard constraints Ψ . Instead of giving a general
approach, we show how a repair-program could be used to reobtain the results
obtained in Example 14, where an inclusion dependency is our IC.

Example 16 (Examples 14 and 15 cont.). Without considering the IC ψ, the
repair-program for D w.r.t. the DC κ2 is:

1. The extensional database as a set of facts corresponding to the table. For
example, Dept(1, computing, john), etc.

2. Repair rule for κ2: Course ′(t, z, john, d) ← Course(t, z, john).
3. Persistence rule: Course ′(t, x, y, s) ← Course(t, x, y), not Course ′(t, x, y, d).

We have to add to this program, rules that take care of repairing w.r.t. ψ in case
it is violated via deletions from Course:

4. Dept ′(t′, x, y, d) ← Dept(t′, x, y),not aux (y)
5. aux (y) ← Course ′(t, x, y, s).
6. Dept ′(t, x, y, s) ← Dept(t, x, y), not Dept ′(t, x, y, d).

Notice that violations of the inclusion dependency that may arise from deletions
from Course are being repaired through deletions from Dept . The only stable
model of this program corresponds to the repair in Example 15. �

Notice that the definition of actual cause under ICs opens the ground for
a definition of a notion of underlying (hidden, latent) cause. In Example 14, τ1
could be such a cause. It is not strictly an actual cause, but it has to appear
in every minimal contingency set. Similarly, Example 15 shows that τ1 has to
appear in the difference between the original instance and every minimal repair.
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7 Measuring Database Inconsistency and ASPs

A database D is expected to satisfy a given set of integrity constraints (ICs),
Σ, that come with the database schema. However, databases may be inconsis-
tent in that those ICs are not satisfied. A natural question is: To what extent,
or how much inconsistent is D w.r.t. Σ, in quantitative terms?. This prob-
lem is about defining a global numerical score for the database, to capture its
“degree of inconsistency”. This number can be interesting per se, as a measure
of data quality (or a certain aspect of it), and could also be used to compare two
databases (for the same schema) w.r.t. (in)consistency.

Scores for individual tuples in relation to their contribution to inconsistency
can be obtain through responsibility scores for query answering, because every
IC gives rise to a violation view; and a tuple contained in it can be scored. Also
Shapley values can be applied (c.f. Sect. 8; see also [31]).

Inconsistency measures have been introduced and investigated in knowledge
representation, but mainly for propositional theories; and, in the first-order case
through grounding. In databases, it is more natural to consider the different
nature of the combination of a database, as a structure, and ICs, as a set of
first-order formulas. It is also important to consider the asymmetry: databases
are inconsistent or not, not the combination. Furthermore, the relevant issues
that are usually related to data management have to do with algorithms and
computational complexity; actually, in terms of the database and its size. Notice
that ICs are usually few and fixed, whereas databases can be huge.

In [7], a particular and natural inconsistency measure (IM) was introduced
and investigated. Maybe more important than the particular measure, the
research program to be developed around such an IM is particularly relevant.
More specifically, the measure was inspired by one used for functional depen-
dencies (FDs), and reformulated and generalized in terms of a class of database
repairs. In addition to algorithms, complexity results, approximations for hard
cases of IM computation, and the dynamics of the IM under updates, ASPs were
proposed for the computation of this measure. We concentrate on this part in
the rest of this section. We use the notions and notation introduced in Sect. 4.1
and its Example 7.

For a database D and a set of denial constraints Σ (this is not essential, but
to fix ideas), we have the classes of subset-repairs (or S-repairs), and cardinality-
repairs (or C-repairs), denoted Srep(D,Σ) and Crep(D,Σ), resp. The following
IMs are introduced:

inc-degS(D,Σ) :=
|D| − max{|D′| : D′ ∈ Srep(D,Σ)}

|D| ,

inc-degC(D,Σ) :=
|D| − max{|D′| : D′ ∈ Crep(D,Σ)}

|D| .

We can see that it is good enough to concentrate on inc − degC(D,Σ) since it
gives the same value as inc − degS(D,Σ). Actually, to compute it, one C-repair
is good enough. It is clear that 0 ≤ inc-degC(D,Σ) ≤ 1, with value 0 when D
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consistent. Notice that one could use other repair semantics instead of C-repairs
[7].

Example 17 (Example 7 cont.). Here, Srep(D,Σ) = {D1,D2} and
Crep(D,Σ) = {D1}. It holds: inc − degS(D,Σ) = 4−|D1|

4 = inc − degC(D,Σ) =
4−|D1|

4 = 1
4 . �

The complexity of computing inc − degC(D,Σ) for DCs belongs to
FPNP(log(n)), in data complexity. Furthermore, there is a relational schema and a
set of DCs Σ for which computing inc − degC(D,Σ) is FPNP(log(n))-complete.

It turns out that complexity and efficient computation results can be obtained
via C-repairs, and we end up confronting graph-theoretic problems. Actually, C-
repairs are in one-to-one correspondence with maximum-size independent sets
in hypergraphs [32].

Example 18. Consider the database D = {A(a), B(a), C(a),D(a), E(a)}, which
is inconsistent w.r.t. the set of DS:

Σ = {¬∃x(B(x) ∧ E(x)), ¬∃x(B(x) ∧ C(x) ∧ D(x)), ¬∃x(A(x) ∧ C(x))}.

We obtain the following conflict hyper-graph (CHG), where tuples are the
nodes, and a hyperedge connects tuples that together violate a DC:

E(a)

B(a)
C(a)

A(a)

D(a)
S-repairs are maximal indepen-

dent sets: D1 = {B(a), C(a)},
D2 = {C(a), D(a), E(a)}, D3 =
{A(a), B(a), D(a)}; and the C-repairs
are D2, D3. �

There is a connection between C-repairs and hitting-sets (HS) of the hyper-
edges of the CHG: The removal from D of the vertices in a minimum-size HS
produces a C-repair. The connections between hitting-sets in hypergraphs and
C-repairs can be exploited for algorithmic purposes, and to obtain complexity
and approximation results [7].

It turns out that the IM can be computed via ASPs, and not surprisingly by
now, via specification of C-repairs.

Example 19 (Example 12 cont.). Consider the following DC and database (with
tids)

κ : ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)),
D = {R(1, a, b), R(2, c, d), R(3, b, b), S(4, a), S(5, c), S(6, b)}.

The repair-ASP specifying C-repairs contains the DB D, plus the rules:

S′(t1, x, d) ∨ R′(t2, x, y, d) ∨ S′(t3, y, d) ← S(t1, x), R(t2, x, y), S(t3, y),
S′(t, x, s) ← S(t, x), not S′(t, x, d),

R′(t, x, y, s) ← R(t, x, y), not R′(t, x, y, d),
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and weak program constraints (c.f. Example 9):

:∼ R(x̄), R′(x̄, d),
:∼ S(x̄), S′(x̄, d).

With them, we keep the models that minimize the number of deleted tuples.
The C-repair D1 is represented by the model

M1 = {R′(1, a, b, s), R′(2, c, d, s), R′(3, b, b, s), S′(4, a, s), S′(5, c, s), S′(6, b, d), . . .}.

Now, the IM can be computed via |D � D′| for some (or any) C-repair D′.
In this case, D1.

With a system like DLV-Complex, we can specify this set difference and
compute its cardinality as a simple aggregation. More precisely, we add to the
program above the rules:

Del(t) ← S′(t, x, d),
Del(t) ← R′(t, x, y, d),

NumDel(n) ← #count{t : Del(t)} = n.

The first two rules collect the tids of deleted tuples. The value for NumDel
defined by the third rule is the number of deleted tuples (that already takes a
minimum due to the weak constraints). This number is all we need to compute
the IM. All the models, corresponding to C-repairs, will return the same number.
For this reason, there is no need to explicitly compute all stable models, their
sizes, and compare them. Actually, this value can be obtained by means of a
query posed to the program: “:− NumDel(x)?”, that can be answered under
the brave semantics (returning answers that hold in some of the stable models).
In [7, Appendix A] one can find an extended example that uses DLV-Complex
[15,16] for this computation. �

8 The Shapley Value in Databases

The Shapley value was proposed in game theory by Lloyd Shapley in 1953 [45],
to quantify the contribution of a player to a coalition game where players share
a wealth function.3 It has been applied in many disciplines. In particular, it
has been investigated in computer science under algorithmic game theory [40],
and it has been applied to many and different computational problems. The
computation of the Shapley value is, in general, intractable. In many scenarios
where it is applied its computation turns out to be #P -hard [21,22]. Here, the
class #P contains the problems of counting the solutions for problems in NP . A
typical problem in the class, actually, hard for the class, is #SAT , about counting

3 The original paper and related ones on the Shapley value can be found in the book
edited by Alvin Roth [43]. Shapley and Roth shared the Nobel Prize in Economic
Sciences 2012.
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the number of satisfying assignments for a propositional formula. Clearly, this
problem cannot be easier than SAT , because a solution for #SAT immediately
gives a solution for SAT [1].

In particular, the Shapley value has been used in knowledge representation,
to measure the degree of inconsistency of a propositional knowledge base [28];
in machine learning to provide explanations for the outcomes of classification
models on the basis of numerical scores assigned to the participating feature
values [35] (c.f. Sect. 13); and in data management to measure the contribution
of a tuple to a query answer [30], which we briefly review in this section.

Consider a set of players D, and a game function, G : P(D) → R, where
P(D) the power set of D. The Shapley value of player p in D es defined by:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p}) − G(S)). (15)

Notice that here, |S|!(|D| − |S| − 1)! is the number of permutations of D with all
players in S coming first, then p, and then all the others. That is, this quantity
is the expected contribution of player p under all possible additions of p to a
partial random sequence of players followed by a random sequence of the rests
of the players. Notice the counterfactual flavor, in that there is a comparison
between what happens having p vs. not having it. The Shapley value is the only
function that satisfies certain natural properties in relation to games. So, it is a
result of a categorical set of axioms or conditions [43].

Back to query answering in databases, the players are tuples in the database
D. We also have a Boolean query Q, which becomes a game function, as follows:
For S ⊆ D,

Q(S) =
{

1 if S |= Q,
0 if S �|= Q.

With these elements we can define the Shapley value of a database tuple τ :

Shapley(D,Q, τ) :=
∑

S⊆D\{τ}

|S|!(|D| − |S| − 1)!
|D|! (Q(S ∪ {τ}) − Q(S)).

If the query is monotone, i.e. its set of answers never shrinks when new tuples
are added to the database, which is the case of conjunctive queries (CQs), among
others, the difference Q(S ∪ {τ}) − Q(S) is always 1 or 0, and the average in
the definition of the Shapley value returns a value between 0 and 1. This value
quantifies the contribution of tuple τ to the query result. It was introduced and
investigated in [30], for BCQs and some aggregate queries defined over CQs. We
report on some of the findings in the rest of this section. The analysis has been
extended to queries with negated atoms in CQs [41].

A main result obtained in [30] is about the complexity of computing this
Shapley score. The following Dichotomy Theorem holds: For Q a BCQ with-
out self-joins, if Q is hierarchical, then Shapley(D,Q, τ) can be computed in
polynomial-time (in the size of D); otherwise, the problem is #P -complete.
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Here, Q is hierarchical if for every two existential variables x and y,
it holds: (a) Atoms(x) ⊆ Atoms(y), or Atoms(y) ⊆ Atoms(x), or
Atoms(x) ∩ Atoms(y) = ∅. For example, Q : ∃x∃y∃z(R(x, y) ∧ S(x, z)), for
which Atoms(x) = {R(x, y), S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) =
{S(x, z)}, is hierarchical. However, Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y)), for
which Atoms(x) = {R(x), S(x, y)}, Atoms(y) = {S(x, y), T (y)}, is not hierar-
chical.

These are the same criteria for (in)tractability that apply to evaluation of
BCQs over probabilistic databases [47]. However, the same proofs do not apply,
at least not straightforwardly. The intractability result uses query Qnh above,
and a reduction from counting independent sets in a bipartite graph.

The dichotomy results can be extended to summation over CQs, with the
same conditions and cases. This is because the Shapley value, as an expectation,
is linear. Hardness extends to aggregates max, min, and avg over non-hierarchical
queries.

For the hard cases, there is, as established in [30], an approximation result:
For every fixed BCQ Q (or summation over a CQ), there is a multiplicative
fully-polynomial randomized approximation scheme (FPRAS) [1], A, with

P (τ ∈ D | Shapley(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Shapley(D,Q, τ)}) ≥ 1 − δ.

A related and popular score, in coalition games and other areas, is the
Bahnzhaf Power Index, which is similar to the Shapley value, but the order
of players is ignored, by considering subsets of players rather than permutations
thereof. It is defined by:

Banzhaf (D,Q, τ) :=
1

2|D|−1
·

∑

S⊆(D\{τ})
(Q(S ∪ {τ}) − Q(S)).

The Bahnzhaf-index is also difficult to compute; provably #P-hard in general.
The results in [30] carry over to this index when applied to query answering.
In [30] it was proved that the causal-effect score of Sect. 3.2 coincides with the
Banzhaf-index, which gives to the former an additional justification.

9 Score-Based Explanations for Classification

Let us consider, as in Fig. 2, a classifier, C, that receives as input the representa-
tion of a entity, e = 〈x1, . . . , xn〉, as a record of feature values, and returns as an
output a label, L(e), corresponding to the classification of input e. In principle,
we could see C as a black-box, in the sense that only by direct interaction with
it, we have access to its input/output relation. That is, we may have no access
to the mathematical classification model inside C.

To simplify the presentation, we will assume that the classifier is binary, that
is, for every entity e, L(e) takes one of two possible values, e.g. in {0, 1}. For
example, a client of a financial institution requests a loan, but the classifier, on
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Fig. 2. A black-box classifier

the basis of his/her feature values (e.g. for EdLevel, Income, Age, etc.) assigns
the label 1, for rejection. An explanation may be requested by the client, inde-
pendently from the kind of classifier that is being used. The latter could be
an explicit classification model, e.g. a classification tree or a logistic regression
model. In these cases, we might be in a better position to given an explanation,
because we can inspect the internals of the model [42]. However, we will put
ourselves in the “worst scenario” in which we do not have access to the internal
model. That is, we are confronted to a black-box classifier.

An approach to explanations that has become popular, specially in the
absence of the model, assigns numerical scores to the feature values for an entity,
trying to answer the question about which of the feature values contribute the
most to the received label.

Example 20 Reusing a popular example from [38], let us consider the set of fea-
tures F = {Outlook,Humidity,Wind}, with Dom(Outlook) = {sunny, overcast,
rain}, Dom(Humidity) = {high, normal}, Dom(Wind) = {strong,weak}. An
entity under classification has a value for each of the features, e.g. e =
ent(sunny, normal,weak), and represents a particular weather condition. The
problem consists in deciding about playing tennis or not under the conditions
represented by that entity, which can be captured as a classification problem,
with labels “yes” or “no”.

Fig. 3. A decision tree

In this case, the binary classifier is given as a decision-tree, as shown in Fig. 3.
It could be displayed by double-clicking on the black box in Fig. 2. The decision
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is computed by following the feature values along the branches of the tree. The
entity e at hand gets label yes. �

Score-based methodologies are sometimes based on counterfactual interven-
tions: What would happen with the label if we change this particular value,
leaving the others fixed? Or the other way around: What if we leave this value
fixed, and change the others? The resulting labels from these counterfactual
interventions can be aggregated in different ways, leading to a score for the
feature value under inspection.

A be more concrete, we can use the previous example, to detect and
quantify the relevance (technically, the responsibility) of a feature value in
e = ent(sunny, normal,weak), say for feature Humidity (underlined), by hypo-
thetically intervening its value. In this case, if we change it from normal to high,
we obtain a new entity e′ = ent(sunny, high,weak), a counterfactual version of
e. If we input this entity into the classifier, we now obtain the label no. This is
an indication that the original feature value for Humidity is indeed relevant for
the original classification.

In the next two sections we briefly introduce two scores. Both can be applied
with open-box or black-box models. In both cases, we consider a finite set of
features F , with each feature F ∈ F having a finite domain, Dom(F ), where F ,
as function, takes its values. The features are applied to entities e in a population
E of them. Actually, we identify the entity e with the record (or tuple) formed
by the values the features take on it: e = 〈F1(e), . . . , Fn(e)〉. Now, entities
in E go through a binary classifier, C, that returns labels for them. We will
assume the labels are 1 or 0. For example, the bank could have a classifier that
automatically decides, for an entity, if it is worthy of a loan (0) or not (1).

10 The x-Resp Score

Assume that an entity e has received the label 1 by the classifier C, and we want
to explain this outcome by assigning numerical scores to e’s feature values, in
such a way, that a higher score for a feature value reflects that it has been impor-
tant for the outcome. We do this now using the x-Resp score, whose definition
we illustrate by means of an example (c.f. [10,11] for detailed treatments). For
simplicity and for the moment, we will assume the features are also binary, i.e.
they propositional, taking the values true or false (or 1 and 0, resp.) In Sect. 12,
we consider a more general case.

Example 21 In Fig. 4, the black box is the classifier C. An entity e has gone
through it obtaining label 1, shown in the first row in the figure. We want
to assign a score to the feature value x for a feature F ∈ F . We proceed,
counterfactually, changing the value x into x′, obtaining a counterfactual version
e1 of e. We classify e1, and we still get the outcome 1 (second row in the figure).
In between, we may counterfactually change other feature values, y, z in e, into
y′, z′, but keeping x, obtaining entity e2, and the outcome does not change (third
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Fig. 4. Classified entity and its counterfactual versions

row). However, if we change in e2, x into x′, the outcome does change (fourth
row).

This shows that the value x is relevant for the original output, but, for this
outcome, it needs company, say of the feature values y, z in e. Proceeding as in
actual causality as applied to tuples in a database in relation to query answering
(c.f. Sect. 3.1), we can say that the feature value x in e is an actual cause for
the classification, that needs a contingency set formed by the values y, z in e. In
this case, the contingency set has size 2. If we found a contingency set for x of
size 1 in e, we would consider x even more relevant for the output. �

On this basis, we can define [10,11]: (a) x is a counterfactual explanation
for L(e) = 1 if L(e x

x′ ) = 0, for some x′ ∈ Dom(F ) (the domain of feature F ).
(Here we use the common notation e x

x′ for the entity obtained by replacing x
by x′ in e). (b) x is an actual explanation for L(e) = 1 if there is a set of
values Y in e, with x /∈ Y, and new values Y′ ∪ {x′}, such that L(e Y

Y′ ) = 1
and L(e xY

x′Y′ ) = 0.
Contingency sets may come in sizes from 0 to n − 1 for feature values in

records of length n. Accordingly, we can define for the actual cause x: If Y is
a minimum-size contingency set for x, x-Resp(x) := 1

1+|Y| ; and as 0 when x is
not an actual cause.

We will reserve the notion of counterfactual explanation for (or counterfac-
tual version of) an input entity e for any entity e′ obtained from e by modifying
feature values in e and that leads to a different label, i.e. L(e) �= L(e′). Notice
that from such an e′ we can read off actual causes for L(e) as feature values,
and contingency sets for those actual causes. It suffices to compare e with e′.

In Sect. 11 we give a detailed example that illustrates these notions, and also
show the use of ASPs for the specification and computation of counterfactual
versions of a given entity, and the latter’s x-Resp score.
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11 Counterfactual-Intervention Programs

Together with illustrating the notions introduced in Sect. 10, we will introduce,
by means of an example, Counterfactual Intervention Programs (CIPs). They
are ASPs that specify the counterfactual versions of a given entity, and also,
if so desired, only the maximum-responsibility counterfactual explanations, i.e.
counterfactual versions that lead to a maximum x-Resp score. See [11] for many
more details and examples.

Example 22 (Example 20 continued). We present now the CIP for the classifier
based on the decision-tree, in DLV-Complex notation. We use annotation con-
stants o, for “original entity”, do, for “do a counterfactual intervention” (a single
change of feature value), tr, for “entity in transition”, and s, for “stop, the label
has changed”. We explain the program as we present it, and also by inserting
comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [25].



Score-Based Explanations in Data Management and Machine Learning 177

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [29].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Sect. 12).
Two counterfactual versions of e are obtained, as represented by the two

essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),
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cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [11].

11.1 Bringing-in Domain Knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [11].

Example 23 (Example 22 continued). It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint
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% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �

12 The Generalized Resp Score

If we want to assign a numerical score to a feature value, say v = F (e), where
F has a relatively large domain, Dom(F ), it could be the case that counterfac-
tually changing v into v′ ∈ Dom(F ) changes the label (while leaving the other
feature values fixed). However, it could be that for nearly all the other values in
Dom(F )�{v, v′}, the label does not change. In this case, we might consider that
maybe v is not such a strong reason for the originally obtained label, despite
the fact that v is still a counterfactual explanation (with empty contingency set)
according to Sect. 10.

For this reason, it might be better to consider all the possible alternative
values for F , and define and compute the score in terms of an average of the
label values, or an expected value for the label in case we have an underlying
probability distribution P on the entity population E . Such a general version
of the x-Resp score was introduced and investigated in [9]. We briefly describe
it starting with the simpler case of counterfactual explanations, i.e. without
considering contingency sets. Next, we further generalize the score to consider
the latter. So, in the following, the features do not have to be binary.

Assume that entity e has gone through a classifier and we have obtained
label 1, which we would like to explain. Then, for a feature F � ∈ F , we may
consider as a score:

Counter(e, F �) := L(e) − E(L(e′) | e′
F�{F �} = eF�{F �}). (16)

Here, e
S
, for S ⊆ F is the entity e restricted to the features in S. This score

measures the expected difference between the label for e and those for entities
that coincide in feature values everywhere with e but on feature F �. Notice the
essential counterfactual nature of this score, which is reflected in all the possible
hypothetical changes of values for F � in e.

A problem with Counter is that changing a single value, no matter how, may
not switch the original label, in which case no explanations are obtained. In order
to address this problem, we can bring in contingency sets of feature values, which
leads to the Resp score introduced in [9].

Again, consider e ∈ E , an entity under classification, for which L(e) = 1, and
a feature F � ∈ F . Assume we have:
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1. Γ ⊆ F � {F �}, a set of features that may end up accompanying feature
F �.

2. w̄ = (wF )F∈Γ , wF ∈ Dom(F ), wF �= eF , i.e. new values for features in Γ .
3. e′ := e[Γ := w̄], i.e. reset e’s values for Γ as in w̄.
4. L(e′) = L(e) = 1, i.e. there is no label change with w̄ (but maybe with an

extra change for F �, in next item).
5. There is v ∈ Dom(F �), with v �= F �(e) and e′′ := e[Γ := w̄, F � := v].

As in Sect. 10, if L(e) �= L(e′′) = 0, F �(e) is an actual causal explanation for
L(e) = 1, with “contingency set” 〈Γ, eΓ 〉, where eΓ is the projection of e on Γ .

In order to define the “local” responsibility score, make v vary randomly
under conditions 1.–5.:

Resp(e, F �, Γ, w̄) :=
L(e′) − E[L(e′′) | e′′

F�{F �} = e′
F�{F �}]

1 + |Γ | . (17)

If, as so far, label 1 is what has to be explained, then L(e′) = 1, and the
numerator is a number between 0 and 1. Here, Γ is fixed. Now, we can minimize
its size, obtaining the (generalized) responsibility score as the maximum local
value; everything relative to distribution P :

Respe,F �(F �(e)) := max Resp(e, F �, Γ, w̄) (18)
|Γ | min., (18) > 0
〈Γ, w̄〉 |= 1.−4.

This score was introduced in [9], where experiments and comparisons with other
scores, namely Shap (c.f. Sect. 13) and the FICO score [18], are shown. Further-
more, different probability distributions are considered. Notice that, in order to
compute this score, there is no need to access the internals of the classification
model.

13 The Shap Score

In the context of classification, the Shapley value (c.f. Section 8) has taken the
form of the Shap score [34], which we briefly introduce. Given the binary clas-
sifier, C, on binary entities, it becomes crucial to identify a suitable game func-
tion. In this case, it will be expressed in terms of expected values (not unlike the
causal-effect score), which requires an underlying probability space on the pop-
ulation of entities, E . We will consider, to fix ideas, the uniform probability space
on E . Since we will consider only binary feature values, taking values 0 or 1, this
is the uniform distribution on E = {0, 1}n, assigning probability Pu(e) = 1

2n to
e ∈ E . One could consider other distributions [3,9].

Given a set of features F = {F1, . . . , Fn}, and an entity e whose label is to be
explained, the set of players D in the game is F(e) := {F (e) | F ∈ F}, i.e. the
set of feature values of e. Equivalently, if e = 〈x1, . . . , xn〉, then xi = Fi(e). We
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assume these values have implicit feature identifiers, so that duplicates do not
collapse, i.e. |F(e)| = n. The game function is defined as follows. For S ⊆ F(e),

Ge(S) := E(L(e′) | e′
S = eS),

where eS : is the projection of e on S. This is the expected value of the label
for entities e′ when their feature values are fixed and equal to those in S for e.
Other than that, the feature values of e′ may independently vary over {0, 1}.

Now, one can instantiate the general expression for the Shapley value in (15),
using this particular game function, as Shapley(F(e),Ge, F (e)), obtaining, for a
particular feature value F (e):

Shap(F(e),Ge, F (e)) :=
∑

S⊆F(e)\{F (e)}

|S|!(n − |S| − 1)!
n!

×

(E(L(e′|e′
S∪{F (e)} = eS∪{F (e)}) − E(L(e′)|e′

S = eS)).

Here, the label L acts as a Bernoulli random variable that takes values through
the classifier. We can see that the Shap score is a weighted average of differences
of expected values of the labels [34]. We may notice that counterfactual versions
of the initial entity are implicitly considered.

The Shap score can be applied with black-box classifiers. Under those circum-
stances its computation takes exponential time in that all permutations of sub-
sets of features are involved. However, sometimes, when the classifier is explicitly
available, the computation cost can be brought down, even to polynomial time.
This is the case for several classes of Boolean circuits that can be used as clas-
sifiers, and in particular, for decision trees [3,34,48]. For other explicit Boolean
circuit-based classifiers, the computation of Shap is still #P -hard [3,48].

14 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have
a relevant role to play. Much research is still needed on the use of contextual,
semantic and domain knowledge. Some approaches may be more appropriate in
this direction, and we argue that declarative, logic-based specifications can be
successfully exploited [11].

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other areas and disciplines) it has
been investigated. In particular in AI, areas such as diagnosis and causality have
much to contribute.
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Now, in relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?. The ques-
tion makes a lot of sense, and may not be beyond an answer. After all, the general
Shapley value emerged from a list of desiderata in relation to coalition games, as
the only measure that satisfies certain explicit properties [43,45]. Although the
Shapley value is being used in XAI, in particular in its Shap incarnation, there
could be a different and specific set of desired properties of explanation scores
that could lead to a still undiscovered explanation score.
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