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Abstract. The presence of a large number of genes in the gene expres-
sion profiles imposes a computational challenge for cancer classification.
To deal with the high-dimensional feature space, in this paper, we present
a 3-step feature selection framework, RRO (Relevancy-Redundancy-
Optimization). In the first step, RRO identifies top-ranked class-relevant
genes utilizing the analysis of variance (ANOVA) and F-test. In the sec-
ond step, class correlated but redundant genes are removed by employing
the Kendall rank correlation coefficient (Kendall’s τ). Finally, we utilize
a metaheuristic optimization algorithm, binary whale optimization algo-
rithm (BWOA), with the support vector machine (SVM) classifier to
select an optimal gene subset. The comparisons with thirteen state-of-
the-art methods in ten gene expression datasets show that RRO yields
better or comparable accuracy.

1 Introduction

The microarray gene expression profiles contain a large number of genes with a
limited number of samples. Feature selection plays a crucial role in cancer classifi-
cation as it allows researchers to identify the most substantial genes that provide
insight into the mechanisms responsible for cancer. Furthermore, it decreases
the computational costs associated with the classification by excluding non-
informative and redundant genes. Moreover, it yields a simpler classification
model, which refers to more interpretable results.

Researchers mainly utilized three approaches for gene selection: filter, wrap-
per, and hybrid approaches. The filter-based methods estimate the relevance
scores of every feature by computing statistical measures and then remove the
statistically non-significant features. The wrapper methods examine various com-
binations of gene subsets and determine the best subset by integrating them into
a classifier. Although they are usually more accurate than the filter-based meth-
ods, they require extensive computational resources and are more prone to over-
fitting. The hybrid methods usually apply one or multiple filter-based methods
in the first step to reduce the feature space. Afterward, a wrapper-based method
is employed to select the optimal feature subset.
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The proposed methodology, RRO, starts with distinguishing the top-class
discriminative genes using the filter-based ANOVA method. The Kendall rank-
order correlation coefficient (Kendall’s τ) is employed to eliminate class-correlated
but redundant genes. Then, we apply the binary whale optimization algorithm
(BWOA) with the SVM classifier to identify an optimized feature subset. Finally,
we feed the selected gene subset to the SVM classifier to determine cancer types.
We compare RRO with thirteen state-of-the-art methods on ten gene expressions
datasets considering both best and average accuracy. The results demonstrate that
RRO yields comparable or better accuracy than most of the existing methods.

1.1 Objective and Contributions

The main objective of this study is to demonstrate the efficacy of the combina-
tion of several feature selection methods (i.e., ANOVA, Kendall, and BWOA)
and the SVM classifier for gene selection and cancer classification. The main
contributions of this paper can be summarized as follows:

– We show that the combinations of ANOVA and Kendall’s τ can effectively
remove irrelevant and redundant genes in gene expression datasets.

– We demonstrate that the SVM classifier with the BWOA feature selection
algorithm can effectively identify cancer subtypes (or presence).

2 Related Work

A number of univariate feature selection methods such as Chi-square [21],
Information Gain (IG) [13,19], Laplacian score (L-score) [37] and Fisher score
(F-score) [11] have been employed for gene selection in literature. Besides,
researchers also studied multivariate filter methods such as Minimal Redun-
dancy Maximal Relevance (mRMR) [28], Random Subspace Method (RSM) [18],
and Relevance Redundancy Feature Selection (RRFS) [12] which considers the
dependencies among features.

Due to the high computational cost associated with wrapper-based feature
selection methods, they are often combined with a filter-based method. The hybrid
methodology initially employs a filter-based method to exclude non-informative
genes to reduce search space. Mundra et al. [25] hybridized two of the most pop-
ular feature selection approaches, namely SVM-RFE and mRMR. Shreem et al.
[34] proposed RM-GA approach that combines ReliefF, mRMR, and genetic algo-
rithm (GA). In [9], the authors introduced a hybrid method named CFS-TGA,
which utilizes correlation-based feature selection (CFS), Taguchi-Genetic Algo-
rithm (TGA), and K-NN classifier. In [5], the authors proposed a feature selection
algorithm, mRMR, and combined it with the Artificial Bee Colony (ABC) algo-
rithm to select informative genes. The performance of the mRMR-ABC algorithm
was evaluated on six binary and multiclass gene expression microarray datasets.
Lee and Leu [20] presented Genetic Algorithm Dynamic Parameter (GADP) that
produces every possible subset of genes and ranks the genes using their occur-
rence frequency. Yassi and Moattar [38] proposed a feature selection approach for
microarray data that fuses both ranking and wrapper-based methods.
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MIMAGA-Selection [22] is a hybrid feature selection algorithm that com-
bines Mutual Information Maximization (MIM) and Adaptive Genetic Algo-
rithm (AGA). CLA-ACO [31] is a hybrid approach that employs Cellular Learn-
ing Automata (CLA) and Ant Colony Optimization (ACO). CLA-ACO consists
of three phases: filter-based Fisher criterion method, cellular learning automata,
and ant colony optimization.

Shreem et al. [33] combined Symmetrical Uncertainty (SU) with the Harmony
Search Algorithm (HSA) for gene selection. The authors first eliminated non-
essential genes using the SU method. In the second stage, HSA was employed as
a wrapper method to find the most informative genes. Two classifiers, IB1 and
NB, were utilized to assess the performance of SU-HSA. The authors applied
SU-HSA to 10 microarray datasets and achieved 100% accuracy in four of them.

Salem et al. [29] proposed an Information Gain (IG) and Standard Genetic
Algorithm (SGA) based method, IG/SGA, for feature selection. IG was applied
at the initial step for feature reduction. Then, a genetic algorithm was applied to
select the optimal features, and finally, Genetic Programming (GP) classifier was
employed. Their method was evaluated on seven cancer microarray datasets and
achieved 100% accuracy in two datasets. A GA and Intelligent Dynamic Genetic
Algorithm (IDGA) based method for gene selection was proposed in [10]. The
authors applied Laplacian and Fisher scores independently in the first phase to
select the top 500 genes. In the second phase, the reinforcement learning-based
IDGA method was applied. Support Vector Machine (SVM), Näıve Bayes (NB),
and K-Nearest Neighbour (KNN) were employed as classifiers on five microarray
cancer datasets. It was observed that when combined with the IDGA, the Fisher
score outperformed the Laplacian score on four datasets.

A hybrid framework that employs both extraction and wrapper gene selection
methods was presented by Aziz et al. [8]; as an extraction method, the authors
used ICA, while as a wrapper method, ABC was utilized. Their experimental
results utilizing the NB classifier yielded better performance compared to other
gene selection algorithms. A Gene Selection Programming (GSP) method was
proposed in [2] to select relevant genes for cancer classification. The authors
adopted the SVM with a linear kernel as a classifier for the GSP. A neighborhood
entropy-based feature selection algorithm was introduced in [35]. At first, the
neighborhood entropy-based uncertainty measures were utilized to assess the
uncertainty and exclude the noise present in gene expression datasets. In the
subsequent steps, the neighborhood credibility degree and coverage degree were
applied. The authors employed a heuristic reduction algorithm to decrease the
computational complexity and to improve the classification performance.

A hybrid method that employs Adaptive Elastic Net (AEN) with Conditional
Mutual Information (CMI) was introduced in [36]. AEN-CMI obtained better
performance compared to L1-SVM, Elastic Net, Adaptive Lasso, and classic
Adaptive Elastic Net algorithms on two cancer microarray datasets. In [1], an
unsupervised two-stage feature selection technique was presented. In the first
stage, three filter-based methods techniques were applied. A genetic algorithm
was utilized in the second stage. Finally, three ML classifiers, SVM, k-NN, and
random forest (RF) were employed for classification.
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Several variants of Particle Swarm Optimization (PSO) algorithm have been
proposed in the literature for cancer classification [15,16,24,30]. HPSO-LS [24]
embedded a local search strategy within the PSO to reduce the feature space
before applying PSO. The authors also used the Pearson correlation coefficient
to identify correlation among features. As a classifier, the k-NN classifier was
used. In another PSO-based work [16], k-NN with PSO was utilized for fea-
ture selection and classification. However, their work focused more on selecting
the best k value for the k-NN classifier to achieve better accuracy. In [15], the
correlation-based feature selection (CFS) algorithm and iBPSO were applied for
identifying the best feature set, and then NB classifiers were employed for clas-
sification. In [30], ANOVA, Spearman rank-order correlation (SRC), and BPSO
were employed for feature selection.

3 Proposed Methodology

The RRO starts with normalizing the gene expression values. Afterward, the
feature selection process consisting of three phases, relevance analysis (ANOVA),
redundancy analysis (Kendall’s τ), and feature set optimization (BWOA-SVM)
are employed. Finally, the SVM classifier is applied for classification. The flow
diagram of the proposed methodology is shown in Fig. 1.

3.1 Feature Scaling

The value of each feature (i.e., gene expression value) is scaled to fit within a
range between 0 and 1. The following equation is used to normalize the d’th
value (i.e., value for the d’th instance) of feature i in set X,

Xid.scaled =
(Xid − Xi.min)

Xi.max − Xi.min
(1)

where, Xi.max and Xi.min are the maximum and minimum gene expression
values of gene i acorss all the instances, respectively.

3.2 Phase 1 Feature Selection: Relevance Analysis

In phase 1, ANOVA, a statistical method, is applied to reduce the feature search
space by identifying top class-correlated genes. ANOVA F-test determines the
variance between and within the groups, calculates F-value, and utilizes it to
identify informative genes. This step selects a set of top class-correlated genes.
The number of genes in the set is either 200 genes or 5% of the genes present in
the dataset, whichever is minimum. The selected top class-correlated genes are
then forwarded to the redundancy measure step.
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Fig. 1. Flowchart of the proposed methodology

3.3 Phase 2 Feature Selection: Redundancy Analysis

As univariate filter-based feature selection methods do not consider the interac-
tion among features, they may select class-correlated but redundant genes. In
phase 2, we employ Kendall’s τ coefficient to remove redundant genes identi-
fied in phase 1. The Kendall rank correlation coefficient (often called Kendall’s
τ coefficient) is a non-parametric measure of the correspondence between two
rankings. A value close to +1 indicates strong agreement, a value around –1
indicates strong disagreement, and a 0 value indicates no correlation.

Let (x1, y1),...,(xn, yn) be a set of observations of the joint random variables
X and Y such that all the values of xi and yi are unique (assume their is no
tie). Any pair of observations (xi, yi) and (xj , yj) , where i < j, are said to be
concordant if the sort order of (xi, xj) and (yi, yj) agrees; otherwise they are
said to be discordant. The Kendall τ coefficient is defined as:

(#num concordant pairs − #num disconcordant pairs)
n(n−1)

2

The redundancy threshold value is selected as 0.5 to identify the redundant
genes. When two genes show a Kendall’s τ correlation coefficient above the
redundancy threshold, the lower class-relevant gene is removed.

3.4 Phase 3 Feature Selection: Meta-heuristic Optimization

Phase 3 of the feature selection step leverages binary whale optimization algo-
rithm (BWOA) and SVM classifier. Whale Optimization Algorithm (WOA) [23]
is a nature-inspired optimization algorithm that imitates the social behavior of
humpback whales. The WOA optimization algorithm assumes that the present
best candidate solution is the target prey or is close to the optimum solution.
The other search agents (i.e., whale) gradually change their positions towards
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the current best solution (i.e., best whale). The following equations describe this
behavior of i’th whale:

D = |C ∗ Xb(t) − Xi(t)| (2)

Xi(t + 1) = Xb(t) − A ∗ D (3)

A = 2a ∗ r1 − a (4)

C = 2 ∗ r2 (5)

where t indicates the current iteration, A and C are coefficient values, r1 and
r2 are random vectors in the range of [0, 1]; a decreases linearly through the
iterations from 2 to 0. Xi is the position vector of the i’th whale. Xb is the
position vector of the current optimal solution (best search agent position).

Fig. 2. The steps of BWOA

The two phases of bubble-net attacking behaviour of whales are the exploita-
tion and exploration phases.
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Exploitation Phase

Shrinking Encircling Mechanism: This behavior is achieved by decreasing the
value of a. The fluctuation range of A decreases as a is reduced from 2 to 0
gradually over the course of iterations. By setting random values for A in [–1,
1], the updated position of each agent can be defined anywhere in between the
position of the current best agent and the original position of the agent.

Xi(t + 1) = Xb(t) − A ∗ D (6)

Spiral-Based Position Update: In this step, for each whale i, the distance to
current best solution is computed. To imitate the helix-shaped movement of the
humpback whale, a spiral equation is used, which is shown below-

Xi(t + 1) = D ∗ ebl ∗ cos(2πl) + Xb(t) (7)

where D = |Xb(t) − Xi(t)| indicates the distance of the prey (i.e., best solution)
to i’th whale, b is the logarithmic spiral shape constant, l is a random number
in [–1, 1].

The Exploration Phase
The exploration phase searches randomly instead of moving towards the current
best solution. The position of a search agent is updated respect to a randomly cho-
sen search agent instead of using the best search agent found so far. This strategy is
employed when |A| > 1, it emphasizes exploration and allow the WOA algorithm
to perform a global search. The mathematical model is described as follows:

D = C ∗ Xrand − Xi (8)

Xi(t + 1) = Xrand − A ∗ D (9)

where, Xrand is the position vector of a randomly chosen search agent.

3.5 Binary Whale Optimization Algorithm (BWOA)

For feature selection, we use a modified version of WOA, called binary WOA
(BWOA) [14], that finds the candidate solution with a binary value (i.e., not-
selected (0) or selected (1)) of individual genes. We use the S-shaped sigmoid
function in each dimension to map the continuous-valued velocity given by Eq. 2
to the range [0, 1], as shown in Eq. 10.

sig(vid) =
1

1 + exp(−vid)
(10)

The feature (i.e., gene) states in the solutions are changed based on the Eq. 11.
For example, the state of the d’th gene in solution i at time t is determined by,

xid(t) =

{
0 if ρid ≥ sig(vid)
1, otherwise

(11)

where ρid is a random number with uniform distribution within the range of
[0.0, 1.0).
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3.6 BWOA for Gene Selection

The BWOA optimization process involves several steps, as shown in Fig. 2. The
BWOA algorithm initially starts with a set of random solutions. Each solution
represents an d-dimensional feature (i.e., gene) set, where gi = 1 means the gene
i is selected as a feature, while 0 value means it is not selected (an example
provided in Fig. 3). At each iteration, candidate solutions update their positions
towards either the best solution obtained so far or a randomly chosen solution.
The parameter a is decreased from 2 to 0 to support exploration and exploita-
tion. A random solution is chosen when |A| ≥ 1, while the current best solution
is selected when |A| < 1 for updating the position of the candidate solutions.
Depending on the value of p, BWOA can switch between either a circular move-
ment or spiral. The BWOA algorithm terminates when the maximum number
of iteration is reached. We use 300 as a maximum limit for the iterations.

Optimization Goal
In RRO, the optimization goal of the BWOA is set to identify a gene subset
that provides the highest accuracy for cancer classification. The optimization
functions of BWOA only consider accuracy to find the best solution; minimizing
the number of genes is not considered in the optimization step, as irrelevant and
redundant genes are discarded in the earlier phases.

Training and Testing Data Splitting
The SVM classifier is used to assess the accuracy of a candidate solution. We
use 90% data for training and the remaining 10% data are used to asses the
accuracy of the candidate feature set. The data split is performed randomly and
in a stratified fashion. We use the BWOA implementation of [17].

Fig. 3. Representation of a candidate solution of BWOA with a gene set with n number
of genes (d1, d2, ....., dn)
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3.7 Classification

In the classification stage, the SVM classifier is utilized for determining the types
(or presence) of cancer leveraging the informative genes identified in the feature
selection stages. The default parameters settings of scikit-learn [27] implemen-
tation of the SVM classifier (with class-balanced weights) are used. The results
are reported based on the 10-fold cross-validation.

Table 1. Description of gene expression datasets

No. Dataset #Gene #Sample Class distribution Smallest class Largest class

1 Colon 2000 62 2 (22/40) 35.48% 64.51%

2 CNS 7129 61 2 (21/40) 34.42% 65.58%

3 DLBCL 7128 77 2(19/58) 24.67% 75.32%

4 Leukemia 7129 72 2(25/47) 34.72% 65.27%

5 Lung 12533 181 2(31/150) 17.12% 82.87%

6 Prostate 10509 102 2(50/52) 49.01% 50.98%

7 SRBCT 2308 63 4(8/12/20/23) 12.69% 36.50%

8 Ovarian 15154 253 2 (91/162) 35.96% 64.03%

9 Leukemia-3 7129 72 3 (28/24/20) 27.77% 38.88%

10 Lymphoma 4026 66 3 (9/11/46) 13.63% 69.69%

4 Datasets and Baselines

4.1 Gene Expression Datasets

We report the performance of RRO on ten gene expression benchmark
datasets1,2, shown in Table 1. The datasets represent gene expression profiles of
different types of cancers, such as Colon, Central Nerve System (CNS), DLBCL,
Leukemia, Lung, Prostate, SRBCT, Ovarian, Leukemia-3 and Lymphoma shown
in Table 1.

The Colon dataset is a binary dataset consisting of gene expression pro-
files of 40 cancerous and 22 normal colon tissues. The CNS dataset comprises
61 examples from two classes. The DLBCL dataset consists of 77 gene expres-
sion samples from two classes, DLBCL and Follicular Lymphoma (FL) mor-
phology. In the Leukemia dataset, 25 samples belong to AML and 47 samples
belong to ALL. Lung cancer consists of 181 samples, 31 from Malignant Pleural
Mesothelioma (MPM) and 150 from Adenocarcinoma (ADCA). The Prostate
and SRBCT datasets contain 102 and 63 samples, respectively. The four classes
of the SRBCT dataset are neuroblastoma (NB), rhabdomyosarcoma (RMS),

1 https://github.com/kivancguckiran/microarray-data.
2 http://csse.szu.edu.cn/staff/zhuzx/Datasets.html.

https://github.com/kivancguckiran/microarray-data
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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non-Hodgkin lymphoma (NHL), and the Ewing family of tumors (EWS). The
three classes of the Lymphoma-3 dataset are DLBCL, FL, and CLL. The Ovarian
dataset represents cancer and normal class.

4.2 Performance Metrics

The precision, recall, macro F1 score, accuracy, and the number of genes used
are provided to demonstrate the efficacy of the RRO. The recall (Rc), precision
(Pc), and F1 score (F1c) of a class c is calculated as follows:

Rc =
TP

TP + FN
(12)

Pc =
TP

TP + FP
(13)

F1c =
2 ∗ R ∗ P

R + P
(14)

The TPc, FPc, FNc of a class c is defined as follows:

TPc = Both prediction and true label refer to the same class c
FPc = Prediction indicates class c, while true label is different (i.e., not class
c)
FNc = Prediction indicates any of the other classes (i.e., non c-class) while
true class is c

Finally, the macro F1 score is calculated by taking the average of F1 scores of
all the classes.

Besides, the accuracy of RRO is reported in various gene expression datasets
to compare it with state-of-the-art methods. The accuracy is defined as follows:

Accuracy =
Number ofsamples correctly classified in a dataset

Total number of samples present in the dataset

Besides, we investigate the number of genes different methodologies use for
classification. The number of genes utilized is a critical indicator of the efficacy
of various methods since the fewer number of genes usually makes the results
more interpretable and less prone to over-fitting.
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Table 2. State-of-the-arts methods

Harmony Search Algorithm (HSA), Markov Blanket (MB), NB [32]

Hidden Markov Models (HMMs),
Modified Analytic Hierarchy Process (AHP) [26]

Independent Component Analysis (ICA),
Artificial Bee Colony (ABC), NB [8]

Laplacian and Fisher score, Intelligent Dynamic
Genetic Algorithm, SVM, KNN, NBY [10]

Information Gain (IG), Standard Genetic Algorithm (SGA),
Genetic Programming (GP) [29]

Neighborhood Entropy-based Uncertainty Measures [35]

Adaptive Elastic Net, Conditional Mutual Information (AEN-CMI) [36]

PCA, Correlation and Spectral-based Feature Selection,
Genetic Algorithm (GA), SVM, K-NN, RF. [1]

Artificial Bee Colony (ABC), SVM [7]

Minimum Redundancy Maximum Relevancy (MRMR),
Bat-inspired Algorithm (BA), SVM [4]

PSO, adaptive K-nn [16]

CFS, improved-Binary PSO (iBPSO), Naive-Bayes (NB) [15]

FF-SVM (FIREFLY FEATURE SELECTION) [3]

4.3 Baseline Methods

The efficacy of RRO is shown by comparing it with thirteen state-of-the-art
methods. The summary of each method is provided in Table 2. The comparative
performances of RRO and the state-of-the-art methods are shown in terms of
accuracy and the number of genes utilized.

5 Results and Discussion

Table 3 shows the precision, recall, F1 score, and accuracy of RRO. Among the 10
datasets, RRO obtains a perfect F1 score of 1.0 in 5 datasets (DLBCL, Leukemia,
SRBCT, Lymphoma, and Ovarian). In two datasets, Lung and Prostate, it
achieves almost perfect F1 scores (0.994 and 0.990).
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Table 3. Precision, Recall and Macro F1 scores of RRO in ten gene expression datasets

No. Dataset #Selected genes Precision Recall F1 Score

1 Colon 22 0.933 0.896 0.913

2 CNS 67 0.983 0.988 0.985

3 DLBCL 38 1.0 1.0 1.0

4 Leukemia-2 35 1.0 1.0 1.0

5 Lung 8 0.996 0.992 0.994

6 Prostate 24 0.955 0.975 0.964

7 SRBCT 15 1.0 1.0 1.0

8 Leukemia-3 69 0.992 0.989 0.990

9 Lymphoma 21 1.0 1.0 1.0

10 Ovarian 4 1.0 1.0 1.0

Table 4 shows the comparison results of RRO with thirteen state-of-the-art
methods. Both accuracy (Acc.) and the number of genes (#G) used by vari-
ous methods are provided (except [1,26], which did not report the number of
genes utilized). Note that existing works used distinct sets of evaluation datasets
in their experiments; thus, they may not have experimental results for all the
datasets used in this study (indicated by ‘-’).

The comparisons with the state-of-the-art methods demonstrate that RRO
provides better accuracy than most of the existing methodologies. We notice, in
several datasets, such as Lung, Ovarian, and SRBCT datasets, RRO achieves the
perfect (i.e.,100%) accuracy using less than seven genes. In three other datasets,
it also attains 100% accuracy. In other datasets such as Colon, Leukemia-3, and
Prostate, it is noticed that RRO shows better performance compared to most
of the existing methods; Although, yields a bit less accurate results than [4,15]
in Colon and [29] in Prostate datasets, respectively. When the average accuracy
is considered, RRO yields better results than other methods (which reported
average accuracy) in CNS and Prostate datasets (shown by non-integer values
for the number of genes).

The running time could be a limiting factor of the applicability of evolution-
ary algorithms for feature selection; especially, with the presence of thousands of
features in the dataset. RRO utilizes two filter-based approaches in early steps
to reduce the feature search space, thus, keeps the running time feasible.
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Table 4. The comparison of accuracy and genes utilized by various methods in ten
gene expression datasets (bold texts represent highest accuracy in a dataset)

Ref. Metric Dataset

Colon CNS DLBCL Leu-2 Lung Prost. SRBCT Ovari Lymph Leu-3

[36] Acc 0.89 – – 0.91 – – – – – –

#G (25.20) – – (26.85) – – – – – –

[10] Acc – – 1.0 1.0 – 0.96 1.0 – – –

#G – – (9) (15) – (14) (18) – – –

[26] Acc 0.89 – 0.99 0.98 – 0.92 – – – –

#G – – – – – – – – – –

[8] Acc 0.92 – – 0.94 0.84 0.89 – – – 0.973

#G (4) – – (6) (4) (4) – – – 15

[1] Acc 0.85 0.85 0.98 0.90 0.99 0.99 – – – –

#G – – – – – – – – –

[32] Acc 0.90 0.84 – 0.99 0.96 – 0.99 1.00 1.00 0.99

#G (4.16) (7.43) – (5) – (8.9) (5.73) 3.75 5.84

[29] Acc. 0.85 0.87 0.95 0.97 – 1.0 – – – –

#G (60) (38) (110) (3) – (26) – – – –

[35] Acc 0.84 – 0.93 0.93 0.99 – 0.94 – – –

#G (3) – (11) (9) (8) – (9) – – –

[6] Acc 0.92 – – – 0.93 0.92 – – – –

#G (20) – – – (8) (10) – – – –

[4] Acc. 0.93 0.94 – 1.0 – – 1.0 – – –

#G (8.13) (19.2) – (4.3) – – (12.83) – – –

[16] Acc – – – 0.97 – – 0.96 – – –

#G – – – (2.7) – – (8.5) – – –

[15] Acc 0.95 0.96 – 1.0 1.0 – 1.0 1.00 100 –

#G (4.2) (10.5) – (4.3) ((6) – (34.1) 12 24 –

[3] Acc 0.93 – – 0.99 – – – – – 0.93

#G 19 – – 11 – – – – – 19

[7] Acc 0.92 – – 0.92 – – – – – 0.93

#G 20 – – 14 – – – – – 20

RRO Acc 0.92 0.98 1.0 1.0 1.0 0.98 1.0 1.0 1.0 0.99

(Best) #G (41) (67) (38) (35) (6) (20) (15) (4) 21 69

RRO Acc 0.89 0.97 0.98 0.98 0.99 0.96 1.0 0.99 0.99 0.98

(Avg.) #G (18.3) 57.6 (27.8) (32.3) (9.6) (25.4) (24.2) 5.5 18.5 59.5

The efficacy of RRO is shown on datasets of distinct characteristics. We use 2-
class, 3-class, and 4-class gene expression datasets (Table 1). Besides, the datasets
used in the experiment have distinct class distribution ratios. The results reveal
that RRO yields fairly good performances across different types of datasets.
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The comparison results reveal that the efficiency of various methods depends
on the dataset, the number of genes utilized, and the parameter settings. It is
noticed that none of the methods (including the proposed RRO) is constantly
better than others.

6 Summary and Conclusions

In this study, a hybrid feature selection framework RRO is proposed for can-
cer classification. RRO utilizes ANOVA for selecting the initial set of class-
discriminative genes. In the subsequent step, redundant genes are eliminated
using Kendal’s τ correlation. Finally, BWOA and SVM are employed to identify
an optimized feature set for classification. It is observed that among the ten
gene expression datasets, RRO reaches a perfect F1 score of 1.0 in five datasets.
Besides, RRO realizes 100% classification accuracy in six datasets using a varied
number of genes. The comparisons with the thirteen state-of-the-art methods
on ten microarray datasets demonstrate that RRO exhibits better or compa-
rable performance in terms of classification accuracy and the number of genes
utilized. The results demonstrate that RRO is a highly effective approach for fea-
ture selection in the microarray dataset. The comparative analysis also reveals
that the performances of various feature selection and classification methods are
not consistent across datasets. The future work will involve investigating the
performance of RRO in other types of gene expression datasets, such as the
RNA-Seq dataset.
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