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Abstract. Fine-tuning and optimisation of production processes in
manufacturing are often conducted with the help of algorithms from
the field of Operations Research (OR) or directly by human experts.
Machine Learning (ML) methods demonstrate outstanding results in
tackling optimisation tasks within the research field referred to as Neural
Combinatorial Optimisation (NCO). This opens multiple opportunities
in manufacturing for learning-based optimisation solutions. In this work,
we show a successful application of Reinforcement Learning (RL) to the
task of workpiece (WP) clamping position and orientation optimisation
for milling processes. A carefully selected clamping position and orienta-
tion of a WP are essential for minimising machine tool wear and energy
consumption. With the example of 3- and 5-axis milling, we demonstrate
that a trained RL agent can successfully find a near-optimal orientation
and positioning for new, previously unseen WPs. The achieved solution
quality is comparable to alternative optimisation solutions relying on
Simulated Annealing (SA) and Genetic Algorithms (GA) while requir-
ing orders of magnitude fewer optimisation iterations.

Keywords: Reinforcement Learning · Supervised learning ·
Manufacturing · Process optimisation · Milling optimisation · Tool path

1 Introduction

This study looks into the adaptation of learning-based methods to an optimisa-
tion task in the context of mechanical engineering. The object of investigation
is applying RL for optimising WP clamping position and orientation in a Com-
puter Numerical Control (CNC) milling machine. The milling process involves
the removal of material from the WP with a rotary cutting tool. The considered
CNC milling machine belongs to a widely used type of milling machines with a
rotary table and a swivelling spindle head allowing complex movements of the
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cutting tool related to the WP. This enables the production of a wide variety of
complex WP geometries on a single CNC milling machine.

Designing a new CNC milling process is a laborious task relying heavily on
human expertise. Firstly, a Numerical Control (NC) program needs to be created
based on the WP geometry, the chosen processing technology and the type of
CNC machine. The resulting NC program defines the toolpath relative to the
WP. A second step is the definition of a WP clamping position and orientation
in the working space of the CNC machine. Different WP clamping positions and
orientations result in different movements of the machine axes. Therefore, cer-
tain clamping positions and orientations will require higher accelerations of the
heavy machine axes and a higher number of axes movements, directly influencing
machine wear, machining accuracy and energy efficiency.

The standard approach to determine a suitable WP clamping position and
orientation relies solely on human expertise gathered through experience. The
preceding work [18] demonstrates the concept of formalising the task of finding
the optimal WP clamping position and orientation for the milling process as an
optimisation problem with subsequent use of RL. In this study, we considerably
enhance the proposed approach and demonstrate the capability of the proposed
method in addressing more challenging milling tasks while improving the qual-
ity of solutions with fewer search iterations. A direct comparison to alternative
optimisation approaches, such as GA [14] and SA [20], demonstrates the capa-
bility of the proposed RL-solution to yield comparable results for WPs not seen
during training, while requiring considerably fewer optimisation iterations.

2 ML Applications in Mechanical Engineering

Learning-based and data-driven methods are widely deployed to drive progress
in the field of smart production and manufacturing [4,15]. ML is considered
the key enabling technology for further cost savings, quality improvement, and
minimisation of waste in applications relying on the use of cutting processes
along with heuristic optimisation approaches. At the same time, milling and
turning receive the most attention from the research community [5].

Multiple studies concentrate on adopting learning-based methods for condi-
tion monitoring and machine tool diagnosis to enhance cutting processes. Wu
et al. [22] demonstrate the applicability of simple regression models based on
Random Forest (RF), Support Vector Machine (SVM) or Multilayer Perceptron
(MLP) for the prediction of tool wear. Kothuru et al. [11] investigate the pos-
sibility of using SVM prediction models to estimate the condition of a cutting
tool using only audible signals.

More advanced supervised ML models capable of processing sequential data
demonstrated their efficiency for condition monitoring and quality prediction.
Wang et al. [21] utilise recurrent predictive models on time series for tool wear
monitoring. In this study, a Gated Recurrent Unit (GRU) predictive model
demonstrates superior performance compared to conventional methods. For a
similar Use Case (UC), Serin et al. [19] introduce the use of RL in combination
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with an LSTM-based (Long Short-term Memory) control system. The LSTM-
model is used as a memory base and can suggest optimal cutting parameters
to the RL agent. The study of Yuan et al. [24] emphasises the advantages of
enhancing recurrent predictive models with attention mechanisms for quality
prediction in complex production processes.

RL methods are often used in manufacturing engineering for planning, con-
trolling and iterative optimisation of the production process. Xanthopoulos et al.
[23] deploy an RL agent for learning joint production control and maintenance
strategies on a deteriorating production system. A trained RL agent can sug-
gest maintenance schedules and production plans that are superior to methods
currently implemented in practice. Pol et al. [16] use decentralised RL agents
to perform online scheduling in flexible production systems with the advantage
of generalising to uncertain situations that deviate from the plan. Meyes et al.
[13] demonstrate the use of an RL agent for sample-efficient optimisation of a
heavy plate rolling process. The application UC considered in the study contains
many process-, material- and machine parameters interacting with each other.
These different interactions of parameters produce different product quality lev-
els, which relate to the height and the grain size of the finished products. A
trained RL agent can estimate suitable pass schedules for heavy plate rolling to
achieve the desired material characteristics.

Bhinge et al. [1] demonstrate the importance of the tool path for the total
energy consumption of the machine tool. Rangarajan et al. [17] emphasise the
importance of the WP orientation in milling to minimise the processing time and
drive loads. Campatelli et al. [3] propose a mathematical model to reduce energy
consumption through optimal WP placement in the milling process. However,
the proposed approach is applicable only for the finishing operations and is not
capable of axis collisions avoidance. To the best of our knowledge, only the study
from Samsonov et al. [18] demonstrates the application of RL methods to the
task of optimal WP positioning in a machine tool.

3 Problem Statement

This study aims to find a near-optimal clamping position and orientation for a
previously unseen WP in a CNC machine with RL. An optimal position refers
to a placement that minimises the acceleration and the distance travelled in
the axis directions of the machine while milling the WP. This placement should
also accommodate the avoidance of all possible collisions of CNC machine parts
caused by the movements of the machine axes. The task of finding WP position
and orientation can be formalised as a continuous optimisation problem max-
imising the objective function equal to the reward function discussed in Sect. 4.1.

Two UCs of CNC milling are investigated in this work. Firstly, a simple
WP geometry is considered with a groove along the perimeter of the part and
the milling slot on top of it (see Fig. 1). Given shape requires a 3-axis milling
process with possible movements in a front-to-back (X-axis), side-to-side (Y-
axis), as well as up-and-down (Z-axis) directions by the cutting tool. A milling
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slot is a widespread feature involving multiple changes of the tool movement
direction. Having the grove along the perimeter of the WP increases the chance
of axes collisions if the WP position and orientation are not selected correctly. A
further element of simplicity is that the machine coordinate system and the WP
coordinate systems coincide. Changing the orientation of the slot (slot angle)
allows the generation of a set of WP geometries for training and evaluation of
the proposed RL solution. This WP geometry is considered to a certain extent
in [18] and is used in this work to demonstrate the achieved improvements on
the search efficiency of the solution space.

Fig. 1. Visualisation of a 3-axis WP, slot angle = 45◦

(a) Slot angle = 0◦,
Tower Z = 60mm,
Tower X = 55mm

(b) Slot angle = 45◦,
Tower Z = 60mm,
Tower X = 100mm

(c) Slot angle = 90◦,
Tower Z = 235mm,
Tower X = 130mm

(d) Slot angle = 210◦,
Tower Z = 235mm,
Tower X = 55mm

Fig. 2. Visualisations of 5-axis milling WPs

The second UC, and focus of the current study, is based on a 5-axis milling
process and decoupling of the WP and machine coordinate systems. Apart from
the milling slot and groove along the WP perimeter included in the first UC,
a tower-shaped surface is added on the top of the WP (see Fig. 2 for various
examples of WP geometries). The introduced tower feature is a complex spiral-
formed shape with inclined sides towards the center. This makes the feature
fairly representative for complex milling operations, requiring coordinated move-
ments of multiple axes and constant change in the moving speed/accelerations.
The milling process of considered 5-axis WP geometry involves a front-to-back
movement (Z-axis), a side-to-side movement (X-axis), an up-and-down move-
ment (Y-axis), a rotation movement along the Y-axis and pitch movement from
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side-to-side of the cutting tool relative to the WP. In this case, the RL agent
needs to learn how to handle non-trivial axis collision avoidance patterns and a
different WP design. To vary the shape of the WP, the slot angle can be rotated
360◦ and the tower position can be moved continuously along the top and bot-
tom of the WP. The NC program created to mill the WP is calibrated such
that the slot and the tower will not overlap. Modifications of the slot and tower
features change the energy exertion and wear on the main axes of the milling
machine and the optimal placement is influenced.

The 3-axis UC provides a good framework to test modifications of the RL
solution, with the goal of finally transferring and testing the results on the more
complicated 5-axis UC.

4 RL Experiment Setup

The WP clamping position and orientation optimisation task is formalised as a
fully observable Markov Decision Process (MDP). The RL agent is allowed to
iteratively move the WP in the machine’s working space to improve the reward
from the WP clamping position and orientation. In the following sub-chapters
the state space, action space and reward function for the RL agent are discussed,
along with search space efficiency implementations. The training and validation
scheme for the RL agent is outlined and the generation of WP data and an
efficient way of using the milling simulation data by training an ML model is
explained.

4.1 State Space, Action Space and Reward Function

The position of the WP in the machine space is described by axes coordinates
(X, Y , Z) and the rotation angle of the WP with respect to the orientation
of the machine. The RL agent can choose the location and orientation of the
WP every time an action is required. For the 3-axis machine, the only possible
variation in the shape of the WP is in terms of the milling slot angle. Therefore,
each WP position and shape is uniquely captured by (X, Y , Rotation Angle,
Slot Angle). The 5-axis machine includes the possibility of milling a tower, as
well as a slot, and a combination of these two features uniquely specifies the WP.
The parameters to describe the WP placement and shape to an RL agent in this
case are (Z, X, Y , Rotation Angle, Tower Z, TowerX, Slot Angle). For the
RL agent to know what kind of WP is currently being processed, it is important
to provide this unique parameter set explicitly or to determine a proxy for the
WP shape that could be provided.

After placement of the WP in the machine’s working space at the specified
coordinates, with the specified orientation and including the unique features of
the WP, a milling process is carried out. From this milling process, the sum
of the squared accelerations (eZ , eX , eY ) and distances travelled along every
machine axis (dZ , dX , dY ) are recorded for further evaluation of the current WP
placement and orientation.
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The tuples for the state-action-reward representation found in the 5-axis
UC are briefly summarised in Table 1. The state space includes the unique WP
parameters, the location and orientation parameters in the working space of the
milling machine, the resulting squared accelerations and distances travelled, the
collision switch (limit Z) and the number of steps left before reaching the step
limit in the episode. The latter parameter helps the agent with planning its
search strategy and choosing step sizes while exploring the solution space. The
action space consists of the changes to the WP location in terms of the machine
coordinates, as well as the rotation angle of the WP and a decision to terminate
the episode or not.

Table 1. Summary of the main parameters of the optimisation task.

State (Z, X, Y, Rotation Angle, Tower X, Tower Z,
Slot Angle, dZ , dX , eZ , eX , limit Z, steps left)

Action (ΔZ, ΔX, ΔY, ΔRotation Angle, Stop)

Reward R = 0.7e + 0.3d

The reward function provides feedback on the quality of the suggested place-
ment of the WP in the machine space by the RL agent. Maximising the reward
ensures WP positions and orientations close to the optimum. The 3-axis and 5-
axis milling processes have similar reward functions, as the concept of minimising
wear on the machine and energy consumption remains the same. Therefore, the
reward function includes a component representing the sum of squared accel-
eration (e) and the sum of distance travelled (d) on the main axes. For 3-axis
milling, the directions of travel are the X- and Y-axis, with the X-axis represent-
ing the heavier axis. For 5-axis milling the directions of travel include an X-axis,
a Y-axis and a Z-axis. Here the Z-axis is the heaviest axis and the movement
along the Y-axis is not included in the reward function, as the movement is
minimal in this UC. To limit the wear of the machine as much as possible, the
movement of the heavier axes should be one of the components minimised by
the RL agent.

The squared acceleration (e) is given higher importance than distance trav-
elled (d) by domain experts in finding a near-optimal position of the WP and
therefore the reward function is formulated as:

R =

{
0.7e + 0.3d no axis collision
−1 axis collision.

(1)

The weights for the optimisation function are also chosen by domain experts
and reflect specific industry needs. If these weights were to be changed the RL
agent would have to be retrained, but the optimisation problem would be for-
mulated in the same way.

The terms concerning acceleration (e) and distance (d) are both accumulated
terms across the different machine axes and over the entire WP milling run.
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The components eZ and dZ are weighted twice as heavy as eX and dX in the
combined reward components e and d, as advised by domain experts because
the movement of the Z-axis should be avoided. The combined components are:

e = 2eZ + eX (2)
d = 2dZ + dX , (3)

where eZ , eX , dZ and dX represent normalised terms over the minimum and
maximum observed values from multiple experiments. The normalisation func-
tion negates the e- and d-values, such that lower values of e and d will result
in a higher reward. If any axis collisions are encountered, the lowest possible
reward is returned. The intention of the optimisation algorithm should firstly be
to learn collision avoidance, and thereafter an optimal WP placement.

4.2 Search Efficiency Modifications

To reduce the number of optimisation iterations, we introduce several changes to
the search process established in [18]. Firstly, for the 3-axis UC, we extend the
maximum range of the WP position change per step (step size) along
the X-axis, Y-axis and the rotation angle for orientation, from 40 mm, 40 mm
and 35◦, respectively, to 800 mm, 800 mm and 360◦. This larger step size allows
the RL agent to move the WP into any position within the working space of the
milling machine. Similarly, for the 5-axis UC, we allow the RL agent to step into
any position in the work space. Therefore, the step sizes are 300 mm, 200 mm
and 50 mm for the Z-, X- and Y-axis, respectively, as well as a full 360◦ WP
rotation.

Secondly, instead of assuming that the RL agent has to complete an entire
episode before continuing to the next one, we introduce an additional action
dimension referred to as early stopping. Early stopping allows the RL agent to
stop the search process at any iteration step as soon as it assumes the current WP
position is suitable. This updates the action space to (ΔZ, ΔX, ΔY, ΔRotation
Angle, Stop).

Thirdly, we switch from a dense reward calculated after every iteration of the
search process to a sparse reward, returned only when the RL agent chooses
to stop the search process or when the maximum allowed number of steps per
search episode is reached. A sparse reward forces the RL agent to step to the
optimum and terminate the episode as quickly as possible, to start collecting
rewards. The sparse reward is a prerequisite for the early stopping implemen-
tation. The dense reward is not compatible with early stopping, since longer
episodes generate higher cumulative rewards, incentifying the RL agent not to
interrupt the episodes earlier.

4.3 RL Agent Training and Validation

The RL training routine is represented in Fig. 3. For every training episode in
the 5-axis UC, a new WP is generated with a random slot angle, tower position Z
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Fig. 3. Training setup for the RL agent

and tower position X. For the 3-axis UC, this is reduced to only varying the slot
angle. The restrictions on these training WPs are as follows: slot angle between
0◦ and 180◦, tower X position between 55 mm and 145 mm along the X-axis and
tower Z position either 60 mm or 235 mm along the Z-axis. The decision to keep
tower position Z fixed at only 60 mm or 235 mm is made to keep the tower and
the slot from overlapping. To keep some WPs aside, purely for validation, the slot
angles between 40◦ and 50◦ and tower X position between 90 mm and 100 mm
are disallowed for training. The allowance of only two tower Z positions makes it
impossible to keep certain tower Z positions aside for validation, therefore both
positions are available for training and validation.

In the training procedure, episodes of different maximal lengths are investi-
gated. The combination of larger step sizes and a sparse reward leads to a reduc-
tion in the maximum episode length required to find a near-optimal positioning
of a WP. This drastically reduces the step count from 110 steps per episode
to two steps per episode for 3-axis and one step per episode for 5-axis. These
episodes have the option to terminate early if the agent believes it has reached
the optimum. Therefore, an episode can terminate immediately after initialisa-
tion, if the agent finds that the initialisation position is an optimal position.
All 5-axis RL agents are trained for 300.000 steps and the 3-axis RL agents are
trained for 100.000 steps and this is repeated for three different random seeds in
each case.

Throughout the training process 12 evaluation phases are equally spaced
between training episodes, to account for the possibility that an intermediate
version of the RL agent might be superior in performance to the RL agent in a
later stage of training. During each evaluation phase, the current version of the
trained RL agent for a given run solves the WP positioning task for 20 different
initialisation points (WP positions) for each WP involved in the evaluation. This
allows for the testing of the overall robustness and consistency of the evaluation
scheme.
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Fig. 4. Evaluation setup for the RL agent

The evaluation scenario for monitoring of the intermediate RL performance
for the 3-axis UC is based on 11 WPs with slot angles that have been seen during
training and are equally spaced throughout the 180◦ of allowed slot angles. The
version of the RL agent from the evaluation phase with the best average reward is
selected as a trained RL agent and is finally validated on the completely unseen
WP with a slot angle of 45◦. The rewards achieved on the unseen WP are used
for the final estimation of the quality and generalisation ability of the RL agent,
but it is not involved in choosing the best RL agent, as this can be seen as data
leakage.

The 5-axis RL agent is regularly evaluated on 94 WPs with a combination
of 6 different slot angles, 8 different tower X positions and the two available Z
positions. These validation WPs are seen, or partially seen, during training,
but the WP with a 45◦ slot angle and a tower located at the X coordinate of
95mm is kept away from the evaluation process. Similar to the 3-axis approach,
the version of the RL agent from the evaluation phase with the best average
reward is selected for the final validation on the unseen WP with slot angle
45◦ and tower X position of 95mm. The validation scheme for the 5-axis UC is
summarised in Fig. 4.

The meta-heuristics GA [14] and SA [20] are used as baseline models for
comparison to the RL agents. These heuristics are popular methods for solving
optimisation problems and GA is often used in the context of production process
optimisation as seen in [5]. Each meta-heuristic run is given 100.000 iterations to
find the solution to the WP positioning task. Analogous to the RL evaluation,
20 independent initialisations and three random seeds are used. This results in
60 independent evaluation runs for each solution approach. The reward function
is used as a cost function for the optimisation heuristics.

The RL agent used for the 3-axis and 5-axis UCs is the Soft Actor-Critic
(SAC) introduced in [8]. In our study the stable baselines [10] implementa-
tion is used, to make it easily comparable to other RL implementations. The
experiments are all performed in docker containers [12] for full reproducibility of
experiments. The entire implementation of the milling simulation is done as an
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OpenAI Gym environment [2]. The meta-heuristics are implementations from
the mlrose package [9].

4.4 Data Generation and Approximation of the Simulation
with Machine Learning

Experiments in this investigation are performed on simulations created by Sinu-
Train software, reproducing the 3-axis and 5-axis milling processes performed on
a CNC machine. For the purpose of RL training, the simulation is time intensive.
It can take up to 4 s to generate the output of a successful run for the 3-axis
environment, with failed runs taking up to a second to generate outputs. We
develop a set of ML models closely mimicking the behaviour of the simulation.
ML models predict the output of a simulation run in a fraction of a second. As
a result the development process of the RL solution is considerably accelerated.
It is important to note that there are two layers of separation from the CNC
machine and what the RL agent is trained on, namely the Sinutrain simulation
and the ML models. Therefore the accuracy of the ML models are thoroughly
validated to confirm the accuracy of this method, as summarised in Table 2 and
Table 3. The details of the data generation process and the 3-axis ML model is
stipulated in Samsonov et al. [18].

As this study also shifts to the more complex 5-axis milling process, another
ML model is required to mimic the behaviour of the SinuTrain machine simula-
tion. The ML models are even more justified in the 5-axis UC as a successful run
can take up to 15 s to generate the required outcomes. For the purpose of ML
model training, 83.252 data points are generated from the SinuTrain simulation.
The ML model ensemble in this study consists of five gradient boosting models
(a success/fail classifier and a regression model for each of eZ , eX , dZ and dX),
fitted with the LightGBM package [7]. LightGBM is known for providing fast
and efficient training of gradient boosting models. The training process, together
with the ML models and the inputs and outputs of all components are outlined
in Fig. 5.

The first model in the ensemble is a classification model, which distinguishes
between input combinations that lead to a successful milling process or to an
axis collision. The only axis collision possible in the training data is on the Z-
axis. Table 2 summarises the F1-Score and the overall accuracy of the classifier
model, as well as the size of the training datasets in each class, to demonstrate
the support behind the different accuracy values.

The data points that are classified as successful milling process runs continue
to the four regression models. These models produce estimates for eZ , eX , dZ
and dX , respectively. As preprocessing of the data, the offset between the Z coor-
dinate and the Tower Z position, as well as the offset between the X coordinate
and the tower X position, is calculated and used as input values. The accuracy of
the four models is summarised in Table 3, where the accuracy measure is chosen
to be the R2-values.
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Fig. 5. ML model architecture

Table 2. Classifier accuracy

F1-Score Totals

Success 0.981 34943

Limit Z 0.987 48859

Weighted average 0.984 83252

Table 3. Regression models accuracy

R2-values

eZ 0.995

eX 0.984

dZ 0.997

dX 0.995

5 Experimental Results

With a set of experiments, it is demonstrated to what extent the original WP
positioning optimisation approach proposed by Samsonov et al. [18] can be
enhanced and transferred to a more challenging 5-axis milling tasks. The use
of the increased step size, early stopping and sparse reward, as described in
Sect. 4.2, considerably improves the search efficiency of the trained RL agent.
Averaged over all evaluation runs and random seeds, a trained RL agent solves
the task with just one step in 95% of all cases for the 5-axis UC. For the 3-axis
UC, the RL agent prefers to use two steps for solving the task in 90% of the
observations. This allows us to introduce a hybrid approach, augmenting the
best trained RL agent with a simple search heuristic to improve the absolute
performance. For each WP positioning task, instead of solving the task once
with an arbitrary initialisation point, the RL agent is allowed to conduct the
search multiple times with different initialisation points and the solution with
the best reward is selected. In our work this approach is referred to as Hybrid RL
and the trained RL agent is given 20 attempts to find a near-optimal solution.

The runs of all three random seeds demonstrate the capability of the RL agent
to generalise to unseen WP geometries, to consistently avoid axis collisions and
to find good WP clamping positions, as seen in Fig. 6 and Fig. 7. The RL training
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with random seed 4821 results in a noticeably lower performance across all 3-
and 5-axis runs. Given the observed performance, the decrease is possibly related
to bad initialisation weights of the policy- and value networks. The hybrid RL
approach considerably boosts the absolute performance. The GA meta-heuristic
demonstrates the best results, both in terms of the result consistency and the
absolute reward value. The SA meta-heuristic could not match the performance
of the RL-based or GA solutions in both 3-axis and 5-axis UCs. To conserve
space, further evaluations of SA meta-heuristic are omitted.

Fig. 6. The achieved rewards for the 3-axis WP positioning search guided by the trained
RL agent, hybrid RL approach, GA and SA meta-heuristics

Fig. 7. The achieved rewards for the 5-axis WP positioning search guided by the trained
RL agent, hybrid RL approach, GA and SA meta-heuristics

The conducted comparison of the absolute performance demonstrates that a
well-tuned GA solver can surpass the proposed RL-based approaches. However,
not only the absolute performance is essential for practical applications, the time
required to find a viable solution is often a critical viability factor. A trained RL
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agent needs between one to two steps per task to find a near-optimal positioning
of a WP. The hybrid RL requires on average 21 and 36 steps per task for the
3-axis and 5-axis UC correspondingly.

To investigate how fast the GA meta-heuristic achieves results comparable
to solutions found with the RL-based approaches, we track the performance
at each interaction with the simulation environment during the meta-heuristic
search. The pairwise comparison is always conducted between the GA and RL
methods with identical random seeds used for the search/training. Figure 8a and
Fig. 8b demonstrate that the GA meta-heuristic needs on average 660 steps for
the 3-axis UC and 615 steps for the 5-axis UC to match the performance of
the corresponding RL agent. GA meta-heuristic takes on average 7842 and 1756
steps on for the 3- and 5-axis UC correspondingly to surpass the performance of
the hybrid RL approach (see Fig. 8c and Fig. 8d).

(a) 3-axis, number
of GA steps to
catch up to the
mean RL perfor-
mance

(b) 5-axis, number
of GA steps to
catch up to the
mean RL perfor-
mance

(c) 3-axis, number
of GA steps to
catch up to the
mean hybrid RL
performance

(d) 5-axis, number
of GA steps to
catch up to the
mean hybrid RL
performance

Fig. 8. The number of search steps the GA heuristic requires to match the mean
performance of the trained RL agents and the hybrid RL approach

The considered evaluations are conducted on a fast ML-based environment
to make extensive testing computationally viable. However, these ML models are
only intended for the training of the RL agent. Building such an ML-based envi-
ronment for RL training covers a finite number of WP geometries, thus keeping
the general effort limited. During the deployment of a new WP in production,
the search for optimal clamping parameters needs to be conducted directly in
the SinuTrain simulation environment. A GA search involving 7842 steps could
require 8,3 h for 3-axis and similarly, a GA search involving 1756 steps could
take 4,8 h for 5-axis. This is in direct contrast to the possible 2 s for 3-axis and
10 s for 5-axis needed for the hybrid RL approach with matching performance.
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6 Conclusion and Future Work

In this work, we extend the conceptual RL-based approach to optimise a WP
clamping position in a CNC milling machine tool. We introduce several signif-
icant additions to the original approach [18]. The first contribution is the
demonstration of the direct transfer to a more complex UC involving 5-axis
milling, using the same hyperparameter set and training scheme. The RL agent
successfully learns and avoids more elaborate collision patterns related to the
5-axis milling scenario, as well as consistently finds near-optimal WP clamping
positions.

The second contribution is the introduction of early stopping, combined
with larger action ranges and sparse rewards. As a result, a trained RL agent
needs between one and two optimisation steps to find a near-optimal WP clamp-
ing position. Improved search efficiency allows us to make the third contribu-
tion by introducing the Hybrid RL approach where RL-guided optimisation
search is enhanced with a simple heuristic. The agent is given 20 attempts with
different initialisation points in the working space of the milling machine to solve
one task. The solution with the highest reward is taken as the final WP clamping
position. In this way, the final results are considerably more stable and primarily
located at the upper bound of the observed RL performance, while still requiring
not more than 40 optimisation steps per task.

Finally, we compare the performance of the enhanced RL-based and Hybrid
RL optimisation approaches against the SA and GA meta-heuristics. Both
learning-based methods surpass the SA meta-heuristic in terms of absolute
performance and search efficiency. While the GA-heuristic demonstrates bet-
ter absolute performance, it needs about 300 times more optimisation steps to
match the performance of the RL-based approach and is two orders of magnitude
less efficient compared to the Hybrid RL approach. In practice, it means that the
RL-based optimisation methods are capable of solving the WP clamping posi-
tion task in seconds instead of half-days of runtime in the SinuTrain simulation
required by the considered meta-heuristics.

While demonstrating significant improvements, the proposed RL-based meth-
ods still remain in a prototype phase. In future work, we plan to address the
current need for a handcrafted set of features describing the WP. A handcraft-
free WP description can be achieved by representing the WP milling process as
a set of vectors covering the change of the relative position, speed and accelera-
tion of the milling tool tip point related to the WP during the milling process. A
compact WP representation can be learned in an unsupervised manner, using an
autoencoder, which feeds into the state space in an RL-based optimisation task.
An additional direction of work is enhancing the RL-based optimisation meth-
ods by combining them with more advanced heuristics. Avoiding local optima
is a common challenge while designing and applying meta-heuristics [6]. If a
near-optimal WP position, determined by an RL-based method, is used as a
starting point for an additional heuristic search, better absolute performance
can be achieved while still maintaining the overall acceptable computation time.
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