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Preface

LOD is an international conference embracing the fields of machine learning, opti-
mization, and data science. The seventh edition, LOD 2021, took place during October
4–8, 2021, in Grasmere (Lake District), UK. LOD 2021 was held successfully online
and onsite to meet challenges posed by the worldwide outbreak of COVID-19. This
year the scientific program of the conference was even richer than usual; LOD 2021
hosted the first edition of the Advanced Course and Symposium on Artificial Intelli-
gence & Neuroscience – ACAIN 2021. In fact, this year, in the LOD proceedings we
decided to also include the papers of the first edition of the Symposium on Artificial
Intelligence and Neuroscience (ACAIN 2021). The symposium was scheduled for
2020, but due to the COVID-19 pandemic until we were forced to postpone it to 2021.

The review process for the papers submitted to ACAIN 2021 was double blind,
performed rigorously by an international Program Committee consisting of leading
experts in the field. The following three articles in this volume comprise the articles
accepted to ACAIN 2021:

• Effect of Geometric Complexity on Intuitive Model Selection by Eugenio Piasini,
Vijay Balasubramanian, and Joshua Gold.

• Training Convolutional Neural Networks with Competitive Hebbian Learning
Approaches by Gabriele Lagani, Giuseppe Amato, Fabrizio Falchi, and Claudio
Gennaro.

• Towards Understanding Neuroscience of Realisation of Information Need in Light
of Relevance and Satisfaction Judgement by Sakrapee Paisalnan, Frank Pollick, and
Yashar Moshfeghi.

Since 2015, the LOD conference has brought academics, researchers, and industrial
researchers together in a unique multidisciplinary community to discuss the state of the
art and the latest advances in the integration of machine learning, optimization, and
data science to provide and support the scientific and technological foundations for
interpretable, explainable, and trustworthy AI. In 2017, LOD adopted the Asilomar AI
Principles.

The annual conference on machine Learning, Optimization, and Data science
(LOD) is an international conference on machine learning, computational optimization,
and big data that includes invited talks, tutorial talks, special sessions, industrial tracks,
demonstrations, and oral and poster presentations of refereed papers.

LOD has established itself as a premier multidisciplinary conference in machine
learning, computational optimization, and data science. It provides an international
forum for presentation of original multidisciplinary research results, as well as
exchange and dissemination of innovative and practical development experiences.

The manifesto of the LOD conference is as follows:

“The problem of understanding intelligence is said to be the greatest problem in
science today and “the” problem for this century – as deciphering the genetic code



was for the second half of the last one. Arguably, the problem of learning represents
a gateway to understanding intelligence in brains and machines, to discovering how
the human brain works, and to making intelligent machines that learn from expe-
rience and improve their competences as children do. In engineering, learning
techniques would make it possible to develop software that can be quickly cus-
tomized to deal with the increasing amount of information and the flood of data
around us.”

The Mathematics of Learning: Dealing with Data
Tomaso Poggio (MOD 2015 and LOD 2020 Keynote Speaker) and Steve Smale

“Artificial Intelligence has already provided beneficial tools that are used every day
by people around the world. Its continued development, guided by the Asilomar
principles of AI, will offer amazing opportunities to help and empower people in the
decades and centuries ahead.”

The Asilomar AI Principles

The Asilomar AI Principles were adopted by the LOD conference following their
inception (January 3–5, 2017). Since then these principles have been an integral part
of the manifesto of the LOD conferences.

LOD 2021 attracted leading experts from industry and the academic world with the
aim of strengthening the connection between these institutions. The 2021 edition of
LOD represented a great opportunity for professors, scientists, industry experts, and
research students to learn about recent developments in their own research areas and to
learn about research in contiguous research areas, with the aim of creating an envi-
ronment to share ideas and trigger new collaborations.

As chairs, it was an honour to organize a premier conference in these areas and to
have received a large variety of innovative and original scientific contributions.

During LOD 2021, 12 plenary talks were presented by leading experts:

LOD 2021 Keynote Speakers:

• Ioannis Antonoglou, DeepMind, UK
• Roberto Cipolla, University of Cambridge, UK
• Panos Pardalos, University of Florida, USA
• Verena Rieser, Heriot Watt University, UK

ACAIN 2021 Keynote Lecturers:

• Timothy Behrens, University of Oxford, UK
• Matthew Botvinick, DeepMind, UK
• Claudia Clopath, Imperial College London, UK
• Ila Fiete, MIT, USA
• Karl Friston, University College London, UK
• Rosalyn Moran, King’s College London, UK
• Maneesh Sahani, University College London, UK
• Jane Wang, DeepMind, UK

LOD 2021 received 215 submissions from authors in 68 countries in five continents,
and each manuscript was independently reviewed by a committee formed by at least
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five members. These proceedings contain 86 research articles written by leading sci-
entists in the fields of machine learning, artificial intelligence, reinforcement learning,
computational optimization, neuroscience, and data science presenting a substantial
array of ideas, technologies, algorithms, methods, and applications.

At LOD 2021, Springer LNCS generously sponsored the LOD Best Paper Award.
This year, the paper by Zhijian Li, Bao Wang, and Jack Xin, titled “An Integrated
Approach to Produce Robust Deep Neural Network Models with High Efficiency”,
received the LOD 2021 Best Paper Award.

This conference could not have been organized without the contributions of
exceptional researchers and visionary industry experts, so we thank them all for par-
ticipating. A sincere thank you goes also to the 41 subreviewers and to the Program
Committee, comprising more than 250 scientists from academia and industry, for their
valuable and essential work of selecting the scientific contributions.

Finally, we would like to express our appreciation to the keynote speakers who
accepted our invitation, and to all the authors who submitted their research papers to
LOD 2021.

October 2021 Giuseppe Nicosia
Varun Ojha

Emanuele La Malfa
Gabriele La Malfa

Giorgio Jansen
Panos Pardalos

Giovanni Giuffrida
Renato Umeton
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Abstract. Time-series forecasting is a fundamental task emerging from
diverse data-driven applications. Many advanced autoregressive methods
such as ARIMA were used to develop forecasting models. Recently, deep
learning based methods such as DeepAR, NeuralProphet, and Seq2Seq
have been explored for the time-series forecasting problem. In this paper,
we propose a novel time-series forecast model, DeepGB. We formulate
and implement a variant of gradient boosting wherein the weak learners
are deep neural networks whose weights are incrementally found in a
greedy manner over iterations. In particular, we develop a new embed-
ding architecture that improves the performance of many deep learning
models on time-series data using a gradient boosting variant. We demon-
strate that our model outperforms existing comparable state-of-the-art
methods using real-world sensor data and public data sets.

Keywords: Time-series · Forecasting · Deep learning · Gradient
boosting · Embedding

1 Introduction

Time-series forecasting plays a key role in many business decision-making scenar-
ios and is one of the central problems in engineering disciplines. In particular, many
prediction problems arising in financial data [36], weather data [20], econometrics
[11] and medical data [21] can be modeled as time-series forecasting problems.

Time-series forecasting models can be developed using various autoregres-
sive (AR) methods. Classical linear models such as autoregressive integrated
moving average (ARIMA) [6] are used to explain the past behavior of a given
time-series data and then used to make predictions of the time-series. ARIMA
is one of the most widely used forecasting methods for univariate time-series
data forecasting. To account for seasonality in time-series data, ARIMA models
can be further extended to seasonal autoregressive integrated moving average
(SARIMA) [6]. In turn, SARIMA models can be extended with covariates or
other regression variables to Seasonal AutoRegressive Integrated Moving Aver-
ages with eXogenous regressors, referred to as SARIMAX model, where the X
c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-030-95470-3_1
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stands for “exogenous”. The exogenous variable can be a time-varying measure-
ment like the inflation rate, or a categorical variable separating the different days
of the week, or a Boolean representing special festive periods. Some limitations of
AR models are that they become impractically slow when attempting to model
long-range dependencies and do not scale well for large volumes of training data
due to the strong assumptions they impose on the time-series [37].

Recurrent neural networks (RNNs), and in particular Long Short Term Mem-
ory (LSTM) networks, have achieved success in time-series forecasting due to
their ability to capture long-range dependencies and to model nonlinear func-
tions. Hewamalage et al. [17] ran an extensive empirical study of the existing
RNN models for forecasting. They concluded that RNNs are capable of modeling
seasonality directly if the series contains homogeneous seasonal patterns; other-
wise, they recommended a deseasonalization step. They demonstrated that RNN
models generally outperform ARIMA models. However, RNN models require
more training data than ARIMA models as they make fewer assumptions about
the structure of the time series and they lack interpretability.

A popular RNN-based architecture is the Sequence to Sequence (Seq2Seq)
architecture [18], which consists of the encoder and the decoder, where both act
as two RNN networks on their own. The encoder uses the encoder state vectors
as an initial state, which is how the decoder gets the information to generate the
output. The decoder learns how to generate target y[t + 1, . . .] by matching the
given target y[. . . , t] to the input sequence. The DeepAR model for probabilistic
forecasting, recently proposed by Salinas et al. [30], uses a Seq2Seq architecture
for prediction. DeepAR can learn seasonal behavior and dependencies on given
covariates and makes probabilistic forecasts in the form of Monte Carlo samples
with little or no history at all. Also, it does not assume Gaussian noise and the
noise distribution can be selected by users.

In an effort to combine the best of traditional statistical models and neural
networks, the AR-Net was proposed [37]. It is a network that is as interpretable
as Classic-AR but also scales to long-range dependencies. It also eliminates the
need to know the true order of the AR process since it automatically selects the
important coefficients of the AR process. In terms of computational complexity
with respect to the order of the AR process, it is only linear for AR-Net, as
compared to quadratic for Classic-AR.

Facebook Prophet [34] is another forecasting method, which uses a decom-
posable time-series model with three main model components: trend, seasonality,
and holidays. Using time as a regressor, Prophet attempts to fit several linear and
non-linear functions of time as components. Prophet frames the forecasting prob-
lem as a curve-fitting exercise rather than explicitly looking at the time-based
dependence of each observation within a time series. NeuralProphet [1], which is
inspired by Facebook Prophet [34] and AR-Net [37], is a neural network-based
time-series model. It uses Fourier analysis to identify the seasons in a particular
time series and can model trends (autocorrelation modeling through AR-Net),
seasonality (yearly, weekly, and daily), and special events.

Inspired by the success of learning using Gradient Boosting (GB) [9] and
Deep Neural Networks [12,39], we present a novel technique for time-series
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forecasting called Deep Neural Networks with Gradient Boosting or DeepGB. Neu-
ral networks can represent non-linear regions very well by approximating them
with a combination of linear segments. It is proven by the universal approxima-
tion theorem [7] that neural networks can approximate any non-linear region but
it could potentially need an exponential number of nodes or variables in order to
do this approximation. On the other hand, methods such as gradient boosting
that build decision trees are very good at representing non-linear regions but
they cannot handle complex arithmetic relations, such as multiplication of ele-
ments. The main idea of the proposed approach is to combine the strengths of
gradient boosting and neural networks.

The proposed approach consists of building a series of regressors or classifiers
and solving the problem for the residual at each time. This approach enables the
generation of a number of small parallel models for a single task, instead of cre-
ating a large deep learning model that attempts to learn very complex boundary
regions. Because each subsequent model attempts to solve only the gradient of
the loss function, the task becomes simpler than attempting to perform a full
regression or classification on the output range. Eventually, the error becomes
small enough and indistinguishable from the data noise.

Our main contributions are as follows.

– We propose DeepGB, an algorithm for learning temporal and non-linear
patterns for time-series forecasting by efficiently combining neural network
embedding and gradient boosting.

– We propose boosted embedding, a computationally efficient embedding method
that learns residuals of time-series data by incrementally freezing embedding
weights over categorical variables.

– In our empirical evaluation, we demonstrate how the proposed approach
DeepGB scales well when applied to standard domains and outperforms state-
of-the-art methods including Seq2Seq and SARIMA in terms of both efficiency
and effectiveness.

The rest of the paper is organized as follows: First, the background on gra-
dient boosting is introduced in Sect. 2. Section 3 outlines the need for neural
network embedding for time-series modelling, followed by the detailed descrip-
tion of the proposed approach, DeepGB. In Sect. 4, we present the experimental
evaluation of the proposed method. Finally, conclusions and directions for future
work are presented in Sect. 5.

2 Gradient Boosting

In Gradient Boosting, the solution is comprised of simpler parallel models that
are trained sequentially but added together at the end. One of the main ideas
of gradient boosting is that each subsequent model (which may be as small as
a small tree or as large as a full deep neural network) needs to only solve for
the residue between the output and the previous regressors built, thus making
it a much easier problem to solve. Gradient Boosting [15] is motivated by the
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intuition that finding multiple weak hypotheses to estimate local probabilistic
predictions can be easier than finding a highly accurate model. Friedman [15]
in the seminal work, proposed a gradient boosting framework to train decision
trees in sequence, such that each tree is modeled by fitting to the gradient/error
from the tree in the previous iteration. Consider for Data = {〈x, y〉}, in the
gradient boosting process, a series of approximate functions Fm are learned to
minimize the expected loss Loss := Ex[L(y, Fm(x))] in a greedy manner:

Fm := Fm−1 + ρm ∗ ψm (1)

where ρm is the step size and ψm is a tree selected from a series of Ψ functions
to minimize L in the m-th iteration:

ψm = arg min
ψ∈Ψ

E[L(y, Fm−1(x)) + ψ(x)] (2)

where the loss function is usually least-squares in most works and a negative
gradient step is used to solve for the minimization function.

In recent years three highly efficient and more successful gradient-based
ensemble methods became popular, namely, XGBoost, LightGBM, and Cat-
Boost [23,25]. However, both XGBoost and LightGBM suffer from overfitting
due to biased point-wise gradient estimates. That is, gradients at each iteration
are estimated using the same instances that were used by the current model for
learning, leading to a bias. Unbiased Boosting with Categorical Features, known
as CatBoost, is a machine learning algorithm that uses gradient boosting on
decision trees [8]. CatBoost gains significant efficiency in parameter tuning due
to the use of trees that are balanced to predict labels. The algorithm replaces
the gradient step of the traditional gradient boosting with ordered boosting,
leading to reduced bias in the gradient estimation step. It additionally trans-
forms the categorical features as numerical characteristics by quantization, i.e.,
by computing statistics on random permutations of the data set and cluster-
ing the labels into new classes with lower cardinality. In this paper, we employ
CatBoost, which is known to demonstrate effectiveness from literature, as the
gradient boosting algorithm of choice.

In the field of Neural Networks (NNs), He et al. [16] introduced a deep Resid-
ual Network (ResNet) learning architecture where trained ResNet layers are fit
to the residuals. Although ResNet and gradient boosting are methods designed
for different spaces of problems, there has been significant research that has gone
into formalizing the gradient boosting perspective of ResNet [27,38]. Inspired by
the complementary success of deep models and gradient boosting, we in this work
propose gradient boosting of NNs, DeepGB, where we fit a sequence of NNs using
gradient boosting. NNs have previously been used as weak estimators although
the methods mostly focused on majority voting for classification tasks [13] and
uniform or weighted averaging for regression tasks [28,29]. However, we are the
first to investigate gradient boosting of NNs in the context of time-series forecast
in this work.

Algorithm 1 describes a generic algorithm of gradient boosting. It shows how
a combination of simple models (not just trees) can be composed to create a
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Algorithm 1. Generic Gradient Boosting Algorithm
1: function GradientBoosting(Data,Models)
2: where Data = {〈xi, yi〉}N

i=1

3: models = []
4: F0 := y
5: for 1 ≤ m ≤ |Models| do � Iterate over the Models
6: model.fit(x, Fm−1) � Fit the generic weak learner
7: Fm = Fm−1 − ρm · model.predict(x) � Compute the residual
8: if abs(Fm − Fm−1) < ε then � Check termination condition
9: break
10: end if
11: models.append(model)
12: end for
13: return models
14: end function

better model by just adding them together, effectively assuming each subsequent
model can solve the difference. Interestingly enough, nonlinear autoregressive
moving average model with exogenous inputs - NARMAX [31] has proposed
this approach by clustering increasingly more complex models together. Note
that Algorithm 1 does not make any distinction between how to select the order
of the models. In NARMAX [31], for example, it is suggested that we should seek
simpler models first, and start using more complex models only when required.

3 DeepGB Algorithm

In this section, we present our main algorithm DeepGB that is a combination of
gradient boosting with embeddings.

It is often not straightforward to select the best model F1, . . . , Fm in Algo-
rithm 1 as the models need to account for complex temporal dependency and
non-linear patterns in the time-series. Our approach is to use a neural network
with an embedding layer to learn the underlying residual features from data with
time categorical variables extracted from the covariate’s time stamps. For exam-
ple, low dimensional embeddings are fit on time-related variables like month,
week of the year, day of the week, day of the month, holidays, etc. to extract
this meaningful temporal dependence.

The first modification we will perform in the general Gradient Boosting algo-
rithm using general models is to consider:

Models = list(Embedding1, . . . ,EmbeddingM,Residual),

where Embeddingi is an embedding model that models categorical data, such as
dates, holidays, or user-defined categories, and Residual is a traditional machine
learning model, such as deep neural networks, Gradient Boosting or Support
Vector Machines.
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An example of an embedding model can be seen in Fig. 1 using
Keras. In this example, embedding size can be computed experimentally as
(number of categories + 1)0.25 [35] or as min(50, (number of categories +
1)//2) [3], where 1 was added to represent one more feature that is required by
the Keras Embedding layer.

categorical_input_shape = (window_size, 1)
embedding_size = min(50, (number_of_categories+1)/ 2)
x_inp = Input(categorical_input_shape)
x_emb = Embedding(

number_of_categories + 1,
embedding_size,
input_length=window_size)(x_inp)

x_out = Dense(1)(x_emb)

Fig. 1. Keras model for single output dense layer

A standard gradient boosting approach to train these simple embedding mod-
els, Embedding1, . . . , EmbeddingM , is to select one of those models at each iter-
ation, train it and then compute its residual error. In the next iteration, the next
selected embedding model is trained on the previous residual error.

The key insight of this paper is that we can greatly reduce computational
complexity by freezing embedding weights as we iterate through embedding
training. The motivation behind this iterative freezing is that we preserve the
gradient boosting notion of training weak learners on residuals. Each time an
embedding is learned, we remove the effect of that embedding from the target
data and train the next iteration on the residual.

This idea is shown in Fig. 2 where we show the sequential process in which
the different embedding layers are trained. At any step i, we freeze the weights
of the embedding layers E1, E2, . . . , Ei−1 and then train the full model that
concatenates all of the i embedding layers. Finally, a series of dense layers, D,
are applied on the concatenated output.

DeepGB Algorithm Description. Pseudocode for the DeepGB algorithm is pre-
sented in Algorithm 2. The steps of the algorithm are described as follows

– Line 6: We first initiate a sequence of embedding models, E1, . . . , EM .
– Line 7: We specify the input shape of the categorical variable that goes into

the current embedding model.
– Line 8: We concatenate the current embedding with the previously concate-

nated embedding models.
– Line 10 - 13: We add dense layers that take the concatenated output of the

embedding models as input.
– Line 15: In the current iteration, the model learns the weights of the current

embedding layer while the previous embedding models are frozen.
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Fig. 2. Training sequence by freezing of the embedding layers

– Line 18: We don’t need to learn for all M iterations, stop once the error
converges below a certain threshold ε.

– Line 21: The current frozen weights of the embedding model are appended to
the embedding list.

– Line 24: This is where the external model gets trained. In this paper, CatBoost
is used as the external model.

Figure 3 corresponds to plots of the outputs of the algorithm. In particular,
Fig. 3 shows embedding layers’ prediction outputs (model.predict(x) in Algo-
rithm 2) for two different data sets of server CPU utilization. In the figures,
embedding layers are incrementally trained with data input from two time cat-
egorical variables, namely dayofweek (days of a week) and hour (hours of a
day). In the first iteration, the embedding layer learns weekly patterns using
dayofweek (i.e., F1) as a categorical variable. Then, it uses the next categorical
variable hour (i.e., F2) to further improve the model by learning hourly patterns.
The bottom plots shows the final residual (or irregular) time-series feature after
embedding Fm in Algorithm 2.

Figure 3(a) shows that CPU utilization follows a highly correlated weekly pat-
tern and that the embedding model accurately captures the weekly and hourly
regular temporal pattern through 1st and 2nd iterations. Note that the final
residual features capture irregular daily pattern in 2020–09–08 (Monday). In the
bottom plot of Fig. 3(b), three irregular hourly patterns in 2020–09–10, 09–11,
and 09–23 are accurately captured in the residual feature and shown as spikes.
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Algorithm 2. DeepGB Algorithm
1: function DeepGB(Data, Models = [E1, . . . , EM , Residual])
2: where Data = {〈xi, yi〉}N

i=1

3: models = [], embeddings = []
4: F0 = y
5: for 1 ≤ m ≤ M do � Iterate over N embedding layers
6: c, embedding = Models.select(E1, . . . , EM ) � Select an embedding layer at

position c
7: x inp = Input(categorical input shape)
8: x emb = Concatenate(embeddings + [embedding(x inp)])
9: � Adding the next embedding layer

10: for 1 ≤ d ≤ num dense layers do
11: x emb = Dense(size, activation)(x emb) � Adding dense layers
12: end for
13: x out = Dense(1)(x emb)
14: model = Model(x inp, x out)
15: model.fit(x, y)
16: Freeze weights of embedding
17: Fm = Fm−1 − model.predict(x)
18: if abs(Fm − Fm−1) < ε then � Check termination condition
19: break
20: end if
21: embeddings.append(embedding)
22: end for
23: models = [model]
24: Residual.fit(x, Fm) � Fit Residual (Catboost) model on the error
25: models.append(Residual)
26: return models
27: end function

3.1 Gradient Boosting, Forward Stagewise Additive Models,
and Structural Time Series Analysis

There is a fundamental connection between Gradient Boosting and Additive
Regression Models fit in a greedy forward stepwise manner [10,15]. In terms of
the presentation of Gradient Boosting in Eqs. (1) and (2) from Sect. 2, we can
express our final Gradient Boosted model as an additive model:

FM (xt) =
M∑

m=1

ρmFm(xt, ψm) + wt;wt ∼ D(0, σ2)

Where the updates to {ρm, ψm},m = 1, ...,M are computed based upon the
previous {ρk, ψk}M−1

k=1 trained weights and the functional form of Fm is set before
training begins. In the special case of DeepGB derived in Sect. 3, Fm(·) has the
same architecture as discussed in Sect. 2, ψm are the weights of the learned Neural
Network, and m is an index of a categorical variable which corresponds to a
specific set of time covariates, xt. Further, the ordering of categories is no longer
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(a) Data set 1

(b) Data set 2

Fig. 3. Embedding comparison over data sets

arbitrarily selected from a committee of weak learners, but related to a specific
ordering of the categorical time features (e.g. first hour, then day of the week,
month, year, holidays, and so on). Finally, adding a noise model wt, the DeepGB
additive model can be seen as a greedy temporal basis expansion in functional
space. This formulation can also be seen as a Structural Time Series (STS)
model commonly found in the time series analysis literature [14,19,33] where
the (possibly log-transformed) observed time series is related to an additive
decomposition of several components (trend, seasonality, holidays, etc.) plus an
additive error:

FSTS(xt) = Ftrend(xt) + Fseasonality(xt) + . . . + Fholidays(xt) + wt;wt ∼ D(0, σ2
t )

In DeepGB, these additive features are substituted with learned embeddings of
categorical time features with the goal of modeling the same temporal depen-
dence. However, unlike a typical STS model, the additive components in DeepGB
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are not required to be smooth (in fact, they are often highly nonlinear and
discontinuous as shown in Fig. 3). In this light, DeepGB can be seen as a discon-
tinuous alternative to Facebook’s Prophet which is also a STS model that can be
viewed from an equivalent Generalized Additive Model (GAM) perspective [34].

4 Experimental Evaluation

4.1 Datasets

We conducted experiments on the Wikipedia [2] data available to the public
via the Kaggle platform and internal networking device data. The internal data
measures connections per second to a device, a rate-based variable which in
general is hard to forecast. Figure 4(a) depicts the time-series for connections
per second over a month, from Dec 2020 to Jan 2021. For the sake of simplicity,
we use I1, . . . , I9 for representing internal data sets.

The time series in the Wikipedia dataset represents the number of daily views
of a specific Wikipedia article during a certain timeframe. Figure 4(b) depicts a
few time-series plots of the number of accesses of a particular wiki page starting
from July 2015 to September 2019. The Wikipedia dataset also represents a rate
variable, the number of page accesses per day. Similar to the internal dataset,
we use P1, . . . , P9 for representing public data sets.

(a) Internal data set (b) Public data set

Fig. 4. A few sample time-series plots from the internal and public data sets

4.2 Model Setup

For benchmarking, DeepGB is compared with SARIMA and Seq2Seq. To keep com-
parisons as fair as possible, the following protocol is used: while employing SARIMA,
the implementation in statsmodels [32] is used. For SARIMA, the best parame-
ters are selected via grid search and SARIMA(p=3, d=1, q=0)(P=1, D=0, Q=1)
is the final model employed for our analysis. For Seq2Seq, we started with the
architecture in Hwang et al. [18] and further tuned to the setting that gives the
best empirical performance. The implementation of the Seq2Seq model includes
a symmetric encoder-decoder architecture with an LSTM layer of dimension 128,
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a RepeatVector layer that acts as a bridge between the encoder and decoder mod-
ules, a global soft attention layer [5] for many-to-one sequence tasks, and a self-
attention layer [24]. Also, Time2Vec [22] and categorical embeddings [39], that
enable the use of categorical features based on the properties of the time-series sig-
nature, were added to Seq2Seq. These enhancements improved the performance
of Seq2Seq. The proposed DeepGB model consists of two parts: layers in the first
half of the model implement embeddings and the later half uses a Boosting model.
In particular, CatBoost with 800 trees of depth 3 was used as the gradient boost-
ing model for the experiments. The proposed DeepGB model consists of 4 embed-
ding layers followed by a concatenation layer and 4 dense layers with ReLu activa-
tion function after each layer. A dropout layer is also added to prevent overfitting.
Time2Vec [22] and categorical embedding [39] were also used in DeepGB. Addi-
tionally, Root Mean Square Propagation with step size=0.0002 was used as the
optimization algorithm for the experiments. For CatBoost, the implementation
on scikit-learn 0.24.1 with default parameter setting was used.

For all the methods, 30 d and 3 d of data were used for training and testing,
respectively. Only SARIMA used 14 d of data for training, as its time for conver-
gence increases significantly with the length of data. The widely used metric for
time-series error analysis, Symmetric mean absolute percentage error (SMAPE),
is employed to evaluate forecast accuracy in the experiments [4]. SMAPE is the
main metric used in the M3 forecasting competition [26], as it computes the
relative error measure that enables comparison between different time series,
making it suitable for our setting.

4.3 Results

The results of our experiments for the task of time-series forecasting are sum-
marized in Tables 1 and 2 for the Wikipedia and internal data sets, respectively.
Table 1 shows SMAPE results for DeepGB, Seq2Seq and SARIMA. Bold font indi-
cates the lowest SMAPE for the given dataset. It can be observed that DeepGB
is significantly better than SARIMA and Seq2Seq in the majority of the cases.
These results help in stating that DeepGB is on par or significantly better than
state-of-the-art approaches, in real domains, at scale. The SMAPE scores pre-
sented in Table 2 indicate that DeepGB outperforms the other two methods in 6
out of 8 data sets. A closer inspection of the results suggests that the efficiency
of DeepGB is significantly higher (about 3 times faster) for dataset P1.

In general, it can be observed that deep models take more time than statisti-
cal methods. However, DeepGB is significantly faster than the other deep model,
Seq2Seq, which is reported to have the second-best performance after DeepGB.
The results indicate that the proposed DeepGB approach does not sacrifice effi-
ciency (time) for effectiveness (error percentage).
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Table 1. SMAPE (lower ⇒ better) and training time (lower ⇒ better) for DeepGB,
Seq2Seq and SARIMA methods on the internal dataset.

Dataset Error (SMAPE) Training time (secs)

DeepGB Seq2seq SARIMA DeepGB Seq2Seq SARIMA

I1 1.04 6.12 1.44 10.38 85.80 3.19

I2 1.75 2.00 1.10 9.40 86.48 6.32

I3 5.44 21.95 20.77 8.66 86.63 5.99

I4 2.71 6.92 29.59 8.28 87.63 2.49

I5 6.33 6.11 6.58 8.74 81.76 5.64

I6 4.59 9.39 11.01 8.16 82.28 3.10

I7 6.98 19.03 17.61 11.72 193.54 5.00

I8 6.81 4.45 17.61 13.35 195.19 4.95

I9 61.08 62.97 59.14 12.95 196.26 3.37

Table 2. SMAPE (lower ⇒ better) and training time (lower ⇒ better) for DeepGB,
Seq2Seq and SARIMA methods on the public dataset (wikipedia.org all-access spider).

Dataset Original series Error (SMAPE) Training time (secs)

DeepGB Seq2Seq SARIMA DeepGB Seq2Seq SARIMA

P1 2NE1 zh 7.98 7.93 16.12 5.86 17.04 0.22

P2 3C zh 16.85 6.11 15.43 6.40 20.71 0.36

P3 4minute zh 2.34 4.38 5.90 6.22 20.36 0.36

P4 5566 zh 4.39 8.01 12.44 6.05 20.73 0.30

P5 AND zh 5.36 13.16 25.86 8.29 24.51 0.29

P6 AKB48 zh 2.27 5.81 6.78 6.30 19.48 0.34

P7 ASCII zh 2.64 8.90 7.93 7.46 20.53 0.23

P8 Ahq e-Sports Club zh 3.44 5.02 12.54 6.26 21.07 0.27

5 Conclusion

Time-series forecasting is a central problem in machine learning that can be
applied to several real-world scenarios, such as financial forecasts and weather
forecasts. To the best of our knowledge, this is the first work employing gradient
boosting of deep models, infused with embeddings, in the context of time-series
forecasting. To validate the performance of the proposed approach, we evalu-
ated DeepGB on a public Wikipedia data set and an internal networking device
data set. The experimental results showed that DeepGB outperforms SARIMA and
Seq2Seq using SMAPE as performance metric. It was also shown in the empiri-
cal evaluations that the proposed method scales well when applied to standard
domains as it offers a faster convergence rate when compared to other deep
learning techniques.
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Finally, this paper opens up several new directions for further research.
Extending the proposed approach to multivariate time-series forecasting and
deriving theoretical bounds and convergence properties for DeepGB, remain open
problems and are interesting to us from a practical application standpoint.
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Abstract. This paper proposes a Deep Reinforcement Learning app-
roach for optimally managing multi-energy systems in smart grids. The
optimal control problem of the production and storage units within the
smart grid is formulated as a Partially Observable Markov Decision Pro-
cess (POMDP), and is solved using an actor-critic Deep Reinforcement
Learning algorithm. The framework is tested on a novel multi-energy res-
idential microgrid model that encompasses electrical, heating and cooling
storage as well as thermal production systems and renewable energy gen-
eration. One of the main challenges faced when dealing with real-time
optimal control of such multi-energy systems is the need to take multi-
ple continuous actions simultaneously. The proposed Deep Deterministic
Policy Gradient (DDPG) agent has shown to handle well the continu-
ous state and action spaces and learned to simultaneously take multiple
actions on the production and storage systems that allow to jointly opti-
mize the electrical, heating and cooling usages within the smart grid.
This allows the approach to be applied for the real-time optimal energy
management of larger scale multi-energy Smart Grids like eco-distrits
and smart cities where multiple continuous actions need to be taken
simultaneously.

Keywords: Deep Reinforcement Learning · Actor-critic · Energy
management · Smart grids · Multi-energy
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Pgen Distributed power generation
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Cgen Cost of distributed power generation
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Ppv PV power generation
PBat Battery power
PH2 Hydrogen storage power

PTRHP Electric power consumed by TRHP
QH−prod

TRHP,t Heat produced by TRHP
QC−prod

TRHP,t Cold produced by TRHP
COPTRHP Coefficient of performance of TRHP

QH−load Heating load
QC−load Cooling load

t Time step
P(i) Power of a storage system i
P

(i)
Ch Charging power of a storage system i

P
(i)
Disch Discharging power of a storage system i
P

(i)
min Minimum power of storage system i

P
(i)
max Maximum power of storage system i
η
(i)
Ch Charging efficiency of a storage system i

η
(i)
Disch Discharging efficiency of a storage system i
k
(i)
sd Self-discharge rate of a storage system i

E
(i)
init Energy initially stored in storage system i

E(i) Energy stored in storage system i

Acronyms

PV Photo-voltaic
SoC State of Charge
MG Microgrid
SG Smart Grid

TRHP Thermo-Refrigerating Heat Pump
SDHS Smart District Heating System
MPC Model Predictive Control
MDP Markov Decision Process

ML Machine Learning
DL Deep Learning
RL Reinforcement Learning

DRL Deep Reinforcement Learning
DQN Deep Q-Networks
DQL Deep Q-Learning
DPG Deep Policy Gradient

DDPG Deep Deterministic Policy Gradient
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1 Introduction

1.1 Context of the Problem

Within the radical changes that the energy landscape is currently undergoing,
Smart Grids are playing a major role in the modernization of the electric grid
[5]. These smart electricity networks have the great advantage of integrating in
a cost-effective way the behavior and actions of all the users connected to it,
including consumers, producers and prosumers, to ensure a cost-efficient and
sustainable operation of the power system while guaranteeing quality and secu-
rity of supply [36]. Besides electrical networks, district heating and cooling sys-
tems also play a paramount role in the implementation of the new smart energy
systems [39]. In fact, the concept of smart thermal grids also comes up with
numerous advantages including flexibility potentials and ability to adapt to the
changes that affect the thermal demand and supply in short, medium and long
terms. Thus, Smart Thermal Grids, as well, are expected to be an integrated
part of the future energy system [4,33]. However, research works on the opti-
mal control and energy management within the smart grid context traditionally
focus solely on the electrical usages. Though, jointly optimizing the electrical
networks together with other energy vectors interacting with them like heating
and cooling networks has a great potential to increase the overall economic and
environmental efficiency and flexibility of the energy systems. This idea brings
about a generalization of the Smart Grid concept to Smart Multi Energy Grids
[22] that lies on the interaction between electricity and other energy sectors (like
heating, cooling, gas and hydrogen) as well as other sectors that electricity might
interact with like the transport sector. Considering all these interactions in the
optimal management of energy systems allows to unlock considerable efficiency
and flexibility potentials and represents one of the main advantages of Smart
Multi Energy Grids.

Optimal control of smart (multi-energy) grids is essential to guarantee a reli-
able operation for the smart grid components and ensure an optimal manage-
ment of controllable loads, production units and storage systems while minimiz-
ing energy and operational costs [21]. One of the most popular and widely used
optimal control techniques is Model Predictive Control (MPC), also referred to
as Receding Horizon Control [10,25]. MPC is a feedback control method where
the optimal control problem is solved at each time step to determine a sequence
of control actions over a fixed time horizon. Only the first control actions of this
sequence are then applied on the system and the resulting system state is mea-
sured. At the next time step, the time horizon is moved one step forward and
a new optimization problem is then solved, taking into account the new system
state and updated forecasts of future quantities. This receding time horizon and
periodic adjustment of the control actions make the MPC robust against the
uncertainties inherent to the model and forecasts [11]. MPC has been used in
many successful applications in the field of Microgrid/ Smart Grid energy man-
agement including [1,26,27,38]. Nevertheless, MPC and model-based approaches
in general, rely on the development of accurate models and predictors and on the
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usage of appropriate solvers. This does not only require domain expertise but
also needs to re-design these components each time that a change occurs on the
architecture or scale of the Smart Grid [12]. Furthermore, classical optimization
approaches based on Mixed Integer Linear Programming (MILP), Dynamic Pro-
gramming (DP) or heuristic methods like Particle Swarm Optimization (PSO)
generally suffer from time-consuming procedures. In fact, they have to compute
all or part of possible solutions in order to choose the optimal one, and have
to re-run a generally time-consuming optimization procedure each time that an
optimal decision needs be taken. Therefore, such methods, despite their ability
to provide quite accurate results, generally fail to consider on-line solutions for
large-scale real data-bases [32].

Learning-based techniques, on the other hand, do not need accurate system
models and uncertainty predictors and can, thus, be an alternative to model-
based approaches. Reinforcement Learning (RL) [34] has been gaining popular-
ity over the past few years when it comes to dealing with challenging sequen-
tial decision making tasks [6]. Nevertheless, RL-based approaches fail to han-
dle large state and actions spaces owing to the curse of dimensionality [41].
This major limitation of RL can be overcome by Deep Reinforcement Learning
(DRL) which is a state-of-the art Machine Learning (ML) technique evolving
through the interface between RL and Deep Learning (DL) [23]. In other words,
it combines the strong nonlinear perceptual capability of deep neural networks
(DNNs) with the robust decision making ability of RL [7]. Unlike RL, it there-
fore exhibits strong generalization capabilities in problems with complex state
spaces. One of the main advantages of DRL compared to other classical opti-
mization approaches is that, once it learned an optimal strategy, it can take
optimal decisions in a few milliseconds without having to re-compute any costly
optimization procedure. This makes DRL algorithms less time-consuming than
classical optimization approaches and makes them, as a consequence more suit-
able for real-time optimization problems. DRL has, this way, shown successful
applications in various real-life problems with large state spaces like Atari and
Go games [30], robotics [2,37], autonomous driving [16,29] and other complex
control tasks [23]. More recently, [3] proposed a novel assembling methodology
of Q-learning agents trained several times with the same training data for stock
market forecasting. The use of DQN aimed at avoiding problems that may occur
when using supervised learning-based classifiers like over-fitting. Other recent
successful applications of DRL include intrusion detection systems as presented
in [20]. Furthermore, [19] proposed a new ensemble DRL model for predicting
wind speed and the comparison of the proposed model with nineteen alternative
mainstream forecasting models showed that the DRL-based approach provided
the best accuracy. Moreover, Google has announced in 2018 that it gave control
over the cooling of several of its data centers to a DRL algorithm [13].

1.2 Deep Reinforcement Learning in Smart Grids: Related Work

When it comes to the energy field, there have recently been several successful
applications of DRL for instance in the context of microgrids, smart homes and
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Smart Grids, mainly for the development of cost optimization and energy man-
agement strategies. For example, [8] considers an electricity microgrid featuring
PV generation, a Battery Energy Storage System (BESS) and a hydrogen stor-
age, and adresses the problem of optimally operating these storage systems using
a Deep Q-Learning (DQL) architecture. The developed Deep Q-Network (DQN)
agent was tested on the case of a residential customer microgrid located in Bel-
gium and showed to successfully extract knowledge from the past PV production
and electricity consumption time series. However, it only takes discrete actions
for the hydrogen storage (whether to charge at maximum rate, discharge at max-
imum rate or stay idle). The operation of the BESS, on the other hand, is not a
direct action of the DRL agent but is rather dynamically adapted based on the
balance equation of the microgrid. Similarly, [12] proposed a DQN approach to
develop real-time generation schedules for a microgrid while optimizing its daily
operational costs. DQL algorithms have also been applied in [28] for the coor-
dinated operation of wind farms and energy storage and in [18] for the on-line
optimization of a microgrid featuring PV and wind generation, diesel genera-
tors, fuel cells, electric load and a BESS. Among the various DRL algorithms,
the conventional DQL remains the most widely used approach and algorithms
such as Policy Gradient (PG) and Actor-Critic (AC) are rarely investigated. This
is primarily due to the simplicity of the DQL and to the fact that it handles well
discrete action spaces. Meanwhile, DQL can not be directly applied to prob-
lems with continuous action spaces since they need to discretize the action space
which leads to an explosion of the number of actions and, as a consequence, to
a decreased performance [9,17]. Indeed, considering only discrete actions for the
planning and control of the Smart Grid components significantly restrains their
flexibility potentials and prevents from obtaining the best optimal scheduling
and control strategies. Unlike DQL, Deep Policy Gradient (DPG) algorithms
are capable of dealing with environments with continuous actions spaces. In this
respect, [24] proposed the use of DQL and DPG for online building energy opti-
mization through the scheduling of electricity consuming devices. The results
showed that DPG algorithms are more suitable than DQN to perform online
energy resources scheduling. Even though this work pioneered the use of DRL
for online building energy optimization, the actions it considers are restricted to
the on/off status of flexible load devices in a smart building. Besides, the DPG
algorithms are also often criticized for their low sampling efficiency as well as
the fact that their gradient estimator may have a large variance, which is likely
to lead to slow convergence [14]. In order to overcome this limitation, Actor-
Critic (AC) algorithms were proposed to combine the strong points of DPG and
DQL approaches by estimating both the policy and the Q-value function during
the training. In this respect, two DRL algorithms were designed for Smart Grid
optimization in [32]: on the one hand, DQL was applied for the discrete action
control tasks like charging/discharging the BESS or switching the buy/sell modes
of the grid. On the other hand, an AC algorithm named H-DDPG (Hybrid-Deep
Deterministic Policy Gradient) was developed to deal with continuous state and
action spaces. Yet, only the results of the DQN approach were presented in the
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paper and benchmarked with the results of a Mixed Integer Linear Program-
ming (MILP) optimization Matlab tool. Even though DDPG algorithms were
proposed for some applications in the energy systems context namely for deal-
ing with cost optimization problems in Smart Home energy systems in [40], for
flow rate control in Smart District Heating Systems (SDHS) in [42], and for
solving the Nash Equilibrium in energy sharing mechanisms in [15], most of
these applications consider mono-action and/or mono-fluid use-cases. In other
words, they consider solely electrical or thermal Smart grids and do not con-
sider jointly optimizing the uses of several energy vectors within a multi-energy
Smart Grid. Besides, most of the previous works consider applications on the
Smart Home or building level and do not consider testing these approaches on a
larger smart district-level. Finally, thourough comparisons of the performance of
DDPG-based approaches with other widely used techniques like MPC for deal-
ing with energy management systems in Smart Grids have rarely been reported
in the literature.

In the present work, we propose a DDPG-based approach to deal with the
real-time energy management of multi-energy Smart Grids. More specifically, we
formulated the optimal control problem as a POMDP and developed a DDPG
agent to perform real-time scheduling of the multi-energy systems within a Smart
Grid. The main contributions of the present work are the following:

– Unlike most of previous works where mono-fluid (electrical or thermal) Smart
Grids are considered, we focus on multi-energy (electrical, heating, cooling,
hydrogen) smart grids that interact with the main utility grid. A variable
electricity price signal is considered and a DRL-based energy management
system is developed to take price-responsive control actions.

– The DDPG algorithm is proposed instead of the mostly used DQN to deal
with the continuous action and state spaces inherent to the multi-energy
smart grid model. At each time step of the control horizon, multiple con-
tinuous actions are simultaneously taken by the DDPG agent to optimally
schedule the various storage systems as well as the thermal production units.

– The proposed approach is tested on a residential multi-energy smart grid
model and will be applied on a real-life district-level multi-energy smart grid
which is being currently under construction in France. More specifically, the
developed DDPG agent is aimed at operating real-time energy management
of the various energy systems within an eco-district: BESS, heating and cool-
ing storage systems, controllable loads of the buildings, heated water storage
tanks, as well as District Heating and Cooling production units, Electric Vehi-
cle Charging Stations and the public lighting of the district.

– The proposed approach is benchmarked with an MPC-based approach.

The remainder of this paper is organized as follows: in Sect. 2, the considered
multi-energy smart grid model is described together with the optimal energy
management problem addressed in this work. In Sect. 3, the problem is formu-
lated as an MDP and a DRL-based approach is proposed to solve it. Section 4
presents the simulations and results and finally conclusions and future work are
asserted in Sect. 5.
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2 The Multi-energy Smart Grid Model and Optimal
Control Mechanism

The Smart multi-energy grid model considered in this paper is shown in Fig. 1.
It is composed of residential electric, heating and cooling loads, distributed
energy generators (PV panels), heating and cooling production units consist-
ing of geothermal Thermo-Refrigerating Heat Pumps (TRHPs), a BESS, a heat
storage system (by phase-change materials) and a cold storage system (by ice
storage tanks). The Smart Grid components are related to the main utility grid.
In fact, besides the residential electrical usages, the TRHPs also consume electric
power to produce heat and cold for the thermal needs of the buildings. At each
time step, the electric loads of the buildings are met by the local PV generation,
by discharging the BESS or by withdrawing electricity from the public utility
grid. Thermal needs in terms of heating, on the other hand, are met whether by
directly producing heat via thermo-refrigerating heat pumps or by discharging
the heat storage system. Similarly, cooling loads are ensured by directly produc-
ing cold via TRHPs or by discharging the cooling storage system.

Public u�lity Grid

Electric storage

Heat storage

Smart
Grid 

Operator

Distributed Energy 
Ressources (DER)

Hea�ng Produc�on

Cooling Produc�on Cooling storage

Building electric load Building cooling loadBuilding hea�ng load

Energy Flow

Informa�on | Control Flow

Fig. 1. Architecture of the multi-energy Smart Grid

In order to jointly optimize the operation of the multi-energy systems of
the Smart Grid, an energy management system is needed to schedule the dif-
ferent controllable units while minimizing the daily operational costs. To solve
this sequential decision making problem, we formulate it as a Markov Decision
Process (MDP). In fact, the energy level of each energy storage system, at each
time step, depends only on the current energy level, together with the current
charge/discharge power, and as a consequence, the scheduling of the different
energy storage systems and production units can be formulated as an MDP
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M = (S,A, T,R, γ) where its key components, the state space S, the action
space A, the reward R and the transition function T are designed as follows:

– State: the environment state at each time step t ∈ H is denoted by st and is
composed of six types of information:
st = (sStorage

t , sLoad
t , sDER

t , sGrid
t , sProd

t , sTemp
t ) where sStorage

t ∈ SStorage

denotes the storage operation of the Smart Grid and describes the amount of
energy stored in each of the battery, hydrogen, heating and cooling storage
systems sStorage

t = (sBat
t , sH2

t , sHS
t , sCS

t ), sLoad
t ∈ SLoad contains the h past

realizations of the electric, heating and cooling loads, where h, the history
length is set as 24, so that the history length covers one day of past realiza-
tions with time steps Δt = 1 hour. Similarly, sDER

t ∈ SDER contains the h
past realizations of PV generation, sGrid

t ∈ SGrid contains the h past realiza-
tions of the electricity prices as well as the amount of power withdrawn from
the main utility grid at time step t, sProd

t ∈ SProd contains the quantities of
heat and cold produced by the TRHPs at time step t. Finally, sTemp

t ∈ STemp

contains both the indoor and outdoor temperatures.
– Action: the aim of the energy management system is to decide the charg-

ing/discharging power of each energy storage system PSS , the amount of
energy to be purchased from the public utility grid PGrid and the thermal
energy (heat or cold) produced by the TRHPs QTRHP .

– Reward: when an action at ∈ At is applied on the system, this triggers the
environment to move from state st−1 to state st and hence a reward rt is
obtained. Since the aim of the agent is to minimize the total energy costs
within the Smart Grid, the reward signal rt corresponds to the negative of
rescaled instantaneous operational revenues at time step t:

rt = −α.[Cgen.Pgen(t) + Cgrid(t).Pgrid(t)] (1)

Where Cgen is the cost of distributed power generation and Cgrid(t) is the
cost of power purchase from the public utility grid i.e. the variable energy
price, and α is a factor by which we rescale the cost function, such that

0 < α ≤ 1 (2)

3 The Proposed Deep Reinforcement Learning-Based
Approach

RL is an Artificial Intelligence (AI) paradigm where the AI agent interacts with
its environment by taking actions over a sequence of time steps in order to
maximize a cumulative reward signal [34]. At each time step t, the agent performs
a control action at based on the measure of the current state of the environment
st and receives, in return, a reward rt and information on the new state of the
environment st+1 for the next time step t + 1. This way, the RL agent learns an
optimal control policy through the interaction with the environment as shown
in Fig. 2.a.
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)b()a(

Fig. 2. (a): The agent-environment interaction in reinforcement learning; (b): The
actor-critic architecture, from [34].

DRL [23] is a family of methods which evolve through the interface between
RL and DL. Such a combination of RL and DL has recently shown its ability
to learn complex tasks directly from high-dimensional inputs. DRL methods are
divided into two main types, namely value-based and policy-based methods. In
value-based methods, the neural network learns the optimal Q-function Q∗(s, a)
of each action a given a state s, which is the maximum sum of rewards rt

discounted by a factor γ at each time step t achievable by a policy π = P (at|st)
after taking and action at given a state st:

Q∗(s, a) = max
π

E[rt + γ.rt+1 + γ2.rt+2 + ...|st = s, at = a, π] (3)

Meanwhile, for policy-gradient methods, the artificial neural network learns a
probability distribution of the action a at a given state s instead of computing
the Q-function. Value-based methods are known to be suitable for discrete action
spaces whereas policy-based algorithms handle well continuous actions spaces.

This work proposes an application of the DDPG (Deep Deterministic Policy
Gradient) algorithm which is a policy-based algorithm belonging to the actor-
critic (AC) family [31]. AC methods rely on the idea of combining DPG and
DQN: the policy function μ(s, θμ) is referred to as the actor where θμ represent
the weights of the actor network. It specifies the current policy by deterministi-
cally mapping states to a specific action. The value-function Q(s, a) is known as
the critic and produces an error signal given the state, the output of the actor
and the resultant reward signal as shown in Fig. 2.b [17].

When the agent takes an action at, under a given state st, according to a
policy μ(s, θμ), the value of reward is given by the Bellman equation [35]:

Qμ(st, at) = Eμ[rt + γ.Qμ(st+1, μ(st+1, θ
μ))] (4)

The Q-network loss function is then given by:

L(θQ) = Eμ[(Q(st, at|θQ) − yt)2] (5)

where
yt = rt + γ.Q(st+1, μ(st+1|θQ)) (6)
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The performance objective which measures the performance of the policy μ is
given by:

Jβ(μ) =
∫

S

ρβ(s)Qμ(s, μ(s))ds (7)

Where ρβ is the probability-distribution function of st. The aim of the training
process is to maximize performance objective Jβ(μ) while minimizing the loss
function L(θQ). The training process of the used DDPG algorithm implemented
in this work is given by Algorithm 1, also described in [15].

Algorithm 1: DDPG algorithm
Initialize the actor network μ and the critic network Q with random weights θμ

and θQ ;

Initialize target network μ′ and Q′ with the weights θμ′ ← θμ and θQ′ ← θQ;

Initialize the experience replay Buffer B ;

for episode ← 0 to Nepisodes do

Initialize a random process R for action exploration;

Get initial observation of state S1 at time step t = 1;

for T ← 1 to Nsteps do
Select action at = μ(st|θμ) + Rt according to the current policy and

exploration noise ;

Execute action at in the environment and observe the resulting reward

rt and the new state st+1 ;

Store the transition (st, at, rt, st+1) in experience replay buffer B;

Sample a random mini-batch of N transitions (si, ai, ri, si+1) from B ;

Set yi(ri, si+1) = ri + γ.Q′(si+1, μ′(si+1|θμ′
)|θQ′

) ;

Update the critic by minimising the loss L = 1/N
∑

i Q(si, ai|θQ) − yi)
2 ;

Update the actor policy using the policy gradient

∇θµ1/N
∑

s∈B Q(s, μ(s|θμ)|θQ) ;

Update the target networks: θQ′ ← (1 − ρ).θQ + ρ.θQ′
and

θμ′ ← (1 − ρ).θμ + ρ.θμ′

end

end

This algorithm was integrated in a specifically-designed multi-energy Smart
Grid energy management framework where the DDPG agent interacts with the
Smart Grid environment to generate an optimal schedule of its various energy
systems. The Smart Grid environment describes the dynamics of the energy
systems within the Smart Grid and is modeled as follows:
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min

H∑

t=1

Cgen.Pgen(t) + Cgrid(t).Pgrid(t) (8a)

s.t. PGrid,t = PLoad,t + PBat,t + PH2,t + Ppv,t + PTRHP,t ∀t (8b)

QH−prod
TRHP,t + QC−prod

TRHP,t = COPTRHP .PTRHP,t∀t (8c)

QH−prod
TRHP,t = QH−load,t + QHS,t∀t (8d)

QC−prod
TRHP,t = QC−load,t + QCS,t (8e)

P
(i)
t = P

(i)
ch,t + P

(i)
disch, t ∀i ∈ SS, ∀t (8f)

E
(i)
1 = E

(i)
init.(1 − k

(i)
sd ) + Δt

(

P
(i)
Ch,0ηCh − P

(i)
Disch,0

1

ηDisch

)

∀i ∈ SS (8g)

E
(i)
t+1 = E

(i)
t .(1 − k

(i)
sd ) + Δt(P

(i)
ch,t.ηch − 1

ηdisch
.P

(i)
disch,t ∀i ∈ SS, ∀t (8h)

E
(i)
min ≤ E

(i)
t ≤ E(i)

max ∀i ∈ SS, ∀t (8i)

P
(i)
min ≤ P

(i)
t ≤ P (i)

max ∀i ∈ SS, ∀t (8j)

Where Δt is the time slot (set to 1hour) and H is the optimization time horizon.
Eq. (8a) represents the cost function to be minimized, Eqs. (8b) to (8e) express
the electrical and thermal power balance within the Smart Grid, Eqs. (8f) to
(8h) express the dynamics of the multi-energy storage systems within the Smart
Grid and Eqs. (8i) to (8j) express the limitations on energy and charge and
discharge power of each storage system, while SS represents the set of energy
storage systems within the Smart-Grid.

4 Implementation Details, Simulations and Results

A framework was developed based on the previously described DDPG algorithm
and tested on the designed environment of a residential consumer multi-energy
smart grid which parameters are given in Table 1. During the training process,
the DDPG agent was provided with three years of actual past realizations of
PV generation, electric loads and electricity prices, as well as simulated data of
heating and cooling loads and indoor and outdoor temperatures, for a residen-
tial consumer located in France. The historical data of a typical day in winter
and in summer can be visualized in Figs. 3.a and 3.b. As in [8], we split the
time series into a training set and a validation set that correspond to a different
one year of historical data each. The Deep Neural Network (DNN) obtained at
the end of the training process is then used in a test environment to provide
an independent estimation of the final policy. Finally, to evaluate the perfor-
mance of the proposed DRL approach, we use a benchmark solution that we
refer to as “theoretical MPC”. In this solution, we use an MPC controller that
is supposed to have, at each day, a “perfect knowledge” of the stochastic system
variables for the next 24 h. Unlike the DDPG, the MPC was given the actual
future realizations of the unknown quantities in the predictor. The MPC with
a time step t = 1 h and a time horizon H = 24 h was run for a one-year sim-
ulation, with the objective of minimizing the total operational costs. As shown
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Fig. 3. Historical data used for (a): a typical winter day; (b): a typical summer day.

Table 1. Implementation details.

Parameters of the smart grid Optimization parameters

Size of the battery ξbat: 15 kWh DDPG number of training episodes: 5000

Battery charge/discharge efficiency ηbat: 90% DDPG number of training steps 438.105

Size of the hydrogen ξH2: 1,1 kWh DDPG learning rate of the actor:

Hydrogen charge/discharge efficiency ηH2: 65% DDPG learning rate of the critic: 0,0001

Size of the heat storage ξHS : 1,2 kWh DDPG learning rate of the critic: 0.0002

HS charge/discharge efficiency ηHS : 75% DDPG discount factor γ: 0, 99

Size of the cooling storage ξCS : 0,8 kWh DDPG and MPC time step: 1 h

CS charge/discharge efficiency ηCS : 75% DDPG reward rescale factor α : 0, 001

Average electric consumption/day: 18 kWh/day MPC time-horizon: H = 24 h

Peak power generation of PV: 15 kWp Solver used in MPC optimization: GLPK

Maximal heat/cold generated by TRHP:50 kWh

in Fig. 4, the performance of the proposed DDPG-based approach is close to
“theoretical MPC” optimum. These results demonstrate the effectiveness of the
proposed DRL approach for multi-energy management of Smart Grids under
uncertainty. The DDPG was able to take multiple scheduling continuous actions
simultaneously and succeeded to extract knowledge from the past realizations
of the stochastic variables. The DRL agent learnt a strategy similar to the opti-
mal strategy given by the MPC-based approach. We notice for instance that the
DRL agent successfully learnt to purchase electricity from the main utility grid
at low price periods and to rather discharge the storage systems during peak
price periods. It also successfully learnt to maintain the power balance within
the multi-energy Smart Grid.



DRL for Optimal Management of Multi-energy Smart Grids 27

Fig. 4. Learning curve of the DDPG approach for a 5000-episode training process

5 Conclusion

This paper presented a DRL-based approach to deal with optimal energy man-
agement of multi-energy Smart Grids. The considered sequential decision making
problem was formulated as an MDP and is addressed using a Deep Determin-
istic Policy Gradient (DDPG) algorithm. The developed framework was tested
on the model of a multi-energy smart grid where the DDPG agent was designed
to optimally schedule the various energy storage and thermal production units.
The simulations showed that the agent handles well the continuous state and
action spaces and learns to take multiple control actions simultaneously. Bench-
mark tests were conducted using a “theoretical MPC” solution to evaluate the
performance of the proposed approach. Results showed that the total rewards
obtained by the DDPG algorithm were close to the theoretical optimum and
thus showed the effectiveness of the proposed DRL-based approach for dealing
with optimal energy management of multi-enenrgy Smart Grid. More detailed
results regarding the behavior of the policy will be given at the conference and
will be the subject of upcoming papers. Future works also include the exten-
sion of the smart grid model to a district level smart grid where further devices
are to be controlled including Heated water Storage tanks and other buildings
controllable loads, Electric Vehicle Charging Stations and public lighting of the
district. The proposed framework will also be applied on a real-life project of a
multi-energy smart grid currently under construction in France.
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Abstract. In this work we propose an approach to improve the per-
formance of a current methodology, computing k-mer based sequence
similarity via Jaccard index, for pangenomic analyses. Recent studies
have shown a good performance of such a measure for retrieving homol-
ogy among genetic sequences belonging to a group of genomes.

Our improvement is obtained by exploiting a suitable k-mer represen-
tation, which enables a fast and memory-cheap computation of sequence
similarity. Experimental results on genomes of living organisms of differ-
ent species give an evidence that a state of the art methodology is here
improved, in terms of running time and memory requirements.

Keywords: AF sequence similarity · Genomic dictionary · Jaccard
index · k-mer content · Pangenome

1 Introduction

The importance of pangenomic analysis has been shown in several fields, includ-
ing clinical applications, where it is employed to identify drug targets in vac-
cines and antibacterials [15,18], to investigate pathogens in epidemic diseases
[11], to detect strain-specific virulence factors [9]. More specifically, gene-based
pangenomic analysis aims at identifying homologous genes, and their biological
relevance, by means of their presence or absence within a group of genomes [20].
Genetic inheritance, internal gene duplication, loss of genetic material as well
as horizontal transmission of genetic information make the identification of gene
families a difficult task [17,19]. Namely, it has been shown to be an NP-hard
problem [16], mainly due to the fact that all-against-all comparisons between
gene sets are required to solve the task.

Given a living organism (also called an isolate), the genetic material contained
in its genome can be transmitted in two different ways. In vertical transmission,
genes are transmitted from one organism to its descendant during the repro-
duction process. In horizontal transmission, frequent in simple organisms such
as viruses and bacteria, the exchange of genetic material occurs between two
contemporary living organisms. The transmission copies the genetic sequence
from the donor to the receiver. Alterations may appear in the copied sequence
in form of deletions, insertions, and substitutions. Moreover, one or more copies
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of the genes can be produced. The percentage of alteration may vary from one
gene to another, thus some genes may be more altered than others. A copy of
a gene g that has been transmitted from one genome to another is said to be
orthologous to g. Different copies of a gene within the same genome are said to
be paralogous. Genes transmitted via horizontal gene transfer are a particular
type of orthologs called xenologs.

Gene-oriented pangenomic analyses aim at reconstructing the homology rela-
tionships (paralogy, orthology and xenology) among the genes contained in given
genomes. The result is the clustering of genes into groups, also called gene fam-
ilies, such that the genes of a family are linked each other by an homology rela-
tion. In this context, homology is intended as sequence similarity among genetic
sequences, that does not necessary reflect the functional homology of genes. Sev-
eral measures can be applied for computing sequence similarity. The traditional
and most known one is the BLAST score, computed by aligning two sequences,
while other more recent measures are based on alignment free approaches.

In a recent study [5] several methodologies for discovery of pangenomic con-
tent have been compared by investigating their ability to capture pangenomic
information. Genetic sequences of genomes were built by simulating an evo-
lutionary process and by varying simulation parameters, in such a way that
the obtained sequences showed similar properties of real ones. The sensibil-
ity of several methods was estimated over benchmarks with these synthetic
genes, by varying the number of involved genomes, and by dealing with gene
loss/acquisition and sequence alteration probability. The analysis in [5] showed
that the two methods GET HOMOLOGUES [8] and PanDelos [3] outperform
the other approaches. The first one uses an alignment-based sequence similar-
ity, computed via BLAST scores. PanDelos instead computes an alignment-free
based sequence similarity, by means of a Jaccard index, which measures the
k-mer content of genetic sequences. In general, very efficient solutions for the
computation of BLAST score exist in the literature, while few efforts have been
made for optimizing most recent k-mer based approaches. Both the algorithms
are made of several steps in which similarity is computed and then exploited for
retrieving the homology relations. PanDelos has shown a better performance in
those experiments in which synthesized genomes have their compositional prop-
erties most similar to real organisms. However, in some situations it requires a
relatively high amount of computational resources.

In this paper we focus our attention to radically reduce the computational
requirements of PanDelos methodology, by replacing algorithms and data struc-
tures for computing the sequence similarity with more efficient ones. Besides,
the proposed approach for k-mer content representation and processing may be
implemented to other k-mer based similarity computation. Fast solutions for
computing Jaccard index have been proposed in the literature [13], also for com-
puting such measures in set of genomes [1,14]. However, such solutions take into
account the problem of computing the measures among sets rather than among
multisets, namely only k-mer presence/absence is considered and k-mer mul-
tiplicity is discarded. On the other hand, the approach here developed, based
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on Jaccard index to compute sequence similarity among multisets, shows an
efficient performance in terms of time and space complexity on benchmarks of
real genomes. In Sect. 2 a background of terminology and essential notions on
PanDelos approach are given, while main results on our new methodology are
detailed in Sect. 3. Experimental results on real pangenomes are reported in
Sect. 4, whereas Sect. 5 concludes the paper with some relevant comments, also
on our future work.

2 Background: Notations and PanDelos

A genome may be represented as the whole set of genetic material that is con-
tained in it, that is, a set of genetic sequences, which are represented as strings
over a given alphabet. Genetic sequences are stored in the genomic sequence
of an organism as genes, namely contiguous linear sub-regions of its DNA (or
RNA) material. The alphabet, here denoted by Γ , may be composed by four or
twentyone symbols, as in the case of (DNA or RNA) nucleotides or aminoacids,
respectively. In the next section we will report our experiments executed on both
nucleotidic and amonoacidic sequences. The well known genetic code assignes to
specific triplets of nucleotides a corresponding aminoacid.

We assume to be given a pangenome, which is a set of genomes (isolates from
one of more species for example) with all their respective genes collected in G =
{g1, g2, . . . , gn}. PanDelos is a computational tool for retrieving gene families
from a given set of genomes. It uses an alignment-free measure of sequence
similarity that is based on the k-mer content of genetic sequences, that is the
set of all its k-factors, also called genetic k-dictionary. For a specific value of k,
the complete set of k-mers (substrings long k) within a string g is denoted by
Dk(g).

Given a k-mer α, the set of positions of the occurrences of α in a gene g
is given by p(α, g) = {i : g[i, i + k] = α}. The multiplicity of α in g (i.e., the
number of its occurrences) is defined as

m(α, g) = |p(α, g)|

Depending on the chosen value of k and on the (nucleotidic or amino acidic)
level of analysis, the number of k-mers that can be extracted in a pangenomic
analysis can be very high. Let us recall that for a sequence of length m, at most
m− k +1 k-mers may be extracted, which corresponds to the peculiar case that
all the k-mers of the dictionary are unique (also called hapaxes), for each position
of the sequence. Factors with multiplicity greater than one are called repeats and
are very informative for pangenomic studies. Indeed, in a pangeomic analysis,
the aim is to capture the similarity among sequences, thus the chosen value of
k must ensure that a certain level of repetitiveness among the sequences can
be assumed [10]. Thus, in our computations, where multiplicity of each k-mer
is recorded, the number of k-mers |Dk(g)| of a gene g ∈ G usually is much less
than its maximum value (m − k + 1).
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A critical aspect in the entire analysis is therefore the choice of the value
k, which is in PanDelos is set to be log|Γ |

∑n
i=1 |gi| [3]. This choice is fruit

of information theoretic based investigations and experiments on several real
genomes developed in some previous works (see for example [4,7]). It is the
logarithm of the sum of the lengths of all the genes in G present in the given
pangenome, having as a base the cardinality of the alphabet of the sequences.
For example, in real applications involving bacterial amino acid sequences, the
value of k usually ranges between 5 and 8, depending on the length of the
genetic sequences and on the number of genomes examined. However, due to
possible frameshift mutations, it is helpful to analyse nucleotidic sequence too,
which means that k can be 3 times larger. In conclusion, the number of k-mers
involved in pangenomic analyses is relatively high and requires specialized data
structures for retrieving them.

Representation of k-mer Dictionaries

PanDelos uses an enhanced suffix array data structure, that is described in [2],
by which it is possible to enumerate the complete set of k-mers of a string, and
their multiplicity, in linear time w.r.t. the length of the string. The data structure
enhances a classical suffix array with an LCP (longest common prefix) array for
efficient k-mer enumeration. Moreover, the data structure is equipped with a
further document listing array for determining the set of sequences in which a
k-mer occurs, and with an additional array for discarding k-mers that are not in
the given alphabet. In fact, real genomic sequences can contains ambiguous loci
in which the correct nucleotide has not been identified, thus an extra symbol
is inserted (usually an N). However, pangenomes presented in the experiments
of next section contain all perfectly sequenced strings (that is over a regular
alphabet of four or twentyone symbols).

Because a genome can be thousands or millions nucleotide longs, and because
thousands of genes can be contained in a genomes, these arrays are implemented
as arrays of integers, which means that 4×4 bytes of memory for genome position
are required. Searching a k-mer in such a data structure involves a recursive
binary search that has k · logm complexity, where m is the length of the indexed
string.

Sequence Similarity Computation

Sequence similarity between two genes, gi and gj with i, j = 1, . . . n, is computed
as the generalized Jaccard similarity, given by

J(gi, gj) =

∑
α∈Dk(gi)∪Dk(gj)

min(m(α, gi),m(α, gj))
∑

α∈Dk(gi)∪Dk(gj)
max(m(α, gi),m(α, gj))

It equals 1 if the two sequences have the same k-mer content, and 0 otherwise.
For each pair of distinct genes involved in the analysis, the similarity score

must be computed. Then, a threshold is applied to the score for retrieving an
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initial set of homology relationships. The threshold takes into account the per-
centage of k-mers that is in common between two sequences (by computing such a
percentage via dictionary intersection weighted by k-mer multiplicities). Finally,
PanDelos builds a network based on such relations, and applies a community
detection algorithm for retrieving the final set of gene families. This last compu-
tational phase is due to the case that a common ancestor may exist, for a given
set of living organisms, even for organisms evolved in different environments.
This fact results into a difference of the alteration levels that are own by a given
genome. Thus, the level of similarity among genes belonging to the same family
may not be homogeneous. For this reason, pangenomic discovery methodologies
often involve the application of clustering techniques or community detection
algorithms, or approaches for detecting the most suitable value for thresholds
that are applied in order to define two gene as homologues.

PanDelos computes gene similarity by a two-by-two genome comparison, in
which two sets of genetic sequences {g1, . . . , gn} and {h1, . . . , hp} belonging to
two genomes (G and H respectively) are compared. An index structure is built
for the concatenation of the genetic sequences contained in both genomes. Only
bidirectional best hits (BBH) are extracted, that is an homology relation between
two genes, g ∈ G and h ∈ H, such that g is the most similar gene in G for h,
and viceversa. For this purpose, a similarity matrix M is built for storing gene-
by-gene similarities and for determining BBHs. The matrix has |G| + |H| rows
and |G|+ |H| columns, because orthologs of both genomes are also investigated.

The reason behind the choice of a two-by-two instead of an all-vs-all com-
parison is mainly due to the memory requirement of the enhanced array. The
enhanced suffix array used by PanDelos is an efficient way for enumerating the
k-mers of a sequence independently of the value of k, without re-indexing the
sequence on changing such a value. However, for pangenomic analyses where
the value of k is initially fixed the complexity of the data structure may result
excessive. In next section a neat improvement of the computational efficiency in
terms of time and space complexity is introduced.

3 A Computationally Efficient Approach

The main goals of the present study is to propose an alternative methodology for
computing sequence similarity that allows to run pangenomic analyses on larger
inputs by reducing the computational requirements (time and memory). To reach
the goals, the suffix-array structure (namely used by PanDelos) is substituted
by a data structure that is less expensive in memory and that allows to list
the k-mers that are present in a given set of sequences for a specific value of k.
Moreover, an inverted list allows to determine the list of sequences in which a
given k-mer is present. Differently than in previous approaches, the similarity
matrix M is computed row-by-row rather than entirely.
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Representation of k-mer Dictionaries

The proposed methodology extracts the k-dictionary, containing a portion of
repeats, from a all given genetic sequences. A compact representation of the
dictionary turns out useful, since a huge number of k-mers has to be extracted,
specially in nucleotidic analyses.

We identify each k-mer by its position in a given order induced over Γ k (which
comprehends the number of all different k-mers). The first k-mer in such an order
will be identified by the number 0, the second one by the number 1, and so forth,
by means of the function ord(α) : Γ k → N which assigns a number in the interval
[0 . . . |Γ |k − 1] to each k-mer. For k = 1 the function in manually defined, for
example, for the nucleotidic alphabet it is set as A �→ 0, C �→ 1, G �→ 2, T �→ 3.
For k > 1, given a k-mer α ∈ Γ k, the function is defined as

ord(α) =
k−1∑

i=0

ord(α[i])|̇Γ |i

where α[i] is the (i + 1)-th character of α. In the following, ord(α) is simply
referred to as the order of the k-mer α.

Modern computer architectures use a 64-bits number representation. It
means that given an alphabet Γ , the maximum k for which k-mers can be
identified with at most 64 bits equals �log|Γ |264�. It is 32 for the nucleotidic
alphabet, and 14 for 21 amino acids. PanDelos is manly applied to bacterial
and viral pangenomes. Bacteria have millions long genomes, with an high per-
centage of genetic coverage. Since k is chosen as the logarithm (with base equal
to the cardinality of the alphabet) of the total genetic material analysed, it is
reasonable to estimate that a pangenomic analysis with hundreds or thousands
of bacteria can exceed the limit given by the 64-bits representation. For this
reason, we implemented an alternative hash-based order representation.
It exploits the rolling hash function that has been originally proposed for the
Rabin-Karp string search algorithm [12]. Given the (i + 1)-th k-mer αi in the
lexicographic order induced over Γ k, the hashing H of αi is defined as:

H(αi) = R(αi) mod m

where R(αi) is defined as

R(αi) = (R(αi−1) − αi−1[1]|̇Γ |k−1)|̇Γ | + αi[k − 1].

We set the values of m as 18446744073709551557, that is the largest prime
number within 264 (see https://primes.utm.edu/lists/2small/0bit.html). Thus,
for a chosen resolution k such that |Γ |k > 264, we set ord(αi) = H(αi).

Hashing introduces collisions among hashed objects. In our case, it means
that two different k-mers are identified by the same hash code, thus they are
recognized as the same k-mer. An upper-bound to collision probability can be
estimated as the birthday problem [6], which originally aims at calculating the
probability that two persons, in a finite group of people, are born in the same

https://primes.utm.edu/lists/2small/0bit.html
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day. Since the choice of k is made such that a certain level of repetitiveness is
produced, it is reasonable to estimate that, for large values of k, the size of the
dictionary is much smaller than |Γ |k. Namely, a relatively small portion of the
possible k-mers is present in the input pangenome, and because of their nature
they may not be uniformly distributed in [0 . . . |Γ |k − 1]. Therefore, theoretical
collision calculation results to be not suitable in practice.

Sequence Similarity Computation

The proposed similarity computes one gene-vs-group similarity at time,
instead of two genomes at time (thus storing the big matrix M). This means
that the similarity between a specific gene and a group of genetic sequences, that
can be a part of or the whole complete input, is computed in a single task.

Because BBHs must be extracted, for each gene we need to take trace of
the most similar genes to it in each input genome. Then, when the similarity
is reciprocally conformed to be the highest one for the compared genes, than a
BBH record is extracted. It implies that we need to store the list of most similar
genetic sequences for each gene. Let us consider two observations at this point.
For each gene, very few genes in another genome have the highest similarity
with it. In fact, we can assume that an ortholog plus a very few copies of it are
present in the genome. Moreover, a threshold on the Jaccard similarity between
two genes is applied by PanDelos, consequently the number of homology relations
to be investigated for BBHs is further reduced.

Given a subgroup Ĝ of the input genetic sequences G, a list L(Ĝ) is built such
that it contains triplets in the form (ord(α), id(g),m(α, g)), where α ∈ Dk(g),
with g ∈ G̃, and id(g) is a numerical identifier for each input gene g of the
pangenome. The list contains the complete set of k-mers that are present in the
input group. If a k-mer is repeated in more than one gene, then multiple triplets
report its multiplicity in each gene in which it is present. Subsequently, the list is
sorted by using the radix sort algorithm such that the order between two triplets
if defined by the lexicographic order among their contained k-mers. At this point,
an inverted list

←−
L (Ĝ)) is built. The aim of the inverted list is to report for each

k-mer, identified by its order, the limits of the range corresponding to it in the
list L. In fact, given a k-mer α, since L is sorted by ord(α), all the occurrences
of α are stored consecutively. L is implemented as an array of triplets, instead,←−
L is more similar to an hash table. Since multiple k-mers may fall into the same
position, a list of k-mers (by means of their orders) and their corresponding
range limits are stored for that position.

Once L(Ĝ) and
←−
L (Ĝ) are built, for each gene g ∈ G its similarity with each

gene in Ĝ is computed. A vector of size |Ĝ| is initialized to be 0 in each position.
Then, for each k-mer α ∈ Dk(g), it is searched in

←−
L (Ĝ) such that its interval in

L is retrieved. Subsequently, for each triplet in the interval, the corresponding
counter in the similarity vector is updated. Then, the threshold is applied.

If Ĝ equals G, simply the most similar genes are extracted. Otherwise, the
pangenome is partitioned into some disjoint subgroups of genes. The most similar



38 V. Bonnici et al.

genes in one first subgroup, together with their similarity measures, are tem-
porarily stored. Then, such similarities are iteratively refined by scanning on the
successive subgroup. If one or more genes with higher similarity are found in
a successive group, then the list of most similar genes to a given g is entirely
redefined by those new genes.

Since
←−
L (Ĝ) is very similar to an hash table, it can be accessed in amortized

constant time. Moreover, the retrieving of k-dictionaries, and the calculation of
the multiplicity of the k-mers in any Dk(g), is performed in a way similar to the
construction of L. A list of k-mers orders, with duplicates, is built and sorted,
then successive runs of the same order identify the k-mers and their multiplicity.

Discussion on the Asymptotic Complexity

For a given input of n genomic positions, the original PanDelos methodology
needs to compute 4 indexing arrays, each one of size n. Each array can be com-
puted in a time that is linear to n. The total resulting memory cost is four
time the cost of an integer for each position. If 64 bits are used for representing
integers, 8 × 4 bytes per position are required. However, the current Java imple-
mentation uses 32-bits integers, thus the requirement is 4×4 bytes per position.
The similarity computation is performed by a two-by-two genome comparison.
For each comparison an indexing structure is built, then it is iterated in linear
time, and temporary similarities are stored in a matrix which size depends on
the number of genes that are present in the two compared genomes.

Relevantly, the complexity of the proposed approach does not linearly
depends on n but it depends on the number of distinct k-mers that are extracted
in each sequence. In fact, the array L stores, for each distinct k-mer, the order
of the k-mers, the id of the gene where it is present and its multiplicity within
the gene. In addition, the hash table

←−
L stores for each k-mer the interval limits.

Thus, for each k-mer 64 bits (for the order) plus 5 × 4 bytes for the other infor-
mation are required, plus an additional cost for structuring the hash table. If all
the extracted k-mers are hapaxes, an overhead of 3 bytes per position/k-mer is
introduced by the new approach. However, the choice of k ensures a certain level
of repetitiveness of the extracted k-mers [7], thus it is expected that the number
of distinct k-mers is relatively low w.r.t. the sequence length. Thus, the overhead
should be amortized. The new approach does not require the storing of the com-
plete matrix M because each gene is evaluated separately, but a few additional
memory cost is required for storing temporary homologies. For what concerns
the running time, the new approach uses radix sort for sorting L. A linear time
complexity is required for extracting the k-mers and for searching them in

←−
L .

Thus, the asymptotic complexity is still linear. The number of distinct k-mers
expected to be present in a genetic sequence can be difficulty predicted, which
makes the definition of the theoretical bounds of the approach a difficult task.
However, previous studies suggest that k-mers repetitiveness should be relatively
high [3]. In any case, the original methodology computes two-by-two genomes
comparisons, which introduces a quadratic factor in the analysis, whereas the
new approach is not affected by such a quadratic factor.
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Implementation

The proposed approach is implemented in C++ and its is interfaced with the
original Java source of PanDelos via the Java Native Interface (JNI). Because
no external libraries are required, the portability of the software is maintained,
since nowadays a version of the g++ compiler exists for almost every modern
operating system.

4 Experimental Results

We compared the proposed approach with the original PanDelos methodology on
real pangenomes. This first comparison shows the performance difference over
the case studies that were evaluated in the original work [3]. In the following
experiments, 4 different pangenomes were investigated. Each pangenome regards
a different bacterial species or genus and involves a different number of isolates
and thus genetic sequences. Their composition is reported in Table 1.

Table 1. Statistics regarding the 4 investigated real pangenomes.

Pangenome Genomes Sequences Nucleotides

Escherichia 10 46,587 43,764,342

Mycoplasma 64 46,760 49,109,138

Salmonella 7 30,074 27,368,957

Xanthomonas 14 55,189 56,770,477

Table 2 reports main statistics regarding the comparison of the two
approaches (PanDelos and the new methodology explained in previous section)
on the pangenome in Table 1 in terms of temporal and storage performance in
searching homologies among amino acidic sequences. Results show that there
is a speed-up of the new approach w.r.t. the original one (see the Time speed-
up column of Table 2) from 43 to 77 the running times. Moreover, the proposed
approach saves from 2 to 8 times the memory that is used by the original method-
ology (see the last RAM gain column of Table 2).

Table 3 reports statistics obtained by searching for homologies among nucleo-
tidic sequences of the same pangenome. Results show that there is a speed-up
of the new approach w.r.t. the original one from 19 to 53 the running times (see
the Time speed-up column of Table 3). Moreover, the proposed approach is able
to save up to 7.31 times the memory that is used by the original methodology.
An exception regards the Mycoplasma benchmark where the new approach used
a slight larger memory portion. Most likely this phenomenon is due to the high
variability of several strains in Mycopaslma pangenome, that produces a low
percentage of shared k-mers.
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Table 2. Running time and memory requirement (in MB) of the proposed approach
(New time and New RAM) and the original PanDelos methodology (Old time and old
RAM). Time is measured as user elapsed time in seconds and memory requirements are
measured as max peak of RAM occupancy. Tests were run by comparing amino acid
sequences. Time speed-ups (Time speed-up) were calculated as Old time/New time, and
memory gains (RAM gain) were calculated as Old RAM/New RAM.

Pangenome New time New RAM Old time Old RAM Time speed-up RAM gain

Escherichia 5.34 1035 355.48 7736 66.56 7.47

Mycoplasma 6.40 1267 487.54 2980 76.17 2.35

Salmonella 3.26 697 143.00 5802 43.86 8.32

Xanthomonas 7.64 1193 507.77 7349 66.46 6.16

Table 3. Running time and memory requirement (in MB) of the proposed approach
(New time and New RAM) and the original PanDelos methodology (Old time and old
RAM). Time is measured as user elapsed time in seconds and memory requirements are
measured as max peak of RAM occupancy. Tests were run by comparing nucleotidic
genetic sequences. Time speed-ups were calculated as Old time/New time, and memory
gains were calculated as Old RAM/New RAM.

Pangenome New time New RAM Old time Old RAM Time speed-up RAM gain

Escherichia 16.85 2,177,056 458.35 10,339,360 27.20 4.75

Mycoplasma 19.48 2,491,312 1047.95 1,852,404 53.80 0.74

Salmonella 9.67 1,316,500 192.18 9,618,568 19.87 7.31

Xanthomonas 22.64 2,818,496 688.42 6,835,976 30.41 2.43

In the following we show the results obtained by evaluating the performance
of the proposed method while varying the input pangenome size.

Figure 1 reports the running time of the two compared approaches. The time
of the original PanDelos versions is proportional to the number of genomes that
are involved in the pangenomic analysis. In fact, it compares two genomes at
time inducing a quadratic time complexity for the analysis. On the other hand,
the running time of the proposed approach is not affected by the quadratic
complexity, and its running time depends only on the input size.

The quadratic complexity does not affect the memory requirements of both
approaches, that are shown in Fig. 2. The original PanDelos implementation is
based on an enhanced suffix array data structure which size is correlated with
the number of indexed nucleotides. However, since a part of both implementa-
tions is developed in Java, the exact memory requirement cannot be measured
because it is affected by the Java garbage collector policy. This fact may be the
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Fig. 1. Running time (Y axis, seconds) of the proposed approach (New time) and
the original PanDelos version (Old time). The occupancy is measured by varying the
number of input genomes, which correspond to a variation on the total number of
nucleotides (X axis) involved in the analysis.

cause of a slight increase in memory occupancy of the original version. The new
approach has a clear dependency of the RAM occupancy w.r.t. the input size.
However, its performance slightly increases w.r.t. that of the original version,
with only one exception given by the Mycoplasma collection. Here we notice
that the Mycoplasma case requires less than 3 Gigabytes, while the other three
pangenomes require a RAM occupancy closed to 14 Gigabytes.
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Fig. 2. RAM occupancy (Y axis, peak max in bytes) of the proposed approach (New
RAM) and the original PanDelos version (Old RAM). The occupancy is measured on
varying the number of input genomes which correspond to a variation on the total
number of nucleotides (X axis) involved in the analysis.

5 Conclusions

The search for sequence homology is a current challenge in computational anal-
yses of pangenomes, concerning both computational performance and ability to
capture pangenomic information. k-mer-based approaches have recently shown
good performance regarding the detection of genetic homology. However, such
innovative solutions often lack in reducing computational requirements. Here,
we proposed an approach for improving the performance of an existing method-
ology. A suitable representation of the k-mer content of a pangenome allows
the development of a procedure for computing genetic sequence similarity that
results fast and with low memory requirements. Temporal speed-ups from 19x to
76x are shown on real pangenomes, as well as a gain in RAM memory occupancy
(up to 7.31 times) for almost every benchmark.

Finally, we point out that the proposed approach regards a efficiency improve-
ment only for the computation of sequence similarity, while the complete Pan-
Delos methodology is composed of two steps: sequence similarity computation
and community detection phase. We are interested to further improve the whole
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PanDelos performance in terms of parallelization. An initial trivial parallelization
of the similarity computation procedure has been here implemented by using a
Java thread pool, where each Thread processes a genome-vs-pangenome at time.
Namely, each thread compares the genes of a given genome with the genetic
sequences of the entire pangenomes. Indeed, the inverted list allows to deter-
mine the list of sequences in which a given k-mer is present. Differently than in
previous approaches, the similarity matrix M in this paper is computed row-by-
row rather than entirely, and this dynamical behaviour of the algorithm allowed
us to also develop a simple procedure for parallel computation of sequence sim-
ilarity, which will be further developed in future work.
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Abstract. Due to the accelerated activity in e-commerce especially
since the COVID-19 outbreak, the congestion in the transportation sys-
tems is continually increasing, which affects on-time delivery of regular
parcels and groceries. An important constraint is the fact that a given
number of delivery drivers have a limited amount of time and daily capac-
ity, leading to the need for effective capacity planning. In this paper, we
employ a Gaussian Process Regression (GPR) approach to predict the
daily delivery capacity of a fleet starting their routes from a cross-dock
depot and for a specific time slot. Each prediction specifies how many
deliveries in total the drivers in a given cross-dock can make for a certain
time-slot of the day. Our results show that the GPR model outperforms
other state-of-the-art regression methods. We also improve our model by
updating it daily using shipments delivered within the day, in response
to unexpected events during the day, as well as accounting for special
occasions like Black Friday or Christmas.

Keywords: Transportation · E-commerce logistics · Capacity
planning · Gaussian process regression · Continual learning

1 Introduction

Recently, the increasingly widespread use of e-commerce sites in the presence
of the COVID-19 pandemic has brought about a huge increase in online shop-
ping [1]. The package delivery industry has been significantly affected as a result.
The number of deliveries in the transportation sector had already been on the
rise and this increase accelerated further with the COVID-19 pandemic. Hepsi-
JET is a fast and practical, technology-driven e-commerce logistics system that
aims to provide better quality service to its customers. It was launched in May
2017 and the size of its operations (shipments delivered) rose by 91% from 2018
to 2019 and by 171% from 2019 to 2020.
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Machine learning techniques can be applied in a variety of domains in trans-
portation planning and optimization, including capacity planning to cope with
the congestion in the logistics systems. To reduce slack capacity in vehicles, a
deep reinforcement learning based approach has been developed based on the
Deep Q network algorithm to assign shipments to the relevant couriers for effi-
cient delivery [2]. In the logistics area, an optimization model was developed for
capacity planning based on the distance of delivery areas, earnings per delivery
of carriers, and delivery time to improve short-term multiple food deliveries [3].
In machine learning based studies that deal with this food delivery problem, the
aim is to estimate the delivery time and reduce costs [4]. Also, regression models
[5] are used to estimate the delivery demands of online orders. The Gaussian
Process Regression (GPR) is a non-parametric Bayesian approach [6] that has
been employed for real-world capacity prediction problems of electricity load [7]
and pile bearing [8], among others. Various studies of real-world applications
have proven the advantages of GPR such as capturing all the uncertainties in
the data and interpretability between the predictions and observations [6].

In our study, we employ GPR to predict the daily total number of deliveries
for each HepsiJET cross-dock in each delivery time slot. Our goal is to reduce
the number of delivery delays, improve capacity planning, optimize the necessary
delivery actions in advance of possible congestion, and also provide input to route
optimization. The GPR model is further updated daily to train on the most
recent customer ordering behavior and the unexpected number of deliveries.
The predicted value from the model is utilized as the combined capacity of the
delivery drivers of the cross-dock to obtain maximum efficiency on the deliveries.
For each day, the shipments loaded in the morning on a vehicle are certain, but
new grocery and food delivery requests may be received in real-time. Therefore,
using the predicted capacity, one can better balance the assignment of deliveries
among the drivers operating from the same cross-dock.

The contributions of this study can be listed as follows; i) conducting the first
national work in the transportation industry to estimate daily delivery capacity
for cross-docks using machine learning, ii) developing one of the first ML-based
methods for capacity planning to adapt the abnormal conditions in special situa-
tions, iii) the realization of a regression method that continues to learn from new
data on shipments delivered within the day, iv) the use of the adaptive method
by retraining daily for the capacity planning in the field of transportation.

2 Proposed Approach

For the cross-dock and time slot based prediction of total daily delivery capacity,
the first step is data preparation that includes outlier removal, feature vector
construction, daily aggregation, and extraction of additional features. In step 2,
other features are extracted that include deliveries made in one day, three days
and one week prior. Next, a training set is constructed, which is composed of all
the deliveries of all the cross-docks for each slot in a training time period. The
initial regression model is trained using this training set.
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Fig. 1. The proposed approach for predicting total daily delivery capacity.

For data preparation, individual deliveries are aggregated by cross-dock, day
and time-slot, and the records with null values are removed. The raw features
processed at this stage are the cross-dock, time slot, delivery id, courier id, date,
district, and delivery address. These are used to extract additional features such
as the time-based attributes (e.g. day of week, month, or year) as well as several
historical aggregations of deliveries. All together, 32 features are generated and
further reduced to 14 using a p-value based feature selection process for each
cross-dock and delivery time slot (see Table 1). The target variable is the total
deliveries (“capacity”) for a given day (“today”), time-slot, and cross-dock.

Table 1. Selected input features and their descriptions.

Input feature Description

xdock id id of the cross-dock

slot the time slot in the day

dow day of week for today, the target prediction day

total del num yest total deliveries made yesterday

mean district num yest mean number of districts delivered yesterday

mean attempt num yest mean delivery attempt made by all couriers yesterday

mean capacity yest mean deliveries of all couriers yesterday

max capacity yest maximum delivery made a courier yesterday

mean total del num 3d mean total delivery made in the last 3 d

mean courier num 3d mean courier count in the last 3 d

mean attempt num 3d mean number of delivery attempts in the last 3 d

mean address num 3d mean number of unique addresses in the last 3 d

mean capacity 3d mean number of deliveries by all couriers in last 3 d

mean total del num 1week mean total delivery made in the last week

mean attempt num 1week mean number of delivery attempts in the last week

mean capacity 1week mean deliveries of all couriers in the last week
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For predicting delivery capacity, several regression models employed in differ-
ent problems [9] are chosen, which are the Gaussian Process Regression (GPR),
XGBoost regressor, Linear Regression (LR), Random Forest Regressor (RFR),
Multilayer Perceptron (MLP) Regression, and Support Vector Regressor (SVR).

3 Experiments

In our experiments, the performances of the GPR, XGBoost, LR, RFR, MLP,
and SVR for the prediction of delivery capacity are evaluated in terms of R2

and Root Mean-Square Error (RMSE). By testing different kernel functions, a
non-stationary kernel is selected for GPR. After parameter tuning for XGBoost,
the hyper-parameters, learning rate, max depth and gamma are estimated as
0.03, 4 and 0.3, respectively, and for RFR, max depth is selected as 2. Also, the
parameters of Random Forest are estimated similarly. For MLP, LR, and linear
SVR, the best performances are observed with the default parameters. After the
initial experiments, the most appropriate regression model to be utilized in the
next step is chosen, for continual learning that uses additional daily training.

4 Results

The experiments for predicting delivery capacity were performed on nine differ-
ent training and test set pairs specified by the number of months in 2020 included
in the training period, to account for unexpected market shifts due to the special
occasions and days, COVID-19 restrictions, etc. For the test month m, the deliv-
eries in months January 2020 to m− 1 are used in training. The average R2 and
RMSEs over all training and test sets are given in Table 2 in which we find that
the GPR model has the best performance. We further illustrate these models’
performances in Fig. 2(a) for delivery predictions in November and December
2020 further broken down by day of year. The GPR model provided the best R2

on most of the days in Nov. and Dec. 2020 with noticeable fluctuations.
We used the GPR model with additional recent daily delivery records in 2021

included in a “learning” training set to further refine the performance of our
proposed model. In this experiment, improvements on R2 shown in the Fig. 2(b)
were observed in most of the days. The overall R2 values of the GPR and the
learning GPR models were 0.776 and 0.819, respectively, an increase of 5.5%.
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Table 2. The average of overall R2 values and RMSE of the regression algorithms.

Algorithms Avg. R2 on
training set

Avg. RMSE
on training set

Avg. R2

on test set
Avg. RMSE
on test set

GPR 0.863 167.8 0.833 198.2

XGBoost 0.920 96.1 0.817 228.4

LR 0.884 153.9 0.795 376.6

RFR 0.911 98.0 0.801 251.9

MLP 0.874 157.8 0.807 238.2

SVR 0.852 199.4 0.741 649.2

(a) The R2 values of the regression models.

(b) The R2 values of the GPR and retraining GPR models.

Fig. 2. Prediction performance in weekdays of (a) Nov-Dec 2020 and (b) 2021.

5 Conclusion

In this work, we presented a Gaussian Process Regression (GPR) model for daily
delivery capacity planning for a transportation company, HepsiJET. We showed
that the performance of the GPR outperforms several state-of-the-art regression
models. In future work, we plan to use the predictions as capacities of couriers
to make decisions on the optimized delivery of new on-demand food shipments.
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Abstract. One of the most important steps when employing machine
learning approaches is the feature engineering process. It plays a key
role in the identification of features that can effectively help modeling
the given classification or regression task. This process is usually not
trivial and it might lead to the development of handcrafted features.
Within the financial domain, this step is even more complex given the
general low correlation between features extracted from financial data
and their associated labels. This represents indeed a challenging task
that it is possible to explore today through the explainable artificial
intelligence approaches that have recently appeared in the literature.
This paper examines the potential of machine learning automatic fea-
ture selection process to support decisions in financial forecasting. Using
explainable artificial intelligence methods, we develop different feature
selection strategies in an applied financial setting where we want to pre-
dict the next-day returns for a set of input stocks. We propose to identify
the relevant features for each stock individually; in this way, we take into
account the heterogeneous stocks’ behavior. We demonstrate that our
approach can separate important features from unimportant ones and
bring prediction performance improvements as shown by our performed
comparisons between our proposed strategies and several state-of-the-art
baselines on real-world financial time series.

Keywords: XAI · Machine learning · Financial forecasting ·
Time-series

1 Introduction

Given the increasing amount of labeled data generated for different tasks,
Machine learning (ML) methods were employed and proved to be enormously
successful for making predictions, as opposed to solutions based on canonical
regressive models [6]. As such, we have witnessed their increased adoption in
several domains, among which the financial one. Despite these advances, rely-
ing only on sophisticated ML models trained on massive annotated datasets
introduces the risk of creating and using decision systems that work as black
boxes that nobody can truly understand. This fact has a direct impact on
c© Springer Nature Switzerland AG 2022
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ethics, accountability, safety, and industrial liability [16,18]. For relatively simple
decision-making applications, such as an online retail recommender system, an
algorithm employing classical ML techniques can be considered an acceptable
strategy. However, the use of ML in life-changing situations such as risk decisions
in the finance sector, diagnostic decisions in healthcare, and safety-critical sys-
tems in autonomous vehicles are sensitive and of great interest for businesses and
society, requiring to unveil how the black boxes of ML systems work [1]. There-
fore, it is essential to have frameworks that understand how ML methods produce
their findings and suggestions. As a consequence, the field of eXplainable Artifi-
cial Intelligence (XAI) has emerged, that is, techniques developed to “X-ray the
black-box” and provide insights about which input features are more important
and how they affect the predictions [22]. Explainability might appear straight-
forward to be applied within the financial domain, given that ML approaches for
finance tasks have been extensively used in both research [13] and industry [24].
Nevertheless, explainability is far from easy as XAI research demonstrates [2],
and particularly challenging for financial forecasting, where the low signal-to-
noise ratio is typical for the finance data. Nevertheless, complementing the ML
models with explainability methods in the financial domain leads to the under-
standing of the key signals the ML models use for their prediction, as well as to
the interpretation of the output.

Several scientific communities studied the problem of explaining ML decision
models. As such, different perspectives and motivations related to the explana-
tionability have been established: explanations to justify, explanations to con-
trol, explanations to discover, and finally, explanations to improve classification
or regression tasks [1]. In this work, we focus on the latter. In a few words, given
that high-dimensional financial data are becoming more available, the need to
efficiently select which subset of data represents more valuable information for a
forecasting problem is of great interest. Evaluation and verification of such a pro-
cess are challenging tasks, as financial time-series data are hardly interpretable
even by domain experts. Also, when performing the forecasting, it is well known
that using too many features can lead to overfitting, which can significantly
hinder the performance of predictive models [24]. Understanding which input
features are most relevant for the outcome of an ML approach is an essential
first step towards its interpretability.

In this paper, we investigate the ability to select relevant features in an
applied setting. Specifically, for a large set of stocks, we train Random Forest
(RF) models, with lagged returns as features, and aim at forecasting the next-day
return. We formulate our problem by building a model for each of the stocks as,
in many cases, stocks behavior is highly heterogeneous, and the relevant features
may differ between stocks, across market regimes, or geographies [24]. Naturally,
by performing feature selection at a stock level, we can select the features that
are the most relevant to each stock. Globally selecting the features may perform
well, on average, across all stocks, but we prove that choosing the input features
at an individualized level outperforms the former.
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Therefore, the contributions we bring in this work are:

– We apply an XAI technique based on permuting the values of each feature
in the out-of-bag sample to derive the feature importance. On top of it, we
propose three strategies to select the best subset of features to remove for
each stock so to improve the predictive performance both at an individual
level (stock) and globally (across the stock set);

– For each proposed strategy, we aim at determining the feature importance
threshold such that we can divide the features into two subsets: important fea-
tures that meaningfully contribute to the forecasting task and non-important
ones that do not. Thus, each strategy learns across the stock set which fea-
tures can be removed for which stock, and moreover, whose removal improves
the overall prediction performance;

– We determine the efficacy of our strategies by evaluating the change in predic-
tive performance by cross-referencing the generated model with removed fea-
tures against the base model without any input feature removed. We further
evaluate our strategies by comparing their prediction performance against
two other feature importance inference baselines: (i) the well-known Mean
Decrease Impurity (MDI) of an RF [3], and the (ii) Local Interpretable Model
agnostic Explanations (LIME) [25];

– In contrast with some of the most recent works in finance [10,15], we are
interested in predicting rather than finding the causes of stock return behav-
ior. Thus, we do not employ any techniques to establish causality claims. We
restrict our exercise to a prediction effort and its explainability, in alignment
with the most recent ML applications in the industry.

The remainder of this paper is organized as follows. Section 2 briefly describes
relevant related work in the literature, and Sect. 3 outlines state-of-the-art meth-
ods for feature importance estimation. Section 4 introduces the methodology of
our proposal, whereas Sect. 5 presents the dataset that we have used to validate
our approach and details of our experimental setup. Section 6 presents the eval-
uation results and highlights our findings. Finally, Sect. 7 ends the paper with
conclusions and future directions where we are heading.

2 Related Work

Most previous works that seek to explain model predictions assess the relative
contribution of features. Examples include techniques based on Sensitivity Anal-
ysis [9], linear explanations of the vicinity of points of interest [25], or based on
the game theory [20,28]. Another direction of work within the explainability
domain is represented by explicitly designed explainers such as L2X [7] and
INVASE [31]. These methods select a subset of relevant features approximating
the black-box model using mutual information and Kullback-Leibler-divergence,
respectively. Most of these methods have been designed for static data like images
and need to be carefully considered for the time series contexts.

XAI for time series explains models by evaluating the importance of each
feature on the output using attention models. The parameters in these models,
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called attention weights, are used to explain model behavior in time [8,26]. In [30]
the authors propose FIT, a framework that determines the importance of obser-
vations over time, based on their contribution to the temporal shift of the model
output distribution. Another family of XAI methods is known as perturbation-
based methods. They assign importance to a feature based on changes to the
model output by perturbing the input features, often replacing the feature value
with its mean [12] or random uniform noise [29]. The work in [11] considered aver-
aging over all possible permutations and derived concentration bounds based on
an unbiased class of statistics, i.e., U-statistics [14]. When it comes to explainable
methods applied to the financial domain, we could mention the work performed
by authors in [15]. The author uses four predefined feature sets to predict the
next day’s stock returns and infers the feature importance by assessing the per-
formance of an algorithmic trading strategy. The most salient finding in this
work is that increasing the number of features does not translate into better
performance. Moreover, authors in [17] use the feature importance of Random
Forest and Gradient Boosted Trees to understand the prominent features of a
long-short strategy. Moreover, in [10] the authors use the coefficients of a Carhart
regression applied to the returns and first and second-order time-series statis-
tics to explain the dependence between the market regime, stocks behavior, and
long-short trading strategy obtained results. Furthermore, authors in [4] use the
decision tree feature importance to infer links between news and stock behavior.
Finally, in [21] the authors propose an “instability index” strategy of selecting
features based on the features’ ranks variance. Our proposed approach takes
inspiration from the last-mentioned work, in the sense that the authors derive
the feature importance using the same XAI technique of permuting the feature
values in the out-of-bag sample. However, there are two differences between our
work and theirs. The authors remove input features from the feature set regard-
less of their category, i.e., informative or uninformative. In other words, they do
not propose a strategy to differentiate the features. Secondly, their investigation
focuses on identifying a convergence point for feature importance stability. To
this end, for the entire stock set, the authors train a model and, by using different
configurations of the underlying XAI technique, compute the feature importance
for each of these configurations, then derive the instability index. We argue that
such an approach is computationally expensive (with a O(n log n) complexity)
and intractable for a high number of stocks such as ours.

3 Standard XAI Methods

Let X ∈ R
D×T be a training set consisting of observations of a multivariate time-

series, where D is the number of features, and T is the number of observations
over time. Further, xi ∈ R

D denotes the ith observations at time i ∈ {1, .., T}.
For a single feature, j, an observation at time i is indicated by xi,j . Our goal is
to predict a target variable Y based on the multivariate predictive variable X.
We use a learning algorithm to output a model function f(·) representing the
estimate of Y based on X. In this context, in the remainder of this section, we
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present three methods related to our work for determining the feature impor-
tance. Feature importance is defined as an array of numbers where each number
corresponds to a feature, indicating how much the feature contributed to the
model prediction [28].

Permutation importance (PI), originally introduced by [3], provides a
score for each feature based on how much the replacement of the feature with
noise impacts the predictive power of the estimator. Given the matrix of fea-
ture values X and the corresponding response variable Y , let Xπ,j be a matrix
achieved by randomly permuting the jth column of X and L(Y, f(X)) be the
loss for predicting the target variable Y from the data X using the model f(·).
Then, the feature importance can be mathematically expressed as follows:

V Iπ
j =

1
N

∑

π

L(Y, f(Xπ,j) − L(Y, f(X)), (1)

where N represents the number of permutations applied to each feature. Specif-
ically, the importance of the feature j is given by the increase in loss due to
replacing X:,j with values randomly chosen from the distribution of feature j.

Mean decrease impurity (MDI) is a tree-specific feature importance
method computed as the average of feature importance across all decision trees
in the forest. The structure of the trees has a direct impact on determining
the feature importance. Briefly, the RF algorithm constructs a decision tree set
where each decision tree is a set of internal nodes and leaves. An internal node
is constructed by splitting the data of a specific feature into two separate parti-
tions, with similar target variables. The algorithm splits the data by taking an
input feature (from a randomly picked subset of features) and determining which
cut-point minimizes the variance of the target variable. Variance minimization
occurs when the data points in the nodes have very similar values to the tar-
get variable. After determining the optimal cut-point per feature, the algorithm
selects the best input feature for splitting, i.e. the feature that would result in
the best partition with the lowest variance. Finally, it adds this split to the tree.
The feature importance is computed by iterating all the splits generated by a
feature and measuring how much that feature reduced the variance w.r.t. the
parent node. The more the variance decreases, the more significant the input
feature is.

Local Interpretable Model agnostic Explanation (LIME) [25] locally
approximates a black-box model f() around the instance of interest xi with a
linear model g(), also known as a local model. Formally, it can be expressed
as g(xi) = w0 +

∑D
j=1 wjx

∗
j , where wj represents the regression coefficients of

a feature j of the perturbed sample x∗. In a nutshell, to obtain observation
by observation explanations, the algorithm follows a suite of steps. Given the
observation of interest (for which an explanation of its black box prediction is
sought), it perturbs the instance and gets the black box predictions for these
new points, x∗. It then trains a weighted, interpretable model g() on the dataset
with the variations. Finally, it explains the prediction xi by interpreting the local
model.
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4 The Proposed Strategies

The goal of this work is to provide means of identifying uninformative features for
a prediction task and propose those features for removal, so to increase the mod-
els’ predictive performance. To classify the input features into the two categories,
i.e., informative and uninformative, we proceed with the following steps: (i) we
compute the feature importance using the PI method, introduced in Sect. 3. (ii)
we identify a feature importance threshold below which the features are consid-
ered uninformative. The motivation in choosing the PI approach is threefold:
(i) it is model agnostic, i.e., applicable to any model derived from any learning
method; (ii) it computes the feature importance on the test set, i.e., out-of-bag
samples (OOS), which makes it possible to highlight which feature contributes
the most to the generalization power of the inspected model [27]; (iii) it has no
tuning parameters, and it relies only on averages which makes it statistically
very stable.

For computing the feature importance, we modified the Eq. 1 by scaling the
changes in loss due to permuting feature j values with the loss of the base
regressor as follows (in bold):

V Ij =
1
N

∑

π

L(Y, f(Xπ,j)) − L(Y, f(X))
L(Y, f(X))

(2)

The feature importance given by Eq. 2 can be interpreted as the average
change in prediction loss relative to the loss of the base regressor. We chose to
work with the relative error change instead of the absolute error as it is scale-free
and leads to a fair comparison between feature importance for different models.

The feature importance will have positive values for an informative feature
as replacing the corresponding feature values with others at random increases
the loss compared to the original regressor. On the other hand, unimportant
input features will have feature importance values relatively closer or below 0, as
their replacement with noise-like information, either will not produce significant
changes, or will increase the prediction performance. Keeping the unimportant
features in the feature set leads to overfitting. Having this in mind, we propose
three strategies to remove the features:

1. PI best - identify the features which have the feature importance lower than
0 and propose for removal the one which has the highest feature importance
of them, that is features that are close to 0. Then, we remove that feature if
its importance is lower than a certain threshold.

2. PI worst - identify the features which have the feature importance lower than
0 and propose for removal the one which has the lowest feature importance of
them. Similarly to PI best, if that feature has its importance below a certain
threshold, we remove it.

3. PI running - identify the features which have the feature importance lower
than a variable threshold and propose for removal the one which has the
highest feature importance of them.
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(b) Selected features

(a) Feature importance

Fig. 1. Illustration of the proposed feature selection method. Panel (a) shows the fea-
tures and their importance for each stock. Note that in this example, we show only a
limited number of features, whereas, in a real-world scenario, panel (a) would include
all the features associated with a stock. Panel (b) shows the selected features for each
method for a threshold of −0.15.

The main difference between PI running and the others is that PI running
uses the threshold to identify the best feature to remove. PI best and PI worst use
the threshold to identify whether the best feature (the feature with the highest
importance below 0) or the worst feature (the feature with the lowest importance
below 0) will be removed. To clearly explain how the proposed methods work,
in Fig. 1 we show a simple example applied to three stocks and one walk. The
left-hand side panel, (a) Feature importance, for stocks FP.PA and 0003.HK
displays all the features that have feature importance lower than 0. For stock
0001.HK we show the least important feature as the stock has no features whose
importance is lower than 0. The features are sorted in descending order by their
feature importance. The right-hand side panel (b) Selected features shows the
features selected for each method provided that we used a threshold = −0.15.
In this setup, for stock FP.PA the feature with the highest negative feature
importance is Returns 2. However, since it does not have the feature importance
below the threshold −0.15, PI best for stock FP.PA will not remove any features.
PI worst will remove Returns 3 which has the lowest value. PI running will
remove Returns 63 which is the first feature whose importance value is below
the threshold. For the stock 0001.HK the feature Returns 1 does not have the
feature importance lower than 0, and as a consequence, none of the methods
remove features. Finally, for stock 0003.HK all the methods propose one feature
for removal using a similar process described for the other stocks. As a final
remark, PI best and PI running focus on removing the input features with
feature importance close to 0, whereas PI worse removes the features whose
feature importance is below 0. Also, given that the feature importance score
is an estimation and PI may underestimate the feature importance, with the
introduction of PI best and PI running, we aim to find the feature importance
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value below which features are indeed uninformative and whose removal does
not affect the overall prediction performance.

Optimal Threshold Selection

For each of the proposed approaches, we select the optimal threshold according
to the following steps:

1. for threshold values within a predefined range determine the features to
remove as given by each of the methods PI best, PI worst, and PI running ;

2. for each model/stock remove the indicated feature and retrain a new model;
3. for each threshold value, compute the mean loss difference between the base

regressor (without any feature removed) and the corresponding newly trained
model.

4. compute the optimal threshold as the one that maximizes the mean loss
difference computed above.

5 Experimental Setup

We apply our feature selection approach to a financial dataset with the goal
is to improve the prediction performance by discarding features for each stock
according to the methodology explained in Sect. 4 and use the remaining input
features to predict the next day’s returns.

5.1 Dataset

We carried out our experiments using a set of 300 stocks given by the constituents
of the S&P100 Index1, CAC402, FTSE 1003, S&P Asia 50 Index4, and Dow Jones
Global Titans 50. We justify our choice by the fact that we aim at constructing
a highly heterogeneous stock set spread out among different continents, i.e.,
Europe, the U.S., and Asia-Pacific. For each stock, we collect daily raw financial
data5 such as opening (open) and closing (close) prices. Based on these data we
construct the following information:

Features - Lagged returns (computed with respect to day i), each expressed
as

Return j =
closei−1 − openi−j

openi−j
for j ∈ {1, 2, 3, 4, 5, 21, 63, 126, 252},

1 https://en.wikipedia.org/wiki/S%26P 100.
2 https://en.wikipedia.org/wiki/CAC 40.
3 https://en.wikipedia.org/wiki/FTSE 100 Index.
4 https://en.wikipedia.org/wiki/S%26P Asia 50.
5 We use publicly available data from Yahoo Finance.

https://en.wikipedia.org/wiki/S%26P_100
https://en.wikipedia.org/wiki/CAC_40
https://en.wikipedia.org/wiki/FTSE_100_Index
https://en.wikipedia.org/wiki/S%26P_Asia_50
https://finance.yahoo.com/
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where j and denotes the length of the time-window for which the return was
computed6. Return j generates 9 features.

Target - Intra-day return

yi =
closei − openi

openi
.

5.2 Forecasting and Feature Selection

As prediction models, we use Random Forest (RF) for two compelling rea-
sons. First, it is a machine learning model that delivers competitive results
within financial prediction tasks [17,24]. Second, it is an explainable model [22].
Hence, For each stock, we train a model with the following hyperparameters:
n estimators = 500 - we set the number of decision trees, min samples leaf =
5 - we limit the depth of the trees, and finally max features = 1 - we limit the
maximum number of features in each split.

Finally, for determining the feature importance, we have permuted the fea-
ture values N = 100 times (in Eq. 2). To determine the optimal feature impor-
tance threshold, for each feature removal strategy, we have performed a threshold
swipe in the range of 0 to −0.025 with a step of 0.0001, as presented in Sect. 4.

5.3 Backtesting

To validate our assumption that the influential features may differ across differ-
ent market regimes, i.e., in time, we backtested our strategies. We choose a study
period of January 2007 to January 2018. We use the walk-forward validation, a
common approach for backtesting in finance [5,17]. It consists of splitting the
study period into overlapping training periods and non-overlapping test periods,
i.e., walks. For each walk, we considered four years of training and a year of
testing. Under this setup, we form seven walks.

5.4 Baselines

We compared the proposed strategies with three baselines:

1. Base regressor - for each stock, we train a model including all the features
in the feature set (we do not perform any removal);

2. MDI - for each stock, we compute the MDI as presented in Sect. 3 using scikit-
learn implementation7. Specifically, MDI is the average feature importance of
all decision trees (in our case 500) composing the forest. Moreover, using the

6 For example, j = 1 denotes the return in the previous day for each observation,
whereas j = 252 denotes the return in the past year, considering that there are 252
trading days in a year.

7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor.
feature importances .

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor.feature_importances_
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RF hyperparameter max features = 1 we overcome RF’s inability to correctly
estimate feature importance when dealing with features that are correlated
with each other, as it often happens for financial time series. Then, given
the obtained features’ importance, we discard the feature with the lowest
importance.

3. LIME - for each stock, given a trained base regressor, we explain each sample
in the test period with a linear model, as detailed in Sect. 3. We proceed as
such, as LIME is not designed to assign feature importance globally. Then,
each observation’s feature importance is equal to the absolute value of the
regression coefficient of that feature. For each sample, we order the input
features by their importance and rank them (where rank 1 denotes the highest
feature importance). To obtain the global feature importance, i.e., the feature
importance for the whole test period, we average the ranks across all test
observations and remove the least important feature, that is, the feature with
the lowest average rank. For the LIME baseline, we use the python LIME
package8.

Note that for the proposed strategies and MDI and LIME baselines, for a fair
comparison, we perform the same procedure: we compute the feature importance
for each model (i.e., one per stock) and each input feature; then, we remove - from
the feature set - the features selected by the strategies, or the least important
one as indicated by MDI or LIME. Finally, we train a new model and evaluate
the performance.

Implementation Details

The strategies proposed in this paper have been developed in Python, by
using the scikit-learn library [23]. The code of our solution has been made
publicly available at https://github.com/Artificial-Intelligence-Big-Data-Lab/
feature-selection. The experiments have been executed on a desktop system with
the following specifications: an Intel(R) Xeon(R) Gold 6136 CPU @ 3.00 GHz,
32 GBytes of RAM, and 64-bit Operating System (Linux Ubuntu). In terms of
Big O notation, our algorithm entails an O(|S| × m−) complexity proportional
to the number of stocks |S| and the number of features to remove for each stock,
m−.

5.5 Evaluation Metrics

In this work, three performance metrics are considered. Point forecasting per-
formance is determined by using the mean squared error (MSE), similar to [21].
Evaluating the performance of feature selection methods on real data is difficult

8 https://github.com/marcotcr/lime/tree/master/lime.

https://github.com/Artificial-Intelligence-Big-Data-Lab/feature-selection
https://github.com/Artificial-Intelligence-Big-Data-Lab/feature-selection
https://github.com/marcotcr/lime/tree/master/lime
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since ground truth relevance is not known. Therefore, we focus on the prediction
performance. Specifically, we measure the effectiveness of removing one feature
by assessing the number of improvements over the base regressor in terms of
MSE and the ratio given by the number of improvements over the base regres-
sor out of the number of models (stocks) which had a feature removed. Explicit
expressions for the metrics are provided as follows:

– MSE = 1
T

∑
i(yi − ŷi)2, where ŷi represents the ith predicted value, yi the

ith target value, and T the number of observations in the test period;
– no improvements =

∑|S|
i=1 I(MSEbase regressori

− MSEM−
i

> 0), where i ∈
{1, ..., |S|}, S is the set of stocks, MSEbase regressori

is the error of the base
regressor of stock i (i.e., no features have been removed), MSEM−

i
is the

error of the regressor for which a feature has been removed, and finally, I
is the indicator function. In other words, no improvements measures how
many models have an MSE improvement (lower than the MSE of the base
regressor) when removing a feature;

– ratio = no improvements
M− , where M− is the number of models that had a

feature removed, or, differently put, the number of models that have one
feature whose importance is lower than a given threshold.

6 Results

In this section, we examine the proposed strategies for each of the walks as
presented in Sect. 5 by performing two different experiments: (A) finding the
optimal feature importance threshold in order to select features to be discarded,
and (B) qualitatively evaluating the improvement over the baselines.

For experiment A, in Fig. 2 we show the performance of the proposed strate-
gies under the three evaluation metrics presented in Sect. 5.5 for different thresh-
olds and against the base regressor. Figure 2a shows the average MSE differ-
ence between the base regressor and the model with features removed (the
feature whose importance is lower than the threshold). Figure 2b, analogously,
shows the number of improved models by comparison to the corresponding base
regressor. Finally, Fig. 2c presents the ratio of improved models (i.e., number of
times the MSE decreases) out of the total number of models that had a fea-
ture removed. Each figure shows metrics values for thresholds ranging from 0
to −0.025 with a step of 0.0001. Furthermore, for a subset of threshold values
{0,−0.005,−0.01,−0.015,−0.02,−0.025} we also show in the graphs the corre-
sponding metric values, i.e. average MSE difference, noimprovements, and ratio
obtained by each of the proposed methods.
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(a) (b) (c)

Fig. 2. (a) Average MSE difference between the base regressor and the model when
discarding unimportant features according to each method for different threshold val-
ues. To note that positive values indicate a better performance of our strategies. (b)
The number of models having an MSE improvement when discarding unimportant fea-
tures according to each method for different threshold values. (c) Percentage of models
having an MSE improvement when discarding unimportant features according to each
method for different threshold values.
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Table 1. Threshold across walks and the corresponding average MSE difference
between the base regressor (all features are used) and the models when a feature was
removed according to the proposed methods.

Walk Thresh. PI best PI worst PI running

Average

MSE

difference

No

improve-

ments

Ratio Thresh. Average

MSE

difference

No

improve-

ments

Ratio Thresh. Average

MSE

difference

No

improve-

ments

Ratio

2011–2012 −0.0142 5.05e−05 4.0 1.0000 −0.0198 1.3e−05 101.0 0.9018 −0.0249 2.39e−05 26.0 0.8965

2012–2013 −0.0076 2.65e−06 6.0 0.8571 −0.0079 3.0e−06 158.0 0.8316 −0.0079 0.7e−06 135.0 0.7219

2013–2014 −0.0084 5.04e−06 1.0 1.0000 −0.0188 0.5e−05 144.0 0.8521 −0.0249 2.70e−06 9.0 0.7500

2014–2015 −0.0095 9.58e−07 1.0 1.0000 −0.0001 0.9e−05 129.0 0.8600 −0.0003 7.04e−06 110.0 0.4247

2015–2016 −0.0027 −1.76e−07 30.0 0.5000 −0.0198 27.8e−05 197.0 0.7787 −0.0246 1.06e−03 9.0 0.6923

2016–2017 −0.0083 1.02e−05 2.0 1.0000 −0.0199 1.90e−05 151.0 0.8629 −0.0249 4.89e−05 7.0 0.7000

2017–2018 −0.0079 1.53e−05 1.0 1.0000 −0.0195 4.7e−05 169.0 0.8009 −0.0214 4.17e−05 28.0 0.8235

Table 1 presents the optimal threshold per walk for each of the proposed
methods and reports the metrics presented in Sect. 5.5. With regards to finding
the optimal threshold, we identify it as the one that maximizes the average MSE
difference between the base regressor and the corresponding models trained with
a feature removed, provided that the feature has the feature importance lower
than the threshold. Average MSE differences with values higher than 0 are those
showing a clear improvement of the proposed strategies.

For experiment B, Fig. 3 presents the average MSE across each walk for the
models when removing the features according to the proposed strategies. If for
PI best and PI worst no feature was removed, we consider the MSE of the base
regressor. We compare the obtained results against the three presented baselines
in Sect. 5.4.

6.1 Discussion

Experiment A. In Fig. 2a we have inspected the variation of the average MSE
difference between the base regressor and the model trained without the feature
identified as irrelevant by the proposed strategies. In this context, naturally, for
the average MSE difference, values higher than 0 are sought, as they clearly
indicate a better prediction performance of our strategies by comparison to the
base regressor. Values close to 0 indicate that removing features does not bring
any improvement to the prediction performance. However, having the same per-
formance with a lower number of features is better for the computational time
and simplicity of the feature engineering process. Conversely, values lower than
0 indicate a prediction performance degradation and that most of the features
removed were, in fact, informative. In Fig. 2a the “0” value is marked with a
black, continuous line. In Fig. 2a, the reader can notice that the average MSE
difference shows different values across the presented walks. This fact may be
due to data-shift that makes the identification of non-representative features dif-
ficult. It negatively stands out the walk between 2015–2016 when PI best has the
lowest performance with values asymptotically close to 0 or below. The results
show that PI best systematically misclassifies important features as unimportant.
Similarly, for high threshold values, PI running suggests removing features that
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Fig. 3. Average MSE across different walks for the proposed methods when, for each
stock we remove the feature whose feature importance is lower than the optimal thresh-
old. Comparison to the three baselines: all feature are used (base regressor), remove
the feature with lowest feature importance as given by MDI (MDI), and remove the
feature with lowest feature importance as given by LIME (LIME).

are important and, as such, worsens the prediction performance of the regressors.
For the other walks, all the methods demonstrate their capability in identifying
unimportant features, thus providing a prediction performance improvement. As
a final remark, PI worst is the most stable strategy, and it outperforms the base
regressor in all cases.

Analyzing Fig. 2b, where we show the number of models that have an increase
in predictive power (i.e., the feature removal was effective), the reader can notice
that the best performing method is PI worst, followed by PI running and PI
best. The latter produces satisfactory results only for high threshold values. One
can expect such behavior since PI best removes the uninformative features (with
importance lower than 0), but the input features with the highest feature impor-
tance among them.

Figure 2c shows the ratio of the number of models whose predictive perfor-
mance has increased (with the feature removal) by the total number of models
that had a feature removed. There we can see a similar behavior of PI worst
and PI running for all the walks, but PI worst shows a higher ratio. Desirable
values are close to 1. At the opposite pole, we find the PI best method, which
displays discordant values: (i) below 0.5, meaning that less than half of the mod-
els have a significant improvement, (ii) asymptotically close to 1 which means
that all feature removals resulted in a loss decrease. Although this might seem
an optimal result, in Fig. 2b we notice a low number of feature removal actions.
Therefore, the ratio, in this case, does not provide informative insights.

Table 1 shows the optimal thresholds for each of the strategies together with
the corresponding evaluation metrics. Judging by the average MSE difference,
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PI running obtains the best results overall. Furthermore, the no improvements
indicates that PI worst is the best performing method. Thus, when removing
the feature with the lowest feature importance we obtain the highest number of
improvements. PI best is the worst performing of the three strategies, accounting
for a negative average MSE difference for the walk 2015–2016. Moreover, for the
same walk, the ratio of improvements over the total number of feature removals
performed is 0.5. Such a value means that half of the feature removals resulting in
lower performance than the base regressor are worst than the other half, which
has better performance. The different values of the optimal threshold across
different walks confirm the prediction models’ time-dependency.

Experiment B. Results presented in Fig. 3 highlight that the proposed strate-
gies outperform the three baselines. Specifically, PI best achieves similar average
MSE values of the base regressor on most of the walks and overall. Such a result
is encouraging as, although the prediction performance does not increase much,
employing a smaller number of features leads to a lower training and prediction
time.

Overall, PI worst has the second-best behavior, while PI running achieves
the best results out of the three proposed methods. Such a behavior meets our
expectations, as the MDI is known to be biased, especially when it comes to
time-series data-sets [19]. Consequently, MDI may over- or under-estimate fea-
ture importance, which we hypothesize is the explanation for the close average
MSE to the base regressors’ (using all the features). As for LIME, the reader can
notice that it has the worst performance amongst all methods. Therefore, we can
conclude that LIME consistently underestimates feature importance and mistak-
enly assigns lower feature importance to otherwise important input features. A
possible explanation of this behavior lies in the fact that LIME relies on per-
turbing the input observation around its neighborhood and observes the model’s
behaviors (predictions). Originally, LIME was designed with specific implemen-
tations for text and images but without focus on time-series data. Moreover,
financial time series have a low signal-to-noise ratio and exhibit a random-walk
behavior with a low degree of predictability, and opening the black-box mod-
els by “peaking” into the randomly generated neighborhood yields under-par
results.

Also, to be noted that in the case of financial time-series forecasting, in the
particular case of predicting the daily returns, both the input features and the
target variable values are small with an order of magnitude of 1e-4. Consequently,
the MSE has small values too, which constitutes a challenge for model training or
when it comes to distinguishing a performing model from an under-performing
one.

Statistical Significance. To test the statistical relevance of our results, we
exploit the Wilcoxon signed-rank test, a non-parametric test that determines
whether two samples were selected from populations having the same distri-
bution. Such a test is an alternative to the paired Student’s t-test, when the
distribution of the difference between two samples’ means cannot be assumed
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to be normally distributed, as in our case. We evaluate the null hypothesis H0

asserting that the MSE of each feature selection method, i.e. PI best, PI worst,
and PI running has the same distribution to the MSE of the base regressors. We
obtain the p-values: 0.0678, 7.3761e − 21, and 0.0179, respectively. In all tests,
we set the confidence level to 95%, that is, if p-value is below 0.05, then H0

can be rejected. Under this assumption, we can reject H0 for PI worst and PI
running, but not for PI best. However, the latter outcome is expected and due
to low number of feature removals, as shown in Table 1.

7 Conclusions

Algorithmic decision-making systems are becoming very popular in the financial
domain, prompting us to rely more and more on their decisions, with potentially
negative consequences for the affected users. Automatic feature selection might
be a step towards a more reliable and robust explainable artificial intelligence.
In this paper, we have made a step closer towards this goal by introducing three
strategies to efficiently remove features and, in doing so, increase the forecast-
ing power of the machine learning models. We employ the proposed approaches
over a set of stocks, and we determine for stock individually the important and
unimportant features. We achieve this goal by identifying an optimal threshold
for which: (i) we discard the features whose negative importance is the highest,
only if it is also below the optimal threshold, (ii) we discard the features whose
negative importance is the lowest, only if it is also below the optimal threshold,
or (iii) we always discard the feature whose importance is below the optimal
threshold. The predictive performance of the models trained with feature selec-
tion is improved compared to the models with no feature selection. Specifically,
we find that the predictive performance increases for the models trained with-
out the features indicated by the second and third strategies. Furthermore, we
compare the proposed strategies to state-of-the-art approaches such as the Ran-
dom Forest feature importance and local interpretable models and show that our
permutation-based strategies are superior at discovering unimportant features
for each time-series data.

A future line of work is to find the optimal subsets of features to discard and
not focusing on just one as in the proposed paper. Also, a series of experiments
can be performed by enriching the study with other machine learning models
and examining their behavior under the proposed strategies. Last but not least,
we would like to apply the proposed approaches to trading strategies such as
the statistical arbitrage or include them as a prediction step in the MultiCharts
trading platform, and in doing so, yet proving their effectiveness.
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Abstract. Online semi-supervised learning (SSL) from data streams is
an emerging area of research with many applications due to the fact that
it is often expensive, time-consuming, and sometimes even unfeasible to
collect labelled data from streaming domains. State-of-the-art online SSL
algorithms use clustering techniques to maintain micro-clusters, or, alter-
natively, employ wrapper methods that utilize pseudo-labeling based on
confidence scores. Current approaches may introduce false behaviour or
make limited use of labelled instances, thus potentially leading to impor-
tant information being overlooked. In this paper, we introduce the novel
Online Reinforce SSL algorithm that uses various K Nearest Neighbour
(KNN) classifiers to learn meta-features across diverse domains. Our
Online Reinforce SSL algorithm features a meta-reinforcement learning
agent trained on multiple-source streams obtained by extracting meta-
features and subsequently transferring this meta-knowledge to our target
domain. That is, the predictions of the KNN learners are used to select
pseudo-labels for the target domain as instances arrive via an incremen-
tal learning paradigm. Extensive experiments on benchmark datasets
demonstrate the value of our approach and confirm that Online Reinforce
SSL outperforms both the state-of-the-art and a self-training baseline.

1 Introduction

Data streams produced by sensor networks, customer click streams and scientific
data are ubiquitous in our society, and extracting knowledge from these fast-
evolving repositories poses a significant research challenge. To this end, online
supervised learning from streaming data is an active area of research with the
objective of building near-real-time models capable of continuously adapting to
the changes taking place in these fast-evolving repositories. In many real-world
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situations, a major challenge is dealing with a scarcity of class labels since such
labels are often difficult to obtain during training. Semi-supervised learning is
a sub-field of machine learning aimed at creating accurate models when not all
labels are immediately available [1]. That is, semi-supervised learning algorithms
feature improved performances due to training based on a small set of labelled
instances, combined with a large number of unlabelled instances [2].

Online semi-supervised learning (SSL) from data streams is an emerging
area of research, with existing approaches mainly employing cluster analysis
methods. For instance, online reliable semi-supervised learning (OReSSL) [3]
is an online SSL algorithm that maintains micro-clusters of labelled and unla-
belled instances and updates them as instances arrive. Semi-supervised pool
and accuracy-based stream classification (SPASC) [4] is another cluster-based
method used in online SSL; it maintains an ensemble of cluster-based classifiers
covering all the concepts in the data. Some online SSL algorithms use model
predictions for pseudo-labelling unlabelled instances. For instance, streaming
co-forest (SCo-Forest) [5] utilizes the most confident prediction of classifiers for
training each classifier in the forest. The authors in [6] introduce the Improved
Online Ensemble (IOE) algorithm and a distance-based approach for dealing
with missing labels which employs the one nearest neighbour (1NN) classifier
to predict the labels of unlabelled instances. Evolving streams via self-training
windowing ensembles (LESS-TWE) [7] is another online SSL method that uses
the predictions of ensembles as the labels for unlabelled instances. A drawback
of existing approaches is that they make limited use of the labelled data. In
addition, these approaches have the potential to introduce false behaviour by
selecting incorrect instances, potentially leading to sub-optimal results [1,2].

In our work, we introduce the Online Reinforce SSL algorithm that utilizes
meta-features to train a meta-reinforcement learning agent. The meta-features
are extracted from multiple-source datasets via the predictions of various KNN
classifiers. That is, our approach uses extracted meta-features to train a meta-
reinforcement (m-RL) agent to select the most appropriate predictions from
the KNN classifiers. We demonstrate that this algorithm accurately learns to
distinguish between correct and incorrect predictions and show that our results
outperform the current state-of-the-art.

This paper is organised as follows. Section 2 introduces related work, while
Sect. 3 details our Online Reinforce algorithm. An experimental evaluation fol-
lows in Sect. 4. We conclude our paper in Sect. 5.

2 Background and Related Work

This section describes the background and related work for meta-learning and
online semi-supervised learning.

2.1 Meta-learning

Meta-learning, or learning how to learn, is defined as training a model on source
tasks to achieve generalization for new tasks. In other words, meta-learning
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focuses on improving the performance of a model on a new task by training
the model on previous tasks. In meta-learning, it is assumed that the source and
target tasks come from similar distributions of tasks p(τ) [8]. More formally,
given meta-training set Dmeta−training = {D1, ...,Dn}, where Di is defined as
the training data for task the τi, meta-learning leverages the Dmeta−training for
learning parameters θ: P (θ|D) that can be generalized to new tasks [9].

Meta-learning has many applications and has been successfully used in
numerous domains. For instance, Fin et al. introduced a method for meta-
learning called model agnostic meta-learning (MAML) [9], in which the model
parameters are directly trained by gradient optimizations and adapted to new
tasks via optimizations or high-tuning based on the gradient of the target task.
Meta-learning has also been employed in reinforcement learning (RL) [8]. For
instance, the authors in [10] evaluate their Meta-RL model by training it on
small mazes and evaluating it on previously-unseen, larger mazes. The authors
in [11] introduced an algorithm called Meta-AAD for dealing with anomaly detec-
tion using a meta-deep RL model for detecting anomalies in data streams. Their
approach incorporates active learning in the labeling process [12]. Through the
extraction of meta-features from data, the trained model can be transferred and
applied to new datasets. Meta-RL selects possible anomalies, then the selected
instances are sent to an oracle, whereas Meta-AAD outperforms state-of-the-art
methods in terms of dealing with anomaly detection while reducing the false
positives rates.

2.2 Online Semi-supervised Learning

Online SSL is an active and emerging area of research [3]. A number of
approaches are based on the so-called wrapper-based methods, such as self-
training, an approach that selects the most confident predictions of a base classi-
fier to predict labels. For instance, [7] employed self-training for pseudo-labelling
in data streams by adding the predictions of an ensemble as the labels for unla-
belled instances. A major limitation of this approach is that it could emphasize
false behaviour [1,2]. The authors in [6] introduced a window-based SSL app-
roach for data streams employing the 1NN algorithm for labelling unlabelled
instances. In this method, labels are only added if the distance between neigh-
bours is closer than a threshold ε. A drawback of this technique is that it is
highly sensitive to the value of ε and that ’missed close-second’ neighbors may
lead to incorrect results. In [13], the authors use a mixture of active learning
and self training. When the confidence scores are lower than the threshold for
one instance, an oracle is asked to label the unlabelled instance. However, in a
streaming setting, asking an oracle for labels might not be feasible and could
end up being very expensive. Temporal label propagation (TLP) is an online
graph-based SSL algorithm introduced in [14]. In TLP, τ unlabelled instances
are propagated in a graph H by computing the harmonic solution. Although the
TLP algorithm achieves good performances with a minimal number of labelled
instances, traversing the graph may be prohibitive in a streaming environment.
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Other recent research on online SSL focuses on using clustering techniques
for dealing with scarce labelled data [4,15]. Semi-supervised pool and accuracy-
based stream classification (SPASC) uses an ensemble of classifiers introduced in
[4] for dealing with online SSL. The base classifiers in SPASC are cluster-based
and updated with each labelled and unlabelled batch of data. Each classifier is
used to describe a single concept. When a new batch arrives, a new classifier
is added to the pool if the batch contains a new concept. Otherwise, a pre-
existing classifier related to the concept represented by the new batch will be
updated based on this batch. There are many hyper-parameters involved in
SPASC, namely the batch-size, number of clusters, and method for detecting
the similarity between a concept and cluster. A limitation of this approach is
that clusters with similar characteristics are not merged to create larger clusters.
Thus, clusters may arise that cannot perfectly distinguish between classes.

Reliable SSL (ReSSL) [15] is another cluster-based algorithm. In this method,
micro-clusters are generated from labelled and unlabelled data. However, in order
to deal with changes in data streams, as each instance arrives, the weights of the
older micro-clusters are reduced. Online Re SSL (OReSSL) [3] extends ReSSL
in that each micro-cluster’s importance is based on its reliability in predicting
instances. For classification, an ensemble of KNN classifiers is used to classify
each incoming instance. SPASC and OReSSL both employ unsupervised learning
during the labeling process, which may result in reduced performances for some
datasets, as shown in our experimental Sect. 4. Next, we introduce our Online
Reinforce SSL algorithm.

3 Online Reinforce Algorithm

Our Online Reinforce framework takes advantage of both meta-learning and
reinforcement learning, as follows. Given a labelled data stream from a source
domain, transferable meta-features are learned by multiple KNN classifiers,
with k ranging from 1 to K. Thereafter, meta-reinforcement learning (m-RL)
is employed in order to predict the labels of unlabelled data streams pertain-
ing to different target domains. The newly labelled instances are buffered in a
sliding window of size w, allowing a base classifier to be trained incrementally.
The m-RL agent may be assimilated with an active-learning oracle that can
attribute labels to unlabelled instances. Our meta-features are described in the
next section.

3.1 Meta-features

In order to be transferable, meta-features should share a common feature space
and be, as much as possible, domain-independent. The meta-features employed
in this work are based on the (i) Euclidean distance in the feature space between
unlabelled instances and their nearest labelled neighbors, (ii) confidence scores
of the KNN classifiers, and (iii) level of agreement among classifiers.
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1 – Meta-distance
Given the feature vector of an unlabelled instance and its K nearest labelled

neighbors, the meta-distance is defined as

χ1 (xu) = {‖xu − k-NN (xu)‖2}K
k=1 (1)

Therefore, the K nearest labelled neighbors are inferred for each unlabelled
instance. Next, the Euclidean distances in between these neighbors and each
unlabelled instance are evaluated. Note that these distances are not necessar-
ily transferable from one domain to another, as the distance ranges may vary
considerably. Therefore, the meta-distance defined in Eq. 1 is standardized by
applying a z-score:

χ1 ←
{

χ1,i − μ

σ

}|χ1|

i=1

, (2)

where μ and σ are the mean and the standard deviation of the meta-distance
features during the warm-up period. Standardization ensures that feature vectors
can be transferred between domains.

2 – Confidence score
The next meta-feature consists of all the confidence scores (probabilities)

attributed to the unlabelled data by the K classifiers:

χ2 (xu) = {Prk-NN (xu)}K
k=1 (3)

Fig. 1. The workflow of our Online Reinforce SSL algorithm.
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3 – Pairwise agreements between KNN classifiers
The various classifiers do not necessarily attribute the same label to an unla-

belled instance (disagreement among classifiers). Therefore, a third meta-feature
is introduced in order to consider pairwise agreements between classifiers. This
feature is defined as:

χ3 = {χ3,i}(k2)
i=1 ,

k1 ∈ [1,K − 1]
k2 ∈ [k1 + 1,K] :

{
i = 1, 2, . . . ,

(
k

2

)
:
k1-NN = k2-NN ⇒ χ3,i = 1
k1-NN �= k2-NN ⇒ χ3,i = 0

(4)

It follows that the resulting meta-feature is obtained by concatenating the fea-
tures above, that is:

χ = {χ1‖χ2‖χ3} (5)

3.2 Pseudo-labelling with Meta-reinforcement Learning

Meta-reinforcement learning is employed for pseudo-labelling. Initially, a slid-
ing window of size w is filled with the first w labelled instances in the source
data stream. Once the sliding window is initialized, the data stream is processed
instance by instance. If a new instance is labelled, then it is added to the slid-
ing window, and the oldest instance is discarded. Otherwise, if the instance is
unlabelled, the KNN classifiers predict its first K nearest labelled neighbors via
the current sliding window. These nearest neighbors are employed to calculate
the meta-features defined in Sect. 3.1. According to the meta-features, the m-RL
selects the best predictions from the KNN classifiers and assigns a label to the
unlabelled instance. Subsequently, the base classifier is trained with the newly-
labelled instance. If the prediction confidence level is too low, then the unlabelled
instance is discarded. This approach is outlined in Fig. 1.

3.3 Training of the Meta-reinforcement Learning Model

The training of the m-RL model is performed with data streams from multiple-
source domains. Once trained, the m-RL model can be employed for pseudo-
labelling in various target domains. In order to improve its robustness and gen-
eralization capability, the m-RL model is trained against several data streams in
a sequential manner. Initially, meta-feature vectors are extracted from the source
data streams, as described in Sect. 3.1. These data streams contain both labelled
and unlabelled instances. If an instance is unlabelled, a label is assigned by the
KNN classifier following the procedure described in Sect. 3.2. The m-RL model
is used to determine which classifiers are accurate when predicting labels. As
there are many classifiers, the model must be able to determine which subsets of
classifiers (many classifier may converge to the same prediction) correctly predict
the labels and which do not. In order to train the m-RL model, a training data
stream is created. To avoid any bias toward a particular source data stream,
an equal number of instances are randomly sampled from each data stream.
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Algorithm 1. Online Reinforce SSL Framework
1: Initialize sliding-window
2: Initialize base-classifier
3: for (x,y) in warm-up do
4: base-classifier.fit(x,y)
5: sliding-window.append(x,y)
6: end for
7: for (xi, yi) in all instances do
8: if yi is not null then
9: base-classifier.fit(xi, yi)

10: sliding-window.add(xi, yi)
11: else
12: all-KNNs.fit(sliding-window) � Train all KNN classifiers
13: Meta-features = Obtain-Meta-features(xi,sliding-window)
14: action = m-RL(Meta-features)
15: if action == discard-instance then
16: Continue
17: else
18: ŷ = get-KNN-prediction(action) � Prediction of the KNNaction

19: base-classifier.fit(xi,ŷ)
20: end if
21: end if
22: end for

The feature space for the training set consists of the meta-feature vectors asso-
ciated with these instances. The corresponding training label space consists of
binary vectors indicating which subsets of classifiers accurately predict a label:
for each classifier, a value of one indicates a good prediction, while a value of
zero indicates an erroneous one:

ψ = {ψk}K
k=1 ,

{
ψk = 1 ⇒ ŷi,k = yi

ψk = 0 ⇒ ŷi,k �= yi,
(6)

where yi is the real label associated with instance i, ŷi,k is the label predicted
by the KNN classifier, and ψ is the so-called m-RL label; that is, the label
employed to train the m-RL model. These m-RL labels should be distinguished
from the original source labels. Indeed, their role is to indicate which KNN
classifiers correctly label the instances, while the original labels refer to the
classes associated with the meta-feature vectors.

Reinforcement learning involves four essential elements: the state St, the
policy πθ, the action At, and the reward Rt. The state consists of all extracted
meta-features (Sect. 3.1). The policy, which is a learnable neural network, deter-
mines which action the agent should take to increase the expected reward. Given
an unlabelled instance, the agent selects a classifier or a subset of classifiers for
label prediction (recall that the m-RL label ψ allows a subset of classifiers to
agree over the same label). Alternatively, it may discard an unlabelled instance
if the probability associated with the action is too small. The reward is equal to
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one if the selected classifiers properly predict the label (positive reward), zero
if the instance is discarded (neutral reward), and −ρ when the prediction is
incorrect (negative reward); the lower the value of −ρ, the greater the number
of instances discarded.

The problem may be formulated in terms of a Markov decision process
(MDP). This process aims to maximize the expected cumulative reward given
either the current state (value function) or the current state and action (value-
action function):

Vθ (st) = Et

[ ∞∑
k=0

γkRt+k+1 |st

]
(7)

Qθ (st, at) = Et

[ ∞∑
k=0

γkRt+k+1 |st, at

]
, (8)

where θ represents the parameters of the neural network associated with the
policy, γ ∈ [0, 1] is a discount factor (weighting between the short-term and
long-term rewards), Vθ (S) is the value function, Qθ (S,A) is the value-action
function, and Et is the mathematical expectation. Reinforcement learning solves
the MDP optimization problem by learning a value or a value-action function
approximating the expected cumulative reward. In the present work, proximal
policy optimization (PPO) is employed [16]. This policy is an actor-critic model,
in which the critic estimates the value function, while the policy is inferred by
the actor. The parameters are learned by minimizing a loss function consisting
of three components: the actor loss function, the critic loss function, and an
entropy term fostering exploration. The loss function associated with the critic
is given by:

LC
t = Et

[(
Vθ (st) − V̂τ

)2
]

, (9)

where V̂τ is an estimate of the value function based on the data. The loss function
associated with the actor is the clipped surrogate objective:

LA
t = Et

[
min

(
rt (θ) Ât, Ξ (rt (θ) ; 1 − ε, 1 + ε) Ât

)]
, (10)

where

rt (θ) ∧=
πθ (at |st )
πθ− (at |st )

, (11)

in which πθ− is the policy prior to the update, Ξ (rt (θ) ; 1 − ε, 1 + ε) is a function
that clips rt (θ) in the interval [1 − ε, 1 + ε], ε is the clipping hyperparameter,
and Ât is the generalized advantage estimator [17], which is defined as:

Ât
∧= δt +

T∑
t′

(γλ)t′
δt+t′ , (12)

where δt = rt + γVθ (st+1) − Vθ (st) and λ is a hyperparameter. The advantage
estimator determines the efficacy of the various actions while the Ξ function
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ensure that the policy remains stable by impeaching large updates [11,16]. The
total loss function is presented as follows:

Lt = Et

[LA
t (θ) + μ1LC

t (θ) + μ2S (πθ (· |st ))
]
, (13)

where S is the entropy, while μ1 and μ2 are weighting hyperparameters. The
mathematical expectation is approximated via data sampling [11]. Once the
training is completed, the PPO model can be employed for pseudo-labelling in
a target data stream. Algorithm 1 outlines the generation of the pseudo-labels
with the trained m-RL model in a streaming environment. Our experimental
results are presented in the next section.

4 Experimental Evaluation

In this section, we describe our experimental setup. We will first detail the
datasets used for the evaluation. Consequently, we will describe the state-of-
the-art algorithms and the hyper-parameters used for comparing the methods.

4.1 Datasets

Table 1 summarizes the data streams used in our evaluation. We employed the
following synthetic datasets:
Random radial basis function (RBF) generator is a synthetic dataset
employing random centroids for generating new instances: 50,000 instances par-
titioned into 50 clusters were created [18].
Random RBF generator drift is a variation of RBF featuring concept drifts.
In this variation, we can choose any number of centroids to contain drifts with
a change speed [18]. As in RBF, we created 50,000 instances by setting the
number of centroids to 50 and setting the number of drifting centroids to 25.
Furthermore, the changing speed for the drifting centroids was set to 0.89 [18].
Waveform is another synthetic dataset used in our evaluation. It uses waveform
formulas for creating synthetic instances, and we set the number of instances to
30,000 [18].

In addition, our evaluation also included the following real datasets:
Gas sensor array drift (GSD) is a multi-class dataset used to characterize
the behavior of six gases at various pressures [19].
Electrical is a binary dataset that relates to whether the prices of electricity
will go up or down [18].
Shuttle is an imbalanced NASA dataset containing space shuttle re-entry
parameters: 80% of the instances belong to the rad flow class, while the remain-
ing instances pertain to the remaining five classes [20].
Weather is a binary dataset containing 18,159 instances predicting whether it
will rain or not.
Room occupancy aims predicting whether an office is occupied or not based
on lighting, temperature, humidity, and carbon dioxide level [20].
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PAMAP tracks six subjects performing 18 different activities [21].
Nursery concerns the ranking of applications for access to nurseries. It has
12,960 instances, eight features, and five classes [20].

Table 1. Characteristics of the data streams.

Data stream Number of features Number of instances Number of classes

GSD 130 13616 6

Electrical 9 45311 2

RBF 11 50000 5

RBF drift 11 50000 5

Waveform 22 30000 3

Shuttle 10 58000 7

Weather 9 18159 2

PAMAP 54 59425 6

Room occupancy 6 20560 2

Nursery 9 12959 5

4.2 SSL Algorithms

Online Reinforce: For our method, we used the IOE algorithm [6] with Hoeffd-
ing trees (HTs) as base learners [18]. The parameters for the base models were
set according to the recommended values in [6]. For the implementation of PPO,
we used the stable baseline’s [22] implementation with the recommended hyper-
parameters1. Two fully-connected neural networks, each consisting of two hidden
layers of 64 neurons with tangent hyperbolic (tan-h) activation functions, were
used as the network architecture in both the actor and critic models. A linear
activation function was used for the output layer of the critic model, while a
softmax activation function was used for the output layer of the actor model.
The learning rate for training the neural networks was set to 0.0003, while the
sliding window size w was set to 1000. Further, the value for ρ was set to 15. For
each dataset, we train ORSSL based on the other datasets and set the episode
length to 50000. The KNN classifiers used were 1NN, 3NN, 5NN, and 7NN. All
of the above-mentioned values were set by inspection.
OReSSL [3], introduced earlier, is a state-of-the-art method for dealing with
SSL in data streams. Hyper-parameters were selected based on the recommended
values in the OReSSL paper.
SPASC [4] is another online ensemble algorithm using cluster-based algorithms
as base estimators. The batch size and the number of clusters are tuned for each
individual dataset based on the values suggested in the original paper. SPASC
1 Our repository is available at https://github.com/pvafaie/Online-Reinforce-SSL.

https://github.com/pvafaie/Online-Reinforce-SSL
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has two modes, namely Heuristic and Bayesian. In the results section, we show
the results for the mode with the highest accuracy.
Self-training is a wrapper method widely used in the literature due to its low
complexity and high performance [1]. Thus, we used it as our baseline. The
confidence scores of the unlabelled instances, along with their predictions, were
calculated. When the confidence was higher than a threshold, the prediction
was used as the label for the unlabelled instance. In our experiments, we paired
self-training with the IOE algorithm and set the confidence threshold to 91%.

4.3 Experimental Results

This section will compare the results of our algorithm with those of the algo-
rithms described in Sect. 4.2. For each dataset, we use four different labelled
rates, namely 30%, 10%, 3%, and 1%. For all the evaluations, we used pre-
quential test-then-train [18] to obtain the accuracy of the classifiers. Table 2
demonstrates the accuracies of the SSL algorithms on all the datasets.

Fig. 2. The Nemenyi test results with α set to 0.05.

Based on the obtained results, we conclude that our Online Reinforce SSL
algorithm often outperforms the state-of-the-art in terms of model accuracy,
with OReSSL coming in second. This is the case for all levels of unlabelled
data across the target datasets. Our results also confirm that combining the
IOE algorithm with Online Reinforce SSL benefits learning. For instance, in the
PAMAP dataset with 1% labelled data, using our algorithm with IOE resulted
in 76% accuracy, while the standalone IOE had a 42.84% accuracy; that is 34%
improvement by incorporating IOE into Online Reinforce.

4.4 Discussion

Our Online Reinforce SSL algorithm produces the highest accuracy values
against most datasets, which had varying percentages of labelled instances. How-
ever, OReSSL yielded the highest values for the RBF and Gas (GSD) streams,
and SPASC produced slightly higher values than Online Reinforce SSL for the
Nursery stream, implying that, for these datasets, clustering benefits learn-
ing. The lower accuracies obtained when employing self-training indicates that
pseudo-labelling adds too many incorrect labels, which leads to a reduction in
the performance of the IOE algorithm [1].
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Table 2. Accuracies of SSL algorithms for different label percentages. OR is shorthand
for Online Reinforce, while ST stands for self-training.

Dataset Label% Acc

OR + IOE OReSSL SPASC ST + IOE IOE

GSD 1% 57.90 67.17 51.20 53.41 55.65

3% 67.01 81.77 63.74 56.00 55.34

10% 77.03 91.19 79.10 61.40 58.99

30% 82.98 96.12 87.90 76.42 70.31

Electrical 1% 72.50 66.02 67.73 64.62 73.24

3% 75.06 69.97 69.18 72.78 74.96

10% 79.83 74.32 72.63 77.40 79.32

30% 83.28 80.71 78.51 82.46 82.25

RBF 1% 86.43 91.49 63.71 50.91 55.67

3% 85.60 91.48 66.12 51.37 61.12

10% 87.03 91.71 69.77 69.06 76.77

30% 86.65 91.86 71.39 82.26 81.63

RBF drift 1% 56.83 52.42 44.88 35.53 37.84

3% 58.62 56.18 47.44 47.44 40.59

10% 61.06 59.10 50.05 50.32 49.88

30% 59.65 60.74 53.7 56.91 54.85

Waveform 1% 84.40 80.12 78.46 80.92 83.45

3% 83.53 83.05 80.56 79.82 82.00

10% 83.02 82.47 79.82 80.56 82.37

30% 83.08 83.47 78.46 82.45 81.58

Shuttle 1% 99.19 98.00 96.88 96.07 94.07

3% 99.12 98.18 96.20 94.70 94.76

10% 99.18 98.87 96.65 97.38 97.91

30% 99.53 99.20 97.42 99.40 99.20

Weather 1% 73.85 67.35 71.80 67.49 67.53

3% 72.63 66.75 70.54 57.97 67.24

10% 71.47 72.71 70.58 67.65 68.66

30% 71.21 76.42 71.78 70.14 70.41

PAMAP 1% 76.76 56.86 42.27 64.29 42.83

3% 83.77 61.26 43.30 75.79 60.08

10% 93.94 66.39 46.58 83.59 91.77

30% 97.10 66.66 49.30 94.97 96.58

Room occupancy 1% 98.89 97.39 98.05 98.67 98.73

3% 98.90 98.36 98.06 98.65 98.39

10% 98.87 98.52 97.84 98.82 98.83

30% 98.89 98.68 98.42 98.87 98.84

Nursery 1% 73.78 60.80 81.71 71.50 70.36

3% 80.51 67.59 84.59 75.74 78.49

10% 83.33 73.77 86.30 79.85 81.38

30% 87.35 78.28 87.65 84.84 86.71

AVG rank 1.5 2.7875 3.6875 3.6375 3.3875
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(a) PAMAP

(b) RBF

Fig. 3. Number of unlabelled instances correctly labelled by the Online Reinforce
SSL algorithm. Green show all unlabelled instances, blue depicts correctly labelled
instances, while red corresponds to instances labelled incorrectly. (Color figure online)

Next, we present the results of the Nemenyi posthoc test shown in Fig. 2.
This test was used to highlight the contrasts in the algorithms against all the
datasets. The figure shows that there is a critical difference between our Online
Reinforce SSL algorithm and OReSSL with α set to 0.05. This difference can
also be seen in the average ranks, which were 1.5 for Online Reinforce SSL, 2.78
for OReSSL, and 3.68 for SPASC.

Recall that the Online Reinforce SSL algorithm is a wrapper method that
is meant to be paired with numerous base classifiers. When compared to other
wrapper methods, such as self-training, our algorithm performs significantly bet-
ter, indicating that the use of meta-features increases the percentage of correct
instances added to the training set.

For instance, Fig. 3 depicts the number of Online Reinforce SSL labels against
the PAMAP and RBF datasets, each with 70% missing labels. The results indi-
cate that the resultant model is clearly able to distinguish between data that
can and cannot be labelled, thus leading to a reduction in the number of false
positives. That is, in both figures, the red section is insignificant compared to
the green and blue sections, which confirms the value of our meta-reinforcement
learning approach.

Figure 4 illustrates the percentage of each action selected by the Online Rein-
force SSL algorithm for the PAMAP and RBF datasets with 70% unlabelled
data. Note that for the PAMAP dataset, the agent mostly chose 1NN, while
for RBF, the most chosen action was 3NN. Interestingly, the percentages for
the actions are different for each dataset, meaning - as may be expected - that
selecting actions is dependent on the characteristics of the data.
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(a) PAMAP (b) RBF

Fig. 4. Percentages of the actions (KNN learners) chosen by Online Reinforce SSL for
the PAMAP and RBF datasets with 30% labelled data.

5 Conclusion and Future Work

This paper introduced the Online Reinforce methodology for dealing with miss-
ing labels in data streams. Our algorithm employs KNN classifiers to con-
struct meta-features that subsequently act as input to an m-RL agent, thus
enabling our online learning algorithm to select the best pseudo-label for an
unlabelled instance as it arrives in the stream. A crucial component of our app-
roach is the fact that learning of the meta-RL agent is occurring across multiple
domains while using transferable meta-features. We compared our Online Rein-
force method with state-of-the-art Online SSL approaches and showed that our
algorithm consistently yielded promising results for numerous benchmark data
streams.

In the future, we plan to investigate the use of the Online Reinforce SSL
algorithm in highly imbalanced domains, where the number of instances in one
or more classes is far less than in the others. It follows that using online classifiers,
other than KNN, should be investigated in our future work. Moreover, we plan
to conduct ablation studies to explore the influence of the various meta-features
on the outcome of the meta-RL agent. In addition, handling stream susceptible
to evolving data distributions and emerging concepts is another area of future
research. Finally, the use of co-training in a streaming environment requires
further investigation [5].
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Abstract. The term GreenAI refers to a novel approach to Deep Learn-
ing, that is more aware of the ecological impact and the computational
efficiency of its methods. The promoters of GreenAI suggested the use of
Floating Point Operations (FLOPs) as a measure of the computational
cost of Neural Networks; however, that measure does not correlate well
with the energy consumption of hardware equipped with massively par-
allel processing units like GPUs or TPUs. In this article, we propose a
simple refinement of the formula used to compute floating point opera-
tions for convolutional layers, called α-FLOPs, explaining and correcting
the traditional discrepancy with respect to different layers, and closer to
reality. The notion of α-FLOPs relies on the crucial insight that, in case
of inputs with multiple dimensions, there is no reason to believe that the
speedup offered by parallelism will be uniform along all different axes.

1 Introduction

Artificial Intelligence, especially in its modern incarnation of Deep Learning,
has achieved remarkable results in recent years, matching – and frequently tres-
passing – human capabilities in a number of different tasks. These techniques
usually require the deployment of massive computational resources, with huge
implications in terms of energy consumption. To make a couple of examples
the hyper-realistic Generative Adversarial Network for face generation in [19]
required training on 8 Tesla V100 GPUs for 4 days; the training of BERT [12],
a well known generative model for NLP, takes about 96 h on 64 TPU2 chips.
Researchers at the University of Massachusetts [26] have recently performed a
life cycle assessment relative to the training of large state-of-the-art AI mod-
els, discovering that the process can emit a quantity of carbon dioxide roughly
equivalent to the lifetime emissions of five medium cars. Other authors reached
similar conclusions [20].

Until a few years ago, the ecological impact of artificial intelligence was
entirely neglected by researchers and industry, who were mostly focused on
improving performance at any cost. However, this has changed in recent years,
with a growing awareness that this trend of research is not sustainable any
more [28], and an increased attention towards energetic efficiency [27].
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The GreenAI paper [25] summarizes well the goal and objectives of the new
philosophy: it promotes a new practice in Deep Learning, that is more focused
on the social costs of training and running models [2,7,15], encouraging the
investigation of increasingly efficient models [5,21].

To this aim, it is essential to identify widely acceptable and reliable metrics
to assess and compare the cost and efficiency of different models. Several met-
rics are investigated and discussed in [25]; in conclusion, the number of Floating
Point Operations (FLOPs) is advocated and promoted, since it is easily com-
puted for Neural Networks while offering a hardware independent, schematic but
meaningful indication of the actual computation cost of the model [20].

Unfortunately, the mere computation of FLOPs does not cope well with
the massively parallel architectures (GPU and TPU) typically used in Deep
Learning [17]. Efficient implementation of neural networks on these architec-
tures depends both on complex algorithms for General Matrix Multiplication
(GEMM) [18] and sophisticated load balancing techniques [13] splitting the
workload on the different execution units. As we shall see, these algorithms
usually perform better for specific layers and, especially, along specific axes of
the input dimension of these layers.

Our claim is that it is possible to study the performance of neural layers
(especially, convolutions) as “black boxes”, measuring the execution time for a
number of different configurations, and separately investigating the execution
time for increasing dimensions along different axis.

As a result, we propose a simple correction to the formula used to compute
FLOPs for convolutional layers, that provides better estimations of their actual
cost, and helps to understand the discrepancy with respect to the cost of different
layers.

Organization of the Article. This paper has the following structure. In Sect. 2
we briefly discuss some possible metrics for measuring the efficiency of models;
we particularly focus on FLOPs, discussing their computation for some basic
operations relevant for Neural Networks. In Sect. 3 we introduce the GEMM
(GEneral Matrix Multiply) operation, that helps to understand the canonical
computation of FLOPs for the Convolution layers. In Sect. 4 we present some
experiments which show that, if Convolutions are executed on GPU, FLOPs
are not a good measure for efficiency. That is the motivation for introducing
a correction, that we call α-FLOPs, defined and discussed in Sect. 5. Section 6
offers more experimental results, validating the formula with respect to growing
input dimensions along specific axes.

2 Measures of Efficiency

In this section we review some of the metrics that can be used to measure the
efficiency of an AI algorithm, following the discussion of [25].
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Carbon Emission. As already remarked in the introduction, the present work
is motivated by the need to reduce the energy consumption of training large
state-of-the-art AI models. Unless a significant fraction of such energy comes
from renewable sources, reducing the power required for AI training means that
less carbon dioxide is released into the atmosphere. Unfortunately, precise quan-
tification of carbon emission associated with computational tasks is impractical,
since it depends both on the hardware hosting the computation, and also on the
local energy production and distribution infrastructure.

Number of Parameters. The number of parameters of a Deep Learning model is
an interesting and hardware-independent measure of the complexity of models.
Unfortunately, the number of parameters alone is poorly correlated with the total
training time, since parameters may refer to different operations. For example,
Convolutional Layers have relatively few parameters, relative to the kernel of
the convolution; this does not take into account the actual cost of convolving
the kernel over the input.

Execution Time. The total running time is a natural measure of efficiency: faster
algorithms are better. Execution time depends on the number of instructions
executed and hence is strictly correlated with the total energy consumption [24];
therefore, it is a good proxy of power usage when direct energy measurement is
impractical. There are a couple of important considerations that must be made
when considering execution time as a metric: (i) it requires an implementation of
the algorithm being measured, which may take time and effort to be developed;
(ii) execution time is hardware- and language-dependent, since it depends on
both the underlying hardware and on the efficiency of the compiler/interpreter.

FLOPs. The number of FLoating Point OPerations (FLOPs) is a metric that is
widely used in the context of numerical computations [14,22,23,29]. It is defined
as the total count of elementary machine operations (floating point additions
and multiplications) executed by a program. Floating point operations have a
latency of several CPU cycles on most current processor architectures [3,9,10],
although the use of pipelining, multiple-issue and SIMD instructions significantly
increase the throughput. In general, floating point operations have higher latency
than most of the other CPU instructions (apart from load/stores from/to main
memory, where memory access is the bottleneck); therefore, they tend to domi-
nate the execution time of numerical algorithms. For this reason, the number of
floating point operations is used as a proxy for the execution time of a program.

As an example, suppose that v and w are n-dimensional arrays. Then, the
inner product between v and w

〈v;w〉 =
n∑

i=1

viwi (1)
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requires n multiplications and n − 1 additions, for a total of 2n − 1 FLOPs.
Similarly, the matrix-vector product between an m × n matrix A and an n-
dimensional vector v requires m inner product, for a total of 2mn − m FLOPs.

Since operations similar to (1), where a sequence of multiplications are added
together, are very common, modern CPUs supports FMA (Fused Multiply-Add)
instructions, where a multiplication followed by an addition are executed as a
single operation and require less time than two separate instructions. For this rea-
son, the definition of FLOPs is usually modified to be the total number of FMA
operations needed for a full iteration of an algorithm. With this definition (that
it is usually followed by some authors), the inner product of two n-dimensional
arrays requires n FLOPs, while the product between an m × n matrix with an
n-dimensional vector requires nm FLOPs. Nonetheless, since we are interested
in measuring the performance under massively parallel architectures, through
this paper we will follow the classical definition of FLOPs.

3 Computation of FLOPs for Basic Layers

The basic operation that dominates training of Neural Network models is the
dense matrix-matrix product. This operation is often referred in the technical
literature as GEMM (for GEneral Matrix Multiply), owing its name to the xGEMM
family of functions provided by the Basic Linear Algebra Subprograms (BLAS)
library [6]. BLAS is a widely used collection of subroutines implementing basic
operations involving vectors and matrices, such as vector addition, dot product,
vector-matrix multiplication and so on; these functions act as building blocks on
which more complex linear algebra computations can be programmed. Being at
the core of many applications, the performance of BLAS primitives are critical,
so most hardware vendors provide their own optimized implementations, e.g.,
cuBLAS for nVidia GPUs [11], and clBLAS for OpenCL devices [8], including
various brands of GPUs and multicore processors.

A GEMM operation takes the general form:

C ← αAB + βC (2)

where A,B,C are matrices of compatible size, and α, β are scalars. The matrix-
matrix product C ← AB is a special case of (2) where α = 1, β = 0.

Assuming that the size of A is m×k and the size of B is k ×n, then the size
of C must be m×n and the direct computation of (2) using vector dot products
requires:

– 2mkn + mn FLOPs for the matrix product αAB, assuming that dot prod-
ucts are implemented with an inner loop involving a multiply-accumulate
operation like s ← s + xiyi

– mn FLOPs for the computation of βC
– mn additional FLOPs for the computation of the matrix sum αAB + βC
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from which we get that a total count of 2mkn + mn + mn + mn = mn(2k + 3)
FLOPs are required for the general GEMM. Neglecting lower-order terms we
can approximate the operation count with 2mkn.

We can apply this result for the layers of a Neural Network. Consider a Dense
layer, with input and output dimensions Din and Dout, respectively. We need
to compute the product between the weight matrix of size Dout × Din and the
input, plus a bias term B of dimension Dout; therefore, the number of FLOPs is

2DinDout − Din + Dout

As above, we omit the lower order terms as they are asymptotically negligible.
As a consequence, we will consider a Dense layer to have a number of FLOPs
equal to

2DinDout (3)

The case of a convolutional layer is slightly more complex. Let us consider the
case of a 2D convolution. Let (Win,Hin, Cin) the dimension of the input (written
with the notation (Width, Height, Channels)), (Wout,Hout, Cout) the dimension
of the output (depending on the stride and number of kernels), and let K1,K2

be the dimensions of the kernel. Then, the number of FLOPs is given by

2 · K1 · K2 · Cin︸ ︷︷ ︸
kernel dim

·Wout · Hout︸ ︷︷ ︸
input dim

· Cout︸︷︷︸
output dim

(4)

In the following, we shall frequently consider the case of convolutions with
stride 1 in “same” padding modality. In this case, Win = Wout and Hin = Hout,
so we shall drop the subscripts, and just write W and H. Moreover, in the
frequent case kernels are squared, we drop the subscripts in K1,K2 and just
write K.

4 The Problem of Convolutions

A dense layer of dimension Din×Dout is the same as a unary convolution (K = 1)
with Cin = Din, Cout = Dout and H = W = 1; it is easy to experimentally
check that both require the same time to be evaluated. However, as soon as we
distribute the total number of FLOPs of Eq. (4) across different dimensions,
we observe a significant speedup, that has no justification in terms of FLOPs.
This raises concerns about the use of FLOPs for estimating running time (and
hence energy consumption). In this section we provide empirical evidence of this
phenomenon.

In Fig. 1, we compare the time required to evaluate a dense layer with several
different convolutional layers with a same amount of FLOPs computed according
to (4); the execution time has been measured on an NVIDIA Quadro T2000
graphics card and a Intel Core i7-9850H CPU. Times are averaged over 2000
experiments for each scenario.
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327.68 M FLOPs
Dense layer

(D1, D2) time (ms)
(12800, 12800) 6.401
Convolutional layers

(W,H,Cin, Cout,K1,K2) time (ms)
(1, 1, 12800, 12800, 1, 1) 6.392
(1, 2, , 6400, 12800, 1, 1) 3.224
(2, 2, 6400, 6400, 1, 1) 1.626
(4, 4, 3200, 3200, 1, 1) 0.454

(a) (b)

Fig. 1. Comparison of execution times for Dense and Convolutional layers with the
same amount of FLOPs. In Table (a) we provide numerical values for layers with 327.68
Million FLOPs; in the right we show the execution time of similar configurations for
increasing dimensions. All layers for a given value of 2x (i.e. along any vertical section)
have the same amount of FLOPs.

In particular, in Table 1a we evaluate a scenario of maximum size compat-
ible with our hardware, corresponding to a Dense layer of size 12800 × 12800
(163, 852, 800 parameters), and compare it with several different convolutional
layers with the same total amount of FLOPs. The dense layer takes about 6.4
milliseconds (ms), while a unary convolution with Cin = Cout = 3200 on an
input of spatial dimension 4 × 4 just takes 0.46 ms, approximately 16 times
faster.

In Fig. 1b, we repeat the same experiment, varying the total amount of flops
with powers of 2. For the dense layer we go from dimension 100×100 to dimension
(100 × 27) × (100 × 27).

In the following experiments, we keep the number of FLOPs constant while
we increase some dimensions and proportionally decrease others. If (4) had a
good correlation with time, we should observe straight horizontal lines.

In all experiments, we consider four different amounts of FLOPs identified by
different colors: 2025 × 106 (red line in Fig. 2), 900 × 106 (green line), 490 × 106

(orange line) and 225 × 106 (blue line). We progressively increase K from 1
to 30. In the first experiment, we compensate it by enlarging the input and
output dimension of channels (Cin and Cout), keeping a constant (small) spatial
dimension 10 × 10.

In the second test we compensate the growing convolutions by reducing the
spatial dimensions, starting from an initial dimension of 300×300. Channels are
constant, in this case. Result are reported in Fig. 2.

In the case of the first experiment (Fig. 2a), apart from the exceptional perfor-
mance of 1 × 1 convolutions already discussed in [17], we observe the expected
constant behavior. However, we have a completely different result in the case
of the second experiment (Fig. 2b). Here the execution time increases with the
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(a) Increasing K, decreasing C (b) Increasing K, decreasing W, H

(c) Same as (a) on a CPU (d) Same as (b) on a CPU

Fig. 2. Execution time vs different input dimensions, keeping the number of FLOPs
constant. In plot (a) we increase K and proportionally decrease Cin and Cout. In plot (b)
we increase K and proportionally decrease W and H. We would expect constant lines,
but this is not the case. In plots (c) and (d) we repeat the experiment on a (single
core) CPU, instead of a GPU. (Color figure online)

kernel dimension, possibly at a quadratic rate; this growth should have been
compensated by the simultaneous decrease along both spatial dimensions, but
clearly this is not the case.

By comparing the results of the two experiments, we can draw another con-
clusion. Remember that the number of FLOPs along lines of the same color is the
same; therefore, the nonlinear behaviour in Fig. 2b is not due to an overhead but,
on the contrary, there is an important speed up of the computation of increasing
relevance for small kernels. In other words, the formula computing FLOPs is
overestimating the total number of operations, presumably because it does not
take into consideration the fact that convolutions can be easily parallelized along
spatial dimensions (but not quite so along kernel dimensions).

The goal of the work is to derive a simple correction to the formula for
computing FLOPs explaining the observed behaviours. The correction might
depend on the specific hardware, but it should be possible to evaluate the relevant
parameters in a simple way.
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5 α-FLOPs

In this section we introduce our correction to the formula for computing FLOPs,
that we call α-FLOPs. Instead of FLOPs, that count the total number of floating
point operations, α-FLOPs provide an estimation of the “perceived” FLOPs,
that are less than FLOPS due to parallelism. The crucial idea is that when we
run in parallel an algorithm with a multidimensional input there is no reason to
suppose that the total number of operations have similar latency along different
dimensional axes. Our proposal is to adjust the formula for computing FLOPs
by multiplying it by the following scaling factor:

αK(S) =
(

SK + βK(S − SK)
S

)γK

(5)

where S = W × H, and 0 < βK � 1, 0 < γK ≤ 1, and 1 ≤ SK ≤ S (S1 = 1) are
parameters (moderately) depending from K. We call α-FLOPs the correction to
the usual formula for FLOPs by the previous factor.

The parameters βK and γK can be easily evaluated by regression on a given
GPU/TPU. Although they are hardware dependent, some preliminary investi-
gations seem to suggest that fluctuations are smaller than expected.

For the purposes of this article, using an Invida Quadro T2000 GPU we
obtained good predictions just distinguishing two cases: K = 1 and K > 1. For
K = 1, βK = 0.02 and γK = .99; for K > 1, βK = 0.001 and γK = .56.

Before discussing the main properties of αK(S), let us have a look at the
prediction of the execution time (dashed line) for the problematic experiments
shown above. More examples will be presented in Sect. 6.

The experiment in Fig. 1 is replicated, with the time predicted by means of α-
FLOPs, in Fig. 3b. In the Table on the left, we give the computed and predicted
times for the convolutional configurations (1–4) with 327.68M FLOPs.

Similarly, in Fig. 4 we show the predicted execution time for the experiments
of Fig. 2.

5.1 Main Properties of the α-correction

Before discussing our intuition behind (5), let us point out some of its distinctive
properties. First of all the equation can be rewritten in the following, possibly
more readable form:

αK(S) =
(

(1 − βK) × SK

S
+ βK

)γK

(6)

From that, the following properties can be observed:

1. αK(S) < 1 for any K and S. This is evident, given the constraint Sk < S.
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327.68 M FLOPs
Convolutional layers
config. time predicted
(1) 6.392 6.154
(2) 3.224 3.351
(3) 1.626 1.847
(4) 0.454 0.611

(a)

(b)

Fig. 3. Predicted execution time by means of α-FLOPs for the same convolutional
configurations of Fig. 1; in (b) predictions are depicted as dashed lines.

2. If βK = 1, then αK(S) = 1, independently from γK and S. In this case, we
recover the original expression for FLOPs, that is hence a subcase with no
additional speedup.

3. α1(1) = 1 independently from βK and γK . This is due to the fact that S1 =
1 = S. The case S = 1,K = 1 is important since, as discussed at the beginning
of Sect. 3, it gives the relation between convolutional and dense layers, and for
a dense layer we want no correction. Moreover, the fact that the fundamental
equation α1(1) = 1 holds independently from β and γ improves the stability
of the property.

4. The formula with γ = 1 already gives reasonable approximations. However, it
tends to underestimate the execution time for large S, in a more sensible way
for increasing values of K. By raising the correction to a power smaller than
1 we mitigate this phenomenon without giving up the appealing properties
provided by β.

5. The parameter SK increases slowly with K. The point is to take into account
a plausible overhead for growing dimensions of the kernel, especially when
passing from K = 1 to K > 1. This constant can be possibly understood
as a minimum expected spatial dimension for kernels larger than 1. It does
not make much sense to apply a kernel of dimension 3 × 3, on an input of
dimension 1 × 1, and it is hard to believe that reducing the dimension of the
input below the dimension of the kernel may result in any speedup. However,
fixing SK = K does not seem to be the right solution.

5.2 Rationale

We now provide a possible explanation for the α-FLOP formula (6). Let us
consider a computational task requiring a given amount of work W . Let β ∈ [0, 1]
be the fraction of that work that can be executed in parallel; therefore, the
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(a) Increasing K, decreasing C (b) Increasing K, decreasing W, H

Fig. 4. Predicted execution time by means of α-FLOPS, depicted as dashed lines, for
the same convolutional configurations of Fig. 2

sequential portion of the task is (1 − β)W . Let us scale the problem by a factor
N > 1; in a purely sequential framework, the amount of work would become
NW . However, Gustafson’s law [16] suggests that when we scale the size of a
parallel task, the sequential part tend to remain the same. This means that the
amount of work actually done by the parallel program is (1−β)W +βNW . The
ratio between the actual amount of work done by the parallel version versus the
expected amount of work done by the serial version is:

(1 − β)W + βNW

NW
=

1 − β

N
+ β (7)

where we readily recognize the backbone of Eq. (6). We already discussed
the small adjustments we had to do to this formula to fit it to the empirical
observations.

Gustafson’s law describes the theoretical speedup of a parallel task in terms
of growing resources, on the reasonable assumption that programmers tend to set
the problem size to fully exploit the available computing power. Gustafson’s law
was meant to address a shortcoming of a similar law formulated by Amdahl [1],
that on the other hand assumes a fixed workload that does not depend on the
number of execution units used.

In our case, computational resources are fixed and we focus on different
input dimensions. Our assumption is that suitable programs and load balancing
techniques will optimize the use of resources, eventually resulting in different
speedups along different spatial dimensions.

6 Additional Experimental Results

We conducted several experiments to assess the rate of grow of the execution
time along different input dimensions. Data providing the base for this paper are
available on Github (https://github.com/asperti/alpha flops dataset), together

https://github.com/asperti/alpha_flops_dataset
https://github.com/asperti/alpha_flops_dataset
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with analysis tools and plotting facilities, including the predictions by means of
α-FLOPs. Additional data are currently being collected.

All experiments discussed in this Section involve convolutions where we pro-
gressively increase the dimension of a specific input axis x, keeping a constant
dimension for the others axes Xc. For each experiment, we draw the execution
time for three different dimensions of an auxiliary axis xaux in Xc. We found
this more understandable than plotting three dimensional surfaces, that would
be quite difficult to draw and decipher.

In the case of the plot in Fig. 5a, x is W , and xaux is Cin; H = 100 and the
Kernel dimension is 3 × 3. For Fig. 5b, x is Cout, and xaux is Cin; H = W = 100
and the kernel dimension is 3× 3. For Fig. 6a, x is Cout, and xaux is H; Cin = 50
and the kernel dimension is 1 × 1. Finally, for Fig. 6b, x is Cin, and xaux is K;
H = W = 10 and Cout = 1000.

(a) Increasing W for different values of Cin

and a kernel of dimension 3x3
(b) Increasing Cout for different values of
Cin and a kernel of dimension 3x3

Fig. 5. Execution time and predictions by means of α-FLOPs (dashed lines)

6.1 Dense Layers vs Batchsize

We already observed that a dense layer can be assimilated to a convolutional
layer with kernel 1 × 1 and spatial dimension 1. In this perspective, it is plau-
sible to conjecture that the batchsize can be assimilated to a spatial dimension.
Indeed, the general wisdom across Deep Learning researchers and practitioners
is that, for making predictions over a large set of data – e.g., over the full training
or test set – it is convenient to work with a batchsize as large as possible, com-
patibly with the resource constraints of the underlying hardware, e.g., memory.
This has no justification in terms of FLOPs, since the total number of operations
is always the same; however, using a large batchsize is much more efficient.
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(a) Increasing Cout for different values of H,
with a kernel of dimension 1x1

(b) Increasing Cin for different kernels 1x1,
3x3 and 5x5

Fig. 6. Execution time and predictions by means of α-FLOPS (dashed lines)

Fig. 7. Computational time for dense layer increas-
ing the batchsize. The jump between 32 and 33 is
probably due to some discretization in the software.

To test this behaviour, we
take large dense layers (at the
limit of our hardware capac-
ity), and then apply them to
inputs with increasing batch
size.

The results are summa-
rized in Fig. 7. Under the
FLOPs assumption, the lines
should be straight lines depart-
ing from the origin. In terms
of α-FLOPs we start with
the cost relative to batch-
size 1, and then slowly grow
along the batchsize dimen-
sion, reflecting the experi-
mental behaviour.

7 Conclusions

In this paper we introduced the notion of α-FLOPs that is meant to provide a
simple numerical correction to the mismatch between FLOPs and execution time
in case of hardware equipped with massively parallel processing units like GPUs
or TPUs. Since this kind of hardware is the norm for AI applications based on
Deep Neural Networks, α-FLOPS may become an important tool to compare
the efficiency of different networks on a given hardware.

The definition of α-FLOPs is based on the crucial observation that, in case
of an input with multiple dimensions, the computational speedup offered by
parallelism is typically far from uniform along the different axes. In particular,
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we provided extensive empirical evidence that growing spatial (and batchsize)
dimensions in convolutional layers has less impact than growing different dimen-
sions. The idea of dissecting the cost along the different input dimensions was
inspired by recent investigations of the first author on computational complexity
over finite types [4].

The notion of α-FLOPs lays between the number of parameters of the layer,
and the traditional notion of FLOPs; in a sense, it can be understood as a
revaluation of the former as a measure of cost: if it is true that, in the case of
convolutions, the number of parameters does not take into account the actual
cost of the convolution, the traditional notion of FLOPs seems to largely over-
estimate it.

Much work is still ahead. On the experimental side, we are currently collect-
ing more data, on architectures with different computing capabilities. On the
theoretical side, it would be interesting to provide a low-level algorithmic jus-
tification of α-FLOPs. The formula itself, that was derived empirically, can be
eventually fine-tuned and possibly improved, both in view of additional obser-
vations, and of a better understanding of the phenomenon. In particular, we
mostly focused on the spatial dimension, since it is the axis most affected by
parallelism, but the dependency along different axes does eventually deserve
additional investigation.

In this article, we mostly focused on convolutional and dense layers, since they
are the most computationally intensive layers in Neural Networks. Extending
the work to additional layers, or more sophisticated forms on convolutions, like
Depth-Separable Convolutions, is another major research direction.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large-scale
computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485
(1967)

2. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: tracking and predict-
ing the carbon footprint of training deep learning models. CoRR, abs/2007.03051
(2020)

3. Arm cortex-r8 mpcore processor (2018). https://developer.arm.com/
documentation/100400/0002/floating-point-unit-programmers-model/
instruction-throughput-and-latency?lang=en. Accessed 26 Apr 2021

4. Asperti, A.: Computational complexity via finite types. ACM Trans. Comput. Log.
16(3), 26:1–26:25 (2015)

5. Asperti, A., Evangelista, D., Piccolomini, E.L.: A survey on variational autoen-
coders from a green AI perspective. SN Comput. Sci. 2(4), 301 (2021)

6. Blackford, L.S., et al.: An updated set of basic linear algebra subprograms (BLAS).
ACM Trans. Math. Softw. 28(2), 135–151 (2002)

7. Cao, Q., Balasubramanian, A., Balasubramanian, N.: Towards accurate and reli-
able energy measurement of NLP models. CoRR, abs/2010.05248 (2020)

8. clBLAS. http://clmathlibraries.github.io/clBLAS/. Accessed 26 Apr 2021
9. AMD Corporation. Software optimization guide for AMD family 19h processors

(pub), November 2020. https://www.amd.com/system/files/TechDocs/56665.zip.
Accessed 25 Apr 2021

https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en
https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en
https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en
http://clmathlibraries.github.io/clBLAS/
https://www.amd.com/system/files/TechDocs/56665.zip


Dissecting FLOPs Along Input Dimensions for GreenAI Cost Estimations 99

10. Intel Corporation. IntelR© Xeon scalable processorR© instruction throughput and
latency, August 2017. https://software.intel.com/content/dam/develop/public/
us/en/documents/intel-xeon-scalable-processor-throughput-latency.pdf. Accessed
25 Apr 2021

11. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html. Accessed 26 Apr 2021
12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep

bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, vol. 1
(Long and Short Papers), pp. 4171–4186. Association for Computational Linguis-
tics (2019)

13. Gadou, M., Banerjee, T., Arunachalam, M., Ranka, S.: Multiobjective evaluation
and optimization of CMT-bone on multiple CPU/GPU systems. Sustain. Comput.:
Inform. Syst. 22, 259–271 (2019)

14. Gordon, A., et al.: Morphnet: fast & simple resource-constrained structure learning
of deep networks. In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1586–
1595. IEEE Computer Society (2018)

15. Gupta, U., et al.: Chasing carbon: the elusive environmental footprint of comput-
ing. CoRR, abs/2011.02839 (2020)

16. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

17. Jeon, Y., Kim, J.: Constructing fast network through deconstruction of convolu-
tion. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8
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Abstract. Modeling of dynamical systems is essential in many areas
of engineering, such as product development and condition monitoring.
Currently, the two main approaches in modeling of dynamical systems are
the physical and the data-driven one. Both approaches are sufficient for
a wide range of applications but suffer from various disadvantages, e.g.,
a reduced accuracy due to the limitations of the physical model or due to
missing data. In this work, a methodology for modeling dynamical sys-
tems is introduced, which expands the area of application by combining
the advantages of both approaches while weakening the respective dis-
advantages. The objective is to obtain increased accuracy with reduced
complexity. Two models are used, a physical model predicts the system
behavior in a simplified manner, while the data-driven model accounts
for the discrepancy between reality and the simplified model. This hybrid
approach is validated experimentally on a double pendulum.

Keywords: Hybrid modeling · Gray-box modeling · Double
pendulum · Modeling of dynamical systems with friction

1 Introduction

For a very long time, the standard approach to modeling dynamical systems
in physics and engineering has been via first principles such as Newton’s law
or the conservation of energy, mass and so on. These equations usually result
in differential equations which – depending on the accuracy of the underlying
assumptions – allow to predict the system behavior more or less accurately.
In addition, the use of parameters allows describing entire classes of systems in
different operating conditions. One disadvantage of this approach is that complex
phenomena such as friction can only be considered with great computational
effort or simplifying assumptions, which will lead to decreasing accuracy [1].

With the increases in computational power seen in recent years, another mod-
eling approach has been getting ever more popular: data-driven modeling. This
class of models is based exclusively on measurements and can therefore only be
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used for already existing systems. The measurements are used to generate the
data-driven model, e.g., using machine learning algorithms [2–5]. The parame-
ters of the model are numerical values, often without any empirical or physical
interpretation (also referred to as hyperparameters), hence it is also referred to
as black-box model [6,7].

The measurements correspond to an explicit system for explicit operating
conditions. Therefore, data-driven models are often only suitable under oper-
ating conditions represented in the data. A variety of modeling algorithms are
available that are independent of the specific system under consideration, i.e.,
that are of black-box nature. Taking the relationship between input and output
of the model into account, different algorithms can be used so that the accu-
racy and complexity of the model can be adapted to the respective needs. Once
the model is generated, modeling runs quickly [8]. However, this approach has
the disadvantage that a large amount of data is often required, which can be
computationally and financially expensive [8,9].

Since both approaches have their advantages and disadvantages, the idea is
to introduce another category between black- and white-box modeling, in which
the disadvantages are minimized while the respective advantages are retained.
Various modeling approaches fall into the category of gray-box models, such as
differential equations with parameter estimators [10] or black-box models with
constraints based on physical laws [11,12]. Another example is hybrid model-
ing [6,12], which will be discussed in this paper. While hybrid and gray-box
modeling are used as synonyms in other works [13], these two terms are clearly
distinguished here. The term “hybrid” describes a bundling or also a crossing.
In engineering, this is understood as a combination of different technologies.
Thus, it can be a coupling of a physical submodel with a data-driven submodel,
regardless of the type of coupling, but the model boundaries of the submodels
have to be drawn clearly.

The objective of this work is to combine a white- with a black-box model
to obtain hybrid models of higher accuracy for complex systems. Reasons for
this may either be that not all phenomena can be described physically, or that
there is an insufficient amount of data to build an accurate data-driven model.
Another goal is to obtain increased accuracy and decreased complexity, and thus,
an increase in efficiency concerning the prediction of new data.

2 Hybrid Modeling: The Framework

Hybrid modeling is defined in several ways, depending on the discipline – in
material technology, hybrid modeling is understood differently than in process
engineering. But even within the same discipline, the definition of hybrid model-
ing is not consistent. In this work, hybrid modeling is understood as the coupling
of a parametric model with a non-parametric model [6,7,14].
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2.1 Parametric Modeling

In a parametric model, the structure is defined a priori through knowledge of
the underlying system [15]. The model parameters have a physical or empirical
interpretation, in contrast to the hyperparameters in black-box models men-
tioned above. The physical models considered in this paper represent a sub-
group of these parametric models, which are obtained via conservation laws,
thermodynamics, kinetics, or transport laws. Such a model can be expressed
mathematically by

Yf = f(Xf , wf ), (1)

where Yf is the output, Xf is the input, and wf is a set of physical parameters
[14].

2.2 Non-parametric Modeling

The structure of a non-parametric model is defined by data [15]. While these
models do not have parameters with physical or phenomenological interpreta-
tion, they may still depend on hyperparameters such as the number of layers in
a neural network or the degree of a polynomial. Non-parametric models can for
example be generated with splines [16], wavelets [17] or also with machine learn-
ing algorithms [18]. Expressed in mathematical form, a non-parametric model
can be written as

Yg = g(Xg, wg). (2)

Here Yg is the output, Xg is the input and wg is a set of hyperparameters [14].
The data-driven model considered in this paper can be regarded as such a non-
parametric model.

2.3 Hybrid Modeling

As addressed in Sect. 1, a hybrid model (sometimes called hybrid semi-
parametric model) is the combination of a parametric and a non-parametric
model [6,15]. These two single models can be combined in two different ways:
the two models can be connected in parallel so that the following applies

Y = f(Xf , wf ) ∗ g(Xg, wg), (3)

where the symbol ∗ can be an arbitrary operation like addition or multiplication.
A serial concatenation is also possible so that either

Y = f ◦ g = f(g(Xg, wg), wf ) (4)

or
Y = g ◦ f = g(f(Xf , wf ), wg) (5)

is valid [10,19]. Mixed forms are also conceivable [14,19].
So far, hybrid modeling has mainly been used in the context of chemical

processes, bioprocesses or process engineering [6,7,15]. The first sources that
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address an application to mechanical systems date back to the 90s [19]. However,
hybrid modeling has seldomly been applied to mechanical systems in practice
so far. This opens up an area of modelling that has been little explored so far,
but where the multitude of approaches from the fields of process engineering can
be used for orientation. The proposed method in this paper is closely related
to [20], where analytical equations for a discrepancy model are obtained via the
popular SINDy algorithm [21]. Thus, it is no longer a hybrid model in the strict
sense like the method presented in this paper, as two equation-based models are
used simultaneously.

3 Proposed Hybrid Methodology for Oscillating Systems

A dynamical system with friction is considered for which measurements of the
form (x(tk), tk) for k ∈ {0, 1, . . . , N} are available.

3.1 Approach

For the considered system, the physical model is given in the form of an ordinary
differential equation (ODE)

ẋ(t) = F (t, x(t)). (6)

This ODE can be used to generate the physical model f from Eq. (1) that maps
the state x(t) at time t to the subsequent state x(t + Δt). Thus, f is defined via
x(t + Δt) = f(x(t),Δt), where Δt is a model parameter.

However, it is assumed that the present physical model f cannot exactly
represent the real system, be it due to a lack of modeling approaches for certain
phenomena or due to an infeasible complexity. Hence, the notation for this impre-
cise trajectory is (x̃(tk), tk) for k ∈ {0, 1, . . . , N} and x̃(tk) = f(x(tk−1),Δt). It
should be emphasized that the calculation for x̃(tk+1) is based on the measured
value x(tk) and not on the value of the physical model x̃(tk).

This leads to a discrepancy between the physical model and the measurement
of

Δx(tk) = x(tk) − x̃(tk) (7)

for a time increment Δt = tk − tk−1, which is shown in Fig. 1.
The idea behind the proposed hybrid methodology is that it should be pos-

sible to reconstruct the measured value x(tk) by jointly using a physical model
f (see Eq. (1)) and a data-driven model g (see Eq. (2)) that predicts Δx(tk). By
rearranging, equation (7) can be written as

x(tk) = x̃(tk) + Δx(tk) (8)
⇒ x(tk) = f(x(tk−1),Δt) + g(Xg, wg). (9)

This leads to a hybrid (or discrepancy) model. The parametric model f is based
on the differential equation in Eq. (6) and provides x̃(tk) based on the previous
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Fig. 1. Discrepancy between measurements and an inaccurate physical model.

time step x(tk−1). The non-parametric model g provides Δx(tk) and is trained
with real data.

The proposed methodology is shown in Fig. 2. The process is divided into
two parts: The training of the data-driven model g and the prediction of a new
trajectory.

The structure is neither purely parallel, nor purely serial. The output of the
physical model f forms the input of the data-driven model g, implying a serial
structure, but the two models are also subsequently summed, corresponding to
a parallel structure

Y = f(Xf , wf ) + g(f(Xf , wf ), wg) = f + (g ◦ f). (10)

Here, the arbitrary operation ∗ from Eq. (3) is replaced by the addition +.

measurement physical
model

model forphysical
model

data-driven
modeling

model for

initial
conditions

training

prediction

initial
conditions

trajectory

Fig. 2. Schematic representation of the proposed approach for hybrid modeling of
dynamical systems.
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3.2 Training

As is common in the supervised learning setting, the data-driven part of the
hybrid model needs to be trained in an offline phase. To calculate the discrep-
ancy Δx(tk) from Eq. (7), the physical model f is used to obtain the trajectory
(x̃(tk), tk). Then, the data-driven modeling algorithm is given the values x̃(tk)
as input and the values Δx(tk) as the desired output. The result is a data-driven
model g which maps x̃(tk) on Δx(tk). Depending on the application, other input
parameters are possible as well.

3.3 Prediction

For the prediction, only the initial conditions X(t0) of the system under con-
sideration are known. The remainder of the trajectory (X(tk), tk) is calculated
iteratively. In the first step, the physical model f is used to calculate X̃(tk+1)
based on the previous state X(tk). This is then the input for the data-driven
model g, which provides ΔX(tk+1). Then, X(tk+1) is obtained according to
Eq. (8). This leads to the next iteration loop, where X̃(tk+2) is computed with
the help of X(tk+1), and the process is repeated until the oscillation has com-
pletely decayed or its amplitude falls below a certain threshold.

3.4 Challenges in Real Experiments

The hybrid procedure presents several challenges, which can best be illustrated
by using the physical pendulum as a simple example, shown in Fig. 3.

Fig. 3. The physical pendulum a) at time t0 in its starting position with angular
velocity ϕ̇(t0) = 0 rad/s and b) at time t1 with angular velocity ϕ̇(t1) > 0 rad/s.

The pendulum is initially deflected and then released from rest. In the data
collection phase, the position (x, y, z) of the pendulum is measured at discrete
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points in time tk. The physical model f is defined by an ODE in polar coordi-
nates, i.e., for the pendulum angle ϕ̈(tk) = F (ϕ̇(tk), ϕ(tk), tk), where the angle
between the pendulum arm and the vertical axis is denoted by ϕ.

Based on euclidean measurements, the first challenge is to determine the
desired physical quantity, i.e., the angle ϕ. In the example, it is rather simple to
obtain the angle ϕ(tk) from (x, y, z)(tk). However, there are cases in which this
is not as simple, for example if the component under consideration is part of a
larger system and can therefore only be measured indirectly. For the data-driven
discovery of suitable coordinates, see also [22]. Since only the position (x, y, z)(tk)
is measured, time derivatives need to be calculated via numerical differentiation.
For the given ODE, the first derivative ϕ̇ = dϕ/dt is required. Measurement
noise is increased by numerical differentiation, and the measurements may have
to be smoothed in advance, cf. [21] for an extensive discussion on numerical
differentiation of noisy data.

By introducing Φ(tk) = (ϕ, ϕ̇)(tk), the physical model f allows predicting
Φ(tk+1). As the dimension of Φ is greater than one, there are several options for
the discrepancy model:

a) Δϕ and Δϕ̇ are both determined using a data-driven model,
b) use a single data-driven model for Δϕ, then calculate ϕ̇ via numerical differ-

entiation, or
c) use a single data-driven model for Δϕ̇, then calculate ϕ via numerical inte-

gration.

For a), a data-driven model with multiple outputs (in this case, two) has to be
trained, which can be computationally expensive. Note the special case where
both outputs are fully decoupled and thus independent. Due to the independent
discrepancy, ϕ̇ might no longer correspond to the actual derivative of ϕ, which
would pose another problem.

For b), only a single data-driven model with the target Δϕ has to be trained.
Thus, ϕ can be calculated and ϕ̇ is obtained using numerical differentiation.
Although this guarantees compatibility, the accuracy of numerical differentiation
is problematic. The accuracy of the rather simple central difference quotient
is O(Δt2) [23], and the accuracy for the backward difference quotient, which
would have to be used in the prediction, is O(Δt) [23]. As with the generation of
the derivates, the errors due to the uncertainties of the data-driven model also
increase due to the numerical differentiation.

As before, for c), only a single data-driven model with the target Δϕ̇ has to
be learned. Thus, ϕ̇ can be calculated and ϕ is obtained using numerical integra-
tion. This guarantees compatibility. The accuracy of the numerical integration is
higher than with the numerical differentiation. Using the closed Newton-Cotes
quadrature rules, the error for n = 1 is O(Δt3), where n indicates the order and
also the number of reference points (n + 1). The error for n = 4 is only O(Δt6),
and may be further decreased by further increasing n [16].

After the target for the data-driven model has been selected, the input and
the algorithm need to be considered. This process can be represented as the
composition of two functions
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g(h(x̃), wg) = g(h(ϕ̃, ˙̃ϕ), wg). (11)

As previously defined, g is the non-parametric function representing the black-
box model and – if necessary – h can be a function for preprocessing or select-
ing quantities. This choice depends on the specific application and cannot be
answered in a general fashion.

4 Validation: Double Pendulum

A double pendulum is used for the validation of the methodology, as illustrated in
Fig. 4. The double pendulum consists of two pendulum arms which are connected
with a pivot bearing, all of which have non-zero masses. The first pendulum arm
is also connected to the surrounding by a grounded pivot bearing with non-zero
mass. The distance between the two pivot bearings is denoted by l1, the distance
from the second pivot bearing to the end of the second pendulum arm by l2.
The centers of mass of the two pendulum arms S1 and S2 are defined by s1
and s2. The two degrees of freedom are ϕ1 and ϕ2, which are defined as the
angles between the pendulum arms under the vertical axis, respectively [24].
Both angles are measured in radians.

The double pendulum dynamics are non-linear and it is well known that they
exhibit chaotic behavior for large deflections [25]. This means that the system
behavior is highly dependent on the initial conditions, and small uncertainties
have a significant effect on the course of the trajectory [26]. This considerably
complicates the modeling of such a system. The equations of motion of the
undamped double pendulum, and thus the basis of the physical model f , are as
follows [24][(
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where g ≈ 9.81 m/s2 is the gravitational constant. The mass moments of inertia
related to the respective centers of gravity are denoted by JS1 and JS2. The
masses of the two pivot bearings together with the mass of the first pendulum
arm is denoted by m1, the mass of the second pendulum arm is denoted by m2.
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g
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Fig. 4. Sketch of the double pendulum under consideration.

For the experimental validation, friction is introduced into the system via the
pivot bearings. Furthermore, the initial conditions chosen in Sects. 4.1 and 4.2 are
such that the dynamic behavior of the double pendulum is largely reproducible
except for small deviations.

4.1 Synthetic Data

The first validation step is the proof of concept based on synthetic measurements.
These synthetic measurements are simulative results obtained by exact equations
of motion, including damping. There is no noise in the data and the damping
can be adjusted as required. Viscous damping is used for the two pivot bearings.

The double pendulum has two degrees of freedom and is described by a sec-
ond order ODE, which means that Φ = (ϕ1, ϕ̇1, ϕ2, ϕ̇2). After reviewing the
data of the double pendulum and considering the advantages and disadvantages
in Sect. 3.4, it was decided to define two decoupled data-driven models g1 and
g2, where g1 models Δϕ̇1 and g2 models Δϕ̇2. The angles ϕ1 and ϕ2 are then
determined via numerical integration using Newton-Cotes quadrature. Since the
damping is neglected in the physical model and therefore has to be integrated
into the hybrid model using the data-driven one, it is straightforward to choose
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the angular velocity ϕ̇1, respectively ϕ̇2 as the input parameters for g1 and
g2, respectively. For the approximation of g1 and g2, any suitable data-driven
modeling approach may be chosen. In comparison to 19 other machine learning
methods from 5 different fields – linear regression models, regression trees, sup-
port vector machines, Gaussian process regression models and ensembles of trees
– bagged trees have proven to be effective, based on the root-mean-square error
and five-times cross validation. However, other methods may be equivalently
suitable for this application. Bagged trees are an ensemble of decision trees. A
tree is a directed graph used to represent binary decision rules. The graph con-
sists of a root, inner nodes and end nodes or leaves. The inner nodes represent
observations or decisions, the leaves represent the resulting targets [18,27]. The
term bagged stands for bootstrap aggregated. By resampling the existing train-
ing sets, new training sets are generated so that a large number of decision trees
can be trained. The overall model is then composed as the weighted sum of the
individual trees [18,27,28].

The compositions are defined as

g1(h1(Φ̃), wg,1) = g1( ˙̃ϕ1, wg,1) = Δϕ̇1, (14)

g2(h2(Φ̃), wg,2) = g2( ˙̃ϕ2, wg,2) = Δϕ̇2. (15)

The hyper-parameters wg,1 and wg,2 of the non-parametric functions g1 and g2
are default values proposed by MATLAB and contain information about the
number of trees that are bagged, which is 30, the associated weight of each tree,
which is one, and the minimal number of leaves of each tree, which is eight.

The results are shown in Fig. 5. The trajectory which was used for the
training is shown in blue, the initial conditions were Φ(t0) = (2π/3 rad, 0 rad,
0 rad/s, 0 rad/s). For prediction, the initial conditions Φ(t0) = (π/3 rad, 0 rad,
0 rad/s, 0 rad/s) are chosen, the corresponding synthetic measurement is shown
in black. The time increment is Δt = 0.1 s. The trajectory predicted with the
introduced method is shown in red dotted lines. It can be seen that the dis-
crepancies Δϕ̇1 and Δϕ̇2 are almost identical for the target trajectory and the
prediction. Due to the large time increment, the discrepancies are also large and
ensure that the hybrid model decays within about 5 s. This example under ideal
conditions shows that the hybrid methodology used does indeed deliver very
good results under the right conditions, e.g., when the initial conditions of the
target trajectory are comparable to the initial conditions of the training.

4.2 Measurements

After the proof of concept of the proposed methodology has been carried out,
the procedure is applied to real measurements of a double pendulum.

The experimental setup can be seen in Fig. 6. A camera-based measurement
system is used to record the positions of the three points p0, p1 and p2. These
points are chosen in such a way that the angles ϕ1 and ϕ2 can be calculated.
The angular velocities ϕ̇1 and ϕ̇2 are determined by means of numerical differ-
entiation. A time increment of Δt = 0.01 s is used.
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Fig. 5. a) The discrepancies Δϕ̇1 and Δϕ̇2 of the training data (blue), the target
trajectory (black) and those calculated with the data-driven models g1 and g2 (dotted
red). b) The angles ϕ1 and ϕ2 of the training data (blue) and the prediction (dotted
red) as a result of the hybrid modeling with time increment Δt = 0.1 s. (Color figure
online)

The measurements are carried out with two different initial conditions: In series
A (shown in Fig. 6), the first pendulum arm is deflected at an angle of ϕA

1 (t0) =
π/2 rad, while the second pendulum arm has an angle of ϕA

2 (t0) = 0 rad to the
vertical axis. In series B, the first pendulum arm is deflected at an angle of ϕB

1 (t0) =
π/2 rad, and the secondpendulumarm is deflected at an angle ofϕB

2 (t0) = π/2 rad.

Fig. 6. Front view (left) and top view (right) of the experimental setup of the double
pendulum. The initial conditions correspond to series A.
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Fig. 7. a) The discrepancies Δϕ̇1 and Δϕ̇2 of the training data (series B, blue) and
those calculated with the data-driven models g1 and g2 (dotted red). b) The angles ϕ1

and ϕ2 of the training data (series B, blue) and the prediction (dotted red) as a result
of the hybrid modeling with time increment Δt = 0.01 s. (Color figure online)

In both series the double pendulum is released from rest so that the initial angular
velocities ϕ̇1(t0) and ϕ̇2(t0) are 0 rad/s for both pendulum arms.

For the physical model, the same equations of motion are used as for the
synthetic data, see Eqs. (12) and (13). The model parameters are determined
computationally based on the geometry (measured with a caliper gauge) and are
subject to a large uncertainty. The main difference between the application and
synthetic data lies in the choice of the functions for preprocessing and selecting
h1 and h2. The discrepancy between the physical model and the real system is
not only due to viscous damping, therefore the input for the data-driven model
has to be expanded. The definition of h1(Φ̃) = (ϕ̃1, ˙̃ϕ1) and of h2(Φ̃) = (ϕ̃2, ˙̃ϕ2)
has proven to be suitable in the application. This difference can be explained
by the fact that in these measurements, in addition to the obvious discrepancy
due to the lack of friction in the two pivot bearings (which cannot necessarily be
modeled by viscous damping), there are uncertainties in the model parameters
and aerodynamic drag is also neglected.

Figure 7 shows the case where one time series of series B was used for training.
The initial conditions of series B were used for the prediction. Ideally, the predic-
tion should accurately reconstruct the training data. Figure 7 shows that the pre-
diction is very close to the trajectory that was used for training. Occasionally there
are small differences, but the frequency and decay match very well.
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Figure 8 shows the case in which different initial conditions are used for train-
ing and in prediction. One time series of series B was used to train the hybrid
model. The target trajectory - and thus the initial conditions for the prediction
- is from series A. Even though another trajectory was used in training, the
predicted trajectory is very close to the target trajectory at almost all points in
time; Small differences in amplitude can only be seen in isolated cases.

Fig. 8. a) The discrepancies Δϕ̇1 and Δϕ̇2 of the training data (series B, blue), the
target trajectory (series A, black) and those calculated with the data-driven models g1
and g2 (dotted red). b) The angles ϕ1 and ϕ2 of the training data (series B, blue), the
target trajectory (series A, black) and the prediction (dotted red) as a result of the
hybrid modeling with time increment Δt = 0.01 s. (Color figure online)

The advantage of the second combination is that the amplitude of the training
trajectory is higher than the amplitude of the target trajectory. Hence, the states
of the target trajectory are well covered. When looking at the opposite scenario,
series A is used for training and the prediction is applied to series B, then the
results are significantly less accurate. This is in the nature of data-driven models:
depending on the method used, extrapolation can be a difficult matter. Thus,
the goal should be to cover the space of input variables for the data-driven model
as complete as possible.
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5 Discussion

The results generated with the presented hybrid modeling methodology under-
line the potential for accurate long-term prediction. For a nonlinear system like
a double pendulum, good results are obtained despite large uncertainties in the
system’s parameters. This shows that in addition to obvious errors in the phys-
ical model, unknown errors can also be handled by the hybrid approach.

An advantage over other hybrid modeling methods, such as the method in
[20], is that there are no restrictions on either the choice of the physical model f
or the choice of the data-driven model g, as well as regarding their compatibility.
For the physical model, an ODE can be used, but it is also possible to work with
a finite element model. For the data-driven model, an entire range of machine
learning methods is available.

6 Summary

A methodology for hybrid modeling of oscillating systems is presented. A data-
driven model is used to represent the discrepancy that exists between a simplified
physical model and reality. Special attention is paid to data preprocessing, the
choice of the output for the data-driven model, and the choice of the data-driven
model itself.

The methodology is validated using synthetic and measured data of a nonlin-
ear system, the double pendulum. The focus is less on reducing the complexity,
but on increasing the accuracy, since without the hybrid modeling at this point
it is very challenging to make accurate long-term predictions using physics-based
models only.

In the future, the reduction of complexity is a main goal. In addition, the
study of chaotic systems will also be of great interest.
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Abstract. This article investigates the origin of numerical issues in
maximum likelihood parameter estimation for Gaussian process (GP)
interpolation and investigates simple but effective strategies for improv-
ing commonly used open-source software implementations. This work
targets a basic problem but a host of studies, particularly in the literature
of Bayesian optimization, rely on off-the-shelf GP implementations. For
the conclusions of these studies to be reliable and reproducible, robust
GP implementations are critical.
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1 Introduction

Gaussian process (GP) regression and interpolation (see, e.g., Rasmussen and
Williams 2006), also known as kriging (see, e.g., Stein 1999), has gained signifi-
cant popularity in statistics and machine learning as a non-parametric Bayesian
approach for the prediction of unknown functions. The need for function pre-
diction arises not only in supervised learning tasks, but also for building fast
surrogates of time-consuming computations, e.g., in the assessment of the per-
formance of a learning algorithm as a function of tuning parameters or, more
generally, in the design and analysis computer experiments (Santner et al. 2003).
The interest for GPs has also risen considerably due to the development of
Bayesian optimization (Mockus 1975; Jones et al. 1998; Emmerich et al. 2006;
Srinivas et al. 2010. . . ).

This context has fostered the development of a fairly large number of open-
source packages to facilitate the use of GPs. Some of the popular choices are the
Python modules scikit-learn (Pedregosa et al. 2011), GPy (Sheffield machine
learning group 2012–2020), GPflow (Matthews et al. 2017), GPyTorch (Gard-
ner et al. 2018), OpenTURNS (Baudin et al. 2017); the R package DiceKriging
c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 116–131, 2022.
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Table 1. Inconsistencies in the results across different Python packages. The results
were obtained by fitting a GP model, with constant mean and a Matérn kernel
(ν = 5/2), to the Branin function, using the default settings for each package. We
used 50 training points and 500 test points sampled from a uniform distribution on
[−5, 10]×[0, 15]. The table reports the estimated values for the variance and length scale
parameters of the kernel, the empirical root mean squared prediction error (ERMSPE)
and the minimized negative log likelihood (NLL). The last row shows the improvement
using the recommendations in this study.

Library Version Variance Lengthscales ERMSPE NLL

scikit-learn 0.24.2 9.9 · 104 (13, 43) 1.482 132.4

GPy 1.9.9 8.1 · 108 (88, 484) 0.259 113.7

GPytorch 1.4.1 1.1 · 101 (4, 1) 12.867 200839.7

GPflow 1.5.1 5.2 · 108 (80, 433) 0.274 114.0

OpenTURNS 1.16 1.3 · 104 (8, 19) 3.301 163.1

GPy “improved” 1.9.9 9.4 · 1010 (220, 1500) 0.175 112.0

(Roustant et al. 2012); and the Matlab/GNU Octave toolboxes GPML (Ras-
mussen and Nickisch 2010), STK (Bect et al. 2011–2021) and GPstuff (Vanhatalo
et al. 2012).

In practice, all implementations require the user to specify the mean and covari-
ance functions of a Gaussian process prior under a parameterized form. Out of the
various methods available to estimate the model parameters, we can safely say that
the most popular approach is the maximum likelihood estimation (MLE) method.
However, a simple numerical experiment consisting in interpolating a function (see
Table 1), as is usually done in Bayesian optimization, shows that different MLE
implementations from different Python packages produce very dispersed numeri-
cal results when the default settings of each implementation are used. These signif-
icant differences were also noticed by Erickson et al. (2018) but the causes and pos-
sible mitigation were not investigated. Note that each package uses its own default
algorithm for the optimization of the likelihood: GPyTorch uses ADAM (Kingma
and Ba 2015), OpenTURNS uses a truncated Newton method (Nash 1984) and the
others generally use L-BFGS-B (Byrd et al. 1995). It turns out that none of the
default results in Table 1 are really satisfactory compared to the result obtained
using the recommendations in this study1.

Focusing on the case of GP interpolation (with Bayesian optimization as the
main motivation), the first contribution of this article is to understand the origin
of the inconsistencies across available implementations. The second contribution
is to investigate simple but effective strategies for improving these implementa-
tions, using the well-established GPy package as a case study. We shall propose rec-
ommendations concerning several optimization settings: initialization and restart
strategies, parameterization of the covariance, etc. By anticipation of our numer-
ical results, the reader is invited to refer to Fig. 1 and Table 2, which show that
significant improvement in terms of estimated parameter values and prediction
errors can be obtained over default settings using better optimization schemes.

1 Code available at https://github.com/saferGPMLE.

https://github.com/saferGPMLE
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(a) optimized NLL (b) prediction error

(c) optimized lengthscales

Fig. 1. Improved (cf. Sect. 6) vs default setups in GPy on the Borehole function with
n = 20d = 160 random training points. We remove one point at a time to obtain (a) the
distribution of the differences of negative log-likelihood (NLL) values between the two
setups; (b) the empirical CDFs of the prediction error at the removed points; (c) pairs of
box-plots for the estimated range parameters (for each dimension, indexed from 1 to 8
on the x-axis, the box-plot for improved setup is on the left and the box-plot for default
setup is on the right; horizontal red lines correspond to the estimated values using the
whole data set without leave-one-out). Notice that the parameter distributions of the
default setup are more spread out.

Even though this work targets a seemingly prosaic issue, and advocates some-
how simple solutions, we feel that the contribution is nonetheless of significant
value considering the widespread use of GP modeling. Indeed, a host of studies,
particularly in the literature of Bayesian optimization, rely on off-the-shelf GP
implementations: for their conclusions to be reliable and reproducible, robust
implementations are critical.

The article is organized as follows. Section 2 provides a brief review of GP
modeling and MLE. Section 3 describes some numerical aspects of the evaluation
and optimization of the likelihood function, with a focus on GPy’s implementa-
tion. Section 4 provides an analysis of factors influencing the accuracy of numer-
ical MLE procedures. Finally, Sect. 5 assesses the effectiveness of our solutions
through numerical experiments and Sect. 6 concludes the article.
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Table 2. Improved (cf. Sect. 6) vs default setups in GPy for the interpolation of the
Borehole function (input space dimension is d = 8) with n ∈ {3d, 5d} random data
points (see Sect. 5.3 for details). The experiment is repeated 50 times. The columns
report the leave-one-out mean squared error (LOO-MSE) values (empirical mean over
the repetitions, together with the standard deviation and the average proportion of the
LOO-MSE to the total standard deviation of the data in parentheses).

Method n = 3d n = 5d

Default 17.559 (4.512, 0.387) 10.749 (2.862, 0.229)

Improved 3.949 (1.447, 0.087) 1.577 (0.611, 0.034)

2 Background

2.1 Gaussian Processes

Let Z ∼ GP(m, k) be a Gaussian process indexed by R
d, d ≥ 1, specified by a

mean function m : Rd → R and a covariance function k : Rd × R
d → R.

The objective is to predict Z(x) at a given location x ∈ R
d, given a data set

D = {(xi, zi) ∈ R
d × R, 1 ≤ i ≤ n}, where the observations zis are assumed to

be the outcome of an additive-noise model: Zi = Z(xi) + εi, 1 ≤ i ≤ n. In most
applications, it is assumed that the εis are zero-mean Gaussian i.i.d. random
variables with variance σ2

ε ≥ 0, independent of Z. (In rarer cases, heteroscedas-
ticity is assumed.)

Knowing m and k, recall (see, e.g. Rasmussen and Williams 2006) that the
posterior distribution of Z is such that Z | Z1, . . . , Zn, m, k ∼ GP (Ẑn, kn),
where Ẑn and kn stand respectively for the posterior mean and covariance func-
tions:

Ẑn(x) = m(x) +
∑n

i=1 wi(x; xn) (zi − m(xi)) ,
kn(x, y) = k(x, y) − w(y; xn)TK(xn, x) ,

where xn denotes observation points (x1, . . . , xn) and the weights wi(x; xn) are
solutions of the linear system:

(K(xn, xn) + σ2
εIn)w(x; xn) = K(xn, x) , (1)

with K(xn, xn) the n×n covariance matrix with entries k(xi, xj), In the identity
matrix of size n, and w(x; xn) (resp. K(xn, x)) the column vector with entries
wi(x; xn) (resp. k(xi, x)), 1 ≤ i ≤ n.

It is common practice to assume a zero mean function m = 0—a reasonable
choice if the user has taken care to center data—but most GP implementations
also provide an option for setting a constant mean function m( · ) = μ ∈ R. In this
article, we will include such a constant in our models, and treat it as an additional
parameter to be estimated by MLE along with the others. (Alternatively, μ could
be endowed with a Gaussian or improper-uniform prior, and then integrated out;
see, e.g., O’Hagan (1978).)

The covariance function, aka covariance kernel, models similarity between
data points and reflects the user’s prior belief about the function to be learned.
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Table 3. Some kernel functions available in GPy. The Matérn kernel is recommended
by Stein [1999]. Γ denotes the gamma function, Kν is the modified Bessel function of
the second kind.

Kernel r(h), h ∈ [0, +∞)

Squared exponential exp(− 1
2
r2)

Rational Quadratic (1 + r2)−ν

Matérn with param. ν > 0 21−ν

Γ (ν)

(√
2νr

)ν

Kν

(√
2νr

)

Most GP implementations provide a couple of stationary covariance functions
taken from the literature (e.g., Wendland 2004; Rasmussen and Williams 2006).
The squared exponential, the rational quadratic or the Matérn covariance func-
tions are popular choices (see Table 3). These covariance functions include a
number of parameters: a variance parameter σ2 > 0 corresponding to the vari-
ance of Z, and a set of range (or length scale) parameters ρ1, . . . , ρd, such that

k(x, y) = σ2r(h), (2)

with h2 =
∑d

i=1(x[i] − y[i])2/ρ2i , where x[i] and y[i] denote the elements of x
and y. The function r : R → R in (2) is the stationary correlation function
of Z. From now on, the vector of model parameters will be denoted by θ =
(σ2, ρ1, . . . , ρd, . . . , σ

2
ε)T ∈ Θ ⊂ R

p, and the corresponding covariance matrix
K(xn, xn) + σ2

εIn by Kθ.

2.2 Maximum Likelihood Estimation

In this article, we focus on GP implementations where the parameters (θ, μ) ∈
Θ × R of the process Z are estimated by maximizing the likelihood L(Zn|θ, μ)
of Zn = (Z1, . . . , Zn)T, or equivalently, by minimizing the negative log-
likelihood (NLL)

− log(L(Zn|θ, μ)) =
1
2
(Zn − μ1n)�K−1

θ (Zn − μ1n) +
1
2

log|Kθ| + constant. (3)

This optimization is typically performed by gradient-based methods, although
local maxima can be of significant concern as the likelihood is often non-convex.
Computing the likelihood and its gradient with respect to (θ, μ) has a O(n3+dn2)
computational cost (Rasmussen and Williams 2006; Petit et al. 2020).

3 Numerical Noise

The evaluation of the NLL as well as its gradient is subject to numerical noise,
which can prevent proper convergence of the optimization algorithms. Figure 2
shows a typical situation where the gradient-based optimization algorithm stops
before converging to an actual minimum. In this section, we provide an analysis
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on the numerical noise on the NLL using the concept of local condition numbers.
We also show that the popular solution of adding jitter cannot be considered as
a fully satisfactory answer to the problem of numerical noise.

Numerical noise stems from both terms of the NLL, namely 1
2Z�

n K−1
θ Zn and

1
2 log|Kθ|. (For simplification, we assume μ = 0 in this section.)

First, recall that the condition number κ(Kθ) of Kθ, defined as the ratio
|λmax/λmin| of the largest eigenvalue to the smallest eigenvalue (Press et al.
1992), is the key element for analyzing the numerical noise on K−1

θ Zn. In double-
precision floating-point approximations of numbers, Zn is corrupted by an error
ε whose magnitude is such that ‖ε‖/‖Zn‖ 	 10−16. Worst-case alignment of Zn

and ε with the eigenvectors of Kθ gives

‖K−1
θ ε‖

‖K−1
θ Zn‖ 	 κ(Kθ) × 10−16, (4)

which shows how the numerical noise is amplified when Kθ becomes ill-
conditioned.

The term log|Kθ| is nonlinear in Kθ, but observe, using the identity
d log|Kθ|/dKθ = K−1

θ , that the differential of log| · | at Kθ is given by H 
→
Trace(K−1

θ H). Thus, the induced operator norm with respect to the Frobenius
norm ‖ · ‖F is ‖K−1

θ ‖F . We can then apply results from Trefethen and Bau (1997)
to get a local condition number of the mapping A 
→ log|A| at Kθ:

κ(log| · |, Kθ) � lim
ε→0

sup
‖δA‖F ≤ε

∣
∣log|Kθ + δA| − log|Kθ|∣∣

∣
∣log|Kθ|∣∣

‖Kθ‖F

‖δA‖F
=

√∑n
i=1

1
λ2

i

√
∑n

i=1 λ2
i

|∑n
i=1 log(λi)|

(5)

where λ1, · · · , λn are the (positive) eigenvalues of Kθ. Then, we have

κ(Kθ)
|∑n

i=1 log(λi)| ≤ κ(log| · |, Kθ) ≤ nκ(Kθ)
|∑n

i=1 log(λi)| , (6)

which shows that numerical noise on log|Kθ| is linked to the condition number
of Kθ.

The local condition number of the quadratic form 1
2ZT

nK−1
θ Zn as a function

of Zn can also be computed analytically. Some straightforward calculations show
that it is bounded by κ(Kθ).

(When the optimization algorithm stops in the example of Fig. 2, we have
κ(Kθ) 	 1011 and κ(log| · |, Kθ) 	 109.5. The empirical numerical fluctuations are
measured as the residuals of a local second-order polynomial best fit, giving noise
levels 10−7, 10−8 and 10−7.5 for K−1

θ Zn, 1
2ZT

nK−1
θ Zn and log|Kθ| respectively.

These values are consistent with the above first-order analysis.)
Thus, when κ(Kθ) becomes large in the course of the optimization procedure,

numerical noise on the likelihood and its gradient may trigger an early stopping
of the optimization algorithm (supposedly when the algorithm is unable to find
a proper direction of improvement). It is well-known that κ(Kθ) becomes large
when σ2

ε = 0 and one of the following conditions occurs: 1) data points are
close, 2) the covariance is very smooth (as for instance when considering the
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Fig. 2. Noisy NLL profile along a particular direction in the parameter space, with a
best linear fit (orange line). This example was obtained with GPy while estimating the
parameters of a Matérn 5/2 covariance, using 20 data points sampled from a Branin
function, and setting σ2

ε = 0. The red vertical line indicates the location where the
optimization of the likelihood stalled. (Color figure online)

squared exponential covariance), 3) when the range parameters ρi are large.
These conditions arise more often than not. Therefore, the problem of numerical
noise in the evaluation of the likelihood and its gradient is a problem that should
not be neglected in GP implementations.

The most classical approach to deal with ill-conditioned covariance matri-
ces is to add a small positive number on the diagonal of the covariance matrix,
called jitter, which is equivalent to assuming a small observation noise with
variance σ2

ε > 0. In GPy for instance, the strategy consists in always setting a
minimal jitter of 10−8, which is automatically increased by an amount ranging
from 10−6σ2 to 10−1σ2 whenever the Cholesky factorization of the covariance
matrix fails (due to numerical non-positiveness). The smallest jitter making Kθ

numerically invertible is kept and an error is thrown if no jitter allows for suc-
cessful factorization. However, note that large values for the jitter may yield
smooth, non-interpolating approximations, with possible unintuitive and unde-
sirable effects (see Andrianakis and Challenor 2012), and causing possible con-
vergence problems in Bayesian optimization.

Table 4 illustrates the behaviour of GP interpolation when σ2
ε is increased. It

appears that finding a satisfying trade-off between good interpolation properties
and low numerical noise level can be difficult. Table 4 also supports the connec-
tion in (4) and (6) between noise levels and κ(Kθ). In view of the results of Fig. 1
based on the default settings of GPy and Table 4, we believe that adaptive jitter
cannot be considered as a do-it-all solution.

4 Strategies for Improving Likelihood Maximization

In this section we investigate simple but hopefully efficient levers/strategies to
improve available implementations of MLE for GP interpolation, beyond the
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Table 4. Influence of the jitter on the GP model (same setting as in Fig. 2). The table
reports the condition numbers κ(Kθ) and κ(log| · |, Kθ), and the impact on the relative
empirical standard deviations δquad and δlogdet of the numerical noise on ZT

nK−1
θ Zn

and log|Kθ| respectively (measured using second-order polynomial regressions). As
σε increases, δquad and δlogdet decrease but the interpolation error

√
SSR/SST =√

1
n

∑n
j=1(Zj − Ẑn(xj))2/std(Z1, ..., Zn) and the NLL increase. Reducing numerical

noise while keeping good interpolation properties requires careful attention in practice.

σ2
ε / σ2 0.0 10−8 10−6 10−4 10−2

κ(Kθ) 1011 109 107.5 105.5 103.5

κ(log| · |, Kθ) 109.5 108.5 106.5 104.5 102.5

δquad 10−8 (= 1011−19) 10−9.5 (= 109−18.5) 10−10.5 (= 107.5−18) 10−12 (= 105.5−17.5) 10−14 (= 103.5−17.5)

δlogdet 10−7.5 (= 109.5−17) 10−9 (= 108.5−17.5) 10−11 (= 106.5−17.5) 10−13.5 (= 104.5−18) 10−15.5 (= 102.5−18)

− log(L(Zn|θ)) 40.69 45.13 62.32 88.81 124.76

√
SSR/SST 3.3 · 10−10 1.2 · 10−3 0.028 0.29 0.75

control of the numerical noise on the likelihood using jitter. We mainly focus on
1) initialization methods for the optimization procedure, 2) stopping criteria, 3)
the effect of “restart” strategies and 4) the effect of the parameterization of the
covariance.

4.1 Initialization Strategies

Most GP implementations use a gradient-based local optimization algorithm to
maximize the likelihood that requires the specification of starting/initial values
for the parameters. In the following, we consider different initialization strategies.

Moment-Based Initialization. A first strategy consists in setting the parameters
using empirical moments of the data. More precisely, assuming a constant mean
m = μ, and a stationary covariance k with variance σ2 and range parameters
ρ1, . . . , ρd, set

μinit = mean (Z1, . . . , Zn), (7)
σ2
init = var (Z1, . . . , Zn), (8)

ρk, init = std (x1, [k], . . . , xn, [k]), k = 1, . . . , d, (9)

where mean, var and std stand for the empirical mean, variance and standard
deviation, and xi, [k] denotes the kth coordinate of xi ∈ R

d. The rationale
behind (9) (following, e.g., Rasmussen and Williams 2006) is that the range
parameters can be thought of as the distance one has to move in the input space
for the function value to change significantly and we assume, a priori, that this
distance is linked to the dispersion of data points.

In GPy for instance, the default initialization consists in setting μ = 0, σ2 = 1
and ρk = 1 for all k. This is equivalent to the moment-based initialization scheme
when the data (both inputs and outputs) are centered and standardized. The
practice of standardizing the input domain into a unit length hypercube has
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been proposed (see, e.g., Snoek et al. 2012) to deal with numerical issues that
arise due to large length scale values.

Profiled Initialization. Assume the range parameters ρ1, . . . , ρd (and more gen-
erally, all parameters different from σ2, σ2

ε and μ) are fixed, and set σ2
ε = ασ2,

with a prescribed multiplicative factor α ≥ 0. In this case, the NLL can be opti-
mized analytically w.r.t. μ and σ2. Optimal values turn out to be the generalized
least squares solutions

μGLS = (1T
nK−1

θ̃
1n)−11T

nK−1

θ̃
Zn , (10)

σ2
GLS =

1
n

(Zn − μGLS 1n)TK−1

θ̃
(Zn − μGLS 1n) , (11)

where θ̃ = (σ2, ρ1, . . . , ρd, . . . , σ2
ε)T ∈ Θ, with σ2 = 1 and σ2

ε = α. Under
the profiled initialization scheme, ρ1, . . . , ρd are set using (9), α is prescribed
according to user’s preference, and μ and σ2 are initialized using (10) and (11).

Grid-Search Initialization. Grid-search initialization is a profiled initialization
with the addition of a grid-search optimization for the range parameters.

Define a nominal range vector ρ0 such that

ρ0,[k] =
√

d

(

max
1≤i≤n

xi,[k] − min
1≤i≤n

xi,[k]

)

, 1 ≤ k ≤ d.

Then, define a one-dimensional grid of size L (e.g., L = 5) by taking range vectors
proportional to ρ0: {α1ρ0, . . . , αLρ0}, where the αis range, in logarithmic scale,
from a “small” value (e.g., α1 = 1/50) to a “large” value (e.g., αL = 2). For
each point of the grid, the likelihood is optimized with respect to μ and σ2

using (10) and (11). The range vector with the best likelihood value is selected.
(Note that this initialization procedure is the default initialization procedure in
the Matlab/GNU Octave toolbox STK.)

4.2 Stopping Condition

Most GP implementations rely on well-tested gradient-based optimization algo-
rithms. For instance, a popular choice in Python implementations is to use the
limited-memory BFGS algorithm with box constraints (L-BFGS-B; see Byrd
et al. 1995) of the SciPy ecosystem. (Other popular optimization algorithms
include the ordinary BFGS, truncated Newton constrained, SQP, etc.; see, e.g.,
Nocedal and Wright (2006).) The L-BFGS-B algorithm, which belongs to the
class of quasi-Newton algorithms, uses limited-memory Hessian approximations
and shows good performance on non-smooth functions (Curtis and Que 2015).

Regardless of which optimization algorithm is chosen, the user usually has
the possibility to tune the behavior of the optimizer, and in particular to set the
stopping condition. Generally, the stopping condition is met when a maximum
number of iterations is reached or when a norm on the steps and/or the gradient
become smaller than a threshold.
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By increasing the strictness of the stopping condition during the optimization
of the likelihood, one would expect better parameter estimations, provided the
numerical noise on the likelihood does not interfere too much.

4.3 Restart and Multi-start Strategies

Due to numerical noise and possible non-convexity of the likelihood with respect
to the parameters, gradient-based optimization algorithms may stall far from
the global optimum. A common approach to circumvent the issue is to carry
out several optimization runs with different initialization points. Two simple
strategies can be compared.

Table 5. Two popular reparameterization mappings τ , as implemented, for example, in
GPy and STK respectively. For invsoftplus, notice parameter s > 0, which is introduced
when input standardization is considered (see Sect. 5).

Reparam. method τ : R�
+ → R τ−1 : R → R

�
+

invsoftplus(s) log(exp(θ/s) − 1) s log(exp(θ′) + 1)

log log(θ) exp(θ′)

Restart. In view of Fig. 2, a first simple strategy is to restart the optimization
algorithm to clear its memory (Hessian approximation, step sizes. . . ), hopefully
allowing it to escape a possibly problematic location using the last best param-
eters as initial values for the next optimization run. The optimization can be
restarted a number of times, until a budget Nopt of restarts is spent or the best
value for the likelihood does not improve.

Multi-start. Given an initialization point (θinit, μinit) ∈ Θ × R, a multi-start
strategy consists in running Nopt > 1 optimizations with different initialization
points corresponding to perturbations of the initial point (θinit, μinit). In prac-
tice, we suggest the following rule for building the perturbations: first, move the
range parameters around (ρ1, init, . . . , ρd, init)T (refer to Sect. 5 for an implemen-
tation); then, propagate the perturbations on μ and σ2 using (10) and (11). The
parameter with the best likelihood value over all optimization runs is selected.

4.4 Parameterization of the Covariance Function

The parameters of the covariance functions are generally positive real numbers
(σ2, ρ1, ρ2 . . .) and are related to scaling effects that act “multiplicatively” on the
predictive distributions. Most GP implementations introduce a reparameteriza-
tion using a monotonic one-to-one mapping τ : R�

+ → R, acting component-wise
on the positive parameters of θ, resulting in a mapping τ : Θ → Θ′. Thus, for car-
rying out MLE, the actual criterion J that is optimized in most implementations
may then be written as

J : θ′ ∈ Θ′ 
→ − log(L(Zn|τ−1(θ′), c)). (12)
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Fig. 3. Profiles of the NLL along a linear path t through the profiled initialization
point (at zero, blue vertical line) and the optimum (at one, black vertical line). Orange
(resp. blue) line corresponds to the log (resp. invsoftplus) reparameterization. (Color
figure online)

Table 5 lists two popular reparameterization mappings τ .
The effect of reparameterization is to “reshape” the likelihood. Typical likeli-

hood profiles using the log and the so-called invsoftplus reparameterizations are
shown on Fig. 3. Notice that the NLL may be almost flat in some regions depend-
ing on the reparameterization. Changing the shape of the optimization criterion,
combined with numerical noise, may or may not facilitate the convergence of the
optimization.

5 Numerical Study

5.1 Methodology

The main metric used in this numerical study is based on empirical cumulative
distributions (ECDFs) of differences on NLL values.

More precisely, consider N + 1 optimization schemes S0, S1, . . . , SN , where
S0 stands for a “brute-force” optimization scheme based on a very large number
of multi-starts, which is assumed to provide a robust MLE, and S1, . . . , SN are
optimization schemes to be compared. Each optimization scheme is run on M
data sets Dj , 1 ≤ j ≤ M , and we denote by ei, j the difference

ei,j = NLLi, j − NLL0, j , 1 ≤ i ≤ N, 1 ≤ j ≤ M,

where NLLi,j the NLL value obtained by optimization scheme Si on data set
Dj .

A good scheme Si should concentrate the empirical distribution of the sample
Ei = {ei,j , j = 1, . . . , M} around zero—in other words, the ECDF is close to
the ideal CDF e 
→ 1[0,∞[(e). Using ECDF also provides a convenient way to
compare performances: a strategy with a “steeper” ECDF, or larger area under
the ECDF, is better.
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5.2 Optimization Schemes

All experiments are performed using GPy version 1.9.9, with the default L-
BFGS-B algorithm. We use a common setup and vary the configurations of the
optimization levers as detailed below.

Common Setup. All experiments use an estimated constant mean-function, an
anisotropic Matérn covariance function with regularity ν = 5/2, and we assume
no observation noise (the adaptive jitter of GPy ranging from 10−6σ2 to 102σ2

is used, however).

Initialization Schemes. Three initialization procedures from Sect. 4.1 are consid-
ered.

Stopping Criteria. We consider two settings for the stopping condition of the L-
BFGS-B algorithm, called soft (the default setting: maxiter= 1000, factr=107,
pgtol10−5) and strict (maxiter= 1000, factr=10, pgtol= 10−20).

Restart and Multi-start. The two strategies of Sect. 4.3 are implemented using a
log reparameterization and initialization points (θinit, μinit) determined using a
grid-search strategy. For the multi-start strategy the initial range parameters are
perturbed according to the rule ρ ← ρinit · 10η where η is drawn from a N (0, σ2

η)
distribution. We take ση = log10(5)/1.96 (≈ 0.35), to ensure that about 0.95 of
the distribution of ρ is in the interval [1/5 · ρinit, 5 · ρinit].

Reparameterization. We study the log reparameterization and two variants of the
invsoftplus. The first version called no-input-standardization simply corresponds
to taking s = 1 for each range parameter. The second version called input-
standardization consists in scaling the inputs to a unit standard deviation on
each dimension (by taking the corresponding value for s).

5.3 Data Sets

The data sets are generated from six well-known test functions in the literature
of Bayesian optimization: the Branin function (d = 2; see, e.g. Surjanovic and
Bingham 2013), the Borehole function (d = 8; see, e.g. Worley 1987), the Welded
Beam Design function (d = 4; see Chafekar et al. 2003), the g10 function (d =
8; see Ahmed 2004, p. 128), along with two modified versions, g10mod and
g10modmod (see Feliot 2017).

Each function is evaluated on Latin hypercube samples with a multi-
dimensional uniformity criterion (LHS-MDU; Deutsch and Deutsch 2012), with
varying sample size n ∈ {3d, 5d, 10d, 20d}, resulting in a total of 6 × 4 = 24
data sets.

5.4 Results and Findings

Figure 4 shows the effect of reparameterization and the initialization method.
Observe that the log reparameterization performs significantly better than the
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(a) effect of reparameterization (b) effect of initialization

Fig. 4. Initialization and reparameterization methods. (a) ECDFs corresponding to
the best initialization method for each of the three reparameterizations—red line:
log reparam. with grid-search init.; green line: invsoftplus with input-standardization
reparam. and grid-search init; blue line: invsoftplus with no-input-standardization
reparam. and moment-based init. (b) ECDFs for different initialization methods for
the log reparameterization. (Color figure online)

(a) restart with Nopt = 1, . . . , 20 (b) multi-start with Nopt = 1, . . . , 20, ση = 0.35

Fig. 5. Area under the ECDF against run time: (a) restart strategy; (b) multi-start
strategy. The maximum areas obtained are respectively 86.538 and 88.504.

invsoftplus reparameterizations. For the log reparameterization, observe that the
grid-search strategy brings a moderate but not negligible gain with respect to
the two other initialization strategies, which behave similarly.

Next, we study the effect of the different restart strategies and the stop-
ping conditions, on the case of the log reparameterization and grid-search ini-
tialization. The metric used for the comparison is the area under the ECDFs
of the differences of NLLs, computed by integrating the ECDF between 0
and NLLmax = 100. Thus, a perfect optimization strategy would achieve an
area under the ECDF equal to 100. Since the multi-start strategy is stochas-
tic, results are averaged over 50 repetitions of the optimization procedures (for
each Nopt value, the optimization strategy is repeated 50 times). The areas are
plotted against the computational run time. Run times are averaged over the
repetitions in the case of the multi-start strategy.



Maximum Likelihood Issues in Gaussian Process Interpolation 129

Figure 5 shows that the soft stopping condition seems uniformly better. The
restart strategy yields small improvements using moderate computational over-
head. The multi-start strategy is able to achieve the best results at the price of
higher computational costs.

6 Conclusions and Recommendations

Our numerical study has shown that the parameterization of the covariance
function has the most significant impact on the accuracy of MLE in GPy. Using
restart/multi-start strategies is also very beneficial to mitigate the effect of the
numerical noise on the likelihood. The two other levers have second-order but
nonetheless measurable influence.

These observations make it possible to devise a recommended combination of
improvement levers—for GPy at least, but hopefully transferable to other soft-
ware packages as well. When computation time matters, an improved optimiza-
tion procedure for MLE consists in choosing the combination of a log reparam-
eterization, with a grid-search initialization, the soft (GPy’s default) stopping
condition, and a small number, say Nopt = 5, of restarts.

Figure 1 and Table 2 are based on the above optimization procedure, which
results in significantly better likelihood values and smaller prediction errors. The
multi-start strategy can be used when accurate results are sought.

As a conclusion, our recommendations are not intended to be universal, but
will hopefully encourage researchers and users to develop and use more reliable
and more robust GP implementations, in Bayesian optimization or elsewhere.
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Abstract. Word embeddings are widely used in several Natural Lan-
guage Processing (NLP) applications. The training process typically
involves iterative gradient updates of each word vector. This makes word
frequency a major factor in the quality of embedding, and in general the
embedding of words with few training occurrences end up being of poor
quality. This is problematic since rare and frequent words, albeit seman-
tically similar, might end up far from each other in the embedding space.

In this study, we develop KAFE (Knowledge And Frequency adapted
Embeddings) which combines adversarial principles and knowledge graph
to efficiently represent both frequent and rare words. The goal of adver-
sarial training in KAFE is to minimize the spatial distinguishability
(separability) of frequent and rare words in the embedding space. The
knowledge graph encourages the embedding to follow the structure of
the domain-specific hierarchy, providing an informative prior that is par-
ticularly important for words with low amount of training data. We
demonstrate the performance of KAFE in representing clinical diagnoses
using real-world Electronic Health Records (EHR) data coupled with a
knowledge graph. EHRs are notorious for including ever-increasing num-
bers of rare concepts that are important to consider when defining the
state of the patient for various downstream applications. Our experi-
ments demonstrate better intelligibility through visualisation, as well as
higher prediction and stability scores of KAFE over state-of-the-art.

Keywords: Word embeddings · Knowledge graphs · Adversarial
learning

1 Introduction

Distributed representation of words (also referred to as word embeddings or
dense/continuous representations) have become de facto standard as high-quality
inputs to neural-network (NN) based models built for natural language process-
ing (NLP) applications. Examples include text classification and summariza-
tion, machine translation, sentiment analysis and more [1]. Word embeddings
c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 132–146, 2022.
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are typically learned from big unlabelled corpora using co-occurrence statistics.
In general terms, the learning principle hinges on the assumption that words
with similar context (surrounding words) are semantically similar and should
be placed close in an arbitrary embedding space. Contrary to the traditional
one-hot format, word embeddings are low-dimensional and semantically similar
[2]. In recent years, the popularity of word embedding has expanded beyond text
corpora into structured (non-text) data sources such as the Electronic Health
Records (EHRs) to represent medical concepts and patients [3].

EHRs are real-time digital patient-centred records that allow responsible
access to authorized care-providers when required. Patient data populates EHRs
in two ways - structured and unstructured. Structured data means documented
using a controlled vocabulary rather than free text (unstructured information).
In general, structured data curbs ambiguity about what data means and facil-
itates data interoperability among different clinical systems. For that matter,
several classification schema and ontologies exist to record clinical information.
For instance, the International Classification of Diseases (ICD-10) (Table 1)
defines alpha-numeric codes corresponding to different diagnoses [4]. Concur-
rently a patient’s disease profile is coded as time-ordered lists of ICD-10 codes
registered along his/her visit to the care centres. Given that, the analogy between
free text and structured clinical profiles is simple: a visit profile is considered as
a sentence or context and clinical codes as the words in it. Ordered set of visit
profiles gives the patient profile - analogous to documents in text. Following this
analogy, several researchers have applied NLP techniques to represent medical
concepts and patients as low-dimensional dense vectors for downstream predic-
tive and descriptive tasks [3,5]. The most notable among the techniques include
skip-gram and continuous-bag-of-words (publicized as word2vec [2]) by Mikolov
(more details later).

However, the training of word2vec models is typically based on the idea of
iterative gradient updates for each word vector. Put differently, it assumes that
each word appears a sufficient amount of times in the training data which is often
not the case in real world. Word frequency is a major factor contributing to the
quality of the embedding. For words with fewer training samples (occurrences),
the quality of the learned representations will be poor [6]. Rare and frequent
words often appear in different sub-regions in the embedding space with rare
words having mostly rare and semantically unrelated neighbours and frequent
words having frequent and semantically related neighbours [7].

In the context of NLP-inspired EHR representation, there are two common
approaches to this problem. First, ignore the rare words by limiting the vocabu-
lary size to the N most frequent words. Second, leverage the hierarchical clinical
schema to group medical codes to high-level concepts since high-level concepts
are likely to appear more times in the data than low-level specific concepts
[8]. The former approach is problematic since it conflates all the meanings of
rare concepts into a single representation, thus losing individual characteristics
of clinical concepts. The problem is exacerbated when a rare clinical concept
for instance, is fatal (B20: Human immune virus HIV, A41: Sepsis) fuelling
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imperfections in downstream applications such as treatment assignment pre-
diction. The latter approach ignores important differences among concepts.
For instance, E10.22 (Table 1) and E10.32 (Diabetes Mellitus with mild non-
proliferative diabetic retinopathy), albeit in the same disease category, describe
different characteristics and thus require different set of therapies.

Table 1. ICD-10 hierarchy - example

Class I
Diseases of circulatory system

E
Endocrine/metabolic
diseases

Category I50
Heart failure (HF)

E10
Diabetes mellitus I

Characteristics (etiology,
severity, anatomic site,
other vital details)

I50.2
Systolic HF

E10.2
with kidney complications

150.21
Acute systolic HF

E10.22
with chronic kidney
complications

Moreover, it is no surprise that the medical knowledge is expanding rapidly
[9]. The ICD-10 schema specified over 68,000 (detailed and more specific) diseases
which was 5 times the size of ICD-9 and it is much likely that the list will
grow as we await ICD-111. A greater granularity in coding schema means that
the frequency of rare concepts gets even smaller than general concepts and the
number of unique rare concepts gets much larger than popular concepts. In the
context of learning medical concept vectors, it means even fewer occurrences of
rare concepts in the training data. Thus, in order to continue reaping the benefits
of clinical embeddings for downstream applications, there exists a clear need to
develop new embedding techniques - techniques that are capable of efficiently
representing both high and low-frequency concepts.

To supplement the need, we develop KAFE (Knowledge And Frequency
adapted Embeddings) which couples adversarial principles and clinical knowl-
edge to efficiently represent concepts in EHRs. The goal of the adversarial train-
ing is to minimize the spatial distinguishability (separability) of frequent and
rare words in the embedding space. The clinical knowledge graph facilitates the
representation learning process by driving the concepts close in the hierarchy to
also being close in the embedding space. Our work emphasizes that joint learn-
ing from both knowledge graph and adversarial training leads to better quality
embeddings - particularly for rare words.

There are two primary contributions of our work. First, we propose a novel
technique that leverages a domain knowledge graph to limit the influence of word
frequency when learning embedding of medical concepts. Second, we evaluate the
effectiveness of the proposed model on a comprehensive real-world dataset over

1 https://www.who.int/standards/classifications/classification-of-diseases.
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three different qualitative and quantitative tasks. The results demonstrate higher
performance of KAFE over state-of-the-art.

2 Background

Distributed representation models are known to struggle with small data. Several
approaches have been proposed to deal with the rare word problem in NLP and
in general be grouped into decomposition, ontext-based and knowledge-based
approaches.

Decomposition approaches rely on breaking down a rare word into sub-word
level linguistic units such as morphemes and learning their embedding [10,11].
A word embedding is typically an accumulation of its morpheme embeddings.
Whilst these works have shown promising results in different NLP tasks, they
primarily depend on a well-established morphology which is not readily available
in the context of clinical concepts. An even finer decomposition approach on rare
words (syllables and characters) has also been studied [12–14]. These approaches,
albeit being light on learnable parameters, fail to distinguish between seman-
tically unrelated words such as cat and can. Reiterating our earlier example,
E10.22 and E10.32 have a different disease characteristics, yet a higher character-
level similarity.

Knowledge based approaches leverage available lexical sources such as Word-
Net to guide the embedding learning process [15,16]. Given the availability of
extensive classification schema in medicine, this approach has gained much recog-
nition from researchers to learn better quality medical concept embeddings and
simultaneously achieve better alignment with the domain knowledge. Specifi-
cally, schema that encode the relationships among the medical concepts in well-
structured formats (e.g. a knowledge graph (KG) or a hierarchical tree (HT))
can be utilized to guide the representation learning process. The approach is pri-
marily built upon the principles of attention-mechanism [17] to evaluate what
parts in the KG or HT weigh more when learning latent representation of spe-
cific medical codes. Among the pioneers in this area were [18] who proposed
a graph-based attention model (GRAM) that learns representations of medical
concepts as a convex combination of the code embedding and its ancestors in the
knowledge graph. Later, [19] extended the concept and proposed an end-to-end
knowledge-based attention model (KAME) that (in addition to learning embed-
ding of medical concepts) leverages them to influence prediction performance.
[20] contributed to the domain by learning multiple representations of a concept
in the KG that were expected to correspond to a particular sense and carry
distinct semantic meanings (e.g. in terms of therapy and etiology). Whilst these
approaches have demonstrated success in various downstream applications, an
inherent assumption (in the context of rare word embedding) when using KG or
HT is that the higher the concept in the hierarchy, the more times it is likely
to appear during training. Put differently, higher-level concepts are never rare
and thus their embeddings are reliable. Moreover, since the final code embed-
ding is an accumulation of itself and its ancestors in the hierarchy, a greater
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attention (weight) is given to the ancestors of rare concepts when learning their
embedding. Whilst the assumption may be true for ICD-9 (as demonstrated in
[18–20]), it does not quite hold true for its chronological successor which is far
more specific. For instance, Table 2 shows that over 40% of ICD-10 categorical
codes appear less than 10 times in a real-world EHR from Sweden that includes
nearly 25 million healthcare visits [21].

Table 2. Frequency distribution of ICD-10 category codes

No. of occurrences <101 [101,102) [102,103) [103,104) [104,105)

ICD-10 category codes 832 (40.4%) 519 (25.2%) 491 (23.9%) 196 (9.5%) 19 (0.9%)

Additionally, there has also been some work on context-based approaches
that focus on accumulating the embeddings of surrounding (context) words of the
rare word to generate the embedding of it [22,23]. Attentive Mimicking [24,25] is
a notable approach in this direction that uses self-attention to filter a subset of
reliable and informative context, instead of using the entire context of the word.
This approach has been mostly used in connection to transformer-based con-
textualized word embedding models. Contrary to traditional word embeddings
that learn a global (or fixed) representation of each word, contextualized word
embeddings are aimed to learn different representations of words depending on
context-level semantics. Thus, they are particularly useful for polysemous words
such as bank. However, when representing well-defined clinical concepts such as
I50.21, polysemy is trivial. In this paper, we focus on the traditional global word
embedding models.

Recently, [6] proposed an adversarial approach to learn frequency agnostic
embeddings of words yielding a good mix of rare and frequent words in the
embedding space. They introduce a binary discriminator in the neural language
model that is optimized to classify words into rare/frequent categories. The final
word embeddings are optimized towards minimizing a task-specific loss while
maximizing the discriminator loss. While the approach is shown to lead improve-
ments in machine translation and text classification task, it is unclear if (and
why) maximizing indistinguishability among rare-frequent embeddings would
result in semantically similar rare words coming closer together. We address this
conundrum by integrating the adversarial framework with a knowledge base to
ensure semantic similarity among rare concepts as they are intermingled with
frequent concepts in the embedding space by the discriminator during training.
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3 Method

KAFE constitutes two components: knowledge injection and frequency expul-
sion. Figure 1 shows the overall framework.

Fig. 1. Proposed learning framework KAFE.

3.1 Notations

Let V and C denote a set of all visits and medical codes where |V | and |C| are
the total number of visits and medical codes respectively. Each visit v ∈ V is
represented as a subset of heterogeneous medical codes v ⊆ C. Let G denote a
directed acyclic graph (DAG), corresponding to the ICD-10 hierarchy (Table 1).
Since the ICD-10 codes are generally reported between 3 and 5 alpha-numeric
characters, there exists a mapping c →

G
r of code ci to its root or ancestors rci .

Let R denote a set of all ancestors where |R| is the total number of ancestors.
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3.2 Knowledge Injection into word2vec

We begin with the original word2vec architecture proposed by Mikolov [2]. Given
a word in a free text, the goal of word2vec is to predict the neighbouring words -
often known as the context - or the other way around: given the context words,
predict the centre word. The former is known as Skip Gram (SG) and the latter
is the Continuous Bag Of Words (CBOW) model. In this work, we arbitrar-
ily selected the SG model, since there is no clear evidence that either of these
outperforms the other. In general, word embeddings are real-valued vector rep-
resentations c of a word c from a vocabulary C in an arbitrary D dimensional
space. Let’s denote θcode ∈ R

Dx|C| and θroot ∈ R
Dx|R| as the codes and roots

embedding matrices. Given a sequence of words (or medical codes in a visit v),
c1, c2, ..., cT , the goal of SG is to maximize the conditional log probability of
observing the context words given an input target word. Here, we adapt the SG
architecture to formulate a secondary embedding gi which is a convex combina-
tion of the code ci and its root rci embedding scaled by a learnable attention
value αi and αi ∈ (0, 1).

gi = αici + (1 − αi)rci (1)

The SG loss LSG is given as:

LSG(g1, g2, ..., g|C|; θroot, θcode) = − 1
|C|

|C|∑

i=1

∑

j∈v,j �=i

log P (gj |gi) (2)

where

P (cO|cI) =
exp(c′T

OcI )∑
c∈C exp(c′T

c cI )
and,

log P (cO|cI) = c′T
OcI − log(

∑

c∈C

exp(c′T
c cI ))

where c and c′ are the input and output vector representation of word c.
Computationally, the summation in Eq. 2 is expensive since at every itera-

tion, the algorithm goes through the entire vocabulary C whose number can be
in the order of millions. [26] proposed a negative sampling objective to approx-
imate P (cO|cI) by generating k negative samples (non-context words) from a
unigram distribution of word frequency Pn. The embeddings are computed by
approximating logP (cO|cI) with

log σ (c′T
OcI ) +

K∑

k=1

EcI∼Pn(c)[log σ (−c′T
k cI )

where σ(x) is the sigmoid function.
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3.3 Frequency Expulsion

Let θD denote the discriminator’s weights. Given all the secondary embeddings
gi’s as input, the output of the discriminator ŷi ∈ (0, 1)|C| is a score indicating
the likeliness of gi being a rare code. The discriminator loss LD is given as the
binary cross-entropy:

LD(g1, g2, ..., g|C|; θD) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (3)

where yi ∈ 0, 1|C| are the code labels generated based on their occurrence fre-
quency in V . Here, we labelled top 25% of codes as frequent and the rest as
rare.

3.4 KAFE

Following the idea of adversarial training, KAFE aims to minimize the skip-
gram loss and simultaneously mislead the discriminator by adjusting the learned
embeddings to be indistinguishable in terms of frequency.

LKAFE(g1, g2, ..., g|C|; θroot, θcode) = LSG − λLD (4)

where λ determines the trade-off between the two losses. Of note, when per-
forming a gradient descent on LKAFE, the negative term LD would specify the
direction of ascent (or increase) for LD.

Algorithm 1: KAFE optimization
Input: Dataset V of vocabulary size C; Ontology as a DAG G
Output: Code embeddings θcode, Root embeddings θroot, Attention α
Initialization: Randomly initialize code and root embedding matrices θcode

and θroot, attention parameter α, and discriminator’s weights
θD.

1 while iterations or until convergence do
2 Sample a minibatch V ′ from V
3 for visit v in V ′ do
4 for ci in v do
5 Get the root of ci from G
6 Compute gi using Eq. 1

7 Calculate LSG using Eq. 2
8 Calculate LD using Eq. 3
9 Calculate LKAFE using Eq. 4

10 Update θD wrt. LD //gradient descent wrt. LD

11 Update θroot, θcode wrt. LKAFE //gradient descent wrt. LSG and ascent wrt. LD
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4 Experiments and Results

We performed qualitative and quantitative evaluation of KAFE. We compared its
performance with three state-of-the-art embedding models: GRAM [18], FRAGE
[6] and SG [2].

4.1 Data

We used the Regional Healthcare Information Platform (RHIP) which includes
clinical information on healthcare visits in Halland, Sweden [21]. All healthcare
visits between 2013 and 2017 were included. We populated each visit with time
ordered ICD-10 diagnoses within ±4 weeks period centred around the date of
visit. This is an intuitive way of capturing a nearly complete medical concept in
each visit by adjusting for delays due to referrals to or from other care facilities.
Only the visits with at least two diagnoses were included.

4.2 Reproducibility

The source codes (with default hyperparameters) and dummy data is available
at https://github.com/caisr-hh/KAFE. Request for real data collaboration can
be directed to FoU [21].

4.3 Quantitative Tasks

Disease Onset Prediction. We used two year (2015–2016) diagnostic infor-
mation of patients between age 40 and 90 in RHIP to predict onset of 10 critical
diseases (as highlighted by [27]) in 2017. Only patients with at least one recorded
diagnosis and alive during 2015–2017 were included. The final dataset comprised
of 106,207 patients of which 2/3rd were used for training and the remaining for
testing. We used three-layer feed-forward neural network (NN) with time-aware
attention [28] to adjust for the chronological order of diagnostic codes and cor-
responding delays in between to represent patients. The inputs (concept embed-
dings) of the NN were pre-trained via the different embedding models which
were then fine-tuned together with other NN weights for the specific tasks. For
each prediction task and embedding model, we repeated the experiment 10 times
and report the mean area under the receiver operating characteristic curve (i.e.,
AUC-ROC) on test patients for each diagnosis. The ROC curve is a plot of true
positive rate versus false positive rate found over the set of predictions. AUC is
computed by integrating the ROC curve and it is bounded between 1 (perfect
predictions) and 0.5 (random predictions).

Table 3 shows the disease onset prediction scores by NNs with similar archi-
tectures and training parameters, but different embedding initialization. We
found KAFE to outperform onset prediction of 7 out of 10 chronic diseases fol-
lowed by GRAM evidencing an effective initialization technique for the task. In
general, knowledge-guided embeddings prove to be a better initialization for NN-
based prediction model. Nevertheless, initialization via pre-trained embeddings

https://github.com/caisr-hh/KAFE
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Table 3. 1 year disease onset prediction-ROC AUC’s (SD) reported

Disease Random Skip-gram FRAGE GRAM KAFE

Dementia 0.603 (0.0224) 0.677 (0.012) 0.682 (0.014) 0.718 (0.019) 0.737 (0.014)

Congestive heart failure 0.640 (0.011) 0.689 (0.009) 0.698 (0.010) 0.721 (0.011) 0.725 (0.011)

Peripheral vascular disease 0.631 (0.012) 0.672 (0.009) 0.670 (0.010) 0.670 (0.017) 0.697 (0.009)

Myocardial infarction 0.592 (0.019) 0.640 (0.008) 0.632 (0.011) 0.645 (0.015) 0.645 (0.009)

Cerebrovascular disease 0.560 (0.009) 0.614 (0.023) 0.603 (0.020) 0.632 (0.008) 0.627 (0.011)

Any malignancy/tumors 0.556 (0.012) 0.594 (0.004) 0.616 (0.047) 0.619 (0.005) 0.635 (0.004)

Diabetes 0.525 (0.010) 0.586 (0.020) 0.588 (0.017) 0.610 (0.014) 0.617 (0.011)

Hemiplegia or paraplegia 0.502 (0.013) 0.568 (0.020) 0.570 (0.037) 0.617 (0.023) 0.612 (0.017)

Liver disease 0.492 (0.039) 0.548 (0.013) 0.557 (0.047) 0.577 (0.017) 0.605 (0.024)

Chronic pulmonary disease 0.515 (0.009) 0.543 (0.015) 0.560 (0.012) 0.561 (0.016) 0.575 (0.009)

(learned from a much richer data) clearly help lift the prediction performance
compared to random initialization.

It is worth emphasizing that there does not exist a well-established suite
for quantifying the quality of embeddings [29]. Thus, coupling the embeddings
with a well-defined prediction task is often the norm, where the output of the
task serves as a proxy for embedding quality. To avoid any additional bias in
the experiments, we only used the diagnostic information for predicting future
disease onset which also explains the low AUCs reported relative to other stud-
ies [30,31]. Integrating other relevant patient information from EHRs would
help improve the prediction scores [32], however it is beyond the scope of this
methodological study.

Stability Analysis. Due to the stochastic nature of the training process, sub-
sequently applying the same technique to the same data twice, can produce
entirely different embeddings. The order in which the training data is fed to the
embedding model has also been shown to be a major contributor to embedding
instability in word2vec based architectures [33]. While the raw values themselves
are of no interest, we expect that the relative positions of the concepts to other
similar or dissimilar concepts is preserved.

Given two different embeddings of code c learned from two randomly ini-
tialized embedding spaces, let θ1, θ2 represent the n (5 in this study) nearest
neighbours of c in each embedding space extracted via cosine similarity. Then
the stability of c is given by the overlap of neighbours in the two spaces. Stability
is bounded between 0 (no overlap) and 1 (complete overlap).

stability(c) =
|θ1 ∪ θ2|

n
(5)

Table 4 shows the mean stability of all the frequent and rare codes calcu-
lated via three different embeddings generated from each model. Each time, the
embedding model was initialized with random weights and the training corpus
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Table 4. Embedding stability. Reporting mean (SD)

Stability Skip-gram FRAGE GRAM KAFE

Frequent codes 0.582(0.002) 0.567 (0.008) 0.754 (0.003) 0.752 (0.005)

Rare codes 0.317 (0.001) 0.332 (0.005) 0.709 (0.003) 0.723 (0.004)

(visit order) was shuffled. The results generalize that knowledge guided embed-
dings tend to have higher stability for both frequent and rare words with per-
formance being more significant for the latter. FRAGE improve the stability of
rare concepts, compromising slightly for frequent concepts. KAFE significantly
outperforms the state-of-art for rare words stability and competes almost equally
with GRAM for frequent codes.

4.4 Qualitative Tasks

We randomly selected 1000 (each) rare and frequent clinical codes and visualized
(Figs. 2, 3, 4 and 5) their relative positions in embedding space after dimension-
ality reduction via UMAP [34]. The colours (left) correspond to the ICD-10
classes and (right) frequency labels. The fact that not all diagnoses within an
ICD-10 class follow the same characteristics is reiterated. Figure 2 confirms the
separation of frequent and rare codes in the embedding space which is consistent
with the findings in [6]. This effect is countered in Fig. 3 via a discriminator that
filters out the frequency component from the embeddings.

Fig. 2. SG embeddings
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Fig. 3. FRAGE embeddings

Fig. 4. GRAM embeddings

While the most obvious clusters (0: Pregnancy, childbirth; S: Injury due
to external causes etc.) are clearly visible in all embeddings, GRAM (Fig. 4)
and KAFE (Fig. 5) present a more consistent view with the ICD-10 knowledge
schema which is not possible using only co-occurrence statistics. KAFE further
supplements the embedding quality by ensuring a good mix of rare and frequent
concepts in the embedding space.
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Fig. 5. KAFE embeddings

5 Conclusion and Future Work

Knowledge improves the embedding quality and word frequency (an unwanted
bias) corrupts it. We proposed KAFE which leverages knowledge graph and
adversarial principles to learn high-quality embeddings (exemplified through
experiments) that are well-aligned with the domain knowledge and indifferent
to word frequency.

While the proposed model has only been validated on clinical data, it can
be applied further afield provided a knowledge hierarchy exists that encodes the
relationship between words. Moreover, the adversarial property in KAFE can be
leveraged to dissect other subtle biases in patient or document representations
such as gender, colour, ethnicity etc. that negatively influence the output of pre-
diction models [35]. In the future we aim to leverage KAFE to dissect Berkson’s
bias when representing and selecting patients for retrospective cohort studies
[36]. We also aim to explore the possibility of applying KAFE in the context of
zero-shot learning to predict the onset of rare and out-of-sample diseases.
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Abstract. We propose three techniques for improving accuracy and
speed of margin stochastic gradient descent support vector machines
(MSGDSVM). The first technique is to use sampling with full replace-
ment. The second technique is to use the new update rule derived from
the squared hinge loss function. The third technique is to limit the num-
ber of values for tuning of the margin hyperparameter M . We also pro-
vide theoretical analysis of a novel optimization problem for the proposed
update rule. The first two techniques improve accuracy of MSGDSVM
and the last one speed of tuning. Experiments show that the proposed
method achieves superior accuracy compared to MSGDSVM for binary
and multiclass classification, with similar generalization performance to
sequential minimal optimization (SMO) and is faster than MSGDSVM.

Keywords: Support vector machines · Stochastic gradient descent ·
Early stopping · Squared hinge loss function

The support vector machines (SVM) is one of the best methods for classifica-
tion [4]. Recently, the efficient implementation of stochastic gradient descent sup-
port vector machines (SGDSVM) has been proposed [10]. The remarkable prop-
erty of this method is speed. The computational advantage over popular sequential
minimal optimization (SMO) algorithm is achieved by extreme early stopping, in
the neural network terms, stopping even before the first epoch will finish. This is a
special case of early stopping used to prevent overfitting in neural networks [5]. The
idea of single pass over a training set has been proposed much earlier in the con-
text of online learning in [1]. The SMO method has a stopping criterion based on
Karush-Kuhn-Tucker (KKT) condition and the number of iterations may exceed
the number of examples. The number of iterations of SGDSVM is always smaller
than the number of examples and it is equal to the number of support vectors
due to each weight updated only one time. Another improvement for SGDSVM
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called margin stochastic gradient descent support vector machines (MSGDSVM)
has been recently proposed, which speed up SGDSVM by computing all solutions
for all selected values of a hyperparameter M during a single pass over a training
set. This is related to having weights independent of the hyperparameter M (see
Eq. 8 and 15 in [12]). For SGDSVM and SMO, for each value of the hyperparameter
C, we must run the method separately. This improvement is similar to a solution
path investigated for C-SVM [6]. The conceptual differences between SGDSVM
and SMO are as follows. The SGDSVM updates each weight only one time. It leads
to the algorithm which is based on optimization problem without a regularization
term, which is replaced by regularization by extreme early stopping. The sparsity
is achieved by initialization with 0s, updating each weight maximally one time and
a stopping criterion that can stop the algorithm before updating all weights, while
in SMO the sparsity may be additionally achieved by zeroing weights that were
already set. Additionally, the MSGDSVM returns solutions for different values of
the hyperparameter M that have the same particular terms and differ only in the
number of terms. The general aim of this research is to improve accuracy and speed
of solvers with extreme early stopping. There are two potential limiting factors for
accuracy compared to SMO, the limited number of iterations, and the simplified
structure of the solution for different values of M . The requirement for improve-
ments is to preserve fast tuning of the hyperparameter M .

We propose two techniques for improving accuracy of MSGDSVM. The first is
sampling with full replacement. Currently, MSGDSVM updates each weight max-
imally one time. The idea of the improvement is to allow a fixed number of updates
per each example during the iteration process (see the p parameter in Sect. 2). We
create a fixed number of copies per each training example, for instance 1 copy. It
is similar to the bagging technique, however the goal here is to generate one data
set, while in bagging, we generate multiple data sets, and we average the results [8].
Moreover, in bagging not all examples are replicated. Resampling with replicates is
called oversampling and is frequently used for imbalanced data sets to create mul-
tiple copies of examples of the minority classes. The proposed technique is used
with iterative methods that update each parameter (related to one training exam-
ple) maximally one time. So the consequence of creating 1 copy of each example
is that each parameter can be updated maximally 2 times. The alternative app-
roach of using multiple epochs has the disadvantage that more complicated update
rules than addition of weights may be needed for the following epochs. The second
proposed technique is the new update rule, that is derived from an alternative for-
mulation of SVM with a squared hinge loss function (see Sect. 3). The squared
hinge loss function has been investigated in [3]. In this article, we use the squared
hinge loss function with MSGDSVM. We expect that due to extreme early stop-
ping, considered as aggressive regularization, a loss function with a quadratic term
may be beneficial. We solve a problem of getting rid of the M hyperparameter from
the update rule after incorporating the squared hinge loss function to MSGDSVM.
This is a requirement for fast tuning of M proposed in [12]. We also propose a spe-
cial type of loss functions based on a conditional operator. This work improves the
update rule proposed in [12] and in [10]. Earlier work on using stochastic gradi-
ent descent (SGD) to SVM regards an algorithm that does not have heuristic for
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selection of parameters based on a loss function and has a learning rate in a stop-
ping criterion [13]. For more references, see [12]. The third improvement is related
to speeding up MSGDSVM by skipping tuning of an algorithm for some hyperpa-
rameter values without sacrificing accuracy (see Sect. 4).

The outline of the article is as follows. First, we define a problem, then
we present three proposed techniques that are sampling with full replacement,
the new update rule and improvement of speed of tuning. Then we analyze
theoretical properties of the proposed techniques. After that, we present methods
and experiments on real world data sets. Finally, we summarize the article and
we include also appendix at the end.

1 Problem

We consider a classification problem for a given sample data xi mapped respec-
tively to yi ∈ {−1, 1} for i = 1, . . . , n with the following decision boundary

f (x) = w · ϕ (x) = 0, (1)

where w ∈ R
m with the feature map ϕ(·) ∈ R

m, f(·) is a functional margin.
We classify data according to the sign of the f(x). This is the standard decision
boundary formulation used in SVM with a feature map and without a bias
term b [14]. The primal optimization problem for M support vector classification
(MSVC) [12] is

Optimization Problem (OP) 1.

min
w

1
2

‖w‖2 +
n∑

i=1

max {0,M − yif (xi)} , (2)

where M > 0 is a desired margin.

The first term in (2) is known as a regularization term (regularizer), the second
term is an error term. We call the loss function L(z; yi,M) = max{0,M − yiz}
the margin hinge loss function. The w can be written in the form

w ≡
n∑

j=1

βjϕ (xj ) , (3)

where βj ∈ R. We usually substitute (3) to a decision boundary (1) and we get
n∑

j=1

βjϕ (xj ) · ϕ (x) = 0. (4)

The optimization problem OP 1 is reformulated to find βj parameters.
The SGD procedure for finding a solution of SVM in a version proposed in

[12] is to update parameters as follows

βt ← ηk

{
yt, if M − ytfk−1 (xt) ≥ 0
0, otherwise

, (5)
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where k is the iteration counter, t is an index of the selected example in the k-th
iteration, fk−1(x) is a functional margin found in the previous iteration, yt is
a class of the t-th example, xt is the t-th example. We use the worst violator
technique for the selection, which selects the example with the maximal value
of the loss function. The ηk is a learning rate set to ηk = 1/

√
k. All βj are

initialized with 0s, f0(x) ≡ 0. We always stop when the condition in (5) is
violated for all remaining examples. The pseudocode of an updating procedure
is in Algorithm 1. The number of iterations nc is the number of terms in a
final decision boundary and it is also the number of support vectors which are
defined as examples which correspond to updated parameters. Each parameter
βk is updated maximally one time. The solution is sparse due to usually nc < n.
This property is called extreme early stopping. The procedure of fast tuning of
M proposed in [12] is based on the idea that M is only present in the stopping
criterion, but not in the update term. So there is one iteration process of a
prototype solver for M = Mmax value during which we gather all solutions for
different values of M . Below, we propose three techniques, first two of them
improve accuracy of MSGDSVM, the last one improves speed of training.

Algorithm 1. MSGDSVM
Input: M
Output: β
1: k, t = 1, P = ∅, β, d = 0
2: while k ≤ n do
3: μ = 1/

√
k, k++, Δβt = ytμ

4: βt = Δβt, P.put(t)
5: for j /∈ P do
6: d[j] += Δβtϕ(xj ) · ϕ(xt )

7: s = max, t = unset
8: for j /∈ P do
9: if yjd[j] − M < s then

10: s = yjd[j] − M ; t = j

11: if t is unset ‖ ytd[t] − M ≥ 0
then break

Algorithm 2. MSGDSVM2f,x2

Input: M ≤ 1, p = 1 or 2
Output: β
1: k, t = 1, P = ∅, β, d, c = 0
2: while k ≤ pn do
3: k++, Δβt = −(ytd[t] − 1)
4: if Δβt < 0 then Δβt = 0

5: βt += ytΔβt, P.put(t), c[t]++
6: for j do � for p = 1, j /∈ P
7: d[j] += Δβtϕ(xj ) · ϕ(xt )

8: s = max, t = unset
9: for j do � for p = 1, j /∈ P

10: if c[j] < p && yjd[j]−M < s
then

11: s = yjd[j] − M ; t = j

12: if t is unset ‖ ytd[t] − M ≥ 0
then break

2 Sampling with Full Replacement

In MSGDSVM each weight is updated maximally one time. We extend this
procedure to allow to update each weight p times, where p is a hyperparameter.
We propose to use sampling with full replacement. It is equivalent to say that
we create p − 1 additional copies of each example, and we extend the data
set. For example, for p = 2, we create one copy of each example, and we have
2n examples. Then we use exactly the same update rule as before (5) on the
extended data set. This procedure is not the same as running p epochs with



Improved Update Rule and Sampling of Stochastic Gradient Descent 151

the update rule (5) as usually done in neural networks. We cannot use such
procedure, because the idea of a fast hyperparameter tuning presented in [12]
is that all solutions for all values of the M hyperparameter differ only in the
number of terms. This property is preserved for sampling with full replacement,
but not for multiple epochs, because the next epoch is started with a solution
from the previous epoch depended on a value of M .

3 New Update Rule

The second contribution is the new update rule. We propose the following update
rule

βt ←
{

yt max {0, 1 − ytfk−1 (xt)} , if M − ytfk−1 (xt) ≥ 0
0, otherwise

. (6)

We do not have a learning rate anymore. This means that learning speed is
automatically adjusted using the previous solution. The update term is based
on a functional margin fk−1 and can be written in terms of the loss function
ytL(z; yt, 1). The update term is similar to the stopping criterion which is also
based on a loss function. The difference between the update term and the stop-
ping criterion, is that there is no M in the update term. Thus, we can use fast
tuning of M .

4 Improvement of Speed of Tuning

The third contribution is related to the new update rule (6). When, we have
M ≤ 1, the max function in the update term does not matter. For all M ≥ 1,
we have exactly the same model as for M = 1, so the idea is to skip tuning all
values 1 < M < Mmax. This speeds up the training process, because after this
change Mmax = 1, so the prototype solver is executed for smaller value of Mmax

and it will stop earlier. After this change, the update rule (6) simplifies to

βt ←
{

yt (1 − ytfk−1 (xt)) , if M − ytfk−1 (xt) ≥ 0
0, otherwise

for M ≤ 1. (7)

The computational complexity of this improvement stays the same as for
MSGDSVM and has been given in [12].

5 Theoretical Analysis

We derive the update rule (6) from the following optimization problem for MSVC
with the squared hinge loss function with a desired margin M

OP 2.

min
w

1
2

‖w‖2 +
n∑

i=1

(max {0,M − yif (xi)})2 , where M > 0. (8)
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In the previous work, we used the hinge loss function [12]. The intuition behind
the idea of introducing the squared hinge loss function is to give more weight
for losses, especially for algorithms with strong regularization by extreme early
stopping. The original C support vector classification (C-SVC) with a squared
hinge loss function mentioned in [3], page 104 is

OP 3.

min
w

1
2

‖w‖2 + C

n∑

i=1

(max {0, 1 − yif (xi)})2 . (9)

The squared hinge loss is convex and gives sparse solutions [7]. We have the
following proposition.

Proposition 1. The decision boundary for OP 2 is equivalent to the decision
boundary for OP 3 with C = 1.

Proof. The proof is similar as in [12]. We can write (8) as

min
w

1
2

‖w‖2 + M2
n∑

i=1

(max {0, 1 − yi (w/M · ϕ (xi))})2 .

When we substitute w′ → w/M , we get

min
w ′

1
2

‖w′M‖2 + M2
n∑

i=1

(max {0, 1 − yi (w′ · ϕ (xi))})2 ,

min
w ′

1
2

‖w′‖2 +
n∑

i=1

(max {0, 1 − yi (w′ · ϕ (xi))})2 .

The solution of the optimization problem differs from OP 3 with C = 1 by a mul-
tiplicative constant, so the decision boundaries in the form (1) are equivalent. �

The consequence of this proposition is that for any value of M , we get the
same solution as for OP 3 with C = 1. It may seem as a limitation of the margin
approach. However, we use the extreme early stopping, in which every weight is
updated maximally one time. In this setting, the situation is reversed, and the
version with C may be more limited.

Proposition 2. When we update each parameter maximally one time and ini-
tialize parameters with 0s, the ordinary iteration method with simultaneous steps
based on a dual problem for OP 3 returns the same solution regardless of C.

Proof. The dual formulation of OP 3 is

max
α

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

yiyjαiαj (ϕ (xi) · ϕ (xj ) + δij/C) (10)

subject to 0 ≤ αi. (11)
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The δij is a Kronecker delta, defined to be 1 if i = j, otherwise 0. See [3], page
104 for derivation. We do not have an upper bound for αi in (11). We can derive
an update rule for one weight αi by computing a derivative of (10) similarly as
in [11], page 93

αnew
i = αi −

(
yi

n∑

j=1

yjαj (ϕ (xi) · ϕ (xj ) + δij/C) − 1
)
/ (ϕ (xi) · ϕ (xi)) .

This should be nonnegative due to (11). The Kronecker delta can be nonzero
only when i = j, but for this case αj is zero due to updating each parameter
only one time and initialization with 0s. So there will be no terms with C in the
update rule. �

Proposition 3. When we update each parameter maximally one time and ini-
tialize parameters with 0s, the ordinary iteration method with simultaneous steps
based on a dual problem for OP 2 returns solutions that depend on M .

Proof. The dual formulation of OP 2 is

max
α

M
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

yiyjαiαj (ϕ (xi) · ϕ (xj ) + δij) (12)

subject to 0 ≤ αi. (13)

We can derive an update rule for one weight αi by computing a derivative of
(12)

αnew
i = αi −

(
yi

n∑

j=1

yjαj (ϕ (xi) · ϕ (xj ) + δij) − M
)
/ (ϕ (xi) · ϕ (xi)) . (14)

This should be nonnegative due to (13). Because we update each parameter only
one time and we initialize parameters with 0s, some αj may be 0, but this will
not cause M to disappear. So the update term depends on M . �

For the iteration method with sequential steps, both variants would depend on
C and M respectively. The next idea is that for fast tuning of M , we cannot
have the M hyperparameter in the update term as in (14), only in the stopping
criterion. In order to achieve this, we need to reformulate the OP 2.

Proposition 4. The OP 2 is equivalent to

OP 4.

min
w

W =
1
2

‖w‖2 +
n∑

i=1

(M − yif (xi) ≥ 0 ? max {0, 1 − yif (xi)} : 0)2 . (15)
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The notation is based on a conditional (ternary) operator, similarly defined
as in programming languages [2]. It takes three operands: a condition followed
by a question mark (?), then the expression to evaluate if the condition is true,
followed by a colon (:), and finally the expression to evaluate if the condition is
false.
Proof. We can rewrite OP 2 as

min
w

1
2

‖w‖2 +
n∑

i=1

(M − yif (xi) ≥ 0 ? M − yif (xi) : 0)2 ,

min
w

1
2

‖w‖2 +
n∑

i=1

(M − yif (xi) ≥ 0 ? max {0,M − yif (xi)} : 0)2 ,

min
w

1
2

‖w‖2 + M2
n∑

i=1

(M − yif (xi) ≥ 0 ? max {0, 1 − yi (w/M · ϕ (xi))} : 0)2 .

When we substitute w′ → w/M , we get

min
w ′

1
2

‖w′M‖2 + M2
n∑

i=1

(M − yif (xi) ≥ 0 ? max {0, 1 − yiw
′ · ϕ (xi)} : 0)2 .

�
The OP 4 does not have a desired margin M in the update term, only in the
condition of a ternary operator, which will be used in a stopping criterion. The
reason of introducing max function in (15) is that we want to use similar rep-
resentation as in a dual formulation of SVM, where αi weights are nonzero, see
below (18). The OP 4 can be written as

min
w

1
2

‖w‖2 +
n∑

i=1

(M − yif (xi) ≥ 0 & 1 − yif (xi) ≥ 0 ? 1 − yif (xi) : 0)2 .

(16)
For M > 1, we get the equivalent optimization problems to M = 1, so it simplifies
to

min
w

1
2

‖w‖2 +
n∑

i=1

(M − yif (xi) ≥ 0 ? 1 − yif (xi) : 0)2 , where M ≤ 1. (17)

Before going to derivation of an update rule, we need to change a represen-
tation of w in (3) to

w ≡
n∑

j=1

yjαjϕ (xj ) , where αj ≥ 0. (18)

Such representation is similar to the representation used in a dual problem of
OP 1. It is more strict, because we have a constraint on a sign for each term in
a decision boundary depended on a class yj . This change is necessary for intro-
ducing a max function in the update term (6). The full derivation of the update
rule is in the appendix. We provide only derivation for the primal optimization
problem due to space constraints. However, we also derived the update rule for
the dual problem of OP 4.
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6 Methods

We propose three main methods. The first one is MSGDSVM with the update
rule (7) (MSGDSVM2f). The pseudocode of MSGDSVM2f is in Algorithm 2 for
p = 1. The second one is MSGDSVM with 1 copy (MSGDSVMx2). It implements
MSGDSVM with sampling with full replacement for p = 2. The third one is
MSGDSVM with the update rule (7) and 1 copy (MSGDSVM2f,x2). It combines
all improvements. The pseudocode of MSGDSVM2f,x2 is in Algorithm 2 for p =
2. We do not report directly the pseudocode for MSGDSVMx2, because it is
Algorithm 2 for p = 2 with additional replacement of lines 3 and 4 with a line
3 from Algorithm 1. The line 4 is redundant for methods with the update rule
(7). If one wants to implement the update rule (6) instead of (7), then this
line would be necessary. It is the case for MSGDSVM with the update rule (6)
(MSGDSVM2).

For sampling with full replacement, we use more efficient implementation
than copying examples. We have a counter for each example how many updates
have been already processed with a limit being p (variable c in Algorithm 2). In
sampling with full replacement, we update functional margins for all parameters
(line 6 in Algorithm 2), while in MSGDSVM only for parameters which have not
yet been processed (line 5 in Algorithm 1) which may slow down sampling with
full replacement.

For improved speed of training due to the update rule (7), we cut margin
values to tune from 30 values ([2−19, . . . , 210]) to 11 values ([20, . . . , 210]).

7 Experiments

We compared proposed methods with MSGDSVM and SMO implementation of
SVM. The SMO is an iterative method, for which we have a constraint on the
number of iterations set to 100n, where n is the training set size. For MSGDSVM
and MSGDSVM2, the maximal number of iterations is maximally equal to n, for
MSGDSVMx2 and MSGDSVM2f,x2, it is 2n. For SMO, we do not have fast tun-
ing of the C hyperparameter, while for remaining methods we use fast tuning of
M proposed in [12]. Another difference is that for SMO, we use a bias term. We
additionally compare all methods with a special version of SMO with reduced
number of iterations to n, called SMO with n iterations (SMOx1). Because SMO
with a bias term updates two parameters in one iteration, the number of updates
in SMOx1 is 2n. We use our own implementation of all methods. We compared
performance of all methods for real world data sets for binary and multiclass
classification (binary data sets are from aa to wa in Table 1). We use a one-vs-all
classifier for multiclass. More details about data sets are on the LibSVM site
[9]. We use the same names for data sets as on the LibSVM site, except the
data set aa for which we merged a1a to a9a data sets, w1a to w9a data sets
have been merged to wa, german corresponds to german.numer, ionosphere s to
ionosphere scale. We selected all data sets from this site which have not been
compressed. We merged training and test data sets in the case if they were split.
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For all data sets, we scaled every feature linearly to [0, 1]. We use the radial basis
function (RBF) kernel in the form K(x,z) = exp(−‖x − z‖2 /(2σ2)). The num-
ber of hyperparameters to tune is 2, σ and M for MSGDSVM and the proposed
methods, σ and C for SMO and its variants. For sampling with full replacement,
we generate 1 copy of each example, that is p = 2. For all hyperparameters, we
use a grid search method for finding the best values. The values of hyperparam-
eters to tune are selected as in [12]. We use the procedure similar to repeated
double cross validation for performance comparison. For the outer loop, we run
a modified k-fold cross validation for k = 15, with the optimal training set size
set to 80% of all examples with the maximal training set size equal to 1000
examples. We limit a test data set to 1000 examples. We limit all read data to
35000. When it is not possible to create the next fold, we shuffle data and start
from the beginning. We use the 5-fold cross validation for the inner loop for
finding optimal values of the hyperparameters. After that, we run the method
on training data, and we report average results for the outer cross validation.

The observations are as follows. In the experiment 1, we compared 4 meth-
ods. That are SMO, SMOx1, MSGDSVM and MSGDSVM2f,x2. The proposed
method MSGDSVM2f,x2 is the fastest one, with improved ranking for accu-
racy compared to MSGDSVM (see Table 1). There is little difference in over-
all rank between SMO and SMOx1. For the number of support vectors the
best method is SMO. There are some statistically significant results for accu-
racy for only a few data sets (see Table 2). One significant difference is that
MSGDSVM2f,x2 has statistically better accuracy for the Madelon, glass identifi-
cation and Sensorless data sets. The Madelon data set is an artificial dataset
containing data points grouped in 32 clusters placed on the vertices of a
five dimensional hypercube and randomly labeled +1 or −1. The Sensorless
data set is sensorless drive diagnosis with features extracted from motor cur-
rent. The motor has intact and defective components. The MSGDSVM2f,x2 has
worse accuracy than SMO for the svmguide2 (bioinformatics), letter recogni-
tion, svmguide4 (traffic light signals) and vehicle data sets. The vehicle data
set is a classification a given silhouette as one of four types of vehicle, using
a set of features extracted from the silhouette. In the experiment 2, we com-
pared additional methods, including SMO with reduced number of iterations
(see Table 3). Each technique proposed in this article improves accuracy sepa-
rately over MSGDSVM (see MSGDSVMx2 and MSGDSVM2). Combination of
the proposed techniques improves further accuracy (see MSGDSVM2f,x2). The
fastest methods are MSGDSVM2f and MSGDSVM2f,x2. The MSGDSVM2f has
improved speed over MSGDSVM2. Removing a bias term improves accuracy for
methods based on SMO (see SMONOBx2, SMONOB2,x2, SMONOB). For the
madelon data set (column errM), the proposed method MSGDSVM2f,x2 achieves
superior accuracy over SMO based methods, and almost the best accuracy for
a glass data set. For the svmguide4 and vehicle data sets, there is an advantage
for computing multiple epochs as for SMO (columns errS4 and errV ).
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Table 1. Experiment 1. The numbers in descriptions of the columns mean the methods:
1 - SMO, 2 - SMOx1, 3 - MSGDSVM, 4 - MSGDSVM2f,x2. Column descriptions: dn –
data set, err – misclassification error, the last row is an average rank, sv – the number
of support vectors, the last row is an average rank, t – average training time per outer
fold in seconds, the best time is in bold, the last row is the sum of the training times.

dn err1 err2 err3 err4 sv1 sv2 sv3 sv4 t1 t2 t3 t4

aa 0.158 0.158 0.165 0.159 381 384 344 398 245 23 12 24

australian 0.149 0.149 0.151 0.152 320 335 252 203 286 20 4 10

breast-cancer 0.033 0.033 0.029 0.03 77 77 87 53 44 5 4 6

cod-rna 0.049 0.049 0.058 0.052 199 211 373 387 354 19 13 26

diabetes 0.239 0.235 0.243 0.24 338 347 335 350 200 20 5 10

fourclass 0.0 0.0 0.001 0.0 225 225 398 101 168 9 6 12

german 0.243 0.238 0.243 0.244 460 453 419 460 539 39 8 20

heart 0.168 0.159 0.162 0.159 96 110 117 126 44 1 0 2

ionosphere s 0.063 0.059 0.079 0.079 117 124 86 97 29 1 1 1

liver-disorders 0.344 0.371 0.358 0.364 199 195 201 211 180 1 1 2

madelon 0.363 0.364 0.33 0.306 1000 994 970 881 677 24 13 37

mushrooms 0.002 0.002 0.001 0.001 578 546 956 948 130 24 12 27

phishing 0.059 0.057 0.061 0.059 384 370 284 357 259 23 12 24

skin nonskin 0.005 0.005 0.008 0.007 223 263 178 135 421 19 13 22

splice 0.12 0.122 0.126 0.117 536 521 611 661 329 24 12 31

sonar scale 0.124 0.119 0.133 0.125 119 122 105 86 8 1 0 1

svmguide1 0.033 0.033 0.037 0.035 112 129 138 163 635 18 12 30

svmguide3 0.163 0.175 0.193 0.184 416 473 396 447 918 60 13 25

wa 0.025 0.025 0.026 0.025 159 159 423 387 171 24 13 12

connect-4 0.266 0.267 0.279 0.27 1398 1485 1125 1469 867 100 71 60

dna 0.077 0.077 0.089 0.084 1611 1605 1003 1412 233 159 86 75

glass 0.374 0.392 0.318 0.319 447 522 510 456 38 3 2 2

iris 0.042 0.042 0.047 0.049 53 55 124 94 4 0 0 0

letter 0.295 0.295 0.31 0.326 3387 3391 19918 9480 3278 377 346 127

pendigits 0.024 0.024 0.024 0.022 697 697 3101 2952 914 152 134 82

satimage 0.14 0.14 0.136 0.132 1024 1023 2108 2076 972 107 91 89

segment 0.055 0.056 0.056 0.053 428 643 2254 1892 780 215 106 62

Sensorless 0.131 0.131 0.083 0.087 3733 3668 8829 7623 3411 195 161 81

shuttle 0.005 0.005 0.012 0.012 155 161 118 146 399 44 65 22

svmguide2 0.197 0.194 0.192 0.194 412 424 323 356 67 13 5 5

svmguide4 0.258 0.347 0.422 0.402 635 889 900 1110 865 59 23 17

vehicle 0.171 0.202 0.252 0.235 567 843 707 816 660 79 30 27

vowel 0.023 0.022 0.025 0.027 1591 1580 6164 4367 2179 246 108 59

wine 0.024 0.024 0.024 0.02 120 120 126 85 3 1 1 1

All 2.19 2.1 3.1 2.6 2.15 2.57 2.62 2.66 8965 934 613 459
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Table 2. Bayesian test for generalization performance for the experiment 1. The num-
bers in descriptions of the columns mean the methods: 1 - SMO, 2 - SMOx1, 3 -
MSGDSVM, 4 - MSGDSVM2f,x2. Description of values: eT – the Bayesian correlated
t-test for misclassification error; value greater than 0.9 is in bold. For example, eT12
means probability that the method 2 is better than the method 1. In the last row,
there is a Bayesian signed-rank test for all data sets. We report only rows with at least
one statistical significant result.

dn eT12 eT21 eT13 eT31 eT14 eT41 eT23 eT32 eT24 eT42 eT34 eT43

madelon 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.99 0.0

svmguide3 0.01 0.57 0.0 0.99 0.0 0.93 0.01 0.78 0.01 0.46 0.45 0.03

glass 0.03 0.73 0.94 0.02 0.95 0.01 0.98 0.0 0.98 0.0 0.26 0.32

letter 0.0 0.0 0.02 0.67 0.0 0.97 0.02 0.68 0.0 0.97 0.07 0.63

Sensorless 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.04

svmguide4 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.98 0.77 0.02

vehicle 0.0 0.99 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.97 0.74 0.01

All 0.0 0.16 0.14 0.21 0.15 0.22 0.15 0.2 0.15 0.17 0.11 0.0

Table 3. Experiment 2. Methods are SMO, SMOx1, MSGDSVM, MSGDSVM2f,x2,
MSGDSVMx2, MSGDSVM2, MSGDSVM2f, SMO without a bias term with 2n iter-
ations (SMONOBx2), SMO with the squared hinge loss function and n iterations
(SMO2,x1), SMO without a bias term and with the squared hinge loss function and
with 2n iterations (SMONOB2,x2), SMO without a bias term (SMONOB), SMO with
the squared hinge loss function (SMO2), SMO without a bias term with the squared
hinge loss function (SMONOB2). Column descriptions: method, errR – the average
rank for the misclassification error, svR – the average rank for the number of support
vectors, t – a sum of average training times per outer fold in seconds, errM, errS3,
errG, errL, errS, errS4, errV – the misclassification error for the Madelon, svmguide3,
glass, letter, Sensorless, svmguide4, vehicle data sets respectively.

Method errR svR t errM errS3 errG errL errS errS4 errV

SMO 6.9 3.76 8965 0.363 0.163 0.374 0.295 0.131 0.258 0.171

SMOx1 6.76 4.65 934 0.364 0.175 0.392 0.295 0.131 0.347 0.202

MSGDSVM 9.99 5.68 613 0.33 0.193 0.318 0.31 0.083 0.422 0.252

MSGDSVM2f,x2 7.66 5.72 459 0.306 0.184 0.319 0.326 0.087 0.402 0.235

MSGDSVMx2 8.74 5.47 1275 0.328 0.179 0.313 0.321 0.083 0.4 0.218

MSGDSVM2 8.71 5.51 586 0.306 0.19 0.318 0.309 0.088 0.435 0.269

MSGDSVM2f 8.71 5.51 262 0.306 0.19 0.318 0.309 0.088 0.435 0.269

SMONOBx2 5.29 8.46 1479 0.328 0.174 0.318 0.266 0.078 0.333 0.204

SMO2,x1 7.25 8.28 2056 0.365 0.173 0.409 0.278 0.13 0.35 0.198

SMONOB2,x2 4.57 11.69 2213 0.328 0.17 0.313 0.271 0.078 0.313 0.189

SMONOB 5.51 7.06 26208 0.328 0.166 0.315 0.267 0.078 0.292 0.173

SMO2 5.9 8.43 11114 0.364 0.161 0.394 0.278 0.132 0.253 0.163

SMONOB2 5.01 10.78 24105 0.328 0.164 0.313 0.273 0.078 0.271 0.164
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8 Summary

We proposed two techniques for improving accuracy of MSGDSVM: sampling
with replacement and the new update rule derived from the squared hinge
loss function. We also proposed one technique for improving speed of tuning
of MSGDSVM. The combination of all improvements MSGDSVM2f,x2 is the
fastest method among all tested, and the accuracy is close to SMO and its vari-
ants with reduced number of iterations. We additionally showed that we are
able to improve accuracy of SMO with statistical significance for some data sets
using methods without a bias term, and further substantial improvement can be
attributed to the proposed new update rule. For some data sets, SMO may still
be beneficial over solvers with extreme early stopping.
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A Appendix

We provide a derivation of the update rule (6).

Proof. The proof is based on the primal problem OP 4. The technique of a proof
is similar as presented in [10]. First, we compute the gradient of the objective
function in (15) and we get

∂W

∂w
= w +

n∑

i=1

2 (M − yif (xi) ≥ 0 ? 1 − yiw · ϕ (xi) : 0)

· (M − yiw · ϕ (xi) ≥ 0 ? − yiϕ (xi) : 0) .

Because we have the same condition in the last two factors, we can write

∂W

∂w
= w + 2

n∑

i=1

M − yiw · ϕ (xi) ≥ 0 ? − (1 − yiw · ϕ (xi)) yiϕ (xi) : 0.

After substitution (18), we get

n∑

i=1

yiαiϕ (xi) + 2
n∑

i=1

M − yi

n∑

j=1

yjαjϕ (xj ) · ϕ (xi) ≥ 0 ?

−
(
1 − yi

n∑

j=1

yjαjϕ (xj ) · ϕ (xi)
)
yiϕ (xi) : 0.
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For the stochastic update, we approximate the above formula (which should be
equal to 0 for the optimal solution), so we have

nykαkϕ (xk) + 2n
(
M − yk

n∑

j=1

yjαjϕ (xj ) · ϕ (xk) ≥ 0
)

?

−
(
1 − yk

n∑

j=1

yjαjϕ (xj ) · ϕ (xk)
)
ykϕ (xk) : 0 = 0.

We can generate an update term as for the ordinary iteration method by trans-
forming the equation into a fixed point form for αk by dividing by nykϕ (xk).
We assume that ϕ (xk) 
= 0 for any coefficient. For the RBF kernel, it means
that each component of x should be different from 0. We move all terms except
the first one to the right, and we get

αk ← 2
(
M − yk

n∑

j=1

yjαjϕ (xj ) · ϕ (xk) ≥ 0
)

?

1 − yk

n∑

j=1

yjαjϕ (xj ) · ϕ (xk) : 0.

We can skip multiplier 2, because it will not affect the final decision boundary.
Assuming also initialization with zero and extreme early stopping (updating each
parameter maximally one time), we get

αk ← (M − ykfk−1 (xk) ≥ 0) ? 1 − ykfk−1 (xk) : 0.

By incorporating the additional assumption that the weight is positive, we get

αk ← (M − ykfk−1 (xk) ≥ 0) ? max {0, 1 − ykfk−1 (xk)} : 0.

By returning to the original representation with βj weights, we get (6).
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Abstract. This paper presents a hybrid surrogate-based approach
for constrained expensive black-box optimization that combines RBF-
assisted Constrained Accelerated Random Search (CARS-RBF) with the
CONORBIT trust region method. Extensive numerical experiments have
shown the effectiveness of the CARS-RBF and CONORBIT algorithms
on many test problems and the hybrid algorithm combines the strengths
of these methods. The proposed CARS-RBF-CONORBIT hybrid alter-
nates between running CARS-RBF for global search and a series of local
searches using the CONORBIT trust region algorithm. In particular, after
each CARS-RBF run, a fraction of the best feasible sample points are clus-
tered to identify potential basins of attraction. Then, CONORBIT is run
several times using each cluster of sample points as initial points together
with infeasible sample points within a certain radius of the centroid of
each cluster. One advantage of this approach is that the CONORBIT runs
reuse some of the feasible and infeasible sample points that were previously
generated by CARS-RBF and other CONORBIT runs. Numerical exper-
iments on the CEC 2010 benchmark problems showed promising results
for the proposed hybrid in comparison with CARS-RBF or CONORBIT
alone given a relatively limited computational budget.

Keywords: Constrained optimization · Expensive black-box
optimization · Accelerated random search · Trust region method ·
Clustering · Surrogate models · Radial basis functions

1 Introduction

Surrogate-based and surrogate-assisted approaches have been proposed for com-
putationally expensive black-box optimization (e.g., [3,6,11,26]) and some of
these methods can handle black-box inequality constraints (e.g., [2,4,5,10,13,17–
19,24]). Among the widely used surrogates include Kriging or Gaussian Process
(GP) models and Radial Basis Function (RBF) models, and these are used to
approximate the objective and constraint functions globally or locally, or both.
Examples of global optimization methods for problems with expensive black-box
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objective and constraints include the KCGO algorithm [13], which employs Krig-
ing models of the objective and constraint functions to calculate the probability
of feasibility and a lower confidence bound when generating an infill point (i.e., a
function evaluation point). The COBRA algorithm [23] and its extension SACO-
BRA [2] select an infill point that minimizes an RBF surrogate of the objective
subject to RBF surrogates of the constraints along with some distance require-
ments from previous sample points. The SEGO-KPLS(+K) method [4] employ
Kriging models combined with partial least squares and selects an infill point
that minimizes the surrogate while also maximizing the expected improvement
criterion. Moreover, CARS-RBF [18] is a surrogate-assisted constrained version
of the Accelerated Random Search algorithm [1], which possesses some theoreti-
cal convergence guarantees to the global minimum. CARS-RBF was extensively
tested on more than 30 test problems and compared with several alternative
methods, including the Accelerated Particle Swarm Optimization (APSO) algo-
rithm [28] and the surrogate-based ConstrLMSRBF method [22].

On the other hand, there are also local minimization algorithms for con-
strained expensive black-box optimization that use surrogates. For example, the
derivative-free trust region method in [7] uses a quadratic interpolation model to
approximate the objective function. Moreover, quadratic models have also been
used with the direct search algorithm NOMAD [8]. CONORBIT [25] is a trust
region method that uses RBF interpolation to model both the objectives and con-
straints. It is an extension of the ORBIT trust region algorithm [27], which has
been shown to converge to a stationary point. Extensive numerical experiments
on almost 30 test problems have also shown the effectiveness of CONORBIT in
comparison with several alternative methods, including COBYLA [21], NOMAD
[12] and a sequential penalty derivative-free method [14].

Formally, this paper focuses on solving the constrained optimization problem:

minx∈Rd f(x)
s.t.

gi(x) ≤ 0, i = 1, . . . ,m,
� ≤ x ≤ u,

(1)

where [�, u] ⊂ R
d is the search space and f, g1, . . . , gm are black-box functions

whose values are obtained from computationally expensive but deterministic
simulations. Here, one simulation yields the values of f(x), g1(x), . . . , gm(x) at
a given x ∈ R

d. For now, assume that the feasible region of the problem has a
nonempty interior. Moreover, assume also that there is no noise in the calculation
of the f and gi’s. Future work will deal with the case where the interior of the
feasible region is empty, which happens when there are equality constraints, and
it will also address the issue of noise in the objective and constraint functions.

This paper proposes a hybrid surrogate-based approach for constrained
expensive black-box optimization that combines the CARS-RBF global opti-
mization method with the CONORBIT trust region method. Extensive exper-
iments have shown the effectiveness of both algorithms on many test problems
and the hybrid algorithm combines the strengths of these methods. The pro-
posed CARS-RBF-CONORBIT hybrid alternates between running CARS-RBF
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for global search and a series of local searches using the CONORBIT trust region
algorithm. In particular, after each CARS-RBF run, a clustering method is used
on a fraction of the feasible sample points with the best objective function values
to identify potential basins of attraction of local minima. Then, in each cluster,
CONORBIT is run using the sample points of that cluster as initial points
together with infeasible sample points within a certain radius of the cluster cen-
troid. The hybrid approach is meant to combine the strength of the CARS-RBF
algorithm for global optimization with the ability of the CONORBIT trust region
algorithm to quickly converge to a local minimum. Moreover, the combination
is meant to reduce the effort spent by CONORBIT on expensive function eval-
uations by reusing some of the feasible and infeasible sample points that were
previously generated by CARS-RBF and by other CONORBIT runs. Numerical
experiments on the well-known CEC 2010 benchmark problems [15] showed that
the proposed hybrid generally performs better than CARS-RBF or CONORBIT
alone given a relatively limited computational budget.

2 Global and Local Constrained Black-Box Optimization
Using Radial Basis Functions

2.1 RBF-Assisted Constrained Accelerated Random Search

The Constrained Accelerated Random Search (CARS) algorithm for constrained
black-box optimization [18] is an extension of the Finite Descent Accelerated
Random Search algorithm [1] that was originally designed for bound-constrained
optimization. CARS selects its iterates uniformly at random within a box-shaped
search neighborhood around the current best solution. This search neighborhood
is reduced whenever the iterate does not improve the current best solution. It is
re-initialized to the entire search space whenever the iterate improves the current
best solution or whenever the size of the neighborhood falls below a threshold.
Under certain conditions, the sequence of best solutions generated by CARS
converges to the global minimum in a probabilistic sense. More precisely, the
following theorem was proved in [18]:

Theorem 1. Consider the constrained black-box optimization problem in (1)
where f is continuous and the feasible region D = {x ∈ R

d | � ≤ x ≤ u,
gi(x) ≤ 0, i = 1, . . . , m} is compact. Moreover, assume that int(D) �= ∅ and
that every neighborhood of a boundary point of D intersects int(D). Let {Xn}n≥1

be the sequence of best solutions produced by CARS. Then f(Xn) −→ f∗ :=
minx∈D f(x) almost surely (a.s.).

In the above theorem, the requirement that every neighborhood of a bound-
ary point of D intersects int(D) is satisfied if cl(int(D)) = cl(D), where cl(·)
denotes the closure of a set in R

d.
The CARS-RBF algorithm [18] was developed to improve the performance of

CARS on computationally expensive constrained black-box optimization prob-
lems by using radial basis function (RBF) surrogates of the objective and con-
straint functions. In each iteration of CARS-RBF, a large number of trial points
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is generated in the current search neighborhood. Then, RBF surrogates of the
constraints are used to identify the trial points that are predicted to be feasible
or that have the minimum number of predicted constraint violations. From these
trial points, the sample point where the simulation is run is chosen to be the
one with the best predicted objective function value. Extensive numerical exper-
iments have shown the effectiveness of CARS-RBF in comparison with CARS
with no surrogates and with alternative methods such as Accelerated Particle
Swarm Optimization (APSO) [28], a sequential penalty derivative-free method
[14], and it is competitive with the ConstrLMSRBF algorithm [22] on many test
problems. More details about CARS-RBF can be found in [18].

2.2 CONORBIT Trust Region Method

CONORBIT [25] is a derivative-free trust region algorithm for constrained black-
box optimization that employs RBF interpolation models for the objective and
constraint functions. It is an extension of the ORBIT trust region algorithm [27]
for unconstrained local optimization. CONORBIT uses a small margin for the
RBF models of the constraints to facilitate the generation of feasible iterates and
this approach was shown to improve performance. Extensive numerical exper-
iments on many test problems showed that CONORBIT outperformed many
alternative methods including the trust region method COBYLA [21], the Con-
strLMSRBF method [22], a sequential penalty derivative-free method [14], the
direct search method NOMAD [12], and an augmented Lagrangian method.

In each iteration of CONORBIT, the following trust region subproblem is
solved approximately to obtain the next sample point:

min sf
n(x)

s.t.
sgi

n (x) + ξI([gi(xn) ≤ −ξ]) ≤ 0, i = 1, . . . , m
‖x − xn‖ ≤ Δn

x ∈ R
d, � ≤ x ≤ u

(2)

Here, sf
n and sgi

n , i = 1, . . . , m are the RBF models of the objective and con-
straints, xn is the trust region center, Δn is the trust region radius, ξ is the
margin on the RBF inequality constraints, and I is an indicator function. The
margin ξ is meant to facilitate the generation of feasible iterates and was found
to be helpful in numerical experiments in [25]. The trust region radius is adjusted
according to the feasibility of the current iterate, the ratio of the actual improve-
ment provided by the iterate to the predicted improvement, and the validity of
the RBF models. Moreover, CONORBIT uses a stopping criterion based on a
criticality measure that involves the negative gradient of the RBF model of the
objective and a projection set onto an approximate feasible region defined by
RBF models of the constraints. More details can be found in [25].

2.3 Radial Basis Function Interpolation

The CARS-RBF and CONORBIT algorithms both use the RBF interpolation
model in Powell [20], which differs from the Gaussian RBF network in the
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machine learning literature. In this RBF model, each data point is a center,
the basis functions are not necessarily Gaussian, and training simply involves
solving a linear system. This type of RBF model has been successfully used on
high-dimensional constrained black-box optimization problems with hundreds of
decision variables and many black-box constraints (e.g., see [2,23]).

To fit this RBF model, suppose we are given n distinct points x1, . . . , xn ∈ R
d

and their function values u(x1), . . ., u(xn), where u(x) is either an objective or
constraint function. This RBF interpolation model has the form:

sn(x) =
n∑

i=1

λiφ(‖x − xi‖) + p(x), x ∈ R
d,

where ‖ · ‖ is the Euclidean norm, λi ∈ R for i = 1, . . . , n, and p(x) is a linear
polynomial in d variables. Here, φ has the cubic form (φ(r) = r3). However, φ
can also take other forms such as the thin plate spline (φ(r) = r2 log r) or the
Gaussian form (φ(r) = exp(−γr2), where γ is a hyperparameter). A cubic RBF
model is used here because of its simplicity and its success in prior RBF methods
(e.g., [23,25]). Fitting this model involves solving a linear system that possesses
some nice mathematical properties. More details can be found in Powell [20].

3 A Hybrid Surrogate-Based Algorithm for Constrained
Black-Box Optimization

The proposed method is a hybrid surrogate-based approach for solving the con-
strained black-box optimization problem in (1) that combines the strengths of
the CARS-RBF global optimization method [18] with the CONORBIT trust
region method [25]. This hybrid will be referred to as CARS-RBF-CONORBIT.

As with any surrogate-based optimization method, CARS-RBF-CONORBIT
begins by evaluating the objective and constraint functions at the points of an
initial space-filling design over the entire search space. For now, assume that a
feasible point is included among the initial design points. Such an assumption is
not unreasonable in practice where a feasible design is sometimes available and
one would like to find an improved solution. Future work will consider the case
where none of the initial design points are feasible by considering a two-phase
approach similar to that in [23].

After obtaining the objective and constraint function values at the initial
points, a fixed number nglobal of CARS-RBF iterations are performed. Each
CARS-RBF iteration builds/updates RBF surrogates for the objective and con-
straints, which are then used to select one new sample point where the objective
and constraint functions are evaluated. From the sample points obtained so far,
we select a certain fraction 0 < α ≤ 1 of the feasible sample points with the best
objective function values. Then, we run a clustering algorithm on these feasible
sample points to identify a maximum of kmax clusters that represent potential
basins of attraction for local minima.

Next, a series of CONORBIT runs each up to a maximum of nlocal iterations
are performed, one for each cluster. The feasible sample points in each cluster
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are augmented by infeasible sample points within a certain radius δ of the cluster
centroid and all these sample points are reused as initial points for the CONOR-
BIT iterations. As with CARS-RBF, each iteration of CONORBIT yields one
new sample point and its objective and constraint function values. This sam-
ple point is typically a solution of the trust region subproblem (see Sect. 2.2)
that involves minimizing an RBF model of the objective within the trust region
and subject to RBF surrogates of the constraints within some margin. When
there are many sample points in a given cluster, CONORBIT might terminate
early, after less than nlocal iterations, if it satisfies the stopping condition. After
all the CONORBIT iterations are completed, we repeat the process of running
CARS-RBF iterations followed by clustering and then a series of CONORBIT
iterations until the computational budget is exhausted.

Below is a pseudo-code of the proposed CARS-RBF-CONORBIT method for
solving the constrained black-box optimization problem in (1).

CARS-RBF-CONORBIT Algorithm

(1) (Initial Simulations) Perform simulations to obtain objective and constraint
function values at initial set of points in the search space. (For now, assume
that one of these initial points is feasible.)

(2) (Perform Iterations) While the computational budget has not been
exhausted, do:

(a) (CARS-RBF Iterations) Perform nglobal iterations of CARS-RBF using
all available sample points.

(b) (Gather Top Fraction of Feasible Points) Gather the top α of the feasible
sample points with the best objective function values.

(c) (Cluster Feasible Sample Points) Cluster the feasible sample points
obtained in 2(b) up to a maximum of kmax clusters.

(d) (CONORBIT Iterations) For each cluster, perform nlocal iterations of
CONORBIT using as initial points the sample points in that cluster aug-
mented by infeasible sample points that are within radius δ of the cluster
centroid.

(3) (Return Best Solution Found) Return best feasible solution found and the
corresponding objective and constraint function values.

4 Numerical Experiments

4.1 Experimental Setup

CARS-RBF-CONORBIT with two parameter settings for the maximum number
of clusters used (kmax) are compared with its component algorithms, CARS-RBF
and CONORBIT, on 10-D instances of 11 test problems from the CEC 2010
benchmark [15]. In particular, CARS-RBF-CONORBIT is run using kmax = 3
and kmax = 5. Since CARS-RBF-CONORBIT and its component algorithms
are designed for problems with inequality constraints, some of the CEC 2010
problems are modified by replacing the equality with inequality constraints.



168 R. G. Regis

In particular, the test problems used include C01, C07, C08, C14 and C15, and
modified versions of C02, C05, C06, C09, C10 and C17 where the = constraints
are replaced with ≤ constraints. CARS-RBF and CONORBIT outperformed
several alternative methods for constrained black-box optimization on many test
problems [18,25], so no additional methods are included in the comparisons.

The experiments are performed using Matlab 9.4. Each algorithm is run for
30 trials on each test problem. To get a fair comparison, the different algorithms
used the same space-filling design for each trial. This design is an approximate
maximin Latin hypercube design with 2(d + 1) points that contains a subset of
d + 1 affinely independent points to ensure that the RBF interpolation matrix
is nonsingular. None of these initial points are guaranteed to be feasible, so a
feasible point is included as the first point among the initial design points.

For the algorithm parameters, all four methods used the cubic RBF model
with a linear polynomial tail as in [25]. CARS-RBF used the same parameter set-
tings as in [18] while CONORBIT used the same parameter settings and options
as in [25]. For CARS-RBF-CONORBIT, the number of simulations allocated
for each cycle of CARS-RBF iterations is nglobal = 5(d + 1) and the maximum
number of simulations for each CONORBIT run is nlocal = 5(d + 1). For the
CARS-RBF component of the hybrid method, the number of trial points gener-
ated in each iteration is the same as in [18], which is ntrial = min(1000∗d, 10000).
After the CARS-RBF iterations, the fraction of the feasible sample points with
the best objective function values used to estimate the basins of attractions is
set to α = 0.5. Moreover, k-means clustering as implemented in [9] is used to
identify clusters among the best feasible sample points where the number of clus-
ters is determined automatically using the elbow method up a maximum of kmax

clusters. For the CONORBIT runs within the hybrid method, most of the param-
eter settings and options are set as in [25]. In particular, CONORBIT uses the
fmincon solver from the Matlab Optimization Toolbox to solve the trust region
subproblems where the solver is applied to the RBF surrogates of the objective
and constraints. In addition, the feasible sample points in each cluster are used
as initial points together with the infeasible sample points within radius δ from
the cluster centroid where δ is twice the distance between the cluster centroid
and the farthest cluster point.

4.2 Comparison Using Data Profiles

The CARS-RBF-CONORBIT hybrid is compared with the component algo-
rithms using data profiles [16]. To create these profiles, define a problem p to be
a pairing of a test problem and the given feasible initial point. Since there are
11 test problems and 30 feasible starting points, the total number of problems is
11× 30 = 330. Given the set P of 330 problems, we run a set S of solvers, which
are the CARS-RBF-CONORBIT algorithms, CARS-RBF and CONORBIT.

Now, given a solver s ∈ S, the data profile of s on the set of problems P is
the function

ds(α) =
1

|P|
∣∣∣∣

{
p ∈ P :

tp,s

np + 1
≤ α

}∣∣∣∣ , for α > 0,
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where tp,s is the number of simulations required by solver s to satisfy a conver-
gence test on problem p, and np is the number of variables in p. For a given solver
s and any α > 0, ds(α) is the fraction of problems “solved” by s within α·(np+1)
simulations (equivalent to α simplex gradient estimates) [16]. Here, “solving” a
problem means generating a point satisfying the convergence test below and one
simplex gradient estimate is equivalent to (np +1) calls to the simulator that cal-
culates the objective and constraint function values. This notion was introduced
in [16] and it is based on the idea that (np + 1) affinely independent points and
their corresponding function values are needed to calculate a simplex gradient
of the function in the fully determined case.

In expensive black-box optimization, algorithms are typically compared given
a fixed and relatively limited computational budget in number of simulations.
As in [25], a point x obtained by a solver “solves” the problem if it satisfies the
following convergence test:

max
i=1,...,q

gi(x) ≤ ε, and f(x(0)) − f(x) ≥ (1 − τ)
(
f(x(0)) − f

ε,S,μf

L

)
. (3)

where ε, τ > 0 are tolerances and f
ε,S,μf

L is the minimum objective function value
of all ε-feasible points obtained by any of the solvers within a given budget μf

of simulations. This means that if xε,s,μf is the best ε-feasible point obtained by
solver s ∈ S within μf simulations, then f

ε,S,μf

L = mins∈S f(xε,s,μf ).
Note that the starting point x(0) is feasible in all trial runs of the different

solvers. Hence, at least one solver s ∈ S will satisfy the convergence test (3)
for any given ε, τ, μf > 0. If there are multiple points obtained by solver s that
satisfy (3) on problem p, the performance measure tp,s is the minimum number
of simulations needed to satisfy (3).

4.3 Results and Discussion

Figure 1 shows the data profiles of the algorithms up to 100 simplex gradients,
where each simplex gradient is equivalent to d + 1 simulations. Hence, all algo-
rithms are run to a maximum of μf = 100(d + 1) simulations, where each sim-
ulation yields the values of the objective and all constraint functions at a given
input. The tolerances used for the data profiles are ε = 10−6 and τ = 0.01.

Figure 1 shows that the CARS-RBF-CONORBIT algorithms are better than
CARS-RBF and CONORBIT after 45 simplex gradient estimates (equivalent to
45(d + 1) simulations). In particular, CARS-RBF-CONORBIT with kmax = 3
and kmax = 5 solve about 73% and 71% of the problems, respectively, within
75 simplex gradient estimates. On the other hand, CARS-RBF and CONOR-
BIT solve about 68% and 56% of the problems, respectively, within the same
computational budget. Recall that a problem corresponds to a particular com-
bination of test problem and initial feasible point for a given trial. Also, the two
CARS-RBF-CONORBIT algorithms solve about 78% of the problems within 100
simplex gradient estimates while CARS-RBF and CONORBIT solve about 74%
and 65% of the problems, respectively, within the same budget. Between 45 and
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Fig. 1. Data profiles for 30 trials of CARS-RBF-CONORBIT and its component algo-
rithms on 11 problems from the CEC 2010 benchmark.

100 simplex gradient estimates, the hybrid approach shows an advantage over the
individual algorithms on the test problems used. The data profile for CONOR-
BIT increases more quickly compared to that of the other methods within 20
simplex gradient estimates, but flattens out for a while because the method is
meant for local optimization. CARS-RBF has more steady progress because it
has better balance between global and local search, but the results show that it
can be improved by running CONORBIT on sample points at promising basins
of attractions found after a certain number of CARS-RBF iterations.

Figure 1 also shows that the performance of CARS-RBF-CONORBIT with
kmax = 3 is somewhat close to that of the hybrid with kmax = 5, but with
the former being slightly better than the latter after about 50 simplex gradient
estimates. However, CARS-RBF-CONORBIT with kmax = 5 caught up with
CARS-RBF-CONORBIT with kmax = 3 after about 100(d + 1) simulations. In
the long run, having a larger kmax allows CARS-RBF-CONORBIT to explore
more local minima, which improves the chances of finding a better local mini-
mum. However, having a smaller kmax allows the algorithm to quickly explore
the most promising local minima in the earlier stages of the search.

Next, Table 1 shows the mean and standard error (over 30 trial runs) of the
best feasible objective function values found by the CARS-RBF-CONORBIT,
CARS-RBF and CONORBIT algorithms at three different computational bud-
gets of 50(d+1), 75(d+1) and 100(d+1) simulations on the test problems. The
best result is outlined by a solid box. The second best result is outlined by a box
of dashes.

Table 1 indicates that the best feasible objective function values obtained
by the CARS-RBF-CONORBIT algorithms are generally better than those
obtained by CARS-RBF and CONORBIT at the different computational bud-
gets. These results are consistent with the data profiles in Fig. 1. In particular,
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Table 1. Mean and standard error (over 30 trials) of the best feasible objective function
values found by CARS-RBF-CONORBIT and its component algorithms at different
computational budgets on 11 problems from the CEC 2010 benchmark. The best is
outlined by a solid box. The second best is outlined by a box of dashes.

Test No. of CARS-RBF CARS-RBF CARS-RBF CONORBIT

Problem Simula- -CONORBIT -CONORBIT

tions (kmax = 3) (kmax = 5)

C01 50(d + 1) −0.4111 (0.0197) −0.3840 (0.0190) −0.4010 (0.0161) −0.2931 (0.0117)

C01 75(d + 1) −0.4456 (0.0216) −0.4148 (0.0210) −0.4364 (0.0144) −0.2931 (0.0117)

C01 100(d + 1) −0.4584 (0.0219) −0.4489 (0.0235) −0.4571 (0.0136) −0.2931 (0.0117)

C02Mod 50(d + 1) −2.2086 (0.0141) −2.2178 (0.0064) −2.1860 (0.0343) −1.4241 (0.1313)

C02Mod 75(d + 1) −2.2299 (0.0078) −2.2351 (0.0036) −2.1955 (0.0344) −1.4258 (0.1317)

C02Mod 100(d + 1) −2.2376 (0.0043) −2.2386 (0.0033) −2.2114 (0.0320) −1.4262 (0.1318)

C05Mod 50(d + 1) −454.04 (6.61) −442.17 (7.18) −455.52 (6.78) −314.70 (25.52)

C05Mod 75(d + 1) −458.90 (6.42) −454.63 (6.52) −463.01 (6.16) −318.89 (23.60)

C05Mod 100(d + 1) −462.67 (6.21) −457.90 (6.48) −471.65 (4.00) −319.17 (23.64)

C06Mod 50(d + 1) −398.94 (23.58) −399.00 (25.73) −346.97 (17.86) −238.29 (23.40)

C06Mod 75(d + 1) −436.20 (22.43) −424.63 (26.35) −358.72 (17.47) −239.28 (23.35)

C06Mod 100(d + 1) −453.70 (22.60) −441.66 (25.54) −369.83 (17.47) −239.52 (23.38)

C07 50(d + 1) 21822.61 (14542.97) 13010.03 (5828.55) 1336867.68 (290091.08) 2385.22 (796.89)

C07 75(d + 1) 8463.17 (5313.93) 4093.84 (1795.57) 640098.23 (133222.93) 2306.90 (797.59)

C07 100(d + 1) 3578.09 (2075.19) 1526.48 (621.86) 360113.20 (74413.69) 2277.61 (795.72)

C08 50(d + 1) 20436.79 (7812.00) 23337.31 (11619.16) 3048807.34 (830289.04) 8144.70 (4174.58)

C08 75(d + 1) 9705.29 (4440.30) 13935.81 (7990.86) 1386161.70 (453408.52) 3878.31 (1604.32)

C08 100(d + 1) 7208.80 (3472.04) 11392.69 (7256.83) 577530.53 (159798.76) 2637.64 (838.47)

C09Mod 50(d + 1) 1.73E+06 (5.83E+05) 1.70E+06 (4.72E+05) 2.03E+08 (3.89E+07) 3.47E+06 (1.01E+06)

C09Mod 75(d + 1) 1.60E+06 (5.76E+05) 1.53E+06 (4.54E+05) 7.66E+07 (1.55E+07) 3.46E+06 (1.01E+06)

C09Mod 100(d + 1) 1.57E+06 (5.74E+05) 1.49E+06 (4.49E+05) 3.64E+07 (7.04E+06) 3.46E+06 (1.01E+06)

C10Mod 50(d + 1) 1.16E+06 (6.33E+05) 1.20E+06 (6.62E+05) 1.85E+08 (2.59E+07) 3.85E+06 (1.28E+06)

C10Mod 75(d + 1) 1.04E+06 (6.09E+05) 9.57E+05 (6.14E+05) 6.92E+07 (9.40E+06) 3.69E+06 (1.29E+06)

C10Mod 100(d + 1) 9.74E+05 (5.98E+05) 8.99E+05 (5.97E+05) 3.52E+07 (5.31E+06) 3.68E+06 (1.29E+06)

C14 50(d + 1) 9.19E+12 (3.38E+12) 1.27E+13 (3.33E+12) 1.02E+13 (2.33E+12) 1.13E+13 (4.44E+12)

C14 75(d + 1) 1.73E+12 (8.68E+11) 3.86E+12 (1.26E+12) 1.12E+12 (5.87E+11) 4.09E+12 (1.89E+12)

C14 100(d + 1) 1.18E+11 (5.33E+10) 7.45E+11 (3.09E+11) 8.89E+10 (7.27E+10) 1.06E+12 (4.61E+11)

C15 50(d + 1) 1.611E+14 (1.43E+13) 1.610E+14 (1.44E+13) 1.67E+14 (1.48E+13) 1.26E+14 (1.19E+13)

C15 75(d + 1) 1.59E+14 (1.42E+13) 1.55E+14 (1.35E+13) 1.66E+14 (1.48E+13) 1.11E+14 (1.1E+13)

C15 100(d + 1) 1.56E+14 (1.39E+13) 1.54E+14 (1.35E+13) 1.65E+14 (1.48E+13) 1.01E+14 (1.08E+13)

C17Mod 50(d + 1) 1.2914 (0.1865) 1.3297 (0.2389) 7.2946 (1.0405) 0.9025 (0.1870)

C17Mod 75(d + 1) 1.0164 (0.1767) 0.7757 (0.1470) 5.6661 (0.6400) 0.6210 (0.1262)

C17Mod 100(d + 1) 0.8101 (0.1674) 0.5459 (0.1180) 4.8892 (0.5690) 0.3792 (0.1182)

CARS-RBF-CONORBIT with kmax = 3 is better than CARS-RBF on 9 of the
11 test problems (all except on C05Mod and C14) after 50(d+1), 75(d+1) and
100(d + 1) simulations. Moreover, it is better than CONORBIT on 7 of the 11
test problems at the same computational budgets.
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Table 1 also shows that CARS-RBF-CONORBIT with kmax = 5 is better
than CARS-RBF on 8 of the 11 test problems (all except C01, C05Mod and
C14) after 50(d + 1), 75(d + 1) and 100(d + 1) simulations. It is also better than
CONORBIT on 8 of the test problems (all except C08, C15 and C17Mod) after
100(d + 1) simulations. Moreover, CARS-RBF-CONORBIT with kmax = 5 is
better than CONORBIT on 7 and 6 of the test problems after 75(d + 1) and
50(d + 1) simulations, respectively.

Next, the two CARS-RBF-CONORBIT algorithms have comparable perfor-
mances on the CEC 2010 problems. From Table 1, CARS-RBF-CONORBIT with
kmax = 5 is better than the one with kmax = 3 on 6 of the 11 test problems at
75(d+1) and 100(d+1) simulations. Moreover, the latter is better than the for-
mer on 6 test problems at 50(d + 1) simulations. This is also consistent with the
data profiles in Fig. 1 where the graphs for the two algorithms are close to one
another. This result suggests that CARS-RBF-CONORBIT is not very sensitive
to kmax on the problems in the CEC 2010 benchmark.

It is worth noting that combining CARS-RBF and CONORBIT results in an
algorithm that is more robust than either component method. For example, the
results obtained by CARS-RBF on C07, C08, C09Mod and C10Mod are very
poor in comparison with the other methods even after 100(d + 1) simulations.
However, the CARSRBF-CONORBIT algorithms never obtained such extremely
poor results on the test problems. This indicates that the limited local search
capability of CARS-RBF is not enough to quickly make progress on some of the
CEC 2010 problems. CONORBIT provides the hybrid algorithm with better
local search capability. On the other hand, CONORBIT is a local optimization
method, so it is not expected to do well on problems with many local minima
and this is evident from the data profiles in Fig. 1. The CARS-RBF component
provides the hybrid with better global search capability.

Next, Table 2 shows the mean percent improvement and standard error (over
30 trials) in the best feasible objective function value found by each CARS-RBF-
CONORBIT algorithm over the CARS-RBF global optimization method at com-
putational budgets of 50(d + 1), 75(d + 1) and 100(d + 1) simulations. Improve-
ments over CONORBIT are not included since CONORBIT is only meant for
local optimization. The few negative values in the table indicate the mean percent
deterioration of a hybrid method over CARS-RBF. The table shows that CARS-
RBF-CONORBIT with kmax = 3 obtained significant improvements over CARS-
RBF on 9 of the 11 test problems (all except C05Mod and C14). It also shows
that CARS-RBF-CONORBIT with kmax = 5 obtained significant improvements
over CARS-RBF on 8 of the test problems. Moreover, the improvements obtained
by the two CARS-RBF-CONORBIT algorithms over CARS-RBF are generally
comparable, which is consistent with the results obtained from Fig. 1 and Table 1.
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Table 2. Mean and standard error (over 30 trials) of the percent improvement of
CARS-RBF-CONORBIT over CARS-RBF at different computational budgets on 11
problems from the CEC 2010 benchmark.

Test

problem

Number of

simulations

CARS-RBF-CONORBIT

(kmax = 3)

CARS-RBF-CONORBIT

(kmax = 5)

C01 50(d + 1) 6.04 (6.07) 0.05 (6.11)

C01 75(d + 1) 5.59 (6.26) −2.23 (5.57)

C01 100(d + 1) 3.41 (6.12) 1.37 (6.33)

C02Mod 50(d + 1) 1.80 (1.74) 2.61 (2.58)

C02Mod 75(d + 1) 2.47 (1.99) 2.95 (2.54)

C02Mod 100(d + 1) 2.11 (2.21) 2.25 (2.44)

C05Mod 50(d + 1) 0.50 (2.38) −2.29 (2.17)

C05Mod 75(d + 1) −0.20 (2.24) −1.37 (1.78)

C05Mod 100(d + 1) −1.61 (1.77) −2.84 (1.27)

C06Mod 50(d + 1) 19.65 (7.13) 17.44 (6.82)

C06Mod 75(d + 1) 26.38 (7.23) 19.33 (5.94)

C06Mod 100(d + 1) 26.45 (6.96) 21.07 (6.09)

C07 50(d + 1) 98.59 (0.65) 99.04 (0.48)

C07 75(d + 1) 98.79 (0.55) 99.50 (0.19)

C07 100(d + 1) 98.86 (0.53) 99.63 (0.12)

C08 50(d + 1) 98.29 (0.83) 98.61 (0.48)

C08 75(d + 1) 98.32 (0.95) 97.80 (0.94)

C08 100(d + 1) 96.46 (1.58) 96.85 (1.08)

C09Mod 50(d + 1) 97.07 (1.22) 97.62 (0.80)

C09Mod 75(d + 1) 93.91 (2.09) 94.33 (1.82)

C09Mod 100(d + 1) 91.10 (2.74) 91.32 (2.56)

C10Mod 50(d + 1) 98.50 (1.17) 98.33 (1.25)

C10Mod 75(d + 1) 97.84 (1.43) 97.84 (1.46)

C10Mod 100(d + 1) 96.68 (2.02) 96.71 (2.01)

C14 50(d + 1) −195.25 (143.85) −231.99 (115.44)

C14 75(d + 1) −2701.94 (2182.42) −4365.45 (2026.90)

C14 100(d + 1) −1031.47 (737.56) −31688.43 (23823.24)

C15 50(d + 1) 3.86 (0.58) 3.82 (0.44)

C15 75(d + 1) 5.07 (0.76) 5.94 (1.25)

C15 100(d + 1) 6.17 (0.92) 6.30 (1.33)

C17Mod 50(d + 1) 66.86 (8.44) 74.00 (4.58)

C17Mod 75(d + 1) 74.91 (4.73) 81.19 (3.74)

C17Mod 100(d + 1) 79.15 (4.54) 83.52 (3.89)

Finally, Table 3 shows the mean and standard error (over 30 trials) of the
run times (in sec) of the algorithms on the test problems at a computational
budget of 100(d + 1) simulations. The experiments are carried out using an
Intel(R) Core(TM) i7-7700T CPU @ 2.90 GHz, 2904 Mhz, 4 Core(s), 8 Logical
Processor(s) Windows-based machine. Since the time to evaluate the objective
and constraints of the test problems are negligible, these run times are mostly
the overhead of the algorithms. The table shows that CARS-RBF tends to be
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Table 3. Mean and standard error (over 30 trials) of the run times (in sec) of CARS-
RBF-CONORBIT and its component algorithms at a computational budget of 100(d+
1) simulations on 11 problems from the CEC 2010 benchmark.

Test
problem

CARS-RBF-CONORBIT
(kmax = 3)

CARS-RBF-CONORBIT
(kmax = 5)

CARS-RBF CONORBIT

C01 357.36 (8.46) 389.71 (12.36) 651.85 (6.80) 34.06 (3.21)

C02Mod 256.45 (5.02) 247.11 (3.54) 652.34 (6.68) 67.83 (8.38)

C05Mod 287.43 (18.03) 231.79 (15.20) 656.44 (10.23) 144.28 (10.03)

C06Mod 234.17 (5.53) 213.00 (3.77) 648.85 (11.38) 111.57 (9.21)

C07 325.55 (9.72) 334.57 (6.90) 651.83 (13.96) 86.41 (2.48)

C08 282.51 (6.43) 292.45 (5.53) 655.70 (8.58) 104.54 (7.37)

C09Mod 407.64 (9.80) 433.41 (8.40) 667.75 (7.91) 250.95 (43.00)

C10Mod 407.14 (11.05) 418.40 (11.72) 644.86 (12.26) 241.00 (42.62)

C14 1118.33 (33.23) 1307.08 (52.05) 656.99 (9.23) 672.74 (48.42)

C15 1454.65 (53.92) 1485.62 (55.49) 662.32 (9.51) 1735.72 (97.81)

C17Mod 524.60 (70.48) 572.46 (69.99) 671.25 (14.06) 1061.68 (171.67)

the slowest while CONORBIT tends to be the fastest on most of the problems.
This is because in each iteration, CARS-RBF spends a significant amount of
time using RBF surrogates to evaluate a large number of trial solutions while
CONORBIT uses Matlab’s fmincon to solve the trust region subproblem. These
mean run times are all considerable for a computational budget of only 100(d+1)
simulations because all the algorithms use RBF surrogates, which incur signif-
icant computing overhead. However, when the simulations are truly expensive
(e.g., one hour per simulation), these run times only take up a tiny fraction of
the computing time, so the differences shown in the table do not really matter.

5 Summary and Future Work

This paper proposed the surrogate-based CARS-RBF-CONORBIT hybrid for
constrained expensive black-box optimization that combines the RBF-assisted
CARS-RBF algorithm and the RBF-based CONORBIT trust region method.
The hybrid method alternates between CARS-RBF iterations and a series of
CONORBIT runs started at approximate basins of attractions of potential
local minima. These approximate basins of attractions are obtained by apply-
ing k-means clustering on a fraction of the feasible sample points with the best
objective function values. CARS-RBF is a surrogate-based global optimization
method that performs both global and local search while CONORBIT is a trust
region algorithm that focuses on finding the local minima that correspond to
approximate basins of attractions. Numerical experiments on test problems from
the CEC 2010 benchmark indicate that two hybrid algorithms that use up to
a maximum of 3 and a maximum of 5 clusters perform better the component
algorithms CARS-RBF and CONORBIT on these test problems. Hence, both
CARS-RBF and CONORBIT have the potential to improve the performance
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of one another for constrained expensive black-box optimization by combining
their strengths and achieving a better balance between global and local search.

The proposed CARS-RBF-CONORBIT assumes that a feasible initial point
is given for each problem and allocates a fixed maximum number of simulations
for each CARS-RBF run and CONORBIT run. Future work will consider the
case when no feasible initial point is available and will explore adaptive pro-
cedures for switching between the component algorithms. Moreover, instead of
using k-means clustering, other more suitable clustering methods that take into
account the landscape of the multimodal objective function could be used. For
example, some basins of attractions might correspond to narrow valleys that
might be identified better using a different clustering technique. Also, future
work will consider a wider variety of test problems, including problems with
only bound constraints, from low to high dimensions and containing a few to
many local minima. Although the proposed hybrid is for constrained optimiza-
tion, a similar hybrid can be developed for bound-constrained problems. Finally,
it would be best to also explore the performance of the proposed hybrid to
real-world black-box optimization problems.

Acknowledgements. Thanks to Sebastien De Landtsheer for his Matlab code for k-
means clustering with the elbow method to determine the optimal number of clusters.
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Abstract. Industrial equipment, devices and patients typically undergo change
from a healthy state to an unhealthy state. We develop a novel approach to detect
unhealthy entities and also discover the time of change to enable deeper inves-
tigation into the cause for change. In the absence of an engineering or medi-
cal intervention, health degradation only happens in one direction — healthy to
unhealthy. Our transductive learning framework, known as max-margin temporal
transduction (MMTT), leverages this chronology of observations for learning a
superior model with minimal supervision. Temporal Transduction is achieved by
incorporating chronological constraints in the conventional max-margin classi-
fier — Support Vector Machines (SVM). We utilize stochastic gradient descent
to solve the resulting optimization problem. We prove that with high probability,
an ε-accurate solution for the proposed model can be achieved in O

(
1
λε

)
itera-

tions. The runtime is O
(

1
λε

)
for the linear kernel and O

(
n
λε

)
for a non-linear

Mercer kernel, where n is the number of observations from all entities — labeled
and unlabeled. Our experiments on publicly available benchmark datasets demon-
strate the effectiveness of our approach in accurately detecting unhealthy entities
with less supervision as compared to other strong baselines — conventional and
transductive SVM.

1 Introduction

Early detection of imminent disorders from routine measurements and checkups is an
important challenge in the medical and prognostics research community. Multivariate
observations from routine doctor visits are typically available for human patients. Sim-
ilarly, sensor data is typically available through the life of industrial equipment, from
the healthy to the unhealthy state. If a certain patient or equipment is diagnosed with a
severe disorder, can we look back into the historical measurements to detect the earli-
est indicators of ensuing problems? Identification of such change-points from the past
might lead to the discovery of external stimuli or operating conditions that were the
root cause for the eventual failure. For example, the doctor may question the exposure
of the individual to certain geographies and an engineer might investigate the operating
conditions around the time of change.

Also, empowered by few such diagnoses, can we identify other individuals or
machinery with incipient faults, to enable prevention? It should be noted that we sel-
dom have examples of entities that have been deemed as healthy. A doctor might get
c© Springer Nature Switzerland AG 2022

G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 178–192, 2022.
https://doi.org/10.1007/978-3-030-95470-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95470-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-95470-3_13


Health Changed Etection Using Temporal Transductive Learning 179

visits from only people that are already symptomatic or ill, and others might hold on
for their next routine visit. Similarly, industrial equipment may experience continued
usage till the problem has already escalated, and customers might complain only about
non-functioning units. Routine measurements are cheap, but expensive investigative
analyses are usually not performed on asymptomatic entities. Thus, for most purposes,
any asymptomatic entities are assumed to have an unknown health status.

Fig. 1. The scenario for temporal transduction. Each row is a single entity (patient or equip-
ment). Each circle is a multivariate measurement or observation from that entity. Along each
row, the observations are chronologically ordered, with the one on left appearing first. Green
indicates healthy state, red indicates unhealthy. Gray means measurements were made as part
of routine checkups, but occurrence of disorder (health state) was unknown at that time. (Color
figure online)

We depict this problem setting in Fig. 1. In this work, we assume that initially all
the entities are healthy. For industrial equipment, this might be a safe assumption, since
every new equipment is thoroughly inspected before being deployed. While doctors
might perform a comprehensive examination before admitting a new patient, we under-
stand that this assumption may not hold for disorders that were established before the
first measurement. We will not address the setting of established (existed before the first
measurement), disorder in this work. Additionally, in this setting, note that entities may
not be monitored at the same intervals. Also, the time-span of available observations
might be different. Only few entities may have known final unhealthy diagnoses, but
the time of change is unknown.

We address this challenge using transductive learning [2,4,6] to model the problem
setting with temporal information. Transductive learning is similar to semi-supervised
learning, in its use of unlabeled data for inferring a better model with minimal supervi-
sion. It differs from semi-supervised learning by using test data as the unlabeled data,
instead of any randomly chosen unlabeled data for model inference. The model is opti-
mized for better performance on the unlabeled data used for training, not any other held
out dataset. In our problem setting, the labeled set consists of two parts: the initial mea-
surements from all entities (green circles) and the final measurements from the entities
with known unhealthy states (red circles). The unlabeled set comprises of all the inter-
mediate measurements and final observations from entities with unknown health status
(gray circles). We are interested in classifying this unlabeled set for two reasons: Firstly,
we wish to classify the final states of entities with unknown final diagnoses to identify
those with disorders. Secondly, we wish to classify all the intermediate observations
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to identify change points — the time when the entity changed state from healthy to
unhealthy. Thus, the unlabeled set is also the test set, hence the transductive learning
setting.

In this paper, we propose a novel maximum margin classifier inspired by the pop-
ular SVM classifier [10] and its transductive counterpart [6]. We call this approach
Max-Margin Temporal Transduction (MMTT). In addition to traditional constraints for
maximum margin classifiers, MMTT incorporates a new constraint that penalizes vio-
lation in the chronology of events — the entity cannot go from unhealthy to healthy
without intervention. We design a stochastic gradient descent approach to make our
approach scalable. We also demonstrate that the approach can utilize not only linear,
but also non-linear kernels, and in both cases, the number of iterations needed to infer
an ε-accurate model are of the order of O

(
1
λε

)
. Through experiments on multiple pub-

licly available benchmark datasets, we demonstrate the superior predictive performance
of our approach with minimal supervision as compared to conventional and transductive
SVMs.

2 Notation and Background

Consider the set of entities X = {x1, . . . ,xN}. From our examples earlier, each entity
denotes the element being monitored - a patient or a jet engine. xi ∈ R

Ti×D, where D
is the dimensionality of the multivariate time-series and Ti is the length of time-series of
that particular entity i. Thus, in Fig. 1, i-th row depicts xi and t-th circle in the i-th row
depicts the observation xit . Let Y = {y1, . . . ,yN} be the health-status or labels for
each of the entities, where yi ∈ {−1, 0,+1}Ti . Without loss of generality, −1 denotes
healthy (initial) state, +1 denotes unhealthy (changed) state and 0 indicates unknown
diagnoses.

We denote the set of entities with known final diagnoses by K ⊂ X, and usually
|K| � |X|. Most importantly, only entities with a changed final state comprise K,
thereby yiTi

= +1,∀xi ∈ K. All entities start from the healthy state, thus, yi1 =
−1,∀xi ∈ X. Thus, the training set consists of X, yi1 = −1,∀xi ∈ X, and yiTi

=
+1,∀xi ∈ K.

The goal then is two-fold:

– Final label prediction: Identify the health statuses of entities not in K. That means,
we are interested in finding yiTi

,∀xi ∈ K
�, where K

� = X \ K. We denote these

predictions by ŷiTi
,∀xi ∈ K

�, with the goal of minimizing the prediction error
�(yiTi

, ŷiTi
).

– Change-point detection: Identify the earliest point of change from healthy to
unhealthy state in an unhealthy entity.

Both goals can be addressed by classifying all observations along each entity,
xit ,∀xit ∈ xi,∀xi ∈ X. In other words, we would like to predict ŷit ,∀it. We call
this Entire series prediction. Analyzing the predictions on the entire series can enable
the discovery of change-points in health state.
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3 Our Approach

We propose a max-margin model that is an extension of the popular support vector
machine (SVM) [10]. The predictive model is

ŷit = 〈w, φ(xit)〉 (1)

where w ∈ R
D are parameters of the model.1 φ(·) is a feature transformation. For

inferring w, we solve the following minimization problem.

minimize
w

f(w) :=
λ

2
‖w‖2 + �L(w)

|L| +
�U(w)
|U| +

�C(w)
|C| (2)

where,

�L(w) =
∑

(x,y)∈L

max{0, 1 − y〈w, φ(x)〉}

�U(w) =
∑

(x,y)∈U

max{0, 1 − |〈w, φ(x)〉|}

�C(w) =
∑

(xit ,xit+1 )∈C

max{0, 〈w, φ(xit)〉 − 〈w, φ(xit+1)〉}

L = {(xit ,yit) : xit ∈ X,yit ∈ Y,yit 	= 0,∀}
U = {(xit ,yit) : xit ∈ X,yit ∈ Y,yit = 0,∀}
A = L ∪ U

C = {(xit ,xit+1) : xit ∈ A,xit+1 ∈ A}
�L, �U and �C refer to the constraints arising from the labeled, unlabeled and chrono-

logical considerations, respectively. �L is the usual hinge-loss utilized in the context of
supervised SVM classifiers [10]. �U is the unlabeled loss that attempts to maximize the
margin with the help of unlabeled data, a formulation very commonly used in trans-
ductive SVMs [6]. Finally, �C is the chronological loss which penalizes if the chrono-
logical constraints are violated: that means, the transition from one state (e.g. healthy
to unhealthy) is strictly a one-way transition and any violation results in a penalty that
needs to be minimized. Note that a better chronological loss can be achieved by defin-
ing the set C = {(xit ,xik) : xit ∈ A,xik ∈ A,∀t < k}. Thus, instead of requiring
just the local chronological ordering of labels, we could instead require that the pre-
diction at a particular observation is consistent with all the observations that follow it.
While attractive for the linear kernel, this comprehensive loss is likely to be computa-
tionally expensive. By design, our localized constraint leads to an efficient streaming
algorithm that requires just an observation and its immediate neighbor, not the entire
series, making it attractive for scalability.

1 We have ignored the bias b in this work, although it is likely to only further improve the results
beyond those presented here. Detailed discussion on the bias term appears in [10].
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To enable scalability, we propose a stochastic gradient descent based solution for
the optimization problem. The sub-gradient2 at step s of Eq. 2, w.r.t. ws, in the context
of a single training example (xit ,yit), is:

∇s = λws + ∇s(ws;xit ,yit)
where,∇s(ws;xit ,yit) =

1[〈ws, φ(xit)〉 > 〈ws, φ(xit+1)〉](φ(xit) − φ(xit+1))

−
{
1[yit〈ws, φ(xit)〉 < 1]yitφ(xit), if yit 	= 0
1[|〈ws, φ(xit)〉| < 1] sign(〈ws, φ(xit)〉)φ(xit), otherwise

(3)

where 1[·] is the indicator function which takes value 1 only if · is true, else it is
0. Equipped with this sub-gradient, we can now iteratively learn w using the update
ws+1 ← ws − ηs∇s. We use ηs = 1

λs , similar to Pegasos SVMs. This leads to a
standard SGD algorithm, presented in Algorithm 1.

Algorithm 1. TTSGD algorithm
1: procedure TTSGD(X, λ, S)
2: w0 ← 0
3: for s ← 1, 2, · · · , S do � SGD Iterations
4: Choose it ∈ {1, · · · , |A|} uniformly at random
5: ηs ← 1

λs

6: δ ← λws

7: if 〈ws, φ(xit)〉 > 〈ws, φ(xit+1)〉 then
8: δ ← δ + (φ(xit) − φ(xit+1))
9: end if

10: if (xit ,yit) ∈ L AND yit〈ws, φ(xit)〉 < 1 then
11: δ ← δ − yitφ(xit)
12: end if
13: if (xit ,yit) ∈ U AND |〈ws, φ(xit)〉| < 1 then
14: δ ← δ − sign(〈ws, φ(xit)〉)φ(xit)
15: end if
16: ws+1 ← ws − ηsδ
17: end for
18: returnw � The model parameters
19: end procedure

Note that TTSGD will only work for the linear kernel φ(xit) = xit . Next, we
design a representation of ws that enables the use of non-linear Mercer kernels with
our proposed model for achieving non-linear transforms.

Lemma 1. The contribution of a sub-gradient ∇k(wk; (xk,yk)) used for update in the
k-th round is 1

λs in the s-th round, where s > k

2 Uses: ∂|u|
∂v

= u
|u|

∂u
∂v

;u �= 0.
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Proof. A typical update using a single example can be written as: wk+1 = (1 −
1
k )wk − 1

λk∇k(ws; (xk,yk)). With every upcoming update j = k + 1, · · · , s, the fac-
tor ∇k(wk; (xk,yk)) will be multiplied by (1 − 1

j ), starting with the initial weight

of 1
λk . Thus, at the s-th round of SGD , the resulting overall weight of the factor

∇k(wk; (xk,yk)) will be

1
λk

s∏

j=k+1

(
1 − 1

j

)
=

1
λk

s∏

j=k+1

(
j − 1

j

)
=

1
λs

Lemma 2. During any round of SGD, ws+1 can be represented as a linear combina-
tion of φ(x)’s, for x ∈ X.

Proof. From Lemma 1, irrespective of the round in which ∇k(wk; (xk,yk)) is first
used for SGD update, its contribution is weighed by the factor 1

λs in the s-the iteration.
Also, every time (xit ,yit) leads to an update (if a corresponding indicator is true), it
contributes yitφ(xit), sign(〈wk, φ(xit)〉)φ(xit), or (φ(xit+1) − φ(xit)) respectively
for the three components of the loss. Thus, after s rounds, if (xit ,yit) has resulted in
updates lit ,uit , cit -times (for the 3 components of loss), then cumulatively, ws+1 can
be summarized in terms of the number of times each observation (xit ,yit) contributes
to the updates

ws+1 =
1
λs

⎛

⎝
∑

(xit ,yit )∈L

lityitφ(xit) +
∑

(xit ,yit )∈U

uitφ(xit)

+
∑

(xit ,xit+1 )∈C

cit

(
φ(xit+1) − φ(xit)

)
⎞

⎠ (4)

From Lemma 2, the predictive model in Eq. 1, can be written as

ŷjt′ = wSφ(xjt′ )

=
1

λS

⎛

⎝
∑

(xit ,yit )∈L

lityitK(xit ,xjt′ ) +
∑

(xit ,yit )∈U

uitK(xit ,xjt′ )

+
∑

(xit ,xit+1 )∈C

cit(K(xit+1 ,xjt′ ) − K(xit ,xjt′ ))

⎞

⎠ (5)

where, we have used the kernel representation K(a, b) = 〈φ(a), φ(b)〉. Since the
resulting predictive model is inner products on the feature transforms φ, we can easily
utilize complex Mercer Kernels for non-linear transforms of the input feature space.
This approach is described in Algorithm 2. Note that we are still optimizing for the
primal, but due to the nature of the subgradient, we are able to utilize kernel products. In
implementation, ws is never explicitly calculated, but rather, 〈ws, φ(xit)〉 is estimated
as ŷit , directly using Eq. 5.
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Algorithm 2. TTSGD-Kernel algorithm
1: procedure TTSGDKERNEL(X, λ, J)
2: l,u, c ← 0
3: for s ← 1, 2, · · · , S do � SGD Iterations
4: Choose it ∈ {1, · · · , |A|} uniformly at random
5: if 〈ws, φ(xit)〉 > 〈ws, φ(xit+1)〉 then
6: cit ← cit + 1
7: end if
8: if (xit ,yit) ∈ L AND yit〈ws, φ(xit)〉 < 1 then
9: lit ← lit + 1

10: end if
11: if (xit ,yit) ∈ U AND |〈ws, φ(xit)〉| < 1 then
12: uit ← uit + 1
13: end if
14: end for
15: return l,u, c � The model parameters
16: end procedure

3.1 Analysis

Next, we analyze the convergence rate of the proposed optimization algorithm to the
true parameter w∗, and show that this rate is independent of the dataset size, labeled as
well as unlabeled, but rather depends on the regularization parameter λ and the desired
accuracy ε. We start with restating a key Lemma from [10].

Lemma 3 (Lemma 1 in [10]). Let f1, . . . , fS be a sequence of λ-strongly convex func-
tions3, and w1, . . . ,wS be a sequence of vectors such that ws ∈ R

D,∀s. Also, let
‖φ(x)‖ ≤ R for some R ≥ 1, R ∈ R. Let ∇s belong to the subgradient set of fs atws,
andws+1 = ws − ηs∇s. If ‖∇s‖ ≤ L,∀s, then forw∗ = argminw f(w) and S > 3,

S∑

s=1

fs(ws) ≤
S∑

s=1

fs(w∗) +
L2 ln(S)

λ
(6)

Lemma 4 (Theorem 2 in [7]). If f : RD → [0, B], and f(w) is a λ-strongly convex
function with a Lipschitz constant L w.r.t the norm ‖ · ‖, i.e. ∀ws ∈ R

D, ‖∇s‖ ≤ L,
then, we have with probability at least 1 − 4 ln(S)δ,

1
S

S∑

s=1

F (ws) − F (w∗) ≤ RegS

S

+4

√
L2 ln(1/δ)

λ

√
RegS

S
+max

{
16L2

λ
, 6B

}
ln(1/δ)

S
(7)

where RegS =
∑S

s=1 f(ws) − ∑S
s=1 f(w∗), is the regret of the online learning

algorithm.

3 A function f(w) is called λ-strongly convex if f(w) − λ
2
‖w‖2 is a convex function.
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F (ws) = Es−1[f(ws;Zs], where Es−1[·] indicates the conditional expectation w.r.t.
Z1, . . . , Zs−1, and Zs is the data seen during iteration s of the online algorithm.

Theorem 1. For R = 1, small enough λ and S ≥ 3, we have with probability at least
1 − δ,

1
S

S∑

s=1

F (ws) − F (w∗) = O

(
ln S

δ

λS

)

Proof. It is trivial to show that our optimization function, f(w), is a λ-strongly convex
function. For a linear kernel, φ(x) is x, so ‖x‖ ≤ R can be enabled by normalizing
x appropriately. In this work we utilize the non-linear Radial Basis Function kernel,
and it is indeed the case4 that ‖φ(x)‖ ≤ R. Using this and the Eq. 4, one can show
that ‖ws‖ ≤ 3R

λ . This and the definition of ∇s imply that ‖∇s‖ ≤ 6R. Thus we have
shown ‖∇s‖ ≤ L, and in our case L = 6R, satisfying the Lipschitz criterion. Thus, our
minimization problem satisfies all conditions for Lemma 3, and hence it is applicable.

Thus, from Lemma 3, we can see that for our problem RegS ≤ L2 ln(S)
λ . Also, from

the prior discussion, ‖ws‖ ≤ 3R
λ , and consequently, from Eq. 2, f(w) ∈ [0, 9R2

2λ + 4].
Thus, our minimization problem satisfies the criteria for Lemma 4. Plugging in the
appropriate values for L, RegS , and B, for S ≥ 3, we arrive at the result.

For the TTSGD implementation in Algorithm 1, we are thus guaranteed to find an ε-
accurate solution in O

(
1
λε

)
iterations, with high probability. Just like the popular Pega-

sos [10] algorithm, the number of iterations is independent of the number of examples
(labeled or unlabeled), but rather depends on the regularization and desired accuracy.
For the TTSGD-Kernel approach in Algorithm 2, the runtime will depend on the num-
ber of observations, due to the min(s, |L| + |U| + |C|) kernel evaluations at iteration
s, bringing the overall runtime to O((|L| + |U| + |C|)/λε). The bounds derived above
are for the average hypothesis, but in practice the performance of the final hypothesis
is often better, as shown in [10]. For this work, we will use the final hypothesis for
prediction.

4 Experiments

4.1 Baselines

In order to assess the incremental benefit of using temporal transduction, particularly
the addition of the chronological constraint, we compare the proposed approach with
related strong baselines:

– SVM: In this setting, the model is learnt merely from the available labeled set L.
We used the popular Pegasos SVM implementation.

4 ‖φ(x)‖2 = 〈φ(x)φ(x)〉 = exp
(

−|φ(x)−φ(x)‖2

2σ2

)
= 1.
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– TSVM: In addition to the labeled set, we employ a transductive SVM (TSVM) on
the observations from each entity. For TSVM, we used the transduction algorithm
that is included with the popular SVM-light implementation.5

Chosen baselines utilize the same underlying predictive model as ours in Eq. 1. This
choice is deliberate, as the goal is to compare the benefit of the chronological constraint
on a similar model, not really compare predictive model families. Intuitively, the first
baseline (SVM) uses the first constraint �L in Eq. 2, TSVM uses �L and �U, and our
approach uses all three �L, �U, and �C. Additionally, as a straw-man baseline, we also use
a stratified-dummy classifier that classifies randomly according to the distribution of the
two categories in the labeled set. For this purpose, we use the DummyClassifier(strategy
= ‘stratified’) routine from the scikit-learn library.

4.2 Experimental Setup

We developed our system in Python and used the scikit-learn6 library of algorithms.
All the reported results have been averaged over 100 runs, each starting with a random-
ized data-generation step based on Algorithm 3, and then proceeding to randomly hide
the desired fraction of labels. Tuning the regularization parameter λ and penalization
parameter C for the various approaches was performed as an inner cross-validation
loop, using only the available training set. The experiments were run on a 12-core
Mac-OSX server, with 64 GB of random access memory. For reproducibility, code and
datasets are available for download.7

4.3 Datasets

The approach was designed on a real use case from the industry for equipment moni-
toring. However, we are unable to make the proprietary data available for public use.
To facilitate reproducibility of results and continued research, we present results on a
publicly available benchmark collection from the NASA Prognostics and Healthy Mon-
itoring repository. Also, to enable a deeper investigation into the strengths and weak-
nesses of the algorithm, we propose an approach for transforming well-known binary
classification datasets into the problem setting of interest.

4.4 Turbofan Engine Degradation

This dataset, released publicly by the NASA prognostics center of excellence, consists
of run-to-failure observations of aircraft gas turbine engine [9]. In the seven years of
its existence, it has been extensively used in over 70 publications for comparing per-
formance of prognostics, classification and fault discovery. There are about 100 unique
aircraft engines in the dataset and 21 sensor measurements are recorded at every cycle
of engine operation. Engine lifespans are in the range 128–525 cycles per engine.

5 http://svmlight.joachims.org/.
6 http://scikit-learn.org.
7 https://www.dropbox.com/s/z9kfii51nvc7izq/mmtt.zip?dl=0.

http://svmlight.joachims.org/
http://scikit-learn.org
https://www.dropbox.com/s/z9kfii51nvc7izq/mmtt.zip?dl=0
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We use this dataset for the task of identifying engines that are near failure. Imagine
an airline operator that is managing a fleet of several engines. One of them fails for
an unforeseen reason (first unhealthy example), and immediately the operator is tasked
with discovering others that are near failure. This enables the operator to control further
damage, manage inventory, and minimize downtime. We model our experiment to this
setting, by providing only one example of unhealthy engine in the training set to the
compared methods. The data from each engine is randomly truncated at a randomly
chosen cycle number. This ensures that lengths of time-series available for healthy esti-
mation is different per engine. Class labels in the ground truth set are assigned based on
remaining useful life of each engine. Engines that are failure free for the next 20 cycles
are deemed healthy for further operation, while others are deemed unhealthy, and might
need immediate repair. These settings accurately model a practical scenario observed
in the industry.

Fig. 2. Comparison of time-series predictions of health statuses of engines for each of the methods
on 5 example unhealthy engines. From the left: Stratified, SVM, TSVM, and MMTT

In Fig. 2, we compare the full time-series predictions of the methods on few example
unhealthy engines. Clearly, the fluctuation is significant in the predictions of the SVM
classifier, but the MMTT method provides a one step change prediction, as is desirable
in this problem setting. These average number of fluctuations in the predictions for a
time-series have been summarized in our evaluation metric called jitter, which mea-
sures the average number of change-points in the predictions of a method along a time
series. The results presented in Table 1 have been averaged over 100 random runs of this
dataset. It can be observed that the performance of MMTT is significantly better than
that of the other baselines. Although TSVM achieves the same jitter as that of MMTT,
it is likely attributable to the failed detection of unhealthy engines, as evidenced in the
accuracy and f1-score comparisons.

Note that the true time of change of state is unknown for this dataset, so claims
about change-point detection are not possible. For these and further investigation, we
present controlled experiments next.
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Table 1. Engine dataset results. Best performance has been highlighted with a *

Metric Stratified SVM TSVM MMTT

Accuracy 0.13 0.80 0.72 0.85*

F1 score 0.35 0.74 0.65 0.78*

Jitter 24 6 1* 1*

4.5 Controlled Experiments

Intuitively, the time series of each entity can start from observations from one class
(the healthy one), and then for a select group of entities change over to the other class
(unhealthy one). Generating datasets in this manner enables the accurate identification
of change-points, since ground truth about change is available for evaluation. Algo-
rithm 3 describes the process of generating the state-change dataset given any binary
classification problem. The Algorithm is governed by 4 parameters: (1) Number of enti-
ties to generate, N (2) Length of time series for entity i: We model this as a random vari-
able drawn from a Poisson distribution with expected value T . (3) Fraction of instances
that undergo change: We model the likelihood that a certain entity will undergo change
as a Bernoulli distribution with success probability p. (4) Time of change: We model
this as a Poisson distribution with expected value aTi for entity i. Thus, a can be thought
of as roughly the fraction of the time series of entity i that has changed state.

We use the following popular benchmark classification datasets which deal with the
identification of onset of certain major disorders, and use Algorithm 3 to create cus-
tom datasets for controlled experiments. (a) Pima-Indian Diabetes [11]: Use glucose,
plasma, serum and skin measurements from individuals of the Pima tribe to identify
those which show signs of diabetes. (b) Parkinson Speech dataset [8]: Voice measure-
ments from 31 people including 23 with Parkinson’s disease, with roughly 6 measure-
ments from each individual, to identify the diseased. (c) Ovarian Cancer [5]: Discover
proteomic patterns in serum that distinguish ovarian cancer from non-cancer.

In addition to these datasets from the life-sciences community, we utilize some
datasets that have been utilized for comparing SVM classifiers recently, namely the
Adult, MNIST and USPS datasets used in the comparison of scalable SVM algo-
rithms [1,10]. These are not life-sciences datasets, but are generally applicable as data
that changes from one class to another over time, as enabled by Algorithm 3. We use
the same version of these datasets as used in [1].

Table 2 describes the characteristics of the datasets. In our experiments, T =
10, a = 0.5, p = 0.5 and N was chosen to generate a wide variety of data. Note that the
amount of data being classified by the classifier is approximately of the order of NT .

4.6 Results and Observations

In Fig. 3, we present the results comparing the accuracy of the various methods while
increasing the number of known unhealthy entities. This is akin to the task of attempt-
ing to classify all monitored entities given a disease outbreak wherein, the information
about few unhealthy entities becomes available at a time. The accuracy is reported on
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Algorithm 3. Data generation process. N,T, p, a are pre-defined constants. N : total
instances to generate. T : typical length of a series. p: fraction of instances that will
change state. a: fraction of the time-series that denotes change. C−/+ is some input
binary classification dataset
1: procedure DATAGEN(C−,C+)
2: X ← {}
3: Y ← {}
4: for i ← 1 to N do
5: Ti ∼ Poisson(T ) � Length of time-series
6: yi,Ti ∼ Bernoulli(p) � Does yi change state?
7: if yi,Ti �= 0 then
8: t+ ∼ Poisson(aTi) � Time of change
9: yi,t ← −1, if 0 ≤ t < t+

10: yi,t ← +1, if t+ ≤ t ≤ Ti

11: Draw xi,t uniformly randomly from Cyi,t , with replacement
12: else
13: yi,t ← −1, if 0 ≤ t ≤ Ti

14: Draw xi,t uniformly randomly from C−, with replacement
15: end if
16: X ← X ∪ {xi}
17: Y ← Y ∪ {yi}
18: end for
19: return X,Y � The generated dataset
20: end procedure

being able to classify all entities at the final diagnoses, as well as all the intermediate
predictions leading to the final state, the entire series prediction mentioned earlier in
Sect. 2. It can be observed that MMTT outperforms all the other approaches, with mini-
mal supervision. Barring the USPS dataset, the initial accuracy of MMTT is significantly
superior. We attribute the particularly weak performance of svmlight, the conventional
transductive baseline, to the need to maintain a balance of class proportions in the labeled
and unlabeled sets. This assumption may not hold in our problem setting. The negative
impact of this assumption is more pronounced in the straw-man baseline, the stratified
classifier, which by definition, randomly assigns label by class proportions in the labeled

Table 2. Dataset characteristics

Dataset # Observations # Features N

Diabetes 768 8 75

Parkinsons 195 22 20

Ovarian cancer 1200 5 10

Adult 48844 123 100

MNIST 70000 780 100

USPS 9298 256 100
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set. Its performance worsens as more unhealthy instances are added to the labeled set,
thereby skewing the class proportions. We discuss this challenge in detail in Sect. 4.7.

(a) Diabetes (b) Parkinsons (c) Ovarian Cancer

(d) Adult (e) MNIST (f) USPS

Fig. 3. Effect of increasing number of known unhealthy entities on accuracy.

Root-cause analysis is another use case where final diagnoses of many/all entities
are available and the goal is to classify observations along the time-series for time-of-
change identification, enabling investigation of external stimuli concurrent with time
of change. In Fig. 4, we present the trends of accuracy on the various dataset when we
have a knowledge of final diagnoses of entities of both kinds: those that end up healthy
as well as unhealthy. The trends look similar to those in Fig. 3, albeit, the overall perfor-
mance for all approaches has improved. Even with the knowledge of all final diagnoses,
the performance of conventional transduction is sub-par compared to even the induc-
tion based simple SVM, and we again believe that the implicit strategy of attempting
to maintain class proportions across labeled and unlabeled sets leads to poorer perfor-
mance.

4.7 Need for a Balancing Constraint

To avoid problem of classifying all unlabeled instances to the majority class, balancing
constraints have been used in most prior work on Transductive learning, for example
by ensuring that the class proportions are maintained in the labeled and the unlabeled
set [3,4,6]. To highlight the balancing problem with our approach, in Fig. 5, we present
the predictions by the MMTT approach with increasing amounts of labeled information.
The performance is very good when substantial supervision is available (2 rightmost
images) in each chart. However, under minimalistic supervision (1 unhealthy known
label), the entire dataset is predicted to be healthy. We believe this is because of the
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(a) Diabetes (b) Parkinsons (c) Ovarian Cancer

(d) Adult (e) MNIST (f) USPS

Fig. 4. Effect of increasing number of known entities (healthy and unhealthy) on accuracy

stringent chronological constraint that indirectly penalizes unhealthy predictions, but
there is no penalty for predicting every observation as being healthy. While the problem
is akin to the class balance situation highlighted in prior work on transductive learning,
the remedy is not as simple as maintaining class proportions across labeled and unla-
beled sets. The time-of-change is unknown (how many observations before and after
change), and known unhealthy entities are disproportionate by design. At this stage, we
want to highlight this as an open challenge for further exploration.

(a) Adult (b) MNIST (c) USPS

Fig. 5. The ground truth labels versus predictions at 3 stages: only 1 unhealthy entity known, all
unhealthy entities known and final diagnoses of all entities are known. In each chart, each row is
a time-series of health status (ground-truth or prediction), for a single entity. The entities in each
dataset are sorted by length of time series Ti. Gray color indicates healthy, Black color indicates
unhealthy, White is empty space (no recorded observations)
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5 Conclusion

We proposed a novel approach for temporal transductive learning, especially for the
problem of detecting changed entities and the corresponding point of change. The app-
roach is scalable, even in the presence of temporal constraints and non-linear kernels.
Experiments on life-science datasets demonstrate the potential for early detection of
several important disorders such as cancer, diabetes and parkinsons.
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Abstract. Visual Question Answering (VQA) is gaining momentum for
its ability of bridging Computer Vision and Natural Language Process-
ing. VQA approaches mainly rely on Machine Learning algorithms that
need to be trained on large annotated datasets. Once trained, a machine
learning model is barely portable on a different domain. This calls for
agile methodologies for building large annotated datasets from existing
resources. The cultural heritage domain represents both a natural appli-
cation of this task and an extensive source of data for training and vali-
dating VQA models. To this end, by using data and models from ArCo,
the knowledge graph of the Italian cultural heritage, we generated a large
dataset for VQA in Italian and English. We describe the results and the
lessons learned by our semi-automatic process for the dataset generation
and discuss the employed tools for data extraction and transformation.

Keywords: Visual Question Answering · Dataset · Cultural heritage

1 Introduction

Since its introduction a few years ago, Visual Question Answering (VQA) [6], the
problem of generating the answer of a given question related to a certain image,
has been intensively investigated by the machine learning community, achiev-
ing fascinating results (e.g., [10,11]). The necessity of accessing to training and
validation data has stimulated the production of large datasets (e.g., [5]). Very
recently, a raise of interest has been observed in developing computer science
tools to engage people in museums and touristic sites, for instance automatic
audio guides able to respond to user questions in natural language [9]. The
application of VQA in this field presents some characteristics that differentiate
it from the general VQA. The Cultural Heritage (CH) domain is particularly
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challenging due to the great variety of cultural assets that could potentially be
considered. Moreover, if previous VQA approaches usually focus on answering
questions that can be deduced by observing the image (e.g., how many peo-
ple are depicted), in the CH domain answering meaningful questions related to
an image generally requires background knowledge on the represented cultural
property (e.g., who is the author of an artwork). Considering the peculiarity of
the CH domain, models trained on general datasets barely adapt to this field.
Specific datasets of question-answer pairs with associated images are limited to
AQUA [4] and an annotated subset of Artpedia paintings [1].

The need for large datasets in the CH domain has motivated us to exploit the
large amount of structured data in the ArCo Knowledge Graph [2] to produce
a comprehensive VQA dataset, useful for training and evaluating VQA systems.
ArCo consists of (i) a network of seven ontologies (in RDF/OWL) modeling the
CH domain (with focus on cultural properties) at a fine-grained level of detail,
and (ii) a Linked Open Data dataset counting ∼200 M triples, which describe
∼0.8 M cultural properties and their catalog records derived from the General
Catalog of Italian Cultural Heritage (ICCD), i.e. the institutional database of the
Italian CH, published by the Italian Ministry of Culture (MiC). ArCo ontology
network is openly released with a CC-BY-SA 4.0 license both on GitHub1 and
on the official MiC website2, where data can be browsed and acceded through
the SPARQL query language.

Extracting information from ArCo to generate a dataset for VQA is not free
of obstacles. First, ArCo does not give us a measure of which kind of questions
might be interesting for average users in a real scenario. Second, ArCo data need
to be suitably transformed and cleaned to produce answers in a usable form and
questions need to be associated to corresponding answers. Third, the dataset
we aim at generating is huge, and therefore manual validation of produced data
cannot be performed.

We resorted to a semi-automatic approach that involves the collaboration of
expert and non-expert users and the use of text processing and natural language
processing techniques to obtain an accurate list of question-answer pairs. In the
remainder of this paper, we discuss our methodology for the dataset generation
and the characteristics of our resulting dataset.

2 Methodology

We considered a scenario where an image is associated to available knowledge
either manually (e.g., artworks in a museum can be associated with their descrip-
tions) or by object recognition (e.g., architectural properties identified by taking
pictures), and generated a dataset as a list of question-answer pairs, each one
associated to an image, a description and a set of available information. An
instance of question-answer pair is: “Who is the author?” - “The author of the
cultural asset is Pierre François Basan”. A prediction model might build the
1 https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release.
2 http://dati.beniculturali.it/.

https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release
http://dati.beniculturali.it/
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answer from the description, if available, or infer it by combining visual features
(e.g., the painting style) with other information extracted from the description.

We adopted a semi-automatic approach consisting in two main steps. The
first part of the process focused on generating a list of question templates with
associated verbal forms by considering both expert and non-expert perspectives
assessed by surveys. Then, for each question template, we automatically gener-
ated a list of question-answer pairs by combining question forms and associated
answer templates with information from relevant cultural assets in ArCo, and
accurately cleaning the results. This process was performed by an ad-hoc tool,
developed following a build-and-evaluate iterative process. At each step we eval-
uated a sample of the produced dataset to propose new data cleaning rules for
improving results. The process ended when the desired accuracy was achieved.
Eventually, question-answer pairs from different question templates were com-
bined. Next, we first detail our question templates generation process, then fully
describe the question-answer pairs generation by drawing from question tem-
plates.

The question templates generation process was based on the following two
perspectives carried out independently: a domain experts’ perspective, repre-
sented by a selection of natural language competency questions (CQs) [7] pre-
viously considered to model the ArCo ontology network [2], and a user-centered
perspective, represented by a set of questions from mostly non-expert (65 out of
104) users, collected through five questionnaires on a set of different images of
cultural assets belonging to ArCo (five per questionnaire). In the questionnaires,
the users were asked to formulate a number of questions (minimum 5, maximum
10) that they considered related to each image presented (questions they would
ask if they were enjoying the cultural asset in a museum or a cultural site).
In this way, we collected 2, 920 questions from a very heterogeneous group of
users in terms of age (from 24 to 70 years old and 42 years average age), cultural
background and interests. Then, the questions were semi-automatically analyzed
and annotated in order to recognize their semantics, associate them (when possi-
ble) with ArCo’s metadata, and create corresponding SPARQL queries for data
extraction.

In the clustering process, we grouped user-produced questions into seman-
tic clusters, named question templates, with the purpose of grouping together
questions that ask for the same information. Clustering was first performed
automatically by text analysis and sentence similarity, then validated and cor-
rected manually. The automatic procedure consisted in the following steps. We
initially aggregated sentences that resulted to be identical after tokenization,
lemmatization and stop words removal. Then, for each question, we identified
the most semantically similar one in the whole set by Sentence-BERT [8] and
aggregated sentences whose similarity was above 84% (we found empirically that
this value resulted in a low error rate). Eventually, we performed average link-
age agglomerative clustering with a similarity threshold of 60%. To prepare for
manual validation, we extracted a list of question forms, each one associated
to a numerical ID representing the cluster it belongs to. Questions in the same
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cluster (e.g., “Who is the author?” and “Who made it?”) were placed close to
each other. After removing identical sentences, we obtained about 1659 ques-
tions, grouped in 126 clusters. Each question was then manually associated to
a textual (human meaningful) ID (e.g., “AUTHOR”) agreed by the annotators
and a special “NODATA” ID (about 10%) was introduced for questions that
refer to information that is not contained in ArCo. At the end of the process,
after excluding clusters that ask for unavailable and unusable information in
ArCo, we obtained 29 clusters, each of them representing a question template.
Obtained question templates (labeled as “User”) were aggregated with the ones
from the domain experts (labeled as “Expert”) obtaining 43 question templates,
with 20 of them in common. Eventually, the experts defined an answer template
and a SPARQL query for each question template.

We employed SparqlWrapper3 for executing the SPARQL queries and
extracting textual data and pictures from ArCo. We removed cultural assets
that have zero or more than one associated pictures. For each record of the
query results we generated a question-answer pair by randomly drawing a ques-
tion form by the associated question cluster, with the same distribution of the
results of the user questionnaires (frequently proposed questions are selected
with higher probability), and building the associated answer from the answer
template. In order to improve both the form of the answer itself and its ren-
dering in its context, we adopted two approaches. We applied a set of cleaning
rules, such as removing data with errors or marked as not validated and chang-
ing patterns of verbal forms (e.g., from “Baldin, Luigi” to “Luigi Baldin”)4, and
employed pre-trained language models to improve the form of answers by adapt-
ing each sentence to its associated datum (e.g., Italian prepositions and articles
have to be chosen according to the gender and number of corresponding nouns
or adjectives). To solve this problem we applied the cloze task of BERT [3] on
the generated answers, asking to infer words whose genre and number depend
on the specific datum and cannot be previously determined. Furthermore, we
applied a final grammar correction task by automatic translating the sentence
from Italian to English and back to Italian by means of pre-trained language
models for translation5.

3 Results

The final dataset6 contains 6.49M question-answer pairs covering cultural assets,
43 question templates and 282 verbal forms. The number of pairs per template
ranges from 35 to 576 K. Each question-answer pair is associated with the corre-
sponding cultural asset and its information, including its picture, a description
and its URI in ArCo. In addition, on GitHub we provide two samples in Italian
and English of 50 question-answer pairs per question template that we manually
3 https://github.com/RDFLib/sparqlwrapper.
4 A complete list is available on https://github.com/misael77/IDEHAdataset.
5 https://huggingface.co/Helsinki-NLP/opus-mt-it-en and opus-mt-en-it.
6 Available on GitHub https://github.com/misael77/IDEHAdataset.
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evaluated. Results show an overall accuracy (percent of correct pairs) of 96, 6%
for the Italian sample, and of 93% for the English one. We also provide a table
that reports, for each question template, its usage, the number of associated
question forms, the number of question-answer pairs generated and the accu-
racy. Another table shows the breakdown of question-answer pair numbers by
cultural asset type.

4 Conclusions and Future Work

The dataset we provide is the largest resource available for the training and val-
idation of VQA models in the CH domain, which comprises 6.493.915 question-
answer pairs, with associated visual, textual and structured information. We
plan to apply this resource for training and evaluating a VQA system in the CH
domain. We also plan to develop a second version of the dataset, which consid-
ers questions about restricted categories of cultural properties (e.g., paintings)
in order to enhance the coverage of user questions related to specific types of
cultural assets (e.g., who was it painted by?).
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Abstract. Applying machine learning to molecules is challenging
because of their natural representation as graphs rather than vectors.
Several architectures have been recently proposed for deep learning from
molecular graphs, but they suffer from information bottlenecks because
they only pass information from a graph node to its direct neighbors.
Here, we introduce a more expressive route-based multi-attention mech-
anism that incorporates features from routes between node pairs. We
call the resulting method Graph Informer. A single network layer can
therefore attend to nodes several steps away. We show empirically that
the proposed method compares favorably against existing approaches
in two prediction tasks: (1) 13C Nuclear Magnetic Resonance (NMR)
spectra, improving the state-of-the-art with an MAE of 1.35 ppm and
(2) predicting drug bioactivity and toxicity. Additionally, we develop a
variant called injective Graph Informer that is provably more power-
ful than the Weisfeiler-Lehman test for graph isomorphism. We demon-
strate that the route information allows the method to be informed
about the non-local topology of the graph and, thus, it goes beyond
the capabilities of the Weisfeiler-Lehman test. Our code is available at
github.com/jaak-s/graphinformer.

Keywords: Graph neural networks · Graph attention ·
Self-attention · NMR · Bioactivity prediction

1 Introduction

Graphs are used as a natural representation for objects in many domains, such as
compounds in computational chemistry or protein–protein interaction networks
in systems biology. Machine learning approaches for graphs fall into two main
lines of research: the spectral and the spatial approach. The spectral approach
relies on the eigenvalue decomposition of the Laplacian of the graph and is well
suited for problems involving a single fixed graph structure.

By contrast, spatial graph methods work directly on the nodes and edges
of the graph. Convolutional neural networks (CNN) have inspired many spatial
methods. Similarly to a local convolution filter running on the 2D grid of an
image, spatial approaches update the hidden vectors of a graph node by aggre-
gating the hidden vectors of its neighbors. Several spatial graph methods have
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been proposed, which vary in how to carry out this update. The most straightfor-
ward approach is to sum (or average) the hidden vectors of neighbors, and then
transform the results with a linear layer and a nonlinearity (e.g., as proposed in
Neural Fingerprints [10] and Graph Convolutional Networks [19]). Instead of a
simple dense feedforward layer, some methods use GRU-based gating [22], edge
hidden vectors [17], and attention to the neighbors [29]. One of the advantages
of spatial methods over spectral methods is that they can be straightforwardly
applied to problems involving multiple graphs.

However, the update step of a node in spatial methods only has access to
its own neighborhood, which limits the information flow throughout the whole
graph. Increasing the accessible neighborhood of each node requires the stacking
of several layers. The dilated filters in CNNs [32] are an example of solving
this neighborhood limitation in images, by providing an efficient way to gather
information over longer distances (see Fig. 1, (A) and (B)).

In this work, we propose a method that flexibly aggregates information
over longer graph distances in one step, analogous to dilated filters. Our
Graph Informer approach is inspired by the sequence-to-sequence transformer
model [28]. The core contribution of our work is the introduction of route-based
multi-head self-attention (RouteMHSA), which allows the attention mechanism
to also access route information and, thus, base its attention scores both on the
features of the nodes and the route between them. This enables Graph Informer
to gather information from nodes that are not just direct neighbors. Furthermore,
the proposed approach can straightforwardly use edge features, as they can be
incorporated into the route features. In the case of chemical compounds, this
allows using the annotation of the bonds between the atoms (single, double, aro-
matic, etc.). The central idea is illustrated in Fig. 1. Additionally, we investigate
the expressiveness of Graph Informer, by describing a variant that is provably
as powerful as the Weisfeiler-Lehman (WL) test and showing empirically that it
can even go beyond the WL test.

Fig. 1. Illustration of how route-based graph attention can mimic dilated filters in
graphs. Red colored nodes are updated based on the vectors of the blue color nodes.
(A) 2D convolutional filter, (B) 2D dilated filter, (C) graph convolution, (D) route-
based graph attention. (Color figure online)

Our Graph Informer compares favorably with state-of-the-art graph-based
neural networks on 13C NMR spectrum and drug bioactivity prediction tasks,
which makes it suitable for both node-level and graph-level prediction tasks.
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2 Proposed Approach

2.1 Setup

In this work, we consider learning problems on graphs where both nodes and
edges are labeled. For a graph G with N nodes, we denote its node features by
a matrix X ∈ R

N×Fnodes and the route information by tensor P ∈ R
N×N×Froute ,

Fnodes and Froute are the dimensions of the nodes and route features, respectively
and the route information P is computed using the adjacency matrix of the graph
and the edge labels. For example, for chemical compound graphs, where nodes
are atoms, the vector between a pair of atoms in the route information tensor
(e.g., vector P [i, j] for atoms i and j) can contain information on the type of
route that connects the two atoms (rigid, flexible, aromatic) and how far they
are from each other (shortest path).

We propose a method that works for both (1) graph-level tasks, such as
graph classification where the whole graph G is assigned a label, and (2) node-
level tasks where one should predict a value or a label for nodes (or subset of
nodes) of the graph.

Due to the frequent use of tensors, in the following we adapt the Einstein
summation convention, where the corresponding lower and upper indices are
contracted (summed over). In case of matrices we use the matrix notation and
the Einstein notation interchangeably for easier comparison to previous works,
e.g. AB = AikB

k
j corresponds to

∑
k aikbkj . Note that AikBjk corresponds to a

rank-3 tensor with elements aikbjk and not a matrix and that we consider the
Euclidean metric tensor and hence use covariant (lower indices) and contravari-
ant (upper indices) representations interchangeably.

2.2 Dot-Product Self-attention

Our approach is inspired by the encoder used in the transformer network [28],
which proposed dot-product attention for sequence models formulated as

Attn(Q,K, V ) = σ

(
1√
dk

QK�
)

V = σ

(
1√
dk

QifKf
j

)

V j
f ′ ,

where Q,K ∈ R
N×dk and V ∈ R

N×dv are the query, key, and value matrices,
i, j are node indices, f, f ′ are embedding indices and σ is the Softmax func-
tion, which makes sure that the attention probabilities for each node sum to
one. This attention can be used as self-attention by projecting the input d-
dimensional hidden vectors H ∈ R

N×d into queries, keys and values. Q, K and
V are computed from the input hidden vectors with corresponding weight matri-
ces WQ ∈ R

dk×d,WK ∈ R
dk×d and WV ∈ R

dv×d (i.e., Q = HW�
Q , K = HW�

K

and V = HW�
V ). Intuitively, the i-th row of Q is the query vector of the i-th

node (attending node), the j-th row of K is the key vector of node j (attended
node) and the j-th row of V is the value vector for node j (value of the attended
node).
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To encode sequences with dot-product attention, the original transformer
network [28] adds positional encodings to the hidden vectors H. In particular,
sine waves with different frequencies and phases were used in the original paper
to encode the position of the sequence elements. This allows the network to
change attention probabilities based on the positions. However, as presented in
the next section, such positional encoding is not directly applicable to graphs.

2.3 Route-Based Dot-Product Self-attention

One aspect to note is that in the case of graphs, there is no analogue for the
global position of nodes. Therefore, we propose a novel stable relative addressing
mechanism for graphs. The proposed mechanism adds a new component to the
dot-attention that depends on the features of the route between two nodes in
the graph. This route component is made up of a query and a key part. For the
route query QR ∈ R

N×dr we map the hidden vectors of the nodes (H) with a
matrix W route

Q ∈ R
dr×d

QR = H(W route
Q )�,

where dr is the dimension of the route query and WQ is the query weight matrix.
Similarly, for the route key KR ∈ R

N×N×dr we map the route features P with
a matrix W route

K ∈ R
dr×d

(KR)ijf = Pijh(W route
K )hf ,

where i, j refer to nodes dimensions, f to the embedding dimension and h to
route features. The route information allows the attention mechanism to access
the topology of the graph. Note that while QR is a matrix of route queries, one
for each node of the graph, KR is a tensor of rank 3, with each slice KR[i, j] cor-
responding to the route from node i to node j, and f indexing route embedding.

The route query and key can be now contracted into a N × N matrix of
(logit) attention scores, which can be added to the original node-based scores
QK�.

The intuition behind this is straight-forward: we compute the scalar product
between the query vector QR[i] of the node i and the key vector KR[i, j] (by
contracting the index f) of the route from i to j.

Now the route-based attention probabilities A ∈ [0, 1]N×N are given by

Aij = σ

(
1√

dk + dr

(
QifKf

j + (QR)if (KR)fij
))

, (1)

where we also added the size of the route key dr to the normalization for keeping
the values within trainable (non-plateau) ranges of the softmax function. This
enables the network to use both the information on the routes ((QR)if (KR)fij),
as well as the node hidden vectors (QifKf

j ), to decide the attention probabilities.
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Analogously, we project the route information into the value component V
of the dot-product attention. Firstly, we map the route data P into

(VR)ijf = Ph
ij(W

route
V )fh,

where VR ∈ R
N×N×dv is the tensor of rank 3 with slice VR[i, j] corresponding

to the value vector for the route from node i to node j. The route value tensor
VR can then be weighted according to the attention probabilities A from Eq. 1
giving as the final route-based graph attention:

RouteAttn(Q,K, V,QR,KR, VR)if = AijV
j
f + Ai,j(VR)jif . (2)

2.4 Locality-Constrained Attention

The route-based attention defined in Eq. 2 is general and allows unconstrained
access throughout the graph. In some applications, localized access is preferred
and this can be easily forced by adding a masking matrix to the attention scores:

(ALC)ij = σ

(
1√

dk + dr

(
QifKf

j + (QR)if (KR)fij
)

+ (Mroute)ij

)

, (3)

where Mroute ∈ {−∞, 0}N×N is 0 for unmasked routes and minus infinity for
masked connections (in practice, we use a large negative value). This allows us,
for example, to mask all nodes whose shortest distance from the current node is
larger than 3 or some other number, thereby creating an attention ball around
the current node. Similarly, it is possible to use the mask Mroute to create an
attention shell (i.e., attending nodes within a given range of shortest distances).

In our experiments, we only used the attention ball with different values for
the radius.

2.5 Implementation Details

As in the transformer architecture, we use multiple heads. Several route-based
self-attentions are executed in parallel and their results are concatenated, allow-
ing the network to attend to several neighbors at the same times.

Pool Node. Additionally, we introduce a pool node that has a different embedding
vector than the graph nodes. The pool node has no edges to the graph nodes,
but is unmasked by Mroute, so that the attention mechanism can always attend
and read, if required. This idea has two motivations. It allows the information
to be easily shared across the graph and can be used as a “not found” answer
when the attention mechanism does not find the queried node within the graph
nodes.
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Learnable Module. We use the attention probabilities ALC for RouteAttn
from Eq. 2, which takes in (1) hidden vectors of the nodes H, with size
(d,Nnodes, Nhidden), (2) route information P , with size (d,Nnodes, Nnodes, Froute),
and (3) masks Mnode and Mroute. We use multiple heads and concatenate their
results, giving us a route-based multi-head self-attention module (RouteMHSA):

RouteMHSA = Concat(X1, . . . , XNhead)
with Xi = RouteAttn(HWi,Q,HWi,K ,HWi,V ,

HW route
i,Q , PW route

i,K , PW route
i,V ),

where W are the learnable parameters of the module.
The values for hidden size d, key size dk, value size dv, route key size dr, and

the number of heads Nheads can be chosen independently of each other. However,
in our experiments we set d equal to dkNheads, with Nheads ∈ {6, 8}. We also use
dv = dk = dr.

Computational Complexity. The computational complexity of the RouteMHSA
is quadratic with respect to the number of nodes in the graph, because the
attention mechanism computes all pairwise attention probabilities. In practice,
this means that the method can scale to graphs of a few hundred, maximally
1,000 nodes. This is more than enough for handling drug-like compounds, which
typically have less than 100 (non-hydrogen) atoms.

3 Architecture of the Network

The architecture of Graph Informer is inspired by transformer networks [28],
where the output of the multi-head attention is fed through a linear layer and
added to its input, then a subsequent layer normalization [3] is applied. Addition-
ally, a feedforward network (FFN) was applied to each hidden vector separately.
However, in our graph experiments, for both node-level and graph-level tasks, we
found this architecture to be quite difficult to train due to gradient flow issues.

Instead, we found that creating a residual-style network [14] with LayerNorm
solved the gradient flow issue and was easy to train. The layer for this architec-
ture can be expressed as

T = H + LayerNorm(Linear(RouteMHSA(H))) (4)
H ′ = T + LayerNorm(FFN(T )), (5)

with H ′ being the output of the block (i.e., updated hidden vectors). The archi-
tecture is depicted in Fig. 2. Graph Informer uses both neuron-level and channel-
level dropout, with dropout rate 0.1.

4 Expressiveness of Graph Informer

Next, we investigate the general ability of Graph Informer to distinguish between
distinct but similar graphs, also known as the graph isomorphism problem.
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Fig. 2. Layer setup for the architectures of Graph Informer.

4.1 The Weisfeiler-Lehman Test

We propose a variant of our approach that is provably as powerful as the
Weisfeiler-Lehman test of isomorphism of dimension 1 (WLdim=1). Generaliz-
ing the notation of [31] to include route information, P , we write the update
function of our model as

hk
v = φ

(
hk−1
v ,

{
(hk−1

u , Pv,u) : u ∈ N (v)
})

,

where
{
(hk−1

u , Pv,u) : u ∈ N (v)
}

is the multiset of node vectors, hk−1
u , and their

route information vectors Pv,u, which can be attended by node v.
Such a network is provably as powerful as the Weisfeiler-Lehman test of

isomorphism if the function φ(.) is injective1 with respect to the hidden vectors
hk−1
v and hk−1

u arguments, as follows straightforwardly from the theorem in [31].
RouteMHSA satisfies this condition with respect to the first argument (hk−1

v )
because one of the heads can attend to itself. However, to make it provably injec-
tive with respect to the second argument, we can replace the softmax mapping
in Eq. 3 by an elementwise sigmoid. We call this version the Injective Graph
Informer.

4.2 Beyond the Weisfeiler-Lehman Test

Several graph neural networks, including GIN [31] and NeuralFP [10], are limited
in their expressiveness to the Weisfeiler-Lehman test of dim = 1. By contrast, the
Graph Informer can aggregate route information and, therefore, has the capa-
bility to go beyond WLdim=1 as the routes between the nodes reveal non-local
topology. Indeed, we can show that Graph Informer has the following capability:

1 We assume here that the output function is also injective.
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Lemma 1. Injective Graph Informer using the histogram of the lengths of all
(possibly cyclic) routes between two nodes up to length N can distinguish any
pair of graphs with different spectra.

The proof of this lemma follows from the fact that injective Graph Informer
is injective with respect to route features P and that graphs are cospectral (in
terms of their adjacency matrix) if and only if Tr(Ar) are equal for both matrices
for all values of r [2]. Notably, our method offers a more detailed view because
it can also distinguish cospectral graphs (e.g., the Tesseract (Q4) and Hoffman
graphs, which are both 16-node and 4-regular).

We hypothesize that in practice this capability of Graph Informer gives strong
additional expressiveness and makes it difficult to construct counterexamples
because the route information allows the method to capture the non-local topol-
ogy of the graph in detail.

5 Related Research

There are several neural network approaches that can directly work on the graph
inputs. The key component in many of the works is to propagate hidden vectors
of the nodes H using the adjacency matrix2 A, either by summing the neighbor
vectors, AH, or by averaging them as ÃH, where Ã = A(D)−1 is the normalized
adjacency matrix with D being the diagonal matrix of degrees. Neural Fin-
gerprint [10] proposed to use the propagation AH, combined with a node-wise
linear layer and a nonlinearity to compute fingerprints for chemical compounds.
Based on the degree of the node, Neural Fingerprint uses a different set of lin-
ear weights. Similarly, Graph Convolutional Networks (GCN, [19]) propose to
combine AH with a linear layer and a nonlinearity for semi-supervised learning,
but by contrast with Neural Fingerprint, they use the same linear layer for all
nodes, irrespective of their degree. Kearnes et al. [17] proposed the Weave archi-
tecture, where they use embedding vectors also for the edges of the graph and
the propagation step updates nodes and edges in a coupled way.

In a separate line of research, [25] proposed Graph Neural Networks (GNN),
which also use AH to propagate the hidden vectors between the nodes, but
instead of passing the output to the next layer, the same layer is executed until
convergence, which is known as the Almeida-Pineda algorithm [1]. A recent
GNN-based approach is called Gated Graph Neural Networks (GGNN) [22],
where at each iteration the neighborhood information AH is fed into a GRU [7].
An iterative graph network approach, motivated by the Message Passing algo-
rithm in graphical model inference [24] was proposed by [8]. Gilmer et al. [11]
generalized the existing approaches to the Neural Message Passing (NeuralMP)
algorithm and showed the effectiveness of the approach for predicting simulated
quantum properties based on 3D structures of compounds.

Hamilton et al. [13] propose a representation learning method, GraphSAGE,
that does not require supervised signals and inductively embeds nodes in large
graphs.
2 The adjacency matrix here is assumed to include the self-connection (i.e., Aii = 1).
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The method closest to ours is Graph Attention Networks (GAT) [29]. Simi-
larly to us, they proposed to use multi-head attention to transform the hidden
vectors of the graph nodes. However, GAT cannot integrate route features and its
attention is only limited to the neighbors of every node. For graph isomorphism
testing, this means it fails to separate any regular graphs, similar to WLdim=1.

In contrast to the spatial methods reviewed above, spectral methods use the
graph Fourier basis. One of the first spectral approaches to introduce this concept
in the context of neural networks was SCNN [6]. To avoid the costly eigenvalue
decomposition, Chebyshev polynomials were proposed to define localized filters
[9]. Based on this work, proposed a neural network that combines spectral meth-
ods with metric learning for graph classification was proposed [20].

For sake of completeness, we note that another loosely related line of research
has been working on the problem of transforming an input graph to a target
graph and are known as graph transformers [5,33]. Those works usually do not
use the attention mechanism used in the transformer network [28]. Yet, in a
recent communication, also called graph transformers, [21] proposed a node-
level attention mechanism for the same graph-to-graph task. In contrast, our
model tackles node- or graph-level classification and regression tasks, and uses
route-level attention mechanism.

In graph isomorphism research, as already mentioned, [31] showed that injec-
tive update rule and readout are crucial to guarantee expressiveness at the level
of WLdim=1. In a recent publication, [23] proposed a graph neural network as
powerful as WLdim=3.

In one of our main application areas, Nuclear Magnetic Resonance (NMR)
chemical shift prediction (covered in Sect. 6.2), is an important element in struc-
ture elucidation. Recently, [15] proposed an imitation learning approach to solve
this NMR inverse problem.

6 Evaluation

We compare our method against several baselines on two tasks. We first consider
a node-level task where, given the graph of the compound, the goal is to predict
13C NMR peaks for all of the carbon atoms, see Sect. 6.2. For the graph-level
tasks, we consider the drug–protein activity data set ChEMBL [4] and compound
toxicity prediction from MoleculeNet [30], see Sect. 6.3. In all tasks and for all
methods, we used the same feature set (see Appendix). For methods that could
not use route features but supported edge features, we used the bond type (single,
double, triple, aromatic). We consider an extensive set of baselines: GGNN [22],
NeuralFP [10], GCN [19], Weave [17], GAT [29], NeuralMP [11] and GIN [31].

6.1 Model Selection

All methods used the validation set to choose the optimal hidden size from
{96, 144, 192, 384} and dropout from {0.0, 0.1} [27]. For our method, attention
radius from {1, 2, 3, 4} and head count from {6, 8} were also selected. All methods
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were trained with the Adam optimizer [18]. The validation set was used for
early stopping (i.e., we executed all methods for 100 epochs and picked the best
model). At epochs 40 and 70, the learning rate was decreased by a factor of 0.3.
Finally, the best early stopped model was used to measure the performance on
the test set.

6.2 Node-Level Task: NMR 13C Spectrum Prediction

13C NMR is a cost-efficient spectroscopic technique in organic chemistry for
molecular structure identification and structure elucidation. If 13C NMR mea-
surements can be combined with a highly accurate prediction, based on the graph
(structure) of the molecule, it is possible to validate the structure of the sample.
It is crucial to have highly accurate predictions, because in many cases several
atoms have peaks that are very close to each other. If such predictions are avail-
able, the chemist can avoid running additional expensive and time-consuming
experiments for structure validation.

To create the data set, we used 13C NMR spectra from NMRShiftDB2.3 After
basic quality filtering 25,645 molecules remained with peak positions raging from
–10 to 250 ppm (parts per million) with mean and standard deviation of 95 and
52 ppm.

In accordance to the most common Lorentzian peak shape assumption in
NMR spectroscopy, we minimize the Mean Absolute Error (MAE) [12]. For eval-
uation, we split the data into train-validation-test sets containing 20,000, 2,500,
and 3,145 molecules, respectively, and report results over 3 repeats with different
splits. All methods use the same node-level output head, consisting of a tanh
layer followed by a linear output layer. The MAE loss is minimized only for the
atoms that have measurements for the 13C peaks (i.e., the carbon atoms). For
the results, see Table 1.

Our proposed Graph Informer reaches 1.35 MAE, which is also better than
the state-of-the-art results from computational chemistry literature, which have
reported 1.43 MAE for 13C for the NMRShiftDB2 [16]. At these levels of accu-
racy, many molecules with densely packed 13C NMR spectra can be resolved.
This class of molecules with densely packed spectra are common for aromatic
ring systems, which are prevalent in drug-like compounds. As an example, see
Fig. 3a depicting 2-chloro-4-fluorophenol, which has three carbons, labelled 1, 3,
4 with peaks within the 115.2 to 116.6 ppm range. Figure 3b displays the pre-
dictions from the molecule when it was in the test set. The predictions match
closely the true spectrum and, critically, predict the true ordering, which allows
us to perfectly match peaks.

For a Graph Informer with 3 layers and 6 heads all having radius 2, we depict
the attention probabilities in Fig. 4 for the bottom carbon (number 1 in Fig. 3a)
of same 2-chloro-4-fluorophenol compound. We can see that all heads in Layer
1 strongly use the pool node as a reference. Also, we can see that in Layer 1 the

3 Available here: https://nmrshiftdb.nmr.uni-koeln.de/.

https://nmrshiftdb.nmr.uni-koeln.de/
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Table 1. Test MAEs for NMR 13C spec-
trum prediction averaged over different
folds.

Method #layers Test MAE

Mean model 46.894

GCN 2 6.284 ± 0.053

GCN 3 8.195 ± 0.385

GIN 2 5.015 ± 0.082

GIN 3 6.275 ± 0.306

GGNN na 1.726 ± 0.055

NeuralMP na 1.704 ± 0.025

GAT 1 2.889 ± 0.021

GAT 2 3.148 ± 0.067

GAT 3 5.193 ± 0.196

NeuralFP 1 3.839 ± 0.039

NeuralFP 2 2.248 ± 0.027

NeuralFP 3 2.040 ± 0.037

NeuralFP 4 1.966 ± 0.045

Graph Informer 1 1.827 ± 0.035

Graph Informer 2 1.427 ± 0.024

Graph Informer 3 1.375 ± 0.016

Graph Informer 4 1.348 ± 0.007

State of the art [16] 1.43 ± NA

Table 2. AUC-ROC scores for multi-
task datasets ChEMBL and Tox21
of MoleculeNet averaged over different
folds.

Method ChEMBL Tox21

NeuralFP 0.826± 0.005 0.829

GCN 0.814± 0.005 0.809

GIN 0.816± 0.004 0.810

GGNN 0.756± 0.014 0.809

NeuralMP 0.707± 0.005 0.804

Weave 0.830± 0.006 0.822

Graph Informer 0.839± 0.003 0.848

first head focuses on the atom itself, the second head attends to all neighbors
within radius 2, and the third head focuses on the halogen atoms.

6.3 Results for Graph-Level Tasks

We benchmark the methods on two drug bioactivity data sets: ChEMBL v23
by [4] (94 tasks, 87,415 molecules, and 349,192 activity points) and Tox21 from
MoleculeNet by [30] (12 tasks, 7,831 molecules, and 77,946 activity points). For
ChEMBL, we used a repeated holdout-validation, and for Tox21 we used the
single train-validation-test split given by MoleculeNet. In the case of ChEMBL,
because of well-known series effect in drug design, allocating molecules randomly
to the training and test sets results in overly optimistic and inconsistent perfor-
mance estimates [26] because highly similar molecules end up in both training
and test sets. Therefore, we apply clustered hold-out validation. We allocate
the clusters (rather than individual molecules) to the training (60%), validation
(20%), and test sets (20%). We repeat this split 5 times.
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(a) Molecule structure (b) Measured and predicted spectra

Fig. 3. 13C NMR spectrum for 2-chloro-4-fluorophenol. The predicted NMR peaks are
in the same order, even in the densely packed region (carbons 4, 1, 3).

Fig. 4. Attention probabilities from carbon 1 (bottom in the figures) in the 2-chloro-4-
fluorophenol molecule. We show selected three heads (H) from layer 1 and layer 2 (L).

Our and all adapted methods (GCN, GIN and GGNN) use a graph pooling
layer consisting of a linear layer, ReLU, mean pooling, and a linear layer. We
minimize the cross-entropy loss and Table 2 reports the AUC-ROC averages over
tasks for each data set. Graph Informer outperforms all baseline methods in both
ChEMBL and Tox21 data sets.

7 Conclusion

In this work, we proposed a route-based multi-head attention mechanism that
allows the attention to use relative position and the type of connection between
the pair of nodes in the graph. Because of its route features, our approach can
incorporate information from non-direct neighbors efficiently—similar to the use
of dilated filters in CNNs. In our theoretical analysis, we showed that a variant
of Graph Informer is provably as powerful as the WLdim=1 test. Our empirical
evaluation demonstrated that the proposed method is suitable both for node-
level and graph-level prediction tasks, and delivers significant improvements over
existing approaches in 13C NMR spectrum and drug bioactivity prediction.
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Appendix

Node and Route Features

In addition to the following features, we fed the one-hot encoding of the atom
types by concatenating it to the node feature vector, see Table 3. The atom types
that occurred in the two data sets are {C, N, O, Cl, F, S, I, Br, P, B, Zn, Si,
Li, Na, Mg, K}. As the route features (Table 4) contain all edge labels (single,
double, ...), all information about the graph topology is retained.

Table 3. Node features

Position Description

0–2 Formal charge, one-hot encoded {−1, 0, +1}
3–7 Hybridization state, one-hot encoded {s, sp, sp2, sp3}
8–13 Explicit valence, one-hot encoded integer, between 0 and 5

14 Aromaticity, binary

15 Whether it is in a ring size 3, binary

16 Whether it is in a ring size 4, binary

17 Whether it is in a ring size 5, binary

18 Whether it is in a ring size 6, binary

19 Whether it is in any ring, binary

20 Partial charge, computed by Gasteiger method, real number

21 Whether it is a H-acceptor, binary

22 Whether it is a H-donor, binary

23 Whether it is an R stereo center, binary

22 Whether it is an S stereo center, binary
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Table 4. Route features

Position Description

0–8 Bond distance, binned, [0, 1, 2, 3, 4, 5 ≤ d ≤ 6, 7 ≤ d ≤ 8, 9 ≤ d ≤ 12, 13 ≤ d]

9 Whether the shortest pure conjugated path containing at most 4 bonds, binary

10 Whether the shortest pure conjugated path containing at least 5 bonds, binary

11 Whether there is a route containing only up to 13 single bonds, binary

12 Whether there is a route containing only up to 13 double bonds, binary

13 Triple bond, binary

14 Whether there is a shortest path which is a pure conjugated path, binary

15 Whether the endpoints are in the same ring, binary

16 Single bond, binary

17 Double bond, binary

18 Aromatic bond, binary
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Abstract. An electric insulator is an essential device for an electric
power system. Therefore, maintenance of insulators on electric poles has
vital importance. Unmanned Aerial Vehicles (UAV’s) are used to inspect
conditions of electric insulators placed in remote and hostile terrains
where human inspection is not possible. Insulators vary in terms of phys-
ical appearance and hence the insulator detection technology present in
the UAV in principle should be able to identify an insulator device in
the wild, even though it has never seen that particular type of insulator
before. To address this problem a Zero-Shot Learning-based technique is
proposed that can detect an insulator device, that has never seen dur-
ing the training phase. Different convolutional neural network models
are used for feature extraction and are coupled with various signature
attributes to detect an unseen insulator type. Experimental results show
that inceptionsV3 has better performance on electric insulators dataset
and basic signature attributes; “Color and number of plates” of the insu-
lator is the best way to classify insulators dataset while the number of
training classes doesn’t have much effect on performance. Encouraging
results were obtained.

Keywords: Zero-shot learning · Signature attribute · Electrical
insulators · Object detection

1 Introduction

Deep learning has shown incredible performance in problems like image classi-
fication and object detection, yet this comes at the cost of a huge number of
annotated samples for training. It is also not possible to correctly identify the
unseen classes those are not used while training and hence in such situation
we need to train the classifier from scratch again. In the past few years, special
forms of neural networks “Convolutional Neural Networks (CNN’s)” are advanc-
ing the state of the art of the many computer vision applications, and these are
specifically designed to require advantage of the 2D structure of image data.
However, CNNs typically require an enormous amount of training data, that is
usually not available in many tasks such as power cables component detection
and classification [10]. To the best of our knowledge, the very little approach
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is available that might efficaciously ankle these quandaries across many tasks.
Some of the approaches to handle the dearth of training data problems are i. Uti-
lizing synthetic data and data augmentation techniques to come up with more
training data ii. Employing one-shot learning that aims to be told information
about incipient object categories from just one or some training images [12] iii.
Adopting zero-shot learning that seeks to ascertain information about incipient
object categories from only descriptions [15].

Zero-shot learning is used to generalize the learned information to explore
the unfamiliar object classes. During this context, both unseen and seen classes
require to be cognate to the auxiliary semantic features. The setting within
zero-shot learning considered the profound case of transfer learning. The model
is trained to replicate human competency on unseen classes, which don’t seem
to be within the training stage [4]. The core in zero-shot learning is to ascer-
tain a multi-model projection between semantics and visual features by utilizing
the labeled optically discerned classes [8]. Besides this, the patrol transmission
line of Unmanned Aerial Vehicle (UAV) has become very popular in transmis-
sion line inspection and research hot topic. It has shown efficiency, reliability,
cost-effectiveness, and helped in inspections where the human approach is not
easy. With the development of automation in UAV, it’s the interest to identify
the types of insulators during an inspection by capturing images of the insula-
tor by UAV camera. For this purpose, a large number of images of insulators
are required which is always a problem in deep learning. In this paper, we are
addressing this problem by introducing a zero-shot model and use insulators
dataset images captured by UAV.

Considering the objectives involved in the study, our research comes up with
the subsequent questions: 1. Which deep architecture can generate the most
powerful features? 2. What type of “Signature Attributes” can we propose to
perform ZSL for our defined problem? 3. Does the number of training classes
affect system performance?

2 Related Work

Researchers have used different approaches to machine learning to achieve a lack
of data training problems. They have proposed multiple ways in their studies to
apply zero-shot learning on the datasets.

Study in [8] introduces a multi-model explication model that categorically
integrates three LSTMs (long short-term recollection models) and implemented
on CUB, SUN, and AWA2 dataset. It shows the way to extract visual and textual
explications. Furthermore, two incipient aspects are insights as well i.e. explana-
tory diversity and explanatory consistency respectively. Accuracy on both opti-
cally discerned and unseen classes was 38.4 and 35.6. In [9] zero-shot learning
Hierarchical relegation approach for previously unseen classes by trading speci-
ficity for accuracy and mapping to semantic attributes of unseen classes from
image features to human recognizable attributes are utilized. The direct method
for semantic attributes discussed in [2] shows that the classifier is learned for
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every attribute from the examples within the training dataset. The study in [16]
used binary embedding predicated zero-shot learning (BZSL) that apperceived
an unseen instance by efficiently probing its most proximate class codes with
minimum Hamming distance while incrementing the binary embedding dimen-
sion can inevitably improve the apperception precision. [5] has proposed the
hybrid model consists of “Random Attribute Selection” (RAS) and conditional
“Generative Adversarial Network” (GCN) to find out the realistic generation of
attributes by their correlations in nature and improve discrimination for a large
number of classes while [14] showed an approach for learning semantic-driven
attributes using two different datasets i.e. AwA and APY. Human gaze embed-
ding is used as auxiliary information to be told compatibility between image
and label space for zero-shot learning [6]. The embedding framework that maps
multiple text parts is joined with multiple semantic parts into a typical space
in [1]. Moreover, a Fine-grained Caltech UCSD Birds-2011 dataset is used and
improves state-of-the-art on the CUB dataset to 56.5 (from 50.2) within the
supervised setting while improving the state-of-the-art also within the unsuper-
vised setting to 33.9 (from 24.2). In [13] AwA dataset is used as in [14] also,
contains 30,475 images from 50 animal classes while each class is annotated
with 85 user-defined attributes. CUB dataset contains 11,788 images of 200 bird
classes and each class is annotated with 312 attributes. User-defined semantic
attributes jointly with discriminative and background lat1ent attributes app-
roach are proposed in the study. The limitations of the proposed approach are
that it takes a fixed feature representation as an input. A joint feature and
attribute learning approach is suggested to overcome the limitations on some
level. Another study [11] has used a semantic attention-based comparative net-
work (SACN) to resolve the zero-shot visual recognition problem with the same
dataset state above. ResNet and GoogleNet models are used as a backbone in
it. The best results reported in the study are 86.5 on AWA using ResNet as
a backbone while GoogleNet gives 84.5. For the CUB dataset 63.4 and 62.0
are reported results respectively. [18] has used both Nearest Neighbor + Self-
Training (NN + ST) and data augmentation on video action recognition tasks.
However, simple self-training and data augmentation strategies can address these
challenges and achieve the state of the art results for zero-shot action recogni-
tion within the video. The study showed that Semantic embedding is similar
to the state-of-the art low-level feature-based classification and better than the
standard attribute-based intermediate representation. The possible reasons given
are, attribute-space being less discriminative than semantic word space used, or
because of the reliance on human annotation. This shows that some annotated
signature attributes are might not be detectable or don’t seem to be discrimi-
native for class [18]. Objects are identified supported by a high-level description
that’s phrased in terms of semantic attributes, like the object’s color or shape.
NN isn’t better than the attribute-based approaches in [7]. The zero-shot classi-
fication in [17] is used to classify target classes specifically supported learning a
semantic mapping. It targets classes from feature space to semantic knowledge
space. Considering the model as best, it can give the best accuracy in both the
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Fig. 1. Brown insulator Fig. 2. Green insulator

AwA dataset and CUB datasets. In the study [3], the researcher has proposed a
unified semi-supervised learning framework. This framework learns the attribute
classifiers by exploring the correlations between images and utilizing multiple sig-
nature attributes. The usage of multiple features makes the attribute prediction
more vigorous. An optimal graph is another choice to enhance the execution of
zero-shot image categorization whether or not labeled images are less.

A literature study has shown that different types of approaches are proposed
to implement zero-shot learning on an identical style of the dataset. Most of the
researches has used datasets relevant to animals or birds. No study has used the
dataset we have proposed for zero-shot learning. Due to the unusual attribute
nature of our dataset, we are required to put it to the test and determine the
most effective possibilities in it.

3 Dataset Details

The dataset contains different images of insulators that are captured against
several types of complex background by UAV camera. The backgrounds of image
scenes is with the vast majority of different other objects that include forest,
crops, grass, poles, and wires etc. Using a UAV camera insulator in images was
placed on a special frame so that the images can be obtained in conditions
close to the real environment. The images of insulators are structured in folders
in such a way that their basic attributes should reflect the difference between
them. Figure 1 and Fig. 2 are example images of two different insulators.

4 Methodology

In the context of recognizing insulators, one must provide a large number of
data that is not available when one uses a UAV for power inspection images.
Moreover, a deep learning algorithm can classify a test data to any of its training
classes, but fail when dealing with an “unseen” class. On the other hand, it
cannot be ignored that deep learning feature extraction is discriminatory which
is not acceptable in some cases. Here, the proposed method uses deep learned
features along with a “Zero-shot Learning” framework to counter the problem
of recognizing the “untrained” class of images.
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A: Zero-Shot Learning
Starting from pattern recognition and the theory that computers can learn with-
out instructions, researchers showed interest to see if computers could learn from
data. To classify the samples where training examples are not available, we use
zero-shot learning. Recognizing an object from an image without training the
image using zero-shot learning allows us to recognize the unseen class of the
object. It can give a high-level description of a new or unseen class and cre-
ate a connection between it. Inspired by this human’s ability, the interest of
researchers in zero-shot learning is increasing for scaling up visual recognition.

B: Semantic Attributes
Recent advancements in object detection are directly learning a mapping from
an image feature space to a semantic space. For that, the semantic attribute app-
roach is the best way to go with it. Semantic attributes provide a bridge from
automatically generated image features to human intuition. In our case, we have
a dataset of electric insulators and there are several types of insulators. The most
commonly used are the pin type, strain insulator, shackle insulator, and suspen-
sion type. We aim to differentiate the insulator based on their characteristics
and signature attributes. To get information about the attribute we must focus
on the naturally shows up region instead of the entire spatial domain. Different
objects can have certain similar attributes but their category label is preserved.
Attributes are also especially useful in problems that aim at modeling intra-
category variations such as fine-grained classification. Even objects are encoded
according to their semantic attributes or features and have become quite very
practical now a day. An object can be encoded over a large set of exploratory
attributes, while each attribute can be assigned a specific or multiple value/s
that shows its probability, weight, or importance.

5 Experimental Results

The dataset consists of 38 total classes that we distributed to training and vali-
dation. We randomly took 30 classes from it to fine-tune the pertained models.
The object of the experiments at this stage is to get to know which deep learning
architecture can generate the most features from the dataset.

“Which Deep-Architecture Can Generate the Most Powerful Fea-
tures?”
We already knew that we have a large number of classes in our dataset but
images in each dataset are so less than models will not able to train them in
a good manner. We decided to go for testing on the dataset and check, what
we get in results. We tried to tune VGG16, VGG19, Xception, and inceptionV3
models on the dataset and got expected results as we assumed before. We did
not get results better than 0.10, which we got from VGG16. We decided to go
for data augmentation on this stag to increase the images in the dataset and
tried to deceive the models. There are multiple approaches proposed by people
for data augmentation. The first approach we used was changing the shape of
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the images. We increase the number of images in each class from 100 to 600
only one class contained 400 images because its original images were so less i.e.
50. The original image size in the dataset was mostly 1397 × 1397 but some
were different as well. After augmentation sizes, all dataset images size, become
240 × 240 each.

Experiment#1:
We started tuning of models again on random 30 classes and got some different
results from the previous experiment. We divided the dataset into training and
validation with 0.80 for training and 0.20 for validation. The total number epoch
was set as 100 with batch size 32 and the input image size is 240 × 240 × 3. We
aimed to get the exact bounding box area/cropped of electric insulators so in
the “ImageDataGenerator” function we used “shear range” and “zoom range” as
0.1. We also did “horizontal flip” as True on the images. As a result, vgg16 gave
0.43 validation accuracy with 1.56 validation loss with a default learning rate
of “Adam” as an optimizer. On decreasing the learning rate of vgg16 validation
accuracy increases very slowly, for example, it changes in points 0.21, 0.219 then
0.22 so this is the learning progress of vgg16.

Experiment#2:
VGG16 achieved 0.52 accuracy on validation on changing the “shear range” and
“zoom range” as 0.2. Inceptionv3 did not give any closer result to vgg16. It
trained at all on 0.1, 0.01, 0.001 and 0.0001 learning rates. Vgg19 does not give
any good results if we used sharp and zoom on the training set but if we removed
it, it started learning and gave 0.52 accuracy at the end.

Experiment#3:
We have generated a new dataset using multiple augmentation approaches.

1. Translation
2. Rotation
3. Transformation

In these approaches, we have changed the values of each image degree, rows, and
columns. After that, we have refined the dataset again manually and remove the
black images containing a small description of the image generated from data
augmentation. We split the data into the train and validation folder where mostly
original data images were in the validation folder and augmented data were in
the train folder. The first observation on tuning did not improve the results we
got before but later we mix the randomly in training and validation folders again
and then run the experiment. We also changed some of the parameters for the
training model. Set the learning rates (0.0001, 0.001), beta 1 = 0.9, beta 2 =
0.999, epsilon = 1e−06 and amsgrad = True of Adam optimizer and set all zoom
properties to 0.2. The results we got on different models are given in Table 1.

“What Type of “Signature Attributes” Can We Propose to Perform
ZSL for Our Defined Problem?”
To classify the data for zero-shot learning, we arrange the data into their homo-
geneous/similar groups according to the common characteristics they have. Data
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Table 1. CNN results

CNNs val accuracy

InceptionV3 75.5%

Xception 72.4%

VGG16 69.4%

Table 2. Signature attributes

No Attributes

1 Color, Selected body part, No. of plates

2 Color, Selected body part
No. of plates, Plates linked on body

3 Color, Selected body part, No. of plates
Plates linked on body, Other Selected part, Shape of other selected part

4 Color, Selected body part, No. of plates
Plates linked on body Other Selected part, Shape of other selected
part, Surface

5 Color, Selected body part, No. of plates
Selected part1, Shape of part1,
Selected part2, Shape of part2, Surface

without a proper classification is not understandable by CNN and it is not valu-
able for further analysis and interpretation. The arrangement of data will helps
CNN in training and provide ease to do comparison and analysis. We have dif-
ferent types of insulators in our dataset that can be defined concerning their
properties, feature, and physical appearance, see Table 2.

Observations: We can create more combinations of attributes and define the
objects with more details for classification. Some attributes are common in most
of the classes, for-example our dataset contains one class of insulator that has
brown color but there are certainly other classes as well that has the same
property. We need can separate the attributes based on colors or the combination
of other attributes as well. In general, our dataset is classified based on two
attributes that are color and number of plates that give us 38 classes in total.
On selection of certain attributes and going into more detail of objects we can
either reduce or increase the number of classes, this was the zero-shot learning
come. We are selecting one of the approaches where our data is not based on the
number of plates but there are certainly other attributes that we have selected
e.g. we have selected colors and how plates are linked on the body.

We have a total number of 11 classes that are created based on brown color
and number of plates at the start but now we have selected the above given two
signature attributes and the number of classes is reduced to two. In the same
way, the total number of 38 classes is now 8 after the new classification of image
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objects. Now we have classified in such a way that we can use multiple signature
attributes and distribution of dataset can show more details. We have chosen
color brown, selected body part, number of plates, and selected part with shape
and generated new classification by naming the classes like this:

1. Brown round top seven plate
2. white long top four plate
3. white round neck eight plate
4. brown round top six plate

Using this technique, we have generated 38 classes of the dataset, defining
more details of each object is separating it from other objects for classification.

Preprocessing: Here we have used the class vector and image embedding tech-
nique (CVIE) to check the zero-shot learning score. We generated vectors of both
train and zero-shot classes. We considered the word2vec Google news model
to generate class vectors, which generated the vector of each class with 300
dimensions. For image embedding with classes, we have used the VGG16 pre-
trained model for feature extraction. After that, we have created two files i.e.
class vector and zero-shot data files. Class vector file contained an array of all
classes whereas zero-shot data contained classes and subclass labels as signature
attributes attached with images array. One file in txt format contained train
classes that checked when the dataset was training based on their signature
attributes. The dataset was partitioned into three i.e. training, validation, and
testing. Training and validation contain the data of training classes while testing
contained zero-shot classes that were not seen by the model before and it was
used to evaluate the zero-shot score on the trained model.

Dataset Training Setup: We have used two different activation functions in
training i.e. relu and softmax. We have used batch normalization that allows
each layer of a NN to learn by itself independently. We have used a “categorical
cross-entropy” loss to train the CNNs to output the probability over the classes
for each image.

Evaluation of the Model: For evaluation of the model, we have used KDTree
to query the zero-shot classes on trained classes in our trained model. We have
categorized the results into three i.e. top 5, top 3, and top 1 accuracy of the
zero-shot model.

Experiment#1: We have used on a large number of attributes for the clas-
sification i.e. Basic signature attributes with top details and surface attribute.
E.g. 1. brown round top five plate solid, 2. glass pin top two plate transparent,
3. orange round top thirty plate solid. The total number of classes we got based
on the above-given classification is 38. We took 32 classes as seen and 6 for
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Table 3. ZSL Results Phase 1

Seen classes Unseen-classes Top 5 Top 3 Top 1

25 13 0.40 0.23 0.11

33 5 0.47 0.33 0.23

16 22 0.41 0.26 0.13

Table 4. ZSL Results Phase 2

Seen classes Unseen-classes Top 5 Top 3 Top 1

25 13 0.52 0.33 0.13

31 5 0.55 0.43 0.29

16 22 0.47 0.28 0.10

unseen classes. To find out zero-shot learning possible score, we set the value “K
= 5” to query the results and the best result we got with BATCH SIZE = 32 and
Epoch = 33 were Top 5 Accuracy: 0.37 Top 3 Accuracy: 0.29 Top 1 Accuracy:
0.13.

Experiment#2: We have classified the data based on attributes i.e. Basic
signature attributes with top details and surface attributes. The total num-
ber of classes we got based on the above-given classification is 38. We took 32
classes as seen and 6 for unseen classes. E.g. 1. brown round top five plate, 2.
glass pin top two plate, 3. orange round top thirty plate. To find out zero-shot
learning possible score we set the value “K = 5” to query the results and the best
result we got with BATCH SIZE = 32 and Epoch = 53 were: Top 5 Accuracy:
0.38 Top 3 Accuracy: 0.31 Top 1 Accuracy: 0.14.

Experiment#3: We have classified the data based on attributes i.e.
Basic signature attributes E.g. 1. brown five plate, 2. glass two plate, 3.
orange thirty plate. The total number of classes we got on based on the above-
given classification is 36. We took 26 classes as seen and 10 for unseen classes.
To find out zero-shot learning possible score we set the value “K = 5” to query
the results and the best result we got with BATCH SIZE = 32 and Epoch = 53
were: Top 5 Accuracy: 0.54 Top 3 Accuracy: 0.43 Top 1 Accuracy: 0.26.

Does the Number of Training Classes Affect System Performance?
We have done the number of experiments to check the performance of the model
by increasing and decreasing the number of classes. In the first phase, we selected
the signature attributes that were used in research question#2 i.e. experiment#2
to increase the performance of the model. We did three experiments and chose
23 unseen and 25 seen classes in the first experiment. As a result, we found a
slight increase in accuracy for top-5 but a decrease in top-3 and 1. We increase
the seen classes to 33 and decreases unseen classes to 5, we observed a good
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effect on all top-1, 3, and 5 accuracy scores. We reduced the seen classes to 16
and unseen classes to 22 to confirm the effect on performance. Below given table
shows the experimental results of the first phase Table 3:

In the second phase, we again did three experiments using experimental
attributes as used in research question#2 experiment#3, we choose 25 seen and
23 unseen classes. As a result, we found a slight increase in accuracy for top-5
but a decrease in top-3 and 1. We picked 31 seen classes and increases unseen
classes to 6 and we observed little incremental effect on all top-1, and 5 accuracy
scores but top-3 remained the same. We reduced the classed to seen classes to
16 and used 22 unseen classes to confirm the effect of classes. Below given table
shows the experimental results of the second phase Table 4:

6 Discussion

Different CNN models are used in the study to find out the most powerful fea-
ture extraction model on the insulators dataset. On performing three different
experiments, we can see that results differ every time because of certain rea-
sons. In the beginning, we can observe that our dataset was so small and with
numerous classes, none of the models trained it at all. It demonstrates that
deep learning required a large number of data for training. Our first data aug-
mentation technique that only changed the shape of the images and increased
the number of images in the dataset was is not helpful to get good training
results. On changing parameters like learning rate, batch size, epoch, and lay-
ers, training stopped after 0.43. From our second experiment, we can observe
that the “ImageDataGenerator” parameters also affect training. Even, changing
the value of shear range and zoom range hand effects on training and started
increasing accuracy i.e. 0.52 on VGG16, but this is not with every model. Our
first augmentation technique reflects that there is not much difference between
the real and new images. The only resolution of images is changed and CNN
models are not able to give us good results on them. To overcome this problem,
we can consider multiple data augmentation techniques i.e. rotation, translation,
and transformation of the images as a better way to regenerate the data. We
can see CNN’s works much better on new data generated in our last experi-
ments. With new data generated, without changing any “ImageDataGererator”
parameter from the default, the learning rate 0.0001 learning rate works properly
on all architectures. Furthermore, beta 1 = 0.9, beta 2 = 0.999, epsilon=1e−06
and amsgrad = True of Adam optimizer also has effect on training. The use of
“spatial categorical crossentropy” has clear effects on CNN’s training as well;
“categorical crossentropy” is used previously. We perceived inceptionv3 as the
most powerful feature extraction model on our dataset as compared to VGG16,
and Xception based on results but still, there was not much difference between
Xception and inceptionv3.

For zero-shot learning (ZSL) selection of signature, attributes are one of
the important tasks before we do classification. One straightforward and naive
strategy for zero-shot to select attributes is to pick such attributes that give
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larger information. We can analyze that the number of classes also changes based
on attributes in the electric insulator dataset. Although, it is hard to select
attributes for electric insulators, as sometimes insulators are cover with some
other type of objects that does not have any role to show uniqueness. The basic
signature attributes for such types of the dataset are enough to classify them
and extract a good amount of information. Based on the experimental results,
we demonstrate that different attributes have a different level of information
and predictability, thus we cannot treat them equally. After the experiments,
we can say, on increasing the number of signature attributes on such a dataset
decreases the number of classes and we lose the zero-shot accuracy score while
a small number of signature attributes we were getting much better results.
Insulators have different types of shapes, but the main difference between them
we found out was the color and number of plates for classification. There is
always an impact of choosing training and zero-shot classes on results as well.
We analyze the performance of the model during testing by changing the number
of classes. There is a change in results using a similar number of classes with a
different selection of classes for training and zero-shot. The effects of reducing or
increasing the number of classes is depending upon the data. In general, there is
no guarantee that if we reduce or increase the number of classes with such type
of data we can able to increase the classification accuracy. It will improve the
performance if we combine similar classes and apply zero-shot on classes that are
never seen by the model. Imagine that we are classifying brown color insulators
into four classes based on the different numbers of plates. If we train these classes
together and apply zero-shot on white color insulators classification, the overall
ZSL score will improve.

7 Conclusion

In this study, we have tuned CNN’s popular architecture and applied zero-shot
learning on UAV-captured images of insulators. We have also checked the per-
formance of the model based on some classes. The experimental results showed
inceptionv3 is the powerful CNN model to extract features for us. We also intro-
duced possible signature attributes for this type of dataset to state-of-the-art
and applied zero-shot learning. We used the class and image embedding (CVIE)
approach to test the possible zero-shot score. From the results, we can conclude
that the insulator’s dataset accuracy is directly dependent upon the classification
of insulators based on semantic attributes. Increasing the number of signature
attributes will losses the zero-shot accuracy score while a small number of sig-
nature attributes better results were achieved on this type of dataset. The best
results we got are classification on basic attributes e.g. color and number of plates
of insulators. The effects of reducing or increasing the number of classes were
depending on the data inside each class. We cannot surely say that if we reduce
or increases the number of classes we will able to increase the performance of
the model.



224 I. Azeem and M. A. Zaidi

Acknowledgment. The author would like to thank eSmart Systems for the support
in the work with this paper.

References

1. Akata, Z., Malinowski, M., Fritz, M., Schiele, B.: Multi-cue zero-shot learning with
strong supervision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 59–68 (2016)

2. Burlina, P.M., Schmidt, A.C., Wang, I.: Zero shot deep learning from semantic
attributes. In: 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pp. 871–876 (2015)

3. Gao, L., Song, J., Shao, J., Zhu, X., Shen, H.: Zero-shot image categorization by
image correlation exploration. In: Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval, ICMR’15, pp. 487–490. Association for Com-
puting Machinery, New York (2015)

4. Guo, J., Guo, S.: A novel perspective to zero-shot learning: towards an alignment
of manifold structures via semantic feature expansion. ArXiv arXiv:2004.14795
(2020)

5. Zhang, L.L.L.S.H., Long, Y.: Adversarial unseen visual feature synthesis for zero-
shot learning. Neurocomputing 329(7), 12–20 (2019)

6. Karessli, N., Akata, Z., Schiele, B., Bulling, A.: Gaze embeddings for zero-shot
image classification. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6412–6421 (2017)

7. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-
shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3),
453–465 (2014)

8. Liu, Y., Tuytelaars, T.: A deep multi-modal explanation model for zero-shot learn-
ing. IEEE Trans. Image Process. 29, 4788–4803 (2020)

9. Markowitz, J., Schmidt, A.C., Burlina, P.M., Wang, I.: Hierarchical zero-shot clas-
sification with convolutional neural network features and semantic attribute learn-
ing. In: 2017 Fifteenth IAPR International Conference on Machine Vision Appli-
cations (MVA), pp. 194–197 (2017)

10. Nguyen, V.N., Jenssen, R., Roverso, D.: Automatic autonomous vision-based power
line inspection: a review of current status and the potential role of deep learning.
Int. J. Electr. Power Energy Syst. 99, 107–120 (2018). https://doi.org/10.1016/j.
ijepes.2017.12.016

11. Nian, F., Sheng, Y., Wang, J., Li, T.: Zero-shot visual recognition via semantic
attention-based compare network. IEEE Access 8, 26002–26011 (2020)

12. Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. NIPS (2016)

13. Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and
latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern
Anal. Mach. Intell. 40(7), 1625–1638 (2018)

14. Qin, J., Wang, Y., Liu, L., Chen, J., Shao, L.: Beyond semantic attributes: discrete
latent attributes learning for zero-shot recognition. IEEE Signal Process. Lett.
23(11), 1667–1671 (2016)

15. Manning, C.D., Ng, A.Y., Socher, R., Ganjoo, M.: Zero-shot learning through
cross-modal transfer (2013)

http://arxiv.org/abs/2004.14795
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016


Zero-Shot Learning-Based Detection of Electric Insulators in the Wild 225

16. Shen, F., Zhou, X., Yu, J., Yang, Y., Liu, L., Shen, H.T.: Scalable zero-shot learning
via binary visual-semantic embeddings. IEEE Trans. Image Process. 28(7), 3662–
3674 (2019)

17. Wang, K., Wu, S., Gao, G., Zhou, Q., Jing, X.: Learning autoencoder of attribute
constraint for zero-shot classification. In: 2017 4th IAPR Asian Conference on
Pattern Recognition (ACPR), pp. 605–610 (2017)

18. Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action
recognition. In: 2015 IEEE International Conference on Image Processing (ICIP),
pp. 63–67 (2015)



Randomized Iterative Methods
for Matrix Approximation

Joy Azzam , Benjamin W. Ong , and Allan A. Struthers(B)

Department of Mathematical Sciences, Michigan Technological University,
Houghton, USA

{atazzam,ongbw,struther}@mtu.edu

Abstract. Standard tools to update approximations to a matrix A (for
example, Quasi-Newton Hessian approximations in optimization) incor-
porate computationally expensive one-sided samples A V . This article
develops randomized algorithms to efficiently approximate A by iter-
atively incorporating cheaper two-sided samples U�A V . Theoretical
convergence rates are proved and realized in numerical experiments. A
heuristic accelerated variant is developed and shown to be competitive
with existing methods based on one-sided samples.

Keywords: Matrix approximation · Randomized algorithms ·
Two-sided samples · Quasi-Newton

1 Introduction and Motivation from Optimization

Effective nonlinear optimization algorithms require 1st derivative information,
∇f(x), while superlinear convergence requires some 2nd derivative approxima-
tion [12]. For example, standard Quasi-Newton (QN) methods such as BFGS
(complete gradient and an approximate Hessian generated from gradient differ-
ences) have superlinear terminal convergence. Limited-Memory (LM) QN meth-
ods [11], such as LBFGS, which approximate the Hessian efficiently by storing
only the most recent gradient differences, are widely used in large-scale opti-
mization. This article formulates randomized QN like algorithms which can be
used to approximate Hessians (as well as general matrices) with reduced cost.

Alternatively, consider Stochastic Gradient Descent (SGD) [14], which is a
common dimension reduction technique in statistics and Machine learning. SGD
minimizes the average of cost functions fi : Rm → R,

f(x) =
1
n

n∑

i=1

fi(x),

by approximating ∇f ≈ s−1
∑s

i=1 ∇fi. Here, fi is associated with the i-th entry
of a large (n entry) data or training set. The SGD approximation is simply
∇f ≈ F p, where F is the matrix with ith column ∇fi and the sparse vector p has
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s non-zero entries of 1/s at sampled indices. Our algorithms generalize SGD by
incorporating flexible sampling in R

n along with sampling in the parameter space
R

m to provide flexibility to tune our algorithms to computational hardware.
Section 2 introduces the fundamental problem, two-sided samples and termi-

nology. Section 3 reviews randomized one-sided Quasi-Newton algorithms while
Sect. 4 develops our randomized, two-sided Quasi-Newton algorithms. Section 5
provides probabilistic convergence rates and error estimates. Section 6 numeri-
cally demonstrates the convergence of the algorithms. Section 7 incorporates an
inner block power iteration to accelerate our two-sided algorithms and compares
the result to one-sided algorithms based on similar heuristics.

2 Fundamental Problem, Samples, and Terminology

The fundamental problem our algorithms addresses is how to efficiently construct
a sequence of approximations to a matrix, A ∈ R

m×n, from a stream of incom-
plete and possibly noisy data. Specifically, we develop and analyze algorithms
to iteratively embed aggregate information from

U�AV ∈ R
s1×s2 , U ∈ R

m×s1 , V ∈ R
n×s2 .

These weighted linear combinations of the rows and columns of the data A are
called two-sided samples. This is in contrast to weighted linear combinations of
the rows, U� A, or weighted linear combinations of the columns, AV , which we
refer to as one-sided samples. Two-sided samples have been used before in non-
iterative algorithms: [9] compares Schatten-p norm estimates (pth root of the
sum of the pth power of the singular values) using two-sided samples, U�AV ,
(termed a bi-linear sketch) to estimates using one-sided samples, AV . Large
eigenvalues estimates using two-sided random projectors are examined in [1]; and
two-sided samples are used in [2] to tighten bounds on low-rank approximations.
We follow their lead by simply counting sample entries to estimate data cost:
ms2 for the one-sided samples, AV , and s1 s2 for the two-sided sample, U�AV .
Algorithms using two-sided samples are a subset of randomized numerical linear
algebra. An overview of existing algorithms and applications is provided by the
extensive list of articles citing the comprehensive review [7]. The algorithms in
[1,7] expend significant up front effort computing projections Ω and Ψ so that
the projected matrix, Ω� AΨ , approximates A on dominant eigenvalues with the
goal that uniform random sampling of Ω� AΨ yields good approximations to A.
In contrast, our algorithms produce an improving sequence of approximations by
iteratively embedding small randomized two-sided samples, U� AV , with sample
dimensions s1 × s2 that can be chosen to suit available hardware. Throughout
we compare algorithms using the cost estimates (respectively s1 s2 and ms2 for
the samples U� AV and AV ) from [9].

We use notation motivated by QN algorithms in non-linear optimization.
SPD means symmetric positive definite and W is an SPD weight matrix. X+

denotes the Moore-Penrose pseudo-inverse of X; 〈X,Y 〉F = Tr
[
X�Y

]
and
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‖X‖2F = 〈X,X〉F are the Frobenius inner product and norm. For conform-
ing SPD weights W1 and W2 the weighted Frobenius norm (with special case
X = X� and W = W1 = W2 written F (W−1)) is

‖X‖2
F (W−1

1 ,W−1
2 )

= ‖W
−1/2
1 X W

−1/2
2 ‖2F .

The W -weighted projector P, which projects onto the column space of W U ,

P = PW−1,U = W U(U� W U)−1U�, (1)

satisfies P W = W P� = P W P� and W−1P = P�W−1 = P� W−1 P.

3 Randomized One-Sided Quasi-Newton Algorithms

Our iterative approximations to A using two-sided samples are motivated by the
one-sided sampled algorithms in [6] and QN optimization algorithms. Classical
QN schemes for SPD matrices A are formulated as constrained minimum change
updates for B ≈ A or H ≈ A−1 in weighted Frobenius norms [12]: the constraint
enforces the new information while the minimum change condition stabilizes the
update. The one-sided sampled update algorithms in [5,6] are given by the KKT
[8,12] equations (with particular choices of weight W ) for the quadratic programs

Bk+1 = arg min
B

{
1
2
‖B − Bk‖2F (W−1) | B Uk = AUk and B = B�

}
, (2)

Hk+1 = arg min
H

{
1
2
‖H − Hk‖2F (W−1) | Uk = H AUk and H = H�

}
. (3)

The analytical updates defined by Eqs. (2) and (3), are

Bk+1 = Bk + PB(A − Bk) + (A − Bk)P�
B − PB(A − Bk)P�

B , (4)

Hk+1 = Hk + PH(A−1 − Hk) + (A−1 − Hk)P�
H − PH(A−1 − Hk)P�

H , (5)

where the weighted projectors PB and PH defined by Eq. (1) are

PB = PW−1,Uk
= W Uk(U�

k W Uk)−1U�
k ,

PH = PW−1,AUk
= W AUk(U�

k AW AUk)−1U�
k A.

Note, these are two different updates using the same one-sided sample AUk

which are not simply connected by the Sherman-Morrison-Woodbury (SMW)
formula. In Eq. (4), Bk+1 is an improved approximation to A while in Eq. (5),
Hk+1 is an improved approximation to A−1. Familiar algorithms are obtained
by selecting different weights, W . Block DFP [15] is Eq. (4) with W = A

Bk+1 = (In − PDFP) Bk(In − P�
DFP) + PDFP A,

where PDFP = PA−1,Uk
= AUk(U�

k AUk)−1U�
k . Block BFGS [5,6] is the result

of inverting Eq. (4) with W = A−1 using the SMW formula

Bk+1 = Bk − BkUk

(
U�
k BkUk

)−1
U�
k Bk + AUk

(
U�
k AUk

)−1
U�
k A.

QN algorithms are commonly initialized with multiples of the identity.
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4 Randomized Two-Sided Quasi-Newton Algorithms

A general algorithm (defined by SPD weight matrices W1 and W2) to approxi-
mate non-square matrices and two distinct algorithms specialized to symmetric
matrices are developed. As with one-sided sampled algorithms, different weights
give different algorithms. Algorithms and theorems are developed for a generic
initialization B0.

4.1 General Two-Sided Sampled Update

Analogous to Eq. (2), our first algorithm is defined by the minimization

Bk+1 = arg min
B

{
1
2
‖B − Bk‖2F (W−1

1 ,W−1
2 )

| U�
k B Vk = U�

k AVk

}
. (6)

Solving the KKT equations for Eq. (6) gives the self-correcting update

Bk+1 = Bk + PW−1
1 ,Uk

(A − Bk)P�
W−1

2 ,Vk
. (7)

Since this update explicitly corrects the projected residual sample Rk = U�
k (A−

Bk)Vk, it decreases the weighted Frobenius norm ‖A − Bk‖2F (W−1
1 ,W−1

2 )
unless

the approximation is correct on the sampled spaces, i.e., U�
k (A − Bk)Vk = 0.

Given A ∈ R
m×n, initial approximation B0 ∈ R

m×n, two-sided sample sizes
{s1, s2}, and SPD weights {W1,W2}, Eq. (7) generates a sequence {Bk} that
converges monotonically to A in the appropriate weighted Frobenius norm. Pseu-
docode is provided in Algorithm 1: boxed values give the two-sided sample size
per iteration; double boxed values the total for all iterations. For symmetric A,
the independent left and right hand sampling fails to preserve symmetry.

Require: B0 ∈ R
m×n, SPD W1 ∈ R

m×m, W2 ∈ R
n×n, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)m×s1 and Vk ∼ N(0, 1)n×s2

3: Compute Rk = U�
k A Vk − U�

k BkVk ∈ R
s1×s2 . . . . . . . . . . . . . . . . . . . . . s1 s2

4: Update Bk+1 = Bk + W1Uk(U�
k W1Uk)−1Rk(V

�
k W2Vk)

−1V �
k W2

5: until convergence

6: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1) (s1 s2)

Algorithm 1: NS: Non-Symmetric Two-Sided Sampling

4.2 Symmetric Update

Unsurprisingly, the fully symmetrized general algorithm (A = A�, B0 = B�
0 ,

Vk = Uk and W = W1 = W2) give symmetric approximations. Pseudocode is
provided in Algorithm 2 with sample counts boxed as before.
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Require: B0 ∈ R
n×n satisfying B�

0 = B0, SPD W ∈ R
n×n, s ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N (0, 1)n×s1

3: Compute Rk = U�
k A Uk − U�

k BkUk ∈ R
s1×s1 . . . . . . . . . . . . . . . . . . . . . . . s21

4: Compute P̃k = W Uk(U�
k W Uk)

−1

5: Update Bk+1 = Bk + P̃k RkP̃ �
k

6: until convergence

7: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1)
(
s2

)

Algorithm 2: SS1: Symmetric Two-sided Sampling

Remark 1. Algorithm 2 can give non-SPD updates from SPD input e.g.

W =
[
1 0
0 1

]
, A =

[
1 0
0 1

]
, B =

[
1 0
0 9

]
, and U =

1√
2

[
1
1

]
.

4.3 Multi-step Symmetric Updates

Enforcing symmetry for A = A� and B0 = B�
0 with an internal step

Bk+1/2 = Bk + PW−1,Uk
(A − Bk)P�

W−1,Vk

Bk+1 =
1
2

(
Bk+1/2 + B�

k+1/2

)

gives convergence comparable to Algorithm 2. However, the two-step algorithm

Bk+1/3 = Bk + PW−1
1 ,Uk

(A − Bk)P�
W−1

2 ,Vk

Bk+2/3 = Bk+1/3 + PW−1
2 ,Vk

(A − B�
k+1/3)P

�
W−1

1 ,Uk

Bk+1 =
1
2

(
Bk+2/3 + B�

k+2/3

)
,

(8)

has superior convergence properties and requires no additional data since

PW−1
2 ,Vk

AP�
W−1

1 ,Uk
=

(
PW−1

1 ,Uk
AP�

W−1
2 ,Vk

)�
.

Pseudocode is provided in Algorithm 3 with sample counts boxed as before.

5 Convergence Analysis

Our convergence results rely on properties of randomly generated projectors.
In our experiments, we orthogonalize square matrices with entries drawn from
N(0, 1) to generate rotations from a rotationally invariant distribution [16]. Our
algorithms use symmetric rank s projectors defined by an SPD weight W

ẑ = W 1/2U(U�WU)−1U� W 1/2,
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Require: B0 ∈ R
n×n satisfying B0 = B�

0 , SPD W ∈ R
m×m, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample Uk ∼ N(0, 1)n×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual, Rk = U�
k A Vk − U�

k BkVk ∈ R
s1×s2 . . . . . . . . . . . . . s1 s2

4: Compute Bk+1/3 = Bk + W Uk(U
�
k W Uk)−1Rk(V

�
k W Vk)

−1V �
k W

5: Compute Rk+1/3 = (U�
k A Vk)

� − V �
k Bk+1/3 Uk ∈ R

s2×s1

6: Compute Bk+2/3 = Bk+1/3 + W Vk(V
�
k W Vk)−1Rk+1/3(U

�
k W Uk)−1U�

k W
7: Update Bk+1 = 1

2
(Bk+2/3 + B�

k+2/3)
8: until convergence

9: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1) (s1 s2)

Algorithm 3: SS2: Two-Step Symmetric Two-Sided Sampling

where U is simply the first s columns of a random rotation. The smallest and
largest eigenvalues λ1 and λn of the expectation E[ẑ] of these random projections
determines convergence of our algorithms with optimal rates when λ1 = λn.

Definition 1. A random matrix, X̂ ∈ R
m×n, is rotationally invariant if the

distribution of Qm X̂ Qn is the same for all rotations Qi ∈ O(i).

Proposition 1. Let Z be any distribution of real, rank s projectors in R
n. Then,

0 ≤ λmin(E[ẑ]) ≤ s

n
≤ λmax(E[ẑ]) ≤ 1, ẑ ∈ Z.

Further, if ẑ is rotationally invariant, then E[ẑ] = s
nIn.

Proposition 2. For R ∈ R
m×n and conforming symmetric projections ŷ, ẑ,

〈R ẑ,R ẑ〉F = 〈R,R ẑ〉F
〈ŷ R ẑ, ŷ R ẑ〉F = 〈ŷ R ẑ, R ẑ〉F = 〈ŷ R ẑ, R〉F

(9)

Proposition 3. For any R ∈ R
m×n and conforming symmetric positive semi-

definite matrices S1, S2, and (in the special case m = n ) S we have the bounds:

λmin(S1)〈R,R〉F ≤ 〈S1 R,R〉F ≤ λmax(S1)〈R,R〉F ,

λmin(S2)〈R,R〉F ≤ 〈R,R S2〉F ≤ λmax(S2)〈R,R〉F ,

λmin(S)2〈R,R〉F ≤ 〈S R,R S〉F ≤ λmax(S)2〈R,R〉F .

Remark 2. Convergence results for Algorithms 1 to 3. are for E[‖B−A‖2F ]. Such
results dominate similar results for ‖E[B − A]‖2F since

‖E [B − A]‖2F = E
[
‖B − A‖2F

]
− E

[
‖B − E [B]‖2F

]
.

Theorem 1 (Convergence of Algorithm 1 - NS). For A ∈ R
m×n and

B0 ∈ R
m×n with W1 ∈ R

m×m and W2 ∈ R
n×n fixed SPD weights. If Uk ∈ R

m×s1



232 J. Azzam et al.

and Vk ∈ R
n×s2 are random, independently selected orthogonal matrices with full

column rank (with probability one), then Bk from Algorithm 1 satisfies

E
[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2 )

]
≤ (ρNS)kE

[
‖B0 − A‖2

F (W−1
1 ,W−1

2 )

]
,

where ρNS = 1 − λmin(E[ŷ])λmin(E[ẑ]), with

ŷk = W
1/2
1 Uk(U�

k W1Uk)−1U�
k W

1/2
1 , ẑk = W

1/2
2 Vk(V �

k W2Vk)−1V �
k W

1/2
2 .

Proof. Define the kth residual as Rk := W
−1/2
1 (Bk − A)W−1/2

2 . With some
algebraic manipulation, Eq. (7) can be re-written as Rk+1 = Rk − ŷkRkẑk.
Computing the squared Frobenius norm of both sides,

〈Rk+1, Rk+1〉F = 〈Rk − ŷkRkẑk, Rk − ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈Rk, ŷkRkẑk〉F − 〈ŷkRkẑk, Rk〉F + 〈ŷkRkẑk, ŷkRkẑk〉F
= 〈Rk, Rk〉F − 〈ŷkRkẑk, Rkẑk〉F ,

where we have made use of Proposition 2. Taking the expected value with respect
to independent samples Uk (leaving Vk and Rk fixed) gives

E
[‖Rk+1‖2

F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rkẑk, Rkẑk〉F ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, Rkẑk〉F ,

where we applied Proposition 3 to the symmetric positive semi-definite matrix
E[ŷk], and used Eq. (9). Taking the expected value with respect to independent
samples Vk and leaving Rk fixed gives

E[‖Rk+1‖2F | Rk] ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, RkE[ẑk]〉F
≤ 〈Rk, Rk〉F − λmin(E[ŷk])λmin(E[ẑk])〈Rk, Rk〉F .

Taking the full expectation and noting E[‖Rk+1‖2F ] = E[‖Bk − A‖2
F (W−1

1 ,W−1
2 )

E[‖Rk+1‖2F ] ≤ E [〈Rk, Rk〉F ] − λmin(E[ŷk])λmin(E[ẑk])E [〈Rk, Rk〉F ]
= (1 − λmin(E[ŷk])λmin(E[ẑk]))E[〈Rk, Rk〉F ]

gives the result by unrolling the recurrence. Note, independence of Uk and Vk

justifies E[〈ŷkRkẑk, Rkẑk〉F ] = 〈E[ŷk]Rkẑk, Rkẑk〉F .

Theorem 2 (Convergence of Algorithm 2 - SS1). Let A,W ∈ R
n×n be

fixed SPD matrices and Uk ∈ R
n×s be a randomly selected matrix having full

column rank with probability 1. If B0 ∈ R
n×n is an initial guess for A with

B0 = B�
0 , then Bk from Algorithm 2 satisfies

E[‖Bk+1 − A‖2F (W−1)] ≤ (ρSS1)kE[‖B0 − A‖2F (W−1)],

where ρSS1 = 1 − λmin(E[ẑ])2 and ẑk = W 1/2Uk(U�
k W Uk)−1U�

k W 1/2.
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Proof. Following similar steps outlined in the proof in Theorem 1, we arrive at

〈Rk+1, Rk+1〉F = 〈Rk, Rk〉F − 〈Rk, ẑkRkẑk〉F .

Taking the expected value with respect to Uk leaving Rk fixed we have

E
[‖Rk+1‖2F | Rk

]
= 〈Rk, Rk〉F − E [〈Rk, ẑkRkẑk〉F ]

= 〈Rk, Rk〉F − E
[
Tr[R�

k ẑkRkẑk]
]

= 〈Rk, Rk〉F − Tr [E [RkẑkRkẑk]] ≤ 〈Rk,Rk〉F − Tr
[
E [Rkẑk]

2
]
,

where the inequality arises from application of Jensen’s Inequality. Simplifying
and applying Proposition 3,

E[‖Rk+1‖2F (W−1) | Rk] ≤ 〈Rk, Rk〉F − Tr
[
E [Rkẑk]

2
]

= 〈Rk, Rk〉F − Tr [RkE [ẑk] RkE [ẑk]]

= 〈Rk, Rk〉F − 〈E[ẑk]Rk, RkE[ẑk]〉F ≤ 〈Rk, Rk〉F − λmin(E[ẑk])2〈Rk, Rk〉F .

Taking the full expectation and un-rolling the recurrence yields the desired result.

Theorem 3 (Convergence of Algorithm 3 - SS2). Let A,Uk, Vk and B0

be defined as in Theorem 1, and let W be a fixed SPD matrix then Bk from
Algorithm 3 satisfies

E
[
‖Bk − A‖2F (W−1)

]
≤ (ρSS2)kE

[
‖B0 − A‖2F (W−1)

]
,

where

ρSS2 = 1 − 2λmin(E[ŷ])λmin(E[ẑ]) + λmin(E[ŷ])2λmin(E[ẑ])2.

Proof. Let Rk be the kth residual Rk, and ŷk, ẑk be projectors as in Theorem 1
with W = W1 = W2. Eq. (8) can be re-written in terms of Rk as follows.

Rk+1/3 = Rk − ŷkRkẑk, R�
k+2/3 = R�

k+1/3 − ẑkR
�
k+1/3ŷk,

Rk+1 =
1
2

(
Rk+2/3 + R�

k+2/3

)
.

Theorem 1 gives
E

[∥∥Rk+1/3

∥∥2

F

]
≤ (ρNS)E

[‖Rk‖2F
]
,

and a repeated application of Theorem 1 gives

E
[∥∥Rk+2/3

∥∥2

F

]
≤ (ρNS)E

[‖Rk+1/3‖2F
] ≤ (ρNS)2E

[‖Rk‖2F
]
.

Lastly, we observe via the triangle inequality that

E
[
‖Rk+1‖2F

]
= E

[∥∥∥∥
1
2

(
Rk+2/3 + R�

k+2/3

)∥∥∥∥
2

F

]

≤ 1
2
E

[∥∥Rk+2/3

∥∥2

F

]
+

1
2
E

[∥∥∥R�
k+2/3

∥∥∥
2

F

]
= (ρNS)2E

[‖Rk‖2F
]
,

Un-rolling the loop for k iterations gives the desired result.



234 J. Azzam et al.

With the relevant rate ρ below error bounds for Algorithms 1 to 3 are

‖Rk+1‖2F (W−1
1 ,W−1

2 )
≤ ρ‖Rk‖2F (W−1

1 ,W−1
2 )

(10)

where y1 = λmin(E[ŷ]), z1 = λmin(E[ẑ]), and

ρNS(y1, z1) = 1 − y1z1, ρSS1(z1) = 1 − z21 , ρSS2(y1, z1) = (1 − y1z1)2. (11)

Since any symmetric rank s random projection ẑ on R
n satisfies 0 ≤ z1 ≤ s

n ≤
zn ≤ 1 and rotationally invariant distributions, e.g. UU+ with U ∼ N(0, 1)n×s,
further satisfy E[ẑ] = s

n , minimizing the various convergence rates ρ over the
appropriate domains gives the following optimal rates.

Corollary 1. The optimal convergence rates for Algorithms 1 to 3 are obtained
attained for Uk and Vk sampled from rotationally invariant distributions,

ρoptNS = 1 − s1
m

s2
n

, ρoptSS1 = 1 −
(s2

n

)2

, ρoptSS2 =
(
1 − s1

m

s2
n

)2

. (12)

Remark 3. Theorems 1 to 3 all assume the weight matrix W and distributions
are fixed. All our non-accelerated numerical experiments use fixed weights and
sample from fixed rotationally invariant distributions.

Remark 4. Corollary 1 is an extremely strong result. Consider for simplicity
s1 = s2 = s. Although the convergence rates are ∼ 1−(

s
n

)2, only s×s aggregated
pieces of information are used each iteration. If a one-sided sampled algorithm
uses s × n pieces of information, e.g. [6], our algorithm can take n

s iterations
with the same amount of information. Consequently the error decrease after n

s
iterations, is comparable to convergence rates of one-sided sampled QN methods.

(
1 − s2

n2

)n/s

≈ 1 − n

s
· s2

n2
,

Lower bounds on the convergence rates (analogous to the upper bounds in
Theorems 1 to 3 but using the upper bounds in Proposition 3) are easily derived.
For example, the two-sided error bound for Algorithm 1 is

ρNS(ym, zn)E[‖Rk‖2F ] ≤ E[‖Rk+1‖2F ] ≤ ρNS(y1, z1)E[‖Rk‖2F ],

where as before y1 ≤ y2 ≤ · · · ≤ ym is the spectrum of E[ŷ], z1 ≤ z2 ≤ · · · ≤ zn
is the spectrum of E[ẑ] and the explicit form for ρNS is in Eq. (11). We collect
the similar results for Algorithms 1 to 3 in Corollary 2.
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Corollary 2 (Two-Sided Convergence Rates). Given the assumptions of
Theorems 1 to 3 the explicit formulas Eq. (11) for ρ give two-sided bounds,

ρNS(ym, zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2 )

]

‖B0 − A‖2
F (W−1

1 ,W−1
2 )

≤ ρNS(y1, z1)k

ρSS1(zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1)

]

‖B0 − A‖2F (W−1)

≤ ρSS1(z1)k

ρSS2(yn, zn)k ≤
E

[
‖Bk+1 − A‖2F (W−1)

]

‖B0 − A‖2F (W−1)

≤ ρSS2(y1, z1)k

where y1, ym, z1, zn are the extreme eigenvalues of E[ŷ] and E[ẑ].

Remark 5. If ŷ and ẑ are rotationally invariant, the upper and lower probabilistic
bounds in Corollary 2 coincide since z1 = zn = s1

n and y1 = ym = s2
m . Algo-

rithms 1 to 3 all use rotationally invariant distributions and converge predictably
at the expected rate. The algorithms still converge with other distributions pro-
vided the smallest eigenvalue of the expectation is positive.

6 Numerical Results

Algorithm 1 to 3 were implemented in the MATLAB framework from [6] and
tested on representative SPD matrices from the same article: A = XX� with
X ∼ N (0, 1)n×n; the Gisette-Scale ridge regression matrix from [3]; and the
NASA matrix from [4]. The author’s website [13] contains MATLAB scripts
and similar results for all matrices from [6]. Computations were performed on
Superior, the HPC facility at Michigan Technological University.

Many metrics can be used to objectively compare algorithmic costs. Common
metrics include number of FLOPS, total memory used, communication overhead,
and for matrix-free black-box procedures the number of individual matrix-vector
products Av. As noted by [9] the analogous metric for a black box procedure to
compute the matrix product required for our s1 × s2 two-sided sample U�AV
is the number of sampled entries, s1 s2. As an explicit example, for f : Rm → R,
Forward-Forward mode [10] Algorithmic Differentiation (AD) simultaneously
computes f(x) and a directional 2nd derivative u�∇2f(x) v. With sufficient
shared-memory processors, AD can efficiently compute f(x) and the two-sided
sample U�∇2f(x)V of the Hessian with cost s1 s2.

Algorithms in [6] are for symmetric matrices. We compare the conver-
gence of (unweighted i.e. W = I) Algorithms 1 to 3 (sample size s = �√n
matching [6]) to the one sided algorithms in [6]: Fig. 1a for A = X X� with
X ∼ N (0, 1)5000×5000; Fig. 1b for Gisette-Scale; and Fig. 1c) for NASA. Our
algorithms achieve the theoretical convergence rates from Eq. (12) (dotted lines).
Weighted algorithms DFP and BFGS use B0 = I, un-weighted Algorithms 1 to
3 use B0 = 0. Runs were terminated after 5n2 iterations or when the relative
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(a) (n = 5000) Approximation ofXX� whereX ∼ N (0, 1)n×n with s = 71 = �√5000�.
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(b) (n = 5000) Approximation of Gisette Scale [3] with s = 71 = �√5000�.
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(c) (n = 4700) Approximation of NASA4704 [4]. s = 69 = �√4704�.

Fig. 1. Two-sided sampled algorithm performance with theoretical rate as dots. BFGS
and DFP can be: a) comparable; b) superior; or c) stall/diverge.

residual norm fell below 0.01. The one-sided algorithms DFP and BFGS have
target dependent weight matrices: DFP is Eq. (4) with weight W = A while
BFGS is the Sherman-Morrison-Woodbury inversion of Eq. (5) with W = A−1.
Figure 1a shows our algorithms outperforming both BFGS and DFP for small
tolerances. Figure 1b shows enhanced initial convergence for DFP and BFGS, but
Fig. 1c demonstrates that BFGS may not converge. In contrast, our two-sided
algorithms converge consistently, achieving the theoretical convergence rates.
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7 Heuristic Accelerated Schemes

Algorithm 2 corrects the symmetric projected residual U�
k (A − Bk)Uk at each

stage; significant corrections occur if Uk aligns with large eigenvalues of Rk.
Block power iteration is a standard heuristic [7] to enhance alignment.

Incorporating p steps of a block power iteration to enrich Uk produces the
hybrid algorithm in Algorithm 2: the loop from line 4 to line 9 enriches a random
U by multiplying by the residual and re-orthogonalizing p times. As before, work
estimates are boxed on the right (p block power iterations require p n s and the
square symmetric sample requires s2) with the total double boxed. Although the
inner iteration requires significantly more matrix samples per iteration, conven-
tional wisdom [7] suggests one or two inner iterations are likely to be beneficial.
Our experiments show Algorithm 2 is competitive for p = 2.

Require: B0 ∈ R
n×n satisfying B�

0 = B0, SPD W ∈ R
n×n, s ∈ N.

1: repeat {k = 0, 1, . . .}
2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk

4: loop {i = 1, 2, . . . , p}
5: Λ = AUi−1,k − Bi−1,kUi−1,k

6: Σ = Λ(U�
i−1,k W Ui−1,k)

−1U�
i−1,k W

7: Bi,k = Bi−1,k + Σ + Σ� − W Ui−1,k(U
�
i−1,k W Ui−1,k)

−1U�
i−1,kΣ

8: Ui,k = Λ
9: end loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p n s

10: Compute Rk = U�
p,k A Up,k − U�

p,k Bp,kUm,k ∈ R
s×s . . . . . . . . . . . . . . . . . . s2

11: Compute P̃k = W Up,k(U
�
p,kW Up,k)

−1

12: Update Bk+1 = Bk + P̃k RkP̃ �
k

13: until convergence

14: return Bk+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k + 1)(p n s + s2)

Algorithm 4: SS1A: Accelerated Symmetric Approximation

Acceleration Convergence Results

Algorithm 4 (rotationally invariant samples with p = 2) is compared to BFGS-A
(the result of applying the SMW formula to the accelerated method AdaRBFGS
from [6]) and the three one-sided, non-accelerated algorithms: S1 and DFP
defined by Eq. (4) with weights W = I and W = A (respectively), and BFGS
defined by applying the SMW formula to Eq. (5) with weight W = A−1. We
use the same test matrices, initialization, and termination conditions described
in Sect. 6: Fig. 2a shows results for A = XX�; Fig. 2b shows results for the
Hessian matrix Gisette Scale [3]; and Fig. 2c shows results for NASA4704 [4].
SS1A matches or outperforms all other algorithms for the three matrices. As
before [13] contains MATLAB scripts and results for all matrices from [6]. Both
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Fig. 2. Accelerated SS1A algorithm outperforms accelerated BFGS algorithms.

BFGS-A and SS1A adaptively sample their update spaces. BFGS-A samples
from the columns of the Cholesky decomposition of Bk while SS1-A effectively
samples from a small power of the residual A−Bk. Comparing BFGS to BFGS-
A and S1 to SS1-A shows the benefits of adaptivity. The hybrid SS1A performs
consistently well.
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8 Conclusions and Future Work

Algorithms 1 to 3 iteratively generate matrix approximations to a fixed target
from two-sided samples. Rotationally invariant sampling gives optimal theoret-
ical convergence in general and predicted convergence rates are experimentally
verified for several real world matrices, with comparable performance to exist-
ing one-sided algorithms. A hybrid method combining simultaneous iteration (to
enrich a subspace) with the two-sided sampled update is developed and shown
to be competitive with existing one-sided accelerated schemes.

The algorithms systematically make minimal changes and drive weighted
residual norms for a fixed A monotonically to zero. Such self-correcting algo-
rithms can potentially approximate slowly changing matrices, A(x). For exam-
ple, QN optimization algorithms have a slowly changing Hessian target ∇2

xf(xk)
while solvers for stiff ODEs y′(x) = f(y(x)) have a slowly changing Jacobian
target ∇yf(y(xk)). The two-sided sampled matrix approximation algorithms
and theory presented in the article provide a general foundation for these and
other applications. Efficient factorized updates, compact low rank approxima-
tions, inverse approximation, and sparse matrix sampling are all planned.
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Abstract. An improved migrating birds optimization (IMBO) algo-
rithm is proposed to solve the hybrid flowshop scheduling problem with
lot-streaming of random breakdown (RBHLFS) with the aim of minimiz-
ing the total flow time. To ensure the diversity of the initial population, a
Nawaz-Enscore-Ham (NEH) heuristic algorithm is used. A greedy algo-
rithm is used to construct a combined neighborhood search structure. An
effective local search procedure is utilized to explore potential promising
neighborhoods. In addition, a reset mechanism is added to avoid falling
into local optimum. Extensive experiments and comparisons demonstrate
the feasibility and effectiveness of the proposed algorithm.

Keywords: Hybrid flowshop · Lot-streaming · MBO algorithm ·
Random breakdown · NEH algorithm · Greedy algorithm

1 Introduction

Nowadays, most of the researches on hybrid flowshop scheduling problem with
lot-streaming (HLFS) are from the perspective of a static environment [1]. How-
ever, the problem isintrinsically a dynamic constraint problem. The research on
hybrid flowshop scheduling problem with lot-streaming of random breakdown
(RBHLFS) has received much less attention. Nie et al. [2] proposed a improved
Genetic Algorithm to solve the flexible scheduling problem subject to machine
breakdown. Tian et al. [3] consider a semi-online scheduling problem on a single
machine with an unexpected breakdown period.

The migrating birds optimization (MBO) algorithm was proposed by Duman
in 2012 [4]. Zhang et al. [5] proposed an discrete MBO algorithm to solve the
no-wait flowshop scheduling problem. Zhang et al. [6] proposed a variation of the
MBO algorithm to solve the batch splitting scheduling flexible flowshop problem.
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2 Problem Statement

The RBHLFS can be described as follows. There are j jobs, which need to go
through n processing stages, and each stage requires m (m>1) machines. At
each stage, a job is processed according to his specific job sequence. Each job
can be further divided into several sublots, and the sublots of different jobs are
not allowed to be mixed on the same machine. One machine can only process
one job at the time. Moreover, at any stage, only one machine can be selected
for a job. During the processing, a machine can have a breakdown at any time.
The objective of RBHLFS is to determine a permutation π∗ of the set of all the
jobs for which the total flow time is minimum. Take the ith sublot of job j in the
stage n as an example, CTn,j,i is the completion time; STn,j,i is the start time;
Pn,j,i is the processing time. The repair time of the malfunctioning machine is
indicated by r. The RBHLFS can be stated as:

C(π∗) = min C(π) = min

n∑

j=1

CTn,j,i, π ∈ Π (1)

Due to the uncertainty of the time when a machine breakdown occurs, we con-
sider three situations (see Fig. 1).

Fig. 1. Gantt chart of machine breakdown classification

A: If STn,j,i≤ A <CTn,j,i

STn,j,i = STn,j,i, CTn,j,i = STn,j,i + Pn,j,i + r (2)

B: If CTn,j,i−1≤ B < STn,j,i or CTn,j−1,i ≤ B < STn,j,i

STn,j,i = max {STn,j,i, B + r} , CTn,j,i = STn,j,i + Pn,j,i (3)

C: If C ≥CTn,j,i

STn,j,i = STn,j,i, CTn,j,i = CTn,j,i (4)

3 The IMBO Algorithm for RBHLFS

3.1 Population Initialization

For the flowshop scheduling problem, the NEH (Nawaz-Enscore-Ham) algorithm
is currently one of the most effective heuristic algorithms [7]. A good initial
population can make the algorithm quickly converge to the approximate optimal
solution, and improve the efficiency and accuracy of the algorithm. Therefore, the
NEH algorithm is used here to construct an initial solution, and other solutions
are randomly generated.
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3.2 Neighborhood Structure

A Greedy Algorithm is an algorithm that searches for the optimal solution
locally, optimizing the scheduling goal. However, it cannot guarantee that the
solution is a global optimal solution [8]. In this paper, a greedy algorithm is uti-
lized to design two neighborhood structures N 1 and N 2, which are respectively
denoted as insert greedy (IG) and exchange greedy (EG).

3.3 Local Search and Reset Mechanism

In order to improve the current solution, a local search is performed. A new
solution is generated through insertion and exchange operations. The number of
iterations is fixed a priori. If the new solution is better than the original solution,
the current optimal solution is updated. If the maximum number of iterations is
reached, the local search ends.

A reset mechanism is utilized in the IMBO algorithm. For each individual,
the initial age is set to 1. If the individual evolves and the optimal solution is not
updated, the individual’s solution age is increased by 1. If the age exceeds a limit
value and there is no change, the current individual is discarded, a local search
is performed to generate a new individual, and the current optimal solution is
updated.

3.4 The Proposed Algorithm

The complete process the IMBO algorithm can be described as follows:
Step 1: Algorithm initialization. Set the algorithm parameters and termina-

tion conditions, and set flag=1. The leader is generated by the NEH algorithm,
the followers are randomly generated.

Step 2: Evolving of the leader. The k neighbourhood solutions of the leader
are generated by the neighborhood structure N 1 and N 2, and the best neigh-
boring solution is selected to update the original solution. Among the remaining
solutions, x solutions are selected, and added to the shared neighborhood solu-
tion sets P l and Pr, for the evolution phase as followers.

Step 3: Evolving of the followers. Based on the neighbourhood structures,
k -x neighbourhood solutions are generated for each follower in the left lists, and
are denoted by S. If the optimal solution in S∪P l is better than the current
solution, the new solution becomes the next follower. Then P l=∅. Add the other
neighbourhood solutions in S to P l for the evolution of another follower. The
right list performs the same operation.

Step 4: Update the current solution and its age, perform the reset mechanism
and a local search if no change occurs for L generations.

Step 5: Determine whether the maximum number of iteratives G has been
reached. If not, go to step 2, otherwise, proceed to step 6.

Step 6: Leader change. If flag=1(0), the leader solution will move to the end
of the left (right) list to become a follower. The first follower in the left (right)
list moves forward to become the new leader set flag=0(1).

Step 7: If T has been reached, the algorithm ends; otherwise, go to step 2.
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4 Experimental Results

The algorithms has been encoded in C++, and all experiments have been per-
formed on an AMD A12-9700P CPU @3.4 GHz with 4.0 GB main memory with
Windows 10 OS. In our experiments, we set the number of jobs between 20 and
100, while the number of stages has been fixed to 5 and 10. The frequency of
machine breakdown is 1 and 30, and the machine repair time is r=2. We gener-
ate 10 instances, and performed 100 independent experiments on each instance.
The relevant parameters of the algorithm are set as follows: s=51, G=10, k=3,
x=1, L=50.
The relative percentage increase (RPI) is computed as follows. Let C represents
the total flow time generated by each algorithm in the experiment, and let C*
be the minimum total flow time among all algorithms in the experiment. Then,

RPI =
C − C∗

C∗ × 100% (5)

We compared the IMBO algorithm with other intelligent algorithms: Particle
Swarm Optimization (PSO) [9], Genetic Algorithm (GA) [10], Invasive Weed
Optimization (IWO) [11], and Artificial Bee Colony (ABC) [12]. The results
are reported in Table 1. In all instances, the IMBO algorithm mostly achieves
the minimum RPI value, and even surpassed other algorithms by a considerable
amount. The average RPI value for the IMBO algorithm is the smallest, showing
the effectiveness of the proposed IMBO algorithm.

Table 1. RPI values of different algorithm for RBHLFS

Instance IWO ABC GA PSO IMBO

20× 5 0.24 0.32 0.24 0.28 0.23

20× 10 0.76 0.47 0.51 0.45 0.43

40× 5 0.64 0.66 0.32 0.29 0.29

40× 10 0.24 0.87 0.37 0.16 0.49

60× 5 0.95 0.85 0.30 0.69 0.49

60× 10 0.57 0.84 0.89 0.29 0.60

80× 5 0.57 0.64 0.68 1.02 0.50

80× 10 0.81 0.93 0.96 0.84 0.74

100× 5 0.88 0.91 0.83 0.69 0.74

100× 10 1.02 1.30 1.07 0.94 0.91

Mean 0.67 0.78 0.63 0.57 0.54

5 Conclusions

In order to solve the hybrid flowshop scheduling problem with lot-streaming
of random breakdown (RBHLFS), an improved migrating birds optimization
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(IMBO) algorithm is proposed to optimize the total flow time. The Nawaz-
Enscore-Ham (NEH) heuristic algorithm is used to generate the initial solution.
A greedy algorithm is instead used to construct a neighborhood search structure.
Then a local search method is utilized. In addition, a reset mechanism is added
to avoid falling into local optima. In randomly generated example of RBHLFS,
computational experiments show that the IMBO algorithm is more effective and
shows better performance than other algorithms from the literature.
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Abstract. This paper presents the work of building a knowledge base
for the domain of economic mobility for older workers. To extract high-
quality entities and relations that are important to the specific domain,
domain specificity scores for entities and relations are designed and
applied. To assist human-in-the-loop ontology construction, a novel topic
modeling method, named “description guided topic modeling”, is devel-
oped. It clusters domain entities based on their embedding and organizes
those clusters according to descriptions of potential topics important to
the domain. To demonstrate feasibility, these methods are applied to a
collection of knowledge sources related to economic mobility for older
workers. These methods are further tested through a case study on one
specific barrier for economic mobility, i.e., limited broadband access for
older workers, to show the potential of these methods.

Keywords: Knowledge base · Domain specific lexicon · Knowledge
graph · Social impact · Ontology · Economic mobility · Older workers

1 Introduction

The social and economic security of older Americans has been disrupted by the
fast-paced changes in the work environment, automation, and artificial intelli-
gence trends. Women and men over 65 experience many barriers to economic
mobility that create uncertainties with their employment and workforce devel-
opment. Moreover, older Americans‘ plight has been made even starker by the
COVID-19 pandemic, which deteriorated the lives of people of age 65+ [1,2,8].

The urgency and importance of issues related to older workers‘ economic
mobility call for serious actions to develop and implement comprehensive policies
and new opportunities for people of age 65+. The starting point is the need for
relevant and trustworthy information. However, this information is not well-
organized and presented as useful insights; instead, the search for knowledge is
often filled with noise and disinformation. Moreover, even if there are trusted
information sources on a particular social issue, gathering insights on the issue
often relies on a manual process that is inefficient, lengthy, and costly.

Funding for this research was partially provided by CWI Labs, a wholly-owned sub-
sidiary of the Center for Workforce Inclusion, a national nonprofit organization.

c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 246–260, 2022.
https://doi.org/10.1007/978-3-030-95470-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95470-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-95470-3_19


Knowledge Base on Economic Mobility of Older Workers 247

The purpose of the work presented in this paper is to address the need for
organized knowledge through building knowledge bases using knowledge graph
methodologies. A knowledge graph describes entities and their interrelations,
organized in a graph, with a schema that defines possible entities and relations
between entities and allows for potentially interrelating arbitrary entities [7,20].
Knowledge graphs have been used with demonstrated efficacy in solving problems
addressing complex social challenges, for instance, understanding the impact of
the opioid crisis in the U.S. [11], combating human trafficking [12].

The challenges in building knowledge bases for social issues are manifold. The
lack of trusted knowledge sources makes the relevant domain contents extremely
sparse and continually drowned out by irrelevant contents that add large amount
of noise for knowledge extraction. The lack of established domain information
architecture means data cannot be systematically annotated, limiting the appli-
cability of supervised ML methods even when enough raw data are gathered.

Our approach for addressing these intertwined challenges is a semi-automated
solution with human-in-the-loop [6,13] for scoping the domain and learning
domain information architecture, outlined in Fig. 1. The tool loop enables iter-
ative execution of entity and relation extraction, phrase clustering, and topic
modeling. The human loop supports domain experts to provide feedback for tun-
ing parameters such as thresholds for entity and relation extraction and cluster
grouping for topic modeling.

We tested the feasibility on three sets of knowledge sources, listed in Table 1.
These knowledge sources are gathered from domain experts, including nonprofit
representatives and academic researchers, in the forms of white papers, verified
web pages, academic research articles, official documents, etc. The diverse sets of
knowledge sources ensure sufficient coverage over the domain for bootstrapping
topic modeling and relation extraction.

We further conducted validation of discovered knowledge on the issue of
limited broadband access for older workers, against knowledge sources of Broad-
band Access and Affordability, the full results of which are presented in a white
paper [24] due to space limit of this paper. Positive validation demonstrates the
potential of our methods in tackling the challenges, whereas lack of benchmark
data for automated objective evaluation remains a challenge.

Our main contributions are:

1. methods for domain specific entity extraction, phrase extraction, and relation
extraction utilizing domain specificity scores, resulting in a domain lexicon
built for the domain of Economic Mobility of Older Workers (Sect. 2)

2. a novel application of topic modeling (Sect. 3), we named description guided
topic modeling, an iterative refinement of large number of topic clusters
according to brief topic descriptions from human input. This enabled a human
loop, the result of which is the domain ontology (Sect. 4)

3. a case study focusing on the issue of broadband access for older workers that
prevent them from being active in workforce (Sect. 5)

Throughout this paper, references to concepts and algorithms are provided in
context instead of a separate section, to maximize the benefit for practitioners.
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Fig. 1. High level overview of data flow between components and support for human-
in-the-loop to build domain lexicon and construct domain ontology.

Table 1. Knowledge sources

Knowledge
Source

Description

Economic mobility &
Barriers for older workers

Our main knowledge source, on the topics of older adults and
aging, economic mobility and barriers, evolving workspaces,
workforce development, and existing policies and opportunities
landscape for improving economic mobility of older workers

Broadband access and
affordability

Our knowledge source for case study (Sect. 5) on the topics of
broadband access, impact of broadband on the economic security
and health of older people, broadband infrastructure, digital
divide, and connectivity policies on both federal and state level

X4Impact Social
Challenges https://x4i.org

Our test knowledge sources for running our tool loop on
multiple domains simultaneously, contains documented social
challenges introduced from nonprofits, academia, and private
sectors, covers social issues related to all 17 United Nations
Sustainable Development Goals

2 Building Domain Lexicon

A domain lexicon consists of key phrases, noun phrases, named entities, and
relational verbs that are important for properly describing the domain. Early
work in phrase mining and entity recognition generally followed supervised app-
roach. More methods started to utilize corpus with human annotation, such as
wikipedia, whereas unsupervised methods for phrase mining and entity and rela-
tion extraction typically rely on heuristic rules and example templates, as well
as basic syntactic knowledge and corpus statistics [5,14]. The work in [23] repre-
sents one recent state of the art in phrase mining and provides a comprehensive
overview of some established methods. It also pointed out that human feedback
is necessary for tuning the algorithm parameters, such as thresholds, not only
for unsupervised methods but also for well developed supervised methods.

Below, we first introduce the concept of domain specificity score in Sect. 2.1. It
utilizes domain statistics for measuring individual term and phrase’s importance
to a domain in comparison with a general domain, such as wikipedia. Experiment
details for entity extraction and relation extraction are presented in Sect. 2.2 and
Sect. 2.3.

https://x4i.org
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2.1 Domain Specificity Score

We regard the notion of a phrase being of importance or interest to a domain
as domain specificity. The domain corpus may contain domain specific phrases
as well as phrases commonly occurring in a general domain or a domain differ-
ent from the current domain of interest. Although useful for understanding the
domain, general words and phrases may crowd out the domain-specific ones. For
instance, word geriatric may be important for describing the domain of older
workers, it may still be in the long tail of the domain corpus. This calls for a
method to measure the domain specificity of each word and phrase.

Domain Specificity Scores for Unigrams. We adopt the concept of term
frequency - inverse sentence frequency (TF-ISF) [15], which is an adaptation of
the conventional TF-IDF by replacing document with sentence in the computa-
tion. For a given word w, we first compute its tf-isf for each sentence s and sum
up its tf-isf values across all sentences. Formally, we calculate tf-isf (w) as:

tf-isf(w) =
∑

s∈S
tf-isf(w, s) (1)

where S is the set of all sentences in the given corpus.
Then, we multiply tf-isf (w) by the log of ratio of document-level word density

in the domain corpus over the raw word density in the general corpus to get the
final domain specificity score for w:

domain-specificity(w) = tf-isf(w) × log

(
dcD(w)
DND
cG(w)
NG

)
(2)

where dcD(w) is the document-level word frequency for w in the domain corpus
D (i.e., the number of documents in D that contain w), cG(w) is the raw word
frequency for w in the general corpus G (i.e., the number of times w appears in
G), DND is the total number of documents in D, and NG is the total number of
words in G.

Domain Specificity Scores for Phrases. Similarly, for a given n-gram p that
consists of multiple words, we define its domain specificity score as:

domain-specificity(p) = tf-isf(p) × max
w∈P

log

(
dcD(w)
DND
cG(w)
NG

)
(3)

where P is the set of words in the phrase p, and tf-isf (p) is computed the same
as Eq. 1.

Our metric for domain specificity uses the tf-isf value to up-weight terms that
appear in more sentences but not too many sentences, which helps us filter out
misspellings or invalid words and words that appear more frequently in general.
In the meantime, the ratio term up-weights words or phrases that have relatively
high density in the domain corpus versus the general corpus. Thus, higher domain
specificity scores indicate that the words or phrases are more domain-specific.
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In our computation of the domain specificity scores, we used the Wikipedia
Download from March 2019 as the general corpus. We also experimented with
other commonly used general corpora, such as the Reuters Corpora, the New
York Times Annotated Corpus, and Google Web Trillion Word Corpus. Com-
pared with Wikipedia March 2019, these earlier corpora do not perform well due
to less coverage on words related to topics and issues emerging more recently.

2.2 Phrase Extraction and Term Recognition

We scraped the data from trusted knowledge sources, parsed and retained rele-
vant chunks of text, and conducted conventional NLP pre-processing before we
applied domain specificity scores for extracting key phrases, noun phrases, and
named entities.

Domain-specific Key Phrases Extraction. We extracted n-grams (n = 1,
2, 3, and 4) and computed their domain specificity scores as defined in Sect. 2.1
to identify the top domain-specific keywords in our knowledge sources. Since
some stop-words might have high tf-isf values and crowd out the domain specific
terms, we removed all terms with a tf-isf value that is greater than 5. Table 2
shows some examples of extracted n-grams ranked by their domain specificity
scores that shows the difference between high and low domain specificity scores.
With human input, we can set the threshold as 20 for selecting domain specific
key phrases.

Domain-specific Noun Phrase Extraction. We used regular expression of
POS (Part-Of-Speech) tagging to extract noun phrases from knowledge sources.
Since knowledge sources consist of many different web pages and PDF documents
of diverse characteristics, there is inevitably noise in the results of automated
text content scraping and parsing. Heuristic rules concerning length outliers or
frequency outliers are applied to remove repetitive text elements from headers,
footers, table of contents, organization taglines, or article titles that are usually
not proper noun phrases and contribute little to lexicon building. Domain speci-
ficity score for each extracted noun phrase is calculated using Eq. 3. In Table 3, we
present some examples of domain-specific noun phrases that are above threshold
20 as we did for key phrase extractions.

Domain-specific named Entity Recognition. We used Microsoft Azure Text
Analytics API for Named Entity Recognition (NER). The entities identified
belong to various pre-defined classes such as Organization, Skill, Event, Product
etc. We then calculated the domain specificity scores for the extracted entities
using Eq. 3.

2.3 Relation Extraction

Relation extraction has been an active topic in research with available methods
that are supervised, unsupervised, or distance supervised. Supervised methods
are generally not feasible for a domain with unknown information structure.
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Table 2. Examples of extracted phrases with high and low domain specificity scores.

Key Phrase Domain Specificity Score

An aging workforce 64.0

Telemedicine 53.8

Aging in america 50.8

Geriatrics 46.6

Broadband connectivity 42.4

Alaska native elders american 41.9

Effects of disability discrimination 38.4

People living with dementia 35.3

Counseling 5.0

Engage in meaningful activities 0.1

Table 3. Examples of domain-specific noun phrases with high domain specificity scores.

Noun Phrase Domain Specificity Score

Effects of disability discrimination laws 39.0

The deployment of broadband 38.7

Growing demand of soft skills 35.0

Disability discrimination laws on hiring 30.0

COVID in nursing homes 25.6

Broadband service in unserved areas 21.6

Strictly unsupervised methods may extract large amount of relations that are
hard to be mapped to important types of relations needed for the given domain.
Distance supervised methods [18] utilize large datasets that already have seman-
tic information, such as Freebase or Wikipedia annotation, and achieved good
performance without having to incur high cost of obtaining labeled data. Recent
works such as [22] on inter-sentence relation extraction using graph convolution
network have produced state-of-the-art results but still require basic labels on
the types of relations in the graph.

Our relation extraction makes use of domain specificity scores for selecting
phrases and entities for candidate mention, and conducts entity linking to enable
extraction of inter-sentence relations. We then conduct post-processing to cluster
relation verbs to make the results consumable in the human loop (see Fig. 1).

Entity Linking. Entity linking enables replacement of references of entities by
standard entity form. We implemented entity linking through three sub-tasks:
1) abbreviation resolution where entities are resolved via common abbreviation;
2) co-reference resolution utilizing NeuralCoref ; 3) deduplication through fuzzy-
matching using tf-idf, n-grams, and cosine similarity.

Domain-specific Relation Extraction. Relations are extracted between two
entities or noun phrases which are of the form Entity—Verb—Entity or Noun
Phrase—Verb—Noun Phrase. We applied POS tagging and entity-linking to
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Table 4. Examples of extracted relations.

Entity/Noun phrase 1
(Type)

Relation Entity/Noun phrase 2
(Type)

Senate aging committee
(Organization)

Hosted by AARP (Organization)

SCAN Foundation (Organization) Led by National Association of Area
Agencies on Aging (Organization)

Workplace injuries (Barrier) Compared with Younger counterparts (Beneficiary)

Younger counterparts (Beneficiary) Contend with Discrimination against older
workers (Barrier)

Table 5. Examples of clustered verb phrases.

Verbs in cluster Avg
Domain
Specificity
Score

Entity—Relation—Entity

‘improving’, ‘improved by’, ‘improve
with’, ‘improved with’, ‘improved in’,
‘improved at’, ‘improve’, ‘improves’

39.5 broadband communications—
improve—increase broadband
availability at affordable costs

‘prioritize’, ‘prioritized’, ‘prioritising’,
‘prioritize for’, ‘prioritizing’

17.0 changing hiring policies—prioritize—
hiring skilled workers

‘minimizing’, ‘understates’,
‘minimizes’, ‘understate’, ‘minimize’

7.9 the impact on older
workers—understate—the pandemic

identify direct relations, parallel relations, and inter-sentence relations. Table 4
shows some examples of extracted relations.

Such extracted relations can be very noisy and in large numbers. To make
them useful, we performed post-processing steps: 1) generate clusters of seman-
tically similar relation-verbs; 2) compute the domain specificity score for each
relation-verb cluster as the average of the domain specificity score for each
verb/web phrase by Eq. 2 and Eq. 3; 3) use the domain specificity score for
the verb cluster to differentiate relevant and important relations from generic
and less important ones. Table 5 presents some examples of verb clusters, their
scores and sample relations in the cluster. We can observe that higher domain
specificity scores correspond to verb clusters that are more specific to the domain
of broadband access.

3 Description Guided Topic Modeling

Topic modeling helps tackle the challenges of sparse data, unlabeled data, and
an unknown domain structure [10]. To learn the key concepts that are critical for
constructing the domain ontology, we developed a novel application of clustering
and word embedding that we named description guided topic modeling. The goal
of description guided topic modeling is to group unstructured noun phrases from
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a corpus into a domain knowledge framework, and eventually map them to entity
types to form the basis for ontology construction.

Recall our overall workflow as depicted in Fig. 1, the tool loop takes input
from a domain expert in the form of keyword descriptions about potential domain
topics, runs clustering with respect to the descriptions, and provides evaluation
metrics back to the expert. Based on the evaluation metrics, the expert can
decide to refine the topic descriptions and run a new iteration of the topic mod-
eling. The iterative process stops when the expert is satisfied with the collection
of topics along with their corresponding entities.

3.1 Algorithm Details

Shown in Algorithm 1, our algorithm for description guided topic modeling is a
semi-supervised, bottom up, two-step adaptive clustering algorithm that assigns
all extracted noun phrases to one of the predefined topics.

1. Clustering step: an unsupervised clustering of the extracted noun phrases. We
adopted the spherical k-means as it is an appropriate method for clustering
of text embedding spaces [16]. The number of unsupervised clusters should
be significantly bigger than the number of predefined topics.

2. Topic Assignment step: semi-supervised assignment of clusters to topics via
topic descriptions provided by the human expert. Each unsupervised cluster
is mapped to the topic closest to it in the distance from cluster center and
the keyword descriptions of the topics.

3.2 Experimentation Settings and Results

As input to Algorithm 1, the noun phrases and topic keyword descriptions are
pre-processed and mapped into a text embedding space by the pre-trained Fast-
Text model [4]. We designed and conducted experiments to search for the optimal
configurations regarding: 1) the number of clusters to run k-means; 2) metrics
to use for assigning clusters to topics; 3) the embeddings to use.

Number of Clusters in k-Means. The desired clustering results are compact
clusters that contain semantically similar noun phrases. We use the skewness
of the distribution of average within-cluster distances across all the clusters for
inspecting clustering results. The average within-cluster distance is calculated
by taking the average of the cosine distances between the centroid and all noun
phrases of the cluster. When the skewness is high, the distribution skews to the
left, and more clusters have lower average within-cluster distances. This indicates
that the algorithm generates more compact clusters. Therefore, we are primarily
looking for the number of clusters that give high skewness. Additionally, we also
check for small clusters because we do not want to generate clusters with only
one or too few noun phrases.

The number of clusters in the k-means algorithm for description guided topic
modeling is determined by combining the Elbow Method and our interpretation
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Algorithm 1: Description Guided Topic Modeling

Input: Noun phrases NP1, ..., NPN

Topic descriptions TD1, ..., TDM

Number of clusters for k-means algorithm K, K > M
Text embedding function F

Output: Topic assignment T such that Ti = j, meaning noun phrase NPi

belongs to topic j
X ← [x1, x2, ..., xN ] ← [F (NP1),F (NP2), ...,F (NPN )]
Y ← [y1, y2, ..., yN ] ← [F (TD1),F (TD2), ...,F (TDM )]
// ci is the cluster assignment of NPi

// µk is the center of cluster k
c, µ ← Spherical-KMeans(X,K)
for k from 1 to K do

// ak is the assignment of cluster k to the topic with the

closest topic description

ak ← arg minj∈[1,M ] Cosine-Dist(yj , µk)

end
for i from 1 to N do

// The topic assignment of NPi is the same topic assignment of

NPi’s cluster

Ti ← aci

end
return T ← [T1, T2, ..., TN ]

of the number of small clusters, and the skewness of the distribution of average
within-cluster distances. The commonly used Elbow Method for k-means chooses
the number of clusters by looking at the inertia plot’s turning corner. The inertia,
or within-cluster sum of squares, is defined as the squared sum of within-cluster
distances from all the noun phrases in a cluster to the cluster’s centroid, and
summed across all the clusters.

We plot the skewness versus the number of clusters in Fig. 2. The chosen
value for number of clusters is marked with red (K = 264) with high skewness.

Topic Assignment Metrics and Topic Description Refinement. Recall
the topic assignment step in Algorithm 1, clusters are assigned to topics, hence
a topic can be viewed as a group of clusters.

We define the linkage criterion L between two topics as the median of all
pairwise cosine distances between noun phrases from each topic:

L(T1, T2) = Median{D(F (NPi),F (NPj))}
∀NPi ∈ T1,∀NPj ∈ T2

This linkage criterion reflects the distance between two topics as large clusters
of noun phrases. Higher values of the linkage criterion indicate that the corre-
sponding clusters are better at separating topics in the embedding space.

Topic descriptions are small sets of keywords that human expert provided
initially and then refined after each round of topic assignment according to: 1)
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Fig. 2. Skewness over spherical k-means clusters: over all clusters (left), over clusters
of size great than 1 (center), and over clusters of size greater than 5 (right).

Fig. 3. Comparison of linkage criterion of topic modeling between iterations of topic
description refinements and embeddings.

specificity of the words belonging to the topic with minimum overlap between the
topics descriptions; 2) avoidance of general or contextual words for simple yet
comprehensive definitions of the topics; 3) iterative learning from each iteration
to design topics and description for the next iteration.

Three iterations of topic description refinement were conducted. Figure 3
shows the distributions of linkage criterion for all pairs of topics for each iteration
under different embedding. From the plot, we can see that the distribution of
linkage criterion of iteration 2 and 3 shifts towards the higher end compared
to the distribution of iteration 1. Also, the distribution of iteration 3 converges
better compared to that of iteration 2.

Text Embeddings. We chose FastText embedding because it captures sub-
word semantic information better when compared to other methods like
Word2Vec [17] and GloVe [21]. We experimented with two different FastText
embeddings. The first embedding is trained on English Wikipedia (referred to
as “full”) and the second embedding is trained on Simple English Wikipedia
(referred to as “simple”). The simple English Wikipedia has less pages and is
limited to 850 English words and simple sentence structures. Our experiments
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Fig. 4. Comparison of the skewness of the distribution of average within-cluster dis-
tances between full embeddings (left) and simple embedding (right).

compare the performance of different embeddings in both K-Means and topic
assignment. Figure 4 depicts the K-Means skewness for both embeddings.

We can see that the full embedding converges with the large number of
clusters while the simple embedding fails to converge. The comparison of linkage
criterion for topic assignments in Fig. 3 shows the lower linkage criterion for
the simple embedding than that of the full embeddings. This indicates that
the simple embedding is less effective in separating the topics. We can draw
conclusion that the full embedding performs better than the simple embedding
in both K-means and topic assignment.

4 Constructing Domain Ontology

A domain ontology is a formal specification of concepts and relationships between
them in a particular domain of discourse [9]. Developing an ontology, as outlined
in [19], includes: 1) defining entities (concepts, classes) in the ontology; 2) defin-
ing relations between the entities; 3) defining properties allowed or restricted
for the entities and relations. Ontology development process utilizes competency
questions to help scoping a domain and specifying focus areas of interest. Below
are some competency questions for the domain of economic mobility of older
workers:

– What barriers prevent older people from improving their economic mobility?
– What organizations focus on a specific barrier to economic mobility? What

organizations work to support older workers’ economic mobility?
– What population groups are impacted by an issue and who are the beneficiary

groups of the programs?
– What is the status quo on economic mobility and what are the measurements

and indicators that describe a specific barrier?

Due to the scope and heterogeneity of the domain, learning about the actual
concepts (entities), attributes, and relation values can be too costly and hard to
scale if it is done fully manually with just human experts defining all necessary
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Fig. 5. Ontology for a domain-specific knowledge graph for economic mobility of older
workers.

knowledge. At the same time, fully automated learning and ontology mining can
often be characterized as low quality because of excessive noise [3].

We used a semi-automated human-in-the-loop approach for ontology con-
struction. As described in Fig. 1, the results from tool loop (detailed in Sect. 2
and Sect. 3) provide input to human loop, where human intervention takes on the
form of continuous input-feedback loop. Human interventions include: adjusting
data corpus, setting term frequency cut-off thresholds, providing topic descrip-
tions, adjusting number of clusters for topic modeling, selecting appropriate
evaluation metrics and benchmarks, reviewing and verifying experiment results.
The tool loop takes human expert’s input and returns next iteration of results
and evaluation metrics back to the human expert who in turn learns more about
the domain.

Figure 5 presents the final constructed ontology for the domain of economic
mobility of older workers, resulted from the above mentioned iterative human-
in-the-loop learning process. The definitions of the entity types are presented in
Table 6. With this ontology, we can populate the knowledge base with instances
and values for the entities, relations, and their properties.

5 Case Study on the Issue of Broadband Access

To validate the results of the above knowledge discovery process, we conducted
a case study on the specific topic of broadband access. We applied our methods
against knowledge sources of Broadband Access and Affordability (see Table 1),
which provide a good coverage on this issue in our corpus and our domain
experts can provide quality feedback during results testing and validation. Below
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Table 6. Definition of entity types of the Ontology on economic mobility of older
workers

Entity type Definition

Issue/Barrier Central part of the ontology. It is a problem that is often discussed or

argued about, and that affects the interests of an older worker

Measurement Specific indicators and rates which can characterize or describe a

certain instance of the issue entity

Beneficiary group A person or a group of people with certain specific characteristics like

age, race and ethnicity, socioeconomic status, income, profession,

education, etc.

Skill Abilities or expertise in some area. Assign skills as a separate entity

type elevate its importance in bridging existing gaps that prevent older

workers from being an active part of the workforce

Organization Organizations (national private or public, international) which conduct
their activity within economic mobility/older worker arenas

Opportunity Programs, initiatives, and other training opportunities which can help
older workers gain new skills or new knowledge

Policy Laws, plans, or interventions which can either address one of the issues
or create a challenge related to older workers

Funding Grants and other financial resources and tools aimed at solving or
supporting a certain issue

Date Time related entity

Location Geographical area

is a brief summary of the case study, the full results are presented in a white
paper [24] due to space limit of this paper.

After unsupervised extraction of a domain lexicon from the sources, we aggre-
gated and analyzed the extraction results of key phrases, noun phrases, named
entities, and relation verbs as well as the results of the description guided topic
modeling method. We applied domain specificity scores to extract entities and
relationships that are more specific to the domain. These results were validated
and approved by the domain experts. The positive validation demonstrates the
potential of our methods in tackling the challenges that we outlined in Sect. 1.

We evaluated the knowledge discovery process through testing against the
competency questions and validate the results with domain experts. The com-
petency questions presented in the Sect. 4 are addressed through showcasing
extracted results. The white paper explores deeper the issue of the broadband
access gap for older Americans and provides findings that can be used to promote
a better policy agenda to help solve the issue.

6 Conclusions and Future Work

In this paper we presented a set of tools and methods we developed for building a
knowledge base for the domain of economic mobility of older workers. We demon-
strated that the domain specificity score is effective for building domain lexicon
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from raw data when there is no labeled data nor categorical knowledge about
the domain. Our description guided topic modeling method helps the learning
of the domain ontology through an iterative human-in-the-loop approach. The
resulting ontology and domain scoping were successfully applied in a case study
for insight generation.

We recognize the need for objective evaluation and reproducibility in face of
lacking benchmark ground truth data fitting for the social domains we work with.
Building on top of this paper’s work with the basic domain lexicon and ontology
constructed, one can start to experiment with semi-automated annotation tools
for building up ground truth dataset for robust evaluation. Another future work
can be to populate a knowledge graph based on the domain ontology with a
continuous process that layers data from many more diverse sources.
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Abstract. Fine-tuning and optimisation of production processes in
manufacturing are often conducted with the help of algorithms from
the field of Operations Research (OR) or directly by human experts.
Machine Learning (ML) methods demonstrate outstanding results in
tackling optimisation tasks within the research field referred to as Neural
Combinatorial Optimisation (NCO). This opens multiple opportunities
in manufacturing for learning-based optimisation solutions. In this work,
we show a successful application of Reinforcement Learning (RL) to the
task of workpiece (WP) clamping position and orientation optimisation
for milling processes. A carefully selected clamping position and orienta-
tion of a WP are essential for minimising machine tool wear and energy
consumption. With the example of 3- and 5-axis milling, we demonstrate
that a trained RL agent can successfully find a near-optimal orientation
and positioning for new, previously unseen WPs. The achieved solution
quality is comparable to alternative optimisation solutions relying on
Simulated Annealing (SA) and Genetic Algorithms (GA) while requir-
ing orders of magnitude fewer optimisation iterations.

Keywords: Reinforcement Learning · Supervised learning ·
Manufacturing · Process optimisation · Milling optimisation · Tool path

1 Introduction

This study looks into the adaptation of learning-based methods to an optimisa-
tion task in the context of mechanical engineering. The object of investigation
is applying RL for optimising WP clamping position and orientation in a Com-
puter Numerical Control (CNC) milling machine. The milling process involves
the removal of material from the WP with a rotary cutting tool. The considered
CNC milling machine belongs to a widely used type of milling machines with a
rotary table and a swivelling spindle head allowing complex movements of the
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cutting tool related to the WP. This enables the production of a wide variety of
complex WP geometries on a single CNC milling machine.

Designing a new CNC milling process is a laborious task relying heavily on
human expertise. Firstly, a Numerical Control (NC) program needs to be created
based on the WP geometry, the chosen processing technology and the type of
CNC machine. The resulting NC program defines the toolpath relative to the
WP. A second step is the definition of a WP clamping position and orientation
in the working space of the CNC machine. Different WP clamping positions and
orientations result in different movements of the machine axes. Therefore, cer-
tain clamping positions and orientations will require higher accelerations of the
heavy machine axes and a higher number of axes movements, directly influencing
machine wear, machining accuracy and energy efficiency.

The standard approach to determine a suitable WP clamping position and
orientation relies solely on human expertise gathered through experience. The
preceding work [18] demonstrates the concept of formalising the task of finding
the optimal WP clamping position and orientation for the milling process as an
optimisation problem with subsequent use of RL. In this study, we considerably
enhance the proposed approach and demonstrate the capability of the proposed
method in addressing more challenging milling tasks while improving the qual-
ity of solutions with fewer search iterations. A direct comparison to alternative
optimisation approaches, such as GA [14] and SA [20], demonstrates the capa-
bility of the proposed RL-solution to yield comparable results for WPs not seen
during training, while requiring considerably fewer optimisation iterations.

2 ML Applications in Mechanical Engineering

Learning-based and data-driven methods are widely deployed to drive progress
in the field of smart production and manufacturing [4,15]. ML is considered
the key enabling technology for further cost savings, quality improvement, and
minimisation of waste in applications relying on the use of cutting processes
along with heuristic optimisation approaches. At the same time, milling and
turning receive the most attention from the research community [5].

Multiple studies concentrate on adopting learning-based methods for condi-
tion monitoring and machine tool diagnosis to enhance cutting processes. Wu
et al. [22] demonstrate the applicability of simple regression models based on
Random Forest (RF), Support Vector Machine (SVM) or Multilayer Perceptron
(MLP) for the prediction of tool wear. Kothuru et al. [11] investigate the pos-
sibility of using SVM prediction models to estimate the condition of a cutting
tool using only audible signals.

More advanced supervised ML models capable of processing sequential data
demonstrated their efficiency for condition monitoring and quality prediction.
Wang et al. [21] utilise recurrent predictive models on time series for tool wear
monitoring. In this study, a Gated Recurrent Unit (GRU) predictive model
demonstrates superior performance compared to conventional methods. For a
similar Use Case (UC), Serin et al. [19] introduce the use of RL in combination
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with an LSTM-based (Long Short-term Memory) control system. The LSTM-
model is used as a memory base and can suggest optimal cutting parameters
to the RL agent. The study of Yuan et al. [24] emphasises the advantages of
enhancing recurrent predictive models with attention mechanisms for quality
prediction in complex production processes.

RL methods are often used in manufacturing engineering for planning, con-
trolling and iterative optimisation of the production process. Xanthopoulos et al.
[23] deploy an RL agent for learning joint production control and maintenance
strategies on a deteriorating production system. A trained RL agent can sug-
gest maintenance schedules and production plans that are superior to methods
currently implemented in practice. Pol et al. [16] use decentralised RL agents
to perform online scheduling in flexible production systems with the advantage
of generalising to uncertain situations that deviate from the plan. Meyes et al.
[13] demonstrate the use of an RL agent for sample-efficient optimisation of a
heavy plate rolling process. The application UC considered in the study contains
many process-, material- and machine parameters interacting with each other.
These different interactions of parameters produce different product quality lev-
els, which relate to the height and the grain size of the finished products. A
trained RL agent can estimate suitable pass schedules for heavy plate rolling to
achieve the desired material characteristics.

Bhinge et al. [1] demonstrate the importance of the tool path for the total
energy consumption of the machine tool. Rangarajan et al. [17] emphasise the
importance of the WP orientation in milling to minimise the processing time and
drive loads. Campatelli et al. [3] propose a mathematical model to reduce energy
consumption through optimal WP placement in the milling process. However,
the proposed approach is applicable only for the finishing operations and is not
capable of axis collisions avoidance. To the best of our knowledge, only the study
from Samsonov et al. [18] demonstrates the application of RL methods to the
task of optimal WP positioning in a machine tool.

3 Problem Statement

This study aims to find a near-optimal clamping position and orientation for a
previously unseen WP in a CNC machine with RL. An optimal position refers
to a placement that minimises the acceleration and the distance travelled in
the axis directions of the machine while milling the WP. This placement should
also accommodate the avoidance of all possible collisions of CNC machine parts
caused by the movements of the machine axes. The task of finding WP position
and orientation can be formalised as a continuous optimisation problem max-
imising the objective function equal to the reward function discussed in Sect. 4.1.

Two UCs of CNC milling are investigated in this work. Firstly, a simple
WP geometry is considered with a groove along the perimeter of the part and
the milling slot on top of it (see Fig. 1). Given shape requires a 3-axis milling
process with possible movements in a front-to-back (X-axis), side-to-side (Y-
axis), as well as up-and-down (Z-axis) directions by the cutting tool. A milling
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slot is a widespread feature involving multiple changes of the tool movement
direction. Having the grove along the perimeter of the WP increases the chance
of axes collisions if the WP position and orientation are not selected correctly. A
further element of simplicity is that the machine coordinate system and the WP
coordinate systems coincide. Changing the orientation of the slot (slot angle)
allows the generation of a set of WP geometries for training and evaluation of
the proposed RL solution. This WP geometry is considered to a certain extent
in [18] and is used in this work to demonstrate the achieved improvements on
the search efficiency of the solution space.

Fig. 1. Visualisation of a 3-axis WP, slot angle = 45◦

(a) Slot angle = 0◦,
Tower Z = 60mm,
Tower X = 55mm

(b) Slot angle = 45◦,
Tower Z = 60mm,
Tower X = 100mm

(c) Slot angle = 90◦,
Tower Z = 235mm,
Tower X = 130mm

(d) Slot angle = 210◦,
Tower Z = 235mm,
Tower X = 55mm

Fig. 2. Visualisations of 5-axis milling WPs

The second UC, and focus of the current study, is based on a 5-axis milling
process and decoupling of the WP and machine coordinate systems. Apart from
the milling slot and groove along the WP perimeter included in the first UC,
a tower-shaped surface is added on the top of the WP (see Fig. 2 for various
examples of WP geometries). The introduced tower feature is a complex spiral-
formed shape with inclined sides towards the center. This makes the feature
fairly representative for complex milling operations, requiring coordinated move-
ments of multiple axes and constant change in the moving speed/accelerations.
The milling process of considered 5-axis WP geometry involves a front-to-back
movement (Z-axis), a side-to-side movement (X-axis), an up-and-down move-
ment (Y-axis), a rotation movement along the Y-axis and pitch movement from
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side-to-side of the cutting tool relative to the WP. In this case, the RL agent
needs to learn how to handle non-trivial axis collision avoidance patterns and a
different WP design. To vary the shape of the WP, the slot angle can be rotated
360◦ and the tower position can be moved continuously along the top and bot-
tom of the WP. The NC program created to mill the WP is calibrated such
that the slot and the tower will not overlap. Modifications of the slot and tower
features change the energy exertion and wear on the main axes of the milling
machine and the optimal placement is influenced.

The 3-axis UC provides a good framework to test modifications of the RL
solution, with the goal of finally transferring and testing the results on the more
complicated 5-axis UC.

4 RL Experiment Setup

The WP clamping position and orientation optimisation task is formalised as a
fully observable Markov Decision Process (MDP). The RL agent is allowed to
iteratively move the WP in the machine’s working space to improve the reward
from the WP clamping position and orientation. In the following sub-chapters
the state space, action space and reward function for the RL agent are discussed,
along with search space efficiency implementations. The training and validation
scheme for the RL agent is outlined and the generation of WP data and an
efficient way of using the milling simulation data by training an ML model is
explained.

4.1 State Space, Action Space and Reward Function

The position of the WP in the machine space is described by axes coordinates
(X, Y , Z) and the rotation angle of the WP with respect to the orientation
of the machine. The RL agent can choose the location and orientation of the
WP every time an action is required. For the 3-axis machine, the only possible
variation in the shape of the WP is in terms of the milling slot angle. Therefore,
each WP position and shape is uniquely captured by (X, Y , Rotation Angle,
Slot Angle). The 5-axis machine includes the possibility of milling a tower, as
well as a slot, and a combination of these two features uniquely specifies the WP.
The parameters to describe the WP placement and shape to an RL agent in this
case are (Z, X, Y , Rotation Angle, Tower Z, TowerX, Slot Angle). For the
RL agent to know what kind of WP is currently being processed, it is important
to provide this unique parameter set explicitly or to determine a proxy for the
WP shape that could be provided.

After placement of the WP in the machine’s working space at the specified
coordinates, with the specified orientation and including the unique features of
the WP, a milling process is carried out. From this milling process, the sum
of the squared accelerations (eZ , eX , eY ) and distances travelled along every
machine axis (dZ , dX , dY ) are recorded for further evaluation of the current WP
placement and orientation.
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The tuples for the state-action-reward representation found in the 5-axis
UC are briefly summarised in Table 1. The state space includes the unique WP
parameters, the location and orientation parameters in the working space of the
milling machine, the resulting squared accelerations and distances travelled, the
collision switch (limit Z) and the number of steps left before reaching the step
limit in the episode. The latter parameter helps the agent with planning its
search strategy and choosing step sizes while exploring the solution space. The
action space consists of the changes to the WP location in terms of the machine
coordinates, as well as the rotation angle of the WP and a decision to terminate
the episode or not.

Table 1. Summary of the main parameters of the optimisation task.

State (Z, X, Y, Rotation Angle, Tower X, Tower Z,
Slot Angle, dZ , dX , eZ , eX , limit Z, steps left)

Action (ΔZ, ΔX, ΔY, ΔRotation Angle, Stop)

Reward R = 0.7e + 0.3d

The reward function provides feedback on the quality of the suggested place-
ment of the WP in the machine space by the RL agent. Maximising the reward
ensures WP positions and orientations close to the optimum. The 3-axis and 5-
axis milling processes have similar reward functions, as the concept of minimising
wear on the machine and energy consumption remains the same. Therefore, the
reward function includes a component representing the sum of squared accel-
eration (e) and the sum of distance travelled (d) on the main axes. For 3-axis
milling, the directions of travel are the X- and Y-axis, with the X-axis represent-
ing the heavier axis. For 5-axis milling the directions of travel include an X-axis,
a Y-axis and a Z-axis. Here the Z-axis is the heaviest axis and the movement
along the Y-axis is not included in the reward function, as the movement is
minimal in this UC. To limit the wear of the machine as much as possible, the
movement of the heavier axes should be one of the components minimised by
the RL agent.

The squared acceleration (e) is given higher importance than distance trav-
elled (d) by domain experts in finding a near-optimal position of the WP and
therefore the reward function is formulated as:

R =

{
0.7e + 0.3d no axis collision
−1 axis collision.

(1)

The weights for the optimisation function are also chosen by domain experts
and reflect specific industry needs. If these weights were to be changed the RL
agent would have to be retrained, but the optimisation problem would be for-
mulated in the same way.

The terms concerning acceleration (e) and distance (d) are both accumulated
terms across the different machine axes and over the entire WP milling run.
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The components eZ and dZ are weighted twice as heavy as eX and dX in the
combined reward components e and d, as advised by domain experts because
the movement of the Z-axis should be avoided. The combined components are:

e = 2eZ + eX (2)
d = 2dZ + dX , (3)

where eZ , eX , dZ and dX represent normalised terms over the minimum and
maximum observed values from multiple experiments. The normalisation func-
tion negates the e- and d-values, such that lower values of e and d will result
in a higher reward. If any axis collisions are encountered, the lowest possible
reward is returned. The intention of the optimisation algorithm should firstly be
to learn collision avoidance, and thereafter an optimal WP placement.

4.2 Search Efficiency Modifications

To reduce the number of optimisation iterations, we introduce several changes to
the search process established in [18]. Firstly, for the 3-axis UC, we extend the
maximum range of the WP position change per step (step size) along
the X-axis, Y-axis and the rotation angle for orientation, from 40 mm, 40 mm
and 35◦, respectively, to 800 mm, 800 mm and 360◦. This larger step size allows
the RL agent to move the WP into any position within the working space of the
milling machine. Similarly, for the 5-axis UC, we allow the RL agent to step into
any position in the work space. Therefore, the step sizes are 300 mm, 200 mm
and 50 mm for the Z-, X- and Y-axis, respectively, as well as a full 360◦ WP
rotation.

Secondly, instead of assuming that the RL agent has to complete an entire
episode before continuing to the next one, we introduce an additional action
dimension referred to as early stopping. Early stopping allows the RL agent to
stop the search process at any iteration step as soon as it assumes the current WP
position is suitable. This updates the action space to (ΔZ, ΔX, ΔY, ΔRotation
Angle, Stop).

Thirdly, we switch from a dense reward calculated after every iteration of the
search process to a sparse reward, returned only when the RL agent chooses
to stop the search process or when the maximum allowed number of steps per
search episode is reached. A sparse reward forces the RL agent to step to the
optimum and terminate the episode as quickly as possible, to start collecting
rewards. The sparse reward is a prerequisite for the early stopping implemen-
tation. The dense reward is not compatible with early stopping, since longer
episodes generate higher cumulative rewards, incentifying the RL agent not to
interrupt the episodes earlier.

4.3 RL Agent Training and Validation

The RL training routine is represented in Fig. 3. For every training episode in
the 5-axis UC, a new WP is generated with a random slot angle, tower position Z
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Fig. 3. Training setup for the RL agent

and tower position X. For the 3-axis UC, this is reduced to only varying the slot
angle. The restrictions on these training WPs are as follows: slot angle between
0◦ and 180◦, tower X position between 55 mm and 145 mm along the X-axis and
tower Z position either 60 mm or 235 mm along the Z-axis. The decision to keep
tower position Z fixed at only 60 mm or 235 mm is made to keep the tower and
the slot from overlapping. To keep some WPs aside, purely for validation, the slot
angles between 40◦ and 50◦ and tower X position between 90 mm and 100 mm
are disallowed for training. The allowance of only two tower Z positions makes it
impossible to keep certain tower Z positions aside for validation, therefore both
positions are available for training and validation.

In the training procedure, episodes of different maximal lengths are investi-
gated. The combination of larger step sizes and a sparse reward leads to a reduc-
tion in the maximum episode length required to find a near-optimal positioning
of a WP. This drastically reduces the step count from 110 steps per episode
to two steps per episode for 3-axis and one step per episode for 5-axis. These
episodes have the option to terminate early if the agent believes it has reached
the optimum. Therefore, an episode can terminate immediately after initialisa-
tion, if the agent finds that the initialisation position is an optimal position.
All 5-axis RL agents are trained for 300.000 steps and the 3-axis RL agents are
trained for 100.000 steps and this is repeated for three different random seeds in
each case.

Throughout the training process 12 evaluation phases are equally spaced
between training episodes, to account for the possibility that an intermediate
version of the RL agent might be superior in performance to the RL agent in a
later stage of training. During each evaluation phase, the current version of the
trained RL agent for a given run solves the WP positioning task for 20 different
initialisation points (WP positions) for each WP involved in the evaluation. This
allows for the testing of the overall robustness and consistency of the evaluation
scheme.
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Fig. 4. Evaluation setup for the RL agent

The evaluation scenario for monitoring of the intermediate RL performance
for the 3-axis UC is based on 11 WPs with slot angles that have been seen during
training and are equally spaced throughout the 180◦ of allowed slot angles. The
version of the RL agent from the evaluation phase with the best average reward is
selected as a trained RL agent and is finally validated on the completely unseen
WP with a slot angle of 45◦. The rewards achieved on the unseen WP are used
for the final estimation of the quality and generalisation ability of the RL agent,
but it is not involved in choosing the best RL agent, as this can be seen as data
leakage.

The 5-axis RL agent is regularly evaluated on 94 WPs with a combination
of 6 different slot angles, 8 different tower X positions and the two available Z
positions. These validation WPs are seen, or partially seen, during training,
but the WP with a 45◦ slot angle and a tower located at the X coordinate of
95mm is kept away from the evaluation process. Similar to the 3-axis approach,
the version of the RL agent from the evaluation phase with the best average
reward is selected for the final validation on the unseen WP with slot angle
45◦ and tower X position of 95mm. The validation scheme for the 5-axis UC is
summarised in Fig. 4.

The meta-heuristics GA [14] and SA [20] are used as baseline models for
comparison to the RL agents. These heuristics are popular methods for solving
optimisation problems and GA is often used in the context of production process
optimisation as seen in [5]. Each meta-heuristic run is given 100.000 iterations to
find the solution to the WP positioning task. Analogous to the RL evaluation,
20 independent initialisations and three random seeds are used. This results in
60 independent evaluation runs for each solution approach. The reward function
is used as a cost function for the optimisation heuristics.

The RL agent used for the 3-axis and 5-axis UCs is the Soft Actor-Critic
(SAC) introduced in [8]. In our study the stable baselines [10] implementa-
tion is used, to make it easily comparable to other RL implementations. The
experiments are all performed in docker containers [12] for full reproducibility of
experiments. The entire implementation of the milling simulation is done as an
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OpenAI Gym environment [2]. The meta-heuristics are implementations from
the mlrose package [9].

4.4 Data Generation and Approximation of the Simulation
with Machine Learning

Experiments in this investigation are performed on simulations created by Sinu-
Train software, reproducing the 3-axis and 5-axis milling processes performed on
a CNC machine. For the purpose of RL training, the simulation is time intensive.
It can take up to 4 s to generate the output of a successful run for the 3-axis
environment, with failed runs taking up to a second to generate outputs. We
develop a set of ML models closely mimicking the behaviour of the simulation.
ML models predict the output of a simulation run in a fraction of a second. As
a result the development process of the RL solution is considerably accelerated.
It is important to note that there are two layers of separation from the CNC
machine and what the RL agent is trained on, namely the Sinutrain simulation
and the ML models. Therefore the accuracy of the ML models are thoroughly
validated to confirm the accuracy of this method, as summarised in Table 2 and
Table 3. The details of the data generation process and the 3-axis ML model is
stipulated in Samsonov et al. [18].

As this study also shifts to the more complex 5-axis milling process, another
ML model is required to mimic the behaviour of the SinuTrain machine simula-
tion. The ML models are even more justified in the 5-axis UC as a successful run
can take up to 15 s to generate the required outcomes. For the purpose of ML
model training, 83.252 data points are generated from the SinuTrain simulation.
The ML model ensemble in this study consists of five gradient boosting models
(a success/fail classifier and a regression model for each of eZ , eX , dZ and dX),
fitted with the LightGBM package [7]. LightGBM is known for providing fast
and efficient training of gradient boosting models. The training process, together
with the ML models and the inputs and outputs of all components are outlined
in Fig. 5.

The first model in the ensemble is a classification model, which distinguishes
between input combinations that lead to a successful milling process or to an
axis collision. The only axis collision possible in the training data is on the Z-
axis. Table 2 summarises the F1-Score and the overall accuracy of the classifier
model, as well as the size of the training datasets in each class, to demonstrate
the support behind the different accuracy values.

The data points that are classified as successful milling process runs continue
to the four regression models. These models produce estimates for eZ , eX , dZ
and dX , respectively. As preprocessing of the data, the offset between the Z coor-
dinate and the Tower Z position, as well as the offset between the X coordinate
and the tower X position, is calculated and used as input values. The accuracy of
the four models is summarised in Table 3, where the accuracy measure is chosen
to be the R2-values.
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Fig. 5. ML model architecture

Table 2. Classifier accuracy

F1-Score Totals

Success 0.981 34943

Limit Z 0.987 48859

Weighted average 0.984 83252

Table 3. Regression models accuracy

R2-values

eZ 0.995

eX 0.984

dZ 0.997

dX 0.995

5 Experimental Results

With a set of experiments, it is demonstrated to what extent the original WP
positioning optimisation approach proposed by Samsonov et al. [18] can be
enhanced and transferred to a more challenging 5-axis milling tasks. The use
of the increased step size, early stopping and sparse reward, as described in
Sect. 4.2, considerably improves the search efficiency of the trained RL agent.
Averaged over all evaluation runs and random seeds, a trained RL agent solves
the task with just one step in 95% of all cases for the 5-axis UC. For the 3-axis
UC, the RL agent prefers to use two steps for solving the task in 90% of the
observations. This allows us to introduce a hybrid approach, augmenting the
best trained RL agent with a simple search heuristic to improve the absolute
performance. For each WP positioning task, instead of solving the task once
with an arbitrary initialisation point, the RL agent is allowed to conduct the
search multiple times with different initialisation points and the solution with
the best reward is selected. In our work this approach is referred to as Hybrid RL
and the trained RL agent is given 20 attempts to find a near-optimal solution.

The runs of all three random seeds demonstrate the capability of the RL agent
to generalise to unseen WP geometries, to consistently avoid axis collisions and
to find good WP clamping positions, as seen in Fig. 6 and Fig. 7. The RL training
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with random seed 4821 results in a noticeably lower performance across all 3-
and 5-axis runs. Given the observed performance, the decrease is possibly related
to bad initialisation weights of the policy- and value networks. The hybrid RL
approach considerably boosts the absolute performance. The GA meta-heuristic
demonstrates the best results, both in terms of the result consistency and the
absolute reward value. The SA meta-heuristic could not match the performance
of the RL-based or GA solutions in both 3-axis and 5-axis UCs. To conserve
space, further evaluations of SA meta-heuristic are omitted.

Fig. 6. The achieved rewards for the 3-axis WP positioning search guided by the trained
RL agent, hybrid RL approach, GA and SA meta-heuristics

Fig. 7. The achieved rewards for the 5-axis WP positioning search guided by the trained
RL agent, hybrid RL approach, GA and SA meta-heuristics

The conducted comparison of the absolute performance demonstrates that a
well-tuned GA solver can surpass the proposed RL-based approaches. However,
not only the absolute performance is essential for practical applications, the time
required to find a viable solution is often a critical viability factor. A trained RL
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agent needs between one to two steps per task to find a near-optimal positioning
of a WP. The hybrid RL requires on average 21 and 36 steps per task for the
3-axis and 5-axis UC correspondingly.

To investigate how fast the GA meta-heuristic achieves results comparable
to solutions found with the RL-based approaches, we track the performance
at each interaction with the simulation environment during the meta-heuristic
search. The pairwise comparison is always conducted between the GA and RL
methods with identical random seeds used for the search/training. Figure 8a and
Fig. 8b demonstrate that the GA meta-heuristic needs on average 660 steps for
the 3-axis UC and 615 steps for the 5-axis UC to match the performance of
the corresponding RL agent. GA meta-heuristic takes on average 7842 and 1756
steps on for the 3- and 5-axis UC correspondingly to surpass the performance of
the hybrid RL approach (see Fig. 8c and Fig. 8d).

(a) 3-axis, number
of GA steps to
catch up to the
mean RL perfor-
mance

(b) 5-axis, number
of GA steps to
catch up to the
mean RL perfor-
mance

(c) 3-axis, number
of GA steps to
catch up to the
mean hybrid RL
performance

(d) 5-axis, number
of GA steps to
catch up to the
mean hybrid RL
performance

Fig. 8. The number of search steps the GA heuristic requires to match the mean
performance of the trained RL agents and the hybrid RL approach

The considered evaluations are conducted on a fast ML-based environment
to make extensive testing computationally viable. However, these ML models are
only intended for the training of the RL agent. Building such an ML-based envi-
ronment for RL training covers a finite number of WP geometries, thus keeping
the general effort limited. During the deployment of a new WP in production,
the search for optimal clamping parameters needs to be conducted directly in
the SinuTrain simulation environment. A GA search involving 7842 steps could
require 8,3 h for 3-axis and similarly, a GA search involving 1756 steps could
take 4,8 h for 5-axis. This is in direct contrast to the possible 2 s for 3-axis and
10 s for 5-axis needed for the hybrid RL approach with matching performance.
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6 Conclusion and Future Work

In this work, we extend the conceptual RL-based approach to optimise a WP
clamping position in a CNC milling machine tool. We introduce several signif-
icant additions to the original approach [18]. The first contribution is the
demonstration of the direct transfer to a more complex UC involving 5-axis
milling, using the same hyperparameter set and training scheme. The RL agent
successfully learns and avoids more elaborate collision patterns related to the
5-axis milling scenario, as well as consistently finds near-optimal WP clamping
positions.

The second contribution is the introduction of early stopping, combined
with larger action ranges and sparse rewards. As a result, a trained RL agent
needs between one and two optimisation steps to find a near-optimal WP clamp-
ing position. Improved search efficiency allows us to make the third contribu-
tion by introducing the Hybrid RL approach where RL-guided optimisation
search is enhanced with a simple heuristic. The agent is given 20 attempts with
different initialisation points in the working space of the milling machine to solve
one task. The solution with the highest reward is taken as the final WP clamping
position. In this way, the final results are considerably more stable and primarily
located at the upper bound of the observed RL performance, while still requiring
not more than 40 optimisation steps per task.

Finally, we compare the performance of the enhanced RL-based and Hybrid
RL optimisation approaches against the SA and GA meta-heuristics. Both
learning-based methods surpass the SA meta-heuristic in terms of absolute
performance and search efficiency. While the GA-heuristic demonstrates bet-
ter absolute performance, it needs about 300 times more optimisation steps to
match the performance of the RL-based approach and is two orders of magnitude
less efficient compared to the Hybrid RL approach. In practice, it means that the
RL-based optimisation methods are capable of solving the WP clamping posi-
tion task in seconds instead of half-days of runtime in the SinuTrain simulation
required by the considered meta-heuristics.

While demonstrating significant improvements, the proposed RL-based meth-
ods still remain in a prototype phase. In future work, we plan to address the
current need for a handcrafted set of features describing the WP. A handcraft-
free WP description can be achieved by representing the WP milling process as
a set of vectors covering the change of the relative position, speed and accelera-
tion of the milling tool tip point related to the WP during the milling process. A
compact WP representation can be learned in an unsupervised manner, using an
autoencoder, which feeds into the state space in an RL-based optimisation task.
An additional direction of work is enhancing the RL-based optimisation meth-
ods by combining them with more advanced heuristics. Avoiding local optima
is a common challenge while designing and applying meta-heuristics [6]. If a
near-optimal WP position, determined by an RL-based method, is used as a
starting point for an additional heuristic search, better absolute performance
can be achieved while still maintaining the overall acceptable computation time.
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Abstract. A crucial aspect in designing a learning algorithm is the
selection of the hyperparameters (parameters that are not trained dur-
ing the learning process). In particular the effectiveness of the stochastic
gradient methods strongly depends on the steplength selection. In recent
papers [9,10], Franchini et al. propose to adopt an adaptive selection
rule borrowed from the full-gradient scheme known as Limited Memory
Steepest Descent method [8] and appropriately tailored to the stochastic
framework. This strategy is based on the computation of the eigenvalues
(Ritz-like values) of a suitable matrix obtained from the gradients of the
most recent iterations, and it enables to give an estimation of the local
Lipschitz constant of the current gradient of the objective function, with-
out introducing line-search techniques. The possible increase of the size
of the sub-sample used to compute the stochastic gradient is driven by
means of an augmented inner product test approach [3]. The whole pro-
cedure makes the tuning of the parameters less expensive than the selec-
tion of a fixed steplength, although it remains dependent on the choice
of threshold values bounding the variability of the steplength sequences.
The contribution of this paper is to exploit a stochastic version of the
Barzilai-Borwein formulas [1] to adaptively select the endpoints range
for the Ritz-like values. A numerical experimentation for some convex
loss functions highlights that the proposed procedure remains stable as
well as the tuning of the hyperparameters appears less expensive.

Keywords: Stochastic gradient methods · Learning rate selection
rule · Barzilai-Borwein rules · Adaptive sub-sampling strategies ·
Reduction variance techniques

1 Introduction

This work aims to consider the most expensive phase in terms of power and
time of the Machine Learning (ML) methodologies, i.e. the training phase [4],
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where it is crucial to correctly set the hyperparameters connected to the opti-
mizer, in particular the steplength and the mini-batch size. Starting from an
idea developed in the deterministic field [8] and following an approach similar to
that in [12–14], it is possible to tailor this steplength selection strategy for the
stochastic gradient (SG) method. Furthermore, in the basic SG iteration, the
adaptive steplength selection can be combined with an adaptive sub-sampling
strategy (based on the augmented inner product test [3]) with the aim to assure
the descent features in expectation of the stochastic gradient directions [9,10].
The aim of this paper is to introduce in this scheme a novel technique to adap-
tively set the bounds of the range in which the steplengths can move so that the
method is made almost automatic.

This work is essentially structured in three sections. Section 2 resumes the
main features of the method in [10] and introduces the novel contribution.
Section 3 presents a set of numerical experiments, aimed to evaluate the effec-
tiveness of the proposed approach and, finally, Sect. 4 concludes the paper.

2 Novel Contribution in Steplength Selection via Ritz-like
Values

Among the state-of-the-art steplength selection strategies for deterministic gra-
dient methods, the Limited Memory Steepest Descent (LMSD) rule proposed
in [8] is one of the most effective ideas for capturing second-order information
on the objective function from the gradients of few consecutive iterations. The
LMSD rule is based on collecting the gradients of a group of m ≥ 1 successive
iterations, called sweep, where m is a small number (generally not larger than 7).
After each sweep, these gradients enable to compute by a very inexpensive pro-
cedure a symmetric tridiagonal m × m matrix, whose eigenvalues λi, known as
Ritz values, are interpreted as approximations of the eigenvalues of the Hessian
of the objective function at the current iteration. Then, their inverses are used
as the steplengths for the new sweep of iterations. The LMSD method is suitable
for the minimization of non-linear and non-convex objective functions [7,8]. A
variant of LMSD is based on the harmonic Ritz values (see [5] for details).

The idea proposed in [10] is to tailor LMSD method to the stochastic case
by combining it with a procedure for adaptively increasing the mini-batch size.
The main difference with respect to the deterministic case consists in building
the tridiagonal matrix from a set of stochastic gradients instead of full gradients.
Its eigenvalues are named Ritz-like values. With a similar strategy, the harmonic
Ritz-like values can also obtained. The inverses of the Ritz-like values (or the
harmonic Ritz-like values), appropriately thresholded within a prefixed interval
(αmin, αmax), are used as steplengths in the iterates of the next sweep. In [10]
the authors adopt an alternation of the Ritz-like and harmonic Ritz-like values,
by evaluating two different versions. In particular, an effective strategy consists
of replacing the Ritz-like values with the shorter harmonic Ritz-like ones for
the next sweep when the size of the current sub-sample is increased (Adaptive
Alternation of Ritz-like values or AA-R). Indeed, at any iteration, the variance
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of the descent condition is checked, by verifying that the stochastic gradient
related to a sub-sample with the current mini-batch size satisfies the augmented
inner product test proposed in [3]. When this does not arise, the size of sub-
sample is increased so that the new stochastic gradient related to this new sub-
sample satisfies the augmented inner product test (for details see [10]). Despite
the approach just described being less expensive in terms of time and resources
than finding an optimal steplength through trial and error, it remains dependent
on the values (αmin, αmax) and on a safeguard value α. This value is used to
start a new sweep when all the inverses of the Ritz-like values are out of the
interval (αmin, αmax) and they are discarded. Starting from AA-R method, the
new contribution is finalized to avoid dependence from αmin, αmax and α. In
particular, we propose to exploit the properties of the Barzilai-Borwein (BB)
formulas to approximate the endpoints of the spectrum of the average Hessian
matrix between two iterates (see for example [2]). In practice, at the end of the
computation of the Ritz-like (or harmonic Ritz-like) values, from the last iterates
and the collected gradients, we determine 1/αBB1

k and 1/αBB2
k by the standard

rule for αBB1
k and the variant suggested in [6] for αBB2

k :

αBB1
k =

sT
k−1sk−1

sT
k−1yk−1

, αBB2
k =

‖ sk−1 ‖
‖ yk−1 ‖ , (1)

where yk−1 is the difference between the last two stochastic gradients and sk−1

is the difference between the last two iterates. Then, unless the case when
sT

k−1yk−1 < 0, 1
αBB1

k

and 1
αBB2

k

are used as 1
αmax

and 1
αmin

respectively, i.e.,

the eigenvalues out of the interval ( 1
αBB1

k

, 1
αBB2

k

) are discarded. Furthermore,
after the first iterations, α is replaced by the minimum value of the steplengths
employed in the last sweep. We refer to this method as AA-R-BB.

3 Numerical Experiments

We consider the optimization problems arising in training a binary classifier on
the well-known datasets MNIST, w8a and china0 equipped with 60000, 49749
and 16033 examples, respectively. The objective function Fn(x) is the finite
average of Logistic Regression (LR) or Smooth Hinge (SH) loss functions. The
numerical experiments are aimed to evaluate the behaviour of the proposed
AA-R-BB method and its previous version AA-R with respect to the prefixed
bounds of the range (αmin, αmax) for the steplengths. Both methods are com-
pared also to a stochastic algorithm exhibiting a good performance only for a
set of hyperparameters carefully selected. In particular, we consider the mini-
batch stochastic gradient method SG-mini. For this scheme, the steplength is
set equal to 50 · αOPT , where 50 is the fixed mini-batch size and αOPT is the
best-tuned steplength value for the basic stochastic gradient method. These val-
ues are those related to the best results obtained by a trial process with different
mini-batch size and several steplength values.
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The numerical experiments are carried out in Matlab� on Intel Core i7 pro-
cessor. We decided to conduct the experiments on a maximum of 10 epochs
because this is sufficient to reach an accuracy comparable with other popular
learning methodology on the considered datasets.

Table 1. Numerical results of the considered methods after 10 epochs for Fn(x) given
by the SH loss function.

Method MNIST w8a china0

Fn(x̄) − F∗ A(x̄) Fn(x̄) − F∗ A(x̄) Fn(x̄) − F∗ A(x̄)

αOPT · (10−2, 5 · 102)

SG-mini 0.0058 0.8998 0.0023 0.9065 0.0123 0.9155

AA-R 0.0299 0.8819 0.0095 0.9031 0.0709 0.8803

AA-R-BB 0.0138 0.8947 0.0027 0.9066 0.0210 0.9160

αOPT · (10−3, 103)

SG-mini 0.0058 0.8998 0.0023 0.9065 0.0123 0.9155

AA-R 0.0302 0.8817 0.0094 0.9031 0.0735 0.8793

AA-R-BB 0.0138 0.8949 0.0027 0.9063 0.0172 0.9157

Fig. 1. Behaviour of the optimality gap in 10 epochs with LR on MNIST dataset (on
the left panel), w8a dataset (on the center panel) and china0 dataset (on the right
panel).

Fig. 2. Behaviour of the optimality gap in 10 epochs with SH on MNIST dataset (on
the left panel), w8a dataset (on the center panel) and china0 dataset (on the right
panel).
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As in [10], 4 different settings of the range (αmin, αmax) are used in AA-R
and AA-R-BB methods: 1) αOPT · (10−2, 5 · 102), 2) αOPT · (10−3, 103), 3)
αOPT · (10−2, 103), 4) αOPT · (10−3, 5 · 102). For any numerical simulation, 10
runs are executed, leaving the possibility to the random number generator to
vary and measuring the average of the results. In particular, in Table 1, A(x̄)
denotes the average accuracy for the test set (examples never seen during the
training phase) and Fn(x̄) − F∗ is the average value of the optimality gap for
the train set at the end of 10 epochs. Here x̄ is the iterate after 10 epochs
and F ∗ denotes a ground-truth value for the loss function minimum, obtained
with a huge number of iterations of a deterministic full gradient method. The
results shown in Figs. 1–2 highlight that the AA-R-BB strategy leads to a
more effective steplength selection than that of AA-R. Indeed the effectiveness
of AA-R-BB method is comparable with the one of SG-mini equipped with a
best-tuned steplength. These results are confirmed by further numerical experi-
ments, showing that the adaptive steplength rules in AA-R-BB method make
the choice of a suitable steplength a less difficult task with respect to the setting
of a carefully selected fixed value in standard methods. Furthermore, Table 1
shows as the accuracy obtained by AA-R-BB seems to be less dependent on
the values of αmax and αmin with respect to AA-R case, since AA-R-BB
adaptively adjusts the bounds (for the sake of synthesis only the results for the
SH loss function are reported). Indeed, while the values of A(x̄) decreases for
the wider range αOPT (10−3, 103) for AA-R method, in the case of AA-R-BB
a greater stability is observed.

4 Conclusions and Future Works

In this work the numerical experimentation highlighted that the steplength selec-
tion rules as inverses of Ritz-like values coupled with the threshold procedure
based on the BB formulas enable to obtain an accuracy similar to the one
obtained by a method equipped with hyperparameters carefully selected by a
trial process, as for example SG-mini. In conclusion, the proposed technique
seems provide a guidance on the learning rate selection and it allows to perform
similarly to standard approaches equipped with the best-tuned steplength.

Future works will concern the possibility of combining the proposed
steplength selection rule with other methods, as Momentum and Adam meth-
ods, following the analysis in [11] and involving other loss functions, in particular
non-convex ones, as, for instance, those involved in deep learning framework.
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Abstract. Beam search (BS) is a well-known incomplete breadth-first-
search variant frequently used to find heuristic solutions to hard combi-
natorial optimization problems. Its key ingredient is a guidance heuristic
that estimates the expected length (cost) to complete a partial solution.
While this function is usually developed manually for a specific prob-
lem, we propose a more general Learning Beam Search (LBS) that uses
a machine learning model for guidance. Learning is performed by utiliz-
ing principles of reinforcement learning: LBS generates training data on
its own by performing nested BS calls on many representative randomly
created problem instances. The general approach is tested on two specific
problems, the longest common subsequence problem and the constrained
variant thereof. Results on established sets of benchmark instances indi-
cate that the BS with models trained via LBS is highly competitive.
On many instances new so far best solutions could be obtained, mak-
ing the approach a new state-of-the-art method for these problems and
documenting the high potential of this general framework.

Keywords: Beam search · Combinatorial optimization · Machine
learning · Longest common subsequence problem

1 Introduction

Beam search (BS) is a prominent graph search algorithm frequently applied to
heuristically solve hard planning and discrete optimization problems in limited
time. In this context, it traverses a state graph from a root node, representing
an initial state, in a breadth-first-search manner to find a best path to a target
node. To keep the computational effort within limits, BS evaluates the reached
nodes at each level and selects a subset of only up to β most promising nodes
to continue with; the other nodes will not be pursued further, making BS an
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incomplete search. The subset of selected nodes at a current level is called beam,
and parameter β beam width. In this way, BS continues level by level until there
are no nodes to further expand. A shortest or longest path from the root node to
a target node is finally returned as solution. As we consider here maximization
problems, we assume w.l.o.g. that the goal is to find a longest path.

Clearly, the way how nodes are evaluated and selected for the beam plays a
crucial role for the solution quality. Typically, the length of the longest path to
a node so far is considered, and a heuristic value that estimates the maximum
further length to go in order to reach a target node is added. This latter heuris-
tic value is calculated by a function also called guidance function or guidance
heuristic. It is typically developed in a manual, highly problem-specific way, fre-
quently involving many computational experiments and comparisons of different
options. Finding a promising guidance function is often challenging as the func-
tion not only needs to deliver good estimates but also needs to be fast as it is
evaluated for each node in the BS.

The key idea of this work is to use a machine learning (ML) model as guid-
ance function in BS, more specifically a neural network (NN), to approximate
the maximum further length to go from a current node to reach a target node.
In such an approach, it is a challenge to train the ML model appropriately.
Classical supervised learning would mean that labeled training data is available
in the form of problem-specific nodes (states) plus real/exact maximum path
lengths to target nodes. Such data would only be obtainable with huge com-
putational effort and for smaller problem instances. With the BS, however, we
primarily want to address large problem instances that cannot practically be
solved exactly. Concepts from reinforcement learning come to our rescue: In our
Learning Beam Search (LBS) we start with a randomly or naively initialized ML
model and create training data on the fly by performing the search many times
on representative, randomly created problem instances. Better estimates for the
maximum lengths to go than the ML model usually delivers are determined for
subsets of reached nodes by means of nested BS calls. This generated training
data is buffered in a FIFO replay buffer and used to continuously train the ML
model, intertwined with the LBS’s further training data production.

While the general principle of this LBS is quite generic, we consider here
two well-known NP-hard problems as specific case studies: the Longest Common
Subsequence (LCS) problem and the Constrained Longest Common Subsequence
(CLCS) problem. Our experimental results show that for both problems, LBS
automatically trained on independent random instances is able to compete with
the so far leading approaches and in many cases obtains better solutions in
comparable runtimes.

Section 2 reviews related work. In Sect. 3, we present the new LBS in a
problem-independent way. The LCS and CLCS problems are introduced in
Sect. 4. The problem-specific state graphs and how the guidance functions are
specifically realized by NNs are described in Sects. 5 and 6, respectively. Results
of computational experiments are discussed in Sect. 7. Finally, we conclude in
Sect. 8, where we also outline promising future work.
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2 Related Work

The increasing popularity of ML also affected classical combinatorial optimiza-
tion. There is a growing interest in utilizing ML to better solve hard discrete
problems. While end-to-end ML approaches to combinatorial optimization also
have been attempted by a number of researchers and appear promising, see,
e.g., [5], these approaches are usually still not competitive with state-of-the-art
problem-solving techniques. However, a broader range of approaches has been
suggested to improve classical optimization methods with ML components.

In the context of tree search techniques, one approach is imitation learning,
i.e., to learn a heuristic by imitating an expert’s behavior. In this direction,
He et al. [11] proposed to speed up a branch-and-bound by learning a node
selection and pruning policy from solving training problems given by an oracle
that knows optimal solutions. Concerning variable branching in mixed integer
programming, Khalil et al. [15] suggested a ML framework that attempts to
mimic the decisions made by strong branching through solving a learning to
rank problem. Moreover, Khalil et al. [16] introduced a framework for learning a
binary classifier to predict the probability of whether a heuristic will succeed at
a given node of a search tree. Training data is collected by running a heuristic
at every node at the search tree, gathering the binary classification labels. A
general learning to search framework that uses a retrospective oracle to generate
feedback by querying the environment on roll-out search traces to improve itself
after initial training by an expert was suggested by Song et al. [26].

AlphaGo and its successor AlphaZero gained broader recognition as agents
excelling in the games of Go, chess, and shogi [25]. They are based on Monte
Carlo tree search in which a deep NN is used to evaluate game states, i.e., to
estimate their values in terms of the probabilities to win or lose. Additionally,
the NN provides a policy in terms of a probability distribution over the next
possible moves. Training is done via reinforcement learning by self-play. Thus,
training data is continuously produced by simulating many games against itself,
stored in a replay buffer, and used to continuously improve the NN. We apply
a similar principle also in our LBS. Several researchers adapted AlphaZero to
address combinatorial optimization problems: For example, Laterre et al. [18]
applied it to a 3D packing problem, Abe et al. [1] to problems on graphs including
minimum vertex cover and maximum cut, and Huang et al. [12] to graph coloring.
The latter two approaches used different kinds of graph neural networks as ML
models. Mittal et al. [21] suggested another form of heuristic tree search for
various graph problems that is guided by a graph neural network. Here, training
is done on the basis of smaller instances with known solutions in a supervised
fashion, but results indicate that the approach generalizes well to larger instances
not seen during training. In the more general context of metaheuristics, a recent
survey on utilizing ML can be found in [14].

Beam search was originally proposed in the context of speech recognition [19].
Since then it has been applied in a variety of areas including machine trans-
lation [27] and syntactic parsing [29]. Concerning combinatorial optimization
problems, many applications exist in particular in the domains of scheduling,
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see, e.g., [3,8,23], and string-related problems originating in bioinformatics, see,
e.g., [6,7,13], but also packing [2].

Concerning specifically the guidance of BS by a ML model, we are only
aware of the work by Negrinho et al. [22], who examined this topic from a pure
theoretical point of view. They formulated the approach as learning a policy for
an abstract structured prediction problem to traverse the combinatorial search
space of beams and presented a unifying meta-algorithm as well as novel no-
regret guarantees for learning beam search policies using imitation learning.

3 Learning Beam Search

We consider a discrete maximization problem that can be expressed as a longest
path problem on a (possibly huge) directed acyclic state graph G = (V,A) with
nodes V and arcs A. Each node v ∈ V represents a problem-specific state, for
example, the partial assignment of values to the decision variables in a solution.
An arc (u, v) ∈ A exists between nodes u, v ∈ V if and only if state v can be
obtained from state u by a valid problem-specific action, such as the assignment
of a specific feasible value to a so far unassigned decision variable in state u. Let
label �(u, v) denote this action transitioning from state u to state v. There is
one dedicated root node r ∈ V representing the initial state, in which typically
all decision variables are unassigned. Moreover, there are one or more target
nodes T ⊂ V , which have no outgoing arcs and represent valid final states, e.g.,
in which all decision variables have feasible values. Note that this definition of
the state graph also covers classical branching trees. Each arc (u, v) ∈ A has
associated a length (or cost) c(u, v). Any path from the root node r to a target
node t ∈ T represents a feasible solution, and we assume that its length, which
is the sum of the path’s edge lengths, corresponds to the objective value of the
solution. As we consider a maximization problem, we seek a longest r–t path,
over all t ∈ T .

Our LBS builds upon classical BS, i.e., a breadth-first-search in which at each
level a subset of at most β nodes, called the beam B, is selected and pursued
further. This selection is performed by evaluating each node u of the current
level with the evaluation function f(v) = g(v) + h(v), where g(v) corresponds
to the length of a longest so far identified path from the root r to node v, and
h(v) is a heuristic guidance function estimating the maximum further length to
go to some target node. Note that in an implementation values g(v) are stored
with each node v as well as a reference to a predecessor node u = pred(v) on a
maximum length path, and thus, g(v) = g(u) + c(u, v); only the root node has
no predecessor. In this way, once a target node t is reached, a maximum length
r–t path within the investigated part of graph G can be efficiently identified,
and the corresponding solution is obtained via the respective arc labels.

As already stated in the introduction, the heuristic guidance function h(v)
estimating the length to go is usually crafted manually in a problem-specific way.
In our LBS, however, we use an ML model. Still, problem-specific aspects will
play a role in the choice of the specific model, in particular, which features are
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Algorithm 1. Learning Beam Search (LBS)
1: Input: nr. of iterations z, beam width β, exp. nr. of training samples per instance α,

NBS beam width β′, replay buffer size ρ, min. buffer size for training γ
2: Output: trained guidance function h
3: h ← untrained guidance function h (ML regression model)
4: R ← ∅ // replay buffer: FIFO of max. size ρ
5: for z iterations do
6: I ← create representative random problem instance
7: Beam Search with training data generation (I, β, R, α, β′)
8: if |R| ≥ γ then
9: (re-)train h with data from R

10: end if
11: end for
12: return h

derived from a problem-specific state and which kind of ML is actually used.
But for now, it is enough to assume that h(v) is a learnable function mapping a
state to a scalar value in R.

The core idea of LBS is to train function h via self-learning by iterated appli-
cation on many random instances generated according to the properties of the
instances expected in the future application. The principle is comparable to how
learning takes place in AlphaZero [25]. A pseudocode for the main part of the
LBS is shown in Algorithm 1. It maintains an initially empty replay buffer R
which will contain the training data. This buffer is realized as a first-in first-out
(FIFO) queue of maximum size ρ. The idea hereby is to also remove older, out-
dated training samples when the guidance function has already been improved.
A certain number (z) of iterations is then performed. In each iteration, a new
independent random problem instance is created and the actual BS applied. This
BS, however, is extended by a training data generation that adds in the expected
case α new training samples with labels to the replay buffer R; details on this
data generation will follow below. After each BS run, a check is performed to
determine if the buffer R already contains a minimum number of samples γ, and
if this is the case, the guidance function is (re-)trained with data from R. As
this training is performed in each iteration, it is usually enough to do a small
incremental form of training if the ML model provides this possibility. More
specifically, we will use a neural network and train for one epoch over R with
mini-batches of size 32. The improved guidance function is then immediately
used in the next BS call.

Algorithm 2 shows the actual BS, which is enhanced by the optional training
data generation via nested beam search (NBS) calls. It receives as input parameters
a specific problem instance I to solve, the beam width β, and when training data
should be generated the replay buffer R to which the new samples will be added,
the expected number of samples to generate α, and a possibly different beam width
β′ for the NBS. The procedure starts by initializing the beam B with the single
root node created for the problem instance I. The outer while-loop performs the
BS level by level until B becomes empty. In each iteration, each node in the beam
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Algorithm 2. Beam Search with optional training data generation
1: Input: problem instance I, beam width β,
2: only when training data should be generated: replay buffer R, exp. nr. of samples α,

NBS beam width β′

3: Output: best found target node t
4: B ← {r} with r being a root node for problem instance I
5: t ← none // so far best target node
6: while B �= ∅ do
7: Vext ← ∅
8: for v ∈ B do
9: expand v by considering all valid actions, add obtained new nodes to Vext

10: end for
11: for v ∈ Vext do
12: evaluate node by f(v) = g(v) + h(v)
13: filter dominated nodes (optional, problem-specific)
14: if v ∈ T ∧ t = none ∨ g(t) < g(v) then
15: // new best terminal node encountered
16: t ← v
17: end if
18: if R given ∧ rand() < α/nnodes then // generate training sample?
19: t′ ← Beam Search (I(v), β′) // NBS call
20: add training sample (v, g(t′)) to R
21: end if
22: end for
23: B ← select (up to) β nodes with largest f -values from Vext

24: end while
25: return t

is expanded by considering all feasible actions for the state the node represents
and creating respective successor nodes. These are added to set Vext. Each node
in Vext is then evaluated by calculating g(v), h(v) as well as the sum f(v). Option-
ally and depending on the specific problem, domination checks and filtering can be
applied to reduce Vext to only meaningful nodes. Next, line 14 checks if a training
sample should be created from the current node v, which is done with probability
α/nnodes when the replay buffer R has been provided. Hereby, nnodes is an estimate
of the total number of (non-dominated) nodes a whole BS run creates so that we
can expect to obtain about α samples. More specifically, in our implementation we
initially set nnodes = 0 for the very first LBS iteration, actually producing no train-
ing data but counting the number of overall produced nodes, and update nnodes for
each successive iteration by the average number of nodes produced over all so far
performed LBS iterations. Thus, nnodes is adaptively adjusted. To actually obtain
a training sample for a current node v, the sub-problem instance I(v) to which
state v corresponds is determined, and an independent NBS call is performed for
this subproblem with beam width β′. This NBS returns the target node t′ of a
longest identified path from node v onward, and thus g(t′) will typically be a bet-
ter approximation to the real maximum path length than h(v). State v and value
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g(t′) are therefore together added as training sample and respective label (target
value) to the replay buffer.

Computational Complexity. Let us assume that the expansion and evalua-
tion of one node takes the problem-specific time Tnode and the maximum height
of the BS tree is H. One NBS call then requires time O(β′ · H · Tnode). Consid-
ering that LBS performs z iterations and in each makes in the expected case α
NBS calls, we obtain that LBS runs in O(z · (β + α · β′) · H · Tnode) total time.

4 Case Studies

We test the general LBS approach specifically on the following two problems.

The Longest Common Subsequence (LCS) Problem. A string is a
sequence of symbols from an alphabet Σ. A subsequence of a string s is a
sequence derived by deleting zero or more symbols from that string without
changing the order of the remaining symbols. A common subsequence of a set
of m non-empty strings S = {s1, . . . , sm} is a subsequence that all these strings
have in common. The LCS problem seeks a common subsequence of maximum
length for S. For example, the LCS of strings AGACT, GTAAC, and GTACT is GAC.

The LCS problem is well-studied and has many applications in particular
in bioinformatics, where it is used to find relationships among DNA, RNA, or
protein sequences. For m = 2 strings the problem can be solved efficiently [10],
while for general m it is NP-hard [20]. Many heuristics have been proposed for
the general LCS problem, and most so far leading ones rely on BS. See [7] for a
state-of-the-art method and a rigorous comparison of methods. The BS proposed
in [7] utilizes a sophisticated guidance function that approximates the expected
LCS length for the remaining input string lengths assuming uniform random
strings.

Notations. For a string s, we denote its length by |s|. Let n = maxsi∈S |si|
be the maximum input string length. The j-th letter of a string s is s[j], with
j = 1, . . . , |s|. By s[j, j′] we refer to the substring of s starting with s[j] and
ending with s[j′] if j ≤ j′ or the empty string ε else. Let |s|a be the number of
occurrences of letter a ∈ Σ in string s.

As in previous work [7], we prepare the following data structure in preprocess-
ing to allow an efficient “forward stepping” in the strings. For each i = 1, . . . , m,
j = 1, . . . , |si|, and c ∈ Σ, succ[i, j, c] stores the minimal position j′ such that j′

≥ j ∧ si[j′] = c or 0 if c does not occur in si from position j onward.

The Constrained Longest Common Subsequence (CLCS) Problem.
This problem extends the LCS problem on m input strings by additionally con-
sidering a pattern string P that must appear as subsequence in a solution.

For m = 2 input strings besides the pattern string, this problem can again be
solved efficiently, see, e.g., [28], but for general m the problem also is NP-hard.
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Concerning heuristics to address large instances of this general variant, there
exists an approximation algorithm [9], which, however, is in practice clearly out-
performed by the BS approaches in [6]. One of these BSs is of similar nature as
the above-mentioned BS for the LCS problem [7] as it also utilizes an expected
length calculation, however, it required a careful extension to consider the pat-
tern string.

As additional data structure, a table embed [i, j], i = 1, . . . , m, j = 1, . . . , |P |
that stores the right-most position j′ in input string si such that P [j, |P |] is a
subsequence of si[j′, |si|] is prepared here during preprocessing.

5 State Graphs for the LCS and CLCS Problems

The state graph G = (V,A) searched by our LBS for solving the LCS prob-
lem corresponds to the one used in former work [7]. We therefore only briefly
summarize the main facts. A state (node) v is represented by a position vector
pv = (pvi )i=1,...,m with pvi ∈ 1, . . . , |si|+1, indicating the still relevant substrings
of the input strings si[pvi , |si|], i=1,. . . ,m. Note that these substrings form the
LCS subproblem instance I(v) induced by node v, for which LBS may perform
an independent NBS call to obtain a target value for training. The root node
r ∈ V has position vector pr = (1, . . . , 1), and thus, I(r) corresponds to the orig-
inal LCS instance. An arc (u, v) ∈ A refers to transitioning from state u to state
v by appending a valid letter a ∈ Σ to a partial solution, and thus, arc (u, v) is
labeled by this letter, i.e., �(u, v) = a. In other words, appending letter a ∈ Σ to
a partial solution at state u only is feasible if succ[i, pvi , a] > 0 for i = 1, . . . , m,
and yields in this case state v with pvi = succ[i, pvi , a] + 1, i = 1, . . . , m. States
that allow no feasible extension are jointly represented by the single terminal
node t ∈ V with pt = (|si| + 1)i=1,...,m. As the objective is to find a maximum
length string, and with each arc always one letter is appended to a partial solu-
tion, the length (cost) of each arc (u, v) ∈ A is here c(u, v) = 1, and thus, g(v)
corresponds to the number of arcs of the longest identified r–v path.

In case of the CLCS problem, we also need to consider pattern string P .
The position vector is therefore extended by an additional value pvm+1 indicat-
ing the position from which on P is not yet covered by the partial solutions
leading to state v. A letter a ∈ Σ is only feasible as extension, if the state that
would be obtained by it still allows to cover the remaining pattern string, i.e., if
succ[i, pvi , c(a)] + 1 ≤ embed [i, pvm+1] for i = 1, . . . ,m.

For both, the LCS and the CLCS problem, dominance checks and filtering
are performed in our LBS exactly as described in [7] and [6], respectively.

6 ML Models for the LCS and CLCS Problems

In principle, any ML regression model may be considered for LBS as guidance
function h(v). Clearly, the model needs to be flexible enough, and providing the
possibility of incremental learning is a particular advantage in the context of the
LBS. Therefore, we consider here for both of our test problems a simple dense
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feedforward NN with two hidden layers, both equipped with ReLU activation
functions. The output layer consists of a single neuron without activation func-
tion only – remember that its value is supposed to approximate the maximum
further length to go from state v.

Formally, we have defined h(v) to directly receive a state v as input. However,
it makes sense to consider the actual input used for the NN more carefully. As
an intermediate step, we transform the raw state (and problem instance) infor-
mation into a more meaningful feature vector, which is then actually provided
to the NN.

The well-working guidance heuristic from [7] is based on the remaining string
lengths |si| − pvi + 1, i = 1, . . . , m, only. Therefore, we also use them as features
for our NN. Note that the order of the strings and therefore also these values are
irrelevant. To avoid possible difficulties in learning these symmetries, we avoid
them by always sorting the remaining string lengths before providing them as
input to the NN.

In case of the CLCS problem, we additionally have the position pvm+1 in
the pattern string P as part of the state, and consequently, we also provide
|P | − pvm+1 + 1 as an additional feature.

Moreover, earlier guidance heuristics for the LCS problem rely on the mini-
mum numbers of letter appearances mini=1,...,m |si[pvi , |si|]|c, c ∈ Σ, from which
also a (usually weak) lower bound on the solution length may be calculated.
Therefore, we also provide these values for both problems as further features to
the NN.

The NN is initialized with random weights. Once the replay buffer has reached
the minimum fill level of γ samples, incremental training is done in each LBS
iteration by sampling mini-batches of size 32 for one epoch from the replay buffer
and applying the ADAM optimizer with step size 0.001 and exponential decay
rates for the moment estimates 0.9 and 0.999 as recommended in [17]. As loss
function we use the mean squared error.

7 Experimental Evaluation

We implemented LBS in Julia 1.6 using the Flux package for the NN. All experi-
ments were performed in single-threaded mode on a machine with an Intel Xeon
E5-2640 processor with 2.40 GHz and a memory limit of 20 GB. Benchmark
instances are grouped by the alphabet size |Σ|, the number of input strings m,
and the maximum string length n. LBS was applied to train a NN for each
combination of |Σ|, m, and n. Remember that this learning takes place on the
basis of independent random instances that LBS creates on its own. Finally, the
benchmark instances are used to evaluate the performance of the BS using the
correspondingly trained NN as guidance function. Preliminary tests led to the
following LBS configuration that turned out to be suitable for all our bench-
marks unless stated otherwise: no. of LBS iterations z = 1000, min. buffer size
for learning γ = 3000, LBS and NBS beam widths β = β′ = 50, max. buffer size
ρ = 5000, and exp. nr. of training samples generated per instance α = 60. In the
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Fig. 1. Impact of the numbers of nodes in the hidden layers on the solution length of
LBS on rat benchmark instances.

following, we first discuss the experiments for the LCS problem and then those
for the CLCS problem.

7.1 LCS Experiments

For the LCS problem, two frequently used benchmark sets are considered. The
first one denoted as rat was introduced in [24] and consists of 20 instances
composed of sequences from rat genomes. The sequences of these instances are
close to independent random strings, each sequence has length n = 600, but all
instances differ in their combinations of values for |Σ| and m. The second bench-
mark set BB from [4] consists of 80 random instances for eight different combina-
tions of |Σ| and m (ten instances per combination) and all have string lengths
up to n = 1000. These instances stand out in that the strings of each exhibit
large similarities. Consequently, we generated the random instances within the
LBS in the same manner, to obtain suitable NNs specifically for this kind of
instances.

A parameter of major importance is the number of hidden nodes in the NN.
Clearly, the network size has a direct impact on the computation times of the BS
as the guidance function needs to be evaluated for each non-terminal node. Thus,
we want to make the NN as small as possible, but at the same time, large enough
to get high-quality predictions. In order to examine this aspect, we made tests
with different NN configurations. Figure 1 shows exemplary box plots for final
LCS lengths obtained from ten LBS runs per NN configuration on selected rat
instances. We conclude that 20 nodes in both hidden layers are a robust choice.
Smaller NNs are sometimes too restrictive, occasionally implying significantly
worse results. Therefore, we use this configuration in all further experiments.

Next, we investigate the impact of the beam width on the solution quality,
performing again ten runs per configuration. Figure 2 shows respective boxplots.
The same beam width has been used for the LBS (β), for the NBS calls (β′), as
well as for the final testing on the rat benchmark instances. As one may expect,
larger beam widths in general yield better results. In particular, using NBS beam
widths of β′ ≤ 30 turned out to yield clearly inferior results. Therefore, we set
β = β′ = 50 in all further experiments if not indicated otherwise.
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Fig. 2. Impact of beam width β = β′ in training and testing on rat instances.

Fig. 3. Mean absolute error of the trained NNs and EX on test samples created by a
BS with EX guidance function.

Of interest also is how well a NN trained by LBS actually approximates
the real LCS length. As we cannot obtain exact LCS lengths for instances of
interesting size, we approximate them by applying the so far leading BS with the
approximate expected length (EX) guidance function from [7]. More specifically,
to consider instances with a broad range of different input string lengths, we
generated 10000 labeled test samples by LBS using EX as guidance function in
the outer BS as well as in the NBS calls instead of an NN. This was done for
|Σ| ∈ {4, 20}, m ∈ {10, 40, 100, 200}, and n = 600. Ten NNs were then trained
by LBS for each configuration, and these NNs as well as EX were tested on the
generated data sets. Figure 3 shows obtained Mean Absolute Errors (MAEs);
standard deviations are indicated by the small black lines. We can observe that
the NNs approximate the LCS lengths much better than EX, and differences are
particularly large for smaller m. The MAE of EX is about four to six times as
large as the MAE of the NNs.

Finally, we compare our approach to the state-of-the-art methods from the
literature. While all training with LBS was done with β = β′ = 50, we do the
tests on the benchmark instances following [7] with two different beam widths:
aiming for low (computation) time with β = 50 and aiming for high quality
with β = 600. Table 1 shows obtained results. For our LBS, the average solution
length |sLBS| and the runtime of the BS with the trained NN tLBS are listed for
each instance group. Columns |sBS-EX| and tBS-EX show the respective solution
qualities and runtimes for the BS from [7] with the EX guidance function. For a
fair time comparison, we re-implemented this approach in our Julia-framework
and list the times measured by us, while the solution lengths correspond to those
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Table 1. LCS results on benchmark sets BB and rat.

Set |Σ| m n Low times High quality

|sLBS| tLBS [s] |sBS-EX| tBS-EX [s] |slit-best| |sLBS| tLBS [s] |sBS-EX| tBS-EX [s] |slit-best|
BB 2 10 1000 651.2 0.855 635.1 0.824 662.9 673.1 12.044 673.5 9.180 676.5

BB 2 100 1000 *556.1 1.550 525.1 1.765 551.0 *565.8 22.979 536.6 18.368 560.7

BB 4 10 1000 *540.1 1.262 453.0 0.954 537.8 545.4 18.112 545.2 12.467 545.4

BB 4 100 1000 *381.3 2.591 318.6 2.174 371.2 *392.9 35.331 329.5 24.233 388.8

BB 8 10 1000 462.4 1.452 338.8 1.270 462.6 462.7 28.232 462.7 19.155 462.7

BB 8 100 1000 *267.4 4.319 198.0 3.257 260.9 *274.8 60.682 210.6 36.785 272.1

BB 24 10 1000 385.6 5.430 385.6 4.172 385.6 385.6 67.455 385.6 48.177 385.6

BB 24 100 1000 *148.2 10.314 95.8 9.399 147.0 149.5 153.194 113.3 138.174 149.5

rat 4 10 600 199.0 0.550 198.0 1.138 201.0 205.0 8.591 205.0 4.240 204.0

rat 4 15 600 *184.0 0.660 182.0 1.134 182.0 185.0 9.097 185.0 7.276 184.0

rat 4 20 600 169.0 0.620 168.0 2.082 169.0 *173.0 8.082 172.0 4.120 170.0

rat 4 25 600 166.0 0.766 167.0 1.182 166.0 *171.0 9.295 170.0 4.766 168.0

rat 4 40 600 *152.0 0.844 146.0 1.172 151.0 *156.0 10.064 152.0 5.265 150.0

rat 4 60 600 149.0 0.868 150.0 1.315 149.0 152.0 12.129 152.0 12.016 151.0

rat 4 80 600 *138.0 1.056 137.0 1.368 137.0 140.0 12.564 142.0 13.292 139.0

rat 4 100 600 *135.0 0.483 131.0 1.408 133.0 137.0 13.650 137.0 7.739 135.0

rat 4 150 600 127.0 1.176 127.0 2.734 125.0 *130.0 11.625 129.0 16.841 126.0

rat 4 200 600 121.0 1.572 121.0 1.733 121.0 123.0 14.117 123.0 19.567 123.0

rat 20 10 600 70.0 1.108 70.0 2.501 70.0 71.0 10.104 71.0 7.579 71.0

rat 20 15 600 62.0 1.117 62.0 2.660 61.0 63.0 12.048 63.0 13.448 62.0

rat 20 20 600 *54.0 1.059 53.0 2.553 53.0 54.0 13.704 54.0 7.970 54.0

rat 20 25 600 *51.0 1.152 50.0 2.545 50.0 52.0 13.073 52.0 13.573 51.0

rat 20 40 600 *49.0 0.529 47.0 2.872 48.0 49.0 16.005 49.0 8.801 49.0

rat 20 60 600 46.0 1.945 46.0 3.234 46.0 47.0 19.734 46.0 13.413 47.0

rat 20 80 600 42.0 1.953 41.0 2.236 43.0 43.0 24.741 43.0 23.051 44.0

rat 20 100 600 38.0 2.007 38.0 3.932 38.0 39.0 24.441 40.0 25.239 39.0

rat 20 150 600 *37.0 2.457 36.0 2.481 36.0 37.0 28.719 37.0 29.312 37.0

rat 20 200 600 34.0 2.048 34.0 3.189 34.0 34.0 32.118 34.0 26.838 34.0

reported in [7]. Last but not least, so far best known solution lengths from other
approaches, as also reported in [7], are shown in column |slit−best|. Best solution
lengths are printed bold, and new best ones obtained by LBS are additionally
marked with an asterisk. In 13 out of 28 cases from the low time experiments and
in 7 out of 28 cases from the high quality experiments, new best results could be
achieved by LBS. In the remaining cases, the quality of the LBS solutions either
matched so far best results or were only by a small amount behind. Concerning
runtimes, we can conclude that they are very similar to those of BS-EX.

7.2 CLCS Experiments

For the CLCS problem, we use the benchmark set from [6]: ten instances for each
combination of |Σ| ∈ {4, 20}, m ∈ {10, 50, 100}, and n ∈ {100, 500, 1000}, and
ratios of n

|P | ∈ {4, 10} concerning the pattern strings. Note that it is guaranteed
that the pattern string appears in the input strings in the way the instances
were created, for details on the creation see [6]. We compare the results of the
following seven methods from the literature with those obtained by the LBS:
the approximation algorithm from [9] (Approx), and Greedy, Random, BS-UB,
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Table 2. Results for the CLCS problem on benchmark instances from [6].

n
|P | |Σ| m n |sLBS| tLBS [s] |sApprox| |sGreedy| |sRandom| |sBS-UB| |sBS-Prob| |sBS-EX| |sBS-Pat|
4 4 10 100 34.5 0.198 28.6 32.2 31.4 34.5 34.5 34.5 34.5

4 4 50 100 27.5 0.009 26.4 26.9 26.9 27.5 27.5 27.5 27.5

4 4 100 100 26.5 0.006 25.9 26.2 26.1 26.5 26.5 26.5 26.5

4 4 10 500 *183.2 12.080 134.3 160.4 153.8 179.3 182.4 181.1 168.6

4 4 50 500 147.9 9.912 130.1 139.5 138.1 146.2 148.3 146.3 142.7

4 4 100 500 140.6 10.387 128.9 135.8 134.5 140.4 140.8 140.3 137.3

4 4 10 1000 *366.5 27.570 264.7 317.4 308.1 350.3 361.7 361.4 330.8

4 4 50 1000 *296.6 23.909 257.4 277.3 274.5 291.9 296.4 289.5 284.2

4 4 100 1000 282.5 27.273 256.4 270.7 268.1 279.7 282.5 279.0 273.3

4 20 10 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0

4 20 50 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0

4 20 100 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0

4 20 10 500 125.0 0.006 125.0 125.0 125.0 125.0 125.0 125.0 125.0

4 20 50 500 125.0 0.009 125.0 125.0 125.0 125.0 125.0 125.0 125.0

4 20 100 500 125.0 0.012 125.0 125.0 125.0 125.0 125.0 125.0 125.0

4 20 10 1000 250.0 0.012 250.0 250.0 250.0 250.0 250.0 250.0 250.0

4 20 50 1000 250.0 0.014 250.0 250.0 250.0 250.0 250.0 250.0 250.0

4 20 100 1000 250.0 0.031 250.0 250.0 250.0 250.0 250.0 250.0 250.0

10 4 10 100 34.6 2.628 22.9 29.6 26.5 34.6 34.6 34.3 32.1

10 4 50 100 *25.1 3.307 19.8 21.8 21.0 24.9 25.0 24.3 23.5

10 4 100 100 23.0 3.668 18.9 20.8 19.6 23.0 23.0 21.9 21.5

10 4 10 500 *186.3 21.081 121.4 163.7 147.9 182.2 185.0 184.8 165.9

10 4 50 500 *143.4 26.723 114.2 129.5 123.6 138.7 142.9 141.8 131.2

10 4 100 500 *133.8 37.620 111.3 122.0 118.3 129.2 133.3 132.0 124.3

10 4 10 1000 *377.2 43.442 245.5 329.1 294.8 365.0 375.8 376.3 330.4

10 4 50 1000 *290.9 56.531 233.5 266.5 254.9 279.6 289.2 290.4 266.0

10 4 100 1000 *272.7 79.228 230.3 253.2 246.8 262.3 270.9 272.1 255.2

10 20 10 100 10.2 0.004 10.2 10.1 10.2 10.2 10.2 10.2 10.2

10 20 50 100 10.0 0.005 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10 20 100 100 10.0 0.005 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10 20 10 500 53.1 0.007 51.0 52.5 52.7 53.1 53.1 53.1 53.1

10 20 50 500 50.0 0.006 50.0 50.0 50.0 50.0 50.0 50.0 50.0

10 20 100 500 50.0 0.008 50.0 50.0 50.0 50.0 50.0 50.0 50.0

10 20 10 1000 105.4 0.011 101.0 103.9 104.6 105.4 105.4 105.4 105.4

10 20 50 1000 100.0 0.009 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 20 100 1000 100.0 0.012 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BS-Prob, BS-EX, and BS-Pat from [6]. In all BS approaches, the same beam
width β = 2000 was used for the tests on the benchmark instances. Results are
shown in Table 2. Here, in ten out of 36 cases, new best results could be achieved
by LBS, and it scores worse in only two out of 36 cases; in the remaining cases,
the solutions values from LBS are equal to the so far best known ones.
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8 Conclusions and Future Work

We presented a general learning beam search framework to solve combinatorial
optimization problems for which the solution space can be represented by a
state graph. Instead of the frequently challenging manual design of a meaningful
guidance function, we train a regression model to approximate the real length
to go from a state and use this model thereafter in a BS. Training is done in
the spirit of reinforcement learning by performing many BS runs on randomly
created instances and calling a nested beam search to obtain labeled training
data. Our case studies on the LCS and the CLCS problems clearly show that
this learning approach can be highly effective. On many benchmark instances
new best solutions could be obtained, making this approach a new state-of-the-
art method for the considered two problems.

Clearly, the proposed LBS is not entirely problem-agnostic: Still, it is impor-
tant to use a suitable state space, to derive meaningful features from states,
and to choose an appropriate ML model for a problem at hand. Moreover, note
that in our implementation for the LCS and CLCS, individual models need to
be trained for specific choices of |Σ|, m, and n. In future work specifically for
the LCS and CLCS problems, we aim at relying on different features that just
describe the distribution of remaining input string lengths, in order to learn
models that are independent of m and possibly also n.

General improvement potential for LBS lies in the fact that the guidance
function actually does not need to approximate the length to go well, but only
needs to provide scores for ranking the solutions in the beam. Can this flexibility
be used to come up with alternative optimization targets and loss functions for
the training, yielding overall better results? Parallelization and the utilization
of GPUs are further natural possibilities to speed up in particular the learning.
Last but not least, we aim at applying LBS to further problems and to also
investigate other ML models than NNs.
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Abstract. In a multi-task reinforcement learning setting, the learner
commonly benefits from training on multiple related tasks by exploiting
similarities among them. At the same time, the trained agent is able
to solve a wider range of different problems. While this effect is well
documented for model-free multi-task methods, we demonstrate a detri-
mental effect when using a single learned dynamics model for multiple
tasks. Thus, we address the fundamental question of whether model-
based multi-task reinforcement learning benefits from shared dynamics
models in a similar way model-free methods do from shared policy net-
works. Using a single dynamics model, we see clear evidence of task confu-
sion and reduced performance. As a remedy, enforcing an internal struc-
ture for the learned dynamics model by training isolated sub-networks
for each task notably improves performance while using the same amount
of parameters. We illustrate our findings by comparing both methods on
a simple gridworld and a more complex vizdoom multi-task experiment.

Keywords: Model-based reinforcement learning · Multi-task
reinforcement learning · Latent space models · Catastrophic
interference · Task confusion

1 Introduction

In recent years, deep reinforcement learning (RL) has shown impressive results
in problem domains such as robotics and game playing [12,15,19,20,27]. How-
ever, sample inefficiency is still a major shortcoming of many of the methods.
To achieve superhuman performance e.g. in video games, the required num-
ber of interactions for complex tasks lies in the tenths of millions. Model-based
approaches mitigate this problem by integrating the collected sample informa-
tion into a coherent model of the environmental dynamics [30]. Those learned
models are used for direct policy learning [11], planning [7,13] or to augment
existing model-free approaches [8,21,24]. In the presence of a readily available
analytical model of the environment, that does not have to be learned, perfect
planning can be used to learn a policy with great success [29,31].
c© Springer Nature Switzerland AG 2022
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Despite the success of deep RL across a wide range of problem domains,
most state of the art approaches have to be re-trained for every new task. Since
similar problems might very well share a common underlying structure, this is
a potential waste of resources [3]. Furthermore, an agent can also encounter
a different mixture of tasks in a single environment. If the agent is created
without the concept of distinct tasks in mind, an alteration of the task mixture
may negatively impact the agent’s performance. While greater sample efficiency
is one reason to engage in multi-task learning, it also produces a more capable
agent that can solve a wider range of problems. Whereas there exists a vast
amount of research around multi-task RL in general [6,9,10,26], the combination
of model-based latent space RL and multiple tasks is still largely unexplored.
Since the former has brought impressive improvements for sample efficiency and
the latter promises greater flexibility and reusability, we combine latent space
models with multi-task RL in this paper and investigate its usefulness.

We focus on model-based multi-task deep RL for complex observation
domains like images. The main question we address is if training the same
dynamics model on multiple similar tasks helps performance through knowledge
transfer or if catastrophic interference outweighs the benefits. If so, how can a
model-based multi-task agent be structured to avoid catastrophic interference?
Our contributions in answering these questions are the following:

– In our experiments we show a detrimental effect on performance through
catastrophic interference when training a single dynamics model on multi-
ple tasks simultaneously. To mitigate the effect, we propose a world model
that uses multiple distinct latent space dynamics models which are activated
through a context-based task classification network.

– By strict separation of the dynamics networks, the probability that dynamics
of different tasks interfere with each other is minimized. As a side effect,
retraining individual tasks and recombining learned tasks is straightforward.

– We demonstrate the performance difference between a single dynamics model
and our method in a 3-task gridworld and a more complex 2-task 3D envi-
ronment. To evaluate both approaches, we perform planning on the learned
dynamics models and measure the obtained reward.

2 Related Work

Latent Space Models: Previous work on learning latent space models from
high dimensional inputs has produced impressive results especially in the atari
learning environment and continuous control benchmarks [14,17,22]. The archi-
tectures share a similar structure where a convolutional encoder embeds inputs
to a latent representation which is fed into a recurrent prediction network for
states and rewards. By stacking predictions on previous predictions, imaginary
rollout trajectories based on the learned dynamics are produced. Those are used
for planning [13], training an actor-critic agent [13,14] or to drive exploration
[28]. To mitigate accumulating errors caused by imperfect dynamics models,
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probabilistic prediction models and long rollout trajectories during training are
used. While the above mentioned methods demonstrate impressive performance
of latent space models in RL, we specifically focus on resource efficiency in a
multi-task setting.

Multi-task RL: To overcome catastrophic interference and pave the way for
lifelong learning, in [26] a policy network from multiple modules called columns
is built. Each column is a mini network with individual weights while the same
architecture is shared among all columns. For each task, a new column is added
and layer-wise laterally connected to all previous columns. Since the connec-
tions are learned, this enables new columns to selectively benefit from previ-
ously acquired behavior. The authors train their method using A3C [19] and
demonstrate performance improvements by comparing it to various versions of
a single-column baseline network.

By learning task-specific pathways of active subsections within one large
neural network, [9] use a similar concept than [26]. A subsection corresponds to
a small, localized region in the larger network. However, instead of hardwiring the
connections between subsections, they are learned by an evolutionary strategy.
Given an active path, training of the involved subsections is done via gradient
descent. At the same time, the remaining weights are frozen so that change only
occurs in the currently active modules. The authors describe their approach
as an evolutionary version of dropout, where thinned out networks are evolved
instead of randomly generated (as in regular dropout).

A significant difference between the above mentioned approaches and our
method is that our algorithm learns modular dynamics models instead of mod-
ular policies. Furthermore, in our proposed method lateral connections between
the models are absent since they would introduce dependencies which prevent
arbitrary recombination of the learned task models.

3 Method Description

The foundation of our approach lies in the combination of multiple recurrent
dynamics models (RDMs), a vector-quantized variational autoencoder (VQ-
VAE) and a task classification network (TCN) for online task detection. The
VQ-VAE is used to encode the image observation stream from the environment
to a latent space representation which we simply refer to as embedding from now
on. The TCN receives the stream of embeddings and predicts the probability of
each RDM to be responsible for the task at hand. The most probable RDM is
then used to generate predictions in latent space. A graphical overview of the
method is presented in Fig. 1. In the following sections, we will explain each of
the components in more detail. While we discuss the hyperparameters we use
for some parts of the architecture, we do not mention all of them and refer to
the link to our code repository in the conclusion for an exhaustive list.
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Fig. 1. Overview of the multi RDM architecture. In the first timestep, observation o0
is embedded by the encoder of the VQ-VAE. The resulting embedding is combined
with the action and presented to the RDMs and the TCN. The latter chooses one of
the RDMs (visualized by the argmax node), which is consequently used to predict the
embedding for the next timestep. For simplicity, reward and terminal state probabil-
ity outputs are not visualized here. Dashed lines indicate recurrent components that
maintain information persistent between the individual time steps.

3.1 Vector-Quantized Variational Autoencoder

To embed an image observation into a latent space, we use the Vector-Quantized
Variational Autoencoder (VQ-VAE) from [23]. It consists of a convolutional
encoder block, a quantization layer and a deconvolutional decoder block. In the
following, we summarize the parameters of all VQ-VAE components with the
parameter vector φ. The encoder transforms an image observation o into a 3D
tensor Eφ(o) of size w ×h× c. It can be interpreted as a more compact image of
size w times h with c channels. This image tensor is passed to the quantization
layer that replaces each pixel along the channel dimension with the closest from
a set of codebook vectors. The resulting tensor z is a per-pixel quantized version
of Eφ(o). Conceptually equivalent to a regular VAE, the deconvolutional decoder
D transforms z back to the (reconstructed) original input image ô = Dφ(z). The
VQ-VAE is trained by minimizing the following loss function:

Lφ(o,Dφ(z)) = ||o − Dφ(z)||22
︸ ︷︷ ︸

decoder

+ ||sg[Eφ(o)] − z||22
︸ ︷︷ ︸

codebook

+β ||sg[z] − Eφ(o)||22
︸ ︷︷ ︸

encoder

(1)

Whereas the parameter β trades off encoder vs. decoder loss and the sg[·]
operator indicates the stop of gradient backpropagation. We used β = 0.5 in all
our experiments, since it performed best among a collection of tested values
between
0.25 and 0.75. According to the recommendations of [23], we swap the code-
book loss in Eq. 1 for an exponentially moving average update of the codebook
vectors ei:
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where n
(t)
i is for the current batch the number of pixels/vectors in E(o) that

will be replaced with codebook vector ei and γ is a decay parameter between
0 and 1. We used the default γ = 0.99 for all experiments and a Keras [2,4]
port of the VQ-VAE implementation in the Sonnet library [1]. The autoencoder
architecture of our choice naturally forms clusters in embedding space, which
has been reported to increase prediction performance of dynamics models like
ours [23] and potentially helps the TCN in differentiating between tasks.

3.2 Recurrent Dynamics Models

For the design of our RDMs, we follow ideas from [13] and combine probabilistic
and deterministic model components to increase predictive performance and
prevent overfitting [5]. As previously explained, following the work in [22] we
additionally embed environment observations into latent space representations
z and operate entirely in that latent space from there on. Since z is a 3D tensor,
the architecture of our RDM contains mainly convolutional layers (conv) to carry
through any spatial information contained in the image observations. An RDM
is comprised of four submodules: The belief-state network (conv), the embedding
network (conv), the reward network (dense) and the terminal state probability
network (dense).

As already briefly mentioned, to make the prediction of zt more robust to
uncertainty, we combine a stochastic and a deterministic prediction path. The
deterministic path is realized through a convolutional LSTM network which
computes the belief state ht from the previous belief state ht−1, action at−1

and embedding zt−1. Given ht, the stochastic prediction path is a categorical
distribution from which zt is sampled. This way, information about past obser-
vations, actions and belief states can be accumulated in ht and passed on to
future time steps. At the same time, uncertainty regarding the next zt can be
expressed through the sampling process. Because the embeddings are defined
completely by the indices of their codebook vectors, we use a categorical dis-
tribution to sample those indices, namely the Gumbel Softmax [16,18], which
is a reparameterized approximation to a categorical one-hot distribution. It can
be used with backpropagation and at the same time offers almost discrete sam-
pling of the required one-hot vectors. The rewards are sampled from a diagonal
Gaussian and the terminal transition probabilities are sampled from a Bernoulli
distribution. The structure of the RDM is summarized as follows:

belief state:ht = fθ(ht−1, zt−1, at−1) (2)
embedding:zt ∼ qθ(zt|ht) (3)

reward:rt ∼ qθ(rt|ht) (4)
terminal transition:γt ∼ qθ(γt|ht) (5)

Note that we summarize all RDM component’s parameters into one vector θ for
simplicity. To train the RDM, the following loss function is minimized per time
step:
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Lθ = Le
θ + Lr

θ + Lγ
θ (6)

whereas the individual prediction loss terms are the parameter maximum likeli-
hood solutions given the transition data:

embedding:Le
θ = Eqφ(zt|ot) [− ln qθ(zt|ht)] (7)

reward:Lr
θ = Eqθ(zt|ht),p(rt|ot,at,ot+1) [− ln qθ(rt|ht, zt)] (8)

terminal:Lγ
θ = Eqθ(zt|ht),p(γt|ot,at,ot+1) [− ln qθ(γt|ht, zt)] (9)

while we denote all learned distributions by qθ(·) or qφ(·) and the true environ-
ment dynamics by p(·).

3.3 Context Detection

In contrast to the algorithms presented in [11,13,22], we use distinct dynam-
ics models to combat catastrophic interference when training on multiple tasks.
In theory, a single (monolithic) dynamics model can exploit similarities in the
tasks it learns, which positively influences learning speed and predictive per-
formance. But since weight updates for different tasks may interfere with each
other negatively, a monolithic dynamics model could instead suffer from reduced
performance. This effect has been shown by [33] for policy networks in multi-
task reinforcement learning. To prevent this catastrophic interference, we isolate
knowledge about different task dynamics in separate RDMs and use the TCN
to orchestrate them. This essentially makes the TCN a context detector that
learns to classify an embedding-action-stream and choose the correct RDM for
the task at hand. In every prediction step, the TCN receives the current obser-
vation embedding and action as input. While it is theoretically able to choose
a different RDM in every time step, we did not observe this behavior in prac-
tice. Because different tasks can have locally similar or equivalent embeddings,
the TCN contains convolutional LSTM layers and is thus able to remember
past embeddings and actions. It is thereby capable to disambiguate temporar-
ily similar embedding streams. The TCN is trained in a supervised manner via
categorical crossentropy loss.

3.4 Planning

We directly use our learned RDMs for planning in the environments. Thereby, we
follow the crossentropy method that has originally been introduced by [25] and
is also employed by [11] and [5]. A planning procedure consists of n iterations.
At the beginning of the first iteration, the current observation is embedded into
latent space by the VQ-VAE and serves as a starting point for k rollouts of length
T . To generate the action sequences required for the rollouts, we initialize one
categorical distribution per time step at random from which we sample k actions.
This results in a k × T matrix of actions where each row represents the action
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sequence for one rollout trajectory. The resulting trajectories produced by the
monolithic or multi RDM are ranked w.r.t. their discounted return and the top
ρ percent are chosen as winners. In the next iteration, we use the maximum
likelihood parameters of the previous winners for the action distributions and
again sample k×T actions to generate new rollouts. For the gridworld setting, we
use n = 20 iterations, k = 500 rollout trajectories and T = 100 planning steps,
because especially in the third task the reward is far away from the starting
location. We take the top ρ = 10/500 of all rollout trajectories in each iteration.
For the 3D environment, we use n = 5 iterations, k = 400 rollout trajectories
and T = 60 time steps due to technical limitations regarding the capacity and
of the used GPUs (the algorithm is running on a single Tesla v100 with 16
GB of VRAM). We take the top ρ = 10/400 of all rollout trajectories in each
iteration. For both the gridworld and the 3D environment, we add noise of 0.05
to the maximum likelihood parameters during planning because this effectively
improved the results.

3.5 Training

Presented with a batch of encoded trajectories from m tasks, the TCN outputs
the probabilities for each of the m RDMs per sample (i.e. per trajectory per time
step). Since the individual prediction errors of the RDMs are weighted with their
probability of being chosen, only those with a high probability receive a strong
learning signal and consequently adapt their weights. To discourage the TCN
from switching around RDMs during a task, we provide the task ID as a super-
vised learning signal during training. The TCN produces a less concentrated
probability distribution in the beginning of the training when the prediction
error of the RDMs dominates the loss. At this time, multiple RDMs can be cho-
sen for one task without hurting the loss significantly, which means that most
RDMs are exposed to more than one task during the course of the training. This
increases variety in training samples for each of the RDMs and encourages them
to learn characteristics shared across tasks. However, this situation only lasts for
the first few training epochs. As soon as the prediction error decreases, the TCN
has to allocate the correct models to their respective tasks in order to further
minimize the loss. The resulting system is then able to activate a task-specific
RDM for each task it was trained on. As a consequence of using distinct net-
works for each task, individual RDMs may be re-trained or trained longer on
tasks where the performance is not yet as desired without the risk of sacrificing
performance in other tasks.

We compare the multi RDM model with a larger, monolithic RDM in two
different experiments: A simple 3-task gridworld and a more demanding 2-task
setting comprised of two vizdoom [32] environments. The latter setting can be
considered more demanding since it features a dynamic 3D environment, more
diverse observations and a more complex reward function. We want to emphasize
that per experiment, both the multi RDM and the monolithic RDM have the
same amount of trainable parameters. Since the monolithic RDM does not have
a TCN and to maintain a fair comparison, the architecture of the monolithic
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RDM is slightly modified. Another network head is added and trained to output
the current task ID similarly to the TCN in the multi RDM architecture. This
way, the monolithic architecture gets exactly the same training information as
the multi RDM architecture. Training is summarized as follows:

1. Collect around 30 000 (gridworld)/200 000 (vizdoom) transitions from each
task by random action sampling. Since only complete trajectories are col-
lected, the final number of collected transitions might end up slightly higher.

2. Train the VQ-VAE on the collected samples for 200 (both) epochs.
3. Train either the monolithic or the multi RDM predictors on the trajectories

using the VQ-VAE to embed observations. Training is done for 150 (grid-
world)/500 (vizdoom) epochs.

4. Perform planning utilizing the trained predictors.

When fully trained, we use the VQ-VAE and RDMs to perform imaginary
rollouts as described in Sect. 3.4. Since we specifically want to assess the quality
of the learned dynamics for both the monolithic and the multi RDM, we do not
re-plan actions after each step. This way, groundtruth observation data would
be injected into the system continuously, which potentially helps a suboptimal
model. Instead, in the gridworld experiment our algorithm uses only the starting
observation of the agent to perform a full planning routine until the end of
the episode. This has the beneficial side effect of being considerably less time
consuming than re-planning after every step. Note that the starting observations
of the gridworld tasks are unique, so they should in theory provide sufficient
information for the algorithm. In the vizdoom experiment, one of the two tasks
features a dynamic environment that can change without interaction of the agent.
Thus, periodic re-planning is necessary to incorporate new information from the
environment. In an effort to find a good balance between computational cost
and planning accuracy, we use the first 30 actions from the planning procedure
and then re-plans from there on.

To obtain the gridworld experiment data discussed in the next section, we
repeated the above mentioned four-step process three times with different ran-
dom seeds and averaged the results appropriately. To obtain the vizdoom exper-
iment data, we did a single iteration of the above mentioned four-step process.
We want to clarify that we trained one pair of dynamics models (a monolithic
and a multi RDM) per experiment. This means, the dynamics models trained on
the gridworld experiment did not receive any data from the vizdoom experiment
and vice versa.

4 Experiments

To answer the question of whether dynamics models can benefit from training
on multiple tasks at once, we use a simple gridworld experiment (cf. Fig. 2) and
a more complex vizdoom experiment (cf. Fig. 3). For both experiments, observa-
tions from different tasks can easily be confused with each other. Yet, the system
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Fig. 2. The three training tasks of the gridworld experiment. The agent (green square
in the lower left corner) has to find the reward (red square marked with “R”). Every
action moves the agent one grid cell into the respective direction if no obstacles are
met. Walls (black squares) block movement without reward penalty. The shaded blue
area in the first environment (left panel) shows an example of the top-down viewport
of the agent. If part of the viewport is outside of the environment at any time, the
respective part is filled with zeros (i.e. it is colored black). (Color figure online)

has to learn to identify the tasks and memorize task dynamics without confus-
ing them. This is especially difficult for the gridworld experiment, since although
having very different global structures, the individual image observations look
similar across all three tasks. On the one hand, this makes it easier to learn
shared properties across them, e.g. that all objects in the viewport are shifted
down one cell if an “up” move is performed. We expect this to be advantageous
for the monolithic RDM. On the other hand, in the absence of striking visual
cues it becomes harder to distinguish between different tasks, which should put
the multi RDM at an advantage because it uses the specialized TCN for that. In
case of the vizdoom experiment, distinguishing the tasks is easier because there
are salient optical cues in every observation (e.g. the gun and HUD indicating
the “VidzoomBasic” task). We expect this to benefit the monolithic RDM. Yet,
although the environment dynamics are partially similar for both tasks (agent
movement), we see quite different observations and reward functions. We expect
this reduced degree of common structure among the vizdoom tasks to put the
multi RDM at an advantage.

Gridworld Experiment. All mazes have a size of 10 by 10 cells, a fixed layout
per maze for reproducibility and a maximum episode length of 100 steps. Per
environment, there exists one reward of value 1.0 at a fixed position. Additionally,
the agent receives a −0.01 penalty per step, resulting in a positive reward only
if the agent is able to find the goal state fast enough. During data collection,
the agent starts at a random, unobstructed cell somewhere in the maze and
performs random actions. This takes exploration strategies, which exceed the
scope of this work, out of the equation. To assess the performance of the learned
dynamics models in a comparable way, the agent’s starting position is fixed to
the lower left corner of every maze during control. The action space is discrete
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Fig. 3. The two training tasks of the vizdoom experiment. In both cases, the agent
is situated in a rectangular room with its back against one wall, facing the opposite
wall. The agent can move sideways left, sideways right and attack in both tasks. In the
“VizdoomBasic” task (left image), the agent has to shoot the monster on the opposite
wall. In the “TakeCover” task (right image), the agent has to dodge incoming fireballs
shot by enemies that randomly spawn on the opposite wall.

and provides four choices: Up, down, left and right. The observation emitted
by the environment is an image of a 5× 5 cells top-down view centered on the
agent position, visualized in Fig. 2 in the leftmost panel. Although we conduct
our experiments on a gridworld, we emphasize that the input space consists of
proper image observations.

Vizdoom Experiment. In both tasks the agent is positioned in a rectangular
3D room viewed from the ego perspective (c.f. Fig. 3). Standing with its back
against one wall, the agent faces the opposite wall and can choose from three
actions: Move sideways left, move sideways right and attack. Since the agent does
not hold a weapon in the second task, the attack action here simply advances the
environment one time step. In the first task (“VizdoomBasic”), the agent has to
shoot the monster at the opposite wall for a reward of 100. Every move action
results in a reward penalty of −1 and every fired shot in a reward penalty of −5.
The maximum number of allowed time steps is 300. In the second task (“Take-
Cover”) the agent has to evade fireballs shot by enemies randomly spawning at
the opposite side of the room. Since every time step the agent is alive results in a
reward of 1, the goal is to survive as long as possible. Although there is formally
no time limit for the second task, more and more monsters will spawn over time.
This makes evading all fireballs increasingly difficult and ultimately impossible.
For both tasks, the agent and monster starting positions are randomized during
training data collection and fixed for the control experiments. Both, monolithic
and multi RDM get the same sequence of starting positions.

4.1 Evaluation

To evaluate the quality of the trained monolithic as well as multi RDM, we use
them to directly generate agent behavior via planning. This way, the performance
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Fig. 4. Control results for the gridworld and the vizdoom experiments. Each task is
depicted as a column on the x-axis, in turn separated into two columns representing
the monolithic (blue) or multi (orange) RDM. The y-axis shows the average episode
rewards. Left: Results for the gridworld experiment obtained via planning rollouts
averaged over 60 trials per task. Note that the 60 trials originate from 3 full training
runs as explained in Sect. 3.5 with 20 trials per run. Right: Results for the vizdoom
experiment obtained via planning rollouts averaged over 35 trials per task. Note that
the 35 trials originate from 1 full training run as explained in Sect. 3.5. (Color figure
online)

of the approaches can be assessed with minimal additional complexity. The results
obtained with our trained RDMs for the gridworld experiment are shown in Fig. 4
(left panel). The overall difficulty increase from task one to three is reflected in the
reward decrease for both approaches. While the first task can be completed with
a comparable performance by both architectures, the second and third task show
significant differences between the two approaches, the split architecture outper-
forming the monolithic network (p < 0.0001, Mann-Whitney-U-test). The third
task is generally the hardest, since the way to the reward is most obstructed and
longer than for the other tasks. The results for the vizdoom experiment are shown
in Fig. 4 (right panel) and follow a similar pattern as those of the gridworld exper-
iment. The multi RDM architecture manages to deliver significantly higher aver-
age rewards than the monolithic architecture in both tasks (p < 0.002, Mann-
Whitney-U-test). Note that the maximum reward that can be obtained in the first
task is capped at around 85 (depending on the agent and monster starting posi-
tions) while it is potentially infinite for the second task.

With these findings in mind, the question is why the monolithic RDM per-
forms worse than the multi RDM in planning. To shed light on possible rea-
sons for the performance difference, we carefully inspected the generated rollout
samples of both approaches in the gridworld experiment setting. Per task and
architecture, we generated 64 trajectories of length 50 from 64 arbitrary start-
ing observations. The actions were randomly sampled from the tasks’ action
spaces. Figure 5 shows the most likely environment of the produced latent space
embedding zi,t for every trajectory i and time step t. To find the most likely
environment, each zi,t was decoded into an image using the VQ-VAE decoder
and compared to a list of representative images. This list contains one image for
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Fig. 5. For each plot, 64 rollouts of length 50 with randomly chosen initial observations
and random actions were performed. On the y-axis all samples of a single time step are
listed, color-coded depending on their most probable class. Samples belonging to task
(1, 2, 3) are colored in (blue, orange, green) and samples that could not be assigned
to any task are colored in red. On the x-axis, the distinct time steps are shown. For
visual clarity, data obtained exclusively from one of the three training runs is shown.
Top row: Results of the monolithic architecture. Bottom row: Results of the multi
RDM. (Color figure online)

every possible agent location in the three tasks, which means that if the decoded
zi,t resembles any valid observation, this was detected with absolute certainty. If
the average per-pixel distance to the closest match was above a certain threshold
(here 0.01), the zi,t was classified as “undefined” (red in the plots). Otherwise,
it was classified to belong to the environment of the closest match (blue for task
1, orange for task 2, green for task 3). Note that this analysis is feasible only for
environments with a relatively small amount of states, which is another reason
why we decided to use the gridworld tasks for this analysis.

It is clearly visible that the monolithic RDM produces trajectories of lower
overall quality (cf. Fig. 5, top row). First of all, compared to the multi RDM
the fraction of undefined observations is notably higher in tasks 2 and 3. Even
more importantly, the monolithic RDM has a higher chance to generate z that
belong to a different task, most evidently reflected in task 2 (cf. Fig. 5, top
row, middle panel). This can lead to malformed rollout trajectories which miss
rewards or report rewards where there are none, harming the planning process in
general. In the worst case, the monolithic RDM switches tasks in the middle of
a rollout trajectory. By visual inspection of the rollout trajectories, we observed
this to happen regularly for the monolithic RDM in both the gridworld and the
vizdoom experiments. Through separation of the task dynamics in the multi
RDM, considerably less confusion among the tasks arises and the fraction of
undefined samples is reduced as well. This stands in line with measurably better
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planning performance for the multi RDM architecture. We conclude from our
analysis that catastrophic interference outweighs possible advantages of transfer
learning in the monolithic RDM. In our experiments, the simple use of isolated
dynamics models mitigates the harmful interference to a large degree.

5 Conclusion

In this work, we demonstrate an unintuitive effect in model-based multi-task
RL. Contrary to expectations fueled by model-free multi-task RL, using a single
monolithic RDM for all tasks can harm performance in model-based multi-task
RL instead of improving it. We conclusively assume that the positive effect of
transfer learning between similar tasks is either absent for dynamics models or
outweighed by catastrophic interference. Moreover, while using the same param-
eter budget for both approaches we show that imposing an internal structure to
the dynamics model can lead to notably improved learned dynamics. We show
this by using both approaches for control through planning, where the multi
RDM scores measurably higher rewards than the monolithic RDM. By analyz-
ing the rollout trajectories of both the monolithic and the multi RDM in the
gridworld setting, we find cleaner, more task-specific trajectories and less overall
wrong predictions in case of the multi RDM. We conclude that separating task
recognition from task dynamics effectively prevents catastrophic interference (or
task confusion) to a large degree, leading to the measured performance improve-
ment. The code for reproducing our experiments, including all hyperparameters,
can be found at https://github.com/rschiewer/lrdm.
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Abstract. The Nash equilibrium is used to estimate the parameters of a
Probit binary classification model transformed into a multiplayer game.
Each training data instance is a player of the game aiming to maximize
its own log likelihood function. The Nash equilibrium of this game is
approximated by modifying the Covariance Matrix Adaptation Evolu-
tion Strategy to search for the Nash equilibrium by using tournament
selection with a Nash ascendancy relation based fitness assignment. The
Nash ascendancy relation allows the comparison of two strategy profiles
of the game. The purpose of the approach is to explore the Nash equi-
librium as an alternate solution concept to the maximization of the log
likelihood function. Numerical experiments illustrate the behavior of this
approach, showing that for some instances the Nash equilibrium based
solution can be better than the one offered by the baseline Probit model.

Keywords: Binary classification · Probit model · Nash equilibrium

1 Introduction

Machine learning techniques have evolved to cope with large amounts of data,
partly due to the increase in computational power available. However, there
are still issues related to the fine classification even of small data sets, with
many paths to explore. Methods that are based on the optimization of a loss or
likelihood function may be limited by the way these functions are constructed, i.e.
reaching the optimum value of a function may not provide the best classification
model for the data. In this sense, there is room for exploring different solution
concepts, such as those provided by game theory.

Game theory models interactions among different agents aiming to maximize
their payoffs. These payoffs are computed based on their strategies as well as on
all the others’. Various real-world situations led to different kind of games such as
non-cooperative and cooperative, normal form games and extensive form games,
with perfect and imperfect information, etc. For each type of game solution
concepts with appealing theoretical and practical properties are devised [8]. Non-
cooperative games model the situation in which agents do not cooperate or

c© Springer Nature Switzerland AG 2022
G. Nicosia et al. (Eds.): LOD 2021, LNCS 13164, pp. 314–324, 2022.
https://doi.org/10.1007/978-3-030-95470-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95470-3_24&domain=pdf
http://orcid.org/0000-0003-0659-4594
http://orcid.org/0000-0002-5572-8141
https://doi.org/10.1007/978-3-030-95470-3_24


A New Nash-Probit Model for Binary Classification 315

communicate to each other. One of the most popular solution concepts for non-
cooperative games is the Nash equilibrium (NE): a situation of the game in which
no player has an incentive for unilateral deviation [9].

In this paper we explore the use of the Nash equilibrium concept in conjunc-
tion with the Probit classification model: instead of maximizing the log likeli-
hood function, a game in which each instance chooses the model parameters that
maximize its own log likelihood is devised. To ensure that each players’ payoff
depends on its choice as well as on the others’, the mean values of the strategies
of all players are used within the payoff function. The NE of this game is approx-
imated by a modified version of the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) algorithm [2] - called Covariance Matrix Adaptation Nash
Evolutionary Strategy (CMA-NES) - that computes game equilibria instead of
optima of an objective function. The game is not directly converted into an opti-
mization problem, the search of CMA-ES is diverted towards the equilibrium by
ranking individuals based on a Nash ascendancy relation [5].

1.1 The Nash-Probit Game

A binary classification problem can be defined as follows: given a set of data
X ⊂ R

N×p and corresponding labels Y = (y1, . . . , yN )� , with yi ∈ {0, 1}, such
that label yi ∈ Y corresponds to instance xi ∈ X , i = 1, . . . , N , find a model
that is able to make a good prediction of Y from X [3, p. 11]. A probabilistic
model will provide some function φ : R

p × R
p → [0, 1] that can assign to an

instance x ∈ R
p the probability φ(x;β) that it has a certain label, usually 1.

The expression of the function φ is chosen by the decision maker, and parameter
β is computed most often by some optimization procedure.

Probit Classification. Within this model the probability that an instance x has
a label 1 is estimated by using the cumulative distribution function Φ of the
standard normal distribution:

φ(x;β) = Φ(xβ) (1)

where xβ denotes the dot product of x = (x1, . . . , xp) and β ∈ R
p. Parameter β

is computed by maximizing the log likelihood function:

log L(X ;β) =
N∑

i=1

(
yi(log Φ(xiβ)) + (1 − yi) log(1 − Φ(xiβ))

)
. (2)

The Probit classification model is well known and extensively used in many
applications. Most current research focuses on improving the Probit model, and
often for a particular problem. To the best of our knowledge, an attempt to use
the Nash equilibrium concept with the Probit classification model similar to the
one presented in what follows has not been previously made.
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The Nash-Probit Game. In the Probit model the aim is to estimate β such
that for each instance x ∈ X with label 1 the probability Φ(x;β) that x is
classified as having label 1 is maximized and for each x ∈ X having label 0
the probability 1 − Φ(x;β) of x being classified having label 0 is maximized as
well. The maximization of these probabilities for all x ∈ X can be formulated
as a non-cooperative game among instances that try choose β values in order
to maximize their corresponding probabilities. Thus, we can define a game Γ =
(N ,Rp, U |X , Y ) in the following manner:

– N is the set of players composed of instances in X : instance xi ∈ X is player
i in N ;

– the strategy of a player i is to choose βi ∈ R
p; a strategy profile of the game

would be β = (β1, . . . , βN ) consisting of the strategies of all players i ∈ N ;
– the payoff ui : Rp × R

p → R of player i is defined as:

ui(xi;β) = yi log Φ(xiβ̃) + (1 − yi) log(1 − Φ(xiβ̃)), (3)

where β̃ = (β̃1, . . . , β̃p), and β̃j is the average of βj
i for all i ∈ {1, . . . , N},

j ∈ {1, . . . , p}.

Averages in Eq. (3) ensure that the payoff of each player depends on their
strategies as well as on the strategies of all other players, while maximizing its
part of the log likelihood function (Eq. (2)).

A possible solution of a game is the Nash equilibrium: a strategy profile such
that no player has an incentive for unilateral deviation. In the case of game Γ
a Nash equilibrium would be a strategy profile β∗ = (β1, . . . , βN ) such that no
unilateral change of a βi could improve the payoff function ui of player i, i.e. it
reflects the maximum probability to be classified with the right label, while all
other player maintain their strategies unchanged. The corresponding β̃∗ can be
then used as parameter in the Probit model.

2 Covariance Matrix Adaptation - Nash - Evolution
Strategy

CMA-ES is an efficient evolution strategy designed for nonlinear optimization
problems [2] that evolves a population of size λ randomly generated each iter-
ation following a normal multivariate distribution with an adaptive covariance
matrix. The mean of the population is updated each iteration based on the posi-
tion of the best μ individuals in the population. In a game theoretic context,
CMA-ES has been previously used only to compute mixed Nash equilibria by
converting the game into an optimization problem [7,10,13]. However, in the
case of game Γ we are looking for pure Nash equilibria for continuous payoff
functions, and thus we need an entirely different approach to equilibria approxi-
mation. CMA-NES, the Covariance Matrix Adaptation - Nash Evolution Strat-
egy is the proposed adaptation of the well known CMA-ES optimizer for Nash
equilibria detection of such games.
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Consider a noncooperative game (N,S,U), where N is the set of players,
N = {1, . . . , n}, and n is the number of players, S = S1 × . . . × Sn is the
set of strategy profiles of the game, Si ⊂ R the strategy set of player i, and
U = (u1, . . . , un) is the payoff function, with ui : S → R the payoff function of
player i, i ∈ N . Elements s = (s1, . . . , sn) in S are called strategy profiles, or
situations of the game in which player i ∈ N has chosen strategy si.

CMA-NES encodes in an individual a strategy profile s ∈ S and searches for
the equilibrium strategy, which represents a situation of a game such that no
player can improve its payoff by unilateral deviation. The search is guided by
replacing the selection strategy of CMA-ES with tournament selection. During
the tournament individuals are compared by using a fitness based on a domina-
tion relation known to direct the search towards Nash equilibria [5]. The Nash
ascendancy relation used is described in Alg. 1. Two strategy profiles of the
game are compared with respect to the Nash equilibrium concept by counting
how many players would improve their payoffs by unilateral deviation from one
strategy profile to the other. The strategy/individual with a lower number of
such players is considered better with respect to this relation than the other. If
there is an equal number of players that can improve their payoff by unilateral
switching in this way, the two strategies are considered indifferent.

Algorithm 1. Nash ascendancy test to compare individuals θ and β

1: k1 = k2 = 0;
2: for j = 0; j < p; j = j + 1 do
3: if θj <> βj then
4: θ′ = θ, β′ = β;
5: θ′

j = βj , β
′
j = θj ;

6: if uj(θ
′) > uj(θ) then

7: k1 + +;
8: end if
9: if uj(β

′
j) > uj(β) then

10: k2 + +;
11: end if
12: end if
13: end for
14: if k1 < k2 then
15: return θ Nash ascends β is TRUE;
16: else if k2 < k1 then
17: return θ Nash ascends β is FALSE;
18: else
19: return θ and β are indifferent to each other;
20: end if

CMA-NES uses tournament selection to choose μ individuals and to assign
them a fitness based on the tournament results in order to rank them among
each other. Comparisons within the tournament are performed using the Nash
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Fig. 1. Distances to NE reported by CMA-NES for the oligopoly presented in Example
1 for games with different number of players.

ascendancy relation. The fitness is computed as the number t of tournaments
an individual has won. Because CMA-NES minimizes the fitness function, this
number is converted to μ−t

μ . Thus, each individual that has won a tournament
during selection has a fitness of μ−t

μ , while all the others that will not contribute
to the updated mean will have a fitness of 1.

Example 1. Consider the following game inspired from the Cournot oligopoly:
we have a set of n players, the strategy profiles set is Rn and the payoff function
for player i is ui(s) = si(100 − ∑n

j=1 sj), where s = (s1, . . . , sn) ∈ R
n, and

si is the strategy of player i, i = {1, . . . , n}. This game has one NE, with all
components equal to 100

n+1 . CMA-NES was run 30 times on instances of this game
with 50–175 players. Figure 1 presents boxplots of distances to the NE by the
mean reported by CMA-NES. It is an interesting behavior of CMA-NES that
increasing the number of players also increases its accuracy. Similar behaviour
is displayed by NEO [6]. Even without modifying any other aspects of CMA-
ES, results reported here are better than those obtained by using Differential
Evolution and Extremal optimization [6].

CMA-NES for Binary Classification
The main purpose of our endeavour is to use CMA-NES to approximate an
equilibrium strategy for the classification game Γ . Due to the nature of the
problem we add additional information during the search: the accuracy score
of an individual is added to the tournament selection based fitness. In order
to direct the search towards smaller β values the norm of an individual is also
added to the fitness minimized by CMA-NES.
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Iinitialization. CMA-ES requires an initial value for the population mean. CMA-
NES starts the search with the values estimated by the Probit classification
model, assuming that the game equilibrium might be found in the same region
of the search space, and in order to speed up the search process.

Extensions of the Game. CMA-NES approximates the Nash equilibrium for any
payoff functions. Game Γ is defined with the Probit method as baseline. Other
classification models can be considered. To illustrate this, we will also use CMA-
NES with a logistic regression game model for which in the payoff function in
(3) we replace the normal cumulative distribution function with the sigmoid
function

σ(x;β) =
1

1 + e−xiβ̃
.

We will denote by CMA-NES-P the model that estimates Probit Nash parame-
ters and CMA-NES-LR the model that estimates logistic regression parameters.

3 Numerical Examples

Numerical examples are used to illustrate the potential of the game theoretic
approach. We use a set of synthetic and real-world data. We use a set of small
datasets with various difficulties in order to assess if the game theoretic model
is capable to enhance the baseline models used before extending our study to
larger datasets.

Data. Synthetic data were generated with the make classification function from
the scikit-learn1 python package [11]. For testing the performance and general-
ization characteristics of the proposed method we generate five synthetic data
sets with various degrees of difficulty for the binary classification problem. We
control the difficulty of a test set by varying the degree of overlap between
classes and the number of instances in each class (the balance of the class). For
reproducibility we report the parameters that we use to generate the test data:
class separator ∈ {0.1, 0.5}, class weight ∈ {0.5, 0.7, 0.8}, the seed used to gen-
erate the data {5, 10} and 100 instances for each data set. For the real-world
data2 we use a binary version of the iris data set (we remove the Iris Setosa
instances from the data to make the problem a binary classification one, the
remaining 100 instances are overlapping thus making the problem harder), the
Statlog (heart disease) data set with 270 instances and 13 attributes and the
Somerville happiness survey data set with 143 instances and 7 attributes.

Performance Evaluation. For estimating the prediction error we use the Strati-
fied k-Fold Cross Validation approach [4], with k = 10. We repeat the Stratified
10-fold cross validation 14 times, each time we generate the folds using the Strat-
ifiedKFold function from scikit-learn with a different seed. We report the area
1 Version 0.23.1.
2 Data available at UCI machine learning repository [1].
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under the receiver operating characteristic curve (AUC) [12] and the accuracy
(ACC) [4] for each fold. Significance of differences in results is evaluated by using
a paired t-test with α = 0.05. Results reported by CMA-NES are compared with
those reported by the corresponding baseline model.

Results and Discussions. Tables 1 and 2 present results reported by the two
CMA-NES variants and the corresponding baseline models for the synthetic
datasets. Results for the real datasets are presented in Tables 3 and 4. Boxplots
representing the distribution of the values of AUC and ACC are represented in
Figs. 2 and 3.

Table 1. AUC and ACC values for the synthetic data sets for different values of the
class separators (s) and weights (w), and different tournament sizes (ts) for CMA-NES
that runs the game based on Probit and on Logistic Regression.

s w ts CMA-NES-P CMA-NES-LR

AUC ACC AUC ACC

Mean Std Mean Std Mean Std Mean Std

0.1 0.5 2 0.54 0.05 0.52 0.04 0.53 0.08 0.51 0.06

3 0.56 0.03 0.53 0.04 0.56 0.03 0.54 0.04

4 0.56 0.04 0.53 0.04 0.56 0.03 0.54 0.03

5 0.56 0.03 0.54 0.04 0.56 0.03 0.54 0.03

0.7 2 0.54 0.06 0.51 0.04 0.54 0.07 0.52 0.05

3 0.61 0.05 0.54 0.03 0.61 0.05 0.54 0.04

4 0.61 0.04 0.54 0.03 0.59 0.05 0.52 0.03

5 0.6 0.04 0.52 0.04 0.59 0.06 0.52 0.03

0.5 0.5 2 0.83 0.03 0.77 0.02 0.84 0.02 0.78 0.02

3 0.87 0.02 0.82 0.03 0.87 0.02 0.82 0.03

4 0.87 0.01 0.82 0.03 0.87 0.02 0.82 0.03

5 0.86 0.02 0.82 0.03 0.87 0.02 0.82 0.03

0.7 2 0.83 0.04 0.72 0.03 0.83 0.04 0.71 0.02

3 0.85 0.03 0.79 0.02 0.85 0.03 0.79 0.01

4 0.85 0.03 0.79 0.02 0.85 0.03 0.78 0.02

5 0.85 0.03 0.78 0.02 0.85 0.03 0.78 0.02

0.8 2 0.76 0.09 0.63 0.04 0.76 0.09 0.62 0.04

3 0.86 0.02 0.77 0.02 0.78 0.07 0.69 0.07

4 0.86 0.02 0.77 0.01 0.78 0.07 0.69 0.07

5 0.86 0.02 0.76 0.01 0.78 0.08 0.7 0.07
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Table 2. AUC and ACC values for the synthetic data sets for different values of the
class separators (s) and weights (w) for the Probit and Logistic Regression classifiers.

s w Probit (AUC) Probit (ACC) LogRegr (AUC) LogReg (ACC)

Mean Std Mean Std Mean Std Mean Std

0.10 0.50 0.60 0.02 0.54 0.02 0.60 0.02 0.54 0.02

0.70 0.62 0.03 0.56 0.03 0.62 0.03 0.56 0.03

0.50 0.50 0.87 0.02 0.82 0.03 0.87 0.02 0.82 0.03

0.70 0.85 0.03 0.77 0.03 0.85 0.03 0.77 0.03

0.80 0.81 0.06 0.66 0.04 0.79 0.06 0.64 0.04

Table 3. AUC and ACC values for the real data sets for different tournament sizes
(ts) of CMA-NES and data sets: 1 - Iris, 7 - Statlog, 8 - Sommerville

Data set ts CMA-NES-P CMA-NES-LR

AUC ACC AUC ACC

Mean Std Mean Std Mean Std Mean Std

1 2 0.96 0.07 0.91 0.07 0.60 0.12 0.50 0.02

3 0.96 0.07 0.91 0.07 0.69 0.14 0.54 0.03

4 0.96 0.07 0.9 0.07 0.71 0.10 0.55 0.05

5 0.96 0.07 0.9 0.07 0.78 0.12 0.55 0.04

7 2 0.62 0.05 0.51 0.02 0.50 0.02 0.53 0.02

3 0.62 0.04 0.51 0.02 0.52 0.02 0.53 0.02

4 0.59 0.06 0.52 0.02 0.53 0.03 0.55 0.01

5 0.57 0.04 0.54 0.02 0.51 0.03 0.54 0.01

8 2 0.56 0.04 0.53 0.02 0.54 0.05 0.51 0.02

3 0.56 0.02 0.54 0.01 0.55 0.05 0.52 0.02

4 0.54 0.02 0.54 0.02 0.58 0.05 0.52 0.02

5 0.54 0.02 0.54 0.02 0.57 0.04 0.53 0.02

We find that CMA-NES improves upon Probit for the synthetic data sets
with class weight 0.7 and 0.8 (in 7 cases accuracy results are significantly better
and in 8 cases they are as good as those reported by Probit). While also an
improvement in AUC levels is observed for the data set with 0.5/0.8, the logit
version only improves the accuracy of the search for this dataset, with similar
results for the other instances of the data.
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Table 4. AUC and ACC values for the real data sets for Probit and Logistic regression
classifiers and data sets: 1 - Iris, 7 - Statlog, 8 - Sommerville

Data set Probit (ROC) Probit (ACC) LogRegr (ROC) LogRegr (ACC)

Mean Std Mean Std Mean Std Mean Std

1 0.96 0.07 0.91 0.06 0.96 0.07 0.91 0.06

7 0.90 0.00 0.84 0.00 0.90 0.00 0.84 0.00

8 0.51 0.02 0.53 0.02 0.51 0.02 0.53 0.02

Fig. 2. Box plots of AUC (ROC) and ACC values for the synthetic data sets for
different values of the class separators and weights, and different tournament sizes for
CMA-NES.

The tournament size does not influence the search results significantly, indi-
cating the robustness of CMA-NES with respect to this parameter. In a similar
manner Fig. 3 illustrates results reported for the real-datasets. The accuracy
reported by CMA-NES is as good as that of Probit for the Iris data-set, signif-
icantly better for Sommerville data set and worse for Statlog. The tournament
size does not influence the outcome of CMA-NES significantly for these data also.
The Logistic regression game model also improves results for the Sommerville
data-set but they are significantly worst for the other two.
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Fig. 3. Box plots of AUC (ROC) and ACC values for the real data sets for different
tournament sizes of CMA-ES and data sets: 1 - Iris, 7 - Statlog, 8 - Sommerville

4 Conclusions

The use of the Nash equilibrium concept as a solution for the binary classification
problem is explored in this paper. It is shown how an optimization heuristic can
be adapted to compute game equilibria and used to estimate model parameters
that approximate the equilibrium, and hopefully its appealing properties. While
results illustrate the potential of the approach, the main contribution of the
paper is that it opens the path to actually embed game theory solution concepts
into classification models.

Acknowledgements. This work was supported by a grant of the Ministry of
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Abstract. We consider the problem of regularized nonlinear regression
on Riemannian Stiefel manifolds when only few observations are avail-
able. In this paper, we introduce a novel geometric method to estimate
missing data using continuous and smooth temporal trajectories to over-
come the discrete nature of observations. This approach is important
in many applications and representation spaces where nonparametric
regression for data that verify orthogonality constraints is crucial. To
illustrate the behavior of the proposed approach, we give all numerical
details and provide geometric tools for computational efficiency.

Keywords: Nonlinear regression · Optimization · Stiefel manifolds

1 Introduction

The most widely used statistical learning models are regression and classification
[1–4]. Regression is a supervised learning technique that translates the relation-
ship between an input ti (predictors) and the corresponding output Xi (outcome
variable) for i = 0, . . . , n. Generally, we write Xi = r(ti) + εi where εi denotes
the noise term and r the regression function. When r is a linear function, the
supervised learning algorithm is called linear regression. Using this simplest pre-
dictive model, one can infer for the unseen data. However, it is largely admitted
that linear regression models are not efficient when it comes to real data, high
dimension, nonlinear spaces, etc.

Another popular family of solutions are polynomials. The standard method to
extend linear regression to a non-linear relationship between X and t. This app-
roach has been widely used in different fields and wide applications. In fact, this
technique seems to be easy to implement, can be extended to infinite functional
solutions when used to form orthogonal bases and allow more nicely solutions,
e.g. splines. The latter will be at the heart of our motivations. Unluckily, poly-
nomial regression has some limitations: i) First of all they can not be extended
to nonlinear spaces, ii) the complexity increases with the number of data points,
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which is hard to handle and iii) polynomial-based regression models are known
to drastically over-fit, even for one dimensional observations. To overcome the
limitations of polynomial-based regression, we consider spline-based regression.

Spline-based regression models are among the most important non-linear
regression techniques. Indeed, this approach is locally adaptive for both func-
tional time series and spatial data. It can be extended to more complicated
spaces and can use an improved regression technique which, instead of building
one model for the entire dataset, divides the dataset into multiple bins and fits
each bin with a separate model. For example, with standard polynomials we
need the global structure on the underlying space. This is a hard constraint.
To avoid such constraints, many methods have been proposed to divide data to
partitions and solve the problem locally. The points where the division occurs
are called knots and local solutions lead to piecewise functions.

In order to construct more sophisticated solutions, one can add extra condi-
tions on regression functions such as continuity and differentiability. Note that
when we formulate the problem as spline interpolation or fitting, we should place
the knots in an ordered manner. Many techniques exist and choices are made
depending on the applications at hand. While other configurations may have
potential advantages, it is very common to use equally-spaced observation times
ti, i = 1, . . . , N . Indeed, searching for optimal knots is not a straightforward task
on nonlinear manifolds and consequently out of the scope of this paper. More
importantly, we focus on the search space of smooth regression splines where
data points verify orthogonality constraints and ti are distinct and ordered time
instants. We show that this problem occurs in many real situations and leads
to specific optimization methods, usually called optimizations on Riemannian
manifolds [5,6].

Data points on Riemannian manifolds are fundamental objects in many fields
including, subspace filtering, machine learning, signal and image-video process-
ing, communication and medical imaging [2,3,7–9]. To cite but few examples,
tracking, face and action recognition and statistical shape analysis [4,5,10–12].
In many real-world applications, Stiefel manifold and Grassmann manifold are
most commonly preferred as representation Riemannian manifolds. A common
limitation in many of these applications has been the geometric structure on
some manifolds, e.g. Grassmann and Stiefel manifolds [5]. As increasingly real-
world applications have to deal with non-vector data, a great number of algo-
rithms for manifold embedding and manifold learning have been introduced.
Recently, many efforts have been made to develop important geometric and sta-
tistical tools: Riemannian exponential map and its inverse, means, distributions,
geodesic arcs, etc. [1,3,13].

Motivated by the success of these approaches, we consider problems for which
the finite set of data points X0,X1, . . . , XN consist in observations on Stiefel
manifold M = St(n, k), the manifold of k-tuples of pairwise orthogonal unit
vectors in R

n, associated to a set of observation times (0 = t0 < t1 < ... < tN =
1) such that the goal is to seek a spline γ : [t0, tN ] → M that minimizes the
functional
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E(γ) =
λ

2

∫ tN

t0

<
D2γ(t)

Dt2
,
D2γ(t)

Dt2
>M +

1
2

N∑
i=0

d2M(γ(ti),Xi) (1)

where < ., . >M and dM denote the canonical metric and geodesic distance on
M [6].

A vast number of methods for solving the optimization problem on Rie-
mannian manifolds have appeared in the literature [2,14–22]. In this paper, we
propose a geometric algorithm that generates a solution of the problem (1). This
resulting solution takes the form of a spline and satisfies the following properties:

1. γ(ti) = Xi.
2. γ is of class C1.

In short, the task is that of regression on a homogeneous space in the purpose to
estimate/predict missing data from few available observations. By observations
we mean any data points that can be obtained from temporal acquisitions. For
example, medical images at different time instants are usually used to analyze the
evolution of a disease. In this context and due to logistic and time constraints, it
is very common to store few discrete moments only. Then at each time instant,
we have a data point that is represented as an element of a manifold [1]. So there
is a need to estimate missing data points on such manifold at non observed time
instants. Several discrete-time models on smooth manifolds and Lie groups have
been studied in the literature [23,24]. Here, we consider a continuous-time model
and will address the problem of regularized non-linear regression from finite
observations [9]. The main contributions of the proposed methods shows that:
(i) the formulation leads to a generalization of splines on Stiefel manifolds, (ii)
the solution exists and can be efficiently solved and (iii) the geometric algorithm
is simpler and can be applied in a lot of fields with various data types.

Various works have been developed to construct an interpolating Bézier
spline on Riemannian manifolds with some degree of smoothness. Without being
exhaustive, we mention [8,25–29] for an account of important theoretical con-
tributions in this area. However, only a little has been done in this direction
for Stiefel manifold [30,31]. Indeed, Riemannian optimization problem on Stiefel
manifold is generally extremely hard to solve due to the geometric structure
and to the orthogonality constraints that represent this manifold. In [24,32],
the authors propose an iterative algorithm to compute the Riemannian log map
equipped with the canonical metric which allow to find the geodesic between
two given points in the Stiefel manifold. In this paper, we make use of this algo-
rithm to present a novel approach to construct an interpolating Bézier spline of
class C1 on M. The results presented here extend our results introduced in [8].
Accurately, we follow the same idea from the energy minimization formulation
of least-squares fitting in Euclidean spaces and generalize this concept to this
manifold. The proposed method is geometrically simpler, extensible and easy-
to-implement. In fact, we demonstrate the utility of the proposed solution on
different vision problems.
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The paper is organized as follows. In Sect. 2 we review the basic differential
geometry of the Stiefel manifolds that will be used to derive our main results. In
Sect. 3 we address the fitting problem on the Stiefel manifolds and we describe
our method to construct a solution. Section 4 shows numerical results and poten-
tial applications and Sect. 5 concludes the paper.

2 Preliminaries

The goal of this section is to recall the basic facts about the Stiefel manifold
M = St(n, k), with k ≤ n, that will allow us to build a simple but consistent
geometric algorithm to generate interpolating Bézier spline. We describe a few
computational tools (namely geodesics, the Riemannian Exp and Log maps)
derived from a chosen Riemannian metric. For a detailed exposition on these
concepts, we refer the reader to [5,6].

The Stiefel manifold M is a compact matrix manifold of k-dimensional
orthonormal frames in R

n. A point in the Stiefel manifold is represented by
an n-by-k matrix as following:

M = {X ∈ R
n×k | XTX = Ik}.

When k = 1, we simply have the sphere Sn−1, while when k = n, we have
the orthogonal Lie group O(n) and when k = n − 1, we obtain the special
orthogonal group SO(n). The Stiefel manifold can also be viewed as a quotient
manifold of the orthogonal Lie group O(n). Consequently, the matrix manifold
M is diffeomorphic to O(n)/O(n − k) which turns it into a homogeneous space.
For any matrix representative X ∈ M, the tangent space of M at X is defined
as

TXM = {Z ∈ R
n×k | XTZ + ZTX = 0}.

Hence the dimension of both TXM and M is nk − 1
2k(k + 1).

We can endow the Stiefel manifold with a different Riemannian metrics: the
Euclidean metric, and the canonical metric. In the two special cases when k = 1
and k = n, these two Riemannian metrics are equal. Otherwise they differ, and
yield different formulas for geodesics and parallel translation. For the purpose
of this paper, we endow M with the canonical metric. In fact, let X ∈ M, and
Z1, Z2 ∈ TXM, then we define the canonical metric on TXM by,

〈Z1, Z2〉X = trace(ZT
1 (1 − 1

2
XXT )Z2) (2)

Geodesics on a Riemannian manifold are locally shortest curves that are
parametrized by the arc length. For a curve γ on M, they satisfy the second
order differential equation:

γ̈ + γ̇γ̇tγ + γ
(
(γtγ̇)2 + γ̇tγ̇

)
= 0. (3)
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It is clear that this equation is numerically difficult to solve. Hopefully, the
canonical structure allows a practical decomposition of the tangent space that
simplify the characterization of geodesics. In [6], the authors have included a
general formula for geodesics on Stiefel manifolds. A geodesic is then determined
by a starting point X ∈ M and a direction Z in TXM. In fact, the idea starts
with a decomposition of Z into its horizontal and vertical components with
respect to X, Z = XXTZ + (I − XXT )Z. Then, by letting A = XTZ a skew
symmetric matrix and by means of a QR decomposition of (I − XXT )Z, we
have Z = XA + QR. Therefore, the geodesic γ on the Stiefel manifold starting
from X with direction Z is given by

γ(t) = XM(t) + QN(t), (4)

M(t) and N(t) are k-by-k matrices given by the matrix exponential
[
M(t)
N(t)

]
= exp

(
t

(
A −Rt

R 0

))[
Ik
0

]
. (5)

We can also describe geodesics on the Stiefel manifold by the orthogonal Lie
group O(n) actions, i-e by multiplying the orthogonal matrices to the initial
point X [6].

Now let γ : [0, 1] → M be a geodesic curve such that γ(0) = X1 and γ̇(0) =
Z ∈ TX1M. In terms of the canonical metric, the Riemannian exponential map
ExpX1

: TX1M → M that sends a Stiefel tangent vector Z to the endpoint
γ(1) = X2 of the geodesic γ is given explicitly by:

ExpX1
(Z) = X1M + QN = X2 ∈ M, (6)

where M , Q and N are the same as described in the above setting. Conversely,
given two data points X1 and X2 ∈ M, the inverse exponential map Exp−1

X1
(also

known as the logarithmic map LogX1
) allows the recovery of the tangent vector

Z between them. Formulas to compute the Riemannian log map on the Stiefel
manifold relative to the Euclidean metric are provided in [33]. To the best of our
knowledge, up to now, there exist two different approaches for evaluating the log
map on the Stiefel manifold with respect to the canonical metric [24,32]. In this
paper, we adopt the method provided in [32] and we suppose that each two data
points belong to a geodesic ball with an injectivity radius determined in [24].
Consequently, the geodesic arc joining X1 to X2 in M can be parameterized
explicitly by:

γ(t,X1,X2) = ExpX1

(
tLogX1

(X2)
)
, t ∈ [0, 1], (7)
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Fig. 1. Geometrical illustration of the Riemannian manifold M and its tangent space
TXiM at Xi ∈ M. γ is an interpolating spline with Xt = γ(t) for t ∈ I which verifies
γ(t)T γ(t) = Ik for all t ∈ I.

3 Regression on Stiefel Manifolds

In this section, a method to construct a C1 interpolating Bèzier curve for smooth-
ing data that are constrained to live in the Stiefel Manifold M equipped with
its canonical Riemannian metric is proposed. More precisely, given X0, ...,XN a
set of (N +1) distinct points in M and t0 < t1 < ... < tN an increasing sequence
of time instants. For simplicity of the exposition we will assume that the time
instants are ti = i. Our main objective is to construct an interpolating Bézier
spline α : [0, N ] → M of class C1 and minimizing the cost functional Eq. (1).

In Euclidean spaces, Bézier curves are defined as a combination of linear
polynomial functions, whose coefficients are called control points. The first and
last control points are the endpoints of the curve, but the intermediate control
points are in general not on the curve. The number of control points determines
the degree of the polynomial spline. Moreover, Bézier curves can be constructed
by the classical de Casteljau algorithm [34]. By trading linear interpolation by
geodesic interpolation, the Casteljau algorithm was generalized to accommodate
Bézier curve for Riemannian manifolds.

In what follows, αj : [t0, tN ] → M denotes the Bézier curve of order j on M
determined by control points Vj , for j = 0, ..., N , and defined by a generalization
of the classical de Casteljau algorithm. More precisely, let V 0

i (t) = Vi, and for
i = 0, ..., j − m,m = 1, ..., j,
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V m
i (t) = αm(t, Vi, ..., Vi+m) = γ(t, V m−1

i , V m−1
i+1 ), (8)

where γ(t, ., .) represent the geodesic on M defined by Eq. (7). In this framework,
the Bézier spline α : [0, N ] → M will be constructed by a sequence of N Bézier
curve of order two and three such that the segment joining X0 and X1, as well as
the segment joining XN−1 and XN are Bézier curves of order two, while all the
other segments are Bézier curves of order three. Furthermore, we will suppose
that there exists two artificial control points (Y −

i , Y +
i ) on the left and on the

right hand side of the interpolation point Xi for i = 1, ..., (N − 1). Hence, the
Bézier spline α : [0, N ] −→ M is given by

α(t) =

⎧⎪⎨
⎪⎩

α0
2(t;X0, Y

−
1 ,X1), 0 ≤ t ≤ 1,

αi
3(t − i;Xi, Y

+
i , Y −

i+1,Xi+1), i − 1 ≤ t ≤ i

αN−1
2 (t − (N − 1);XN−1, Y

+
N−1,XN ), N − 1 ≤ t ≤ N

Since the Bézier spline α interpolates the first and the last control points of
each Bézier curve αi

j , j ∈ {2, 3}, 0 ≤ i ≤ n − 1, therefore the continuity of α
at joint points is well satisfied. However, as mentioned in the last section, we
would ideally like that α be of class C1. It is immediate, by construction, that
the spline α is C∞ on ]ti, ti+1[, for i = 1, ..N −1. We are thus looking to describe
the best positions of the unknown control points that ensure the differentiability
condition at the knot points.

Our main idea to handle this issue is to treat the fitting problem on different
tangent space. Explicitly, let X0, ...,XN be a set of distinct given points in M
with Xl being in the cut locus of Xi, i �= l. By means of the algorithm of
the logarithm map developed in [24,32] for Stiefel manifold, we transport data
points X0, ...,XN to TXi

M at a point Xi ∈ M, i = 1, ..., N − 1. Let us denote
the mapped data by Zi = (Zi

0, ..., Z
i
N ) with Zi

m = LogXi
(Zm) for m = 0, ..., N .

Now our next concern is to search for the control points of a C1 Bézier spline
on TXi

M, i = 1, ..., N − 1.
From this tangential solution, the Riemannian exponential map ExpXi

defined on M by Eq. (6) will bring back the solution to the matrix manifold
M. The resulting Bézier spline α is then reconstructed with De Casteljau algo-
rithm and we prove that is optimal. So let β : [0, N ] → TXi

M denote the Bézier
spline on TXi

M, i = 1, ..., N − 1 defined identically to the Bézier spline on M
by N Bézier curves βi

j , j ∈ {2, 3}, 0 ≤ i ≤ N − 1. And let (Bi
m)− and (Bi

m)+

denote control points on the left and on the right hand side of the interpolation
point Zm, for m = 1, ..., (N − 1).

Interestingly, we observe that the optimization problem Eq. (1) which is not
easy to solve directly on M became a simplified euclidean cost function. In [8] we
treat in details the Euclidean case and we found an explicit relation between con-
trol points (Bi

m)− and (Bi
m)+. Therefore control points of the Bézier curve β are
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exactly solution of the problem of minimization of the mean square acceleration
expressed uniquely in terms of (Bi

m)−. Specifically, we have on TXi
M:

min
(Bi

1)
−,...,(Bi

N−1)
−

E((Bi
1)

−, ..., (Bi
N−1)

−)

:= min
(Bi

1)
−,...,(Bi

N−1)
−

∫ 1

0

‖β̈0
2(t;Z

i
0, (B

i
1)

−, Zi
1)‖2

+
N−2∑
m=1

∫ 1

0

‖β̈i
3(t;Z

i
m, (Bi

m)+, (Bi
m+1)

+, Zi
m+1)‖2

+
∫ 1

0

‖β̈N−1
2 (t;ZN−1, (Bi

N−1)
+, Zi

N )‖2.

(9)

where ||.|| represent the canonical norm on the tangent space TXi
M. It suf-

fices now to compute the inner product of the acceleration and then evaluate the
integral of each term of (9). Similar to [8] we obtain a simple PDE in terms of
(Bi

m)− and Zm. Hence, to solve this optimization problem, it remains to search
for the critical points of the gradient of the energy function, see [8] for more
details. For the convenience of the reader, we give a geometrical illustration
(sketch) in Fig. 1.

Theorem 31. Given X0, ...,XN be a set of data points in M and a sequence
of time instants t0 < ... < tN . The Bézier spline α : [0, N ] → M interpolating
points Xi at ti = i on M, for i = 0, ..., N satisfies the following properties:

(i) α is uniquely defined by (N − 1) control points Y = [Y −
1 , ..., Y −

N−1]
T ∈

R
n(N−1)×n where the rows of Y are given by:

Y −
i = ExpXi

(Bi
i)

−). (10)

(ii) α is C1 on M.

Proof. The proof runs as Corollary 3.3. in [8]. Detailed steps are summarized in
Algorithm 1.

4 Experimental Results

In this section, we show the performance of the proposed nonlinear regression
method via two experiments. In all experiments we have considered a finite set
of data points X0,X1, . . . , XN on a Stiefel manifold M. Each data point Xi is
given at a fixed time instant ti with i = 0, 1, . . . , N and (t0, tN ) = (0, 1). In
the first setting, we consider a very common situation where data points are
elements on St(n, 1) = Sn−1. This situation is standard in many applications.
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Algorithm 1. C1 Bézier spline on M.
Input: N ≥ 3, (X0, ..., XN ) as data points on M at time instants (t0, ..., tN ) .

Output: ̂Y
1: for i = 1 : N − 1 do
2: Compute Z = [Zi

0, ..., Z
i
N ]T on TXiM:

3: for m = 0 : N do
4: Zi

m = LogXi
(Xm)

5: Compute B = [(Bi
1)

−, ..., (Bi
N−1)

−]T on TXiM, using Algorithm (1) in [8].
6: Compute control point Y −

i = ExpXi
(Bi

i)
−).

7: end for
8: end for
9: return ̂Y

To cite but few popular ones: normalized directions, longitudinal data, path of
rotations is equivalent on SO(n) to the path of a point on St(n, 1) when rotations
applied to a unit vector. In the second regression setting, we consider a popular
example from morphometric analysis where data points are landmark curves and
are considered as elements on St(n, p) where p = 2 for planar curves and p = 3
for spatial curves.

4.1 Special Case with Directions and Rotations

These experiments concern the nonlinear regression problem where observations
are on the finite unit sphere. It is very well known that the geodesics exist and
are unique for non antipodal points. Both the Riemannian exponential and its
inverse are diffeomorphisms inside a ball of radius π. In all examples we display
the resulting path using Algorithm 1 detailed in the previous section and not a
specific formulation for spherical data.

We remind that the problem of regression with cubic splines can efficiently
be solved in this case, and the solution may be better. However, our strategy
is different: demonstrate that the proposed method produces good estimators
when the Stiefel manifold coincides with the sphere. Thus, and for a visualization
purpose, we consider the case (n, p) = (3, 1) and show original data points and
the optimal α with different values of N . The time instants are uniformly spaced
in [0, 1]. We display different examples in Fig. 2.

4.2 Special Case with Procrustes Process

These experiments concern the nonlinear regression problem where observations
are curves with orthogonal constraint. So, they can be considered as elements on
the unit sphere, usually denoted Σp

n and called the Kendall space [11]. They were
largely studied for analyzing biological data [9]. It is also common to perform
other transformations on curves during Procrustes analysis. We remind that
our main objective is to show that the proposed method is successful in this
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Fig. 2. Examples with different data points on M = St(3, 1). The original data are
black dotted and the optimal solution α in red. (Color figure online)

particular case and remains more general for other cases. Otherwise, geodesics,
the exponential map, log map are detailed in [9].

In these experiments, we observe four data points X0,X1,X2,X3 on (n, p) at
time instants (t = 0, t1 = 1

3 , t2 = 2
3 , t3 = 1). In Fig. 3, observation are displayed

on the diagonal with red boxes. So, the goal is to estimate the missing points Xt

for t �∈ {0, 1, 2, 3}. We display the resulting solution using Algorithm 1 detailed
in the previous section for this manifold. Our is more general but we restrict
ourselves to show a good estimator when the Stiefel manifold coincides with this
manifold. Thus, and for a visualization purpose, we consider the case (n, p) =
(3, 2) and show original data points (red boxes) and the optimal α : t 	→ α(t) =
Xt. We remind that the time instants are uniformly spaced in [0, 1]. We generate
4 intermediate points (estimated) between any two successive observations at
different time instants, e.g. t = 1

15 , 2
15 , 3

15 , 4
15 . Note that we can generate as many

intermediate points as we want but we choose 4 to maintain a good quality of
illustrations. Following the same principle, we present two different examples in
Fig. 3.
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Fig. 3. Two examples with 4 different data points on M = St(3, 2). The original
observations are given on the diagonal: Time instants (t = 0, . . . , i

15
, . . . , 1) are different

and uniformly spaced in [0, 1]. The x − y axes display the second components. (Color
figure online)
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5 Conclusion

We have presented a new method for regularized nonlinear regression on a spe-
cial class of Riemannian manifolds: the Stiefel manifolds M of k-orthonormal
frames in R

n. Using the definition of geodesic curves and taking into account
the rich and nice structure of this space, we use the proposed method to pre-
dict missing data points at specified time instants. Following the same idea from
the energy minimization formulation of least-squares regression in Euclidean
spaces, the proposed solution is geometrically simpler, extensible and easy-to-
implement. Moreover, we have shown that this framework can be applied for
different applications.
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Abstract. We investigate ways of increasing trust in verdicts of the
established Convolutional Neural Network models for the face recogni-
tion task. In the mission-critical application settings, additional metrics
of the models’ uncertainty in their verdicts can be used for isolating low-
trust verdicts in the additional ‘uncertain’ class, thus increasing trusted
accuracy of the model at the expense of the sheer number of the ‘cer-
tain’ verdicts. In the study, six established Convolutional Neural Network
models are tested on the makeup and occlusions data set partitioned to
emulate and exaggerate the usual for real-life conditions training and test
set disparity. Simple A/B and meta-learning supervisor Artificial Neural
Network solutions are tested to learn the error patterns of the underlying
Convolutional Neural Networks.

Keywords: Uncertainty · Meta-learning · Face recognition · Makeup ·
Occlusion · Paper with code

1 Introduction

When Machine Learning (ML) algorithms leave laboratory settings and enter the
real-life application, especially in the mission-critical tasks with the high cost of
errors or rewards, questions of the explainability or, at least, the trustworthi-
ness of the ML-generated decisions become no less important than the proper
prediction verdict. Frequently, when ML algorithms’ training data do not fully
represent real-life data, the very notion of the ‘proper’ verdict becomes blurry.
If the correct prediction scored a tiny bit more than the alternative wrong one,
should we consider it a true success? Can we, and if the answer is ‘yes’, how we
can trust ML algorithms in their decisions?

The domain of mission-critical applications has been entered by the ML
solutions first in military and medical areas [12], and later in the autonomous
driving and the robot operation field that experiences explosive development
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[26]. Concerns about how ML algorithms handle real-life uncertainty and to
what degree it could be trusted have also entered general scientific, engineering,
and public discourse [1], frequently as a part of the Artificial Intelligence (AI)
perspectives debate.

The very founders of the contemporary field of AI scientific research were
sceptical about the worthiness of the attempts to answer the question of what
AI is. Instead, they suggested answering the question of how well AI can emulate
human intelligence and finding ways of quantifying the success of that imitation
[17,24]. N. Chomsky, in numerous lectures and publications (f.e. [5]), even more
categorically elaborated that AI is a human linguistic concept rather than an
independent phenomenon. Trust, also an abstract human concept, in the end,
should be left for humans to decide. However, metrics of the uncertainty of
the ML and AI algorithms in their decisions and algorithms that can produce
those metrics may supply humans with quantified data to make decisions on the
confidence level suitable for the task and audience.

Being a complex system itself, ML or AI (whatever it is, at least it exists as
a human concept) operation can be the subject of study or modelling by ML
itself. The idea of learning the ML processes was introduced in the 90’s [23], and
recently gained traction in various flavours of meta-learning [25]. They can be
viewed either as a narrower ‘learning to learn’ approaches such as an extension
of transfer learning [2,6,19], or model hyper-parameter optimization [3,21], or
a wider horizon ‘learning about learning’ approach conjoint to the explainable
learning [13,15].

Of course, the generalized topic of meta-learning of the real-life uncertainty
handling by ML algorithms, or even more specifically ANN models, to increase
trust in and explainability of ANN verdicts is too big for this paper scope.
Therefore, the study concentrates on limited aspects of the task in terms of the
application domain, kinds of the training-test data disparity, underlying types
of ANN models, their parameters and behaviour patterns to learn, and meta-
learning methods.

This research builds upon the previous pilot study of the makeup and occlu-
sions effects on face recognition (FR) accuracy of the established convolutional
neural network (CNN) models such as AlexNet that was trained on the non-
disguised images only [22]. On the one hand, biometrics applications in general,
and FR in particular, may seem not mission-critical applications in which confi-
dence in positive or negative verdicts is essential. However, in legal and security
applications, where the lives of individuals or a large number of people may be at
stake, false-positive errors in the former case or false-negative errors in the latter
may have huge societal costs and impacts. On the other hand, solutions for trust-
worthy ML found for the FR task may be generalized for other image processing
applications or applications dealing with other kinds of data or analysis.

In this study, performance in FR of the additional state-of-the-art (SOTA)
CNN models of various complexity and computational heaviness, such as
VGG19, GoogLeNet, ResNet50, Inception v.3, InceptionResnet v.2, is inves-
tigated in the presence of unexpected makeup and occlusions in test images.
Instead of analyzing test data to identify samples not represented by the train-
ing data, which may produce unreliable prediction verdicts [7], we propose to
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analyze the behaviour of the underlying CNNs to identify verdicts about which
CNNs are ‘uncertain’ and separate them into additional class.

Three metrics, derived from the softmax activations distribution of the under-
lying CNNs, are investigated whether they may be used to generate the trusted
verdict at the desired confidence level. The first one is suggested in the origi-
nal work: the highest CNN softmax activation to which a simple A/B test is
applied. The A and B class distributions here are the CNN softmax distribu-
tions of the wrongly identified and correctly identified images, with a threshold
separating those classes at the desired confidence level. The hypothesis is that
even such a simple test would produce consistent results ensuring false-positive
or false-negative errors on the given confidence level or better across all models
for makeup and occluded images.

Another two metrics are produced by the meta-learning supervising ANN
(SNN) attached to the softmax output layers of the ensembles of the underlying
CNN models. The hypothesis is that SNN can learn ‘uncertainty’ patterns in
the underlying CNN softmax activation distributions. The SNN output metrics
are predictions of the ‘certainty’ class and the very SNN’s softmax activation for
that class. The number of ‘certainty’ classes is proportional to the underlying
CNN ensemble size. SNN is not yet trained to meet the forehead set confidence
level at this stage of the research. We assess what level of confidence in false
positive or false negative errors a simple meta-learning supervising ANN version
of the fully connected neural network (FNN) consisting of three dense layers is
capable of achieving.

The paper is organized as follows. Section 2 briefly introduces ML and uncer-
tainty concepts used in developing the proposed solution and outlines intuition
and a general idea of what the supervisor ANN may learn. Section 3 describes the
data set used for experiments; Sect. 4 outlines experimental algorithms in detail;
Sect. 5 presents the obtained results, and Sect. 6 discusses the results, draws
practical conclusions, and states directions of the research of not yet answered
questions.

2 Machine Learning and Uncertainty

2.1 High-Level View on Classification with ANN

Each layer of the simple fully-connected artificial neural network (FNN) can be
represented as a composite linear transformation, which can be expressed via
multiplication of the input vector xi by a matrix Wi, and non-linear transfor-
mation by an activation function ai or c.

π(x) = c ◦ fk . . . ai ◦ fi . . . a1 ◦ f1(x), ∀x ∈ X ⊂ R
m (1)

where yi = f1(xi) = Wixi, for example ai(yij) = y+
ij .

The point estimate classification c based on the class scores is frequently imple-
mented via a normalized mass function, for example, softmax, and possibly follow-
ing argmax classification functions: imax = c(yk) = arg max(. . . , eykj

∑
j eykj , . . . ).
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However, for the uncertainty-aware classification, the range space should be
not just a one-dimensional integer one c : Y ⊂ R

n �→ C ⊂ I, but rather a product
with either binary trusted/not-trusted flag dimension:

c : Y ⊂ R
n �→ C ⊂ I × B (2)

or a product with the real one-dimensional space that can be given prob-
abilistic interpretation c : Y ⊂ R

n �→ C ⊂ I × R, or a product with the real
n-dimensional space that can be interpreted as a probability distribution over
all classes c : Y ⊂ R

n �→ C ⊂ I × R
n, or, if not normalized, may be given the

fuzzy logic interpretation.

2.2 Trusted Accuracy Metrics

If only the classification verdict is used as a final result of the ANN model then
accuracy of the target CNN model can be calculated only as the ratio of the
number of correctly identified test images by the CNN model, to the number of
all test images Accuracy = Ncorrect

Nall
.

When additional dimension in classification is used, for example softmax
activation value of the target CNN, or amending verdict of the meta-learning
supervisor ANN, (see Formula 2), and π(x) = c, where ∀x ∈ X , ∀c ∈ C =
{(1, f), (2, f) . . . (n, f)}, ∀f ∈ B = {True, False}, then the trusted accuracy
and other trusted quality metrics can be calculated as:

Accuracyt =
Ncorrect:f=T + Nwrong:f �=T

Nall
(3)

As a mapping to a more usual notations, Ncorrect:f=T can be as the True Positive
(TP) number, Nwrong:f �=T - True Negative (TN), Nwrong:f=T - False Positive
(FP), and Ncorrect:f �=T - False Negative (FN).

Trusted precision, as a measure of the ‘pollution’ of the true positive verdicts
by the false positive errors:

Precisiont =
Ncorrect:f=T

Ncorrect:f=T + Nwrong:f=T
(4)

Trusted recall, as a measure of the true positive verdicts ‘loss’ due to false
negative errors:

Recallt =
Ncorrect:f=T

Ncorrect:f=T + Ncorrect:f �=T
(5)

Or, trusted specificity, as a measure of the true-negative verdicts ‘loss’ by
false-positive errors, or, in the context of A/B testing, is equal to the confidence
level percentage of the wrongly identified images that are recognized of such.

Specificityt =
Nwrong:f �=T

Nwrong:f �=T + Nwrong:f=T
(6)

Where Ncorrect and Nwrong number of correctly and incorrectly identified
test images by the CNN model.
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2.3 Bayesian View on ANN Classification

Mapping softmax activations yk to the desired probabilistic classification space
is not enough because they capture only uncertainty of the model about image
observations, but not the uncertainty of the already trained model about its
parameters. Using the Bayesian learning rule with ANNs, which allows capturing
the latter uncertainty, was introduced in the mid-1990s [16,18] and remains a
popular probabilistic framework for uncertainty representation.

The Bayesian learning rule can be derived and used even without accepting
the Bayesian view on probability. However, conclusions made from the results
or even merits of the rule use may differ if one shares frequentist views on
probability.

P (c|x) =
P (x|c)P (c)

P (x)
=

P (x|c)P (c)
∑

c∈C P (x, c)
(7)

where ∀x ∈ X , ∀y ∈ Y, P (x) is a probability of observing entity x, P (y) is a
probability of observing entity y, P (x, y) - probability of observing entity x and
y together, and P (x|y) - probability of observing entity x given observation of
y [9].

One does not have to be the Bayesian to use Formula 7 if the right-hand
side parameters are more easily obtainable than the left-hand side ones. For
example, in the ML model comparison in the controlled environment of the
training and test data distribution P (x). However, if the test images’ real-life
distribution is unknown or significantly differs from the training distribution,
a frequentist would refuse to make any conclusions without collecting sufficient
statistics on the new test data. However, Bayesian view on probability, unlike
the frequentist one, allows it to exist, or at least a belief about it, without or
with few observations, suggest to use the Bayes rule as the learning tool that
refines the prior beliefs or imperfect knowledge at the moment t by using the
new information D at the moment t + 1:

P (ct+1|x,Dt+1) =
P (x,Dt+1|ct)P (ct)

P (x,Dt+1)
(8)

Therefore, one can start learning the real-life test environment probabilities,
starting with the old training data or any other beliefs in the ‘reasonable’ proba-
bility distributions. Gradually approaching ‘real’ distributions, which nicely fits
the continuous, reinforcement, and flavours of the active learning paradigms [4].

One can introduce ML parameters, for example weights W of the ANN, as
such a new information. ANN weights and class verdicts, of course, are condi-
tioned by the training data set Dtr, however, if ANN is not retrained on the test
stage, data set term may be dropped for simplicity:

p(c|x) =
∫

W

p(c|x,W )p(W )dW (9)
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or, for approximation:

p(c|x) =
∑

i∈{1,...,N}
p(c|x,Wi)p(Wi)ΔW (10)

where i indexes N samples of the CNN weight sets Wi ∈ W ⊂ R
k, out of the

k-dimensional weight space.
The first term can be viewed as responsible for so-called aleatoric uncertainty,

or uncertainty related to handling data by the model. In contrast, the second
term - epistemic uncertainty or uncertainty related to the model stability [11].

While Bayesian formulas are straightforward, in practice, their analytical
solution is unrealistic due to multi-dimensionality, multi-modality, and non-
linearity of the activation functions. Therefore, practical solutions for Bayesian
neural networks (BNN) include approximation via various sampling methods of
either aleatoric or epistemic uncertainties or both, such as Variational Inference
[10], Markov Chain Monte Carlo [18], Monte Carlo Dropout [8], Deep Ensembles
[14]. As alternative for the aleatoric uncertainty estimations Direct Modeling and
Error Propagation approaches, which expect particular parametric distribution
of parameters and their variance propagation model, were suggested [20].

2.4 Proposed Solution: Supervisor ANN

We propose to investigate the feasibility of using meta-learning supervisor neural
networks (SNN) as means of the implicit approximation of the Bayesian integral
Formula 9 as follows:

P (ct|x,M,D) =
∫

W

P (ct|x,W,M,D)p(W |M,D)dW ≈
∑

cs∈CT

ys|cs,D2 (11)

where

ys = snn((yti|mi)i∈1...|M ||x,M,D1) (12)

Where P (c|x, . . . ) is a conditional probability of the image x being clas-
sified by the CNN model ensemble M trained on the data set D, and set
of the network weights W as an additional parameter, p(W |M,D) - proba-
bility distribution of the weights W across the layers of the model ensemble.
Training data set D = D1 + D2 is partitioned into data set D1 for the tar-
get CNN ensemble training, and data set D2 - for the SNN training. Sum of
the softmax activations of the supervisor network ys|cs of those classes that
associate with the ‘trustworthy’ state of the target network image classification
CT

s = {csi ∈ Cs : csi = true verdict} may be viewed as the Bayesian integral
approximation. For practical purposes, there may be just two SNN verdicts:
‘trusted’ or ‘untrusted’, or categorization may be more granular, depending on
the ensemble vote.
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Transformation snn represents mapping that the supervising neural network
performs from the softmax activations of the target network ensemble into soft-
max activations of the ‘un/trusted’ classes. The intuition of the proposed solution
goes as that the structure of the fully connected network transformation (For-
mula 1) is similar to the Bayesian integral (Formula 9) approximation (Formula
10): a softmax-normalized piecewise linear combination (with ReLU dropouts)
of the softmax activations of the target networks (yti|mi) (which carry the
same information about the image variations uncertainty as the first term of
the Bayesian integral) multiplied by the SNN weights. With proper training on
the variations in the softmax vectors of different models of the ensemble, those
weights can learn information about models’ uncertainty in their parameters and
become analogous to the second term of the Bayesian integral.

3 Data Set

The BookClub artistic makeup data set contains images of |C| = 21 sub-
jects. Each subject’s data may contain a photo-session series of photos with
no-makeup, various makeup, and images with other obstacles for facial recogni-
tion, such as wigs, glasses, jewellery, face masks, or various types of headdress.
Overall, the data set features 37 photo sessions without makeup or occlusions,
40 makeup sessions, and 17 sessions with occlusions. Each photo session con-
tains circa 168 JPEG images of the 1072 × 712 resolution of six basic emotional
expressions (sadness, happiness, surprise, fear, anger, disgust), a neutral expres-
sion, and the closed eyes photo-shoots taken with seven head rotations at three
exposure times on the off-white background. The photos were taken over two
months, and several subjects were posed at multiple sessions over several weeks
in various clothing with changed hairstyles, downloadable from https://data.
mendeley.com/datasets/yfx9h649wz/3. All subjects have given written consent
for using their anonymous images in public scientific research.

A high in-session variety BookClub data set provides aleatoric uncertainty
for the following experiments. The non-makeup training and makeup test data
partition was applied to boost the epistemic uncertainty.

4 Experiments

The experiments were designed to maximize the uncertainty the established
SOTA CNN models have to face with in the realistic life-scenario fashion. For
the natural way of increasing uncertainties, neither face detectors nor other seg-
mentation techniques were used to include varying hairstyles and closes into the
models’ input.

The experiments were run on the Linux (Ubuntu 18.04) operating system
with three GeForce GTX 1070 Ti GPUs (with 8 GB GDDR5 memory each),
X299 chipset motherboard, 128 GB DDR4 RAM, and i7-7800X CPU. Experi-
ments were run using MATLAB 2020b.

https://data.mendeley.com/datasets/yfx9h649wz/3
https://data.mendeley.com/datasets/yfx9h649wz/3
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Experiments verifying the accuracy and uncertainty handling by the estab-
lished SOTA CNN were done on MATLAB implementations of the models (as
a part of the Deep Learning Toolbox) with the last two layers resized to match
the number of classes in the BookClub data set (21), and retrained using ‘adam’
learning algorithm with 0.001 initial learning coefficient, ‘piecewise’ learning rate
drop schedule with 5 iterations drop interval, and 0.9 drop coefficient, mini-batch
size 128, and 10 − 20 − 30 epochs parameters for various models with different
convergence rate to ensure at least 95% learning accuracy. The following CNN
models were experimented with: AlexNet consisting of 25 elementary layers and
taking input images scaled to 277 × 277 dimension, VGG19 model having 47
elementary layers, GoogLeNet - 144, Resnet50 - 177, and they take 224 × 224
scaled images as input. The Inception v.3 contains 315 elementary layers, and
InceptionResnet v.2 - 824, both taking 299 × 299 scaled images as input. All
experimented with models, but AlexNet and VGG19 models, have the Directed
Acyclic Graph (DAG) architecture. The training set for CNN models contained
|D1| = 4529 non-makeup and non-occluded images.

Fig. 1. Supervisor (SNN) and being supervised ANN block schema.

For experiments with A/B testing and SNN, for each subject with more than
one non-makeup session, one non-makeup session was set aside and was not
used for the target CNN training. These images were used for A/B threshold
determination and as SNN’s training set |D2| = 1653. Each of these images was
run against the target CNN, and then, activations of the target CNN were fed
as a training input into SNN.

The SNN transformation, mentioned in Formula 11 that was used in the
experiments can be represented as a composite function of the ‘uncertainty
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shape descriptor’ function presented in the Algorithm 1 and FNN transformation
Formula 1. The SNN’s architecture, Fig. 1, in MATLAB implementation consist
of three fully connected layers with ReLU activation function and number of
neurons nLayer1 = nLayer2 = nLayer3 = |C| ∗ |M | and final dense layer with
softmax activation followed by the classification layer, both with neuron number
nV erdicts = |M | + 1. It can be presented as:

ys = snn((yti|mi)i∈1...|M ||x,M,D1) = fnn ◦ usd((yti|mi)i∈1...|M ||x,M,D1)
(13)

where (yti|mi)i∈1...|M | is a vector composed of the softmax activation vectors
of all CNN models m in the ensemble M trained on the data set D1, x is a given
test image, and ys is the vector of SNN softmax activations.

The SNN was trained using ‘adam’ learning algorithm with 0.01 initial learning
coefficient, ‘piecewise’ learning rate drop schedule with 5 iterations drop interval,
and 0.9 drop coefficient, mini-batch size 64, and 200 epochs parameters.

Number of classes the SNN was trained on was equal to the number of models
in ensemble plus one. Meaning of each class is an ensemble vote verdict ev ∈
{0, 1

Nmodels
, . . . N

Nmodels
, . . . , 1}, where N is a predicted number of models that

would correctly classify the image, N ≤ Nmodels. At the test time, the softmax
vote score vs ∈ [0, 1], which can be viewed as a probability of the given image
belonging to that ensemble vote class, can be also attached to the target CNN’s
verdict ct and SNN’s verdict evs, this making CNN-SNN classification multi-
dimensional and probabilistic:

c : X ⊂ R
m �→ C ⊂ I × R

2, c(x) = (ct, evs, vss), ∀x ∈ X , ∀c ∈ C (14)

5 Results

Subj.7, Sess.MK2; Subj.10, Sess.MK4; Subj.14; Sess.HD1; Subj.21, Sess.MK1

Fig. 2. Image class examples misidentified or identified with low accuracy by all CNN
models.

When retrained on the BookClub training set comprised of only non-makeup
and non-occluded sessions, the well-known SOTA CNN models correctly identi-
fied a significant part of the makeup and occluded sessions. However, a number
of the session posed a difficulty for all or majority of the CNN models, Fig. 2
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Algorithm 1. The ’uncertainty shape descriptor’ building function
Input: List of softmax activations (yti|mi)i∈1...|M| of the models m in the ensemble
M
Parameters: Number of models |M |
Output: Flattened softmax activation vector yt a.k.a. ’uncertainty shape descrip-
tor’

1: for all models mi, i ∈ {1, . . . |M |} do
2: yci|mi ← sort(yti|mi) by

′descending′; Sort softmax activations inside each
model vector

3: end for
4: Mindex ← sort(M) by yc(1); Order model vectors by the largest softmax activation

and extract index of the new order
5: yc1 index ← index(yci|mMindex(1)); Extract the order of activations in the vector

with largest softmax activation (first in Mindex)
6: for all models mi, i ∈ Mindex do
7: yti|mi ← sort(yti|mi) by yc1 index; Rearrange order of activations in each vector

to the order of activations in the vector with largest softmax activation (first in
Mindex)

8: end for
9: yt ← flatten(yt1|m1 . . .yti|mi . . .yt|M||m|M|)
10: return solution

and Table 1. On top of that, those incorrect classifications were made with a
high confidence level (for raw results, source code, and pre-trained models, see
https://github.com/Selitskiy/LOD2021).

Table 1. Image classes misidentified or identified with low accuracy by all CNN models

Session AlexNet VGG19 GoogLeNet Resnet50 Inception3 InceptRes2

S1HD1 0.0000 0.0000 0.0000 0.0482 0.0000 0.0000

S1MK2 0.0060 0.0476 0.0000 0.0000 0.0000 0.0714

S1MK3 0.0000 0.0398 0.0000 0.4034 0.0000 0.3921

S7FM1 0.0000 0.0000 0.0000 0.0000 0.3642 0.0989

S10MK2 0.0479 0.0659 0.0000 0.0000 0.0299 0.0060

S10MK3 0.0000 0.0000 0.0000 0.2426 0.0000 0.0059

S10MK4 0.0060 0.0000 0.0000 0.0240 0.0000 0.0599

S21MK1 0.0000 0.2927 0.0000 0.0427 0.0000 0.0000

The models also demonstrated specialization in handling various types of
makeup and occlusions. Particularly, the VGG19 model had problems with the
artificial white wig that other models easily recognized. Inception v.3, which
was the most accurate and reliable model overall, had few ‘blinders’ on simple

https://github.com/Selitskiy/LOD2021
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makeups, easily recognizable by even simpler models. Resnet50 failed to recog-
nize painted realistic human faces. Furthermore, GoogLeNet failed on face masks
which other DAG models solved recognition. Inception v.3 and InceptionResnet
v.2 solved recognition of the light theatrical type makeup, which was problematic
for other models. VGG19, while failing on many easy cases, uniquely recognized
heavily painted over faces with contrast pigments. GoogLeNet and Resnet50
were particularly successful with recognition in the presence of wigs and dark
glasses, and Inception v.3 - for face mask recognition.

AlexNet (p=0.0612), VGG19 (p=2.857e-05), GoogLeNet (p<2.2e-16)

Resnet50 (p<2.2e-16), Inception v.3 (p=0.0567), InceptionResnet v.2 (p=0.1807)

Fig. 3. Violin plots and two-sided Kolmogorov-Smirnov p-value for prior (selected non-
makeup sessions) and posterior (sessions with makeup and occlusions) distributions of
the soft-max activation score that drove the classification verdict for the wrongly identi-
fied images for AlexNet, VGG19, GoogLeNet, Resnet50, Inception v.3, InceptionResnet
v.2 models.

The similarity of the highest softmax activation distributions for selected
non-makeup images, which were not a part of the underlying CNN training, and
makeup and occluded images can be seen in Fig. 3. That suggests that such non-
makeup images may be used for finding out the softmax activation threshold
to ensure exclusion of the low-activation wrongly identified on the test makeup
set, as well, on the desired confidence level. However, rigorous goodness of fit
non-parametric tests, such as Kolmogorov-Smirnov, have shown a relatively low
probability that those sample distributions were drawn from the same one. Still,
for practical purposes, the hypothesis was relaxed that a simple A/B test might
give reasonable results even on the single highest activation input, see Table 2.
Therefore, a higher-dimensional input and more non-linear ANN approach can
be proceeded with.

The meta-learning SNN experiments for multiple ensemble sizes were con-
ducted on the Inception v.3 - the most accurate and robust CNN model out of
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Table 2. Unconstrained accuracy, trusted accuracy and precision of the makeup and
occluded test images calculated based on the confidence level (CL) thresholds of the
prior distributions of the wrongly identified non-makeup training images.

Metric AlexNet VGG19 GoogLeNet Resnet50 Incept IncRes2

Accuracy 0.3712 0.2009 0.4534 0.5250 0.5553 0.5675

75% CL Trust. accuracy 0.6648 0.6714 0.7498 0.7555 0.7390 0.8021

90% CL Trust. accuracy 0.6104 0.7859 0.7829 0.7336 0.7203 0.8046

75% CL Trust. precision 0.5756 0.2977 0.6781 0.8437 0.8342 0.8337

90% CL Trust. precision – – 0.7466 0.8809 0.9265 0.9111

75% CL Trust. recall 0.5311 0.3937 0.8961 0.7256 0.7243 0.8482

90% CL Trust. recall 0.0000 0.0000 0.8184 0.6412 0.5978 0.7568

75% CL Trust. specificity 0.7501 0.7471 0.6186 0.8000 0.7630 0.7282

90% CL Trust. specificity 1.0000 1.0000 0.7510 0.8710 0.9219 0.8814

all the models being investigated. Number of images in the test set was 11145,
and model ensemble size Nmodels ∈ {1, 2, 4, 8, 16}.

Table 3. Training time [s], accuracy, loss of the final mini-batch, and testing time [s]
of the session of 170 images of the meta-learning SNN attached to the Inception v.3
model ensemble of the various size

Ens. size 1 2 4 8 16

Train. time 251 264 283 443 595

Train. acc. 86% 100% 100% 100% 100%

Train. loss 0.2920 0.0107 0.0022 0.0021 0.0044

Test time 14.76 15.90 18.17 34.44 48.65

The training time, final mini-batch accuracy and loss, Table 3 show similar
results as in [14], - ensemble of 4 models reaches the accuracy parameters at
the level that changes slightly with the model number increase, Table 4. A sin-
gle model does not give the SNN enough information on the uncertainty in its
parameters and fails to train above the circa 70–90% accuracy rate.

For the trusted accuracy metric parameters calculation (Formulas 3–6), two
schemes were used: considering the ensemble vote ev only, and considering both
ensemble vote ev and vote score vs, from Formula 14. Such that the combined
CNN-SNN supervised verdict sci = (ci, evi) ∈ T C ⊂ I × R is considered trusted
if evi ≥ evt = 0.5 for the former schema, see results in Tables 4 and 5. And if
evi ≥ evt = 0.5∨vsi ≥ vst = 0.95 - for the latter schema, see results on GitHub.

For the practically ‘good enough’ ensemble size of 4 models, experiments with
makeup and occlusions sessions were conducted to test the trusted accuracy and
other metrics improvement, Table 5.
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6 Discussion, Conclusions, and Future Work

The observed success and failure ‘specialization’ of the SOTA models on different
types of makeup and occlusions is a fascinating and prospective phenomenon.
The most successful last 4 CNN models use DAG architecture with ‘Inception’-
type cascade cells implanted in various numbers and deepness on the networks.
Those cells with parallel convolutional layers of various filter sizes are meant to
self-tune for the most prospective one in that place of the network. Yet, these
models fail or succeed differently. A natural direction of the future work is to use
explainable learning solutions to identify architectural reasons for this variability
and extend the depth and width of these cells in the proper direction and improve
placement of the cells.

Table 4. Accuracy metrics of the Inception v.3 CNN model ensemble improved by the
ensemble vote verdict only of the proposed SNN for ensemble sizes 1, 2, 4, 8, 16

Ens. size 1 2 4 8 16

Accuracy 0.6221 0.6046 0.6784 0.6567 0.6668

Trusted accuracy 0.7514 0.7744 0.7624 0.7344 0.7437

Trusted precision 0.8040 0.8860 0.8732 0.8186 0.8141

Trusted recall 0.7939 0.7195 0.7602 0.7651 0.7978

Trusted specificity 1.000 0.8585 0.7670 0.6757 0.6355

The proposed simple and flexible SNN appears to learn uncertainty of the
verdicts of the underlying target SOTA CNN ensembles even for small ensem-
ble sizes. Performance of the homogeneous models’ ensemble converges to the
improved accuracy results at a low number of models, thus keeping the time
and resource overheads reasonably low. When the underlying CNN model fails
to recognize most images in the test session, SNN still produces high trusted
negative metrics.

Table 5. Accuracy metrics of the SOTA CNN model ensembles of size 4 improved by
the ensemble vote verdict only of the proposed SNN

Model AlexNet VGG19 GoogLeNet Resnet50 Inception3 InceptRes2

Accuracy 0.4128 0.4352 0.5087 0.6464 0.6785 0.6571

Trusted accuracy 0.6697 0.6944 0.4973 0.8188 0.7624 0.7828

Trusted precision 0.9214 0.7446 0.6408 0.9477 0.8732 0.8282

Trusted recall 0.2185 0.4532 0.0273 0.7617 0.7602 0.8446

Trusted specificity 0.9869 0.8802 0.9841 0.9231 0.7670 0.6642

However, the straightforward approach of attaching CNN ensemble output to
SNN input without Algorithm 1 does not generalize, and SNN training does not
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converge at all. In that case, CNNs’ error patterns, even if learned, are learned
specifically for each subject or even specifically to photo sessions. Algorithm
1 allows the creation of subject-invariant softmax distribution shape descrip-
tors. There are variations of the Algorithm, and determining more effective is
another direction for further investigation. The intuition that SNN implicitly
captures epistemic uncertainty, i.e. dispersion of the weights of the CNN ensem-
ble, requires quantitative confirmation as another future work item.

The proposed ‘uncertainty’ metrics produced by the statistical A/B test and
meta-learning SNN allow achieving trusted accuracy in the circa 70–80% range
on BookClub data set in the described training/test set partition. A natural
continuation will be investigating the algorithms’ performance on other data set.
The ultimate goal of achieving trusted prediction verdicts in its true sense will
be to use the proposed ‘uncertainty’ metrics to produce results with errors at the
confidence level forehead acceptable by the human users for a given application
domain. Incorporating these confidence levels into SNN’s feedback parameters
and loss functions is also the future work direction.
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Abstract. Market making (MM) is a trading activity by an individ-
ual market participant or a member firm of an exchange that buys and
sells same securities with the primary goal of profiting on the bid-ask
spread, which contributes to the market liquidity. Reinforcement learn-
ing (RL) is emerging as a quite popular method for automated market
making, in addition to many other financial problems. The current state
of the art in MM based on RL includes two recent benchmarks which
use temporal-difference learning with Tile-Codings and Deep Q Net-
works (DQN). These two benchmark approaches focus on single-asset
modelling, limiting their applicability in realistic scenarios, where the
MM agents are required to trade on a collection of assets. Moreover, the
Multi-Asset trading reduces the risk associated with the returns. There-
fore, we design a Multi-Asset Market Making (MAMM) model, known as
MTDRLMM, based on Multi-Task Deep RL. From a Multi-Task Learn-
ing perspective, multiple assets are considered as multiple tasks of the
same nature. These assets share common characteristics among them,
along with their individual traits. The experimental results show that
the MAMM is more profitable than Single-Asset MM, in general. More-
over, the MTDRLMM model achieves the state-of-the-art in terms of
investment return in a collection of assets.

Keywords: Multi-Asset Market Making · Multi-Task Deep
Reinforcement Learning · Tile-Codings · Deep Q Networks

1 Introduction

Market Making (MM) is a well known financial problem, the goal of which is
to provide liquidity to traders in the market. The market maker (MMer) is a
trader who is under obligation of standing ready to buy or sell assets from other
traders. The objective of the MMer is to place ask and bid quotes in the market
(order books), simultaneously. The difference between the ask quote price and
the bid quote price denotes bid-ask spread. The earning of the MMer generates
from the bid-ask spread, the higher the spread the higher will be the return. The
return can be positive representing profit or negative incurring loss on a trade.
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The necessary condition for obtaining a profit is the execution of both ask and
bid quotes placed by the MMer in the market.

Reinforcement Learning (RL) is a well-known approach of solving sequen-
tial decision making problems [21]. The decision maker, formally known as the
agent in RL paradigm, derives a mapping from state space to the action space,
known as a policy. The RL agent’s policy represents the experience of mapping
situations to the actions through assessing the scalar reward signals. RL has
widely been used in solving the MM problem. The first benchmark by [19] uses
temporal-difference learning RL algorithm with linear function approximation
(FA) i.e. Tile-Codings (TC). Another state-of-the-art solution by [16] uses DQN
(a non-linear FA) based MM agent. There are some more recent work in Multi-
Asset Market Making (MAMM) such as [14] and [6], however these belong to the
non-empirical approaches and provides non-ML based solutions. [19] and [16] are
the two most recent practical RL solutions with realistic LOB simulations, how-
ever these solutions focus on Single-Asset Market Making (SAMM). In fact, [6]
states that most of the MM solutions, present in the literature, focus on SAMM
only. The single asset MM models cannot be used for MM portfolios. There is a
need to design and develop new RL algorithms which can understand the com-
plexity of markets and are able to generate profitable MM portfolios. Hence, the
objective of this paper is to provide first empirical RL based solution of MAMM.

The assets traded in the market have some common and some specific char-
acteristics. Therefore, these SAMM based RL agents fail to obtain a combined
optimal policy for MAMM. In other words, these RL agents are only capable of
providing liquidity for a single asset rather than the multiple assets, simultane-
ously. The MMer usually trades on a collection of assets rather than on a single
asset in the real market, e.g. a stock exchange. Therefore, these RL agents have
limited applicability in real markets, and the MAMM reduces the risk through
the investment diversification across multiple assets rather than single asset. We
refer to the method in [19] as SAMM-TC, and to the method in [16] as SAMM-
DQN throughout the paper.

Multi-Task Learning (MTL) is a machine learning method, and known for
improving generalization of machine learning (ML) models. The ML models are
trained on multiple datasets representing different tasks in the RL domain. With
the advancement in deep learning (DL), the automated feature extraction capa-
bility of neural networks (NNs) greatly improves the generalization of RL mod-
els in comparison to traditional feature engineering method. Deep RL (DRL) has
become quite popular after human-level performance of DRL agents in automated
video game playing. Notably, DRL helped Deepmind’s researchers in developing
the AlphaGo program which has beaten the top-ranked GO players.

This work is motivated by the achievements of DRL, capabilities of MTL and
the lack of RL based MAMM methods. The proposed method is the first attempt
to fill this gap, and facilitates MAMM which is currently not addressed by any
existing RL based MM methods. We design a MAMM RL model inspired by hard
parameter sharing, a well-known MTL method. The proposed MAMM model
constitutes two DRL models, namely the Shared model and the Asset-specific
model(s) connected with each other. From the concepts of MTL, the assets are
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treated as multiple related tasks with some common and some specific features.
The Shared model is responsible for automatic extraction of common features
when trained on multiple assets, simultaneously. However, the Asset-specific
model learns the specific characteristics of a particular asset. The designed model
can trade on a collection of assets, unlike the existing SAMM based RL models.
We use quote driven limit order book (LOB) to simulate the real market as the
RL environment. LOBs are widely accepted and used by the majority of the
financial markets [13]. The trade and quote (TAQ) data is collected from an
open source data provider1 of Chicago Board of Options Exchange (CBOE) to
populate the LOB.

An Exchange Traded Fund (ETF), is a marketable asset which tracks an
index or an asset. ETFs are associated with a price, and they can be traded like
regular stocks in the market. ETFs provide diversification among different kinds
of assets, and therefore are quite popular among traders these days. We choose
three ETFs and two Options for comparison among the proposed framework
and the benchmarks. We call our proposed model “MTDRLMM” throughout
the paper. [16] argued that non-linear FA in RL such as DQN is better than
linear FAs due to the obvious advantages including automated feature extrac-
tion and compact representations in high dimensional data. From the inspection
of literature, we are aware that DRL based MAMM does not exist. Hence, this
paper aims to bridge the gap between MAMM and DRL through MTDRLMM
model. The main contributions are: 1) the novel MTDRLMM model based on
MTL for MAMM; 2) the first empirical study on RL based MAMM.

The remainder of the paper is structured as follows, Sect. 2 reviews the rel-
evant literature. Section 3 describes the proposed method, and Sect. 4 focusses
on experiments and results. Finally, Sect. 5 concludes the paper.

2 Related Work

There is a long line of work in ML based MM including RL. The first practical
RL model of MM was developed by [10]. They evaluated the impact of unin-
formed market participants on the behaviour of market makers and argued that
MM agents derive RL policies while balancing profit and spread, successfully. [4]
solved MM problem through deriving optimal bid and ask quotes for LOB. More-
over, the order arrivals and executions process uses probabilistic knowledge. [11]
solved exploration versus exploitation problem as price discovery versus profit
earning, and studied the effect of MM on price formation. This work was focussed
on price prediction and stability, and does not improve market fluidity (measured
by market spread). [1] uses convex hull optimization to design an automated
SAMM framework. [2] assumes the market has sufficient liquidity while eval-
uating their online learning based MM model. [3] designed a high frequency
MM model that takes advantage of speed in placing quotes and also argues that
speed and profit are positively correlated. Then, [19] developed a state-of-the-art
model based on RL which is the first attempt to study this problem on realistic
1 https://www.cboe.com/us/equities/market data services/.

https://www.cboe.com/us/equities/market_data_services/
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grounds taking into consideration all market phenomena that affect MM. Most
recently, [16] proposed a DQN based MM agent which outperforms the tradi-
tional RL model of MM [19]. [20] studied the MM problem from the game theory
point of view. They designed a robust MM agent using existing Adversarial RL
method. [18] showed that DQN based MM proves to be an optimal solution.
They maximise the profit obtained from bid-ask spreads and minimise inventory
through a reward function. [7] designed a stock trader using an ensemble of mul-
tiple DRL models.

In quantitative finance domain, [8] argued that if LOs are forced to stay in
LOB for a minimum time then liquidity increases. [5] proposes a simple analyti-
cal extension to the MM problem, and the flexibility of existing algorithms used
in designing MM strategies increases. [6] proposed a closed form approximation
to the existing MAMM solution by [4]. However, this method solves the problem
theoretically, and has assumptions of [4]. There is a recent mathematical solu-
tion by [14] which solves the MM for a large number of bonds. They design a
model-based actor-critic like algorithm to provide numerical approximation of
traditional SAMM model by [4]. [22] designed a SAMM strategy using Q learning
algorithm, and they claim that the strategy can be implemented using lookup
table. They use state aggregation, similar to this work and [19] for state dis-
cretization. [17] designed a Multi-Agent stock market simulator which reproduce
the market microstructure metrics. The RL agents learn to trade autonomously.
Contrary to all, [15] studied multi-asset trading, and used DQN algorithm for
long-short strategy. They backtested the strategy on S&P 500 futures contract
dataset. They simply trained an RL agent on an index dataset, similar to the
SAMM benchmarks (SAMM-TC and SAMM-DQN). However, we aim to exploit
the common and individual traits of multiple assets, simultaneously via MTL,
to improve the RL policy through return enhancement. Hence, the RL based
solution of MAMM is missing from the literature. Our work aims to fill this gap,
and provide a road ahead for further research and development towards more
complex MAMM RL algorithms for MM portfolios.

3 The Proposed Method

MTL has now become quite popular in ML domain since recent advancements
including stock prediction, object detection, and natural language processing.
The aim is to jointly learn multiple related tasks instead of learning them sep-
arate. These multiple related tasks are considered to have common characteris-
tics which can be exploited to improve the model generalization for each of the
individual task [12]. There are many application domains where the amount of
training data is small, due to various reasons including data is not freely available
e.g. historical TAQ data in stock markets. The idea behind MTL is to combine
multiple similar tasks and learn a model. By similar tasks or the tasks of same
nature means the objective of the problem remains the same for each task. For
instance, if a bot learns the task of walking, then the bot can be further trained to
learn the task of running on top of the learned experience of walking. The same
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Fig. 1. Schematic diagram of the MTDRLMM

rationale is extended here, a MMer is a trader which has to trade on a collection
of assets rather than single asset in actual environment, e.g. a stock exchange.
These multiple assets are treated as multiple similar tasks, as the structure of
the LOB remains the same. Each asset has its own dynamics which governs the
interest of traders and market response. A collection of assets containing assets,
spanning multiple sectors and organisations, has some common and individual
features or traits.

We propose a DRL solution to the problem of MAMM using MTL, known as
MTDRLMM. The proposed model employs two types of trained DNN models, as
shown in Fig. 1. The proposed model comprises of one shared DNN and multiple
task-specific DNNs, trained using backpropagation algorithm. Both shared and
task-specific or Asset-specific DNNs are fully-connected DNNs. Each asset in the
collection has an individual Asset-specific NN, trained separately. From Fig. 1,
two assets A and B have their respective Asset-specific DNNs, the Q value
function is the output of each DNN. QA represents the Q function for Asset A,
whereas QB is the Q function for Asset B, and QS denotes the Q function of
shared DNN, trained on both assets A and B.

The proposed model is inspired from the well-known MTL method, namely
Hard Parameter Sharing. The method is quite popular in the MTL literature
and dates back to [9]. In this method, a DNN learns several related tasks by
sharing some layers, and each task is associated with an individual layer as
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well. The major advantage of this MTL approach is the reduction in model
overfitting. The DNN model captures the common features of multiple related
tasks and tries to produce a good fit. The MTDRLMM model has the same
architectural foundation as Hard Parameter Sharing, and therefore inherits the
advantages. The aim of the MTDRLMM model is to improve the RL policy
through MTDRL, and the improvement is evaluated via two metrics, namely
returns and total volume of transactions. Moreover, the statistical significance
test shows that the improvement in the earnings or the returns is significant with
p value equal 0.05.

The shared DNN consists of four fully connected layers (Input, Output, 2
Hidden) with 64 neurons in each of the hidden layers. The reLU activation func-
tion, and the adam optimization with mean squared error as the loss function,
are used. The proposed model uses Asset-specific DNN models instead of asset
specific layers, like Hard Parameter Sharing. The Asset-specific DNN contains
three fully connected layers (Input, Output, one Hidden), and the hidden layer
contains 64 neurons. Both shared and Asset-specific DNN models are trained
using the well-known Bellman recursive update (Eq. 1) equation in RL paradigm.
Moreover, the models are trained separately, and the combination of output lay-
ers is done using weighted mean of Q functions of the shared and Asset-specific
DNN models. The combination of these models is termed as MTDRLMM model
based MMer.

Q∗(s, a) = E[r + γmaxQ∗(s′, a′)], a′ ∈ A (1)

In Eq. 1, r is the reward (using Eq. 2 by [19], where φ is profit/loss, I is the
inventory accumulated, and λ is the dampening factor), γ is the discount factor,
and Q∗(s, a) denotes the optimal action-value function with s as state and a as
action.

r = φ − λmax(I, 0) (2)

The fundamental technical indicators used to simulate the environment for
MTDRMM agent are described below:

– volatility: the dispersion of returns
– volume imbalance: the ratio of ask and bid volumes
– relative strength index: measures the recent fluctuation in asset price
– market spread: the difference between lowest ask and the highest bid of an

asset
– mid-price movement: the change in the midpoint of best ask and best bid

prices
– ask distance: distance between the best open order in the ask book and the

best ask price
– bid distance: distance between the best open order in the bid book and the

best bid price
– inventory: holdings of assets

The input layers receive these market technical indicators computed from the
LOB simulation data for the MTDRLMM agent. The output layers outputs the
action-values, also known as Q values in RL paradigm, of all the discrete actions.



Multi-Asset Market Making via Multi-Task Deep Reinforcement Learning 359

The lookback window (length is 60) method is used to compute volatility, rela-
tive strength index and market spread from LOB TAQ data. The mean squared
error loss function computes the mean squared error between the actual (calcu-
lated from Bellman recursive update equation) and observed Q values. Then, the
input layer weights get updated using backpropagation algorithm. The shared
model is trained on multiple assets through simultaneous feeding of market envi-
ronment variables randomly. A uniform-distribution picks the training example,
also known as a state tuple, for the input to the shared model. The trained
MTDRLMM model conducts out-of-sample backtesting on historical LOB time-
series data. The final output is the weighted mean of the Q values from both
shared and Asset-specific models. The Qa is weighted Q function (refer Eq. 3),
of n number of assets, which computes the action-values or Q values of each dis-
crete action in the action space. The action space consists of nine discrete actions,
directly taken from [19]. The action computes the ask and the bid quotes. These
quotes are then placed in the LOB on both sides (ask and bid). Each action
has some quoted-spread (the difference between the ask and the bid quote), and
the quoted-spread multiplied by the volume yields the net profit or net earning.
The Q function of ith Asset-specific DNN is associated with the corresponding
weight wi. QS represents the Q function of shared DNN with the corresponding
weight wn+1

Qa = w1Q1 + w2Q2 + w3Q3 + · · · + wnQn + wn+1QS ,

n+1∑

i=1

wi = 1
(3)

The Qa denotes the output Q function which generates the Q values of each dis-
crete action. In this empirical study, the unity is uniformly distributed among the
weights shown in Eq. 3. In simple words, each constituent model (Asset-specific
and shared) of MTDRMM is allocated equal weight. However, the weights can
be skewed to incorporate the weightage of a particular asset in the basket or
portfolio. In simple words, one asset can be given more importance over others
by skewing weights in a portfolio.

4 Experiments

4.1 Data and Settings

We collect level 2 order book Trade and Quote (TAQ) historical Intraday tick-
by-tick data, with the frequency of approximately five seconds, from CBOE.
The training datasets contains 6500 training examples, whereas test datasets
comprises of 1600 test examples. Each example constitutes a LOB snapshot
and an executed ask and bid order associated with price and volume. Investors
use ETFs to construct a well diversified portfolio. They are designed to track
indices rather than individual assets. Another benefit of ETFs is they provide risk
management to the investors by allowing them to trade in futures and options.
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Table 1. MTDRLMM hyperparameters

Serial no. Hyperparameter Value Range

1 Dimension of state space 8

2 Dimension of action space 9

3 RL algorithm Sarsa

4 RL policy ε-greedy

5 Training dataset (split %) 80

6 Validation dataset (split %) 20

7 Test dataset (split %) 20

8 Training episodes 20

9 Testing epsiodes 20

10 Tilings in tile-codings 8

11 Inventory range [−100, 100]

12 Order size 10

13 Discount factor (γ) 0.95 0–1

14 Exploration rate (ε) 0.5 0–1

15 Learning rate (α) 0.001 0–0.1

16 Activation function Linear

17 Loss function Mean squared error

18 Optimizing function Adam

We prepare a basket of five randomly picked assets (from top 100 listed on Yahoo
finance), namely SPY, DIA, XLF, TXN and UPS, for the empirical analysis. The
scraped data requires preprocessing such as eliminating redundancy and NULLs.
Data cleaning was done via python scripts2). The github link to the code3 and
data4 is provided to ensure replicability. The hyperparameters of MTDRLMM
are specified in Table 1.

4.2 Results and Discussion

Empirically, we compare the two versions of MM, namely SAMM and MAMM,
on both linear and non-linear FA RL methods. Both SAMM-TC and MAMM-TC
use the Tile-Codings FA to train the RL model of MM. In MAMM-TC, a function
approximator is trained on all five assets collectively. In MAMM-DQN, shared
and Asset-specific DNNs are trained collectively and individually, respectively.
Whereas, SAMM-TC and SAMM-DQN train a function approximator for every
asset. These two versions of MM, in combination with two types of FAs, are then
backtested and their returns are compared, as shown in Table 2.
2 https://github.com/Haider93/mm data/blob/main/preprocess data.py.
3 https://github.com/Haider93/MTDRLMM.
4 https://github.com/Haider93/MTDRLMM/data.

https://github.com/Haider93/mm_data/blob/main/preprocess_data.py
https://github.com/Haider93/MTDRLMM
https://github.com/Haider93/MTDRLMM/data
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Table 2. Out-of-Sample backtesting averaged PnL obtained over twenty episodes

Asset SAMM-TC ($) MAMM-TC ($) SAMM-DQN ($) MAMM-DQN ($) SAMM-AS ($)

SPY 40.9792 46.7382 8.5623 39.7740 −3.6079

DIA 161.3019 160.1599 68.5310 70.1787 −4.4794

XLF −8.9907 −8.7499 −0.1800 3.7599 −4.5947

UPS −28.7761 −6.8000 −3.6998 −3.6998 −4.5583

TXN −18.8399 −15.5601 −13.8057 −12.4257 −4.7656

(a) Mean Normalized Return ($) (b) Normalized Reward

Fig. 2. Training curves of the MTDRLMM model.

These two FA methods generate different returns whether used in SAMM or
MAMM, and neither of them outperform the other completely in all five assets.
This could be attributed to the fact that the trading strategies differ in their
returns. The MAMM-TC obtains significantly higher returns than SAMM-TC in
four out of five assets. Moreover, the same pattern is observed in DQN FA, where
SAMM-DQN yields lower return than MAMM-DQN, except UPS. The MAMM-
DQN represents the proposed MTDRLMM model. In the basket of these five
assets, SAMM-TC obtains profit in SPY and DIA ETFs and incurs loss in oth-
ers. MAMM-TC, if treated as a MM strategy, is profitable in both SPY and DIA,
while the other three saw negative returns. In the case of DQN FA, SAMM-DQN
yields profit in SPY and DIA only, however MAMM-DQN is able to make profit
in SPY, DIA and XLF. Moreover, the returns of MAMM-DQN in all five assets
are higher than SAMM-TC, MAMM-TC and SAMM-DQN, except in DIA. The
MAMM reduces the risk associated with profit through appropriate diversification
of the capital investment into a collection of assets. Moreover, the return over the
investment is also observed higher, except in DIA while using TC. This could be
attributed to the fact that stock markets are quite volatile, and a single asset can
yield higher return than an improper and naive diversified collection of assets, due
to the higher market liquidity. In general MAMM proves to be more profitable and
less risky than SAMM in both FA methods. Upon observation across assets in four
columns of Table 2, MAMM-DQN return profit in three out of five assets higher
than others. Hence, the MTDRLMM model proves to be more profit yielding and
less volatile, empirically. The training curves, shown in Fig. 2, represent the mean
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normalized PnL value (refer Fig. 2(a)) and the normalized reward (refer Fig. 2(a))
observed when training the MTDRLMM model. The graphs clearly shows that
the MTDRLMM model based RL agent successfully maximizes the PnL and the
accumulated reward throughout the training phase.

We add one more evaluation criterion, namely total number of transactions
(Ask limit orders + bid limit orders + market buys + market sells) in the LOB.
The greater the number of total transactions the higher will be the added liq-
uidity to the market by the market maker. We now show learning curves (Nor-
malized PnL vs training episodes, and Cumulative Reward vs training episodes).
The empirical findings of total number of transactions are 1226, 1081, 1318 and
1566 for SAMM-TC, MAMM-TC, SAMM-DQN and MAMM-DQN, respectively.
From the overall results, the MAMM-DQN is found to be more profitable and pro-
vided highest amounts of market liquidity (the primary goal of a market maker).
We conduct statistical significance t test with equal variances to prove the sig-
nificance of the returns enhancement via MTDRLMM model. We use the default
NULL hypothesis, H0: μ1 = μ2. The t-test one tail statistic values between the
groups SAMM-DQN, MAMM-DQN and SAMM-TC, MAMM-TC are same i.e.
1.8595 in both cases. Moreover, the two tail values for both pairs are same again
i.e. 2.306. The tabular t statistic value for degrees of freedom 8 one-tail is 1.86
and two-tail is 2.306, with default significance level α = 0.05. The p value for
both groups is equal to 0.05, hence the we reject the NULL hypothesis. There is a
significant difference between means, hence the empirical results are statistically
significant.

5 Conclusion

The MM is a well-known fundamental trading problem which obligates the MMer
to continuously buy and sell assets during market operational hours. RL has been
quite popular in solving MM problem. The existing RL solutions focus on single
asset modelling of the problem. However, the applicability of SAMM RL models
in real scenarios is practically limited. From the concepts and advantages of
MTL, multiple assets are treated as multiple related tasks, and therefore we
propose a MAMM RL model based on MTL. The proposed MTDRLMM model
proves to obtain significantly higher percentage return in a basket of assets. In the
empirical study, the SAMM RL benchmarks and MTDRLMM model are trained
first and then backtested on historical LOB TAQ data. The MTDRLMM model
is shown to be a practical MAMM method, and provides a more profitable MM
RL policy than SAMM RL benchmarks. Moreover, the return improvement is
found to be statistically significant via statistical t test, with default significance
level of 0.05 and the p value of 0.05 is obtained. The research findings presented
opens new doors to the further research and development of more flexible and
complex RL algorithms for large MM portfolios.
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Abstract. We propose a semi-supervised learning strategy for deep
Convolutional Neural Networks (CNNs) in which an unsupervised pre-
training stage, performed using biologically inspired Hebbian learning
algorithms, is followed by supervised end-to-end backprop fine-tuning.
We explored two Hebbian learning rules for the unsupervised pre-training
stage: soft-Winner-Takes-All (soft-WTA) and nonlinear Hebbian Princi-
pal Component Analysis (HPCA). Our approach was applied in sample
efficiency scenarios, where the amount of available labeled training sam-
ples is very limited, and unsupervised pre-training is therefore beneficial.
We performed experiments on CIFAR10, CIFAR100, and Tiny ImageNet
datasets. Our results show that Hebbian outperforms Variational Auto-
Encoder (VAE) pre-training in almost all the cases, with HPCA generally
performing better than soft-WTA.

Keywords: Hebbian learning · Deep learning · Semi-supervised ·
Sample efficiency · Neural networks · Bio-inspired

1 Introduction

While deep learning has achieved outstanding results in a variety of domains,
ranging from computer vision [15] to language processing [10], and reinforcement
learning [41], learning algorithms are typically based on supervised end-to-end
Stochastic Gradient Descent (SGD) training with error backpropagation (back-
prop), which needs a large number of labeled training samples in order to achieve
high results. However, gathering labeled samples is expensive, as it requires a sig-
nificant amount of human work. On the other hand, gathering unlabeled samples
is relatively simple. Therefore, researchers started to investigate learning strate-
gies to exploit large amounts of unlabeled data, in addition to the fewer labeled
data, for sample efficient learning [5–7,9,18,21,27,37,40,45,47]. This led to the
semi-supervised learning approach, in which an unsupervised pre-training stage
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is performed on all the available samples (but without using label information),
and then it is followed by a supervised fine-tuning stage on the few labeled
samples only (in this case, the label information is used for supervision).

Note that backprop is not considered to be biologically plausible from the
neuroscientific community [34]. On the other hand, a biologically motivated
learning principle is represented by the Hebbian learning paradigm [12,14]. This
approach does not require supervision, nor backpropagation. Since biological
brains appear to be able to generalize from few samples, research on Hebbian
learning algorithms seems a promising direction.

In this work, we propose a semi-supervised learning approach, in which the
unsupervised pre-training step is performed by means of the Hebbian learning
paradigm. Two Hebbian learning variants are considered: soft-Winner-Takes-All
(soft-WTA) [31], and nonlinear Hebbian Principal Component Analysis (HPCA)
[19]. We test our approach in sample efficiency scenarios, performing experiments
on CIFAR10, CIFAR100 [23], and Tiny ImageNet [46] datasets. Different regimes
of sample efficiency are considered, comparing the results with another popular
unsupervised pre-training method, namely the Variational Auto-Encoder (VAE)
[20]. The results show that our approach outperforms VAE pre-training in almost
all the cases, especially when the number of labeled samples available for the suc-
cessive supervised fine-tuning stage is low. Moreover, HPCA generally performs
better than soft-WTA.

Integration of Hebbian learning and deep learning is still an emerging topic.
However, our results are encouraging, motivating further interest in this direc-
tion.

The main contributions of this paper are the following:

– For the first time, Hebbian learning approaches are applied in a semi-
supervised scenario, in which an unsupervised pre-training stage, based on
Hebbian approach, is followed by a supervised end-to-end fine-tuning stage
based on SGD and backprop;

– We provide extensive experimental evaluation of the approaches, from a sam-
ple efficiency perspective, on different object recognition datasets;

The remainder of this paper is structured as follows: Sect. 2 gives an overview
on related work concerning semi-supervised training and Hebbian learning;
Sect. 3 introduces the various Hebbian learning strategies that we explored;
Sect. 4 illustrates the sample efficiency problem and defines our semi-supervised
approach based on Hebbian learning; Sect. 5 delves into the details of our exper-
imental setup; In Sect. 6, the results of our simulations are illustrated; Finally,
Sect. 7 presents our conclusions and outlines possible future developments.

2 Related Work

In this section, we present an overview of related work concerning both semi-
supervised training and Hebbian learning.
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2.1 Semi-supervised Training and Sample Efficiency

Early work on deep learning had to face problems related to convergence to poor
local minima during the training process. This led researchers to exploit a pre-
training phase that allowed them to initialize network weights in a region near
a good local optimum [5,27]. In these studies, greedy layerwise pre-training was
performed by applying unsupervised autoencoder models, layer by layer . It was
shown that such pre-training was indeed helpful to obtain a good initialization
for a successive supervised training stage.

In successive works, the idea of enhancing neural network training with an
unsupervised learning objective was considered [21,37,45,47]. In [21], Variational
Auto-Encoders (VAE) were considered, in order to perform an unsupervised pre-
training phase using a limited amount of labeled samples. Also [37] and [47]
relied on autoencoding architectures to augment supervised training with unsu-
pervised reconstruction objectives, showing that joint optimization of supervised
and unsupervised losses helped to regularize the learning process. In [44], joint
supervised and unsupervised training was again considered, but the unsupervised
learning part was based on manifold learning techniques.

Another approach, SimCLR [9], used a Contrastive Loss to perform the unsu-
pervised learning part. The approach relied on data augmentation, in order to
produce transformed variants of a given input. The unsupervised loss basically
encouraged hidden representations to match for transformed variants generated
from the same input.

In this paper, we focus our comparisons on similar methods based on unsu-
pervised pre-training, using VAE pre-training as baseline. Nonetheless, it is also
worth mentioning that different approaches to semi-supervised learning were also
proposed. For example, in [18,40], graph-based methods were used to generate
pseudo-labels for unlabeled samples, which were then used as target during train-
ing. In [6,7,40], the mixup approach was also used: convex combinations of pairs
of input samples were generated, and a consistency criterion was imposed that
pushed the prediction for the combination to match the corresponding combi-
nation of predictions. It should be noticed that our method is not in contrast
with these other approaches, but rather they can be integrated together, as also
suggested in Sect. 7.

2.2 Hebbian Learning

Several variants of Hebbian learning rules were developed over the years. Some
examples are: Hebbian learning with Winner-Takes-All (WTA) competition
[13], Hebbian learning for Principal Component Analysis (PCA) [4,14,19,39],
Hebbian/anti-Hebbian learning [35,36]. A brief overview is given in Sect. 3. How-
ever, it was only recently that Hebbian learning started gaining attention in the
context of DNN training [2,3,25,26,42,43].

In [25], a Hebbian learning rule based on inhibitory competition was used
to train a neural network composed of fully connected layers. The approach
was validated on object recognition tasks. Instead, the Hebbian/anti-Hebbian
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learning rule developed in [36] was applied in [3] to train convolutional feature
extractors. The resulting features were shown to be effective for classification.
Convolutional layers were also considered in [42,43], where a Hebbian approach
based on WTA competition was employed in this case.

However, the previous approaches were based on relatively shallow network
architectures (2–3 layers). A further step was taken in [2,26], where a Hebbian
WTA learning rule was considered. The learning rule was applied for training a
6-layer Convolutional Neural Network (CNN). The results suggested that Heb-
bian learning is suitable for training early feature detectors, as well as higher
network layers, but not very effective for training intermediate network layers.
Furthermore, Hebbian learning was successfully used to retrain the higher layers
of a pre-trained network, achieving results comparable to backprop. The advan-
tage was that Hebbian learning required fewer training epochs, thus suggesting
potential applications in the context of transfer learning (see also [8,28,29]).

The novelty of our contribution w.r.t. previous work is that, for the first
time, we investigate unsupervised Hebbian learning in combination with super-
vised backprop training, in a semi-supervised fashion. In addition, extensive
experimental evaluation is performed.

3 Hebbian Learning Strategies

Consider a single neuron with weight vector w and input x. Call y = wT x the
neuron output. A learning rule defines a weight update as follows:

wnew = wold + Δw (1)

where wnew is the updated weight vector, wold is the old weight vector, and Δw
is the weight update.

The Hebbian learning rule, in its simplest form, can be expressed as Δw =
η y x (where η is the learning rate) [12,14]. Basically, this rule states that the
weight on a given synapse is reinforced when the input on that synapse and the
output of the neuron are simultaneously high. Therefore, connections between
neurons whose activations are correlated are reinforced. In order to prevent
weights from growing unbounded, a weight decay term is generally added. In
the context of competitive learning [13], this is obtained as follows:

Δwi = η yi x − η yi wi = η yi (x − wi) (2)

where the subscript i refers to the i’th neuron in a given network layer. Moreover,
the output yi can be replaced with the result ri of a competitive nonlinearity,
which allows to decorrelate the activity of different neurons. In the Winner-
Takes-All (WTA) approach [13], at each training step, the neuron which produces
the strongest activation for a given input is called the winner. In this case, ri = 1
if the i’th neuron is the winner and 0 otherwise. In other words, only the winner
is allowed to perform the weight update, so that it will be more likely for the
same neuron to win again if a similar input is presented again in the future.
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In this way different neurons are induced to specialize on different patterns.
In soft-WTA [31], ri is computed as ri = yi∑

j yj
. We found this formulation to

work poorly in practice, because there is no tunable parameter to cope with the
variance of activations. For this reason, we introduce a variant of this approach
that uses a softmax operation in order to compute ri:

ri =
eyi/T

∑
j eyj/T

(3)

where T is called the temperature hyperparameter (the name comes from statis-
tical mechanics, where this function was first introduced) [11]. The advantage of
this formulation is that we can tune the temperature in order to obtain the best
performance on a given task, depending on the distribution of the activations.

The Hebbian Principal Component Analysis (HPCA) learning rule, in the
case of nonlinear neurons, is obtained by minimizing the so-called representation
error [4,14,39]:

L(wi) = E[(x −
i∑

j=1

f(yj)wj)2] (4)

where f() is the neuron activation function. Minimization of this objective leads
to the nonlinear HPCA rule [19]:

Δwi = ηf(yi)(x −
i∑

j=1

f(yj)wj) (5)

It can be noticed that these learning rules do not require supervision, and
they are local for each network layer, i.e. they do not require backpropagation.
In the next section, we discuss how Hebbian learning is integrated with backprop
in a semi-supervised training approach.

4 Sample Efficiency Scenario and Semi-supervised
Approach Based on Hebbian Learning

Let’s define the labeled set TL as a collection of elements for which the cor-
responding label is known. Conversely, the unlabeled set TU is a collection of
elements whose labels are unknown. The whole training set T is given by the
union of TL and TU . All the samples from T are assumed to be drawn from
the same statistical distribution. In a sample efficiency scenario, the number of
samples in TL is typically much smaller than the total number of samples in T .
In particular, an s %-sample efficiency regime is characterized by |TL| = s

100 |T |
(where | · | denotes the cardinality of a set, i.e. the number of elements inside the
set). In other words, the size of the labeled set is s % that of the whole training
set (labeled plus unlabeled).

Traditional supervised approaches based on SGD and backprop work well
provided that the size of the labeled set is sufficiently large, but they do
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not exploit the unlabeled set. To tackle this limitation, we consider a semi-
supervised approach in two phases. During the first phase, latent representations
are obtained from hidden layers of a DCNN, which are trained using unsuper-
vised Hebbian learning. Such approach, inspired by biology, has the advantage
of being able to learn representations without requiring label information, nor
backpropagation. This unsupervised pre-training is performed on all the available
training samples, unlabeled and labeled (but without using label information in
the latter case). During the second phase, a final linear classifier is placed on top
of the features extracted from deep network layers. Classifier and deep layers
are fine-tuned in a supervised training fashion, by running an end-to-end SGD
optimization procedure using only the few labeled samples at our disposal (with
the corresponding labels).

5 Experimental Setup

In the following, we describe the details of our experiments and comparisons,
discussing the network architecture and the training procedure1.

5.1 Datasets Used for the Experiments

The experiments were performed on the following datasets: CIFAR10, CIFAR100
[23] and TinyImageNet [46].

The CIFAR10 dataset contains 50,000 training images and 10,000 test images,
belonging to 10 classes. Moreover, the training images were randomly split into a
training set of 40,000 images and a validation set of 10,000 images.

The CIFAR100 dataset also contains 50,000 training images and 10,000 test
images, belonging to 100 classes. Also in this case, the training images were ran-
domly split into a training set of 40,000 images and a validation set of 10,000
images.

The TinyImageNet dataset contains 100,000 training images and 10,000 test
images, belonging to 200 classes. Moreover, the training images were randomly
split into a training set of 90,000 images and a validation set of 10,000 images.

We considered sample efficiency regimes in which the amount of labeled sam-
ples was respectively 1%, 2%, 3%, 4%, 5%, 10%, 25% and 100% of the whole
training set.

5.2 Network Architecture and Training

We considered a six layer neural network as shown in Fig. 1: five deep layers plus
a final linear classifier. The various layers were interleaved with other processing
stages (such as ReLU nonlinearities, max-pooling, etc.). The architecture was
inspired by AlexNet [24], but with slight modifications in order to reduce the

1 The code to reproduce the experiments described in this paper is available at:
https://github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.

https://github.com/GabrieleLagani/HebbianPCA/tree/hebbpca
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Fig. 1. The neural network used for the experiments.

overall computational cost of training. We decided to adopt a simple network
model in order to be able to evaluate the effects of different learning approaches
on a layer-by-layer basis. This choice also makes it more practical for other
researchers to reproduce the experiments.

For each sample efficiency regime, we trained the network with our semi-
supervised approach. First, we used the soft-WTA and the HPCA unsupervised
pre-training in the internal layers. This was followed by the fine tuning stage
with SGD training, involving the final classifier as well as the previous layers, in
an end-to-end fashion.

For each sample efficiency configuration we also created a baseline for com-
parison. In this case, we used another popular unsupervised method, namely the
Variational Auto-Encoder (VAE) [20], for the unsupervised pre-training stage.
This was again followed by the supervised end-to-end fine tuning based on SGD.
VAE-based semi-supervised learning was also the approach considered in [21].

5.3 Testing Sample Efficiency at Different Layer Depths

In our experiments, in addition to evaluating the entire network trained as dis-
cussed above, we also evaluated the sample efficiency capability on the various
internal layers of the trained models. To this end, we cut the networks in corre-
spondence of the output of the various layers and we trained a new linear classifier
on top of each already pre-trained layer. For each configuration, the supervised
SGD training stage was performed using the labeled samples, thus fine tuning the
classifier, as well as the previous network layers. Then, the resulting accuracy was
evaluated. This process was done both for the Hebbian trained networks, and the
VAE trained network, used as baseline, in order to make comparisons.

5.4 Details of Training

We implemented our experiments using PyTorch. All the hyperparameters men-
tioned below resulted from a parameter search aimed at maximizing the valida-
tion accuracy on the respective datasets, following the Coordinate Descent (CD)
approach [22].
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Training was performed in 20 epochs using mini-batches of size 64. No more
epochs were necessary, since the models had already reached convergence at that
point. Networks were fed input images of size 32×32 pixels. Experiments were
performed using five different seeds for the Random Number Generator (RNG),
averaging the results and computing 95% confidence intervals.

In the Hebbian training, the learning rate was set to 10−3. No L2 regulariza-
tion or dropout was used, since the learning method did not present overfitting
issues. For soft-WTA training, images were preprocessed by a whitening trans-
formation as described in [23], although this step didn’t have any significant
effect for other training methods. The temperature parameter T of the softmax
operation used in soft-WTA was set to T = 0.02.

For VAE training, the network in Fig. 1, up to layer 5, acted as encoder,
with an extra layer mapping layer 5 output to 256 gaussian latent variables,
while a specular network branch acted as decoder. VAE training was performed
without supervision, in an end-to-end encoding-decoding task, optimizing the
β-VAE Variational Lower Bound [16], with coefficient β = 0.5.

For the supervised training stage, based on SGD, the initial learning rate was
set to 10−3 and kept constant for the first ten epochs, while it was halved every
two epochs for the remaining ten epochs. We also used momentum coefficient
0.9, Nesterov correction, dropout rate 0.5 and L2 weight decay penalty coefficient
set to 5 · 10−2 for CIFAR10, 10−2 for CIFAR100 and 5 · 10−3 for TinyImageNet.
Cross-entropy loss was used as optimization metric.

To obtain the best possible generalization, early stopping was used in each
training session, i.e. we chose as final trained model the state of the network at
the epoch when the highest validation accuracy was recorded.

6 Results and Discussion

In this section, the experimental results obtained with each dataset are pre-
sented and analyzed. We report the classification accuracy, along with the 95%
confidence intervals, in the various sample efficiency regimes, for the CIFAR10,
CIFAR100 and Tiny ImageNet datasets.

6.1 CIFAR10

Table 1 reports the top-1 accuracy results obtained on the CIFAR10 dataset. We
only report top-1 accuracy, given that CIFAR10 contains only 10 classes.

As we can observe, Hebbian approaches perform better than VAE in almost
all the cases. In particular, when low sample efficiency regimes are considered
(between 1% and 5%) Hebbian approaches achieve significantly higher results
than VAE. Only when the number of available labeled samples increases (beyond
10%), VAE pre-training starts to become competitive, obtaining results compa-
rable to Hebbian training. Overall, Hebbian pre-training appears to be more
effective than VAE, in particular when the number of available labeled samples
is relatively low (5% or less). The maximum improvement of Hebbian approaches
over VAE is achieved in the 5% sample efficiency regime, in correspondence of
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Table 1. CIFAR10 accuracy (top-1) and 95% confidence intervals, obtained with a lin-
ear classifier on top of various layers, for the various sample efficiency regimes. Results
obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%

VAE 33.54 ±0.27 34.41 ±0.84 29.92 ±1.25 24.91 ±0.66 22.54 ±0.60

soft-WTA 35.47 ±0.19 35.75 ±0.65 36.09 ±0.27 30.57 ±0.36 30.23 ±0.37

HPCA 37.01 ±0.42 37.65 ±0.19 41.88 ±0.53 40.06 ±0.65 39.75 ±0.50

2%

VAE 37.65 ±0.35 39.13 ±0.40 36.52 ±0.47 29.39 ±0.32 26.78 ±0.72

soft-WTA 41.05 ±0.39 42.09 ±0.34 43.48 ±0.36 37.85 ±0.28 36.59 ±0.23

HPCA 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 45.51 ±0.43

3%

VAE 41.22 ±0.27 43.16 ±0.44 42.60 ±0.87 31.91 ±0.44 29.00 ±0.33

soft-WTA 44.67 ±0.37 46.12 ±0.27 48.08 ±0.42 43.22 ±0.31 41.54 ±0.50

HPCA 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 48.80 ±0.27

4%

VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 31.15 ±0.35

soft-WTA 46.77 ±0.36 49.24 ±0.40 51.23 ±0.37 46.90 ±0.27 45.31 ±0.18

HPCA 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 51.28 ±0.28

5%

VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 32.75 ±0.32

soft-WTA 48.34 ±0.27 52.90 ±0.28 54.01 ±0.24 49.80 ±0.16 48.35 ±0.26

HPCA 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 52.20 ±0.37

10%

VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 45.67 ±1.15

soft-WTA 54.23 ±0.18 59.40 ±0.20 61.27 ±0.24 58.33 ±0.35 58.00 ±0.26

HPCA 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 57.35 ±0.18

25%

VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 68.70 ±0.15

soft-WTA 61.29 ±0.23 68.23 ±0.31 70.09 ±0.41 70.01 ±0.17 69.85 ±0.37

HPCA 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 64.77 ±0.22

100%

VAE 67.53 ±0.22 75.83 ±0.31 80.78 ±0.28 84.27 ±0.35 85.23 ±0.26

soft-WTA 67.37 ±0.16 77.39 ±0.04 81.83 ±0.47 84.42 ±0.15 85.37 ±0.03

HPCA 66.76 ±0.13 75.16 ±0.20 79.90 ±0.18 83.55 ±0.33 84.38 ±0.22

network layer 5, where a gap of almost 16% points is observed between VAE and
soft-WTA, and a gap of almost 20% points is observed between VAE and HPCA.
Moreover, in low sample efficiency regimes (10% or less) it is possible to notice
that VAE and soft-WTA approaches suffer from a decrease in performance when
going deeper with the number of layers. This issue is common with unsupervised
methods, because the absence of a supervision signal (or still its scarcity, in case
of semi-supervised training) makes it harder to develop task-specific features on
higher layers, which is essential to achieve higher performances, as it emerges
from previous studies on deep CNNs [1]. With HPCA, this problem seems to alle-
viate, and the accuracy remains pretty much constant with the number of layers,
again in the low sample efficiency regimes (10% or less), meaning that the fea-
tures produced by this approach are more meaningful for the classification task.
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Table 2. CIFAR100 accuracy (top-5) and 95% confidence intervals obtained with
a linear classifier on top of various layers, for the various sample efficiency regimes.
Results obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%

VAE 21.69 ±0.10 21.70 ±0.30 17.61 ±0.54 13.45 ±0.54 12.28 ±0.50

soft-WTA 19.60 ±0.23 20.08 ±0.32 18.50 ±0.44 15.21 ±0.36 15.30 ±0.28

HPCA 22.30 ±0.38 22.28 ±0.63 23.58 ±0.21 21.70 ±0.61 22.63 ±0.55

2%

VAE 28.24 ±0.13 28.42 ±0.31 23.56 ±0.73 17.01 ±0.37 15.25 ±0.63

soft-WTA 26.73 ±0.34 26.67 ±0.20 25.48 ±0.20 20.22 ±0.32 20.76 ±0.24

HPCA 29.65 ±0.52 26.57 ±0.26 33.20 ±0.20 30.21 ±0.54 30.83 ±0.35

3%

VAE 31.28 ±0.54 31.71 ±0.27 27.46 ±1.23 18.26 ±0.24 16.44 ±0.12

soft-WTA 30.53 ±0.37 30.81 ±0.52 29.99 ±0.44 23.22 ±0.25 23.69 ±0.49

HPCA 32.81 ±0.18 33.08 ±0.55 37.75 ±0.38 35.02 ±0.36 35.04 ±0.17

4%

VAE 34.60 ±0.10 35.44 ±0.31 32.34 ±0.79 19.68 ±0.32 17.89 ±0.27

soft-WTA 33.51 ±0.26 34.15 ±0.21 32.85 ±0.18 25.78 ±0.21 26.91 ±0.24

HPCA 36.13 ±0.39 36.23 ±0.20 41.21 ±0.39 39.16 ±0.32 38.89 ±0.15

5%

VAE 36.68 ±0.17 37.26 ±0.26 35.33 ±0.81 20.55 ±0.44 18.48 ±0.26

soft-WTA 35.71 ±0.29 36.83 ±0.37 35.80 ±0.18 28.39 ±0.43 29.57 ±0.13

HPCA 38.03 ±0.20 38.02 ±0.25 43.76 ±0.33 41.66 ±0.20 41.42 ±0.23

10%

VAE 42.64 ±0.34 44.84 ±0.48 46.04 ±0.44 27.81 ±0.13 23.80 ±0.60

soft-WTA 41.91 ±0.27 45.61 ±0.29 44.98 ±0.28 36.39 ±0.27 38.26 ±0.46

HPCA 43.51 ±0.34 44.84 ±0.26 50.84 ±0.22 49.53 ±0.19 48.93 ±0.38

25%

VAE 53.53 ±0.12 57.63 ±0.52 62.16 ±0.57 55.29 ±0.68 52.59 ±1.02

soft-WTA 50.60 ±0.34 57.84 ±0.26 59.94 ±0.15 51.26 ±0.41 56.26 ±0.34

HPCA 51.51 ±0.31 54.22 ±0.23 59.60 ±0.44 58.29 ±0.29 58.70 ±0.18

100%

VAE 67.51 ±0.11 73.83 ±0.30 78.70 ±0.23 79.58 ±0.18 79.97 ±0.14

soft-WTA 64.00 ±0.23 73.06 ±0.20 76.39 ±0.12 76.07 ±0.12 79.80 ±0.11

HPCA 65.61 ±0.12 70.38 ±0.23 74.10 ±0.12 73.38 ±0.18 74.42 ±0.14

Furthermore, HPCA seems to perform generally better than soft-WTA, espe-
cially on higher layers, when low sample efficiency regimes are considered (5%
or less). The maximum improvement of HPCA over soft-WTA is achieved in the
1% sample efficiency regime, in correspondence of network layers 5 and 4, where
a gap of almost 9–10% points is observed.

6.2 CIFAR100

Since CIFAR10 contained just 10 different classes, to validate our observa-
tions with a similar, yet more difficult scenario, we also performed tests with
CIFAR100, containing 100 classes. In Table 2 the top-5 accuracy results obtained
on the CIFAR100 dataset are shown.
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As we can observe, in low sample efficiency regimes (10% or less), Hebbian
approaches perform better than VAE in almost all the cases. In particular, soft-
WTA generally performs better than VAE on higher network layers, and HPCA
generally performs better than both soft-WTA and VAE on all network layers.
Only when the number of available labeled samples increases (beyond 10%), VAE
pre-training starts to really kick in, obtaining higher results than Hebbian train-
ing in almost all the cases. The maximum improvement of Hebbian approaches
over VAE is achieved in the 10% sample efficiency regime, in correspondence of
network layer 5, where a gap of almost 15% points is observed between VAE
and soft-WTA, and a gap of over 25% points is observed between VAE and
HPCA. Moreover, in low sample efficiency regimes (10% or less) it is possible
to notice that VAE and soft-WTA approaches suffer from a decrease in perfor-
mance when going deeper with the number of layers. As already observed on the
previous dataset, this is likely due to the lack of task-specificity of higher layer
features provided by unsupervised training. With HPCA, this problem seems to
alleviate, and the accuracy remains pretty much constant with the number of
layers, again in the low sample efficiency regimes (10% or less), meaning that
the features produced by this approach are more meaningful for the classifi-
cation task. Furthermore, HPCA seems to perform generally better than soft-
WTA, especially on higher layers (except for the 100% regime). The maximum
improvement of HPCA over soft-WTA is achieved in the 4–5% sample efficiency
regimes, in correspondence of network layers 5 and 4, where a gap of almost
12–13% points is observed. Overall, the results suggest that HPCA scales better
than other approaches with the complexity of the dataset, especially for low sam-
ple efficiency regimes (10% or less), while VAE is generally preferable in regimes
when more labeled samples are available (25% or higher).

6.3 Tiny ImageNet

Further experiments on Tiny ImageNet allowed us to validate the scalability of
our previous observations to larger datasets. Tiny ImageNet has 200 classes and
the training set consists of 100,000 samples (90,000 of which are used for training
and 10,000 for validation). In Table 3 the top-5 accuracy results obtained on the
Tiny ImageNet dataset are shown.

As we can observe, in low sample efficiency regimes (10% or less), Hebbian
approaches perform better than VAE. In particular, soft-WTA generally per-
forms better than VAE on higher network layers, and HPCA performs better
than both soft-WTA and VAE on all network layers. Only when the number
of available labeled samples increases (beyond 10%), VAE pre-training starts to
really kick in, obtaining higher results than Hebbian training. The maximum
improvement of Hebbian approaches over VAE is achieved in the 10% sample
efficiency regime, in correspondence of network layer 5, where a gap of over
3% points is observed between VAE and soft-WTA, and a gap of almost 15%
points is observed between VAE and HPCA. Moreover, in low sample efficiency
regimes (10% or less) it is possible to notice that VAE and soft-WTA approaches
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Table 3. TinyImageNet accuracy (top-5) and 95% confidence intervals obtained with
a linear classifier on top of various layers, for the various sample efficiency regimes.
Results obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%

VAE 9.63 ±0.26 9.49 ±0.39 7.58 ±0.28 5.99 ±0.19 5.55 ±0.23

soft-WTA 9.25 ±0.20 9.63 ±0.29 8.71 ±0.12 6.54 ±0.29 6.20 ±0.20

HPCA 10.81 ±0.27 10.99 ±0.36 12.15 ±0.46 11.05 ±0.27 11.38 ±0.41

2%

VAE 12.94 ±0.37 13.06 ±0.23 10.86 ±0.28 7.40 ±0.27 6.74 ±0.20

soft-WTA 12.67 ±0.26 12.56 ±0.30 11.36 ±0.18 8.57 ±0.21 8.56 ±0.29

HPCA 14.12 ±0.23 14.32 ±0.31 16.89 ±0.61 15.28 ±0.28 15.71 ±0.47

3%

VAE 14.31 ±0.18 15.17 ±0.20 13.67 ±0.36 8.35 ±0.29 7.74 ±0.19

soft-WTA 14.66 ±0.17 14.50 ±0.33 13.71 ±0.18 9.95 ±0.25 10.26 ±0.18

HPCA 16.25 ±0.21 16.54 ±0.28 19.78 ±0.47 18.31 ±0.24 18.23 ±0.33

4%

VAE 16.09 ±0.20 17.05 ±0.20 16.83 ±0.51 8.86 ±0.11 8.45 ±0.21

soft-WTA 16.20 ±0.31 16.51 ±0.26 15.70 ±0.17 11.04 ±0.29 11.52 ±0.07

HPCA 17.70 ±0.44 18.33 ±0.24 21.95 ±0.57 20.86 ±0.32 20.55 ±0.28

5%

VAE 17.44 ±0.26 18.62 ±0.32 19.16 ±0.52 9.92 ±0.24 9.29 ±0.17

soft-WTA 17.72 ±0.17 18.06 ±0.49 17.03 ±0.30 12.15 ±0.19 12.55 ±0.15

HPCA 19.26 ±0.41 19.93 ±0.41 23.97 ±0.52 22.95 ±0.26 22.46 ±0.17

10%

VAE 21.62 ±0.25 23.83 ±0.19 27.42 ±0.18 16.69 ±0.18 13.51 ±0.34

soft-WTA 21.22 ±0.43 23.08 ±0.21 21.90 ±0.15 16.21 ±0.27 16.70 ±0.17

HPCA 22.82 ±0.33 24.34 ±0.29 28.69 ±0.36 28.79 ±0.26 28.13 ±0.38

25%

VAE 29.40 ±0.31 32.42 ±0.29 39.93 ±0.31 37.97 ±0.62 37.89 ±0.54

soft-WTA 26.36 ±0.48 31.31 ±0.28 32.54 ±0.13 22.39 ±0.11 24.96 ±0.23

HPCA 28.01 ±0.75 30.63 ±0.16 35.87 ±0.53 36.98 ±0.26 37.10 ±0.23

100%

VAE 42.32 ±0.16 48.54 ±0.53 58.31 ±0.12 59.60 ±0.23 60.23 ±0.65

soft-WTA 38.55 ±0.20 46.82 ±0.33 48.91 ±0.24 42.35 ±0.24 54.94 ±0.10

HPCA 40.34 ±0.31 45.00 ±0.40 53.12 ±0.26 52.95 ±0.28 53.96 ±0.43

suffer from a decrease in performance when going deeper with the number of lay-
ers. As already observed on previous datasets, this is likely due to the lack of
task-specificity of higher layer features provided by unsupervised training. With
HPCA, this problem seems to alleviate, and the accuracy remains pretty much
constant or slightly increases with the number of layers, again in the low sample
efficiency regimes (10% or less), meaning that the features produced by this app-
roach are more meaningful for the classification task. Furthermore, HPCA seems
to perform generally better than soft-WTA, especially on higher layers (except
for the 100% regime). The maximum improvement of HPCA over soft-WTA is
achieved in the 25% sample efficiency regime, in correspondence of network lay-
ers 5 and 4, where a gap of almost 13–14% points is observed. Overall, the results
suggest that HPCA scales better than other approaches with the complexity of
the dataset, especially for low sample efficiency regimes (10% or less), while VAE
is preferable in regimes when more labeled samples are available (25% or higher).
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7 Conclusions and Future Work

In summary, our results suggest that our semi-supervised approach based on
unsupervised Hebbian pre-training performs generally better than VAE pre-
training, especially in low sample efficiency regimes, in which only a small portion
of the training set (between 1% and 10%) is assumed to be labeled. In particular,
the HPCA approach appears to perform generally better than soft-WTA. More-
over, HPCA seems to scale better than other approaches when the complexity
of the dataset increases, especially when low sample efficiency regimes are con-
sidered. On the other hand, VAE pre-training seems to become more effective
in regimes where a larger portion of the training set (25% or higher) is labeled.
Therefore, our method is preferable in scenarios in which manually labeling a
large number of training samples would be too expensive, while gathering unla-
beled samples is relatively cheap.

In future works, further improvements might come from exploring more com-
plex feature extraction strategies, which can also be formulated as Hebbian learn-
ing variants, such as Independent Component Analysis (ICA) [17] and sparse
coding [32,33,38]. Moreover, Hebbian approaches can also be combined with
pseudo-labeling and consistency methods mentioned in Sect. 2 [6,7,18,40]. In
addition to the semi-supervised learning scenario considered in this paper, it
would also be interesting to investigate Hebbian approaches in a meta-learning
scenario. Hebbian learning already found application in the context of meta-
learning, with the differentiable plasticity model [30]. In this case, the simple
Hebbian learning rule, Δw = η y x, was used, but further improvements might
come from applying more advanced Hebbian rules, such as those studied in this
paper. Finally, an exploration on the behavior of such algorithms w.r.t. adver-
sarial examples also deserves attention.
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Abstract. Sparsity in the structure of Neural Networks can lead to less
energy consumption, less memory usage, faster computation times on
convenient hardware, and automated machine learning. If sparsity gives
rise to certain kinds of structure, it can explain automatically obtained
features during learning.

We provide insights into experiments in which we show how sparsity
can be achieved through prior initialization, pruning, and during learn-
ing, and answer questions on the relationship between the structure of
Neural Networks and their performance. This includes the first work of
inducing priors from network theory into Recurrent Neural Networks
and an architectural performance prediction during a Neural Architec-
ture Search. Within our experiments, we show how magnitude class
blinded pruning achieves 97.5% on MNIST with 80% compression and
re-training, which is 0.5 points more than without compression, that
magnitude class uniform pruning is significantly inferior to it and how
a genetic search enhanced with performance prediction achieves 82.4%
on CIFAR10. Further, performance prediction for Recurrent Networks
learning the Reber grammar shows an R2 of up to 0.81 given only struc-
tural information.

Keywords: Sparse recurrent neural networks · Pruning · Hidden
structural prior · Neural architecture search · Architecture performance
prediction

1 Introduction

Understanding the structure of deep neural networks promises advances across
many open problems such as energy-efficient hardware, computation times, and
domain-specific performance improvements. The structure is coupled with spar-
sity on different levels of the neural architecture, and if there is no sparsity,
then there is also no structure: a single hidden layered neural network is capable
of universal approximation [14], but as soon as there exists a deeper structure,
there naturally occurs sparsity.

Clearly, the structure between the input domain and the first hidden layer
is tightly coupled with the structure within the data – correlations between
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the underlying random variables such as the spatial correlation of images or
correlation in windows of time series data. In theory and with perfectly fitting
functions, that should be all there is, but in practice, neural architectures got
deeper and deeper, and hidden structures seem to have an effect when neural
networks are not just measured by their goodness of fit but also, e.g., on hardware
efficiency or robustness [3]. Assuming such hidden structures exist for the better,
we wonder how we can automatically find them, how they can be controlled
during learning, and whether we can exploit given knowledge about them.

We give our definition for sparse neural networks and show experiments on
automatic methods to obtain hidden structures: pruning, neural architecture
search, and prior initialization. With structural performance prediction, we also
show experiments on exploiting structural information to speed up neural archi-
tecture search methods.

Our contributions comprise a pytorch tool called deepstruct1 which provides
models and tools for Sparse Neural Networks, a genetic neural architecture search
enhanced with structural performance prediction, a comparison of magnitude-
based pruning on feed-forward and recurrent networks, an original correlation
analysis on recurrent networks with different biologically plausible structural
priors from social network theory, and performance prediction results on these
recurrent networks. Details on the experiments and code for reproducibility can
be found at github.com/innvariant/sparsity-experiments-2021.

2 Sparse Neural Networks

Sparse Neural Networks (SNNs) are deep neural networks f with a low propor-
tion of connectivity ξ(f) with respect to all possible connections.

Sparsity. Given a vector x ∈ R
d with d ∈ N, its sparsity is ξ(x) = ||x||0

d =
1
d · ∑d

i=0 |xi|0, given the cardinality function || · ||0 (of which 0 refers to the
case of p = 0 of a Lp norm) and the size of the vector. Density is defined as
its complement with 1 − ξ(x). The definition extends naturally to tensors and
simply provides the proportion of non-zero elements in a tensor compared to the
total number of its elements. A tensor can be considered as sparse as soon as
its sparsity is below a given threshold value, e.g., ξ(x) < 0.5 – as soon as more
than 50% of its elements are zero.

What is the motivation for sparsity at all? First, more sparsity implies a
lower number of parameters which is desirable if the approximation and general-
ization capabilities are not heavily affected. In theory, it also implies a lower num-
ber of computations. From a technical perspective, sparse structures could lead
to specialized hardware. Further, sparsity means that there is space for compres-
sion that can affect the overall model memory footprint. Memory requirements
are an important aspect for limited capacity devices such as in mobile deploy-
ment. In the feature transformation layers, sparsity explains data dependencies
and provides room for explainability.
1 http://github.com/innvariant/deepstruct.

https://github.com/innvariant/sparsity-experiments-2021
http://github.com/innvariant/deepstruct
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Neural Networks. A neural network is a function composed of non-linear trans-
formation layers σ(Wx + B) extended with transformations for skip-layer con-
nections such that zl =

∑l−1
s=1 W s→l ·as+Bl with al = σ(zl) being the activation

of layer l with σ being e.g. tanh or max(x, 0). W s→l describes the weights from
layer l − 1 to l for a network with l ∈ {1, . . . , L}. The input to the function a0

is x ∈ R
dx from the input domain. Consecutive sizes of weight matrices W need

to be aligned and define the layer sizes. The final weight matrices W s→L map
to the output domain R

dy with BL ∈ R
dy .

Given the weights of a neural network f as a set of grouped vectors W ,
we overload ξ such that we obtain the sparsity of a neural network ξ(f) =
1

|W |
∑

x∈W ξ(x). A Sparse Neural Network is a neural network f with low
sparsity, e.g. ξ(f) < 0.5. The set of grouped vectors could, e.g., be all neurons
with their weights from all possible incoming connections.

Sparse Recurrent Neural Networks (SRNN). Recurrent Neural Networks addi-
tionally have recurrent connections which unfold over time. These recurrent con-
nections are initialized as hidden states, h. At any sequence t, ht = σ(Wxt +
Uht−1 + bh), t ∈ {1, ..., T} with W and U being input-to-hidden weigths and
hidden-to-hidden weights, respectively. We refer to xt as the input at sequence
t and ht−1 as the hidden state value from the previous step.

Similar to SNNs, SRNNs also consists of extended non-linear transformation
layers with skip-layers such that hl

t =
∑l−1

s=1 W s→lhs
t + Uhl

t−1 + blh with t ∈
{1, ..., T}.

Fig. 1. A simple Recurrent Neural Net-
work unrolled with t sequences. Here, W
represents input-to-hidden weights, U repre-
sents hidden-to-hidden weights, and V rep-
resents hidden-to-output weights.

In SRNNs, directed acyclic graphs
are not associated with recurrent con-
nections, only with consecutive trans-
formation layers. Therefore, to reflect
a graph in an SRNN, only input-
to-hidden weights W s→l are multi-
plied with masks Ms→l through the
Hadamard product � such that hl

t can
be formulated as:

l−1∑

s=1

(
W s→l � Ms→l

)
hs
t + Uhl

t−1 + blh

Achieving Sparsity. Sparsity refers to a structural property of Neural Networks
which can be desirable due to reasons such as model size or hardware accelera-
tion. There exist multiple ways to achieve sparsity, e.g., through regularization,
pruning, constraints, or by prior initialization.

Regularization affects the optimization objective such that not only a target
loss but also a parameter norm is minimized. As such, regularization takes effect
during training and can force weights to be of small magnitude. Under sufficient
conditions, e.g., with an L1-norm and rectified linear units as activation func-
tions, sparsity in the trained network can be achieved in an end-to-end fashion
during learning.
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Pruning refers to removing elements of the network outside of the end-to-end
training phase. Based on a selection criterion such as the magnitude of a weight,
one or multiple weights can be set to zero. A pruning scheme decides on what
sets the criterion is applied or how often the pruning is repeated. Sparsity is
enforced based on this selection criterion and pruning scheme.

Prior design is a constraint on the overall search space of the optimization
procedure. More generally, prior structure to a neural network is restricting the
hypothesis space of all possible obtainable functions during learning to a smaller
space. Convolutions as feed-forward neural networks with local spatial restric-
tions can be understood as such a prior design.

Pruning Neural Networks. Pruning is a top-down method to derive a model
from an originally larger one by iteratively removing elements of the neural net-
work. The motivation to prune is manifold: 1) finding high-performing network
structures can be faster in comparison to other search methods such as grid-
or random-search, 2) pruning can improve metrics such as error, generalization,
fault tolerance, or robustness or 3) reduce computational costs in terms of speed,
memory requirements and energy efficiency or 4) support the interpretation of
neural networks.

Pruning consists of a selection method and a strategy. The selection method
decides which elements to choose based on a criteria, e.g., the magnitude of a
weight. The strategy applies the selection method repeatedly on a model until
some stopping criterion is reached, e.g., a certain number of iterations are con-
ducted.

One-shot or single pruning refers to applying the pruning method once. After
pruning, often a certain number of re-training cycles are conducted. Fixed-size
pruning refers to selecting a fixed number of elements based on the ranking
obtained through the pruning selection method. In each step, the same number
of elements are removed. Relative or percentage pruning refers to selecting a
percentage of remaining elements to be pruned. This results in fewer numbers
to be removed in sudden decays of performance. Bucket pruning holds a bucket
value which is filled by, e.g., the weight magnitude or the saliency measure of
the pruning selection method, and as many elements as the bucket can hold are
removed per step.

A naive method for pruning is the random selection of k components. Differ-
ences can be made by defining the granularity, e.g., whether to prune weights,
neurons, or even channels or layers. Random pruning often serves as a baseline
for pruning methods to show their general effectiveness, and it has been shown
in various articles that most magnitude- and error-based methods outperform
their random baseline, see Fig. 2a. Usually, models drop in performance after
pruning but recover within a re-training phase of few epochs.

For magnitude-based pruning, good explanations can be found in [11,22]
and in recent surveys such as [8,19]. Class-blinded selects weights based on their
magnitude regardless of their class, i.e., their layer, class-uniform selects the
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same amount of weights from each class, and class-distributed selects elements
in proportion to the standard deviation of weight magnitudes in the respected
class.

Prior Design. Restricting the search space of the neural network architecture
fosters faster convergence, and domain-specific improved performance can be
achieved. Convolutions with kernels applied over spatially related inputs are a
good example for such a prior. Similarly, realizations as the MLP-Mixer [28]
show that even multi-layer perceptrons with additional imposed structure and
final poolings can achieve state-of-the-art performance.

3 Related Work

Pruning. Recent work on pruning has been conducted by Han et al. [11] using
different magnitude-based pruning methods for deep neural networks in the con-
text of compression or by Dong et al. [4]. A survey by Liang et al. [19] provides
extensive insights into pruning and quantization for deep neural networks. In
2018, authors of the Lottery Ticket Hypothesis reported on finding sparse sub-
networks after iteratively pruning, re-setting to the original weight initialization,
and training it from scratch to a comparable performance [7]. We collected over
300 articles on pruning just up until 2019.

First pruning experiments on Recurrent Network Network were performed by
Lee et al. [9]. Han et al. [10] proposed recurrent self-organising neural networks,
adding or pruning the hidden neurons based on their competitiveness during
training. A Baidu research group [25] could reduce the network size by 8× while
managing the near-original performance. In 2019, Zhang et al. [33] proposed
one-shot pruning for Recurrent Neural Networks using the recurrent Jacobian
spectrum. Using this technique, the authors confirmed that their network, even
with 95% sparsity, performed better than fully dense networks.

Sparse Training. Besides L1- or L2-regularizations which can lead to real-zeros
with appropriate activation functions such as ReLUs, there are also training
methods outside the optimization objective to enforce sparsity such as Sparse
Evolutionary Training (SET) by Mocanu et al. [23], Dynamic Sparse Reparam-
terization (DSR) [24] or the Rigged Lottery (RigL) [6]. For RNNs, there exists
Selfish sparse RNN training [21].

Neural Architecture Search. On Neural Architecture Search (NAS), there are
two notable recent surveys by Elsken et al. [5] and Wistuba et al. [31] providing
an overview and dividing NAS into the definition of a search space, a search
strategy over this space and the performance estimation strategy. Differ-
entiable architecture search [20] is a notable method for finding sparse neural
networks on a high-level graph based search space by allowing to choose among
paths in a categorical and differentiable manner. While there exist hundreds of

https://github.com/JulianStier/nn-pruning
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variations in the definition of search spaces and methods, the field recently came
up with benchmarks and comparable metrics [32].

Structural Performance Prediction. Structural Performance Prediction refers to
using structural features of a neural network to predict a performance estimate
without any or only partial training. Such performance prediction was already
conducted by Baker et al. [1] on two structurally simple features, namely the total
number of weights and the number of layers. But they mostly focused on pre-
diction based on hyperparameters and time-series information. Klein et al. also
did performance prediction based on time-series information. They conducted
“learning curve prediction with Bayesian Neural Networks” [15]. In [27] more
extensive graph properties of randomly induced structures were used to pre-
dict the performance of neural networks for image classification. A related work
on a “genetic programming approach to design convolutional neural network
architectures” [30] included an acceleration study for accuracy prediction based
on path depth, breadth-first-search level width, layer out height and channels,
and connection type counts. The performance prediction during a NAS yields a
1.69× speed-up. Similar to [27] in [3] we used structural properties to predict
the robustness of recurrent neural networks.

4 Experiments

We conducted four experiments: First, pruning feed-forward neural networks
to investigate the effect of different pruning methods, namely random pruning,
magnitude class-blinded, magnitude class-uniform, magnitude class-distributed,
and Optimal Brain Damage [18]. Second, pruning recurrent neural networks to
investigate whether we observe similar compression rates and to have a baseline
comparison for recurrent models in the subsequent experiment. Third, inducing
random graphs as structural priors into recurrent neural networks, based on
the biological motivation that biological neural networks are also connected like
small-world networks [12]. And fourth, conducting a genetic neural architecture
search with architectural performance prediction.

4.1 Pruning Feed-Forward Networks

On MNIST [17] we used two different feed-forward architectures with rectified
linear units with 100 and 300–100 neurons in the hidden layers, trained up to
200 epochs with cross-entropy, a batch size of 64, and a learning rate of 0.01 and
0.0001. With the five pruning methods, we conducted several repeated experi-
ments with iterative fixed-size pruning or iterative relative pruning of the number
of weights.

We found that magnitude class blinded pruning clearly outperforms the other
methods and Optimal Brain Damage, surprisingly, performs nearly the same
although it uses second-order derivative information for pruning. Pruning in
general can dramatically reduce overfitting in the examined network and can
even outperform other regularization techniques.
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(a) Five pruning methods on feed-
forward networks. Choosing weight-
magnitude over random selections
clearly has advantages. Optimal Brain
Damage is expensive and worth in a
low-parameter regime.

(b) Pruning both input-to-hidden and
hidden-to-hidden weights on a recurrent
neural network.

Fig. 2. Pruning performance in feed-forward networks (Fig. 2a) and recurrent networks
(Fig. 2b).

4.2 Pruning Recurrent Networks

(a) (b) (c)

Fig. 3. The red right arrow (−→) resembles pruning of hidden-to-hidden weights, the
red up-arrow (

�
⏐) pruning of input-to-hidden weights. Figure 3a shows pruning both,

Fig. 3b only i2h weights, and Fig. 3c only h2h weights.

In this experiment, we prune input-to-hidden“i2h” and hidden-to-hidden “h2h”
weights individually and simultaneously as depicted in Fig. 3 on a pre-trained
base recurrent model for the Reber grammar [26], trained for 50 epochs. The base
recurrent model consists of an embedding layer that accepts input in the form
of ASCII values of each character in the input Reber sequence. Three recurrent
layers of 50 neurons follow the embedding layer and a linear layer predicts the
final scores. TanH and ReLU are used as non-linearities. The models are trained
with a learning rate of 0.001 and a batch size of 32.

From the Reber grammar, we generated 25000 sequences, out of which 12500
are true Reber grammar sequences, and the remaining are false. The dataset
resembles a binary classification task in which a model has to predict whether a
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sequence is in the Reber grammar or not. Logically, a baseline performance from
random guessing is accuracy of 50%. We then split this dataset into a train-test
split of 75%-25%, with 18750 sequences in the training set and 6250 sequences
in the test set.

The threshold based on which we prune weights is calculated based on the
percent of weights to prune. Therefore, for example, to prune p = 10% of weights
for a given layer, the threshold is the 10th percentile of all the absolute weights
in that layer. In our experiment, we go from percent p = 10 to 100 while incre-
menting p by 10 after each round.

We considered LSTM, GRU, and vanilla RNNs as architectures for compar-
ison. Base models were trained separately for each to get the base performance.
Then, we pruned i2h and h2h weights; simultaneously and individually. Based
on these results, we can identify the effect pruning has on the performance of
RNNs and the amount of re-training required to regain the original performance.

The base models for RNN ReLU, LSTM, and GRU achieve perfect accuracies
of 100% on the test set within the first two epochs. RNN TanH achieved 90%
after six epochs and showed a drop in accuracy between epoch three and five
down to 50%, which we observed over multiple repetitions of the experiment.

Pruning both i2h and h2h weights simultaneously, about 80% of weights in
RNN Tanh, 70% of weights in RNN ReLU, 60% of weights in LSTM, and 80%
of weights in GRU can be safely reduced as can be observed in Fig. 2b. After
pruning above the safe threshold, we re-trained each pruned model and found
that it only takes one epoch to regain the original performance. Pruning 100%
weights, the model never recovers.

(a) Pruning only input-to-hidden weights. (b) Pruning only hidden-to-hidden weights.

Fig. 4. Accuracies of RNN Tanh, RNN ReLU, LSTM, and GRU after applying iter-
ative magnitude percentage pruning on a common base model.

Pruning only i2h weights, results showed that we safely prune about 70% for
RNN Tanh, RNN ReLU, and LSTM. For GRU, we prune 80% of i2h weights
without noticing a significant reduction in performance, see Fig. 4a. As in the
case of pruning both i2h and h2h weights simultaneously, our pruned model still
recovers only after one re-training epoch with up to 90% of pruning i2h weights in
RNN ReLU, LSTM, and GRU. RNN Tanh takes about two re-training epochs
to recover after 90% of i2h weight pruning. Finally, as expected, this pruned
model never recovers with 100% of i2h weights pruning.
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Subsequently, we prune only h2h weights of each recurrent layer in our trained
base model. Results showed that we could safely prune about 70% of h2h weights
for RNN ReLU and LSTM, while 80% of h2h weights for RNN Tanh and GRU,
see Fig. 4b. Like pruning only i2h weights, models still recover after one re-
training epoch with up to 90% of pruning h2h weights. Pruning 100% h2h
weights, RNN Tanh and RNN ReLU never recover, but GRU and LSTM still
retain the original performance with just one re-training epoch.

4.3 Random Structural Priors for Recurrent Neural Networks

Another method than pruning to induce sparsity in a recurrent network is by
applying prior structures by design. We use random structures that are generated
by converting random graphs into neural architectures, similar as in [27]. For this,
we begin with a random graph and calculate the layer indexing of each vertex. A
layer index is obtained recursively by v �→ max({indl(s)|(s, v) ∈ Ein

v }∪{−1})+1.
This layer indexing helps to identify the layer of a neural architecture a vertex
belongs to.

Such a graph is used to generate randomly structured ANNs by embedding it
between an input and an output layer, as in Fig. 5b. RNNs can be understood as
a sequence of neural networks, in which a network model at sequence t accepts
outputs from a model at sequence t − 1. Introducing recurrent connections as in
Fig. 5c provides us with Sparse RNNs with random structure.

(a) Initial graph (b) Sparse Neural
Network with induced
structural prior.

(c) A sparse RNN with a structural prior
based on the initial graph of five vertices.

Fig. 5. We select one directed version of the graph from Fig. 5a, compute its topological
ordering based on the described layer indexing and embed it into a neural network as
a structural prior as shown in Fig. 5b. This randomly structured ANN can then be
converted into a randomly structured RNN by introducing recurrent connections, as
in Fig. 5c.

We generate 100 connected Watts–Strogatz [29] and 100 Barabási–Albert
[2] graphs using the graph generators provided by NetworkX. The graphs are
transformed into recurrent networks and trained on the Reber grammar dataset.

https://networkx.org
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Analogue to pruning, this experiment is also conducted with RNN with Tanh
nonlinearity, RNN with ReLU nonlinearity, LSTM, and GRU.

To identify essential graph properties that correlate with the performance, we
calculated the Pearson correlation of each graph property to its corresponding
performance results. Table 1 shows the Pearson correlation between test accuracy
and different graph properties.

Table 1. Pearson correlation between the test accuracy of an architecture and different
graph properties.

Property Correlation with test accuracy

RNN Tanh RNN ReLU LSTM GRU

Layers 0.25 0.30 0.28 0.34

Nodes 0.40 0.44 0.44 0.49

Edges 0.38 0.43 0.42 0.49

Source nodes 0.35 0.47 0.57 0.74

Diameter –0.23 –0.27 –0.32 –0.20

Density 0.29 0.15 0.29 0.34

Average shortest path length –0.27 –0.25 –0.36 –0.23

Eccentricity var –0.22 –0.24 –0.30 –0.21

Degree var –0.28 –0.26 –0.39 –0.58

Closeness var –0.46 –0.39 –0.51 –0.67

Nodes betweenness var –0.49 –0.41 –0.56 –0.52

Edge betweenness var –0.34 –0.30 –0.44 –0.26

Based on this correlation, we found closeness var, nodes betweenness var,
and the number of nodes to be essential properties for randomly structured
RNN Tanh. For randomly structured RNN ReLU, the essential properties are
the number of nodes, the number of edges, the number of source nodes, and
nodes betweenness var. In the case of randomly structured LSTM, we found six
essential properties, i.e., the number of nodes, the number of edges, the number of
source nodes, closeness var, nodes betweenness var, and edge betweenness var.
Similarly, we found six essential properties for randomly structured GRU,
namely, the number of nodes, the number of edges, the number of source nodes,
degree var, closeness var, and nodes betweenness var.

By storing the graph properties and their corresponding performance dur-
ing the training of randomly structured recurrent networks, we create a small
dataset of 200 rows for each RNN variant. We then train three different regres-
sion algorithms, namely Bayesian Ridge, Random Forest, and AdaBoost, on this
dataset and report an R-squared value for each.

Performance of RNN TANH was best predicted with Bayesian Ridge (BR)
Regression with an R2 of 0.47919, while Random Forest (RF) achieved 0.43163
and AdaBoost (AB) 0.35698. All regressors have an R2 of below 0.5, from which
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we conclude only a weak fit and predictability based on the used structural
features. For RNN RELU, RF was best with an R2 of 0.61504, followed by
AB with 0.53469 and BR with 0.36075. Structural features on LSTM predicted
performance with AB with 0.59514, with RF with 0.57933, and with BR with
0.37206. We found a moderate fit for random forests, similar as in [27]. GRU
accuracies were predicted with AB with 0.78313 and with BR with 0.67224,
and RF achieved an R2 of 0.87635. This indicates a strong fit and a good
predictability that we interpreted carefully as potentially coming from a skewed
underlying distribution of the overall dataset of Sparse Neural Networks but
also an indication of possible strong predictability in larger settings in which
structural properties have even more impact.

4.4 Architectural Performance Prediction in Neural Architecture
Search

We investigated a Genetic Neural Architecture Search to find correlations
between structural properties of sparse priors and neural networks on a more
coarse level and analysed the predictive capabilities for performances of Sparse
Neural Networks when having just architectural information available.

(a) (b)

Fig. 6. Figure 6a shows an exemplary graph from our search space with a mutation
through an inserted sub-graph of depth two. Figure 6b shows the correlations between
structural properties and the maximum validation accuracy.

Our search space is based on directed acyclic graphs (DAG) and follows
Irwin-Harris [13] to represent CNN architectures as depicted in Fig. 6a. Each
vertex of the DAG is labelled with an operation: a convolution, max or average
pooling, a summation, or concatenation or a skip connection. A convolution can
have kernel sizes of either 3 × 3, 5 × 5 or 7 × 7.

In total, five genotypical operations were used on the search space: two
mutations and three crossover operations. The first mutation remaps vertex
operations in a genotype, e.g. it could replace max pool in the left genotype
of Fig. 6a with an avg pool. Figure 6a depicts the result of the second mutation
operation by inserting a smaller sub-graph #S into a randomly selected edge.
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The first crossover operation considers the longest simple sub-paths and swaps
them between both parent genotypes. Bridge-crossover searches for bridges in
both parent genotypes and swaps the succeeding child graphs after both found
bridges. In a third crossover operation, matching layers with feature maps are
searched. The number of feature maps within all vertices of both genotypes for
matching layers are averaged.

We use a minimum depth of 6 and a maximum of 12 for all DAGs. Due to
our final choice of mutation operation that increases the depth size with every
generation, we set the minimum and maximum depths for the random search to
10 and 36. The hyperparameter search uses a population size of 30, a mutation
probability of 0.5, a crossover probability of 0, a probability of removing the
worst candidates of 0.1, and an architectural estimation fraction of 0.5.

Architectural Performance Prediction. The experiment is conducted on cifar10
[16] and the meta dataset to investigate architectural performance prediction
consists of 56 features with a total of 2,472 data points - we split it into 70% train-
ing and 30% testing. The resulting meta-dataset constitutes a new supervised
learning task containing graph-based features and the estimated performance of
each candidate evaluated on cifar10. Three categories, namely layer masses,
path lengths, and remaining graph properties, make up the meta-dataset.

The layer mass is the number of channels of the current vertex times the sum
of all channels of preceding vertices with an incoming connection to the current
vertex. The average and standard deviation of this layer mass are used as a graph-
based feature in the meta-dataset. For path lengths, we consider the shortest,
longest and expected random walk length from a source to a target vertex.
Again, we take the average and standard deviation of these properties over all
vertices in a graph and obtain 36 features over all possible vertex operations.
Further, we include the depth, edge betweenness, eccentricity, closeness, average
neighborhood degree, and vertex degree as graph properties to the meta-dataset
features.

Six of the ten most important features relate to standard deviations of path
lengths regarding convolutional blocks or pooling layers. When combining this
result with the correlations of features and the maximum accuracy, which shows
positive correlations for all these six features and the maximum accuracy, it
seems that an even distribution of pooling and convolution layers benefits the
performance of an architecture. This assumption is further backed by the obser-
vation that handcrafted models like DenseNet use pooling vertices to connect
architectural cells. Mean centrality is also included in the ten most important
features and shows a negative correlation to the maximum accuracy. Centrality
is an inverted measurement of the farness of one vertex to other vertices in the
network. Thus, we interpret these findings as evidence that deeper architectures
perform on average better than shallower ones and that varying path lengths
might support a similar effect as model ensembles. Compare Table 1 and Fig. 6b
for correlations between graph properties and accuracy estimations across dif-
ferent experiments.
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5 Discussion and Conclusion and Future Work

We presented experimental results on different methods for optimizing structures
of neural networks: pruning, neural architecture search, and prior initialization.
These methods unite under joint questions of how structure influences the per-
formance of neural networks given data. Structural performance prediction is an
emerging method to exploit this fact to speed up search procedures or to control
bias towards desirable properties such as low memory or energy consumption or
computational speed for specialized hardware.

We compared five pruning techniques for pruning feed-forward networks,
namely random pruning, magnitude class blinded, magnitude class uniform,
magnitude class distributed, and optimal brain damage. Out of these five, ran-
dom pruning immediately showed an accuracy drop, while the other four per-
formed consistently near original performance for over 60% compression rate. In
the end, magnitude class blinded outperformed the remaining four.

While applying pruning on recurrent networks, we found models to perform
consistently better for up to 60% pruning. All the pruned models regain the
original performance in just one to two epochs of re-training. This means these
recurrent networks can achieve the same results as any dense recurrent network
with almost 60% fewer weights. As opposed to our expectations, LSTM and
GRU recovered even after 100% pruning of hidden-to-hidden weights. In LSTM,
this might be due to a separate cell state that acts as long-term memory.

Our experiment with random structural priors for recurrent networks aimed
to find essential graph properties and use them for performance prediction. Sim-
ilar to the results of [27], three of the essential features are the number of edges,
vertices, and source nodes. Although the construction and properties of Watts-
Strogatz and Barabási-Albert random graphs are different, recurrent networks
based on this two performed equally with RNN Tanh and RNN ReLU. Barabási-
Albert based recurrent networks perform better than Watts-Strogatz based with
LSTM and GRU.

Correlation analyses between structural properties and the performance of an
untrained network reveal themselves to be difficult – after all, the mere structure
is, at first sight, and ignoring the structural dependencies on the input feature
space, independent of data. All the more promising is if such a relationship
between structure of models and application domains can be found. The idea
that structures contain relevant information implies that architectural priors or
search strategies over architectures can be heavily biased and influenced. To
what extend this bias takes shape is difficult to understand, and we hope to
foster more research towards its impact.
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Abstract. Modeling human expert decision patterns can potentially help create
training and decision support systems when no ground truth data is available. A
cognitive modeling approach presented herein uses a combination of supervised
learning methods to mimic expert strategies. Yet without historical data logs on
human expert judgments in a given domain, training machine learning algorithms
with new examples to be labelled one by one by human experts can be time-
consuming and costly. This paper investigates the use of active learning methods
for example selection in policy capturing sessions with an oracle in order to opti-
mize frugal learning efficiency. It also introduces a new hybrid method aimed
at improving predictive accuracy based on a better management of the explo-
ration/exploitation tradeoff. Analyses on three datasets evaluated data exploration,
data exploitation and finally hybrid methods. Results highlight different tradeoffs
of those methods and show the benefits of using a hybrid approach.

Keywords: Active learning · Frugal learning · Policy capturing · Cognitive
systems engineering · Cognitive modeling · Decision support

1 Introduction

Active learning is gaining momentum as a way to maintain good machine learning
performances even with scarce amounts of data [1]. This approach requires the learner
to have access to a consequent unlabeled dataset (of potential cases), who then queries
an oracle (generally assumed to provide the ground truth but in the discussed context
it would in practice be replaced by a human expert) to get the label of one instance. In
active learning application contexts, queries are considered to have a prohibitive cost
(obtaining each labeled example costs time, resources or efforts) so it is important that
the queried instance gives the model as much information as possible.
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The Cognitive Shadow system, developed by Thales Research and Technology
Canada [2–5], is a data-driven tool making use of frugal learning techniques to cap-
ture the judgement policies of human experts and provide online decision support. In
the current paper, we aim to assess the potential of such a technique under specific
constraints such as the need to operate in real time and propose a new hybrid data explo-
ration/exploitation method to balance potential tradeoffs.We first present an overview of
the Cognitive Shadow prototype, the frugal learning problem and active learning meth-
ods. Section 2 details the experimental methodology used to compare the effectiveness
of different approaches. Section 3 reports the analyses and results. Section 4 provides a
discussion on our findings and their implications.

1.1 Cognitive Shadow

The Cognitive Shadow [2–6], is an AI-based knowledge capture and decision support
system that can be integrated into various mission systems. It automatically learns an
operator’s decision pattern and provides real-time warnings to prevent potential errors
when a mismatch is detected between the predicted decision and the user’s. To do so,
the Cognitive Shadow relies on seven supervised machine learning techniques that use
the decision outcome as the predicted variable and the contextual attributes as the pre-
dictors. This online learning system continually improves itself over time, meaning that
models are automatically retrained following new decision outcomes received. Model
predictions are combined using a voting rule based on an accuracy metric automati-
cally computed at each training iteration using a 10-fold cross-validation procedure.
The prototype system is implemented as a web service with a representational state
transfer application programming interface (REST API) and a relational (PostgreSQL)
database. Python scripts are used to train the machine learning algorithms available in
Scikit-Learn. The system allows configuring new classification tasks (e.g., triage, med-
ical diagnosis, risk assessment) using the web interface and deploying this capability
either on premise or in the cloud to enable interactions with different computerized task
environments.

Unlike data-mining which allows finding hidden patterns in large datasets that even
experts fail to recognize, policy capturing aims to model human expert judgments at
either the individual or group-of-experts level. While this approach does not require
historical data logs with ground truth labels, it does require human experts to take part
in knowledge capture sessions. Judgmental bootstrapping [7] occurs when those models
outperform human performance (not being prone to human errors due to factors such
as fatigue, distraction, stress, mental overload). The Cognitive Shadow does not need
large datasets to bootstrap human judgments because it exploits frugal learning methods
shown to decrease the amount of data necessary to reach good prediction accuracy [2].

1.2 Frugal Data Machine Learning

If machine learning tends to be more powerful when a large quantity of data is available,
it is not always the case. Because of this, some machine learning techniques aim to be
efficient even with a low number of examples. To achieve such goals, three main meth-
ods are used. The first one is simply to use models inherently better on small amount
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of data such as Random Forest, Linear Regression or Support Vector Machines (SVM)
[8]. Secondly, it is also sometimes possible to use transfer learning [9, 10] by reusing
models trained on a task similar to the current task with a consequent number of data
and retraining them using a small amount of data from the current task. This method is
only usable when working on small datasets with strong similarity to a larger available
one. Lastly, it is possible to use active learning methods (or adaptive optimal experi-
mental design) [1]. This type of method aims at reducing the number of uninformative
examples presented to the learner by selecting the data to be labeled by a user (often
called the oracle). It is especially useful when large unlabeled datasets are available but
it is expensive to label the data. Three main active learning strategies are generally used:
a) Pool-Based Sampling [11], where the algorithm selects the data to be labeled from a
finite pool of unlabeled data; b) Membership Query Synthesis [12], where the algorithm
generates instances to be labeled from a predefined distribution; and c) Stream-Based
Selective Sampling [13, 14], where the algorithm receives a flow of unlabeled data and
for each decide if it asks for the data labeling or not.

There are two main factors impacting the efficiency of an active learning method
resulting in the exploration/exploitation tradeoff [15]. First it should explore the unla-
beled data space, meaning that the extracted samples to be queried should be a good
approximation of the unlabeled data space and cover well the space for having all repre-
sentative clusters to be properly labeled. Second, it should exploit themodel’s predictions
to query the samples containing the most crucial information for the models.

Random Sampling is the main method used for data exploration. Each instance
presented to the oracle is taken from the unlabeled dataset at random. This method has
many desirable properties since the data distribution of the labeled instances sample
converges to the full dataset distribution.

Density Clustering Sampling [16] is an explorationmethod that rather uses clustering
techniques to separate the dataset into p-clusters. Then, a representative instance of each
cluster is selected to be labeled.

Many active learning strategies focusing on data exploitation were developed and
can be grouped into different categories based on the information metric they aim to
maximize:

• Query by committee [17]: Query the data for which the prediction differs the most
across multiple models obtained from different learning algorithms.

• Uncertainty sampling [18]: Query the data for which it is the least confident according
to the confidence measures over the models’ predictions.

• Expected model change [19]: Query the data that is maximizing the model change
measured effect.

• Expected error reduction [20]: Query the data maximizing the model’s generalization
error reduction.

Most exploitation methods tend to perform better than exploration ones such as a
random selection with a sufficient number of data [1]. However, they may sometimes get
worse performances when the first examples selected are not representative since they
would need the committee to be retrained at each decision to perform best and could
miss small clusters of data if they are not detected early.. To solve this issue, we propose
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to use a hybrid of exploration and exploitation which will start by mostly exploring the
datasets and gradually switch to exploitation to refine the decision boundaries similar to
[15].

1.3 Active Learning for Frugal Human Policy Capturing

Our aim is to use active learning to strengthen the prediction of the Cognitive Shadow
when a large pool of unlabeled data is available but only a scarce amount can be labeled by
anoraclewith the objective of the oracle being replacedby ahuman in future experiments.
Therefore our study of active learning is made under the following conditions: a) it
is limited to classification problems; b) it is limited to pool-based sampling since it
cannot be assumed that a method to generate potential queries, excluding membership
query synthesis, and stream-based is not adapted to the context; c) the active learning
methods should be time-efficient so no model retraining is allowed during the query
selection phase; and d) the active learning method should be model-agnostic since any
kind of model could be used. The only assumption on the model is that it can give
a prediction and an estimation of its confidence for each possible class for a given
example. These constraints prevent us from using methods such as expected model
change or expected error reduction, since they induce retraining, and, as well, any non-
model-agnostic methods.

To explore the data space, it is possible to select the data at random but we also tested
selecting the most distant instance to any previously selected data using the Euclidean
norm, other norms have been considered but there was no apparent benefit to prefer
one over the one used except computing time. Considering that this study is focused
on low amounts of data and the relatively weak time complexity of the method, it was
deemed unnecessary to use another norm. The method ensures that the selected data is
diverse by taking points far from each other. However, this technique is very sensitive
to outliers and potentially generates a reduction of accuracy when applied to datasets
where most data points are in clusters and a few outliers are isolated, as it does not take
the data distribution into account, plus one-hot encoded data have two distinct features
with a distance of 1 so have twice the maximal impact of other features. One possibility
we studied to enhance random exploration was to do first a K-means clustering on the
dataset, dividing it into 10 groups, and then taking at random an example from each
group. Doing so allows us to maintain a mostly random exploration while avoiding the
potential risks to get very similar data in the firsts queries.

We thus developed two hybrid methods to compare their performances with pure
exploration and pure exploitation methods. They are method-agnostic and use two val-
uation vector (vexploration and vexploitation) containing respectively the valuation of each
data in the dataset (the valuations have to be in [0,1[) for the exploration and exploitation
methods and produces a result vector equal to:

ω × vexploration + (1 − ω) × vexploitation (1)

For the first method, ω is a fixed constant manually defined. For the second, ω starts at
1 so that only exploration is used for the first samples and decreases linearly to reach 0,
i.e. when the number of data queried reaches a fixed value. Both are easy to implement,
fast and should mitigate the potential pitfalls of complex datasets.
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2 Methods

2.1 Rival Strategies

The exploitation methods satisfying the constraints posed by the Cognitive Shadow
and retained for comparison were modified versions of the ModAL library [21]. These
three original methods were: a) max disagreement b) vote entropy, and c) consensus
entropy. Max disagreement calculates the Kullback-Leibler divergence of each learner
to the consensus prediction for each instance and scales it using min/max in [0,1]. Vote
entropy divides the number of learners predicting each class for each instance to produce
a probability distribution vector. Then it computes the entropy of the given probability
vector and scale it using min/max in [0,1]. Consensus entropy does the same as vote
entropy but calculates the average of the class probabilities of each classifier using the
Scikit-learn method predict_proba to get the probability distribution.

The exploration methods satisfying the constraints posed by Cognitive Shadow and
retained for comparison were Random, Farthest and K-means. The methods to balance
exploration and exploitation considered and retained for comparison were Fixed omega
0.5, and Dynamic omega (reach ω = 0 after 100 queries) both using Random as the
exploratory method and consensus entropy as the exploitation one. The Randommethod
was used since the two others are new and could fail to generalize to other datasets.

2.2 Classifiers

In order to use committee sampling methods, we needed different learners. Given
our goal to enhance the Cognitive Shadow algorithms, the classifiers it uses were
selected with their default parameters to avoid the time cost of hyperparameter opti-
mization. All of them are from Scikit-learn 0.24.1. These algorithms are: Logistic
Regression (LogisticRegression(multiclass=“ovr”)), Decision Tree (DecisionTreeClas-
sifier), Naive Bayes (GaussianNB), SVC (SVC(probability=True)), Random Forest
(RandomForestClassifier), K Neighbors Classifier (KNeighborsClassifier), and NN
(MLPClassifier(alpha=1e−5)). To produce a prediction based on all the classifiers indi-
vidual predictions on a single example, we used a simple voting aggregation method.
The prediction on which most algorithms agreed on was chosen and the tie breaker was
random.

2.3 Datasets

The first dataset type used in our evaluation was the AMASCOS dataset. This dataset
refers to a simulation based on the Thales Airborne Surveillance Mission System
(AMASCOS [6, 22]). This simulation was done in a context of a maritime patrol task
where tactical coordinators had to classify radar contacts. Surface vessels monitored
are characterized by 14 attributes and can be classified as either “Allied”, “Neutral”, or
“Suspect”. The list of attributes represents a mix of categorical and numerical variables
(e.g., platform type, speed, length, and sea lane deviation). A one-hot encoding method
was used for the 11 categorical variables. To allow us to perform statistical analyses
on the results, 20 datasets of this type containing 200 labels each with balanced classes
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were generated using a specific set of rules. For this dataset type, a dataset with 10,000
examples was used as test set.

The second dataset type used was a modified version of AMASCOS with 50
randomly-generated outliers, each having a randomly attributed category to be incoher-
ent with the rules. This second dataset was privileged to evaluate the resilience against
outliers since some datasets might have some and it would be beneficial to maintain a
certain level of accuracy. Again, to permit statistical analyses on the results, 20 datasets
of this type containing 250 labels, 200 with balanced classes were generated using a
specific set of rules and 50 randomly generated outliers. For this dataset type, the same
dataset as for the first dataset type with 10,000 examples was used as test set.

The last dataset type used was targeting issues of exploitation methods highlighted
by the study appearing when faced with complex data patterns embedded in simple ones.
Indeed, most exploitation methods are selecting examples near first established decision
boundaries but can miss small data clusters due to overconfidence in prediction. They
are also over-focusing on specific regions if the models are not retrained between queries
and it should be more evident on low dimensionality dataset. To test this, the dataset
used took the form presented in Fig. 1.

Fig. 1. Complex pattern dataset presentation: train set example (left) and test set example (right)

The goal here was to show that exploitation centered methods would be sometimes
overconfident and assume that the only separation between the two class is in the mid-
dle and focus on refining the separation boundary while missing the small red cluster
embedded in the black region. To allow us to perform statistical analysis on the results,
100 datasets of this type containing 200 labels each with 2 almost-balanced classes were
generated using the following rule on a uniform distribution on [0,1[2: ∀ (x1, x2) ∈ [0,1[2

the class is Red if x1 < 0.5 ∪ (x1, x2) ∈ [0.7,0.8] × [0.45,0.55] else it is Black. For this
dataset type, a dataset with 10,000 examples was used as test set.

2.4 Evaluation Methods

For each dataset, we were interested in comparing the performances of each selected
method. We therefore designed the following set of experiments each based on the
following algorithm. For each training dataset, we made a loop where examples were
chosen 10 by 10 by the desired selection method from the unlabeled dataset and added to
a training pool. Each time,we retrained from scratch all theCognitive Shadowalgorithms
on the training pool and used the aggregation method on the test dataset with the newly
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trained algorithms. We then gathered the results for 150 decisions for each method
on each dataset. The first experiment was designed to compare the methods among
themselves on the AMASCOS dataset. The second was made to do the same with the
AMASCOS dataset containing additional outliers. The last experiment aimed at doing
the same on the complex pattern dataset.

3 Analysis and Results

For all datasets, we generated a graph depicting the mean prediction accuracy of each
method on a [0–1] scale as a function of the number of decisions (queries). To compare
performance of the methods, we generated the average of the first three query sets
(namely 10, 20 and 30 queries) and did the same for the three last query sets (i.e. 130,
140 and 150). The goal here was to compare the relationships between all methods in
the first queries (with a small data sample) and in the last queries (with many data).
Shapiro-Wilks tests and the number of data points raised issues pertaining to normality
especially for the Complex Pattern dataset. Nonparametric Kruskal-Wallis H tests with
the factor Methods (8 levels: Exploration random, Exploration farthest, Exploration K-
means, Exploitation max, Exploitation vote, Exploitation consensus entropy, Hybrid
fixed omega, and Hybrid dynamic omega) were thus privileged to identify whereas
for both first and last queries groups there was at least a significant difference on the
prediction accuracy among the different exploration, exploitation and hybrid methods.
Bonferroni-corrected Mann-Whitney U tests were then executed among the methods to
identify specific differences. Measures of effect size were also reported in the form of
eta-squared measures (η2) for the Kruskal-Wallis H tests and Mann-Whitney U tests.

3.1 AMASCOS Dataset

The results of the experiments comparing all exploration, exploitation and hybrid meth-
ods for the AMASCOS dataset are given in Fig. 2. The Kruskal-Wallis test ran on the
first queries (queries 10, 20 and 30) raised at least one significant different among the
methods, χ2(7) = 31.75, p < .001, η2 = .16. Within the first queries, the Exploitation
vote method significantly outperformed the Exploitation max method (U = 60.23, p =
.001, η2 = .42). The same pattern of results was observed in regards of the Exploration
farthest method (U = 51.60, p = .012, η2 = .31) and the Hybrid fixed omega method
(U = 60.75, p = .001, η2 = .43). All other differences failed to reach significance (ps
> .05), suggesting that the other methods were not significantly different from the best
method (Exploitation vote) but also from those with the lowest prediction accuracy (i.e.
Exploitation max, Exploration farthest and Hybrid fixed omega).

The test performed on the last queries (queries 130, 140 and 150) of the AMASCOS
dataset also raised at least one significant difference among themethods,χ2(7)= 115.85,
p < .001,η2 = .72.Consistentwith the first queries, theExploitationmaxmethod reached
the lowest prediction accuracy, significantly differing from the two other exploitation
methods, from the Exploration farthest method and from the two hybrid methods (Us
> 73.64, ps < .001, η2s > .63). Coherent with the hypothesis that exploration methods
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can be less efficient with large datasets, the Exploration random and Exploration K-
mean methods were outperformed by all the same methods than the Exploitation max
method (Us > 57.54, ps < .003, η2s > .39). Globally, within the last queries (i.e. with
larger datasets), both hybrid methods, the Exploration farthest method, the Exploitation
consensus entropymethod and theExploitation votemethods led to the highest predictive
accuracy.

Fig. 2. AMASCOSdatasetmeanprediction accuracy for each exploration, exploitation andhybrid
methods as a function of the number of queries

3.2 AMASCOS Dataset with Outliers

The different exploration, exploitation and hybrid methods were also compared for the
AMASCOSdataset that contained outliers. Figure 3 depicts themeanpredictive accuracy
of all these methods for this dataset as a function of the number of queries. The Kruskal-
Wallis test ran on the prediction accuracy of the first queries (10, 20 and 30) raised at
least one significant difference among the methods, χ2(7) = 61.24, p < .001, η2 = .36.
The presence of outliers slightly changed the pattern of results as compared with the
previous dataset. Indeed, the Exploration farthest method now became the worst method
and was outperformed by all other methods, except for the Hybrid fixed omega method
(Us > 73.06, ps < .001, η2s > .62). This latter method also generated accuracies that
were significantly inferior to the Exploration random method (U = 48.40, p = .027, η2

= .27) and the Exploitation vote method (U = 52.20, p = .010, η2 = .32). All other
differences did not reach significance (ps> .05). Overall, the best methods for these first
queries were the Exploration random, Exploitation vote and Hybrid dynamic omega, but
only the two first significantly differed from the two worst methods.
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Regarding the last queries (queries 130, 140 and 150), the Kruskal-Wallis test exe-
cuted on the prediction accuracies of the AMASCOS dataset with outliers also reached
significance, χ2(7) = 114.31, p < .001, η2 = .71. Multiple comparisons uncovered
that the Exploitation max method, as for the AMASCOS dataset without any outlier,
remained the worst method significantly inferior to all the others with the exception of
the Exploration K-means method and the Exploration random method (Us > 69.37,
ps < .001, η2s > .56). In opposition with the pattern of results observed in the first
queries, the Exploration random and the Exploration K-means methods dropped in rank
and were outperformed by all other methods except for the Exploration farthest and the
Exploitation max methods (Us > 52.59, ps < .010, η2s > .32). Hence, with a higher
number of queries, Hybrid fixed omega, Hybrid dynamic omega, Exploitation vote and
Exploitation consensus entropy reached the best accuracies and differed from all the
others but the Exploration farthest method.

Fig. 3. AMASCOS dataset with outliers mean prediction accuracy for each exploration, exploita-
tion and hybrid methods as a function of the number of queries

3.3 Complex Pattern Dataset

Mean prediction accuracies of the Complex pattern dataset for all the exploration,
exploitation and hybrid methods were computed (see Fig. 4). At least one significant
difference among the first queries (10, 20 and 30) could be found across the different
methods with the Kruskal-Wallis omnibus test, χ2(7) = 539.67, p < .001, η2 = .67.
Further tests allowed to pinpoint that the three exploitation methods reached the poorest
prediction accuracies and differed significantly from all the other methods, except with
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the Hybrid fixed omega method for the Exploitation consensus entropy and Exploitation
vote methods (Us> 112.08, ps< .018, η2s> .06). The Hybrid fixed omega method was
also significantly outperformed by all the exploration methods and the Hybrid dynamic
omega method (Us > 240.06, ps < .001, η2s > .27). A significant advantage could also
specifically be found for the Exploration farthest method compared with the Exploration
randommethod (U = 134.83, p = .001, η2 = .09). The three explorationmethods and the
Hybrid dynamic omega method were thus best suited for prediction with small amounts
of queries.

A main effect of Method was also found for the last queries (130, 140 and 150) as
the Kruskal-Wallis test reached significance level, χ2(7) = 168.28, p < .001, η2 = .20.
Decomposition of the effect with Mann-Whitney U tests uncovered that the Exploration
random and Exploration K-means methods reached inferior prediction accuracy than
all the other methods (Us > 139.87, ps < .002, η2s > .09). The Exploration farthest
method was also significantly inferior than the Exploitation max method (U = 107.16,
p = .029, η2 = .05) and the Exploitation vote method (U = 165.22, p < .001, η2 = .13).
The Exploitation vote method also outperformed both hybrid methods (Us> 109.63, ps
< .008, η2s > .06). Generally, among the last three queries, the exploitation and hybrid
methods were thus better at reaching high prediction accuracy, though the best method
seemed to be the Exploitation vote method.

Fig. 4. Complex pattern dataset mean prediction accuracy for each exploration, exploitation and
hybrid methods as a function of the number of queries
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4 Discussion

This study highlighted some problems for active learning methods relying only on
exploitation strategies with very scarce amounts of data when the committee is not
retrained after each decision. Indeed, exploration methods showed an overall more
robust pattern of results for the initial 30 learning trials (especially for the complex
pattern dataset). The Exploration farthest method showed good overall performances
compared to other exploration methods, but seems to be very sensitive to the type of
outliers used in the study. Yet, it still manages to get decent performances after exhaust-
ing the outliers. Conversely, exploitation methods showed an overall greater potential
once more data (130–150 examples) was collected, except for Exploitation Max method
which yielded poor results compared to the other two exploitation methods.

This work introduced a potential solution to alleviate the problem by using a hybrid
method allowing to transit gradually from an exploration phase to an exploitation phase.
As expected, a hybrid approach combining exploitation and exploration methods pro-
duced the best overall pattern of results, but onlywhen using a dynamic omega parameter
(fully focusing on exploration at first and progressively switching to a full exploitation
mode at 150 trials). TheHybrid static omegamethod fails to significantly increase overall
performances. This is probably due to its lack of ability to transition from the explo-
ration phase to the exploitation phase. The method proposed herein could be enhanced
in many ways bymodulating how the two strategies are weighed dynamically depending
on performance variations. Furthermore, the two hybrid methods tested here relied on
consensus entropy for exploitation and random sampling for exploration. Other explo-
ration and exploitation strategy combinations should be tested as well in future works.
This approach could also potentially be further improved by using other state of the
art active learning methods such as [15, 23] for the exploratory phase. Directions for
future works include testing this methodology on a greater variety of datasets ((including
multiple complex-pattern datasets and public datasets) to assess generalizability of these
results.

This study closely relates to previous work from [15] on balancing the explo-
ration/exploitation trade-off, with a few key differences in methodology (mainly switch-
ing vs. combining methods, and query synthesis vs. query by committee). This work
would also benefit from a sensitivity and specificity analysis which could highlight some
potential advantages or disadvantages of some methods used [15].

Advances in frugal learning could prove beneficial in many data science applica-
tions since it allows a significant gain in accuracy for very low amounts of data without
significantly degrading performances at other stages of learning overall. The methodol-
ogy presented herein has the benefit of being modular and can be adapted for use with
different types of methods.

This work contributed to the general issue of frugal learning since it is desirable to
attain good performances even when working with very scarce amounts of data. This
is particularly true for cognitive sciences and applied human factors since these fields
often require humans to provide judgment labels which is generally time consuming and
potentially costly.
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TheCognitive Shadow and other future cognitivemodelling technologieswill benefit
from these findings by improving the efficiency of interactive knowledge capture ses-
sions with human experts. Indeed, capturing human expert decision policies may help
create cognitive assistants, training agents, or safety nets for human decision making
in different domains. Some of the many potential areas of application include medi-
cal triage and clinical making, maritime surveillance, environmental risk assessment,
situation assessment, pilot decision making and human-machine teaming.

References

1. Settles, B.: Active Learning Literature Survey, vol. 52. University of Wisconsin Madison
(2010)

2. Lafond, D., Roberge-Vallières, B., Vachon, F., Tremblay, S.: Judgment analysis in a dynamic
multitask environment: capturing nonlinear policies using decision trees. J. Cogn. Eng. Decis.
Mak. 11, 122–135 (2017)

3. Labonté, K., Lafond, D., Hunter, A., Neyedli, H.F., Tremblay, S.: Comparing two decision
support modes using the cognitive shadow online policy-capturing system. In: Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 1125–1129 (2020)

4. Lafond, D., Tremblay, S., Banbury, S.: Cognitive shadow: a policy capturing tool to support
naturalistic decision making. Presented at the IEEE International Multi-Disciplinary Confer-
ence on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), San
Diego, 1 February 2013 (2013)

5. Lafond, D., Labonté, K., Hunter, A., Neyedli, H.F., Tremblay, S.: Judgment analysis for real-
time decision support using the cognitive shadow policy-capturing system. In: Ahram, T.,
Taiar, R., Colson, S., Choplin, A. (eds.) IHIET 2019. AISC, vol. 1018, pp. 78–83. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-25629-6_13

6. Chatelais, B., Lafond, D., Hains, A., Gagné, C.: Improving policy-capturing with active
learning for real-time decision support. In: Ahram, T., Karwowski, W., Vergnano, A., Leali,
F., Taiar, R. (eds.) IHSI 2020. AISC, vol. 1131, pp. 177–182. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-39512-4_28

7. Armstrong, J.S.: Judgmental bootstrapping: inferring experts’ rules for forecasting. In: Arm-
strong, J.S. (ed.) Principles of Forecasting, pp. 171–192. Springer, Boston (2001). https://doi.
org/10.1007/978-0-306-47630-3_9

8. Couronné, R., Probst, P., Boulesteix, A.-L.: Random forest versus logistic regression: a large-
scale benchmark experiment. BMC Bioinformatics 19, 270 (2018)

9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–
1359 (2010)

10. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1),
1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

11. Yang, Y.-Y., Lee, S.-C., Chung, Y.-A., Wu, T.-E., Chen, S.-A., Lin, H.-T.: libact: pool-based
active learning in python (2017). https://arxiv.org/abs/1710.00379

12. Wang, L., Hu, X., Yuan, B., Lu, J.: Active learning via query synthesis and nearest neighbour
search. Neurocomputing 147, 426–434 (2015)

13. Atlas, L., et al.: Training connectionist networks with queries and selective sampling. In:
Proceedings of the 2nd International Conference on Neural Information Processing Systems,
pp. 566–573. MIT Press, Cambridge (1989)
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Abstract. Sampling methods are a critical step for model-based evolu-
tionary algorithms, their goal being the generation of new and promising
individuals based on the information provided by the model. Adversar-
ial perturbations have been proposed as a way to create samples that
deceive neural networks. In this paper we introduce the idea of creating
adversarial perturbations that correspond to promising solutions of the
search space. A surrogate neural network is “fooled” by an adversarial
perturbation algorithm until it produces solutions that are likely to be of
higher fitness than the present ones. Using a benchmark of functions with
varying levels of difficulty, we investigate the performance of a number
of adversarial perturbation techniques as sampling methods. The paper
also proposes a technique to enhance the effect that adversarial pertur-
bations produce in the network. While adversarial perturbations on their
own are not able to produce evolutionary algorithms that compete with
state of the art methods, they provide a novel and promising way to
combine local optimizers with evolutionary algorithms.

Keywords: Adversarial perturbations · Model-based EAs · Neural
networks · Sampling methods · EDAs

1 Introduction

For years, there has been an active cross-fertilization between the fields of neural
networks (NNs) and evolutionary algorithms (EAs). While evolutionary methods
are the most used algorithms for neural architecture search, neural networks have
also been used to guide the search in model-based EAs [1]. One key question in
the design of NN-EA approaches is how to combine the excellent efficiency of
gradient based optimizers with the power of evolutionary operators to conduct
global search. In this paper we investigate the effect that methods conceived
for extracting information of NN have in the behavior of EAs. In particular, we
focus on the study of adversarial perturbations applied to surrogates of fitness
functions.

Given a machine learning model that classifies examples, an adversarial
attack [20] aims to make imperceptible changes to the examples in such a way
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that they are incorrectly classified by the model. The effectiveness of the adver-
sarial perturbation added to the example is measured both in terms of its capac-
ity to fool the model and in terms of the amount of distortion required to make
the adversarial attack successful. In this paper we investigate the use of adversar-
ial perturbations as sampling method and model enhancer within an evolutionary
algorithm. Using solutions already evaluated, we train a NN to classify whether
a solution will have a high-fitness or a low-fitness. Then we apply adversarial
perturbations to low-fitness solutions until the classifier is “fooled” to classify
the solution as high-fitness. The assumption made is that, since the NN model
captures information about the features that make solutions poor or good, the
perturbations made to the solutions will indeed improve the fitness of solutions.
Therefore, in order to make the network classify a poor solution as good, the
adversarial perturbation will actually improve the solution in terms of the objec-
tive function being optimized.

Our work is in line with ongoing research on the use of different types of
models to learn the most characteristic patterns of promising solutions in evolu-
tionary algorithms [1,3,16]. There exists an apparent paradox between the high
accuracy that a neural network can achieve at the time of capturing the charac-
teristics of the data and the difficulty of effectively exploiting that information
at the time of generating new solutions. None of the current approaches provides
a general, satisfactory and efficient solution to sampling from neural networks
within the evolutionary search scenario. Therefore, this paper introduces adver-
sarial perturbations as a completely new approach for exploiting this informa-
tion. This is a promising research direction because there is an active research
on the theoretical basics of adversarial perturbations and a variety of approaches
have been introduced with this goal.

The goal of our paper is not to introduce a new state of the art evolution-
ary algorithm for numerical optimization. Our objective is to analyze whether
adversarial perturbations can be used as a new way to exploit the information
learned by models of the best solutions opening the possibility of creating new
hybrid optimization methods. We compare 15 different strategies used to create
adversarial examples, most of which use gradient information about the model
to create the perturbations. We identify those strategies that have a better per-
formance within the context of evolutionary algorithms, and investigate whether
gradient optimizers produce any advantage over black-box attacks (those that
do not exploit information about the models to create the perturbations). Our
preliminary results do not show a significant improvement in efficiency due to
the use of adversarial perturbations, the results of the adversarial perturba-
tion methods vary significantly depending on the problem. However, we identify
methods that exploit the gradients of the models as the most effective.

The rest of this paper is organized as follows. In the following section we
present adversarial examples and adversarial perturbations with a focus on those
methods that will be later investigated in more detail. Section 3 introduces the
elements of our proposal to use adversarial perturbation as part of the evolu-
tionary process. Section 4 describes the algorithm and analyzes different aspects
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of the interaction between the EA, the NN and the technique for creating the
adversarial perturbations that need to be taken into account for enhancing the
search. Related work is reviewed in Sect. 5. Section 6 presents the experiments
conceived to evaluate the performance of the different variants of adversarial
attacks. Finally, conclusions drawn from the whole process are summarized in
Sect. 7.

2 Adversarial Examples and Adversarial Perturbations

In this section we present a brief introduction of adversarial examples and adver-
sarial perturbations. Our introduction is focused on the concepts and methods
used in this paper. For a more detailed introduction to adversarial examples, we
encourage the reader to examine [23].

Adversarial examples are inputs deliberately perturbed in order to produce
a wrong response in a target deep neural network (DNN), while keeping the
perturbation hardly detectable. The existence of slightly perturbed inputs able
to fool state-of-the-art DNNs were first reported by [20], for image classification
tasks.

Adversarial attacks can be classified according to different characteristics
[23]. First of all, we denominate targeted adversarial examples to those inputs
modified in order to produce a particular output class, or untargeted adversarial
examples if the objective is to change the output of the model without fixing
the output class we want to obtain. Moreover, we consider that an attack is
individual if it has effect on just one input, or universal if it is able to fool the
model for a large proportion of input samples. Regarding the information that an
adversary has access to from the target model we can also differentiate between
white-box or black-box attacks. In the former, which is the most common attack
type, the adversary has full access to the model, including its weights, logits or
gradients. In the latter, contrarily, we assume that it is not possible to obtain
any information about the target DNN.

Goodfellow et al. [5] introduce the Fast Gradient Sign Method (FGSM)
attack, in which the input x of ground-truth class y is perturbed in a single-
step, in the same direction of the gradients of the loss function with respect
to x:

x′ ← x + εsign(�L(θ, x, y)), (1)

where L represents the loss function, θ the parameters of the target model and ε
the maximum distortion allowed for each value in x. A straightforward extension
of the FGSM approach is to perform more than one step, which is known as Basic
Iterative Method (BIM) [8]. The Momentum Iterative Attack (MI) [2] is a further
extension of this attack strategy, in which the momentum [14] of the gradients
are considered in order to achieve a more effective attack. Thus, at each step the
input sample is perturbed according to the following update rule:

xt ← xt−1 + εsign(gt), (2)
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where gt represents the accumulated gradients until step t, with a decay factor μ:

gt ← μ · gt−1 +
�L(θ, xt−1, y)

|| � L(θ, xt−1, y)||1 (3)

The Decoupled Direction and Norm attack [17], which also relies on itera-
tively perturbing the input sample in the direction determined by the gradients
of the loss function, provides a different strategy in order to minimize the distor-
tion amount of the perturbation. At each step t, the perturbation δ is updated
with a step size α:

δt ← δt−1 + α
�L(θ, xt−1, y)

|| � L(θ, xt−1, y)||2 , (4)

and it is projected in the sphere of radius ε and centered in x, which constrains
the �2 norm. However, at each step the value of ε is decreased by a factor of μ
if xt−1 is able to fool the model or increased if it is not. In this way, after many
updates,

xt ← x + εt
δt

||δt||2 , (5)

the solution is expected to converge to a valid adversarial example, while mini-
mizing the �2 norm of the perturbation.

The attack rationale of the DeepFool algorithm [12], another iterative
gradient-based approach, is to push an input sample x of class y towards the
closest decision boundary of the target model.

r∗ = arg min ||r||2 s.t. f(x + r) �= f(x). (6)

To approximate r∗, at step t, the decision boundaries of the model are linearly
approximated in the vicinity of x, and for each k �= y, the perturbation needed
to reach (under the linear approximation) the decision boundary corresponding
to the k-th class is determined by:

δkt ← fk(xt) − fy(xt)
|| � fk(xt) − �fy(xt)||22

(�fk(xt) − �fy(xt)) (7)

being fk the logits of f corresponding to the k-th class. Finally, the input is
pushed towards that direction δ∗

t that requires the minimum distance: xt+1 ←
xt + δ∗

t . This is done until the input finally reaches another decision region, that
is, until the output of the model is changed.

Finally, the last method we focus on, the Blend Uniform Noise Attack
method, relies on the addition of uniform noise to the input sample until it
is able to produce a wrong prediction in the target model. Although this strat-
egy may require a higher distortion amount to fool the model than the previous
approaches, it can be suitable for black-box scenarios.
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3 Adversarial Examples as Promising Solutions

In this section we define the components of the model that eventually is used
for generating individuals for, and thus guide, the evolutionary algorithm. The
three main components interacting in the whole evolutionary process are:

1. Sub-populations (S): Solutions grouped in classes.
2. Model (M): A supervised (neural network) classifier to classify a solutions.
3. Attack (A): A method for creating adversarial perturbations using the model.

3.1 Learning to Discriminate the Quality of the Solutions

The first step of the algorithm is to group the solutions into three groups accord-
ing to their fitness values. Solutions are sorted according to their fitness and
divided into three groups of similar size

(
N
3

)
. These groups are called: Best,

Middle, and Worst solutions.
We could also split the population into two parts and consider only Best and

Worst solutions. However, by creating an additional class grouping solutions
with an intermediate value of the fitness, we intend to emphasize the difference
between the groups comprising the best and worst performing solutions.

We define a prediction task that consists of, given a solution, determine
whether it belongs to the Best or Worst groups (in this part of the procedure,
the Middle set is ignored). This is a typical binary classification problem where
the predictor variables or features are the decision variables of the optimization
problem and the binary label can be interpreted as: 1) The solution belongs
to the class of Best solutions. 0) The solution belongs to the class of Worst
solutions.

Due to their capacity to fit any problem type, the model chosen for testing
the adversarial methods is a multi-layer perceptron (MLP) [13]. In an MLP,
every neuron in layer l − 1 is exclusively connected to every other neuron in the
next layer l. These dense connections can be represented as matrix operations:

nl = σl(wl × nl−1 + bl) (8)

where, nl represents data computed in the l-th layer, and wl, bl ∈ θ are the
parameters for that layer. The first layer takes input data (n0 = x), and for
the output layer nl = ŷ. Commonly, the outputs of the layers are activated by
non-linear functions, in this equation represented by σ.

The neural network classifier is learned from scratch each generation using
the individuals of the Best and Worst datasets from the previous generation. We
also considered the possibility of starting the learning process from the network
weights learned in the previous generation, but this approach led to a decreased
ability of the network to learn from new solutions. Learning a new neural network
in each generation can increase the computational load for problems with many
variables. To cope with this question, starting the learning process from random
weights could be triggered only at certain generations during the evolution.
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3.2 Generating Promising Solutions with Adversarial Attacks

If the model has been successfully trained and it is able to generalize to unseen
data, it will predict with a high accuracy whether solutions are good or poor.
Therefore, we can start from a poor solution, which is correctly classified by the
model as belonging to the class Worst and make adversarial perturbations on
it until the model classifies it as belonging to the class Best. The assumption
here is that the perturbations required for the model to be fooled are indeed
perturbations that improve the quality of the solution in terms of the fitness.

Instead of using a low-fitness solution from the previous population, it is also
possible to use a random solution, or a solution from the Middle class, as long as
the model initially predicts it as belonging to the Worst class, because otherwise
it will not be able to create an adversarial perturbation since the model can be
fooled only if it initially predicts the class correctly.

3.3 Weaker Models Make More Adversarial Examples

As discussed in the previous section, it is not possible to improve solutions that
belong to the Best class and are correctly classified by the model as such. This
is a drawback because it means that the model can not further improve the best
found solutions.

One partial remedy for this problem is, once the model has been trained,
to partially modify it in order to make it incorrectly predict at least some of
the good solutions as poor, but keeping the prediction of the poor solutions
correct. Such modification will increase the pool of solutions to which adversarial
perturbations can be applied, and will likely increase the gain in fitness when
solutions in the Best class can be perturbed multiple times.

However, we would like the modifications made to the network not to dis-
tort the relevant information that it captures about the features that differenti-
ate between good and poor solutions. Therefore, we constrain the modifications
made to the network to the weights that connect the last hidden layer with the
output layer. These weights can be represented by a matrix of dimension m× 2,
where m is the number of units in the last hidden layer. The two units in the
output layer correspond to the values generated for the two classes.

Since in the output layer a softmax function is applied, and the output of
the function is proportional to the two inputs values, we can expect that if we
increase the weights that are connected to the unit of the Worst class then there
will be more examples predicted as Worst. That is the type of modification made
to the network. Therefore, we increase the weights connected to this unit in a
parsimonious way until at least one of the good solutions used for training is
incorrectly classified as Worst, or a maximum number of trials is reached.

This modification to the network can be beneficial not only because it
increases the number of solutions to which adversarial perturbation could be
applied to, but also because it can determine an increment in the amount of
perturbation added to all solutions modified. The assumption is that, in order
to reverse the classification given by the modified network to examples from the
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Worst class, the adversarial perturbation method will require to add a higher
amount of perturbation to the solution. Otherwise, it will not be able to balance
the effect that the change of weights in the last connected layer of the modified
network produced in the classification.

4 Surrogate Assisted EA with Adversarial Sampling

In model-based evolutionary algorithms (MEAs) [18], a model is used to discover
latent dependencies between variables. In this type of algorithms, the synergism
between the model and the method for sampling is one of the keys of the correct
optimization workflow. Algorithm1 shows a basic common MEA in pseudocode
form.

Algorithm 1: Pseudo-code for a generic MEA.
1 pop = generate population();
2 while halting condition is not met do
3 fitness = evaluate population(pop);
4 selected pop, selected fit = select solutions(pop, fitness);
5 model = create model(selected pop, selected fit);
6 offs = sample model(model);
7 pop = offs + best(pop, fitness);

8 end

Several model types can be used to guide a MEA. A common choice are
probably probabilistic graphical models, among which some of the most popular
choices are Bayesian or Gaussian networks. MEAs driven by these models are
known as estimation of distribution algorithms (EDAs). Nevertheless, a number
of researchers [11,15,16] have also proposed the usage of different neural networks
for guiding the search in EAs.

When inserted as part of Algorithm1, adversarial perturbations can be seen
as a method for sampling solutions generated by an MLP model of the best
solutions. The algorithm can be also considered as a hybrid between local opti-
mization methods used to create the adversarial perturbation and global search
as implemented by the EA.

4.1 Inserting Adversarial Perturbation Methods in EAs

We can consider the methods for creating the adversarial perturbations as sam-
pling procedures since we assume that they will produce solutions similar to the
ones from the class Best used for training. However, it is not possible to know
in advance which of the strategies discussed in Sect. 2 will be more effective
to improve more the fitness of solutions. Some of the methods for creating the
adversarial perturbations, such as FGSM are well known local optimizers, but
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other algorithms such as Deepfool exploit completely different strategies that
depend on the information contained in the neural network representation.

We expect that adversarial methods, such as the Blend Attack, that do not
exploit information about the network will be less effective than methods that
exploit the gradient or the information about the class decision borders of the
network, but this does not have to be the case.

Furthermore, evaluating the effect of the adversarial perturbations in the
context of evolutionary optimization is also a difficult task since different crite-
ria can be considered. For example, methods that increase the fitness the most
in a single application can be desirable, but the speed of the method is another
relevant criterion, as is the capacity of the algorithm to create “diverse” adver-
sarial examples to accomplish a more exploratory search. None of these criteria
are usually considered when evaluating the adversarial examples for attacking
machine learning models.

5 Related Work

Although we did not find any previous application of adversarial perturbations as
a component of an evolutionary algorithm, neural networks have been extensively
investigated as surrogates in EAs [6]. They have been applied for estimating the
values of the fitness functions and to assist in the application of mutation and
crossover operators [7]. The main difference between our proposal and previous
applications of neural networks as surrogates is that in our approach, the network
information is used at the time of generating the sample, not to predict the
quality of the sample.

In EDAs [9], sampling methods play an important role to generate new solu-
tions. There are a number of papers that implement sampling methods to gen-
erate solutions from a neural network. Perhaps the best known examples are
those algorithms based on variants of the Restricted Boltzmann Machines (RBM)
[16,21] and Deep Boltzmann Machines [15]. This type of models keep a latent
representation of the data, and exploit this information using Gibbs sampling or
other Markov Chain Monte Carlo methods.

A closer relationship to our proposal exists with the method of ANN inversion
[10], introduced by Baluja [1] to sample an MLP as part of an evolutionary
algorithm (Deep-Opt-GA). The goal of ANN inversion (or back-drive) is, given
the possible output value of a network, determine which input values produce
that output. It is usually applied for neural networks that solve a regression
problem [1,3].

There are important differences between the use of back-drive within the con-
text of evolutionary search for generating solutions as in [1] and our proposal.
First, back-drive is a single method to recover the inputs while adversarial per-
turbation is a diverse set of techniques of different nature. Second, back-drive
assumes that the neural network has been trained to solve a regression task
and therefore requires more detailed information about the solutions. We use a
neural network that solves a classification task and therefore our method only
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requires a way to separate promising from poor solutions. Partial evaluation of
solutions and other strategies can be used for this goal.

6 Experiments

In this experimental section we address different questions in order to evaluate
the performance of the adversarial methods for guiding the evolutionary algo-
rithm. More specifically, the goals of our experiments are:

– To determine whether the strategy used to initialize the solutions before
applying the adversarial perturbations has an influence in the performance of
the method.

– To investigate the behavior of the different adversarial perturbation methods
within the evolutionary computation framework.

– To investigate whether the modification of the network improves the fre-
quency in which adversarial perturbations can be applied.

The experiments were divided into three parts according to the questions
stated above. In the first part of the experiments (Sect. 6.2), we investigate the
influence of the initialization schemes for a reduced number of functions and a
large set of adversarial perturbations methods. In the second part of the experi-
ments (Sect. 6.3), we focus on the analysis of a reduced set of adversarial pertur-
bation methods for a larger set of functions. In the third group of experiments,
we investigate the effect of adversarial perturbations when networks have been
tricked.

6.1 Problem Benchmark and Parameters of the Algorithm

The extensive problem suite of CEC-2005 [19], as implemented in [22], has been
used to determine the performance of the adversarial methods driving an evolu-
tionary algorithm. We select functions F1 to F17, except function F7 that has
been discarded because of the range of possible values of the variables being not
fixed.

For the first and third groups of experiments, the reduced set of functions
comprises F1, F2, F6, F8, F13, and F14. These functions have been chosen as
representative of three different levels of difficulty; univariate (F1 and F2), basic
multimodal (F6 and F8), and expanded multimodal (F13 and F14).

All the experiments involve the same DNN structure: 2 hidden layers; sigmoid
activation function after the two layers; softmax activation function after the
output layer; weights (wl) are initialized employing Xavier initialization [4]; and
biases (bl) are initialized to 0. The network is trained using the Adam optimizer,
with a batch size of 50. Population size was N = 1.000 and we used truncation
selection T = 0.3 with the best elitism method in which all the selected solutions
are kept for the next population. The number of generations was ngen = 50. For
each combination and function, 5 independent executions have been performed.
The algorithm was implemented in Python and the code is available from the
authors upon request.
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6.2 Initialization Schemes for Adversarial Perturbations

As explained in Sect. 3, the solutions are divided into three groups: Best, Middle,
and Worst. The adversarial perturbations are applied to solutions in the third
group and some solutions in the Middle class. The question we want to inves-
tigate is whether using these poor solutions as initial values can be beneficial
for the workflow of the evolution. To test this hypothesis, we consider three sce-
narios: 1) Use the worst solutions to initialize the adversarial methods, 2) Use
mutated variants of the solutions in the Middle class. 3) Use randomly initialized
solutions. These scenarios are tested for all combinations of adversarial methods
and functions.

Fig. 1. Parallel coordinates showing the relation between the different components in
the preliminary experimentation. For each problem, the top 3 runs are shown, one line
for each one.

Figure 1 shows a summary of the results. In the figure, we represent, for
each function, which have been the four best combinations of initialization and
adversarial perturbation methods out of all the runs executed. It serves as way
to identify top-performing configurations. In the figure, each configuration of
adversarial method and individual initialization technique is represented by a
line.

The analysis of Fig. 1 reveals that the effect of the initialization method is,
to some extent, problem-dependent. Simpler problems can be better optimized
initializing from the worst solutions, the more complex ones benefit almost exclu-
sively from random solutions. This effect is less noticeable for solutions in the
Middle set. In this case, initialization from solutions in the Middle class can
also produce top results for complex functions. Runs that do not use random
initialization were only able to achieve a top-3 performance once, for a simple
function. These results indicate that the diversity component introduced by the
random initialization is, overall, a positive feature.

In addition to clarifying the effects of the different initialization methods,
the experiments show that the performance of the adversarial methods is in
general problem-dependent. For example, some of the best results obtained for
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the expanded multimodal problems (the clearest lines), have been obtained when
the EA uses adversarial perturbation methods unable to produce top results
for any of the basic multimodal or unimodal problems (BlendedUniformNoise
or DeepFool). Regarding these other problems, EAs incorporating adversarial
methods that use the gradients and the DecoupledDirectionNormL2 were the
ones producing the best results. This finding is relevant because it points to a
possible way to characterize the behavior of adversarial perturbation methods
using different classes of optimization problems.

Methods which make use of the gradients (in this case RandomPGD, Decoupled
DirectionNormL2, and RandomStartProjectedGD) outperform the others for
the simplest type of functions. Other methods which showed good performances
in the most difficult functions while still performing considerably well in the
simpler ones are DeepFool and BlendedUniformNoise. As can be observed, the
majority of the top-performing methods rely on the gradients of the network.
This was to be expected, as these methods take more informed decisions with
respect to the model at the time of modifying the individuals.

6.3 Performance of Adversarial Perturbation Methods

In order to perform a more in-depth analysis of the components that can
affect the performance of the adversarial example generation technique as a
guide of EAs, we enlarge the pool of functions in which the algorithm is
tested. We also constrain the set of adversarial perturbation methods to: A
method which does not rely on the gradients of the network (and therefore
requires no information about the model): BlendedUniformNoise, and other
four which do DeepFool, DecoupledDirectionNormL2, RandomPGD, and finally
RandomStartProjectedGD. We evaluate two scenarios for applying the adver-
sarial perturbation methods to solutions in the Middle class: R) random initial-
ization and M) mutation of a solution in class Middle.

Figure 2 shows a heatmap which encompasses the results of this experiment.
All fitness values obtained by every method and combination were scaled to [0,
1] in order to improve the interpretability of the results. For each problem (in
the y axis), and method-variant combination (in the x axis), the color represents
the mean of the best fitness values, computed from the five runs. The darker
(and therefore, lower) the better. Additionally, each of the cells in the heatmap
has an overlaid digit. This number is the negative logarithm in base 10 of the
variance obtained across all five runs. In other words, the number is the positive
version of the exponent of the variance. In this case, a larger number denotes
less uncertainty about the final result.

Analyzing this figure row-wise, it is possible to observe that some of the
problems have considerably brighter colors across all method combinations. The
runs for these functions have produced largely diverse best fitness values (e.g.,
one good run and other four very poor runs), which explains the mean being
high in the [0, 1] interval and the high variance.

Analyzing the figure as a whole, it becomes apparent that, again, there is not
an absolute winner among the adversarial methods. For example, for problems
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Fig. 2. Heatmap showing the mean values obtained by each method with different
treatment of the poor solutions in the middle set, for each function. The numbers
inside the figures represent the variance of all runs performed. Variants for starting
solutions: Mutated versions of the solutions classified as poor in the middle set (M),
or random solutions as (R). Methods: Decoupled Direction Norm L2 (DDL2), Ran-
domPGD (RPGD), Random Start Projected GD (RSPGD), DeepFool (DF), Blended
Uniform Noise (BUN).

F1-F3, DDL2, RPGD, and RSPGD produce the best mean fitness values. For
F5-F8, DDL2 and DF offer the best performance, whereas for F9 and F10, only
DF has a good performance. RSPGD and RPGD exhibit the lowest means for
F15-F18, and for F4 and F11, DDL2 is the most consistent one. Almost in all
cases, using a random initialization is better than applying mutation.

6.4 Network Tricking

Finally, we focus on trying to determine whether tricking the network in such a
way that it is more difficult for it to predict a solution as good can be beneficial
for the EA. If the adversarial perturbation method is forced to further modify
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the solutions so that the network recognizes them as good, then there is a chance
of the solutions actually improving even more.

To test this hypothesis, we use the reduced set of functions and an adversarial
method which has offered consistent performance across functions and param-
eters (DDL2). Five runs were respectively executed for the EAs that use the
ordinary neural network, and the tricked network.

Fig. 3. Best fitness value along generations for EAs that use ordinary and tricked
neural network.

Figure 3 shows details of the evolution for the six different functions (in differ-
ent colors). Each line represents the mean of the best found individual in terms
of fitness (y axis) at each point in the evolution (x axis) of each set of five runs.
Dashed lines represent runs in which network modification took place. The clear
lines accompanying the opaque ones represent the standard deviation of the 5
runs.

As in previous experiments, results are problem-dependent. For functions
F1, F6, F8, and F13, performing the network modification produces an improve-
ment in the performance of the algorithm, whereas this was not the case for
F2 and F14. What is more, in this case, no pattern about certain character-
istics fitting problem particularities can be deduced, since the best results for
the unimodal (F1 and F2), and the expanded multimodal functions (F13 and
F14) were obtained with different approaches. Taking all into account, however,
tricking the network improved the evolutionary process on four of the six sets of
runs.

7 Conclusions

In this paper we have proposed the use of adversarial perturbations as a way to
guide the search for optimal solutions in an evolutionary algorithm. Our method
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combines the use of a neural network that acts as a predictor of promising versus
poor solutions, with the application of algorithms originally conceived to deceive
neural networks. Our results show that it is indeed possible to use the adversarial
perturbations to improve the quality of the solutions from the first generation.
However, the perturbations stop improving the results after a relatively small
number of generations.

Our results are also of interest for research on neural networks. We have
shown how evolutionary optimization can serve as test-bed to evaluate differ-
ent methods for deceiving the networks. In this sense, our work opens another
avenue for the investigation of synergies between neural networks and optimiza-
tion algorithms.

References

1. Baluja, S.: Deep learning for explicitly modeling optimization landscapes. CoRR
abs/1703.07394 (2017). http://arxiv.org/abs/1703.07394

2. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185–9193.
IEEE Press (2008)

3. Garciarena, U., Mendiburu, A., Santana, R.: Envisioning the benefits of back-drive
in evolutionary algorithms. In: 2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8. IEEE (2020)

4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014)

6. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evolut. Comput. 1(2), 61–70 (2011)

7. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approximate
fitness functions. In: Proceedings of the 2nd Annual Conference on Genetic and
Evolutionary Computation, pp. 786–793 (2000)

8. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
CoRR abs/1607.02533 (2016). http://arxiv.org/abs/1607.02533
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Abstract. Machine-learning classifiers provide high quality of service
in classification tasks. Research now targets cost reduction measured in
terms of average processing time or energy per solution. Revisiting the
concept of cascaded classifiers, we present a first of its kind analysis
of optimal pass-on criteria between the classifier stages. Based on this
analysis, we derive a methodology to maximize accuracy and efficiency
of cascaded classifiers. On the one hand, our methodology allows cost
reduction of 1.32× while preserving reference classifier’s accuracy. On
the other hand, it allows to scale cost over two orders while gracefully
degrading accuracy. Thereby, the final classifier stage sets the top accu-
racy. Hence, the multi-stage realization can be employed to optimize any
state-of-the-art classifier.

Keywords: Cascaded classifier · Machine learning · Edge devices ·
Preliminary classifier · Pareto analysis · Design methodology

1 Introduction

Machine learning techniques are on the rise for classification tasks since they
achieve higher accuracies than traditional classification algorithms. Especially,
Deep Neural Networks (DNN) have proven highly effective in benchmark com-
petitions such as the ImageNet Challenge [1]. However, this success comes at a
price - computational complexity and thereby energy has skyrocketed [5].

Today, automated data analysis is used in sensitive medical or industrial
applications. These tasks vary over a wide range such as image classification,
voice recognition or medical diagnostic support. As misclassification in these
areas has a high price, classification accuracy is expected to be on par with a
trained human.

In some application cases, raw data contains sensitive private information,
i.e., streaming to and processing in the cloud is not always an option, letting alone
the energy cost of transferring raw data as compared to classification results. This
together gives rise to classification on edge devices. Featuring a limited energy
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budget, the computational cost of classification is constrained [18]. Preferably,
the classification algorithm needs to be adjustable to balance between the avail-
able energy budget and application specific accuracy requirements. Furthermore,
operating in real-time drives the need for high throughput. At the same time,
live data contains identical or even irrelevant information, i.e., the data-sets are
skewed [6,9]. Thus, a promising approach for cost reduction is preprocessing in
wake-up or reduced-complexity classifiers that forward only seemingly interest-
ing samples towards the next stage. This was successfully applied in embedded
sensor nodes [3] and for speech recognition [2,21]. The goal is to achieve lowest
possible energy for data processing on the edge device while maintaining a high
quality of service of the classification algorithm [15]. They can be summarized
as hierarchical classifiers.

The general concept of hierarchical classifiers was first introduced by Ouali
and King [20]. The various design dimensions such as applied algorithm, architec-
ture, or quantization span a large design space for cascaded classifiers. Adding
the substantial variety of existing datasets and their complex feature space,
benchmarking different solutions becomes a challenge by itself [8].

This work focuses on the optimization of cascaded classifiers to accelerate
highly energy efficient classification on edge devices. The main contributions of
this manuscript are: 1) a first of its kind in-depth analysis of various existing and
novel pass-on criteria between the stages of a cascaded classifier, used to qualify
a classifier’s output and steer the pass-on-rate, the rate of samples not classified
in the current classifier stage and passed to the succeeding classifier stage; 2)
a detailed discussion of different design choices of cascaded classifiers as low-
cost in-place substitutes of an existing classifier; 3) a design methodology based
on the accuracy-cost trade-off for Pareto-optimal cascaded classifier constella-
tions, with cost in terms of average processing time or energy per sample and
4) the composition of accuracy-efficiency trade-off driven cascaded classifiers, of
in-house trained classifiers for both datasets, MNIST [17] and CIFAR 10 [14].
Their Pareto-optimal settings provide a graceful trade-off between classification
accuracy and cost per classification - matching the specific use case. We provide
the template scripts to reproduce the results of this paper in https://git.rwth-
aachen.de/ids/public/cascaded-classifier-pareto-analysis.

The paper is organized as follows. Section 2 discusses the state-of-the-art of
cascaded classifiers and introduces its design parameters. Based on the analysis
of the pass-on criteria, the design methodology for an efficiency-accuracy driven
cascaded classifier is presented in Sect. 3 In Sect. 4 the validation of the method-
ology for CIFAR 10 is shown. Conclusions and remarks are drawn in Sect. 5.

2 Related Work and Background

The concept of hierarchical classification comprises various ways to combine
classifiers including trees or cascades [26]. This paper focuses without any loss
of generality on the latter subdomain, i. e. classifier structures being activated
sequentially. The idea is to pass a sample over consecutive stages of increas-
ing accuracy and cost until a stage’s specific pass-on criterion is above a preset

https://git.rwth-aachen.de/ids/public/cascaded-classifier-pareto-analysis
https://git.rwth-aachen.de/ids/public/cascaded-classifier-pareto-analysis
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threshold. The number of samples in the cascaded classifier is reduced by every
decision made in a previous stage (grey arrows in Fig. 1), while undecided sam-
ples are passed on to the next stage. Per convention, the indexing starts with
i = 0 at the last stage - the reference classifier, that sets the maximum accuracy.

An overview of state-of-the-art cascaded classifier architectures is shown in
Fig. 1. The approach to develop classifier stages, pass samples and optimize the
system varies in the different structures.
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Fig. 1. Concept of state-of-the-art cascaded classifiers with increasing (a) complexity
of referenced features [6], (b) quality of multi-class classifier [13,24] and (c) number of
output classes [9], with M and L being the maximum number of classes for each model
correspondingly.

In Fig. 1a) the stages are using fuzzy trees to determine the classified label
[6]. By increasing the number of features utilized by the decision tree, the cost is
increased as well as its capability to achieve higher accuracy. The fuzzy classifier
computes initially only a subset of all features, since not all samples are equally
complex to classify. Additional and more complex features are added in later
stages to enable proper classification of less frequent, more difficult to classify
samples. Thereby, earlier extracted features are propagated resulting in a classi-
fier with on-demand generation of computationally more expensive features [25].
As a drawback, this multi-stage scheme is rather inflexible, as the architecture
has to be revised for any change in the distribution of features contained in the
samples.



426 C. Latotzke et al.

A more general approach was earlier proposed in [24] (cf. Fig. 1b). The general
concept is the concatenation of independent Machine Learning classifiers (ML),
whose complexity is progressively increasing. It focuses on ensembles of binary
“one-class-expert” classifiers determining the confidence value based on relative
affiliation of a sample to a specific class.

Another principle is to modify the number of classes processed in each stage
(cf. Fig. 1c), [9]). With increasing stage index the networks are trained to differ-
entiate a larger number of classes in the set. This approach can be especially
beneficial in real-life scenarios with highly skewed input data, since many irrele-
vant, but frequent, samples are processed in the earlier stages. Various examples
exist that introduce such “wake-up” stage for energy optimization [2,3,21,22]
achieving dramatic reductions by exploiting the high skewness of the sample set.

A summary of design parameters of the considered multi-stage classifier prin-
ciples is given in Table 1. Stage specific parameters are indicated via ‘×’ while
parameters, which are globally fixed for the complete cascaded classifier are indi-
cated via ‘–’. For example the ‘×’ in the row ‘number of labels’ stipulates that
the number of labels can vary from stage to stage, i.e., increase towards the last
stage.

Table 1. Stage specific versus globally fixed design parameters for cascaded classifiers

Design parameters [9] [6] [24] [13] Ours

Threshold × – × – ×
Confidence metric – – – – ×
Number of labels × × – – –

Classifier algorithm – – × – ×

As earlier mentioned, the approaches in Fig. 1a) and Fig. 1c) are beneficial
for skewed datasets, while the approach in Fig. 1b) is best suited for unskewed
datasets, like MNIST, CIFAR 10 or ImageNet. These datasets are commonly used
in benchmarking of machine learning architectures. Hence, the state-of-the-art
comparison of cascaded classifiers in Table 2 focuses on these. The key criterion
for the comparison is the cost reduction achieved with the cascaded classifier
either by upholding the accuracy of the reference classifier or by tolerating 99%
preservation of the reference accuracy.

3 Methodology

3.1 Architecture and Quantitative Optimization

This work is based on the general architecture shown in Fig. 1b). The presented
methodology can also be used as in-place replacement of any single stage in
Fig. 1c) in order to combine the benefits of both cascaded classifier schemes.
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Table 2. State of the art cascaded classifiers for unskewed datasets

Paper [24] [13] Ours Ours

Accuracy Top-1 Top-5 Top-1 Top-1

Benchmark MNIST ImageNet MNIST CIFAR10

Cost function Energynorm GOps/s MOps GOps

Classifier SVM CNN CNN CNN

accref
a – 87% 99.45% 94.66%

Cost @ accref – 299.07 30.94 3.48

Cost reduction cascaded
classifier @ accref

b
1.05× 0.7× 5.71× 1.32×

Cost reduction cascaded
classifier @ 99% accref

c
2.85× 1.45× 263.17× 2.55×

areference accuracy: accuracy of stand alone final stage classifier
bachieves same accuracy as reference accuracy
cachieves 99% of reference accuracy

Our methodology makes use of readily available state-of-the-art classifier
architectures reusing the available outputs to derive a confidence metric. With
this approach, we are generalizing from the ensemble of one-class-expert classi-
fiers as in [24] to a set of existing, and upcoming, machine learning classifiers
freely chosen by their key performance indicators, e.g. cost and accuracy.

Given the complexity of comparing different solutions, cost is assumed to
scale proportional to the number of Multiply-and-Accumulate (MAC) operations
per inference and according to the quantization. Starting with a 32-bit floating
point (fp32) reference implementation, scaling factors for quantized 32-bit fixed
point (fx32) and binary (bin) operations have to be identified. To scale to fx32,
we use a factor of αfp32→fx32 = 0.7 computed as ratio of sums of energy numbers
of addition and multiplication given in [10]. Scaling to binary representation
according to [23] would result in a factor of αfx32→bin > 2000. Well aware of
the crudeness of this assessment, we decided to adopt as upper bound a rather
conservative scaling factor of αfp32→bin = 103. The above assumption implies
that the average cost for memory accesses and data transfers scales accordingly to
the MAC operations. Focusing on relative gains between different architectures,
this is considered a sufficiently accurate first order approximation of the involved
cost in terms of average processing time or energy per sample.

Cost reduction is obtained if the pass-on-probability ρi of a sample in a
classifier stage i is selected as to meet inequality Ci + ρi · Ci−1 ≤ Ci−1 or ρi ≤
1 − Ci/Ci−1. So, the cost introduced by an additional stage is overcompensated
by its savings. At the same time, ρi needs to be adjusted individually per classifier
stage to achieve the targeted accuracy while minimizing the cost. If all samples
would pass through all N stages, total cost would increase to Ctot = ΣN

i=0Ci.
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3.2 Vehicle

To elaborate the methodology, we use the basic MNIST digit recognition exam-
ple. The study features three different Artificial Neural Network (ANN) archi-
tectures trained to classify MNIST samples. For this case of balanced datasets,
the quality of an ANN is commonly measured in terms of accuracy defined by
the number of correctly identified samples divided by the number of all samples.
As a baseline, we use LeNet5 [16] with small modifications in order to achieve a
competitive accuracy of 99.45% (cf. Table 3). The second ANN is a Multi-Layer
Perceptron (MLP) with a single hidden layer (512 neurons) further denoted as
FC3. The smallest ANN is a result of binarization (cf. [7]) of the FC3 denoted as
FC3 bin. With increasing number of classifiers, the savings diminish [9]. Hence,
in this study we limit the maximum number of stages to three. A summary of the
key performance indicators of the three ANNs is given in Table 3. The hyperpa-
rameters for training the ANNs are found using grid search, since the iterations
on small datasets and networks are relatively short. For larger datasets, we would
recommend optimization tools (such as Hyperopt [4]) to converge to a good solu-
tion faster. This was not performed within the scope of this work. The ANNs
in this paper are state-of-the-art architectures for hardware implementations,
which achieve state-of-the-art accuracies without extensive data augmentation.

Table 3. Key performance indicators of MNIST classifiers

ANN Benchmark Cost C Accuracy %

FC3 bin MNIST 410 95.29

FC3 MNIST 410 k 98.43

LeNet5 MNIST 31 M 99.45

3.3 Analyses of Pass-On Criteria

Confidence Metric. An essential step to reuse existing single-stage classifiers
in a cascade is the definition of a pass-on criterion, i. e. a way to reject decisions
made by a classifier at a specific stage for further analyses in a succeeding clas-
sifier stage. The pass-on criterion consists of a specific confidence metric and its
corresponding threshold level. Applying the softmax function (cf. Eq. 1) to the
raw output vector x of the last an ANN layer results in the vector of probabilities
xs indicating the probability of a sample to belong to class i, with L being the
total number of labels.

xs
i =

exi

∑L
j=1 exj

(1)

To provide a less computationally complex alternative to the softmax func-
tion, we propose a linear normalization of the output vector x by means of Eq. 2.
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This normalization guarantees, that the resulting vector xl has the properties of
a probability distribution, i.e., xl

i ∈ [0, 1] and
∑L

i=1 xl
i = 1.

xl
i =

(xi − xmin)
∑L

j=1(xj − xmin)
(2)

Both normalization schemes enable the utilization of statistical confidence
metrics. The most used confidence metric is the absolute maximum value of
the normalized output vector xs or xl here called (abs). Usually, this value is
compared to a given threshold. We extend the selection of confidence metrics,
which are applied to the normalized output vector, to the following selection:

– ‘Best guess Versus the Second Best guess’ (bvsb)
– Variance (var)
– Entropy (ent)
– Kullback-Leibler Divergence (kl div)
– Kurtosis (kurt)

The bvsb computes the absolute difference between the top-two results [12].
Its generalized form [13] is not considered further, as we saw no relevant improve-
ment in our benchmarks. This paper is the first to the authors knowledge, which
introduces the kurt and kl div as confidence metrics for cascaded classifier. For
all statistical metrics, the elements of the output vector are treated as samples
from a probability density function. kurt, defined as the fourth standardized
moment, is linearly normalized between the worst case (uniform distribution)
and the best-case (delta distribution). Regarding kl div, the reference distri-
bution is defined as a delta distribution, representing full confidence into one
label.

Pass-On-Probability. Based on the previously introduced confidence metrics,
a pass-on criterion can be set to identify otherwise incorrectly classified samples,
that should be passed on to the next classification stage with a more capable
classifier. To benchmark the different confidence metrics introduced in the pre-
vious chapter, we set up a 2-stage cascaded classifier but focus on the behavior
in the first stage. For the first stage, either one of FC3 or FC3 bin is used. In
this case, LeNet5 acts as last stage (reference) making any final decision on
unclassified samples. Sweeping the threshold for various confidence metrics, the
accuracy of the first and last stage will be reached at thresholds th = 0 and
th = 1, respectively. At the same time, the cost scales from the first stage’s to
the sum of both stages. An example of such sweep is shown in Fig. 2 for the FC3.
It visualizes the total error (etot = 1 - accuracy) of the cascaded classifier vs. the
normalized cost Cnorm, i.e., the total cost divided by the cost of the reference
classifier Cnorm = Ctot/C0.

Considering confidence metrics entropy ent or Kullback-Leibler divergence
kl div, the error of the cascaded classifier only drops for very large thresholds,
i. e., when the majority of samples are passed on to the reference classifier. This
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Fig. 2. Pareto analysis of pass-on criteria for softmax ‘s’ and linear ‘l’ output of 2-stage
classifier using FC3 as initial stage followed by reference LeNet5.

is true for any of the two first stage classifiers and appears largely independent
whether the confidence metric is based on xl or xs. Hence, these confidence
metrics are excluded from further considerations.

Between the remaining four confidence metrics, there is a less apparent dif-
ference. The inset in the figure shows a zoom at the knee point of the curves.
Out of the remaining confidence metrics, the ones based on bvsb and kurt have
the tendency of showing better results, i. e., they achieve a better trade-off in
terms of error vs. cost as they are closer to the lower left corner of the figure.
For instance the cost reduces by 90% while tolerating an increase of 0.02% in
the classification error for kurt on xs (black star in Fig. 2). In the MNIST case,
this corresponds to another two (out of 10k) misclassified samples. The combi-
nation of both classifier stages shows for kurt on xs a slight improvement in
classification accuracy compared to the stand alone final stage classifier (cf. inset
in Fig. 2). This leads to the conclusion that for selected samples the first stage
classifier provides correct labeling, whereas in a following stage these samples
experience a small probability of being falsely classified.

This experiment shows that the simple confidence metric, maximum value
abs, already provides a good selection of relevant samples, but can be improved
by integrating more information available from the output vector. As much as the
computation of the presented confidence metrics might not be relevant in terms
of total cost, they add to latency especially when the employed transcendental
functions are computed iteratively on hardware. In the end, as the difference
between the two best confidence metrics (kurt and bvsb) is rather small (being
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based on linear or softmax output vectors), a final selection will be based on the
CIFAR 10 validation vehicle as discussed in Sect. 4.

In conclusion, a threshold applied to an appropriate confidence metric can
identify correctly classified samples so that only a minimal number of samples
has to be passed on to the following stage.

3.4 Generation of Multi-stage Classifiers

Based on the earlier assessment, a multi-stage classifier has to be created in a
trial-and-error fashion iterating through various sequences of ANNs. Thereby,
the accuracy and cost should increase going deeper in the hierarchy. In a first
step, the earlier introduced LeNet5 is combined with either FC3 or FC3 bin
to result in a 2-stage cascade. As before the threshold is swept from 0 to 1 to
determine the achievable trade-offs between accuracy and cost as a function of
realized pass-on-probability ρi ∈ [0, 1].

Fig. 3. In-depth analysis of true positives and misclassified samples of the initial clas-
sifier FC3 and the reference classifier LeNet5 for the confidence metrics bvsb (left) and
kurt (right) with a softmax activation.

Firstly, the resulting classifier behavior is visualized in Fig. 3 for the case
of the FC3-LeNet5 combination. As expected, the percentage of misclassified
samples (redish coloring) diminishes for higher thresholds, i. e., when passing
more samples to the final stage. Also visible is the trend of decreasing number
of misclassifications in stage 1 and their related increase in stage 0. However, as
stage 0 is a superior classifier the overall error count is reduced. This trend is
shown for the two overall best performing confidence metrics bvsb and kurt

for xs on the left- and right-hand-side, respectively. As much as the reduction
in error occurs for lower thresholds in the case of bvsb, it can be attributed to
an earlier increase in ρ. The cost level (solid black line) appears almost identical
for same accuracy levels. However, for equidistant sampling of the threshold th
the pass-on-probability ρ is more evenly distributed in the case of bvsb, which
is not the case for kurt. We conclude, that bvsb offers a finer tuning range.

In a second step, all three ANNs are sequentially operated resulting in a
3-stage classifier. Hereby, the classifiers are staged sorted by their increasing
accuracy and cost. The thresholding is performed using the softmax activation
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function and bvsb as a confidence metric. For the earlier cases of 2-stage classi-
fiers basically all values of the threshold resulted in a potential operating point.
In the case of multiple stages the sweep results in a large collection of design
points. Hence, Pareto-optimization is applied to the results of a full-factorial
analysis across a fine granular sweep of both classifier stages. The resulting
Pareto-optimal points are dominant combinations of error and cost (cf. Fig. 4).
Consequently, these combinations achieve the lowest error for a certain cost.
Analogous to the previous experiments, the cost is normalized against the final
stage C0. For reference, the previous 2-stage classifiers FC3 bin-LeNet5 and FC3-
LeNet5 are indicated in red and blue, respectively. The operating points of the
3-stage classifier are shown as black dots. As much as the 2-stage variants pro-
vide a trade-off between the extreme points, they lack the much wider, useful
scaling range offered by the 3-stage implementation. In all cases, the 3-stage
classifier achieves a significantly better operating point across the 5 orders of
cost - offering graceful degradation in accuracy as a function of available cost.

10-5 100

 C
norm

0.01

0.02

0.03

0.04

 e
to

t

99% accref

 e  = +1%

accref = 99.45%
5.71x

263.17x

3-stage
2-stage FC3 bin
2-stage FC3

Fig. 4. Pareto plot comparing the 2-stage classifier (red and blue) with the 3-staged
classifier in use case MNIST (black dots enlarged for better legibility). (Color figure
online)

4 Case Study: CIFAR 10

To validate the methodology developed using the basic MNIST example, it is
now applied to the case of CIFAR 10 classification. As before, three ANNs are
selected, each capable to perform the classification task stand-alone. Please note,
the training of the ANNs for CIFAR 10 (summarized in Table 41) utilized only
basic data augmentation methods like padding and shifting from the center.
Further improvement in classification accuracy is reached with hyperparame-
ter optimization and heavy data augmentation (cf. [19]). Since DenseNet [11]
1 Note that the width and depth of the ANNs used for this case study are adjusted

for the CIFAR10 dataset.
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achieves the best accuracy (at highest cost), it is selected as reference classifier,
i. e. as last stage in the cascade and reference of cost.

Table 4. Key performance indicators of CIFAR 10 classifiers

ANN Benchmark Cost Accuracy

C %

LeNet5 CIFAR 10 32.5 M 83.55

VGG7 CIFAR 10 2.6 G 92.78

DenseNet CIFAR 10 3.5 G 94.66

As for MNIST, an optimal confidence metric has to be selected for CIFAR 10.
There are two candidate confidence metrics for MNIST, which hold promising
results, but in the CIFAR 10 case, the bvsb shows a clear edge over kurt. Hence,
this confidence metric is used in the following experiment. Please note, as for
the MINST example, also CIFAR 10 shows a slight improvement in accuracy for
intermediate threshold levels. Bear in mind, that all points with Cnorm ≥ 1 are
indicating higher cost than a stand-alone reference classifier.

Figure 5 depicts the Pareto plot of the 3-staged classifier. The gap in the
Pareto plot indicates that there is no reduction in classification error for this cost
interval. With the chosen classifiers, it is possible to reduce the cost over two
orders of magnitude. A wider range, as obtained for the 3-stage MNIST classifier,
would be possible using an additional ANN of lower cost and reasonable accuracy.
While the accuracy of the reference classifier is maintained, the cascaded classifier
achieves a cost reduction of 1.32× by using low-cost classification of easy samples.
The cost reduction becomes 2.55× maintaining 99% of the reference accuracy.
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Fig. 5. Pareto plot comparing the 2-staged classifier (red and blue) with the 3-staged
classifier (black dots enlarged for better legibility) in use case CIFAR 10. (Color figure
online)
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5 Conclusion

Ever more powerful machine learning algorithms surpass human performance,
yet are prohibitive for embedded devices due to their high computational com-
plexity. Combining classifiers of varying accuracy-to-cost ratios in a cascade,
as presented in this paper, provides cost reduction, while preserving top accu-
racy. Alternatively, graceful degradation is enabled to provide dramatic cost
reduction, including throughput and energy, with bounded drop in accuracy.
The realization of such cascaded classifier can be reproduced in the presented
structured methodology, which makes use of a confidence metric requiring only
basic mathematical operations. Pareto-optimization provides optimal settings
for the threshold level to adapt classification on embedded devices according to
the available energy budget. The presented methodology is derived using MNIST
and validated with CIFAR 10. This work achieves with a three stage classifier for
MNIST a cost reduction of 5.71× at 99.45% accuracy and remarkable 263.17×
at 98.46%. In the case of CIFAR 10, the reduction is 1.32× at 94.66%, and 2.55×
at 93.7%.
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Abstract. Motion behaviour is driven by several factors - goals, neigh-
bouring agents, social relations, physical and social norms, the environ-
ment with its variable characteristics, and further. Most factors are not
directly observable and must be modelled from context. Trajectory pre-
diction, is thus a hard problem, and has seen increasing attention from
researchers in the recent years. Prediction of motion, in application, must
be realistic, diverse and controllable. In spite of increasing focus on multi-
modal trajectory generation, most methods still lack means for explicitly
controlling different modes of the data generation. Further, most endeav-
ours invest heavily in designing special mechanisms to learn the interac-
tions in latent space. We present Conditional Speed GAN (CSG), that
allows controlled generation of diverse and socially acceptable trajecto-
ries, based on user controlled speed. During prediction, CSG forecasts
future speed from latent space and conditions its generation based on
it. CSG is comparable to recent GAN methods in terms of the bench-
mark distance metrics, with the additional advantage of controlled sim-
ulation and data augmentation for different contexts. Furthermore, we
compare the effect of different aggregation mechanisms and demonstrate
that a naive approach of concatenation works comparable to its atten-
tion and pooling alternatives. (Open source code available at: https://
github.com/ConditionalSpeedGAN/CSG).

Keywords: Conditional generative models · Trajectory simulation

1 Introduction

Modelling social interactions and the ability to forecast motion dynamics is cru-
cial to several applications such as robot planning systems [1], traffic opera-
tions [2], and autonomous vehicles [3]. However, doing so remains a challenge
due to the subjectivity and variability of interactions in real world scenarios.

Recently we have witnessed a shift in perspective from the more determinis-
tic approaches of agent modelling with handcrafted features [4–8], to the latent
learning of variable outcomes via complex data-driven deep neural network
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architectures [9–12]. State-of-the-art systems are able to generate variable or
multimodal predictions that are socially acceptable (adhere to social norms),
spatially aware and similar to the semantics in training data. Most systems can
sufficiently generate outcomes according to the original distribution, but lack
means for controlling different modes of data generation, or to be able to extrap-
olate to unseen contexts. Consequently, controlled simulation is a challenge.

We propose that these systems need to be: a) Spatio-temporal context aware:
aware of space and temporal dynamics of surrounding agents to anticipate pos-
sible interactions and avoid collision, b) Control-aware: compliant to external
and internal constraints, such as kinematic constraints, and simulation control,
and c) Probabilistic: able to anticipate multiple forecasts for any given situation,
beyond those in the training data.

To model the implicit behaviour and predict sudden nuances, it is imperative
that these systems understand not only the spatial but also the temporal con-
text. This context should be identifiable, and adaptable. For instance, in urban
simulations, it is important to simulate trajectories with different characteristics
specific to the location and time, e.g., slow pedestrians in malls vs fast in busy
streets. Adaptation and extrapolation to different contexts thus is imperative
for simulation in such scenarios.

In this work, we propose a generative neural network framework called CSG
(Conditional Speed GAN) that takes into account the aforementioned require-
ments. We leverage the conditioning properties offered by conditional GANs [13],
to induce temporal structure to the latent space in sequence generation system
inspired by previous works [9,11,14]. Consequently, CSG can be conditioned for
controlled simulation. CSG is trained in a self-supervised setting, on multiple
contexts such as speed and agent-type in order to generate trajectories specific
to those conditions, without the need for inductive bias in the form of explicit
aggregation methods used extensively in previous works [9,15–19]. The main
contributions of this work are as follows:

1. A generative system that can be conditioned on agent speed and semantic
classes of agents, to simulate multimodal and realistic trajectories based on
user defined control.

2. A trajectory forecaster that uses predicted speeds from the latent space to
generate conditional future moves that are socially acceptable, without special
aggregation mechanisms like pooling or attention.

2 Related Work

There is a plethora of scientific work done previously in the field of trajectory fore-
casting. Based on structural assumptions [20], the existing literature can broadly
be classified as: a) Ontological, which are mechanics-based, such as the Cellu-
lar Automata model [8], Reciprocal Velocity Obstacles (RVO) method [7], or the
Social Forces (SF) model [4] - that use dynamic systems to model the forces that
affect human motion. For instance, SF models dynamics with newtonian controls,
like, attraction towards goal, and repulsion against other agents; these methods
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make strong structural assumptions, and often fail to capture the intricate motion
dynamics [4,5,21], and b) Phenomonological, that are data driven and aim to
implicitly learn complex relationships and distributions. These include methods
such as GPR (Gaussian Process Regression) [22], Inverse Reinforcement learn-
ing [23], and the more recent RNN based methods [24,25], due to their acclaimed
success in modelling long sequences, yielding improved prediction over determin-
istic methods. However, these methods were still restrictive in their inability to
model multiple modes of outcome (multimodal).

2.1 Generative Models

Generative methods, with recent advancements, became the natural choice for
modelling trajectories, since they offer distribution learning, rather than opti-
mising on a single best outcome. Most related works employ some kind of deep
recurrent base with latent variable model, such as the Conditional Variational
Autoencoder (CVAE) [20,26] to explicitly encode multimodality or Generative
Adversarial Networks (GAN) to implicitly do so [9,11]. A few interesting GAN
variants have been developed to tackle some of the aforementioned challenges,
such as the Social GAN (SGAN) [9], which can produce socially acceptable tra-
jectories, and encouraged multimodal generation of trajectories by introducing a
variety loss. Additionally, with the pooling module, using permutation invariant
max-pooling, a form of neighbourhood spatial embedding was introduced, that
demonstrated improvement over local grid-based encoding, such as the kind used
in Social-LSTM [24]. This was improved with an attention mechanism proposed
in SoPhie [11], which was explored by numerous following works [18,19,27–29]
and improved in Social Ways [10] and Social BiGAT [14].

In the current state, the generative models can effectively learn distributions
to forecast diverse and acceptable trajectories. However, there still exist open
questions as to how to decide which mode is best, or if the mean is good enough
for changing scenarios. Existing methods do not tackle the problem of mode con-
trol, which is an essential characteristic needed for simulation and adaptation to
different scenarios. Further, a key challenge is to find an ideal strategy to aggre-
gate information in scenes with variable neighbours, and it remains unanswered
whether special mechanisms like pooling or attention are really needed.

2.2 Conditioned Generation

The objective of generative models is to approximate the true data distribution,
with which one can generate new samples similar to real data. GANs are useful
frameworks for learning from a latent distribution with only a small number of
samples, yet they can suffer in regards to output mode control. The mode con-
trol of the network requires some additional constraints that force the network to
sample from particular segments in the distribution. Such as in the case of condi-
tional GANs [13]. Conditional generative models have previously been explored
in the context of trajectory prediction, conditioning on motion planning, weather
effects or final goal [30–32] in order to improve prediction. However, most of these
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works do not consider the interaction of agents in the scene. In [33,34] the authors
develop a conditional Variational Autoencoder that predicts the endpoint goal
and conditions generation on it, also considering the subjective human aspect
of the problem. We use a GAN, and enforce additional constraints on the latent
vector so as to predict the next frame speed, and subsequently condition genera-
tion on it. The goal of this research is to learn a structured latent space, sampling
from which would enable controlled generation. We use speed as a condition for
our experiments where we try to disentangle its representation from the latent
space, to modularise it and allow explicit control. Further, controlling this vector
can allow extrapolation in scenarios with unseen speed context, e.g., simulating
fast speeds having trained only on slow and medium speeds.

2.3 Problem Formulation

Trajectory prediction or forecasting is the problem of predicting the path
<(xt, yt)|t = tobs+1, . . . , T> that some agent (e.g., pedestrian, cyclist, or vehicle-
we omit a subscript to indicate the agent here for better readability) will move
along in the future given the trajectory <(xt, yt)|t = 0, . . . , tobs> that the agent
moved along in the past.

The objective of this work is to develop a deep generative system that can
accurately forecast motions and trajectories for multiple agents simultaneously
with user controlled speeds.

Given (xt, yt) as the coordinates at time t, L as the agent type and speed S,
we seek a function f to generate the next timesteps (xt+1, yt+1) as follows:

(xt+1, yt+1) = f(xt, yt|S,L), (1)

where the generation of future timesteps is conditioned on speed S and agent
type L. While the agent type remains constant over time, speed may vary per
timestep. In simulation environments, speed S is a user-controlled variable, while
in prediction environments, the speed of future timesteps is typically unknown.
In order to be able to condition on the speed of the whole timeframe, including
future speeds of the yet to be generated trajectories, an estimate Ŝ, learned from
the data can be used.

3 Methodology

CSG consists of two main blocks the Generator block (G) and the Discriminator
block (D). The generator is comprised of: a) Feature Extraction module, b) Speed
Forecasting module, c) Aggregation module and d) Decoder, and the Discrim-
inator is composed of an LSTM encoder module that classifies the conditional
inputs as “real” or “fake” (cf. Fig. 1 for a detailed overview).

3.1 Preprocessing

We first calculate the relative positions as the displacement from the previous
timeframe δxt

i = xt
i −xt−1

i , δyt
i = yt

i −yt−1
i with δx0

i = δy0
i = 0 from the observed
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Fig. 1. Overview of the CSG approach: the pipeline comprises of two main blocks:
A) Generator Block, comprising of the following sub-modules: (a) Feature Extraction,
that encodes the relative positions and speeds of each agent with LSTMs, (b) Aggrega-
tion, that jointly reasons multi agent interactions, (c) Speed forecast, that predicts the
next timestep speed, (d) Decoder, that conditions on the next timestep speed, agent
label and the agent-wise trajectory embedding to forecast next timesteps, and, the B)
Discriminator Block, that classifies the generated outputs as “real” or “fake”, specific
to the conditions.

trajectory for each agent i. We use relative distance for translational invariance,
and although the internal computation is based on them, we still use (xt

i, y
t
i)

throughout the paper to ease readability. We calculate the speed labels using
Euclidean distance between any two consecutive timeframes from the dataset
and scale them in the range (0, 1). For the second condition, i.e., agent type, we
assign nominal labels and one-hot encode them.

3.2 Feature Extraction

We concatenate the relative positions (xt
i, y

t
i) of each agent i with their derived

speeds St
i and agent-labels Lt

i, and embed this vector to a fixed length vector,
et
i, using a single layer fully connected (FC) network, expressed as:

et
i = αe((xt

i, y
t
i) ⊕ St

i ⊕ Lt
i;Wαe

), (2)

where, αe is the embedding function, and Wαe
denote the embedding weights.

Encoder: To capture the temporal dependencies of all states of an agent i,
we pass the fixed length embeddings as input to the encoder LSTM, with the
following recurrence for each agent:

ht
ei = LSTMenc(et

i, h
t−1
ei ;Wenc), (3)

where the hidden state is initialised with zeros, et
i is the input embedding,

and Wenc are the shared weights among all agents in a scene.
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3.3 Aggregation Methods

To jointly reason across agents in space, and their interaction, we experiment
with aggregation mechanisms used widely in previous research works [9,11,14,
35]. In addition, we explore a simple concatenation mechanism. The aggrega-
tion vector is computed using either of the three mechanisms per agent, and
concatenated to its latent space.

Pooling: Similar to [9], we consider the positions of each agent, relative to all
other agents in the scene, and pass it through an embedding layer, followed by
a symmetric function.

Let rt
i be the vector with relative position of an agent i to all other agents

in the scene, the social features are calculated as:

f t
i = αp(rt

i ;Wαp
), (4)

where Wαp
denotes the embedding weight. The social features are concate-

nated with the hidden states ht
ei and passed through a multi-layer FC network

followed by max-pooling to obtain the final pooling vectors as:

at
i = γp(ht

ei ⊕ f t
i ;Wγp

), (5)

with Wγp
as the weights of the FC network.

Attention: We implement a soft-attention mechanism on N nearest agents for
each agent in the scene. We compute the social features Eq. (4), and pass them
to the attention module, with the respective hidden states from the encoder, as:

f t
i = αa(rt

i ;Wαa
),

at
i = Attnso(ht

ei ⊕ f t
i ;Wso),

(6)

where Attnso is the soft attention with Wso as weights.

Concatenation: For each agent i, we calculate N nearest neighbours and con-
catenate their final hidden states. The concatenated hidden states are passed
through a FC network that learns the nearby agents interaction, as:

at
i = γc(ht

ei ⊕ [ht
en|∀n ∈ N ];Wγc

), (7)

where ht
ei and ht

en refer to the final encoder hidden states of the current agent
and N nearest agents respectively,

Finally, we concatenate and embed the final hidden states of the encoder
LSTMs ht

ei along with the respective aggregation function at
i to a compressed

size vector using a multi-layer FC network and add gaussian noise z to induce
stochasticity.

ht
i = γ(ht

ei ⊕ at
i,Wγ) ⊕ z, (8)
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where γ denotes the multi-layer FC embedding function with ReLU non-
linearity, and embedding weights Wγ .

We treat these vectors as latent spaces to sample from for conditional gen-
eration in the following stages.

3.4 Speed Forecasting

In order to forecast the future speeds for each agent in prediction environments,
we use a module comprised of LSTMs. We initialise the hidden states of the
speed forecaster ht

si with the latent vectors ht
i. The input is the current timestep

speed St
i and the future speed estimate Ŝt+1

i is calculated by passing the hidden
state through a FC network with sigmoid activation in the following way:

ht
si = LSTMsp(St

i , h
t−1
si ;Wsp),

Ŝt+1
i = γsp(ht

si;Wγsp
),

(9)

The forecasting module is trained simultaneously with the other components,
using ground truth St+1

i as feedback signal.

3.5 Decoder

As we want the decoder to maintain the characteristics of the past sequence, we
initialise its hidden state ht

di with ht
i, and input the embedded vector of relative

positions with the conditions for control during training and simulation as:

dt
i = αd((xt

i, y
t
i) ⊕ St+1

i ⊕ Li;Wαd
). (10)

In prediction environments, we replace St+1
i with the estimate Ŝt+1

i from the
forecasting module. The hidden state of the LSTM is fed through a FC network
that outputs the predicted relative position of each agent:

ht
di = LSTMdec(dt

i, h
t−1
di ;Wdec),

(x̂t+1
i , ŷt+1

i ) = γd(ht
di,Wγd

),
(11)

where Wdec are the LSTM weights and Wγd
are the weights of the FC network.

3.6 Discriminator

We use an LSTM encoder block as the Discriminator. The real input to D can
be formulated as:

Oi = <(xt
i, y

t
i), S

t
i , Li|t = 0, . . . , T>, (12)

including the observed (t = 0, . . . , tobs) and future ground truth (t = tobs +
1, . . . , T ) relative positions. The fake input can be formulated as:

Ôi =<(xt
i, y

t
i), S

t
i , Li|t = 0, . . . , tobs>

⊕ <(x̂t
i, ŷ

t
i), S

t
i , Li|t = tobs + 1, . . . , T>,

(13)
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including the observed and predicted relative positions.
The discriminator equation can be framed as:

ht
dsi = LSTMdsi(αdi(ot

i;Wαdi
), ht−1

dsi ;Wdsi), (14)

where αdi is the embedding function with corresponding weights Wαdi
, Wdsi are

the LSTM weights. ot
i is the input element from the real or fake sequence Oi or

Ôi. The real or fake classification scores are calculated by applying a multi-layer
FC network with ReLu activations on the final hidden state of the LSTMs, as:

Ĉi = γdi(ht
dsi;Wγdi

), (15)

3.7 Losses

In addition to optimising the GAN minimax game, we apply the L2 loss on the
generated trajectories, and L1 loss for the speed forecasting module.

The network is trained by minimising the following losses, taking turns:
The Discriminator loss is framed as:

�D(Ĉi, Ci) = −Ci log(Ĉi) − (1 − Ci) log(1 − Ĉi), (16)

The Generator loss together with L2 and L1 loss:

�G(Ôi) + �2((xt
i, y

t
i), (x̂

t
i, ŷ

t
i)) + �1(St

i , Ŝ
t
i ), (17)

for t = tobs + 1, . . . , T . The Generator loss is the Discriminator’s ability to
correctly classify data generated by G as “fake”, expressed as:

�G(Ôi) = − log(1 − Ĉi), (18)

where Ĉi is the discriminator’s classification score.

4 Experiments

4.1 Datasets

For single agent predictions, we perform experiments using publicly available
datasets: ETH [36] and UCY [37], that contain complex pedestrian trajectories.
These datasets also cover challenging group behaviours such as couples walking
together, groups crossing each other and groups forming and dispersing in some
scenes, and contain several other non-linear trajectories. In order to test the
model on multiple classes of agents, we utilise the Argoverse motion prediction
dataset [38]. The labels available in the dataset are av, for autonomous vehicles,
agent for other vehicles and other includes other agents present in the scene. We
convert the real-world coordinates from the datasets to image coordinates and
plot them in real-world maps, so as to qualitatively evaluate the predictions. All
plots are best viewed in colour.
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4.2 Simulation

Speed Extrapolation: We split the data into three folds according to derived
speeds, i.e., slow, medium and fast with 0.33 and 0.66 thresholds. Using CSG
with concatenation as the aggregation mechanism, we train on two folds at a
time and simulate the agents in the test set of these folds with controlled speeds
from the fold left out. We observe controllability in all three segments, indicating

Fig. 2. (a) Pedestrians sampled from the fast fold simulated at slow speeds. (b) Pedes-
trians from fast fold simulated at medium speeds, and (c) Pedestrians from slow simu-
lated at fast speeds. Ground truth values are marked in blue. The network extrapolates
to unseen speed contexts. (Color figure online)

the ability to extrapolate to unseen contexts. In Fig. 2(a), pedestrians from the
medium fold are simulated at slow speed. We clearly observe the pedestrians
adapt in a meaningful way, traversing less distance compared to the ground
truth. In Fig. 2(b) and (c), similarly, we simulate at medium and fast speed
unseen in the training set.

Table 1. A comparison of CSG-concatenation vs SGAN in speed extrapolation for
Slow, Medium and Fast folds, using Earth mover’s distance.

Method Slow Medium Fast

CSG-C 0.0138 0.0058 0.0269

SGAN 0.0439 0.0214 0.0504

Regardless of the properties present in the training set, we observe the net-
work being able to extrapolate the contextual features, indicating distributional
changes due to localised causal interventions. We compare the extrapolation
performance to SGAN using Earth mover’s distance in Table 1. The simulated
speeds are compared to the distributions of the expected speeds in the test fold.
We observe an increased control in achieving the desired speeds in the unseen
folds compared to the baseline.
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Multimodal and Socially Aware: To further evaluate the simulations, we
assess qualitatively whether they adhere to social constraints and can preserve
multi modal dynamics. Figure 3 illustrates the different speed control for agents
predicted for 8 timeframes: (a) shows a fast moving pedestrian simulated at
medium speeds with K = 5 samples, expressing a diverse generation for the con-
trolled mode. Figure 3(b) illustrates preservation of social dynamics: two pedes-
trians simulated at different speeds circumvent a possible collision by walking
around stationary people. Figure 3(c) depicts group walking behaviour with slow
and fast simulations: the pedestrians continue to walk together, and adjust their
paths in order to be able to do so. Figure 3(d) depicts another complex colli-
sion avoidance scenario: the pedestrians decide to split up and walk around the
approaching pedestrian, when simulated at fast speeds.

Fig. 3. (a) A fast moving pedestrian simulated at medium speeds, with K = 5, shows a
diverse selection of paths (Multimodality). (b) Two pedestrians simulated at different
speeds (0.6 and 0.8) walk around stationary people (Collision avoidance). (c) Two
pedestrians walking together, simulated at fast and slow speeds, find corresponding
paths in order to walk together (Group walking). (d) Two pedestrians walking together
adjust their paths in order to circumvent the approaching pedestrian. All ground truth
trajectories are marked in blue. (Color figure online)

4.3 Effect of Aggregation Method

We evaluate the performance of our method with different aggregation strategies,
one at a time, keeping all other factors constant. CSG, CSG-P, CSG-C and CSG-
A refer to our method without aggregation, with pooling, with concatenation
and with attention respectively. If two or more pedestrians are closer than an
euclidean distance of 0.10m, we consider it as a collision. We observe (cf. Table 2)
that the concatenation strategy consistently outperforms all others on collision
avoidance, followed by the attention and max-pooling methods, in that order.
Regardless of the choice, CSG reduces collisions compared to SGAN, indicating
that the speed forecasting module might yield some natural structure in latent
space.
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Table 2. Average % collisions per predicted frame. A collision is detected if the distance
between two pedestrians is less than 0.10 m. Lower is better, and best is in bold. CSG-C
reduces overall collisions.

Dataset SGAN CSG CSG-P CSG-A CSG-C

ETH 0.2237 0.3167 0.2603 0.2373 0.1881

HOTEL 0.2507 0.2143 0.1773 0.2177 0.0917

UNIV 0.5237 0.5338 0.6064 0.6425 0.5025

ZARA1 0.1103 0.0464 0.0660 0.0680 0.0328

ZARA2 0.5592 0.2184 0.2768 0.2258 0.1988

AVG 0.3335 0.2659 0.2774 0.2783 0.2228

4.4 Trajectory Prediction

We compare the results on trajectory prediction using the benchmark metrics fol-
lowed extensively by previous works: a) Final Displacement Error (FDE), which
computes the euclidean distance between the final points of the ground truth
and the predicted final position, and, b) Average Displacement Error (ADE),
which averages the distances between the ground truth and predicted output
across all timesteps. We generate K samples per prediction step and report the
distance metrics for the best out of the K samples.

Single Agent Type (Pedestrian): We evaluate our model on the five sets
of ETH and UCY data, with a hold-one-out approach (i.e., training of four sets
at a time and evaluating on the set left out) and compare with the following
baseline methods:

SGAN [9]: GAN with a pooling module to capture the agent interactions,
SoPhie [11]: GAN with physical and social attention,
S-Ways [10]: GAN with Information loss instead of the L2,
S-BIGAT [14]: Bicycle-GAN augmented with Graph Attention Net-
works (GAT), and
CGNS [39]: CGAN with variational divergence minimisation.

Table 3 depicts the final metrics for 12 predicted timesteps (4.8 s). Similar to
other methods [9,14], we generate K = 20 samples for a given input trajectory,
and report errors for the best one. On a quantitative comparison with other
GAN models, we observe that our model CSG without an explicit aggregation
methods outperforms SGAN, Sophie, and CGNS overall in the ETH datasets,
while on the UCY it performs better than most and at par with CGNS.
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Table 3. A comparison of GAN based methods on ADE/FDE scores for 12 predicted
timesteps (4.8 s) with K = 20. For CSG, we report the metrics with the mean and
variance for 20 runs. Lower is better, and best is in bold. For more detailed results
please refer to project repository.

Dataset SGAN [9] SoPhie [11] S-Ways [10] S-BIGAT [14] CGNS [39] CSG (Ours)

ETH 0.77/1.49 0.73/1.55 0.39/0.65 0.59/1.16 0.66/1.16 0.58 ± 0.01/

1.07 ± 0.02

UCY 0.51/1.01 0.40/0.83 0.50/0.95 0.40/0.89 0.38/0.84 0.38 ± 0.01/

0.90 ± 0.01

AVG 0.64/1.25 0.56/1.19 0.44/0.80 0.49/1.02 0.52/1.00 0.48/0.98

Multi Agent Type (Argoverse Dataset): With respect to multi agent prob-
lem, we compare our model with:

CS-LSTM [40]: Combination of CNN network with LSTM architecture,
SGAN [9]: GAN network with max pooling approach to predict future
human trajectories, and
Graph-LSTM [41]: Graph convolution LSTM network using dynamic
weighted traffic-graphs that predicts future trajectories and road-agent
behavior.

Similar to [42], We utilise the first 2 s as observed input to predict the next
3 s and report the metrics in Table 4. We observe that our model outperforms
SGAN by a large margin and performs better than CS-LSTM in terms of FDE
but doesn’t perform as well when compared with ADE. Although Graph-LSTM
performs best overall, CSG offers the added advantage of explicit control.

Table 4. ADE/FDE scores on Argoverse Dataset. We report our score as an average
of 20 runs.

Dataset name CS-LSTM [40] SGAN [9] Graph-LSTM [41] CSG (ours)

Argoverse 1.050/3.085 3.610/5.390 0.99/1.87 1.39 ± 0.02/2.95 ± 0.05

5 Conclusion and Future Work

We present a method for generation and controlled simulation of diverse multi
agent trajectories in realistic scenarios. We show that our method can be used
to explicitly condition generation for greater control and ability to adapt con-
text. Further, we demonstrate with our experiments the efficacy of the model
in forecasting mid-range sequences (5 s) with an edge over most existing GAN
based variants. It may be that most models are optimised to reduce the overall
distance metrics, but not collisions. The models are expected to learn the notion
of collision avoidance implicitly. By focussing explicitly on relative velocity pre-
dictions, we obtain more domain knowledge driven control over the design of
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the interaction order. Further, we observe that a simple concatenation of the
final hidden state vectors of N neighbours is a good enough strategy for aggre-
gating information across agents in a scene. While this aggregation approach is
relatively simple, it is efficient and removes the need to design complex mecha-
nisms. In the future, we aim to extend our method by learning context vectors of
variation (e.g., behaviour, speed) automatically and conditioning on static scene
information to improve interactions in space.
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Abstract. Deep Neural Networks (DNNs) need to be both efficient and
robust for practical uses. Quantization and structure simplification are
promising ways to adapt DNNs to mobile devices, and adversarial train-
ing is one of the most successful methods to train robust DNNs. In this
work, we aim to realize both advantages by applying a convergent relax-
ation quantization algorithm, i.e., Binary-Relax (BR), to an adversarially
trained robust model, i.e. the ResNets Ensemble via Feynman-Kac For-
malism (EnResNet). We discover that high-precision quantization, such
as ternary (tnn) or 4-bit, produces sparse DNNs. However, this sparsity is
unstructured under adversarial training. To solve the problems that adver-
sarial training jeopardizes DNNs’ accuracy on clean images and break the
structure of sparsity, we design a trade-off loss function that helps DNNs
preserve natural accuracy and improve channel sparsity. With our newly
designed trade-off loss function, we achieve both goals with no reduction
of resistance under weak attacks and very minor reduction of resistance
under strong adversarial attacks. Together with our model and algorithm
selections and loss function design, we provide an integrated approach to
produce robust DNNs with high efficiency and accuracy. Furthermore, we
provide a missing benchmark on robustness of quantized models.

Keywords: Quantization · Channel pruning · Adversarial training

1 Introduction

1.1 Background

Deep Neural Networks (DNNs) have achieved significant success in com-
puter vision and natural language processing. Especially, the residual network
(ResNet)[8] has achieved remarkable performance on image classification and has
become one of the most important neural network architectures in the current
literature.
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Despite the tremendous success of DNNs, researchers still try to strengthen
two properties of DNNs, robustness and efficiency. In particular, for security-
critic and on the edge applications. Robustness keeps the model accurate under
small adversarial perturbation of input images, and efficiency enables us to fit
DNNs into embedded system, such as smartphone. Many adversarial defense
algorithms [7,11,14,25] have been proposed to improve the robustness of DNNs.
Among them, adversarial training is one of the most effective and powerful
methods. On the other hand, quantization [4,16], producing models with low-
precision weights, and structured simplification, such as channel pruning [9,26],
are promising ways to make models computationally efficient.

2 Related Work

2.1 Binary Quantization

Based on the binary-connect (BC) [24] proposed an improvement of BC called
Binary-Relax, which makes the weights converge to the binary weights from the
floating point weights gradually. Theoretically, [24] provided the convergence
analysis of BC, and [12] presented an ergodic error bound of BC. The space of
m-bit quantized weights Q ⊂ R

n is a union of disjoint one-dimensional subspaces
of Rn. When m ≥ 2, it is formulated as:

Q = R+ × {0,±1,±2, · · · ,±2m−1}n =
p⊔

l=1

Al

where R+ is a float scalar. For the special binary case of m = 1, we have Q =
R+ × {±1}n.

We minimize our objective function in the subspace Q. Hence, the problem
of binarizing weights can be formulated in the following two equivalent forms:

– I.
argmin

u∈Q
L(u)

– II.

argmin
u∈Rn

L(u) + χQ(u) where χQ(u) =

{
0 u ∈ Q
∞ else

(1)

Based on the alternative form II, [24] relaxed the optimization problem to:

argmin
u∈Rn

L(u) +
λ

2
dist(u,Q)2 (2)

Observing (2) converges to (1) as λ → ∞, [24] proposed a relaxation of BC:
{

wt+1 = wt − γ∇Lt(ut)
uk+1 = argminu∈Rn

1
2‖wt+1 − u‖2 + λ

2 dist(u,Q)2
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It can be shown that uk+1 above has a closed-form solution

ut+1 =
λprojQ(wt+1) + wt+1

λ + 1

Algorithm 1. Binary-Relax quantization algorithm
1: Input: mini-batches {(x1,y1), · · · (xm,ym)}, λ0 = 1, growth rate ρ > 1, learning

rate γ, initial float weight w0, initial binary weight u0 = w0, cut-off epoch M
2: Output: a sequence of binary weights {ut}
3: for t = 1, · · · , N do � N is the number of epochs
4: if t < M then
5: for k = 1, · · · , m do
6: wt = wt−1 − γt∇kL(ut−1)

7: ut =
λt·ProjQ(wt)+wt

λt+1

8: λt+1 = ρ · λt

9: else
10: for k = 1, · · · , m do
11: wt = wt−1 − γt∇L(ut−1)
12: ut = ProjQ(wt) � This is precisely Binary-Connect

13: return quantized weights uN

2.2 Adversarial Attacks

As [18] discovered the limited continuity of DNNs’ input-output mapping, the
outputs of DNNs can be changed by adding imperceptible adversarial perturba-
tions to input data. The methods that generate perturbed data can be adversarial
attacks, and the generated perturbed data are called adversarial examples. In
this work, we focus on three benchmark adversarial attacks Fast gradient sign
method (FGSM) [6], iterative FGSM (IFGSM), and Carlini and Wagner method
(C&W) [2]. In this study, we denote attacks FGSM, IFGSM, and CW to be A1,
A2, and A3 respectively.

2.3 Adversarial Training

[5] rigorously established a rigorous benchmark to evaluate the robustness of
machine learning models and investigated almost all current popular adversarial
defense algorithms. They conclude that adversarially trained models are more
robust models with other types of defense methods. [25] also shows that adver-
sarial training is more powerful than other methods such as gradient mask and
gradient regularization [11]. While a natural training has objective function:

L(ω) =
1
N

N∑

i=1

l
(
f(w,xi), yi

)
(3)
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Adversarial training [1,14] generates perturbed input data and train the model
to stay stable under adversarial examples. It has the following objective function:

L(w) =
1
N

N∑

n=1

max
x̃n∈Dn

l(f(w, x̃n), yn) (4)

where Dn = {x|‖x − xn‖∞ < δ}. l and f are the loss function and the DNN
respectively. In this work, we denote (3) to be Rnat and (4) to be Rrob. A widely
used method to practically find x̃n is the projected gradient descent (PGD)
[14]. [17] investigated the properties of the objective function of the adversarial
training, and [22] provided convergence analysis of adversarial training based on
the previous results.

Feynman-Kac Formalism Principled Robust DNNs: Neural ordinary dif-
ferential equations (ODEs) [3] are a class of DNNs that use an ODE to describe
the data flow of each input data. Instead of focusing on modeling the data flow
of each individual input data, [13,20,21] use a transport equation (TE) to model
the flow for the whole input distribution. In particular, from the TE viewpoint,
[21] modeled training ResNet as finding the optimal control of the following TE

⎧
⎪⎨

⎪⎩

∂u
∂t (x, t) + G(x,w(t)) · ∇u(x, t) = 0, x ∈ R

d,

u(x, 1) = g(x), x ∈ R
d,

u(xi, 0) = yi, xi ∈ T, with T being the training set.
(5)

where G(x,w(t)) encodes the architecture and weights of the underlying ResNet,
u(x, 0) serves as the classifier, g(x) is the output activation of ResNet, and yi is
the label of xi.

Based on Eq. (5), [21] interpreted adversarial vulnerability of ResNet as aris-
ing from the irregularity of u(x, 0) of the above TE. To enhance u(x, 0)’s regu-
larity, they added a diffusion term, 1

2σ2Δu(x, t), to the governing equation of (5)
which results to the convection-diffusion equation (CDE). By the Feynman-Kac
formula, u(x, 0) of the CDE can be approximated by the following two steps:

– Modify ResNet by injecting Gaussian noise to each residual mapping.
– Average the output of n jointly trained modified ResNets, and denote it as

EnnResNet.

[21] have noticed that EnResNet, comparing to ResNet with the same size, can
significantly improve both natural and robust accuracies of the adversarially
trained DNNs. In this work, we leverage the robust advantage of EnResNet to
push the robustness limit of the quantized adversarially trained DNNs.

TRADES: It is well-known that adversarial training will significantly reduce the
accuracy of models on clean images. For example, ResNet20 can achieve about
92% accuracy on CIFAR10 dataset. However, under the PGD training using
ε = 0.031 with step-size 0.007 and the number of iterations 10, it only has 76%
accuracy on clean images of CIFAR10. [25] designed a trade-off loss function,
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TRADES, that balances the natural accuracy and adversarial accuracy. The
main idea of TRADES is to minimize the difference of adversarial error and the
natural error:

minfE

(
l(f(X), Y ) + maxX′∈B(X,ε)l

(
f(X), f(X ′)λ

))
(6)

TRADES is considered to be the state-of-the-art adversarial defense method, it
outperforms most defense methods in both robust accuracy and natural accu-
racy. [5] investigated various defense methods, and TRADES together with PGD
training outperforms all other methods they tested. In this work, we will design
our own trade-off function that works with PGD training. TRADES will provide
important baselines for us.

3 Quantization of EnResNet

We know that the accuracy of a quantized model will be lower than its coun-
terpart with floating point weights because of loss of precision. However, we
want to know that whether a quantized model is more vulnerable than its float
equivalent under adversarial attacks? In this section, we study this question by
comparing the accuracy drops of the natural accuracy and robust accuracy from
float weights to binary weights. Meanwhile, we also investigate the performances
between two quantization methods BC and BR.

3.1 Experimental Setup

Dataset. We use one of the most popular datasets CIFAR-10 [10] to evaluate
the quantized models, as it would be convenient to compare it with the float
models used in [21,25].

Baseline. Our baseline model is the regular ResNet. To our best knowledge,
there has been work done before that investigated the robustness of models with
quantized weights, so we do not have an expected accuracy to beat. Hence, our
goals are to compare the robustness of binarized ResNet and binarized EnResNet
and to see how close the accuracy of quantized models can be to the float models
in [21,25].

Evaluation. We evaluate both natural accuracy and robust accuracy for quan-
tized adversarial trained models. We examine the robustness of models FGSM
(A1), IFGSM (A2), and C&W (A3). In our recording, N denotes the natural
accuracy (accuracy on clean images) of models. For FGSM, we use ε = 0.031
as almost all works share this value for FGSM. For IFGSM, we use α = 1/255,
ε = 0.031, and number of iterations 20. For C&W, we have learning rate 0.0006
and the number of iterations 50.

Algorithm and Projection. We set BC as our baseline algorithm, and we
want to examine that whether the advantage of the relaxed algorithm 13 in [24]
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is preserved under adversarial training. In both BC and BR, we use the wildly
used binarizing projection proposed by [16], namely:

ProjQ(w) = E[|w|] · sign(w) =
||w||1

n
· sign(w)

where sign(·) is the component-wise sign function and n is the dimension of
weights.

3.2 Result

First, we verify that the Ensemble ResNet consistently outperforms ResNet when
binarized. We adversarially train two sets of EnResNet and ResNet with the
similar number of parameters. As shown in Table 1, EnResNet has much higher
robust accuracy for both float and quantized models.

Second, we investigate the performances of Binary-Connect method (BC)
and Binary-Relax method (BR). We verify that BR outperforms BC (Table 2).
A quantized model trained via BR provides higher natural accuracy and robust
accuracy. As a consequence, we use this relaxed method to quantize DNNs in all
subsequent experiments in this paper.

Table 1. Ensemble ResNet vs ResNets. We verify that EnResNet outperforms ResNet
with the similar number of parameters with both float and binary weights.

Net(#params) Model N A1 A2 A3

En1ResNet20 (0.27M) BR 69.60% 47.17% 43.89% 58.79%

ResNet20 (0.27M) BR 66.81% 43.37% 40.72% 52.14%

En2ResNet20 (0.54M) BR 72.58% 49.29% 44.72% 60.36%

ResNet34 (0.56M) BR 70.31% 46.42% 43.26% 54.75%

Table 2. Binary Connect vs Binary Relax. Models quantized by Binary-Relax have
higher natural accuracy and adversarial accuracies than those quantized by Binary-
Connect

Model Quant N A1 A2 A3

En1ResNet20 Float 78.31% 56.64% 49.00% 66.84%

BC 68.84% 46.31% 42.45% 58.52%

BR 69.60% 47.17% 43.89% 58.79%

En2ResNet20 Float 80.10% 57.48% 49.55% 66.73%

BC 71.48% 47.83% 43.03% 59.09%

BR 72.58% 49.29% 44.72% 60.36%

En5ResNet20 Float 80.64% 58.14% 50.32% 66.96%

BC 75.54% 51.03% 46.01% 60.92%

BR 75.40% 51.60% 46.91% 61.52%
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4 Trade-Off Between Robust Accuracy and Natural
Accuracy

4.1 Previous Work and Our Methodology

It is known that adversarial training will decrease the accuracy for classifying
the clean input data. This phenomenon is verified both theoretically [19] and
experimentally [11,21,25] by researchers. [25] proposed a trade-off loss function
(6) for robust training to balance the adversarial accuracy and natural accuracy.
In practice, it is formulated as following:

L = Lnat + β · 1
N

N∑

n=1

l
(
f(xn), f(x̃n)

)
(7)

Motivated by [25], we study the following trade-off loss function for our quantized
models:

L = α · Lnat + β·Lrob (8)

Note that adversarial training is a special case α = 0, β = 1 in (8). Loss func-
tion (7), TRADES, improves the robustness of models by pushing the decision
boundary away from original data points, clean images in this case. However,
intuitively, if the model classifies a original data point wrong, the second term
of (7) will still try to extend this decision boundary, which can prevent the first
term of the loss function from leading the model to the correct classification.
In this section, we will experimentally compare (7) and (8) and theoretically
analyze the difference between them.

Table 3. Comparison of loss function. Trade-off loss function (7) outperforms TRADES
(8) in most cases.

Model Loss N A1 A2 A3

En1ResNet20 (7) (β = 1) 84.49% 45.96% 34.81% 51.94%

En1ResNet20 (8) (α = 1, β = 1) 83.47% 54.46% 43.86% 64.04%

En1ResNet20 (7) (β = 4) 80.05% 51.24% 45.43% 58.85%

En1ResNet20 (8) (α = 1, β = 4) 80.91% 55.92% 47.17% 66.53%

En1ResNet20 (7) (β = 8) 75.82% 51.63% 46.95% 59.31%

En1ResNet20 (8) (α = 1, β = 8) 79.31% 56.28% 48.02% 66.07%

4.2 Experiment and Result

To compare the performances of two loss functions, we choose our neural network
and dataset to be En1ResNet20 and CIFAR-10 respectively. Based on [25], who
studied β of (7) in the range [1, 10], we vary the trade-off parameter β, the



458 Z. Li et al.

weight of adversarial loss, in the set [1, 4, 8] to emphasize the robustness in
different levels.

The experiment results are listed in Table 3. We observe that, when the natu-
ral loss and the adversarial loss are equally treated, the model trained by (7) has
higher natural accuracy while (8) makes its model more robust. As the trade-off
parameter β increases, natural accuracy of the model trained (7) drops rapidly,
while (8) trades a relatively smaller amount of natural loss for robustness. As a
result, when β = 4 and β = 8, the model trained by (8) has both higher natu-
ral accuracy and higher adversarial accuracy. Hence, we say that (8) has better
trade-off efficiency than (7)

4.3 Analysis of Trade-Off Functions

In this subsection, we present a theoretical analysis that why (8) outperforms (7).
Let us consider the binary classification case, where have our samples (x, y) ∈
X × {−1, 1}. Let f : X → R be a classifier and σ(·) be an activation function.
Then our prediction for a sample is ŷ = sign(f(x)) and the corresponding score
is σ(f(x)). Above is the theoretical setting provided by [25]. Then, we have the
errors Rφ(f) and R∗

φ(f) corresponding to (7) and (8) respectively:

Rφ(f) = E[φ(σ ◦ f(x) · y)] + β · E[φ(σ ◦ f(x) · σ ◦ f(x′))]

R∗
φ(f) = α · E[φ(σ ◦ f(x) · y)] + β · E[φ(σ ◦ f(x′) · y)]

Table 4. Trade-off loss function for binarized models with different parameters. When
α = 1 and β = 8, models can achieve about the same accuracies under FGSM and
C&W attacks as solely adversarially trained models, while the natural accuracy is
improved.

Model Loss N A1 A2 A3

En1ResNet20 α = 0, β = 1 69.60% 47.81% 43.89% 58.79%

En1ResNet20 α = 1, β = 4 73.40% 47.41% 41.86% 57.83%

En1ResNet20 α = 1, β = 8 71.35% 47.42% 42.46% 59.01%

En2ResNet20 α = 0, β = 1 71.58% 49.29% 44.62% 60.36%

En2ResNet20 α = 1, β = 4 75.92% 48.97% 43.41% 59.40%

En2ResNet20 α = 1, β = 8 74.72% 49.66% 43.96% 60.65%

En5ResNet20 α = 0, β = 1 75.40% 51.60% 46.91% 61.52%

En5ResNet20 α = 1, β = 4 78.50% 50.85% 45.02% 60.96%

En5ResNet20 α = 1, β = 8 77.35% 51.62% 45.63% 61.11%

Now, we consider several common loss functions: the hinge loss (φ(θ) =
max{1−θ, 0}), the sigmoid loss (φ(θ) = 1− tanh θ), and the logistic loss (φ(θ) =
log2(1 + e−θ)). Note that we want a loss function to be monotonically deceasing
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in the interval [−1, 1] as −1 indicates that the prediction is completely wrong,
and 1 indicates the prediction is completely correct. Since our classes is 1 and
−1, we will choose hyperbolic tangent as our activation function.

Table 5. Sparsity and structure of sparsity of quantized models. We use α = 1 and
β = 8 in trade-off loss (8). While models under both natural training and adversarial
have large proportion of sparse weights, sparsity of adversarially trained models are
much less structured. Trade-off loss function (6) can improve the structure.

Model Quant Loss Weight Sparsity Channel Sparsity N A1 A2

ResNet20 tnn Natural 53.00% 11.16% 90.54% 12.71% 0.00%

En1ResNet20 tnn Natural 52.19% 9.57% 90.61% 26.21% 0.71%

ResNet20 tnn AT 50.71% 2.55% 68.30% 44.80% 42.53%

En1ResNet20 tnn AT 50.31% 4.14% 71.30% 48.17% 43.27%

En1ResNet20 tnn (8) 55.66% 7.02% 73.05% 48.10% 42.65%

ResNet20 4-bit Natural 42.79% 9.53% 91.75% 12.38% 0.00%

En1ResNet20 4-bit Natural 44.73% 10.52% 91.42% 27.99% 0.62%

ResNet20 4-bit AT 43.93% 2.55% 71.49% 47.63% 44.08%

En1ResNet20 4-bit AT 48.35% 4.94% 73.05% 51.43% 45.10%

En1ResNet20 4-bit (8) 55.57% 7.42% 76.61% 51.92% 44.39%

ResNet56 tnn Natural 60.96% 31.86% 91.91% 15.58% 0.00%

En1ResNet56 tnn Natural 60.66% 28.97% 91.46% 38.22% 0.36%

ResNet56 tnn AT 54.21% 15.37% 74.56% 51.73% 46.62%

En1ResNet56 tnn AT 54.70% 16.74% 76.87% 53.16% 47.89%

En1ResNet56 tnn (8) 58.89% 21.36% 77.24% 52.96% 46.01%

ResNet56 4-bit Natural 67.94% 39.16% 93.09% 16.02% 0.00%

En1ResNet56 4-bit Natural 71.07% 41.10% 92.39% 39.79% 0.33%

ResNet56 4-bit AT 55.29% 17.10% 77.67% 52.43% 48.22%

En1ResNet56 4-bit AT 55.09% 18.11% 78.25% 55.48% 49.03%

En1ResNet56 4-bit (8) 67.31% 33.18% 79.44% 55.41% 47.80%

Proposition 1. Let φ be any loss function that is monotonically decreasing
on [−1, 1] (all loss functions mentioned above satisfy this), and σ(θ) = tanh θ.
Define B = {x|f(x)y ≥ 0, f(x′)y ≥ 0} as in proposition 1. Then:

Rφ(f) ≥ R∗
φ(f) on B and Rφ(f) ≤ R∗

φ(f) on BC

Proof: We first define a set E:

E = {x|f(x)y < 0, f(x′)y > 0}

By the definition of adversarial examples in (4),

E[1{E}] = 0
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(a) Ternary AT

(b) Ternary Trade-off

Fig. 1. Visualization of 4 ternary channels (reshaped for visualization) of a layer in
En1ResNet56 under natural training. There are less 0 weights in non-sparse channels.
Nonzero weights of ternary channels under natural training are more concentrated. As
a result, there are more sparse channels under natural training.
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where 1{E} is the indicator function of the set. That is, the set that the classifier
predicts original data point wrong but the perturbed data point correctly should
have measure 0. Now, we define the following sets:

D = {x|f(x)y ≥ 0, f(x′)y < 0}

F = {x|f(x)y < 0, f(x′)y < 0}
We note that the activation function σ(x) preserves the sign of x, and |σ(x)| ≤ 1.

On the set B, f(x), f(x′), and y have the same sign, so are σ(f(x)), σ(f(x′))
and y. Therefore

φ(σ(f(x′)) · σ(f(x)) ≥ φ(σ(f(x′) · y)

as 0 ≤ σ(f(x′)) · σ(f(x)) ≤ σ(f(x′)) · y. This shows

Rφ(f) ≥ R∗
φ(f) on B

We note that BC = E ∪ D ∪ F . Since set E has measure zero, we only consider
D and F .

On D, as f classifies x correct and x′ wrong, we have

σ(f(x′)) · y ≤ σ(f(x′)) · σ(f(x)) ≤ 0

⇒ φ(σ(f(x′)) · σ(f(x)) ≤ φ(σ(f(x′) · y)

On F , as f classifies both x and x′ wrong, we have

σ(f(x′)) · y ≤ 0 ≤ σ(f(x′)) · σ(f(x))

⇒ φ(σ(f(x′)) · σ(f(x)) ≤ φ(σ(f(x′) · y)

In summary, we have
Rφ(f) ≤ R∗

φ(f) on BC

�

We partition our space into several sets based on a given classifier f , and
we examine the actions of loss functions on those sets. We see that (7) penalize
set B heavier than (8), but the classifier classifies both the natural data and the
perturbed data correct on B. On the other hand, (7) does not penalize sets E and
F , where the classifier makes mistakes, enough, especially on set F . Therefore,
(8) as a loss function is more on target. Based on both experimental results and
theoretical analysis, we believe (8) is a better choice to balance natural accuracy
and robust accuracy.

As our experiments on the balance of accuracies with different parameters in
our loss function (8) in Table 4. We find that it is possible to increase the natural
accuracy while maintaining the robustness under relatively weak attacks (FGSM
& CW), as the case of α = 1 and β = 8 in Table 4. However, the resistance under
relatively strong attack (IFGSM) will inevitably decrease when we trade-off.
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5 Further Balance of Efficiency and Robustness:
Structured Sparse Quantized Neural Network via
Ternary/4-Bit Quantization and Trade-Off Loss
Function

5.1 Sparse Neural Network Delivered by High-Precision
Quantization

When we quantize DNNs with precision higher than binary, such as ternery and
4-bit quantization, zero is in quantization levels. In fact, we find that a large
proportion of weights will be quantized to zero. This suggests that a ternary or
4-bit quantized model can be further simplified via channel pruning. However,
such simplification requires structure sparsity of DNN architecture. In our study,
we use the algorithm 1 as before with the projection replaced by ternary and
4-bit respectively. As shown in Table 5, we find that sparsity of quantized DNNs
under regular training are significantly more structured than those under adver-
sarial training. For both ternary and 4-bit quantization, quantized models with
adversarial training have very unstructured sparsity, while models with natu-
ral training have much more structured sparsity. For example, 50.71% (0.135M
out of 0.268M) of weights in convolutional layers are zero in a ternary quantized
ResNet20, but there are only 2.55% (16 out of 627) channels are completely zero.
If the sparsity is unstructured, it is less useful for model simplification as channel
pruning cannot be applied. A fix to this problem is our trade-off loss function,
as factor natural loss into adversarial training should improve the structure of
sparsity. Our experiment (Table 5) shows that a small factor of natural loss,
α = 1 and β in (8), can push the sparsity to be more structured. Meanwhile, the
deepness of models also has an impact on the structure of sparsity. The deeper
the more structured the sparsity is. We see in Table 5 that, under the same set-
tings, the structure of sparsity increases as the model becomes deeper. Figure 1
shows the difference between a unstructured sparsity of a ternary ResNet20 with
adversarial training and a much more structured sparsity of ResNet56 with nat-
ural training. The trade-off function not only improves the natural accuracy of
models with merely minor harm to robustness but also structures the sparsity
of high-precision quantization, so further simplification of models can be done
through channel pruning.

6 Benckmarking Adversarial Robustness of Quantized
Model

Based on previous discussions, integrating the relaxation algorithm, ensemble
ResNet, and our trade-off loss function, we can produce very efficient DNN
models with high robustness. To our best knowledge, there is no previous work
that systematically study the robustness of quantized models. As a result, we do
not have any direct baseline to measure our results. Therefore, we benchmark
our results by comparing to models with similar size and current state-of-the-art
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Table 6. Generalization of quantized models to more datasets

Model Size Dataset Loss Quant Ch sparsity N A1 A2 A3

En2ResNet20 0.54M MNIST (8) BR N/A 99.22% 98.90% 98.90% 99.12%

ResNet44 0.66M MNIST TRADES Float N/A 99.31% 98.98% 98.91% 99.14%

En2ResNet20 0.54M MNIST (8) Float N/A 99.21% 99.02% 98.91% 99.14%

En2ResNet20 0.54M FMNIST (8) BR N/A 91.69% 87.85% 87.22% 89.74%

ResNet44 0.66M FMNIST TRADES Float N/A 91.37% 88.13% 87.98% 90.12%

En2ResNet20 0.54M FMNIST (8) Float N/A 92.74% 89.35% 88.68% 91.72%

En1ResNet56 0.85M Cifar10 (8) 4-bit 33.18% 79.44% 55.71% 47.81% 65.50%

ResNet56 0.85M Cifar10 TRADES Float N/A 78.92% 55.27% 50.40% 59.48%

En1ResNet56 0.85M Cifar10 (8) Float N/A 81.63% 56.80% 50.17% 66.56%

En1ResNet110 1.7M Cifar100 (8) 4-bit 23.93% 53.08% 30.76% 25.73% 42.54%

ResNet110 1.7M Cifar100 TRADES Float N/A 51.65% 28.23% 25.77% 40.79%

En1ResNet110 1.7M Cifar100 (8) Float N/A 56.63% 32.24% 26.72% 43.99%

En2ResNet56 1.7M SVHN (8) 4-bit 49.03% 91.21% 70.91% 57.99% 72.44%

ResNet110 1.7M SVHN TRADES Float N/A 88.33% 64.80% 56.81% 69.79%

En2ResNet56 1.7M SVHN (8) Float N/A 93.33% 78.08% 59.11% 75.79%

defense methods. We verify that the performance of the quantized model with
our approach on popular datasets, including Cifar 10, Cifar 100 [10], MNIST,
Fashion MNIST (FMNIST) [23], and SVHN [15]. In our experiments, we learn
SVHN dataset without utilizing its extra training data. Our results are dis-
played in Table 6. In this table, size refers to the number of parameters. We find
that quantization has very little impact on learning small datasets MNIST and
FMNIST. En2ResNet20 and ResNet40 have about the same performance while
the previous is binarized. In fact, a binary En2ResNet20 has about the same
performance as its float equivalent, which means we get efficiency for ’free’ on
these small datasets. We benchmark the robustness of quantized models on large
datasets, SVHN, Cifar10, and Ciar100, using models with 4-bit quantization. As
in Table 6, 4-bit EnResNets with loss function (8) have better performance than
float TRADES-trained ResNets with the same sizes. However, quantized models
on these larger datasets are outperformed by their float equivalents. In another
word, efficiency of models are not ’free’ when learning large datasets, we have
to trade-off between performance and efficiency. Although 4-bit quantization
requires higher precision and more memories, the highly structured sparsity can
compensate the efficiency of models. The 4-bit quantized models of En1ResNet56
for Cifar10, En1ResNet110 for Cifar 100, and En2ResNet56 for SVNH in Table 6
have sizes of 0.58M, 1.43M, and 0.80M respectively if the sparse channels are
pruned. Our codes as well as our trained quantized models listed in Table 6 are
available at https://github.com/lzj994/Binary-Quantization.

https://github.com/lzj994/Binary-Quantization
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7 Conclusion

In this paper, we study the robustness of quantized models. The experimental
results suggest that it is totally possible to achieve both efficiency and robust-
ness as quantized models can also do a good job at resisting adversarial attack.
Moreover, we discover that adversarial training will make the sparsity from
high-precision quantization unstructured, and a trade-off function can improve
the sparsity structure. With our integrated approach to balance efficiency and
robustness, we find that keeping a model both efficient and robust is promising
and worth paying attention to. We hope our study can serve as a benchmark for
future studies on this interesting topic.
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Abstract. Commonly, machine learning models minimize an empirical
expectation. As a result, the trained models typically perform well for the
majority of the data but the performance may deteriorate in less dense
regions of the dataset. This issue also arises in generative modeling. A
generative model may overlook underrepresented modes that are less
frequent in the empirical data distribution. This problem is known as
complete mode coverage. We propose a sampling procedure based on
ridge leverage scores which significantly improves mode coverage when
compared to standard methods and can easily be combined with any
GAN. Ridge leverage scores are computed by using an explicit feature
map, associated with the next-to-last layer of a GAN discriminator or of a
pre-trained network, or by using an implicit feature map corresponding
to a Gaussian kernel. Multiple evaluations against recent approaches
of complete mode coverage show a clear improvement when using the
proposed sampling strategy.

Keywords: GANs · Leverage score sampling · Complete mode
coverage

1 Introduction

Complete mode coverage is a problem of generative models which has been
clearly defined and studied in [26]. In layman’s terms, a mode is defined as a
local maximum of the data probability density. A closely related problem is mode
collapse in GANs [7], which happens when a generative model is only capable of
generating samples from a subset of all the modes. Multiple GAN variants have
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been proposed as a solution to this problem, however proposed solutions often
assume that every mode has an (almost) equal probability of being sampled,
which is often not the case in realistic datasets. Regularly, in critical applica-
tions, datasets contain a mixture of different subpopulations where the frequency
of each subpopulation can be vastly different. The role of less abundant subpop-
ulations in machine learning data has been discussed recently in [6]. Also, it
is often common to presume that an algorithm does not know the abundance
of subpopulations. It is however important that a machine learning model per-
forms well on all subpopulations. A standard example is medical data where
some rare diseases are less abundant than common diseases. To illustrate the
approach presented in this paper, a motivating example containing one majority
mode and two minority modes is given in Fig. 1. When sampling a mini-batch
from the Probability Density Function (PDF) p, the side modes can be missed.
We observe empirically that this is resolved by sampling from the ridge lever-
age score (RLS) distribution (see Sect. 2), which has been extensively used in
randomized linear algebra and kernel methods. Figure 1 shows that the samples
from the minority modes have larger RLSs. Thus, when sampling from the RLS
distribution, there is a higher probability of including the minority modes.

Fig. 1. Probability density function (orange) and RLS of a sample of this PDF (blue).
We take the motivating example from [26], which consists of a 1D target PDF p with 1
majority mode and 2 minority modes: p = 0.9·N (0, 1) + 0.05·N (10, 1) + 0.05·N (−10, 1)
given in orange. The RLS distribution is calculated using a Gaussian kernel with σ = 3
and γ = 10−3. When sampling a mini-batch from the PDF p, the side modes can be
missed. This is resolved by sampling from the RLS distribution. (Color figure online)

This paper is motivated by two situations where minority modes can occur: 1)
the observed empirical distribution is different from the true distribution (biased
data), and the data needs to be rebalanced. 2) The observed empirical distri-
bution approximates the true distribution sufficiently well, but minority modes
consist out of infrequent but very important points, e.g. rare diseases in a med-
ical dataset.

Contribution. When training classical GANs, an empirical expectation of a loss
Ex∼pd

[L(x)] is optimized in the context of a min-max problem. In this work, we
propose a sampling procedure that promotes sampling out of minority modes
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by using ridge leverage scores. The common algorithmic procedure simulates the
empirical distribution over the dataset D = {x1, . . . , xn} by uniformly sampling
over this set. We intentionally bias or distort this process by sampling xi with
probability p(xi) ∝ �i, where �i is the i-th ridge leverage score, defined in Sect. 2.
Empirical evidence shows that our procedure rebalances the training distribu-
tion, as a result, the GAN model generates samples more uniformly over all
modes. RLS sampling can easily be applied to any GAN. In particular, using
our procedure in combination with a state-of-the-art method for complete mode
coverage [26] shows a clear improvement. Finally, RLS sampling is combined
with BuresGAN [4] and a state-of-the-art StyleGAN2 with differentiable data
augmentations [25], which in both cases improves mode coverage1.

Related Work. Several works discuss alternative sampling strategies in
machine learning. In the context of risk-averse learning, the authors of [2] discuss
an adaptive sampling algorithm that performs a stochastic optimization of the
Conditional Value-at-Risk (CVaR) of a loss distribution. This strategy promotes
models which do not only perform well on average but also on rare data points.
In the context of generative models, AdaGAN [20] is a boosting approach to solve
the missing mode problem, where at every step a new component is added into
a mixture model by running the GAN training algorithm on a re-weighted sam-
ple. A supervised weighting strategy for GANs is proposed in [5]. In this paper,
we compare against two state-of-the-art GANs that combat mode collapse, Pac-
GAN [10] and BuresGAN [4]. PacGAN uses a procedure called packing. This
modifies the discriminator to make decisions based on multiple samples from
the same class, either real or artificially generated. In BuresGAN, an additional
diversity metric in the form of the Bures distance between real and fake covari-
ance matrices is added to the generator loss. Note that these methods tackle
the traditional mode collapse problem, i.e., the data does not include minority
modes. In [23,24], it was shown that the convergence speed of stochastic gradient
descent can be improved by actively selecting mini-batches using DPPs. In [19],
coreset-selection is used to create mini-batches with a ‘coverage’ similar to that
of the large batch - in particular, the small batch tries to ‘cover’ all the same
modes as are covered in the large batch.

Before proceeding further, we discuss two main competitors more in-depth.
The authors of [5] propose a solution to reduce selection bias in training data
named Importance Weighted Generative Networks. A rescaling of the empirical
data distribution is performed during training by employing a weighted Maxi-
mum Mean Discrepancy (MMD) loss such that the regions where the observed
and the target distributions differ are penalized more. Each sample i ∈ {1, . . . , n}
is scaled by 1/M(xi), where M is the known or estimated Radon-Nykodym
derivative between the target and observed distribution. A version of the vanilla
GAN with importance weighting is introduced (IwGAN), as well as the weight-
ing combined with MMDGAN (IwMmdGAN). Another approach to complete
mode coverage by [26] and dubbed MwuGAN in this paper, iteratively trains a

1 Code and supplementary at https://github.com/joachimschreurs/RLS GAN.

https://github.com/joachimschreurs/RLS_GAN
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mixture of generators. At each iteration, the sampling probability is pointwise
normalized so that the probability to sample a missing mode is increased. Hence,
this generates a sequence of generative models which constitutes the mixture.
More precisely, a weight wi > 0 is given for each i ∈ {1, . . . , n} and initial-
ized such that wi = p(xi) for some distribution2 p. Next, a generative model is
trained and the probability density pg(xi) of each i ∈ {1, . . . , n} is computed.
If pg(xi) < δp(xi) for some threshold value δ ∈ (0, 1), the weight is updated
as follows: wi ← 2wi, otherwise the weight is not updated. The probability is
then recalculated as follows: p(xi) = wi/

∑
j wj for each i ∈ {1, . . . , n}. Another

generative model is then trained by using p(xi) and the procedure is repeated.

Classical Approach. A GAN consists of a discriminator D : Rd → R and a
generator G : R

� → R
d which are typically defined by neural networks, and

parametrized by real vectors. The value D(x) gives the probability that x comes
from the empirical distribution, while the generator G maps a point z in the
latent space R

� to a point in input space R
d. A typical training scheme for a

GAN consists in solving, in an alternating way, the following problems:

max
D

Ex∼pd
[log(D(x))] + Ex̃∼pg

[log(1 − D(x̃))],

min
G

−Ex̃∼pg
[log(D(x̃))],

(1)

which include the vanilla GAN objective associated with the cross-entropy loss.
In (1), the first expectation is over the empirical data distribution pd and the
second is over the generated data distribution pg, implicitly given by the map-
ping by G of the latent prior distribution N (0, I�). The data distribution pd

is estimated using the empirical distribution over the training data p̂d(x) =
1
n

∑
xi∈D δ (x − xi) as follows: Epd(x)[L(x)] ≈ Ep̂d(x)[L(x)] = 1

n

∑
xi∈D L (xi),

where L is a general loss function. As noted by [21], positive weights wi

for 1 ≤ i ≤ n can be used to construct a weighted empirical distribution
p̂w

d (x) =
∑

xi∈D wiδ (x − xi) , then one can apply a weighting strategy to use
samples distributed according to p̂(x) to estimate quantities with respect to
p̂w

d (x) as follows:

Ep̂w
d (x)[L(x)] = Ep̂d(x)

[
p̂w

d (x)
p̂d(x)

L(x)
]

=
∑

xi∈D
wiL (xi) . (2)

A stochastic procedure is applied for minimizing the above expectation over p̂w
d .

In this paper, mini-batches are sampled according to the distribution p̂w
d with

wi given by the normalized RLSs (3) for 1 ≤ i ≤ n.

2 Sampling with Ridge Leverage Scores

We propose to use a sampling procedure based on ridge leverage scores (RLSs) [1,
11]. RLSs correspond to the correlation between the singular vectors of a matrix
2 In [26], this initial distribution is uniform. We discuss in Sect. 3.1 a choice of weights

based on RLSs and initialize MwuGAN with the normalized RLSs in (3).
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and the canonical basis elements. The higher the score, the more unique the
point. A sample from a minority mode would thus get a higher RLS. These
RLSs are used to bias the sampling, which in turn results in a more uniform
sampling over all the modes, regardless of the original weight of the mode in the
data distribution. Given a feature map ϕ(·), the corresponding kernel function
is K(x, y) = ϕ(x)�ϕ(y). Let the regularization parameter be γ > 0. Then, the
γ-RLSs are defined for all 1 ≤ i ≤ n as:

�i(γ) =
(
K(K + nγI)−1

)
ii

= ϕ(xi)�(C + nγI)−1ϕ(xi), (3)

where C =
∑n

i=1 ϕ(xi)ϕ(xi)� and Kij = ϕ(xi)�ϕ(xj) for 1 ≤ i, j ≤ n. They
have both a primal and a dual expression that can be leveraged when the size of
the feature map or batch-size respectively are too large. When both the batch-
size and feature map dimensions are large, one can rely on fast and reliable
approximation algorithms with guarantees such as RRLS [15] and BLESS [17].
The role of γ > 0 is to filter the small eigenvalues of K in the spirit of Tikhonov
regularization. RLSs induce the probability distribution: pi = �i/

∑n
j=1 �j , for

1 ≤ i ≤ n, which is classically used in randomized methods [1]. Figure 2 illus-
trates the interpretation of RLSs on two artificial datasets used in this paper.
The datasets consist of a mixture of Gaussians. In the Ring example, the first 4
modes are minority modes (starting on top and going further clockwise). In the
Grid example, the first 10 modes are minority modes (starting left). Similar to
the first illustration (see Fig. 1), large RLSs are associated with minority modes.
More information on the artificial datasets is given in Sect. 3.1.

Fig. 2. RLS distribution using a Gaussian feature map with σ = 0.15 and regularization
γ = 10−3 on the unbalanced Ring (left) and Grid (right) data. The darker the shade,
the higher the RLS. Dark modes correspond to minority modes.

RLS sampling has a rich history in kernel methods and randomized linear
algebra but has not been used in the context of GANs. One of the key contri-
butions of this paper is to illustrate the use of RLSs in this setting. To do so,
we propose the use of different feature maps so that RLS sampling can be used
both for low dimensional and high dimensional data such as images. In what
follows, the feature map construction is first discussed. Next, two approximation
schemes are introduced.
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Choice of the Feature Map. Three choices of feature maps are considered in
this paper to compute leverage scores:

– Fixed implicit feature map. In low dimensional examples, the feature map
can be chosen implicitly such that it corresponds to the Gaussian kernel:
ϕ(x)�ϕ(y) = exp

(
−‖x − y‖2 /σ2

)
, the bandwidth σ is a hyperparameter.

– Fixed explicit feature map. For image-based data, more advanced similarity
metrics are necessary. Therefore, the next-to-last layer of a pre-trained clas-
sifier, e.g. the Inception network, is used to extract meaningful features. Note
that the classifier does not need to be trained on the exact training dataset,
but simply needs to extract useful features.

– Discriminator-based explicit feature map. The feature map can be obtained
from the next-to-last layer of the discriminator. Let D(x) = σ(w�ϕD(x)),
where w ∈ R

m contains the last dense layer’s weights and σ is the sigmoid
function. This feature map is useful in situations where no prior knowledge
is available about the dataset.

For a fixed feature map, the RLSs only need to be calculated once before training.
The discriminator-based explicit feature map changes throughout the training.
Therefore the RLSs are recalculated at every step. Nonetheless, due to approxi-
mation schemes which are discussed hereafter, the computational cost stays low.
The full algorithm is given in Supplementary Material.

2.1 Approximation Schemes

Current day models are high dimensional, e.g., a DCGAN yields a feature space
R

m of high dimension m = 103. Moreover, the size of datasets is commonly
thousands up to millions of images. Therefore, two approximation schemes are
proposed to speed up the computation of RLSs when using explicit feature maps:

– For the discriminator-based explicit feature map, we propose a two-stage
sampling procedure in combination with a Gaussian sketch to reduce the
dimension of high dimensional feature maps.

– For the fixed explicit feature map, the well-known UMAP is used to reduce
the dimensionality [13].

Two-stage Sampling Procedure. For the explicit discriminator-based feature
map, ϕD has to be re-calculated at each training step. To speed up the sampling
procedure, we propose a sampling procedure in two stages. First, a subset of
the data is uniformly sampled, e.g. equal to 20 times the desired batch size.
Afterward, the RLSs are calculated only for the uniformly sampled subset, which
are then used to sample the final batch used for training. This two-stage sampling
procedure is similar to the core-set selection used in smallGAN [19]. A first
difference is that core-sets are selected by combining a Gaussian sketch and a
greedy selection in [19], while we use a randomized approach. Second, in this
reference, cores-sets are used to reduce the batch size to improve scalability. In
contrast, RLS sampling is used here to bias the empirical distribution.
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Sketching the Discriminator Feature Map. Gaussian sketching is a com-
monly used method to reduce data dimension and was also used in [19] and [22]
to reduce the dimension of large neural nets. Let S be a sketching matrix of
size m × k such that S = A/

√
k with A a matrix with i.i.d. zero-mean stan-

dard normal entries. Consider the following random projection: let a batch be
{i1, . . . , ib} ⊂ {1, . . . , n}. A random projection of this batch in feature space is
then defined as follows:

ϕ(xi�
) = S�ϕD(xi�

) ∈ R
k, (4)

for all � ∈ {1, . . . , b}. This random projection preserves approximately (squared)
pairwise distances in the dataset and is motivated by an isometric embedding
result in the spirit of Johnson-Lindenstrauss lemma. Let 0 < ε < 1 and any
integer b > 0. Let k be an integer such that k ≥ 4(ε2/2 − ε3/3)−1 log b. Then,
for any set {x1, . . . , xb} in R

m there is a map f : Rm → R
k such that for any

�, �′ ∈ {1, . . . , b} we have

(1 − ε)‖x� − x�′‖22 ≤ ‖f(x�) − f(x�′)‖22 ≤ (1 + ε)‖x� − x�′‖22.

The idea of this work is to consider the set of points given by the batch in the
discriminator feature space x� = ϕD(xi�

) for 1 ≤ � ≤ b. It is proved in [3] that
f exists and can be obtained with high probability with a random projection of
the form (4). For a more detailed discussion, we refer to [16].

Dimensionality Reduction of the Fixed Explicit Feature Map by
UMAP. The Gaussian sketch is a simple and fast method to reduce the dimen-
sion of the feature map. This makes it a perfect candidate to reduce the dimen-
sion of the proposed discriminator feature map, which has to be recalculated at
every iteration. Unfortunately, this speed comes at a price, namely, the gaus-
sian sketch is deemed too simple to reduce the dimension of highly complex
models like the Inception network. Therefore, UMAP is proposed [13]. This non-
linear dimensionality reduction technique can extract more meaningful features.
UMAP is considerably slower than the Gaussian sketch, therefore the use of
UMAP is only advised for a fixed feature map like a pre-trained classifier or the
Inception network, where the RLSs are only calculated once before training.

3 Numerical Experiments

The training procedure is evaluated on several synthetic and real datasets, where
we artificially introduce minority modes. The GANs are evaluated by analyzing
the distribution of the generated samples. Ideally, the models should generate
samples from every mode as uniformly as possible. A re-balancing effect should
be visible. The proposed methods are compared with vanilla GAN, PacGAN,
MwuGAN, BuresGAN, IwGAN, and IwMmdGAN. In particular, MwuGAN out-
performs AdAGAN [20] on complete mode coverage problems [26]. BuresGAN [4]
promotes a matching between the covariance matrices of real and generated data
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in a feature space defined thanks to the discriminator. Recall that the discrimina-
tor is D(x) = σ(w�ϕD(x)), where w is a weight vector and the sigmoid function
is denoted by σ. The normalization ϕ̄D(x) = ϕD(x)/‖ϕD(x)‖2 is used, after the
centering of ϕD(x). Then, the covariance matrix is defined as follows: C(p) =
Ex∼p[ϕ̄D(x)ϕ̄D(x)�]. The real data and generated data covariance matrices are
denoted by Cd = C(pd) and Cg = C(pg), respectively. In BuresGAN, the Bures
distance is added to the generator loss: minG −Ex̃∼pg

[log(D(x̃))] + λB(Cd, Cg)2,

with the Bures distance B (Cd, Cg)
2 = Tr(Cd +Cg −2 (CdCg)

1
2 ), depends implic-

itly on ϕD(x) (see e.g., [12]). The loss of the discriminator remains the same.

Overview of Proposed Methods. The RLS sampling procedure can easily be
integrated into any GAN architecture or model. In this spirit, we used RLS sam-
pling with a classical vanilla GAN (RLS GAN) and BuresGAN (RLS Bures-
GAN). The classical BuresGAN has been shown to outperform competitors in
mode collapse problems [4]. We noticed empirically that RLS BuresGAN out-
performed RLS GAN on the synthetic data (the comparison is shown in Supple-
mentary Material). Therefore we only continue with RLS BuresGAN in the rest
of the experiments. Likewise, RLS sampling is combined with MwuGAN, which
is considered state-of-the-art in complete mode coverage. The method, called
RLS MwuGAN, uses RLSs as initial starting weights to sample as opposed
to uniform weights. Besides the initialization, the method remains unchanged.
The number of generators in the mixture is always displayed in brackets. Unless
specified otherwise, the models are trained for 30k iterations with a batch size
of 64, by using the Adam [9] optimizer. Unless specified otherwise, we report
the means and standard deviations for 10 runs. The largest mean is depicted in
black, a � represents significance using a one-tailed Welch’s t-test between the
best performing proposed model and best performing competitor at a 0.05 confi-
dence level. Further information about the used architectures, hyperparameters,
and timings are given in Supplementary Material.

Fig. 3. Visualization of the generation quality on Ring and Grid. Each column shows
2.5k samples from the trained generator in blue and 2.5k samples from the true distri-
bution in green. The vanilla GAN (first and third) does not cover the minority modes.
This is not the case for the RLS BuresGAN Discr. (second and fourth). (Color figure
online)
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3.1 Synthetic Data

Unbalanced versions of two classical synthetic datasets are generated: an unbal-
anced ring with 4 minority modes (Ring) and an unbalanced grid (Grid) with 10
minority modes (see Fig. 2). Ring is a mixture of eight two-dimensional isotropic
Gaussians in the plane with means 2.5×(cos((2π/8)i), sin((2π/8)i)) and std 0.05
for i ∈ {1, . . . , 8}. The probability of sampling from the first 4 consecutive Gaus-
sians is only 0.05 times the probability of sampling from the last 4 modes. Grid

is a mixture of 25 two-dimensional isotropic normals with standard deviation
0.05 and with means on a square grid with spacing 2. The first rectangular
blocks of 2 × 5 adjacent modes are depleted with a factor 0.05.

Table 1. Experiments on the synthetic datasets Ring and Grid. Two RLS BuresGAN
are considered: RLSs calculated with the Gaussian kernel (Gauss.) and the next-to-last
layer of the discriminator (Discr.). RLS MwuGAN is initialized with RLSs using an
implicit feature map associated with the Gaussian kernel.

Ring with 8 modes Grid with 25 modes

Nb modes (↑) % in 3σ (↑) Nb modes (↑) % in 3σ (↑)
GAN 5.0(1.1) 0.92(0.02)� 8.3(3.4) 0.29(0.3)

PacGAN2 5.4(1.4) 0.92(0.03) 10.3(2.6) 0.13(0.02)

BuresGAN 5.8(1.4) 0.76(0.27) 16.7(0.9) 0.82(0.01)�

RLS GAN Gauss 7.4(0.9) 0.86(0.05) 13.8(7.4) 0.51(0.32)

RLS GAN Discr 7.6(0.8) 0.90(0.02) 20.4(2.6) 0.81(0.03)

IwGAN 8(0) 0.85(0.08) 13.4(5.7) 0.29(0.25)

IwMmdGAN 8(0) 0.84(0.02) 1.7(5.1) 0.03(0.05)

MwuGAN (15) 7.9(0.3) 0.86(0.02) 15.2(1.7) 0.47(0.11)

RLS MwuGAN (15) (ours) 8(0) 0.84(0.06) 22.3(1.9) 0.60(0.1)

RLS BuresGAN Gauss. (ours) 8(0) 0.90(0.02) 24.0(1.5) 0.76(0.11)

RLS BuresGAN Discr. (ours) 8(0) 0.90(0.02) 24.4(0.92)� 0.78(0.06)

Evaluation. The evaluation is done by sampling 10k points from the generator
network. High-quality samples are within 3 standard deviations of the nearest
mode. A mode is covered if there are at least 50 generated samples within 3
standard deviations of the center of the mode. The knowledge of the full Radon-
Nikodym derivative M is given to IwMmdGAN and IwGAN by dividing the
true probability of each sample (a Gaussian mixture with equal weights) by the
adapted Gaussian mixture containing several minority modes. The results of the
experiments are given in Table 1. For RLS sampling, we use a Gaussian kernel
with bandwidth σ = 0.15, and the discriminator network as feature extractor,
both with regularization parameter γ = 10−3. The models are trained using a
fully connected architecture (see Supplementary Material). As the models are
rather simple, no dimensionality reduction is needed.
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Generated samples from models trained with and without RLS sampling are
displayed in Fig. 3. One can clearly see that training a GAN with uniform sam-
pling results in missing the first 4 minority modes. This is solved by using RLS
sampling and can be interpreted by comparing the two sampling distributions on
Fig. 4 (uniform) and Fig. 2 (RLS). The RLSs are larger for samples in minority
modes, which results in a more uniform mini-batch over all modes. Note that the
RLS sampling procedure, given the feature map, is completely unsupervised and
has no knowledge of the desired unbiased distribution. The evaluation metrics
in Table 1 confirm our suspicions. Only methods designed for complete mode
coverage can recover (almost) all modes for the Ring dataset. For the unbal-
anced Grid, only the proposed method has an acceptable performance. Our
method even outperforms multiple generator architectures like MwuGAN and
RLS MwuGAN, which are considerably more costly to train. Moreover, IwGAN,
with full knowledge of M , is not capable of consistently capturing all modes.
This was pointed out by the authors in [5]: the method may still experience high
variance if it rarely sees data points from a class it wants to boost.

Fig. 4. Ring. Number of training samples in each mode for the Ring dataset (left)
Generated samples in each mode by a vanilla GAN (middle). Generated samples by
RLS BuresGAN Discr. (right). A rebalancing effect is visible.

3.2 Unbalanced MNIST

For this experiment, we create two unbalanced datasets out of MNIST. The first
modified dataset, named unbalanced 012-MNIST, consists of only the digits
0, 1 and 2. The class 2 is depleted so that the probability of sampling 2 is only
0.05 times the probability of sampling from the digit 0 or 1. The second dataset,
named unbalanced MNIST, consists of all digits. The classes 0, 1, 2, 3, and 4
are all depleted so that the probability of sampling out of the minority classes is
only 0.05 times the probability of sampling from the majority digits. For these
experiments, we use a DCGAN architecture. The following metrics are used
for performance evaluation: the number of generated digits in each mode, which
measures mode coverage, and the KL divergence [14] between the classified labels
of the generated samples and a balanced label distribution, which measures sam-
ple quality. The mode of each generated image is identified by using a MNIST
classifier which is trained up to 98.43% accuracy (see Supplementary Material).
The metrics are calculated based on 10k generated images for all the models. For
the RLS computation, we use both the discriminator with a Gaussian sketch and
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Fig. 5. Generated images from unbalanced 012-MNIST by a vanilla GAN (first),
by RLS BuresGAN Discr. (second) and generated images from unbalanced MNIST

by a vanilla GAN (third), by RLS BuresGAN Class. (fourth). The minority digits are
generated more frequently in the proposed methods that include RLS sampling.

the next-to-last layer of the pre-trained classifier with a UMAP dimensionality
reduction as a feature map. For the unbalanced 012-MNIST, both feature
maps are reduced to k = 25 and the regularization parameter is γ = 10−4. In
the unbalanced MNIST, we take k = 10 and γ = 10−4. An ablation study
over different k and γ is given in Supplementary Material. We also compare the
performance of the classical MwuGAN, initialized with uniform weights, with
RLS MwuGAN where the weights are initialized by the RLSs calculated using
the fixed explicit feature map with the same parameters mentioned above. Both
methods contain a mixture of 15 GANs, the experiments are repeated 3 times for
MwuGAN variants. In our simulations, IwMmdGAN could not be trained suc-
cessfully with a DCGAN architecture. The Radon-Nikodym derivative M , which
is used by IwMmdGAN and IwGAN, is defined as follows: Mi = 1 for digits 0 and
1 and Mi = 0.05 for digits 2, analogous for the unbalancedMNIST dataset.
Only the proposed models trained with RLS sampling are capable of covering all
modes consistently. The diversity of images generated by RLS BuresGAN can be
visualized in Fig. 5 where digits from minority modes appear more frequently. A
quantitative analysis of mode coverage and sample quality is reported in Tables 2
and 3. In the unbalanced 012-MNIST dataset, there is a clear advantage in
using RLS sampling with BuresGAN since mode coverage and the KL diver-
gence are improved compared to the other methods. The second best method
is RLS MwuGAN which outperforms RLS with uniform starting weights in KL.
For the more difficult unbalanced MNIST dataset, using the fixed explicit
feature map to calculate the RLSs clearly outperforms other methods.

3.3 Unbalanced CIFAR10

We conclude this section with an experiment on colored images, namely the
CIFAR10 dataset. This highly diverse dataset contains 32 × 32 color images
from 10 different classes. We consider two unbalanced variations. The first mod-
ified dataset, named unbalanced 06-CIFAR10, consists of only the classes 0
and 6 or images of airplanes and frogs respectively. The class 0 is depleted with
a factor 0.05. The second dataset, named unbalanced 016-CIFAR10, consists
of the classes 0,1 and 6. Compared to the previous dataset, we add images from
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Table 2. Experiments on the unbalanced 012-MNIST dataset. Two RLS BuresGAN
are considered: RLSs calculated with an explicit feature map obtained from a pre-
trained classifier (Class.) and the next-to-last layer of the discriminator (Discr.). RLS
MwuGAN is initialized with RLSs using the explicit feature maps obtained from a
pre-trained classifier. Minority modes are highlighted in black in the first row.

Mode 1 Mode 2 Mode 3 KL

GAN 4381(172) 5412(179) 129(36) 0.31(0.01)

PacGAN2 4492(237) 5328(242) 123(29) 0.32(0.01)

BuresGAN 4586(287) 5190(292) 142(19) 0.30(0.01)

IwGAN 4368(295) 5414(287) 147(32) 0.32(0.01)

IwMmdGAN 34(12) 0(0) 69(12) 0.56(0.10)

MwuGAN (15) 4886(473) 4865(466) 176(14) 0.31(0.01)

RLS MwuGAN (15) (ours) 3982(218) 4666(164) 870(65) 0.14(0.01)

RLS BuresGAN Class. (ours) 3414(161) 4862(134) 1461(183) 0.08(0.01)�

RLS BuresGAN Discr. (ours) 5748(172) 2416(268) 1566(293)� 0.16(0.02)

the class automobile. Now, the class 6 consisting of frogs is depleted with a
factor 0.05. We show the improvement of RLS sampling in a StyleGAN2 with
differentiable data augmentation (StyleGAN2 + Aug.) [25]3. By clever use of
various types of differentiable augmentations on both real and fake samples,
the GAN can match the top performance on CIFAR10 with only 20% train-
ing data and is considered state-of-the-art. The StyleGAN2 models are trained
for 156k iterations with a mini-batch size of 32 using ‘color, translation, and
cutout’ augmentations, which is suggested by the authors when only part of the
CIFAR10 dataset is used. All the other parameters remained the same, only
the sampling strategy is changed to RLS sampling in RLS StyleGAN2 + Aug.
For the RLS computation, we use the discriminator feature map with Gaussian
sketching and a fixed explicit feature map given by the next-to-last layer of the
Inception network where UMAP is used to reduce the dimension. For both the
RLSs, the dimension is reduced to k = 25 and the regularization parameter is
γ = 10−4. The performance is assessed using 10k generated samples at the end
of training by the Inception Score (IS) and the Fréchet inception distance (FID)
between the generated fake dataset and the balanced dataset. Mode coverage
is evaluated by the number of generated samples in each class. The class of a
generated sample is evaluated by a trained CIFAR10 classifier using a resnet56
type architecture [8] which is trained up to 93.77% accuracy4. The results of
the experiments are given in Table 4, examples of generated images are given
in Fig. 6. Including RLS sampling clearly improves the performance in unbal-
anced datasets, this is especially the case for the fixed feature map given by the
Inception network. The minority mode is oversampled by approximately a factor

3 Code taken from https://github.com/mit-han-lab/data-efficient-gans.
4 Classifier is available at https://github.com/gahaalt/ResNets-in-tensorflow2.

https://github.com/mit-han-lab/data-efficient-gans
https://github.com/gahaalt/ResNets-in-tensorflow2
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Table 3. Experiments on the unbalanced MNIST dataset. Two RLS BuresGAN
variants are considered: RLSs calculated with an explicit feature map obtained from
a pre-trained classifier (Class.) and the next-to-last layer of the discriminator (Discr.).
RLS MwuGAN is initialized with RLSs using the explicit feature maps obtained from a
pre-trained classifier. Only the number of samples in the minority modes are visualized.
The number of samples in the remaining modes are given in Supplementary Material.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 KL

GAN 123(22) 137(103) 81(31) 161(97) 161(23) 0.48(0.02)

PacGAN2 109(29) 142(70) 89(23) 147(100) 152(40) 0.48(0.02)

BuresGAN 126(31) 157(97) 108(30) 153(62) 147(26) 0.46(0.02)

IwGAN 117(33) 139(33) 97(31) 212(69) 154(34) 0.46(0.02)

IwMmdGAN 1(1) 0(0) 23(16) 1140(367)� 3(3) 1.92(0.1)

MwuGAN (15) 144(29) 113(28) 146(13) 172(18) 167(28) 0.46(0.02)

RLS MwuGAN (15) (ours) 336(47) 283(32) 191(23) 381(38) 276(33) 0.30(0.02)

RLS BuresGAN Class. (ours) 875(112)� 663(122)� 360(198)� 831(59) 615(82)� 0.09(0.01)�

RLS BuresGAN Discr. (ours) 235(62) 183(141) 264(44) 255(109) 219(54) 0.37(0.02)

Fig. 6. Generated images from 06-CIFAR10 by a StyleGAN2 + Aug. (left) and by
RLS StyleGAN2 + Aug. (right). Including RLS sampling promotes sampling from the
minority class. Generated samples classified as planes are marked by a red border.

10 or even 100 in the case of the unbalanced 06-CIFAR10 and 016-CIFAR10

datasets respectively. Both the IS and FID also improve significantly. Note that
the maximum achievable performance for IS and FID is lower when only a subset
of classes is included, as pointed out by [18].

Table 4. Experiments on the unbalanced 06-CIFAR10 and unbalanced 016-

CIFAR10 dataset. Including RLS sampling in the StyleGAN2 + Aug. clearly improves
the performance. Minority modes are highlighted in black in the second row.

06-CIFAR10 016-CIFAR10

Mode 1 Mode 2 IS (↑) FID (↓) Mode 1 Mode 2 Mode 3 IS (↑) FID (↓)

StyleGAN2 + Aug 261 9500 4.8 67.5 4526 5206 18 4.3 48.8

RLS StyleGAN2 + Aug. Disc. (ours) 994 8659 5.7 46.4 4449 5132 139 4.6 44.4

RLS StyleGAN2 + Aug. Class. (ours) 2438 7212 6.2 31.3 4156 4393 1155 5.7 27.2
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4 Conclusion

We introduced the use of RLS sampling for training GANs. This ‘diverse’ sam-
pling procedure was motivated by a notion of complete mode coverage in the
presence of minority modes. RLS sampling is easy to integrate into any GAN
model. Three feature maps have been discussed. An implicit feature map per-
forms well for low-dimensional data. A fixed explicit feature map, such as a
pre-trained classifier, achieves good results in high-dimensional cases. Lastly,
the discriminator can be used as a feature map when no prior knowledge exists
about the data. Two approximation methods for the explicit feature maps are
also discussed: dimensionality reduction of explicit feature maps and a two-stage
sampling procedure to efficiently speed up online RLS computation. We demon-
strated empirically that the use of RLS sampling in GANs successfully combats
the missing mode problem.
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Abstract. Public transport (PT) systems are essential to human mobil-
ity. PT investments continue to grow, in order to improve PT services.
Accurate PT arrival time prediction (PT-ATP) is vital for PT systems
delivering an attractive service, since the waiting experience for urban
residents is an urgent problem to be solved. However, accurate PT-ATP
is a challenging task due to the fact that urban traffic conditions are com-
plex and changeable. Nowadays thousands of PT agencies publish their
public transportation route and timetable information with the General
Transit Feed Specification (GTFS) as the standard open format. Such
data provide new opportunities for using the data-driven approaches to
provide effective bus information system. This paper proposes a new
framework to address the PT-ATP problem by using GTFS data. Also,
an overview of various ML models for PT-ATP purposes is presented,
along with the insightful findings through the comparison procedure
based on real GTFS datasets. The results showed that the neural network
-based method outperforms its rivals in terms of prediction accuracy.

Keywords: Estimated time of arrival · GTFS · GTFS-RT · GTFS
validation · Machine learning methods · Mobility data mining · Neural
networks · Public transport

1 Introduction

Public transport (PT) offers significant social and environmental benefits. More
specifically, high quality PT services lead to: (a) a considerable improvement on
the quality of citizens’ life, e.g. areas with access to public transportation help
social inclusion, and (b) environmental benefits related to minimizing the CO2
emissions of private vehicles. Public transportation goal is to provide efficient,
reliable, and high quality services, in order to attract more passengers. The
planning of high quality PT systems is a difficult task. PT networks are highly
complex systems, due to the large number of passengers that are transported
each day, due to the number of employees and because they are affected by
technical and organizational complications.
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The wide adoption of GPS tracking systems in PT provides new opportunities
for using data-driven approaches to fit the demand of passengers and provide
effective bus information system. Arrival time prediction (ATP) of PT vehicles
is an important part of intelligent transportation systems. Accurate prediction
can assist passengers in planning their travels and may improve travel efficiency.
Also, efficient PT-ATP is necessary in order to eliminate passengers’ long waiting
time for the arrival of a new vehicle and the existence of delays during a trip.
However, accurate PT-ATP is a challenging task due to a variety of factors,
including stochastic variables such as traffic conditions, weather conditions, etc.

In order to deal with the PT-ATP problem it is necessary to collect moving
PT vehicles information, manage big mobility data, and address spatio-temporal
prediction problems. The collection and data management related to PT vehicles
is accomplished through PT agencies. However, the inherent difficulty of manag-
ing PT data poses challenges in terms of storing data in Big Data platforms, as
well as further analysis to extract useful and usable knowledge. Indeed, valuable
knowledge is hidden in big mobility data, which can be fully exploited through
Machine Learning (ML) techniques, such as Neural Networks (NN).

The key to the implementation and validation of transport models are the
real-world data. Their availability and quality can significantly affect the reli-
ability of the resulting estimates [3]. Data availability and data quality are of
equal importance. Nowadays thousands of PT providers employ a common for-
mat for publishing their public transportation schedules and associated geo-
graphic information, called General Transit Feed Specification (GTFS). GTFS
data are composed of two types of feeds: a) the GTFS feed (also known as static
GTFS), which contains static timetabling information, and b) the GTFS-real
time (GTFS-RT) feed, which contains real time information about the transit
network.

However, processing PT raw data, even standard GTFS, is challenging. Par-
ticularly, GTFS data (static and real-time) often contain missing information
and errors, such as missing timetable information (e.g. times of operations),
invalid stops coordinates, invalid vehicle coordinates, e.t.c. Thus, GTFS data
should pass through a set of validation steps. In order to validate GTFS and
GTFS-RT feeds, open-sources have been introduced [11]. However, GTFS val-
idator tools cannot guarantee that the validated data are appropriate for using
ML methods for ATP purposes. To address this problem and to make GTFS
and GTFS-RT feeds appropriate for learning ATP purposes, we introduce a tool
for Cleansing and Reconstructing GTFS data, called CR-GTFS tool.

In the previous years, a number of prediction algorithms have been applied
to moving objects [6–8,20]. Furthermore, various studies have been conducted
that use ML techniques in predicting the transit travel time by using GPS traces
from transport vehicles [9,16,28], or the so-called Live Automatic Vehicle Loca-
tions (AVL) data [12,19,21]. There are also some works that employ AVL with
GTFS feed. In [15] the purpose was to train an NN to predict the travel times
of buses based on open data collected in real-time, while the model evaluation
was conducted on data derived from Sao Paulo City bus fleet location, real-time
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traffic data, and traffic forecast from Google Maps. By mining Live AVL data
that buses provided by the Toronto Transit Commission along with schedules
retrieved from GTFS, and weather data, Alam et.al [1] found that their pro-
posed recurrent NN-based architecture predicts the occurrence of arrival time
irregularities accurately. In the literature there are limited works regarding the
PT-ATP problem by using GTFS and GTFS-RT feeds. Particularly, Sun et al.
[24] combined clustering analysis with Kalman filters to predict arrival times
at various bus stops on Nashville, TN, USA, by calculating the delay versus a
scheduled time, based on GTFS and GTFS-RT as well as historical bus timing
data.

The main contribution of this work is to propose a new framework to clean-
reconstruct GTFS and GTFS-RT feeds and simultaneously address the PT-ATP
problem by using GTFS data. Also, we examine various ML models for PT-ATP
purposes and provide insightful findings through the comparison procedure.

The rest of this paper is organized as follows: Sect. 2 presents the employed
GTFS data along with the proposed GTFS data preprocessing method for ATP
purposes. Section 3 formulates the problem definition and briefly summarizes
typical solutions for PT-ATP. Section 4 presents the experimental setup, the
results of our approach, and compares the performance of different solutions,
followed by conclusions in Sect. 5.

2 Preprocessing Static and Real-Time GTFS Data

In this section, we present some preliminary terms for the GTFS and GTFS-RT
feeds. Also, we describe the employed GTFS data, the GTFS errors and the
proposed GTFS data preprocessing method for ATP purposes.

2.1 PT Provider and GTFS Data

The American Public Transportation Association named Metro Transit is the
primary PT operator in the Minneapolis-Saint Paul of the U.S. state of Min-
nesota and the largest operator in the state. Metro Transit provides an inte-
grated network of buses, light rail, and commuter trains, and has adopted
GTFS format to share information with the public. Particularly, the website
at svc.metrotransit.org is well maintained with frequent updates of GTFS and
GTFS-RT feeds. More specifically, GTFS static data are downloaded as a zip
file1 and are updated weekly, but are subject to change at any time and daily
checks are recommended. As far as the GTFS-RT feeds are concerned, they are
updated every 15 s and include three feeds: the TripUpdate feed2, the Vehicle-
Position feed3 and the ServiceAlerts feed4.

1 https://svc.metrotransit.org/mtgtfs/gtfs.zip.
2 https://svc.metrotransit.org/mtgtfs/tripupdates.pb.
3 https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb.
4 https://svc.metrotransit.org/mtgtfs/alerts.pb.

https://svc.metrotransit.org/mtgtfs/gtfs.zip.
https://svc.metrotransit.org/mtgtfs/tripupdates.pb.
https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb.
https://svc.metrotransit.org/mtgtfs/alerts.pb.
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In general, a GTFS feed is a collection of at least six comma-separated values
(CSV) files (agency, routes, trips, stops, stop times, calendar) and seven optional
ones. Metro Transit provides 11 files: agency, routes, trips, stops, stop times,
calendar, shapes, calendar dates, feed info, linked datasets, vehicles. In a PT
network, stops represent the available stations at which the PT vehicles can
stop to pick up or drop off passengers. A sequence of stops constitutes a route.
Multiple routes may use the same stop. Each route has a schedule that is followed
by a PT vehicle and each route is composed of many trips, which follow the same
route, but occur at a specific time throughout a day. Moreover, shapes describe
the path that a vehicle travels along a route alignment, are associated with trips,
and consist of a sequence of points through which the vehicle passes in order.
Stops on a trip should lie within a small distance of the shape for that trip.

As far as the GTFS-RT feed is concerned, it allows PT agencies to provide
real-time updates about their fleet through three different types of live feed-trip
updates: Trip Update (provide information about predicted arrival/departure
times for stops along the operating trips), Vehicle Position (provide information
about the locations of the vehicles, e.g. GPS coordinates), and Service Alerts
(provide human-readable descriptions regarding disruptions on the network).
More specifically, the Metro Transit Trip Update feed includes information about
vehicle’s timestamp, trip id, route id, direction id, start time, start date, vehicle
id, vehicle label, stop sequence, stop id, arrival time, departure time. Note that
the arrival/departure times at stops are the predicted ones; at least in Metro
Transit, the actual arrival/departure times are not included in the feed. Also, the
Metro Transit Vehicle Position includes information about vehicle’s timestamp,
trip id, route id, direction id, start time, start date, vehicle id, vehicle label,
position latitude, position longitude, bearing, odometer, speed. Finally, since the
Metro Transit Service Alerts feed includes human-readable descriptions, which
are not easily manageable automatically this feed is not used in this work.

2.2 GTFS Data Errors and Proposed Solutions

GTFS data often contain errors, such as misrepresentations of the actual net-
work, stops could be encoded imprecisely and have incorrect coordinates. Several
GTFS errors for the static counterpart need to be resolved in order to be use-
ful for data analytic purposes, where the most common errors along with the
provided solutions, are presented below:

– Duplicate trip information: Each trip should be unique within a route (i.e.
same trips, at the same times, should not occur), otherwise is eliminated.

– Incorrect or duplicate stop timestamps: Scheduled arrival and departure times
should increase for each stop along the trip and should not be the same at
three or more consecutive stops, otherwise the respective trip is eliminated.

– Incorrect stops: Stops coordinates and sequence should match the road net-
work coordinates and direction, respectively, generated from the available
shapes. The incorrect stops are eliminated and if a large number of stops
within a trip is incorrect, then the whole trip is eliminated.
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– Incorrect shapes: Shapes coordinates should match the actual road network
coordinates and direction generated from OpenStreetMap [18], otherwise the
respective shape is eliminated.

Moreover, GTFS-RT feed contains errors, such as mismatches with the sched-
uled data, that need to be resolved in order to be useful for data analytic pur-
poses, where the most common errors along with the provided solutions, are
presented below:

– Route/Trip/Stop ids mismatching: The vehicle route/trip/stop ids in GTFS-
RT should be included in GTFS static feed, otherwise the respective points
are eliminated.

– Unrealistic alighting times: Multiple consecutive timestamps for one vehicle
position may occur when arrival or departure events occur. These timestamps
must occur in short times otherwise the ids are invalid and are eliminated.

– Multiple vehicle positions for one timestamp: For each timestamp only one
vehicle position should be recorded, otherwise the most reasonable value is
kept.

– Incorrect vehicle position data: Vehicle positions should match the available
GTFS shapes (i.e. vehicle positions should be within a buffer surrounding the
GTFS shapes) of the trip that the vehicle operates and the road distances
between consecutive positions should result in reasonable values, otherwise
the points are invalid and are eliminated.

– Invalid timestamps: Timestamps should be strictly sorted for a specific vehicle
operating on a specific trip and the time differences between consecutive
positions should result in reasonable values, otherwise the timestamps are
invalid and are eliminated.

– Invalid vehicle speed: The vehicle speed is calculated by using the road dis-
tance between two vehicle positions and the time horizon between the cor-
responding timestamps. The vehicle speed should follow the minimum and
maximum speed limits defined by Metro Transit, otherwise the validity of the
associated vehicle positions and timestamps should be investigated.

– Invalid trip start times: The GTFS-RT trip start timestamp should match
the scheduled arrival time of the first stop of the trip provided by the “stop
times” file, otherwise the trip is invalid and is eliminated.

– Invalid trip start/end times and start/end stop positions: The vehicles may
report timestamped positions long time before the scheduled trip start time
and/or on a different position of the first stop location of the trip. Also, the
vehicles may report timestamped positions many kilometres from the last
reported location before going out of service. These are considered extreme
errors and are resolved by a) deleting the vehicle’s positions with distance
from the stop location higher than 50 m, b) deleting the timestamps that
differ from the scheduled trip start time more than a specific amount of time
which is equal to the maximum delay time of the trips of the same road id at
the first stop, and c) deleting the timestamps that differ from the scheduled
trip end time more than a specific amount of time which is equal to the
maximum delay time of the trips of the same road id at the last stop.
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2.3 Cleansing and Reconstructing GTFS Data (CR-GTFS) Tool

GTFS static and real-time data main purpose is to share PT information and
are not appropriate for being used by ML methods for data analytic purposes
directly. To address this problem and to use GTFS and GTFS-RT feeds effec-
tively for learning ATP purposes, we propose the CR-GTFS tool, which down-
loads, saves, cleans and reconstructs the GTFS data (both static and real-time).

In this work, GTFS and GTFS-RT feeds are retrieved from the Metro Transit.
Particularly, CR-GTFS tool downloads the available schedule data every 2 h and
the real-time feeds every 5 s to ensure that all data are collected, and stores them
in a PostgreSQL database, which is spatially enable by using PostGIS. Then the
process to automatically identify the problematic and missing information, and
to reconstruct GTFS and GTFS-RT feeds follows and is described subsequently.

As far as the GTFS static feed is concerned, the respective files are merged
according to the following flow: agency is merged with routes (using “agency id”
as the key), then merged with trips (using “route id” as the key), then merged
with stop times (using “trip id” as the key), then merged with stops (using
“stops id” as the key), then merged with shapes (using “shape id” as the key),
then merged with calendar and calendar dates (using “service id” as the key).
Subsequently, the GTFS data errors described in Sect. 2.2 are resolved and the
final GTFS static dataset is a complete dataset that includes all the available
timetable information.

As far as the GTFS-RT data are concerned, the TripUpdate feed is merged
with the VehiclePosition feed by using a number of different combination of keys,
e.g. a) “trip id” and “vehicle id”, or b) “route id”, “direction id” and “vehicle
id” (in the case of missing/faulty values of “trip id”), or c) “route id”, “direc-
tion id” and vehicle timestamp occur within the time frame of a scheduled trip
with “route id” (in the case of missing/faulty values of “vehicle id”). By merg-
ing the VehiclePosition with the TripUpdate and by using various combination
of merging keys, the proposed tool fills the missing information concerning the
common features: vehicle’s timestamp, trip id, route id, direction id, start time,
start date, vehicle id and vehicle label. Subsequently, the abovementioned recon-
structed GTFS static dataset is merged with the GTFS-RT data by using as keys
the “road id”, the “direction id” and the “trip id”. Then, the GTFS-RT data
errors described in Sect. 2.2 are resolved and the resulted dataset is a complete
set of information about the transit system.

Due to the fact that the GTFS-RT feed is designed to provide only updates
on operating vehicles, each reported vehicle is in service and is operating on a
trip and is assigned a unique trip id. The trip ends when a) the assigned vehicle
on the specific trip does not operate anymore (i.e. the vehicle does not appear in
the GTFS-RT feeds), and/or b) the assigned vehicle on the specific trip reports
a different route for consecutive timestamps, or a different direction. For each
completed trip, CR-GTFS tool saves the related information to the database
and process it. The resulted dataset is a complete dataset that includes all the
available real-time information for each vehicle operating on a trip. However,
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this dataset does not include the information whether a vehicle actually arrived
or departed the stop.

For ATP purposes, we need to know the vehicle’s arrival time at a stop. This
can be addressed by matching the stops from the schedule data to the GTFS-RT
stop times based on the timestamps of the vehicles passing those stops, for each
GTFS-RT completed trip. However, this is a challenging task due to a number
of reasons such as the fact that sometimes no location is reported near a stop
as the vehicle passes the stop quickly. In order to solve this problem, we need
to determine which stops were passed and estimate their times of arrival and
departure. Thus, the CR-GTFS, for each trip, calculates the distance between
the timetable stops locations and the available GTFS-RT vehicle’s positions.
If the distance between a specific stop location and a vehicle’s position falls
within the range of 30 m, then the recorded vehicle timestamp matches the stop.
Subsequently, the timestamp for each remaining stop (that has not a matched
timestamp) can be estimated by using the road network distance and the speed
of the vehicle from the previous and next positions of the specific stop’s location.

For the experimental purposes of this study we created a one month GTFS
data (March 2021), by using the proposed CR-GTFS tool. Note that both bus
and rail services were included.

3 Methodology

3.1 Problem Formulation

Using the processed dataset as described above, the problem can be formulated
as follows:

– Given: An input vector V = {vt−k, . . . , vt−1, v̂t}, where t is the current bus
stop and vt−k contains sequential information about passing through stop
t − k,

– Predict: The arrival time or dTt,t+1 towards the next bus stop in sequence.

For each of the previous k bus stops, the sequential information gathered is stop
identifier “stop id”, actual distance dSt−j,t−j+1 travelled from previous stop
(GPS-based), actual time dTt−j,t−j+1 for this transition and estimated (mean)
speed, i.e., dSt−j,t−j+1/dTt−j,t−j+1.

The reason for including redundant information with speed is that some
regression models become simplified and easier to train, as the pair distance-
and-time introduces non-linearities in the input compared to distance-and-speed.
Furthermore, speed may also be included in the next-step sub-vector v̂t where
it is typically not available (dTt,t+1 not realized yet), if instead some globally
available estimation of it can be attained from historic data, i.e., the mean time
it usually takes to travel between these two bus stops in that specific direction.
For more accurate comparison of the examined models, not such additional esti-
mations were made for next-speed elements and, hence, the next-step sub-vector
v̂t contains only “stop id” and actual distance dSt,t+1 that are available at any
given t.
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Although any N-step look-ahead setup can be used in this core regression
task, the choice of one-step look-ahead was based on two reasons. First, the
purpose here is to compare the methods in the pure short-term sense, i.e., limit
the effects of noise and stationarity shifts caused by exogenous localized factors
like unstable road traffic. Second, it is straight-forward to extend the one-step
look-ahead approach to any N-step option by iterating the same process multiple
times and employing a sliding window that incorporates every new prediction;
for robust regressors, the expected N-step look-ahead error of this process is
typically bounded by N times the one-step error of the model. Therefore, the
one-step look-ahead results are a very good indication of how these models will
behave if used iteratively and, most importantly, what is their performance if
used continuously in an online fashion, e.g. with streaming data as they become
available.

3.2 Machine Learning Methods Compared

As a performance baseline, two variants of the Linear Regression [17] were
employed in this study: (a) the standard method based on the least squares error
minimization, (b) the same method but enhanced with the M5 algorithm [26]
for attribute selection-elimination. Since the regression task at hand is clearly
non-linear, every other regression method with realistically usable application
should perform better than this baseline.

A simple model that is often used as density-based estimators is the k nearest
neighbour (k-nn) [25] approach, more specifically the Instance Based learners
(IBk). In regression problems of high or unknown intrinsic dimensionality, or
when the underlying target distribution is suspected to be skewed or clustered,
the IBk algorithm is often used as a very good indicator of the expected perfor-
mance of other, properly trained and robust models. However, like the k-nn, it
does not include per-se any attribute-selective process and the distance metric
may be negatively affected by a few heavily skewed or correlated dimensions.
Moreover, the model itself always requires the complete training dataset or a
very extensive representation of it, in order to make each decision during the
evaluation phase. This is why these models are often called ‘lazy’ learners. Nev-
ertheless, as density-based, models, they do not depend on a ‘global’ functional
approximation of the entire manifold, but rather good approximation of arbi-
trary local neighborhoods of the data. In this study, IBk was included as such a
representative of ‘lazy’ learners based on the k-nn approach, using the Manhat-
tan distance metric and inverse distance as weighting factors within each local
neighborhood of k samples.

Focusing on the data space partitioning and implicit attribute selection char-
acteristics of decision tree algorithms, the ‘Reduced Error Prunning Tree’ or
REPtree algorithm [13] was used as a representative of this category. It is a
fast decision tree model that can be used for classification or regressions tasks,
similarly to the classic Classification and Regression Tree (CART) algorithms
[25]. During training, it builds several trees based on a loss minimization crite-
rion, typically the information gain or reduction of variance with each new node
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split. Due the sorting of numeric features only once, the overall speed of the
training process is improved. Subsequently, the tree is pruned for improving its
generalization based on an error function, typically mean squared error (MSE)
or minimum absolute error (MAE). Finally, it selects the best-performing tree
from all the candidates as the representative model.

As a representative of the ensemble methods [5,14,27], Additive Regression
was also employed in this study. It is a realization of the boosting approach
for regression tasks, i.e., training separate subsequent models upon the residuals
(errors) of the previous iterations. The final result is an aggregation of all the
trained models, which are typically some weak classifier/regressor, e.g. decision
trees. It also includes a shrinkage factor for the learning rate, in order to accom-
plish smoother trained manifold and avoid over-fitting. In this study, REPtree
was used as the base regression model for the ensembles.

Finally, a neural network model was employed as a classic ‘universal approx-
imator’. in particular, a multi-layer perceptron (NN-MLP) [25] architecture was
used with topologies of one, two and three hidden neurons with softmax acti-
vation functions. The main advantages of NN-MLP over many other types of
regression models is that the (one or more) hidden layer provides a data space
partitioning feature similar to the decision trees and at the same time incor-
rorate a non-linear aggregation scheme for producing the final output. Instead
of the classic back-propagation training, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) [2,4,10,22] optimization algorithm was employed instead, due to its
enhanced stability and faster convergence. The BFGS algorithm, used in a wide
range of (mostly) unconstrained optimization tasks, is based on directional pre-
conditioning of the descent gradient and it is one order faster than the classic
Newton methods. It uses localized curvature information via gradual improve-
ments upon the Hessian matrix of the loss function without the need for matrix
inversions or analytical gradient definitions.

4 Experimental Study

The proposed method was formulated and experimentally validated over a real-
world PT dataset, which was created by using the proposed CR-GTFS tool as
presented in Sect. 2.

4.1 Experimental Protocol - Parameter Selection

After the full pre-processing of the raw data, the training and testing datasets
were prepared according to the specific problem formulation for the regression
task, according to the input-output schema described in Sect. 3.1. In practice,
collected sequential data (stop id, elapsed time, distance, speed) from the pre-
vious four bus stops, as well as the available data towards the next stop (stop
id, distance), are used as input vector; the arrival time to the next stop is the
output, i.e., the conditioned variable in the regression.
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For proper evaluation, a 5-fold cross-validation process [25] was employed
for all trained models, using exactly the same randomization (seed) in order to
avoid any partitioning side-effects. Hence, all performances were evaluated on
80% training and 20% testing splits of the initial dataset, in five iterations, and
the final numbers are the mean values over these splits. Due to the significant
differences in complexity, the training cycles of the various models ranged from
1–2 seconds (Linear Regression) to more than six hours (NN-MLP).

Regarding model parameterization, several aspects of each model type were
taken into account and optimized with intermediate experiments before the final
performance assessment, with the exception of Linear Regression which is essen-
tially non-parametric. For IBk, the distance metric (Manhattan) and the weight-
ing factor (inverse distance), as well as the size of the neighborhood between
k = {5, . . . , 10}, were selected as optimal for this task. Similarly, for REPtree
the node splitting criterion was selected to 1e-3 and at least four instances per
leaf for the pruning, but with no prior constraint for the expansion depth, in
order to accommodate the large dataset size without imposed approximation
deficiencies. The REPtree was also used as the base weak learner in the Addi-
tive Regression model, used without shrinkage factor and with 10 iterations.

Finally, for NN-MLP the main focus of the optimization was in its topology,
i.e., the number and size of the hidden layers employed. As expected, in regression
tasks any feature space partitioning beyond a single hidden layer does not provide
improvements in the final accuracy, single any subsequent aggregation steps may
actually increase, instead of decreasing, the approximation error. In other words,
and in contrast to the multiple-layer NNs used in deep learning approaches like
with auto-encoders used in classification tasks, a properly designed first hidden
layer is more than adequate to address an arbitrary regression tasks. It should
be noted that the choice of the size of the single (or first of multiple) hidden
layers in NN-MLP regressors can be examined in combination with a preliminary
clustering step, in order to make a rough estimation of the level of non-uniformity
of the input data space which the model can exploit. In this study, up to three
hidden layers were tested in NN-MLP topologies, but the best candidates were
those with a single hidden layer of size within a range of nL = {10, . . . , 50}. The
lower bound was based on clustering estimations via k-means and EM algorithms
[25] that yielded a total of 8–10 clusters, 3–4 of which were mapping 8–10% of
the data, i.e., can be considered ‘outliers’ clusters. The upper bound is mostly
constrained by the training time required, as well as by the fact that the increase
in accuracy (MAE) versus hidden layer size increases only logarithmically (very
slow), as it is explained and illustrated below in Sect. 4.2.

4.2 Results and Discussion

Figure 1 illustrates the distribution of the target for arrival time in the dataset,
i.e., true dTt,t+1, which, as expected, follows a highly skewed Gaussian or a
Generalized Extreme Value (GEV) profile [23], with heavy positive tail. This is
due to the fact that the dataset contains a few, very large time differences in
specific bus routes, i.e., with very sparse bus stops. In order to test the robustness
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of the models and their training, it was decided not to remove any such extreme
values but instead use it as-is, simulating a real-world requirement of having to
produce ATP for any given input vector, including extremes.

Fig. 1. Distribution of regression target for arrival time in the dataset, i.e., true dTt,t+1.

Table 1. Results for all the implemented methods

Method MAE (sec) RMSE (sec) R

Linear regression (std) 29.493 41.021 0.6058

Linear regression (M5) 26.949 38.487 0.6654

IBk (k-nn) 21.119 31.744 0.7891

REPtree 21.503 32.092 0.7829

Additive regression 21.427 32.013 0.7842

NN-MLP (hiddenL=1) 21.050 31.243 0.7956

NN-MLP (hiddenL=2) 24.619 35.731 0.7216

The experimental protocol employed was the same for all models, as described
previously in Sect. 4.1. Table 1 presents the results for all the implemented meth-
ods, each with its best-performing configuration. For IBk this is with k = 9; for
NN-MLP this is with a single hidden layer of size nL = 50 (at least nL ≥ 35).
Bold indicates the overall-best performance given the Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE) and Pearson’s pairwise correlation
coefficient (R) between true and predicted values.

Using the best topology for NN-MLP (single-layer, nL = 50), Fig. 2 presents
the distribution of errors (MAE) against the regression variable (arrival time).
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Again, it is obvious that it follows a skewed Gaussian or a Generalized Extreme
Value (GEV) profile [23], with moderate positive tail, as expected. However, in
contrast to Fig. 1, the distribution is much more ‘packed’ towards zero and the
positive tail is suppressed. This essentially means that the resulting NN-MLP
‘prefers’ to generalize over the main body of the input space, evidently lacking
in accuracy on the extreme cases, hence producing the expected prediction error
(MAE) somewhat shifted to the right but not very far from zero. In other words,
the error profile proves that the NN-MLP exhibits both small prediction error
and high level of generalization, biased towards producing larger errors in the
extremes rather than throughout the input space.

Fig. 2. Distribution of regression error (MAE) for one-step look-ahead ATP using NN-
MLP.

Regarding the single-layer NN-MLP, which is the overall-best regressor in this
task, it is worth noting that as a model it exhibits a very high level of information
‘packing’ in its trained parameters: the specific topology of nL = 50 translates
to a total of 1,251 weight parameters, including one weight per input attribute
(ninp = 23) plus one bias coefficient per neuron, i.e., |W | = nL(ninp+1)+(nL+1).
In contrast, the second-best model which is IBk requires the complete dataset
used for k-nn lookups with k = 9, a process that is much slower and two orders
of magnitude more space-demanding. Similarly, single and ensemble REPtree
(Additive Regression) comes close in terms of accuracy, but again the space
complexity (tree sizes) is at least 4–5 times larger than the NN-MLP model.
Furthermore, the ensemble option (multiple trees) are usually required in order
to cope with the inherent noise sensitivity (instability) of single decision trees
and the improvement of generalization.

Regarding the trade-off of the size of the single hidden layer in NN-MLP
versus the performance improvement, Fig. 3 illustrates some reference points
and the corresponding trend in terms of logarithmic fit. The exact formula of
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the fit is: MAE ≈ f(nL) = α · ln (nL − 8) + β, where α = −0.640232 and
β = +23.427965. It is obvious that the trend fit is good, very close to the actual
reference points, and the performance gain beyond nL ≥ 35 becomes negligible.
Nevertheless, even with nL = 50 the NN-MLP topology translates to a model
several times smaller in size than the next best alternative.

In summary, the single-layer NN-MLP model outperforms all the other tech-
niques. Besides Linear Regression and two-layer NN-MLP, the performances of
the rest of the models differ only marginally; however, due to the very large
number of training samples (122,320 in total), the relative ranking of the tested
models can be considered as statistically significant and valid for performance
comparison. Finally, it should be noted that an increase in the number of sam-
ples and the problem dimensionality results in higher computational times in
NN-MLP models. However, the performance of the employed NN-MLP model
indicates that the algorithm can handle GTFS datasets with large amounts of
samples and take advantage of the high prediction accuracy, in contrast to the
non NN-based methods, which provide less accurate predictions.

Fig. 3. NN-MLP topology (hidden layer size) versus one-step look-ahead ATP error
(MAE); blue dots are real test points (training results) and red line is the estimated
trend (logarithmic fit).

5 Conclusion

Due to recent advances in position broadcasting technology and the adoption of
a common transit feed format by thousands of PT agencies, PT movement infor-
mation has become increasingly available. An effective estimation of PT-ATP
is substantial for improving the quality and the reliability of the PT services.
Taking advantage of the GTFS data, this work proposes a new framework to
address the PT-ATP problem. Also, various ML models are tested in solving the
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PT-ATP problem. As a result, insightful findings through the comparison proce-
dure are provided. The results showed that the NN-based method outperforms
its rivals in terms of prediction accuracy.

Future work includes the investigation of weather information impact on the
PT-ATP problem. Also, we plan to experiment with further ML algorithms, such
as recurrent NN architectures, taking into account the training computational
times. Finally, we plan to focus on a larger prediction time horizon, as well as
extending the prediction’s window length by including more stops.
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28. Čelan, M., Lep, M.: Bus arrival time prediction based on network model. Procedia
Comput. Sci. 113, 138–145 (2017). the 8th International Conference on Emerging
Ubiquitous Systems and Pervasive Networks (EUSPN 2017) / The 7th Interna-
tional Conference on Current and Future Trends of Information and Communica-
tion Technologies in Healthcare (ICTH-2017) / Affiliated Workshops

https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org


The Optimized Social Distance Lab
A Methodology for Automated Building Layout Redesign for Social
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Abstract. The research considers buildings as a test case for the development and
implementation of multi-objective optimized social distance layout redesign. This
research aims to develop and test a unique methodology using software Wallacei
and the NSGA-II algorithm to automate the redesign of an interior layout to
automatically provide compliant social distancing using fitness functions of social
distance, net useable space and total number of users. The process is evaluated in
a live lab scenario, with results demonstrating that the methodology provides an
agile, accurate, efficient and visually clear outcome for automating a compliant
layout for social distancing.

Keywords: Social distancing · Architecture · Optimization · Signage ·
Wayfinding

1 Introduction

COVID-19 has had an unprecedented impact on the day-to-day use of buildings [1].
These effects are likely to have an enduring medium and long- term impact on the
arrangement of building layouts to comply with social distancing, posing immediate
and ongoing risks to both the personal health of users through non-compliance and to
the financial viability of building operation due to increased circulation and distancing
requirements [2]. The cost in person-hours to the global economy represented by the
millions of concurrent and disparate exercises in building layout replanning during the
pandemic has been truly significant [3]. To ameliorate against further substantial cost
to the economy through both abortive space planning and non-compliant layouts [4],
we propose a unique automated methodology for building operators to redesign their
layouts to comply with social distancing. This will reduce timescales for reopening and
adaptation in the event of revised government advice, local lockdown, or further variant
outbreaks [5]; benefitting user health through verification of distances, whilst improving
the efficiency of building operation through optimization of capacity. Our key research
question is: can social distancing guidance be effectively automated for building layout
plans?
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2 Related Work

Our approach was to build a multi-criteria optimization definition using parametric soft-
ware Grasshopper and Wallacei [6] to generate a redesigned floor layout with minimal
human design input. A review of existing research reveals that no existing study pro-
vides practical development, testing and evaluation of optimized floor layout design in
relation to social distancing; an expected consequence of the short time since the start
of the pandemic. Of the papers that explore spatial layouts in the context of COVID-19,
most refer to speculative or theoretical guidance as opposed to means-tested outcomes:
Fischetti et al. [7] considers a mathematics-based approach to social distancing, explor-
ing the effect of aerosol spread on spatial layouts. Banon et al. [8] investigate shape
grammar optimization by mathematical formula. Yet no existing research evaluates the
complexity of practical application considering real-world influences including multiple
paths, wayfinding and unpredictable user behavior.

Of the significant research completed on multi-criteria optimization of design for
spatial layout studies pre-pandemic, Guo et al. [9] explore a multi-agent evolutionary
optimization process to define office and housing layouts. The introduction of pedestrian
flow for multi-objective optimization presented by Huang et al. [10] provides insight
into the potential of agent-based modelling on wayfinding cognition. Recent research
by Dubey et al. [11] proposes a new system for the automated positioning of signage
based on a multi-criteria optimization approach; referencing theories of Space Syntax
and behavioral and cognitive science. Yet, as a consequence of the rapid onset of the
pandemic, none have investigated automated optimization of layouts in the setting of
social distancing restrictions. In the context of this gap of knowledge, the work proposes
a newmethodology to bridge between theory and practical evaluation in the new context
of the pandemic.

3 Research Methodology

To evaluate the methodology, the project tested a ‘live’ site, automating the design of the
interior layout and wayfinding signage of the ground floor of a public building complex
owned by Lancaster City Council (LCC) - the Storey Building in Lancaster City center.
The Social Distance Lab opened to key stakeholders for three weeks in May 2020,
providing opportunity for local business owners to explore a building altered to comply
with social distance restrictions, with the dual purpose of collecting evaluation data from
users active in the space.

To generate the redesigned and optimized building layout incorporating a) user routes
b) user destinations (e.g. seating / toilets) and c) signage locations, a simplifiedAutoCAD
2D building plan of the building was used as input. The workflow method is summa-
rized in Fig. 1. Three fitness functions were defined: (i) Social distance (in meters) (ii)
Net useable space (m2) (iii) Total number of users. Using the Wallacei plugin, fitness
functions were tested using the NSGA-II algorithm. The analysis tools contained within
Wallacei, including the Parallel Coordinate Plot (PCP), were used to identify preferred
outputs on the basis of fitness.
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Fig. 1. Generative social distance framework overview

3.1 User Route Generation

A Voronoi offset was applied to the 2D DWG building plan, generating a median line
to establish a user route centered between adjacent fixed structures. An exclusion zone
representing the social distance offset (fitness function 1) either side of the median line
was tracked onto plans, and areas highlighted at risk of non-compliance were identified
using attractor points checking collision on an analysis surface. This provided an early
visual risk analysis through color codification of existing non-compliant spaces and
routes. Using an Isovist definition [12] a visibility graph analysis was generated to
indicate the visibility of walled surfaces using a restricted field of view Isovist in the
direction of the path of movement. (Fig. 2). This subsequently defined the physical
location of wayfinding signage.

User Bi-Directional 
Median Line   

Isovist fixed View region

Fig. 2. Visibility graph analysis indicating fixed view projected onto surfaces

3.2 Layout Optimization

The seating region was defined by subtracting the established exclusion zone from the
net building outline (fitness function 2). To provide optimal seating capacity within this
region, circles offset from a point (representing each user) were packed to fit wholly
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within each region (fitness function 3). Signage typologies and layouts were developed
concurrently in collaboration with the client, LCC. Directed by both the optimized
lay-out outcomes fromWallacei and associated isovist visibility graphs, the design team
verified the final signage design and location with clients for fabrication and installation.

Fig. 3. Installation of the signage in the Storey building, Lancaster, UK.

4 Results

In order to quantify the differences between human designed and automated layouts,
five store designers were asked to draw a plan with identical parameters of input prior to
viewing the automated outcome [Fig. 4]. Human-designed plans included, on average,
32 seated locations comparedwith 40 of PlanB, a 25% increase in total capacity using the
automated methodology. The percentage of useable space defined as the seating region
is improved by 12% in the generated layout. On verifying accuracy, the human-designed

Human Designed Plan A (2/5) Optmized Designed Plan B 
Non-compliant distance in red region

Fig. 4. Comparison of human-designed plan (A) and automated Grasshopper definition (B)
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plans (e.g. Plan A, Fig. 4) include an average of three locations that infringed upon the
2 m social distance.

Table 1. Result of plan comparisons and survey of designer and key stakeholders

5 Conclusion

The research has provided a methodology that successfully automates social distanc-
ing guidance using optimization software in the context of the case study building. The
method provides automated socially complaint plan designs, delivering improved capac-
ity and net useable area in comparison with human designed layouts. Subsequent user
evaluation in the live lab proves the method presents visually clear and effective social
distancing measures. As the definition retains variable fitness functions, crucially social
distance, the layout may be redesigned instantly to comply with any value of distance,
providing an agile and responsivemeans to complywith changing social distance advice,
providing an essential resource for resilience against future viral variants.
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Abstract. Symbolic Regression has been widely used during the last
decades for inferring complex models. The foundation of its success is
due to the ability to recognize data correlations, defining non-trivial and
interpretable models. In this paper, we apply Symbolic Regression to
explore possible uses and obstacles for describing stochastic financial
processes. Symbolic Regression (SR) with Genetic Programming (GP)
is used to extract financial formulas, inspired by the theory of financial
stochastic processes and Itô Lemma. For this purpose, we introduce in the
model two operators: the derivative and the integral. The experiments
are conducted on five market indices that are reliable at defining the evo-
lution of the processes in time: Tokyo Stock Price Index (TOPIX), Stan-
dard & Poors 500 Index (SPX), Dow Jones (DJI), FTSE 100 (FTSE) and
Nasdaq Composite (NAS). To avoid both trivial and not interpretable
results, an error-complexity optimization is accomplished. We perform
computational experiments to obtain and investigate simple and accu-
rate financial models. The Pareto Front is used to select between multiple
candidates removing the over specified ones. We also test Eureqa as a
benchmark to extract invariant equations. The results we obtain high-
light the limitations and some pursuable paths in the study of financial
processes with SR and GP techniques.
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1 Introduction

In Genetic Programming (GP), the automatic research of laws governing nature
has taken advantage of the advent of machine learning [1,2]. Several disciplines
have been influenced by these advancements [3], with co-evolution [4,5] that played
a fundamental role for physics [6], medicine [7,8], robotics [9,10] and chemistry
[14]. Other methodologies exploit partial differential equations [15] or dynamical
system equations [16]. In Symbolic Regression (SR), which has often been com-
bined with GP[18], optimal candidates must fit the data while being relatively
interpretable. In addition, while fitting solutions are possibly infinite in numbers
and easy to obtain, natural laws are on the other hand rare and difficult to extract
[17]. SR evolves mathematical expressions that fit well the data. The evolution
of the initial random population follows GP rules [19], using a fitness function to
measure the errors and show the “convenient” paths of evolution. Scientific liter-
ature has marked a step forward with algorithms capable of searching and select-
ing conservation laws and enhancing generalization [20,21]. Such methods pro-
pose to select valuable candidates predicting the derivative relationships among
the system variables over time [4,17]. In machine learning SR has been combined
with convolutional neural networks [23] as well as recurrent architectures [24,25]
for data analysis [6]: function approximation with deep learning has been also
investigated by many other authors, e.g., [26,27]. In general, applying machine
learning to SR is a major research subject in GP [28,29]. The paper is structured
as follows: Sect. 2 presents the theoretical basis of financial stochastic processes;
Sect. 3 presents SR with GP method; Sect. 4 explains the cross-disciplinary rela-
tion between financial model theory and SR with GP; Sect. 5 and Sect. 6 are respec-
tively dedicated to the experiments and to the conclusions.

1.1 Related Works

SR has been applied recently to finance and time series forecasting [22]: in
this sense, the study of the financial markets presents inherent non-trivial chal-
lenges, as in example financial forecasting (indices, stocks, commodities, cur-
rencies). Many prominent works in literature propose statistical-based forecast-
ing approaches and signal modeling. Many of them fall into the ARMA (Auto
Regressive Moving Average) [30] and GARCH (Generalized Autoregressive Con-
ditional Heteroskedasticity) [31] model families [32,33]. One of the biggest chal-
lenge of the field is relative to the lack of information of the market and the
modified perceptions of the agents [34,35], while distilling financial formulae
from time series - which is the objective of our study - is still an open problem,
as outlined by the limited results in recent literature. A seminal approach to
symbolic stock market prediction has been made through multi-gene symbolic
regression genetic programming [22], with a few successive works that leveraged
the idea to forecast economic growth with tools proper of evolutionary com-
putation [11]. More recently, strongly typed GP has been adapted to generate
forecasting trading rules [12], while the advent of deep learning has inspired
similar works with reinforcement learning [13].
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2 Financial Stochastic Processes - Itô Formula
for Brownian Motion

Financial process theory was developed with the application in continuous time
of stochastic calculus [36–38]. Itô Integral and Itô Formula/Lemma [39] have
been fundamental for setting the bases of the financial stochastic processes [40,
41]. In this section, we discuss the ideas about the evolution in time of a financial
process, with a focus on Itô Lemma. The goal is to review some basic elements
that are a fundamental support of the experimental setup of the paper. The
notation used is taken from Shreve [40]. Defining a function f(t, x) that depends
on both time t and a generic process x. The partial derivatives ft(t, x), fx(t, x)
and fxx(t, x) are defined and continuous. Defining W (t) as a Brownian Motion
(BM). The Itô Formula for a BM, with T > 0 is:

f(T,W (T )) = f(0,W (0)) +
∫ T

0

ft(t,W (t))dt

+
∫ T

0

fx(t,W (t))dW (t) +
1
2

∫ T

0

fxx(t,W (t))dt

(1)

Without a detailed demonstration of Eq.(1), the idea is to model a ”step”
difference of the function f() w.r.t. time t and a generic process x (that it will
be turned to be a BM). More formally, for a given interval (j, j + 1] with j > 0:

f(tj+1, xj+1) − f(tj , xj) =ft(tj , xj)(tj+1 − tj) + fx(tj , xj)(xj+1 − xj)

+
1

2
fxx(tj , xj)(xj+1 − xj)

2 + ftx(tj , xj)

+ (tj+1 − tj)(xj+1 − xj) +
1

2
ftt(tj , xj)(tj+1 − tj)

2 + ...

(2)
that is the Taylor expansion of the function f given a partition (j, j + 1].

Replacing the process x with a BM W (t) in the partition:

f(T,W (T )) − f(0,W (0)) =
n−1∑
j=0

[f(tj+1,W (tj+1)) − f(tj ,W (tj))]

=
n−1∑
j=0

ft(tj ,W (tj))(tj+1 − tj) +
n−1∑
j=0

fx(tj ,W (tj))·

· (W (tj+1) − W (tj)) +
1
2

n−1∑
j=0

fxx(tj ,W (tj))·

·(W (tj+1) − W (tj))2 +
n−1∑
j=0

ftx(tj ,W (tj))(tj+1 − tj)·

· (W (tj+1) − W (tj))
(3)
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Considering n as the number of subintervals and ||Π|| as the partitions of
[0, T ]. As n → ∞, then ||Π|| → 0. Looking at the terms of Eq.(3):

– lim||Π||→∞
∑n−1

j=0 ft(tj ,W (tj))(tj+1 − tj) =
∫ T

0
ft(t,W (t))dt

– lim||Π||→∞
∑n−1

j=0 fx(tj ,W (tj))(W (tj+1) − W (tj)) =
∫ T

0
fx(t,W (t))dW (t),

that is an Itô Integral
– lim||Π||→∞ 1

2

∑n−1
j=0 fxx(tj ,W (tj))(W (tj+1) − W (tj))2 = 1

2

∫ T

0
fxx(t,W (t))dt

– The fourth term converges to 0 as lim||Π||→∞
– The fifth term converges to 0 as lim||Π||→∞
– The other higher-order terms converge to 0 as lim||Π||→∞

Eq.(3) becomes:

f(T,W (T )) − f(0,W (0)) = lim
||Π||→∞

n−1∑

j=0

ft(tj ,W (tj))(tj+1 − tj)

+ lim
||Π||→∞

n−1∑

j=0

fx(tj ,W (tj))(W (tj+1) −W (tj))

+
1

2
lim

||Π||→∞

n−1∑

j=0

fxx(tj ,W (tj))(W (tj+1) −W (tj))
2

(4)

That is:

f(T,W (T )) − f(0,W (0)) =
∫ T

0

ft(t,W (t))dt +
∫ T

0

fx(t,W (t))dW (t)

+
1
2

∫ T

0

fxx(t,W (t))dt

(5)

Equation (5) provides an explanation on how the process evolves over time,
considering the application to a BM. Itô Formula, can be applied to Itô processes
which are more general processes than BMs. This analysis will be used as a
pathway to SR, since it states the level of the relationships between the variation
of the variables. The model based on a BM has limitations in the description of
financial phenomena [42]. However, for the purpose of the paper it represents a
first approach to SR with GP.

3 Symbolic Regression by Genetic Programming

Symbolic Regression is a learning technique that formalizes mathematical models
(formulas) for the relations between variables [43]. SR with GP derives genera-
tions of models through an evolutionary approach based on optimization.

GP randomly generates a first population of formulas. Each formula suggests
a possible interdependence between variables. The selection from the first to next
generation is based on a fitness function that is an appropriate measure of how
well each formula fits the data. The evolutionary approach aims at optimizing
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fitness. From one generation to the next, the individuals are subject to standard
evolutionary changes: selection, mutation and crossover. The algorithm is free
to explore the possible combinations of variables, functions and constants. The
first-stage representation of the model is called primitive. A classic representation
of the primitives is the syntax tree: the terminal nodes are the combination of
variables and constants, while the internal nodes are the operators. The symbolic
solutions are called candidates. The optimization is oriented towards complexity.
Too simple candidates are often a poor fitting, while too complex solutions are
hardly interpretable. The research of dominant non-trivial solutions transforms
the problem into a multi-objective optimization.

The fitness function is an indicator of how well the algorithms fits the data.
In SR the fitness function is a guide to optimal solutions. SR with GP drives
the performance improvement over generations. This is called the convergence,
and it aims at exploring the space of solutions that achieved better results in
the past. At the same time, the approach leaves a high degree of exploratory
freedom. The fitness function proposed in this paper considers the error between
a candidate function f and the response variable y. The fitness is calculated as
follows:

− 1
2

n∑
i=1

log(1 + abs(y − f(x, z))) (6)

where x and z are the sample variable of the function f . The fitness function
in Eq.(6) is called Mean Log Absolute Error (MLAE). Candidates’ evolution
exhibits both error and complexity optimization, discarding the solutions that
perform worse according to the dominance of Pareto.

4 Methodology

SR with GP is the main method of the paper. Eureqa [17] is used as second
method to compare the differences. The characteristics of the first approach are
described below, while those of Eureqa can be found in [17].

GP with SR evolves candidate functions to optimal solutions. The standard
practice is a random initialization to avoid any bias. The population is composed
by individuals of symbolic formulae, where each variable corresponds to an entry
of the dataset (in Table 1 we define each variable name). SR with GP evolves
the individuals throughout the generations and the process is guided by a multi-
objective optimization of error and complexity to select the best candidates. The
operators used to create and combine the symbolic formulae are as follows: add,
sub, mul, div, sin, cos, log, D, D2, int. First and second order gradients D, D2

and the integral, int are inspired by Eq.(5).
We use ‘half and half’ initialization method to allow both “grow” and “full”

growths. We choose the Mean Log Absolute Error (MLAE) as the fitness metric,
as reported in (3.1). We report both the length of the solution and the complexity
calculations as by Eureqa [5]. Error and complexity are minimized at the same
time. The multi-objective optimization helps to prevent the “bloat”, which is the
research for more complex functions, without effective enhancing of the fitness.
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We perform the evolution of the model with the following methods: crossover,
subtree mutation, hoist mutation and point mutation. The best candidates are
chosen at the end of each generation. Non-Dominated Sorting Genetic Algorithm
(NSGA-II) [44] is used to create the Pareto Front. It selects the next generation
according to non-dominated sorting and crowding distance. Eureqa [4] introduces
the difference between the numerical partial derivatives respectively calculated
from the data and from the candidate law equation for the computation of
the fitness. Given a time-series described by two variables x and y, the partial
derivatives of the system variables are represented as follows:

Δx

Δy
≈ dx

dt

/
dy

dt
(7)

Defining the candidate equation f(x, y), the ratio between the partial derivatives
can be expressed as:

δx

δy
=

δf

δy

/
δf

δx
(8)

The difference between Eq.(7) and Eq.(8) defines the fitness function of the
model. A solution is an invariant law if derived w.r.t. the variables of the system
to obtain Eq.(8). Equation(8) is then compared with the numerical derivatives
of Eq.(7) and the functions with the best fitness values are selected.

4.1 Symbolic Regression and Financial Processes Variation

The formulae reported in Sect. 2 describe the evolution of a financial process
variation over time. Performing SR with GP for catching the variation in financial
processes, as in Eq.(5), means exploring the function f at the foundations of the
process. The selection of a proper set of variables to obtain significant results is
crucial. In this sense, Itô Formula applies to the Stochastic Differential Equation
(SDE) of a diffusion process, that is:

dX(t) = μ(t)d(t) + σ(t)dW (t) (9)

where μ(t) and σ(t) are two adapted processes. Informally, μ(t) is the pace of the
Stochastic Differential Equation (SDE) while σ(t) is the drift (also interpreted
as the volatility of the process). The algorithm should be able to recognize the
patterns between the variables’ derivatives. Inspired by the theory of Sect. 2, SR
with GP is equipped with the operators of derivative and integral.

5 Experimental Results

The experiments are performed on five financial indices, respectively: Tokyo
Stock Price Index (TOPIX), Standard & Poors 500 Index (SPX), Dow Jones
(DJI), FTSE 100 (FTSE), Nasdaq Composite (NAS). The data cover the
period from 2010 to 2019 (10-years data). The aim is to extract a non-trivial
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solution that fits well the time-series. To avoid over-fitting, we choose very clas-
sic explanatory variables: time (t), the standard deviation of the index (Sd), the
daily rolling average of the index (tdi) and the index values. The explained vari-
able is the index returns (y) which reflect the differences between the index phase
of a single time step. In Eq.(4) and Eq.(5) of Sect. 2, the left portion represents
index returns. Index returns depend on time, and with some approximation, the
stochastic variation can be modelled with a BM or an Itô Process. With respect
to Eq.(5) and Eq.(9), the standard deviation and the daily rolling average of
the index represent respectively the volatility and the pace of the process. The
second term of the right-hand side of Eq.(5) is interpreted as the variation of the
process, and it depends on the BM W (t), while the third term of the equation is
the pace of the process. The variables of the experiments are reported in Table 1.

Table 1. Datasets

Variables

Name Description

y Topix, SPX, DJI, FTSE, NAS index returns

t Time

Sd Standard deviation

tdi Index window average

Top/SPX/DJI/FTSE/NASDAQ Indices values

5.1 Experimental Protocol

We apply SR with GP and Eureqa to discover explanatory non-trivial models
for the time-series indices. The first method uses SR with GP. The second one
is detailed in [17] and uses Eureqa.

First Method: Genetic Programming. We conduct the research in the direc-
tion of explaining y w.r.t the other variables as follows:

y = f(t, Sd, tdi, idx ∈ {Top, SPX,DJI, FTSE,NAS}) (10)

Eq.(10) expresses y as a function of: time t, standard deviation Sd and rolling
average tdi of the respective index idx. All the simulations use the classic opera-
tor of SR to elaborate the formulae. Furthermore, we introduce the numeric first
and second derivatives D() and D2(). Table 2 reports the hyperparameters and
the operators used for each simulation. A first simulation with population = 1000
and generations = 3000 is conducted with the method of SR with GP. The
experiments are extended to generations = 5000. We set up another round of
simulations with population = 1000 for both generations = 3000 and 5000 with-
out the use of trigonometric functions. We are interested in a model that is as
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unrelated as possible to repeated patterns over time. The last simulation intro-
duces numerical integral int() as a new evolutionary operator. Also, in this case,
we conduct the experiments with population = 1000 and generations = 3000
and 5000. The best candidates are found according to the multi-objective opti-
mization, where error (Mean Log Absolute Error) and complexity are minimized.
Specifically, the complexity of a model is calculated according to its length. For
simplicity, we will call this complexity “node depth”. We report both the node
depth and the complexity according to Eureqa in the results table. For this sec-
ond complexity, specific weights are assigned to each operation, constant and
variable that compose a solution. This is called the building blocks complexity.
Table 3 reports the weights of the building blocks complexity for the two meth-
ods. Since integral and derivative are not available in Eureqa, we assigned them
a value of complexity strictly greater than any other operator (i.e., 5).

Table 2. Symbolic Regression with Genetic Programming: hyperparameters and oper-
ators

Hyperparameters

Population 1000

Generations 3000/5000

Fitness MLAE (Mean Log Absolute Error) and Formula Length

Initialization Method half half

Selection Method NSGA-II Error/Complexity

Prob. of Crossover 0.5

Prob. of Subtree Mutation 0.1

Prob of Hoist Mutation 0.1

Prob. of Point Mutation 0.1

Init. Tree Depth range [2:20]

Operators

Sim. 1a, 2a add, sub, mul, div, sin, cos, exp log, D, D2

Sim. 1b, 2b add, sub, mul, div, log, exp D, D2

Sim. 1c, 2c add, sub, mul, div, sin, cos, exp log, D, D2, int

Table 3. Building blocks complexity: Eureqa and SR with GP

Building Blocks/Weigths - Eureqa

Constant 1

Input Variable 1

Addition/Subtraction/Multiplication 1

Division 2

Sine/Cosine 3

Exponential/Logarithm 4

Building Block/Weigths - SR with GP

Constant 1

Input Variable 1

Addition/Subtraction/Multiplication 1

Division 2

Sine/Cosine 3

Exponential/Logarithm 4

Derivative/Integral 5
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Fig. 1. Method: GP with SR. Pareto Fronts and evolutionary steps in simulations 1a
1b and 1c (columns). The Pareto Fronts are the results of the multi-objective optimiza-
tion where Error (x-axis) and Complexity (y-axis) are optimized. The five indices are
represented on the subplot rows with different colours. Each single point is a solution.
The highlighted blue points are the Pareto solutions distilled from 3000 generations.
(Color figure online)

Simulation 1: population 1000 and 3000 generations. We report three represen-
tative solutions of the experiments with 3000 generations in Tables 1a,2a and
3a, for each of the indices under consideration. The logic is to present to the
reader the top-1 solutions that minimize the error maintaining acceptable levels
of interpretability. The complexities of the selected models remain in the ranges
0 − 100 when this is possible. The same logic is also applied to the next sim-
ulations. Figure 1 represents The Pareto Front Solutions and the evolutionary
steps for each index and the experiments 1a, 1b and 1c. The experiment 1a
reaches error levels between 0.43% and 0.41% for Topix index, while the error
is between 0.33% and 0.31% for SPX, DJI and FTSE. The solutions of NAS
index present an error between 0.39% and 0.37%. The trigonometric functions
are mostly used to explain FTSE index, while for the other indices we do not
register their presence. The first and second derivative operators are widely used
and among all the variables, the time t seems to be the least explanatory among
all the indices. The experiment 1b without trigonometric functions, does not
suffer their absence: for the same level of complexity, the results reach almost
the same lower bound errors. The introduction of integral as a new operator,
conditions the results of the Pareto Fronts and integrals appear in almost all
solutions with a complexity higher than 100. The time t variable assumes a new
role with the integral operator. The third solution of FTSE index is an example.
We denote in the empirical results the important role of the derivatives w. r. t.
time and to the Brownian Motion.
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Fig. 2. Method: GP with SR. Pareto Fronts and evolutionary steps in simulations 1a
1b and 1c (columns). The Pareto Fronts are the results of the multi-objective optimiza-
tion where Error (x-axis) and Complexity (y-axis) are optimized. The five indices are
represented on the subplot rows with different colours. Each single point is a solution.
The highlighted blue points are the Pareto solutions distilled from 5000 generations.
(Color figure online)

Simulation 2: population 1000 and 5000 generations. We report the top-1 rep-
resentative solutions of the experiments with 5000 generations in Tables 2a, 2b,
2c for each of the indices under consideration. The representative logic of the
solutions is the same of Simulation 1 (Fig. 1). Figure 2 represents The Pareto
Front Solutions and the evolutionary steps for each index and the experiments
2a, 2b and 2c. The experiment 2a reaches error levels between 0.43% and 0.39%
for Topix index, while the error is between 0.34% and 0.29% for SPX, DJI and
FTSE. The solutions of NAS index present an error between 0.40% and 0.36%.
The trigonometric functions do not have a crucial role to reach higher error levels
to model the indices. The first and second derivative operators are widely used
and among all the variables. The introduction of integral as a new operator,
conditions the results of the Pareto Fronts and integrals appear in almost all
solutions with a complexity higher than 100.

Convergence of the Simulations. To conclude the examination of GP with SR
experiments, we present the Pareto Fronts convergences to the origin of the axes
for each of the five indices under consideration. One of the cornerstones of GP
is that by increasing the number of generations, it also increases the conver-
gence towards optimal Pareto solutions. Figure 3 shows for simulations 1a, 1b,
1c, and 2.a, 2b, 2c the convergence of the solutions. The convergence to the
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Fig. 3. Pareto Fronts convergences for the method GP with SR: for each financial
index, we plot the convergences of simulation 1 and simulation 2 to the origin of the
axes. The cyan Pareto Fronts are the solutions of the experiments with 3000 generations
while the blue Pareto Fronts are from the experiments with 5000 generations. (Color
figure online)

origin of the axes is evident in almost all experiments and indexes. The error
tends to decrease with the increase of the complexity of the solutions, however
the presence of solutions distinctly belonging to the two frontiers is recorded
with the same levels of complexity and lower error for those related to the sim-
ulations with 5000 generations. This result leads to the conclusion that there is
a real improvement of the optimization and that it is not reduced to the only
error/complexity trade-off.

Second Method: Eureqa. The second method proposes SR using Eureqa [17]
on Eq.(10). The error calculated by Eureqa is the Mean Log Absolute Error
(MLAE). The results obtained with Eureqa are reported for each index in Table
7 and the experiments reached around 1.6e7 generations and around 100 h of
time computation. Eureqa finds a considerably low number of solutions for the
same research done with the first method. Furthermore, the error level is around
the double of the one reached with the first method for all the indices. We observe
the tendency of the algorithm to make low use of the index values and of the
standard deviation Sd. Conversely, the rolling average tdi and time variables are
essential parts of all the solutions. In the conclusive part of Sect. 5, in Table 4
we show the error performances of SR with GP and Eureqa.
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Table 4. Error comparison MLAE: SR with GP (NSGA-II) vs Eureqa

Error Comparison: SR with GP and Eureqa

Index SR with GP Eureqa

Top 0.38% 0.85%

SPX 0.295% 0.64%

DJI 0.295% 0.61%

FTSE 0.295% 0.675%

NAS 0.36% 0.75%

Table 5. Pareto solutions Eq.(10): Symbolic formula - Error - Complexity (Length
compl. - Eureqa compl.)

1a. Pareto Fronts Solutions: Pop 1000; Gen 3000

TOPIX

Symbolic Formula Error (MLAE) Complexity

D(Top − D(Top))/(Top + (D(Top)/ − 0.217)) 0.004318 63 — 21

SPX

(D(SPX) − D2(SPX))/((0.468/D2(Sd)) + SPX) 0.003334 62 — 23

DJI

D(log((D((DJI + (tdi · log(D((Sd − D(tdi))))))) − DJI))) 0.003246 76 — 26

FTSE

D(log((D(FTSE) − (FTSE + (sin(D2(Sd)) · D2((Sd + FTSE))))))) 0.003327 76 — 27

NASDAQ

(D(NAS) − D2(NAS))/((((NAS · (0.452 · Sd)) + NAS) · D2(t)) + NAS) 0.003900 89 — 27

1b. Pareto Fronts Solutions: Pop 1000; Gen 3000 - Without Trigonometric Functions

TOPIX

Symbolic Formula Error (MLAE) Complexity

D(Top − D(Top))/(D2(D(((Sd − t) · Top))) + Top) 0.004286 75 — 27

SPX

(D(SPX) + tdi)/SPX 0.004783 27 — 10

DJI

D(DJI − D(DJI))/(DJI − D(DJI)) 0.003250 50 — 18

FTSE

D(log((D(FTSE) − (Sd + ((t/tdi) + FTSE))))) 0.003350 57 — 19

NASDAQ

(D(NAS) − D2(NAS))/(NAS − (log(−0.347)/D2((0.082 · t)))) 0.003892 80 — 33

1c. Pareto Fronts Solutions: Pop 1000; Gen 3000 - With Integral Operator

TOPIX

Symbolic Formula Error (MLAE) Complexity

(tdi + D(Top))/Top 0.006174 27 — 10

SPX

D((SPX − D(SPX)))/SPX 0.003420 34 — 10

DJI

Symbolic Formula Error (MLAE) Complexity

sin((D((DJI − D(DJI)))/(DJI − D(DJI)))) 0.003249 55 — 23

FTSE

D((sin(t) + log(FTSE))) 0.004825 28 — 10

NASDAQ

D(log((D(NAS) − (NAS + log(D2((Sd + t))))))) 0.003998 60 — 25



514 G. La Malfa et al.

Table 6. Pareto solutions Eq.(10): Symbolic formula - Error - Complexity (Length
compl. - Eureqa compl.)

2a. Pareto Fronts Solutions: Pop 1000; Gen 5000

TOPIX

Symbolic Formula Error (MLAE) Complexity

D(Top) + D2((tdi − Top)/Top) 0.004370 43 — 13

SPX

D(SPX) − D2(SPX)/SPX 0.003421 34 — 10

DJI

D(log((D((DJI + tdi)) − (DJI + Sd)))) 0.003256 48 — 16

FTSE

D(log((D(FTSE) − (FTSE + (0.147/tdi))))) 0.003351 51 — 17

NASDAQ

((D(NAS) + cos((NAS · tdi))) − D2(NAS))/NAS 0.004006 57 — 22

2b. Pareto Fronts Solutions: Pop 1000; Gen 5000 - Without Trigonometric Functions

TOPIX

Symbolic Formula Error (MLAE) Complexity

D((Top − D(Top))/(D2(D((Sd · Top))) + Top)) 0.004289 66 — 25

SPX

D(log(((SPX + tdi) − D(SPX)))) 0.003421 39 — 14

DJI

D((DJI − D(DJI)))/(DJI − D(DJI)) 0.003250 50 — 18

FTSE

D(log((D(FTSE) − ((D2(FTSE) · D2(Sd)) + FTSE)))) 0.003336 62 — 26

NASDAQ

D(((Sd + NAS) − D(NAS)))/NAS 0.004010 43 — 12

2c. Pareto Fronts Solutions: Pop 1000; Gen 5000 - With Integral Operator

TOPIX

Symbolic Formula Error (MLAE) Complexity

D((Top + D((tdi − Top))))/Top 0.004369 43 — 12

SPX

D((SPX − D(SPX)))/(SPX − (−0.454/D2(int(t, Sd)))) 0.003301 27 — 103

DJI

sin(((D(DJI) − D2(DJI))/DJI)) 0.003255 39 — 16

FTSE

D(log((FTSE − D((FTSE + D(Sd)))))) 0.003353 46 — 19

NASDAQ

D(log((D(NAS) − (NAS + (D2(NAS) · D(log(D(NAS)))))))) 0.003947 74 — 35
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Table 7. Pareto solutions Eq.(10): Symbolic formula - Error - Complexity (Length
compl. - Eureqa compl.)

Eureqa Solutions

TOPIX

Symbolic Formula Error (MLAE) Complexity

0.0005278 + 1.54369e− 5/(t− 0.161362) 0.00873661 66 — 7

SPX

0.001980 · tdi− 0.000351 − 0.000644 · t 0.006433 71 — 12

DJI

2.906536e− 6 · Sd · tdi− 0.001418 0.006168 48 — 12

FTSE

0.000693 · t · tdi2 0.006828 32 — 8

NASDAQ

0.000466 · tdi + 4.672516e− 6/(t− 0.189731) 0.007576 70 — 11

6 Concluding Remarks

We present the application of Symbolic Regression (SR) with Genetic Program-
ming (GP) to extract models for the description of five financial indices’ vari-
ations. The approach is inspired by the theory of stochastic processes for the
empirical section. We introduce the derivative and the integral operators for SR
with GP. We automatically retrieve Pareto Front solutions from five financial
time-series that represent American, European and Asian markets. The experi-
mental part consists of two simulations: the first one with 3000 generations and
the second one with 5000 generations. We show the Pareto Fronts convergence
for all the simulations and all the indices: the results validate the optimization
process of the three GP variants. The omission of trigonometric operators does
not prevent to reach the same error levels for all the indices w.r.t. the experi-
ments that use them. The variant with the integral makes use of this operator
in the results, especially for higher complexities. For the research of natural and
theoretical formulas, both methods seem to be promising, however the results
suggest that there are margins to improve the model in the direction of a diffu-
sion oriented process. The next steps of the research might be directed to new
approximations of the random walks used in the experiments, with the intro-
duction of GP stochastic elements.
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31. Charles, A., Darné, O.: The accuracy of asymmetric GARCH model estimation.
Int. Econ. 157 (2019)

32. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. oTexts,
Monash University, Australia (2015)

33. Tsay, R.S.: Multivariate Time Series Analysis: With R and Financial Applications.
Wiley, Hoboken (2013)

34. Black, F.: Noise. Wiley, Hoboken (1986)
35. Fama, E.F.: Random walks in stock market prices. Financ. Anal. J. 21(5), 55–59

(1965)
36. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time

case. Rev. Econ. Stat. 51, 247 (1969)
37. Merton, R.C.: Continuous-Time Finance. Basil Blackwell, Oxford (1990)
38. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.

Econ. 81(3), 637–654 (1973)
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Abstract. This paper aims to understand complex social events that
arise when communicating general concepts in the digital space. Today,
we get informed through many different channels, at different times of the
day, in different contexts, and on many different devices. In addition to
that, more complexity is added by the bidirectional nature of the commu-
nication itself. People today react very quickly to specific topics through
various means such as rating, sharing, commenting, tagging, icons, tweet-
ing, etc. Such activities generate additional metadata to the information
itself which become part of the original message. When planning proper
communication we should consider all this. In such a complicated envi-
ronment, the likelihood of a message’s real meaning being received in a
distorted or confused way is very high.

However, as we have seen recently during the Covid-19 pandemic, at
times, there is the need to communicate something, somewhat compli-
cated in nature, while we need to make sure citizens fully understand
the actual terms and meaning of the communication. This was the case
faced by many governments worldwide when informing their population
on the rules of conduct during the various lockdown periods.

We analyzed trends and structure of social network data generated
as a reaction to those official communications in Italy. Our goal is to
derive a model to estimate whether the communication intended by the
government was properly understood by the large population. We discov-
ered some regularities in social media generated data related to “poorly”
communicated issues.

We believe it is possible to derive a model to measure how well the
recipients grasp a specific topic. And this can be used to trigger real-time
alerts when the need for clarification arises.
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1 Introduction

Spreading the right information to the right audience has always been the under-
lying goal of proper communication. However, it is hard to estimate whether the
intended addressees of the communication have understood the information cor-
rectly, in particular when the communication is irregular, disseminated among
different channels and/or complex in nature.

Today, public discourses around current events, especially those that occur
online, are increasingly influenced by those issues that news media companies
choose to concentrate on [1]. Not only do news media have the power to create
public awareness around social issues [2,3], but they can also influence how public
perceives the importance of those issues [4,5].

However, today’s news site are mostly designed for a one-to-many mono-
directional style of communication. Even though, on some sites, readers can
comment, share, and rate articles, most of the public reactions about specific
issues do not take place on the newspaper itself. As a matter of facts, readers who
want to express opinions on particular articles tend to transfer that discussion
on social media (Twitter, Facebook, etc.) connecting to the originating source
through the usage of “hashtags.”

Nowadays, social media are by large the most relevant online communication
mean designed for networking [6] and interactive communication. When used
effectively, their applications can promote dialogue [7], facilitate information
transfer and understanding [8], engage stakeholders [9], and improve communi-
cation and collaboration in online environments [10]. In contrast to online news
sites, social media are designed for a many-to-many and bi-directional commu-
nication among participants.

In many cases, especially when important issues are communicated to a large
public audience through online news, it becomes important to make sure that
people fully understand the relevant intended facts. In this paper, we combine
the dynamics of online news communication with social media to understand
whether or not the public understands the intended message. We study the
structure of Twitter data generated as reaction on certain topics to estimate
whether the message was properly understood. Basically, depending on how
people react on Twitter we estimate whether the public message was understood
or needs additional explanation.

In some cases, the originator of the public message may intentionally cre-
ate social media hype on certain topics as part of a well designed communica-
tion strategy. This is particularly true in political scenarios when having people
(just) talking about something becomes important, even though they do not
fully understand the real meaning of the original message. In this case, the com-
munication to be diffused is properly designed to trigger social media activity.

Here we are not interested in this type of scenario. We focus on those public
messages that need to be properly and quickly grasped by the readers. In such
cases, it is important for the source to make sure the audience understands what
was intended by the communication. Thus, for the source it becomes important
to be alerted, as quickly as possible, if this is not the case. And, if necessary,
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the source may produce additional communication to clarify (e.g., through the
usage of Frequently Asked Questions, FAQ.)

From a methodological standpoint, users on social networks often use hash-
tags embedded in their discussion. Thus, we use hashtag related data combined
with an unusual usage of the question mark symbols (denoting questions asked)
in the tweets to estimate the need for additional explanation about a particu-
lar issue [11]. Such analysis are performed within a specific time frame as the
readers’ interest decay degree over time is also important.

We use an information entropy based model on Twitter data to estimate the
readers’ need for more clarification. As defined by Shannon in 1948, the entropy-
rate is the hypothetical average level of “surprise” or “unexpectedness” contained
in a message. We measure the entropy of a specific newspaper topic by observing
the related data trends on Twitter. A high entropy topic is something that, poten-
tially, needs further clarification. Basically, if people are interested in something,
and did not yet understand all its terms, they pose lots of questions about it in their
tweets. Conversely, “standard” news, such as sport events or flash news, exhibits
an interest natural temporal decay that leads to a low entropy information value:
they are easy to understand and do not trigger high-entropy reaction on Twitter.
Therefore, we use “entropy” to measure the unbalance between intended informa-
tion (by publishers) and perceived information (by readers).

We applied our model to a recent official, sometimes complicated, commu-
nication by the Italian government about rules of conduct during the Covid-19
lockdown restrictions. In general, those official communications have been fol-
lowed by an intense social network activity discussing terms and conditions of
those rules. People have been very creative in interpreting those terms. The gov-
ernment often had to turn to FAQ or additional official clarification to make
sure Italians grasped the right meaning.

2 Data and Methodological Approach

2.1 Information Entropy

In information theory, the information value contained in a message is directly
related to how “surprising” or “unexpected” the message is for the reader [12,13].

Suppose we have a biased coin with probability p of landing on heads and
probability 1−p of landing on tails. For what value of p do we have the maximum
“surprise” or “uncertainty” on the outcome of a coin toss? If p = 1, the outcome
of a coin toss is expected to be always heads, so there is no surprise or uncertainty.
Similarly for p = 0, when we always expect the coin to land on tails. If instead
p = 0.5, then we have the maximum surprise or uncertainty.

After discussion with John Von Neumann, Shannon decided to use the term
“entropy” in place of the word “uncertainty.” Claude Shannon mathematically
formalized this value of “surprise” or “uncertainty” in 1948 as part of his com-
munication theory.

Formally, the entropy of our biased coin is given by:

H(coin) = −(p ∗ log(p) + (1 − p) ∗ log(1 − p)) (1)
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where the base of the logarithm can be chosen arbitrarily. If the base is 2, the
entropy is measured in bits. If instead the base is e, the entropy is measured in
nats. Finally, if the base is 10, the entropy is measured in dits.

When p = 0.5, H(coin) is maximal, and it is equal to 1 bit. When instead
p = 0 or p = 1, H(coin) is minimal, and it is equal to 0 bits.

The concept of entropy can be generalized from the simplest case of a coin
to the more complex case of a discrete probability distribution. A discrete prob-
ability distribution over n possible outcomes x1, ..., xn is given by n probability
values p(x1), ..., p(xn), where 0 <= p(xi) <= 1, and the sum of all p(xi) is equal
to 1. Note that a coin is a probability distribution over two possible outcomes.

Formally, the entropy of a discrete probability distribution is defined by:

H(P ) = −(p1 ∗ log(p1) + ... + pn ∗ log(pn)) (2)

where, as before, we can chose arbitrarily the base of the logarithm.

2.2 Entropy and Twitter Trends

Our study models the concept of information entropy based on the tweets distri-
bution over time generated as a reaction to certain official communications that
appeared on various media. In general, immediately after certain news becomes
public, either on TV or in newspapers, social media activity related to that news
has a sudden hype. In our work we concentrate specifically on Twitter activity
due to its open approach to share data with researchers. We use hashtags to
identify the relevant topics on Twitter.1

We believe that if a topic is well-communicated, people do not (necessarily)
need to comment about it on Twitter or, at least, no more than usual. Conversely,
as mentioned above, if the message was unclear, people will look for better
understanding by tweeting comments, expressing opinions, and asking questions.

Therefore, depending on the information value contained in the official com-
munication, we observe different trends on Twitter. A clearly communicated
concept does not lead to a “surprised” or “unexpected” reaction: its informa-
tion value is low, which corresponds to a low entropy level–based on Shan-
non’s entropy concepts. Conversely, a poorly communicated concept leads to
high entropy (i.e., more surprising effect) on the reader. A poorly understood
message triggers a sudden need on the readers for better understanding. And
this triggers different trends on Twitter.

For the sake of our analysis, we distinguish two types of event:

1. Low entropy events (LEE)
2. High entropy events (HEE)

1 We collected tweets related by using Tweepy and the Twitter archive API, both
services need permission from Twitter. However, downloaded topics need further
cleaning and normalization before being processed.
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LEEs are events that are quickly grasped by the public (i.e., properly com-
municated.) They tend not to generate an intense activity on Twitter on the
associated hashtags. We have analyzed many different topics-spawn events on
social networks like everyday events (sports, weather, etc.), periodic events (mon-
daysmotivation, etc.), or simple news. We arbitrarily labelled such events as
LEE. In general, some Twitter activity follows those events and usually it decays
almost entirely in about 1 day. Information value on such types of events exhibits
a low entropy value.

Conversely, HEEs are in general more complicated events. Information dis-
semination for these events is inherently more difficult compared to LEE. Twit-
ter’s reaction on this type of communication follows an entirely different pattern.
We selected and studied some issues which have created a significant social reac-
tion in Italy. Following the official communication by the government on public
media, Italians started to debate among friends and family, posting on social
media, or researching on Google. Either because those events are more difficult
in nature and/or they are poorly communicated, people reacted to those by
creating lots of social media activity and posing many questions. This denotes
an obvious interests for those issues by the public and, we believe, a lack of
proper understanding. In any case, it signals a need for better understanding by
additional communication.

These events’ natural decay shows a complicated and longer curve that grows
during the day and slows down at nighttime. But they tend to remain active for
at least 60 h. After about 3 days, people tend to stop discussing and commenting
on those. During this time, an intense activity takes place on Internet. Entropy
measured on such trends is in general significantly higher than LEEs.2

HEEs remain rare compared to LEEs. They are the goal of our study as they
indicate an unbalance between the senders’ intended information and receivers’
assimilated information. We believe that having an automated way to quickly
identify those can surely help governments, institutions, and private companies
to create better and more informative communication.

In Fig. 1 we show the different trends for LEE and HEE (Thousands of tweets)
starting right after the official communication was released to the public. The
HEE curve spawns for a period greater than 24 h so it includes some overnight
effect.

2.3 Text Analysis

As discussed above, HEE events exhibit a high entropy value due to their intense
activity on Twitter, and this hype of Twitter activity denotes clear interest for
those particular issues. In Table 1 we report the entropy value for various events
we classified as HEE or LEE. Here you can notice that the two events we classified
as HEE exhibit the highest entropy values compared to the others.

2 For our trend analysis we collected data from https://getdaytrends.com/italy/. Get-
DayTrends offers both recent and historical data trends in major countries or even
cities worldwide.

https://getdaytrends.com/italy/
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Fig. 1. Low entropy events (LEE) vs High entropy events (HEE) trends. Median for
72 h and relative number of tweets.

Table 1. Information Entropy and average tweets/hours.

Type Topic N. of Tweets Time-span (H) Tweets/hour Entropy

HEE DPCM (Apr 26th 2020) 894.500 78 11.468 5.6113

HEE DPCM (Oct 25th 2020) 618.150 64 9.658 4.1972

LEE SuperLega 45.400 27 1.681 4.0541

LEE G.dellibro 11.600 14 555 3.8232

LEE JuveInter 48.500 16 3.031 3.6126

LEE MilanNapoli 16.800 10 1.680 3.5672

LEE DPCM (Oct 13th 2020) 26.700 12 2.225 3.1569

LEE Dupasquier <10.000 7 1.428 3.0201

LEE GazaU.Attack 623.800 8 44.557 2.9740

LEE SuperLeague 616.700 48 12.838 2.5417

In our study we are mostly interested in topics that are (1) interesting for
the people and (2) have not been clearly understood; thus they need more expla-
nation.

However, certain topics may trigger a HEEs type of reaction but not nec-
essarily be poorly understood by the public. Certain controversial issues may
be clearly communicated. Thus, they do not need additional explanation, and
still generate an intense social reaction, thus we would classify those as HEE.
Authors in [18] have studied the dynamics of information diffusion across social
networks, showing like a topic with controversial subjects, seem to lead to longer
discussions representing personal opinions.
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However, we need a way to distinguish when a HEE event needs to be further
discussed and clarified by the originating source. In order to do so, we turned to
a quite simple technique (similar to the approach proposed in [20].) We extracted
the text of the tweets analysed and counted the number of question marks we
encounter in those tweets. We simply compute the probability that a question
mark symbol is contained in a tweet, denoting a question posed.

Table 2. Question marks analysis on HEE and LEE.

Type Topics N of Tweets N of “?” “?” Prob

HEE DPCM (Apr 26th 2020) 2000 312 15.6%

HEE DPCM (Oct 25th 2020) 2000 178 8.9%

LEE JuveInter 1000 71 7.1%

LEE G.dellibro 1000 69 6.9%

LEE SuperLega 1000 68 6.8%

LEE MilanNapoli 1000 61 6.1%

LEE DPCM (Oct 13th 2020) 1000 60 6%

LEE SuperLeague 1000 55 5.5%

LEE MothersDay 1000 31 3.1%

LEE GazaU.Attack 1000 14 1.4%

LEE Dupasquier 1000 14 1.4%

In Table 2 we show the results of this analysis for the trends above discussed.3

Now, by looking at both tables, it is interesting to notice that the two events
classified as HEE show the highest values for both Entropy (see Table 1) and ?-
probability (see Table 2). And this supports our theory that by simply observing
those two metrics we may easily spot complex events that need more explanation.
Basically, according to our model, if both the entropy value and the ?-probability
are high the topic was not properly understood and it needs additional explana-
tion.

However, it is interesting to notice that the big event “SuperLeague” spans
for a total of 48 h which could make us think of a complex event; however its
entropy is very low and its ?-probability is also on the lower side. Similarly, the
event “GazaU.Attack” generated an extremely high number of tweets in a short
period of time (just 8 h) with both a very low value of entropy and ?-probability.
According to our model, people have grasped that concept pretty well and they
do not need additional explanation, even though the reaction on Twitter was
pretty intense.

3 We used Tweepy to extract text from Twitter. For each hashtag we extracted a
certain number of tweets. Such number is limited by the Twitter API itself, so we
computed the probability on a smaller number of tweets compared to those used for
trend analysis.
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3 Case Study Discussion: Information on the Restrictions
Procedure During Covid-19 Pandemic in Italy

On April 26th, 2020, after seven weeks of severe Covid-19 related lockdown,
Italians were anxiously waiting for government news about legal procedures to
finally meet parents, relatives, friends, and significant ones.

Already many days before the government’s official announcement, this topic
was largely speculated and discussed in newspapers and social media. That was
the first one during the pandemic, and many others took place in the following
months during the Covid- 19 epidemic.

Typically, these official announcements, which described the emergency
decrees (formally called DPCM: Decree of the President of the Council of Min-
isters) took place on national TV around 9 PM in Italy after the evening news.
In each of those, the Italian prime minister instructed Italians on various social
restrictions to which they had to obey. Those DPCMs were presented around
the same time of the day, and this simplified our study as we did not need to
normalize for day/night impact on Twitter data generation.

We used web data on these events as a real case scenario for our study. We
collected API data from Twitter related to those decrees, and we started at the
same time the prime minister was presenting the DPCMs on TV. And we kept
on collecting those for many hours/days after the event. We were interested
in analysing the information dissemination quality about the post-pandemic
lockdown release procedures. That is, how well Italians understood the prime
minister’s official announcements details.

We noticed that Italian people had poorly understood some terms and con-
cepts and, as a matter of fact, there was an intense social media activity on those
terms following the official announcement by the Italian prime minister. Most
comments about those topics were ironic and doubtful, caused by sudden and
unexpected and, with some regards, unclear information. People were just con-
fused about some term’s definitions and, consequently, they looked around for a
better explanation on important information affecting their expected behavior.
Unsurprisingly, right after the TV official announcement, there was a sudden
intense social media activity on this topic.

We collected data on three DPCM events to measure how well Italians under-
stood the terms of the decree. We matched the Twitter trend data against our
LEE/HEE model discussed above. We observed a LEE trend in one case, sug-
gesting that Italian people easily understood information about that decree. In
two cases, we noticed that the DPCM related Twitter data followed an HEE
trend, denoting confusion of Italian people in understanding some terms of the
decree itself. We measured entropy levels for some terms used in the official
announcements.

During the first DPCM on April 26th 2020, we started collecting Twitter data
about people discussing it (see Fig. 2.) Italians did not understand the decree
well. In particular, the term generating great confusion was “#Congiunti” (“joint
people” in English.) This archaic word, present in the that DPCM in force since



526 G. Giuffrida et al.

May 4th 2020, had an extremely important role to understand whom Italians
were allowed to visit during the restriction period. This has triggered a myriad
of reactions. Doubts and perplexities have been raised by politicians and jurists,
and associations that protect LGBT rights because of fears about the possible
discrimination that this term may introduce. Italians were primarily confused
about this word, and its meaning was essential to understand the restrictions
properly. Also, because many wonder how to demonstrate a “stable affection”.
In Italy, “Congiunti” does not have a legal definition, so it was interpretable in
many ways. Can an unmarried couple be considered “Congiunti?” What about
family members not living together? What about second/third cousins? What
about son/daughter living in separate cities. What about a couple of the same
sex (formally cannot be married in Italy.) And the list goes on. The government
promised clarification in the following days.

Fig. 2. Twitter trend data following the DPCM on 26th April 2020

As an additional verification, we measured Google trends data on the word
“Congiunti” in Italy immediately following the TV’s official announcement. This
is shown in Fig. 3, which clearly states an interest in that word in Italy. Five days
after the official announcement, the Italian government published some FAQs to
clarify the meaning of the term “Congiunti.”

As already mentioned, the “Congiunti” case of April 2020 was not the only
one we observed and measured. At the end of October 2020, during the second
wave of the Covid-19 pandemic, the Italian government issued another DPCM
(October 25th 2020) with new rules and restrictions for fighting the pandemic’s
second wave. We again used web data on this event against our model. This new
DPCM was defining a three-tier system based on a color code according to the
intensity of the epidemic danger for the different areas in Italy. Each of the 20
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Fig. 3. Word “Congiunti” Google search trends in Italy

Italian regions was assigned a specific color: Red (high-risk), Orange (medium
risk), and Yellow (low risk). Each color defines a specific set of restrictions.
Here again, we started collecting Twitter trend data while the prime minister
presented the new procedures on TV. Even in this case, Italians were confused,
and the primary source of confusion was how to interpret the different restrictions
for the different colors. Once again, the trend shows a high entropy depicting
confusion about proper understanding the terms of the communication. Even in
this case, the Italian government and the press, in general, made those terms
clearer by further announcements in the following days.

For a side-by-side comparison and to reinforce our model, we also collected
data about a third DPCM, presented earlier by the Prime Minister on October
13th, 2020. Once again it was describing a new set of restrictions in force during
the second wave of the pandemic that started right after the Summer. This time
the communication was very clear, Italians correctly understood its contents,
and we observed a LEE type of trends for its related Twitter data.

We show the trends of the three DPCMs discussed in Fig. 4. Here we can
easily spot the different curves, which again describe two different scenarios.
The LEE trend (Oct 13th) indicates straightforward and easy-to-understand
communication from the Prime Minister. In contrast, the HEE type denotes a
less clear communication, which triggered a sudden need for further explanation
on Twitter.
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Fig. 4. Twitter data trend comparison for the three DPCMs discussed.

Thus, by real-time measuring information entropy on social media, we could
promptly comprehend how easy to understand a particular communication was.
And we believe this may have various practical applications in real life.

4 Conclusions

Thanks to the rapid development of technology, online communication channels
are becoming increasingly popular platforms for communicating information of
various kinds [14]. Millions of people get informed on online news and interact
with each other on social media: Blogs, social networks, and online newspapers
are now social relationship tools [15]. The usage of Social media to communicate
prompt information during specific situations is now a common practice. In par-
ticular, the one-to-many nature of Twitter created an opening for governments
to disseminate relevant, and often critical, messages [16].

When news break—as in our case study—people turn quickly to Internet to
get informed. As we have observed, the proper management of information com-
municated through digital platforms is essential to prevent misunderstandings
and confusion about the message. The more controversial a topic or message we
intend to communicate is, the more articulated and rich the reaction on social
media is. This becomes more relevant when, as in the case study presented,
politicians and decision-makers communicate in times of crisis.

Crises are socially constructed phenomena, and Governments tried to shape
the attitudes and behaviors of citizens following their policies. Maintaining the
public’s attention and preserving government credibility proved a hard challenge
for many government leaders during the COVID-19 pandemic [21]. In times of
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crisis, political leaders have to communicate clearly about what is going on, what
is at stake, what governments are doing in response, what people can do to keep
themselves and others safe [22].

The model we presented in this paper can help in this context and, in general,
in all those situations where it is essential to obtain real-time feedback on the
quality of communication.

4.1 Future Work

In our study, the data collection process has been very labor intensive. It is
quite challenging to coordinate hashtags between newspapers and Twitter, we
mostly did that manually. Moreover, tools to collect trends and extract text from
Twitter have various limitations which impose certain time-consuming manual
workarounds. We intend to improve our model by automating as much as possible
the data gathering and synchronization process. This will allow us to test our
model on a much larger data sets.

We also intend to improve the performances of our model by collecting data
from other sources such as different social media and online newspapers. We
will also integrate with Natural Language Processing tools for a more accurate
content analysis of people’s messages and comments.
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Abstract. Volatility is a measure of fluctuation in financial asset
returns, practical measurement of risk, and a key variable for calculating
options prices. Accurate prediction of volatility is crucial to maintaining
profitable investments and trading strategies. Statistical models such as
GARCH are used today to predict volatility and time series, though new
methods are actively being researched to improve the prediction accuracy
to cope with the rapidly increasing trading volumes and stock market
influencing factors. The aim of this paper is to investigate a new method
to improve market volatility forecasting accuracy by innovatively intro-
ducing a new setup of the Recurrent Neural Network (RNN) algorithm.
In particular, the proposed model is a stacked Long Short-Term Memory
(LSTM) with multivariate input composed of multiple asset daily prices
of different lag time-steps. The proposed model is used to predict volatil-
ity under different market conditions and is compared to the predictions
obtained with GARCH as well as to the actual volatility of the same
forecasting period. The results show that the prediction of the future
realized volatility using a single feature LSTM has comparable accuracy
to GARCH. They also indicate that a stacked LSTM can significantly
improve the volatility prediction accuracy when configured with multi-
variate input of more than one asset and a lagging period of more than a
day. A stacked multivariate LSTM setup enables the prediction model to
capture complex patterns in the time series data of assets prices and pro-
vides a superior alternative to statistical models in volatility modelling
and prediction. The proposed multivariate LSTM architecture clearly
shows faster and more accurate modelling of daily volatility and there-
fore can be used for intra-day modelling specifically for high frequency
trading environments.

Keywords: Deep Learning · Recurrent Neural Network · Long
Short-Term Memory · Financial markets · Volatility · Day trading

1 Introduction

Risk management is key for any successful investment and trading strategy.
There are different types of risks that can adversely impact an investment or a
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trading portfolio which require the adoption of different methodologies to mit-
igate and hedge against. Figure 1 illustrates typical probabilities that can lead
to returns losses.

Fig. 1. Portfolio loss probability. JP Morgan daily returns, 2017

Volatility is a measure of fluctuation in a security or a market index price,
a fundamental measure of risk, and a practical indicator for managing uncer-
tainty in the financial markets. There are different types of volatility, such as
the volatility of a security compared to the benchmark index (Beta), the volatil-
ity of a security calculated from historical prices (Historical Volatility), and the
volatility forecast over the life of an option (Implied Volatility) [1], which is used
in the Black-Scholes formula for options pricing [2]. Forecasting volatility has
been researched by practitioners and academics for decades. Better prediction
accuracy of market volatility leads to improved management of risk and pricing
models, enabling profit-maximizing trading and investment strategies. Nowa-
days, financial applications typically use statistical models such as GARCH [3]
to forecast volatility and price movements in the stock market. Trading vol-
umes and market influencing factors have increased significantly in the recent
years due to faster Internet technologies and mobile cellular networks, alterna-
tive methods to model volatility are desirable to improve processing speed and
accuracy over vast volumes of complex data. Artificial Neural Networks (ANN)
and Deep Learning have recently been given particular attention due to algo-
rithmic improvements, widespread availability of very large data sets and the
advancements in the computing hardware (e.g., TensorFlow cores) required to
process large amounts of data with this specific type of algorithms. This research
examines the use of a special type of Recurrent Neural Networks (RNN) to fore-
cast volatility. RNN are feed-forward artificial neural networks that make use
of loops allowing information to persist: they provide a memory mechanism to
keep track of the information observed over time, hence, making them very good
in predicting sequences in time series data [4]. In particular, this works adopts
the Long Short-Term Memory (LSTM) networks [5], which are a very effective
type of RNN.
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This paper verifies two hypotheses: (1) market volatility prediction using
LSTM is equivalent to statistical models such as GARCH; (2) stacked LSTM
with multivariate input composed of multiple stock prices improves prediction
accuracy of future realized volatility. Several tests were performed using a tool
built in Python and TensorFlow libraries to verify the efficiency of the model.
Results observed confirms both hypotheses and show very strong evidence that
stacked multivariate LSTM are a strong alternative to statistical methods used
to predict volatility.

The rest of this paper is organized as follows. In Sect. 2 the concept of volatil-
ity in the stock market analysis and prediction is introduced and different defini-
tions are provided. In Sect. 3 some related work is discussed. Section 4 provides
a brief description of the LSTM model adopted in this work. Section 5 describes
the methodology used for the experimental analysis of the proposed approach
and the results. Finally, Sect. 6 provides some conclusive remarks.

2 Volatility

Volatility is a key measure for trading and risk management. There are different
methods used to calculate or derive volatility. Historical Volatility1 uses the time
series of historical prices of the securities within a portfolio to calculate returns.
Return for each asset is calculated independently. The average return Ravg is
defined as:

Ravg =
∑n

i=1 Ri

n
(1)

where and n is the sample size of the time-series and Ri is the security return.
The volatility σSec of a single asset and the Annualized Volatility σAn are given
by the following formulas.

σSec =

√∑n
i=1 (Ri − Ravg)2

n − 1
(2)

σAn = σSec

√
260 (3)

For a portfolio with multiple assets, the correlation coefficient and weights
are required to measure volatility. For example, the volatility σp of a two-asset
portfolio is calculate by

σp =
√

W 2
1 σ2

1 + W 2
2 σ2

2 + 2W1W2σ1σ2ρ1,2 (4)

where W is the proportion of each asset in relation to the whole portfolio, σ1,
σ2 and ρ1,2 are, respectively, the volatility of the portfolio asset 1, the volatility
of the asset 2 and the correlation coefficient of assets 1 and 2.

1 Parametric Value at Risk (VaR) is calculated using the same method of Historical
Volatility.
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If the portfolio includes more than two assets, the volatility can be repre-
sented by the general formula below.

σ2
p = [W1 · · · Wn]

⎡

⎢
⎣

σ11 · · · σ1n

...
. . .

...
σn1 · · · σnn

⎤

⎥
⎦

⎡

⎢
⎣

W1

...
Wn

⎤

⎥
⎦ (5)

Implied Volatility is derived from the Black-Scholes formula [3] below by sub-
stituting the call or option value using the actual market price of the derivative.
This formula is essential to options traders as it can be used to evaluate options
and to derive Implied Volatility :

d1 =
ln S0

K +
(
r + σ2

2 T
)

σ
√

T
(6)

d2 = d1 − σ
√

T

c = S0N(d1) − K exp −rTN(d2)

p = K exp −rTN(−d2) − S0N(−d1)

where S0 is the security price, K the strike price, r the interest free rate, T the
time to expiration in years, σ the volatility, N() the normal distribution, c the
call option price, and p is the put option price.

In this paper, Eqs. 1, 2 and 3 were used to calculate the volatility of one stock
portfolio. Future work will include Eqs. 4 and 5 for multiple stocks portfolio and
Eq. 6 to estimate option prices by predicting implied volatility of underlying
stocks.

3 Related Work

Different methodologies are used today to model market movement and volatil-
ity. In the recent years, and due to the surge of high volumes of data and the
fear effect caused by the financial crisis of 2008, demand to review and improve
existing pricing models and risk management has never been so high. In many
studies, ANN have been compared against statistical models used for volatility
forecasting like GARCH and it has been shown that they can be more effective
and accurate. Due to their high non-linear, large scale, continuous, time-based
and dynamic nature [6], ANN are among the models often chosen for time series
prediction and have been shown to be very promising in this particular appli-
cation domain. The authors in [7] reviewed and highlighted the potential of
ANN computation methods in modelling time-varying data, showing that ANN
are embedded in more traditional time-series theory and have a potential to
provide powerful alternatives to traditional models, especially with respect to
non-linearity. The work in [8] confirmed time-series capabilities of ANN and
highlighted the importance of the sampling window size; from the experiments
reported, it was concluded that optimal performance is clearly obtained at the
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correct embedding dimension and variation either side of this window size dimin-
ishes performance. In [9] the authors conducted an experiment to predict the
Japanese Nikkei 255 index using the classical Back Propagation Neural Net-
work (BPNN) against one supporting Genetic Algorithm (GA) and Simulated
Annealing (SA) and concluded that classical BPNN would gain more accuracy
and speed when combined with one of the global search techniques. Other studies
also showed promising stock price prediction results for Deep Learning [10]. In
this study [11] the authors used a Wavelet De-noising-based Back Propagation
(WDBP) neural network. In this model, the original data are first decomposed
into multiple layers by the wavelet transform.

The work in [12] used LSTM with 23 years of SP500 daily index prices
and 240 days sequences to predict the market movement. Results showed that
LSTM provided better prediction capabilities compared to random forest and
study concluded that LST can be used to construct profitable trading strategies.
Cao and Li [13], combined a multi-layer LSTM with Empirical Mode Decompo-
sition (EMD) to improve time series prediction. The resulting model provided
better forecasting capabilities compared to Support Vector Machine (SVM). The
work in [14], proposed an LSTM model to predict SP500 with over-fitting pre-
vention capabilities. The results suggest excellent forecasting accuracy. In [15],
the authors introduced Deep LSTM (DLSTM), an architecture of LSTM to be
used for modelling time series effectively. This model was tested against ARIMA
and the results confirmed the superiority of the model. The paper also exam-
ines different lagging configuration; however, no evidence suggests an optimal
setup. The work in [16] and [17] used stacked LSTM architecture to model time
series data, while the earlier confirms great improvements in prediction perfor-
mance compared to single LSTM model, the later confirms the same and sug-
gests more accuracy than traditional statistical methods in modelling time series
data. The approach in [18] examined combining traditional ANN with LSTM
and bidirectional LSTM (BLSTM) to improve time series forecasting accuracy.
The results suggest that BLSTM works better for three-week ahead volatility
forecast while LSTM works better with shorter time horizons. The work in [19]
combined LSTM with traditional ANN to improve gold volatility forecasting.
The experiments conducted with different lagging setup to allow the model to
learn from temporal structures. The hybrid model suggests that better accuracy
can be achieved when compared to classic GARCH and LSTM.

4 Long Short-Term Memory Networks

Figure 2 illustrates the structure of an LSTM network, where X indicates the
input, Y the output, and C the cell state.

The cell state in LSTM is controlled by gates that performs multiplication
and summation operations on top the sigmoid output. These operations control
what information to keep and what to purge, hence, making quite effective in
predicting sequenced data. Figure 3 illustrates LSTM cell structure.
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In particular, Fig. 4 illustrates the stacked multivariate LSTM architecture
that is adopted in this work. The setup is similar to the models used in [16] and
[17] which is optimised for time series modelling.

Fig. 2. Long Short-Term Memory RNN architecture.

Fig. 3. Long Short-Term Memory RNN cell architecture.

5 Methodology and Experimental Analysis

The stacked LSTM architecture discussed in 4 has been implemented and used
to test different combinations of LSTM networks using a TensorFlow GPU.
The application architecture and the work-flow are illustrated in Fig. 5. ‘Test
GARCH’ option is added to switch between benchmark and normal testing. The
test server and all the computational resources used to perform the experiments
are listed in Tables 1 and 2.

Two sets of experiments were carried out. The first set (Test 1) is aimed
at testing the hypothesis that a stacked LSTM provides equivalent volatility
prediction accuracy to statistical methods such as GARCH. The second (Test
2) is aimed at testing the hypothesis that multivariate input stacked LSTM
composed of multiple assets prices can further improve the volatility prediction
accuracy. To validate the model efficiency, each set of experiments predicted
volatility in two market conditions, (1) declining prices (Bear) for which the
year 2009 was used, and (2) rising prices (Bull) for which the year 2017 was
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Fig. 4. Stacked LSTM model.

Table 1. Test environment - server specifications.

CPU Intel Xeon CPU E5-2640 @3.0GHz

Memory 32 GB

Environment UBUNTU 18.04

Language Python 3.7

ML Framework TensorFlow 2.0

used. The daily stock price datasets used in the experiments were obtained from
Yahoo Finance and are described in Tables 3 and 4.

The adopted LSTM model with multivariate input used in all the experiments
is implemented in Python 3.7 and follows the stacked model illustrated in Fig. 4,
where k represents the sample size, m is the number of feature assets used
to train the model, and n is the lag parameter which represents the previous
number of days used for every prediction. The GARCH statistical model used
for benchmark testing is using ARCH libraries within Python 3.7 and executed
by the same testing application. The historical stock prices of the test asset are
used as input for the model to predict the volatility.

Table 2. Test environment - GPU specifications.

GPU GeForce RTX 2060 SUPER

Memory 8 GB

CUDA Cores 2176

GPU Clock 1650 MHz
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Fig. 5. The general data workflow.

The hold-out performance estimation method was adopted in all the exper-
iments. Historical stock prices were used to train the LSTM network and
GARCH. The models then were used to predict future realized volatility for
multiple consequent days, unlike previous approaches that make a single pre-
diction for the subsequent day only. The average volatility over the prediction
period was compared against the actual one for the same time frame.

5.1 Test 1 - Benchmark Testing

GARCH(1,1) and a stacked LSTM on a single asset (no auxiliary assets) were
used to predict future realized volatility for Bank of America stock (BAC) using

Table 3. Test data definition - time series.

Market conditions Prediction Training data

Bear 1,5,10,20 future days 03/01/2000–03/03/2009

Bull 1,5,10,20 future days 03/01/2000–01/10/2017
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Table 4. Test data definition - stocks.

Symbol Company Sector

BAC Bank of America Financial services

JPM JP Morgan Chase Financial services

WFC Wells Fargo Financial services

C City bank Financial services

a lag of 1 previous day time-step, an optimal setup for GARCH. The test param-
eters used for LSTM are illustrated in Table 5.

Table 5. Test 1 - LSTM model parameters.

Experiment Epochs Neurons Batch size Prev. Days Auxiliary assets

Benchmark test 10 64 500 1 0

The results in Tables 6 and 7 provide the Mean Squared Error (MSE) of
the estimated volatility, respectively, for LSTM and GARCH against the actual
market volatility for bear and bull markets. It is observed that LSTM is faster
(about 88% faster for bull market) and also offers better prediction for single
day volatility forecasting. However, GARCH prediction accuracy is superior for
more than one day forecasting.

Table 6. Forecast accuracy of BAC daily volatility in a bear market.

Prediction
days

LSTM GARCH

MSE Time
(s)

MSE Time
(s)

1 3.29 26 6.01 92

5 9.18 26 5.42 92

10 7.73 27 5.83 94

20 10.89 27 7.70 98

Plotting bear and bull 1-day actual volatility against predicted for both mod-
els illustrates the findings. Figures 6(a) and 6(b) illustrates that the error vari-
ance follows an auto-regressive moving average process, which is one of the char-
acteristics of the GARCH model that explains the better accuracy for forecasting
of more than one day.

On the other hand, LSTM illustrated in Figs. 7(a) and 7(b) clearly indicates
superior modelling of daily volatility and therefore can be used for intra-day
modelling for volatility, specifically in high frequency trading environments.
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Table 7. Forecast accuracy of BAC daily volatility in a bull market.

Prediction
days

LSTM GARCH

MSE Time
(s)

MSE Time
(s)

1 0.69 27 0.43 220

5 0.93 27 0.46 213

10 0.94 27 0.64 216

20 0.93 27 0.71 227

5.2 Test 2 - Multivariate Input LSTM Testing

This experiment is aimed at testing the multivariate LSTM model. Table 8 illus-
trates the testing parameters.

Table 8. Test 2 - LSTM model parameters.

Experiment Epochs Neurons Batch
Size

Prev
Days

Auxiliary
Assets

Multiple Assets 10 64 500, 2000 5 0 to 3

Table 9. LSTM forecast accuracy of BAC daily volatility in a bear market.

No. Features Future
prediction
(Days)

MSE Time (s)

3 1 2.55 67

3 5 6.17 65

3 10 13.21 66

3 20 18.01 71

2 1 2.56 69

2 5 8.11 65

2 10 13.31 66

2 20 15.96 69

1 1 3.98 76

1 5 5.79 66

1 10 12.62 67

1 20 45.38 68

The test is repeated multiple times to predict future realised volatility using
a lag of 5 days and different combinations of positively correlated stock prices
for multivariate input. Tables 9 and 10 illustrates the test results collected.
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Table 10. LSTM forecast accuracy of BAC daily volatility in a bull market.

No. Features Future
prediction
(Day)

MSE Time (s)

3 1 0.47 76

3 5 0.64 76

3 10 0.70 78

3 20 0.89 77

2 1 0.22 72

2 5 0.53 70

2 10 0.73 73

2 20 1.14 72

1 1 0.36 71

1 5 0.55 68

1 10 0.76 69

1 20 1.01 69

(a) bear market: from 2007-09-19 to 2009-03-02

(b) bull market: from 2016-04-22 to 2017-10-02

Fig. 6. GARCH model for BAC volatility prediction
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(a) bear market: from 2007-09-19 to 2009-03-02

(b) bull market: from 2016-04-22 to 2017-10-02

Fig. 7. LSTM model volatility prediction

It is observed that LSTM prediction accuracy for 1 day and 5 days has
improved significantly when features with high positive correlation are used dur-
ing the training of the model. Using previous data points (lag of 5 days) has also
contributed to the accuracy of volatility prediction by giving more insight of
pattern changes. The models MSE drops with the use of more features. MSE for
1-day forecasting nearly dropped to half compared to setup used in benchmark
testing and 5-day forecasting has become more comparable to one produced by
GARCH. There were no significant changes to 10-day and 20-day predictions,
which indicates that further tuning of the LSTM network may be required and
beneficial in these cases.

6 Conclusions

The first objectives of this work is to answer the question on the possibility of
using LSTM as an alternative method to statistical models such as GARCH to
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predict market volatility and build more profitable trading portfolios and options
pricing models. The second objective is to propose and investigate a multivariate
LSTM architecture to improve volatility forecasting accuracy.

The benchmark testing has confirmed the first hypothesis and clearly indi-
cates that LSTM 1-Day forecasting of volatility is superior to GARCH. This also
shows strong evidence that LSTM is a suitable method to intra-day volatility
modelling due to its strength in detecting short-term market influencing factors.

The second set of tests indicates that a multivariate LSTM can significantly
improve the forecasting of the volatility in both bear and bull markets. Both
1-day and 5-day predictions were improved when more assets prices were used
in the multivariate input, which confirms the second hypothesis. It was also
observed that a lag window is required to improve prediction accuracy of LSTM,
especially during bear market condition, this helps training the model to adapt to
drastic changes in the market and accommodate missing data points if incurred.

Further work is required to further improve prediction accuracy of LSTM and
to lengthen the prediction horizon. This will involve changes to the multivariate
input such as configuring different lagging periods and introducing new classes
of time series input data such as news and weather. Future research will also be
dedicated to use the proposed LSTM model to predicts implied volatility, which
is a key parameter in options pricing.
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Ünlü, Tuğçe I-488

Vadillo, Jon II-408
Vafaie, Parsa II-70
Valencia, David I-324
van Stein, Bas I-144
Van Trong, Nguyen I-349
Varat, Shraddha I-235
Vassilev, Apostol I-357



548 Author Index

Vater, Nadja I-473
Vazquez, Emmanuel II-116
Verdú, Javier I-527
Viktor, Herna II-70

Wang, Bao II-451
Wang, Hui II-353
Wang, Ping II-241
Wani, Mudasir Ahmad I-488
Williams, Henry I-324

Wiskott, Laurenz II-299
Wohlleben, Meike II-101

Xin, Jack II-451

Zaidi, Moayid Ali II-213
Zakhozhyi, Vitalii II-246
Zaleshin, Alexander I-69
Zaleshina, Margarita I-69
Zese, Riccardo I-457


	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Boosted Embeddings for Time-Series Forecasting
	1 Introduction
	2 Gradient Boosting
	3 DeepGB Algorithm
	3.1 Gradient Boosting, Forward Stagewise Additive Models, and Structural Time Series Analysis

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Model Setup
	4.3 Results

	5 Conclusion
	References

	Deep Reinforcement Learning for Optimal Energy Management of Multi-energy Smart Grids
	1 Introduction
	1.1 Context of the Problem
	1.2 Deep Reinforcement Learning in Smart Grids: Related Work

	2 The Multi-energy Smart Grid Model and Optimal Control Mechanism
	3 The Proposed Deep Reinforcement Learning-Based Approach
	4 Implementation Details, Simulations and Results
	5 Conclusion
	References

	A k-mer Based Sequence Similarity for Pangenomic Analyses
	1 Introduction
	2 Background: Notations and PanDelos
	3 A Computationally Efficient Approach
	4 Experimental Results
	5 Conclusions
	References

	A Machine Learning Approach to Daily Capacity Planning in E-Commerce Logistics
	1 Introduction
	2 Proposed Approach
	3 Experiments
	4 Results
	5 Conclusion
	References

	Explainable AI for Financial Forecasting
	1 Introduction
	2 Related Work
	3 Standard XAI Methods
	4 The Proposed Strategies
	5 Experimental Setup
	5.1 Dataset
	5.2 Forecasting and Feature Selection
	5.3 Backtesting
	5.4 Baselines
	5.5 Evaluation Metrics

	6 Results
	6.1 Discussion

	7 Conclusions
	References

	Online Semi-supervised Learning from Evolving Data Streams with Meta-features and Deep Reinforcement Learning
	1 Introduction
	2 Background and Related Work
	2.1 Meta-learning
	2.2 Online Semi-supervised Learning

	3 Online Reinforce Algorithm
	3.1 Meta-features
	3.2 Pseudo-labelling with Meta-reinforcement Learning
	3.3 Training of the Meta-reinforcement Learning Model

	4 Experimental Evaluation
	4.1 Datasets
	4.2 SSL Algorithms
	4.3 Experimental Results
	4.4 Discussion

	5 Conclusion and Future Work
	References

	Dissecting FLOPs Along Input Dimensions for GreenAI Cost Estimations
	1 Introduction
	2 Measures of Efficiency
	3 Computation of FLOPs for Basic Layers
	4 The Problem of Convolutions
	5 -FLOPs
	5.1 Main Properties of the -correction
	5.2 Rationale

	6 Additional Experimental Results
	6.1 Dense Layers vs Batchsize

	7 Conclusions
	References

	Development of a Hybrid Modeling Methodology for Oscillating Systems with Friction
	1 Introduction
	2 Hybrid Modeling: The Framework
	2.1 Parametric Modeling
	2.2 Non-parametric Modeling
	2.3 Hybrid Modeling

	3 Proposed Hybrid Methodology for Oscillating Systems
	3.1 Approach
	3.2 Training
	3.3 Prediction
	3.4 Challenges in Real Experiments

	4 Validation: Double Pendulum
	4.1 Synthetic Data
	4.2 Measurements

	5 Discussion
	6 Summary
	References

	Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation
	1 Introduction
	2 Background
	2.1 Gaussian Processes
	2.2 Maximum Likelihood Estimation

	3 Numerical Noise
	4 Strategies for Improving Likelihood Maximization
	4.1 Initialization Strategies
	4.2 Stopping Condition
	4.3 Restart and Multi-start Strategies
	4.4 Parameterization of the Covariance Function

	5 Numerical Study
	5.1 Methodology
	5.2 Optimization Schemes
	5.3 Data Sets
	5.4 Results and Findings

	6 Conclusions and Recommendations
	References

	KAFE: Knowledge and Frequency Adapted Embeddings
	1 Introduction
	2 Background
	3 Method
	3.1 Notations
	3.2 Knowledge Injection into word2vec
	3.3 Frequency Expulsion
	3.4 KAFE

	4 Experiments and Results
	4.1 Data
	4.2 Reproducibility
	4.3 Quantitative Tasks
	4.4 Qualitative Tasks

	5 Conclusion and Future Work
	References

	Improved Update Rule and Sampling of Stochastic Gradient Descent with Extreme Early Stopping for Support Vector Machines
	1 Problem
	2 Sampling with Full Replacement
	3 New Update Rule
	4 Improvement of Speed of Tuning
	5 Theoretical Analysis
	6 Methods
	7 Experiments
	8 Summary
	A  Appendix
	References

	A Hybrid Surrogate-Assisted Accelerated Random Search and Trust Region Approach for Constrained Black-Box Optimization
	1 Introduction
	2 Global and Local Constrained Black-Box Optimization Using Radial Basis Functions
	2.1 RBF-Assisted Constrained Accelerated Random Search
	2.2 CONORBIT Trust Region Method
	2.3 Radial Basis Function Interpolation

	3 A Hybrid Surrogate-Based Algorithm for Constrained Black-Box Optimization
	4 Numerical Experiments
	4.1 Experimental Setup
	4.2 Comparison Using Data Profiles
	4.3 Results and Discussion

	5 Summary and Future Work
	References

	Health Change Detection Using Temporal Transductive Learning
	1 Introduction
	2 Notation and Background
	3 Our Approach
	3.1 Analysis

	4 Experiments
	4.1 Baselines
	4.2 Experimental Setup
	4.3 Datasets
	4.4 Turbofan Engine Degradation
	4.5 Controlled Experiments
	4.6 Results and Observations
	4.7 Need for a Balancing Constraint

	5 Conclusion
	References

	A Large Visual Question Answering Dataset for Cultural Heritage
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusions and Future Work
	References

	Expressive Graph Informer Networks
	1 Introduction
	2 Proposed Approach
	2.1 Setup
	2.2 Dot-Product Self-attention
	2.3 Route-Based Dot-Product Self-attention
	2.4 Locality-Constrained Attention
	2.5 Implementation Details

	3 Architecture of the Network
	4 Expressiveness of Graph Informer
	4.1 The Weisfeiler-Lehman Test
	4.2 Beyond the Weisfeiler-Lehman Test

	5 Related Research
	6 Evaluation
	6.1 Model Selection
	6.2 Node-Level Task: NMR 13C Spectrum Prediction
	6.3 Results for Graph-Level Tasks

	7 Conclusion
	References

	Zero-Shot Learning-Based Detection of Electric Insulators in the Wild
	1 Introduction
	2 Related Work
	3 Dataset Details
	4 Methodology
	5 Experimental Results
	6 Discussion
	7 Conclusion
	References

	Randomized Iterative Methods for Matrix Approximation
	1 Introduction and Motivation from Optimization
	2 Fundamental Problem, Samples, and Terminology
	3 Randomized One-Sided Quasi-Newton Algorithms
	4 Randomized Two-Sided Quasi-Newton Algorithms
	4.1 General Two-Sided Sampled Update
	4.2 Symmetric Update
	4.3 Multi-step Symmetric Updates

	5 Convergence Analysis
	6 Numerical Results
	7 Heuristic Accelerated Schemes
	8 Conclusions and Future Work
	References

	Improved Migrating Birds Optimization Algorithm to Solve Hybrid Flowshop Scheduling Problem with Lot-Streaming of Random Breakdown
	1 Introduction
	2 Problem Statement
	3 The IMBO Algorithm for RBHLFS
	3.1 Population Initialization
	3.2 Neighborhood Structure
	3.3 Local Search and Reset Mechanism
	3.4 The Proposed Algorithm

	4 Experimental Results
	5 Conclusions
	References

	Building Knowledge Base for the Domain of Economic Mobility of Older Workers
	1 Introduction
	2 Building Domain Lexicon
	2.1 Domain Specificity Score
	2.2 Phrase Extraction and Term Recognition
	2.3 Relation Extraction

	3 Description Guided Topic Modeling
	3.1 Algorithm Details
	3.2 Experimentation Settings and Results

	4 Constructing Domain Ontology
	5 Case Study on the Issue of Broadband Access
	6 Conclusions and Future Work
	References

	Optimisation of a Workpiece Clamping Position with Reinforcement Learning for Complex Milling Applications
	1 Introduction
	2 ML Applications in Mechanical Engineering
	3 Problem Statement
	4 RL Experiment Setup
	4.1 State Space, Action Space and Reward Function
	4.2 Search Efficiency Modifications
	4.3 RL Agent Training and Validation
	4.4 Data Generation and Approximation of the Simulation with Machine Learning

	5 Experimental Results
	6 Conclusion and Future Work
	References

	Thresholding Procedure via Barzilai-Borwein Rules for the Steplength Selection in Stochastic Gradient Methods
	1 Introduction
	2 Novel Contribution in Steplength Selection via Ritz-like Values
	3 Numerical Experiments
	4 Conclusions and Future Works
	References

	Learning Beam Search: Utilizing Machine Learning to Guide Beam Search for Solving Combinatorial Optimization Problems
	1 Introduction
	2 Related Work
	3 Learning Beam Search
	4 Case Studies
	5 State Graphs for the LCS and CLCS Problems
	6 ML Models for the LCS and CLCS Problems
	7 Experimental Evaluation
	7.1 LCS Experiments
	7.2 CLCS Experiments

	8 Conclusions and Future Work
	References

	Modular Networks Prevent Catastrophic Interference in Model-Based Multi-task Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Method Description
	3.1 Vector-Quantized Variational Autoencoder
	3.2 Recurrent Dynamics Models
	3.3 Context Detection
	3.4 Planning
	3.5 Training

	4 Experiments
	4.1 Evaluation

	5 Conclusion
	References

	A New Nash-Probit Model for Binary Classification
	1 Introduction
	1.1 The Nash-Probit Game

	2 Covariance Matrix Adaptation - Nash - Evolution Strategy
	3 Numerical Examples
	4 Conclusions
	References

	An Optimization Method for Accurate Nonparametric Regressions on Stiefel Manifolds
	1 Introduction
	2 Preliminaries
	3 Regression on Stiefel Manifolds
	4 Experimental Results
	4.1 Special Case with Directions and Rotations
	4.2 Special Case with Procrustes Process

	5 Conclusion
	References

	Using Statistical and Artificial Neural Networks Meta-learning Approaches for Uncertainty Isolation in Face Recognition by the Established Convolutional Models
	1 Introduction
	2 Machine Learning and Uncertainty
	2.1 High-Level View on Classification with ANN
	2.2 Trusted Accuracy Metrics
	2.3 Bayesian View on ANN Classification
	2.4 Proposed Solution: Supervisor ANN

	3 Data Set
	4 Experiments
	5 Results
	6 Discussion, Conclusions, and Future Work
	References

	Multi-Asset Market Making via Multi-Task Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 The Proposed Method
	4 Experiments
	4.1 Data and Settings
	4.2 Results and Discussion

	5 Conclusion
	References

	Evaluating Hebbian Learning in a Semi-supervised Setting
	1 Introduction
	2 Related Work
	2.1 Semi-supervised Training and Sample Efficiency
	2.2 Hebbian Learning

	3 Hebbian Learning Strategies
	4 Sample Efficiency Scenario and Semi-supervised Approach Based on Hebbian Learning
	5 Experimental Setup
	5.1 Datasets Used for the Experiments
	5.2 Network Architecture and Training
	5.3 Testing Sample Efficiency at Different Layer Depths
	5.4 Details of Training

	6 Results and Discussion
	6.1 CIFAR10
	6.2 CIFAR100
	6.3 Tiny ImageNet

	7 Conclusions and Future Work
	References

	Experiments on Properties of Hidden Structures of Sparse Neural Networks
	1 Introduction
	2 Sparse Neural Networks
	3 Related Work
	4 Experiments
	4.1 Pruning Feed-Forward Networks
	4.2 Pruning Recurrent Networks
	4.3 Random Structural Priors for Recurrent Neural Networks
	4.4 Architectural Performance Prediction in Neural Architecture Search

	5 Discussion and Conclusion and Future Work
	References

	Active Learning for Capturing Human Decision Policies in a Data Frugal Context
	1 Introduction
	1.1 Cognitive Shadow
	1.2 Frugal Data Machine Learning
	1.3 Active Learning for Frugal Human Policy Capturing

	2 Methods
	2.1 Rival Strategies
	2.2 Classifiers
	2.3 Datasets
	2.4 Evaluation Methods

	3 Analysis and Results
	3.1 AMASCOS Dataset
	3.2 AMASCOS Dataset with Outliers
	3.3 Complex Pattern Dataset

	4 Discussion
	References

	Adversarial Perturbations for Evolutionary Optimization
	1 Introduction
	2 Adversarial Examples and Adversarial Perturbations
	3 Adversarial Examples as Promising Solutions
	3.1 Learning to Discriminate the Quality of the Solutions
	3.2 Generating Promising Solutions with Adversarial Attacks
	3.3 Weaker Models Make More Adversarial Examples

	4 Surrogate Assisted EA with Adversarial Sampling
	4.1 Inserting Adversarial Perturbation Methods in EAs

	5 Related Work
	6 Experiments
	6.1 Problem Benchmark and Parameters of the Algorithm
	6.2 Initialization Schemes for Adversarial Perturbations
	6.3 Performance of Adversarial Perturbation Methods
	6.4 Network Tricking

	7 Conclusions
	References

	Cascaded Classifier for Pareto-Optimal Accuracy-Cost Trade-Off Using Off-the-Shelf ANNs
	1 Introduction
	2 Related Work and Background
	3 Methodology
	3.1 Architecture and Quantitative Optimization
	3.2 Vehicle
	3.3 Analyses of Pass-On Criteria
	3.4 Generation of Multi-stage Classifiers

	4 Case Study: CIFAR 10
	5 Conclusion
	References

	Conditional Generative Adversarial Networks for Speed Control in Trajectory Simulation
	1 Introduction
	2 Related Work
	2.1 Generative Models
	2.2 Conditioned Generation
	2.3 Problem Formulation

	3 Methodology
	3.1 Preprocessing
	3.2 Feature Extraction
	3.3 Aggregation Methods
	3.4 Speed Forecasting
	3.5 Decoder
	3.6 Discriminator
	3.7 Losses

	4 Experiments
	4.1 Datasets
	4.2 Simulation
	4.3 Effect of Aggregation Method
	4.4 Trajectory Prediction

	5 Conclusion and Future Work
	References

	An Integrated Approach to Produce Robust Deep Neural Network Models with High Efficiency
	1 Introduction
	1.1 Background

	2 Related Work
	2.1 Binary Quantization
	2.2 Adversarial Attacks
	2.3 Adversarial Training

	3 Quantization of EnResNet
	3.1 Experimental Setup
	3.2 Result

	4 Trade-Off Between Robust Accuracy and Natural Accuracy
	4.1 Previous Work and Our Methodology
	4.2 Experiment and Result
	4.3 Analysis of Trade-Off Functions

	5 Further Balance of Efficiency and Robustness: Structured Sparse Quantized Neural Network via Ternary/4-Bit Quantization and Trade-Off Loss Function
	5.1 Sparse Neural Network Delivered by High-Precision Quantization

	6 Benckmarking Adversarial Robustness of Quantized Model
	7 Conclusion
	References

	Leverage Score Sampling for Complete Mode Coverage in Generative Adversarial Networks
	1 Introduction
	2 Sampling with Ridge Leverage Scores 
	2.1 Approximation Schemes

	3 Numerical Experiments
	3.1 Synthetic Data 
	3.2 Unbalanced MNIST
	3.3 Unbalanced CIFAR10

	4 Conclusion
	References

	Public Transport Arrival Time Prediction Based on GTFS Data
	1 Introduction
	2 Preprocessing Static and Real-Time GTFS Data
	2.1 PT Provider and GTFS Data
	2.2 GTFS Data Errors and Proposed Solutions
	2.3 Cleansing and Reconstructing GTFS Data (CR-GTFS) Tool

	3 Methodology
	3.1 Problem Formulation
	3.2 Machine Learning Methods Compared

	4 Experimental Study
	4.1 Experimental Protocol - Parameter Selection
	4.2 Results and Discussion

	5 Conclusion
	References

	The Optimized Social Distance Lab
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 User Route Generation
	3.2 Layout Optimization

	4 Results
	5 Conclusion
	References

	Distilling Financial Models by Symbolic Regression
	1 Introduction
	1.1 Related Works

	2 Financial Stochastic Processes - Itô Formula for Brownian Motion
	3 Symbolic Regression by Genetic Programming
	4 Methodology
	4.1 Symbolic Regression and Financial Processes Variation

	5 Experimental Results
	5.1 Experimental Protocol

	6 Concluding Remarks
	References

	Analyzing Communication Broadcasting in the Digital Space
	1 Introduction
	2 Data and Methodological Approach
	2.1 Information Entropy
	2.2 Entropy and Twitter Trends
	2.3 Text Analysis

	3 Case Study Discussion: Information on the Restrictions Procedure During Covid-19 Pandemic in Italy
	4 Conclusions
	4.1 Future Work

	References

	Multivariate LSTM for Stock Market Volatility Prediction
	1 Introduction
	2 Volatility
	3 Related Work
	4 Long Short-Term Memory Networks
	5 Methodology and Experimental Analysis
	5.1 Test 1 - Benchmark Testing
	5.2 Test 2 - Multivariate Input LSTM Testing

	6 Conclusions
	References

	Author Index

