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Abstract. Rare association rules gained importance since they are
widely used in critical real-life domains, such as medicine, fraud detec-
tion, malware attacks, recommender systems, and weather forecasting.
In order to extract actionable rules that can be used in real-life scenar-
ios, user confidence and an easy-to-use model with as few as possible
tuning knobs are required. On top of this, an inherent imbalance of the
data (e.g., in the medical domain, there are fewer ill people compared to
healthy people) poses a severe challenge, which complicates the finding of
rare patterns. Recently, an unsupervised clustering model was proposed
to discover interesting rare rules. However, the performance of this model
degrades in terms of time and accuracy. In this paper, we propose an effi-
cient model to recover interesting rare rules. In this model, we employ
machine learning-based classifiers to assess the performance of the gen-
erated rules. To evaluate the proposed model, we experiment with three
real-life medical datasets. The experimental results show that our model
outperforms the state-of-the-art model in terms of time and accuracy.
Furthermore, we generate more accurate results, which means that the
user is only confronted with the most important and compact rules. This
reduces a user’s effort on postprocessing of associating rules significantly.

1 Introduction

Frequent itemset mining is the process of finding a set of items (known as pat-
tern or itemset) that co-occur in a given dataset. If a strong relation between
items can be inferred, they form an association rule. An inferred association rule
is represented as X — Y, where X and Y are a set of itemsets. For example,
in market basket analysis, a rule milk — bread represents that if a customer
buys milk, the customer also tends to buy bread as well. Generating association
rules from a dataset is called association rule mining (ARM). ARM gains special
importance due to its advantages in many domains, such as market basket anal-
ysis, medical diagnosis, and web usage mining [1,2]. The primary goal of ARM
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is to produce rules that are sensible and beneficial to the user. However, a vital
shortcoming of ARM is that it usually generates many rules (i.e. for an itemset
with d items, there are 2¢ — 1 rules that can be generated [20]). Extracting such
a large number of association rules degrades the performance, making it chal-
lenging for a decision-maker to analyze the produced rules. Hence, the resulting
rules require extensive downstream analysis. To overcome these shortcomings, it
is practical to produce fewer and more meaningful rules for the user.

One of the most frequently used techniques for the simplification of rules is
called clustering association rules [10,15,19]. Clustering association rules gener-
ate a condensed representation of association rules and, thus, less rules compared
to those generated by conventional methods. Therefore, extracting compact and
understandable rules leads to more accurate classifiers and produces a manage-
able number of rules for the end-user for further investigation. There is a plethora
of work proposed for clustering association rules [6,10,15]. Most of these meth-
ods focus on generating rules from frequent patterns. However, the generated
rules represent common events and are, thus, usually expected and unsurpris-
ing. Therefore, analyzing the data at hand for more meaningful and unexpected
patterns is desirable to reveal unknown knowledge in many real-life applications.
To this end, discovering unexpected association rules (also known as rare itemset
mining) came into focus [8]. To reveal such knowledge, the state of the art is to
use an unsupervised machine learning method, DBSCAN-based clustering [5],
to extract unexpected association rules. Although this method finds unexpected
rules, it comes with the following shortcomings. First, it is costly in terms of
time and memory since it utilizes the Apriori algorithm to generate the com-
plete set of rules [18]. Second, adjusting the parameters properly (i.e., €, minPts
for DBSCAN) is challenging since DBSCAN as a clustering-based method may
fail to identify unexpected rules when choosing improper parameters. Lastly, the
Fl-score of a classifier was utilized in the DBSCAN-based model to evaluate the
quality of generated rules. However, the reported score was observed only for a
single class (i.e., minority class), leading to ambiguity when used on data with
class imbalances [12]. For instance, an improved Fl-score of a class might also
mean that the classifier improved its prediction at the cost of other class scores
in imbalanced data (i.e., predicting that everyone is ill).

Due to these shortcomings, designing an efficient model to address these three
gaps is still a critical research problem. This paper deals with these limitations
by developing an efficient model, OPTICS-based clustering of FCLAT-generated
Unexpected Rules (OPECUR), to find unexpected association rules efficiently
and accurately. The main contribution of this paper is as follows.

— To generate the whole set of association rules, we employ FP-Growth and
ECLAT algorithms to extract the complete set of association rules efficiently.

— For the clustering task, we utilize a density-based clustering algorithm,
OPTICS, to avoid the problem of extensive hyperparameter tuning. OPTICS
can also detect clusters of different densities efficiently leading more precise
unexpected association rules.
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— We utilize three different machine learning classifiers for the classification task
in the evaluation process: Support vector machines (SVM), Random forest
(RF), and Neural network-based multi-layer perceptron (MLP).

— The experimental results show that the Fl-score and area under the curve
(AUC) of our OPECUR model are constantly better than the state-of-the-art
DBSCAN-based model. Furthermore, our experimental results show that our
model recovers association rules much faster than the state of the art and
generates more interesting unexpected association rules.

The remainder of this paper is structured as follows. In Sect. 2, we provide
background on association rules and present related work in Sect. 3. In Sect. 4,
our proposed method adopted in the paper is explained. Our evaluation strategy,
performance criteria, and variations are discussed in Sect.5. We end the paper
with a conclusion in Sect. 6.

2 Background

This section briefly presents important fundamental knowledge for discovering
unexpected rules. One primary data mining task is association rule mining aim-
ing at discovering hidden valuable knowledge from a dataset. The main step of
ARM is to find a set of items (known as patterns or itemset) that co-occur in the
dataset. Hence, association rule mining requires the following two main steps:

1. The complete set of interesting patterns is extracted.
2. The association rules are generated from the set of desired patterns that have
been mined in the first step.

We describe the problem of association rule mining and its related concepts,
such as frequent and unexpected (rare) patterns with the following definitions.
Let DB be a dataset of m transactions such as DB = {T1,T5,...,T} and I
represents the set of unique n items in DB, I = {iy,i9,...,4,}. Some common
definitions are defined below to illustrate the concept of association rule mining.

Definition 1 (Support of a pattern). Given a pattern X, its support (Sup)
is defined as the number of transactions in DB containing the pattern X such

that Sup(X) = Srggf), where |DB]| represents the size of the dataset, DB.

Definition 2 (Frequent and Rare Patterns). A pattern X whose support
satisfies a user-specified support threshold, minSup, is called frequent pattern
such that sup(X) > minSup. In contrast, the pattern X that does not satisfy
minSup is called a rare pattern.

Definition 3 (Strong Association Rule). An association rule X — Y is
called strong if its support and confidence measures satisfy a specified minimum
support threshold (minSup) and minimum confidence threshold (minConf).
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Definition 4 (Unexpected Association Rule [16]). A rule X — Y is an
unexpected rule w.r.t. a known rule A — B if the following conditions hold:

1. The antecedents of rules (i.e., A and X) statistically hold on D B. Besides, they
are similar according to a statistical measure (i.e., cosine similarity exceeds a
given threshold).

2. The consequences of rules (i.e., B and Y) contradict each other.

In this paper, we focus on discovering unexpected association rules that sat-
isfy Definitions 3 and 4.

3 Related Work

Association Rule Mining (ARM) identifies interesting relations among patterns
in a dataset. ARM gains vital importance since it helps to turn data into useful
knowledge in various domains such as fraud detection, disease diagnosis [3], and
road traffic accident prediction [13]. There is a plethora of methods presented
to recover the complete set of association rules [1,11,14,21]. The Apriori and
FP-Growth algorithm [18] and their extended versions are well-known methods
that are extensively used for ARM. These methods work well for recovering the
complete set of association rules, but generate too many rules leading to a scal-
ability issue. Besides, producing a massive amount of rules makes it challenging
for a decision-maker to analyze the produced rules.

To this end, clustering techniques can produce fewer, more concise rules
in many models by grouping similar rules into clusters [6,10,15,19]. In [19], a
method has been presented to prune undesired association rules and group simi-
lar rules into clusters. They use the concept of a rule cover to prune uninteresting
rules and then apply clustering to get fewer, more concise rules. Further methods
are the “BitOp” algorithm [15], or the usage of conditional market-basket dif-
ference (CMBP) and conditional market-basket log-likelihood (CMBL) to group
association rules by utilizing agglomerative clustering [10]. The latter generates
association rules that are grouped based on a normalized distance metric. In [6],
Dhabi et al. group association rules into disjoint clusters using K-means. All
these approaches use frequent itemsets.

Rare rules can capture hidden patterns in data that may be important in
rare disease diagnosis and credit card fraud detection. Instead of generating the
whole set of rules, there are several algorithms that generate rare rules [7,8].
Although these methods produce interesting rare association rules, they have
some limitations, such as 1) finding the rare items before the mining process is
challenging and 2) they generate many rare rules. To address these shortcom-
ings, a clustering-based model has been proposed to mine unexpected rare rules
by utilizing DBSCAN to cluster rare rules [5]. After clustering association rules,
the DBSCAN based model checks whether rules are noise rules or unexpected
rules based on a contradiction check. Although this model finds unexpected
rules, it comes with notable limitations. First, its performance is not optimal
since it employs the Apriori algorithm to mine the rules. Second, the interesting
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unexpected rules may be missed since the DBSCAN algorithm suffers from the
problem of not detecting nested cluster structures [4]. Lastly, the hyperparame-
ters of the DBSCAN algorithm are crucial to the clustering results and greatly
influence the overall results. Hence, setting up proper hyperparameters is chal-
lenging. In this paper, we propose a model to address these challenges as in the
following section.

4 Proposed Method: OPECUR Model

This paper proposed a clustering model, the OPECUR model, to discover valu-
able unexpected rare association rules. Figure 1 shows the workflow of the model
to obtain the unexpected rare rules. The model first derives all the association
rules from a dataset. The minimum support is kept low for generating the rules so
that the chance of missing important rare rules can be eliminated. Furthermore,
all the association rules are converted to feature vectors using the correlation
of items/attributes present in a dataset. Next, the contradiction check func-
tion, which we describe at the end of the clustering algorithm section, is applied
to the noise points marked by the clustering algorithm to determine the final
unexpected association rules. Our proposed model consists of two main phases
(i-e., Association rules generation and clustering process see Fig.1). In the first
phase, the complete set of association rules is generated by utilizing efficient
methods such as FP-growth and ECLAT. The second step explains the process
of generating unexpected rules by utilizing the OPTICS clustering technique [4].

HM»>E> & ¢t ¥

Association Rules Cluster Rules Contradiction Check Unexpected Rare Rules
*ECLAT *OPTICS

Fig. 1. OPECUR workflow to generate unexpected rare rules

4.1 Generating Association Rule

The state of the art approach [5] generates the whole set of association rules
using the Apriori algorithm. However, Apriori has the shortcoming of a huge
amount of candidates generated and it has to take multiple passes over the
dataset. Our proposed model, OPECUR, addresses these limitations by employ-
ing faster, more scalable, and more efficient algorithms (i.e., FP-Growth and
ECLAT algorithms) to generate association rules. The FP-Growth [11] algo-
rithm uses a tree structure called FP-Tree to hold all necessary information for
the mining process without a candidate and test generation process. FP-Growth
scans a dataset at most twice. In the first scan, the FP-Tree is constructed by
adding transactions (i.e., after removing useless items) one by one. After the tree
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is built, the mining process starts by employing a divide-and-conquer approach.
The ECLAT algorithm [21] uses a depth-first search approach to generate the
whole set of patterns. ECLAT works vertically and does not require multiple
passes over the data. Moreover, it applies intersections to find the support count
of the generated patterns.

4.2 Clustering Algorithm

Our proposed model groups similar association rules together using a density-
based algorithm OPTICS [4]. The OPECUR algorithm sorts the data points
based on the reachability distance of a point p to all other points. Reachability
distance is the largest value between the distance between two points and the
point’s core distance. The core distance of a point is the largest distance between
its n neighbors, where n is minPts. This enables the data points which are
within the reachability distance of each other to stay together. Furthermore,
the concept of reachability distance reduces the necessity of providing an eps
value since it is automatically calculated based on minPts. This helps in dealing
with different densities within a cluster and discovering nested clusters. As it
can be seen in Fig.2 and Fig. 3, the OPECUR model generates more clusters.
Since eps is calculated automatically in the OPTICS algorithm, it is able to
discover the clusters which are not available with a given value of eps like in
DBSCAN. Notably, red points in Fig.2 and Fig. 3 are noise points. To recover
unexpected rules, we investigate the noise rules that may contain interesting
unexpected rules. To identify whether a noise rule is an unexpected rule or not,
we use a similar approach as used in [5] with the following difference. We first
run the OPECUR algorithm and then run the contradiction check function on
the potential noise rules to find interesting unexpected rules. It is different from
the method used in [5] as they employ the contradiction check property as a
part of the clustering algorithm. Thus, the contradiction check function affects
the results since adding multiple parameters to tune at once making it harder
and undesirable. In contrast, OPECUR model generates noise rules for a minPts
value and then runs the contradiction check function. Hence, our model reduces
the chances of missing the most informative unexpected rules.

DBSCAN Optics

Fig. 2. Clusters on breast cancer data- Fig. 3. Clusters on breast cancer data-
set using DBSCAN set using OPECUR
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As per the contradiction check function, if there exists two rules X — Y and
X’ — Y’ the following conditions are checked:

.Y !l=Y

. Cosine similarity of X and X’ is high
. Confidence of both rules is high

. Rule X— Y is a noise point

W N

The noise rule X—Y is compared to the cluster rules and it is marked as an
unexpected rule in contradiction to a frequent rule X’ — Y’ if all of the above
conditions are satisfied.

5 Experimental Evaluation

In this section, our proposed model’s performance is compared with the state-
of-the-art model introduced in [5]. In the following, we introduce the evaluation
setup and then explain the results of our conducted experiments.

5.1 Experimental Setup

We compare our model, OPECUR, with the state-of-the-art model introduced
in [5] by utilizing three real-life medical datasets. The datasets are Breast Cancer,
Cleveland Heart Disease, and Hepatitis obtained from the UCI repository [9]. In
Table 1, we summarize the main characteristics of the datasets. The Cleveland
heart disease dataset has four target variables for prediction, 0 (absence) and 1,
2, 3, 4 (presence)!. Hepatitis and Cleveland datasets consist of real-valued and
categorical attributes. Breast Cancer and Hepatitis datasets have a non-uniform
distribution of instances 29% and 25% respectively in the minority classes. The
skewed data distribution of the instances in the classes poses a significant chal-
lenge in finding fewer representative and meaningful rare rules from the datasets.

To test the efficiency and effectiveness of our new approach, we execute three
experiments. In the first experiment, we compare our proposed OPECUR model
with the DBSCAN-based model in terms of time required to generate the com-
plete set of rules in order to assess its scalability. In order to test the quality of
our clustering, the second experiment compares found clustered association rules
from our OPECUR with the DBSCAN-based model. Besides, we evaluate the
quality of generated rare rules from our clustering algorithm OPTICS with the
DBSCAN algorithm by training a classifier with the representation of the rules.
This will assess whether the generated rules are meaningful for decision making
(i.e., identifying ill or healthy people). All the experiments ran on Google Colab
with a limited 12 GB of RAM to test the scalability and easy-to-use nature of
the models. The results are presented in the following subsections.

! Tt is converted to binary classification, 0 (absence), and 1 (presence) for simplicity.



36 S. Darrab et al.

Table 1. Dataset details

Dataset Instances | Class | Attributes | %MinorityClass
Breast cancer | 286 2 9 .29
Hepatitis 155 2 20 .25
Cleveland 303 2 14 44

*All the Datasets are taken from UCI Machine Learning Repository.

5.2 Experiment 1: Execution Time Comparison

This section evaluates the execution time of our proposed OPECUR model with
the state-of-the-art model using DBSCAN for generating the complete set of
association rules. While the DBSCAN-based model utilizes Apriori, we also test
here FP-Growth and ECLAT algorithms to generate the whole set of rules.
For all experiments, the minSup is varied from 0.01 to 0.04. These algorithms
generate the exact same set of rules.

Figure4, 5 and 6 shows the performance of the algorithms on all datasets. As
it can be seen, FP-Growth and ECLAT consume less time compared to the Apri-
ori algorithm. This is not totally surprising, because FP-Growth and ECLAT
algorithm outperformed the Apriori algorithm for frequent itemset mining in var-
ious studies [18]. However, compared to higher minSup values in frequent pattern
mining, it can be seen that even with low minSup, FP-Growth and ECLAT algo-
rithms recover patterns faster. This is crucial in generating the complete set of
rules, including interesting rare ones. Hence, our algorithm relies on the usage
of ECLAT algorithm to generate the complete set of rules since it shows better
performance when mining itemsets with a low support threshold.
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5.3 Experiment 2: Clustering Process Comparison

In this experiment, we compare the results of the clustering process using our
proposed model, OPECUR, with the state-of-the-art DBSCAN-based model. To
reach comparable results, we set the parameters for the whole experiment similar
to the compared model, DBSCAN-based [5] (i.e., minPts to 10, deltal and delta2
of the contradiction check to 1 and —1, respectively). Table2 shows the post
clustering statistics from the OPECUR and DBSCAN-based algorithms. The
results show that our model generates more unexpected rare rules than those
generated by the DBSCAN algorithm. Hence, our model successfully recovers
the interesting rare rules, whereas the DBSCAN model misses these unexpected
rare rules. This is because the OPECUR model automatically calculates the
minEps parameters and can find more clusters in the data than the DBSCAN
algorithm, resulting in lesser noise rules. Hence, experimental results show that
our proposed model can find more interesting unexpected rare rules that may
be missed by the state-of-the-art DBSCAN-based model. However, the question
whether these are meaningful is still open and will be evaluated.

To evaluate the quality of unexpected rare rules generated by our proposed
OPECUR model, we adopted a similar evaluation strategy as in [5]. At its heart,
they measure the impact of rare rules through using machine learning-based
classifiers. We adhere to their assumption that if a rule improves the performance
of a classifier by refining its decision boundary, then the rule indeed is beneficial.
Beyond these assumptions, we change the evaluation procedure in the following
way: As the first revision, in the evaluation procedure, we perform a 3-fold cross
validation on the datasets to train and test the model instead of the independent
hold-out method. Hence, the rules in two folds are used as a training dataset,
whereas the remaining third fold is used as a test dataset. The process is repeated
until each fold has served as an independent test set to be evaluated. We report
the average scores of the models after cross validation for a better estimate of the
generalization error. For the classification task, we utilize Random Forest (RF),
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) classifiers
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implemented in Sklearn library [17] with default classifier parameters. We report
F1 and AUC metrics of the classifiers for the evaluation metric. F1 score considers
precision and recall of the classifier, and AUC (Area under the curve) gives a
better idea of the balance between true-positive and false-positive rates.

Figure 7 and Fig. 8 show the performance of our proposed model, OPECUR,
and the state-of-the-art model, DBSCAN-based, on all three datasets. For both
measures, our proposed model, OPECUR, shows consistently better performance
compared to the state-of-the-art DBSCAN-based model [5], on all three datasets.
This is due to the fact that OPECUR can find more clusters and generate fewer
valid noise rules that pass the contradiction check. This is a clear advantage
compared to the DBSCAN model, which only finds a limited number of the
actual amount of clusters. Hence, rules that should ideally be marked as noise
will still be assigned to a cluster by DBSCAN and, thus, be considered as a
frequent rule. Thus, our proposed model is able to generate more unexpected
rare rules and gains better performance in terms of F1 and AUC score.

Table 2. Comparison of clustering algorithms

Algorithm ‘ Noise ‘ Rare ‘ Clusters

Breast Cancer Dataset

DBSCAN 748 3120
OPTICS 386 23 |54
Cleveland Dataset
DBSCAN |17269 | 415 | 4
OPTICS |15291 | 1650 |17
Hepatitis Dataset
DBSCAN | 11925 0| 3
OPTICS 7289 4 110

*Values are based on minpoints = 10 for
all the datasets. The table describes the
number of clusters, noise rules and rare
rules generated by each algorithm on all
the datasets.

Notably, our OPECUR methods shows the highest performance for the Hep-
atitis dataset. This is due to the fact that it contains more attributes, which
benefits the identification of correlations in these attributes. Furthermore, our
in-depth analysis of the rules and clusters shows that this dataset is a challenge
for DBSCAN as nested clusters in the Hepatitis dataset have not been identified.
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5.4 Experiment 3: Evaluation of Unexpected Rules

In this section, we evaluate the generated unexpected rules by two criteria.
Firstly, we evaluated them by utilizing the contradiction check approach that
used in the compared model [5] with same parameters. According to this prop-
erty, our model generates more interesting unexpected association rules. For
instance, a rule ‘age = 50-59°, ‘breast = left’, ‘deg-malig = 3’, ‘irra-
diat = no’, ‘menopause = ge40’, ‘tumor size = 30-34’— class = yes
is marked as unexpected rule by OPECUR. The rule is in contradiction to the
following two rules:

— ‘age = 50-59’, ‘breast = left’, ‘irradiat = no’, ‘menopause = ged(’ — class
= no.
— ‘breast = left’, ‘irradiat = no’, ‘menopause = ge4()”’— class = no.

Secondly, we compare the unexpected rules generated by the rare-pre-post-
order algorithm, RPP [7]. RPP algorithm is proposed recently to discover the
whole set of rare rules. The results show that the a set of unexpected association
rules generated by our proposed model, OPECUR, is a subset to the rare rules
generated by the RPP algorithm, providing meaningful and concise information.

For example, a rare rule generated by RPP algorithm is the following: ‘tumor
size = 30-34’, ‘inv-nodes = 3-5°, ‘node-caps = no’, ‘menopause =
ged0’, ‘deg-malig = 3’, ‘irradiat = no’ — class = yes. The rule states that
if a patient has a tumor of diameter 30-34, 3-5 auxiliary lymph nodes, node
caps is no, degree of malignancy of the node is 3, and patient is menopausal
without any history of radiation therapy taken, then the chances of recurrence
of cancer are higher. In comparison, our model marks the following rule as rare:
‘menopause = ged0’, ‘inv-nodes = 3-5’, ‘node-caps = no’, ‘irradiat
= no’— class=yes. Hence, the same information generated by our model in
this rules is also generated by the RPP algorithm. Thus, the results show that
the unexpected association rules generated by our model are informative and
meaningful.
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6 Conclusion

Discovering unexpected (rare) rules gains attention since it reveals interesting
hidden knowledge from various domains such as medical diagnosis, fault detec-
tion, and fraud detection. However, the state-of-the-art model’s performance
degrades when generating unexpected association rules and fails to generate
the whole set of unexpected association rules. To address these limitations and
discover unexpected rules, we designed a clustering-based model, OPECUR, to
recover unexpected association rules from real datasets. The proposed model
addresses the state of the art’s shortcomings to efficiently generate the complete
set of rules. Besides, our proposed model generates more interesting unexpected
rules due to its capability to set parameters automatically during the clustering
process. Hence, our model can find more clusters, resulting in more unexpected
rules that helped improve the decision boundary of a machine learning classifier.
The discovered unexpected rules are assessed based on several criteria: contra-
diction check property, classifiers’ performance, and the RPP algorithm’s results.
The experimental results show that our model is scalable and generates more
trustworthy unexpected rules. In the future, we intend to investigate this model
further on streaming data.
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