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Abstract. This article investigates the origin of numerical issues in
maximum likelihood parameter estimation for Gaussian process (GP)
interpolation and investigates simple but effective strategies for improv-
ing commonly used open-source software implementations. This work
targets a basic problem but a host of studies, particularly in the literature
of Bayesian optimization, rely on off-the-shelf GP implementations. For
the conclusions of these studies to be reliable and reproducible, robust
GP implementations are critical.
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1 Introduction

Gaussian process (GP) regression and interpolation (see, e.g., Rasmussen and
Williams 2006), also known as kriging (see, e.g., Stein 1999), has gained signifi-
cant popularity in statistics and machine learning as a non-parametric Bayesian
approach for the prediction of unknown functions. The need for function pre-
diction arises not only in supervised learning tasks, but also for building fast
surrogates of time-consuming computations, e.g., in the assessment of the per-
formance of a learning algorithm as a function of tuning parameters or, more
generally, in the design and analysis computer experiments (Santner et al. 2003).
The interest for GPs has also risen considerably due to the development of
Bayesian optimization (Mockus 1975; Jones et al. 1998; Emmerich et al. 2006;
Srinivas et al. 2010. . . ).

This context has fostered the development of a fairly large number of open-
source packages to facilitate the use of GPs. Some of the popular choices are the
Python modules scikit-learn (Pedregosa et al. 2011), GPy (Sheffield machine
learning group 2012–2020), GPflow (Matthews et al. 2017), GPyTorch (Gard-
ner et al. 2018), OpenTURNS (Baudin et al. 2017); the R package DiceKriging
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Table 1. Inconsistencies in the results across different Python packages. The results
were obtained by fitting a GP model, with constant mean and a Matérn kernel
(ν = 5/2), to the Branin function, using the default settings for each package. We
used 50 training points and 500 test points sampled from a uniform distribution on
[−5, 10]×[0, 15]. The table reports the estimated values for the variance and length scale
parameters of the kernel, the empirical root mean squared prediction error (ERMSPE)
and the minimized negative log likelihood (NLL). The last row shows the improvement
using the recommendations in this study.

Library Version Variance Lengthscales ERMSPE NLL

scikit-learn 0.24.2 9.9 · 104 (13, 43) 1.482 132.4

GPy 1.9.9 8.1 · 108 (88, 484) 0.259 113.7

GPytorch 1.4.1 1.1 · 101 (4, 1) 12.867 200839.7

GPflow 1.5.1 5.2 · 108 (80, 433) 0.274 114.0

OpenTURNS 1.16 1.3 · 104 (8, 19) 3.301 163.1

GPy “improved” 1.9.9 9.4 · 1010 (220, 1500) 0.175 112.0

(Roustant et al. 2012); and the Matlab/GNU Octave toolboxes GPML (Ras-
mussen and Nickisch 2010), STK (Bect et al. 2011–2021) and GPstuff (Vanhatalo
et al. 2012).

In practice, all implementations require the user to specify the mean and covari-
ance functions of a Gaussian process prior under a parameterized form. Out of the
various methods available to estimate the model parameters, we can safely say that
the most popular approach is the maximum likelihood estimation (MLE) method.
However, a simple numerical experiment consisting in interpolating a function (see
Table 1), as is usually done in Bayesian optimization, shows that different MLE
implementations from different Python packages produce very dispersed numeri-
cal results when the default settings of each implementation are used. These signif-
icant differences were also noticed by Erickson et al. (2018) but the causes and pos-
sible mitigation were not investigated. Note that each package uses its own default
algorithm for the optimization of the likelihood: GPyTorch uses ADAM (Kingma
and Ba 2015), OpenTURNS uses a truncated Newton method (Nash 1984) and the
others generally use L-BFGS-B (Byrd et al. 1995). It turns out that none of the
default results in Table 1 are really satisfactory compared to the result obtained
using the recommendations in this study1.

Focusing on the case of GP interpolation (with Bayesian optimization as the
main motivation), the first contribution of this article is to understand the origin
of the inconsistencies across available implementations. The second contribution
is to investigate simple but effective strategies for improving these implementa-
tions, using the well-established GPy package as a case study. We shall propose rec-
ommendations concerning several optimization settings: initialization and restart
strategies, parameterization of the covariance, etc. By anticipation of our numer-
ical results, the reader is invited to refer to Fig. 1 and Table 2, which show that
significant improvement in terms of estimated parameter values and prediction
errors can be obtained over default settings using better optimization schemes.

1 Code available at https://github.com/saferGPMLE.

https://github.com/saferGPMLE
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(a) optimized NLL (b) prediction error

(c) optimized lengthscales

Fig. 1. Improved (cf. Sect. 6) vs default setups in GPy on the Borehole function with
n = 20d = 160 random training points. We remove one point at a time to obtain (a) the
distribution of the differences of negative log-likelihood (NLL) values between the two
setups; (b) the empirical CDFs of the prediction error at the removed points; (c) pairs of
box-plots for the estimated range parameters (for each dimension, indexed from 1 to 8
on the x-axis, the box-plot for improved setup is on the left and the box-plot for default
setup is on the right; horizontal red lines correspond to the estimated values using the
whole data set without leave-one-out). Notice that the parameter distributions of the
default setup are more spread out.

Even though this work targets a seemingly prosaic issue, and advocates some-
how simple solutions, we feel that the contribution is nonetheless of significant
value considering the widespread use of GP modeling. Indeed, a host of studies,
particularly in the literature of Bayesian optimization, rely on off-the-shelf GP
implementations: for their conclusions to be reliable and reproducible, robust
implementations are critical.

The article is organized as follows. Section 2 provides a brief review of GP
modeling and MLE. Section 3 describes some numerical aspects of the evaluation
and optimization of the likelihood function, with a focus on GPy’s implementa-
tion. Section 4 provides an analysis of factors influencing the accuracy of numer-
ical MLE procedures. Finally, Sect. 5 assesses the effectiveness of our solutions
through numerical experiments and Sect. 6 concludes the article.
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Table 2. Improved (cf. Sect. 6) vs default setups in GPy for the interpolation of the
Borehole function (input space dimension is d = 8) with n ∈ {3d, 5d} random data
points (see Sect. 5.3 for details). The experiment is repeated 50 times. The columns
report the leave-one-out mean squared error (LOO-MSE) values (empirical mean over
the repetitions, together with the standard deviation and the average proportion of the
LOO-MSE to the total standard deviation of the data in parentheses).

Method n = 3d n = 5d

Default 17.559 (4.512, 0.387) 10.749 (2.862, 0.229)

Improved 3.949 (1.447, 0.087) 1.577 (0.611, 0.034)

2 Background

2.1 Gaussian Processes

Let Z ∼ GP(m, k) be a Gaussian process indexed by R
d, d ≥ 1, specified by a

mean function m : Rd → R and a covariance function k : Rd × R
d → R.

The objective is to predict Z(x) at a given location x ∈ R
d, given a data set

D = {(xi, zi) ∈ R
d × R, 1 ≤ i ≤ n}, where the observations zis are assumed to

be the outcome of an additive-noise model: Zi = Z(xi) + εi, 1 ≤ i ≤ n. In most
applications, it is assumed that the εis are zero-mean Gaussian i.i.d. random
variables with variance σ2

ε ≥ 0, independent of Z. (In rarer cases, heteroscedas-
ticity is assumed.)

Knowing m and k, recall (see, e.g. Rasmussen and Williams 2006) that the
posterior distribution of Z is such that Z | Z1, . . . , Zn, m, k ∼ GP (Ẑn, kn),
where Ẑn and kn stand respectively for the posterior mean and covariance func-
tions:

Ẑn(x) = m(x) +
∑n

i=1 wi(x; xn) (zi − m(xi)) ,
kn(x, y) = k(x, y) − w(y; xn)TK(xn, x) ,

where xn denotes observation points (x1, . . . , xn) and the weights wi(x; xn) are
solutions of the linear system:

(K(xn, xn) + σ2
εIn)w(x; xn) = K(xn, x) , (1)

with K(xn, xn) the n×n covariance matrix with entries k(xi, xj), In the identity
matrix of size n, and w(x; xn) (resp. K(xn, x)) the column vector with entries
wi(x; xn) (resp. k(xi, x)), 1 ≤ i ≤ n.

It is common practice to assume a zero mean function m = 0—a reasonable
choice if the user has taken care to center data—but most GP implementations
also provide an option for setting a constant mean function m( · ) = μ ∈ R. In this
article, we will include such a constant in our models, and treat it as an additional
parameter to be estimated by MLE along with the others. (Alternatively, μ could
be endowed with a Gaussian or improper-uniform prior, and then integrated out;
see, e.g., O’Hagan (1978).)

The covariance function, aka covariance kernel, models similarity between
data points and reflects the user’s prior belief about the function to be learned.



120 S. Basak et al.

Table 3. Some kernel functions available in GPy. The Matérn kernel is recommended
by Stein [1999]. Γ denotes the gamma function, Kν is the modified Bessel function of
the second kind.

Kernel r(h), h ∈ [0, +∞)

Squared exponential exp(− 1
2
r2)

Rational Quadratic (1 + r2)−ν

Matérn with param. ν > 0 21−ν

Γ (ν)

(√
2νr

)ν

Kν

(√
2νr

)

Most GP implementations provide a couple of stationary covariance functions
taken from the literature (e.g., Wendland 2004; Rasmussen and Williams 2006).
The squared exponential, the rational quadratic or the Matérn covariance func-
tions are popular choices (see Table 3). These covariance functions include a
number of parameters: a variance parameter σ2 > 0 corresponding to the vari-
ance of Z, and a set of range (or length scale) parameters ρ1, . . . , ρd, such that

k(x, y) = σ2r(h), (2)

with h2 =
∑d

i=1(x[i] − y[i])2/ρ2i , where x[i] and y[i] denote the elements of x
and y. The function r : R → R in (2) is the stationary correlation function
of Z. From now on, the vector of model parameters will be denoted by θ =
(σ2, ρ1, . . . , ρd, . . . , σ

2
ε)T ∈ Θ ⊂ R

p, and the corresponding covariance matrix
K(xn, xn) + σ2

εIn by Kθ.

2.2 Maximum Likelihood Estimation

In this article, we focus on GP implementations where the parameters (θ, μ) ∈
Θ × R of the process Z are estimated by maximizing the likelihood L(Zn|θ, μ)
of Zn = (Z1, . . . , Zn)T, or equivalently, by minimizing the negative log-
likelihood (NLL)

− log(L(Zn|θ, μ)) =
1
2
(Zn − μ1n)�K−1

θ (Zn − μ1n) +
1
2

log|Kθ| + constant. (3)

This optimization is typically performed by gradient-based methods, although
local maxima can be of significant concern as the likelihood is often non-convex.
Computing the likelihood and its gradient with respect to (θ, μ) has a O(n3+dn2)
computational cost (Rasmussen and Williams 2006; Petit et al. 2020).

3 Numerical Noise

The evaluation of the NLL as well as its gradient is subject to numerical noise,
which can prevent proper convergence of the optimization algorithms. Figure 2
shows a typical situation where the gradient-based optimization algorithm stops
before converging to an actual minimum. In this section, we provide an analysis
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on the numerical noise on the NLL using the concept of local condition numbers.
We also show that the popular solution of adding jitter cannot be considered as
a fully satisfactory answer to the problem of numerical noise.

Numerical noise stems from both terms of the NLL, namely 1
2Z�

n K−1
θ Zn and

1
2 log|Kθ|. (For simplification, we assume μ = 0 in this section.)

First, recall that the condition number κ(Kθ) of Kθ, defined as the ratio
|λmax/λmin| of the largest eigenvalue to the smallest eigenvalue (Press et al.
1992), is the key element for analyzing the numerical noise on K−1

θ Zn. In double-
precision floating-point approximations of numbers, Zn is corrupted by an error
ε whose magnitude is such that ‖ε‖/‖Zn‖ 	 10−16. Worst-case alignment of Zn

and ε with the eigenvectors of Kθ gives

‖K−1
θ ε‖

‖K−1
θ Zn‖ 	 κ(Kθ) × 10−16, (4)

which shows how the numerical noise is amplified when Kθ becomes ill-
conditioned.

The term log|Kθ| is nonlinear in Kθ, but observe, using the identity
d log|Kθ|/dKθ = K−1

θ , that the differential of log| · | at Kθ is given by H 
→
Trace(K−1

θ H). Thus, the induced operator norm with respect to the Frobenius
norm ‖ · ‖F is ‖K−1

θ ‖F . We can then apply results from Trefethen and Bau (1997)
to get a local condition number of the mapping A 
→ log|A| at Kθ:

κ(log| · |, Kθ) � lim
ε→0

sup
‖δA‖F ≤ε

∣
∣log|Kθ + δA| − log|Kθ|∣∣

∣
∣log|Kθ|∣∣

‖Kθ‖F

‖δA‖F
=

√∑n
i=1

1
λ2

i

√
∑n

i=1 λ2
i

|∑n
i=1 log(λi)|

(5)

where λ1, · · · , λn are the (positive) eigenvalues of Kθ. Then, we have

κ(Kθ)
|∑n

i=1 log(λi)| ≤ κ(log| · |, Kθ) ≤ nκ(Kθ)
|∑n

i=1 log(λi)| , (6)

which shows that numerical noise on log|Kθ| is linked to the condition number
of Kθ.

The local condition number of the quadratic form 1
2ZT

nK−1
θ Zn as a function

of Zn can also be computed analytically. Some straightforward calculations show
that it is bounded by κ(Kθ).

(When the optimization algorithm stops in the example of Fig. 2, we have
κ(Kθ) 	 1011 and κ(log| · |, Kθ) 	 109.5. The empirical numerical fluctuations are
measured as the residuals of a local second-order polynomial best fit, giving noise
levels 10−7, 10−8 and 10−7.5 for K−1

θ Zn, 1
2ZT

nK−1
θ Zn and log|Kθ| respectively.

These values are consistent with the above first-order analysis.)
Thus, when κ(Kθ) becomes large in the course of the optimization procedure,

numerical noise on the likelihood and its gradient may trigger an early stopping
of the optimization algorithm (supposedly when the algorithm is unable to find
a proper direction of improvement). It is well-known that κ(Kθ) becomes large
when σ2

ε = 0 and one of the following conditions occurs: 1) data points are
close, 2) the covariance is very smooth (as for instance when considering the
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Fig. 2. Noisy NLL profile along a particular direction in the parameter space, with a
best linear fit (orange line). This example was obtained with GPy while estimating the
parameters of a Matérn 5/2 covariance, using 20 data points sampled from a Branin
function, and setting σ2

ε = 0. The red vertical line indicates the location where the
optimization of the likelihood stalled. (Color figure online)

squared exponential covariance), 3) when the range parameters ρi are large.
These conditions arise more often than not. Therefore, the problem of numerical
noise in the evaluation of the likelihood and its gradient is a problem that should
not be neglected in GP implementations.

The most classical approach to deal with ill-conditioned covariance matri-
ces is to add a small positive number on the diagonal of the covariance matrix,
called jitter, which is equivalent to assuming a small observation noise with
variance σ2

ε > 0. In GPy for instance, the strategy consists in always setting a
minimal jitter of 10−8, which is automatically increased by an amount ranging
from 10−6σ2 to 10−1σ2 whenever the Cholesky factorization of the covariance
matrix fails (due to numerical non-positiveness). The smallest jitter making Kθ

numerically invertible is kept and an error is thrown if no jitter allows for suc-
cessful factorization. However, note that large values for the jitter may yield
smooth, non-interpolating approximations, with possible unintuitive and unde-
sirable effects (see Andrianakis and Challenor 2012), and causing possible con-
vergence problems in Bayesian optimization.

Table 4 illustrates the behaviour of GP interpolation when σ2
ε is increased. It

appears that finding a satisfying trade-off between good interpolation properties
and low numerical noise level can be difficult. Table 4 also supports the connec-
tion in (4) and (6) between noise levels and κ(Kθ). In view of the results of Fig. 1
based on the default settings of GPy and Table 4, we believe that adaptive jitter
cannot be considered as a do-it-all solution.

4 Strategies for Improving Likelihood Maximization

In this section we investigate simple but hopefully efficient levers/strategies to
improve available implementations of MLE for GP interpolation, beyond the



Maximum Likelihood Issues in Gaussian Process Interpolation 123

Table 4. Influence of the jitter on the GP model (same setting as in Fig. 2). The table
reports the condition numbers κ(Kθ) and κ(log| · |, Kθ), and the impact on the relative
empirical standard deviations δquad and δlogdet of the numerical noise on ZT

nK−1
θ Zn

and log|Kθ| respectively (measured using second-order polynomial regressions). As
σε increases, δquad and δlogdet decrease but the interpolation error

√
SSR/SST =√

1
n

∑n
j=1(Zj − Ẑn(xj))2/std(Z1, ..., Zn) and the NLL increase. Reducing numerical

noise while keeping good interpolation properties requires careful attention in practice.

σ2
ε / σ2 0.0 10−8 10−6 10−4 10−2

κ(Kθ) 1011 109 107.5 105.5 103.5

κ(log| · |, Kθ) 109.5 108.5 106.5 104.5 102.5

δquad 10−8 (= 1011−19) 10−9.5 (= 109−18.5) 10−10.5 (= 107.5−18) 10−12 (= 105.5−17.5) 10−14 (= 103.5−17.5)

δlogdet 10−7.5 (= 109.5−17) 10−9 (= 108.5−17.5) 10−11 (= 106.5−17.5) 10−13.5 (= 104.5−18) 10−15.5 (= 102.5−18)

− log(L(Zn|θ)) 40.69 45.13 62.32 88.81 124.76

√
SSR/SST 3.3 · 10−10 1.2 · 10−3 0.028 0.29 0.75

control of the numerical noise on the likelihood using jitter. We mainly focus on
1) initialization methods for the optimization procedure, 2) stopping criteria, 3)
the effect of “restart” strategies and 4) the effect of the parameterization of the
covariance.

4.1 Initialization Strategies

Most GP implementations use a gradient-based local optimization algorithm to
maximize the likelihood that requires the specification of starting/initial values
for the parameters. In the following, we consider different initialization strategies.

Moment-Based Initialization. A first strategy consists in setting the parameters
using empirical moments of the data. More precisely, assuming a constant mean
m = μ, and a stationary covariance k with variance σ2 and range parameters
ρ1, . . . , ρd, set

μinit = mean (Z1, . . . , Zn), (7)
σ2
init = var (Z1, . . . , Zn), (8)

ρk, init = std (x1, [k], . . . , xn, [k]), k = 1, . . . , d, (9)

where mean, var and std stand for the empirical mean, variance and standard
deviation, and xi, [k] denotes the kth coordinate of xi ∈ R

d. The rationale
behind (9) (following, e.g., Rasmussen and Williams 2006) is that the range
parameters can be thought of as the distance one has to move in the input space
for the function value to change significantly and we assume, a priori, that this
distance is linked to the dispersion of data points.

In GPy for instance, the default initialization consists in setting μ = 0, σ2 = 1
and ρk = 1 for all k. This is equivalent to the moment-based initialization scheme
when the data (both inputs and outputs) are centered and standardized. The
practice of standardizing the input domain into a unit length hypercube has
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been proposed (see, e.g., Snoek et al. 2012) to deal with numerical issues that
arise due to large length scale values.

Profiled Initialization. Assume the range parameters ρ1, . . . , ρd (and more gen-
erally, all parameters different from σ2, σ2

ε and μ) are fixed, and set σ2
ε = ασ2,

with a prescribed multiplicative factor α ≥ 0. In this case, the NLL can be opti-
mized analytically w.r.t. μ and σ2. Optimal values turn out to be the generalized
least squares solutions

μGLS = (1T
nK−1

θ̃
1n)−11T

nK−1

θ̃
Zn , (10)

σ2
GLS =

1
n

(Zn − μGLS 1n)TK−1

θ̃
(Zn − μGLS 1n) , (11)

where θ̃ = (σ2, ρ1, . . . , ρd, . . . , σ2
ε)T ∈ Θ, with σ2 = 1 and σ2

ε = α. Under
the profiled initialization scheme, ρ1, . . . , ρd are set using (9), α is prescribed
according to user’s preference, and μ and σ2 are initialized using (10) and (11).

Grid-Search Initialization. Grid-search initialization is a profiled initialization
with the addition of a grid-search optimization for the range parameters.

Define a nominal range vector ρ0 such that

ρ0,[k] =
√

d

(

max
1≤i≤n

xi,[k] − min
1≤i≤n

xi,[k]

)

, 1 ≤ k ≤ d.

Then, define a one-dimensional grid of size L (e.g., L = 5) by taking range vectors
proportional to ρ0: {α1ρ0, . . . , αLρ0}, where the αis range, in logarithmic scale,
from a “small” value (e.g., α1 = 1/50) to a “large” value (e.g., αL = 2). For
each point of the grid, the likelihood is optimized with respect to μ and σ2

using (10) and (11). The range vector with the best likelihood value is selected.
(Note that this initialization procedure is the default initialization procedure in
the Matlab/GNU Octave toolbox STK.)

4.2 Stopping Condition

Most GP implementations rely on well-tested gradient-based optimization algo-
rithms. For instance, a popular choice in Python implementations is to use the
limited-memory BFGS algorithm with box constraints (L-BFGS-B; see Byrd
et al. 1995) of the SciPy ecosystem. (Other popular optimization algorithms
include the ordinary BFGS, truncated Newton constrained, SQP, etc.; see, e.g.,
Nocedal and Wright (2006).) The L-BFGS-B algorithm, which belongs to the
class of quasi-Newton algorithms, uses limited-memory Hessian approximations
and shows good performance on non-smooth functions (Curtis and Que 2015).

Regardless of which optimization algorithm is chosen, the user usually has
the possibility to tune the behavior of the optimizer, and in particular to set the
stopping condition. Generally, the stopping condition is met when a maximum
number of iterations is reached or when a norm on the steps and/or the gradient
become smaller than a threshold.
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By increasing the strictness of the stopping condition during the optimization
of the likelihood, one would expect better parameter estimations, provided the
numerical noise on the likelihood does not interfere too much.

4.3 Restart and Multi-start Strategies

Due to numerical noise and possible non-convexity of the likelihood with respect
to the parameters, gradient-based optimization algorithms may stall far from
the global optimum. A common approach to circumvent the issue is to carry
out several optimization runs with different initialization points. Two simple
strategies can be compared.

Table 5. Two popular reparameterization mappings τ , as implemented, for example, in
GPy and STK respectively. For invsoftplus, notice parameter s > 0, which is introduced
when input standardization is considered (see Sect. 5).

Reparam. method τ : R�
+ → R τ−1 : R → R

�
+

invsoftplus(s) log(exp(θ/s) − 1) s log(exp(θ′) + 1)

log log(θ) exp(θ′)

Restart. In view of Fig. 2, a first simple strategy is to restart the optimization
algorithm to clear its memory (Hessian approximation, step sizes. . . ), hopefully
allowing it to escape a possibly problematic location using the last best param-
eters as initial values for the next optimization run. The optimization can be
restarted a number of times, until a budget Nopt of restarts is spent or the best
value for the likelihood does not improve.

Multi-start. Given an initialization point (θinit, μinit) ∈ Θ × R, a multi-start
strategy consists in running Nopt > 1 optimizations with different initialization
points corresponding to perturbations of the initial point (θinit, μinit). In prac-
tice, we suggest the following rule for building the perturbations: first, move the
range parameters around (ρ1, init, . . . , ρd, init)T (refer to Sect. 5 for an implemen-
tation); then, propagate the perturbations on μ and σ2 using (10) and (11). The
parameter with the best likelihood value over all optimization runs is selected.

4.4 Parameterization of the Covariance Function

The parameters of the covariance functions are generally positive real numbers
(σ2, ρ1, ρ2 . . .) and are related to scaling effects that act “multiplicatively” on the
predictive distributions. Most GP implementations introduce a reparameteriza-
tion using a monotonic one-to-one mapping τ : R�

+ → R, acting component-wise
on the positive parameters of θ, resulting in a mapping τ : Θ → Θ′. Thus, for car-
rying out MLE, the actual criterion J that is optimized in most implementations
may then be written as

J : θ′ ∈ Θ′ 
→ − log(L(Zn|τ−1(θ′), c)). (12)
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Fig. 3. Profiles of the NLL along a linear path t through the profiled initialization
point (at zero, blue vertical line) and the optimum (at one, black vertical line). Orange
(resp. blue) line corresponds to the log (resp. invsoftplus) reparameterization. (Color
figure online)

Table 5 lists two popular reparameterization mappings τ .
The effect of reparameterization is to “reshape” the likelihood. Typical likeli-

hood profiles using the log and the so-called invsoftplus reparameterizations are
shown on Fig. 3. Notice that the NLL may be almost flat in some regions depend-
ing on the reparameterization. Changing the shape of the optimization criterion,
combined with numerical noise, may or may not facilitate the convergence of the
optimization.

5 Numerical Study

5.1 Methodology

The main metric used in this numerical study is based on empirical cumulative
distributions (ECDFs) of differences on NLL values.

More precisely, consider N + 1 optimization schemes S0, S1, . . . , SN , where
S0 stands for a “brute-force” optimization scheme based on a very large number
of multi-starts, which is assumed to provide a robust MLE, and S1, . . . , SN are
optimization schemes to be compared. Each optimization scheme is run on M
data sets Dj , 1 ≤ j ≤ M , and we denote by ei, j the difference

ei,j = NLLi, j − NLL0, j , 1 ≤ i ≤ N, 1 ≤ j ≤ M,

where NLLi,j the NLL value obtained by optimization scheme Si on data set
Dj .

A good scheme Si should concentrate the empirical distribution of the sample
Ei = {ei,j , j = 1, . . . , M} around zero—in other words, the ECDF is close to
the ideal CDF e 
→ 1[0,∞[(e). Using ECDF also provides a convenient way to
compare performances: a strategy with a “steeper” ECDF, or larger area under
the ECDF, is better.
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5.2 Optimization Schemes

All experiments are performed using GPy version 1.9.9, with the default L-
BFGS-B algorithm. We use a common setup and vary the configurations of the
optimization levers as detailed below.

Common Setup. All experiments use an estimated constant mean-function, an
anisotropic Matérn covariance function with regularity ν = 5/2, and we assume
no observation noise (the adaptive jitter of GPy ranging from 10−6σ2 to 102σ2

is used, however).

Initialization Schemes. Three initialization procedures from Sect. 4.1 are consid-
ered.

Stopping Criteria. We consider two settings for the stopping condition of the L-
BFGS-B algorithm, called soft (the default setting: maxiter= 1000, factr=107,
pgtol10−5) and strict (maxiter= 1000, factr=10, pgtol= 10−20).

Restart and Multi-start. The two strategies of Sect. 4.3 are implemented using a
log reparameterization and initialization points (θinit, μinit) determined using a
grid-search strategy. For the multi-start strategy the initial range parameters are
perturbed according to the rule ρ ← ρinit · 10η where η is drawn from a N (0, σ2

η)
distribution. We take ση = log10(5)/1.96 (≈ 0.35), to ensure that about 0.95 of
the distribution of ρ is in the interval [1/5 · ρinit, 5 · ρinit].

Reparameterization. We study the log reparameterization and two variants of the
invsoftplus. The first version called no-input-standardization simply corresponds
to taking s = 1 for each range parameter. The second version called input-
standardization consists in scaling the inputs to a unit standard deviation on
each dimension (by taking the corresponding value for s).

5.3 Data Sets

The data sets are generated from six well-known test functions in the literature
of Bayesian optimization: the Branin function (d = 2; see, e.g. Surjanovic and
Bingham 2013), the Borehole function (d = 8; see, e.g. Worley 1987), the Welded
Beam Design function (d = 4; see Chafekar et al. 2003), the g10 function (d =
8; see Ahmed 2004, p. 128), along with two modified versions, g10mod and
g10modmod (see Feliot 2017).

Each function is evaluated on Latin hypercube samples with a multi-
dimensional uniformity criterion (LHS-MDU; Deutsch and Deutsch 2012), with
varying sample size n ∈ {3d, 5d, 10d, 20d}, resulting in a total of 6 × 4 = 24
data sets.

5.4 Results and Findings

Figure 4 shows the effect of reparameterization and the initialization method.
Observe that the log reparameterization performs significantly better than the
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(a) effect of reparameterization (b) effect of initialization

Fig. 4. Initialization and reparameterization methods. (a) ECDFs corresponding to
the best initialization method for each of the three reparameterizations—red line:
log reparam. with grid-search init.; green line: invsoftplus with input-standardization
reparam. and grid-search init; blue line: invsoftplus with no-input-standardization
reparam. and moment-based init. (b) ECDFs for different initialization methods for
the log reparameterization. (Color figure online)

(a) restart with Nopt = 1, . . . , 20 (b) multi-start with Nopt = 1, . . . , 20, ση = 0.35

Fig. 5. Area under the ECDF against run time: (a) restart strategy; (b) multi-start
strategy. The maximum areas obtained are respectively 86.538 and 88.504.

invsoftplus reparameterizations. For the log reparameterization, observe that the
grid-search strategy brings a moderate but not negligible gain with respect to
the two other initialization strategies, which behave similarly.

Next, we study the effect of the different restart strategies and the stop-
ping conditions, on the case of the log reparameterization and grid-search ini-
tialization. The metric used for the comparison is the area under the ECDFs
of the differences of NLLs, computed by integrating the ECDF between 0
and NLLmax = 100. Thus, a perfect optimization strategy would achieve an
area under the ECDF equal to 100. Since the multi-start strategy is stochas-
tic, results are averaged over 50 repetitions of the optimization procedures (for
each Nopt value, the optimization strategy is repeated 50 times). The areas are
plotted against the computational run time. Run times are averaged over the
repetitions in the case of the multi-start strategy.
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Figure 5 shows that the soft stopping condition seems uniformly better. The
restart strategy yields small improvements using moderate computational over-
head. The multi-start strategy is able to achieve the best results at the price of
higher computational costs.

6 Conclusions and Recommendations

Our numerical study has shown that the parameterization of the covariance
function has the most significant impact on the accuracy of MLE in GPy. Using
restart/multi-start strategies is also very beneficial to mitigate the effect of the
numerical noise on the likelihood. The two other levers have second-order but
nonetheless measurable influence.

These observations make it possible to devise a recommended combination of
improvement levers—for GPy at least, but hopefully transferable to other soft-
ware packages as well. When computation time matters, an improved optimiza-
tion procedure for MLE consists in choosing the combination of a log reparam-
eterization, with a grid-search initialization, the soft (GPy’s default) stopping
condition, and a small number, say Nopt = 5, of restarts.

Figure 1 and Table 2 are based on the above optimization procedure, which
results in significantly better likelihood values and smaller prediction errors. The
multi-start strategy can be used when accurate results are sought.

As a conclusion, our recommendations are not intended to be universal, but
will hopefully encourage researchers and users to develop and use more reliable
and more robust GP implementations, in Bayesian optimization or elsewhere.
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