
Randomized Iterative Methods
for Matrix Approximation

Joy Azzam , Benjamin W. Ong , and Allan A. Struthers(B)

Department of Mathematical Sciences, Michigan Technological University,
Houghton, USA

{atazzam,ongbw,struther}@mtu.edu

Abstract. Standard tools to update approximations to a matrix A (for
example, Quasi-Newton Hessian approximations in optimization) incor-
porate computationally expensive one-sided samples A V . This article
develops randomized algorithms to efficiently approximate A by iter-
atively incorporating cheaper two-sided samples U�A V . Theoretical
convergence rates are proved and realized in numerical experiments. A
heuristic accelerated variant is developed and shown to be competitive
with existing methods based on one-sided samples.

Keywords: Matrix approximation · Randomized algorithms ·
Two-sided samples · Quasi-Newton

1 Introduction and Motivation from Optimization

Effective nonlinear optimization algorithms require 1st derivative information,
∇f(x), while superlinear convergence requires some 2nd derivative approxima-
tion [12]. For example, standard Quasi-Newton (QN) methods such as BFGS
(complete gradient and an approximate Hessian generated from gradient differ-
ences) have superlinear terminal convergence. Limited-Memory (LM) QN meth-
ods [11], such as LBFGS, which approximate the Hessian efficiently by storing
only the most recent gradient differences, are widely used in large-scale opti-
mization. This article formulates randomized QN like algorithms which can be
used to approximate Hessians (as well as general matrices) with reduced cost.

Alternatively, consider Stochastic Gradient Descent (SGD) [14], which is a
common dimension reduction technique in statistics and Machine learning. SGD
minimizes the average of cost functions fi : Rm → R,

f(x) =
1
n

n∑

i=1

fi(x),

by approximating ∇f ≈ s−1
∑s

i=1 ∇fi. Here, fi is associated with the i-th entry
of a large (n entry) data or training set. The SGD approximation is simply
∇f ≈ F p, where F is the matrix with ith column ∇fi and the sparse vector p has

c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 226–240, 2022.
https://doi.org/10.1007/978-3-030-95470-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95470-3_17&domain=pdf
http://orcid.org/0000-0003-0758-809X
http://orcid.org/0000-0002-2315-987X
http://orcid.org/0000-0003-2332-5724
https://doi.org/10.1007/978-3-030-95470-3_17

Randomized Iterative Methods for Matrix Approximation 227

s non-zero entries of 1/s at sampled indices. Our algorithms generalize SGD by
incorporating flexible sampling in R

n along with sampling in the parameter space
R

m to provide flexibility to tune our algorithms to computational hardware.
Section 2 introduces the fundamental problem, two-sided samples and termi-

nology. Section 3 reviews randomized one-sided Quasi-Newton algorithms while
Sect. 4 develops our randomized, two-sided Quasi-Newton algorithms. Section 5
provides probabilistic convergence rates and error estimates. Section 6 numeri-
cally demonstrates the convergence of the algorithms. Section 7 incorporates an
inner block power iteration to accelerate our two-sided algorithms and compares
the result to one-sided algorithms based on similar heuristics.

2 Fundamental Problem, Samples, and Terminology

The fundamental problem our algorithms addresses is how to efficiently construct
a sequence of approximations to a matrix, A ∈ R

m×n, from a stream of incom-
plete and possibly noisy data. Specifically, we develop and analyze algorithms
to iteratively embed aggregate information from

U�AV ∈ R
s1×s2 , U ∈ R

m×s1 , V ∈ R
n×s2 .

These weighted linear combinations of the rows and columns of the data A are
called two-sided samples. This is in contrast to weighted linear combinations of
the rows, U� A, or weighted linear combinations of the columns, AV , which we
refer to as one-sided samples. Two-sided samples have been used before in non-
iterative algorithms: [9] compares Schatten-p norm estimates (pth root of the
sum of the pth power of the singular values) using two-sided samples, U�AV ,
(termed a bi-linear sketch) to estimates using one-sided samples, AV . Large
eigenvalues estimates using two-sided random projectors are examined in [1]; and
two-sided samples are used in [2] to tighten bounds on low-rank approximations.
We follow their lead by simply counting sample entries to estimate data cost:
ms2 for the one-sided samples, AV , and s1 s2 for the two-sided sample, U�AV .
Algorithms using two-sided samples are a subset of randomized numerical linear
algebra. An overview of existing algorithms and applications is provided by the
extensive list of articles citing the comprehensive review [7]. The algorithms in
[1,7] expend significant up front effort computing projections Ω and Ψ so that
the projected matrix, Ω� AΨ , approximates A on dominant eigenvalues with the
goal that uniform random sampling of Ω� AΨ yields good approximations to A.
In contrast, our algorithms produce an improving sequence of approximations by
iteratively embedding small randomized two-sided samples, U� AV , with sample
dimensions s1 × s2 that can be chosen to suit available hardware. Throughout
we compare algorithms using the cost estimates (respectively s1 s2 and ms2 for
the samples U� AV and AV) from [9].

We use notation motivated by QN algorithms in non-linear optimization.
SPD means symmetric positive definite and W is an SPD weight matrix. X+

denotes the Moore-Penrose pseudo-inverse of X; 〈X,Y 〉F = Tr
[
X�Y

]
and

228 J. Azzam et al.

‖X‖2F = 〈X,X〉F are the Frobenius inner product and norm. For conform-
ing SPD weights W1 and W2 the weighted Frobenius norm (with special case
X = X� and W = W1 = W2 written F (W−1)) is

‖X‖2
F (W−1

1 ,W−1
2)

= ‖W
−1/2
1 X W

−1/2
2 ‖2F .

The W -weighted projector P, which projects onto the column space of W U ,

P = PW−1,U = W U(U� W U)−1U�, (1)

satisfies P W = W P� = P W P� and W−1P = P�W−1 = P� W−1 P.

3 Randomized One-Sided Quasi-Newton Algorithms

Our iterative approximations to A using two-sided samples are motivated by the
one-sided sampled algorithms in [6] and QN optimization algorithms. Classical
QN schemes for SPD matrices A are formulated as constrained minimum change
updates for B ≈ A or H ≈ A−1 in weighted Frobenius norms [12]: the constraint
enforces the new information while the minimum change condition stabilizes the
update. The one-sided sampled update algorithms in [5,6] are given by the KKT
[8,12] equations (with particular choices of weight W) for the quadratic programs

Bk+1 = arg min
B

{
1
2
‖B − Bk‖2F (W−1) | B Uk = AUk and B = B�

}
, (2)

Hk+1 = arg min
H

{
1
2
‖H − Hk‖2F (W−1) | Uk = H AUk and H = H�

}
. (3)

The analytical updates defined by Eqs. (2) and (3), are

Bk+1 = Bk + PB(A − Bk) + (A − Bk)P�
B − PB(A − Bk)P�

B , (4)

Hk+1 = Hk + PH(A−1 − Hk) + (A−1 − Hk)P�
H − PH(A−1 − Hk)P�

H , (5)

where the weighted projectors PB and PH defined by Eq. (1) are

PB = PW−1,Uk
= W Uk(U�

k W Uk)−1U�
k ,

PH = PW−1,AUk
= W AUk(U�

k AW AUk)−1U�
k A.

Note, these are two different updates using the same one-sided sample AUk

which are not simply connected by the Sherman-Morrison-Woodbury (SMW)
formula. In Eq. (4), Bk+1 is an improved approximation to A while in Eq. (5),
Hk+1 is an improved approximation to A−1. Familiar algorithms are obtained
by selecting different weights, W . Block DFP [15] is Eq. (4) with W = A

Bk+1 = (In − PDFP) Bk(In − P�
DFP) + PDFP A,

where PDFP = PA−1,Uk
= AUk(U�

k AUk)−1U�
k . Block BFGS [5,6] is the result

of inverting Eq. (4) with W = A−1 using the SMW formula

Bk+1 = Bk − BkUk

(
U�
k BkUk

)−1
U�
k Bk + AUk

(
U�
k AUk

)−1
U�
k A.

QN algorithms are commonly initialized with multiples of the identity.

Randomized Iterative Methods for Matrix Approximation 229

4 Randomized Two-Sided Quasi-Newton Algorithms

A general algorithm (defined by SPD weight matrices W1 and W2) to approxi-
mate non-square matrices and two distinct algorithms specialized to symmetric
matrices are developed. As with one-sided sampled algorithms, different weights
give different algorithms. Algorithms and theorems are developed for a generic
initialization B0.

4.1 General Two-Sided Sampled Update

Analogous to Eq. (2), our first algorithm is defined by the minimization

Bk+1 = arg min
B

{
1
2
‖B − Bk‖2F (W−1

1 ,W−1
2)

| U�
k B Vk = U�

k AVk

}
. (6)

Solving the KKT equations for Eq. (6) gives the self-correcting update

Bk+1 = Bk + PW−1
1 ,Uk

(A − Bk)P�
W−1

2 ,Vk
. (7)

Since this update explicitly corrects the projected residual sample Rk = U�
k (A−

Bk)Vk, it decreases the weighted Frobenius norm ‖A − Bk‖2F (W−1
1 ,W−1

2)
unless

the approximation is correct on the sampled spaces, i.e., U�
k (A − Bk)Vk = 0.

Given A ∈ R
m×n, initial approximation B0 ∈ R

m×n, two-sided sample sizes
{s1, s2}, and SPD weights {W1,W2}, Eq. (7) generates a sequence {Bk} that
converges monotonically to A in the appropriate weighted Frobenius norm. Pseu-
docode is provided in Algorithm 1: boxed values give the two-sided sample size
per iteration; double boxed values the total for all iterations. For symmetric A,
the independent left and right hand sampling fails to preserve symmetry.

Require: B0 ∈ R
m×n, SPD W1 ∈ R

m×m, W2 ∈ R
n×n, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)m×s1 and Vk ∼ N(0, 1)n×s2

3: Compute Rk = U�
k A Vk − U�

k BkVk ∈ R
s1×s2 . s1 s2

4: Update Bk+1 = Bk + W1Uk(U�
k W1Uk)−1Rk(V �

k W2Vk)−1V �
k W2

5: until convergence

6: return Bk+1 . (k + 1) (s1 s2)

Algorithm 1: NS: Non-Symmetric Two-Sided Sampling

4.2 Symmetric Update

Unsurprisingly, the fully symmetrized general algorithm (A = A�, B0 = B�
0 ,

Vk = Uk and W = W1 = W2) give symmetric approximations. Pseudocode is
provided in Algorithm 2 with sample counts boxed as before.

230 J. Azzam et al.

Require: B0 ∈ R
n×n satisfying B�

0 = B0, SPD W ∈ R
n×n, s ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N (0, 1)n×s1

3: Compute Rk = U�
k A Uk − U�

k BkUk ∈ R
s1×s1 . s21

4: Compute P̃k = W Uk(U�
k W Uk)−1

5: Update Bk+1 = Bk + P̃k RkP̃ �
k

6: until convergence

7: return Bk+1 . (k + 1)
(
s2

)

Algorithm 2: SS1: Symmetric Two-sided Sampling

Remark 1. Algorithm 2 can give non-SPD updates from SPD input e.g.

W =
[
1 0
0 1

]
, A =

[
1 0
0 1

]
, B =

[
1 0
0 9

]
, and U =

1√
2

[
1
1

]
.

4.3 Multi-step Symmetric Updates

Enforcing symmetry for A = A� and B0 = B�
0 with an internal step

Bk+1/2 = Bk + PW−1,Uk
(A − Bk)P�

W−1,Vk

Bk+1 =
1
2

(
Bk+1/2 + B�

k+1/2

)

gives convergence comparable to Algorithm 2. However, the two-step algorithm

Bk+1/3 = Bk + PW−1
1 ,Uk

(A − Bk)P�
W−1

2 ,Vk

Bk+2/3 = Bk+1/3 + PW−1
2 ,Vk

(A − B�
k+1/3)P

�
W−1

1 ,Uk

Bk+1 =
1
2

(
Bk+2/3 + B�

k+2/3

)
,

(8)

has superior convergence properties and requires no additional data since

PW−1
2 ,Vk

AP�
W−1

1 ,Uk
=

(
PW−1

1 ,Uk
AP�

W−1
2 ,Vk

)�
.

Pseudocode is provided in Algorithm 3 with sample counts boxed as before.

5 Convergence Analysis

Our convergence results rely on properties of randomly generated projectors.
In our experiments, we orthogonalize square matrices with entries drawn from
N(0, 1) to generate rotations from a rotationally invariant distribution [16]. Our
algorithms use symmetric rank s projectors defined by an SPD weight W

ẑ = W 1/2U(U�WU)−1U� W 1/2,

Randomized Iterative Methods for Matrix Approximation 231

Require: B0 ∈ R
n×n satisfying B0 = B�

0 , SPD W ∈ R
m×m, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)n×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual, Rk = U�
k A Vk − U�

k BkVk ∈ R
s1×s2 s1 s2

4: Compute Bk+1/3 = Bk + W Uk(U�
k W Uk)−1Rk(V

�
k W Vk)−1V �

k W
5: Compute Rk+1/3 = (U�

k A Vk)� − V �
k Bk+1/3 Uk ∈ R

s2×s1

6: Compute Bk+2/3 = Bk+1/3 + W Vk(V �
k W Vk)−1Rk+1/3(U

�
k W Uk)−1U�

k W
7: Update Bk+1 = 1

2
(Bk+2/3 + B�

k+2/3)
8: until convergence

9: return Bk+1 . (k + 1) (s1 s2)

Algorithm 3: SS2: Two-Step Symmetric Two-Sided Sampling

where U is simply the first s columns of a random rotation. The smallest and
largest eigenvalues λ1 and λn of the expectation E[ẑ] of these random projections
determines convergence of our algorithms with optimal rates when λ1 = λn.

Definition 1. A random matrix, X̂ ∈ R
m×n, is rotationally invariant if the

distribution of Qm X̂ Qn is the same for all rotations Qi ∈ O(i).

Proposition 1. Let Z be any distribution of real, rank s projectors in R
n. Then,

0 ≤ λmin(E[ẑ]) ≤ s

n
≤ λmax(E[ẑ]) ≤ 1, ẑ ∈ Z.

Further, if ẑ is rotationally invariant, then E[ẑ] = s
nIn.

Proposition 2. For R ∈ R
m×n and conforming symmetric projections ŷ, ẑ,

〈R ẑ,R ẑ〉F = 〈R,R ẑ〉F
〈ŷ R ẑ, ŷ R ẑ〉F = 〈ŷ R ẑ, R ẑ〉F = 〈ŷ R ẑ, R〉F

(9)

Proposition 3. For any R ∈ R
m×n and conforming symmetric positive semi-

definite matrices S1, S2, and (in the special case m = n) S we have the bounds:

λmin(S1)〈R,R〉F ≤ 〈S1 R,R〉F ≤ λmax(S1)〈R,R〉F ,

λmin(S2)〈R,R〉F ≤ 〈R,R S2〉F ≤ λmax(S2)〈R,R〉F ,

λmin(S)2〈R,R〉F ≤ 〈S R,R S〉F ≤ λmax(S)2〈R,R〉F .

Remark 2. Convergence results for Algorithms 1 to 3. are for E[‖B−A‖2F]. Such
results dominate similar results for ‖E[B − A]‖2F since

‖E [B − A]‖2F = E
[
‖B − A‖2F

]
− E

[
‖B − E [B]‖2F

]
.

Theorem 1 (Convergence of Algorithm 1 - NS). For A ∈ R
m×n and

B0 ∈ R
m×n with W1 ∈ R

m×m and W2 ∈ R
n×n fixed SPD weights. If Uk ∈ R

m×s1

232 J. Azzam et al.

and Vk ∈ R
n×s2 are random, independently selected orthogonal matrices with full

column rank (with probability one), then Bk from Algorithm 1 satisfies

E
[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2)

]
≤ (ρNS)kE

[
‖B0 − A‖2

F (W−1
1 ,W−1

2)

]
,

where ρNS = 1 − λmin(E[ŷ])λmin(E[ẑ]), with

ŷk = W
1/2
1 Uk(U�

k W1Uk)−1U�
k W

1/2
1 , ẑk = W

1/2
2 Vk(V �

k W2Vk)−1V �
k W

1/2
2 .

Proof. Define the kth residual as Rk := W
−1/2
1 (Bk − A)W−1/2

2 . With some
algebraic manipulation, Eq. (7) can be re-written as Rk+1 = Rk − ŷkRkẑk.
Computing the squared Frobenius norm of both sides,

〈Rk+1, Rk+1〉F = 〈Rk − ŷkRkẑk, Rk − ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈Rk, ŷkRkẑk〉F − 〈ŷkRkẑk, Rk〉F + 〈ŷkRkẑk, ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈ŷkRkẑk, Rkẑk〉F ,

where we have made use of Proposition 2. Taking the expected value with respect
to independent samples Uk (leaving Vk and Rk fixed) gives

E
[‖Rk+1‖2

F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rkẑk, Rkẑk〉F ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, Rkẑk〉F ,

where we applied Proposition 3 to the symmetric positive semi-definite matrix
E[ŷk], and used Eq. (9). Taking the expected value with respect to independent
samples Vk and leaving Rk fixed gives

E[‖Rk+1‖2F | Rk] ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, RkE[ẑk]〉F
≤ 〈Rk, Rk〉F − λmin(E[ŷk])λmin(E[ẑk])〈Rk, Rk〉F .

Taking the full expectation and noting E[‖Rk+1‖2F] = E[‖Bk − A‖2
F (W−1

1 ,W−1
2)

E[‖Rk+1‖2F] ≤ E [〈Rk, Rk〉F] − λmin(E[ŷk])λmin(E[ẑk])E [〈Rk, Rk〉F]
= (1 − λmin(E[ŷk])λmin(E[ẑk]))E[〈Rk, Rk〉F]

gives the result by unrolling the recurrence. Note, independence of Uk and Vk

justifies E[〈ŷkRkẑk, Rkẑk〉F] = 〈E[ŷk]Rkẑk, Rkẑk〉F .

Theorem 2 (Convergence of Algorithm 2 - SS1). Let A,W ∈ R
n×n be

fixed SPD matrices and Uk ∈ R
n×s be a randomly selected matrix having full

column rank with probability 1. If B0 ∈ R
n×n is an initial guess for A with

B0 = B�
0 , then Bk from Algorithm 2 satisfies

E[‖Bk+1 − A‖2F (W−1)] ≤ (ρSS1)kE[‖B0 − A‖2F (W−1)],

where ρSS1 = 1 − λmin(E[ẑ])2 and ẑk = W 1/2Uk(U�
k W Uk)−1U�

k W 1/2.

Randomized Iterative Methods for Matrix Approximation 233

Proof. Following similar steps outlined in the proof in Theorem 1, we arrive at

〈Rk+1, Rk+1〉F = 〈Rk, Rk〉F − 〈Rk, ẑkRkẑk〉F .

Taking the expected value with respect to Uk leaving Rk fixed we have

E
[‖Rk+1‖2F | Rk

]
= 〈Rk, Rk〉F − E [〈Rk, ẑkRkẑk〉F]

= 〈Rk, Rk〉F − E
[
Tr[R�

k ẑkRkẑk]
]

= 〈Rk, Rk〉F − Tr [E [RkẑkRkẑk]] ≤ 〈Rk,Rk〉F − Tr
[
E [Rkẑk]

2
]
,

where the inequality arises from application of Jensen’s Inequality. Simplifying
and applying Proposition 3,

E[‖Rk+1‖2F (W−1) | Rk] ≤ 〈Rk, Rk〉F − Tr
[
E [Rkẑk]

2
]

= 〈Rk, Rk〉F − Tr [RkE [ẑk] RkE [ẑk]]

= 〈Rk, Rk〉F − 〈E[ẑk]Rk, RkE[ẑk]〉F ≤ 〈Rk, Rk〉F − λmin(E[ẑk])2〈Rk, Rk〉F .

Taking the full expectation and un-rolling the recurrence yields the desired result.

Theorem 3 (Convergence of Algorithm 3 - SS2). Let A,Uk, Vk and B0

be defined as in Theorem 1, and let W be a fixed SPD matrix then Bk from
Algorithm 3 satisfies

E
[
‖Bk − A‖2F (W−1)

]
≤ (ρSS2)kE

[
‖B0 − A‖2F (W−1)

]
,

where

ρSS2 = 1 − 2λmin(E[ŷ])λmin(E[ẑ]) + λmin(E[ŷ])2λmin(E[ẑ])2.

Proof. Let Rk be the kth residual Rk, and ŷk, ẑk be projectors as in Theorem 1
with W = W1 = W2. Eq. (8) can be re-written in terms of Rk as follows.

Rk+1/3 = Rk − ŷkRkẑk, R�
k+2/3 = R�

k+1/3 − ẑkR
�
k+1/3ŷk,

Rk+1 =
1
2

(
Rk+2/3 + R�

k+2/3

)
.

Theorem 1 gives
E

[∥∥Rk+1/3

∥∥2

F

]
≤ (ρNS)E

[‖Rk‖2F
]
,

and a repeated application of Theorem 1 gives

E
[∥∥Rk+2/3

∥∥2

F

]
≤ (ρNS)E

[‖Rk+1/3‖2F
] ≤ (ρNS)2E

[‖Rk‖2F
]
.

Lastly, we observe via the triangle inequality that

E
[
‖Rk+1‖2F

]
= E

[∥∥∥∥
1
2

(
Rk+2/3 + R�

k+2/3

)∥∥∥∥
2

F

]

≤ 1
2
E

[∥∥Rk+2/3

∥∥2

F

]
+

1
2
E

[∥∥∥R�
k+2/3

∥∥∥
2

F

]
= (ρNS)2E

[‖Rk‖2F
]
,

Un-rolling the loop for k iterations gives the desired result.

234 J. Azzam et al.

With the relevant rate ρ below error bounds for Algorithms 1 to 3 are

‖Rk+1‖2F (W−1
1 ,W−1

2)
≤ ρ‖Rk‖2F (W−1

1 ,W−1
2)

(10)

where y1 = λmin(E[ŷ]), z1 = λmin(E[ẑ]), and

ρNS(y1, z1) = 1 − y1z1, ρSS1(z1) = 1 − z21 , ρSS2(y1, z1) = (1 − y1z1)2. (11)

Since any symmetric rank s random projection ẑ on R
n satisfies 0 ≤ z1 ≤ s

n ≤
zn ≤ 1 and rotationally invariant distributions, e.g. UU+ with U ∼ N(0, 1)n×s,
further satisfy E[ẑ] = s

n , minimizing the various convergence rates ρ over the
appropriate domains gives the following optimal rates.

Corollary 1. The optimal convergence rates for Algorithms 1 to 3 are obtained
attained for Uk and Vk sampled from rotationally invariant distributions,

ρoptNS = 1 − s1
m

s2
n

, ρoptSS1 = 1 −
(s2

n

)2

, ρoptSS2 =
(
1 − s1

m

s2
n

)2

. (12)

Remark 3. Theorems 1 to 3 all assume the weight matrix W and distributions
are fixed. All our non-accelerated numerical experiments use fixed weights and
sample from fixed rotationally invariant distributions.

Remark 4. Corollary 1 is an extremely strong result. Consider for simplicity
s1 = s2 = s. Although the convergence rates are ∼ 1−(

s
n

)2, only s×s aggregated
pieces of information are used each iteration. If a one-sided sampled algorithm
uses s × n pieces of information, e.g. [6], our algorithm can take n

s iterations
with the same amount of information. Consequently the error decrease after n

s
iterations, is comparable to convergence rates of one-sided sampled QN methods.

(
1 − s2

n2

)n/s

≈ 1 − n

s
· s2

n2
,

Lower bounds on the convergence rates (analogous to the upper bounds in
Theorems 1 to 3 but using the upper bounds in Proposition 3) are easily derived.
For example, the two-sided error bound for Algorithm 1 is

ρNS(ym, zn)E[‖Rk‖2F] ≤ E[‖Rk+1‖2F] ≤ ρNS(y1, z1)E[‖Rk‖2F],

where as before y1 ≤ y2 ≤ · · · ≤ ym is the spectrum of E[ŷ], z1 ≤ z2 ≤ · · · ≤ zn
is the spectrum of E[ẑ] and the explicit form for ρNS is in Eq. (11). We collect
the similar results for Algorithms 1 to 3 in Corollary 2.

Randomized Iterative Methods for Matrix Approximation 235

Corollary 2 (Two-Sided Convergence Rates). Given the assumptions of
Theorems 1 to 3 the explicit formulas Eq. (11) for ρ give two-sided bounds,

ρNS(ym, zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2)

]

‖B0 − A‖2
F (W−1

1 ,W−1
2)

≤ ρNS(y1, z1)k

ρSS1(zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1)

]

‖B0 − A‖2F (W−1)

≤ ρSS1(z1)k

ρSS2(yn, zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1)

]

‖B0 − A‖2F (W−1)

≤ ρSS2(y1, z1)k

where y1, ym, z1, zn are the extreme eigenvalues of E[ŷ] and E[ẑ].

Remark 5. If ŷ and ẑ are rotationally invariant, the upper and lower probabilistic
bounds in Corollary 2 coincide since z1 = zn = s1

n and y1 = ym = s2
m . Algo-

rithms 1 to 3 all use rotationally invariant distributions and converge predictably
at the expected rate. The algorithms still converge with other distributions pro-
vided the smallest eigenvalue of the expectation is positive.

6 Numerical Results

Algorithm 1 to 3 were implemented in the MATLAB framework from [6] and
tested on representative SPD matrices from the same article: A = XX� with
X ∼ N (0, 1)n×n; the Gisette-Scale ridge regression matrix from [3]; and the
NASA matrix from [4]. The author’s website [13] contains MATLAB scripts
and similar results for all matrices from [6]. Computations were performed on
Superior, the HPC facility at Michigan Technological University.

Many metrics can be used to objectively compare algorithmic costs. Common
metrics include number of FLOPS, total memory used, communication overhead,
and for matrix-free black-box procedures the number of individual matrix-vector
products Av. As noted by [9] the analogous metric for a black box procedure to
compute the matrix product required for our s1 × s2 two-sided sample U�AV
is the number of sampled entries, s1 s2. As an explicit example, for f : Rm → R,
Forward-Forward mode [10] Algorithmic Differentiation (AD) simultaneously
computes f(x) and a directional 2nd derivative u�∇2f(x) v. With sufficient
shared-memory processors, AD can efficiently compute f(x) and the two-sided
sample U�∇2f(x)V of the Hessian with cost s1 s2.

Algorithms in [6] are for symmetric matrices. We compare the conver-
gence of (unweighted i.e. W = I) Algorithms 1 to 3 (sample size s = �√n

matching [6]) to the one sided algorithms in [6]: Fig. 1a for A = X X� with
X ∼ N (0, 1)5000×5000; Fig. 1b for Gisette-Scale; and Fig. 1c) for NASA. Our
algorithms achieve the theoretical convergence rates from Eq. (12) (dotted lines).
Weighted algorithms DFP and BFGS use B0 = I, un-weighted Algorithms 1 to
3 use B0 = 0. Runs were terminated after 5n2 iterations or when the relative

236 J. Azzam et al.

0 1 2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - Random Matrix

BFGS

DFP

NS

SS1

SS2

(a) (n = 5000) Approximation ofXX� whereX ∼ N (0, 1)n×n with s = 71 = �√5000�.

0 1 2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Gisette-Scale

BFGS

DFP

NS

SS1

SS2

(b) (n = 5000) Approximation of Gisette Scale [3] with s = 71 = �√5000�.

0 0.5 1 1.5 2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - NASA

BFGS

DFP

NS

SS1

SS2

(c) (n = 4700) Approximation of NASA4704 [4]. s = 69 = �√4704�.

Fig. 1. Two-sided sampled algorithm performance with theoretical rate as dots. BFGS
and DFP can be: a) comparable; b) superior; or c) stall/diverge.

residual norm fell below 0.01. The one-sided algorithms DFP and BFGS have
target dependent weight matrices: DFP is Eq. (4) with weight W = A while
BFGS is the Sherman-Morrison-Woodbury inversion of Eq. (5) with W = A−1.
Figure 1a shows our algorithms outperforming both BFGS and DFP for small
tolerances. Figure 1b shows enhanced initial convergence for DFP and BFGS, but
Fig. 1c demonstrates that BFGS may not converge. In contrast, our two-sided
algorithms converge consistently, achieving the theoretical convergence rates.

Randomized Iterative Methods for Matrix Approximation 237

7 Heuristic Accelerated Schemes

Algorithm 2 corrects the symmetric projected residual U�
k (A − Bk)Uk at each

stage; significant corrections occur if Uk aligns with large eigenvalues of Rk.
Block power iteration is a standard heuristic [7] to enhance alignment.

Incorporating p steps of a block power iteration to enrich Uk produces the
hybrid algorithm in Algorithm 2: the loop from line 4 to line 9 enriches a random
U by multiplying by the residual and re-orthogonalizing p times. As before, work
estimates are boxed on the right (p block power iterations require p n s and the
square symmetric sample requires s2) with the total double boxed. Although the
inner iteration requires significantly more matrix samples per iteration, conven-
tional wisdom [7] suggests one or two inner iterations are likely to be beneficial.
Our experiments show Algorithm 2 is competitive for p = 2.

Require: B0 ∈ R
n×n satisfying B�

0 = B0, SPD W ∈ R
n×n, s ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk

4: loop {i = 1, 2, . . . , p}
5: Λ = AUi−1,k − Bi−1,kUi−1,k

6: Σ = Λ(U�
i−1,k W Ui−1,k)−1U�

i−1,k W

7: Bi,k = Bi−1,k + Σ + Σ� − W Ui−1,k(U�
i−1,k W Ui−1,k)−1U�

i−1,kΣ
8: Ui,k = Λ
9: end loop . p n s

10: Compute Rk = U�
p,k A Up,k − U�

p,k Bp,kUm,k ∈ R
s×s s2

11: Compute P̃k = W Up,k(U�
p,kW Up,k)−1

12: Update Bk+1 = Bk + P̃k RkP̃ �
k

13: until convergence

14: return Bk+1 . (k + 1)(p n s + s2)

Algorithm 4: SS1A: Accelerated Symmetric Approximation

Acceleration Convergence Results

Algorithm 4 (rotationally invariant samples with p = 2) is compared to BFGS-A
(the result of applying the SMW formula to the accelerated method AdaRBFGS
from [6]) and the three one-sided, non-accelerated algorithms: S1 and DFP
defined by Eq. (4) with weights W = I and W = A (respectively), and BFGS
defined by applying the SMW formula to Eq. (5) with weight W = A−1. We
use the same test matrices, initialization, and termination conditions described
in Sect. 6: Fig. 2a shows results for A = XX�; Fig. 2b shows results for the
Hessian matrix Gisette Scale [3]; and Fig. 2c shows results for NASA4704 [4].
SS1A matches or outperforms all other algorithms for the three matrices. As
before [13] contains MATLAB scripts and results for all matrices from [6]. Both

238 J. Azzam et al.

0 1 2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Accelerated Convergence Test - Random Matrix

BFGS

DFP

S1

BFGSA

SS1A

(a) (n = 5000) Approximation of XX� where X ∼ N (0, 1)n×n

0 0.5 1

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Accelerated Convergence Test - LibSVM - Gisette-Scale

BFGS

DFP

S1

BFGSA

SS1A

(b) (n = 5000) Hessian approximation of Hessian of GisetteScale

0 0.2 0.4 0.6 0.8 1

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖ A
−
B

0
‖ F

Accelerated Convergence Test - SparseSuite - NASA

BFGS

DFP

S1

BFGSA

SS1A

(c) (n = 4700) Approximation of NASA4704

Fig. 2. Accelerated SS1A algorithm outperforms accelerated BFGS algorithms.

BFGS-A and SS1A adaptively sample their update spaces. BFGS-A samples
from the columns of the Cholesky decomposition of Bk while SS1-A effectively
samples from a small power of the residual A−Bk. Comparing BFGS to BFGS-
A and S1 to SS1-A shows the benefits of adaptivity. The hybrid SS1A performs
consistently well.

Randomized Iterative Methods for Matrix Approximation 239

8 Conclusions and Future Work

Algorithms 1 to 3 iteratively generate matrix approximations to a fixed target
from two-sided samples. Rotationally invariant sampling gives optimal theoret-
ical convergence in general and predicted convergence rates are experimentally
verified for several real world matrices, with comparable performance to exist-
ing one-sided algorithms. A hybrid method combining simultaneous iteration (to
enrich a subspace) with the two-sided sampled update is developed and shown
to be competitive with existing one-sided accelerated schemes.

The algorithms systematically make minimal changes and drive weighted
residual norms for a fixed A monotonically to zero. Such self-correcting algo-
rithms can potentially approximate slowly changing matrices, A(x). For exam-
ple, QN optimization algorithms have a slowly changing Hessian target ∇2

xf(xk)
while solvers for stiff ODEs y′(x) = f(y(x)) have a slowly changing Jacobian
target ∇yf(y(xk)). The two-sided sampled matrix approximation algorithms
and theory presented in the article provide a general foundation for these and
other applications. Efficient factorized updates, compact low rank approxima-
tions, inverse approximation, and sparse matrix sampling are all planned.

References

1. Andoni, A., Nguyen, H.L.: Eigenvalues of a matrix in the streaming model, pp.
1729–1737. SIAM (2013). https://doi.org/10.1137/1.9781611973105.124

2. Avron, H., Clarkson, K.L., Woodruff, D.P.: Sharper bounds for regularized data
fitting. In: Jansen, K., Rolim, J.D.P., Williamson, D., Vempala, S.S. (eds.) Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, Leibniz International Proceedings in Informatics (LIPIcs), vol. 81, pp.
27:1–27:22. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017).
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.27

3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

4. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011). https://doi.org/10.1145/2049662.2049663

5. Gao, W., Goldfarb, D.: Block BFGS methods. SIAM J. Optim. 28(2), 1205–1231
(2018). https://doi.org/10.1137/16M1092106

6. Gower, R.M., Richtárik, P.: Randomized Quasi-Newton updates are linearly con-
vergent matrix inversion algorithms. SIAM J. Matrix Anal. Appl. 38(4), 1380–1409
(2017). https://doi.org/10.1137/16M1062053

7. Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev. 53(2), 217–288 (2011). https://doi.org/10.1137/090771806

8. Karush, W.: Minima of Functions of Several Variables with Inequalities as Side
Conditions. ProQuest LLC, Ann Arbor, MI (1939). Thesis (SM)-The University of
Chicago

9. Li, Y., Nguyen, H.L., Woodruff, D.P.: On Sketching Matrix Norms and the
Top Singular Vector, pp. 1562–1581. SIAM (2014). https://doi.org/10.1137/1.
9781611973402.114

https://doi.org/10.1137/1.9781611973105.124
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.27
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/16M1092106
https://doi.org/10.1137/16M1062053
https://doi.org/10.1137/090771806
https://doi.org/10.1137/1.9781611973402.114
https://doi.org/10.1137/1.9781611973402.114

240 J. Azzam et al.

10. Naumann, U.: The Art of Differentiating Computer Programs. Society for Indus-
trial and Applied Mathematics (2011). https://doi.org/10.1137/1.9781611972078

11. Nocedal, J.: Updating Quasi-Newton matrices with limited storage. Math. Comput.
35(151), 773–782 (1980). https://doi.org/10.2307/2006193

12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research and Financial Engineering, 2nd edn. Springer, New York (2006). https://
doi.org/10.1007/978-0-387-40065-5

13. Ong, B., Azzam, J., Struthers, A.: Randomized iterative methods for matrix
approximation - supplementary material and software repository (2021). https://
www.mathgeek.us/publications.html

14. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400–407 (1951). https://doi.org/10.1214/aoms/1177729586

15. Schnabel, R.: Quasi-newton methods using multiple secant equations. Com-
puter Science Technical Reports 244, 41 (1983). https://scholar.colorado.edu/csci
techreports/244/

16. Stewart, G.: The efficient generation of random orthogonal matrices with an appli-
cation to condition estimators. SIAM J. Numer. Anal. 17(3), 403–409 (1980).
https://doi.org/10.1137/0717034

https://doi.org/10.1137/1.9781611972078
https://doi.org/10.2307/2006193
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://www.mathgeek.us/publications.html
https://www.mathgeek.us/publications.html
https://doi.org/10.1214/aoms/1177729586
https://scholar.colorado.edu/csci_techreports/244/
https://scholar.colorado.edu/csci_techreports/244/
https://doi.org/10.1137/0717034

	Randomized Iterative Methods for Matrix Approximation
	1 Introduction and Motivation from Optimization
	2 Fundamental Problem, Samples, and Terminology
	3 Randomized One-Sided Quasi-Newton Algorithms
	4 Randomized Two-Sided Quasi-Newton Algorithms
	4.1 General Two-Sided Sampled Update
	4.2 Symmetric Update
	4.3 Multi-step Symmetric Updates

	5 Convergence Analysis
	6 Numerical Results
	7 Heuristic Accelerated Schemes
	8 Conclusions and Future Work
	References

